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Prefaces

Preface to the First Edition

The design of new materials is one of the most important tasks in promoting progress.
To do this efficiently, the fundamental properties of the simplest forms of solids, i. e.,
single crystals must be understood.

Not so long ago, materials science implied the development, experimental investi-
gation, and theoretical description, of primarily construction materials with given elas-
tic, plastic and resistive properties. In the last few decades, however, new materials,
primarily crystalline, have begun to be viewed differently: as finished, self-contained
devices. This is particularly true in electronics and optics.

To understand the properties of a crystal device it is not only necessary to know its
structure but also the dynamics of physical processes occurring within it. For example,
to describe the simplest displacement of the crystal atoms already requires a knowl-
edge of the interatomic forces, which of course, entails a knowledge of the atomic
positions.

The dynamics of a crystal lattice is a part of the solid-state mechanics that studies
intrinsic crystal motions taking into account structure. It involves classical and quan-
tum mechanics of collective atomic motions in an ideal crystal, the dynamics of crystal
lattice defects, a theory of the interaction of a real crystal with penetrating radiation,
the description of physical mechanisms of elasticity and strength of crystal bodies.

In this book new trends in dislocation theory and an introduction to the nonlinear
dynamics of 1D systems, that is, soliton theory, are presented. In particular, the dis-
location theory of melting of 2D crystals is briefly discussed. We also provide a new
treatment of the application of crystal lattice theory to physical objects and phenomena
whose investigation began only recently, that is, quantum crystals, electron crystals on
a liquid-helium surface, lattices of cylindrical magnetic bubbles in thin-film ferromag-
netics, and second sound in crystals.

In this book we treat in a simple way, not going into details of specific cases, the
fundamentals of the physics of a crystalline lattice. To simplify a quantitative descrip-
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tion of physical phenomena, a simple (scalar) model is often used. This model does
not reduce the generality of qualitative calculations and allows us to perform almost
all quantitative calculations.

The book is written on the basis of lectures delivered by the author at the Kharkov
University (Ukraine). The prerequisites for understanding this material are a general
undergraduate-level knowledge of theoretical physics.

Finally, as author, I would like to thank the many people who helped me during the
work on the manuscript.

I am pleased to express gratitude to Professor Paul Ziesche for his idea to submit
the manuscript to WILEY-VCH for publication, and for his aid in the realization of
this project.

I am deeply indebted to Dr. Sergey Feodosiev for his invaluable help in preparing a
camera-ready manuscript and improving the presentation of some parts of the book. I
am grateful to Maria Mamalui and Maria Gvozdikova for their assistance in preparing
the computer version of the manuscript. I would like to thank my wife Dina for her
encouragement.

I thank Dr. Anthony Owen for his careful reading of the manuscript and useful
remarks.

Kharkov July 1999 Arnold M. Kosevich

Preface to the Second Edition

Many parts of this book are not very different from what was in the first edition (1999).
This is a result of the fact that the basic equations and conclusions of the theory of the
crystal lattice have long since been established. The main changes (“reconstruction”)
of the book are the following

1. All the questions concerning one-dimensional (1D) crystals are combined in
one chapter (Chapter 1). I consider the theory of a 1D crystal lattice as a training
and proving ground for studying dynamics of three-dimensional structures. The 1D
models allow us to formulate and solve simply many complicated problems of crystal
mechanics and obtain exact solutions to equations not only of the linear dynamics but
also for dynamics of anharmonic (nonlinear) crystals.

2. The second edition includes a new chapter devoted to the theory of elastic super-
lattices (Chapter 5). A new class of materials, namely, phonon and photon crystals has
recently been of the great interest, and I would like to propose a simple explanation of
many properties of superlattices that were studied before and known in the theory of
normal crystal lattices.

3. New sections are added to the new edition concerning defects in the crystal
lattice.
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Finally, I would like to thank the people who helped me in the preparation of the
manuscript.

I am indebted to Dr. Michail Ivanov and Dr. Sergey Feodosiev for their advise
in improving the presentation of some parts of the book. I express many thanks to
Alexander Kotlyar for his invaluable help in preparing the figures and electronic ver-
sion of the manuscript. The author is grateful to Oksana Charkina for assistance in
preparing the manuscript. I would like to thank my wife Dina for her encouragement.

Kharkov March 2005 Arnold M. Kosevich
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0
Geometry of Crystal Lattice

0.1
Translational Symmetry

The crystalline state of substances is different from other states (gaseous, liquid, amor-
phous) in that the atoms are in an ordered and symmetrical arrangement called the
crystal lattice. The lattice is characterized by space periodicity or translational sym-
metry. In an unbounded crystal we can define three noncoplanar vectors a1, a2, a3,
such that displacement of the crystal by the length of any of these vectors brings it
back on itself. The unit vectors aα, α = 1, 2, 3 are the shortest vectors by which a
crystal can be displaced and be brought back into itself.

The crystal lattice is thus a simple three-dimensional network of straight lines
whose points of intersection are called the crystal lattice1. If the origin of the co-
ordinate system coincides with a site the position vector of any other site is written
as

R = Rn = R(n) =
3

∑
α=1

nαaα, n = (n1, n2, n3), (0.1.1)

where nα are integers. The vector R is said to be a translational vector or a transla-
tional period of the lattice. According to the definition of translational symmetry, the
lattice is brought back onto itself when it is translated along the vector R.

We can assign a translation operator to the translation vector R(n). A set of all
possible translations with the given vectors aα forms a discrete group of translations.
Since sequential translations can be carried out arbitrarily, a group of transformations
is commutative (Abelian). A group of symmetry transformations can be used to ex-
plain a number of qualitative physical properties of crystals independently of their
specific structure.

Now consider the geometry of the crystal lattice. The parallelepiped constructed
from the vectors corresponding to the translational periods is called a unit cell. It is

1) The lattice sites are not necessarily associated with the positions of the
atoms.
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4 0 Geometry of Crystal Lattice

clear that the unit vectors, and thus the unit cell, may be chosen in different ways. A
possible choice of unit cell in a planar lattice is shown in Fig. 0.1. As a rule, the unit
cell is chosen so that its vertex coincides with one the atoms of the crystal. The lattice
sites are then occupied by atoms, and vectors aα connect the nearest equivalent atoms.

By arranging the vectors a1, a2, a3 in the correct sequence, it is easy to see that the
unit cell volume V0 = a1[a2, a3]. Although the main translation periods are chosen
arbitrarily, the unit cell volume still remains the same for any choice of the unit vectors.

Fig. 0.1 Choice of unit cells (dashed) in a two-dimensional lattice.

The unit cell contains at least one atom of each of the types that compose the crys-
tal2. Since the atoms of different type are distinguished not only by their chemical
properties but also by their arrangement in the cell, even in a crystal of a pure element
there can be more than one type of atom. If the unit cell consists of only one type of
atom it is called monatomic, otherwise it is polyatomic. A monatomic lattice is also
often called simple and a polyatomic lattice composite. Table salt (NaCl) containing
atoms of two types is an example of a polyatomic crystal lattice (Fig. 0.2), and 2D
lattice composed of atoms of two types is presented also in Fig. 0.3a. A polyatomic
crystal lattice may also consist of atoms of the same chemical type. Figure 0.3b shows
a highly symmetrical diatomic planar lattice whose atoms are located at the vertices
of a hexagon.

The differences between simple and composite lattices lead to different physical
properties. For example, the vibrations of a diatomic lattice have some features that
distinguish them from the vibrations of a monatomic lattice.

We would like to emphasize that the unit cell of a crystal involves, by definition,
all the elements of the translation symmetry of the crystal. By drawing the unit cell
one can construct the whole crystal. However, the unit cell may not necessarily be
symmetrical with respect to rotations and reflections as the crystal can be. This is
clearly seen in Fig. 0.3 where the lattices have a six-fold symmetry axis, while the
unit cells do not.

2) We note that the contribution to a cell of an atom positioned in a cell vertex
equals 1/8, on an edge 1/4 and on a face 1/2.
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Fig. 0.2 NaCI crystal structure (© - Na, ● - Cl).

Fig. 0.3 Hexagonal 2D diatomic lattice composed of atoms (a) of differ-
ent types and (b) of the same type. The unit cell is hatched.

0.2
Bravais Lattice

The Bravais lattice is the set of all equivalent atoms in a crystal that are brought back
onto themselves when they are displaced by the length of a unit vector in a direc-
tion parallel to a unit vector. Bravais and monatomic lattices are usually coincident.
A polyatomic lattice, however, consists of several geometrically identical interposed
Bravais lattices.

The Bravais lattice of a polyatomic crystal is often more symmetrical than the crys-
tal lattice itself. It contains all the elements of the crystal symmetry and may also
have additional symmetry elements. For example, a planar crystal may have three-
fold symmetry (Fig. 0.3a) whereas its Bravais lattice may have six-fold symmetry.
The Bravais lattice has inversion centers at all of the sites, whereas the crystal lattices
(necessarily polyatomic) do not necessarily have such a symmetry element.

The Bravais lattices are classified according to the symmetry of rotations and re-
flections. Seven symmetry groups or space groups are defined. Each of the lattices of
a given group has an inversion center, a unique set of axes and symmetry planes. Each
space group is associated with a polyhedron whose vertices correspond to the nearest
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sites of the corresponding Bravais lattice and that has all the symmetry elements of
the space group. The polyhedron is either a parallelepiped or a prism.

In the most symmetrical Bravais lattice, the cube is used as the symmetry “carrier”,
and the lattice is called cubic. A hexagonal lattice is characterized completely by
a regular hexahedral prism, the Bravais rhombohedron lattice by a rhombohedron,
(i. e., the figure resulting when a cube is stretched along one of its diagonals), etc.
A rectangular prism with at least one square face has tetragonal symmetry.

Within a given space group an additional subdivision into several types of Bravais
lattices can be made. The type of Bravais lattice depends on where the lattice sites are
located: either only at the vertices of the polyhedrons or also on the faces or at the
center. We distinguish between the following types of Bravais lattice: primitive (P),
base-centered (BC), face-centered (FC) and body-centered (BC) lattices.

The lattice of NaCl in Fig. 0.2 gives an example of a cubic lattice. A plane diatomic
lattice with the 3-fold symmetry axes is shown in Fig. 0.3a, however, its Bravais lat-
tice has 6-fold symmetry axes; a hexagonal lattice with the 6-fold symmetry axes is
presented in Fig. 0.3b.

Fig. 0.4 Unit cells with translation vectors inside the cubic unit cells
(a) of the FCC lattice and (b) of the BCC lattice.

It should be noted that the unit cell is not a principal geometrical figure being the
“carrier” of all rotation elements of symmetry in the case of centered lattices. In order
to demonstrate this fact a situation of the atoms in the single cube of BC-cubic and
FC-cubic lattices is shown in Fig. 0.4a and 0.4b where the unit cells of these lattices
are presented as well.

Naming the cubic, hexagonal and tetragonal lattices we have thereby counted the
lattices possessing axes of 2-, 3-, 4- and 6-fold symmetry. Naturally, the question
arises what types of the symmetry axes are compatible with the translational symmetry
of a spatial lattice. It appears that the symmetry axes of the 2-, 3-, 4- and 6-fold only
can exist in the unbounded spatial lattice (see Problems at the and of the chapter).
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0.3
The Reciprocal Lattice

In order to describe physical processes in crystals more easy, in particular wave phe-
nomena, the crystal lattice constructed with unit vectors aα in real space is associated
with some periodic structure called the reciprocal lattice. The reciprocal lattice is
constructed from the vectors bβ, β = 1, 2, 3, related to aα through

aαbβ = 2πδαβ, α, β = 1, 2, 3,

where δαβ is the Kronecker delta. The vectors bβ can be simply expressed through the
initial translational vectors aα:

b1 =
2π

V0
[a2, a3], b2 =

2π

V0
[a3, a1], b3 =

2π

V0
[a1, a2].

The parallelepiped constructed from bβ is called the unit cell of a reciprocal lattice.
It is easy to verify that the unit cell volume in the reciprocal lattice is equal to the
inverse value of the unit cell volume of the regular lattice:

Ω0 = b1[b2, b3] =
(2π)3

V0
.

Note that the reciprocal lattice vectors have dimensions of inverse length. The space
where the reciprocal lattice exists is called reciprocal space. The question arises: what
are the points that make a reciprocal space? Or in other words: what vector connects
two arbitrary points of reciprocal space?

Consider a wave process associated with the propagation of some field (e. g., elec-
tromagnetic) to be observed in the crystal. Any spatial distribution of the field is,
generally, represented by the superposition of plane waves such as

ψq = eiqr,

where q is the wave vector whose values are determined by the boundary conditions.
However, in principle the vector q takes arbitrary values. The dimension of the

wave vector coincides with the dimension of inverse length, and the continuum of all
possible wave vectors forms the reciprocal space. Thus, the reciprocal space is the
three-dimensional space of wave vectors.

By analogy to the translation vectors of the regular lattice (0.1.1), we can also define
translation vectors in reciprocal space:

G ≡ G(m) =
3

∑
α=1

mαbα, m = (m1, m2, m3), (0.3.1)

where mα are integers. The vector G is called a reciprocal lattice vector.
It can be seen that simple lattices in reciprocal space correspond to simple lattices

in real space for a given Bravais space group. The reciprocal lattice of FC Bravais
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lattices (rhombic, tetragonal and cubic) is a body-centered lattice and vice versa. A
lattice with a point at the center of the base has a corresponding reciprocal lattice also
with a point at the center of the base.

In addition to the unit cell of a reciprocal lattice, one frequently constructs a “sym-
metry” cell. This cell is called the Brillouin zone. We choose a reciprocal lattice site
as origin and draw from it all the vectors G that connect it to all reciprocal lattice sites.
We then draw planes that are perpendicular to these vectors and that bisect them. If q
is a vector in a reciprocal space, these planes are given by

qG =
1
2

G2. (0.3.2)

The planes (0.3.2) divide all of reciprocal space into a set of regions of different
shapes (Fig. 0.5a).

Fig. 0.5 Brillouin zones of hexagonal crystal: (a) construction of zones;
the point in the middle is the origin, the lines drawn are the planes per-
pendicular to and bisecting the vectors connecting the origin with all
other lattice sites (not shown); (b) the first zone; (c) the six parts of the
second zone; (d) reduction of the second zone to the first; (e) the six
parts of the third zone; (f ) reduction of the third zone to the first.

The region containing the origin is called the first Brillouin zone. The regions of
the reciprocal space that directly adjoin it make up the second zone and the regions
bordering that are the third Brillouin zone, etc. The planes given by (0.3.2) are the
boundaries of the Brillouin zones.

The regions of higher Brillouin zones can be combined into a single figure, identical
to the first zone (Fig. 0.5d, f). Thus, any zone can be reduced to the first one. The
concept of a reduced zone is convenient because it requires knowledge of the geometry
of the first Brillouin zone only.
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Mathematical relations between quantities in real and reciprocal space are entirely
symmetrical with respect to these spaces and, formally, the lattices constructed with
two sets of three vectors aα and bβ are reciprocal to one another. That is, if one
is defined as the lattice in real space, the other is its reciprocal. It should be noted,
however, that the physical meaning of these spaces is different. For a crystal, one
initially defines the crystal lattice as the lattice in real space.

The concept of a reciprocal lattice is used because all physical properties of an
ideal crystal are described by functions whose periodicity is the same as that of this
lattice. If φ(r) is such a function (the charge density, the electric potential, etc.), then
obviously,

φ(r + R) = φ(r), (0.3.3)

where R is a lattice translation vector (0.1.1). We expand the function φ(r) as a three-
dimensional Fourier series

φ(r) = ∑
q

φqeiqr, (0.3.4)

where it is summed over all possible values of the vector q determined by the period-
icity requirement (0.3.3)

∑
q

φqeiqreiqR = ∑
q

φqeiqr. (0.3.5)

Equation (0.3.5) can be satisfied if

eiqR = 1, qR = 2πp, (0.3.6)

where p is an integer. To satisfy (0.3.6) it is necessary that

qaα = 2πpα, α = 1, 2, 3, (0.3.7)

where pα are the integers.
The solution to (0.3.7) for the vector q has the form

q = m1b1 + m2b2 + m3b3. (0.3.8)

It follows from (0.3.8) that the vector q is the same as that of the reciprocal lattice:
q = G where G is determined by (0.3.1).

Thus, any function describing a physical property of an ideal crystal can be ex-
panded as a Fourier series (0.3.4) where the vector q runs over all points of the recip-
rocal lattice

φ(r) = ∑
G

φGeiGr . (0.3.9)

Since there is a simple correspondence between the real and reciprocal lattices there
should also be a simple correspondence between geometrical transformations in real
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and reciprocal space. We illustrate this correspondence with an example widely used
in structural analysis. Consider the vector r such that

Gr = 2πp, (0.3.10)

where p is the integer and G is a reciprocal lattice vector. Equation (0.3.10) describes
a certain plane in the crystal. It is readily seen that this is a crystal plane, i. e., the
plane running through an infinite set of Bravais lattice sites. Since the constant p
may take any value, (0.3.10) describes a family of parallel planes. Thus, each vector
of a reciprocal lattice G = G(m) corresponds to a family of parallel crystal planes
(0.3.10) rather than to a single plane. The distance between adjacent planes of the
family is dB = 2π/G, where G is the length of a corresponding vector of a reciprocal
lattice. Three quantities m1, m2, m3 in these relations can always be represented as
a triplet of prime numbers p1, p2, p3 (i. e., assume that p1, p2, p3 have no common
divisor except unity). These three numbers (p1, p2, p3) are called the Miller indices.

0.4
Use of Penetrating Radiation to Determine Crystal Structure

We consider the transmission of a field (X-rays, beams of fast electrons or slow neu-
trons) through a crystal. We assume the distribution of the field in space to be de-
scribed by a scalar function ψ that in vacuo obeys the equation

εψ + c2∆ψ = 0,

where for electromagnetic waves ε is the frequency squared (ε = ω2) and c the
light velocity, or in the case of electrons and neutrons they are the energy and the
inverse mass (c = h̄2/2m). The crystal atoms interact with the wave, generating
a perturbation. This perturbation is taken into account in the above equation by an
additional potential

εψ + c2∆ψ + U(r)ψ = 0. (0.4.1)

The potential U(r) has the same periodicity as the crystal (for example, it may be
proportional to the electric charge density in a crystal).

We now consider how the periodic potential can affect the free wave

ψk = eikr, c2k2 = ε. (0.4.2)

We assume that U is weak, i. e., we can use perturbation theory (this is a reasonable
assumption in many real systems). Let the wave (0.4.2) be incident on a crystal and
scattered under the effect of the potential U. In the Born approximation, the amplitude
of the elastically scattered wave with wave vector k′ is proportional to the integral

U(k′, k) =
∫

U(r)e−i(k′−k)r dV, (0.4.3)
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which is the matrix element of the potential U. The scattering probability, i. e., the
probability for the wave (0.4.2) to be transformed to a wave

ψk′ = Aeik′r , A = constant, c2k′2 = ε, (0.4.4)

is proportional to the squared matrix element (0.4.3).
To calculate the integral (0.4.3) we use an expansion such as (0.3.9) for the periodic

function U(r):

U(k′, k) = ∑
G

UG

∫
ei(G−k′+k)r dV. (0.4.5)

In an unbounded crystal (0.4.5) is reduced to

U(k′, k) = (2π)3 ∑
G

UGδ(k′ − k − G). (0.4.6)

It is clear that the incident wave (0.4.2) with the wave vector k can be transformed
only into the waves whose wave vector is

k′ = k + G, (0.4.7)

where G is any reciprocal lattice vector.
In elastic scattering the wave frequency (or the scattered particle energy) does not

change, so that
k′2 = k2. (0.4.8)

The relations (0.4.7), (0.4.8) are called the Laue equations and are used in the anal-
ysis of X-ray diffraction and the electron and neutron elastic scattering spectra in crys-
tallography. By fixing the direction of the incident beam and measuring the directions
of the scattered waves, one can determine the vectors G, i. e., the reciprocal lattice.
From these it may be possible to reproduce the crystal structure.

To simplify (0.4.7), (0.4.8) further, we first establish their relation to the reciprocal
lattice. We take the scalar product of (0.4.7) and take into account (0.4.8):

k′G = −kG =
1
2

G2. (0.4.9)

Comparing (0.4.9) and (0.3.2), it can be seen that only those beams whose wave-
vector ends lie on the Brillouin zone boundaries (the origin of the waves vectors is at
the center of the Brillouin zones) are reflected from the crystal.

We denote the angle between the vectors k and k′ by 2θ. Then from (0.4.8) we
obtain the relation

G = 2k sin θ. (0.4.10)

As was shown above, the length of the vector G is inversely proportional to the
distance d between the nearest planes of atoms to which this vector is perpendicular

G =
2πn

d
, (0.4.11)
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where n is the integer. Substituting (0.4.11) into (0.4.10) and introducing the wave-
length of the incident radiation λ = 2π/k we obtain

nλ = 2d sin θ. (0.4.12)

This relation is known as the Bragg reflection law. The diffraction described by
(0.4.12) is sometimes referred to as “reflection” from crista1 planes.

It should be noted that this simplest geometrical (or kinematic) theory of diffraction
in crystals is applicable only to scattering in thin crystal samples. It does not include
the interaction of the incident and diffracted beams with deeper atomic layers in thick
samples.

0.4.1
Problems

1. Prove that if r is the radius-vector of an arbitrary site in the crystal the following
equation is valid

∑
G

eiGr = V0 ∑
R

δ(r − R), (0.4.13)

where the summation on the r.h.s. is carried out over all lattice sites and on the l.h.s.
over all reciprocal lattice sites.

2. Derive from (0.4.13) the equation

∑
R

e−ikR = Ω0 ∑
G

δ(k − G), (0.4.14)

where k is the position vector of an arbitrary point in the reciprocal space.

3. Elucidate which symmetry axes can be inherent elements of the symmetry of a
lattice.

Hint. Consider two neighboring sites A and B in the plane perpendicular to the sym-
metry axis (see Fig. 0.6). Perform a rotation by the angle φ=2π/n about the axis Cn

through the point A; after that B occupies position B′. Analogous rotation about B
transfers A to A′. Since the sites B′ and A′ belong to the same lattice the length B′A′

should be divisible by the length AB.
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Fig. 0.6 Graphical solution of Problem 3.

Solution. n = 2, 3, 4, 6.
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1
Mechanics of a One-Dimensional Crystal

1.1
Equations of Motion and Dispersion Law

The physics of condensed media concerns itself generally with periodic structures of
lower dimensions, in particular, one-dimensional (1D). One-dimensional problems are
attractive mainly because of the simplicity of the mathematics and the possibility of
obtaining exact solutions in many cases, not only for small (harmonic) vibrations, but
also for more complex situations in which the nonlinear (anharmonic) crystal prop-
erties may be involved. Qualitative aspects of nonlinear dynamics can be understood
most easily in one-dimensional systems; therefore, these systems are still being in-
tensely studied. Finally, some phenomena in three-dimensional crystals can be mod-
elled by one-dimensional problems. Thus mechanics of the one-dimensional crystal
can be considered as a spring-board for studying dynamics of three-dimensional struc-
tures.

In our study of 1D crystal mechanical vibrations, we focus on the existence of two
physical objects each of which can be called a one-dimensional crystal. First, there
are periodic linear structures in a three-dimensional space. A long macromolecule
of any homopolymer is the best example. We shall call such crystals linear chain.
The second object is a periodic structure that enables one to study the motion in one-
dimensional space. For this purpose, we should imagine the physical phenomena and
processes in a “Straight Line Land: Lineland”.

We start with equations of mechanics in 1D space, i. e., we consider the one-
dimensional crystal itself. Consider a periodical array of particles (atoms, moleculas
or other units whose internal structure can be neglected) situated along the x-axis with
period a. The position of an arbitrary site is equal to

xn ≡ x(n) = na, (1.1.1)

where n is an integer. Suppose Eq. (1.1.1) gives the coordinates of particles (“atoms”)
in the equilibrium state of the crystal. A real coordinate of an atom differs from

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40508-9



18 1 Mechanics of a One-Dimensional Crystal

the corresponding lattice site (1.1.1) when the atoms are displaced relative to their
equilibrium positions. Such a situation appears undoubtedly during vibrations of the
crystal. We denote the displacement of the atom with number n in a monatomic (with
a single atom per unit cell) from its equilibrium position by u(n).

In order to write dynamic equations of motion of crystal atoms we need to describe
an interatomic interaction. First restrict ourselves to the model of nearest-neighbor
interaction, i. e., consider the 1D crystal to be similar to the array of small balls
connected with elastic springs. Secondly take into account the fact that the relative
atomic displacements being considered in crystal dynamics are small compared with
a. Therefore, it is natural to begin studying the lattice dynamics with the case of small
harmonic vibrations. Assuming the crystal to be in equilibrium at u(n) = 0 we can
write the potential energy U in the harmonic approximation as

U = U0 +
1
2 ∑

n
α(un − un−1)2, (1.1.2)

where U0 = constant and the summation is over all crystal sites. In the simplest model
the interatomic interaction is characterized by only one elastic parameter α.

With the expression for the potential energy (1.1.2) one can easily write down the
equation of motion of every atom:

m
d2u
dt2 = − ∂U

∂u(n)
, (1.1.3)

where m is the atomic mass. Equation (1.1.3) leads to the following dynamic equation

d2u(n)
dt2 =

(ωm

2

)2
[u(n + 1) − 2u(n) + u(n − 1)] , (1.1.4)

where ω2
m = 4α/m.

Take the solution to (1.1.4) in the form

u(n) = ueikx(n). (1.1.5)

The parameter k is analogous to a wave number of vibration and is regarded as a
quasi-wave number.

The stationary crystal vibrations for which the displacement of all atoms are time
dependent only by the factor e−iωt are of special interest. For such vibrations substi-
tuting (1.1.5) into (1.1.4), we obtain

ω2u − 1
2

ω2
m(1 − cos ak)u = 0,

hence

ω2 =
1
2

ω2
m(1 − cos ak) = ω2

m sin2 ak
2

. (1.1.6)
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In mechanics the dependence of frequency on the wave number is called the disper-
sion law or dispersion relation. Thus, (1.1.6) gives the dispersion relation

ω2 = ω2(k)

for the lattice vibrations.
From (1.1.6) we note that the dispersion law determines the frequency as a periodic

function of the quasi-wave number with a period of a reciprocal lattice

ω(k) = ω(k + G), G =
2π

a
.

This periodicity is the basic distinction between the dispersion law of crystal vi-
brations and that of continuous medium vibrations, since the monotonic wave-vector
dependence of the frequency is typical for the latter. The difference between the quasi-
wave number k and the ordinary wave number is also observed in the fact that only
number k values lying inside one unit cell of a reciprocal lattice (−π/a < k < π/a)
correspond to physically nonequivalent states of a crystal.

When the lattice period a tends to zero, the Brillouin zone dimension becomes
infinitely large and we return to the concept of momentum and its eigenfunctions in
the form of plane waves.

To clarify the available restrictions on the region of physically nonequivalent k
values we note that k = 2π/λ always, where λ is the corresponding wavelength.
We consider, for simplicity, a one-dimensional crystal (a linear chain) with a period
a for which the reciprocal lattice “vector” G = 2π/a. Choose the interval −π/a ≤
k ≤ π/a as the reciprocal lattice unit cell. The limiting value of the quasi-wave
number k = π/a will then respond to the wavelength λ = 2a. It follows from the
physical meaning of wave motion that this wavelength is the minimum in the crystal,
since we can observe the substance motion only at points where material particles
are located. A wave of this length is shown as a solid curve in Fig. 1.1 (the dark
points are the equilibrium positions of particles, the light ones are their positions at a
certain moment of the motion). A wave with wave number larger than the limiting one
reciprocal lattice period namely, k = π/a + 2π/a = 3π/a, is shown as a dashed
line. Both waves correctly reproduce the crystal motion but the introduction of the
wavelength λ = 2a/3, carrying no additional information on the particle motion, is
not justified physically.

We now propose a short analysis of the dispersion relation of the one-dimensional
crystal. According to (1.1.6), possible vibration frequencies fill band (0, ωm) where
ωm is the upper boundary of the band of possible vibration frequencies. To continue
the analysis one needs to know a spectrum of quasi-wave number values inside the
Brillouin zone. In order to define such a spectrum consider the one-dimensional crys-
tal containing N atoms (N � 1) and having the length L (L = Na). The spectrum
mentioned depends on the boundary conditions at the crystal ends. We formulate the
simplest boundary conditions supposing that the atomic chain is closed up into a ring
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Fig. 1.1 Profile of the wave with λ = 2a (solid line) and the wave with
3λ = 2a (dashed line).

and N+n atom coincides with the n-th atom:

u(xn) = u(xn + Na). (1.1.7)

The cyclicity condition (1.1.7) is called the Born–Karman condition. Combining
(1.1.7) and (1.1.5), we obtain

ka =
2π

N
p, or k =

2π

L
p, (1.1.8)

where p = 0, 1, 2, . . . , N. Usually it is convenient to choose symmetrical conditions

p = 0,±1,±2, . . . ,±N + 1
2

.

Since in the macroscopic case (N � 1) the discrete values of the k numbers are di-
vided by the very small interval ∆k ∼ 1

L and the spectrum of k values can be regarded
as quasi-continuous. Therefore one can analyze the dispersion relation considering
the frequency as a continuous function of quasi-wave number.

Let us begin from the vibrations with small k. The 1D-crystal long-wave vibrations
(ak � 1) have the ordinary acoustic frequency spectrum

ω2 = s2k2 or w = sk, (1.1.9)

where s is a sound velocity (2s=aωm).
To describe the dispersion law at the upper edge of the band of possible frequencies

(when ωm − ω � ωm) it is convenient to introduce q = k − π/(2a) and consider
|q| � 1. Then the atom displacements assume the form

u(n) = u0eikan = (−1)nu0eiqan. (1.1.10)

It is interesting to note that the neighbor atoms vibrate with the opposite phases in the
limiting case ω → ωm. And the following dependence is obtained for the dispersion
law

ω = ωm − 1
2

γq2, γ = ωm

( a
2

)2
. (1.1.11)

A dispersion relation of the type (1.1.11) is known as a quadratic dispersion law.
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According to (1.1.6) the dependence of the frequency on k is characterized by the
monotonic plot in the interval (−π/a < k < π/a). However, this fact is a result of
using a model of the nearest-neighbor interaction. Taking into account the interaction
of the next neighbors leads to a possibility to obtain a nonmonotonic dependence of
ω on k with a diagram similar to Fig. 1.2 (see Problem 1 at the end of the section).
Therefore maxima inside the Brillouin zone and minima on its boundaries can appear
on a graphical representation of the dispersion relation.

Fig. 1.2 One-dimensional dispersion diagram.

Having discussed the behavior of the frequence spectrum inside a band of possible
free vibrations in an unbounded 1D crystal and at the edges of the band one should say
that vibrations with frequencies outside of this band are possible in a bounded chain
(see Problem 2 at the end of the section).

Note in conclusion that the acoustic dispersion relation (1.1.9) is a natural con-
sequence of the long-wave approximation for an equation of motion of the crystal.
Actually, in such an approximation the function u(n) of a discrete argument n can be
considered as a continuous function of the argument x ≡ xn =na and the following
expansion can be used

un±1 − un = ±au′ +
1
2

a2u′′ + · · · , (1.1.12)

where

u′ =
∂u(n)

∂x
, u′′ =

∂2u(n)
∂x2 , (1.1.13)

and so on. Then (1.1.4) can be transformed into the following differential equation in
partial derivatives

∂2u(x)
∂t2 − s2 ∂2u(x)

∂x2 = 0, (1.1.14)

where x is a continuous coordinate that determines the position in a 1D crystal.
Obviously, the acoustic dispersion law (1.1.6) is typical for the solutions to the wave

equation (1.1.14).
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Another form of a dynamic differential equation in partial derivatives is typical for
vibrations with frequencies close to the upper edge of the frequency spectrum (ωm −
ω � ωm). Taking into account (1.1.10), in this region the following approximation
can be used

u(n) = (−1)nv(na), (1.1.15)

where v(x) is a continuous function of x. Now, using the expansion (1.1.18) for the
function v(na) = v(x), one can transform (1.1.4) into the following

∂2v(x)
∂t2 + ω2

mv(x) + s2 ∂2v(x)
∂x2 = 0. (1.1.16)

Obviously, the dispersion relation (1.1.11) follows from (1.1.16).
Proceeding further from quasi-continuity of the spectrum of k values we change

the summation over the discrete values of a quasi-wave number for the integration.
Taking (1.1.8) into account it is easy to obtain the rule governing this transition to the
integration

∑
k

f (k) =
L

2π

∫
f (k) dk, (1.1.17)

where the integration is carried out over the interval of a single unit cell in k-space (or
the Brillouin zone).

Having analyzed the spectrum of eigenvalues of the crystal vibrations let us con-
sider a set of eigenfunctions of this problem. The crystal eigenvibrations (1.1.5) are
numbered by k. Introduce normal vibrations in the form

φk(n) =
1√
N

eikna, (1.1.18)

which provides the normalization condition

∑
n

φ∗
k (n)φ′

k(n) = δkk′ . (1.1.19)

The normal eigenvibrations (1.1.19) are often called the normal modes of the vibra-
tions.

The set of normal modes allows us to construct easily the so-called Green function
for crystal vibrations. According to the definition the Green function for vibrations of
the unbounded chain in the site representation has the form

Gω2(n, n′) = ∑
k

φ∗
k (n)φk(n′)

ω2 − ω2(k)
=

1
N ∑

k

eika(n−n′)

ω2 − ω2(k)
. (1.1.20)

The function Gε(n) where ε = ω2 is called the Green function of stationary crystal
vibrations. Expression (1.1.20) can be rewritten as

Gε(n) =
1
N ∑

k
G(ε, k)eikna; (1.1.21a)

G(ε, k) =
1

ε − ω2(k)
, (1.1.21b)

determining the Green function in the (ε, k) representation.
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It is not difficult to calculate the Green function for the vibrations with the disper-
sion law (1.1.6):

Gε(n) =
i√

ε(ω2
m − ε)




e−iakn, n < 0;

eiakn, n > 0,
(1.1.22)

where ak = 2 arcsin(
√

ε/ωm) = 2 arcsin(ω/ωm).

1.1.1
Problems

1. Find the dispersion law for a 1D crystal vibrations taking into account interactions
between nearest neighbors and next-but-one neighbors. Find a possibility of a non-
monotonous dependence ω = ω(k) within the interval 0 < ak < π.

Solution. The required dispersion relation

ω2 =
4α1

m
sin2 ak

2
+

4α2

m
sin2 ak, (1.1.23)

where α1 and α2 are parameters of the elastic interaction between the nearest and next-
nearest neighbor atoms, respectively. A required nonmonotonic dependence appears
under the condition 4 |α2| > α1 and the plot of the (1.1.18) becomes similar to Fig. 1.2.

2. Find the wave number values for the frequencies exceeding the maximum frequency
of harmonic 1D crystal vibrations with interaction of nearest neighbors only. Interpret
the result.

Hint. Proceeding from the fact that in (1.1.4) ω is real, find the complex k values
corresponding to ω > ωm.

Solution. Complex values
k = ±π/a + iκ , (1.1.24)

where κ is determined by

ω = ωm cosh
aκ

2
. (1.1.25)

The solutions exponentially decreasing (or increasing) with the distance can describe
the vibrations of a bounded 1D crystal that are localized near its free edge and not
penetrating inside.

3. Find the Green function for stationary vibrations, accounting for the interactions
of not only the nearest neighbors, when ω = ω(k) is a nonmonotonic function in the
interval 0 < k < π/a.
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1.2
Motion of a Localized Excitation in a Monatomic Chain

It is customary to think that an excitation in the crystal moves with the sound veloc-
ity. What meaning can be associated with such an assertion? A concept of “sound”
is connected with the acoustic vibrations, i. e., with the long-wave approximation of
the crystal dynamics. Motion of small vibrations in the long-wave approximation is
described by the wave equation (1.1.14). Any function of the argument x − st is the
solution to (1.1.14), and an arbitrary perturbation u = u(x − st) with small enough
gradients a(∂u/∂x) � 1 moves with velocity s along the 1D crystal without chang-
ing its shape. This is a consequence of the fact that the dispersion relation (1.1.9) is
dispersionless, i. e., it determines a wave phase velocity independent of k or ω.

The dispersion law (1.1.6) does not possess such a property and the phase velocities
of corresponding waves depend on k, and a localized excitation should expand moving
along the crystal. The unique stationary solution to (1.1.4) not being deformed when
moving along a 1D crystal is the harmonic wave whose frequency and wave number
are related by the dispersion relation (1.1.6). However, it is said generally that a per-
turbation in a crystal moves with sound velocity, with the character of the perturbation
remaining unspecified. We shall clarify the meaning of such an assertion.

We analyze (1.1.4) that coincides with the recursion relation for a Bessel function
of the first kind Jν(z):

d2 Jν(z)
dz2 =

1
4

[Jν+2(z) − 2Jν(z) + Jν−2(z)] .

It is clear that the solution to (1.1.4) can be expressed directly through Bessel func-
tions. Assuming a 1D crystal of infinite length (−∞ < n < ∞) and taking into
account the boundedness of displacements, we can write

un(t) = const · J2(n−p)(ωmt), (1.2.1)

where p is an arbitrary integer and n an independent integer.
If the initial displacements u0

n and the initial velocities v0
n of all atoms are given at

t = 0 the corresponding solution to (1.1.4) for t > 0 reads as

un(t) =
∞

∑
p=−∞

u0
p J2(n−p)(ωmt) +

∞

∑
p=−∞

v0
p

t∫

0

J2(n−p)(ωmτ) dτ. (1.2.2)

We assume that at the initial time only one atom is displaced from the equilibrium
position (u0

n = unδn0, vn = 0). It then follows from (1.2.2) that

un(t) = u0 J2n(ωmt), t > 0. (1.2.3)

The perturbation (1.2.3) has no pronounced propagation front even far from the
onset (n � 1). But it follows from the properties of Bessel functions that the first
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(major) perturbation maximum comes at the point n(n � 1) at a time t1 determined
by the condition ωmt1 ≈ 2n (Fig. 1.3). The velocity of motion of a perturbation
maximum is na/t1 ≈ (1/2)ωma = s, i. e., it is practically the same as the sound
velocity in a 1D crystal. Thus, the effective velocity of the transfer of the perturbation
is not different from that of the sound velocity, i. e., it is the same as the limiting group
velocity that follows from the dispersion relation (1.1.6) or (1.1.9).

Fig. 1.3 The time dependence of the perturbation coming
to the point located at a distance an from the displaced atom
(z = ωmt, z1 = ωmt1 ≈ 2n).

Having clarified the role of the dispersion in an excitation signal moving along the
1D discrete chain, we now describe the velocity dispersion in the long-wave con-
tinuous approximation. It is known that competition of the higher dispersion with
nonlinearity is very important in the dynamics of complex media. Hence, deriving a
dynamic equation in partial derivatives for the 1D crystal anew, we take into account
unharmonic terms in the interaction energy of the nearest neighbors. We assume the
potential energy of a crystal to have the form of a sum

U = ∑
n

ϕ(ξn) = ∑
n

ϕ(un − un−1); ξn = un − un−1, (1.2.4)

so that in the harmonic approximation

ϕ(ξ) =
1
2

ϕ′′(0)ξ2, ϕ′′(0) = α > 0. (1.2.5)

Generalizing the equations of motion of a 1D crystal, we assume the function ϕ(ξ)
to be different from (1.2.5) and reduced to the parabolic dependence (1.2.5) only at
ξ → 0.

The equation of crystal motion with interactions between nearest neighbors only
has the form

m
d2un

dt2 = ϕ′(un+1 − un) − ϕ′(un − un−1). (1.2.6)

For small relative displacements, one can take

ϕ′(ξ) = ϕ′′(0)ξ +
1
2

ϕ′′′(0)ξ2, (1.2.7)

including only the so-called cubic anharmonicity.
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We substitute (1.2.7) into (1.2.6) and compare the result with (1.1.1); it is seen that
α = mϕ′′(0). Just this relation connects the elements of the force matrix introduced
phenomenologically with the parameter of the interatomic interaction potential.

However, (1.2.6) allows one to avoid the restrictions that arise in considering the
harmonic vibrations by means of (1.1.4). To enable a description of inhomogeneous
crystal states varying weakly in space we consider (1.2.6) in the long-wave approxi-
mation. Assume the characteristic distance ∆x of the change in the field of displace-
ments to be large (∆x � a). This makes it possible to pass to a continuum treatment,
i. e., to replace the functions of a discrete argument n by the function of a continuous
coordinate x and use the expansions

ξn+1 = un+1 − un = au′ +
1
2

a2u′′ +
1
3!

a3u′′′ +
1
4!

a4u′′′′;

ξn = un − un−1 = au′ − 1
2

a2u′′ +
1
3!

a3u′′′ − 1
4!

a4u′′′′.

(1.2.8)

In (1.2.8), the terms with the fourth-order derivatives remain, since the corresponding
terms in the equations of motion may compete with terms generated by nonlinearity.

The nonlinear terms in (1.2.6) will be calculated to the first nonvanishing approxi-
mation with the lowest orders of the derivatives. Therefore, using (1.2.8), we take

ξ2
n+1 = a2 (u′)2 + a3u′u′′, ξ2

n = a2 (u′)2 − a3u′u′′. (1.2.9)

Substitute (1.2.8), (1.2.9) into (1.2.7), (1.2.6) to obtain

m
d2u
dt2 = a2 ϕ′′(0)

[
∂2u
∂x2 +

1
12

a2 ∂4u
∂x4

]
+ a3 ϕ′′′(0)

∂u
∂x

∂2u
∂x2 . (1.2.10)

Introduce the notations

s2 =
a2

m
ϕ′′(0), B2 =

a2

12
s2, Λ = − a3

m
ϕ′′′(0), (1.2.11)

and write (1.2.10) as a nonlinear wave equation (the Boussinesq equation):

utt = s2uxx + B2uxxxx − Λ2uxuxx, (1.2.12)

where utt is the second derivative in time; ux, uxx, uxxxx are the derivatives of the
corresponding order with respect to the coordinate x.

Since, when the atoms approach each other their mutual repulsion increases and
when they separate from each other their attraction decreases, it may be assumed
that ϕ′′(0) < 0. This was used in introducing the notation of (1.2.11). Besides that,
although a simple relation between the parameters B and s results from the assumption
of interaction of nearest neighbors only, it is quite natural to regard the coefficient of
∂4u/∂x4 to be positive. Indeed, the dispersion law of harmonic vibration of a 1D
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crystal is generally such that the group velocity dω/dk decreases with increasing k
for small k.

For the equation of motion (1.2.12) the long-wave (ak � 1) dispersion relation for
small (harmonic) vibrations has the form

ω2 = s2k2 − B2k4, (1.2.13)

and the group velocity for ak � 1 is v = s − (3/2)(B2k2/s). Thus, the coefficient
discussed should really be positive to provide a decrease in v with k increasing.

An harmonic approximation describes well small crystal perturbations. But in some
cases there arises the necessity to describe the motion of crystal atoms, which is ac-
companied with their large displacements. It is natural to pose the question whether
the motion of crystal atoms is possible in which a strong perturbation will move along
the crystal without changing the form of this perturbation?

If the displacement gradients connected with this perturbation are small there exists
a positive answer to this question within the harmonic approximation. As we have
noted, in this case the atom displacement is described by the linear wave equation
(1.1.14) whose solution is any double-differentiated function depending on the argu-
ment x − st (if the wave runs in the positive direction of the axis x) or x + st (if the
wave runs in the opposite direction). We remind readers that s is the sound velocity.

But if the harmonic approximation is insufficient, the answer to the question posed
is no longer obvious. We study this question using the Boussinesq equation (1.2.12).
Since a transfer of any deformation impulse in a 1D crystal is connected with motion
of a local compression, the analysis of dynamics of the derivative p = ux makes sense
supposing that the plot of p(x) has a form similar to Fig. 1.4.

Thus, we find a stationary solution to (1.2.12), moving along the axis x, i. e., a solu-
tion of the form u = u(x − Vt), where V is an arbitrary parameter (the perturbation
velocity). As the desired function is, actually, a function of one argument ξ = x − Vt
(1.2.12) is transformed into the ordinary differential equation

B2uxxxx − Λ2uxuxx − γuxx = 0, (1.2.14)

where γ = V2 − s2. We introduce new notations α = Λ/B, β = γ/B2 and rewrite
(1.2.14) with respect to p:

pxxx − α2 ppx − βpx = 0. (1.2.15)

We detract from a specific value of the coefficient B given by the definition (1.2.11)
and seek for a formal solution to (1.2.15) for all possible values of β. Integrating
(1.2.15) over x twice, taking into account the boundary conditions at infinity, we ob-
tain (

dp
dx

)2

− 1
3

α2 p3 − βp2 = 0. (1.2.16)
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Fig. 1.4 Solitary wave of 1D crystal deformation.

Equation (1.2.16) is easily integrated, and we obtain the solution that is interesting
for us

p = −p0 sech2
[

1
2

√
β(x − Vt)

]
, (1.2.17)

where p0 = 3β/α2. It follows from the solution (1.2.17) that it exists only for p0 > 0,
i. e., for V > s.

As the quantity p has the meaning of 1D crystal strain, the solution (1.2.17) obtained
by us really describes a local compression moving with velocity V along a 1D crystal.
A similar solution for the deformation is called a solitary solution, or a soliton. This
is a singular (isolated) solution to the equation concerned, which may move along the
crystal without changing its form.

Rewrite (1.2.17)

p = −p0 sech2
(

x − Vt
l

)
, (1.2.18)

where l is the soliton width determining the transition region ∆x in Fig. 1.4. The value
of l can be found from asymptotes of the solution u ∼ exp(−x/l) of a corresponding
linear equation (obtained from (1.2.14) or (1.2.15) with Λ = 0), and it is

l =
1√

β
=

B√
V2 − s2

. (1.2.19)

The velocity of the motion of the perturbation concerned is connected with the
amplitude p0:

V2 = s2 +
1
3

Λ2 p0. (1.2.20)

Thus, the nonlinear differential equation (1.2.14) has the desired solution (1.2.17) only
for the velocity determined by (1.2.20).

In conclusion, it should be noted that substituting a specific value B2 = a2s2/12
that follows from (1.2.11) into the formula for the overall width l yields:
l = as/

√
12(V2 − s2). Thus, the long-wave approximation (l � a) is actually

valid only in a narrow interval of velocities V near s.
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1.3
Transverse Vibrations of a Linear Chain

We consider a special linear analog of a simple crystal lattice assuming the atoms to be
positioned periodically along a certain line in 3D space. Let a be a lattice constant and
n the atom number counted from any point of the chain. We direct the x-axis along
the undeformed straight line chain and denote by v the vector of transverse atom dis-
placements (perpendicular to the x-axis), retaining the notation u for the longitudinal
component of the displacement vector. The great interest in studying the vibrations
of the 1D system proposed is explained by the fact that this problem is an excellent
model of the dynamics of homopolymer molecules.

Keeping in mind possible applications to vibrations of the homopolymer molecules
we restrict ourselves to the long-wave approximations. In the harmonic approximation
the longitudinal and transverse vibrations are independent, and we analyze each form
of motion separately. If the atoms are displaced along the x-axis, the elastic energy is
determined by their relative displacements. The relative displacement of neighboring
atoms is ξn = un − un−1, and, in the nearest-neighbor approximation, the crystal
potential energy equals a sum such as (1.2.4), so that in the harmonic approximation,
it is possible to employ only the expansion (1.2.5). The forces generating the potential
energy (1.2.4), (1.2.5) provide, between the neighboring atoms, a certain analog of
spring coupling with the elasticity coefficients α. Such forces are called central forces.

In going over to the long-wave vibrations with the replacement un → u(x) can be
effected, the leading term when expanding the difference ξn in powers of a/λ (1.2.8),
where λ is the characteristic wavelength, is proportional to the first derivative of u(x)
with respect to x. The crystal potential energy (1.2.4) then becomes

U =
∫

ϕ
(
au′(x)

) dx
a

, (1.3.1)

and according to (1.2.5) the energy density is

ϕ =
1
2

αa2 (u′)2 . (1.3.2)

Equation (1.1.14) with s2 = αa2/m is obtained in a standard way from (1.3.1), (1.3.2).
If the atoms in a linear chain are displaced perpendicular to the x-axis, in the har-

monic approximation central interaction forces do not arise and the crystal energy
depends on the relative rotations of the segments connecting atoms in neighboring
pairs rather than on the relative displacement of neighboring atoms. We assume that
the transverse displacements of all atoms lie in one plane and denote the transverse
displacement in this plane as vn, the angle of similar rotation by θ (Fig. 1.5). Then, as
seen from the figure, for small θ one can write for the nearest neighbors

θn =
1
a

(vn+1 − vn) − 1
a

(vn − vn−1) =
1
a

(vn+1 + vn−1 − 2vn) .
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Thus, the crystal energy with noncentral interaction forces of the nearest atom pairs
taken into account will have an additional term

V = ∑
n

ψ(aθn) = ∑ ψ (vn+1 + vn−1 − 2vn) ,

and, in the harmonic approximation,

ψ(η) =
1

2β
η2.

In the long-wave limit, when vn is replaced by a continuous function of the coordi-
nate v(x), the leading term of the θn angle expansion in powers of a/λ is proportional
to the second derivative of v(x) with respect to x:

aθn = vn+1 + vn−1 − 2vn = a2 ∂2v
∂x2 . (1.3.3)

The crystal energy V takes the form of an integral over the whole length of a linear
chain

V =
∫

ψ
(

a2v′′(x)
) dx

a
,

where the energy density is

ψ =
1
2

βa4 (v′′)2 . (1.3.4)

Fig. 1.5 Atom configuration in a 1D chain with transverse (bending) vi-
brations.

The potential energy density (1.3.4) leads to the following equation

m
∂2v
∂t2 + aA2 ∂4v

∂x4 = 0, (1.3.5)

where A2 = βa2/m. Equation (1.3.5) describes the so-called bending vibrations.
Comparing (1.1.14) and (1.3.5) shows that the term with the fourth-order derivative

in (1.3.5) includes a small parameter of the order (a/λ)2 unavailable in the term with
the second-order derivative in (1.1.14). With such small terms preserved, the linear
approximation may be insufficient. The nonlinearity should be taken into account, in
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particular, in the presence of static stretching forces applied to chain ends. Under the
action of such forces there arises a homogeneous longitudinal deformation ∂u/∂x =
ε0 = const dependent on stretching load, so that it can be large.

In constructing an elementary nonlinear theory of vibrations of the chain concerned,
anharmonicity should be taken into account only in the terms associated with central
forces and the potential energy of small noncentral forces V can be calculated in the
ordinary harmonic approximation.

The main nonlinearity is generated by the anharmonicities of central forces. If the
nonlinearity is small, the crystal energy can be described by (1.2.4), (1.2.5) having
determined more exactly the relative distance between neighboring atoms δln, with
account taken of displacements in a direction perpendicular to the x-axis (Fig. 1.6)

δln =
{(

a + uz
n − uz

n−1
)2 + (vn − vn−1)

2
} 1

2 − a =
{

(a + ξn)2 + η2
n

} 1
2 − a,

where v(uy
n, uz

n) is the 2D transverse displacement vector, ξn = ux
n − ux

n−1
= un − un−1; ηn = vn − vn−1.

To describe the nonlinear bending vibrations of a chain, we use the expression for
δln, written with sufficient accuracy

δl2
n = ξ2

n +
1
a

ξnη2
n +

1
4a2 η2

nη2
n. (1.3.6)

Fig. 1.6 A scheme of displacements at transverse 1D chain vibrations
(the displacement of an atom with the number n − 1 equals zero).

Comparison of the first two terms on the r.h.s. of (1.3.6) reveals that under bending
vibrations, the value of ξn is commensurate with (l/a)η2

n; therefore, we retain the last
term proportional to η4

n.
Taking into account the above arguments one should write instead of (1.2.4)

U∗ = ∑
n

ϕ(δln) =
1
2

α ∑ δl2
n,

conserving, for the noncentral interaction energy, the expression

V = ∑
n

ψ (vn+1 + vn−1 − 2vn) = ∑
n

ψ (ηn+1 + ηn) =
1
2

β ∑
n

(ηn+1 + ηn)2 .
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It is seen that the total potential energy of the chain W in the nonlinear approxima-
tion can be divided into three parts

W = U∗ + V = U + U⊥ + Uint, (1.3.7)

where U is the total energy of longitudinal vibrations given by (1.2.4); U⊥ is the
energy of transverse (bending) vibrations

U⊥ =
α

8a2 ∑
n

η4
n +

1
2

β ∑
n

(ηn+1 − ηn)2 , (1.3.8)

and Uint is the energy of the interaction between transverse and longitudinal vibrations

Uint =
α

2a ∑
n

ξnη2
n. (1.3.9)

The presence of the energy (1.3.9) means that in a nonlinear approximation the
independence of longitudinal and transverse vibrations in a chain vanishes.

We compose the nonlinear equations of motion by using

m
d2un

dt2 = − ∂W
∂un

, m
d2vn

dt2 = − ∂W
∂vn

.

Simple calculations lead to

m
d2un

dt2 = α (ξn+1 − ξn) +
α

2a

(
η2

n+1 − η2
n

)
, (1.3.10)

m
d2vn

dt2 = α (ξn+1ηn+1 − ξnηn) +
α

2a2

(
η2

n+1ηn+1 − η2
nηn

)
−β (ηn+2 − 3ηn+1 + 3ηn − ηn−1) .

(1.3.11)

These equations allow us to describe the bending vibrations, taking into account the
influence of longitudinal chain vibrations. In order to derive the nonlinear equations
of vibrations in a continuous approximation we make use of the expansions such as
(1.2.8) and (1.3.3), retaining the higher space derivatives and the leading nonlinear
terms containing the functions u(x) and v(x):

∂2u
∂t2 = s2 ∂2u

∂x2 +
1
2

s2 ∂

∂x

(
∂v
∂x

)2
; (1.3.12)

∂2v
∂t2 = s2 ∂

∂x

(
∂u
∂x

∂v
∂x

)
+

1
2

s2 ∂

∂x

[(
∂v
∂x

)2 (∂v
∂x

)]
− a2 A2

(
∂4v
∂x4

)
. (1.3.13)

The total potential energy of a linear chain (1.3.7), in the long-wave approximation
corresponding to (1.3.12), (1.3.13), is equal to

W =
1
2

a2
∫ {

α

(
∂u
∂x

)2

+ α

(
∂u
∂x

)(
∂v
∂x

)2

+
α

4

(
∂v
∂x

)2 (∂v
∂x

)2

+ a2β

(
∂2v
∂x2

)2} dx
a

. (1.3.14)
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Using the rules of functional differentiation it is easy to find from (1.3.14) the forces
acting on vibrating atoms and leading to (1.3.12), (1.3.13).

Neglecting anharmonicities of transverse displacements reduces (1.3.12) to (1.1.14)
with the dispersion law ω = sk and simplifies (1.3.13). If the linear chain is free (static
stresses are absent), the nonlinear term retained in (1.3.13) that contains ∂u/∂x is also
small. If the action of external forces generates a considerable static homogeneous
deformation ∂u/∂x = ε0 = constant, (1.3.13) in a linearized form is reduced to

vtt = ε0svxx − a2 A2vxxxx. (1.3.15)

Equation (1.3.15) is associated with the dispersion relation

ω2 = ε0s2k2 + a2 A2k4. (1.3.16)

It is interesting that the relation (1.3.16) is similar to the dispersion law (1.2.13) but
with the opposite sign in front of the term proportional to k4.

For ak � √
ε0(s/A) the dependence typical for the acoustic branch follows from

(1.3.16)
ω =

√
ε0(sk) = s∗k. (1.3.17)

Its sound velocity s∗ = s
√

ε0 is small. Thus, the long-wave dispersion law of
bending vibrations of a linear chain that experienced a static longitudinal stretching
does not differ qualitatively from the dispersion law of longitudinal vibrations of this
chain.

In the region of wavelengths for which
√

ε0(s/A) � ak � 1, we obtain the
dispersion law

ω = aAk2,

which is typical for bending waves.

1.4
Solitons of Bending Vibrations of a Linear Chain

We analyze (1.3.12), (1.3.13) to clarify their purely nonlinear properties. Recall that
the interest in the above equations is explained by the fact that they model the dynam-
ics of homopolymer molecules.

To simplify the system of nonlinear equations (1.3.12), (1.3.13), we introduce, in-
stead of time, a variable τ = st. The one-dimensional parameter aA/s will then
remain in (1.3.12), (1.3.13). Estimating it we assume that with regard to order of
magnitude, A ∼ s. The equations will be written in the form

uττ =
∂

∂x

(
ux +

1
2

v2
x

)
; (1.4.1)

vττ =
∂

∂x

[(
ux +

1
2

v2
x

)
vx −

(
aA
s

)2

vxxx

]
. (1.4.2)
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We remind ourselves of the notations ux = ∂u/∂x, vx = ∂v/∂x, vxx = ∂2v/∂x2,
etc. It is easy to find the solutions to (1.4.1), (1.4.2) in the form of a stationary profile
whose dependence on the coordinate and time is represented through a combination
ζ = x−Vτ. The waves of a stationary profile are the solutions to a system of ordinary
differential equations

(1 − V2)uxx +
1
2

d
dx

v2
x = 0, (1.4.3)

V2vxx +
(

aA
s

)2

vxxxx =
d

dx

[(
ux +

1
2

v2
x

)
vx

]
. (1.4.4)

The equations given admit one trivial integration. To perform this, we assume the
linear chain experiences a static longitudinal stretching (longitudinal strain) equal to ε0
(ε0 � 1). Besides that, as we are interested primarily in the solitary waves, we assume
all velocities and all gradients vanish at infinity. Under such boundary conditions we
get from (1.4.3)

ux = ε0 − v2
x

2(1 − v2)
; ε0 = constant. (1.4.5)

It follows then from (1.4.4) that

(V2 − ε0)vx +
(

aA
s

)2

vxxx =
V2

2
v2

xvx

V2 − 1
. (1.4.6)

We use the fact that (1.4.6) involves only the derivatives of the vector function v
and denote w = vx . Equation (1.4.6) will then take the form

wxx + (γ + βw2)w = 0, (1.4.7)

where

β =
1
2

( s
aA

) V2

1 − V2 , γ =
( s

aA

) (
V2 − ε0

)
.

We introduce the amplitude and the phase ϕ of the transverse motion velocity by
means of the relation

w = w(i1 cos ϕ + i2 sin ϕ),

where i1, i2 are the unit vectors of two coordinate axes perpendicular to the direction
of a nondeformed chain. The vector equation (1.4.7) will then be reduced to the two
equations

wxx − wϕ2
x + βw3 + γw = 0; (1.4.8)

d
dx

(
w2 ϕx

)
= 0. (1.4.9)

Equation (1.4.9) has the form of the area conservation law (if by the variable x we
understand the time) and gives the integral of motion

I = w2ϕx = const. (1.4.10)
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Taking into account (1.4.10), (1.4.8) is simplified as

wxx +
(

βw2 + γ − I2

w4

)
w = 0. (1.4.11)

It is easy to see that solitary waves cannot have nonzero integral of motion I. Indeed,
we set I �= 0 and integrate (1.4.11)

wx +
1
2

βw4 + γw +
I2

w2 = c, c = const. (1.4.12)

It is clear that if I �= 0 it is impossible to get a phase trajectory passing through a point
w = wx = 0 on the phase plane at any choice of the integration constant c.

Such solutions exist only at I = 0. The case I = 0 corresponds to ϕ = const and
refers to a plane-polarized bending wave running along the chain. Phase trajectories
for the plane-polarized wave follow from (1.4.12)

w2
x + γw2 +

1
2

βw4 = c. (1.4.13)

The general behavior of the trajectories (1.4.13) is determined by the ratio of the
signs of the parameters β and γ. It follows from the definition of the latter that both
of them can be positive or have different signs, but cannot be negative simultaneously.
Solitary waves are possible only when β > 0 and γ < 0, i. e., for V2 < ε0. In this
case there exists a typical soliton separatrix (Fig. 1.7), corresponding to c = 0, among
the phase trajectories. Equation (1.4.13) at c = 0 is easily integrated

w(ξ) ≡ vx(ξ) =

√
2 |γ| /β

cosh
√|γ|ξ . (1.4.14)

Fig. 1.7 Separatrix (c = 0) corresponding to a soliton.

A solitary wave of the transverse velocity field (1.4.14) is a slow soliton with veloc-
ity V <

√
ε0. The absence of solitons for V >

√
ε0 is not surprising and is explained
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Fig. 1.8 Dispersion laws of a linear chain for the waves:
1 – bending; 2 – longitudinal.

by the form of the dispersion law for harmonic eigenvibrations of the chain. The plots
of bending wave laws (Fig. 1.8 curve 1) and the longitudinal chain deformation waves
(curve 2) are described by (1.2.13) and (1.3.16).

The condition V <
√

ε0 thus means that the soliton velocity V does not get into the
interval of phase velocities of the linear chain modes and, under positive dispersion of
the latter, is less than the minimum phase velocity of harmonic vibrations.

The region where the slow soliton is localized is inversely proportional to its am-
plitude: ∆x = 1/

√|γ| = a(A/s)
√

ε0 − V2. For V2 → ε0 the soliton ampli-

tude decreases proportionally to
√

ε0 − V2 and the localization region increases as
(ε0 − V2)−1/2. It can be concluded that the soliton smears out as its velocity ap-
proaches the limiting one.

1.5
Dynamics of Biatomic 1D Crystals

A biatomic 1D crystal is different from a monatomic chain in that its unit cell contains
two atoms. Let us consider the vibrations of a two-atomic 1D crystal with nearest-
neighbor interaction. Let atoms with masses m1 and m2 alternate, located at a distance
b apart. The translational period of the crystal is a = 2b, and its lattice (Fig. 1.9) has
an inversion center. Practically this is the simplest example of a superlattice consisting
of two sublattices, i. e., of two Bravais lattices. Assuming the lattice point to coincide
with the first atom type we obtain the following equation of motion

m1
d2u1(n)

dt2 = −α[2u1(n) − u2(n) − u2(n − 1)],

m2
d2u2(n)

dt2 = −α[2u2(n) − u1(n) − u1(n + 1),
(1.5.1)

where α is a unique elastic parameter of the model.
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It is easily seen that the dispersion relation for stationary vibrations is determined
by the solution to ∣∣∣∣ m1ω2 − 2α α(1 + eiak)

α(1 + e−iak) m2ω2 − 2α

∣∣∣∣ = 0,

whose roots are

ω2
1(k) =

1
2

ω2
0

{
1 −

√
1 − γ2 sin 2 ak

2

}
,

ω2
2(k) =

1
2

ω2
0

{
1 +

√
1 − γ2 sin 2 ak

2

}
,

(1.5.2)

where ω2
0 = 2α(m1 + m2)/m1m2, γ2 = 4m1m2/(m1 + m2)2.

Fig. 1.9 Diatomic one-dimensional crystal.

Therefore, every value of the quasi-wave number k meets two frequencies in the
spectrum of the biatomic chain ω = ωβ(k), β = 1, 2, i. e., the dispersion relation
possesses two branches of the dependence of ω on k. Two branches appear in the
spectrum due to the presence of two degrees of freedom in the unit cell.

The two branches of vibrations are different. The most essential differences of the
branches take place at small k(ak � 1). At k = 0 we have ω1(0) = 0, ω2(0) = ω0
and we have in the long-wave limit (ak � 1)

ω1(k) = sk, s =
1
4

ω0γa, ω2(k) = ω0

(
1 − γ2a2

32
k2
)

. (1.5.3)

In order to formulate a difference of two types of vibrations, it is convenient to intro-
duce the displacement of the center of mass of a pair of atoms, u(n), i. e., the center
of mass of a unit cell, and the relative displacement of atoms in a pair, ξ(n):

u(n) =
1
m

(m1u1(n) + m2u2(n)), ξ(n) = u1(n) − u1(n). (1.5.4)

Under long-wave vibrations with the dispersion law ω(k) = sk, the unit cell centers
of mass vibrate with the relative position of atoms in a pair remaining unchanged.
Therefore, we have u(n) = u0eiωt, ξ(n) = 0.

A feature of the second dispersion law in (1.5.3) is that the corresponding vibrations
with an infinitely large wavelength have the finite frequency ω0. This vibration at
k = 0 is

u(n) = 0, ξ(n) = ξ0e−iωt.
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Under such crystal vibrations the centers of mass of the unit cells are at rest and the
motion in the lattice is reduced to relative vibrations inside the unit cells. The presence
of such vibrations distinguishes a diatomic crystal lattice from a monatomic one.

The low-frequency branch of the dispersion law (ω < ωm) describes the acoustic
vibrations, and the high-frequency one (ω1 < ω < ω2) the optical vibrations of a
crystal. Thus, the biatomic 1D crystal lattice, apart from acoustic vibrations (A) also
has optical vibrations (O). The optical branch of the dispersion law (1.5.2) is separated
from the acoustic branch by the gap δω on the Brillouin zone boundary (Fig 1.10a),
and this separation at m1 > m2 is equal:

δω = ω2 − ω1 =
√

2α/m2 −
√

2α/m1. (1.5.5)

Formation of a gap in 1D vibration spectrum is an inevitable consequence of the ap-
pearance of a superlattice.

The frequency ω1 =
√

2α/m1 is a frequency of homogeneous vibrations of the
superlattice 1 relative to the resting superlattice 2, and the frequency ω2 =

√
2α/m2 is

the frequency of homogeneous vibrations of the superlattice 2 relative the motionless
superlattice 1.

However, for m1 = m2 = m the parameter γ2 = 1, the gap δω vanishes and the
dispersion laws (1.5.2) degenerate:

ω1(k) = 2
√

α

m
| sin

ak
4

|, ω2(k) = 2
√

α

m
| cos

ak
4

| . (1.5.6)

Fig. 1.10 Transformation of the dispersion law when the crystal period
reduces twice: (a) dispersion branches at m1 �= m2, (b) junction of
branches at m1 = m2.

The degeneracy corresponds to transformation of a biatomic lattice into a
monatomic one with the period b = a/2. Since (1.5.6) implies that ω1(k) =
ω2(k + (2π/a)), both equations (1.5.6) describe in fact the same acoustic dispersion
law of dispersion of this 1D lattice (Fig. 1.10b).



1.6 Frenkel–Kontorova Model and sine-Gordon Equation 39

1.6
Frenkel–Kontorova Model and sine-Gordon Equation

In Section 1.2 we analyzed a deformation soliton that describes a specific elastic per-
turbation of the 1D crystal that belongs to the acoustic type of collective excitations,
but solitary deformation waves may also arise due to the nonlinearity of optical crystal
excitations.

We assume a 1D crystal to be in a given external periodic field whose period co-
incides with the 1D lattice constant a. The crystal energy will then be determined
not only by a relative displacement of neighboring atoms, but also by an absolute dis-
placement of separate atoms in an external potential field. We write this additional
crystal energy as

W = ∑
n

F(un), F(u + a) = F(u). (1.6.1)

This situation may arise in the case when the atomic chain is on the ideally smooth
surface of a 3D crystal that serves as substrate and determines a periodic potential
(1.6.1).

The availability of this potential essentially affects the dynamics of a 1D system,
since the equation of crystal motion now takes the form

m
d2un

dt2 = ∑
n′

α(n − n′)[u(n) − u(n′)] − dF(un)
dun

. (1.6.2)

If the displacements u(t) are small then

F(u) =
1
2

K2u2, K2 = F′′(0) > 0, (1.6.3)

and, thus, taking (1.6.1), (1.6.3) into account in studying small crystal vibrations
would result in the appearance in the dispersion law ω = ω(k) of a nonzero fre-
quency of extremely long-wave vibrations: ω(0) = ω0 = K/

√
m.

We shall be interested in the solutions to (1.6.2) whose behavior corresponds to the
plot in Fig. 1.11 and that satisfy the boundary conditions

u(−∞) = a, u(∞) = 0.

These solutions describe such a deformation of a 1D crystal under which the atoms
of the left-hand end (x = −∞) are displaced into their neighboring equilibrium posi-
tions. At x = ∞, the crystal remains undeformed u = 0, i. e., all atoms are in their
positions. As the number of atoms in the crystal is fixed, the number of atoms in the
vicinity of a certain point x = x0 is larger by unity than the number of the initial static
equilibrium positions (Fig. 1.12).

The problem of such an aggregate of atoms near some point (a crowdion) was
first considered and solved by Frenkel and Kontorova (1938), thus, the corresponding
model is named after them. In the Frenkel–Kontorova model the additional assumption
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Fig. 1.11 Step perturbation (“overfall”) in a 1D crystal.

Fig. 1.12 Atomic distribution in a crowdion.

of a simple form of the function F(u) is made

F(u) =
1
2

K2τ2 sin2 πu
a

, (1.6.4)

but the latter seems to be unimportant, although it greatly simplifies the solution to the
nonlinear problem that we encounter here.

The nonlinearity of the function F(u) such as (1.6.4) is basic in the Frenkel–
Kontorova model. Thus, the interatomic interaction of the nearest neighbors along
a 1D crystal is sufficient to be taken into account within the harmonic approximation.
In other words, the equation of crystal motion should be taken in the form

m
d2un

dt2 = α0 [un+1 + un−1 − 2un] − aK2

2π
sin

2πun

a
, (1.6.5)

where K = πτ/a =
√

mω0.
Considering only the case of long waves (λ � a), we go over to a continuum

treatment by replacing (1.6.5) with the equation in partial derivatives

∂2u
∂t2 = s2

0
∂2u
∂x2 − a

2π
ω2

0 sin
2πu

a
, s2

0 =
a2α0

m
. (1.6.6)

Equation (1.6.6) can be associated with the Lagrange function whose density is

L =
m
2a

{(
∂u
∂t

)2

− s2
0

(
∂u
∂x

)2

− ω2
0

( a
π

)2
sin2 πu

a

}
. (1.6.7)
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In the harmonic approximation (2πu � a), (1.6.6) describes optical vibrations with
the dispersion law:

ω2 = ω2
0 + s2

0k2. (1.6.8)

The dispersion law plot (1.6.8) is characterized by two parameters (Fig. 1.13): the
limiting frequency ω0 and the minimum phase velocity of optical vibrations s0.

Fig. 1.13 The dispersion law of harmonic vibrations.

To simplify the equations further, we introduce the dimensionless displacement
2πu/a and denote it by the same letter u. Equation (1.6.6) will then change slightly:

∂2u
∂t2 = s2

0
∂2u
∂x2 − ω2

0 sin u. (1.6.9)

This equation is called the sine-Gordon equation. All its physically meaningful solu-
tions are now systematized and studied.

Using the results of the previous sections, we look for a solution to (1.6.9) in the
form

u = u(x − Vt), V = const,

where the function u(x) satisfies the boundary conditions and has a plot such as in
Fig. 1.11. The equation for the function u(x) follows from (1.6.9)

(s2
0 − V2)uxx − ω2

0 sin u = 0. (1.6.10)

This is actually the equation of a mathematic pendulum and can easily be integrated.
The first integral of (1.6.10) corresponding to the desired function is

d2u
dt2 = ± 2ω0√

s2
0 − V2

sin
u
2

. (1.6.11)

It is also easy to perform a second integration that leads us to the following result

u(x, t) = 4 arctan
[

exp
(

x0 − x
l

)]
, (1.6.12)
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where l is a parameter determining the crowdion width

l =

√
s2

0 − V2

ω0
=

s0

ω0

√
1 −

(
V
s0

)2

. (1.6.13)

When V approaches the limiting velocity s0, the crowdion width experiences a rela-
tivistic reduction. In the limit V = s0 there arises a step with δu = a. At V = 0 a
fixed inflection of width l0 = s0/ω0 remains in the crystal.

Since a homogeneous translation onto the crystal period is a symmetry transforma-
tion, the physical state of a 1D crystal far from the point x = x0 (|x − x0| � x0) is
similar to that in the absence of a crowdion. The derivative du/dx coinciding with a
linear chain deformation is evidence of the change in the state of a one-dimensional
system in the presence of a crowdion. It follows from (1.6.12) (in initial dimensional
quantities)

du
dx

= − a
πl

1

cosh
(

x − x0

l

) . (1.6.14)

The localized deformation (1.6.14) moving in the crystal has the form of a solitary
wave and is another example of a strain soliton in a 1D crystal. Finally, coming back
to a dimensional displacement and to a complete dependence on the coordinates and
time in (1.6.12), we get the final expression for the displacements

u(x, t) =
2a
π

arctan


exp


−ω0

x − Vt√
s2

0 − V2




 . (1.6.15)

The perturbation described by this formula moves with velocity V (necessarily less
than that of a sound s0). This makes it different from the shock-wave perturbation.
The velocity is determined by the total energy associated with this perturbation.

The last observation will be supported with a certain qualitative argument of general
character. It follows from a comparison of the properties of solitons of the two types
considered by us. Irrespective of the character of nonlinearity that generates a soliton,
the value of its limiting velocity is completely determined by the dispersion law of
harmonic vibrations that can exist in the system under study.

If a plot of the dispersion law of linear vibrations is convex upwards similar to
the plot of the dispersion law (1.2.13), it is characterized by some maximum phase
velocity s0. The velocity of a soliton (if it arises) will exceed s. If a plot of the
dispersion law shows convexity downwards, as in the case of a sine-Gordon equation,
it is characterized by the minimum phase velocity s0, and the velocity of the existing
soliton should be less than s0. This conclusion will be proved in the following.
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1.7
Soliton as a Particle in 1D Crystals

The local deformation associated with a crowdion (1.6.15) moved along a 1D crystal,
remaining undeformed and losing no velocity, i. e., moves “by inertia” like a particle.
However, the similarity between the soliton of the sine-Gordon equation and a particle
is much stronger. It can be observed in the soliton dynamics in an external field.

In the long-wave approximation, the soliton energy is

E =

∞∫

−∞

{
m
2

[(
∂u
∂t

)2

+ s2
0

(
∂u
∂x

)2
]

+ F(u)

}
dx
a

=
E0√

1 −
(

V
s0

)2
, E0 =

2
π

aτ
√

α0.
(1.7.1)

For small velocities (V � s0) we have

E = m∗s2
0 +

1
2

m∗V2, m∗ =
E0

s2
0

=
2mτ

πa
√

α0
, (1.7.2)

where m∗ is the effective soliton (crowdion) mass. The effective mass is less than that
of an individual atom m as measured relative to the ratio of a lattice period to the rest
soliton width l0:

m∗ = m
2a
l0

� m. (1.7.3)

The energy (1.7.1) can be calculated in a standard way by means of (1.6.7) as the
field energy of elastic displacement. It is natural to assume that the soliton momentum
may also be determined as the momentum of the field of displacements. Then, by the
definition of the field momentum,

P = −
∫

∂L
∂ut

∂u
∂x

dx = −ρ

∫
∂u
∂t

∂u
∂x

dx, (1.7.4)

where ρ = m/a.
If a soliton moves with constant velocity, i. e., u(x, t) is a function of the form

(1.6.15), then ∂u/∂t = −V∂u/∂x, and from (1.7.4) and (1.6.14) it follows1 that

P = ρV
∫ (

∂u
∂x

)2

dx = −ρ
( a

πl

)2
V
∫

dx

cosh2
(

x
l

) =
2ma
π2l

V.

1) We note that the momentum of atoms Pat is determined otherwise:

Pat =
m
a

∫
∂u
∂t

dx = −m
a

V

∞∫

−∞

∂u
∂x

dx =
mV

a
[u(−∞)− u(∞)] = mV

and equals the product of the mass of one “extra” atom m and the crowdion
velocity V.
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Using (1.6.13) and (1.7.3), we obtain a relativistic relation between the momentum
and the soliton velocity

P =
m∗V√

1 −
(

V
s0

)2
. (1.7.5)

Thus, the soliton behaved as a classical particle with the Hamiltonian H, where
H2 = m∗s2

0 + s2
0P2. For small momenta the Hamiltonian function agrees with (1.7.2)

H = E0 +
P2

2m∗ . (1.7.6)

We suppose now that a 1D crystal experiences a weak external influence and denote
by f (x) the density of the force acting on a 1D crystal. Equation (1.6.6) should then
be replaced by

ρ
∂2u
∂t2 = ρs2

0
∂2u
∂x2 − mω2

0
2π

sin
2πu

a
+ f (x). (1.7.7)

The long-wave approximation assumes that f (x) is a smooth function of the coor-
dinate x varying considerably at distances large as compared to a. If the value of f (x)
is small, the presence of such a perturbation in (1.7.7) cannot change considerably
the soliton form, affecting mainly its dynamics. This allows us to seek a solution to
(1.7.7) satisfying the boundary conditions formulated before as a soliton (1.6.15)

u(x, t) = us(x − ζ) ≡ 2a
π

arctan

{
exp

[
− x − ζ

l0
√

1 − (V/s0)2

]}
, (1.7.8)

whose parameters ζ and V change slowly with the soliton moving along the crystal.
Since the point x = ζ is the “center of mass” for the deformation ε(x) = ∂u/∂x, the
soliton velocity may be assumed to be V = dζ/dt.

To deduce the equation determining the change in the velocity V with time, we use
the following procedure. We multiply (1.7.7) by ∂u/∂x and regroup the terms in the
relation obtained

−ρ
∂

∂t
(utux) + ρ

∂

∂x

[
1
2

u2
t +

1
2

s2
0u2

x

+
(

aω0

2π

)2 (
1 − cos

2πu
a

)]
= − f (x)ux.

(1.7.9)

We now integrate (1.7.9) over x from −∞ to ∞ and use the definition (1.7.4) as
well as the boundary conditions at infinity

dP
dt

= −
∞∫

−∞

f (x)
∂u
∂x

dx. (1.7.10)
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Within the main approximation for small perturbations, we can substitute
u = us(x − ζ) on the r.h.s. of (1.7.10). ∂u/∂x = −∂u/∂ζ, and we obtain

dP
dt

= − ∂W
∂ζ

, W(ζ) = −
∞∫

−∞

f (x)us(x − ζ) dx. (1.7.11)

Equation (1.7.11) has the form of one of the Hamilton equations and W(ζ) plays
the role of the soliton potential energy in an external field. If the force density f (x) is
of purely elastic origin, it can be written as f (x) = ∂σe/∂x, where σe are the elastic
stresses created in a 1D crystal by external loads. In this case

W(ζ) = −
∞∫

−∞

∂σe

∂x
us dx = aσe(−∞) +

∞∫

−∞

σe(x)us
x(x − ζ) dx. (1.7.12)

The first term on the r.h.s. of (1.7.12) is a constant that may not be taken into account
in writing the potential energy of a soliton W(ζ).

We assume further that the field of stresses σe(x) varies smoothly in space and the
characteristic distance of its variation is much larger than l (soliton width). Then we
may replace (1.7.12) by

W(ζ) = σe(ζ)

∞∫

−∞

∂us

∂x
dx = aσe(ζ). (1.7.13)

Comparing (1.7.11), (1.7.13) we conclude that the force acting on a soliton is deter-
mined by the gradient (space derivative) of elastic stresses created by external loads at
the point where the soliton center of mass is located.

On the other hand, the relation (1.7.13) makes it possible to generalize the expres-
sion for the Hamilton function that, for small soliton momenta, takes the form

H(ζ, P) = E0 +
P2

2m∗ + aσe(ζ). (1.7.14)

Using (1.7.14), a standard pair of Hamilton equations is constructed

dP
dt

= − ∂H
∂ζ

,
dζ

dt
=

∂H
∂P

. (1.7.15)

The equations for soliton motion thus take the form of equations of the motion of
a particle with mass m∗ and effective “charge” a, reflecting its interaction with the
elastic potential field, where σe(x) is the field potential.

The soliton, a collective excitation of a 1D crystal, has very different properties
from the collective small harmonic vibrations of a crystal lattice. The primary differ-
ence is that the soliton is generated by the nonlinear dynamics of a 1D crystal. Thus,
the usual superposition principle is inapplicable to solitons. One may expect that this
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restricts the possibility of using solitons to describe the excited states of a crystal.
Problems may arise when we try to consider many solitons in the crystal or the inter-
action between soliton perturbation and small harmonic vibrations of the crystal.

The remarkable properties of (1.6.9) eliminate these problems. First, the asymp-
totic superposition principle is applicable to solitons. If at time t = 0 two solitons
with velocities V1 and V2 (assume them moving in the opposite directions) exist in a
1D crystal, then at t → ∞ the same two solitons with velocities V1 and V2 will remain
in the crystal. In other words, the asymptotic behavior of soliton solutions to the non-
linear equation (1.6.9) is analogous to the independent behavior of the eigensolutions
to a linear equation.

Then, the asymptotic superposition principle is valid also for the interaction of col-
lective excitations of different types: solitons and small harmonic vibrations. Without
going into details of the nonlinear mechanics to justify the first remark, we illustrate
the validity of the second one by studying the properties of small harmonic vibrations
in a 1D crystal containing one crowdion (soliton).

1.8
Harmonic Vibrations in a 1D Crystal Containing a Crowdion (Kink)

We use the simplest (linear) perturbation theory to describe how a harmonic vibration
moves through a soliton (1.6.12). We assume a soliton to be at rest (results for a
moving soliton can be obtained by means of the Lorentz transformation) and represent
the soliton to (1.6.9) in the form

u = us + u1, us = 4 arctan
[

exp
(
− x

l0

)]
. (1.8.1)

We substitute (1.8.1) into (1.6.9) and linearize the equation obtained in u1. Then

u1
tt − s2

0u1
xx + ω2

0

[
1 − sech2

(
x
l0

)]
u1 = 0.

We seek for the solution to this linear equation in a standard form u1 = ψ(x)e−iωt.
For the function ψ(x) we have

ω2ψ = −s2
0

d2ψ

dx2 + ω2
0

[
1 − sech2

(
x
l0

)]
ψ. (1.8.2)

Equation (1.8.2) is a Schrödinger stationary equation with a reflectionless potential.
One localized eigenstate is among its solutions

ψloc(x) =
2
l0

sech
(

x
l0

)
, (1.8.3)
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corresponding to a zero frequency (ω = 0), and a set of harmonic vibrations of the
continuum spectrum

ψk(x) =
1√
2π

ω0

ω(k)

[
kl0 + i tanh

(
x
l0

)]
eikx, (1.8.4)

with the dispersion law (1.6.8).
Formula (1.8.3) gives a translational mode in the linear approximation

ψloc(x) =
dus(x)

dx
.

It reflects the homogeneity of a 1D crystal and the possibility to choose arbitrarily the
position of the center of gravity of a soliton. Indeed, the linear approximation gives

us(x) + δxψloc(x) = us(x) + δx
dus(x)

dx
∼= us(x + δx) .

The solutions (1.8.4) describe the harmonic vibrations with the background of a
crowdion at rest. Their form confirms the asymptotic superposition principle accord-
ing to which the independent eigenvibrations are only slightly modulated near the
soliton center and change insignificantly. Each eigenvibration is still characterized by
the wave number k and the dispersion law (the vibration frequency dependence on k)
does not change.

A set of functions (1.8.3), (1.8.4), as a set of eigenfunctions of the self-adjoint
operator (1.8.2), forms a total basis in the space of functions of the variable x. This
is the most natural basis for the representation of perturbations of a soliton solution,
as it allows one to give a clear physical interpretation. A translational mode describes
the motion of a soliton mass center, and the continuum spectrum modes refer to the
change in its form and the resulting “radiation” of small vibrations.

It follows from (1.8.4) that on passing through a soliton, the eigenvibration repro-
duces its standard coordinate dependence ∼ eikx, but the vibration phase η(x, k) is
shifted by

ηk = η(+∞, k) − η(−∞, k) = π − 2 arctan(kl0). (1.8.5)

The phase shift (1.8.5) affects the vibration density in a 1D crystal. In the absence
of a soliton, the expression for the density of states in the specimen of the finite dimen-
sion L follows from the requirement kL = 2πn, n = 1, 2, 3 . . ., that is a consequence
of cyclicity conditions (1.1.8) for the eigenvibrations. In the presence of a soliton an
additional phase shift (1.8.5) results in a change in the allowed wave-vector values:
kL + η(k) = 2πn, n = 0, 1, 2, . . . . In the limit L → ∞, the spectrum of the values of
k becomes continuous. The vibration density (the distribution function for the wave
vector k) then equals

ν(k) =
dn
dk

=
L

2π
+

1
2π

dη(k)
dk

=
L

2π
− 1

π

l0
1 + (l0k)2 , (1.8.6)
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where L/2π is the vibration density in the absence of a soliton. It is easily seen that

∞∫

−∞

[
ν(k) − L

2π

]
dk = −1.

The number of plane-wave vibrations (with a continuous frequency spectrum) scat-
tered by the soliton is reduced by unity because of the presence of one local state with
a discrete frequency ω = 0 (translational mode).

Analyzing the changes in the vibration distribution, it is of interest to find the fre-
quency spectrum function ν(ω) in a crystal with a soliton. Since the dispersion law
(1.6.8) does not change in the presence of a soliton, the function ν(ω) is found by
multiplying (1.8.6) by dk/dω:

ν(ω) = ν0(ω) − 1
π

ω0

ω

1√
ω2 − ω2

0

= ν0(ω)
{

1 − 2l0
L

(ω0

ω

)2
}

, (1.8.7)

where ν0(ω) is the frequency spectrum in the absence of a soliton

nu0(ω) =
L

2πs0

ω√
ω2 − ω2

0

, ω > ω0.

If a soliton moves with velocity V, the formula for the phase shift is obtained from
(1.8.5) by replacing l0 → l(V) = l0

√
1 − (V/s0)2:

ηk = π − 2 arctan


l0k

√
1 −

(
V
s0

)2

 . (1.8.8)

Finally, if there are several solitons (crowdions with different velocities) in the sys-
tem, the total phase shift of an eigenvibration is equal to the sum of the phase shifts
for each soliton

ηk = Nπ − 2
N

∑
α=1

arctan


l0k

√
1 −

(
Vα

s0

)2

 , (1.8.9)

where Vα is the soliton velocity with number α, N is the number of solitons. It be-
comes clear that a set of kinks and small harmonic vibrations can be considered as
“nonlinear normal modes”. It follows from the “asymptotic independence” of these
modes that the energy is the sum of soliton energies (1.7.1) and the energy of small
vibrations with the density of states determined by (1.8.6), (1.8.9).
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1.9
Motion of the Crowdion in a Discrete Chain

According to the classical equations of crowdion motion, the crowdion Hamiltonian
function (1.7.6) is independent of the position of its center and this is a result of the
continuum approximation in which this function is derived.

The simplest way to take into account the discreteness of the system concerned is
the following. We use the solution (1.6.12) to the continuous differential equation
(1.6.9) and calculate the static energy of a discrete atomic chain with a crowdion at
rest by using the formula

E =
∞

∑
n=−∞

{
1
2

α0

(
un+1 − un)2 + f (un

)}
, (1.9.1)

where un = u(xn) ≡ u(an).
It is easily seen that the static crowdion energy in the continuum approximation is

equally divided between the interatomic interaction energy and the atomic energy in
an external field. It can be assumed that the same equal energy distribution remains in
a discrete chain, and instead of (1.9.1) we then write

E = 2
∞

∑
n=−∞

F(un) = τ2
∞

∑
n=−∞

sin2
(

πun

a

)
.

We substitute here (1.6.12), assuming the point x = x0 to be a crowdion center:

E = τ2
∞

∑
n=−∞

sech2
(

an − x0

l0

)
, (1.9.2)

where l0 = as
√

m/(πτ) = a2√α0/(πτ).
Using the Poisson summation formula,

∞

∑
n=−∞

f (n) =
∞

∑
m=−∞

+∞∫

−∞

f (k)e2πimk dk , (1.9.3)

we find

E =
τ2

a

+∞∫

−∞

dx

cosh2
(

x
l0

) +
2τ2

a

∞

∑
m=1

e2πim(x0/a)
+∞∫

−∞

e2πim(x/a)

cosh2
(

x
l0

) dx. (1.9.4)

The first term in (1.9.4) coincides with the energy E0 of a crowdion at rest found
in the continuum approximation (1.7.1), and the second term is a periodic function of



50 1 Mechanics of a One-Dimensional Crystal

the coordinate x0 with period a: E = E0 + U(x0), where

U(x) =
2l0τ2

a

∞

∑
m=1

e2πim(x/a)
+∞∫

−∞

cos
(

2πml0ξ

a

)

cosh2 ξ
dξ

= 4α0a
∞

∑
m=1

m

sinh
(

π2ml0
a

) cos
(

2πm
x
a

)
.

(1.9.5)

Since we have assumed that l0 � a, it then suffices to keep one term with m = 1

U(x0) = U1 cos
(

2π
x0

a

)
, U1 = 8α0a2e−π2(l0/a). (1.9.6)

It is clear that the crowdion energy is periodically dependent on the coordinate of
its center x0 that may be regarded as a quasi-particle coordinate. We set x0 = Vt
in (1.6.15) using the ordinary relation between the coordinate and the velocity at
V = const �= 0. The part of the energy (1.9.6) that is dependent on the coordi-
nate plays the role of the crowdion potential energy. Minima of the potential en-
ergy determine possible equilibrium states of the crowdion (x0 = a/2 ± na, where
n = 0,±1,±2, . . .), and the crowdion can oscillate relative to these equilibrium posi-
tions with the frequency

Ω2
0 =

(
2π

a

)2 U0

m∗ .

Vibration motion with such a frequency can really be a free harmonic oscillation if
the quantum energy of the ground (zero) state of the oscillator h̄Ω0 is much smaller
than U0:

h̄2

m∗a2 � U1. (1.9.7)

Under such a condition the crowdion in a discrete structure possesses an internal vi-
bration degree of freedom with the frequency Ω0.

However, in the case l0 � a, the potential energy curve (1.9.6) creates very weak
potential barriers between the neighboring energy minima, and the crowdion may
overcome them through quantum tunneling. Thus, the crowdion migrates really in
a discrete atomic chain overcoming the potential relief (1.9.6).

The Hamiltonian

H = E0 +
P2

2m∗ + U1 cos
(

2π
x
a

)
(1.9.8)

is used for the quantum description of crowdion motion.
As both m∗ and U1 decrease with increasing parameter l0/a ∼ a

√
α0/τ the phys-

ical situations, where
h̄2

m∗a2 � U1, (1.9.9)
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are quite reasonable. The inequality (1.9.9) means that the potential energy contribu-
tion that is dependent on the coordinate is a weak perturbation of the kinetic energy
of free crowdion motion. In other words, the amplitude of zero crowdion vibrations in
one of the potential minima (1.9.9) greatly exceeds much the one-dimensional crystal
period and the crowdion transforms into a crowdion wave.

The energy spectrum of a crowdion wave with the Hamiltonian (1.9.7) is rather
complicated and consists of many bands in each of which the energy is a periodic
function of the quasi-wave number k with period 2π/a. However, small crowdion
wave energies for k � 2π/a are not practically distinguished from the free particle
energy with the Hamiltonian (1.9.8) under the condition (1.9.9). Indeed, if we calcu-
late quantum-mechanical corrections to the free particle energy in the second order of
perturbation theory in the potential (1.9.6), then

ε(k) = E0 − U1
m∗a2U1

(2πh̄)2 +
h̄2k2

2M
,

M = m∗
{

1 +
1
2

[
m∗a2U1

(πh̄)2

]2}
.

Thus, in spite of the presence of a potential energy curve (1.9.6), the crowdion wave
moves through a crystal as a free particle with a mass close to the crowdion effective
mass.

1.10
Point Defect in the 1D Crystal

Any distortion of regularity in the crystal atom arrangement is regarded as a crystal
lattice defect. A point (from the macroscopic point of view) defect is a lattice dis-
tortion concentrated in the volume of the order of magnitude of the atomic volume.
The typical point defects in a 1D crystal are as follows: an interstitial atom is an atom
occupying position between the equilibrium positions of ideal lattice atoms (a crow-
dion can be considered as the extended interstitial atom); a substitutional impurity is
a “strange” atom that replaces the host atom in a lattice site (Fig. 1.14).

Fig. 1.14 Substitutional impurity in 1D crystal.

The simplest point defect arises in a monatomic species when one of the lattice
sites is occupied by an isotope of the atom making up the crystal. Since the isotope
atom differs from the host atom in mass only, it is natural to assume that the crystal
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perturbation does not change the elastic bond parameters. Let the isotope be situated
at the origin (n = 0) and have a mass M different from the mass of the host atom m.
With such a defect we get in the case of stationary vibrations the following set of
equations

ω2 Mu(0) − α [u(+1) − 2u(0) + u(−1)] = 0, n = 0;

ω2mu(n) − α [u(n + 1) − 2u(n) + u(n − 1)] = 0, n �= 0.
(1.10.1)

Equations (1.10.1) can be written more compactly as

mω2u(n) − α[u(n + 1) − 2u(n) + u(n − 1)] = (m − M)ω2δn0, (1.10.2)

by introducing the Kronecker delta δnn′ .
We denote

∆m = M − m, U0 = −∆m
m

ω2, (1.10.3)

and rewrite (1.10.2) in a form typical for such problems

ω2u(n) − α

m
[u(n + 1) − 2u(n) + u(n − 1)] = U0u(0)δn0. (1.10.4)

We write a formal solution to (1.10.4) as

u(n) = U0G0
ε (n)u(0), (1.10.5)

where G0
ε is the Green function for ideal lattice vibrations, ε = ω2; u(0) is a constant

multiplier still to be defined.
Setting n = 0 in (1.10.5), we find that (1.10.5) is consistent only when

1 − U0G0
ε (0) = 0. (1.10.6)

Equation (1.10.6) is an equation to determine the squares of frequencies ε at which
the atomic displacements around an isotope have the form of (1.10.5). In the theory of
crystal vibrations with a point defect, an equation such as (1.10.6) was first obtained
by Lifshits, 1947.

The expression (1.1.22) for the Green function for ε > ω2
m at n = 0 is substituted

into (1.10.6):

1 − U0√
ε(ε − ω2

m)
= 0. (1.10.7)

Since ε > 0, a solution to (1.10.7) exists only at U0 > 0. It is not difficult to find this
solution:

ε =
ω2

m
1 − (∆m/m)2 . (1.10.8)



1.10 Point Defect in the 1D Crystal 53

Thus we obtain a discrete frequency corresponding to vibrations of the crystal with
the single point defect. For |∆m| � m this frequency is slightly shifted relative to the
upper edge of the frequency spectrum:

ω − ωm

ωm
=

1
2

(
∆m
m

)2

. (1.10.9)

Crystal vibrations with the frequencies described are called local vibrations, and
the discrete frequencies are called local frequencies ωd. These names are attributed
to the fact that the amplitude of the corresponding vibration is only nonzero in a small
vicinity near the point defect. The local vibration amplitude is given by (1.10.6),
implying its coordinate dependence is completely determined by the behavior of the
ideal crystal Green function. In order to obtain the Green function using (1.1.22) for
ε > ω2

m it is convenient to take the quasi-wave number in the complex form (1.1.24):

G0
ε (n) =

(−1)ne−κna√
ε(ε − ω2

m)
, (1.10.10)

and take into account the connection of the frequency with the parameter κ (1.1.25)
for the discrete local frequency (εd = ω2

d):

εd = ω2
m cosh2 aκ

2
. (1.10.11)

Combining Eqs (1.10.8) and (1.10.11) one can get

κa = log
2m − M

M
. (1.10.12)

At m − M � m (1.10.12) can be simplified:

κa = 2
|∆m|

m
. (1.10.13)

We substitute the result (1.10.12) in (1.10.10) and rewrite (1.10.5)

u(n) = u(0)(−1)n
(

M
2m − M

)n

. (1.10.14)

Thus, the local vibration amplitude decreases if the distance na increases and this
decay of the amplitude confirms the fact of the vibration localization.

Let us introduce a length of the localization region of vibrations l = 1/κ. As it re-
sults from (1.10.12), under the condition |∆m| � m the length of localization is very
large (l = am/∆m � a). In this connection it is interesting to consider a long-wave
description of problems concerning with the localization of crystal vibrations near a
point defect. Returning to (1.10.4) and using (1.1.15) in the long-wave approxima-
tion the Kronecker delta δn0 in the r.h.p. of (1.10.4) can be substituted by the Dirac
delta-function

δn0 = aδ(na) = aδ(x), x = na,
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and the finite differences in the l.h.p. can be substituted with the partial derivatives of
the function v(x) (see (1.1.16) written in the same approximation):

(ω2 − ω2
m)v(x) − s2 ∂2v(x)

∂x2 = aU0v(0)δ(x), s =
1
2

aωm. (1.10.15)

The presence of the delta-function in the r.h.p. of (1.10.15) is equivalent to the
following boundary condition for (1.1.16)

−s2
[

∂u(x)
∂x

]+0

−0
= aU0u(0), (1.10.16)

which determines a jump of the first spatial derivative of the continuous function v(x)
at the point x = 0 (on the isotopic defect).

Take a solution to (1.10.15) in the form

u(x) = u(0) exp(−κ |x|), s2κ2 = ω2 − ω2
m,

and find the parameter κ from (1.10.16):

κa = 2
|∆m|

m

(
ω

ωm

)2

. (1.10.17)

In the long-wave approximation aκ � 1 and ω − ωm � ωm, and then the simplifi-
cation of (1.10.17) is possible:

κa = 2
|∆m|

m
.

The result obtained coincides with (1.10.13).
Therefore, the long-wave approximation allows us to solve problems associated

with local vibrations in the frequency interval ω − ωm � ωm.

1.11
Heavy Defects and 1D Superlattice

In the previous section we analyzed the local vibrations and found that only a light iso-
tope defect could produce such a vibration with a frequency higher than all frequencies
of a defectless chain. Under the conditions m − M � m and ω − ωm � ωm de-
scription of the problems under consideration could be performed in the long-wave
approximation. It was explained why a heavy isotope defect could not produce a local
vibration. Nevertheless, the heavy defect influences the continuous vibration spec-
trum. Obviously a heavy defect can influence low vibrational frequencies, because
heavier masses are associated with lower frequencies. One can expect to find essential
effects at very low frequencies ω � ωm at M − m � m.

Consider a periodical array of isotope defects with M > m separated by the dis-
tance d = N0a in the linear chain. Suppose d � a (N0 � 1) and M − m � m;
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such conditions allow us to use a long-wave approximation. The continuous analog of
(1.10.4) for one isolated isotope defect at the frequencies ω � ωm is the following

∂2u(x)
∂t2 − s2 ∂2u(x)

∂x2 = aU0u(0)δ(x − x0), (1.11.1)

where x0 is the defect coordinate. See (1.1.4) and compare (1.11.1) with (1.10.15) for
ω − ωm � ωm.

The presence of the delta-function in the r.h.p. of (1.11.1) determines a jump of
the first spatial derivative of the continuous function u(x) at the point x = x0 and is
equivalent to the following boundary condition for (1.1.16)

−s2
[

∂u(x)
∂x

]x0+0

x0−0
= aU0u(0). (1.11.2)

From the macroscopic point of view the model proposed for consideration is a 1D
acoustic superlattice consisting of elastic elements of the length d separated by set
of joints. Excitations inside the elastic elements are described by the wave equation
(1.1.4) with the boundary conditions (1.11.2) on the all joints. From the microscopic
point of view such a system is a polyatomic 1D crystal with the unit cell including a
very large number N0 of atoms. Taking into account this fact, let the large unit cells
(elements of the superlattice) be numbered by n.

Then the eigenvibration in the n-th element can be written in the form of the Bloch
wave

un(x) = vk(x)eikx, vk(x + d) = vk(x), (1.11.3)

where the Bloch amplitude v(x) is a solution to the wave equation (1.1.4) and the
function u(x) obeys the boundary conditions (1.11.2).

Let the origin of coordinates coincide with one of the joints (it will have the number
n = 0). Then (1.11.3) can be written in the form

un(x) = v(x − nd)eikx.

Take the function v(x) as a general solution to (1.1.4)

v(x) = Aeiqx + Be−iqx, q =
ω

s
, (1.11.4)

and consider the solution inside the interval 0 < x < d.
Writing the boundary conditions such that at the left joint

u−1(−0) = u0(d − 0)e−ikd = v(d)e−ikd,

and at the right joint

u+1(d + 0) = u0(+0)eikd = v(0)eikd.
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The boundary conditions (1.11.2) and continuity of the function u(x) at the point
x = 0 or x = d turn into the following set of linear algebraic equations for the
coefficients A and B

A − B − i
(

aMω

ms

)
(A + B) = (Aeiqd − Be−iqd)e−ikd,

A + B = (Aeiqd − Be−iqd)e−1kd.
(1.11.5)

The determinant of (1.11.5) can be easy calculated and equality of the determinant to
zero leads to the following expression (the calculation can be considered as a problem
for readers)

cos kd = cos qd − 1
2

(
aMω

ms

)
q sin qd. (1.11.6)

Introduce a new variable z = qd and rewrite (1.11.6)

cos kd = cos z − Qz sin z, Q =
aM
2md

=
M

2N0m
. (1.11.7)

It is assumed that M � m and N0 � 1. Since the long-wave approximation was used
the variable z can not be very large (z � N0).

Equation (1.11.7) gives the dispersion law for the superlattice and corresponds to a
band structure of the spectrum. The allowed vibrational frequencies of a continuous
spectrum of the system under study can be qualitatively found by analyzing graph-
ically (1.11.7) as shown in Fig. 1.15: if the expression cos z − Qz sin z has values
between ±1, the roots of the equation have values in the intervals shown on the ab-
scissa. As a result the vibration spectrum consists of bands of two types: allowed
frequency bands and forbidden bands (gaps).

Note that, as z increases, the allowed frequencies are localized within the narrowing
intervals near the values k1d = ±mπ where m is a large integer. For the condition
m2Q � 1 the dispersion law for the m-th band can be found. Indeed, near odd
m = 2p + 1 (see the vicinity of z = 3π in Fig. 1.15) we can write with sufficient
accuracy

cos kd = −1 + Qmπ(z − mπ) = −1 +
mπd

s
Q
(

ω − mπs
d

)
,

which yields

ω = mΩ0 +
Q
m

(1 + cos kd), (1.11.8)

where ω0 = πs/d and Ω = s/(πQd). Similarly, near even m = 2p (see the vicinity
of z = 4π in Fig. 1.15) we can write

cos kd = 1 − Qmπ(z − mπ) = 1 +
mπd

s
Q
(

ω − mπs
d

)
,

which gives

ω = mΩ0 +
Q
m

(1 − cos kd). (1.11.9)
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Fig. 1.15 Graphical solution of (1.11.7). If cos z − Qz sin z has values
between ±1, the roots of the equation have values in the intervals indi-
cated on the abscissa.

By combining (1.11.8) and (1.11.9), we obtain the dispersion relations for the m-th
band:

ω = mω0 +
2Q
m




sin2(kd/2), m = 2p ,

cos2(kd/2), m = 2p + 1.
(1.11.10)

One can easily see that expressions (1.11.10) represent the size-quantization spectrum
of vibrations in a 1D elastic element of length d with levels (frequencies) split up
into minibands due to a low “transparency” of the joints dividing the 1D crystal into
elements.

Thus studying a biatomic 1D crystal in Section 1.5 and a simple continuous model
of the superlattice in this Section we consider two limiting cases of polyatomic lattices:
a lattice with 2 atoms in the unit cell and a lattice with N0 � 1 atoms in the unit cell.
And the number of gaps in the continuous vibrational spectrum is determined by the
number of atoms in the unit cell.



2
General Analysis of Vibrations of Monatomic Lattices

2.1
Equation of Small Vibrations of 3D Lattice

According to the definition of a crystal structure all spatial lattice points can be repro-
duced by the integral vector n = (n1, n2, n3) where nα (α = 1, 2, 3) are integers. If
we choose the coordinate origin at one of the sites, the position vector of an arbitrary
lattice site with “number” n will have the form1

rn ≡ r(n) =
3

∑
α=1

nαaα. (2.1.1)

In a monatomic lattice the sites are numbered in the same way as the atoms, so that
the integral vector n is at the same time “the number” or “the number vector” of a
corresponding atom. However, a lattice site coordinate (2.1.1) differs from the coordi-
nate of the corresponding atom when atoms are displaced relative to their equilibrium
positions. If the atom equilibrium positions coincide with the lattice sites (2.1.1), to
define the coordinates of an atom, it is necessary, apart from its “number”, to indicate
its displacement with respect to its own site.

We denote the displacement of an atom with “number” n from its equilibrium po-
sition by u(n).

The existence of the crystal state means that over a wide temperature range the
relative atomic displacements are small compared with the lattice constant a (by the
lattice constant we mean the value whose order coincides with the values of funda-
mental translation vectors aα, in a cubic lattice. Therefore, we shall begin studying
crystal lattice vibrations with the case of small harmonic oscillations.

It is easy to derive and to write the equations for small lattice vibrations. We con-
sider the potential energy of a crystal whose atoms are displaced from their equilib-
rium positions and express it through the displacement u(n). The crystal energy is

1) In the following, for the coordinates of the crystal lattice sites, we shall use
the notation r(n) instead of R(n) used in the Introduction.

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40508-9
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dependent on the coordinates of all particles making up the crystal, that is, the atomic
nuclei and electrons. The latter, however, are so mobile that they manage to adapt
to nuclear motion. Thus, at every given moment the electronic state is described by a
function dependent on the positions of the nuclei. Excluding the electronic coordinates
from the crystal energy is the essence of the so-called adiabatic approximation that is
justified both in studying harmonic vibrations and in the case of small anharmonicity.

Regarding the potential energy of a crystal U as a function only of the coordinates of
atomic nuclei that coincide with the coordinates of atomic centers of mass we expand
it in powers of u(n) and consider the first nonvanishing expansion terms. Assuming
the crystal to be in equilibrium at u(n) = 0 we write the potential energy in the form

U = U0 +
1
2 ∑

n,n′
βik(n, n′)ui(n)uk(n′), (2.1.2)

where U0 = constant and the summation is over all crystal sites. The Latin letters
i, k (also j, l, m, . . .) are the coordinate indices. The summation over doubly repeated
coordinate indices from 1 to 3 is assumed. To simplify the notation of the sums over
the numbers n, n′, etc., we do not indicate the summation indices under the summation
sign if the summation is over all indices involved under the summation sign.

Since we consider that the crystal at u(n) = 0 is in mechanical equilibrium, the
matrix βik(n, n′) should be defined positively; in particular, the following inequalities
must be satisfied

β11(n, n) > 0, β22(n, n) > 0, β33(n, n) > 0.

Other important properties of the matrix will be discussed below.
The positively defined matrix with elements βik(n, n′) is generally called the matrix

of atomic force constants or dynamical matrix of a crystal.
With a general expression for the potential energy (2.1.2) we can easily write down

the equation of motion of every atom in a crystal:

m
d2ui

dt2 = − ∂U
∂ui(n)

= −∑
n′

βik(n, n′)uk(n′), (2.1.3)

where m is the atomic mass.
To simplify formulae and equations such as (2.1.2), (2.1.3) containing the ui(n)

displacement vectors and the βik(n, n′) dynamical force matrix or similar matrices,
we omit the coordinate indices i, k, l, . . . for the matrix and vector values, and the
square (3 × 3) matrices are denoted by the corresponding capital letters, e. g., the
matrix of force constants is denoted by the letter B:

B = βik, i, k = 1, 2, 3.

By u(n) we mean the displacement vector that is in the form of a column consisting
of three elements: u = col(u1, u2, u3). Such a notation is only “decoded” when
possible misunderstanding may appear.
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Thus, the quadratic expression for the potential energy (2.1.2) is

U = U0 +
1
2 ∑ B(n, n′)u(n)u(n′). (2.1.4)

In the new notation we write the equations of motion in the form

m
d2uk

dt2 = −∑
n′

B(n, n′)u(n′). (2.1.5)

Here we easily see one important property of the coefficients B(n, n′). Assume the
crystal to be displaced as a whole: u(n) = u0 = constant. Then the internal crystal
state cannot change (absence of external forces). Thus, the atoms are not affected by
additional forces. Consequently,

∑
n′

B(n, n′) ≡ ∑
n′

βik(n, n′) = ∑
n′

βik(n′, n) = 0. (2.1.6)

The requirement (2.1.6) follows from the conservation of total momentum in the
crystal. Another obvious requirement is that the total angular momentum conserva-
tion law be automatically obeyed in the absence of external forces. We assume rigid
rotation of the crystal effected and described by the axial vector Ω:

ui(n) = εiklΩkxl(n), (2.1.7)

where εikl is a rank three unit antisymmetric tensor and xl(n) is determined by (2.1.1).
The above rotation causes no change in the internal lattice state if external forces are
absent. Hence, with (2.1.7) substituted into (2.1.3), (2.1.5) we have

εklmΩl ∑
n′

βik(n, n′)xm(n′) = 0. (2.1.8)

Since the vector Ω is arbitrary

∑
n′

βik(n, n′)xl(n′) = ∑
n′

βil(n, n′)xk(n′). (2.1.9)

The conditions (2.1.6), (2.1.9) should be satisfied for any atom in the lattice (for
any vector n). The last point is especially important when not all crystal sites are
equivalent. For example, in describing the vibrations of a finite crystal specimen (the
atoms near the surface are under conditions differing from those in the crystal interior)
or a real crystal with broken translational symmetry (a crystal with defects).

A detailed discussion of constraints imposed on the elements of the matrix B is
due to a usual simplification of crystal models when the minimum possible number of
elements of this matrix is nonzero, thus describing the interaction of only the nearest-
neighbor atoms in the lattice. But it is questionable whether such a choice of model
agrees with general physical properties of a crystal, i. e., with mechanical conservation
laws.
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We now turn to (2.1.4) and discuss firstly the bulk properties of a crystal assuming
the crystal lattice to be unbounded. For an unbounded homogeneous lattice, due to its
homogeneity the matrix B has the form

B(n, n′) = A(n − n′),

where we introduced A = αik, i, k = 1, 2, 3 whose elements are satisfied by the
conditions

∑
n′

A(n − n′) ≡ ∑
n′

αik(n − n′) = ∑
n′

αik(n) = 0. (2.1.10)

Then (2.1.4) is written as

U = U0 +
1
2 ∑ A(n − n′)u(n)u(n′), (2.1.11)

and the equations of motion (2.1.3) take the form

m
d2u(n)

dt2 = −∑
n′

A(n − n′)u(n′). (2.1.12)

We substitute the condition (1.1.10) into the equation of motion (1.1.12) to obtain

m
d2u(n)

dt2 = ∑
n′

A(n − n′)
[
u(n) − u(n′)

]
. (2.1.13)

The equation of motion (2.1.13) illustrates the invariance of a crystal state with
respect to its displacement as a whole.

Because (2.1.4) and (2.1.11)–(2.1.13) are equations for three-dimensional displace-
ment vectors we shall use the simplest model to describe the vibration of a crystal
lattice where all atoms are displaced in one direction. Then the atom displacement
from its equilibrium position is determined by a scalar rather than a vector one. This
model allows us to describe the main properties of a vibrating crystal using simple
formulae and to obtain the correct quantitative estimates. This model, here called
conventionally scalar, is used to illustrate the calculation scheme or the ideology of
mathematical methods that produce, in a real three-dimensional crystal, the same re-
sults as those obtained by employing sophisticated and cumbersome calculations.

In the scalar model the quadratic expressions for the potential energy (1.1.2),
(1.1.11) preserve their form; however, we see here no coordinate indices, and the
dynamical matrix of an unbounded crystal is reduced to a scalar function of the vector
argument α(n):

U = U0 +
1
2 ∑ α(n − n′)u(n)u(n′). (2.1.14)

We include in the properties of a scalar model the energy invariance (1.1.14) with
respect to the displacement of a crystal as a whole assuming the function α(n) to be
satisfied by the condition (1.1.10), i. e.,

∑ α(n) = 0. (2.1.15)
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Replacing (2.1.11) by (2.1.14) in the analysis of crystal lattice vibrations will in
some cases allow us to avoid cumbersome calculations.

2.2
The Dispersion Law of Stationary Vibrations

The stationary crystal vibrations for which the displacement of all atoms are time
dependent only by the factor e−iωt are of special interest. For such vibrations we
obtain instead of (2.1.12)

mω2u(n) = ∑
n′

A(n − n′)u(n′). (2.2.1)

If we introduce the notation ε = ω2 we can rewrite (1.2.1) in a canonical form:

1
m ∑

n′
A(n − n′)u(n′) − εu(n) = 0. (2.2.2)

Equation (2.2.2) together with certain boundary conditions for the function u is the
eigenvalue problem for the linear Hermitian operator (1/m)A.

Let the solution to (2.2.1), (2.2.2) has the form

u(n) = ueikr(n). (2.2.3)

The vector k is analogous to a wave vector of crystal vibrations and is regarded as
a quasi-wave vector. It is now a free parameter that determines the solution. Substi-
tuting (2.2.3) into (2.2.1), we obtain for the displacement a system of linear equations

mω2u = ∑
n′

A(n − n′)ueik[r(n′)−r(n)].

From the definition (1.1.1) it follows that

r(n′) − r(n) =
3

∑
α=1

(nα − n′
α)aα = r(n − n′),

hence
mω2u − A(k)u = 0, (2.2.4)

where the matrix A(k) is given by

A(k) = ∑
n

A(n)e−ikr(n). (2.2.5)

Here, and in what follows, we denote with the same capital letter the matrix in
various “representations” and distinguish the form of representation by the argument
only. Since throughout the book the vectors n or r refer to the real space of sites
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or the coordinates in a crystal and the vectors k to reciprocal space, this generally
accepted system of notations will be quite clear. Thus, in the given case, A(n) is
the force dynamical matrix in the site representation, A(k) is the same matrix in k-
representation.

The condition for the system (2.2.4) to be compatible has the form

Det ‖mωI − A(k)‖ = 0, (2.2.6)

where I is the unit matrix; I ≡ δik, i, j = 1, 2, 3.
Express now (2.2.6) as

D(ω2) = 0, (2.2.7)

introducing the new notation

D(ε) = Det
∥∥∥∥εI − 1

m
A(k)

∥∥∥∥ . (2.2.8)

In mechanics, the relation (2.2.6) or (2.2.8) is called the characteristic equation for
eigenfrequencies and its solution relates the frequency of possible crystal vibrations
to a quasi-wave vector k. The wave-vector dependence of frequency is called the
dispersion law or dispersion relation and the equation is referred to as a dispersion
equation. Thus, solving the dispersion equation we obtain the dispersion law

ε = ω2(k)

for crystal lattice vibrations.
In a monatomic lattice each atom is an inversion center, therefore,

A(n) = A(−n),

and (2.2.5) is reduced to the following expression, where it is obvious that the matrix
A(k) is real:

A(k) = ∑ A(n) cos kr(n) = ∑ A(n) [cos kr(n) − 1] . (2.2.9)

The last part of (2.2.9) follows from the force matrix property (2.1.10).
Thus, the plane-wave vibration (2.2.3) can be traveling in a crystal if its frequency

ω is connected with the quasi-wave vector k by the dispersion law (2.2.6) or (2.2.7).
In a scalar model instead of the system of (2.2.4) there is only one equation of

vibrations, and the dispersion law can be written explicitly

ω2(k) =
1
m ∑ α(n)e−ikr(n) =

1
m ∑ α(n) [cos kr(n) − 1] . (2.2.10)

From (2.2.6) or (2.2.10) we note that the dispersion law determines the frequency
as a periodic function of the quasi-wave vector with a period of a reciprocal lattice

ω(k) = ω(k + G).
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This proves to be the basic distinction between the dispersion law of crystal vi-
brations and that of continuous medium vibrations, since the monotonic wave-vector
dependence of the frequency is typical for the latter. The difference between the quasi-
wave vector k and the ordinary wave vector is also observed here. Only vector k values
lying inside one unit cell of a reciprocal lattice correspond to physically nonequivalent
states of a crystal.

Recall that free space is homogeneous, i. e., invariant with respect to a translation
along an arbitrary vector including an infinitely small one. A set of all similar dis-
placements forms a continuous group of translations. The operator of a translation
onto an infinitely small vector is the momentum operator (the momentum operator is
said to be the generator of a continuous group of translations).

The invariance of mechanical equations with respect to a continuous group of trans-
lations generates the momentum vector p as the main characteristic of a free particle
state or the wave vector k as the main characteristic of the wave process in a vacuum.
The vectors p and k in free space are not restricted in value by any conditions and are
related by

p = h̄k. (2.2.11)

A crystal lattice, unlike a vacuum, has no homogeneity, but is spatially periodic. We
see that the quasi-wave vector is the result of translational symmetry of the periodic
structure to the same extent as the wave vector is the result of free-space homogeneity.
Thus, in an unbounded crystal the wave processes can be described using the concept
of a quasi-wave vector k, and the motion of particles using the concept of quasi-
momentum related to the vector k via (2.2.11). The wave function corresponding to
a quasi-momentum (or quasi-wave vector) represents a plane wave modulated with a
lattice period.

When the minimum space dimension (lattice period) tends to zero, the Brillouin
zone dimensions become unbounded and we go over to a homogeneous space and
return to the concept of momentum and its eigenfunctions in the form of plane waves.

Returning to the dispersion law as a solution of the dispersion equation (2.2.6), we
take into account that it is a cubic algebraic equation with respect to ω2:

Det
∥∥∥mω2δij − Aij(k)

∥∥∥ = 0, i, j = 1, 2, 3. (2.2.12)

The roots of this equation determine the three branches for monatomic crystal lattice
vibrations specified by the dispersion law: ε = ω2

α(k), α = 1, 2, 3, where α is the
number of a branch of vibrations.

But the characteristic equation (2.2.12) only determines the squared frequency ω2.
Thus, the α-branch dispersion law actualizes each value of the vector k with two
frequencies: ω = ±ωα(k). Hence the spectrum of squared frequencies of a vibrating
crystal seems to be doubly degenerate. However, as follows from (1.2.9), (1.2.12)
the dispersion law is invariant relative to the change in sign of the quasi-wave vector:
ω2(k) = ω2(−k). Therefore, the wave with a quasi-wave vector k and frequency
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ω = − |ωα(k)| describes the same crystal vibrational state as the wave with vector
−k and frequency ω = − |ωα(−k)|. Consequently, in order to describe independent
crystal states it suffices to consider the frequency of one sign that corresponds to all
possible k vectors inside a single unit cell of the reciprocal lattice. This allows us in
what follows to discuss vibrations with positive frequencies only.

2.3
Normal Modes of Vibrations

We have seen that crystal eigenvibrations can be represented in the form of plane
waves (2.2.3) whose frequencies are connected with a quasi-wave k by the dispersion
law ω = ωα(k), α = 1, 2, 3. To distinguish between the displacements of different
branches of the vibrations we explicitly write (2.2.3)

u(n, t) = e(k, α)ei[kr(n)−ωt]. (2.3.1)

Since the equations of motion (2.1.12) or (2.2.1) are homogeneous, their solutions
are found up to a constant factor. With this in mind we determine e(k, α), as the
unit vector called the polarization vector. The dependence of the vector e on k and
α follows from equation like (2.2.4), which makes it possible to choose the vectors
e real2 and possessing the property e(k, α) = e(−k, α). Various branches of vibra-
tions correspond to different solutions of some eigenvalue problem, which is why the
linear dependence of the eigenfunctions (2.3.1) requires the polarization vectors of
vibrations of different branches to be orthogonal:

e(k, α)e(k, α′) = δα,α′ . (2.3.2)

If the vector k is directed along a highly symmetrical direction (e. g., along a four-
fold symmetry axis) there is one longitudinal vibration whose vector e is a simple
classification of the possible types of wave polarization breaks down, only three po-
larization vectors remain mutually orthogonal (2.3.2). For some highly symmetrical
directions in a crystal the vibration of the same branch corresponding to a certain value
of the index α can be either transverse or longitudinal, depending on the direction of
the vector k.

We choose the time dependence as e−iωt and consider the normalized solutions to
(2.2.1) or (2.2.2) in the form

φkα(n) =
1√
N

e(k, α)eikr(n). (2.3.3)

According to the properties of a quasi-wave vector we assume the vector k to be in
one unit cell of a reciprocal lattice (or in the first Brillouin zone). Under this condition

2) The polarization vector can be chosen as real only in a monatomic lattice.
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the eigenfunctions (1.3.3) possess the natural orthogonality properties

∑ φ∗
kα(n)φk′α′(n) = δkk′δα,α′ , (2.3.4)

where the asterisk denotes complex conjugation; δkk′ is the three-dimensional Kro-
necker symbol.

Thus, the crystal eigenvibrations (2.3.3) are numbered by (k, α). The eigenfunc-
tions (2.3.3) are often called the normal modes of the vibrations.

There is no concept of polarization in a scalar model and the coordinate dependence
of normal vibrations is written in the form

φk(n) =
1√
N

eikr(n), (2.3.5)

which provides the normalization condition

∑ φ∗
k(n)φk′ (n) = δkk′ . (2.3.6)

2.4
Analysis of the Dispersion Law

To analyze the dispersion law we write (2.2.10) for a scalar model. Consider the
vibrations with small k, i. e., those for which ak � 1. We expand the cosine on the
r.h.s. of (2.2.11) in powers of its argument and use the fact that the function α(n)
decreases rapidly with increasing n. Then, in the main approximation

ω2(k) = − 1
2m

3

∑
α,β=1

(kaα)(kaβ) ∑
n

α(n)nαnβ. (2.4.1)

We denote k = kκ, by introducing the unit vector in reciprocal space κ and repre-
sent (2.4.1) as ω2 = s2(κ)k2, where

s2(κ) = − 1
2m

3

∑
α,β=1

(κaα)(κaβ) ∑
n

α(n)nαnβ. (2.4.2)

Thus, for small k we get the linear dispersion law of sound vibrations that is typical
for an anisotropic continuum

ω = s(κ)k, (2.4.3)

here s is the phase velocity of an acoustic wave. This result seems to be quite natural,
so long as small k correspond to large wavelengths λ, and the condition ak � 1
determines the requirement λ � a determining the possibility of passing over from
crystal-lattice mechanics to that of a continuum.

According to (2.2.11), for arbitrary k values, in particular for ak ∼ 1, the character
of the dispersion law is determined mainly by the specific form of the matrix α(n). In
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the general case one can assert that for the coefficients α(n) decreasing fast enough
with increasing number n the function ω(k) is continuous, differentiable, and always
bounded.

Thus, the following is typical of the dispersion law: the possible frequencies of
crystal vibrations fill the band of a finite width (0, ωm) beyond which there are no
vibrational frequencies. It is easy to evaluate the order of the maximum frequency
value ωm, which is of the order of magnitude ω ∼ s/a ∼ 1013 s−1 (the typical sound
velocity in a crystal s ∼ 105 cm/s).

There exists a very simple model of the spectrum of crystal vibrations that takes into
account the availability of a maximum frequency and permits one easily to perform a
lot of calculations explicit using the dispersion law. This is the so-called Debye model
based on the assumption that the dispersion law is linear for all k, but is restricted in
frequencies: ω = sk, ω < ωD. The frequency ωD ∼ ωm ∼ 1013 s−1 is called the
Debye frequency.

In the real situation near the upper edge of the band of possible frequencies, i. e.,
when ωm − ω � ωm the frequency and quasi-wave vector are described by the
following quadratic dependence

ω = ωm − 1
2

γij(ki − km
i )(kj − km

j ), (2.4.4)

or by
ω2 = ω2

m − ωmγij(ki − km
i )(kj − km

j ). (2.4.5)

Here the vector km is determined by the condition ω(km) = ωm and the matrix of
constant coefficients γik is defined positively. The terms linear in k − km do not enter
in (2.4.4) as the frequency ωm is maximum by definition.

A dispersion law of the type (2.4.4) or (2.4.5) is known as a quadratic dispersion
law.

Bearing in mind the results of the dispersion law of a scalar model, we go over to
considering the general case when the frequency dependence on a quasi-wave vector
is obtained by solving (2.2.12).

We first note that from (2.2.9) there follows the property of the dynamical matrix in
k-representation: A(k) = A(−k).

Thus, the solution to (2.2.12) has the same property, namely, the dispersion law is
described by the function invariant relative to an inversion in reciprocal space

ω(k) = ω(−k). (2.4.6)

For a scalar model this property follows directly from (2.2.10).
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In the limiting case of long waves (ak � 1) for the matrix A(k) there holds an
expansion of the type (2.4.1) that follows directly from (2.2.9):

A(k) = −1
2

3

∑
α,β=1

(kaα)(kaβ) ∑
n

A(n)nαnβ

= − k2

2

3

∑
α,β=1

(κaα)(κaβ) ∑
n

A(n)nαnβ.
(2.4.7)

All elements of the matrix A(k) are thus proportional to the square of the wave
vector k2. Therefore, the squares of frequencies, being the solution to (2.2.12), are
also proportional to k2

ω2 = s2
α(κ)k2, α = 1, 2, 3, (2.4.8)

and in the long-wave limit we get three sound dispersion laws

ω = sα(κ)k, α = 1, 2, 3. (2.4.9)

Three branches of vibrations for which (2.4.9) generalize the relation (2.4.3) corre-
spond to the three different sound velocities sα(κ).

Consequently, at the point k = 0 there is a degeneration, i. e., several branches
of vibrations coincide. Due to unambiguity of ω2 as the wave-vector function at the
point k = 0, its expansion as a power series in ki is impossible. The relation (2.4.8)
cannot generally be considered as an expansion of the function ω2 in powers of the
wave-vector components. This is just the point in which the long-wave dispersion
law of a three-dimensional crystal differs from the dispersion law (1.4.1) for a scalar
model.

Fig. 2.1 Dispersion diagram with a point of degeneracy (kB, ω0) on the
Brillouin zone boundary.

The form of the dispersion law at ak ∼ 1 reflects the specific properties of a real
crystal. Thus, we can make some general remarks concerning the dispersion law on
Brillouin zone boundaries.
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The normal component of the gradient in the k-space, ∇kω, vanishes on the Bril-
louin zone boundary, if at the corresponding point there is no degeneracy. This prop-
erty of the dispersion law has a simple physical meaning. The gradient determines the
group velocity of the wave (2.3.1):

v =
∂ω

∂k
= ∇kω. (2.4.10)

When the vector k ends on the Brillouin zone boundary the group-velocity compo-
nent normal to it vanishes and the vibrational motion (2.3.1) acquires the character of
a stationary wave with respect to this direction.

If at the point considered the degeneration occurs on the zone boundary, the dis-
persion law plots may approach the Brillouin zone boundary at an arbitrary angle
(Fig. 2.1), the points k = ±kB give the zone boundary positions. The degeneracy
point on the zone boundary corresponds to the frequency ω = ω0.

Finally, near the upper edge of frequencies for each branch of vibrations one can
expect a quadratic dispersion law of the type (2.4.4) or (2.4.5).

2.5
Spectrum of Quasi-Wave Vector Values

Some vibrations (2.2.3), being independent states of motion of the whole crystal lat-
tice, are characterized by different quasi-wave k values.

It is known that for physically nonequivalent crystal vibrations it suffices to consider
the k values lying inside one unit cell of the reciprocal lattice. However, not all points
inside the unit cell in k-space may correspond to independent crystal states. This
follows from the fact that a set of points inside a unit cell composes a continuum but
the set of independent vibrations coinciding with the set of degrees of freedom of the
crystal lattice turns out to be countable even in the case of an infinite crystal.

For a crystal of finite dimensions the above-mentioned fact is obvious. Therefore,
the general qualitative study of crystal vibrations should not be regarded as complete
until the spectrum of possible k values has been determined.

When the form of the equations of motion is given, i. e., with the given force matrix
A(k) in (2.2.2), certain boundary conditions should be formulated to define the spec-
trum of eigenvalues. However, it seems that a specific form of reasonable boundary
conditions has little influence on the spectrum of k values in a crystal consisting of
a great number of atoms. Proceeding from this assumption we choose the boundary
condition so that it simplifies the solution of the problem as much as possible. Such a
condition is the cyclicity requirement according to which

u(rn) = u(rn + N1a1) = u(rn + N2a2) = u(rn + N3a3). (2.5.1)

In formulating (2.5.1) it is assumed that a crystal has a form of a parallelepiped with
edges Nαaα, α = 1, 2, 3, i. e., it contains N = N1N2N3 atoms.
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The cyclicity conditions (2.5.1) are called the Born–Karman conditions. In a one-
dimensional case the Born–Karman conditions admit a very simple interpretation. We
can close up a linear periodic chain of N1 points into a ring, after which the N1 + n
atom actually coincides with the n-th atom. But in a three-dimensional case a similar
attempt to interpret the conditions (2.5.1) does not produce a clear representation.

In studying the bulk dynamical properties of the crystal, we will always proceed
from the boundary conditions (2.5.1).

Imposing the requirement (2.5.1) on (2.2.3), we obtain

kaα =
2π

Nα
pα, α = 1, 2, 3, (2.5.2)

where pα are integers. To consider the k values lying in one unit cell of the reciprocal
lattice, we assume pα to belong to a set pα = 0, 1, 2, . . . , Nα. In a cubic lattice the
formula (1.5.2) will be simplified if we put Lα = Nαa and direct the coordinate axes
along the four-fold symmetry axes:

kx =
2π

L1
p1, ky =

2π

L2
p2, kz =

2π

L3
p3. (2.5.3)

Finally, the set pα is generally taken to be symmetrical with respect to the number-
ing axis

pα = 0,±1,±2, . . . ,±Nα + 1
2

, α = 1, 2, 3.

It follows from (2.5.2) or (2.5.3) that the discrete values of the k vector compo-
nents are divided by the intervals ∆k ∼ 1/L that decrease with increasing the linear
crystal dimensions. Therefore, when all linear crystal dimensions are macroscopic
the spectrum of k values can be regarded as quasi-continuous. The last property of
the k spectrum was used to analyze the dispersion law considering the frequency as a
continuous function of quasi-wave vector.

Proceeding further from the quasi-continuity of the spectrum of k values we change
the summation over the discrete values of a quasi-wave vector for the integration.
Taking (2.5.2), (2.5.3) into account it is easy to obtain the rule governing this transition
to the integration

∑
k

f (k) =
V

(2π)3

∫
f (k) d3k, (2.5.4)

where the integration is carried out over the volume of a single unit cell in k-space (or
the Brillouin zone).

We note that if we put f (k) ≡ 1 in (1.5.4), we obtain the simple relation

∑
k

=
V

(2π)3

∫
d3k =

V
V0

= N,

implying that the number of independent k vector values in one unit cell equals the
number of unit cells (the number of atoms in a monatomic lattice).
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2.6
Normal Coordinates of Crystal Vibrations

We have seen that the crystal eigenvibrations can be represented in the form of plane
monochromatic waves (2.3.1) where the frequency ω is related to the quasi-wave vec-
tor k by the dispersion law ω = ω(k).

It is clear that the harmonic waves (2.3.1) do not describe the most general motion
of atoms in a crystal. But the general solution of the equations of motion (2.1.12) can
certainly be expressed through a sum of all possible waves such as (2.3.1). In particu-
lar, an arbitrary coordinate dependence of the displacement of a vibrating crystal can
be realized by an appropriate set of normal modes (2.3.3).

We shall now expand the crystal vibrations into normal modes for a scalar model,
disregarding the polarization vectors and the presence of several branches of the dis-
persion law. The generalization to a real scheme of three-dimensional lattice vibra-
tions involves no difficulties. It will be carried out after performing all the necessary
calculations.

Thus, we represent an arbitrary motion of atoms of the crystal lattice as a superpo-
sition of normal vibrations (2.3.5):

u(n, t) = ∑
k

Qk(n)ψk(n) =
1√
m

φk(n). (2.6.1)

The quantities Qk(t) ≡ Q(k) are called complex normal coordinates of lattice
vibrations3. Since the atom displacements (2.6.1) are described by a real function the
normal coordinates should have an obvious property

Q∗
k(t) = Q−k(t). (2.6.2)

Therefore, (2.6.1) is equivalent to

u(n) =
1

2
√

mN
∑
k

[
Qkeikr(n) + Q∗

ke−ikr(n)
]

, (2.6.3)

showing that the displacements u(n) are real.
Now express the mechanical energy of a vibration crystal through normal coordi-

nates. For the kinetic energy K we have

K =
m
2 ∑

n

[
du(n)

dt

]2

= ∑
k,k′

Q̇kQ̇k′ ∑
n

φk(n)φk′ (n)

=
1
2 ∑

k
Q̇kQ̇−k =

1
2 ∑

k

∣∣Q̇(k)
∣∣2 .

(2.6.4)

3) The factor
√

m in the definition of normal coordinates reflects the specific
feature of (2.2.1) and is introduced to describe the dynamics of a polyatomic
crystal lattice (Section 3.2) in a convenient way.
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Performing transformations in (2.6.4) we used the definition (2.3.4) as well as the
properties (2.3.6) and (2.6.2).

Let us transform the potential energy of small crystal vibrations, depending on
squared displacement, as follows in terms of normal coordinates

U =
1
2 ∑

n,n′
α(n − n′)u(n)u(n′)

=
1

2m ∑
k,k′

Q(k)Q(k′) ∑
n,n′

α(n − n′)φk(n)φk′ (n)

=
1

2m ∑
k,k′

Q(k)Q(−k) ∑
n

α(n)e−ikr(n) =
1
2 ∑

k
ω2(k) |Qk|2 .

The last in the chain of transformations was performed by making use of (2.2.10)
that determines the dispersion law.

Thus, the energy and, hence, the Lagrangian function of crystal vibrations are re-
duced to a sum of terms that refer to separate normal coordinates. In particular, the
Lagrangian function has the form

L = K − U =
1
2 ∑

k

[
Q̇∗

kQ̇k − ω2(k)Q∗
kQk

]
. (2.6.5)

The equation of motion for every normal coordinate follows from (2.6.5):

d2Q(k)
dt2 + ω2(k)Q(k) = 0. (2.6.6)

We introduce the generalized momentum conjugate to Qk

Pk =
∂L

∂Q̇(k)
= Q̇∗(k),

and obtain the Hamiltonian function for crystal vibrations:

H =
1
2 ∑

k

[
|P(k)|2 + ω2(k) |Q(k)|2

]
. (2.6.7)

Changing to a final formula of the type of (2.6.7) is trivial in general: it suffices to
take into account that the normal modes (2.3.3) refer to certain branches of vibrations
and, therefore, the coordinates Q and moments P

Q = Qα(k), P = Pα(k).

Then,

H =
1
2 ∑

k,α

[
|Pα(k)|2 + ω2

α(k) |Qα(k)|2
]

. (2.6.8)

Thus, the independent oscillations are numbered by a pair of indices (k, α) and
their number equals that of the vibrational degrees of freedom of a monatomic lattice,
i. e., 3N (three branches of vibrations and N physically inequivalent k values for each
branch).
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2.7
The Crystal as a Violation of Space Symmetry

The motion of a crystal lattice in which each atom vibrates around its equilibrium
position can be expanded in terms of motions of independent oscillators, i. e., normal
vibrations. The crystal energy (or its Hamiltonian function) is separated into the terms
corresponding to individual normal modes.

Separation of independent motions that may be superpositioned to compose any
complex motion of a system of many particles (atoms) is known as the procedure of
introducing the collective excitations and relevant collective coordinates (or variables).
For small crystal vibrations, i. e., mechanically weakly excited states of a crystal body,
the collective excitations are represented by normal modes and collective coordinates
by normal coordinates.

The dispersion law of collective vibrations of a monatomic lattice has the universal
property: the frequencies of all three branches of vibrations vanish at k → 0. The
extremely long-wave vibrations (k = 0, λ = ∞) are equivalent to the displacement of
a lattice as a whole and this property is a direct result of the crystal-energy invariance
with respect to its translational motion as a whole. In proving the relation (2.1.6) we
proceeded from the fact that due to space homogeneity the internal state of a body is
independent of the position of its center of masses.

However, this property (i. e., the condition ω(k) → 0 as k → 0) of the frequency
spectrum of crystal eigenvibrations can be explained in another way. Since the space
where a crystal exists is homogeneous, the movement from one point of free space to
another by an arbitrary vector, including an infinitely small one, is equal to the trans-
formation into an equivalent state. For this reason the energy of a system of interacting
atoms does not change for arbitrary translations of the whole system. The symmetry
connected with the Lagrangian function (or Hamiltonian function) invariance relative
to transformations of a continuous group of translations is inherent to any system of
particles.

However, in the crystal ground state the atoms form a space lattice whose symmetry
is lower than the initial one: the physical characteristics of an equilibrium crystal
are invariant under a discrete group of translations, since they are described by some
periodic functions reflecting the lattice periodicity.

When the symmetry of the ground state of a system is lower than that of the corre-
sponding Lagrangian function, the initial symmetry is broken spontaneously.

If the properties of the ground state of a system with a large number of degrees of
freedom break its symmetry with respect to transformations of a certain continuous
group then the collective excitations whose frequencies tend to zero at k → 0 arise in
the system (Goldstone, 1961). These excitations seem to strive to re-establish the bro-
ken symmetry of the system. The number of branches of such Goldstone excitations
is determined by the number of broken independent elements of a continuous symme-
try group of the Lagrangian function of the system (by the number of “disappeared”
generators of the initial symmetry group).
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The ground state in a crystal breaks the symmetry relative to continuous transla-
tions in three independent directions, which is “generated” by three components of
the momentum. The role of the three branches of the collective excitations gener-
ated by a spontaneous symmetry breaking is played by the three branches of har-
monic crystal vibrations. Thus, the crystal eigenvibrations are Goldstone excitations
and, for this reason, their dispersion laws should possess the properties discussed
(ω(k) → 0 as k → 0).

2.8
Long-Wave Approximation and Macroscopic Equations for the Displacements
Field

We know that the dispersion law for long-wave vibrations (ak � 1) coincides with the
dispersion law of sound vibrations in a continuous medium. Now we show how the
equations of motion of a crystal are simplified for long-wave vibrations, i. e., in what
manner the limiting transition from the equations of crystal lattice mechanics to those
of a continuous solid is made. It is clear that as one of the results of such a limiting
transition we should obtain the known equations of elasticity theory.

Generally, the equation of motion of a homogeneous three-dimensional crystal lat-
tice may be written as

m
d2ui(n)

dt2 = −∑
n′

αik(n − n′)uk(n′), (2.8.1)

and the matrix A(n) obeys the requirement

A(n) = A(−n), ∑ A(n) = 0.

Consider those solutions to (2.8.1) that describe displacement fields weakly varying
in space. Let λ be the characteristic wavelength of the relevant displacement with
λ � a. The difference in atom displacements in neighboring unit cells δun is then
very small compared to the displacement δu(n) � u. Since the natural discrete
step in the lattice is small due to the condition a � λ, to analyze the displacements
weakly varying in space we use some simplifications. First, we assume that the atom
coordinate r = x(n) takes a continuous series of values and then the displacement
u(n) is a continuous function of r. We next denote the new function by the same letter
and write (2.8.1) as

m
d2ui(r)

dt2 = −∑
n′

αik(n − n′)uk(r′), (2.8.2)

where r = x(n); r′ = x(n′).
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Expanding the function u(r′) as a series near the point r(x1, x2, x3) retaining only
the second-order terms in |xk(n) − xk(n′)|:

uk(r′) = uk(r) + (x′
l − xl)∇lu

k(r) +
1
2
(x′

l − xl)(x′
m − xm)∇l∇muk(r). (2.8.3)

Here we introduced the notation ∇iφ ≡ ∂φ/∂xi; it will often be used later.
We now make use of the fast decay of coefficients α(n) with increasing n and

substitute the expansion (2.8.3) into (1.8.2), taking no account of the terms with higher
space derivatives of the displacements:

m
∂2ui

∂t2 = cikuk + cikl∇lu
k + ciklm∇l∇muk. (2.8.4)

The constant coefficients on the r.h.s. of (1.8.4) are defined by the force matrix
elements as:

cik = cki = − ∑
n

αik(n) = 0;

cikl = ∑
n′

αik(n − n′)[xl(n) − xl(n′)] = −∑
n

αik(n)xl(n) = 0;

ciklm = −1
2 ∑

n′
αik(n − n′)[xl(n) − xl(n′)][xm(n) − xm(n′)]

= −1
2 ∑

n
αik(n)xl(n)xm(n).

(2.8.5)

Thus, to describe the long-wave (slowly varying in space) crystal displacements we
have the following system of second-order differential equations in partial derivatives

m
∂2ui

∂t2 = ciklm∇l∇muk. (2.8.6)

Equation (2.8.6) coincides in its notation with the dynamical equation of elasticity
theory

ρ
∂2ui

∂t2 = λiklm∇k∇lu
m, (2.8.7)

where ρ = m/V0 is the mean mass density in a crystal (V0 is the unit cell volume).
The coefficients on the r.h.s. of (2.8.7) that give the crystal elastic moduli tensor

have, however, known symmetry with respect to a permutation of the first and second
pairs of indices.

Comparing (2.8.6), (2.8.7) we see that for these equations to be the same, the fol-
lowing equality should hold:

1
2

(λiklm + λilkm) =
1

V0
cimkl. (2.8.8)
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The relation (2.8.8) will not be inconsistent only in the presence of the symmetry

ciklm = clmik. (2.8.9)

The property (2.8.9) does not follow immediately from the definition (2.8.5) and
imposes additional constraints on the force matrix elements of a crystal. We make use
of (2.8.5) and write these constraints as

∑ αik(n)xl(n)xm(n) = ∑ αlm(n)xi(n)xk(n). (2.8.10)

It is clear that the conditions (2.8.10) are actually the result of the invariance of
crystal energy relative to a hard rotation of the type (2.1.7).

By imposing the constraints (2.8.10) on the matrix of atomic force constants we
provide for the symmetry (2.8.9). This allows us to establish a relation between the
tensors λiklm and ciklm, by solving the relation (2.8.8) for the elastic modulus tensor:

λiklm =
1

V0

(
cimkl + ckmil − clmki

)
. (2.8.11)

The equality (2.8.11) determines the crystal moduli through the atom force con-
stants, i. e., gives an exact relationship between macroscopic mechanical monocrystal
characteristics and microscopic crystal lattice properties.

2.9
The Theory of Elasticity

The transformation from crystal lattice equations (2.8.1) to those of elasticity theory
(2.8.7) is accomplished by changing the model of the substance construction. We
go over from a discrete structure to a continuum, i. e., the lattice is replaced by a
continuous medium. This radical change from a microscopic description of a crystal
to a macroscopic one entails new concepts, terms and relations.

For a macroscopic (or continuum) description of crystal deformation, the concept of
a displacement vector u as a function of coordinates r(x, y, z) and time t: u = u(r, t)
is normally used. Using space derivatives of the displacement vector, the strain tensor
(i, k = 1, 2, 3) is written as

εik =
1
2

(
∂ui

∂xk
+

∂uk

∂xi
+

∂ul

∂xi

∂ul

∂xk

)
. (2.9.1)

The latter is the main geometrical characteristic of the deformed state of a medium.
The tensor εik defined by (2.9.1) is sometimes called the finite strain tensor, and the

part that is linear in displacements,

εik =
1
2

(
∂ui

∂xk
+

∂uk

∂xi

)
≡ 1

2
(∇iuk + ∇kui) , (2.9.2)
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is the small strain tensor. The linear elasticity theory that we will be concerned with
is based on the definition of the strain tensor (2.9.2).

Six different elements of the strain tensor (2.9.2) cannot be absolutely independent
since all of them are generated by differentiating three components of displacement
vectors. Indeed the strain tensor components εik are related by differential relations
known as the Saint Venant compatibility conditions:

eilmekpn∇l∇pεmn = 0. (2.9.3)

All the components of the tensor of homogeneous deformations (independent of the
coordinates) can, however, be arbitrary.

In addition to the strain tensor (2.9.2), often the distortion tensor uik = ∇iuk whose
symmetrical part determines the tensor εik introduced. The antisymmetric part of the
distortion tensor gives the vector ω of the local crystal lattice rotation due to deforma-
tion:

ω =
1
2

curl u. (2.9.4)

The sum of diagonal elements of the tensor εik, i. e., the value of ekk equals the
relative increase in the volume element under deformation. Consequently, the total
change in the volume as a result of deformation ∆V can be written as

∆V =
∫

εkk dV. (2.9.5)

The time derivative of the vector u determines the velocity of displacements v =
∂u/∂t. If a crystal is deformed but retains its continuity (no breaks, cracks, cavities,
etc.) the displacement velocity satisfies the continuity equation

∂ρ

∂t
+ div ρv = 0, (2.9.6)

where ρ is the crystal density (the mass of a unit volume).
The forces of internal stresses arising under crystal deformation are characterized

by the symmetric stress tensor σik; the force that acts on unit area is

Fi = σikn0
k ,

where n0 is the unit vector normal to the area. If the area concerned is chosen on an
external body surface then F equals the force created by external loads.

In the case of hydrostatic crystal compression under the pressure p the tensor σik
reads

σik = −pδik. (2.9.7)

On the basis of (2.9.7)

p0 = −1
3

σkk (2.9.8)
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is called the mean hydrostatic pressure when the stress tensor does not coincide with
(2.9.7) and describes a more complex crystal state. When the tensor σik is different
from (2.9.7) displacement stresses are present, which are usually characterized by the
deviator tensor:

σ′
ik = σik −

1
3

δkiσll = σik + δik p0. (2.9.9)

If the crystal deformation is purely elastic, the stresses are related linearly to strains
εik by the generalized Hooke’s law:

σik = λiklmεlm, (2.9.10)

where λiklm is the tensor of crystal elasticity moduli. For a cubic crystal, there are
three independent elastic moduli (or stiffness constants):

λ1 = λ1111 = λ2222 = λ3333, λ2 = λ1122 = λ1133 = λ2233;

G = λ1212 = λ1313 = λ2323. (2.9.11)

In an isotropic approximation these three moduli are related through λ1 − λ2 − 2G =
0. Therefore, the tensor λiklm for an isotropic medium reduces to two independent
moduli that can be represented, for example, by the Lamé coefficients λ = λ2 and G:

λiklm = λδikδlm + G(δilδkm + δimδkl). (2.9.12)

The coefficient G in (2.9.11), (2.9.12) often denoted by µ is called the shear mod-
ulus and relates the nondiagonal (“oblique”) elements of the σik and εik tensors in an
isotropic medium and in a cubic crystal

σik = 2Gεik, i �= k. (2.9.13)

Note that there is an obvious relation between the mean hydrostatic pressure p0 and
the relative compression of an isotropic medium or a cubic crystal. From (2.9.10)–
(2.9.12), we have

σll = 3Kεll, (2.9.14)

where K is the modulus of hydrostatic compression that, in a cubic crystal, is found
from

3K = λ1 + 2λ2, (2.9.15)

and, in an isotropic medium, from

K = λ +
2
3

G. (2.9.16)

To determine the deformed and stressed crystal states in the presence of bulk forces,
it is necessary to solve the following equation for an elastic medium

ρ
∂2ui

∂t2 = ∇kσki + fi, (2.9.17)
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where the vector f describes the density of bulk forces acting on a crystal (the mean
force applied to a crystal unit volume), and the tensor σik is related to the strains
through Hooke’s law (2.9.10).

The dynamics of a free elastic field ( f = 0) is described by

ρ
∂2ui

∂t2 − λiklm∇k∇lum = 0. (2.9.18)

Equation (2.9.18) corresponds to the Lagrangian function

L =
∫ {

1
2

ρ

(
∂u
∂t

)2

− 1
2

∂uk

∂xi

∂um

∂xl

}
dV. (2.9.19)

Equation (2.9.18) and the corresponding Lagrangian function, even in an isotropic
case, are rather complicated. One of the difficulties in solving (2.9.18) for the three
components of the displacement vector u is the following. Equation (2.9.18) is similar
to a wave equation. In transforming to normal vibrations we can reduce it to three
wave equations. But the latter describe the waves propagating with different velocities.
Even in an isotropic approximation the elastic field has two different characteristic
wave velocities (the velocities of longitudinal and transverse waves). This very much
complicates the solution of dynamic problems.

To simplify the equations reflecting the main physical properties of an elastic
medium, we formulate the analog of the scalar model for an elastic continuum, i. e.,
we introduce a scalar elastic field. We take as a generalized field coordinate the scalar
value u(r, t) and assume the Lagrangian function of this field to be

L =
∫ (

1
2

ρ

(
∂u
∂t

)2

− 1
2

G
(

∂u
∂xi

)2
)

dV. (2.9.20)

The equation for the field motion stemming from (2.9.20) is

ρ
∂2u
∂t2 − G∆u = 0, (2.9.21)

where ∆ is the Laplace operator (∆ = ∇2
k). This is an ordinary equation of the waves

propagation with the acoustic dispersion law:

ω2 = s2k2, s = G/ρ. (2.9.22)

The main disadvantage of (2.9.21) as a model equation for crystal dynamics is its
scalar character, which does not allow one to describe transverse elastic vibrations.

2.10
Vibrations of a Strongly Anisotropic Crystal (Scalar Model)

We write the dispersion law for monatomic lattice vibrations with interatomic nearest-
neighbor interactions in an explicit form, using a scalar model that enables us to find
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the dependence of vibration frequencies on the quasi-wave vector through the simplest
elementary functions. It turns out that for crystal directions where it is possible to dis-
tinguish longitudinal and transverse vibrations a scalar model describes the crystal
longitudinal vibrations well. This can be explained as follows. There is no polariza-
tion of displacements in a scalar model and the only vector characteristic of a normal
vibration is vector k. Therefore, the atomic displacements described by such a model
can be associated only with the quasi-wave vector direction.

Going over to the formulation of a concrete problem, we simplify a model to de-
scribe in detail some interesting physical properties of a vibrating crystal, in particular,
the vibrations of strongly anisotropic crystal lattices.

As an example of such an anisotropic model we consider a tetragonal lattice with
different interactions of the nearest atoms in the basal plane (xOy) and along the four-
fold axis (z). Choosing naturally the translation vectors, we denote |a1| = |a2| =
a, |a3| = b. The neighboring atom interaction in the basal plane will be described by
the force matrix element α1 and the interaction along the axis z by the element α2. On
the basis of the relation (2.1.10), we have

α0 + 4α1 + 2α2 = 0. (2.10.1)

Since α0 = α(0) > 0, it follows from (2.10.1) that 2α1 + α2 < 0. We assume that
α1 < 0 and α2 < 0.

The dispersion law (2.2.10) for the lattice concerned is written as

ω2(k) = ω2
1

(
sin2 akx

2
+ sin2 aky

2

)
+ ω2

2 sin2 akz

2
, (2.10.2)

where ω2
1 = −4α1/m and ω2

2 = −4α2/m.
We assume the atomic interaction in the basal plane to be much stronger than that

along the four-fold axis:
ω1 � ω2. (2.10.3)

This assumption transforms a tetragonal lattice into a crystal lattice with a layered
structure, whose separate atom layers are interrelated weakly. The formula (2.10.2)
for such a crystal determines an extremely anisotropic dispersion relation, which is
well shown in the low-frequency part of the vibration spectrum.

Consider the frequencies ω � ω1 (e. g., ω ≤ ω2) for which the formula (2.10.2)
is much simplified

ω2 = s2
1k2

⊥ + ω2
2 sin2 akz

2
; k2

⊥ = k2
x + k2

y, s2
1 =

1
4

a2ω2
1, (2.10.4)

where s1 has a meaning of a sound velocity in the basal plane.
In view of the condition (2.10.3), we keep the second term in the r.h.s. of (2.10.4)

unchanged, in so far as the assumption ω � ω1 does not imply that bkz is small.
Thus, we take into account that at comparatively low frequencies the quasi-wave vec-
tor component along the z-axis may be large.
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Within the long-wave limit when bkz � 1, (2.10.4) gives the dispersion law of
sound vibrations in an anisotropic medium

ω2 = s2
1k2

⊥ + s2
2k2

z; s2
2 =

1
2

b2ω2
2, (2.10.5)

where s2 is the sound velocity along the z-axis.
If the lattice parameters a, b are little different (have the same order of magnitude),

the sound velocity in the basal plane of a “layered” crystal will be much larger than
that in a perpendicular direction (s2 � s1).

Equation (2.10.4) is also simplified in the case when the vibration frequencies have
the range

ω2 � ω � ω1. (2.10.6)

For such frequencies the second term in (2.10.4) should not be taken into account,
and the dispersion relation reduces to

ω = s1k⊥ ≡ s1

√
k2

x + k2
y, (2.10.7)

which coincides with the dispersion relation for sound vibrations in a two-dimensional
elastic medium. Hence, under the conditions (2.10.6) the frequency of vibrations of
a three-dimensional “layered” crystal is independent of the wave-vector component
along the direction perpendicular to its “layers”.

Along with a “layered” crystal, one can consider a crystal model with a “chain”
structure where one-dimensional chains of atoms weakly interact one with another. In
order to obtain this model it suffices to assume

ω1 � ω2. (2.10.8)

Then the results stated above are easily transformed by changing the numbers 1 and 2
and also the components ki and kz.

In particular, at frequencies ω ≤ ω1 the dispersion relation (2.10.2) reduces to

ω2 = ω1
(

sin2 akx

2
+ sin2 aky

2

)
+ s2

2k2
z.

In the long-wave limit (ak⊥ � 1) we come again to (2.10.5), and in the frequency
range ω1 � ω2 the dispersion law of vibrations of such a crystal coincides with the
dispersion law of elastic vibrations of a one-dimensional system

ω = s2kz,

i. e., the vibration frequency is independent of the wave-vector projection onto the
plane perpendicular to the direction of a strong interaction between atoms.
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2.11
“Bending” Waves in a Strongly Anisotropic Crystal

We consider a crystal with a simple hexagonal lattice in which the atoms interact in
different ways in the basal plane xOy and along the six-fold axis Oz. We assume
the crystal structure to be layered and the atom interaction in the plane xOy to be
much larger than the atom interaction in neighboring basal planes. In describing the
vibration of such “layered” crystal one can proceed from the model that takes exact
account of the strong interaction between all atoms lying in the basal plane, and the
weak interaction of neighboring atomic layers is taken into account in the nearest-
neighbor approximation along the six-fold axis.

A crystal with a chain structure may be considered simultaneously. A crystal with
such a structure consists of weakly interacting parallel linear chains. In the model
proposed, this corresponds to the fact that the atomic interaction along the six-fold
axis is much stronger that the interaction between neighboring chains (or the nearest
neighbors in the plane xOy).

An example of a chemical element that has three possible crystalline forms (ap-
proximately isotropic, layered and chain) is carbon. It exists in the form of diamond
(an extremely hard crystal with a three-dimensional lattice), in the form of graphite
(layered crystal) and in the form of carbene (a synthetic polymer chain structure).

For definiteness the following arguments are given for a layered crystal and intended
for the model formulated above. The latter makes it possible to qualitatively describe
the acoustic vibrations in graphite – a layered hexagonal crystal with very weak in-
teractions between the layers4. The atomic forces between the neighboring layers in
graphite are almost two orders less that the nearest-neighbor interaction forces within
the layer.

Let a and b be interatomic distances in the xOy plane and along the Oz-axis, respec-
tively. The vector n1 represents a set of two-dimensional number vectors connecting
any one of the atoms with all remaining atoms in the same basal plane, n3 is the unit
vector of the Oz-axis. Then nonzero elements of the matrix αik(n) in our model are
represented by αik(n1) and αik(n2). Making use of the obvious force matrix sym-
metry in a hexagonal crystal, we write the elements αik(n3) responsible for the weak
atomic layer interaction as follows

αik(n3) = α1δik, i, k = 1, 2,
αzz(n3) = α2, αxz(n3) = αyz(n3) = 0.

(2.11.1)

Concerning the spectrum of acoustic vibrations of graphite we note that the param-
eter α2 is generally larger than α1, and α2 is determined mainly by central forces

|α1| � |α2| , (2.11.2)

(for graphite α2 ≈ 10α1 ≈ 0.6104 dyn/cm).

4) Graphite has a complex lattice with atoms positioned in a separate basal
plane as shown in Fig. 2.2.
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To characterize the strong interaction in the basal plane, we introduce the notation
α3 = αzz(n0), where n0 is the unit vector directed from an atom to any one of its six
nearest neighbors in the plane xOy (Fig. 2.2). It may also be assumed that

αik(n0) ∼ αzz(0) ∼ α3, i, k = 1, 2. (2.11.3)

For graphite α3 ∼ 105 dyn/cm.
Now the assumption of a layered crystal structure can be formulated in the form of

a quantitative ratio establishing a hierarchy of interatomic interactions

|α1| � |α2| � |α3| . (2.11.4)

We note an important property of anisotropic crystal vibrations whose displace-
ment vector u is perpendicular to the strong interaction layers (perpendicular to the
xOy plane). For a very weak layer interaction, these vibrations should resemble the
bending waves in the noninteracting layers5, so that they may tentatively be referred to
as “bending” vibrations. Simultaneously, assuming strong anisotropy of interatomic
interactions (2.9.4) and the same order of the lattice constant values (a ∼ b), it is im-
possible in describing the “bending” vibrations to include only the nearest-neighbor
interaction in the basal plane. Noting that the character of the bending vibrations is
primarily determined by the force matrix elements αzz(n1), we take into account the
conditions (2.8.10) imposed on the A(n) matrix elements, putting i, k = x or i, k = y
and l, m = z:

2α1b2 = ∑
n1

αzz(n1)x2(n1) = ∑
n1

αzz(n1)y2(n1). (2.11.5)

Fig. 2.2 Choice of the nearest neighbors in the basis plane of an
hexagonal crystal

By keeping in (2.11.5) the summation over the vectors n0 only, we get the equality

2α1b2 = 3α3a2, (2.11.6)

5) The need to take into account the bending wave type of vibrations in lay-
ered crystals with a weak interlayer interaction was first indicated by Lifshits
(1952).
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Fig. 2.3 Second difference in atom displacements that determines the
bend energy.

which is impossible when the requirements a ∼ b and |α1| I � |α3| are satisfied
simultaneously.

Thus, such a model for a layered crystal with interaction between nearest neighbors
only is in fact intrinsically inconsistent. To describe a crystal lattice with a charac-
teristic layered structure having “bending” waves it is necessary, while keeping the
relations such as (2.11.4), to take into account more distant interatomic interactions in
the basal plane. The physical meaning of this assertion is easily understood if we con-
sider the limiting case of noninteracting layers possessing bend rigidity. Analyzing
one atomic layer allows one to conclude that the interaction of atoms displaced along
the Oz-axis (Fig. 2.3) is determined by the difference of relative pair displacements of
at least three atoms rather than by the relative displacement of two neighboring atoms.
The atomic interaction energy under bending vibrations of the plane layer depends on
δun = (1/2)[(un − nn−1) − (un+1 − un)] = un − (1/2)(un−1 + un+1).

We now turn to (2.11.5) and note that it does not contradict the assumption of a
strong anisotropy of a crystal. This is due to the fact that the elements of the matrix
αzz(n1) describing the interaction not only between nearest neighbors in the plane
xOy can be quantities of the same order of magnitude and have opposite signs. The
signs of each of them satisfy the condition

∑
n

αzz(n) ≡ αzz(0) + ∑
n �=0

αzz(n1) + 2αzz(n3) = 0. (2.11.7)

Taking into account the inequality (2.11.4), we conclude from (2.11.7) that

∑
n �=0

αzz(n1) < 0. (2.11.8)

To find the dispersion law of the vibrations, we calculate the tensor functions

Aij(k) = ∑
n

αij(n)e−ikr(n) ≡ ∑
n �=0

αij(n) [cos kr(n) − 1] . (2.11.9)

Assume that
αzz(n1) = αyz(n1) = 0. (2.11.10)
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It follows from (2.11.10) and also from (2.11.1) that Axz(k) = Ayz(k) = 0, and
in this case the vibrations with the displacement vector u in the xOy plane are inde-
pendent of the vibrations with the displacement vector u, parallel to the Oz-axis, i. e.,
perpendicular to the layers.

The vibration of the vector u in the plane of the layer has two branches in the
strongly anisotropic dispersion law. Since these vibrations are not of main interest the
long-wavelength (akx � 1, aky � 1) dispersion law for one of these branches will be
written in a simpler form, analogous to (2.10.4)

ω2 = ε1(k) ≡ s2
0

(
k2

x + k2
y

)
+ ω2

1 sin2 bkz

2
, (2.11.11)

where s0 ∼ |α3| a2/m, ω2
1 ∼ |α1| /m � (s0/b)2.

Consider the third type of vibrations, bending. The dispersion law for such vibra-
tions is written as mω2 = Azz(k).

Assuming in (2.11.9) i, j = z and performing simple calculations, we have

mω2 = ∑
n1 �=0

αzz(n1) [cos kr(n) − 1] − 4α2 sin2 bkz

2
. (2.11.12)

From the assumption |α2| � |α3| ∼ |αzz(n1)|, hence (2.11.12) gives a strongly
anisotropic dispersion law with two characteristic frequencies ω0 and ω1 determined
by the relations6

ω2
0 = − 1

m ∑
n1 �=0

αzz(n1) ≈ 1
m

αzz(0), ω2
2 = − 4

m
α2, ω2 � ω0.

The relation η2 = (ω2/ω0)2 ∼ |α2/α3| � 1 is the main small parameter that allows
one to separate out the bending-type vibrations. For graphite η2 is equal to several per
cent.

We derive from (2.11.12) the dispersion law for the bending waves at small fre-
quencies when ω � ω0. At such frequencies the cosines in the first sum of the r.h.s.
of the formula (2.11.12) can be expanded in powers of akx and aky, using only a few
terms of the expansion. Two characteristic frequencies of different order of magnitude
available in the dispersion law require that terms up to the fourth power of akx and
aky be retained in such an expansion:

mω2 = −1
2 ∑

n1

αzz(n1) [kr(n)]2 +
1
4! ∑

n1

αzz(n1) [kr(n)]4 − 4α2 sin2 bkz

2
.

Taking into account the symmetry of the second- and fourth-rank tensors in the
presence of the six-fold symmetry axis, we write down the dispersion law for long-

6) It is clear that α2 < 0, otherwise the vibration frequency would not remain
real for kx = ky = 0 and kz → 0.
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Fig. 2.4 Dispersion laws of a strongly anisotropic layered crystal:
(a) general scheme; (b) experimental curves for graphite (Nicklow et al.
1972). In the upper part of the curves, the dependence on the direction
of k in the basal plane is indicated.

wavelength vibrations in the form

mω2 =
a2

2m

(
∑
n1

αzz(n1)n2
x

)
k2
⊥ +

a4

24

(
∑
n1

αzz(n1)n4
x

)
k4
⊥ + ω2

2 sin2 bkz

2
,

where k2
⊥ = k2

x + k2
y, and the first term allows us to take the relation (2.11.5) directly

into account.



88 2 General Analysis of Vibrations of Monatomic Lattices

Let us use (2.11.5) and simplify the formula for the dispersion law by introducing
new notations

ω2 = ε1(k) ≡ s2
⊥k2

⊥ + A2a2k4
⊥ + ω2

2 sin2 bkz

2
;

s2
⊥ = −α1

m
b2 ∼ ω1b2, A2 =

a4

24 ∑
n1

αzz(n1)n4
x ∼ ω0a2 � s2

⊥.
(2.11.13)

The dispersion law graphs (2.11.13), (2.11.11) for the two main directions (Okx

and Okz, Fig. 2.4a) have different peaks in reciprocal space, so that the scales of units
of the quasi-wave vector components kx and kz are not the same. The curves 1 refer
to the u-vector vibrations along the layer and the curves 2 to the u-vector vibrations
transverse to the layers.

To illustrate the genuine dispersion laws of strongly anisotropic crystals, in Fig. 2.4b
we show the graphs of the calculated and experimentally established dependencies
ω = ωz(k) for graphite. Since graphite has a diatomic lattice, Fig. 2.4b gives not
only acoustic (A), but also the optical (O) vibration branches (Chapter 3).

2.11.1
Problem

Find the canonical transformations that allow a transformation from complex normal
coordinates to real ones and to reduce (2.6.8) to the form

H =
1
2 ∑

kα

[
Y2

α (k) + ω2
α(k)Xα(k)

]
(2.11.14)

where Xα(k) and Yα(k) are the real normal coordinates and the generalized momenta
Yα(k) = Xα(k) conjugated to them.

Solution.

Qα(k) =
1
2

{
Xα(k) + Xα(−k) +

i
ωα(k)

[Yα(k) − Yα(−k)]
}

;

Pα(k) =
1
2
{Yα(k) + Yα(−k) − iωα(k) [Xα(k) − Xα(−k)]} .

(2.11.15)



3
Vibrations of Polyatomic Lattices

3.1
Optical Vibrations

A polyatomic crystal lattice is different from a monatomic one in that its unit cell
contains more than one atom. In other words, the number of mechanical degrees of
freedom per unit cell of a polyatomic lattice is necessarily more than three.

The last point introduces not only quantitative but also qualitative changes in the
spectrum of crystal vibrations. The specific features of polyatomic lattice vibrations
will first be studied for a very simple model.

Let us consider the vibrations of an atomic crystal with a densely packed hexagonal
lattice or a crystal with the NaCl structure (Fig. 0.2). The unit cell of the lattice of
such crystals has two atoms, i. e., six degrees of freedom. It is convenient to introduce
the vector of displacement of the center of mass of a pair of atoms, u(n), i. e., the
center of mass of a unit cell (three degrees of freedom), and the vector of a relative
displacement of atoms in a pair, ξ(n) (three degrees of freedom).

In terms of these displacements, we can write explicitly the energy (or the La-
grangian function) of a vibrating crystal. However, we shall not write this value di-
rectly in the general form, but confine ourselves to a scalar model. Now this model
cannot be called “scalar”, since we have to operate with two scalar functions u(n) and
ξ(n), where ξ(n) mean, e. g., changes in the distance between the atoms of a chosen
pair. Thus we should actually transform a scalar model to a two-component one.

Assuming that the displacements of the centers of mass of the unit cells u(n) and
the relative displacements of atom pairs ξ(n) are small, we represent the potential
energy of crystal vibrations in the form corresponding to a harmonic approximation

U =
1
2 ∑ α1(n − n′)u(n)u(n′) +

1
2 ∑ α2(n − n′)ξ(n)ξ(n′)

+ ∑ β(n − n′)u(n)ξ(n′) ,

(3.1.1)

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40508-9
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where the new matrices of atomic force constants α1(n), α2(n) and β(n) are intro-
duced. Evidently, the matrices α(n) may be chosen to be symmetric α(n) = α(−n)
but the latter is invalid for the matrix β(n). One can easily construct a model in which
the matrix β(n) responsible for the interaction of displacements of two types, also has
a similar symmetry.

The kinetic energy of a diatomic lattice has the standard form

K =
1
2 ∑ M

(
dun

dt

)2

+
1
2 ∑ µ

(
dξn

dt

)2

, (3.1.2)

where M is the unit cell mass; µ is the reduced mass of a pair of atoms. Using (3.1.1),
(3.1.2) it is easy to obtain the equations of motion of the crystal

M
d2u(n)

dt2 = −∑
n′

[α1(n − n′)u(n′) + β(n − n′)ξ(n′)],

µ
d2ξ(n)

dt2 = −∑
n′

[α2(n − n′)ξ(n′) + β(n − n′)u(n′)].

(3.1.3)

From (3.1.3), we can immediately derive the constraints imposed on the α1(n) and
β(n) matrix elements that result from the invariance of the energy of a crystal with
respect to its motion as a single whole. Indeed, assuming ξ(n) = 0 and u(n) = u0 =
const we get

∑ α1(n) = 0, ∑ β1(n) = 0 . (3.1.4)

We note that the matrix elements of α2 are not related by a condition such as (3.1.4)
since even the homogeneous relative displacement of atoms in all pairs increases the
crystal energy. However, the matrix elements of α2 as well as the elements of α1 and β

obey a set of inequalities providing the positiveness of the energy (3.1.1) for arbitrary
u(n) and ξ(n). In particular,

α2(0) > 0, α1(0)α2(0) > β2(0) . (3.1.5)

Just as in the case of a monatomic lattice, it is natural to seek a solution to (3.1.3)
in the form of vibrations running through a crystal with the given frequency

u(n) = u0ei(kr(n)−ωt), ξ(n) = ξ0ei(kr(n)−ωt) . (3.1.6)

Substituting (3.1.6) into (3.1.3) and performing simple transformations, we get
[

A1(k) − Mω2
]

u0 + B(k)ξ0 = 0,

B∗(k)u0 +
[

A2(k) − µω2
]

ξ0 = 0,

(3.1.7)

where
A(k) = ∑

n
α(n)e−ikr(n), B(k) = ∑

n
β(n)e−ikr(n) . (3.1.8)
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The compatibility condition homogeneous equations (3.1.7) for the two unknowns
u0 and ξ0 ∣∣∣∣ A1(k) − Mω2 B(k)

B(k) A2(k) − µω2

∣∣∣∣ = 0,

considered as an equation for finding the squares of the possible vibration frequencies
at fixed k transforms to the second-degree algebraic equation, then becomes

[
A1(k) − Mω2

] [
A2(k) − µω2

]
= |B(k)|2 . (3.1.9)

Thus, each value of the quasi-wave vector in our model of a polyatomic lattice
corresponds to two frequencies ω = ωα(k), α = 1, 2, i. e., the dispersion law has
two branches of the dependencies ω on k. The typical distinctions between these two
branches can be shown on considering their limiting properties.

The most essential differences are observed at small k (ak � 1). In this case,
as we have already seen in sect.1, expansion of the function A1(k) in powers of the
quasi-wave vector starts with the quadratic terms

A1(k) = Ms2
0k2.

Due to the above-mentioned properties of the matrix α2(n) the expansion of the
function A2(k) starts with a zero term and does not contain the first power of k

A2(k) = A2(0) − b(κ)k2,

where, by definition,

A2(0) = ∑ α2(n) = µω2
0 �= 0, k = kκ, (3.1.10)

and

b(κ) =
1
2

3

∑
α,β=1

(κaα)(κaβ) ∑
n

α2(n)nαnβ.

Finally, to simplify the analysis, we assume that the matrix β(n) is symmetric
β(n) = β(−n). Then, using (3.1.4), we have

B(k) = −1
2

[
3

∑
α,β=1

κaακaβ ∑
n

β(n)nαnβ

]
k2.

Hence, |B(k)|2 ∼ (ak)4 at ak � 1 and, in the main approximation with respect to
the small parameter ak (3.1.9) is split into two independent ones

ω = ω2
1(k) ≡ s2

0(k)k2; (3.1.11)

ω = ω2
2 ≡ ω2

0 − (b(κ)/µ)k2, ω2
0 = A2(0)/µ. (3.1.12)
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The dispersion law (3.1.11) gives the above-discussed dispersion of sound vibra-
tions. Indeed, substitute (3.1.11) into (3.1.7) and perform the limit transition k → 0.
Since A2(0) �= 0 we have ξ0 = 0. Thus, under long-wave vibrations with the
dispersion law (3.1.11), the unit cell centers of mass vibrate with the relative po-
sition of atoms in a pair remaining unchanged. Therefore, using (3.1.6), we get
u(n) = u0eiωt, ξ(n) = 0.

A feature of the dispersion law (3.1.12) is that the corresponding vibrations with an
infinitely large wavelength have the finite frequency ω0. It follows from (3.1.7) that
at k = 0 this vibration is

u(n) = 0, ξ(n) = ξ0e−iωt. (3.1.13)

Under such crystal vibrations the centers of mass of the unit cells are at rest and the
motion in the lattice is reduced to relative vibrations inside the unit cells. The presence
of vibrations such as (3.1.13) distinguishes a diatomic crystal lattice from a monatomic
one.

For arbitrary k, the form of the dispersion law is strongly dependent on the dynam-
ical matrix properties. In simple models it is generally observed that ω1(k) < ω2(k).
The dependence ω = ωα(k) along a certain “good” direction in the reciprocal lat-
tice has the form of a plot in Fig. 3.1, where b is the period of a reciprocal lattice
in the chosen direction. The low-frequency branch of the dispersion law (ω < ωm)
describes the acoustic vibrations, and the high-frequency one (ω1 < ω < ω2) the op-
tical vibrations of a crystal. Thus, the polyatomic crystal lattice, apart from acoustic
vibrations (A) also has optical vibrations (O).

The generally accepted name for high-frequency branches of the vibrations is ex-
plained by the fact that in many crystals they are optically observed. In the NaCl ion
crystal, the unit cell contains two different ions whose relative displacement changes
the dipole moment of the unit cell. Consequently, the vibrations connected with rela-
tive ion displacements interact intensively with an electromagnetic field and may, thus,
be studied by optical methods.

When ω1(k) < ω2(k) for a fixed direction of k, the spectrum of optical vibra-
tion frequencies is separated by a finite gap from the spectrum of acoustic vibration
frequencies. However, it is possible that for some k the condition ω1(k) > ω2(k)
is fulfilled. Then, in k-space there are points of degeneracy where the acoustic and
optical vibration frequencies coincide and the plots of two branches are tangential or
intersect. The simplest plot of the dispersion law for a diatomic lattice is given in
Fig. 3.1 ( 1

2 b indicates the Brillouin zone boundary).
Regardless of the complicated form of the dispersion law for the optical branch,

the corresponding frequencies always lie in a band of finite width and its ends are
generally the extremum points for the function ω = ω2(k). The latter means that the
dispersion law near the ends of the optical band is quadratic.

The characteristic optical vibration frequencies have the same order of magnitude
as the limiting frequency of acoustic vibrations, i. e., ω0 ∼ ω1 ∼ ωm ∼ 1013 s−1.
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Fig. 3.1 Acoustic and optical branches of the dispersion law.

But in the crystal due to some specific physical reasons the frequencies of some optical
vibrations may increase markedly. In particular, this may occur in so-called molecular
crystals.

Let us consider a crystal lattice of two-atom molecules positioned at its sites. The
optical branch of vibrations of such a crystal describes intramolecular motions weakly
dependent on intermolecular interactions. These motions are characterized by fre-
quencies close to the eigenfrequencies of a free molecule. Then, ω0 ∼ ω1 �
ωm, ω0 − ω1 � ω0 and the optical branch of vibrations has a narrow high-lying
frequency range.

Let ξ(n) be a coordinate of intramolecular vibrations at the point n. Then the as-
sumption of a strong atomic interaction inside a molecule is reduced to the conditions

α2(0) � |α2(n)| , α2(0) � µ

M
|α1(n)| ; α2(0) � |β2(n)| , n �= 0.

Under these conditions the equations for intramolecular vibrations with frequencies
ω ∼ ω0 have the form

µ
d2ξ(n)

dt2 = −∑
n′

α2(n − n′)ξ(n′), (3.1.14)

and reduce to the equations for one scalar quantity ξ(n).
Thus, a scalar model may also be used for qualitative analysis of the optical lattice

vibrations. For this, it suffices to replace the requirement (3.1.4) for the matrix α1(n)
with the condition

1
µ ∑ α2(n) = ω2

0 �= 0, (3.1.15)

determining the long-wavelength limit for the frequency of optical vibrations.
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3.2
General Analysis of Vibrations of Polyatomic Lattice

We now consider the complete equations of three-dimensional vibrations of a crystal
whose unit cell contains q atoms. We number different atoms in one unit cell by the
index s and denote by us(n) the displacement vector of the s-th atom in a unit cell
with number-vector n, e. g., the (n, s atom). The Lagrangian function of small crystal
vibrations is

L =
1
2 ∑ ms

(
dus(n)

dt

)2

− 1
2 ∑ αik

ss′(n − n′)ui
s(n)uk

s′ (n′), (3.2.1)

where the matrix of atomic force constants has the obvious properties

αik
ss′(n) = αki

s′s(−n), i, k = 1, 2, 3, (3.2.2)

and a summation over all indices is assumed. The equations of motion are obtained
from (3.2.1) by the usual method

ms
d2ui

s(n)
dt2 = − ∑

n′,s′
αik

ss′(n − n′)uk
s′(n′), (3.2.3)

The invariance of (3.2.1) relative to the motion of a crystal as a whole (uk
s(n) = uk

0)
leads to the following constraints imposed on the force matrix elements

∑
n,s′

αik
ss′(n) = ∑

n,s
αik

ss′(n) = 0. (3.2.4)

The relations (3.2.4) follow directly from (3.2.3). For stationary vibrations with the
frequency ω, we have

∑
n′,s′

αik
ss′(n − n′)uk

s′(n′) − ω2msui
s(n) = 0. (3.2.5)

We choose the solution to (3.2.5) as above in the form

us(n) = useikr(n), s = 1, 2, 3, . . . , q,

and get for us the following system of homogeneous algebraic equations

∑
s′

Aij
ss′(k)uj

s′ − ω2msui
s = 0, (3.2.6)

in which
Aij

ss′(k) = ∑
n

α
ij
ss′(n)e−ikr(n).

Transform (3.2.5), (3.2.6) to a canonical form of the equations of some eigenvalue
problem. For this we introduce instead of the displacement vectors, the new variables

vs(n) =
√

msus(n),
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and denote

Ãss′ =
Ass′√
msms′

. (3.2.7)

The symbolic matrix form of vibration equations both in the site, (3.2.5), and the
k-representation (3.2.6) reduces to the standard one

ω2v − Ãv = 0, (3.2.8)

where v stands for a column of 3q elements; Ã is the quadratic (3q × 3q) matrix.
The compatibility condition for the system (3.2.8) determines the relationship be-

tween the vibration frequency ω and the quasi-wave vector k

Det
∥∥∥ω2I − Ã(k)

∥∥∥ = 0. (3.2.9)

Since (3.2.8) is an equation of degree 3q with respect to ω2, its roots determine 3q
branches of the dispersion law for crystal vibrations.

To denote the displacements corresponding to different branches of vibrations, we
write the solution to (3.2.8) in the form

vs(n, t) = es(k, α)ei(kr(n)−ωt), (3.2.10)

where α is the number of a branch of vibrations; es(k, α) is the unit vector of polar-
ization of this branch. Equation (3.2.9) means that atoms with different numbers s,
i. e., atoms belonging to various sublattices (various Bravais lattices) can vibrate in
different ways.

We impose on the real polarization vectors the requirement es(k, α) = es(−k, α)
and choose them so as to satisfy the following normalization conditions

q

∑
s=1

es(k, α)es(k, α′) = δα,α′ . (3.2.11)

The orthogonality (3.2.11) of polarization vectors belonging to different branches of
vibrations generalizes the properties (1.3.2) of polarization vectors of a monatomic lat-
tice and realizes the linear independence of the proper solutions (3.2.10). We separate
the time multiplier eiωt and determine the normalized solutions (3.2.10) by analogy
with (1.3.3)

ϕkα(n, s) =
es(k, α)√

N
eikr(n),

implying standard normalization conditions such as (1.3.4).
Coming back to the eigenvibrations of the crystal it is necessary to remember

(3.2.7). Therefore, the eigenvibrations of a complex lattice have the form

ψkα(n, s) =
1√

Nms
es(k, α)eikr(n). (3.2.12)
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The orthogonality and normalization properties of the functions (3.2.12), based on
the conditions (3.2.11), are such that

∑
ns

msψ∗
kα(n, s)ψk′α′(n, s) = δkk′δαα′ .

The eigenvalues, i. e., the squared eigenfrequencies corresponding to the functions
(3.2.12), are determined by the dispersion law (3.2.9). Unfortunately, a consistent
analysis of the dispersion laws for a polyatomic crystal lattice that are determined as
solutions to equations (3.2.9) is difficult. But we can easily perform a qualitative study
where the guidelines will be the properties of vibrations in a two-component crystal
model.

We proceed from the limiting case k = 0. Introduce the displacement of the center
of mass of a unit cell u(n):

Mu =
q

∑
s=1

msus, M =
q

∑
s=1

ms, (3.2.13)

and the sum (3.2.6) over all s

ω2Mui = ∑
ss′

Aij
ss′(k)uj

s′ . (3.2.14)

We now put k = 0 on the r.h.s. of (3.2.14) and see that it vanishes due to (3.2.4)

ω2(0)Mui = ∑
ss′

Aij
ss′(0)uj

s′ = ∑
s′

(
∑
ns

α
ij
ss′(n)

)
uj

s′ = 0.

Thus, if u �= 0 equations (3.2.6) have solutions whose frequency vanishes together
with the value of the quasi-wave vector. Since there are three independent components
of the unit cell center of mass there exist three branches of vibrations where, for k = 0
(λ = ∞), the unit cell of a polyatomic lattice moves as a single whole with ω = 0.

One may show that for ak � 1 the linear dispersion law holds for these branches

ω(k) = sα(κ)k, κ =
k
k

, α = 1, 2, 3,

where sα(κ) are the three sound velocities in the corresponding anisotropic medium.
Thus, in a polyatomic crystal lattice there are always three acoustic branches of

vibrations. The long-wave vibrations for these branches coincide with ordinary sound
vibrations of a crystal.

Equations (3.2.6) also have other solutions corresponding to ω �= 0 at k = 0. In
order to obtain such vibrations, we exclude from our discussion the unit cell vibrations
discussed above. For this purpose, we put directly in (3.2.6) k = 0

∑
s′

Aij
ss′(0)uj

s′ = ω2msui
s, (3.2.15)
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and impose on the atom displacement the requirement

∑
s

msus = 0. (3.2.16)

It is easily seen that (3.2.16) is the compatibility condition of (3.2.15) for ω �= 0.
Using (3.2.16), (3.2.15) can be reduced to a set of 3q − 3 homogeneous linear alge-

braic equations to determine the same number of independent displacements. Equat-
ing the determinant of this system to zero, we obtain an equation of degree 3q − 3
relative to ω2 that yields 3q − 3 nonzero and generally different frequency values at
k = 0

ωα(0) = ω0
α �= 0, α = 4, 5, 6, . . . , 3q.

The frequency of these vibrations with k = 0 is nonzero because there occurs a
finite relative displacement of atoms in one unit cell, requiring finite energy.

The presence of nonzero frequency for the maximum long-wave vibrations is typ-
ical for the optical branches of a crystal. Therefore, we can conclude that in a poly-
atomic crystal lattice there are 3q − 3 optical branches of vibrations. Since, at k = 0,
the condition (3.2.16) is valid for all these vibrations the unit cell center of mass re-
mains fixed under relevant optical vibrations. Thus, the limiting long-wave optical
vibrations of a polyatomic lattice are vibrations of various monatomic sublattices (var-
ious Bravais lattices) relative to another.

Fig. 3.2 Experimental dispersion curves of acoustic (A) and optical (O)
vibrations for diamond in the directions [100] and [111] (Warren et al.
1965).

The real spectrum of vibrations of a crystal with two atoms in the unit cell is shown
in Fig. 3.2, where the dispersion curves for diamond with two wave-vector directions
are given. The plots show the acoustic branches (LA is the longitudinal acoustic and
TA is the transverse acoustic branch) and optical branches (LO is the longitudinal
optical, and TO is the transverse optical branch). Since both the chosen directions of
the vector k are symmetric directions in the reciprocal lattice, all transverse modes
prove to be doubly degenerate.
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In conclusion, we note that the presence of optical branches of vibrations is eas-
ily taken into account by introducing the normal coordinates of a crystal. Indeed,
the transition to a polyatomic lattice is formally the adding of an extra index s (the
atom number in the unit cell). The expansion of arbitrary displacements us(n) in the
functions (3.2.12) remains the same as above:

us(n) = ∑
kα

Q(k, α)ψkα(n, s), (3.2.17)

where Q(k, α) are the complex normal coordinates of a polyatomic lattice. The
Hamiltonian function of small crystal vibrations (2.6.8) as well as the Hamiltonian
function expressed through the real normal coordinates and momenta (2.11.14) also
retain their previous form. However, the summation over α is now from 1 to 3q.

3.3
Molecular Crystals

A crystal with a polyatomic lattice whose unit cell has a group of atoms interacting
one with another stronger than with the atoms of neighboring groups is said to be
a molecular crystal. The atoms from the chosen group are assumed to form an in-
dividual molecule, with the surrounding lattice producing an insignificant effect on
its internal motion. Generally, such a crystal consists of molecules of the substance
whose structure differs insignificantly from their structure in a gaseous phase. The
space lattice of a molecular crystal is, as a rule, polyatomic and its unit cell often con-
tains several molecules. Since the molecules of certain complex chemical compounds
(e. g., organic ones) include a great number of atoms the linear dimension of the unit
cell (identity periods) of molecular crystals may be hundreds of Angstroms.

The optical branch of molecular crystal vibrations that is responsible for intramolec-
ular motions of strongly coupled atoms and, thus, having very high frequencies can be
described as shown in Section 3.1. Such vibrations also involve the covalent atomic
bonds in a molecule, and are studied as a rule independently of low-frequency types of
vibrations. They represent a separate form of crystal motions and are conventionally
called the internal modes of vibrations.

It is clear that the internal modes of vibrations do not exhaust all forms of motions
of molecular crystals. There exist molecular motions that do not practically deform
the covalent intramolecular bonds. These are the rotations of a molecule as a single
whole relative to the unit cell, more exactly, around a certain crystallographic axis.
These motions (“swings” of molecules) are often called librations, implying the clas-
sifications of mechanical motions of a top.

Thus, in a molecular crystal, apart from internal modes, other physically differ-
ent types of motions are possible. Therefore, special terms for the corresponding
vibrations are introduced. The displacements of molecular centers of mass determine
the translational vibrations and the molecular librations manifest themselves in the
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orientational vibrations. The interaction between molecular librations is comparable
in intensity with the interaction of displacements of their centers of mass. Therefore,
the frequencies of the corresponding vibrations have the same order of magnitude. In
other words, the orientational vibrations are not specific in terms of frequencies, but
they are optically observed and, thus, specific.

In describing the vibrations of molecular crystals N2, O2, CO2, etc., it is assumed
that rigid linear molecules are located at the lattice sites. The assumption of the rigidity
of molecules means neglecting high-frequency intramolecular vibrations and allows
one to represent a linear molecule as dumb-bells having two angular degrees of free-
dom only. There are five degrees of freedom per unit cell in such a model: the three
degrees of freedom of translational vibrations described by the vector u(n) and the
two degrees of freedom of librational motions that are described by two angles θ(n)
and ϕ(n) that give the space orientation of linear molecules.

Restricting ourselves to a two-component model, we shall characterize a molecular
state by the displacement of its center of mass u(n) and by the rotation angle around
a certain axis ϕ(n). If the displacements of molecules as well as their librations are
small, the linear equations for u(n) and ϕ(n) will be found by directly rewriting
(3.1.3) with the replacement of ξ(n) by ϕ(n), and of the reduced mass µ by the
molecular inertia moment I:

m
d2u(n)

dt2 = −∑
n′

[
α1(n − n′)u(n′) + β(n − n′)ϕ(n′)

]
,

I
d2 ϕ(n)

dt2 = −∑
n′

[
α2(n − n′)ϕ(n′) + β(n′ − n)u(n′)

]
.

(3.3.1)

All the results follow from (3.1.3) and discussed in Section 3.1 are automatically
extended to the conclusions from (3.3.1). In particular, the dispersion relations are
found as the solutions to the algebraic equation (3.1.9), where µ must be replaced
by I.

Let us analyze in more detail the peculiarities of the dispersion law of a molecular
crystal. Suppose the molecules are placed at the sites of a primitive cubic lattice.
Now we take into account the interaction of the nearest molecules only. The nonzero
elements of α(n) and β(n) matrices will then be α(0), α(n0) and β(0), β(n0), where
n0 is the radius number of any one of the six nearest neighbors. We assume the
matrix β(n) to be symmetric, and from (3.1.4), (3.1.10) (because the lattice is highly
symmetric) we get

α1(0) + 6α1(n0) = 0; β(0) + 6β(n0) = 0;

α2(0) + 6α2(n0) = Iω0
2. (3.3.2)
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We choose the coordinate axes along the four-fold symmetry axes and substitute
(3.3.2) into (3.1.8)

A1(k) =
1
3

α1(0)(3 − cos akx − cos aky − cos akz);

B(k) =
1
3

β(0)(3 − cos akx − cos aky − cos akz);

A2(k) = α2(0) − 1
3
(α2(0) − Iω2

0)(cos akx − cos aky − cos akz).

(3.3.3)

Using the explicit expressions (3.3.3) and solving (3.1.9), we find two dispersion
relations

2mIω2
±(k) = IA1(k) + mA2(k)

± {[IA1(k) − mA2(k)]2 + 4mIB2(k)}1/2.
(3.3.4)

We already know that for small k (ak � 1) the function B2(k) ∼ (ak)4, and
in (3.3.4) it can be omitted. The long-wave dispersion laws will then coincide with
(3.1.11), (3.1.12), but we write them in a more general form

2mIω2±(k) = IA1(k) + mA2(k) ± |mA2(k) − IA1(k)| . (3.3.5)

Assume now that the interaction of translational and orientational vibrations is small
for all k. Since the function B(k) is responsible for this interaction we omit the last
term in (3.3.4), i. e., we assume that the dispersion laws are determined completely by
(3.3.5). If IA1(k) < mA2(k) for all k, this conclusion allows one to interpret the
results. The resulting dispersion laws of acoustic and optical vibrations

ω2
A(k) =

1
m

A1(k) =
α1(0)
3m

(3 − cos akx − cos aky − cos akz) , (3.3.6)

ω2
O(k) =

1
I

A2(k) =
α2(0)

I
=

1
3

(
ω2

0 −
α2(0)

I

)

× (cos akx + cos aky + cos akz) ,

(3.3.7)

are described by the plots in Fig. 3.1, if the vector k is along the direction [111]. In this
case the point kB corresponds to the values akx = aky = akz = π and the limiting
short-wave frequencies are equal to

ωm =
√

2α1(0)/m , ω1 =
√

(2α2(0)/I) − ω2
0. (3.3.8)

By assumption, ωm < ω1 (because the molecule has a small moment of inertia). The
positive B2 in (3.3.4) may only decrease ωm and increase ω1. Thus, the condition
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ωm < ω1 is not violated by taking into account the interaction of translational and
orientational vibrations.

We have already noted that the characteristic frequencies of translational and libra-
tional waves have the same order of magnitude: α1(0) ∼ mα2(0). Hence, the crystals
for which Iα1(0) > mα2(0) and ω1 < ωm are quite possible. The plots of the disper-
sion laws (3.3.6), (3.3.7) along the direction [111] will then intersect at a certain point
k∗ (Fig. 3.3a), so that a crossover situation arises. Formally, following (3.3.4), the
dispersion laws of acoustic (low-frequency) and optical (high-frequency) vibrations
are

ω2
A(k) =




1
m

A1(k), 0 < k < k∗ ,

1
I

A2(k), k∗ < k < kB ,

ω2
O(k) =




1
I

A2(k), 0 < k < k∗ ,

1
m

A1(k), k∗ < k < kB ,

(3.3.9)

As a result of the interaction at the point k = k∗, a discontinuous change in the po-
larizations of the vibrations of two branches occurs. Actually, it follows from (3.1.7)
at B(k) = 0 that the dispersion law mω2 = A1(k) refers to purely translational
vibrations (φ = 0), and the dispersion law Iω2 = A2(k) to the orientational vibra-
tions (u = 0). The jump-like change in the vibration polarizations and the breaks
appearing in the plots of the dispersion laws of acoustic and optical vibrations are
the result of disregarding the interaction of translational and librational vibrations at
Iα1(0) > mα2(0). The inclusion of even a small value of B2 in (3.3.4) eliminates both
misunderstandings, as intersection point vanishes, the plots in the vicinity of k = k∗
move apart, the dispersion laws become regular (Fig. 3.3b) and the polarizations trans-
form continuously.

The above-described peculiarities of the vibration spectrum are typical for some
molecular crystals mentioned above.

3.4
Two-Dimensional Dipole Lattice

A two-dimensional lattice can be made up of particles adsorbed onto an atomically
smooth face of some crystals. If charged particles (ions) are adsorbed onto a metal
surface each of them manifests itself as an electric dipole perpendicular to the surface.
This is connected with the fact that the electrostatic charge field near the conductor
(metal) plane surface is equivalent to a Coulomb charge field and its mirror reflec-
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Fig. 3.3 The “cross situation”: (a) intersection of dispersion branches;
(b) removal of degeneracy.

tion in the plane surface (the opposite sign charge). Therefore, the adsorbed charged
particles interact as parallel dipoles. When adsorbed particles are dense enough they
are ordered and form a two-dimensional crystal that is the simplest realization of a
2D dipole lattice. The adsorbed particles, however, interact strongly enough with a
substrate, such that this crystal can be regarded as two-dimensional only in terms of
the geometry of its lattice.

Examples of systems whose dynamics under certain approximations are equivalent
to 2D vibrations seem to be of greater interest. Under certain conditions a 2D crystal
forms from electrons on a liquid helium surface at low temperatures. Electrons that
have been (forced) pressed by an electric field to the liquid helium surface behave gen-
erally as a gas (gas of interacting particles), but at low enough temperatures Wigner
crystallization may occur in the electron gas concerned and a 2D electron crystal ap-
pears. Electrons over the thick layer surface of dielectric helium interact almost like
point charges. Thus, although the electrons on the liquid helium surface create a crys-
tal lattice, the latter may not be a dipole. Only when a thin helium film is formed
on a metal substrate is the electron interaction at large distances similar to the dipole
interaction.

Finally, a 2D crystal may be formed by a system of magnetic bubbles. They can be
obtained in a thin ferromagnetic film whose magnetic anisotropy axis is perpendicular
to the plane of the film. In a strong enough magnetic field H directed along the nor-
mal to the film, a ferromagnetic film is in a single domain state. The magnetization
M coincides in its direction with H . However, if the external field is not very strong,
cylindrical “islands” where the magnetization M is directed opposite to the external
magnetic field appear in the film (Fig. 3.4). These are just cylindrical magnetic do-
mains or bubbles. They are generally observed in films of thickness 10−4 − 10−3 cm
and have a diameter of the same order or even less. But in any case the bubbles prove
to be macroscopic formations whose dimension is much larger than the thickness of
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the domain boundary dividing the regions with different orientation of magnetization.
A considerable “surface” energy concentrated at the domain boundary provides a cir-
cular form of the bubble cross section.

The peculiarity of the bubbles is their great mobility and the ability to move easily
along the film. But moving bubbles create around themselves a dynamical magneti-
zation field with certain inertia. As a rule, the inertia of the inhomogeneous magneti-
zation field is attributed, in such cases, to its source, the bubble. As a result it appears
that the bubble may be regarded as some particle in a 2D crystal with the definite
effective mass m∗. It is clear that the bubble is an isolated magnetic dipole in the
background of a uniformly magnetized film (its magnetic moment equals µ = 2MhS,
where h is the film thickness; S is the bubble cross-sectional area). Therefore, it is
affected by the action of both inhomogeneous external magnetic field and the forces
of magnetic dipole interaction with the other bubbles. The dipole interaction results
in a repulsion of the same magnetic dipoles. Therefore, in a film of finite area the
bubbles may form a periodic lattice. If the magnetic properties of a film are isotropic
in its plane, a hexagonal (or trigonal) lattice is stable.

Let the lattice constant a be much larger that the bubble diameter (a2 � S) and the
plate thickness (a � h). The interaction energy of two bubbles at the points R and R′
may then be represented as the dipole–dipole interaction energy V(R − R′), where

V(R) =
µ2

R3 . (3.4.1)

It is assumed in (3.4.1) that the bubble magnetic moments µ are strictly perpendicular
to the plane of the film and precession deviations are absent.

Let us consider small translational vibrations1 of a bubble lattice. We introduce
ui(n), i = 1, 2 as the displacement vector of a bubble located at the point with 2D
number n(n1, n2) that numbers unit cells. The equilibrium distance between the bub-
ble centers in a static lattice is denoted by a.

Fig. 3.4 Distribution of magnetization in a film with bubbles.

Let the bubbles experience small displacements from the equilibrium lattice points:
Rn = r(n) + u(n). Then, within the approximation quadratic in u(n) the total inter-

1) Analyzing only the vibrations of the bubble gravity centers we assume that at
the frequencies we are interested in the values and the direction of a magnetic
moment µ remain unchanged, the domain pulsation and precession motion of
its magnetic moment do not exist, with these motions taking place at higher
frequencies.
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action energy of the bubbles is given by

U =
1
2 ∑

R �=R′
V(R − R′) = U0 +

1
4 ∑

(
∂2V

∂Xi∂Xk

)
0

× [ui(n) − ui(n′)] [uk(n) − uk(n′)] ,
(3.4.2)

where U0 is the bubble equilibrium lattice energy.
The simplest version of the pair interaction energy (3.4.1) allows one to describe

consistently the low-frequency vibrations of a dipole lattice. The expression (3.4.2) is
easily reduced to a standard form (2.1.11) by denoting

αik(n) = −
(

∂2V
∂Xi∂Xk

)
0

=
3µ2

r7(n)

[
r2(n)δik − 5xi(n)xk(n)

]
, n > 0;

αik(0) = ∑
n �=0

αik(n).
(3.4.3)

By calculating the elements of the matrix of atomic force constants (3.4.3), the
problem of harmonic vibrations of the bubble plane lattice is actually solved.

The long-wave dipole lattice vibrations should be described by two-dimensional
equations of elasticity theory of the type (2.8.6), (2.8.7), where elasticity moduli are
calculated using (2.8.5), (2.8.11). With the presence of the six-fold symmetry axis
(hexagonal dipole lattice), the 2D symmetrical fourth-rank tensor ciklm can be pre-
sented as (i, k = 1, 2)

ciklm = Aδikδlm + B(δilδkm + δimδkl). (3.4.4)

To calculate A and B we will use (1.8.5). We will convolute over the pair of indices i
and k in (2.8.5) and (3.4.4) and then over k and l. Thus, we get

A =
3µ2

16
Q, B =

15µ2

16
Q, Q = ∑

n �=0

1
r3(n)

. (3.4.5)

In a two-dimensional lattice, the sum involved in (3.4.5) converges. Therefore, it is
easily estimated by replacing the sum with a two-dimensional integral:

Q = ∑
n �=0

1
r3(n)

∼ 1
S0

∫
dx dy

r3 ∼ 1
a2

∞∫

a

2πdr
r2 =

2π

a3 .

Analogous to (3.4.4), the expression for a 2D tensor of elastic moduli λiklm in an
hexagonal lattice can be written as (i, k = 1, 2):

λiklm = λδikδlm + G(δilδkm + δimδkl), (3.4.6)

where G is the shear modulus, λ is the Lamé coefficient of a two-dimensional elastic
medium. We now make use of (2.8.11) replacing V0 with S0, the 2D lattice unit cell
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area. We then obtain λS0 = 2B − A = 9A, GS0 = A. Thus, the elastic moduli of a
2D dipole lattice are λ = 9A/S0 ∼ 2πµ2/a5.

Since the two-dimensional dipole lattice has both a total compression modulus and
shift modulus, longitudinal and transverse elastic waves can propagate in it. The
squares of longitudinal, c2

l and transverse c2
t , wave velocities are determined by the

formulae known from elasticity theory

c2
l =

λ + 2G
m∗ S0; c2

t =
G

m∗ S0. (3.4.7)

Irrespective of specific elastic wave velocity values, the ratio of their squares in the
model of a bubble lattice is given by

(
cl

ct

)2

= 11. (3.4.8)

The number obtained is due to the choice of the pair interaction energy in the form
of (3.4.1). Therefore, the relation (3.4.8) should be preserved for any plane dipole
lattice of a similar type.

3.5
Optical Vibrations of a 2D Lattice of Bubbles

Using the simplest model we considered in the previous section the low-frequency
(i. e., acoustic) vibrations of a 2D dipole lattice. Generalizing the model one can also
study the optical vibrations of a 2D dipole lattice.

We consider two independent generalizations of the above model. First, for the
bubble lattice, we take into account the magnetic domain pulsations connected with
symmetric extensions and compressions of the region of “inverted” orientation of the
magnetization vector M.

With existing pulsations there appears a new dynamic variable – the bubble radius
– denoted as R. Setting up the equations for the new dynamic variable, we assume as
before that the bubble radius is much larger than the thickness of a domain boundary
dividing the regions with opposite magnetization directions. The bubble inertia will
then be concentrated almost in its cylinder surface and the surface kinetic energy can
be written as (1/2)ηv2

n, where η is the surface effective mass density of the domain
boundary; vn is the boundary motion velocity normal to its surface (vn = dR/dt). If
the bubbles move translationally with velocity V, then vn = V cos ϕ(0 < ϕ < 2π)
and the kinetic energy of its translational motion is determined by

Etr
kin = πRhη〈v2

n〉 =
π

2
RhV2 =

1
2

m∗V2. (3.5.1)

If there are small pulsations under which the boundary moves uniformly at all points
of the bubble surface with velocity vn = V, then the kinetic energy is given by

Epul
kin = πηhRv2

n = πηhRV2. (3.5.2)
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Comparing (3.5.1), (3.5.2) we conclude that the effective mass of symmetric pulsa-
tions is twice as large as the effective mass of translation motion, m∗. Therefore, the
kinetic energy of pulsations can be expressed through dR/dt in the form

Epul
kin = m∗

(
dR
dt

)2

.

Since the bubble pulsations change the bubble radius, they are associated with a
certain increase in the potential energy of the system. Under small vibrations the
potential energy of an individual bubble depends quadratically on R − R0 (R0 is the
equilibrium bubble radius)

Upul = m∗ω2
0(R − R0)2, (3.5.3)

where ω0 is the pulsation eigenfrequency. In a lattice, the equilibrium radius R0 is
different from the equilibrium radius of an isolated bubble, since the magnetodipole
repulsion in a static lattice simulates a decrease in the equilibrium radius of an indi-
vidual bubble.

We introduce ξ = R− R0 and calculate, in the approximation quadratic in ξ(n), the
change in the magnetic-dipole interaction energy in the bubble lattice. We represent
the pulsating magnetic moment of a bubble at the n-th site as

µ(n) = µ

[
1 + 2

ξ

R0
+
(

ξ

R0

)2
]

,

where µ is an equilibrium value of the magnetic moment. Then, using (3.4.1), we
write

Umd =
1
2 ∑

n �=n′

µ(n)µ(n′)
r3(n − n′)

=
1
2

Nµ2Q +
2µ2

R0
Q ∑ ξ(n)

+
[

µ

R0

]2

Q ∑ ξ2(n) +
1
2

[
2µ

R0

]2

∑
n �=n′

ξ(n)ξ(n′)
r3(n − n′)

,
(3.5.4)

where Q is determined by (3.4.5); N is the number of sites in the lattice.
The first term in (3.5.4) is included in the ground-state energy of the lattice and

does not contribute to the equation of the motion for ξ(n). The second term is re-
sponsible for the renormalization of the equilibrium bubble radius. We do not give
here the calculations of this renormalization (see Problem 1), keeping in mind that the
equilibrium bubble radius in a lattice is different from that of an isolated bubble. The
third term in (3.5.4) contributes to the renormalization of the homogeneous pulsation
frequency and, finally, the fourth term determines the pulsation wave dispersion.

Using (3.5.3), (3.5.4) we introduce in a standard way the equation of motion for
pulsations

2m∗ d2ξ(n)
dt2 = −

[
2m∗ω2

0 + 2Q
(

µ

R0

)2
]

ξ(n) − ∑
n �=n′

β(n − n′)ξ(n′), (3.5.5)
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where

β(n) =
(

2µ

R0

)2 1
r3(n)

. (3.5.6)

Transforming (3.5.5), taking into account the definition Q, gives

m∗ d2ξ(n)
dt2 = −m∗ω2

r ξ(n) +
1
2 ∑

n′
β(n − n′)[ξ(n) − ξ(n′)], (3.5.7)

where ωr is the renormalized pulsation frequency,

ω2
r = ω2

d + ω2
0, ω2

d =
3Q
m∗

(
µ

R0

)2

. (3.5.8)

Finally, the relation (3.5.7) is written for small pulsation vibrations of the bubble
lattice. For this equation the relation between the pulsations and the translational vi-
bration of the lattice concerned was neglected. The equation for small translational vi-
brations was obtained, without taking into account the bubble pulsations. The relation
between translational and pulsation vibrations is easily allowed for (in the expansion
(3.5.4) it suffices to include the terms proportional to the bubble displacements), so
the reader is invited to do this (see Problem 2).

The dispersion law for pulsation vibrations is

ω2(k) = ω2
r −

1
2m∗ ∑ β(n)[1 − e−ikr(n)]. (3.5.9)

It is clear that ω0 = ωr �= 0. Thus, the pulsation vibrations are the optical vibra-
tions. Furthermore, it follows from the definition (3.5.6) that β(n) > 0; hence, the
second term in (3.5.9) leads to a frequency decrease with increasing k. Thus, ω = ωr

is the largest frequency in the spectrum of pulsation vibrations.
Let us analyze the dispersion law (3.5.9) in the long-wavelength limit (ak � 1).

We denote
B(k) = ∑ β(n)[e−ikr(n) − 1], (3.5.10)

and replace the sum over the lattice with the integral in the lattice plane using the polar
coordinates (r, ϕ) associated with the k vector direction

B(k) =
(

2µ

R0

)2 1
S0

L/2∫

0

dr
r

2π∫

0

(e−ikr cos ϕ − 1) dϕ

=
(

2µ

R0

)2 2π

S0

L/2∫

0

dr
r2 [J0(kr) − 1],

where S0 is the unit cell area of a bubble lattice; L is the dimension (diameter) of the
plane lattice; J0(x) is the first-order Bessel function (with zero index).
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Replacing the integration variable results in

B(k) =
(

2µ

R0

)2 2πk
S0

Φ
(

kL
2

)
, (3.5.11)

where

Φ(z) =
1
z
[1 − J0(z)] + J1(z) −

∫ z

0
J0(x) dx.

Taking into account the possible values of the quasi-wave vector components
(1.5.3), we conclude that the product kL either equals zero (B(0) = 0) or kL > 2π.
But in the second case Φ(kL/2) does not differ in order of magnitude from its limit-
ing value Φ(∞) = −1 and rapidly approaches it with increasing k.2 Therefore, as we
are interested in the finite interval of small values k (ak � 1), we can write at k �= 0

B(k) =
(

2µ

R0

)2 2πk
S0

Φ (∞) = −2π

S0

(
2µ

R0

)2

k.

Thus, the long-wave dispersion law looks like

ω2 = ω2
r −

π

m∗S0

(
2µ

R0

)2

k. (3.5.12)

The frequency in (3.5.12) is independent of the direction of the 2D vector k, this
being a result of the symmetry of the hexagonal lattice.

Fig. 3.5 Dispersion laws of the long-wave translational (acoustic) and
pulsation (optical) vibrations of the 2D bubble lattice.

It follows from (3.5.12) that the pulsation waves for ak � 1 have nonzero velocity

v = lim
k→0

∂ω

∂k
= − 1

4m∗ωr

∂B
∂k

= − π

2m∗S0ωr

(
2µ

R0

)2

,

2) The value of Φ(2π) differs from Φ(∞) = −1 by 15 per cent.
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directed opposite to the vector k. The plots of long-wave dispersion laws of transla-
tional and pulsation waves in a bubble lattice are shown schematically in Fig. 3.5.

The dispersion law peculiarities that manifest themselves in a nonanalytic depen-
dence of the frequency on the wave-vector components at k → 0 are due to the mag-
netostatic character of the dipole-interaction forces making up a lattice of bubbles.

3.6
Long-Wave Librational Vibrations of a 2D Dipole Lattice

We now proceed to the second possible generalization of a two-dimensional dipole
lattice model. Assume that the centers of gravity of hard electric dipoles, oriented
in the equilibrium state, perpendicular to the lattice plane (parallel to the z-axis) are
fixed in the sites of a symmetric (triangular or quadratic) lattice. Each dipole can make
librational vibrations and the libration frequency of an isolated dipole is equal to ω0.

If the librational vibration angles are small, the change in the z-projection of a
dipole moment is of the order of its square projection onto the lattice plane. Thus, let
us denote by d0 a dipole moment and let eξ be its component in the lattice plane. It
then follows from the condition d2 = d2

0 = constant that

dz − d0 = −e2
(

ξ2
x + ξ2

y

)
/2d0 � eξ.

We calculate the dipole energy of the lattice in the approximation quadratic in ξ.
The interaction energy of two dipoles d and d′ at the points n and n′ is equal to

V(n − n′) =
1

R5 [R2dd′ − 3(Rd)(Rd′)], R = r(n − n′). (3.6.1)

A scalar product dd′ in (3.6.1) for the approximation quadratic in ξ is

d(n)d(n′) = d2
0 + e2ξ(n)ξ(n′) − e2

2d0

[
ξ2(n) + ξ2(n′)

]
. (3.6.2)

Using (3.6.1), (3.6.2) and keeping in mind that the vector R lies in the lattice plane,
we get, similar to (3.5.4), the following expression for the dipole energy

U =
1
2 ∑ V(n − n′)

=
1
2

d2
0NQ − e2

2 ∑ ξ2(n) +
e2

2 ∑ Dik(n − n′)ξi(n)ξk(n′),
(3.6.3)

where Q is determined, as before, by (3.4.5), and with

Dik(n) =
1

R5(n)

[
R2(n)δik − 3Xi(n)Xk(n)

]
. (3.6.4)

The third term on the r.h.s. of (3.6.3) is traditional and the sign of the second term is
unusual. It describes the energy decrease when dipoles deviate from the z-axis. This
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is due to the fact that at a fixed distance between the centers of two parallel dipoles,
the mutual orientation along the line connecting them is the most advantageous ener-
getically, rather than when they are perpendicular to it. But introducing the frequency
ω0, we assume the presence of forces keeping the lattice in an equilibrium state with
the dipoles parallel to the z-axis. The dipole interaction acts against these forces.

We now write the kinetic energy of a vibrating dipole. If we consider a dipole as
a symmetric top with moment of inertia I the kinetic energy of its small librational
vibrations is given by

Ekin =
1
2

m∗
[(

dξx

dt

)2

+
(

dξy

dt

)2
]

, (3.6.5)

where m∗ = e2 I/d2
0α is the effective mass.

The simple form of the kinetic (3.6.5) and potential (3.6.3) energies of the lattice
allows one to write down the equations of collective librational motion that take into
account the dipole eigenvibrations

m∗ d2ξi(n)
dt2 = −[m∗ω2

0 − e2Q]ξi(n) − ∑
n �=n′

βik(n − n′)ξk(n′), (3.6.6)

where
βik(n) = e2Dik(n), i, k = 1, 2. (3.6.7)

We now represent (3.6.6) in a form analogous to (3.5.7)

d2ξi(n)
dt2 = −ω2

1ξi(n) +
1

m∗ ∑
n′

βik(n − n′)
[
ξk(n) − ξk(n′)

]
, (3.6.8)

where

ω2
1 = ω2

0 −
3

2m∗ e2Q. (3.6.9)

In (3.6.8), (3.6.9) we use the relation, obvious for a symmetric lattice,

∑ Dik(n) = Qδik − 3 ∑
Xi(n)Xk(n)

R5(n)
=
(

Q − 3
2

Q
)

δik = −1
2

Qδik.

It follows from (3.6.9) that the dipole–dipole interaction lowers the frequency of
homogeneous librational vibrations of a two-dimensional dipole lattice. Since the
lattice must be stable with respect to these vibrations it is necessary that ω2

1 > 0. In
other words, the stability condition for a dipole lattice of the type concerned is given
by the inequality

3
2m∗ e2Q < ω2

0, (3.6.10)

which imposes a restriction on the dipole density (i. e., on the lattice period a) since
Q ∼ 2π/a3.
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To analyze the dispersion law of librational vibrations we introduce the tensor func-
tions

Bij(k) = ∑ βij(n)
[

e−ikr(n) − 1
]

, (3.6.11)

which in the long-wave approximation can be written in terms of two-dimensional
space integrals. In a symmetric lattice these integrals may be calculated in a specific
form of Cartesian coordinates with the x-axis directed along the vector k

Bxx(k) =
e2

S0

∫
dr
r2

∮
(1 − cos2 ϕ)[e−ikr cos ϕ − 1] dϕ, (3.6.12)

Byy(k) =
e2

S0

∫
dr
r2

∮
(1 − 3 sin2 ϕ)[e−ikr cos ϕ − 1] dϕ, (3.6.13)

Bxy(k) = − e2

S0

∫
dr
r2

∮
cos ϕ sin ϕ)[e−ikr cos ϕ − 1] dϕ.

It is clear that Bxy(k) = 0. Thus, longitudinal vibrations whose dispersion law is
determined by the function Bl = Bxx(k), and the transverse vibrations whose dis-
persion law is given by Bt = Byy(k) are independent. Their dispersion laws are as
follows

ω2
l = ω2

1 +
1

m∗ Bl(k); ω2
t = ω2

1 +
1

m∗ Bt(k). (3.6.14)

We note that the limiting frequencies (at k = 0) of longitudinal and transverse
optical 2D lattice vibrations are the same. The behavior of the dispersion laws near
the limiting frequency ω1 is determined by the form of the functions Bl(k) and Bt(k).

Repeating the arguments used for the treatment of the limiting behavior of the func-
tions (3.6.12), (3.6.13) at ak � 1 we can write them as

Bl(k) =
e2k
S0

∞∫

0

dx
x2

∮
(1 − 3 cos2 ϕ)(e−ix cos ϕ − 1) dϕ,

Bt(k) =
e2k
S0

∞∫

0

dx
x2

∮
(1 − 3 sin2 ϕ)(e−ix cos ϕ − 1) dϕ.

(3.6.15)

It follows from the definition of the Bessel functions J0(x) and J1(x) that
∮

cos2 ϕ(e−ix cos ϕ − 1) dϕ = −
(

π + 2π
d2 J0(x)

dx2

)

= 2π
dJ1(x)

dx
− π = 2π

(
J0(x) − 1

2
J1(x) − 1

2

)
.

(3.6.16)

Using this expression one can show that
∫ ∞

0

dx
x2

∮
cos2 ϕ(e−ix cos ϕ − 1) dϕ = −4π

3
. (3.6.17)
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Substituting (3.6.17) into (3.6.15) we get

Bl(k) = 2π
e2k
S0

, Bt(k) = 0.

Thus, if we restrict ourselves only to the linear terms of the expansion in powers
of k, the dispersion laws (3.6.14) will take the form

ω2
l = ω2

1 +
2πe2

m∗S0
k, ω2

t = ω2
1. (3.6.18)

It is meaningless to write down the next terms of the expansion in powers of k
without taking into account the librational and translational motions of a dipole lattice.

As in the case of the dispersion law for pulsation vibrations of a bubble lattice
(3.5.12), the nonanalyticity of the dispersion law (3.6.18) considered as a function of k
is connected, for k → 0, with a slow decay of the coefficients βik(n) in an infinite
sum (3.6.11). Even the first derivative of Bij(k) with respect to k is determined by the
sum having no absolute convergence. This explains the singularity of this function as
k → 0.

Although the nonanalyticity of the dispersion law (3.6.18) seems to be insignifi-
cant its appearance is important. While discussing the general properties of the dis-
persion law it was noted that similar nonanalyticity is observed only in the points of
k-space where there is degeneracy and where, going over from one branch of the spec-
trum to another, it is possible to preserve the continuity of the group velocity vector
v = ∂ω/∂k. In the given case such a possibility is absent and one might think that
the dispersion law for small k has been derived incorrectly, and this is really so. We
have neglected the retardation of the electromagnetic interaction and used the static
expression for the energy of the dipole interaction (3.6.1), although we have taken
into account the interaction of very distant pairs of moving dipoles. Taking into ac-
count the finite velocity of electromagnetic wave propagation affects the form of the
dipole pair interaction energy and results in a restricted dispersion law in the region of
small k. This situation is discussed in detail in the next section.

3.7
Longitudinal Vibrations of 2D Electron Crystal

Let us analyze the simplest model for long-wavelength vibrations of a two-dimensi-
onal electron crystal formed due to Wigner crystallization on a liquid helium surface
or any other realization of a 2D electron crystal. We consider a system of electrons
and ions with mass m and M, respectively, with opposite, but equal in absolute value,
charges e. The entire system is neutral, if the number of ions in the volume unit equals
the number of electrons. We disregard the fact that the ions form a lattice, i. e., we
shall treat them as a liquid. This simple model is called the jelly model. As it is
more convenient to study a purely electron crystal, taking into account m/M � 1,
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we further simplify the jelly model by assuming M = ∞. In this model the con-
tinuous distribution of a positive charge is time independent and coincides with the
equilibrium one that provides stability of an electron crystal.

We suppose that electrons may be displaced only in the crystal plane and denote by
ξi(n) the two-dimensional vector (i = 1 , 2 ) of electron displacement at the site n.
Let ξ � a; now, using the symmetry of an electron lattice, we expand the Coulomb
energy of the interaction between electrons and the positive charge of an ion liquid in
powers of ξ:

U = U0 − e2

2 ∑ Dik(n − n′)
[
ξi(n) − ξi(n′)

] [
ξk(n) − ξk(n′)

]
, (3.7.1)

where U0 is the energy of an equilibrium crystal. The matrix Dik is given by (3.6.4).
Using (3.7.1), it is easy to write down the equation of motion of an electron crystal

d2ξi(n)
dt2 =

1
m ∑

n
βik(n − n′)

[
ξk(n) − ξk(n′)

]
, (3.7.2)

with the matrix βik coincident with (3.6.7).
Equation (3.7.2) is different from (3.6.8) only in the fact that ω0 = 0. Conse-

quently, in the approximation (ak � 1) linear in k, the dispersion law for longitudinal
vibrations of an electron crystal can be obtained using (3.6.18)

ωl = (2πnse2/m)1/2
√

k, ns = 1/S0, (3.7.3)

where ns is the electron density (the number of electrons per unit crystal area).
It turns out that, essentially, the optical longitudinal vibrations of an electron crystal

have zero limiting frequency (ω(0) = 0), i. e., they have a gapless frequency spec-
trum. This is a direct result of the fact that the electron system is two-dimensional. The
long-wave dispersion law (3.7.3) coincides with the frequencies of plasma vibrations
of a 2D electron plasma: ω2

l = ω2
pl(k) = 2πnse2k/m.

However, if we make an attempt to use the results (3.6.18) to find the frequencies of
long-wave transverse vibrations of an electron crystal, we see that the approximation,
linear in k, that resulted in (3.6.18) is insufficient. When ω1 = 0, the function Bt(k)
should be calculated with more accuracy, i. e., taking into account the terms quadratic
in k. To make these calculations, it is necessary to replace the sums (3.6.11) by the
integrals (3.6.12), (3.6.13), i. e., to go over from a discrete to a continuum description
of an electron crystal.

We consider a triangular lattice that has a six-fold symmetry axis and is, thus, elas-
tically isotropic. We put a chosen electron in the center of a circle of radius a and unit
cell area (S0 = πa2). The sums that determine the functions B(k) in the long-wave
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approximation (ak � 1) may then be represented, with a good accuracy in the form

B(k) = e2 ∑
n �=0

f (r(n), k)
r3(n)

=
e2

S0

∞∫

a

dr
r2

∮
f (r, k) dϕ

=
e2

S0




∞∫

0

dr
r2 −

a∫

0

dr
r2



∮

f (r, k) dϕ.

We make use of this and take the definition (3.6.15) into account, and also the
property of the function Bt(k) for small k:

Bt(k) = − e2k
S0

ak∫

0

dx
x

∮
(1 − 3 sin2(ϕ))(eix cos ϕ − 1) dϕ. (3.7.4)

We substitute (3.6.16) into (3.7.4) retaining in the integral the leading term of the
expansion in powers of x:

Bt(k) = πe2ak2/(8S0).

We now take the second relation (3.6.14) for ω1 = 0 and write the dispersion law
for transverse vibrations of an electron crystal

ωt = stk, s2
t = 0.125

e2√πn3

m
. (3.7.5)

So the transverse vibrations of an electron crystal have the character of sound waves
with a large velocity determined by the Coulomb electron interaction3 (ms2

t ∼ e2/a).
For the realizations of a 2D electron crystal on a helium surface, the limiting period
of the lattice is a ∼ 10−5 − 10−4 cm, so that the velocity of a transverse sound may
attain the values st ∼ 105 − 106 cm/s.

The presence of transverse sound vibrations in an electron crystal distinguishes it
from an electron liquid (plasma). Therefore, observation of such waves is a direct
proof of the crystallization of a 2D electron system.

We come back, however, to an unusual form of the dispersion relation for longitu-
dinal waves in an electron crystal. The group velocity of longitudinal vibrations with
the dispersion law (3.7.3) tends to infinity as k → 0. This nonphysical result is due
to neglecting the electromagnetic wave retardation. In describing the electron interac-
tion, we considered only the electrostatic potential energy (3.7.1). When this energy
is calculated, the dominant contribution comes from the terms corresponding to large
distances R(n − n′) when the electromagnetic wave retardation is significant.

3) The exact calculation of 2D lattice sums gives in s2
t the numerical multiplier

0.138 that differs from the approximate result (3.7.5) by 10 per cent.
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We assume that the dispersion law (3.6.18) is valid only for those k at which the
group wave velocity is small compared with that of light c, i. e., under the condition

ak � e2

amc2 . (3.7.6)

The condition (3.7.6) allows, in principle, the existence of a wide interval of wave-
lengths simultaneously satisfying the conditions that the long-wave approximation be
applicable and the dispersion law (3.7.3) be valid.

Although the region of the dispersion law applicability (3.7.3) is rather wide, the re-
sulting nonphysical singularity for k → 0 stimulates us to clarify how this singularity
will vanish in a more consistent calculation. We consider a plane 2D electron crystal
in an unbounded 3D medium with dielectric constant ε = 1 and consider the problem
of vibrations of a 2D electron system from a different point of view. It is known that
the accelerating electric charges radiate electromagnetic waves. In the quasi-static
approximation used above, the radiation is absent. But it is necessary to make sure
that there is also no radiation in the volume with dynamic effects taken into account,
i. e., it is necessary to prove that the electromagnetic wave is localized in space near
a 2D electron crystal. This is possible if the dispersion law of electromagnetic vibra-
tions connected with electron crystal vibrations is incompatible with the dispersion
law ω = ck, where c is the light velocity in vacuum (in the medium with ε = 1).

Not taking into account the specific dielectric properties of a surrounding medium,
we assume that it provides the electrons move only in the crystal plane (the plane
xOy). We shall describe the electromagnetic field by means of scalar (ϕ) and vec-
tor (A) potentials. The medium with a 2D electron crystal has a specific plane (the
plane z = 0) with trapped but movable electric charges that have surface charge den-
sity ρs = −ens∂ξk/∂xk (k = 1, 2) and the surface current density js = ens∂ξ/∂t.
Therefore, the equations for the potentials ϕ and A, in the long-wave approximation
are

∆ϕ − 1
c2

∂2 ϕ

∂t2 = 4πens
∂ξk

∂xk
δ(z), k = 1, 2;

∆A − 1
c2

∂A
∂t2 = −4πens

∂ξ

∂t
δ(z),

(3.7.7)

where δ(z) is the delta-function, and the dependence of ξ on time and coordinates (x
and y) is found from an obvious equation for the electron motion in the continuum
approximation

m
∂2ξ

∂t2 = eE|z=0 ≡ −e
(

grad ϕ − ∂A
∂t

)∣∣∣∣
z=0

, (3.7.8)

where E in the mean electric field. Using the linear approximation the mean magnetic
field acting on the electron may not be taken into account in the Lorentz force.
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It is evident that (3.7.7), (3.7.8) admit the solutions

ϕ = ϕ0e−q|z|eikζ−iωt, A = A0e−q|z|eikζ−iωt, ξ = ξ0eikζ−iωt

q2 = k2 − ω2/c2, ζ = (x, y).
(3.7.9)

The presence of the delta-like right-hand sides in (3.7.3) is equivalent to jumps
of the space derivative of the potentials with respect to the coordinate z at z = 0.
Therefore,

ϕ0 = −2πi
ens

q
kξ0, A0 = −2πi

ensω

qc
ξ. (3.7.10)

We substitute (3.7.10) into (3.7.8) to obtain

mω2ξ0 =
2πe2ns

q

[
k(kξ0) − ω2

c2 ξ0

]
. (3.7.11)

Multiplying both parts of (3.7.11) by the vector k, we write implicitly the dispersion
law for longitudinal (plasma) vibrations

ω2 =
2πe2ns

m
q ≡ 2πe2ns

m

√
k2 − ω2

c2 . (3.7.12)

Solving (3.7.12) for ω2, we renormalize the dispersion law for longitudinal vibra-
tions to include the electromagnetic wave retardation

ω2 = 2(ck∗)2



√

1 +
(

k
k∗

)2

− 1


 , (3.7.13)

where k∗ = πe2ns/mc2 is the characteristic wave vector whose value is shared by two
regions of a different behavior of the dispersion law (3.7.13). A plot of the dispersion
law for longitudinal vibrations of a 2D electron crystal is given in Fig. 3.6.

For k � k∗, we get the dispersion law of electromagnetic waves in a medium
with ε = 1: ω = ck. Thus, the maximum long-wave longitudinal vibrations of an
electron crystal (k � k∗) prove to be consistent with field vibrations: for ω → ck the
parameter q → 0 and the electromagnetic wave penetrates deep inside the medium.
For k � k∗ we come back to the dispersion law (3.7.3). Thus, shorter-wave vibrations
(but under the condition ak � 1) have the dispersion law that differs greatly from
that for electromagnetic waves in the medium. Therefore, the corresponding field
vibrations cannot exist in the bulk far from a 2D electron crystal and they are localized
near it.

However, it should be noted that the region where the dispersion law (3.7.13) is
essentially renormalized is not important in experiments with a 2D electron crystal on
the helium surface. Indeed, with existing electron densities ns ∼ 108 − 1010 cm−2,
we have k∗ ∼ 10−5 − 10−3 cm−1, so that the characteristic wavelength λ∗ = 2π/k∗
is too large for laboratory conditions.
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Finally, we dwell briefly on the renormalization of the dispersion law for transverse
sound vibrations. Equation (3.7.11) admits no transverse vibrations (for q > 0) local-
ized near a 2D electron crystal. This is due to the fact that (3.7.11) is obtained in the
continuum approximation, completely ignoring the periodic structure of a 2D electron
crystal. Both the derivation of the dispersion law (3.7.5) and its renormalization can
be obtained only on the basis of a certain discrete model.

Fig. 3.6 Transformation of limiting long-wave dispersion law for 2D
plasma vibrations.

3.8
Long-Wave Vibrations of an Ion Crystal

Let us discuss the equations for the vibrations of a 3D lattice composed of ions. The
equations of motion of a crystal (2.8.6) in the long-wave approximation and the elas-
ticity theory equations (2.8.7) were obtained using the assumption that the interaction
of vibrating atoms decreases rapidly with increasing distance between them. Thus,
expanding the displacement fields in a series, we can use only its leading terms and
reduce the equation of crystal motion to a system of second-order differential equa-
tions. However, our experience of studying the optical vibrations of two-dimensional
dipole lattices shows that this procedure is not always possible. If a polyatomic lattice
does not consist of neutral atoms, but of electrically or magnetically active dipoles
or ions (electrons), the interaction potential between them decreases weakly with dis-
tance and the standard method of expansion in a series over the displacement gradients
is inapplicable.

Apart from that, under lattice vibrations the moving ions excite dynamical electro-
magnetic fields in a crystal whose retardation effect is important. But, for long-wave
3D crystal vibrations the electromagnetic interaction is easily taken into account by
means of the Maxwell equations for a continuous medium.

A macroscopic approach allows one to divide the ionic interactions (for simplicity
we assume these to be point charges) into two types with an essentially different physi-
cal origin. The first type is represented by the interactions (determined unambiguously
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by local conditions) that are described by the matrix of atomic force constants α(n).
These interactions as well as the atomic ones are responsible for the elastic properties
of nonionic crystals. The second type is generated by the action of the mean electric
field in a crystal on the ion charge (the effect of the mean magnetic field on moving
ions can be neglected4). This type, also involving the Coulomb ion interaction, cannot
be determined by local conditions only and is described by introducing macroscopic
fields.

We now realize the program proposed. In the ionic crystal, equations of the type
(1.8.4) should be written for each ion sublattice separately. If us(n) is the displace-
ment of the n-th site of the sublattice with number s, we have:

ms
d2ui

s
dt2 = ∑

s′
{Cik

ss′u
k
s′ + Cikl

ss′ �l uk
s′ + Ciklm

ss′ �l �muk
s′ } + esEi, (3.8.1)

where es is the s-th ion charge in the unit cell (by virtue of electric neutrality,
∑s′ es = 0), E is the averaged electric field strength in a crystal. The tensors of second,
third and fourth rank Css′ , are obviously connected with the elements of the matrix of
atomic force constants in a polyatomic lattice. It follows from their definition and the
equality (3.2.4) that

∑
s

Cik
ss′ = ∑

s′
Cik

ss′ = ∑
ns

αik
ss′(n) = 0. (3.8.2)

Furthermore, in the ionic crystal where each ion is an inversion center, Cikl
ik ≡ 0.

For crystals such as NaCl, we shall further use the last identity. We introduce by
(3.2.13) the displacement of the center of mass of a unit cell u, as well as the relative
displacement of ions ξs = us − u. We keep on the r.h.s. of (3.8.1), the lowest-order
space derivatives of the vector u and independent displacements ξs

ms
d2ui

s
dt2 = ∑

s′
{Cik

ss′ξ
k
s′ + Ciklm

ss′ �l �muk} + esEi. (3.8.3)

In this approximation, the dynamic equations for the vectors u and ξs are separated

Ms
d2ui

s
dt2 = ciklm �k �luk + esEi, ciklm = ∑

ss′
Ciklm

ss′ ;

ms
d2ξ i

s
dt2 = ∑

s′
Cik

ss′ξ
k
s′ + esEi.

(3.8.4)

Equations (3.8.3) should be solved together with the system of macroscopic
Maxwell equations whose form is well known. We note some points that refer to

4) Even in the region of limiting vibration frequencies (ω ∼ 1013c−1) the ion
motion velocities are less than the sound velocities in a crystal (v < s ∼
105 cm/s) and the Lorentz force generated by the magnetic field is vanish-
ingly small compared to the electric force.
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writing and solving the Maxwell equations. First, ionic crystals are dielectric (in-
sulator) crystals and have no marked magnetic properties. Thus, the only quantity
that refers to the characteristics of the medium properties and is involved in Maxwell
equations is the crystal polarization vector P. We remind ourselves that the vector P
is included in the definition of electric induction of a dielectric D: D = E + 4πP.
Then, since we consider the ions as point charges, we should relate the vector P only
with the displacement of the ions from their equilibrium positions

P =
1

V0
∑

s
esus ≡ 1

V0
∑ esξs. (3.8.5)

We analyze the equations for crystal ion vibrations by considering NaCl-type crys-
tals that possess cubic symmetry and contain only two ions in the unit cell. Each of
the ions is a center of symmetry (Fig. 0.2). In this case (3.8.4) will be much simplified

m1ξ̈ i
1 = Cik

11ξk
1 + Cik

12ξk
2 + e1Ei;

m2ξ̈ i
2 = Cik

21ξk
21 + Cik

22ξk
2 + e2Ei.

(3.8.6)

By virtue of the cubic symmetry of a crystal and the properties (3.8.2) all the elements
of the matrix Cik

ss′ , are expressed through one scalar quantity:

Cik
ss′ = Css′δik, C11 = C22 = −C12 = −C21 = −α0. (3.8.7)

To be specific, let the subscript 1 refer to a positive ion (e1 = e, e2 = −e). Then
(3.8.6), taking into account (3.8.7), will be

m1
d2ξ1

dt2 = −α0(ξ1 − ξ2)eE;

m2
d2ξ2

dt2 = −α0(ξ2 − ξ1)eE.

(3.8.8)

Equations (3.8.8) can be replaced by a single equation for the relative displacement
ξ = ξ1 − ξ2:

µ
d2ξ

dt2 = −α0ξ + eE, (3.8.9)

where µ is the reduced mass of a unit cell (µ = mlm2/M). The crystal polarization
is expressed through the displacement ξ

P =
e

V0
ξ. (3.8.10)

Equations (3.8.9), (3.8.10) and also the Maxwell equations describe the combined
(coupled) optical ion crystal vibrations and the electromagnetic field vibrations. Thus,
the above system of equations allows one to take into account the interaction of a free
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electromagnetic field and independent optical vibrations of a crystal. The interaction
between electromagnetic waves and the optical eigenvibrations of a crystal is espe-
cially large when their frequencies and the wave vectors almost coincide (under the
resonance conditions). As a result of such an interaction, collective excitations of a
new type known as polariton vibrations appear. This is why the long-wave ion crystal
vibrations are analyzed within a macroscopic theory of polaron excitations.

It is known from electrodynamics that the displacement field ξ is excluded from
Maxwell equations by incorporating the dielectric permeability of the medium5, ε,
relating the Fourier time components of the vectors D and E:

D(ω) = ε(ω)E(ω). (3.8.11)

To obtain the dielectric permeability, we consider the harmonic vibrations of all
fields. For stationary vibrations with frequency ω, (3.8.9) is transformed to the alge-
braic one

(ω2
0 − ω2)ξ =

e
µ

E, (3.8.12)

where ω2
0 = α0/µ is the square of the characteristic frequency that is the limiting

optical frequency for a crystal where there is no interaction with an electromagnetic
field.

If ω �= ω0, we obtain trivially from (3.8.10)–(3.8.12) an expression for the dielec-
tric permeability

ε(ω) = 1 +
ω2

pl

ω2
0 − ω2

≡
ω2

0 + ω2
pl − ω2

ω2
0 − ω2

, (3.8.13)

where ω2
pl = 4πe2/µV0 is the square of the so-called plasma frequency (ωpl is

the frequency of the eigenvibrations of an ionic 3D plasma whose ions interact only
through a macroscopic Coulomb field), µ is the reduced mass of a pair of ions with
opposite signs, V0 is the volume of this pair. If we take V0 ∼ 10−23 cm3 and assume
µ ∼ 5 × 10−23 g, it is easily seen that ωpl ∼ 1013c−1. Therefore, we may assume
that ωpl ∼ ω0.

With formula (3.8.13) for dielectric permeability, we can directly write the dis-
persion law of transverse vibrations for a crystal–electromagnetic field system (the
possible trivial decomposition of electromagnetic vibrations into transverse and lon-
gitudinal ones results from the symmetry of a cubic crystal). In fact, the transverse
electromagnetic vibrations (electromagnetic waves) in a medium with dielectric per-
meability ε(ω) have the dispersion law

ω =
ck√
ε(ω)

, (3.8.14)

5) As the NaCl-type crystal has cubic symmetry, the dielectric permeability
tensor of such a medium reduces to a single constant.
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where c is the light velocity in vacuum. Substituting (3.8.13) into (3.8.14), we write
the dispersion law for transverse vibrations as

c2k2 = ω2
ω2 − ω2

0 − ω2
pl

ω2 − ω2
0

. (3.8.15)

The longitudinal electromagnetic vibrations with nonzero frequency are possible
in the medium only when6 D = 0, when E = −4πP. But for E �= 0, it follows
from (3.8.11) that the frequencies of the corresponding vibrations are zeros of the
functions ε(ω): ε(ω) = 0. Thus, longitudinal vibrations are possible only at frequen-
cies ω = ω1, ω2

l = ω2
0 + ω2

pl. Therefore, their dispersion law reduces to a trivial
dependence; the frequency coincident with the value ωl is constant.

The dispersion laws for noninteracting electromagnetic waves and optical crystal
vibrations can be written in a simpler form by formally excluding the interaction in
the system concerned, i. e., by setting e = 0. The Maxwell equations will then reduce
to the field equations in vacuum and the dispersion law for electromagnetic waves will
be of a simple form

ω = ck. (3.8.16)

The dispersion law for optical vibrations follows from (3.8.12) with e = 0

ω = ωl . (3.8.17)

The limiting simplicity of this dispersion law follows from the condition ak � 1.
We note that the plots of the dispersion laws (3.8.16), (3.8.17) (Fig. 3.7a, straight lines
1 and 2, respectively) intersect. At the intersection point of the plots the frequencies
and wavelengths of vibrations of different nature coincide and the above-mentioned
cross situation arises. Therefore, when even a small interaction between vibrations oc-
curs, resonance considerably affecting the electromagnetic and mechanical processes
of the system concerned is observed.

Indeed, we come back to the dispersion law of transverse vibrations (3.8.15) where
we have taken into account the interaction required. If ω � ω0, (3.8.15) gives the
dispersion law for electromagnetic waves in the medium with a certain static dielectric
permeability

ω =
ck√
ε(0)

, ε(0) = 1 +
(

ωpl

ω0

)
.

Under such low-frequency vibrations, the lattice manages to adapt to the electro-
magnetic field, causing a decrease in the electromagnetic wave velocity only.

If ω � ωl the dispersion law for electromagnetic waves in vacuo (3.8.16) follows
from (3.8.15). The electromagnetic waves with such frequencies that arise in a crystal

6) The condition D = 0 for ω �= 0 is a result of Maxwell’s equation for the
dielectric

curl H =
1
c

∂D
∂t

= −i
ω

c
D,

and the longitudinal character of vibrations (curl H = 0).
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Fig. 3.7 Dispersion law of polariton vibrations: (a) dispersion curves
of independent field and crystal vibrations when there is no interaction;
(b) removal of degeneracy; (c) vibration frequencies when the retarda-
tion (c = ∞) is neglected.

do not force the lattice to move because of its inertia, so that the crystal does not react
to the wave transmission.

In the frequency range ω ∼ ω0, the dispersion law ceases to be linear (Fig. 3.7b).
A radical rearrangement of the dispersion law at frequencies ω ∼ ω0 testifies to
a resonance character of the interaction between the electromagnetic field and the
optical vibrations at ω = ω0.

It follows from (3.8.13) that at frequencies that do not correspond to the crystal vi-
brations concerned, the dielectric permeability becomes negative (total wave reflection
from a crystal).

Finally, we consider an extreme form of the dispersion law for transverse vibrations
in a special case when the retardation of the electromagnetic waves are entirely ne-
glected (c → ∞). In this case for k �= 0, (3.8.15) yields the relation ω = ω0 that is
the same as the dispersion law of optical vibrations (3.8.17) for the lattice noninter-
acting with the field. For ω �= ω0, (3.8.15) is consistent only for k = 0.

The longitudinal vibrations are retardation independent (they are quasi-static), so
that the plots of the dispersion laws at c = ∞ have the form shown in Fig. 3.7c.

The difference in the plots in Fig. 3.7b is manifest at wavelengths for which
ak<̃a(ω0/c) ∼ s/c, where s is the sound velocity in a crystal. As the ratio
s/c ∼ 10−5, the retardation effects the crystal vibration spectrum in a small part of
the allowed interval of k. Thus, in all problems where the vibrations with wavelengths
satisfying the condition s/c � ak � 1 are dominant, the retardation is insignificant
and the optical vibrations in an ionic crystal should be associated with the frequency
ω0 for transverse mechanical vibrations, and with the frequency ωl for longitudinal
vibrations, caused by a purely static electric field.

The ratio between transverse and longitudinal vibration frequencies is related to
macroscopic characteristics of the ionic crystal, namely, the limiting values of its di-
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electric permeability. In fact, it directly follows from (3.8.13) that

(
ωl

ω0

)2

=
ε(0)
ε(∞)

. (3.8.18)

Although, using (3.8.13) it is possible to conclude that ε(∞) = 1. But this property
of the model concerned is not used in (3.8.18). If we reject the point charges model
and take into account the electric structure of ions that allows one to consider them
being polarizable in an external field, we come to the conclusion that ε(∞) �= 1, but
in this case too (3.8.18) remains valid7.

3.8.1
Problems

1. Find the dispersion relation for longitudinal vibrations of a 1D chain with equidis-
tant oscillators. Discuss the possible existence of similar 1D systems with an inhomo-
geneous ground state.

Hint. Assume each atom possesses the energy Un = (1/2)mω2
0u2

n and take into
account the interaction of nearest neighbors only.

Solution. The dispersion law is

ω2 = ω2
0 +

2α(0)
m

sin2 ak
2

,

if α(0) < 0 and 2 |α(0)| > mω2
0 then for a certain k = k0 in the range 0 < k <

π/a the vibration frequency ω vanishes. Thus, such a system has an equilibrium
superlattice with period b = π/k0.

2. Find the long-wave dispersion relation for librational vibrations of a 2D dipole
lattice, taking into account the electromagnetic wave retardation.

3. Find the long-wave dispersion relation for a 2D electron crystal in a magnetic field
H perpendicular to the crystal plane.

Solution.

ω2 =
(

eH
mc

)2

+
Ak

m∗(k)
.

7) By the frequency ω = ∞ we mean, in the last case, the frequency satisfying
the condition ω � ωl , but still remaining small compared to the character-
istic frequencies of the interatomic electron motion.



4
Frequency Spectrum and Its Connection with the Green
Function

4.1
Constant-Frequency Surface

A set of the polarization vectors e(k, α) of crystal vibrations and the dispersion law

ω = ωα(k) (4.1.1)

provide full information on the character of vibrational states of the lattice. However,
to understand some phenomena generated by lattice vibrations, the geometric (more
exactly, topographic) representation of the dispersion law seems to be more instru-
mental than its analytical notation (4.1.1). This can be done by the introduction and
analysis of so-called isofrequency surfaces.

Isofrequency surfaces are constructed independently for each branch of vibrations,
so that in writing the dispersion law (4.1.1), we omit the index α, implying one of the
branches.

An isofrequency surface or a constant-frequency surface is the surface in k-space
described by

ω(k) = ω, ω = constant. (4.1.2)

Let us elucidate how the form of isofrequency surfaces changes when the frequency
ranges from ω = 0 up to the maximum possible one. For small frequencies the
dispersion law of a crystal coincides with the dispersion law of sound waves, so that
the isofrequency surface is determined by

k =
ω

s(κ)
, κ =

k
k

, (4.1.3)

where s(κ) is the sound velocity. Expression (4.1.3) is a reason to introduce another
name of the isofrequency surface for low-frequency sound vibrations, namely, a slow-
ness surface.

As the sound velocity in a crystal is a finite quantity for all directions of κ, it follows
from (4.1.3) that the corresponding slowness surfaces are closed (and similar to each

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40508-9
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other). If we look at the figure where these surfaces are crossed by the plane that goes
through a point k = 0 (Fig. 4.1a), we see that the frequencies ω1 and ω2 satisfy the
condition ω1 < ω2 (an isofrequency surface for a smaller frequency is inside that for
larger frequency). The slowness surfaces for ω → 0 are not necessarily convex, they
can be “pillow”-shaped (Fig. 4.1b).

The fact that the constant-frequency surface even of long-wave crystal vibrations
may be other than convex leads to some interesting physical results. The parts where
the cross section of an isofrequency surface is convex are isolated from those where
it is concave by the points with zero cross-sectional curvature (Fig. 4.1b). In a 3D
k-space, the convex parts of an isofrequency surface are isolated from the concave
ones by the lines along which the Gaussian (total) surface curvature vanishes. As an
example, we consider a constant-frequency surface for one of the transverse vibration
modes in a germanium crystal, where the larger part of the mode is convex. Since the
Ge crystal has cubic symmetry, only one octant is shown in Fig. 4.2. The thick lines
illustrate the geometrical position of the points with zero Gaussian curvature. The
characteristic directions, for which the curvature is concave, are also shown.

Fig. 4.1 Cross sections: (a) of convex isofrequency surfaces; (b) of
nonconvex isofrequency surfaces.

The isofrequency surfaces for frequencies close to the maximum frequency of
acoustic vibrations ωm have a much simpler form. Indeed, it follows from (1.4.4)
that constant frequency surfaces are as ellipsoids with centers at the point k = km

corresponding to the maximum frequency ωm. Counting the vector k from this point,
we get the following equation for an ellipsoid

1
2

γijkikj = ωm − ω, ωm − ω � ωm. (4.1.4)

A set of ellipsoids (4.1.4) crossed by the plane that goes through their common
center may be compared with those in Fig. 4.1a, but now ω1 > ω2 (an isofrequency
surface for larger frequency is placed inside that for smaller frequency).

On clearing up the topology of isofrequency surfaces at the boundaries of the eigen-
frequency band of acoustic vibrations, we note that the points where ω = 0 and
ω = ωm repeat periodically in a reciprocal space due to the periodicity properties



4.1 Constant-Frequency Surface 127

dispersion law. To image the corresponding geometrical picture, we consider a sym-
metrical enough crystal whose vibration frequencies take maximum values only at the
unit cell vertices of a reciprocal lattice.

Let the k1Ok2 plane in reciprocal space correspond to a certain “good” crystallo-
graphic direction. We denote by b1 and b2 the reciprocal lattice vectors along the
axes k1, k2 and assume that ω = 0 at the point k1 = k2 = 0, and ω = ωm

at k1 = (1/2)b1, k2 = (1/2)b2. The points (0, 0), (0, b2), (b1, 0), (b1, b2) are
then surrounded by the closed isofrequency surfaces “expanding” with increasing ω

(ω � ωm, and the closed surfaces “compressing” with the frequency increasing
(ω − ωm � ωm) will surround the points ((1/2)b1, (1/2)b2) (Fig. 4.3). The prop-
erties of closed surfaces expanding and compressing with rising ω cannot transform
into each other without changing their topology. In order to pass from the surface of
one set to that of another set, it is necessary to “unscrew” the surface. But the closed
surface cannot be unscrewed. Thus, apart from closed isofrequency surfaces there ex-
ist isofrequency surfaces of another geometrical type, e. g., the isofrequency surfaces
ranging within ω1 < ω < ω2 (Fig. 4.3). These surfaces passing continuously from
one unit cell of a reciprocal lattice to another one are called open.

Fig. 4.2 Isofrequency surface for one of the branches of Ge crystal
vibrations.

Generally, points of the type (0, (1/2)b2) or (b1, (1/2)b2) through which the
isofrequency surfaces are transformed into open ones are the conical points in a 3D
k-space. We can imagine the form of constant-frequency surfaces of real crystal vibra-
tions studying the results of calculations of isofrequency surfaces for a face-centered
cubic lattice of Al (Walker, 1956). Figure 4.4 shows the cross sections of the isofre-
quency surfaces of a longitudinal branch vibration in Al inside the same Brillouin
zone. The fractional numbers near the cross section lines show the value ω/ωm for
the branch concerned. The conical points are not singled out, but they are positioned
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Fig. 4.3 Cross section of isofrequency surfaces of Ge crystal vibrations
through the plane kz = 0.

in the frequency range 0.8 < ω/ωm < 0.825. Near such points the dispersion law is
written as

ω = ωk + γ1k2
1 + γ2k2

2 − γ3k2
3, (4.1.5)

where the constant coefficients γ1, γ2, γ3 have the same signs, the vector k is mea-
sured from the conical points, the axis k3 is directed along the axis of the correspond-
ing cone. The value ωk at the conic point is determined by a specific form of the
dynamical matrix A(k) of the crystal.

Fig. 4.4 Cross section of calculated isofrequency surfaces of a longi-
tudinal branch of vibrations of Al (Walker 1956): (a) the plane (100);
(b) the plane (110).

The equation for isofrequency surfaces resulting from (4.1.5) determines a set
of hyperboloids. If all the coefficients γα are positive when ω < ωc, we ob-
tain double-banded hyperboloids, and when ω > ωc single-banded ones (Fig. 4.5,
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ω1 < ωc < ω2). Similarly, we can trace the specific forms of isofrequency surfaces
of optical branches of crystal vibrations. No matter how complicated the dispersion
law of an optical branch may be, the corresponding frequencies are always placed in
a band of finite width and the edges of this band are the extremum points for the func-
tion ω = ωα(k), α = 4, 5 . . . . This means that the dispersion law near the optical
band edges is quadratic, and the isofrequency surfaces are ellipsoids of the type (4.1.4)
where the matrix γij is positively definite in the vicinity of the maximum frequency,
and it is negatively definite in the vicinity of the minimum frequency.

Fig. 4.5 The form of isofrequency surfaces near the conical point.

Concluding the geometrical analysis of constant-frequency surfaces, we note that
the direction of the wave group velocity is totally dependent on the form of an isofre-
quency surface that passes through the point k. Indeed, the group velocity is deter-
mined by (1.4.10), i. e., by the gradient in k-space of the function ω(k). The gradient
is directed along the normal to the surface of constant level of the function for which it
is calculated, so that the velocity v(k) is directed along the normal to an isofrequency
surface going through the point k.

4.2
Frequency Spectrum of Vibrations

To explain some properties of crystals, one does not need to have exhaustive informa-
tion on vibrations such as provided by the dispersion law. It suffices to know only the
frequency distribution of the vibrations. In view of this, the vibration density concept
or the frequency distribution function is introduced.
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Let us use the notation ε = ω2. The fraction of vibrations of the α-th branch dnα

whose frequencies are in the interval (ε, ε + dε) can be written as

dnα = Ngα(ε)dε, (4.2.1)

where N is the number of unit cells in the crystal1. The function gα(ε) is called
the density of states. Since for every branch of vibrations, this function is calculated
independently, the index α will be omitted in future. Obviously, the following formula
holds

g(ε) =
1
N ∑ δ

(
ε − ω2(k)

)
, (4.2.2)

where the dependence ω2(k) is determined by the crystal dispersion law, and the
summation is over all physically nonequivalent values of this vector (in one cell of the
reciprocal lattice or in the first Brillouin zone).

We transform (4.2.2) transforming the summation to the integration by the rule
(1.5.4) and, on changing the integration variables, we have

g(ε) =
V0

(2π)3

∫
δ
(

ε − ω2(k)
)

d3k =
V0

(2π)3

∫
δ
(

ε − ω2
) dω2 dSk∣∣∣∣∂ω2(k)

∂k

∣∣∣∣
, (4.2.3)

where V0 is the unit cell volume of the crystal, dSk is an element of the surface area
ω2(k) = ω2 = const.

On performing the integration over ω in (4.2.3), we obtain the ultimate formula for
the density of vibrational states

g(ε) =
V0

(2π)3

∮

ω2(k)=ε

dSk∣∣∣∣∂ω2

∂k

∣∣∣∣
, (4.2.4)

where the integration is carried out over the isofrequency surface ω2(k) = ε =
constant.

In many cases it is convenient to use the distribution function in frequencies ω,
rather than in squared frequencies ε. If we write the fraction of vibrations whose
frequencies lie in the interval (ω, ω + dω) in the form of dn = ν(ω) dω, then ν(ω)
will determine the frequency spectrum.

The normalization of the function ν(ω) is different from that of the function g(ε),
namely,

∫
ν(ω) dω = N.

A simple relation exists between the functions ν(ω) and g(ε):

ν(ω) = 2Ngωg(ω2), (4.2.5)

1) In a monatomic lattice, the number of unit cells coincides with the number of
atoms in the crystal. However, in a polyatomic lattice, this is not so, and to
preserve in (4.2.1) the normalization of distribution function of any branch∫

gα(ε)dε = 1 we will always use N as the number of unit cells in the
crystal.
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and for the functions ν(ω) one can write a formula similar to (4.2.4):

ν(ω) =
V0

(2π)3

∮

ω(k)=ω

dSk

v
, (4.2.6)

where the velocity definition (1.4.10) is taken into account.
If we are not interested in the frequency spectrum, but in the total number of vi-

brations whose frequencies are less that the fixed frequency ω, this number can be
established from

n(ω) =

ω∫

0

ν(ω) dω = N

ω2∫

0

g(ε)dε =
VΩ(ω)
(2π)3 , (4.2.7)

where Ω(ω) is the volume in k-space inside an isofrequency surface ω(k) = ω.
Apart from (4.2.4) or (4.2.5) that are useful in analytically calculating the frequency

spectrum for a given dispersion law, there are other ways of writing it, which are
instrumental in solving some questions that refer to the vibration spectrum. Thus,
coming back to the initial definition (4.2.2), we consider it from another point of view.
We use one of the Dirac δ-function definitions δ(x) and write the following chain of
equations:

δ(x) =
1
π

lim
γ→+0

γ

x2 + γ2 =
1
π

lim
γ→+0

Im
1

x − iγ
, (4.2.8)

where Im is the symbol for an imaginary part of a corresponding complex number.
Then, we write the relation resulting from (4.2.8) as

δ(x) =
1
π

lim
γ→+0

Im
d

dx
ln(x − iγ), (4.2.9)

and use it to transform (4.2.2):

Ng(ε) =
1
π

lim
γ→+0

Im
d
dε ∑

k
ln
[
ε − ω2(k) − iγ

]
. (4.2.10)

We rearrange the order of operations in (4.2.10) and write

Ng(ε) =
1
π

lim
γ→+0

d
dε

Im ln D(ε − iγ), (4.2.11)

where
D(ε) = ∏

k

[
ε − ω2(k)

]
. (4.2.12)

It is easily seen that the definition (4.2.12) coincides with that of (1.2.8) in a scalar
model. In the general case,

D(ε) = ∏
k,α

[
ε − ω2

α(k)
]

, (4.2.13)
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where the function ω2
α(k) describes the dispersion law of the α-th branch of vibrations,

and the formula (4.2.11) then gives the total density of vibrational states of the crystal.
We rewrite the definition of (4.2.9) taking all vibration branches in account:

g(ε) =
1
π

lim
γ→+0

Im
1
N ∑

k,α

1
ε − iγ − ω2

α(k)
. (4.2.14)

The last formula plays a major role in establishing the relation between the density of
vibrational states and the Green function.

4.3
Analysis of Vibrational Frequency Distribution

A specific form of the function g(ε) or ν(w) as well as the dispersion law ω(k) is
different for different crystals. We can thus discuss general concepts concerned only
with the behavior of the vibration density near some special points. Such points are
primarily the eigenfrequency band edges.

We begin by analyzing the distribution functions for the acoustic branch of vibra-
tions in the extremely low-frequency region ω � ωm, where the dispersion law is the
simplest:

ω = s(κ)k. (4.3.1)

It follows from (4.3.1) that the group velocity of the vibration wave v = ∂ω/∂k is
dependent only on the direction of the vector k (and is independent of its value). In
studying the general properties of the function ν(ω), one can put s = s0 = constant;
then dSk = k2dO = (ω2/s2

0)dO, where dO is an element of a solid angle in k-space.
As a result, for the frequency spectrum we have:

ν(ω) =
Vω2

2π2s3
0

. (4.3.2)

In an anisotropic case (s = s(κ)) the parameter s3
0 is obtained by certain averaging

of the function s(κ) in all directions of the vector k.
Thus we have shown that in the low-frequency region (ω � ωm) the function

ν(ω) is proportional to the frequency squared. The latter is a direct consequence of
the linear character of the dependence ω = ω(k) in the low-frequency region.

We write (4.3.2) in a somewhat different form admitting an elementary estimate of
the order of value of the function ν(ω) at low frequencies, namely

ν(ω) =
Nω2

2π2(s0/a)3 ∼ N
ω2

ω3
m

.

In this region using (4.2.5) for the function g(ε), we find

g(ε) =
V0

2π2s3
0

√
ε, ε � ω2

m. (4.3.3)
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The appearance of a so-called root singularity is connected with the fact that the
dispersion law written as ε = ε(k) = ω2(k) is quadratic for small k. From (4.3.3)
follows an estimate of the value of the vibration density: g(ε) ∼ √

ε/ω3
m.

Near the high-frequency boundary of the continuous spectrum (ωm − ω � ωm),
determining the reference origin for the vector k as for (4.1.4), the dispersion law can
be written as

ω = ωm − 1
2

γijkikj, (4.3.4)

and the equation for isofrequency surfaces is

k2(κ) =
2(ωm − ω)

γikκiκk
.

In the simplest (isotropic) version ω = ωm − (1/2)γk2 and then v = −γk =
−√2γ(ωm − ω) and also dSk = k2dO = 2(ωm − ω)dO/γ. As a result, for the
frequency spectrum we obtain

ν(ω) =
2V

π2(2γ)2/3

√
ωm − ω. (4.3.5)

In the general case, the coefficient before the root in (4.3.5) is obtained by averag-
ing in directions of the vector k. According to the above, the root singularity of the
frequency spectrum near the upper spectrum boundary, described by (4.3.5), is a result
of the quadratic dispersion law (4.3.4).

The density of states g(ε) near the high-frequency band edge of eigenfrequencies
has the form

g(ε) = V0

√
ω2

m − ε

(2π)2(γωm)3/2 , ω2
m − ε � ω2

m. (4.3.6)

Comparing (4.3.3), (4.3.6), we conclude that the density of states g(ε) = constant×√|ε − ε∗|, where ε∗ determines the position of any one of the boundaries of the con-
tinuous spectrum of squared frequencies.

Apart from the continuous spectrum boundaries, the vicinities of frequencies di-
viding isofrequency surfaces of different topology can also be analyzed. We restrict
ourselves to the case when the “boundary” isofrequency surface ω = ωc has a con-
ical point near which the dispersion law is given by (2.1.5). We assume that outside
a small neighborhood of the conical point, all isofrequency surfaces of a thin layer
near ω = ωc are regular and the velocity v does not vanish on them. The specific
properties of the density of vibrations that we expect at ω = ωc may only be as-
sociated with the contribution of vibrations corresponding to the small conical point
neighborhood. Thus, we draw a pair of planes k3 = ±K3 at such a distance from
the conical point where the isofrequency surfaces still have the form of hyperboloids
(Fig. 4.5), and calculate the fraction of vibrational states δn(ω) in the volume δΩ(ω)
limited by these planes and the hyperboloid ω(k) = ω. To simplify calculations we
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set γ1 = γ2 = γ, i. e., we assume the isofrequency surfaces near the conical point to
be rotation hyperboloids. Furthermore, we put γ > 0 and γ3 > 0.

If ω < ωc, the volume δΩ(ω) is determined by

δΩ(ω) = 2π

K3∫

k0
3

(k2
1 + k2

2) dk3 = 2π
γ3

γ

K3∫

k0
3

[
k2

3 − (k0
3)

2
]

dk3,

where the factor 2 takes into account the presence of two hyperboloid cavities and k0
3

determines the hyperboloid vertex: k0
3 =

√
ωc − ω/

√
γ3.

Thus,

δΩ(ω) = 2π
γ3

γ

{
1
3

K3
3 + K3

ω − ωc

γ3
+

2
3

(
ωc − ω

γ3

)3/2
}

. (4.3.7)

Using (4.3.7) we now take into account (4.2.7) and the definition of the frequency
spectrum function ν(ω) to calculate the contribution to ν(ω) of the states that corre-
spond to the conical point vicinity:

δν(ω) =
V

(2π)2γ
√

γ3

{√
γ3K3 −

√
ωc − ω

}
, ω < ωk. (4.3.8)

We calculate the same function for ω > ωc. Since in this case the isofrequency
surface has the form of a hyperboloid, for one sheet we have

δΩ(ω) =

K3∫

−K3

π(k2
1 + k2

2) dk3 = 2π
γ3

γ

{
1
3

K3
3 + K3

ω − ωc

γ3

}
.

Consequently, the contribution to the function ν(ω) of a small neighborhood of the
conical point is independent of frequency:

δν(ω) =
V

(2π)2γ
K3. (4.3.9)

The contribution to the density of vibrations near ω = ωc from the vibrational
states that correspond to the points in k-space, lying outside the conical point vicinity
are described by a regular frequency function. Thus, comparing (4.3.9) and (4.3.8),
we see that:

1. the function ν(ω) is a continuous frequency function at the point ω = ωc;

2. its plot has a break at this point;

3. its derivative has an infinite jump.
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It is characteristic that on approaching the point ω = ωc from the side correspond-
ing to closed isofrequency surfaces, the derivative dν/dω becomes infinite and, ap-
proaching the same point from the other side, the derivative remains finite.

The same singularity at the point concerned is typical of the function g(ε):

g(ε) =




g(εc) − A
√

εc − ε + O(εc − ε), ε < εc

g(εc) + O(εc − ε), ε > εc ,
(4.3.10)

where εc = ω2
c is the squared frequency at the critical point, A is a positive constant

value, O(x) is a small quantity of the order of x (for small x).
The spectral functions ν(ω) and g(ε) may also have singularities at other points, but

the latter are generally associated with frequencies at which an isofrequency surface
changes its topology. In the frequency range (0, ωm) at least two such frequencies ex-
ist. These frequencies separate the “layer” of open isofrequency surfaces from closed
surfaces and, as a rule, they determine the surfaces with conical points. Hence, at
least two critical frequencies can be expected at which the spectral functions possess
singularities as described (Fig. 4.6).

Fig. 4.6 Typical frequency spectrum [the functions ν(ω) and g(ε)] for
the acoustic branch of the dispersion law.

In the vicinity of critical frequencies associated with the conical points, the function
ω(k) is always expressed as (4.1.5), where all the coefficients γα (α = 1, 2, 3) have
the same sign. According to the terminology adopted, these frequencies are called
analytical critical points of type S. We distinguish between the crystal points of type
S1 when the coefficients are positive and those of type S2 when γα are negative. The
standard form of the singularities of the functions ν(ω) or g(ε) at the S-type points,
as well as their number inside the interval (0, ωm) is regulated by the van Hove theo-
rem: the frequency spectrum of each crystal branch should involve at least one crystal
point of both types S1 and S2. In the near vicinity of the S1-type point the frequency
spectrum has the form

ν(ω) =




ν(ωc) − B1
√

ωc − ω + O(ωc − ω), ω < ωc,

ν(ωc) + O(ωc − ω), ω > ωc,
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where ωc is the critical frequency, and in the vicinity of the S2-type point the following
expression is valid

ν(ω) =




ν(ωc) + O(ωc − ω), ω < ωc,

ν(ωc) − B2
√

ω − ωc + O(ω − ωc), ω > ωc,

where B1 and B2 are positive constants. The function g(ω) for each branch of vibra-
tions has at least four singular points: two eigenfrequency band edges and two S-type
critical points. At all these points, the singularity g(ε) implies that on the one hand
the function of each of these points is regular (in particular, it may vanish identically),
and on the other hand it has the form

g(ε) = g(ε∗) ± const
√

|ε − ε∗| ,

where ε∗ denotes the square of the frequency at the corresponding singular point.
Finally, let us discuss the singularities of the optical vibration spectrum. At the

optical vibration frequency band edges the dispersion law is quadratic, leading to the
“root singularity” for either the frequency spectrum ν(ω) or the density of states g(ε)
at both edges of the band of the allowed frequencies. The singularities inside the
optical frequency interval are determined by the van Hove theorems, because due to
these theorems the optical frequency band does not differ from the acoustic one.

Fig. 4.7 Frequency spectrum functions of the acoustic and optical
branches of the polyatomic lattice.

The total distribution of crystal lattice vibrations involves the densities for sepa-
rate branches. The plot of the total frequency spectrum can be obtained by imposing
(summing) plots such as shown in Fig. 4.7 with different ω, ωm1, ωm2, and different
positions of the singular points S1 and S2.

4.4
Dependence of Frequency Distribution on Crystal Dimensionality

The singularities of the frequency distribution function are transformed fundamentally
when going from a 3D lattice to a 2D or 1D lattice.
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The Distribution Functions of 2D Crystal Vibrations. The distribution functions of
2D crystal vibrations have singularities similar to 3D crystal singularities. They are at
the edges of the eigenfrequency spectrum and coincide with the frequencies that divide
the regions of closed and open isofrequency curves (Fig. 4.3). Full analysis of the sin-
gularities in a 2D case is little different from that presented in Section 4.3. Therefore
we restrict ourselves only to a qualitative characterization of the singularities, empha-
sizing their difference from those in a 3D crystal. A low-frequency (long-wave) limit
of the dispersion law for each branch in the isotropic approximation is

ε = s2k2 = s2(k2
x + k2

y). (4.4.1)

The behavior of the density of vibrational states g(ε) for ε → 0 is estimated by
(4.4.1) using the following chain of equations

g(ε)dε =
S0

(2π)2 d2k =
S0

(2π)2 dkx dky ∼ a2k dk ∼
( a

s

)2
dε ,

where S0 is the unit cell area of a 2D lattice. Thus, in the two-dimensional case

g(ε) → g(0) = const ∼
( a

s

)2
at ε → 0. (4.4.2)

Taking into account the relation between the two frequency distribution functions
(4.2.5), we see that

ν(ω) → 2Nωg(0) ∼ N
( a

s

)2
ω as ω → 0. (4.4.3)

The behavior of the density of states (4.4.2) and the frequency spectrum (4.4.3) in
the extremely low-frequency region differs from (4.3.2) and (4.3.3) for a 3D crystal.

As follows from (4.3.4) near the edge of the high-frequency spectrum we can write

ε = εm − γk2, to obtain g(ε)dε ∼ a2k dk ∼
(

a2

γ

)
dε. Consequently, the limiting

behavior of the vibration density is analogous to (4.4.2): g(ε) → g(εm) = constant ∼(
a2

γ

)
at ε → εm, i. e., the function g(ε) has a break at the point ε = εm, since

g(ε) ≡ 0 at ε > εm. This singularity of the vibration density also differs from the
dependence (4.3.6) that is typical for a 3D crystal.

We examine the vicinity of the frequency ωc corresponding to the analog of a con-
ical point in a 3D crystal, a point near which the isofrequency curves differ little from
hyperboli (Fig. 4.8a). The dispersion law near the frequency ωc can be written, similar
to (4.1.5), as

ω = ωc + γ1k2
1 − γ2k2

2, γ1γ2 > 0. (4.4.4)

We repeat the reasoning used in calculating the functions g(ε) and ν(ω) near the
frequency ωc in a 3D crystal. Let us draw two straight lines k2 = ±Q that cut off part
of the space near the point we are interested in and calculate a 2D volume (the area Σ
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in a 2D k-space) limited by these straight lines and the curve ω(k) = ω = constant.
We set for definiteness γ1 > 0 and γ2 > 0. For ω < ωc (curve 1 in Fig. 4.8a), we
then get

Σ1(ω) =
∫

dkx dky = 4
√

γ2

γ1

Q∫

k0

√
k2

2 − k2
0 dk2

=
4k2

0
√

γ2√
γ1

Q/k0∫

1

√
y2 − 1 dy ,

(4.4.5)

where k2
0 = (ωc − ω)/γ2.

Near the singular point, when k0 � Q we have from (4.4.5):

Σ1(ω) = 2
√

γ2

γ1

{
Q2 − k2

0 ln
Q
k0

}
. (4.4.6)

For ω > ωc (curve 2 in Fig. 4.8a)

Σ2(ω) = 4
√

γ2

γ1

Q∫

0

√
q2

0 + k2 dk2 =
4q2

0
√

γ2√
γ1

Q/q0∫

0

√
y2 + 1 dy ,

where q2
0 = (ω − ωc)/γ2 and, thus, near the singular point (q0 → 0), we have

Σ2(ω) = 2
√

γ2

γ1

{
Q2 + q2

0 ln
Q
q0

}
. (4.4.7)

The terms in (4.4.6), (4.4.7) that lead to a singular behavior at |ω − ωc| → 0 are

Σ1(ω) = 2
√

γ2

γ1

{
Q2 − ωc − ω

γ2
log

√
ωc − ω

}
, ω < ωk;

Σ2(ω) = 2
√

γ2

γ1

{
Q2 +

ω − ωk

γ2
log

√
ω − ωk

}
, ω > ωk.

(4.4.8)

Since the frequency spectrum is

ν(ω) =
S

(2π)2
dΣ
dω

,

where S is the crystal area, from (4.4.8) we directly derive the logarithmic singularity
at ω → ωc

ν(ω) =
S

(2π)2√γ1γ2
log
(

ωc

|ω − ωc|
)

. (4.4.9)
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Fig. 4.8 Singularities of the frequency distribution in a 2D crystal:
(a) isofrequency lines near the critical point of the 2D dispersion law;
(b) density of states in a 2D lattice with nearest-neighbor interaction.

Using (4.2.5), we see that the vibration density of a 2D crystal g(ε) also has a
logarithmic singularity at ε = εc = ω2

c and its singular part is symmetric in the
vicinity of this point:

g(ε) =
S0

(2π)2√γ1γ2εc
log
(

εc

|ε − εc|
)1/2

. (4.4.10)

As indicated in Chapter 3, there should exist no less than two such singular points.
If γ1 = γ2 two singular points merge to form one singularity.

For the simplest models the vibration density of a 2D crystal can be calculated
explicitly, e. g., in a scalar model for a crystal lattice with interaction of nearest neigh-
bors only. The dispersion law of vibrations is simple in this case and, for a rectangular
lattice with period a along the x-axis and period b along the y-axis, can be written as

ε = ω2
1 sin2 akx

2
+ ω2

2 sin2 bky

2
. (4.4.11)

We write the definition of the density of vibration states

g(ε) =
ab

(2π)2
d
dε

∫
dkx dky =

ab
(2π)2

d
dε

∫
ky(ε, k) dk, (4.4.12)

where ky(ε, kx) is the solution to (4.4.11) considered as an equation relative to ky.
The 2D integral in (4.4.12) is calculated in the area limited by the isofrequency curve
ε = constant and situated in one unit cell of the k-plane. The integration limits of
the last integral in (4.4.12) depend on whether the isofrequency curve intersects the
boundaries of the reciprocal lattice unit cell. If such a curve is closed and does not
intersect the unit cell boundaries the integration limits are obtained from the condition
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ky(ε, k) = 0. The change of the integration variables in (4.4.12) results in

g(ε) =
1

(πω1)2

x0(ε)∫

−x0(ε)

dx√
(ξ2 − sin2 x)(η2 − ξ2 + sin2 x)

, (4.4.13)

where ξ2 = ε/ω2
1 , η2 = (ω2/ω1)

2 and sin x0 = ξ.
We know that the isofrequency curve is closed at frequencies that are near edges of

the vibration spectrum. Thus, (4.4.13) describes the behavior of the vibration distri-
bution in these parts of the spectrum. The density of states g(ε) is shown in the form
of a total elliptic integral of the first kind K(k):

g(ε) =
2

π2ω1ω2
K

(√
ε(εm − ε)
ω1ω2

)
, (4.4.14)

where εm = ω2
1 + ω2

2. As K(0) = π/2, (4.4.14) agrees with (4.4.2). Calculating
the vibration distribution in the middle part of the eigenfrequency spectrum, we set
for definiteness η > 1. Then for ω2

1 < ε < ω2
2 the isofrequency curve intersects

the reciprocal lattice unit cell boundaries kx = ±π/a, and the density of states is
determined by (4.4.13) with x0 = π/2. Simple calculation shows that

g(ε) =
2

π2
√

ε(εm − ε)
K

(
ω1ω2√

ε(εm − ε)

)
. (4.4.15)

We note that (4.4.5) and (4.4.15) are symmetrical relative to permutation of ω1 and
ω2. Thus, their applicability conditions are: (4.4.14) is valid for 0 < ε(εm − ε) <

ω2
1ω2

2, and (4.4.15) – for ε(εm − ε) > ω2
1ω2

2 (Fig. 4.8b).
The elliptic integral K(k) has a logarithmic singularity at the point k = 1. This

singularity is typical for the function g(ε) at ε = ω2
1 and ε = ω2

2. The behaviors of
the functions (4.4.14), (4.4.15) near these points can be considered as a partial case of
the general relation (4.4.10).

One-Dimensional Structure. In the case of a linear chain where only the nearest
neighbors interact, an analog of (4.4.11) is the dispersion law

ε = εm sin2 ak
2

, (4.4.16)

where εm is the upper-band boundary of the possible frequency squares. It is important
that the dependence of the frequency ω on k given by (4.4.16), determines a monotonic
function in the range of values of the quasi-wave vector (0, π/a). This means that in
the internal points of the interval (0, ωm), the frequency distribution functions ν(ω)
and g(ε) of a 1D crystal with the dispersion law (4.4.16) have no singularities. Indeed,
from the definition of the vibration density g(ε) and (4.4.16) it follows that

g(ε) =
1

π
√

ε(ω2
m − ε)

. (4.4.17)
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Thus, the spectral characteristics of a 1D crystal differ from those of a 3D (and 2D)
one in that they have no singularities inside the continuous spectrum band. At the
ends of the continuous spectrum interval the singularities are more pronounced than
those of 3D and 2D crystals. It is clear from (4.4.17) that for ε → ε∗, where ε∗ is a
continuous spectrum edge,

g(ε) ∼ 1√|ε − ε∗|
. (4.4.18)

The frequency spectrum function of a 1D crystal with the nearest-neighbor interac-
tions is

ν(ω) =
2N

π
√

ω2
m − ω2

, (4.4.19)

where N is the number of atoms in the chain.
If the dispersion law of a lD crystal is a nonmonotonic function ω(k) such as in

Fig. 4.9a the spectral characteristics of 1D crystal vibrations at the points ω = ω1
and ω = ω2, will have distinctive singularities. Indeed, suppose that near k = k1 and
ω = ω1 the dispersion law is then given by

ω2 = ω2
1 − γ2

1(k − k1)2.

The contribution of this part of the dispersion law to the density of states is then
easily determined to be

δgε =
a
π

dk
dε




a
2πγ1

√
ε1 − ε

, ε < ε1;

0, ε > ε1.

Similarly, if we write the dispersion law near the points k = k2 and ω = ω2 in
the form of ω2 = ω2

2 − γ2
2(k − k2)2, the corresponding contribution to the vibration

density is

δgε =




0, ε < ε2 = ω2
2;

a
2πγ2

√
ε − ε2

, ε > ε2.

A plot of the density of states for a 1D crystal in the case when the interval (0, ωm)
has two singular points ε = ε1 (maximum) and ε = ε2 (minimum) is given in Fig. 4.9b.

4.5
Green Function for the Vibration Equation

The singularities of the spectrum of crystal vibrations can be analyzed, apart from
the geometric method, by the analytical one, which is based on the mathematical
structure of the equations of crystal lattice motion. The so-called Green dynamic
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Fig. 4.9 Spectrum of vibrations of a 1D crystal: (a) dispersion curve;
(b) singularity of the density of states.

function is used for this purpose. It is defined as follows. The equations of free
vibrations of a monatomic crystal lattice (1.1.12) are represented as

m
d2u(n, t)

dt2 + ∑
n′

A(n − n′)u(n′ , t) = 0. (4.5.1)

The Green function for unbounded crystal vibrations or the Green function of
(4.5.1) is called a solution to an inhomogeneous equation vanishing at infinity

m
d2

dt2 Gik(n, t|n0) + ∑
n′

αij(n − n′)Gjk(n′, t|n0) = −mδikδ(t)δnn0 , (4.5.2)

where δ(t) is the Dirac δ-function.
By virtue of space homogeneity of an unbounded crystal, the solution to the equa-

tion depends on the difference n − n0: G(n, t|n0) = G(n − n0, t). The Green func-
tion of any linear equation allows one to find a partial solution to an inhomogeneous
equation describing the induced motion of the system concerned. If the motion of
crystal atoms is determined by the force m f i(n, t):

m
d2

dt2 ui(n, t) + ∑
n′

αik(n − n′)uk(n′, t) = m f i(n, t), (4.5.3)

the partial solution to this equation is

ui(n, t) = −∑
n′

∫
Gik(n − n′, t − t′) f k(n′, t) dt′. (4.5.4)

However, use of the Green function is not limited to (4.5.4) alone. The Green
function gives rich information on the properties of a system whose free motion is
described by a homogeneous equation (4.5.1).

In a scalar model, the Green function G(n, t) is a solution to the equation

m
d2

dt2 G(n, t) +
1
m ∑

n′
α(n − n′)G(n′, t) = −δ(t)δn0. (4.5.5)
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We represent G(n, t) as the Fourier integral

G(n, t) =
1

2π

+∞∫

−∞

Gω2(n)e−iωt dω;

Gω2(n) =

+∞∫

−∞

G(n, t)eiωt dt,

(4.5.6)

and call the function Gε(n), where ε = ω2, the Green function of stationary crystal
vibrations. This function is defined as an appropriate solution to the equation with
behavior at infinity

εGε(n) − 1
m ∑

n′
α(n − n′)Gε(n′) = δn0. (4.5.7)

The Green function of stationary vibrations is dependent on ε, i. e., it depends only
on the frequency squared. Thus, judging from (4.5.6), (4.5.7), the frequency sign
in the argument of the time Fourier transformation of the Green function is of no
importance. However, in fact this is not so. By analyzing (4.5.1), (4.5.7), it is easy
to obtain the Green function for the vibrations of an ideal crystal. We perform the
following Fourier transformation of the function Gε(n)

Gε(n) =
1
N ∑

k
G(ε, k)eikr(n);

G(ε, k) = ∑
n

Gε(n)e−ikr(n),

(4.5.8)

determining the Green function in (ε, k) representation. We now perform an analo-
gous transformation of (4.5.7)[

ε − ω2(k)
]

G(ε, k) = 1, (4.5.9)

where, as before, the function ω(k) gives the dispersion law of a crystal. It follows
from (4.5.9) that the Fourier components of the Green function are

G(ε, k) =
1

ε − ω2(k)
. (4.5.10)

The formula (4.5.10) determines the Green function in (ε, k) representation. For
some methods of theoretical calculation of ideal crystal properties, this representation
is fundamental. As (4.5.10) is important, we write it in the general case when various
vibration branches in a crystal exist

Gij(ε, k) =
3

∑
α=1

ei(k, α)ej(k, α)
ε − ω2

α(k)
. (4.5.11)
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The form of the functions (4.5.10), (4.5.11) and, in particular, the appearance of
characteristic denominators is not specific only for the crystal vibrations but reflects
the general features of the Green function for systems with collective excitations. We
thus analyze the function G(ε, k).

The function G(ε, k) regarded as a function of the variable ε has a pole at the point
ε = ω2(k), i. e., at a point where ω coincides with the frequency of one, the eigen-
vibrations. We, therefore, arrive at the following important property of the Green
function. The poles of the Fourier components of the Green function are determined
by the spectrum of crystal eigenfrequencies or, in other words, by its dispersion law.

Using (4.5.8), we obtain the Green function for stationary vibrations (in a scalar
model) in the form

Gε(n) =
1
N ∑

k

eikr(n)

ε − ω2(k)
. (4.5.12)

Assuming quasi-continuity of the spectrum of the k-vector values we may rewrite
(4.5.12) in the form of an integral:

Gε(n) =
V0

(2π3)

∫
eikr(n)d3k
ε − ω2(k)

, (4.5.13)

where V0 is the unit cell volume.
The generalization of (4.5.12) is obvious in view of (4.5.11):

Gij
ε (n) =

1
N ∑

k,α

ei(k, α)ej(k, α)
ε − ω2

α(k)
eikr(n). (4.5.14)

Changing (4.5.14) to an integral form is accomplished analogously to the transfor-
mation from (4.5.12) to (4.5.13).

We now return to a scalar model. If the value of the parameter ε does not get into
the band of crystal eigenfrequency squares (in our case ε > ω2

m) the formula (4.5.13)
unambiguously determines a certain function n dependent on the parameter ε.

However, the case 0 < ε < ω2
m, i. e., when the frequency ω is in the continuous

spectrum interval, is more interesting. As the Fourier components of the Green func-
tion have a pole, the integral (4.5.13) is meaningless (it diverges). More exactly, it
is senseless in its literal interpretation when the parameter ε is considered to be real.
However, this singularity of the vibrational system behavior is typical for any reso-
nance system when damping (dissipation) of the eigenvibrations is neglected, and it
results in infinitely large amplitudes of vibrations as soon as the frequency of the ex-
citation force coincides with one of the eigenfrequencies of the system. It is known
how to overcome this difficulty. It is necessary to take into account at least small
damping of the eigenvibration existing in the system. For unbounded systems with
distributed parameters, whose eigenvibrations have the form of waves with a contin-
uous frequency spectrum, equations such as (4.5.13) can be regularized by choosing
special conditions at infinity. Formally, this reduces to the fact that the parameter ε
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should be regarded as complex rather than real, but with a vanishingly small imaginary
part. Adding even a small imaginary part to ε removes the divergence of the integral
(4.5.13), but generates some new problems2.

In discussing the general properties of the function G(ε, k), we focus on one purely
mathematical point. Let us represent the equation for stationary vibrations (1.1.17) in

the matrix (operator) form εu − 1
m

Au = 0. Equation (4.5.7) for the Green function

of stationary vibrations can be written in the same style: εG − 1
m

AG = I, where I is

the unit operator.
The solution to this equation can be easily found

G(ε) =
{

εI − 1
m

A
}−1

, (4.5.15)

if we introduce an inverse operator notation (the operator M−1 is inverse to M).
The Green function in the matrix (or operator) form (4.5.15) is sometimes called a

resolvent.
The formula (4.5.6) does not specify the representation where the Green function

is written, but it implies that the matrix G(ε) is diagonal in a representation in which
the operator A is diagonal. For a vibrating crystal this is a k-representation where
(4.5.10), (4.5.11) are derived.

4.6
Retarding and Advancing Green Functions

We return to (4.5.6), substitute (4.5.13) in it, and write the Green function as a
function of time

G(n, t) =
V0

(2π)4

∫∫
eikr(n)−iωt

ω2 − ω2(k) − iγ
dωd3k. (4.6.1)

To regularize the integral (4.6.1) we have just explicitly separated a small imaginary
component iγ.

Let us consider only the frequency transformation in (4.6.1), resulting in the integral

Gk(t) =

∞∫

−∞

e−iωt dω

ω2 − ω2(k) − iγ
. (4.6.2)

The coordinate representation of the Green function is determined by an obvious
transformation involved in (4.6.1)

G(n, t) =
V0

(2π)3

∫
Gk(t)eikr(n)d3k. (4.6.3)

2) In particular, the Fourier component of the Green function becomes depen-
dent on the sign of ω.
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The integral (4.6.2) is easily calculated by the residues method. The integration
should be performed over a closed path consisting of the real axis of the variable ω

and an arc of the infinitely remote semicircle. As the convergence of the integral and
its vanishing for an infinite semicircle is provided by the exponential factor, for t < 0
we should close the path above the real axis, and for t > 0 below it. As a result,
for t < 0 the integral (4.6.2) is determined by residues in the upper half-plane of a
complex variable ω, and for t > 0 this integral equals the sum of residues in the lower
half-plane.

Since the imaginary shift in the complex plane ω is determined by parameter γ,
the integration result in (4.6.2) is determined completely by the sign of the parameter
γ. The relation between the signs of γ and ω is then very important. In (4.6.1) and
(4.6.2), no assumptions were made with regard to the sign of γ, so that the ambiguity
in choosing the dependence of the sign of γ on the sign of ω indicates the ambiguity
in determination of the Green function by (4.6.1).

Let us assume that the sign of γ changes together with the sign of the frequency,
i. e., we admit γ = γ0 sign(ω). The Fourier component of the Green function for
which a new notation G(ω, k) was used, to avoid confusion with (4.5.10), then takes
the form

G(ω, k) =
1

ω2 − ω2(k) − iγ sign(ω)
. (4.6.4)

It is readily seen that for γ0 < 0 (4.6.4) determines a function of the complex
variable ω analytic in the upper semi-plane and at γ0 > 0, in the low semiplane.
Integrating in (4.6.2), we find the time dependence of the Green functions generated
by the Fourier components (4.6.4). For γ0 < 0, we have

GR
k (t) =




0, t < 0;

− sin [ω(k)t]
ω(k)

, t > 0.
(4.6.5)

By using the transformation (4.6.3), we get a retarding Green function GR(n, t).
This function describes the perturbation arising at any crystal point, with an instan-
taneous force applied at the coordinate origin. At infinity, it corresponds to waves
diverging from the origin.

When γ0 > 0, we have to determine

GA
k (t) =




− sin [ω(k)t]
ω(k)

, t < 0;

0, t > 0

(4.6.6)

to derive by means of (4.6.3) an advancing Green function GA(n, t). The advancing
Green function describes the crystal perturbations for t < 0 that generate a force con-
centrated at the origin at time t = 0. At infinity, it corresponds to waves converging to
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the origin. The choice between waves diverging and converging at infinity is the com-
plementary physical factor that can be formulated as additional conditions at infinity
and makes the sign of the parameter γ0 meaningful.

Finally, we consider the Green function for stationary vibrations for which there is
no energy flow at infinity (diverging and converging waves have the same amplitude,
thus, generating stagnant waves). However, for the stationary vibrations understood
literally, the time Fourier component of the Green function is determined by the fre-
quency square and does not depend on the sign of ω. Thus, the imaginary addition iγ
in (4.6.1) for the corresponding Green function should also be independent of the
sign ω, i. e., γ may be regarded as independent of ω.

We set γ = |γ| > 0 for all ω. Then using (4.5.10), we introduce the parameter γ

just into the argument of the Green function (4.5.10) and, instead of (4.6.4), we obtain

G(ω, k) = G(ε − i |γ| , k). (4.6.7)

We substitute (4.6.7) into (4.6.2) and integrate over frequency. As a result we obtain

Gk(t) =
i

2ω(k)




e−iω(k)t, t < 0;

e+iω(k)t, t > 0.
(4.6.8)

The Green function (4.6.8), of course, has a singularity at t = 0, but is nonzero for
any other t.

4.7
Relation Between Density of States and Green Function

In the definition (4.2.14) of the function g(ε), we compare the sum on the r.h.s. of
(4.2.14) with the expression (4.5.14) for the Green function. It is clear that the density
of states can be directly determined by the imaginary part of the Green function for
stationary vibrations with the coinciding arguments (n = 0)

g(ε) =
1
π

lim
γ→+0

Im Gll
ε−iγ(0). (4.7.1)

In determining (4.7.1), we used the property of the polarization vectors (1.3.2).
Thus the crystal vibrational density is determined by the imaginary part of the Green

function for stationary vibrations taken at zero. As all Green functions have the same
singularities, the vibrational density can be associated with the imaginary part of any
of them, e. g., be determined through a retarding Green function. We again consider
only one branch of vibrations (more exactly a scalar model) and analyze the (ω, k)-
representation (4.6.4) for the function GR

ω(n). We take into account the relation

lim
γ→0

Im
1

ω2 − ω2(k) + i |γ| sign ω
= lim

γ→+0

γ

(ω + iγ)2 − ω2(k)
,
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and, by analogy with the discussion above, we obtain

g(ω2) =
1
π

lim
γ→+0

GR
ω+iγ(0). (4.7.2)

To elucidate the meaning of the operations indicated in (4.7.1) and (4.7.2), we move
over from a summation to an integration in (4.2.14) for a scalar model

g(ε) =
1
π

V0

(2π)3 lim
γ→+0

Im
∫

d3k
ε − iγ − ω2(k)

, (4.7.3)

where the integration is over one unit cell in k-space.
If we now change the integration variable z = ω2(k) in (4.7.3), the formula will

transform into the obvious equality

g(ε) =
1
π

lim
γ→+0

Im

ω2
m∫

0

g(z) dz
ε − iγ − z

.

Indeed, for the real function g(ε) and the real variables ε and z, the following iden-
tity always holds

lim
γ→+0

∫
g(z) dz

ε ± iγ − z
= P.V.

∫
g(z) dz
ε − z

∓ iπg(ε), (4.7.4)

where P.V. means the principal value of the integral.
Relations (4.7.1), (4.7.2), important in real systems, are valid only for a homoge-

neous crystal. In order to analyze the crystal vibration spectrum with defects breaking
the space homogeneity of the system, we generalize these formula to an inhomoge-
neous case and clarify some formal mathematical points resulting in a relationship
such as (4.7.1).

We consider a certain problem on the eigenvalues for a linear Hermitian operator L̂
in an unbounded crystal

L̂ϕ − λϕ = 0. (4.7.5)

The Green function of (4.7.5) is said to be the function

Gλ(n, n′) = ∑
s

ϕ∗
s (n)ϕs(n′)

λ − λs
, (4.7.6)

where ϕs(n) and λs are the normalized eigenfunctions and eigenvalues of the opera-
tor L̂,

L̂ϕs − λϕs = 0; ∑
n
|ϕs(n)|2 = 1.

As the eigenfunctions for the ideal crystal vibrations are determined by (1.3.3), it is
easy to see that (4.7.6) leads directly to (4.5.12).
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We set in (4.7.6) n = n′ and sum the relation obtained over all lattice sites:

∑ Gλ(n, n) = ∑
s

1
λ − λs

. (4.7.7)

We introduce the density of eigenvalues g(λ) for the operator L̂ and, displacing the
parameter λ from the real axis, rewrite (4.7.7) as

1
N ∑ Gλ−iγ(n, n) =

∫
g(z) dz

λ − iγ − z
. (4.7.8)

Finally, we use the identity (4.7.4) and apply it to the r.h.s. of (4.6.7) to obtain

g(λ) =
1
π

lim
γ→+0

Im
1
N ∑

n
Gλ−iγ(n, n). (4.7.9)

The formula (4.7.9) is the desired generalization of (4.7.1) to the case of a spatially
inhomogeneous system.

The relation between the density of eigenvalues of a certain Hermitian operator and
the corresponding Green function (4.7.9) can be written in a more invariant form, if
one uses the Green operator concept. The Green function (4.7.6) can be regarded as
the site representation of the Green operator (resolvent)

Ĝλ = (λ − L̂)−1, (4.7.10)

given in the space of the eigenfunctions of the Hermitian operator L̂.
The sum involved on the r.h.s. of (4.7.9) should then be regarded as the trace of the

Green operator ∑
n

Gλ(n, n) = Tr Ĝλ.

Thus,

g(λ) =
1
π

lim
γ→+0

Im
1
N

Tr Ĝλ−iγ. (4.7.11)

Since the trace operation is invariant with respect to choice of representation,
(4.7.11) permits us to calculate the density of eigenvalues g(λ) in any representation
of the Green operator.

4.8
The Spectrum of Eigenfrequencies and the Green Function of a Deformed
Crystal

Generalizing (4.7.1) to the case of inhomogeneous crystal vibrations, we go over to
the relation (4.7.9) or its abstract formulation (4.7.11).

If the matrix L̂ in (4.7.10) describes the dynamic force matrix of a deformed crys-
tal, and λ coincides with the vibration eigenfrequency square, then (4.7.11) directly
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describes the squared frequency distribution in this crystal. However, (4.7.11) is ap-
plicable to a nonideal crystal only in the case when the crystal potential energy experi-
ences deformation (perturbation). However, situations when the crystal kinetic energy
is also perturbed are possible. If we include the kinetic energy perturbation of sta-
tionary vibrations in the matrix L̂, the kinetic energy will be a function of the squared
frequency: L̂ = L̂(λ). In this case, (4.7.11) is invalid and it should be generalized.

We consider the linear equation

L̂ϕ − λϕ = 0, (4.8.1)

whose Green operator (resolvent) is determined by (4.7.10)

G(λ) =
(
λ − L̂(λ)

)−1 . (4.8.2)

Let ϕs be the eigenfunctions and αs the eigenvalues of L̂ (s is the number of a
corresponding state): L̂(λ)ϕs = αs(λ)ϕs .

The value of λ corresponding to the eigenvalues of the problem (4.8.1) is found as
a solution to the equation

αs(λ) = λ.

We denote the roots of this equation by λsr, where r is the root number. Then the
density of eigenvalues of the problem (4.8.1) reads

ν(λ) = ∑
sr

δ(λ − λsr). (4.8.3)

We use the notation ν(λ) for the eigenfrequency distribution function in the general
case, leaving the notation g(λ) for the density of eigenfrequencies of crystal vibrations
(λ = ω2) normalized to unity.

Using the formula (4.7.11) we consider the Green matrix (4.8.2) as a function of
the eigenvalue G(λ − iγ) at γ → 0:

G(λ − iγ) =
{

λ − iγ − L̂(λ) + iγ
dL̂
dλ

}−1

=

{([
λ − L̂(λ)

] (
1 − dL̂

dλ

)−1

− iγ

)(
1 − dL̂

dλ

)}−1

=
(

1 − dL̂
dλ

)−1{[
λ − L̂(λ)

] (
1 − dL̂

dλ

)−1

− iγ

}−1

.

(4.8.4)

We rewrite (4.8.4) in a somewhat different form:

(
1 − dL̂

dλ

)
G(λ − iγ) =

{[
λ − L̂(λ)

] (
1 − dL̂

dλ

)−1

− iγ

}−1

. (4.8.5)
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We calculate the trace of the operator (4.8.5) by the means of the eigenfunctions L̂:

Tr
[(

1 − dL̂
dλ

)
G(λ − iγ)

]
= ∑

s




λ − αs(λ)

1 − dαs

dλ

− iγ




−1

, (4.8.6)

and make the necessary limiting transition:

lim
γ→+0

Im Tr
[(

1 − dL̂
dλ

)
G(λ − iγ)

]
= π ∑

s

∣∣∣∣1 − dαs

dλ

∣∣∣∣ δ(λ − αs(λ)). (4.8.7)

Finally, we make use of the expression for the δ-function of a complex argument:
∣∣∣∣1 − dαs

dλ

∣∣∣∣ δ(λ − αs(λ)) = ∑
r

δ(λ − λsr). (4.8.8)

Thus, returning to the definition (4.8.3) and comparing it with (4.8.7) and (4.8.8),
we find the final relation:

ν(λ) =
1
π

lim
γ→+0

Im Tr
[(

1 − dL̂
dλ

)
G(λ − iγ)

]
. (4.8.9)

Equation (4.8.9), suggested by Chebotarev (1980), generalized (4.7.11) to the case
of an arbitrary matrix L̂ and is the basis for describing the spectrum of deformed
crystal vibrations.

4.8.1
Problems

1. Find Green function for stationary vibrations of a one-dimensional crystal with
nearest-neighbor interactions.

Solution.

Gε(n) =
i

ε
√

ω2
m − ε




e−iakn, n < 0;

eiakn, n > 0,

where ak = 2 arcsin(
√

ε/ωm).

2. Find the Green function for stationary vibrations of a 1D crystal, accounting for
the interactions of not only the nearest neighbors, when ω = ω(k) is a nonmonotonic
function in the interval 0 < k < π/a.



5
Acoustics of Elastic Superlattices: Phonon Crystals

5.1
Forbidden Areas of Frequencies and Specific Dynamic States in such Areas

While studying the vibration spectrum of a crystal lattice we have seen that the vibra-
tion eigenfrequencies always occupy a finite interval of possible frequencies or several
finite intervals of frequencies. In the case of a monatomic crystal lattice one speaks
of the bands of acoustic vibrations. Every one of these bands has got some upper
limit. Denote the largest of them ωmax. The frequencies of mechanical vibrations
of the crystal with such a lattice can not be higher than ωmax. Values of frequencies
ω > ωmax are forbidden.

In a polyatomic lattice, vibrations of the optical type exist always and their frequen-
cies are as a rule higher than the frequencies of acoustic vibrations. In any case, the
optical vibrations are higher than the acoustic vibrations at least at small enough val-
ues of the vector k. Therefore, there is a forbidden band (gap) in the region of small
k between the acoustic and optical frequencies. This gap disappears in many cases at
the values of k close to boundaries of the Brillouin zones (see Fig. 3.2).

However, there are crystals whose vibration spectrum has got a frequency gap sep-
arating the high-frequency and low-frequency bands at any k. Such a situation can
be found in many molecular crystals where the frequencies close to intermolecular
vibrations of the single molecule lie higher than the frequencies of usual mechanical
vibrations (acoustic and optical types). The forbidden gap can exist even in “conve-
nient” crystals of NiO type see Fig. 5.1.

Thus, crystal eigenvibrations can not possess frequencies within forbidden gaps.
But what response of the crystal would be expected to an external periodical perturba-
tion with the frequency belonging to such a band? Consider a primitive cubic lattice
occupying the half space z < 0 and having a plane boundary surface z = 0 where the
z-axis is chosen along the edge of the elementary cube (parallel to the axis of sym-
metry C4). We confine ourselves to the scalar model and interactions of the nearest
neighbors. Then, both the equation of motion (2.1.13) and the dispersion relation take

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40508-9
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Fig. 5.1 Experimental points and dispersion curves calculated for the
crystal NaI (Woods et al. 1960).

the following forms

mω2u(n) = α ∑
n0

[u(n) − u(n + n0)], (5.1.1)

ω2 =
1
3

ω2
m

(
sin2 akx

2
+ sin2 aky

2
+ sin2 akz

2

)
; (5.1.2)

here the number-vector n0 connects the site n with the six nearest neighbors and ωm

is the maximum frequency of the eigenvibrations : ω2
m = 4α/m.

Suppose that the lattice under consideration contacts along the plane z = 0 some
medium in which bulk mechanical vibrations with high frequencies can be excited.
This may be the same cubic lattice with another elastic coefficients α(n) or a poly-
atomic lattice where the high-frequency vibrations of the optical type exist. In elec-
trically active crystals (like ionic or ferroelectric crystals) similar vibrations can be
excited by the electromagnetic waves that do not act directly on the lattice under con-
sideration. In any case, suppose that the mechanical vibrations in the half-space z > 0
possess the frequencies exceeding all possible frequencies of the lattice under consid-
eration. These vibrations create on the interface boundary z = 0 some distribution of
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forces like a traveling wave. Let the perturbation wave propagate along the x-axis and
have the form

f (n, t) = f0eikanx−iωt. (5.1.3)

Perturbation (5.1.3) on the plane z = 0 is perceived by the lattice considered as a
definite boundary condition. Under any condition of the type (5.1.3) a solution to the
linear dynamic equation of the motion (5.1.1) takes the form

u = w(nz)eikanx−iωt, (5.1.4)

where the function w(nz) obeys the equation

[
ω2 − 1

3
ω2

m sin2
(

ak
2

)]
w(n) =

1
12

ω2
m[2w(n) − w(n − 1) − w(n + 1)]. (5.1.5)

Since the maximum frequency corresponds to akz = π and we are interested in the
vibrations with ω > ωm the solution to (5.1.5) in the half-space z < 0 should be
taken in the form

w(n) = (−1)neκan, n < 0. (5.1.6)

We substitute (5.1.6) into (5.1.5) and come to the expression

ω2 =
1
3

ω2
m

(
sin2 ak

2
+ cosh2 aκ

2

)
. (5.1.7)

At the frequencies ω2 >
2
3

ω2
m the parameter κ is real (cosh2 aκ

2
> 1) and we must

choose κ > 0 in (5.1.7).
Solution (5.1.7) describes crystal vibrations with an amplitude decaying exponen-

tially when the distance from the boundary surface increases. This property of the
solution discussed is its principal difference from the eigenvibrations of an infinite
crystal lattice. The vibrations under consideration represent an example of localized
vibrations. If the localization takes place near a boundary surface of the crystal one
calls them surface vibrations. We consider another example of localized vibrations
later. Frequencies of the localized vibrations in all such examples lie outside of the
continuous spectrum of the eigenvibrations of the crystal lattice (above the frequency
spectrum or inside the gaps).

5.2
Acoustics of Elastic Superlattices

We have paid attention to a possibility of existence of the forbidden bands (gaps)
in the vibration spectrum of a crystal lattice. Now it is natural to raise a question
whether such a possibility is connected with microscopic (atomic) periodicity of the
crystal or it is the general consequence of any periodicity independently of a value
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of the period. In dynamics of a crystal lattice the period of the crystal structure a
takes part in the analysis as a parameter and its value arises only at the estimation of
the elastic moduli of crystals. As to peculiarities of the vibrational spectrum they are
determined by the dimensionless parameter ak, where k is a value of the wave vector.
Therefore, the peculiarities of the frequency spectrum, in particular the problem of
the existence of gaps, depend not on a concrete value of a, but on its relation to the
wavelength. Consider this fact and consider longwave and low-frequency (acoustic)
vibrations putting ak � 1.

The dynamics of a crystal in the (k, ω)-area ak � 1 and ω � ωD does not dif-
fer from the dynamics of a continuum media and can be described by the theory of
elasticity. Consequently, the vibration spectrum of a homogeneous crystal coincides
with the spectrum of sound waves; it is continuous and without any gaps. However,
if the homogeneity of the crystal is broken and a macroscopic periodicity comes into
existence the situation changes markedly.

Consider a one-dimensional structure consisting of periodically arranged (along the
x-axis) layers of elastic isotropic materials of two types [dα are the thickness of layers
(α = 1, 2), sα is the velocity of the sound wave in the α layer, and the structure period
is d = d1 + d2]. The periodic structure under consideration has a macroscopic period
d, which, by definition, greatly exceeds the interatomic distance a. Such a periodic
structure will be called an elastic superlattice (SL). Sometimes a macroscopic periodic
structure consisting of alternating elastic materials that differ in their elastic moduli
and sound speeds is called a phonon crystal.

The field of the elastic wave u(r, t) propagating perpendicular to the layer plane is
determined by a standard wave equation. In a system of isotropic blocks, the waves of
two possible polarizations are independent, and we can restrict ourselves to analysis
of dynamic equations for the scalar fields uα

∂2uα

∂t2 − s2
α

∂2uα

∂x2 = 0, α = 1, 2. (5.2.1)

The velocity of a wave is sα =
√

µα/ρα (µα and ρα are the elastic moduli and mass
densities, respectively).

Equation (5.2.1) should be solved using the boundary conditions according to which
the displacements uα and stresses σα= µα

∂uα

∂x are continuous at all boundaries of the
blocks.

Suppose that the elastic properties of two materials differ slightly and introduce the
notation δs2

1 = s2
1 − s2 and δs2

2 = s2
2 − s2 where the average speed squared s2 is

determined by the condition

s2d = s2d1 + s2
2d2. (5.2.2)

Take into account δs2
α � s2 and rewrite (5.2.1) in the form

∂2uα

∂t2 − s2 ∂2uα

∂x2 = δs2
α

∂2uα

∂x2 . (5.2.3)
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Each of the vibration eigenmodes appearing in a periodic structure with a period d
is characterized by the quasi-wave number k. In the zero approximation with respect
to the small parameter δs/s � 1 the solution to (5.2.3) has the form of a plane wave

u(x, t) =
1√
L

eikx−iωt, L = Nd , (5.2.4)

where N is the number of layers in the SL, and the frequency is proportional to the
wave number: ω = sk.

However, one should remember that a periodical perturbation (boundary conditions)
exists even in this approximation. This means that a frequency of solution (5.2.4) is
a periodical function of k with the period of the reciprocal lattice 2π/d. In order to
combine the sound dispersion relation ω = sk with such a periodicity let us analyze a
set of diagrams of this dispersion relation shifted by the value 2πn/d(n = 1, 2.3, . . .)
along the x-axis (see Fig. 5.2). Figure 5.3a represents the diagrams of the same dis-
persion relations inside one Brillouin zone.

Fig. 5.2 ω-k relations in the periodic-zone scheme.

One can see that a crossover situation that was met earlier in Chapter 3 appears
in the center of the zone (k = 0) and at its boundaries (k = ±π/d). There is a
degeneracy of frequencies at the k mentioned. The degeneracy is a consequence of the
supposition neglecting differences between parameters of two layers. The term in the
r.h.p. of (5.2.3) plays the role of a small perturbation that can remove the degeneracy.
It is convenient to combine two equations (α = 1, 2) introducing the discontinuous
function U(x) = U(x + d) that inside the interval of one period equals (x = nd + ξ):

U(ξ) =
{

δs2
1, 0 < ξ < d1;

δs2
2, d1 < ξ < d.

(5.2.5)

Then, the equations of SL vibrations with the frequency ω can be represented as

ω2u = −s2 d2us

dx2 + U(x)
d2us

dx2 . (5.2.6)
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The periodic function U(x) should be expanded in the following Fourier series

U(x) = ∑
m

Ume2πmx/d, (5.2.7)

where

Um =
1
L

∫
U(x)e−2πimx/d dx =

1
d

d∫

0

U(ξ)e−2πimξ/ddξ, (5.2.8)

and U0 = 0 as it follows from (5.2.2). The lowest degenerated frequency corresponds
to the wave vectors k = ±π/d. We seek a solution to (5.2.6) in the form of a linear
combination

u = (u0
+eiπmx/d + u0

−e−iπmx/d)eiqx, (5.2.9)

with a frequency ω slightly differing from sπ/d at small q (further q � π/d).
We substitute (5.2.9) into (5.2.6), multiply in turn by exp−i(π/d + q)x and
exp−i(π/d − q)x and perform the integration with respect to x. Then we ob-
tain in the main approximation the following set of equations for coefficients u0

+ and
u0−: [

ω2 −
( πs

d

)2
− 2πs2

d
q
]

u0
+ +

(π

d

)2
U1u0− = 0,

[
ω2 −

( πs
d

)2
+

2πs2

d
q
]

u0− +
(π

d

)2
U∗

1 u0
+ = 0.

(5.2.10)

The condition of solvability of set (5.2.10) gives a dispersion relation removing the
degeneration at the boundaries of the Brillouin zone:

ω2 =
( π

d

)2


s2 ±

[
s4

(
2qd
π

)2

+ |U1|2
]1/2


 . (5.2.11)

A gap is opening at the Brillouin zone (q = 0):

δω =
π |U1|

cd
, (5.2.12)

where (d1 < d)

|U1

∣∣∣∣= 1
πd

∣∣∣∣ δs2
1 − δs2

2| sin
(

πd1

d

)
≈ 2s

πd
|s1 − s2| sin

(
πd1

d

)
. (5.2.13)

The forbidden gap appears only at different sound velocities in two neighboring layers.

The higher gaps at the degeneration point can be calculated analogously if one takes
pairs of waves with a difference of the wave vectors k− k′ = 2π(n− n′), where n and
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Fig. 5.3 Dispersion curves inside one Brillouin zone: (a) in the zero
approximation (without gaps), (b) deformation of curves by small pertur-
bations.

n′ are integers. A set of allowed bands and gaps appears in a SL. Two lowest bands
of frequencies allowed are schematically shown in Fig. 5.3b. A frequency spectrum
of the SL differs essentially both from the usual sound spectrum ω = sk, where s is
the sound velocity and from the vibration spectrum of a crystal lattice. The number of
vibration branches in the crystal is determined by the number of atoms in the crystal
unit cell, but in a SL a number of vibration branches appears. The total number of
vibration branches in a SL is limited only to the value d/a, that is to the number of
atoms in one period of the SL (inside one unit cell of the SL).

5.3
Dispersion Relation for a Simple Superlattice Model

We return to (5.2.1) and note that each of the eigensolutions to (5.2.1) in a periodic
structure with a period d is characterized by the quasi-wave number k. Natural oscil-
lations of the field in the unit cell with the number n can be written in the form

un(x) = u0(x)eiknd, u0(x + d) = u0(x). (5.3.1)

We write down solutions to the pair of equations (5.2.1) in the interval of one unit cell
with the number n (nd < x < (n + 1)d)

un(x) = a(n)
1 eik1ξ + a(n)

2 e−ik1ξ , 0 < ξ < d1;

un(x) = b(n)
1 eik2ξ + b(n)

2 e−ik2ξ , d1 < ξ < d,
(5.3.2)
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where ξ = x − nd and k1 = ω/s1, k2 = ω/s2, and ω is the frequency. Amplitudes
in the neighboring cells are connected by the conditions

a(n+1) = a(n)eikd, b(n+1) = b(n)eikd. (5.3.3)

Boundary conditions at the points ξ = 0 and ξ = d lead to the set of four ho-
mogeneous algebraic equations for the amplitudes a1, a2, b1, and b2. Equality of the
determinant of this set to zero gives the following dispersion relation (Rytov, 1955)

cos kd = cos k1d1 cos k2d2 − 1
2

(
k1

k2
+

k2

k1

)
sin k1d1 sin k2d2. (5.3.4)

A derivation of (5.3.4) using (5.3.2) and (5.3.3) can be considered as a problem exer-
cise for this section.

Equation (5.3.4) determines in a complicated form the dependence of the frequency
ω on the wave number k: ω(k). This relation coincides with an accuracy to notation
with that obtained by Kronig and Penney for a quantum particle in a one-dimensional
periodic potential (Kronig and Penney, 1930).

Expression (5.3.4) gives the implicit dependence of the frequency on the quasi-
wave number and allows us to describe readily the spectrum of long-wave vibrations
(kd � 1), for which the sound spectrum is naturally obtained with average elastic
modulus 〈µ〉 and the density 〈ρ〉: 〈ρ〉d = ρ1d1 + ρ2d2 and d/〈µ〉 = d1/µ1 + d2/µ2.
Based on such a representation of µ, which contains only ratios dα/µα, it is interesting
to consider a limiting case, which can demonstrate the most characteristic properties
of the superlattice spectrum, when d2 → 0 and µ2 → 0 for d2/µ2 = M = const. In
this case, d1 → d, k2d2 = ωd2/s2 =

√
ρ2d2ω

√
d2/µ2 → 0. Then the dispersion

relation for the system is described by the equation

cos kd = cos z − Qz sin z, (5.3.5)

where z = q1d = ωd/s1 and Q = ρ2µ1 M/(2ρ1d). Note that (5.3.5) gives the
dispersion relation for an elastic SL consisting of periodic elastic blocks of length d
with the parameters µ1 and s1 under special boundary conditions. If the parameter Q
is small, then the system under study represents a periodic sequence of elastic regions
that are weakly connected with each other.

The allowed vibrational frequencies of a continuous spectrum of the system under
consideration can be qualitatively found by analyzing graphically (5.3.5), as shown in
Fig. 5.4. For the beginning we repeat our analysis concerning Fig. 1.15 in Chapter 1.
If the r.h.p. of (5.3.5) runs the values between ±1, the roots of the equation have the
values in the intervals shown on the abscissa.

Note that, as z increases, the allowed frequencies are localized within the narrowing
intervals near the values k1d = ±mπ, where m is a large integer. For the condition
m2Q 	 1, the dispersion relation for the m-th band can be readily found.
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Fig. 5.4 Graphical solution of (5.3.5) in the cases cosh kd > 1.

Indeed, near odd m = 2p + 1 (see the vicinity of z = 3π) in Fig. 5.4 , we can write
with sufficient accuracy (s = s1)

cos kd = −1 + Qmπ(z − mπ) = − 1 +
mπd

s
Q

(
ω − mπs

d

)
,

which yields

ω = mω0 +
s

mπQd
(1 + cos kd), (5.3.6)

where ω0 = πs/d. Similarly, near even m = 2p (see the vicinity of z = 4π) in
Fig. 5.4, we can write

cos kd = 1 − Qmπ(z − mπ) = 1 − mπd
s

Q
(

ω − mπs
d

)
,

which gives

ω = mω0 +
s

mπQd
(1 − cos kd). (5.3.7)

By combining (5.3.6) and (5.3.7), we can obtain the dispersion relations for the m-th
band:

ω = mω0 +
2s

mπQd




sin2
(

kd
2

)
, m = 2p;

cos2
(

kd
2

)
, m = 2p + 1.

(5.3.8)

One can easily see that expressions (5.3.8) represent the size-quantization spectrum
of phonons in a layer of thickness d, whose levels split into minibands due to a low
“transparency” of the interface between layers, that is due to a weak interaction be-
tween adjacent blocks.

The frequency spectrum that we obtained is of interest because its high-frequency
part has a set of narrowing allowed frequency bands in which the dispersion relation
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can be calculated analytically with good accuracy. The spectrum has a number of
forbidden bands (gaps in a continuous spectrum).

Consider now the possibility of appearance of vibrational states in forbidden bands.
Such vibrations correspond to solutions of the type

un ∝ exp(∓κnd) for k = iκ,

or
un ∝ (−1)n exp(∓κnd) for k = iκ + π,

exponentially decreasing (increasing) with the number n. It is obvious that such states
can have a physical meaning only on the coordinate semi-axis under the condition that
a solution vanishing at infinity is chosen, which reflect some boundary conditions at
the coordinate origin.

For the solution of the first type (k = iκ), the frequency dependence of the parame-
ter κ can be found from the relation

cosh(κd) = cos z − Qz sin z > 1, (5.3.9)

while, for the solution of the second type (k = iκ +π ), it can be found from the
relation

− cosh(κd) = cos z − Qz sin z > 1 < −1. (5.3.10)

The solutions of the first type correspond to frequencies in the intervals (2p − 1)π <

z < 2pπ, and those of the second type, in intervals 2pπ < z < (2p + 1)π (see
Fig. 5.4). Note that such situations appear on the semi-axis, for example, at the ends
of the SL.

5.3.1
Problem

Show that (5.3.5) describes the dispersion relation for an elastic SL consisting of pe-
riodic blocks of length d under the following boundary conditions on the interfaces:
the normal stresses are continuous ([σ]+− = 0, i. e., [∂u/∂x]+− = 0), while elastic
displacements exhibit the jump [u]+− = Q(ρ1/ρ2)σ.
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6
Quantization of Crystal Vibrations

6.1
Occupation-Number Representation

To describe crystal vibrations one uses the classical equations of motion of atoms (or
molecules) positioned at the lattice sites. A classical description of crystal vibrations
is only a rough approximation, and from the beginning one should proceed from quan-
tum laws. Small-amplitude vibrations of an ideal crystal, however, represent the rare
case of a physical system where a quasi-classical treatment leads to the same results
as those obtained in a rigorous quantum-mechanical approach. In this approximation
the system of quantized vibration in the crystal is assumed to be equivalent to a system
of independent harmonic oscillators. The classification of states and the calculation of
the energy spectrum of a harmonic oscillator at a quasi-classical level are known to be
accurate quantum mechanically.

Thus, for the majority of crystals the vibrations can be quantized at a late stage in
the calculations when the vibration dispersion law is found, the vibration field is rep-
resented as a set of harmonic oscillators and the harmonic oscillator frequencies are
determined. In particular, for the initial stage of quantization one may take the Hamil-
ton function (2.11.14) written in terms of the real canonically conjugated generalizes
coordinates X(k) and momenta Y(k). Since the quantum treatment is not dependent
on the vector character of the displacements and the momenta corresponding to them,
we begin by using a scalar model based on the Hamilton function

H = ∑
k

H(k), H(k) =
1
2

[
Y2

k + ω2(k)X2
k

]
. (6.1.1)

In quantum mechanics the Hamilton function is regarded as an operator (Hamilton-
ian) whose dynamic variables X(k) and Y(k) in (6.1.1) are replaced by the operators
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with commutative relations

[X(k), Y(k′)] = ih̄δkk′ ;

[X(k), X(k′)] = [Y(k), Y(k′)] = 0,
(6.1.2)

where [A, B] = AB − BA. We do not use special notation for the operators of phys-
ical quantities, but have to allow for the noncommutativity of these quantities in all
calculations.

The simplest and most widely used way of obtaining the quantum spectrum of a
multiparticle system is by writing and diagonalizing its Hamiltonian in the occupation
number representation. Since the Hamiltonian (6.1.1) is already diagonalized in the
k-states, the choice of new operators can be performed by following linear transfor-
mations for a given value of k:

X(k) = u(k)ak + u∗(k)a†k; Y(k) = v(k)ak + v∗(k)a†k. (6.1.3)

The operators ak and a†k are the Hermitian conjugated operators, u(k) and v(k)
are complex functions of the vector k whose choice should satisfy the requirements
(6.1.2) and reduce the Hamiltonian H(k) to a product of operators ak and a†k.

We transform an individual term in the Hamiltonian (6.1.1)

Y2(k) + ω2(k)X2(k) = (|v|2 + ω2 |u|2)(aka†k + a†kak)
+(v2 + ω2u2)akak + [(v∗)2 + ω2(u∗)2]a†ka†k,

(6.1.4)

and the first of the conditions (6.1.2)

[X(k), Y(k′)] = u(k)v∗(k′)[aka†k′ + u∗(k)v(k′)[a†kak′ ]
+u(k)v(k′)[ak, ak′ ] + u∗(k)v∗(k′)[a†k, a†k′ ] = ih̄δkk′ .

(6.1.5)

Analyzing (6.1.4), it is easy to come to a conclusion that if we choose the functions
u(k) and v(k) as

u(k) =

√
h̄

2 |ω(k)| , v(k) = −i |ω(k)| u(k), (6.1.6)

the Hamiltonian of vibrations (6.1.1) will reduce to

H =
1
2 ∑

k
h̄ |ω(k)| (a†kak + aka†k). (6.1.7)

According to (6.1.5), the conditions (6.1.2) will then also be satisfied, if the opera-
tors ak and a†k obey the following commutation rules

[ak, a†k] = δkk′ , [ak, ak′ ] = [a†k, a†k′ ] = 0. (6.1.8)
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Using the first rule from (6.1.8) we simplify the Hamiltonian (6.1.7)

H = ∑
k

h̄|ω(k)|
(

a†kak +
1
2

)
. (6.1.9)

Since the Hamiltonian (6.1.9) involves only the absolute frequency value, we can
consider further only positive vibration frequencies.

Using the operators ak and a†k is the most efficient way in the representation, where

the operator a†kak included in the Hamiltonian is diagonal. It turns out that if ak and

a†k satisfy the relations (6.1.8), the eigenvalues of the operator a†kak are non-negative
integer numbers of a natural series

a†kak = Nk, Nk = 0, 1, 2, . . . . (6.1.10)

This property of the operator a†kak is proved in quantum mechanics, however, in our
case it follows directly from (6.1.9). Indeed, the energy levels of a harmonic oscillator
with frequency ω are known

En =
(

n +
1
2

)
h̄ω, n = 0, 1, 2, . . . , (6.1.11)

thus, the eigenvalues of the Hamiltonian (6.1.1) being the sum of the energies of inde-
pendent harmonic oscillators can be represented as

E = ∑
k

(
Nk +

1
2

)
h̄ω(k), (6.1.12)

where Nk are non-negative integers. Comparing the expressions (6.1.12) and (6.1.9)
we are convinced of the validity of (6.1.10).

The numbers Nk are called the occupation numbers of the states k. When the
systems consisting of many identical particles are studied from the point of view of
quantum mechanics, it is convenient to use a mathematical method where in the oc-
cupation number representation various vibrational crystal states are characterized by
different sets of numbers Nk, and the action of the operators ak and a†k changes these
numbers.

In applications it is important to know not only how the Hamiltonian is written in
terms of the operators ak and a†k, but also the form of the displacement operator, which
is always initial.

We note that the linear transformation (6.1.3) taking into account (6.1.6) is written
in the form

X(k) =

√
h̄

2ω(k)
(a†k + ak), Y(k) = i

√
1
2

h̄ω(k)(a†k − ak). (6.1.13)

Thus, the sum of the operators a†k and ak is the coordinate, and their difference is
the momentum of the corresponding harmonic oscillator.
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Using now the chain of transformations (6.1.13) and (2.11.15) to find a complex
expression for the operators of normal coordinates, we obtain

Q(k) = uk(ak − a†−k), Q†(k) = uk(a†k + a−k), (6.1.14)

where the multiplier uk is determined in (6.1.6). Generally, the complex conjugate
normal coordinate Q∗(k) corresponds to a Hermitian conjugate operator Q†(k).

Using (6.1.14) and (1.6.3), we obtain the atomic displacement operator

u(n) =
(

h̄
2mN

)1/2

∑
k

1√
ω(k)

[
akeikr(n) + a†ke−ikr(n)

]

=
(

h̄
2mN

)1/2

∑
k

1√
ω(k)

(ak + a†−k)eikr(n).
(6.1.15)

We note that in replacing the displacements with the operators by (6.1.15) the de-
nominator always includes the multiplier

√
ω(k) that accompanies the operators ak

or a†k.

For a real crystal lattice when the operators aα(k) and a†α(k) belonging to different
branches of the dispersion law (α = 1, 2, . . . , 3q) are introduced, the commutation
relations (6.1.8) are generalized to

[
aα(k), a†α′ (k′)

]
= δαα′δkk′ ,

[aα(k), aα′ (k′)] =
[

a†α(k), a†α′ (k′)
]

= 0.

The displacement operator of the (n, s)-th atom is associated with the operators
aα(k) and a†α(k) by relations

us(n) =
(

h̄
2msN

)1/2

∑
kα

es(k, α)√
ωα(k)

[aα(k) + a†α(−k)]eikr(n). (6.1.16)

Finally, the Hamiltonian of crystal vibrations in a harmonic approximation is re-
duced to

H = ∑
αk

h̄ωα(k)
[

a†α(k)aα(k) +
1
2

]
, (6.1.17)

generalizing (6.1.9).
It is clear that the operators of the physical quantities can be expressed directly

through the operators ak and a†k. We discuss their properties based on the Heisenberg
representation when the dynamic processes are described by the time dependence of
the operators of physical quantities whose equations of motion are analogous to clas-
sical Hamilton equations.

We omit the index α, i. e., return to a scalar model. From the Hamiltonian (6.1.9)
there follows a very simple “equations of motion” for the operator ak and a†k. Indeed,
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according to the definition of a time derivative of the operator

da(k)
dt

=
i
h̄
[H, ak] =

i
h̄

h̄ω(k)[a†kak, ak]

= iω(k)[a†k, ak]ak = −iω(k)ak.

Similarly, we obtain “the equation of motion” for the operator a†k. Writing these equa-
tions simultaneously we obtain

da(k)
dt

= −iω(k)a(k),
da†(k)

dt
= iω(k)a†(k). (6.1.18)

We note that the equations of motion (6.1.18) for the operators ak and a†k are first-
order differential equations, whereas (1.6.6) for the normal coordinates are equations
of the second order.

The explicit time dependence of the operators follows from (6.1.18)

ak(t) = e−iω(k)tak(0), a†k(t) = eiω(k)ta†k(0). (6.1.19)

To determine the action of the operators ak and a†k on the occupation numbers, we
use the matrix of the coordinate and the momentum of a 1D harmonic oscillator. If
M is the mass, ω the frequency, and n is the state number or the energy level number
(6.1.11) of a harmonic oscillator, the nonzero matrix elements of its coordinate X and
the momentum Y are1

Xn−1,n =
(

h̄n
2Mω

)1/2

e−iωt, Yn−1,n = −iωMXn−1,n,

Xn, n − 1 =
(

h̄n
2Mω

)1/2

eiωt, Yn,n−1 = iωMXn,n−1.
(6.1.20)

Using (6.1.20) in the case M = 1 and the linear relations (6.1.13), it is easily seen
that the matrix elements of the operators ak and a†k are nonzero only for transitions in
which the corresponding occupation numbers Nk (with the same value of k) change
by unity.

We denote by
|. . . Nk . . .〉 ≡| Nk〉 = Ψ{N}k

(Q)

the wave function of some crystal state that is the eigenfunction of the operator a†kak
and is characterized by a set of occupation numbers Nk. Then, only the following
elements of these operators are nonzero:

〈Nk−1 |ak| Nk〉 =
√

Nke−iω(k)t,

〈Nk + 1
∣∣∣a†k

∣∣∣ Nk〉 =
√

Nk + 1eiω(k)t.
(6.1.21)

1) We use the ordinary matrix elements representation Amn = 〈m |A| n〉 =∫
ψ∗

m(Q)Aψn(Q)dQ, where ψn(Q) ≡ |n〉 are the corresponding normal-
ized wave functions (Q is a set of coordinates).
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Using (6.1.21), we get

ak|Nk〉 =
√

Nke−iω(k)t|Nk − 1〉,
a†k|Nk〉 =

√
Nk + 1eiω(k)t|Nk + 1〉. (6.1.22)

Thus, the operator ak transforms the function with the occupation number Nk into
the function with the occupation number Nk − 1, i. e., reduces the occupation number
by unity, and the operator a†k increases it by unity.

We denote by 〈A〉 the mean value of the operator A in a certain quantum state |Nk〉:
〈A〉 = 〈Nk |A| Nk〉. (6.1.23)

On the basis of (6.1.21) or (6.1.22) we can conclude how to calculate the quantum-
mechanical average for the operator A that has the form of the sum of products of
any number of the operators ak and a†k. If the number of operators ak in this product

does not equal the number of operators a†k (with the same value of k), the mean value
(6.1.23) vanishes automatically. In particular,

〈ak〉 = 〈a†k〉 = 0, 〈akak′〉 = 〈a†ka†k′ 〉 = 0. (6.1.24)

At the same time, (6.1.10) follows naturally from (6.1.21) and its generalization

〈a†kak′〉 = Nkδkk′ , 〈aka†k′〉 = (Nk + 1)δkk′ , (6.1.25)

is consistent with commutation relations (6.1.8).

6.2
Phonons

Let us consider the ground state of a crystal corresponding to the least vibration en-
ergy. The obvious definition of the ground state: Nk = 0 for all k follows from the
form of energy levels (6.1.12) and the fact that Nk are non-negative numbers. The
energy of the ground state

E0 =
1
2 ∑

k
h̄ω(k) =

h̄
2

ωm∫

0

ων(ω) dω, (6.2.1)

is called the zero-point energy and the vibrations with Nk = 0 are called zero lattice
vibrations. Let |0〉 be the wave function of the ground state. Then, according to
(6.1.22)

ak|0〉 = 0. (6.2.2)

Thus, the wave function of the ground state (the state vector) is the eigenfunction
not only of the binary operator a†kak, but also of the operator ak. In the latter case it
corresponds to a zero eigenvalue.
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Any excited state corresponds to a certain set of nonzero integers Nk. As fol-
lows from (6.1.22), the wave function of the excited state |Nk〉 can be obtained by an

Nk-fold action of the operator a†k on the ground-state vector |0〉.
On writing the vibration energy (6.1.12) in the form

E = E0 + ∑
k

h̄ω(k)Nk, (6.2.3)

it becomes clear that a weakly excited (with small vibrations) crystal state is equivalent
to an ideal gas of quasi-particles, the energy of each particle being h̄ω(k), and their
numbers in different states being given by the set Nk. The quasi-particles arise due to
the quantization of vibrational collective excitations, which represent the elementary
excitations of a vibrating crystal.

Using the de Broglie principle and the general statements of mechanics, the motion
of an individual quasi-particle can be characterized by the velocity v = ∂ω/∂k and
the quasi-momentum

p = h̄k. (6.2.4)

We call the quantity (6.2.4) a quasi-momentum, as k is a quasi-wave vector and its
specific properties in a periodic structure are automatically extended to the vector p.

The quasi-particles introduced in this way are called phonons and the operator a†kak

is the operator of the number of phonons. The names of the operators ak and a†k
reflect the properties of (6.1.22): the operator ak decreases by unity the number of
these phonons with quasi-wave vector k, and the operator a†k increases by unity the
number of these phonons in the crystal are called the annihilation (or absorption) and
the creation (emission) operators of a phonon.

If the creation and annihilation operators of particles obey the commutation rela-
tions (6.1.8), the corresponding particles are described by Bose statistics. In our case
this assertion proves the fact represented by (6.1.10), implying that in a state with
quasi-wave vector k there can be any number of phonons.

We note that in terms of thermodynamics a weakly excited state of the crystal is
equivalent to an ideal gas of phonons, whose Hamiltonian has the form

H = E0 + ∑
k

h̄ω(k)a†α(k)aα(k). (6.2.5)

The ground state of a crystal is a phonon vacuum and its physical properties are
manifest in the existence of zero vibrations. The intensity of zero vibrations is char-
acterized by the squared amplitude of each normal vibration that is determined by the
same formula as for a 1D harmonic oscillator. Let us consider the square of the shift at
the n-th site, i. e., the squared operator (6.1.15) and find its mean value in the ground
state. Taking into account (6.1.24), (6.1.25) we obtain

〈u2〉0 = 〈0|u2(n)|0〉 =
h̄

2mN ∑
k

1
ω(k)

. (6.2.6)
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When a crystal is excited, phonons appear and their number depends on a specific
choice of Nk, but phonon gas characteristics involve only the mean occupation num-
bers. We denote the phonon mean number in the corresponding state through fα(k)
and call it the fα(k) phonon distribution function.

The function of the equilibrium boson gas distribution is known to be given by the
Bose–Einstein distribution. Using this function one should remember that the total
number of phonons characterizing the intensity of the lattice mechanical vibrations is
not conserved and depends on the crystal excitation degree. Thus, the chemical poten-
tial of the phonon gas is zero and the mean thermodynamic values of the occupation
numbers are determined by

〈〈Nα(k)〉〉 = f0 [ω(k)] ; f0(ω) =
[

exp
(

h̄ω

T
− 1

)]−1

, (6.2.7)

where the brackets 〈〈. . .〉〉 denote averaging in the equilibrium thermodynamic state
and the temperature T here and below is given in units of energy.

A simple form of the Hamiltonian (6.2.5) and the Bose-type distribution (6.2.7)
allow one easily to construct the thermodynamics of a weakly excited crystal. If me-
chanical atomic vibrations exhaust all possible forms of internal motions in a crystal
(6.2.3) determines the total crystal energy whose mean value coincides with the inter-
nal energy. If there are other forms of motion in a crystal (electron motion, change
of spin magnetic moment or similar) (6.2.3) gives only a so-called lattice part of the
crystal energy. In the latter case all results below listed results can be applied only
when the phonon interaction with elementary excitations of the other types is very
weak.

6.3
Quantum-Mechanical Definition of the Green Function

The initial definition of the Green function used in quantum theory differs at first sight
from that accepted in Chapter 4. Nevertheless, it leads to the same properties of the
Green function. We illustrate this by considering an example of the Green retardation
function and restrict ourselves to a scalar model.

The quantum-mechanical expression for the Green retardation function is

GR(n − n′) = − im
h̄

Θ(t)
〈[

u(n, t), u(n′, t)
]〉

, (6.3.1)

where u(n, t) is the atomic displacement operator at time t; Θ(t) is the discontinuous
unit Heaviside function

Θ(t) =
{

0, t < 0
1, t > 0.

The presence of the function Θ(t) in (6.3.1) is connected with the singularity of the
Green retarding function shown, e. g., in (4.6.5). It is necessary to recall the proce-
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dures used to determine the operators u(n, t) in (6.3.1). Since the time dependence of
the operator u(n) is described by

−ih̄
du
dt

= [H, u] , (6.3.2)

where H is the Hamiltonian of crystal vibrations, one can, generally, write

u(t) = exp
(

i
h̄
Ht

)
u(0) exp

(
− i

h̄
Ht

)
.

Since the operator u(0) does not commute with H, it follows that for t �= 0 it does
not commute with the operator u(t). However, in general

[u(n, t), u(n′ , t)] = [u(n, 0), u(n′, 0)] = 0 . (6.3.3)

We take the time derivative of (6.3.1):

ih̄
d
dt

GR(n − n′, t) = mδ(t)
〈[

u(n, t), u(n′ , 0)
]〉

+Θ(t)
〈[

m
du(n, t)

dt
, u(n′, 0)

]〉
= Θ(t) 〈[p(n, t), u(n′, 0)]〉 .

(6.3.4)

We have used (6.3.3) when writing (6.3.4) and introduced the momentum operator
p(n) = mdu(n)/dt. Let us differentiate the obtained relation with respect to time

ih̄
d2

dt2 GR(n − n′, t)

= δ(t) 〈[p(n, 0), u(n′, 0)]〉 + Θ(t)
〈[

m
d2u(n, t)

dt2 , u(n′, 0)
]〉

.

As the operators u(n) and p(n) taken at the same time are canonically conjugated,
then

[p(n, 0), u(n′, 0)] = −ih̄δnn′ . (6.3.5)

On the other hand, the operator d2u/dt2 can be expressed through the operator
u(n, t) by means of (4.5.1). By using this equation and (6.3.5), we obtain

ih̄
d2

dt2 GR(n − n′, t)

= −ih̄δ(t)δnn′ − ∑
n′′

α(n − n′′)Θ(t)
〈[

u(n′′, t), u(n′, 0)
]〉

.
(6.3.6)

Recalling the definition (6.2.7), we come to the following equation for the function
GR(n, t):

m
d2

dt2 GR(n, t) + ∑
n′

α(n − n′)GR(n′, t) = −mδ(t)δn0, (6.3.7)

which is exactly the same as (4.5.5).
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Let us verify by means of a direct calculation that the Green function (6.3.1) actu-
ally determines a retarded solution to (6.3.7) with the Fourier components (4.6.5). We
expand the displacements in (6.3.1) in normal vibrations, introducing the phonon cre-
ation and annihilation operators and taking into account their commutation relations
as well as the time dependence (6.1.19). The following formula is then easily obtained

[
u(n, t), u(n′, 0)

]
= − ih̄

mN ∑
k

sin ω(k)t
ω(k)

eikr(n−n′). (6.3.8)

Furthermore, (6.3.8) for t = 0 justifies the rule (6.3.3).
Substituting (6.3.8) into (6.3.1) we write

GR(n, t) = − 1
N ∑

k
Θ(t)

sin ω(k)t
ω(k)

eikr(n−n′).

The latter has the form of a spatial Fourier expansion of the Green function with
Fourier components (4.6.5).

We emphasize the fact that (6.3.8) is valid for any vibrational crystal state. Thus,
the averaging contained in the definition (6.3.1) can be carried out both in the sense of
quantum mechanics and thermodynamics.

6.4
Displacement Correlator and the Mean Square of Atomic Displacement

The quantum definition of the Green function (6.3.1) involves averages such as
〈u(n, t)u(n′, 0)〉, determining the correlation of atomic displacements at different
crystal lattice sites. Some physical properties of the crystal are generated by this
correlator. A pair correlation function of displacements (or simply a pair correlator)
will be referred to as the average

Φjl
ss′(n − n′, t) = 〈uj

s(n, t)ul
s′(n′, 0)〉, (6.4.1)

where both the spatial homogeneity of an unbounded crystal and time uniformity are
taken into account.

Using (6.1.16), we go over from the displacements to the operators aα(k), a†α(k)
and use the properties of their mean values and also of the polarization vectors

Φjl
ss′(n, t) =

h̄
2N

√
msms′

∑
αk

ej
s(α)ej

s′(α)
ωα

[
Nα(k)eiωαt−ikr(n)

+ (Nα(k) + 1) e−iωαt+ikr(n)
]

,

(6.4.2)

where ωα = ωα(k) and e(α) = e(k, α) = e(−k, α).
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After thermodynamic averaging when 〈〈N(k)〉〉 is determined by (6.2.7), we obtain

〈〈Φjl
ss′(n, t)〉〉 =

h̄
2N

√
msms′

∑
αk

ej
s(α)el

s′(α)
ωα

×
{

coth
(

h̄ωα

2T

)
cos [ωαt − kr(n)] − i sin [ωαt − kr(n)]

}
.

(6.4.3)
It is clear that the correlation function is complex. The availability term in (6.4.3) is

of quantization origin. Indeed, in the classical limit h̄ → 0 when h̄ coth(h̄ω/2T) →
(2T/ω), there remains

〈〈Φjl
ss′(n, t)〉〉 =

T
N
√

msms′
∑
αk

ej
s(α)el

s′(α)
ω2

α
cos[ωαt − kr(n)].

It follows from the definition (6.4.1) and the relation (6.4.2) that the mean square
of atomic displacement at any site (independent, naturally, of the site number) equals
Φllss(0, 0):

〈u2
s (n)〉 = 〈u2

s 〉 =
h̄

msN ∑
αk

|es(k, α)|2
ωα(k)

(
Nα(k) +

1
2

)
. (6.4.4)

In a monatomic crystal lattice there is no index s, so that one can use the relation
(1.3.2) leading to

〈u2〉 =
h̄

mN ∑
αk

1
ωα(k)

[
Nα(k) +

1
2

]
. (6.4.5)

To characterize the atomic displacements in the excited crystal states it is reasonable
to consider the mean thermodynamic values of the displacement squares at nonzero
absolute temperature T of the crystal. The averaging (6.4.5) over the phonon equi-
librium distribution and performing an integration over frequencies gives the mean
square of thermal atomic displacements in a monatomic lattice

〈〈u2〉〉 =
h̄

2mN

∫
ν(ω)

ω
coth

(
h̄ω

2T

)
dω. (6.4.6)

The expression (6.4.6) is much simplified at high temperatures when the ratio T/h̄
is much higher than all possible frequencies of crystal vibrations, i. e., T 	 h̄ω.
Indeed, in this case

〈〈u2〉〉 =
T

mN

∫
ν(ω)
ω2 dω. (6.4.7)

A simple (linear) temperature dependence of the mean square of atomic displace-
ment at high temperatures remains in a polyatomic lattice, but the expression for 〈〈u2〉〉
becomes much more complicated. It follows from (6.4.4) that

〈〈u2〉〉 =
V0

(2π)3
h̄

2ms

∫
dω

ω
coth

(
h̄ω

2T

)
∑
α

∮

ωα(k)=ω

dSα

v
|es(k, α)|2 ,
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where the last integral is calculated over the isofrequency surface of the α-th branch
of vibrations: ωα(k) = ω = const.

The dependence of the mean square of atomic displacement on the crystal dimen-
sion is of interest. In a 3D crystal, for ω → 0 the frequency distribution function
vanishes according to ν(ω) ∼ ω2. Thus, the integrals in (6.4.6), (6.4.7) for a 3D
crystal are finite.

In a 2D crystal ν(ω) ∼ ω, and the integral (6.4.7) as well as (6.4.6) for T �= 0
diverge logarithmically at the low limit. Consequently, the value of the mean thermal
atomic displacement becomes arbitrarily large. It may be said that the thermal fluctu-
ations destroy the long-range order in an unbounded 2D crystal. We stipulate that the
crystal is unbounded for the following reason. If we exclude from our treatment rigid-
body translation of the crystal (k = 0), the minimum value kmin according to (2.5.3)
can be estimated to be the order of magnitude kmin ∼ π/L where L is the crystal
dimension. Thus, ωmin ∼ Sπ/L ∼ ωma/L and the logarithmic divergence of the
above integrals for a 2D crystal means that 〈u2〉 ∝ ln(L/a). This is a rather weak
dependence on L, and the general condition that the crystal specimen is macroscopic
(L 	 a) is insufficient to assume large fluctuations. An extremely rapid increase of
the fluctuations takes place only for ln(L/a) 	 1, i. e., in fact for an unbounded
crystal.

If T = 0 the integral (6.4.6) remains finite. In other words, zero vibrations do not
break the long-range order in a 2D crystal.

Finally, for a 1D crystal ν(0) �= 0. Hence, the integral (6.4.6) diverges at any
temperature – the mean atomic displacement value is infinite. Thus, the long-range
order in a 1D crystal is broken both by thermal and zero vibrations. The absence of a
Plank constant in (6.4.7) makes it possible to conclude that at high temperatures the
quantization of vibrations is not essential and to describe the averaged atomic motions
in the lattice one can use the classical representations.

6.5
Atomic Localization near the Crystal Lattice Site

At the end of the previous section the mean square of an atomic displacement from
equilibrium was calculated. However, a detailed description of localized atomic mo-
tion in the crystal is given by the distribution function of its coordinate, i. e., the prob-
ability density of the random value uS(n).

Let the function P(u)du determine the probability for u to be in the interval (u, u +
du) for du → 0. We consider the Fourier transformation of the function P(u) that is
sometimes called the characteristic function

σ(g) =

∞∫

−∞

P(u)eigu du, P(u) =
1

2π

∞∫

−∞

σ(g)e−igudg. (6.5.1)
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From the definition of P(u), the value σ(q) represents the mean value of the
function exp(iqu). If we now assume that P(u) gives the density of a thermody-
namic probability in a system with a given temperature then it is possible to write
σ(q) = 〈〈exp(iqu)〉〉.

We begin by analyzing a scalar crystal model and suppose that the random value u
is the atomic displacement relative to the site with number n:

σ(g) = 〈〈exp[igu(n)]〉〉. (6.5.2)

It is clear that the average (6.5.2) is independent of the site number. Therefore, we
may set n = 0, combining the site chosen with the coordinate origin.

Let us calculate the average (6.5.2) in the occupation-number representation. We
go over in (6.5.2) to the phonon creation and annihilation operators, writing

gu(0) = ∑
k

[
C(k)ak + C∗(k)a†k

]
, (6.5.3)

where the number function C(k) is real in the given case

C(k) = g

√
h̄

2mNω(k)
. (6.5.4)

Since the operators ak and a†k with different k commute, (6.5.2) can be written in
a harmonic approximation as a product of the multipliers that contain the averaging
over states of one of the normal coordinates. Indeed, the Hamiltonian (6.1.9) is the
sum of independent operators with different k and, thus

σ(g) = ∏
k
〈〈ei[C(k)ak+C∗(k)a†k]〉〉. (6.5.5)

To estimate this value we use a simple method. We take into account that in accor-
dance with (6.5.4), all coefficients C(k) are proportional to 1/

√
N, and for a macro-

scopic crystal N is extremely large. Proceeding from this, we expand the exponent in
(6.5.5) as a power series of C(k), up to terms of the third order of smallness. We then
remember that nonzero diagonal elements can be present only in the products of an
even number of operators ak and a†k

σ(g) = ∏
k

[
1 − 1

2
|C(k)|2〈〈a†kak + aka†k〉〉

]

= ∏
k

[
1 − 1

2
|C(k)|2〈〈2Nk + 1〉〉

]

= ∏
k

{
1 − 1

2
|C(k)|2 coth

[
h̄ω(k)

2T

]}
.

(6.5.6)

Using now the equality

lim
N→∞

N

∏
n=1

(
1 − 1

N
ξn

)
= exp

(
− lim

n→∞

1
N

N

∑
n=1

ξn

)
,
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we transform the product (6.5.6) into the sum

σ(g) = exp

{
−1

2 ∑
k
|C(k)|2 coth

[
h̄ω(k)

2T

]}
. (6.5.7)

We substitute into (6.5.7) the explicit expression (6.5.4) and compare the exponent
(6.5.7) with (6.4.5) for a scalar model. It is clear that

σ(g) = exp
(
−1

2
g2〈〈u2〉〉

)
. (6.5.8)

Although we derived (6.5.8) with respect to a scalar model, after obvious general-
ization it remains valid for any crystal lattice:

σ(g) = 〈〈eigus(n)〉〉 = exp
(
−1

2
〈〈(guS)2〉〉

)
. (6.5.9)

Thus, the quantity uj(n) has the Gaussian probability density

P(u) =
1√

2π〈〈u2
j 〉〉

exp

(
−1

2
u2

〈〈u2
j 〉〉

)
. (6.5.10)

In a classical theory of the crystal lattice, this result was obtained by Debye (1914)
and Wailer (1925); the quantum derivation was first made by Ott (1953).

The probability density of an atomic displacement from its crystal lattice site is
strongly temperature dependent, since 〈〈u2〉〉 is a function of temperature. The most
remarkable fact here is that the atom exhibits an appreciable probability to be dis-
placed from its equilibrium position even at T = 0 K due to the zero vibrations. Thus,
although the energy of zero vibrations may not be manifest, the zero motion associated
with it is accessible to observation.

6.6
Quantization of Elastic Deformation Field

In studying classical mechanics of a crystal lattice, it has been established that in the
long-wave limit (ak � 1) the equations of crystal motion transform into the dynamic
equations of elasticity theory. Such a transition corresponds formally to the limit
a → 0 and establishes a relation between the mechanics of a (crystal) discrete system
and that of a continuous medium (continuum).

On the other hand, the quantum equations for crystal motion transform into the
classical dynamic equations by passing to the limit h̄ → 0 (if α = const). We clarify
whether the limiting transition α → 0 (if h̄ = const) is meaningful, as the lattice
constant a and the Planck constant h̄ are considered in the crystal quantum theory as
two independent parameters.
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The transition from the quantum mechanics of a discrete crystal lattice to the quan-
tum field theory of elastic deformations can be carried out using a scalar crystal model.
This allows one to exclude cumbersome expressions and calculations that refer to a
vector quantum field.

A classical field of elastic deformations is the field of the function of coordinates
and time u(r, t). The Lagrange function of this field is given by (2.9.20) and corre-
sponds to the following density of the Lagrange function

L =
1
2

ρ

(
∂u
∂t

)2

− 1
2

G
(

∂u
∂xi

)2

. (6.6.1)

It is easy to write the energy of a classical elastic field as

E =
∫ (

1
2

ρ

(
∂u
∂t

)2

+
1
2

G
(

∂u
∂xi

)2
)

dV. (6.6.2)

We also find the momentum of the deformation field. By definition, the field mo-
mentum

P = −
∫

∂L
∂

(
∂u
∂t

) grad u dV, (6.6.3)

and this definition is independent of a specific form of the Lagrange function density.
Using (6.6.1) we obtain

P = −
∫

ρ
∂u
∂t

grad u dV. (6.6.4)

We note that the field momentum (6.6.4) does not coincide with the momentum of
atoms involved in motion by elastic crystal vibrations. Indeed the momentum (6.6.4),
as well as the energy (6.6.2) and the Lagrange function (2.9.20) in the harmonic ap-
proximation is quadratic in the derivatives of the function u, and the momentum of the
atoms is proportional to the first degree of atomic velocity and is, thus, linear in the
time derivatives of the atomic displacement vector.

According to the results of quantizing crystal lattice motion in quantum mechanics,
the function u(r) is replaced by an operator dependent on coordinates as on parame-
ters. The occupation number representation is the simplest way to write this operator,
since we know its expansion (6.1.15) in the lattice.

If we take explicitly into account the finite dimensions of the volume V, then the
formula (6.1.15) may also be used in the case of an elastic deformation field by replac-
ing mN → ρV and assuming the radius vector r = r(n) to be a continuously varying
quantity:

u(r) =

√
h̄

2ρV ∑
k

1√
ω(k)

(ak + a†−k)eikr , (6.6.5)

where the operators ak and a†k obey the commutation relations (6.1.8).
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The expansion (6.6.5) is usually performed not in a finite volume, but in all coor-
dinate space, (V → ∞), which results in a continuous k-space. In this case, instead
of the sum over discrete k in (6.6.5), it is necessary to introduce an integral, using the
rule (2.5.4), and to redefine the phonon creation and annihilation operators

ak =
(

2π

L

)3/2
b(k), a†k =

(
2π

L

)3/2
b†(k) (6.6.6)

(we have denoted V = L3). Simultaneously it is necessary to replace the Kronecker
symbol in (6.1.8) by the δ-function

δkk′ → (2π)3

V
δ(k − k′).

The operators b(k) and b†(k) have commutation relations that directly generalize
(6.1.8)

[b(k), b†(k)] = δ(k − k′), [b(k), b(k′)] = [b†(k), b†(k′)] = 0. (6.6.7)

On performing the above renormalization, we obtain

u(r) =
1

(2π)3/2

√
h̄
2ρ

∫
d3r√
ω(k)

[b(k) + b†(−k)]eikr. (6.6.8)

As a result of the quantization, the field function u(r, t) describing the elastic dis-
placements of atoms and satisfying the dynamic equation (2.9.21) is represented as an
integral of linear form in the operators b(k) and b†(k). Thus, it becomes an operator.

The time evolution of the operator u(r, t) is determined by the time dependence of
the operators b(k) and b†(k), and the latter in a harmonic approximation is based on
the relations

bk(t) = bk(0)e−iω(k)t, b†k(t) = b†k(0)eiω(k)t,

where ω(k) = sk.
Using (6.6.8) and the expressions for the energy (6.6.2), it is easy to construct the

Hamiltonian of a vibrating continuum

H = E0 +
∫

h̄skb†(k)b(k) d3k, (6.6.9)

where E0 is the energy of zero vibrations.
The eigenstates of the operator (6.6.9) contain quanta (phonons) with rigorously

fixed quasi-momenta. The wave functions of these states in the coordinate represen-
tation correspond to plane waves.
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We shall clarify ultimately the quantum meaning of the field momentum operator
(6.6.3) or (6.6.4). We calculate the spatial and time derivatives of (6.6.5)

grad u = i

√
h̄

2ρV ∑
k

k√
ω(k)

(
ak + a†−k

)
eikr;

∂u
∂t

= i

√
h̄

2ρV ∑
k

√
ω(k)

(
a†−k − ak

)
eikr.

(6.6.10)

We substitute (6.6.10) into (6.6.4)

P =
1
2 ∑

kk′
h̄k

√
ω(k)
ω(k′)

(
a†−k − ak

) (
ak′ + a†−k′

)

× 1
V

∞∫

−∞

ei(k+k′)r dV

=
1
2 ∑

k
h̄k

(
aka†k + a†kak

)
+

1
2 ∑

k
h̄k

(
a†−ka†k + aka−k

)
.

(6.6.11)

The last sum in (6.6.11) vanishes, as its terms are the odd functions of k, and the
first sum transforms trivially

P = ∑
k

h̄ka†kak =
∫

h̄kb†(k)b(k) d3k. (6.6.12)

It follows from (6.6.12) that the operator of the field momentum P is the operator
of the total quasi-momentum of a vibrating crystal.

Writing the operators (6.6.8), (6.6.9), (6.6.12) and also the commutation rules
(6.6.7) accomplishes the quantization of a field of elastic deformations.



7
Interaction of Excitations in a Crystal

7.1
Anharmonicity of Crystal Vibrations and Phonon Interaction

In a harmonic approximation the phonons are noninteracting quasi-particles. How-
ever, the situation is changed if the anharmonicity of crystal vibrations is taken into
account – the phonon gas ceases to be ideal.

To clarify the qualitative role of the anharmonicity, we consider an unbounded crys-
tal with a monatomic spatial lattice. We assume the anharmonicity to be small and in
the expansion of the potential crystal energy in power of the displacement, we restrict
ourselves to cubic terms:

U = U0 +
1
2 ∑ αik(n − n′)uik(n)uk(n′)

+
1
3 ∑ S̃

{
γikl(n − n′, n − n′′)

[
ui(n) − ui(n′)

]

×
[
uk(n) − uk(n′′)

] [
ul(n′) − ul(n′′)

]}
,

(7.1.1)

where S̃ is the symmetrization operation in number vectors n, n′, n′′. This takes into
account at once the potential energy invariance with respect to crystal motion as a
whole. The coefficients γikl(n, n′) characterize the intensity of the crystal vibration
anharmonicity. Generally, they are of the order of magnitude γ ∼ α/a.

After introducing normal coordinates and quantizing the vibrations, the quadratic
term in (7.1.1) will belong to the Hamiltonian of the phonon ideal gas. The cubic
term in (7.1.1) will be quantized by (6.1.16). Denoting the corresponding term in the
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Hamiltonian by Hint, we obtain

Hint =
(

h̄
2mN

)3/2

∑
eie′je

′′
l√

ωω′ω′′ Γijl(k, k′, k′′)
[

aα(k) + a†α(−k)
]

×
[
aα′ (k′) + a†α′(−k′)

] [
aα′′(k′′) + a†α′′(−k′′)

]
∑
n

ei(k+k′+k′′)r(n),

(7.1.2)

where ω = ωα(k), ω′ = ωα′(k′), ω′′ = ωα′′(k′′), e = eα(k), e′ = eα′ (k′),
e′′ = eα′′(k′′). The tensor function Γijl(k, k′, k′′) is defined by the double sum over
the sites

Γijl(k, k′, k′′) = S̃ ∑
n,n′

γijl(n, n′)
(
1−e−ikr

) (
1−e−ik′r′) (

e−ik′′r−e−ik′′r′)
,

where r′ = r(n′) and the symmetrization is performed in quasi-wave vectors
k, k′, k′′.

If one takes the Hamiltonian (7.1.2) into account in deriving the equations of mo-
tion for the operators ak and a†k, then instead of a system of separable equations for
individual phonons such as (6.1.18), we get a nonlinear system of “coupled” equa-
tions that will relate the evolution of the phonon in the state (αk), with the evolution
of the remaining phonons in the other states. As a result, the operator Hint can be
regarded as the phonon interaction operator. Thus, the phonon interaction displays the
anharmonicity of crystal vibrations.

Let us note that the last multiplier in (7.1.2) is nonzero and equals N only for
k + k′ + k′′ = G, where G is any reciprocal lattice vector. Thus, (7.1.2) can be
written as

Hint =
1√
N

∑
k+k′+k′′=G

V(k, k′, k′′)√
ω(k)ω(k′)ω(k′′)

×(ak + a†−k)(ak′ + a†−k′)(ak′′ + a†−k′′),

(7.1.3)

where for simplicity, we omit the indices that number the branches of vibrations over
which the summation should also be performed.

In (7.1.3), a new notation is used

V(k, k′ , k′′) ≡ Vαα′α′′(k, k′, k′′)

=
1
N

(
h̄

2m

)3/2

ei
α(k)ej

α′ (k′)el
α′′(k′′)Γijl(k, k′, k′′).

(7.1.4)

The summation in (7.1.3) is carried out under the condition

k + k′ + k′′ = G, (7.1.5)
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and since each of the vectors k, k′, and k′′ does not go beyond the unit cell then (7.1.5)
reduces to the two alternative conditions

k + k′ + k′′ = 0, (7.1.6)

k + k′ + k′′ = G0, (7.1.7)

where G0 is a vector that can be only composed of the three fundamental vectors of a
reciprocal lattice b1, b2 and b3.

If the phonon interaction takes place under the condition (7.1.6), it is called a normal
collision (or N-process). If the condition (7.1.7) is satisfied, the interaction is called
an anomalous collision or an umklapp process (U-process, from the German word
Umklappprozess).

Let us note a remarkable feature of the coefficients V(k, k′ , k′′) in the interac-
tion Hamiltonian (7.1.3), associated with their behavior at small values of quasi-wave
vectors. It follows from the definition (7.1.5) that a function of three independent vari-
ables V(k, k′, k′′) vanishes if at least one of these variables tends to zero. For ak � 1
this function can be represented in the form

Vαα′α′′(k, k′, k′′) = ei
α(k)ej

α′ (k′)el
α′′(k′′)Mnpq

ijl knkpkq, (7.1.8)

where M is some tensor coefficient.
In other words, for k, k′, k′′ → 0 we have

V(k, k′, k′′) ∼ kk′k′′ ∼ ωω′ω′′. (7.1.9)

Such a behavior of the corresponding matrix elements in the long-wave limit is
quite natural. Indeed, in view of the limit k → 0, for estimations one can make use
of the results of elasticity theory. However, in elasticity theory the crystal energy is
expressed through the strain tensor. The cubic anharmonicity corresponds to terms
of third order in deformations in the elastic energy. The deformation tensor for a
plane wave of displacements can be estimated as ε ij ∼ ∇iuj ∼ kiuj. Thus, the cubic
anharmonicity is characterized by an intensity (7.1.9) at small k. This property of
the quantities V(k, k′ , k′′) is used essentially in evaluating the contribution of the
vibration anharmonicity to the different macroscopic characteristics of the crystal.

We denote temporarily a−(k) = a(k) and analyze the characteristic product of the
phonon creation and annihilation operators that enters into the Hamiltonian (7.1.3),
just a product of the type

a±α (k)a±α′ (k′)a±α′′(k′′). (7.1.10)

It follows from (6.1.21) that the nonzero matrix elements of the operator (7.1.10)
are proportional to the multiplier exp(±iωt ± iω′t ± iω′′t), whereas before, ω =
ω(α, k); ω′ = ω(α′, k′); ω′′ = ω(α′′, k′′).
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If we now calculate by perturbation theory the probability of a corresponding colli-
sion using the matrix element of the operator (7.1.10), then it will be proportional to
the δ-function

δ(±ω ± ω′ ± ω′′). (7.1.11)

The signs in (7.1.11) correspond to the ± signs in (7.1.10).
Let us consider for instance the term in Hint proportional to the operator

a†(α, k)a†(α1, k1)a(α2,−k2). This term describes the two-phonon creation pro-
cess in the states (α, k) and (α1, k1) and phonon vanishing in the state (α2,−k2). It
gives nonzero probability under the condition

ω(α, k) + ω(α1, k1) = ω(α2, k2),

which is equivalent to the energy conservation under the collision

h̄ω(α, k) = h̄ω(α1, k1) + h̄ω(α2, k2). (7.1.12)

By virtue of the conditions (7.1.4) and relation (6.2.4) the collision occurs either
with total quasi-momentum conservation (N-process, Fig. 7.1a)

p + p1 = p2, (7.1.13)

or when the quasi-momentum of “the phonon center of gravity” changes by h̄G0 (U-
process, Fig. 7.1b)

p + p1 = p2 + h̄G0. (7.1.14)

Fig. 7.1 Three-phonon processes: (a) is the normal process, (b) is the
umklapp process.

The term with the operator a†ka−k′a−k′′ in the interaction Hamiltonian has an anal-
ogous meaning.

7.2
The Effective Hamiltonian for Phonon Interaction and Decay Processes

The term H(3)
int (cubic in anharmonicity and describing the phonon interaction) present

in the crystal Hamiltonian affects both the dynamics of separate quasi-particles and the



7.2 The Effective Hamiltonian for Phonon Interaction and Decay Processes 187

equilibrium properties of a phonon gas. In particular, the crystal energy cannot now
be represented as (6.2.3). However, if the anharmonicity is small, it can be taken into
account by perturbation theory in calculating the crystal energy. Small corrections to
the energy are generally expressed through the displacements of the eigenfrequencies
of crystal vibrations. However, when they are calculated consecutively, it is impossible
to confine oneself only to cubic anharmonicity.

Indeed, for the Hamiltonian (7.1.3) we have
〈
H(3)

int

〉
= 0. (7.2.1)

Thus, when taking cubic anharmonicity into account only, the correction to the first
order of perturbation theory is absent. The frequency shift can be obtained in second-
order perturbation theory only, but the neglected fourth-order terms in the expansion

of the displacement energy would lead to the interaction Hamiltonian H(4)
int involving

the products of four operators ak and a†k of the type a±1 a±2 a±3 a±4 . Thus,
〈
H(4)

int

〉
�= 0

and the corresponding anharmonicity would result in the frequency renormalization
just in the first order of perturbation theory. It turns out that the corrections to the

energy in first-order perturbation theory coming from H(4)
int are generally of the same

second-order corrections coming from H(3)
int .

In this situation, it makes no sense to calculate the eigenfrequency shift with the
Hamiltonian (7.1.3). We only note that in calculating a similar shift in the second-
order perturbation theory, all terms of the Hamiltonian (7.1.3) make nearly the same
contribution to the final result. This is so because the virtual transitions in a system
for which the phonon energy conservation law should not necessarily be satisfied are
taken into account in the second-order perturbation theory. When real collisions of
phonons conserving their energy are described the situation appears to be different.

Since we have defined the frequency ω = ω(α, k) as a positive quantity, the δ-
function (7.1.11) may be nonzero only if the terms in its argument have different
signs. Hence it follows that to describe real phonon collisions in a crystal with small
anharmonicity (7.1.3), one can introduce a simpler effective interaction Hamiltonian.
Indeed, if we restrict ourselves to the basic terms of the phonon interaction energy and
use the first-order perturbation theory approximation (when real scattering processes
are considered), we can omit in the Hamiltonian Hint the terms involving the products
of the operators akak′ak′′ and a†ka†k′ a

†
k′′ . The remaining terms, by a simple replacement

of the summation indeces, can be written in the form

Hef
int =

1√
N

∑
W(k, k′, k′′)√

ωω′ω′′ (a†ka†k′ a−k′′ + a†ka−k′ ak′′), (7.2.2)

where the coefficients W(k, k′, k′′) differ from the V(k, k′ , k′′) in numerical multipli-
ers only, the summation is performed over the quasi-wave vectors under the condition
(7.1.4) and the indices that number the vibration branches are omitted.
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The permutation of the operators a†k and ak in deriving (7.2.2) gives no additional

terms in Hef
int, since the latter vanish by virtue of the conservation law (7.1.6) and the

property (7.1.9) of the function V(k, k′ , k′′).
We analyze the probability of the elementary process described by the Hamiltonian

(7.2.2) by focusing on the long-wave acoustic phonons (ak � 1). We note that if the
long-wave phonons only participate in the collision, the process is normal. Thus, we
shall first be interested in the probability of normal “three-phonon” processes.

Similar processes take place when the conservation laws (7.1.6), (7.1.12) are obeyed

k1 = k2 + k3; ω(α1, k1) = ω(α2, k2) + ω(α3, k3). (7.2.3)

To clear up whether all conditions (7.2.3) can be satisfied simultaneously, in particu-
lar, whether a quite definite phonon (α, k) always vanishes (decays) with an arbitrar-
ily small cubic anharmonicity, we discuss this problem qualitatively. For long-wave
phonons, it suffices to consider the approximation where the dispersion laws are al-
most the same as for sound

ωα(k) = sαk, α = 1, 2, 3. (7.2.4)

In such an approximation “longitudinal phonons” (l) exist whose dispersion law is
close to the isotropic one (sl =constant) and “transverse” phonons (t) whose velocities
satisfy the relation

st < sl . (7.2.5)

Indeed, the true dispersion law differs insignificantly from (7.2.4) even for small k.
For the longitudinal phonons, as a rule, ωl(k) < s1k. Thus, for the process involving
only the longitudinal phonons, (7.2.3) cannot be satisfied simultaneously. For phonons
of the same type in the isotropic model from (7.2.3), (7.2.4) it follows that |k1 + k2| =
k1 + k2. Thus, when the isotropic dispersion law (7.2.4) is obeyed, the process we are
interested in would occur only in the case of parallel vectors k1, k2, k3. We use this
fact to elucidate the possibility of longitudinal phonon decay in a one-dimensional
process.

The dispersion law for longitudinal phonons is given by curve 1 in Fig. 7.2. We
show the point (k1, ω1) corresponding to the state of one of the phonons after the de-
cay. Taking this point as the reference frame origin, starting at this point we construct
the curve 2 for the same dispersion law of the second phonon after the decay. To sat-
isfy (7.2.3), curves 1 and 2 should intersect and the intersection point will determine
the state of a decaying phonon (k2, ω2). These curves, however, do not intersect at
small k and hence, the process l → l + l is impossible. In a scalar model (for the same
type of phonons) the dispersion law analyzed would be nondecaying.

The conclusion about the nondecaying character of the dispersion law with the
property (∂2ω/∂k2) < 0 is also valid for an anisotropic crystal, if the isofrequency
surfaces are convex. These include isofrequency surfaces for the branch of phonons
that corresponds mainly to the longitudinal polarization of vibrations. However, the
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Fig. 7.2 The nondecaying dispersion law.

crystal also involves phonons of another type, namely, transverse ones. By examin-
ing the dispersion law of bending vibrations of a layered crystal (Section 1.2.5) it has
been established that in certain directions the dispersion law for transverse vibrations
has the property ωt(k) > stk (Fig. 7.3a, curve 1). Let us check that in this case the
t → t + t process is possible.

We choose the required direction in reciprocal space along the kx-axis and repeat
the constructions just made above. Curves 1 and 2 may not intersect along the di-
rection Okx. We consider a two-dimensional picture on the plane kxOky and con-
struct isofrequency lines corresponding to the frequency ω2 for the dispersion law 1
in Fig. 7.3a and to the frequencies ω2 − ω for the dispersion law 2. These lines in-
tersect (Fig. 7.3b) and the intersection points determine the wave vectors of a phonon
capable of decaying: k = k1 + k2. Thus, the dispersion law running steeper than that
of sound dispersion (∂2ω/∂k2 > 0) is the decaying one.

Fig. 7.3 Phonon decay into two phonons of the same branch of vibra-
tions: (a) the decaying dispersion law; (b) the intersection of isofre-
quency curves.
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The dispersion law may be decaying also due to strong anisotropy of isofrequency
surfaces. Even if in each direction of k-space the condition ∂2ω/∂k2 < 0 is satisfied,
but the isofrequency surface is not convex (the cross section of such a surface is shown
in Fig. 4.1) a decay such as t → t + t may be allowed.

When both longitudinal (l) and the transverse (t) phonons participate simultane-
ously in a three-phonon process, the conditions for its realization, i. e., the conditions
for satisfying (7.2.3) to be met, are much simplified even if the dispersion laws of
each type of phonons are nondecaying. To analyze these processes, we consider the
dispersion laws (7.2.4) in view of the condition (7.2.5). One can see that for a one-
dimensional model the processes l → t + t′ and l → l + t (Fig. 7.4) are possible,
while processes such as t → l + l′, t → t + l are forbidden, at least in the isotropic
approximation.

Fig. 7.4 Fulfillment of the dispersion laws for the decays l → t + t′ (on
the left) and l → l + t for a 1D model.

Fig. 7.5 Three-phonon process t1 → l + t2.

However, taking into account the existence of two kinds of transverse phonons (t1
and t2) with different sound velocities (s1 �= s2) the following process is possible
(Fig. 7.5):

t1 → t2 + l, s2 < si < sl .
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We emphasize that the phonon dispersion law anisotropy assists significantly when
the condition (7.2.3) is satisfied, although it does not remove all prohibitions arising
in the isotropic approximation.

In conclusion we note that for all processes of single-phonon decay into two
phonons there are corresponding inverse processes (fusion of two phonon into a single
one). These are allowed or forbidden to the same extent as direct processes.

7.3
Inelastic Diffraction on a Crystal and Reproduction of the Vibration Dispersion
Law

In elucidating the conditions for Bragg X-ray (rather soft γ-quantum) reflection, we
considered the crystal as an ideal spatial lattice of fixed mathematical points. How-
ever, the scattering by a real crystal whose atoms can perform vibrational motion are
distinguished from the scattering by fixed centers. First, the incident wave may excite
vibrational motion in the crystal, i. e., generate phonons in it. Then, the vibrating lat-
tice atoms are displaced from their equilibrium positions and the scattering by such a
system is different from that by an ideal periodic structure (the incident wave interacts
with crystal phonons). The second distinction is connected with the root-mean-square
value of the displacement.

Let us discuss the first of the phenomena generated by the inelastic interaction of
penetrating radiation with a vibrating crystal. In a kinematic theory, the probability
of the incident beam scattering with its wave vector changing to q = q2 − q1, is
proportional to the squared modulus of the following integral over the sample volume
(Section 0.4.5):

U(q2, q1) ≡ V(q) =
∫

U(r) exp (−iqr) d3r, (7.3.1)

where U(r) is the potential of the crystal interaction with a field or with a particle. In
a monatomic lattice

U(r) = ∑
n

U0 [r − r(n) − u(n)] , (7.3.2)

and U0(r − ξ) describes the interaction between the penetrating radiation and a single
atom at the point ξ. We substitute (7.3.2) into (7.3.1)

V(q) = F0(q) ∑
n

exp {−iq [r(n) + u(n)]} . (7.3.3)

Here the notation F0(q) is introduced for the atomic scattering factor

F0(q) =
∫

U0(r)e−iqrd3r.

The sum over the lattice sites that is a multiplier in (7.3.3) will be called the structure
factor and is denoted as S(q). Usually the structure factor is determined as this sum
divided into the number of crystal sites N.
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We try to calculate the structure factor using the smallness of atomic displacements.
As, by assumption, u � a and we take interest in the wave vectors q whose modulus
does not exceed the order of magnitude of π/a, we expand each term of the structure
factor as a power series of u, restricting ourselves to the linear terms

S(q) = ∑
n

e−iq[r(n)+u(n))] = ∑
n

e−iqr(n) − iq ∑
n

u(n)e−iqr(n). (7.3.4)

The first term on the r.h.s. of (7.3.4) describes the diffraction pattern for an ideal
periodic structure (Section 0.5). It gives the amplitude of scattering by a crystal for
which q = G, where G is any reciprocal lattice vector.

It is essential that the crystal state under this scattering does not change.
We now study the second (linear in displacement) term on the r.h.s. of (7.3.4), hav-

ing denoted it as M(q). To understand the physical meaning of this term in the struc-
ture factor, we consider M(q) as an operator in occupation-number space and express
the displacement vector u(n) through the phonon creation and annihilation operators
(6.1.16)

M(q) = −iq ∑
n

u(n)e−iqr(n) = −i
(

h̄
2mN

)1/2

×∑
kα

qe(α, k)√
ωα(k)

∑
n

[
aα(k)e−i(q−k)r(n) + a†α(k)e−i(q+k)r(n)

]
.

(7.3.5)

On summing n with (0.4.14) taken into account, it is clear that in (7.3.5) there are
terms of two kinds. Some of them involve the operator ak as a multiplier and describe
the scattering process accompanied with the absorption (annihilation) of a phonon
with the quasi-wave vector k, so that

q2 − q1 = k + G. (7.3.6)

The other terms involve the operator a†k as a multiplier and are responsible for the
phonon radiation (creation) obeying the dispersion law

q1 − q2 = k + G. (7.3.7)

The matrix elements of the operator M(q) thus determine the amplitude of inelastic
scattering involving one phonon (the amplitude of a one-phonon process). It follows
from (7.3.6), (7.3.7) that one-phonon scattering may take place either as an N- or a
U-process.

We now obtain fairly straightforward energy conservation laws that govern the pro-
cesses (7.3.6), (7.3.7) and also look at the one-phonon scattering from another point of
view. Since we regard V(q) as the energy operator of crystal interaction with an inci-
dent beam, the probability of the beam scattering in the first-order perturbation theory
is expressed through the squared matrix element 〈 f |V(q)| i〉 for a transition from the



7.3 Inelastic Diffraction on a Crystal and Reproduction of the Vibration Dispersion Law 193

initial crystal state i with a set of occupation numbers for phonons {Nk} into the final
state f with the occupation numbers

{
N ′

k

}
. Let Ei and Ef be the crystal energy in the

harmonic approximation before and after scattering:

Ei = ∑
kα

(
Nα(k) +

1
2

)
h̄ωα(k), Ef = ∑

kα

(
N ′

α(k) +
1
2

)
h̄ωα(k).

Furthermore we introduce the notation where E1 = E(h̄q1) and E2 = E(h̄q2) for the
energies of an incident particle (γ-quantum, electron or neutron) before and after scat-
tering, and E(p) is the energy of a scattered particle as a function of its momentum.

In the first Born approximation, the probability of the separate scattering by a crystal
in the state i is proportional to

w(q, E) = ∑
f
|〈 f | V(q) |i〉|2 δ(E + Ef − Ei), (7.3.8)

where E = E2 − E1 = h̄ω.
Using the integral representation of the δ-function

δ(z) =
1

2π

+∞∫

−∞

exp(izt) dt,

and transforming (7.3.8) we obtain

w =
1

2πh̄

+∞∫

−∞

eiωt ∑
f
|〈 f |V |i〉|2 exp

i(Ef − Ei)t

h̄
dt. (7.3.9)

We take into account the identity

∑
f
|〈 f |V |i〉|2 exp

i(Ef − Ei)t

h̄
= ∑

f
〈 f |V| i〉∗〈 f |V| i〉 exp

i(Ef − Ei)t

h̄

= ∑
f
〈 f

∣∣∣V†
∣∣∣ i〉〈 f

∣∣∣e i
h̄ Ht Ve−

i
h̄ Ht

∣∣∣ i〉 = ∑
f
〈i

∣∣∣V†
∣∣∣ f 〉〈 f |V(t)| i〉,

where we move to the Heisenberg representation of the operators and denote V by
V(0). Then,

w(q, E) =
1

2πh̄

+∞∫

−∞

〈V∗(q, 0)V(q, t)〉eiωt dt. (7.3.10)

Here we use the notation 〈. . .〉 for the quantum-mechanical average in some crystal
state, {Nk}. We note that by virtue of time homogeneity

〈V∗(q, 0)V(q, t)〉 = 〈V∗(q,−t)V(q, 0)〉. (7.3.11)
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We come back to the definition (7.3.3), taking into account (7.3.11)

w(q, E) =
1

2πh̄
|F0(q)|2 ∑

n,n′
eiq[r(n)−r(n′)]

×
+∞∫

−∞

〈eiqu(n,t)e−iqu(n′,0)〉e−iωt dt.

(7.3.12)

Thus, in the general case the scattering probability is determined by the Fourier
components of the correlation functions

〈eiqu(n,t)e−iqu(n′,0)〉. (7.3.13)

For small thermal atomic displacements and insignificant changes in the wave vec-
tor in the scattering, we confine ourselves to the expansion (7.3.4). This expansion
is sufficient to describe the one-phonon processes of inelastic scattering. Using the
definition (7.3.5), we note that

〈M†(q, t)〉 = 〈M(q, 0)〉 = 0,

and calculate the part quadratic in M(q) that contributes to the inelastic scattering
probability

δw(q, E) =
1

2πh̄
|F0(q)|2

+∞∫

−∞

〈M†(q, t)M(q)〉e−iωt dt

=
qjql

2πh̄
|F0(q)|2 ∑

n,n′

+∞∫

−∞

〈uj(n, t)ul(n′, t)〉eiq[r(n)−r(n′)]−iωt dt.

(7.3.14)

The average value coincident with the pair correlator (6.4.1) has arisen in the inte-
grand of (7.3.14). Thus, the probability of one-phonon inelastic processes is propor-
tional to

δω(q, E) = N |F0(q)|2 qjqlKjl(q, ω), (7.3.15)

where

Kjl(q, ω) =
1

2πh̄ ∑
n

+∞∫

−∞

Φjl(n, t)eiqr(n)−iωt dt. (7.3.16)

Thus, the specificity of the scattering of various particles (or waves) is manifest in the
presence of the atomic factor F0(q) only.

The participation of the crystal structure of substances in the generation of one-
phonon processes is universal and determined by the pair displacement correlator. The
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probability of such processes (7.3.15) is proportional to a spatial and a time Fourier
transformation of the displacement correlator (6.4.2).

It follows from (6.4.2) and (7.3.16) that

Kjl(q, ω) =
1

2mN ∑
kα

ej(k)el(k)
ωα(k)

{Nα(k)δ [ω − ωα(k)]

×∑
n

ei(q−k)r(n) +
(

Nα(k) +
1
2

)
δ [ω + ωα(k)] ∑

n
ei(q+k)r(n)},

(7.3.17)

showing that the Fourier components of the displacement correlation are nonzero only
for the frequencies ω = ±ωα(k). This means that one-phonon processes are allowed
if one of the conditions

E2 − E1 = h̄ωα(k), (7.3.18)

E1 − E1 = h̄ωα(k) (7.3.19)

is satisfied (we remember that in (7.3.15) h̄ω = E2 − E1).
It is easy to understand from (7.3.17) that the process (7.3.18) is allowed under the

condition (7.3.6), and the process (7.3.19) under the condition (7.3.7). The conserva-
tion laws (7.3.6), (7.3.7), (7.3.18), (7.3.19) describe the interaction of strange particles
(capable of propagating a crystal) with phonons, i. e., the quasi-particles of a crystal.

The inelastic diffraction phenomenon accompanied by one-phonon processes de-
scribed provides an effective method for describing lattice dynamics. Let us suppose
that it is possible to create a narrow beam of particles incident on the crystal, to fix
the directions of scattered particles and to measure their energy. Thus, in each scatter-
ing process we know q1, q2, E1 and E2. If we neglect the umklapp processes whose
contribution can be singled out, we determine the values of k and h̄ω for a phonon
participating in the process. Considering various directions and orientations of the
crystal, we can reproduce in principle the function ω = ω(k).

However, this experiment will be a success only if with the wavelength of the order
of a lattice constant (λ ∼ a) one can observe the change in the energy of a beam or a
particle by an amount of the order of phonon energy,

δE ∼ h̄ωD ∼ h̄ωm ∼ 0.01 eV.

The energy of X-rays with the required wavelength has the order of magnitude

E = h̄ω = 2π
h̄c
λ

∼ 2π
h̄c
a

∼ 104 eV.

Thus, using X-rays the indicated energy change δE is impossible to observe. But for
neutrons,

E =
p2

2m
=

(2π)2h̄2

2mλ2 ∼ (2π)2 h̄2

ma2 ∼ 0.1 eV,
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which corresponds to the energy of thermal neutrons. Phonon absorption or emission
changes the neutron energy by δE, a value that can be observed.

Examples of experimentally reproducing dispersion laws for neutron scattering are
given in Figs 2.4b, 3.2, 7.6.

Fig. 7.6 Dispersion curves for the two directions in Al are reproduced
by the neutron experiments (Yarnell et al. 1965).

7.4
Effect of Thermal Atomic Motion on Elastic γ-Quantum-Scattering

In distinguishing in (7.3.12) the probability of inelastic one-phonon processes,
we have restricted ourselves in (7.3.12), only to the terms containing multipliers
qiqk〈ui(n, t)uk(n′, 0)〉. We have not taken into account the terms with multipliers
such as

〈[qu(n, t)]2〉 = 〈[qu(n, 0)]2〉, (7.4.1)

that also have second order of smallness in u(n). These terms were omitted since
they contribute to the elastic scattering of penetrating radiation only (for definiteness,
we shall speak of γ-quanta). Indeed, the averages (7.4.1) are time independent and,
therefore, after the integration over time they lead to the δ-function δ(ω) = h̄δ(E1 −
E2) appearing in (7.3.12).

Thus, terms such as (7.4.1) determine the difference between the elastic γ-quantum
diffraction intensity from a vibrating crystal from that on an immobile spatial lattice
of atoms. It is easily seen that for a quantitative description of the influence the atomic
motion on producing elastic diffraction it is not necessary to restrict ourselves to ap-
proximation, which is quadratic in displacements.

We remind ourselves that (6.5.9) is applicable for a monatomic lattice

〈〈eiqu(n,t)〉〉 = 〈〈eiqu(n)〉〉 = e−W ,
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where

W =
1
2
〈〈(qu)2〉〉, (7.4.2)

and represent the correlation function (7.3.13) in the form of two terms

〈〈eiqu(n,t)e−iqu(n′,0)〉〉 = e−2W

+
{
〈〈eiqu(t)e−iqu(0)〉〉 − 〈〈eiqu(t)〉〉〈〈e−iqu(0)〉〉

}
.

(7.4.3)

We begin to analyze this formula with the second term. In the approximation qua-
dratic in displacements it is equal to the average 〈〈M+(q, t)M(q, 0)〉〉 that was con-
sidered in calculation of the probability for one-phonon inelastic scattering (7.3.14).
It is clear that the next term following the expansion of the second term in (7.4.3) in
even powers of the displacement determines the probabilities for multiphonon inelas-
tic scattering processes.

The first term in (7.4.3) is time independent and is thus related to elastic scattering.
When substituted in (7.1.3), it contributes to the elastic scattering probability.

The diffraction intensity observed in an experiment is automatically averaged over
all the initial crystal states, which is equivalent to a thermodynamic averaging of the
scattering probability. On performing a thermodynamic averaging in (7.3.12), we find
that the intensity of the elastic γ-quantum diffraction is proportional to the

wel(q, E) = N e−2Wδ(E) |F0(q)|2 ∑
n

eiqr(n)

= NΩ0 e−2Wδ(E) |F0(q)|2 ∑
G

δ(q − G),
(7.4.4)

where the summation is over the reciprocal lattice vectors; Ω0 is the unit cell volume
of the reciprocal lattice. The factor e−2W describing the weakening of the diffraction
maxima intensity due to thermal atomic motion is called the Debye–Waller factor.

Since the Debye–Waller factor in (7.4.4) is a multiplying factor, the thermal atomic
motion in the crystal does not result in a smearing of the sharp diffraction maxima in
γ-quantum scattering it only reduces its intensity.

The generalization of (7.4.4) to the case of a polyatomic lattice is straightforward

wel(q, E) = NΩ0δ(E)

∣∣∣∣∣∑s
e−Ws Fs(q)eiqxs

∣∣∣∣∣ ∑
G

δ(q − G), (7.4.5)

where xs is the vector of the basis of a polyatomic lattice that gives the s-th atom
position in the unit cell; es is the polarization vector of the s-th sublattice vibrations,

Ws =
1

2msN ∑
kα

{qes(α, k)}2

ωα(k)
coth

h̄ωα(k)
T

. (7.4.6)
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Examining the processes of the interaction of the γ-quantum with the crystal has
shown that an incident γ-quantum may either give the crystal some momentum to
produce a phonon or get from the crystal some momentum generated by the phonon
“absorption”. In this case the γ-quantum energy will change to a finite value and the
scattering will be inelastic.

But another interaction with a crystal is possible when the finite part of the γ-
quantum momentum is transferred to a crystal in the process without the phonon
emission or absorption. As a result of this interaction, the crystal does not change
its state and the γ-quantum conserves its energy. So we have a process without recoil
characterized by extremely narrow diffraction lines. The proportion of such elastic
processes is measured by the Debye–Waller factor.

7.5
Equation of Phonon Motion in a Deformed Crystal

The equations of crystal lattice motion have static inhomogeneous solutions with
boundary conditions determined by external loads. When such crystal states are de-
scribed in terms of long waves, we can consider the inhomogeneous static deforma-
tions that deform the crystal lattice (Fig. 7.7). If the deformations are small, they are
solutions to the linear equations of elasticity theory. Static deformations do not in-
fluence small vibrations (phonon after quantization) due to the linearity of the elastic
theory equations, but including the anharmonic interactions transforms a deformed
lattice into an inhomogeneous elastic medium.

It is of interest to discuss the possibility to describe the vibrations of such spatial
inhomogeneous crystals in terms of phonons. Let us suppose that the macroscopic
crystal characteristics vary essentially at distances of the order of δL. How is this in-
homogeneity to be taken into account, while preserving the usual concept of phonons?

The phonons were introduced to quantize vibrations of the homogeneous crystal
that results in the fact that the states of an individual phonon were characterized by
a quasi-wave vector k. If the distance δL is large compared to the average phonon
wavelength δL � λ̄, the phonon concept may be preserved in an inhomogeneous
crystal, too. Indeed, to describe the crystal vibrations with the above inhomogeneities
instead of normal modes, one should take the wave packets with the interval of wave
vectors δk, where

δL>∼
1
δk

� λ̄. (7.5.1)

Analyzing (7.5.1) and taking into account the relation between the wavelength and
the value of the wave vector we obtain δk � k, implying that the wave packets con-
cerned consist of normal modes whose wave-vector differences much less than their
wave vectors. Some conclusions important for further discussion follow from the last
assertion.
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First the wave packet described may be associated with a vibration with the quasi-
wave vector k, i. e., with an individual phonon in a state with a given k.

Then, the velocity of this new “phonon” is determined by the group velocity of the
packet:

v =
∂ω

∂k
. (7.5.2)

First, if we measure the spatial positions within δx, where λ̄ � δx � δL, then a
phonon1, having a quasi-wave vector k and located at the point r can be introduced.
Under such conditions the crystal-state inhomogeneity manifest in the inhomogeneity
of a “refraction coefficient” for a phonon, i. e., in the dependence of phonon frequency
on the coordinate r: ωα = ωα(k, r). The vector k of the corresponding packet will
then vary in time

dk
dt

= −∇ω(k, r) ≡ − ∂ω

∂r
. (7.5.3)

The approximation in which the relation (7.5.3) is meaningful corresponds com-
pletely to the Eikonal approximation in geometry optics. By analogy with the de-
scription of electromagnetic vibrations in inhomogeneous media, we can describe the
equations of motion for a sound beam that follows directly from (7.5.2), (7.5.3)

dr
dt

=
∂ω(k, r)

∂k
,

dk
dt

= − ∂ω(k, r)
∂r

. (7.5.4)

The equations of motion (7.5.4) can be derived not only using the wave properties
of phonons employed to construct the wave packets. According to the de Broglie
principle the phonon is a quasi-particle with energy h̄ω and quasi-momentum p = h̄k.
Thus, the energy h̄ω(k, r) can be regarded as the Hamiltonian function and (7.5.4) as
the Hamiltonian form of the equations of motion of this quasi-particle.

In the case of small elastic deformations the dependence of ω(k, r) on the strain
tensor uik is linear

ω(k, r) = ω0(k) + gil(k)uil(r), (7.5.5)

where ω0(k) is the dependence of frequency on a quasi-wave vector in a nondeformed
crystal.

It is interesting to analyze (7.5.5) and the equations of motion (7.5.4) near the edge
of the phonon frequency band. We shall the quasi-wave vector from the value of km

corresponding to the maximum or minimum (if we speak of optical phonons) value of
ω0(k). Then, at small k

ω0(k) = ωm − 1
2

γilkikl . (7.5.6)

Confining ourselves to small k, in (7.5.5) we obtain

ω(k, r) = ωm + gil(0)uil(r) − 1
2

γilkikl , (7.5.7)

where ωm is the frequency band boundary of the continuous spectrum of a nonde-
formed crystal.

1) The condition δkδx ∼ 1 is allowed by the inequality (7.5.1).
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Fig. 7.7 Deformed crystal lattice.

Fig. 7.8 Distortion of an upper edge of the phonon frequency band.

The equations of motion (7.5.4) for this case are

dkj

dt
= −gil(0)

∂uil

∂xj
,

dxj

dt
= −γjlkl .

In a cubic crystal (7.5.7) is much simplified

ω(k, r) = ωm {1 − βull(r)} − 1
2

γ2k2,

γ = const, β = const ∼ 1.

Since the reciprocal-space volume corresponding to the vibrations concerned in-
creases under total compression (ull < 0), it may be concluded that β > 0. In the
simplest case

dk
dt

= βωm
∂ull

∂r
,

dr
dt

= −γ2k. (7.5.8)
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The phonon motion described by (7.5.8) takes place under the condition

βull(r) +
1
2

γ2k2 = ωm − ω = const.

It is clear that the part of the total crystal compression (at β > 0) is a “potential
well” for a short-wave phonon near the upper spectrum boundary. Thus, getting into
the region of forbidden frequencies of an ideal crystal (ω > ωm), the phonon cannot
go beyond the volume bounded by the surface

βull(r) = ωm − ω.

Consider the possible dependence of the upper spectrum boundary ω2 on the co-
ordinate shown in Fig. 7.8. The short-wave phonon moves in the “potential well”
experiencing total internal reflection at the points x = x1 and x = x2.

The phonon motion under such conditions becomes finite, i. e., localized in some
volume of a crystal with linear dimensions much exceeding the lattice constant. If the
mean free path of the phonon is much larger then its “trajectory”, then we can speak
of bound states of the phonon concerned. When such phonon motion is quantized,
discrete frequencies should appear outside the continuous spectrum band. The number
of possible discrete frequencies is determined by the form of the “potential well”.



8
Quantum Crystals

8.1
Stability Condition of a Crystal State

The anharmonicities of the crystal lattice vibrations are important in two cases: ei-
ther at high temperatures when relative displacements of neighboring atoms become
significant and the nonlinear character of elastic interatomic forces manifests itself,
and even in the low-temperature region when the phenomena generated by the an-
harmonicity of crystal vibration are examined. The phenomena that are inexplicable
from the viewpoint of a harmonic approximation can be exemplified by any process
stimulated by an interaction in the phonon gas.

Let us analyze the harmonic displacements of atoms more scrupulously and clear
up when they can be considered as small. The necessary condition for the harmonic
approximation to be valid is the requirement that the atomic zero vibration amplitude
in the crystal be small compared to the lattice period. If we denote in (6.2.6)

1
ω∗

=
1
N ∑

k

1
ω(k)

, (8.1.1)

the ratio of r.m.s. atomic displacement in the ground state of the crystal to the lattice
constant a will be of the order of magnitude

Λ =

√〈
u2

〉
0

a
∼ 1

a

√
h̄

mω∗
.

Thus, the harmonic approximation provides a sufficient accuracy in describing the
atomic motion in a crystal if Λ � 1.

For almost all crystalline substances the parameter Λ is very small. Moreover,
even at high temperatures, when thermal atomic displacements greatly exceed the
zero-vibration amplitude, the ratio of the r.m.s. atomic displacement amplitude to
the lattice period is generally small. Only at the melting temperature does the value

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40508-9



204 8 Quantum Crystals

of 〈〈u2〉〉 become comparable with the square of the interatomic distance. The last
point allows one to introduce the physical criterion of melting when the temperature
rises. The melting temperature can be estimated on the basis of a Lindemann condition
according to which at the melting point the thermal atomic displacement square (6.4.7)
is 〈〈u2〉〉 = γ2a2,γ ∼ 0.1.

The crystal melting temperature Tmelt for an ordinary crystal is always higher than
the Debye temperature Θ. At temperatures lower then Tmelt, in the majority of crystals
the ratio of thermal atomic displacement to the lattice period is very small.

However, there exist crystals for which Λ ∼ 1. These are, in the first instance,
hydrogen and helium crystals1. The standard quasi-classical approach to studying
the vibrations of such crystals is already inapplicable. This is not only due to large
anharmonicities. The classification of the crystal states based on the concept that
atoms in equilibrium are located at certain lattice sites does not correspond to the
physical situation.

Since the existence of a crystalline state in this situation is problematic, the dimen-
sionless parameter Λ should be determined without involving the lattice period. It was
done by de Bour (1948) in terms of the quantities determining the potential energy of
the interaction between the crystal atoms. The interaction energy of the atomic pair
can be written with a good accuracy in the form of a Lennard–Jones potential

U(r) = 4ε

{(
σ

r

)12

−
(

σ

r

)6
}

, (8.1.2)

where r is the interatomic distance, σ is the spatial interaction distance, the parameter
ε characterizes the intensity of interaction energy.

Then the characteristic dimensionless de Bour parameter is

ΛB =
h̄√
mε

. (8.1.3)

This parameter ΛB for the crystal coincides, in order of magnitude, with the param-
eter Λ considered above, so that small zero atomic vibrations in the crystal correspond
to ΛB � 1. This is just the condition for the applicability of the classical approach to
the description of the crystal state.

It follows from (8.1.3) that the larger the value of ΛB the smaller is the atomic mass
and the intensity of its interaction with its neighbors. For some inert gases the values
of ΛB are

3He 4He H2 D2 Ne Ar Kr Xe
0.48 0.43 0.28 0.20 0.09 0.03 0.02 0.01

1) We remind the reader that at normal atmospheric pressure helium remains
liquid even at T = 0 K, and its ordered ground state has no spatial crystal
structure. Helium-4 isotopes form a crystalline state only at pressures higher
than 250 Pa, and helium-3 isotopes – at pressures higher than 300 Pa.
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Argon, xenon and krypton crystals have comparatively small values of zero-
vibration amplitudes and can be considered as ordinary crystals with the atoms
localized at the lattice sites.

However, the de Bour parameter for helium and hydrogen crystals is comparable
with 1 and, thus, the classical approach to describe the physical properties of these
crystals (in particular, their ground state) is inapplicable. Crystals where the zero-
vibration amplitude is comparable in order of magnitude with the lattice period are
called quantum crystals.

The most remarkable representative of substances whose ground state is described
in a purely quantum language is helium. The quantum zero vibrations in helium do
not allow the formation of a stable crystal lattice at normal pressure. Thus, helium
does not crystallize at any temperature (including T = 0 K) if the pressure does not
exceed a certain limiting value. For pressures lower than this value, at temperatures
near absolute zero helium forms a quantum liquid.

It is interesting to note that in quantum crystals unusual relations between melting
Tmelt and Debye Θ temperatures (Tmelt � Θ) are observed. For instance, for H2 we
have Tmelt ≈ 14 K and Θ ≈ 120 K; for 4He, Tmelt ≈ 3 K and Θ ≈ 30 K. Even for
Ne, Tmelt ≈ 25 K, Θ ≈ 75 K.

The basic peculiarity of quantum crystal mechanics is that the atoms are not con-
sidered as particles vibrating independently near the lattice sites under only a classical
force interaction. The reason for this is as follows. A quantum crystal is character-
ized by a regular spatial structure and has a definite crystal lattice. Thus, on the one
hand, the atoms of the quantum crystal make up a spatial lattice and perform vibra-
tional motions near its sites, but, on the other hand, the amplitude of the atomic zero
vibrations in the potential field (8.1.2) is of the order of the distance between the sites.
To combine these two properties of atomic motion in quantum crystals, we assume
the atomic motion is correlated. Thus, if the atomic motion in a quantum crystal is
described microscopically it is necessary to take into account the correlation of the
motion at small distances (short range correlation).

In a quantum crystal the phonons also play the role of weakly excited crystal states.
This conclusion is based on studying the low-temperature properties of the hard he-
lium. The phonons prove to be a good approximation to describe the thermal motion
in a quantum crystal. Hence it follows that large zero atomic vibrations result only in
a renormalization of the long-range correlations (phonons) by taking into account the
quantum short-range correlations.

Finally, the condition for zero vibrations to be small may be violated only for sepa-
rate forms of intracrystal motions. For instance, hydrogen dissolved in certain metals
forms a quantum subsystem (sometimes a regular sublattice) in a classical crystal.
The hydrogen atomic displacement should then be described by taking into account
the quantum properties for such a type of motion, whereas the motion in the other
degrees of freedom of a crystal may be regarded as quasi-classical.
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8.2
The Ground State of Quantum Crystal

According to experimental data the “quantum feature” of solid helium (in particular,
the specific role of zero vibrations) is not manifest when considering the dynamic
crystal properties described by the harmonic approximation.

However, there are such physical properties of quantum crystals in which large
zero atomic vibrations are dominant. There is, first of all the possibility of a tunneling
atomic motion in a crystal lattice, which is completely determined by the purely quan-
tum effect of particles tunneling through a potential barrier. The tunneling motion
may cause a rearrangement of the ground state of a quantum crystal.

In describing the ground state of an ordinary crystal it is assumed that there is one
atom at each lattice site. But when the zero-vibration amplitude levels are the same
order of magnitude as the interatomic distance in a crystal, then the atom ceases to be
localized at a definite site. A purely quantum situation can then be realized when in
the ground state (at T = 0 K) the number of lattice sites N0 is not the same as the
number of atoms N.

For all existing “candidates” for quantum crystals, one should expect N0 ≥ N.
When the value of N0 exceeds N then the probability to find an atom at a given site
is less than 1, although the crystal does not lose its periodicity. The density that deter-
mines the probability of various positions of a particle in space remains in this case a
periodic function with a lattice period. Andreev and Lifshits (1969) were the first to
predict the existence of such quantum crystals and to describe their basic properties.

To characterize the state of a quantum crystal, it is necessary to take into account
additional degrees of freedom that are not present in a classical crystal – the quantum
tunneling. The excess in the number of sites of a spatial lattice over the number
of atoms caused by quantum tunneling is called quantum dilatation. The quantum
dilatation is not associated with an external stretching action or thermal expansion.
Let the function η(r) describe this dilatation and we normalize this function by the
condition

1
V0

∫
η(r) dV = N0 − N, (8.2.1)

where the integral is calculated over the whole crystal volume. The probability of
detecting an atom positioned in a definite unit cell with the volume V0 is given by

1
V0

∫

V0

(1 − η) dV =
1
V

∫
(1 − η) dV =

N
N0

< 1, (8.2.2)

where the first integral is taken over the volume of one unit cell.
Thus, the ground state of a quantum crystal is a phonon vacuum that is characterized

by certain quantum dilatation. In the long-range approximation the ground state can
be regarded as homogeneous, i. e., it is admissible to set η(r) = η0 = const. The
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crystal density in the ground state is

ρ = ρ0 (1 − η0) , ρ0 =
m
V0

, (8.2.3)

where m is the mass of an atom (or the mass of atoms in the unit cell of a polyatomic
lattice).

However, the presence of quantum dilatation in the ground state is not unique or the
necessary property of a quantum crystal. The quantum properties are more transparent
in the crystal dynamics.

8.3
Equations for Small Vibrations of a Quantum Crystal

If tunneling motion of atoms is possible, the ordinary equations of crystal motion are
inapplicable. These equations cannot be derived by means of a classical approach
and the problem requires a rigorous quantum-mechanical consideration. We will not
derive here the equations of quantum crystal vibrations in the whole frequency range,
but will confine ourselves to an analysis of long-wave (low-frequency) vibrations.
For ordinary crystals this approximation results in the dynamic equations of elasticity
theory (Section 2.9), i. e., in the equations of motion of a continuous medium.

The system of linear equations of the continuous medium dynamics includes two
obvious equations

∂ji
∂t

= ∇kσki, (8.3.1)

∂ρ

∂t
+ div j = 0, (8.3.2)

where j is a vector of the flow density of the substance mass that plays the role of the
momentum of a unit volume. In a classical crystal

σik = λiklm∇lum; j = ρv; v =
∂u
∂t

, (8.3.3)

and (8.3.1), (8.3.2) take the standard form of the elasticity theory dynamic equation
(2.9.18) and the continuum equation (2.9.6).

The physical characteristics for the medium state and the relations between them
in (8.3.1), (8.3.2) must be redefined for the quantum crystal. In particular, these rela-
tions should describe two kinds of motion: a quasi-classical “solid state” and a purely
quantum one. The latter motion is called a superfluid, emphasizing the similarity with
a particular flow behavior of a quantum liquid.

To preserve notations and relations such as (8.3.3), we introduce the vector of
site displacements in the quantum crystal lattice from their equilibrium positions
u = u(r), and associate it with the tensor of small distortions uik = ∇iuk and
strain ε ik. The vector u describes the normal form of classical crystal lattice motion.



208 8 Quantum Crystals

In a nondeformed (ground) state, uik = 0, and the quantum dilatation is homo-
geneous: η = η0 = constant. When small vibrations arise, there appears a small
lattice deformation (|uik| � 1) and a little deviation of η from equilibrium value:
η = η0 + η′, |η′ | � 1. We shall further restrict ourselves to the approximation linear
in small values of η′ and ε ik.

The internal stresses now characterized by the tensor σik are generated both by
the deformation of the lattice itself and by the inhomogeneous quantum dilatation
distribution. For small gradients of the function η we may set

σik = λiklmulm + pikη′, (8.3.4)

where the moduli λiklm are determined by the elastic properties of a quantum crystal
and, thus, may be η0 dependent. The second-rank tensor pik determines the crystal
reaction to the inhomogeneity of the function η(r, t). As the quantum dilatation cannot
be associated with the moment of forces that act on the whole crystal, the tensor pik
should be regarded as symmetric: pik = pki. With the quantum dilatation the change
in the crystal mass density ρ cannot be unambiguously determined by the geometric
deformation of the lattice, i. e., by the tensor uik. In this situation a small deviation
of the density ρ(r, t) from a homogeneous equilibrium value ρ0 in the approximation
linear in η′ and uik, may be written as

δρ ≡ ρ − ρ0 =
∂ρ

∂uik
uik − ρ0η′ = ρ0

(
γikuik − η′) ,

where we denote ρ0γik = ∂ρ/∂uik. Since ukk = div u coincides with a relative in-
crease in the lattice volume under deformation, then γik = −δik in an ordinary (clas-
sical) crystal. Assuming the quantum properties of a crystal to be weak we consider
the expansion

δρ = −ρ
(
div u + η′) . (8.3.5)

We now proceed to the second and third relations (8.3.3) that should be revised as
the derivative ∂u∂t does not coincide with the atomic motion velocity v. The type
of motion described by the vector ∂u∂t is represented as spatial lattice vibrations in
a certain medium created by quantum dilatation and capable of superfluid motion. A
superfluid type of motion is characterized by the average velocity vs.

In the reference frame for which vs = 0 the momentum of the crystal unit volume
coincides with the mass flow density of normal motion:

j0i = (ρδik + ρik)
∂uk

∂t
,

where ρik is the tensor of the adjoined mass of a crystal lattice in the above-mentioned
quantum dilatation “medium” (ρik = ρki). By assumption, the quantum dilatation
creates a negative mass density compared to a classical crystal, thus, the matrix ρik
should not be positively definite. In a laboratory reference frame, the momentum of a
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crystal unit volume is

ji = ρvs
i + j0i = (ρδik + ρik)

∂uk

∂t
− ρikvs

k. (8.3.6)

The formula for the kinetic energy of the crystal unit volume is obtained in a similar
way:

K =
1
2

ρ (vs)2 + vs j0 +
1
2

(ρδik + ρik)
(

∂ui

∂t
− vs

i

) (
∂uk

∂t
− vs

k

)

=
1
2

(ρδik + ρik)
∂ui

∂t
∂uk

∂t
− 1

2
ρikvs

i vs
k.

(8.3.7)

Using (8.3.6), (8.3.7) the following effective mass densities can be assigned to su-
perfluid and normal motions

ρ
(s)
ik = −ρik, ρ

(n)
ik = ρδik + ρik = ρδik − ρ

(s)
ik . (8.3.8)

Then the crystal unit volume momentum and the kinetic energy density are

ji = ρ
(n)
ik

∂uk

∂t
+ ρ

(s)
ik vs

k; (8.3.9)

K =
1
2

ρ
(n)
ik

∂ui

∂t
∂uk

∂t
+

1
2

ρ
(s)
ik vs

i vs
k. (8.3.10)

Since the energy is a positive quantity, the matrices ρ
(s)
ik and ρ

(n)
ik should be posi-

tively definite.
We substitute (8.3.9), (8.3.4) into (8.3.1)

ρ
(n)
ik

∂2ui

∂t2 − λiklm∇k∇lum = pik∇kη + ρik
∂vs

k
∂t

, (8.3.11)

and (8.3.5), (8.3.9) into (8.3.2)

ρ0
∂η

∂t
− ρ

(s)
ik ∇iv

s
k = ρik

∂εik

∂t
. (8.3.12)

It is clear that in the equations of quantum crystal motion there are two new dy-
namic quantities η and vs. A relation between the superfluid motion vs and the quan-
tum dilatation density η cannot be established from general consideration and needs
the solution of a corresponding quantum problem. However, if we assume a super-
fluid motion to be potential (curl vs = 0) and postulate that the quantum dilatation
dynamics is described by one additional scalar function of coordinates and time, the
necessary relation can be formulated phenomenologically.

We first write the density of the elastic energy of the system concerned

U =
1
2

λiklmuikulm + pikεikη′ +
1
2

M
(
η′)2 . (8.3.13)
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The second term in (8.3.13) describes the interaction of the normal deformation with
quantum dilatation, while the third arises naturally in a theory linear in η′ and de-
scribes the changes in the nondeformed crystal energy with η deviating from the equi-
librium value η0.

The quantum crystal total energy density should have the form of a sum

E = K + U, (8.3.14)

where K and U are given by (8.3.10), (8.3.13).
We require that (8.3.11), (8.3.12) arise from the mechanical action principle. To

formulate this principle, we introduce the potential of a superfluid motion ϕ:

vs = A grad ϕ; η′ =
∂ϕ

∂t
− βikεik, (8.3.15)

determining the necessary ratios between the coefficients A, M, pik, βik, etc.
We now write the Lagrange function density assuming the displacement vector u

and the potential ϕ to be generalized coordinates. We cannot use a standard mechan-
ical definition of the Lagrange function as the difference between the kinetic (8.3.10)
and potential energy (8.3.13)2. The Lagrange function density must be chosen in the
form

L =
1
2

ρik

(
∂ui

∂t
− vs

i

) (
∂uk

∂t
− vs

k

)
+

1
2

M
(

δρ

ρ

)2

− 1
2

λ0
iklmuikulm − 1

2
ρ (vs)2 ,

(8.3.16)

where vs and δρ/ρ are related to the derivatives of the generalized coordinates by
(8.3.15), (8.3.5).

A correct expression for the crystal unit volume momentum in the reference frame
moving with velocity vs is given by (8.3.16)

pi =
∂L
∂u̇i

= ρ
(n)
ik

(
∂uk

∂t
− vs

k

)
.

In addition, if we take pik = Mβik and set

λiklm = λ0
iklm + M (δikβlm + δlmβik − δikδlm) ,

then the equation for the energy density (8.3.14) follows from (8.3.16).
Equations (8.3.11), (8.3.12) result from the Lagrange function density (8.3.16)

when the coefficients are related by

M = Aρ0, pik = Aρ0βik.

2) One can see that with the given choice of generalized coordinates (8.3.15),
(8.3.14) will not follow from such a density of the Lagrange function. In field
theory the Lagrange function density is then, generally, a positively definite
form in the time derivatives of the generalized coordinates (in our case in
∂u∂t and ∂ϕ∂t).
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We rewrite (8.3.11), (8.3.12) as equations for the functions u(r, t) and ϕ(r, t):

ρ
(n)
ik

∂2uk

∂t2 − λiklm∇k∇lum = Aµik∇k
∂ϕ

∂t
; (8.3.17)

ρ0
∂2 ϕ

∂t2 − Aρ
(s)
ik ∇i∇k ϕ = µik

∂εik

∂t
, (8.3.18)

with µik = ρ0βik − ρ
(s)
ik , and introduce a new elasticity modulus tensor

λ̃iklm = λiklm − Mβikβlm = λ0
iklm − M (δik − βik) (δlm − βlm) .

Equations (8.3.17), (8.3.18) are a complete set of equations for small mechanical

quantum crystal vibrations. They involve, apart from the tensor parameter ρ
(s)
ik specific

for a quantum crystal, the quantity A having the dimension of the velocity squared.
According to (8.3.15), this quantity is included in the linear differential relation

∂vs

∂t
= A grad (η + βikεik) , (8.3.19)

derived by assuming the existence of the velocity potential for a superfluid motion
velocity. The constant A is a macroscopic quantum-mechanical characteristic of the
tunneling atomic motion in the crystal.

8.4
The Long-Wave Vibration Spectrum

Let us now discuss the dispersion laws for small vibrations of a quantum crystal.
Assuming all the variables in (8.3.17), (8.3.18) are dependent on the coordinates and
time through the multiplier exp(ikr − iωt), we find

(ω2ρ
(n)
ij − λ̃iml jklkm)uj + Aµilklωϕ = 0;

(ω2ρ0 − Aρ
(s)
il kikl)ϕ + µilkiωul = 0.

(8.4.1)

We have obtained a system of four homogeneous algebraic equations that allows us
to find the four unknowns (u, ϕ). The solvability condition for this system determines
the dependence ω = ω(k), i. e., the dispersion law. But the solvability condition
for the system (8.4.1) is the zero determinant of a corresponding fourth-rank matrix.
Hence, to each value of the wave vector k there correspond four eigenfrequencies
ω, i. e., there are four branches of the quantum crystal eigenvibrations. Thus, a new
branch of mechanical vibrations generated by additional degrees of freedom appears
in a quantum crystal.

It follows from (8.4.1) that all the branches of the vibrations have the sound-type

dispersion laws: ω = sα(κ)k, κ =
k
k

, α = 1, 2, 3, 4. If the quantum properties of the
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crystal are weakly manifest (A � s2
α for α = 1, 2, 3 and |µik|,

∣∣∣ρ(s)
ik

∣∣∣ � ρ0), then in

the main approximation the vibrations are divided into purely lattice ones and those
of quantum dilatation. The equation for lattice vibrations

[
ω2(ρδij − ρ

(s)
ij ) − λ̃ilmjklkm

]
uj = 0, (8.4.2)

formulated in the approximation (8.4.2), is equivalent to a set of equations
{

ω2ρ0δij −
(

λ̃ilmj +
1
ρ0

ρ
(s)
in λnlmj

)
klkm

}
uj = 0.

Thus, the dynamics of quantum dilatation in the approximation linear in ρ(s)/ρ0,
can be taken into account in the renormalization of crystal elastic moduli. The ef-

fective elastic moduli λ∗
iklm = λ̃iklm + (1/ρ)ρ

(s)
in λ0

nklm. The sound velocities are
renormalized to the same extent.

The fourth equation and the corresponding dispersion law can be obtained from the

last equation of (8.4.1): ω2 = (1/ρ)Aρ
(s)
il kikl .

This dispersion law corresponds to the crystal density vibrations at fixed lattice sites
(u = 0).
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9
Point Defects

9.1
Point-Defect Models in the Crystal Lattice

In Chapter 1 it was mentioned that any distortion or violation of regularity in the crys-
tal atomic arrangement can be considered as a crystal lattice defect. The presence of
defects in a real crystal distinguishes it from an ideal crystal lattice and some proper-
ties of a real crystal are determined by its defect structure. The influence of defects
on the physical properties of the crystal depends essentially on the defect dimension-
ality. This value (dimensionality) is the number of spatial dimensions along which the
defect has macroscopic dimensions.

A point (or zero-dimensional) defect is a lattice distortion concentrated in a volume
of the order of magnitude of the atomic volume. If a regular atomic arrangement is
broken only in the small vicinity of a certain line, the corresponding defect will be
called linear (or one-dimensional). Finally, when a regular atomic arrangement is
violated along the part of some surface with a thickness of the order of interatomic
distances a surface (or two-dimensional) defect exists in the crystal.

Any defect can have the following two functions affecting various crystal proper-
ties. First, a region of a “distorted” crystal arises near the defect and the defect looks
like a local inhomogenity in the crystal. Then, the presence of a defect causes some
stationary deformations in the crystal lattice at a distance from it, resulting in the dis-
placement of atoms from their equilibrium positions in an ideal lattice. Thus, the
defect is also a displacement field source in a crystal. The field of atomic displace-
ments near the defect is dependent naturally on the character of the influence of the
defect on the surrounding lattice (matrix).

The simplest types of point defects in a crystal are as follows: interstitial atoms are
atoms occupying positions between the equilibrium positions of ideal lattice atoms
(Fig. 9.1a); vacancies are lattice sites where atoms are absent (Fig. 9.1b); interstitial
impurities are “strange” atoms incorporated in a crystal, i. e., those that occupy inter-
stitial positions in a lattice (Fig. 9.2a); substitutional impurities are “strange” atoms or
entire molecules that replace the host atoms in lattice sites (Fig. 9.2b).
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Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 9.1 “Proper” defects of a crystal lattice: (a) is an interstitial atom;
(b) is a vacancy.

We consider the influence of a “proper” point defect on the surrounding matrix in
a simple cubic lattice of a metal or a nonpolar dielectric (dielectric with a covalent
bond). An interstitial atom incorporated in such a lattice locally breaks its ideality.
The sites nearest to this atom are displaced due to the interstitial atom (Fig. 9.1a). In
a simple cubic lattice this deformation has a cubic symmetry.

A vacancy in a simple crystal lattice leads to the displacement of the nearest atoms
in the direction of the vacancy position (Fig. 9.1b).

Fig. 9.2 Atoms of impurities: (a) – interstitial; (b) – substitutional.

It is seen from Fig. 9.1a,b that vacancies and interstitial atoms may be considered
as defects of opposite “sign”. In particular, a vacancy in a simple crystal lattice leads
to the displacement of the nearest atoms towards the vacancy position (Fig. 9.1b). The
annihilation of a vacancy and an interstitial atom may be effected, that is followed by
the disappearance of the vacancy and interstitial atom.

Another process is possible when an interstitial atom leaves its position and goes
over to an interstitial site, creating a pair of defects. This scheme is effected if a crystal
is radiated by energetic particles when a particle passing through the crystal displaces
an atom from its site, transferring it to an interstice.

A vacancy and an interstitial atom positioned close together are referred to as a
Frenkel pair of defects (Ya. I. Frenkel was the first to describe these defects).

Let us note that the local environment of an interstitial atom (Fig. 9.1a) and the di-
rections of the nearest-atom displacements for crystals with a primitive Bravais lattice
(Fig. 9.3) are different from those observed in a body- or face-centered cubic lattice.
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The displacements near the interstitial atom in such lattices may have no high degrees
of symmetry, as shown in Fig. 9.3. In particular, in the vicinity of an “excess” atom
the lattice configuration with two isolated atoms is possible (Fig. 9.4). Such a position
of an interstitial atom generates a dumb-bell-shaped configuration of the defect.

Fig. 9.3 Atomic displacement near an interstitial in a primitive cubic
lattice.

Another possible position of an “extra” proper atom in a lattice is the crowdion con-
figuration that is different in symmetry from the standard interstitial position. A crow-
dion in a 1D crystal is described in Section 5.2.

Fig. 9.4 Dumb-bell-shaped configuration of an interstitial atom.

Now we turn to a line of densely packed atoms in a 3D crystal (Fig. 9.5). Of the
two possible types of defects with an extra atom of the same type (dumb-bell-shaped
and crowdion configurations) the “dumb-bell” is an energetically more advantageous
static point defect, while the crowdion is a dynamic defect capable of moving easily
along a line of densely packed atoms. The comparatively easy motion of a crowdion is
associated with the fact that with a sufficiently extended region of atomic condensation
along a separate line, the displacement of the crowdion center of mass is achieved by
an insignificant displacement of each atom in this line.

It is natural that in a low-symmetry lattice the vacancy may also be characterized
by a local atomic rearrangement of a dipole or “anticrowdion” type.



218 9 Point Defects

Fig. 9.5 A crowdion on the x-axis.

An anisotropic lattice deformation (indicated by arrows in Fig. 9.4) is also gen-
erated by an impurity molecule that has no spherical symmetry. The corresponding
static point defect is sometimes called an elastic dipole. As a rule, the same dipole-
type defect may be oriented in different ways with respect to the crystal axes and the
processes of elastic dipole reorientation are possible where its dynamic properties are
manifest.

Considering the localization of an interstitial impurity (or an interstitial atom) in a
crystal, we note that the unit cell of each crystal lattice has one or several equivalent
positions for interstitials that are determined by the geometrical structure of the lattice.
For instance, in a primitive cubic lattice this position is the cube center, in a FCC
lattice the positions for interstitials are localized either at the center of the cube or
at the middle of the cube edges. In a BCC lattice these positions are at the centers of
tetrahedrons constructed of two atoms at the cube vertices and two atoms at the centers
of neighboring cubes or in the middle of the cube edges (in octahedron interstices).

If the local surroundings of interstitial vacancies have no cubic symmetry (as, e. g.,
in a BCC lattice) nonisotropic deformations arise around the interstitial atoms. First, a
prerequisite for a dumb-bell or crowdion configuration of an interstitial atom appears
and, second, the impurity in such a position behaves as an elastic dipole. A classical
example of the latter is the iron crystal distortion around a carbon atom impurity.
Carbon atoms get into octahedron interstices of a BCC iron lattice and behave as
single-axis elastic dipoles oriented along the cube edges.

9.2
Defects in Quantum Crystals

In describing the point defects of a crystal lattice we proceeded from a seemingly
obvious assumption of defect localization in a certain site or interstice. However,
the existence of crystals with specific quantum properties (Chapter 8) makes such an
assumption that is purely substantiated and even unreal in some cases. This refers
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first of all to the defects in quantum crystals and to the behavior of hydrogen atom
impurities in the matrix of rather heavy elements.

Since defect localization is doubtful, it is necessary to make a more rigorous analy-
sis of the physical situation arising in a crystal containing defects.

If we have a crystal with a single point defect, then its Hamiltonian function (or
Hamiltonian) is a periodic function of the coordinate of the defect with the period
of the crystal lattice. We shall study only those crystal degrees of freedom that are
described by the defect coordinates, with the temperature assumed to be zero. We
consider the localization of the defect at one of the equilibrium positions correspond-
ing to the crystal-energy minimum. The dynamical properties of a defect are then
manifest only in small oscillations near the fixed equilibrium position. Thus, the crys-
tal state concept is unambiguously associated with the notion of a fixed coordinate of
the defect.

Defect localization becomes impossible when quantum tunneling occurs. The de-
fect coordinate as a characteristic of the crystal state ceases to be a well-defined quan-
tity and various states of a crystal with a defect should be classified by the values of
a quasi-wave vector k. The crystal energy becomes a periodic function with respect
to k.

If we subtract from this energy the energy of a crystal without a defect, then we get
the defect energy εD(k). The different values of k inside the Brillouin zone determine
different energies εD(k). Thus, an energy band of some width ∆ε proportional to
the probability for quantum tunneling of a defect from one equilibrium position to a
neighboring one arises. This new part of a crystal energy spectrum (Fig. 9.6a) is due
to the appearance of a movable quantum defect. Thus, the defect is associated with an
additional branch of quantum single-particle excitations.

Fig. 9.6 The defecton dispersion law: (a) the appearance of a defecton
needs energy expenditure ε0; (b) the appearance of vacancies induces
the rearrangement of the crystal ground state.

It is clear that a defect in a quantum crystal is delocalized and behaves as a free
particle. It is called a defecton (Andreev and Lifshits, 1969) and the dependence of
the energy εD(k) on k is referred to as the defecton dispersion law. An example of a
defecton is a 3He isotope atom in solid 4He.
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The defectons can collide with one another at finite concentrations, and collisions
with other crystal excitations (e. g., phonons) are also possible at finite temperatures.

An increasing number of collisions fundamentally affects the character of defecton
motion. If the frequency of collisions is small enough, we practically have a freely
moving defecton. With increasing frequency of collisions the defecton can approach
equilibrium with the lattice during the time when it stays within a unit cell. We then
speak about a practically localized defect.

In most cases the tunneling probability is relatively small. Therefore, to calculate
the defecton dispersion law, we may use the strong coupling approximation known in
electron theory. The function εD(k) is found in this case explicitly at all values of k.
For instance, for a simple cubic lattice we have

εD(k) = ε1 − ε2(cos ka1 + cos ka2 + cos ka3), (9.2.1)

where ε1, ε2 are constant values, |ε2| is proportional to the quantum-tunneling proba-
bility; aα are the fundamental lattice translation vectors, α = 1, 2, 3. The width of the
defecton energy band is ∆ε = 6 |ε2|.

In an isotropic approximation, the expansion (9.2.1) near the minimum value of ε0
(the energy band bottom) has the form

εD = ε0 +
h̄2k2

2m∗ , ε0 = ε1 − 3ε2, (9.2.2)

where m∗ is the defecton effective mass (of order of magnitude h̄2/m∗ ∼ a2∆ε).
The presence of a defecton in a quantum crystal allows one to explain the physical

nature of quantum dilatation (Chapter 8). We assume that in a crystal free of impurities
the “defectiveness” arises only due to the excitation of vacancies. The possibility of
tunneling transforms a vacancy into a defecton, or a vacancy wave with the dispersion
relation (9.2.2).

Vacancy wave generation with k = 0 does not break the ideal periodicity of a
crystal. However, the number of crystal lattice sites becomes unequal to the number
of atoms. The defecton energy with k = 0, i. e., ε0, is dependent on the state of
a crystal, in particular on its volume V changing under the influence of an external
pressure. It may turn out that at a certain volume Vk the parameter ε0 vanishes. We
assume that near this point

ε0 = λ
Vk − V

Vk
. (9.2.3)

We shall set, for definiteness, λ > 0 and consider the defectons obeying Bose
statistics (such as vacancies in solid 4He).

It then follows from (9.2.3) that for V < Vk, ε0 > 0 and the energy spectrum of
defectons is separated from the ground-state energy (without defectons) by a gap. A
finite activation energy is needed to form a vacancy and thus at T = 0 the number of
defectons equals zero.
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For V > Vk, ε0 < 0 (Fig. 9.6b) and defecton generation becomes advantageous
even at T = 0. Vacancies tend to assemble into a state with the last energy (k = 0)
that is promoted by Bose statistics. The defects are accumulated (condensed) in this
state until defect repulsion effects start to manifest themselves. It is clear that with any
vacancy repulsion law the energy minimum at T = 0 corresponds to a nonzero equi-
librium concentration of defectons with k = 0. Since with a fixed number of atoms
each vacancy increases the number of crystal sites by unity, a finite defect concentra-
tion actually generates a certain crystal dilatation. This is just the quantum dilatation.

A narrow energy band is typical for the defecton dispersion law (9.2.1). According
to experiments, its width ∼ 10−5 − 10−4 K ∼ 10−9 − 10−8 eV ∼ 10−21 − 10−20 erg
for the 3He atom playing the role of an “impuriton” in solid 4He. Thus, the energy
band width of the quasi-particle motion of this well-studied defecton is very small
compared to any energies on an atomic scale. This makes the defecton dynamics in
external inhomogeneous fields that arise in a crystal, essentially different from the
dynamics of ordinary free particles.

Let the defecton be in an external field providing the potential energy U(x) but not
influencing its kinetic energy (9.2.1). The total energy of the defecton E(k, x) can
then be written as E(k, x) = εD(k) + U(x).

If, for the characteristic distances l � a, a the potential energy changes by δU �
∆ε the defecton energy will fill a narrow strongly distorted band (Fig. 9.7). The fixed
energy of a defecton E(k, x) = E = const corresponds to its motion localized in a
space region with dimensions δx ∼ l∆ε/δU � l. Such a localization is independent
of the sign of grad U (Fig. 9.7).

Fig. 9.7 Localization of defecton motion in an external potential field.

Let us assume that the external field is changed at a distance l ∼ 100a ∼ 10−6 cm
in a certain direction by δU eV. In this case, for ∆ε ∼ 10−8 the defecton is localized
along the direction of grad U at a distance ∆x ∼ 10−8 cm and it moves in fact along
the surface of constant potential energy U(x) = const (to be precise, in a thin layer
with a thickness that is comparable with the interatomic distance).

We note that in a strong magnetic field the 3He impuritons with different orientation
of nuclear spin are in different energy bands. Indeed, the nuclear magnetic moment of
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3He in a magnetic field H has the energy (µ0 is the Bohr magneton)

Um = ±µnuclH ∼ ±10−3µ0H.

For H ∼ 10−3 Oe we obtain |Um| ∼ 10−19 erg � δε, i. e., the energy bands
of impuritons with magnetic moments directed along an external magnetic field or
opposite to it do not overlap.

9.3
Mechanisms of Classical Diffusion and Quantum Diffusion of Defectons

Any point defects in a lattice are capable of migrating, i. e., moving in a crystal. For
classical defects the only reason for migrating is a fluctuational thermal motion, and
this arises through chaotic movement of a point defect in a lattice. If under the action
of certain “driving forces” such a migration is effected directionally, then one can
speak of the diffusion of point defects. However, sometimes the diffusion motion
implies any thermal migration of the defects even if it is not characterized by a specific
direction. In what follows we shall be interested not in the direction of diffusional
migration of the defects but in the mechanisms of their migration.

Thus, the atomic process in which the defect performs more or less random walks
by jumping from a certain position to the neighboring equivalent position underlies
classical diffusion. What determines the probability of a separate jump?

A strong interaction between the classical defect and a crystal lattice makes it lo-
calized. As a result, the defect turns out to be in a deep potential well and performing
here small oscillations with frequency ω0.

Suppose that we transfer the defect quasi-statically from some point of localization
to neighboring ones, defining the crystal energy E as a function of an instantaneous
coordinate of the defect. If we denote by x a coordinate measured along this imaginary
route of the defect migration, the crystal-energy plot in the simplest case will have the
form shown in Fig. 9.8, where x = x0 and x = x1 are two neighboring positions of the
defect localization. Varying the “routes” of the transition from x0 to x1, we can find a
way through the “saddle point” characterized by the lowest barrier U0 that divides the
positions x0 and x1. The probability for a thermally activated fluctuation transition
of the defect into the neighboring equilibrium position will then be proportional to
exp(−U0/T) and the diffusion coefficient

D = D0e−U0/T , D0 ∼ a2ω0, (9.3.1)

where a is the lattice constant determining the order of magnitude of the distance
between the neighboring equivalent positions of the defect.

Comparing the defect migration activation energy U0 with the parameter of the plot
shown in Fig. 9.8, we should remember that this parameter is conventional. The ex-
istence of the function E = E(x) assumes that in the process of defect migration, the
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crystal has time to get into an equilibrium state characterized by the defect coordi-
nate x. Thus, the energy E can be regarded as a function of the coordinate only when
the defect moves slowly in passing between the positions x0 and x1. If the “slow-
ness” condition is not satisfied, the plot for the function of the variable x becomes
meaningless. Equation (9.3.1) remains valid, but the activation energy U0 becomes an
independent diffusion parameter that determines the “saddle-point” energy in some
multidimensional space of crystal lattice atomic configurations near the defect.

Finally, the migration of a complex point defect may be multistepped. The crowdion
mechanism of “extra” atom migration is very often observed along a line of densely
packed atoms. However, crowdion displacement under a strong external influence
resembles mechanical motion rather than jump diffusion.

Quite a different mechanism is responsible for quantum defect (defecton) motion.
We consider the behavior of an individual defecton in an almost ideal crystal with a
very small concentration of both classical defects and defectons.

At absolute zero (T = 0) the defecton behaves as a quasi-particle with the disper-
sion law (9.2.1), moving freely in a crystal and a set of defectons has the properties of
an ideal gas. In this case the defecton diffusion coefficient can be determined by a gas-
kinematic expression D ∼ vl0 where v is the defecton velocity (v ∼ ∆ε/k ∼ ∆ε/h̄);
l0 is the mean free path (l0 � a) characterizing the collision of defectons with classi-
cal defects (e. g., impurities). The impurity free path (or defecton–defecton free path
with a fixed number of defectons) is temperature independent in the low-temperature
region. Therefore, one can always find an interval of extremely low temperatures in
which the defecton diffusion coefficient is independent of T: D = D(0) = constant.

The defecton energy band width ∆ε that is proportional to the defecton tunneling
probability, is very small (∆ε � h̄ω) and thermal crystal oscillations can break it
easily. The main reason for the defecton band breaking can be explained by means of
the following rough scheme.

Fig. 9.8 The potential barrier separating equilibrium positions of the
defect at point x0 and x1.

Let us make use of the concept of a site potential well as shown in Fig. 9.8. Neglect-
ing weak quantum tunneling, we consider the defecton localized in one such well. As
the well is rather deep, there exists a finite number of discrete energy levels of the
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defecton εn (n = 1, 2, 3, . . .), where εn+1 − εn ∼ h̄ω0. By virtue of the translational
symmetry of the crystal, such energy levels are also observed in the other site wells
(Fig. 9.9). The switching on of the tunneling effect generates in all systems of reso-
nance levels, narrow energy bands inside which the energy of the defecton free motion
depends on the quasi-wave vector k and is determined by an equation such as (9.2.1).
The quantum phenomenon of the above-barrier reflection in a periodic structure also
generates some energy bands of the defecton in the region of a classical continuous
energy spectrum (S is one such band (Fig. 9.9). At T = 0, quantum tunneling occurs
at the ground level, and due to the band character of defecton motion the tunneling
time t is of the order of magnitude t ∼ a/v ∼ h̄/∆ε.

Fig. 9.9 Energy bands of free defecton motion in a crystal at T = 0.

Thermal crystal motion shifts separate wells relative to each other, and for T � ∆ε

the energy levels in the neighboring site wells cease to be resonant. This does not de-
stroy the defecton “pseudoband” motion. Indeed, the time of real tunneling t ∼ h̄/∆ε

is large compared to both 1/ω0 and h̄/T. Thus, tunneling occurs at the ground level
that is averaged over the lattice oscillations (at t � h̄ω0). Such a coherent motion
of the defect at rather low temperatures (∆ε � T � Θ) has a rather large free
path l � a. The defecton scattering by phonons makes l temperature dependent:
l = l(T). With increasing temperature the function l(T) decreases and at some tem-
perature T = T1 it becomes less than l0; furthermore, at a certain temperature T = T2
it is equal to the lattice period: l(T2) ∼ a. In the latter case the defecton band is
broken dynamically, and the defect is localized at a site.

The diffusion coefficient of the localized defect is expressed through the probability
of the transition w into the neighboring site by the relation D ∼ a2w, taking into
account random jumps of a distance a with frequency w. Under the condition T �
h̄ω0, the probability w ≈ w0, where w0 is the transition probability at the ground level
and is temperature independent. The diffusion coefficient is then also temperature
independent and is of the order of magnitude D ∼ a2w0 ∼ a2∆ε/h̄.

Further increase in the temperature leads to the fact that the defect may, with high
probability, be in an excited state with energy εn in the potential well. The proba-
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bility of a transition into the neighboring site in this case is: w = ∑
n

wne−(εn−F)/T,

F = −T log ∑
n

e−εn/T where wn is the probability of a transition from the state n.

With rising temperature, w increases from the value w0 ∼ 1/t (corresponding to
quantum tunneling at the ground level) up to a classical value to w ∼ exp(−U0/T)
that is attained due to the above-barrier transitions.

Thus, by lowering the temperature the diffusion coefficient of the defects first falls
exponentially (classical diffusion), then reaches a plateau (the quantum diffusion of
localized defects) and then rises to the value D(0) (Fig. 9.10).

Fig. 9.10 The temperature dependence of the defecton diffusion coeffi-
cient; the defecton mobility is limited by the interaction with phonons in
the interval (T1, T2).

9.4
Quantum Crowdion Motion

A crowdion moves mechanically, and the mechanical motion of atomic particles is
quantized. Thus, quantum effects should manifest themselves in crowdion motion.

According to the classical equations of crowdion motion, the crowdion Hamiltonian
function (1.7.6) is independent of the position of its center and this is a result of the
continuum approximation in which this function is derived.

The simplest way to take into account the discreteness of the system concerned is
the following. We use the solution (1.7.8) and calculate the static energy of an atomic
chain with a crowdion at rest by using the formula

E =
∞

∑
n=−∞

{
1
2

α0

(
un+1 − un)2 + f (un

)}
, (9.4.1)

where un = u(xn) ≡ u(an).
It is easily seen that the static crowdion energy in the continuum approximation is

equally divided between the interatomic interaction energy and the atomic energy in
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an external field. It can be assumed that the same equal-energy distribution remains in
a discrete chain, and instead of (9.4.1) we then write

E = 2
∞

∑
n=−∞

F(un) = τ2
∞

∑
n=−∞

sin2
(

πun

a

)
.

We substitute here (1.6.12), assuming the point x = x0 to be a crowdion center:

E = τ2
∞

∑
n=−∞

sech2
(

an − x0

l0

)
, (9.4.2)

where l0 = as
√

m/(πτ) = a2√α0/(πτ).
Using the Poisson summation formula,

∞

∑
n=−∞

f (n) =
∞

∑
m=−∞

+∞∫

−∞

f (k)e2πimk dk , (9.4.3)

we find

E =
τ2

a

+∞∫

−∞

dx

cosh2
(

x
l0

) +
2τ2

a

∞

∑
m=1

e2πim(x0/a)
+∞∫

−∞

e2πim(x/a)

cosh2
(

x
l0

) dx. (9.4.4)

The first term in (9.4.4) coincides with the energy E0 of a crowdion at rest found
in the continuum approximation (1.7.1), and the second term is a periodic function of
the coordinate x0 with period a: E = E0 + U(x0), where

U(x) =
2l0τ2

a

∞

∑
m=1

e2πim(x/a)
+∞∫

−∞

cos
(

2πml0ξ

a

)

cosh2 ξ
dξ

= 4α0a
∞

∑
m=1

m

sinh
(

π2ml0
a

) cos
(

2πm
x
a

)
.

(9.4.5)

Since we have assumed that l0 � a, it then suffices to keep one term with m = 1

U(x0) = 8α0a2e−π2l0/a cos
(

2π
x0

a

)
. (9.4.6)

It is clear that the crowdion energy is periodically dependent on the coordinate of
its center x0 that may be regarded as a quasi-particle coordinate. We set in (1.6.15)
x0 = Vt using the ordinary relation between the coordinate and the velocity (at V =
const �= 0). The part of the energy (9.4.6) that is dependent on the coordinate plays the
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role of the crowdion potential energy. Thus, crowdion migration in a discrete atomic
chain deals with overcoming of the potential relief (9.4.6). However, for l0 � a,
the potential energy curve (9.4.6) creates very weak potential barriers between the
neighboring energy minima, and the crowdion may overcome them through quantum
tunneling.

The Hamiltonian

H = E0 +
P2

2m∗ + U1 cos
(

2π
x
a

)
, (9.4.7)

is used for the quantum description of crowdion motion, where

U1 = 8α0a2e−π2(l0/a). (9.4.8)

As both m∗ and U1 decrease with increasing parameter l0/a ∼ a
√

α0/τ the phys-
ical situations, where

h̄2

m∗a2 � U1, (9.4.9)

are quite reasonable. The inequality (9.4.9) means that the potential energy contribu-
tion that is dependent on the coordinate is a weak perturbation of the kinetic energy
of free crowdion motion. In other words, the amplitude of zero crowdion vibrations in
one of the potential minima (9.4.9) greatly exceeds the one-dimensional crystal period
and the crowdion transforms into a crowdion wave (Pushkarov, 1973).

The energy spectrum of a crowdion wave with the Hamiltonian (9.4.7) is rather
complicated and consists of many bands in each of which the energy is a periodic
function of the quasi-wave number k with period 2π/a. However, small crowdion
wave energies for k � 2π/a are not practically distinguished from the free particle
energy with the Hamiltonian (1.7.6) under the condition (9.4.9). Indeed, if we calcu-
late quantum-mechanical corrections to the free particle energy in the second order of
perturbation theory in the potential (9.4.6), then

ε(k) = E0 − U1
m∗a2U1

(2πh̄)2 +
h̄2k2

2M
,

M = m∗
{

1 +
1
2

[
m∗a2U1

(πh̄)2

]2}
.

Thus, in spite of the presence of a potential energy curve (9.4.6), the crowdion wave
moves through a crystal as a free particle with a mass close to the crowdion effective
mass.

9.5
Point Defect in Elasticity Theory

When we consider the problems concerned with macroscopic mechanical properties
of solids, as a rule, it is necessary to take the static lattice distortions caused by the
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point defect into account. In calculations of such displacements the point defect is the
source of an elastic field.

In the atomic model of an interstitial atom (Fig. 9.1a, or 9.3), the atoms of the
nearest surroundings of an interstitial atom are repelled by the forces distributed very
symmetrically in each coordination sphere. The system of forces has a zero resultant
and a zero total moment. From a macroscopic point of view, their action is equivalent
to the action of three pairs of equal forces, applied to the point where an interstitial
atom is located and directed along the coordinate axes. In elasticity theory such a
system is described by the spatial distribution of forces such as (the defect is at the
coordinate origin)

f (r) = −KΩ0 grad δ(r), (9.5.1)

where k is the total compression modulus; Ω0 is a constant multiplier with the dimen-
sions of volume, whose physical meaning will now be elucidated.

We note that if the distribution of bulk and surface forces in a cubic crystal is known
an elastic change in the crystal volume is calculated directly. We can determine a total
change in the deformed crystal volume without solving the problem of its deformed
state.

The equation of the elastic medium equilibrium that follows from (2.9.17) has the
form ∇iσik + fk = 0.

We multiply this relation by xi and integrate over the whole crystal volume
∫

xi∇kσki dV = −
∫

r f dV. (9.5.2)

The l.h.s. of (9.5.2) can be transformed simply to give
∫

xi∇kσki dV =
∫

∇k(xiσki) dV −
∫

σik∇kxi dV

=
∮

S

xiσkidsk −
∫

σikδik dV

= −
∫

σkk dV +
∮

rp dS,

(9.5.3)

where p is the vector of the surface force density acting on the external surface of a
solid body S.

We substitute (9.5.3) into (9.5.2) and use the relation (2.9.14) in a cubic crystal and
also (1.9.5)

∇V =
1

3K

∫
r f dV +

1
3K

∫
rp dS. (9.5.4)

If the external surface of a solid is free (p = 0), it follows from (9.5.4) that

∆V =
1

3K

∫
r f dV. (9.5.5)
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We use (9.5.5) and calculate the change in the crystal volume induced by the density
of forces (9.5.1), and that experiences no external influence

∆V = −1
3

Ω0

∫
r grad δ(r) dV =

Ω0

3

∫
δ(r) div r dV = Ω0. (9.5.6)

Thus, in a cubic crystal (or in an isotropic medium) the quantity Ω0 has a simple
physical meaning and its value equals the increase in the crystal volume caused by one
interstitial atom. The extra atom can only enlarge the crystal volume and therefore
Ω0 > 0. Usually the volume increase caused by an interstitial atom has the order of
magnitude of the atomic volume, and hence Ω0 ∼ V0 = a3.

According to the classification of the elastic fields in the isotropic medium the defect
described by (9.5.1) is called a dilatation center. We have thus used the dilatation
model for the interstitial atom.

A vacancy is different from an interstitial atom in that the deformation of the crys-
tal lattice is connected with the displacement of the nearest atoms towards the defect
(Fig. 9.1a). This displacement is induced by forces whose symmetry in a simple cubic
lattice is the same as in the case of an interstitial atom. In other words, the formula
(9.5.1) is useful for describing vacancies, but the dilatation intensity should be re-
garded as negative (Ω0 < 0).

The deformation near a dipole-type point defect is described in a somewhat differ-
ent way. Such a deformation is generated by a system of forces whose macroscopic
equivalent is represented by three pairs of forces applied at the point where the defect
is localized, with zero moment for each pair but with different values of the forces. In
elasticity theory such a system can be described by the density of forces

fi(r) = −KΩik∇kδ(r), (9.5.7)

and the absence of a total moment of these forces is contained in the symmetry of the
tensor Ωik (Ωik = Ωki).

It is clear that the latter property is inherent only to a static point defect that is in
equilibrium with the surrounding lattice. If the elastic dipole orientation is a dynamic
characteristic, then the tensor Ωik is not necessarily symmetric.

Performing calculations analogous to (9.5.6), it is easy to verify that the density of
forces (9.5.7) causes changes in the volume ∆V = (1/3) Ωll. Thus, for an interstitial
impurity it is natural to take Ωll > 0, assuming Ωll ∼ a3, and for the vacancy to take
Ωll < 0.

If the elastic dipole has axial symmetry it is characterized by a tensor Ωik of the
form

Ωik = Ω0δik + Ω1

(
lilk −

1
3

δik

)
,

where l is the unit vector of the dipole axis. In a cubic crystal the first term describes
the pure dilatation properties of an elastic dipole and the second term contains a new
parameter Ω1 that determines the deviator part of the tensor Ωik.
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For the defect described by the density of forces (9.5.7) the convolution Ωll only
has an obvious interpretation in a cubic crystal. If a crystal has no cubic symmetry,
a simple physical meaning even of this quantity is lost and the tensor Ωik should be
regarded as a certain effective characteristic of the point defect.

Let us find the elastic field generated by a point defect and see that it really is
extended over macroscopic distances (otherwise, a proposed treatment would make
no sense). We denote by Gik the static Green tensor of elasticity theory, i. e., a solution
to the equation vanishing at infinity

λ∗
iklm∇k∇lGmj(r) + δijδ(r) = 0.

The displacement vector induced in an unbounded crystal by the density of forces
f (r) is

ui(r) =
∫

Gik(r − r′) fk(r′) dV′. (9.5.8)

We substitute here (9.5.7) and integrate by parts:

ui(r) = −KΩkl∇l Gik(r). (9.5.9)

In the isotropic approximation, the Green tensor for an unbounded space can be
written explicitly

Gik(r) =
1

8πG

(
δik∆ − 1

2(1 − ν)
∇i∇k

)
r, (9.5.10)

where ∆ is the Laplace operator (∆ ≡ ∇2
k); ν is the Poisson coefficient (Poisson’s

ratio).
We substitute (9.5.10) into (9.5.9) and restrict ourselves to the case of a dilatation

center (Ωik = δikΩ0):

u(r) = − Ω0

12π

1 + ν

1 − ν
grad

1
r

. (9.5.11)

As it follows from (9.5.11) that div u = εkk = 0 at all the points off the region
occupied by an interstitial atom (off the point r = 0), the dilatation center in an un-
bounded isotropic medium causes a pure shear deformation. It is natural that the latter
conclusion is valid only when the following conditions are satisfied simultaneously:
first, the medium is unbounded, second, the medium is purely isotropic, third, the
point defect is equivalent to the dilatation center. If even one of these conditions is not
satisfied, the elastic point defect field is not strictly a shear field.

We now discuss the first of the above-mentioned conditions. It is connected with
the fact that static elastic fields similar to a Coulomb field decrease very slowly with
distance. That is why it is necessary to take into account the finite dimensions of the
crystal specimen even in considering the field of an isolated defect.

The displacement field that is generated by the dilatation center is described by
(9.5.11) only in an infinite-dimension specimen. In any arbitrarily large, yet finite



9.5 Point Defect in Elasticity Theory 231

specimen, this formula needs to be improved. Indeed, we note that the dilatation is
concentrated at the defect:

div u = πγΩ0δ(r), γ = − 1
3π

1 + ν

1 − ν
.

Therefore, the increase in the volume of the whole specimen calculated from
(9.5.11) is given by

∆V =
∫

div u dV = πγΩ0. (9.5.12)

It can be verified that πγ = (1 + 4G/3K)−1 < 1. Thus, the increase in the crystal
volume obtained by a direct calculation appears to be less than the initial Ω0. This
is due to the fact that the solution (9.5.11) does not actually satisfy the requirement
σnn = 0 on the external surface of a solid. It is clear that if n is the unit vector of the
normal to the spherical surface, then it follows from (9.5.11) (at r = R) that

σiknk = 2Giknk = −GΩ0γ
ni

R3 . (9.5.13)

In order for the external surface of a solid to be free, the quantity (9.5.13) should be
compensated by a surface force density

p = GΩ0γ
n

R3 ,

generating in a crystal volume a homogeneous stressed state with the stress tensor

σ1
ik = GΩ0γ

δik

R3 . (9.5.14)

Sometimes a field such as (9.5.14) is called an image field or a field of imaginary
sources, by analogy with the electrostatic charge field arising near a conducting sur-
face and equivalent to the field of the charge mirror image.

If we set R = ∞, then σ1
ik will vanish, but at any finite R (9.5.14) results in a

homogeneous expansion of a solid body

ε1
ll =

1
3K

σ1
ll = Ω0γ

G
K

1
R3 . (9.5.15)

It is natural that (9.5.15) determines such an increase in the volume of the whole
sample ∆V1 that, being added to (9.5.15), will give Ω0:

∆V + ∆V1 = πγΩ0 +
4π

3
γR3ε1

ll = Ω0. (9.5.16)

The equality (9.5.16) proves the consistency of all our calculations. We, however,
point out the other aspect of the problem discussed.

Let us consider a specimen with a uniform distribution of identical dilatation centers
with small concentration and introduce the averaged characteristics of elastic fields
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varying at distances that greatly exceed the average distance between the defects. Then
we calculate the mean field of all images of the defects multiplying (9.5.15) by the
number of defects in a specimen and disregarding surface effects

〈εim
ll 〉 =

4π

3
R3nε1

ll = πγ
4G
3K

Ω0n, (9.5.17)

where n is the number of dilatation centers in a unit volume.
We see that although in an unbounded crystal the dilatation centers do not generate

relative volume change in the elastic medium between defects, in a finite-dimension
specimen there always exists a finite dilatation (Ω0 > 0) or compression (Ω0 < 0)
proportional to the defect concentration. However, since the result (9.5.17) is inde-
pendent of the specimen dimension R, it should also remain valid in the limit R → ∞
for n = constant.

9.5.1
Problem

1. Find the hydrostatic compression of an isotropic medium around an elastic dipole
with a unit vector l of its axis.

Solution.

εkk ≡ div u(r) = −Ω0

4π
lilk∇i∇k

1
r

, r �= 0.



10
Linear Crystal Defects

10.1
Dislocations

Dislocations are linear defects in a crystal near which the regular atomic arrangement
is broken. In a theoretical treatment, dislocations in real crystals perform as important
a role as electrons do in metals.

There are many microscopic models of dislocations. In the simplest model the
dislocation is taken to be the edge of an “extra” half-plane present in the crystal lattice.
In the conventional atomic scheme of this model where the trace of the half-plane
coincides with the upper semiaxis Oy (Fig. 10.1), the edge of the extra half-plane on
the z-axis, is called an edge dislocation. The regular crystal structure is then greatly
distorted only in the near vicinity of the isolated line (the dislocation axis) and the
region of irregular atomic arrangement has transverse dimensions of the order of a
lattice constant. If we surround the dislocation with a tube of radius of the order of
several interatomic distances, the crystal outside this tube may be regarded as ideal and
subject only to elastic deformations (the crystal planes are connected to one another
almost regularly) and inside the tube the atoms are considerably displaced relative to
their equilibrium positions and form the dislocation core. In Fig. 10.1 the atoms of
the dislocation core are distributed over the contour of the shaded pentagon.

Nevertheless, deformation even occurs far from the dislocation. The deformation at
a distance from the dislocation axis may be seen by tracing a path in the plane xOy
(Fig. 10.1) through the lattice sites along the closed contour around the dislocation
core. We consider the displacement vector of each site from its position in an ideal
lattice and find the total increment of this vector in the path. We go around the dislo-
cation axis along the external contour starting from the upper left angle (atom 1) and
see that the atomic displacement at the end of the path is nonzero and equal to one
lattice period along the x-axis. This singularity of the dislocation deformation can be
considered as the initial one when we define a dislocation in a crystal.

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40508-9
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Fig. 10.1 A scheme of atomic arrangement in the vicinity of an edge
dislocation.

We denote the vector connecting atoms 1 and 2 by b. This vector is called the Burg-
ers vector of a dislocation. The possible values of the Burgers vectors in an anisotropic
solid are determined by its crystallographic structure and correspond, as a rule, to a
small number of certain directions in a crystal. The dislocation lines are arranged
arbitrarily, although their arrangement is limited by a set of definite crystallographic
planes.

Let τ be the unit vector of a tangent to the dislocation line. For an edge dislocation
τ ⊥ b. Edge dislocations with opposite directions of b differ in that the “extra” crys-
tal half-plane lies above and below the xOz plane (Fig. 10.2a). If dislocations such as
1 and 2 are observed in a crystal simultaneously, they are called opposite-sign dislo-
cations (for instance, the first one may be called a positive edge dislocation). When
opposite-sign dislocations merge, annihilation takes place, resulting in the elimination
of two defects and in a “reunification” of the regular atomic plane.

Fig. 10.2 Annihilation of edge dislocations: (a) two dislocation of op-
posite signs; (b) reproduction of an atomic plane after the dislocations
merge.

When τ ‖ b the corresponding dislocation is called a screw dislocation. The pres-
ence of a linear screw dislocation in a crystal converts the lattice planes into a heli-
coidal surface similar to a spiral staircase. Figure 10.3 shows a scheme of atomic-plane
arrangement in the presence of a screw dislocation coinciding with the OO′ line.
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Fig. 10.3 Screw dislocation in a crystal.

If the dislocation line is not perpendicular and not parallel to the Burgers vector, it
is called a segment of mixed type. Dislocation segments of an edge, screw and mixed
type can arrange themselves continuously along a line forming a dislocation line. The
dislocation line cannot end inside a crystal. It must either leave the crystal with each
end at the crystal surface or (as is generally observed in real cases) form a closed
dislocation loop. It is clear that the Burgers vector is constant along the dislocation
line.

A crystal lattice with dislocations will sometimes be called a dislocated lattice (or
a dislocated crystal).

10.2
Dislocations in Elasticity Theory

The main property of a dislocation implies that when a circuit is made around the
dislocation line the total increment of the elastic displacement vector is nonzero and
equal to the Burgers vector. Thus, a dislocation in a crystal will be said to be a specific
line D having the following general property: after a circuit around the closed contour
L enclosing the line D (Fig. 10.4) the elastic displacement vector u changes by a
certain finite increment b equal (in value and direction) to one of the lattice periods.
This property is written as

∮
L

dui =
∮

L

∂ui

∂xk
dlk = −bi, (10.2.1)

assuming that the direction of the circuit is related by the corkscrew rule with a chosen
direction of the tangent vector τ to the dislocation line. The dislocation line is in this
case a line of singular points of the fields of strains and stresses1.

1) We do not consider the dislocation line as a local inhomogeneity of a crystal.
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Fig. 10.4 Mutual orientations of the vector n and τ.

The majority of the essential physical properties of dislocations is not connected
with microscopic models and can be described phenomenologically in the framework
of elasticity theory using a similar definition.

From a mathematical point view, the condition (10.2.1) means that in the presence
of a dislocation the displacement vector is a many-valued function of the coordinates
that receives an increment in a passage around the dislocation line. In this case there is
no physical ambiguity: the increment b denotes an additional displacement of crystal
atoms by one lattice period that, due to the translational invariance, does not change
its state. In particular, the stress tensor σik characterizing the elastic crystal state is a
single-valued and continuous function of the coordinates.

In a crystal with a separate dislocation, instead of many-valued function u(r), we
can regard the displacement vector u as a single-valued function that undergoes a fixed
jump b on some arbitrary chosen surface SD spanning the dislocation loop D:

δu ≡ u+ − u− = b, (10.2.2)

where u+ and u− are the u(r) values from the upper and lower sides of the surface
SD, respectively. The “upward” direction (positive) is determined by the direction of a
normal n to the surface SD (this direction is connected by the corkscrew rule with the
τ-vector direction, Fig. 10.4). If the jump δu is the same at all points of the SD surface
the distortion tensor uik is a continuous and differentiable function on this surface.

Using (10.2.2) we can formally give another definition of a dislocation, namely, by
defining it as the line D on which the surface SD with given jump (10.2.2) of the vector
u(r) is spanned. In some cases this definition is more convenient than the initial one,
e. g., using it we can easily find the field around the dislocation. If we calculate the
strain tensor for a crystal with a dislocation, i. e., in the presence of the jump (10.2.2)
on the SD surface, it will have on this surface a δ-like singularity

ε
(S)
ik =

1
2
(nibk + nkbi)δ(ζ), (10.2.3)

where ζ is the coordinate along the normal n. The value ζ = 0 corresponds to the SD
surface.
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As there is no physical singularity in the space near a dislocation the stress tensor
σik as noted above should be a continuous function everywhere. Meanwhile, the stress

tensor σ
(S)
ik = λiklmε

(S)
lm having a singularity on the surface SD is formally associated

with the strain tensor (10.2.3). To eliminate this stress tensor, it is necessary to define
the function’s body forces distributed over the surface SD with a specially chosen
density f (S):

f (S)
i = −∇kσ

(S)
ki = −λiklm∇kε

(S)
lm . (10.2.4)

Thus, the problem of finding a many-valued function u(r) is equivalent to that
of finding a single-valued but discontinuous function in the presence of body forces
(10.2.3), (10.2.4). Substituting (10.2.4) into (9.5.1) and performing the integration we
obtain

ui(r) = −λiklmbm

∫
SD

nl∇kGij(r − r′) dS′. (10.2.5)

In principle, (10.2.5) allows one to obtain elastic displacements in a crystal when
the form of the dislocation loop is arbitrary. The general formula (10.2.5), however, is
complicated and the calculation of a displacement field even with simple dislocation
line shapes is quite cumbersome. In the case of a straight-line dislocation, when we
deal with the plane problem of elasticity theory, it is simpler to solve an equilibrium
equation under the condition (10.2.1).

Studying the lattice dynamics, we used a scalar model to simplify the calculations.
To the same aim we clarify to what the dislocation-type linear defect corresponds in a
scalar elastic field model.

Let b characterize the linear defect intensity of a scalar field u and the defect itself
is defined by ∮

L

du =
∮

L

∂u
∂xk

dxk = −b, (10.2.6)

which plays the role of a boundary condition for the field equation (2.9.21). In a static
case, (2.9.21) reduces to the Laplace equation

∆u = 0. (10.2.7)

If we introduce the vector h = grad u as a characteristic of the field state then
the fixed circulation of this vector along any closed contour enclosing the defect line
will be determined by (10.2.6). A similar defect is a vortex of the field h. Thus, a
dislocation in an elastic field is an analog of a vortex of some scalar field.

It follows from (10.2.6), (10.2.7) that the dislocation field in a scalar model coin-
cides with the vortex field in a liquid up to the notations.

In particular, a rectangular vortex perpendicular to the plane xOy and a dislocation
in a scalar model have potential field

u =
b

2π
θ, tan θ =

y
x

. (10.2.8)



238 10 Linear Crystal Defects

The field (10.2.8) generates the vector field h

hx =
b

2π

y
r

, hy = − b
2π

x
r

, r2 = x2 + y2. (10.2.9)

Since a screw dislocation with Burgers vector b parallel to the Oz-axis in an
isotropic medium is a singularity of the scalar field, uz and its displacement field
are ux = uy = 0, uz = u, where the function u is given by (10.2.8).

10.3
Glide and Climb of a Dislocation

The definition of a dislocation (10.2.2) is a formal tool allowing us to solve some static
elasticity problems in a medium with dislocations. If we associate the vector u(r)
having a discontinuity (10.2.2) with real atomic displacements in a crystal and try
to reproduce the real process of dislocation generation (via relative displacements of
atomic layers on both sides of the surface SD by the value b), we run into certain diffi-
culties of a physical character. Indeed, when the condition (10.2.2) was formulated we
supposed that crystal continuity is conserved along the surface SD. In particular, the
interatomic distances remain unchanged (up to elastic deformations). However, when
(10.2.2) is understood formally it is clear that crystal continuity is violated. In fact,
when the cut boundaries are displaced by b the crystal volume changes inelastically

δV = nbδS, (10.3.1)

per each element δS of a discontinuity surface. Therefore, the condition (10.2.2) im-
plies that we “eject” the material where the atomic layers overlap under displacement
and fill in the remaining “gaps” with additional material. However, a crystal has no
mechanisms of automatic removal or supply of material in a solid. Thus, a purely
mechanical way of dislocation generation through displacement of the atomic layers
along an arbitrary surface SD without discontinuities appearing in physical quantities
is impossible.

However, it follows from (10.3.1) that in a crystal there exists a specified surface
Ssl at each point of which nb = 0 and the displacement described is shear-like with
no effect on the crystal continuity. It is clear that it is a cylindrical surface whose
elements are parallel to the vector b and its directrix is a dislocation loop. It is called
a slip surface of the dislocation concerned and is an envelope of the family of slip
planes of all dislocation line elements. By the slip plane of a dislocation element we
understand a surface tangent to the corresponding element of the dislocation line and
this plane is determined by the vectors τ and b. Possible systems of slip planes in an
anisotropic medium are determined by the structure of a corresponding crystal lattice.

A slip plane is singled out physically because a dislocation-induced shift is possi-
ble along it (the interatomic distances in the vicinity of a slip plane surface remain
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unchanged after a shift). A comparatively easy mechanical displacement of the dislo-
cation is possible in this plane. The latter follows directly from a microscopic picture
of the dislocation defect and is demonstrated by means of a scheme with an extra half-
plane (Fig. 10.5). Let an edge dislocation be generated by a shift b along a slip plane
whose trace in Fig. 10.5 coincides with a crystallographic direction AB. We consider
two atomic configurations near the dislocation core when an extra atomic half-plane is
in the position MM′ (atoms are marked with black circles) and also when the role of
an extra crystal half-plane is played by the atomic layer occupying the position NN ′

(atoms are shown with light circles).

Fig. 10.5 A scheme of atomic-layer rearrangement with the edge dislo-
cation gliding.

Although the transition from the first atomic configuration to the second one is con-
nected with the dislocation migrating one interatomic distance to the right in the slip
plane, the displacements of individual atoms are small compared to the value of b.
This means that such collective atomic rearrangements that provide a dislocation mi-
gration may be realized under the action of comparatively small forces. If we compare
such forces with macroscopic loads, it turns out that the corresponding shear stresses
σs necessary to initiate dislocation motion are less by a factor of 102 − 104 than the
shear modulus of a monocrystal G. The smallness of the parameter σs/G is a crucial
physical factor that allows us to use linear elasticity theory to describe the mechanical
processes accompanied by the motion of dislocations. Thus, a dislocation may move
comparatively easily in its own slip plane. This motion of a dislocation is generally
called sliding or gliding, or just glide. Finally, it is often called a conservative motion.

A simple mathematical model allows us to understand certain features of the dislo-
cation dynamics and to explain qualitatively the high mobility of the dislocations.

Let us imagine that a chain of atoms (Fig. 1.11) is an edge series of one half of
a plane crystal (y > 0, Fig. 10.6) displaced in a certain way with respect to another
half of a crystal (y < 0, Fig. 10.6). Then the influence of the nondisplaced half of a
crystal on the atoms distributed along the x-axis can be qualitatively described using
the energy (1.6.4).
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Crystallographic atomic rows with an extra half of the atomic row (Fig. 10.6) above
the x-axis represent a model of the dislocation in a crystal. Thus, the scheme described
may be an analog of the problem of dislocations in a two-dimensional and three-
dimensional crystal. Such an interpretation of this model was performed by its authors
(Frenkel and Kontorova, 1938).

Fig. 10.6 Edge dislocation in the Frenkel–Kontorova model.

We remind ourselves of an important result obtained in analyzing the crowdion
dynamics (Section 9.4). In the continuum approximation (a crystal is considered as a
continuous elastic medium) the crowdion energy is independent of the coordinate of
its center, and thus the crowdion may move freely along a 1D crystal. A dislocation
has the same property.

However, if we take into account the discreteness of the crystal, a resistance force
arises that must be overcome to start the motion of either a crowdion or of a disloca-
tion, i. e., a starting stress σs appears.

We estimate it from (9.4.7) determining the crystal energy dependent on a crow-
dion coordinate. The derivative of this energy with respect to the crowdion center
coordinate x0 yields the force

f = −16πα0a exp
(
−π2l0

a

)
sin

(
2π

x0

a

)
,

where l0 is the crowdion width; a is the interatomic distance (l0 � a). This force
exists by virtue of the lattice discreteness (a �= 0) and is exponentially small with
respect to the parameter l0/a determining the degree of macroscopicity of a crowdion
core.

Extending the results obtained in a 1D model to the case of a linear dislocation in
a 3D crystal, it is possible to expect that they are valid as qualitative statements. The
latter makes it possible to explain the smallness of a starting stress of the dislocation
by the macroscopicity of its core and understand why glide is comparatively easy.

Quite a different physical nature is inherent to the real migration of a dislocation
in a direction perpendicular to the slip plane. We consider an arbitrarily small dis-
placement δX of an element of the dislocation loop length dl, assuming δX to have
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a component normal to the slip surface. Such a migration of a dislocation element
results in the surface area SD increasing by the crystal volume, a value that may be
characterized by an axial vector δS = [δXτ]dl.

As a result, the crystal volume exhibits an inelastic local increase that, from
(10.3.1), is equal to

δV = bδS = b[δXτ] dl = −[bτ]δX dl. (10.3.2)

If δV �= 0, then the deficiency (δV > 0) or excess (δV < 0) of material cannot be
balanced in the ideal crystal volume in a mechanical way (if continuity is conserved).
However, in a real crystal a slow-acting mechanism of condensation or rarefaction of
a substance exists, requiring no macroscopic breaks of continuity. We are referring
to the processes of formation and diffusion migration of point defects: atoms in the
interstices (the material condensed) and vacant sites (the material rarefied). Thus, an
inelastic increase in the volume (10.3.2) on the dislocation axis should be compensated
by an equal decrease in the crystal volume due to the formation of a corresponding
number of point defects in the vicinity of a dislocation core. As each crystal site is
associated with unit cell volume V0, the quantity (10.3.2) should be associated with
the number |δV| /V0 arising from vacancies or vanishing interstitial atoms. However,
since point defects of both types may vanish or be generated, the change in their
number is related to the displacement of the dislocation line element by

δN =
[bτ]
V0

δX dl, (10.3.3)

where δN is the difference in numbers of interstitial atoms and vacancies produced.
The point defects for which (10.3.3) is written appear or vanish just near the dislo-

cation core. Therefore, in macroscopically describing the dislocation motion the total
variation in crystal volume can be concentrated at the dislocation line. Thus, the mi-
gration of a dislocation in a direction perpendicular to the slip plane is accompanied
by a local increase in crystal volume with a relative value given by

δε0
kk = δX[bτ]δ(ξ), (10.3.4)

where δ(ξ) is a 2D δ-function; ξ is a 2D radius vector in the plane perpendicular to
the vector τ at a given point of the dislocation loop with its origin at the dislocation
axis.

Dislocation migration with a velocity limited by the diffusion processes that pro-
vide changes in the volume (10.3.4) is called climb or nonconservative motion of a
dislocation.

10.4
Disclinations

The definition of a dislocation based on (10.2.2) reflects an important property of
deformation in a continuous medium. If the function u(r) exhibits a jump (10.2.2)
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on the surface S, then where b is a fixed vector identical at all points on the surface
S, the distortion tensor uik remains a continuous and differentiable function of the
coordinate everywhere except for a closed line on which the surface S is spanned.

However, the requirement of continuity for the distortion tensor is, to some extent,
excessive as the physical state of the elastic body depends only on stresses and elastic
strains proportional to them. Thus, for studying the elastic fields generated by dis-
continuities δu on surfaces not distinguished by their physical properties in the body
volume we restrict ourselves to the requirement of unambiguity and continuity of the
strain tensor εik. It then turns out that (10.2.2) does not present a general form of the
change of the vector u on the surface S at which the strain tensor ε ik conserves conti-
nuity and differentiability as a function of the coordinates. The most general form of
the discontinuity at the surface S is

δu = u+ − u− = b + [Ωr], (10.4.1)

where b and Ω are constant vectors (b is a translation vector and Ω is a rigid rotation
vector); r is the point radius vector on the surface S. The vector Ω in a crystal should
coincide with one of the elements of crystal rotational symmetry.

Under the condition (10.4.1) an antisymmetric part of the distortion tensor is bro-
ken on the surface. On reminding ourselves of the definition of the rotation vector
under the deformation (1.9.4) we see that the rotation vector ω undergoes a step at the
surface:

δω ≡ ω+ − ω− = Ω. (10.4.2)

The jumps (10.4.1), (10.4.2) generate an elastic field singularity in the crystal con-
centrated along the line D on which the surface S is spanned.

If Ω = 0, then (10.4.1) is transformed into (10.2.2), and the translation vector b
coincides with the Burgers dislocation vector.

If b = 0, but Ω �= 0, the singularity arising in a solid is called a disclination. The
disclination vector Ω is sometimes called the disclination power, and sometimes the
Frank vector. We shall use the latter name.

It follows from (10.4.2) that in the presence of a disclination the Frank vector de-
scribes a relative rigid rotation of two parts of a solid positioned on both sides of the
surface S. It is clear that for an unambiguous definition of δu in (10.2.1), the space
position of the vector Ω, i. e., the position of the disclination axis should be fixed. The
displacement of the disclination rotation axis by the vector R amounts to adding an
ordinary dislocation with Burgers vector b = [ΩR]. Therefore, the definition of a
disclination in (10.4.1) becomes unambiguous if we rewrite it as

δui(r) = eilmΩl(xm − x0
m), (10.4.3)

where r0 is the radius vector of the point through which the rotation axis given by the
vector Ω runs. It follows from a direct calculation that (10.4.2) is a consequence of
(10.4.3).
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As the disclination is a linear singularity of the elastic deformation field, it may
be defined in a form that does not use the notion of an arbitrary surface S, i. e., in
a form analogous to the definition of a dislocation (10.2.1). Indeed, we introduce a
continuous and differentiable function ω(r) (the medium element rotation at point r
as a result of an elastic deformation of a solid). The disclination will then be said to
be a specific line D with the following property: in passing around any closed contour
L enclosing the line D, the elastic rotation vector ω gets a certain finite increment Ω.
This property is written as

∮

L

dωi =
∮

∂ωi

∂xk
dxk = −Ωi. (10.4.4)

The Frank vector Ω unambiguously determines the properties of the disclination D
only when the point through which the disclination rotation axes runs is specified.

Let τ be a unit vector tangent to the line of the disclination. If τ ‖ Ω, the discli-
nation is called a wedging or a slope disclination. If τ ⊥ Ω we have a twisting
disclination.

A disclination in a crystal is most vividly exemplified by a 60◦ wedging disclina-
tion in a hexagonal crystal when this defect is parallel to the six-fold symmetry axis.
Analyzing the atomic arrangement in a plane perpendicular to the axis of this discli-
nation in a nondefective crystal (Fig. 10.7a) and also their distortion in the presence of
a positive (Fig. 10.7b) and a negative (Fig. 10.7c) wedging disclination, we note the
following peculiarities. Choosing the sign of a wedging disclination, unlike choosing
it for an edge dislocation, has an absolute character: the atomic displacements in the
vicinity of a positive disclination is inverse to the atomic displacements in the vicinity
of a negative disclination. In the first case, crystal stretching is observed along the
contour that encloses the disclination, and in the second case, we have crystal com-
pression.

Another important peculiarity of the wedge disclination observed is the change in
the crystal lattice symmetry in the vicinity of a disclination. Indeed, for a 60◦ positive
wedging disclination there arises a five-fold symmetry axis coincident with the vector
Ω (Fig. 10.7b), and a 60◦ negative disclination generates pseudosymmetry with a
seven-fold symmetry axis (Fig. 10.7c). In a perfect crystal such rotational symmetry
is impossible.

The two types of linear defects considered here (dislocations and disclinations) are
in fact two independent forms of the same family of peculiarities inherent to the defor-
mation of continuous media that are called Volterra dislocations. The dislocations in a
crystal are translational Volterra dislocations, and disclinations are rotational Volterra
dislocations. Generally, the Volterra dislocation may have a mixed character, i. e.,
simultaneously represent a translational dislocation and a disclination.

We now turn to finding an elastic field around a separate disclination. Note that a
simple tool for calculating this field can be obtained on the basis of (10.4.3). If we
consider the disclination as a line limiting the surface S with given rotation vector
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Fig. 10.7 A 60◦ wedge dislocation parallel to the six-fold symmetry
axis: (a) ideal structure in a basal plane; (b) structure with a positive
disclination; (c) structure with a negative disclination.

jump (10.4.2), then it corresponds formally to a dislocation with “Burgers vector”
distributed over the surface S

b(S)
i = eilmΩl(xm − x0

m). (10.4.5)

It is true that in contrast to the Burgers vector of an ordinary dislocation distribution
(10.4.5) is dependent on the coordinate on the surface S. However, this does not
prevent us from using (10.2.5), without taking the Burgers vector outside the integral
sign. Hence, the problem of finding the displacement vector u(r) around a separate
disclination loop is reduced to calculation of the integral

ui(r) = −λjklmempqΩp

∫

S

(x′
q − x0

q)∇kGij(r − r′) dS′
l . (10.4.6)

The expression (10.4.6) allows us to determine the elastic deformations of a crystal
with an arbitrary disclination loop.

10.5
Disclinations and Dislocations

In some cases a simple isolated disclination can easily be represented by a planar “pile-
up” of continuously distributed dislocations. Equation (10.4.5) allows us to clarify
how the “Burgers vector” of dislocations is distributed along the surface S, which is
necessary for these dislocations to be equivalent to a disclination with Frank vector Ω.

The above point is illustrated by the relationship between a wedge disclination and
a so-called dislocation wall. By “wall” we mean a large number of identical parallel
linear edge dislocations distributed in the same plane perpendicular to their Burgers
vectors (Fig. 10.8a). The dislocations are in parallel slip planes, the distances between
which in the simplest case are the same, i. e., equal to h.

The geometrical meaning of a crystal deformation generated by this system of dis-
locations is easily understood. The presence of a wall leads to a misorientation of
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the two parts of a crystal that are divided by the system of dislocations concerned
(Fig. 10.8a). If h is the distance between the dislocations (in a macroscopic theory it
is necessary that h � b), the misorientation angle between the two parts of a crystal is
ψ = b/h. Thus, the dislocation wall is a model of the boundary between two blocks
or subgrains with small misorientation. If the boundary consists of edge dislocations,
then the axis around which the neighboring subgrains are inclined is in the plane di-
viding them. Such a low-angle grain boundary is called an inclination boundary.

Let a half-infinite inclination boundary end at a straight line A (Fig. 10.8b), the
dislocations being distributed in it continuously with the Burgers vector density b/h.
If we now imagine a closed contour enclosing the line A and intersecting the inclina-
tion boundary at the point y, then such a contour encloses dislocations with the total
Burgers vector

Bx =
by
h

, (10.5.1)

where the coordinate y is measured from the line A.

Fig. 10.8 Dislocation wall and a wedging disclination: (a) low-angle
grain boundary, (b) dislocation wall ends at the line A, (c) representation
of the dislocation wall by a disclination dipole.

Comparing (10.5.1) and (10.4.6), we can conclude that when the dislocation wall
(Fig. 10.8b) is treated macroscopically then it is equivalent to a negative wedge dis-
location with Frank vector Ωz = −b/h and rotation axis coincident with the line A.
Naturally, the Frank vector in this case is equal to the misorientation angle between
the parts of a crystal.

In this situation the rotation by an angle Ω should not be an element of the group
symmetry of the ideal crystal, but the boundary between two misoriented parts of a
crystal is then taken as a plane stacking fault.

If the inclination boundary ends at a certain line B (Fig. 10.8c), the latter should be
coincident with the rotation axis of the second disclination. Its Frank vector Ω′ then
satisfies the requirement that the rotation through the angle Ω + Ω′ be an element of
the group symmetry of the crystal lattice. In particular, the most interesting case is
Ω′ = −Ω.
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A pair of disclinations of the same type but with opposite sign and parallel rota-
tion axes forms a disclination dipole. In the example concerned (Fig. 10.8c) when
ΩB = −ΩA, the wedging disclinations positioned along the lines A and B form a
dipole. If the distance between the lines A and B is equal to L, the deformation caused
by the dipole described can be thought of as a peculiar wedging-out of a crystal: i. e.,
a semi-infinite planar plate of thickness l = ΩL whose edge has a triangular cross
section with angle Ω at the vertex is set into the crystal cut.

At distances greatly exceeding L, the dipole of wedging disclinations is regarded as
an edge dislocation with Burgers vector bx = l = ΩL and the “core” enclosing the
whole region of an inclination boundary of length L.

10.5.1

Problems

1. Obtain an expression for the displacement vector around the dislocation in an
isotropic medium, isolating explicitly the contour integration over the dislocation loop.

Hint. Use (10.2.5) and (9.5.10) for the Green tensor in an isotropic medium and also
the Stokes theorem.

Solution.

u = b
O
4π

+
∮

[bτ] dl
R

+ grad ψ; ψ =
λ + µ

4π(λ + 2µ)

∮
[bR]τ

dl
R

,

where O is the solid angle subtended at the observer by the dislocation loop.



11
Localization of Vibrations

11.1
Localization of Vibrations near an Isolated Isotope Defect

We begin studying the influence of defects on lattice vibrations by using a scalar
model, treating independently one branch of crystal vibrations only. An equation for
stationary vibrations of frequency ω in this model is

ω2u(n) − 1
m

′
∑
n′

α(n − n′)u(n′) = 0. (11.1.1)

The dispersion law for an ideal lattice follows from (11.1.1)

ω2 = ω2
0(k) ≡ 1

m ∑ α(n) cos kr(n). (11.1.2)

Equation (11.1.1) describes acoustic crystal vibrations for which

ω2
0 =

1
m ∑ α(n) = 0, (11.1.3)

and where the possible vibration frequencies are in a finite range (0, ωm).
If we remove the requirement of (11.1.3), then (11.1.1) can be used to analyze qual-

itatively the optical lattice vibrations (Chapter 3) upon determination of the extremely
long-wave frequency of vibrations by

ω2
0(0) =

1
m ∑ α(n) �= 0. (11.1.4)

The eigenfrequencies of (11.1.1) will then be within a certain interval (ω1, ω2), where
ω1 > 0.

The simplest point defect arises in a monatomic species when one of the lattice
sites is occupied by an isotope of the atom making up the crystal. Since the isotope
atom differs from the host atom in mass only, it is natural to assume that the crystal

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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perturbation does not change the elastic bond parameters. Let the isotope be situated
at the origin (n = 0) and have a mass M different from the mass of the host atom m.
With such a defect we get, instead of (11.1.1),

ω2Mu(0) − ∑
n′

α(n′)u(n′) = 0, n = 0;

ω2mu(n) − ∑
n′

α(n − n′)u(n′) = 0, n �= 0.
(11.1.5)

Equations (11.1.5) can be written more compactly as

mω2u(n) − ∑
n′

α(n − n′)u(n′) = (m − M)ω2δn0, (11.1.6)

by introducing the 3D Kronecker delta δnn′ .
We denote

∆m = M − m, U0 = −∆m
m

ω2, (11.1.7)

and rewrite (11.1.6) in a form typical for such problems

ω2u(n) − 1
m ∑

n′
α(n − n′)u(n′) = U0ω2δn0. (11.1.8)

We write a formal solution to (11.1.8) as

u(n) = U0G0
ε (n)u(0), (11.1.9)

where G0
ε is the Green function for ideal lattice vibrations, ε = ω2; u(0) is a constant

multiplier still to be defined.
If we reject the scalar model and proceed to the general case of a simple lattice, it is

easy to write a formula analogous to (11.1.9). With an isotope defect at the site n = 0,
the displacement vector of any atom in the crystal is

ui(n) = U0Gik
ε (n)uk(0). (11.1.10)

It is also easy to generalize (11.1.9), (11.1.10) for the case of a polyatomic lattice.
However, in order not to complicate the formula, we return to the scalar model.

Setting n = 0 in (11.1.9), we find that (11.1.9) is consistent only when

1 − U0G0
ε = 0. (11.1.11)

The expression (4.5.12) for the Green function is substituted into (11.1.11):

1 − U0

N ∑
k

1
ε − ω2(k)

= 0. (11.1.12)
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Finally, after a transition from summation to integration over quasi-wave vectors and
then changing to integration over frequencies:

1 − U0

∫
g0(z) dz

ε − z
= 0. (11.1.13)

Here, g0(ε) is the ideal lattice vibration density.
Before we proceed to analyze (11.1.13), we derive a corresponding general equa-

tion, taking into account the different polarizations of vibrations when it is necessary
to use (11.1.10).

We set n = 0 in (11.1.10) and note that the resulting homogeneous system of three
algebraic equations for three independent ui(0) is solvable if

Det
∥∥∥δik − U0Gik

ε (0)
∥∥∥ = 0. (11.1.14)

An explicit expression for the Green tensor (4.5.14) does not allow us to reduce
(11.1.14) to the relation containing only the ideal lattice vibration density g0(ε) and
that is independent of the polarization vectors. In a cubic crystal or in the isotropic
approximation, however, we have

Gik
ε (0) =

1
3

δikGll
ε (0),

and (11.1.14) is reduced to three identical equations of the type (11.1.13).
As (11.1.13) is a condition for solvability of the corresponding equation of motion,

it is an equation to determine the squares of frequencies ε at which the atomic displace-
ment around an isotope has the form of (11.1.9). In a theory of crystal vibrations with
a point defect, equations such as (11.1.11)–(11.1.13) were first obtained by Lifshits
(1947).

We start to analyze (11.1.13) for the case of acoustic vibrations when the unper-
turbed crystal frequencies are in the interval (0, ωm). It is clear that in this case
(11.1.13) is meaningful only for ε > εm = ω2

m, but the denominator in the integral
(11.1.13) is then always positive and (11.1.13) can only have a solution for U0 < 0,
i. e., for a light isotope (M < m). In a 3D crystal, however, the availability of the
necessary sign of the perturbation does not guarantee the existence of a solution to
(11.1.13). This is easily seen when we graphically analyze (11.1.13). Introducing the
notation

F(ε) = ε

∫
g0(z) dz

ε − z
,

and taking (11.1.7) into account, we rewrite (11.1.13) as

F(ε) = − m
∆m

. (11.1.15)

Since g0(z) ∼ √
εm − z for z → εm the function F(ε) is finite and positive at the

point ε = εm (F(εm) = Fm > 0) and, in the small range ε − εm � εm, has a negative
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derivative

F′(ε) � −εm

∫
g0(z) dz
(ε − z)2 .

For ε 	 εm due to the chosen normalization of the vibration density F(ε) ≈ 1,
so that a plot of the function F(ε) has the shape of a curve (Fig. 11.1) and a plot
of the r.h.s. of (11.1.15) is a horizontal line. Thus, the solution ε > εm exists if
|δm/m| Fm > 1. If this condition is satisfied, the solution to (11.1.13) gives a discrete
frequency ωd lying outside the continuous spectrum band (Fig. 11.1, εd = ω2

d).

Fig. 11.1 A graphical method of finding the frequency of local vibra-
tions.

Thus, in order for a vibration to appear at a discrete frequency lying near the
acoustic band, an isotope should have the mass M satisfying the condition M <

m(1 − 1/Fm) < m.
Consider the case when the solutions to (11.1.13) determine the discrete frequencies

near the optical band of an ideal lattice. Let the continuous spectrum of an ideal crystal
occupy the interval (ε1, ε2), where ε1 = ω2

1 and ε2 = ω2
2 and the defect intensity is

characterized by the parameter U = εW0. Then, instead of (11.1.15), we write

F(ε) = − 1
W0

, (11.1.16)

assuming that the function F(ε) is defined for ε < ε1 and ε > ε2 (Fig. 11.2,
F1 = F(ε1) < 0; F2 = F(ε2) > 0). Simple analysis leads to the conclusion
that the existence of discrete solutions to (11.1.16) is provided only by the defects
whose parameter W0 satisfies certain conditions. If W0 > 0, it suffices to require
that W0 > 1/ |F|. If W0 < 0, the absolute value of the parameter W0 is within
1/F2 < |W0| < 1. In the first case the solution ε′d is to the left of the point ε1
(Fig. 11.2), and in the second case to the right of the point ε2.

Thus, depending on the sign of the parameter W0, discrete frequencies can arise
either to the left of the continuous spectrum band (ω′

d < ω1 at W0 > 0) or to the
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Fig. 11.2 Determination of the position of local frequencies for different
signs of ∆m.

right of it (ω′′
d > ω2 at W0 < 0). Crystal vibrations with the frequencies described

are called local vibrations, and the frequencies ωd – local frequencies. This name is
attributed to the fact that the amplitude of the corresponding vibration is only nonzero
in a certain vicinity near the point defect. Let us analyze the letter of the cases consid-
ered, assuming that W0 > 0 and the local frequency ωd is to the left of the continuous
spectrum band (ωd < ω1). The local vibration amplitude is given by (11.1.9), imply-
ing its coordinate dependence is completely determined by the behavior of the ideal
crystal Green function. We rewrite the Green function as

G0
ε (n) =

1
N ∑

k

eikr(n)

ε − ω2(k)
=

V0

(2π)3

∫
eikr(n)d3k
ε − ω2(k)

. (11.1.17)

It is known that the behavior of such integrals at large distances (r 	 a) is mainly
determined by the form of the integrand at small values of k (ak � l). In other words,
the major contribution to the integral (11.1.17) at large r comes from the integration
in the region of small wave vectors where the dispersion law of an ideal crystal is qua-
dratic in k. To avoid possible complications we write down the quadratic dispersion
law for the isotropic model in the form

ω2(k) = ω2
1 + γ2k2, γ2 ∼ (ω2

2 − ω2
1)a2.

We take into account this dispersion law by changing ε1 = ω2
1 and performing the

integration required in (11.1.17)

∫
eikr(n)d3k

ε1 − ε + γ2k2 = 2π

∞∫

0

k2dk

ε1 − ε + γ2k2

π∫

0

eikr cos θ dθ

=
2π2

γ2r
exp

(
− r

γ

√
ε1 − ε

)
.
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We substitute the result obtained in (11.1.17) and denote r = r(n)

G0
ε (n) ∼ 1

r
exp

(
− r

γ

√
ω2

1 − ε

)
. (11.1.18)

Substituting (11.1.18) into (11.1.9) to obtain

u(n) =
U0V0

4πγ2
u(0)

r
exp

(
− r

l

)
, (11.1.19)

where the characteristic length l determining the localization region of vibrations with
a discrete frequency is introduced:

l =
γ√

ε1 − εd
=

γ√
ω2

1 − ω2
d

. (11.1.20)

Thus, the local vibration amplitude decreases very quickly if the distance r increases
and the decay length has the following order of magnitude

l ∼ a

√
ω2

2 − ω2
1

ω2
1 − ω2

d
∼ a

√
ω2

2 − ω2
1

δω
,

where ω2 − ω1 is the continuous spectrum frequency band width; δω = ω1 − ωd.
Thus, the localization of vibrations is determined by the ratio of the gap size δω

separating a discrete frequency from the edge of the continuous spectrum to the width
of the continuous spectrum band.

Note that local vibrations are concerned with many physical effects observed in
crystals and indicate two aspects of this relation.

On the one hand, a discrete frequency separated by a finite range of frequencies
from the continuous spectrum band results in singularities in the frequency depen-
dencies of different characteristics of the scattering and absorption processes. Corre-
sponding resonance singularities arise in the scattering amplitudes of different parti-
cles (e. g., neutrons) on local defects. Infrared absorption in ionic crystals also shows
peaks corresponding to local vibrations of various centers specific to these crystals.

On the other hand, a local vibration has a finite weight in the expansion of the
displacement vector of an impurity atom into normal modes of a defect lattice, un-
like each mode of the continuous spectrum vibrations that has an infinitely small
weight (we remind ourselves that the contribution of a separate vibration of the quasi-
continuous spectrum is proportional to 1/

√
N, where N is the number of atoms in

a crystal). Therefore, the effects connected with the displacement of impurity atoms
and their nearest environment (e. g., optical transitions in impurity atoms, Mössbauer
effect connected with impurity atoms, etc.) are very sensitive to local vibrations.
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11.2
Elastic Wave Scattering by Point Defects

In general, the scattering problem can be subdivided into two parts: a calculation of
the effective cross section for scattering and a study of the shape of the wave surface
after scattering (at large distances from the scattering center). The first part of the
problem requires knowledge of the local inhomogeneity structure (details of the point
defect model). The second part concerns itself with the wave-surface shape at large
distances and can be solved by very general assumptions concerning the character of
the point defects.

A knowledge of the isofrequency surface shape is sufficient for studies of the as-
ymptotic behavior of scattering waves. As we are interested in the scattering wave
asymptotics, we restrict ourselves to the simplest model of a point defect, focusing on
singularities of the isofrequency surface of a vibrating crystal.

The stationary vibrations of an ideal lattice are described by an equation represented
symbolically by (2.2.2). The equation of crystal vibrations with an isolated defect is
given in symbolic form by

εu − 1
m

Au = Uu, ε = ω2, (11.2.1)

where A is a linear Hermitian operator corresponding to the dynamic matrix of an
ideal crystal

Au(n) = ∑
n′

A(n − n′) u(n′),

U is the perturbation matrix

Uu(n) = ∑
n′

U(n, n′)u(n′). (11.2.2)

For an isotope defect positioned at the site n1 of a monatomic lattice, we have

Uik(n, n′) = U0δnn1 δn′n1
δik U0 = −ε

∆m
m

. (11.2.3)

We consider the scattering of the vibration mode of an ideal crystal

u(n, t) = u0(n)e−iωt, u0(n) =
e(k0)√

N
eik0r(n), (11.2.4)

by the point defect with a perturbation potential of the type (11.2.3) where we set
n1 = 0.

Since the defect has no internal degrees of freedom, scattering will occur without
change of frequency, and the coordinate part of the scattering wave is a solution to
(11.2.1). We write the perturbed solution to this equation (in usual vector notations)
as

u(n, t) = u0(n) + χ(n), (11.2.5)
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where χ(n) describes the scattered wave and is a solution to the matrix equation (in
the column notations) (

ε − 1
m

A
)

χ = U(u0 + χ). (11.2.6)

A formal solution to this equation is found [similar to (11.1.9)] by using the Green
tensor of an ideal crystal (the index ε is omitted here)

χ = G0U(u0 + χ). (11.2.7)

Taking the noncommutativity of the operators in (11.2.7) into account we find that

χ = (1 − G0U)−1G0Uu0. (11.2.8)

In the isotropic approximation or in a cubic crystal with only one isotope defect
producing the perturbation potential (11.2.3), the matrix G0U is diagonal, hence,
1 − G0U = 1 − G0

ε (0)U.
Changing from the operator form of (11.2.8) to the coordinate form we find for the

scattering wave (in the vector component notations)

χi(n) =
U0√

ND(ε)
Gij

0 (n)ej(k0), (11.2.9)

where

D(ε) = 1 − U0G0
ε (0) = 1 + ε

(
∆m
m

)
G0

ε (0), (11.2.10)

and for a scalar model the r.h.s. of (11.2.10) should be understood literally, while for
a cubic crystal G0(0) = (1/3)Gll

0 (0).
It follows from (11.2.9) that the form of a scattering wave at large distance is de-

termined unambiguously by the asymptotic behavior of the Green tensor of an ideal
lattice.

There is an expression (4.5.12) for the Green function in a scalar model. However,
one can really use this formula for calculations only when (4.5.12) is rewritten in the
form of an integral (4.5.13), but since the frequency ω is assumed to belong to the
eigenfrequency band of an ideal crystal, (4.5.13) should be regularized

G0
ε (n) =

V0

(2π)3

∫
eikr(n)d3k

ε − ω2(k) − iγ
. (11.2.11)

Regularization should result in a diverging wave at infinity, i. e., it should be the
same as that used to determine the retarded Green function (Section 4.6).

Denote

I(r) =
∫

eikr(n)d3k
ε − ω2(k) − iγ

, (11.2.12)

and transform from an integration with respect to k to an integration with respect to
z = ω2(k) and over the isofrequency surface z = const

I(r) =
∫

J(r, z) dz
ε − z − iγ

, (11.2.13)
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where

J(r, z) =
∮

ω2(k)=z

eikr(n) dSk∣∣∇kω2(k)
∣∣ . (11.2.14)

The main contribution to the asymptotic (at r → ∞) values of the integral (11.2.14)
comes from the points of the stationary phase of the integrand. To elucidate the ge-
ometrical meaning of these points we write kr = rkn = rh (n is a unit vector in
the direction r, and h = kn) and introduce the orthogonal curvilinear coordinate ξi
(i = 1, 2) on the surface ω2(k) = z. The stationary phase points are then determined
by the conditions

∂h
∂ξi

= 0, i = 1, 2. (11.2.15)

The conditions (11.2.15) are satisfied at the points where the supporting plane
h ≡ kn = constant touches the isofrequency surface (Fig. 11.3a).

Fig. 11.3 Cross sections: (a) of an isofrequency surface on which the
support points corresponding to the direction n are indicated; (b) of the
wave surface on which the rays OS1 and OS2 limit the “folds”.

We denote the contact points by kν (sometimes they are called support points).
On an isofrequency surface with an inversion center such points are positioned in
pairs ±kν.

We consider one of the supporting points measuring the coordinates ξi from it. In
the close vicinity of this point the following expansion holds:

h(ξ) = kνn +
1
2

αν
ikξiξk, αν

ik =
(

∂2h
∂ξi∂ξk

)
ν

.

We choose a network of curvilinear coordinates, so that the matrix αν
ik is diagonal,

i. e., we choose the local coordinate axes ξ1 and ξ2 along the main directions of the
surface curvature ω2(k) = z at the point k = kν. Then

h(ξ) = kνn +
1
2

(
α1ξ2

1 + α2ξ2
2

)
, α1 = α11, α2 = α22. (11.2.16)
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With such a choice of 2D coordinates in k-space, the product α1α2 determines the
total (Gaussian) curvature of the surface at the tangent point; Kν = α1α2. If Kν > 0,
the corresponding point is called elliptical, and if Kν < 0 it is called hyperbolic.

All the points of a convex surface are elliptical. If the surface is not convex (such as
shown in Fig. 4.3 or Fig. 11.3), there exist parts of the surface with points of different
types (either elliptical or hyperbolic), but the parts of an isofrequency surface of the
first and second types are divided by the lines along which one of the coefficients (α1
or α2) vanishes. These are the lines of parabolic points. Finally, at the intersection of
the lines of parabolic points are the flat regions where α1 = α2 = 0.

We start by analyzing the asymptotic form of the integral (11.2.14) when the sup-
porting points are elliptical or hyperbolic. Reducing the integral (11.2.14) to the sum
of integrals in the vicinities of the tangent points (the points of the stationary phase),
we get

J(r, z) = ∑
ν

eikνr∣∣∇ω2(kν)
∣∣
∫

exp
[

i
2

r
(

ξ2
1 + ξ2

2

)]
dξ1 dξ2. (11.2.17)

The integrals in (11.2.17) are calculated simply to be

∫
exp

(
i
2

rαξ2
)

dξ =

√
2

r |α|

∞∫

0

e±ix dx√
x

=

√
2π

r |α| exp
(
± iπ

4

)
, (11.2.18)

where the sign in the exponent index coincides with the sign of the main curvature α.
Thus we obtain an asymptotic expression proportional to 1/r (Lifshits, 1950)

J(r, z) =
2π

r ∑
ν

exp
(

ikνr ± iπ
4

)
∣∣∇ω2(kν

∣∣ √|Knu|
. (11.2.19)

Substituting (11.2.19) into (11.2.13), we note that as r → ∞ the integral with re-
spect to z is reduced to an integral over the close proximity of the point z = ε, where
the integrand has a singularity. The main part of the integral (11.2.13) is obtained by
integrating near the pole z = ε, so that the final asymptotic expression for the Green
function (11.2.11) is

G0
ε (n) =

iV0

4πr ∑
ν

exp
(

ikνr ± iπ
4

)
∣∣∇ω2(kν

∣∣ √|Knu|
, (11.2.20)

where the summation is over the support points on the isofrequency surface
ω2(k) = 0 with nvν ≡ n∇ω(kν) > 0.

The asymptote (11.2.20) shows the necessary amount of decrease with distance
(∼ 1/r), providing a finite value of the scattering wave energy flow in any finite
interval of a solid angle dO. Indeed, the flow of the energy density of the elastic
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field is quadratic in space and time derivatives of κ(r, t), i. e., at large distances it is
proportional to 1/r2. Thus, the flow per area element r2dO is finite.

Thus, the scattered wave represents a superposition of several diverging waves
whose number equals the number of possible solutions to (11.2.15) at z = ω2. Each
of these waves has its own shape and its own propagation velocity. The imaging of
the spatial distribution of a scattered wave can be obtained by studying the so-called
wave surface. The wave surface in coordinate space is, in a certain sense, polar with
respect to the isofrequency surface and is constructed as follows. From the defect po-
sition (point O in Fig. 11.3b) a ray is drawn in the direction n and along it the length
r = 1/(nkν) is plotted, where kν = kν(n) are the support points.

It the isofrequency surface is convex, there is one supporting point with nvν > 0.
If it is not convex there can be several points of this kind. In the last case “folds” and
recursion points arise on the wave surface. A tangent plane in the vicinity of each sup-
port point generates its own region of a wave surface. On the boundary of neighboring
folds there is a transition from the region of elliptic points to that of hyperbolic points
on the isofrequency surface. The boundaries are the parabolic point lines (Kν = 0).
There always exists a continuous multitude of directions (a conical surface) corre-
sponding to Kν = 0. These directions are shown as straight lines OS1 and OS2 in
Fig. 11.3b; at the points S1 and S2 a pair of wave surface parts merges and breaks.
Such singularities are classified in a theory of catastrophes and it is shown for elastic
wave scattering in crystals that only catastrophes of the fold and the reversion point
types are possible. The catastrophe implies that the energy flow density calculated
formally by (11.2.20) in the directions considered goes to infinity (Kν = 0). Actu-
ally, at these points (more exactly on corresponding conical surfaces) the asymptotic
behavior of the scattered wave changes, i. e., dependence of the scattered wave ampli-
tude on the inverse distance 1/r becomes another: a power of the distance r decreases
in the denominator of the function I(r, z) or the function I(r).

As an illustration we consider a simple parabolic point k0 in the vicinity of which
the function h = kn has the expansion

h = k0n0 +
1
2

αξ2
1 + βξ2

2, (11.2.21)

where n0 is a unit vector of the direction whose supporting planes are tangential to the
isofrequency surface at the parabolic point k0 (we have chosen the coordinate axes
ξ1 and ξ2 along the main directions of the isofrequency surface curvature). Then, in
calculating (11.2.17) apart from the integral (11.2.18) for the direction ξ1 we have
another integral for the direction ξ2, namely

∫
exp

(
irβξ3

)
dξ =

2
3 3

√
r |β|

∞∫

0

cos x
3
√

x2
dx = 3

√
3

r |β|Γ
(

4
3

)
, (11.2.22)

where Γ(m) is the gamma-function. Thus, instead of (11.2.19), we get an asymptotic
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expansion (Lifshits and Peresada, 1955):

J(r, z) =

√
6πΓ

(
4
3

)

r
5
6

exp
(

ik0r ± iπ
4

)

∣∣ω2(k0)
∣∣ |α| 1

2 |β| 1
3

. (11.2.23)

Calculating by means of (11.2.23) the asymptotes of the Green function and then
the energy flow density, we find that the latter is proportional to r−5/3. If there are
no additional singularities on the line of parabolic points, then |α|√|β| ∼ K∗ where
K∗ is the Gaussian curve at an arbitrary point of the isofrequency surface. Thus, the
energy flow density along the direction n0 “catastrophically” exceeds at large r the
energy flow density from the other points in the ratio r1/3 |β|1/6.

However, a solid angle inside which this energy flow density exists decreases with
increasing r. Indeed, consider a scattered wave in the direction n inclined by an angle
δθ2 (along ξ2) to n0 The supporting point will then be displaced by the value δξ2
determined by θ2 = 3β(δξ2)2. In the new supporting point, the Gaussian curvature
equals K = 6αβδξ2. Comparing with (11.2.19), where this Gaussian curvature is used
with (11.2.23) for a parabolic supporting point, we see that they match by the order
of magnitude δξ2 ∼ (|β| r)−1/3. Thus, the angle inside which an increased energy
intensity is observed can be evaluated as δθ2 ∼ |β|1/3 r−2/3. It is clear that the angle
δθ2 decreases with increasing r faster than the energy density increases. Thus, the
total energy flow per angle δθ2 decreases with distance proportional to r−1/3.

We ultimately calculate the contribution to the integral (11.2.14) generated by the
flattening point in the vicinity of which an expansion of the function h is

h = k0n0 + β1ξ3
1 + β2ξ3

2.

Without repeating the calculations, we write down the corresponding part of the
integral (11.2.14) as

J(r, z) =
3Γ2

(
4
3

)

r
2
3

eik0r

∣∣∇ω2(k0)
∣∣ |β1β2|

1
3

.

In the given case the energy flow density in the scattered wave exceeds that in the
ordinary conditions in the ratio r2/3 |β1β2|−1/6 Accordingly, the solution of a solid
angle, where the flow of such density is concentrated, decreases with the distance as
|β1β2|1/3 r−4/3.

Having discussed the singularities of the scattered wave shape and its asymptotic
behavior at infinity, we shall analyze in brief the frequency dependence of the scat-
tered wave amplitude. The frequency dependence is primarily given by the multiplier
D(ω2) in the denominator (11.2.9). The required regularization of this expression can
be performed using the relation (4.7.4)

D(ε) = 1 − U0G0
ε−iγ = 1 − U0 P.V.

∫
g0(z) dz

ε − z
− iπU0g0(ε), (11.2.24)
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where P.V. means the principal value of the integral; g0(ε) is the vibration density of
a crystal without defects.

We denote

R(ε) = Re{D(ε)} = 1 − U0 P.V.
∫

g0(z) dz
ε − z

,

and represent the complex function D(ε) as

D(ε) = R(ε) − iπU0g0(ε) =
√

R2(ε) + [πU0g0(ε)]2eiϕ(ε),

tan ϕ(ε) =
πU0g0(ε)

R(ε)
.

(11.2.25)

Strictly speaking, the function (11.2.25), has no specific properties for real ε, but
it may turn out that at a certain frequency R(ε) = 0. If the vibration density g0(ε)
at the corresponding frequency is small, |D(ε)|−1 will be very large. The resonance
amplitude of the scattered wave increases. It is known that the appearance of reso-
nance denominators in the scattering amplitude at certain frequencies ωq is evidence
of the presence of quasi-stationary eigenvibrations in a medium through which the
wave travels. Such a quasi-stationary state is analogous to a resonance state in quan-
tum mechanics and its lifetime increases if g0(ε) becomes smaller. Since in a 3D case
g0(ε) ∼ √

ε, the resonance will be pronounced at a small quasi-stationary state fre-
quency. Thus, a point defect that provides the equality R(ε) = 0 at low frequency may
generate the resonance vibrational states in a crystal (Kagan and Iosilevskii, 1962). A
more consistent theory of resonance states near a point defect is presented in Sec-
tion 11.5, but we shall now try to obtain general conditions for the existence of a
quasi-stationary state.

At small ε (ε � ω2
D), we set in (11.2.24)∫

g0(z) dz
ε − z

≈ −
∫

g0(z)
z

dz = − 1
ε∗

, ε∗ ∼ ω2
D,

g0(ε) =
V0

(2π)3

√
ε

s3
0

∼
√

ε

ω3
D

.
(11.2.26)

Therefore, the function R(ε) is represented by

R(ε) = 1 +
U0

ε∗
= 1 −

(
∆m
m

)
ε

ε∗
=

∆m
mε∗

(mε∗
∆m

− ε
)

.

Thus, the resonance frequency εk = (m/∆m)ε∗ satisfies the condition ε � ω2
D

for a large enough parameter ∆m/m 	 1. The last inequality provides results in a
resonance state in a crystal with heavy isotopic defects.

11.3
Green Function for a Crystal with Point Defects

The equations of crystal vibrations with a single defect (11.2.8) involve a perturbation
in the form of (11.1.7). The Green tensor of a crystal with a defect is a resolvent for
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(11.1.6), i. e., it is found as a solution to the following equation vanishing at infinity

εGε − (A0 + U)Gε = I. (11.3.1)

We rewrite (11.3.1) in the form (εI − A0)Gε = I + UGε and represent a formal
solution to this equation by means of the Green tensor of an ideal crystal G = G0 +
G0UG.

Performing calculations analogous to those used in deriving (11.2.8) we get

G = G0 + G0TG0, (11.3.2)

where the matrix T is determined by (11.3.2)

T =
(

I − UG0
)−1

U . (11.3.3)

In the present case of an isolated defect-isotope, T = [D(ε)]−1 U , where the definition
(11.2.10) is used. Substituting (11.3.3) into (11.3.2) we obtain

Gik(n, n′) = Gik
0 (n − n′) +

U0

D(ε)
Gil

0 (n − n1)Glk
0 (n1 − n′). (11.3.4)

For a scalar model the formula (11.3.4) is not simplified much (only indices i, k, l
are not used). The poles of the Green function as functions of the variable ε determine
the squares of the eigenfrequencies of vibrations of the corresponding system (Sec-
tion 4.5). It follows from (11.3.4) that the Green function for a crystal with a point
defect may have an additional pole at the point where the function D(ε) is zero. Thus,
the additional poles of the Green function (with respect to the ideal crystal Green func-
tion) determine the frequencies of local vibrations of a crystal with a defect considered
in previous sections.

We shall now point out a specific structure of the Green function in a crystal with
a single defect (11.3.4). By definition, the Green function concerned gives us a dis-
placement of the n-th site in a lattice under the action of a unit force, which is periodic
in time ω2 = ε and applied to the site n′. In an ideal lattice, the stationary interaction
is transmitted directly from the site n′ to the site n (the first term in (11.3.4)). In the
presence of an isolated defect at the site n1 an additional excitation transfer channel
through a defect appears (Fig. 11.4a) (this is the second term in (11.3.4)). In the sec-
ond term the vector going to a defect or from it is associated with a multiplier G0, and
the presence of the defect results in an additional multiplier U0/D(ε).

A remarkable feature of the excitation transfer through a defect possessing a local
frequency is the resonance character of the transfer. By deriving (11.1.18) we have
shown that the Green function G0

ε (n) decays exponentially with distance for the values
of the parameter ε lying outside the band of the squares of the eigenfrequencies of
an ideal crystal. Thus, at frequencies close to a discrete local frequency, the first
term in (11.3.4) at large distances (r(n − n′) 	 l) becomes negligibly small. The
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Fig. 11.4 Diagram for calculating the Green function in a crystal:
(a) with one impurity at the point n1; (b) with two impurities at the points
n1 and n2.

second term has a resonance denominator D(ε) and for ε can essentially exceed the
first term. Thus, if the crystal has a defect with a discrete frequency in the forbidden
band of frequencies of an ideal lattice, it promotes a resonance transfer of excitations
at large distances. However, the second term in (11.3.4) also vanishes in the limit
|n − n′| → ∞ at any finite D(ε). The situation will be different if we go over from a
crystal with one defect to a crystal with small, but finite concentration of defects.

Let us now see whether it is possible to use the method presented to find the Green
function in a crystal with a system of point defects.

Unfortunately, the relation (11.2.22) between the matrix T and the matrix U is non-
linear, and the contributions of separate defects cannot be summarized in an equation
such as (11.3.4). However, a solution generalizing (11.3.4) can also be found in this
case.

We restrict ourselves to a scalar model and choose the perturbation matrix in the
form

U(n, n′) = u0 ∑
α

δnnα δn′nα
, (11.3.5)

where nα are the number vectors of the sites where the defects are positioned.
For the matrix T one should expect a representation such as

T(n, n′) = ∑
αβ

Tαβδnnα δn′nβ
. (11.3.6)

Indeed, rewriting (11.3.3) in the form

(I − UG0
ε )T = U ,

and substituting here (11.3.5), (11.3.6) we obtain a condition unambiguously deter-
mining a set of parameters Tαβ:

D(ε)Tαβ − U0 ∑
γ �=α

G0
ε (nα − ngamma)Tγβ = u0δαβ. (11.3.7)
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If all Tαβ are determined from this set of linear algebraic equations, the Green
function will be derived as

G(n, n′) = G0(n − n′) + ∑
αβ

G0(n − nα)TαβG0(nβ − n′). (11.3.8)

Equations (11.3.7) are simple, but writing their solution for an arbitrary number of
defects is rather cumbersome, and their quantitative analysis is complicated. Therefore
we restrict ourselves to a qualitative characterization of the Green function (11.3.8).

If the distance between all neighboring defects rαβ greatly exceeds the dimension l
of the localization region of vibrations near an isolated defect, there are values of the
parameter ε such that

∣∣U0G0
ε (nα − nβ)

∣∣ � D(ε) for α �= β. In the relation (11.3.7),
we can then omit the terms with γ �= α. Subsequently, it is simple to solve (11.3.7):

Tαβ =
U0

D(ε)
δαβ. (11.3.9)

The solution obtained does not, in fact, differ from (11.3.2) and the Green function
is written analogously (11.3.4)

G(n, n′) = G0(n − n′) +
U0

D(ε) ∑
α

G0(n − nα)G0(nα − n′). (11.3.10)

If the defects are distributed randomly but uniformly, (11.3.10) yields an approx-
imate expression for the Green function, which is valid under the assumption that
the average distance between the defects greatly exceed the length l. The expression
(11.3.10) is inapplicable near the boundaries of the continuous spectrum of an ideal
crystal and in the vicinity of a local frequency.

Coming back to an analysis of Fig. 11.4a we see that (11.3.10) takes into account
the excitation transfer from site n′ to site n through a simple use of all the defects. This
situation resembles a kinematic X-ray scattering theory taking into account only sim-
ple X-ray scattering by each of the crystal atoms, but even with two defects available
(at sites n1 and n2) there exists an excitation transfer channel (n′ → n1 → n2 → n)
disregarded in (11.3.10) and shown in Fig. 11.4b.

Assuming the contribution of two defect processes to be small, it is easy to describe
this. We find a correction to the solution (11.3.9) by setting

Tαβ =
U0

D(ε)
δαβ + tαβ,

∣∣tαβ

∣∣ �
∣∣∣∣ U0

D(ε)

∣∣∣∣ . (11.3.11)

A small correction tαβ is easily found by substituting (11.3.11) into (11.3.7)

tαβ =
[

U0

D(ε)

]2

G0
ε (nα − nβ). (11.3.12)
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Thus, a specified expression (11.3.10) that takes into account simple and double “scat-
terings” by the defects takes the form of the following expansion

G(n, n′) = G0(n − n′) +
U0

D(ε) ∑
α

G0(n − nα)G0(nα − n′)

+
[

U0

D(ε)

]2

∑
α �=β

G0(n − nα)G0(nα − nβ)G0(nβ − n′).
(11.3.13)

We shall consider (11.3.13) as the beginning of an infinite series of successive ap-
proximations. The structure of terms of different approximations in (11.3.13) is such
that the possibility to construct the Green functions G(n, n′) using a simple diagram
technique is quite obvious. The rule for constructing the whole series is as follows.
The points n and n′ are linked by all possible straight rays broken down by the de-
fects (the simplest of them are shown in Fig. 11.4). Each ray starting from the point
n′ does not return to it and coming to the point n never leaves it again. The ray may
come back to the defect-occupation points many times. The number of breaks of a ray
determines the order of the term in an expansion such as (11.2.13). Each segment of
the ray nαβ in the corresponding term is associated with a factor G0(nαβ) and each
defect with a factor U0/D(ε). After the summation over all rays, we get the desired
Green function.

The calculation scheme described above can really only be used for an approximate
calculation of the Green function in a crystal with small concentration of impurities,
since the higher-order terms in (11.3.13) should be proportional to higher degrees of
concentration of the defects.

We come back to (11.3.10) for the Green function of a crystal with randomly dis-
tributed impurities and consider it in the linear approximation with respect to con-
centration. Being interested first of all in extremely long-wave vibrations of a defect
crystal, we change the summation over the numbers of impurities in (11.3.10) to an in-
tegration over the impurity coordinates, taking into account their homogeneous space
distribution

∑
α

f (r) =
c

V0

∫
f (r) d3r, (11.3.14)

where rα = r(nα) is the radius vector of an impurity atom; V0 is the unit cell (atomic)
volume; c is the concentration of defects, equal to the ratio of the number of the defects
to N (c � 1). Note that the procedure (11.3.14) is equivalent to an averaging over the
random positions of impurities.

We use (11.3.14) to carry out the summation using the k-representation of the crys-
tal Green function

∑
α

G0(n − nα)G0(nα − n′)

=
c

N2

′
∑
kk′

exp [ikr(n) − ik′r(n′)][
ε − ω2(k)

] [
ε − ω2(k′)

] 1
V0

∫
exp

[−i
(
k − k′) x

]
d3x.
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We then apply the formula
∫

exp(ikr) d3r = Vδk0 and write

∑
α

G0(n − nα)G0(nα − n′)

=
c
N ∑

k

exp {ik [r(n) − r(n′)]}[
ε − ω2(k)

]2 = −c
∂

∂ε
G0

ε (n − n′).
(11.3.15)

Substituting (11.3.15) in (11.3.10) we obtain an expansion of the Green function
(we are interested only in dependence on the variable ε)

G(ε) = G0(ε) − cΠ(ε)
∂G0(ε)

ε
, (11.3.16)

where the notation

Π(ε) =
U0

D(ε)
=

(∆m/m)ε

1 + (∆m/m)εG0
ε (0)

(11.3.17)

is introduced.
If we restrict ourselves to a linear approximation with respect to concentration,

(11.3.16) can be represented as

G(ε) = G0 [ε − cΠ(ε)] . (11.3.18)

We now remind ourselves that the diagram technique described above allows us to
obtain the term of an arbitrary order in Π(ε) in the expansion (11.3.13). The structure
of these terms is such that after changing from the summation to the integration by the
rule (11.3.14), they are expressed through a derivative of a corresponding order with
respect to ε of the ideal crystal Green function and contain the necessary power of
concentration. Thus, the validity of (11.3.18) is connected only with the possibility of
replacing the summation over the numbers of impurities by an integration (11.3.15).
It can be derived without assuming an approximation linear in c.

However, there is a requirement that must be satisfied in order to use the Green
function (11.3.18). Using it we can obtain only those crystal characteristics that are
determined by quantities averaged over the defect positions. Since the averaging over
random configurations of a system of impurities results in a considerable loss of in-
formation contained in the initial form of the Green function, this requirement is ex-
tremely important.

11.4
Influence of Defects on the Density of Vibrational States in a Crystal

Having the Green function (11.3.4), we can use the recipe presented in Chapter 4 to
determine the density of lattice vibrations in the presence of point defects. According
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to this method it is necessary to use (4.8.9) in the given case. For a monatomic lattice
the density of vibrational states g(ε) normalized to unity equals (4.8.9),

g(ε) =
1
π

lim
γ→+0

Im
1

3N
Tr

(
1 − dU

dε

)
Gε−iγ. (11.4.1)

For a scalar model the factor 3N in the denominator must be replaced by N.
Of much physical interest is generally the density of vibrational states in a crystal

containing a large number of equivalent point defects. Just this quantity can charac-
terize the macroscopic properties of the crystal. In this case, when the average dis-
tance between the defects is large (the concentration is small) the Green function of a
scalar model of crystal vibrations is calculated from (11.3.10). Substituting (11.3.5),
(11.3.10) into (11.4.1) we first calculate the trace:

S =
1
N

Tr
(

1 − dU
dε

)
G =

1
N

G(n, n) +
(

∆m
m

)
1
N ∑

α

G(nα, nα)

= G0(0) +
U0

ND(ε) ∑
n α

G0(n − nα)G0(nα − n)

+c
(

∆m
m

)
G0(0) +

(
∆m
m

)
U0

ND(ε) ∑
αβ

G0(nα − nβ)G0(nβ − nα).

(11.4.2)

Preserving the accuracy with which (11.3.10) for the Green function was derived
we omit the term with α �= β in the last sum of (11.4.2)

1
N ∑

αβ

G0(nα − nβ)G0(nβ − nα) = c
[

G0(0)
]2

. (11.4.3)

In addition, it is easy to verify, using the k-representation for the Green function of an
ideal lattice, that

∑
n

G0(n − nα)G0(nα − n) =
1
N ∑

k

1[
ε − ω2

0(k)
]2 = − d

dε
G0

ε (0).

Therefore,
1
N ∑

n α

G0(n − nα)G0(nα − n) = −c
d
dε

G0
ε (0). (11.4.4)

By substituting (11.4.3), (11.4.4) into (11.4.2), and remembering the definition
(11.2.10) for D(ε), we have

S = G0
ε (0) +

c(∆m/m)
ND(ε)

[
ε

d
dε

G0
ε (0) + G0

ε (0)
]

= G0
ε (0) +

c(∆m/m)
ND(ε)

d
dε

[
εG0

ε (0)
]

= G0
ε (0) + c

d
dε

log D(ε).

(11.4.5)
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We now return to the initial formula (11.4.1) as applied to a scalar model

g(ε) = g0(ε) +
c
π

lim
γ→+0

Im
d
dε

log D(ε). (11.4.6)

In a linear approximation with respect to the concentration c, the expression (11.4.6)
determines the variation of the density of vibrational states due to point defects. The
applicability of the final formula (11.4.6) is not limited to a scalar model. The pres-
ence of three vibrational polarizations in a cubic crystal does not affect (11.4.6). It is
sufficient to take account of a simple replacement G0(0) → (1/3)Gll

0 (0) in the defi-
nition of D(ε). For a monatomic lattice having no cubic symmetry D(ε) is expressed
through the determinant appearing in (11.1.14):

log D(ε) =
1
3

log Det
∥∥∥δik − U0Gik

0 (0)
∥∥∥ .

If the value of ε lies outside the continuous spectral band for an ideal crystal, then
g0(ε) = 0, and G0

ε (0) is a real function of the real variable ε:

lim
γ→0

G0
ε−iγ(0) = G0

ε (0) ≡ Re{G0
ε (0)}.

However, in this case the density of vibrations for a crystal with point defects can
be nonzero outside the continuous spectrum only at the points where the argument of
the logarithm in (11.4.6) vanishes: D(ε) = 0, i. e., for the values of ε coincident with
the squares of local frequencies. We represent in close proximity of the point ε = εd,
the function D(ε − iγ) as

D(ε − iγ) = (ε − εd − iγ)
dD(εd)

dεd
,

remembering that εD is the solution to the equation D(ε) = 0.
We then have from (11.4.6)

δg(ε) =
c
π

lim
γ→+0

Im
1

ε − εd − iγ
. (11.4.7)

However, this limit is equivalent to a δ-function. Therefore, in a corresponding fre-
quency range the density of vibrational states has a δ-like character

δg(ε) = cδ(ε − εd), (11.4.8)

showing that the local frequency is discrete.
The result contained in (11.4.8) has already been discussed, so that we shall now

pass to analyzing the density of “defect” crystal vibrations in the continuous spectrum
range of an ideal lattice (ε1 < ε < ε2).
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In writing (11.2.24), we have taken into account that in the continuous spectrum
region

lim
γ→0

G0
ε−iγ(0) = P.V.

∫
g0(z) dz

ε − z
+ iπg0(ε), (11.4.9)

where P.V. means the principal value of the integral.
In order to separate real and imaginary parts of the derivative (d/dε)G0

ε (0) it is
sufficient to differentiate (11.4.9) with respect to ε for all ε except for those getting
into near the edges of the continuous spectrum interval and the van Hove specific
point in which the function g0(ε) loses its analyticity. Thus

lim
γ→+0

D(ε − iγ) = R(ε) − iπU0g0(ε),

lim
γ→+0

d
dε

D(ε − iγ)
d

dR(ε)ε
− iπ

d
dε

[U0g0(ε)] .
(11.4.10)

The first of these relations is consistent with (11.2.25).
Performing the operations indicated in (11.4.6), it is easy to obtain

δg(ε) =
c

|D(ε)|2
{

U0g0(ε)
dR(ε)

dε
− R(ε)

d
dε

[U0g0(ε)]
}

. (11.4.11)

The expression (11.4.11) describes the deformation of the continuous spectrum of fre-
quency squares under the influence of point defects. It has nonphysical singularities
at the points where the function g0(ε) loses its analyticity and has root singularities.
Thus, (11.4.11) is applicable only away from the vicinity of these points. The appear-
ance of singularities in (11.4.11) results from the fact that an approximation that is
linear in concentration is not sufficient for examining the spectral deformation near its
singular points.

11.5
Quasi-Local Vibrations

We have mentioned that (11.4.11) has nonphysical singularities, because the linear
approximation with respect to the defect concentration is inapplicable when describing
δg(ε) in the vicinity of certain values of ε. However, the function δg(ε) may have
another singularity having a physical meaning. Thus, with a defect-isotope present in
the crystal, the real part D(ε) can vanish for a certain value of ε = εq lying inside the
continuous spectrum:

R(εq) ≡ 1 +
(

∆m
m

)
εq

∫
g0(z) dz
εq − z

= 0. (11.5.1)

Generally, at ε = εq the function δg(ε) has no singularities in a formal mathematical
sense, but if the point ε = εq is near the edges of the continuous spectrum band where
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the density of states δg0(ε) is very small, then the denominator in (11.4.11) becomes
anomalously small in the vicinity of εq and the function δg(ε) increases.

This situation corresponds to the appearance of a quasi-stationary vibration with
ε = εq.

To determine the form of the resonance peak of the function δg(ε), we use an ex-
pansion of the type (11.4.7): R(ε) = (ε − εq)dR(εq)/dεq) and restricting ourselves
to a small region near the point considered we set ε = εq in the numerator of the r.h.s.
of (11.4.11)

δg(ε) =
c
π

Γq

(ε − εq)2 + Γ2
q

,

Γq = −π

(
∆m
m

)
εqg0(εq)
R′(εq)

δg0(ε) = −π

(
∆m
m

)
εqg0(−εq)

R′(εq)
.

(11.5.2)

The formula (11.5.2) has the characteristic form of an expression describing the
frequency distribution of a quasi-stationary state of the system. The parameter Γq

gives the half-width of a corresponding resonance curve and may be associated with
the imaginary part of ε in the conventional notation of (11.2.7). If Γq is small, the
expression (11.5.2) results in a sharp peak in the vibration density. The frequency
ωq = √

εq is then called a quasi-local frequency and the vibration corresponding to it
a quasi-local vibration.

Analysis of (11.5.2) is of most interest in the case when the quasi-local vibration
frequencies are near the long-wave edge of an acoustic spectrum (such vibrations will
be shown to be generated by heavy isotopes with ∆m 	 m). If ε � ω2

D, where ωD is
the Debye frequency, the main part of the expansion of R(ε) in powers of ε is obtained
from (11.2.26)

R(ε) = 1 −
(

∆m
m

ε

ε∗

)
, ε∗ ∼ ω2

D. (11.5.3)

We note that negativeness of the derivative R′(ε) and positiveness of the parameter
Γq for ∆m > 0 follow from (11.5.3).

Substituting (11.5.3) into (11.5.1), we see that for a large enough value of ∆m/m
there is necessarily a solution to (11.5.1) in the region of small ε

εq = (∆m/m)ε∗ ∼ (∆m/m)ω2
D, ∆m 	 m. (11.5.4)

It follows from (11.5.4) that with increasing ∆m/m, the quasi-local frequency po-
sition approaches the long-wave edge of the vibration of the continuous spectrum
(εq → 0). Simultaneously, the peak in the spectral density narrows. Indeed, since at
small ε we may use the estimate (11.2.26) for g0(ε), the resonance peak half-width is

Γq = πε∗εqg0(εq) ∼ (m/∆m)3/2ω2
D. (11.5.5)
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Thus, the relative half-width of the Lorentz curve (11.5.2) for heavy isotopes is
determined by

Γq

εq
= πε∗g0(εq) ∼

√
m

∆m
� 1,

confirming the resonance peak narrowing with increasing ∆m/m. Hence, with in-
creasing ∆m/m the resonance peak acquires δ-function character. The possible ap-
pearance of a sharp peak in the function δg(ε) in the region of low crystal vibrational
frequencies with heavy impurity isotopes was first noted by Kogan and Iosilevskii
(1962), and Brout and Visher (1962).

It is natural that the Lorentz-type peak (11.5.2) also arises in a plot of the frequency
spectrum

δν(ω)
N

= c
2ωq

π

Γq

(ω2 − ω2
q)2 + Γ2

q
, (11.5.6)

where ω2
q = εq. A typical plot of the function ν(ω) = ν0(ω) + δν(ω) for ω � ωD

is shown in Fig. 11.5.

Fig. 11.5 The frequency spectrum near a quasi-local frequency (the
curve 1: ν0(ω) = constω2).

It is easy to estimate the impurity concentration c∗ at which the peak height
(Fig. 11.5) calculated by (11.5.6) is comparable with the frequency distribution func-
tion ν0(ω) of an ideal crystal at a quasi-local frequency ω = ωq. From the relation

δν(ωq)
ν0(ωq)

∼ δν(ωq)
ω3

D
ωqΓq

∼ 1,

we get for the concentration to be estimated:

c∗ ∼ Γqωq/ω3
D. (11.5.7)
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We substitute in (11.5.7) the estimates (11.5.4), (11.5.5) to obtain

c∗ ∼ (m/∆m)2 � 1. (11.5.8)

Since, by assumption, the parameter m/∆m is very small, the quasi-local vibration
density peak may already be equal in order of magnitude to the vibration density of
an ideal crystal at small concentrations of heavy impurities (c ∼ c∗ � 1). However,
the derivation of (11.5.2), (11.5.6) and the calculation scheme were based on using the
linear approximation (c � 1) with respect to concentrations for which additions (pro-
portional to c) to the quantities studied are assumed to be small. Since for c ∼ c∗ � 1
the last assumption is not justified, it is necessary to analyze more consistently the
influence of heavy isotopic impurities on the spectrum of crystal vibrations even at
their smallest concentrations.

Quasi-local vibrations affect the thermodynamic and kinetic properties of a crystal.
The singularities in the amplitudes of elastic wave scattering near quasi-local fre-

quencies ωq lead to resonance anomalies in the ultrasound absorption. Coherent neu-
tron scattering (with emission or absorption of a simple phonon) in the presence of
the corresponding impurity in a crystal has certain specific features at frequencies of
emitted (or absorption) phonons close to ωq. The differential cross section of this
neutron scattering has an additional characteristic factor of the type (11.5.6) increas-
ing anomalously near a quasi-local frequency. It is natural that similar peculiarities
should be observed in the infrared absorption spectrum of crystals with impurities that
produce quasi-local vibration.

Finally, much interest has been generated in quasi-local vibrations, related to the
Mössbauer effect for the nuclei of impurity atoms. The Mössbauer phenomenon in im-
purities is connected with the specific relation between the momentum and the energy
are transferred to an impurity nucleus. This relation is determined by those possible
motions in which an impurity atom is capable of participating, i. e., by the expansion
of the impurity displacement vector with respect to normal modes of the defect crys-
tal. Among the vibration modes there is a large group of vibrations with very close
frequencies (quasi-stationary wave packets of these oscillations cause the quasi-local
vibrations). This leads to the fact that in expanding the displacement vector of an im-
purity atom with respect to normal vibrations the relative contribution of a quasi-local
vibration greatly exceeds the relative contribution of ordinary crystal vibration modes
with frequencies of a continuous spectrum. Thus, quasi-local crystal vibrations should
manifest themselves in the spectrum of phonon transitions of the Mössbauer effect.

It should be noted that in phenomena such as the Mössbauer effect or neutron scat-
tering the contribution of true local vibrations is quite pronounced and larger than the
contribution of the quasi-local vibrations (reduced to the same frequency). However,
in the range of low frequencies (considered, for instance, while studying the influ-
ence of relatively heavy impurities on the crystal properties) there exist quasi-local
vibrations only: local vibrations cannot appear near the low-frequency boundary of an
acoustic spectrum.



11.6 Collective Excitations in a Crystal with Heavy Impurities 271

11.6
Collective Excitations in a Crystal with Heavy Impurities

The Green tensor G0 of an ideal crystal in the site representation is a function of the
difference in the numbers of sites n and n′. It follows from (11.3.18) that the averaged
matrix G for a crystal with randomly distributed point defects is also a function of this
difference. This reflects the macroscopic homogeneity of a crystal with defects that
appear as a result of averaging over random distributions of impurity atoms.

For the Green function of a homogeneous system the long-wave k-representation is
introduced in the usual way. Thus, we just write the averaged Green function (11.3.18)
of a crystal with point defects in (ε, k)-representation.

G(ε, k) =
1

ε − ω2
0(k) − c ∏(ε)

. (11.6.1)

We first show that the validity of (11.6.1) is not really restricted by the linear ap-
proximation with respect to c. We focus on a scalar model and assume that the defect-
isotope introduces a point perturbation (11.3.5). Discussing the Green function of the
defect crystal, it is necessary to find the matrix (11.3.6) as a solution to (11.3.7). In
studying the long-wave vibrations when the distances

∣∣rα − rβ

∣∣ 	 a/c1/3 give the
main contribution, the quantity

U0 ∑
γ �=α

G0(nα − nγ)Tγβ,

on the l.h.s. of (11.3.7) at fixed α is determined by the total contribution from a large
number of terms. To a first approximation, this contribution can be regarded as being
averaged over a large number of impurities and be calculated using (11.3.14). How-
ever, averaging transforms a crystal into a homogeneous macroscopic medium for
which

Tαβ = T(rα − rβ), (11.6.2)

where rα is the α-th impurity coordinate that can now be considered to be varying
continuously.

Substituting (11.6.2) into (11.3.7) and replacing the Kronecker delta symbol δαβ on
the r.h.s. by a δ-function normalized in the appropriate way we obtain

D(ε)T(r − r′) +
cU0

V0

∫
G0(r − x)T(x − r′) d3x = cU0Vδ(r − r′). (11.6.3)

We introduce the Fourier transformation for the function T(x)

Tk =
1
V

∫
T(x)e−ikxd3x,

and rewrite (11.6.3) in k-representation

[D(ε) − cU0G0(ε, k)]Tk = cU0, (11.6.4)
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where G0(ε, k) is the Green function of an ideal crystal determined in a standard way
in (ε, k)-representation.

The matrix T has the following Fourier transform

Tk = cU0[D(ε) − cU0G0(ε, k)]−1. (11.6.5)

It is easy to see that (11.3.9), (11.3.12) are the first terms of the expansion (11.6.5)
in powers of cU0/D(ε).

We make use of the homogeneity of a medium and rewrite (11.3.8) for the averaged
Green function of a defect crystal in k-representation

G(ε, k) = G0(ε, k) + G0(ε, k)TkG0(ε, k). (11.6.6)

We substitute here (11.6.5) to obtain

G(ε, k) =
D(ε)G0(ε, k)

D(ε) − cU0G0(ε, k)
. (11.6.7)

It is clear that the additional poles of the Green function of a crystal with defects
are found from the equation

D(ε) − cU0G0(ε, k) = 0. (11.6.8)

If we take into account the three branches of the vibrations of a simple lattice, (11.6.8)
will be replaced by

Det
∥∥∥δik − Uik

0 (0) − cU0Gik
0 (ε, k)

∥∥∥ = 0. (11.6.9)

However, returning to a scalar model, we take into account the explicit expression
for the function G0(ε, k) and rewrite (11.6.7) in a canonical form for the Green func-
tion

G0(ε, k) =
1

ε − ω2
0(k) − cΠ(ε)

, Π(ε) =
U0

D(ε)
. (11.6.10)

It is clear that (11.6.10) coincides with (11.6.1). Thus, for the range of frequen-
cies distant from singular points of the spectrum, the expression (11.6.10) should be
regarded as a good representation for the averaged Green function (Lifshits), 1964;
Dzyub, 1964).

Note, finally, that the averaging has been performed over impurity configurations
without taking into account the correlations in their mutual positions. Any effects
generated by the fluctuational formation of impurity complexes, the distance between
which is much smaller than the average distance ∼ a/c1/3, are not considered when
we use (11.6.10). Sometimes (11.6.10) is regarded as the result of a selective summa-
tion (rather than a complete one) of a series of successive approximations such as the
expansion (11.3.13).
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Let us analyze (11.6.1) or (11.6.10) intending, first, to consider eigenvibrations such
as plane waves, i. e., collective excitations of a crystal with point defects. These vi-
brations are characterized by the wave vector k and the frequency ω. The dispersion
law ω = ω(k) connecting the real ω and k is the primary characteristic of ele-
mentary excitations and determined by the Green function poles of a crystal in the
(ε, k)-representation. Therefore, we first discuss the problem of the poles of the func-
tion (11.6.10), i. e., of the roots of the equations

ε − cΠ(ε) = ω2
0(k). (11.6.11)

We come back to the above procedure of regularizing the Green function of stationary
vibrations of an ideal lattice and note that the function Π(ε) is complex.

Hence it follows that for a real wave vector k the solutions to the dispersion equation
(11.6.11) for ω will be complex. The presence of an imaginary part of the vibration
frequency is evidence that the wave with fixed k gets damped in time. Thus, a plane
wave of displacements in a crystal with impurities has the form

u(r, t) = u0exp
(
− t

τ

)
ei(kr−ωt), (11.6.12)

where the damping time τ is determined by the imaginary part of the function Π(ε).
It is natural that separation of collective excitations of a crystal such as (11.6.12) is
only physically meaningful for ωτ 	 1.

Let the condition ωτ 	 1 be satisfied, i. e., the damping is weak. Writing the
solution to (11.6.11) in the form

ε = (ω − i/τ)2 � ω2 − 2iω/τ � ω2 − 2iω0(k)/τ,

it is then easy to calculate ω(k) and τ(k) in the main approximation in ωτ.
The dependence ω = ω(k) (see the problem) obtained in this way plays the role of

a dispersion law of crystal vibrations with point impurities, but the corresponding ex-
citations (11.6.12) prove to be damped, i. e., “living” for a finite time. The lifetime of
these excitations τ can be directly associated with a correction δg(ε) for the vibration
density (11.5.2) near a quasi-local frequency

1
τ

=
π

2
ε∗ωδg(ω2), ω = ω0(k). (11.6.13)

It is clear that τ has a minimum at ω = ωq. A small lifetime of the collective
excitation with ω = ωq can be explained easily. The energy of a “homogeneous”
plane wave (11.6.12) is spent to excite the continuous spectrum vibrations whose fre-
quencies are close to a quasi-local one. However, the coordinate dependence of quasi-
local vibrations differs from (11.6.12). Therefore, the collective vibration is damped.

For the maximum of (11.6.13) we have the estimate

1
τ
∼ c

ω2
D

Γq
∼ c

(
∆m
m

)3/2

. (11.6.14)
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We introduce the concentration c0 at which the average distance between impuri-
ties has the order of magnitude of a characteristic wavelength of a single quasi-local
vibration λ ∼ 2πs/ωq. To an order of magnitude,

c0 ∼
( m

∆m

)3/2
. (11.6.15)

Under the condition ∆m 	 m, we always have c0 	 c∗.
Consequently, the estimate (11.6.14) can be rewritten as ωτ ∼ c0/c; hence it fol-

lows that the condition ωτ 	 1 is satisfied for c � c0. Thus at small enough
concentrations of impurity atoms (c � c0), ordinary vibrational excitations (such as
plane waves) are weakly damped at all frequencies.

11.7
Possible Rearrangement of the Spectrum of Long-Wave Crystal Vibrations

Now consider the dynamic properties of a crystal where the concentration of heavy
impurities is not restricted by the inequality c � c0 (but the condition c � 1 remains).
If c >∼ c0 then in the resonance region ωτ <∼1, and the concept of collective excitations
(11.6.12) with frequencies close to ωq is physically meaningless. The wave (11.6.12)
is damped practically in one period of vibrations.

In this frequency region, for c0 <∼ c � 1 the spectrum of crystal eigenvibrations can
be characterized by the quantity Im G(ε, k) as a function of ε and k, because it can be
measured experimentally. We consider Im G(ε, k) as a function of k with a given ε

(this is typical for ordinary optical experiments) and examine how the position of the
maximum of this function changes depending on the value of ω =

√
ε. The maxima

we are interested in are in the space ω, k on hypersurfaces whose points are given by
a straightforward condition

ω2 − ω2
0(k) − c Re[Π(ω2)] = 0. (11.7.1)

We restrict ourselves to the long-wave isotropic approximation when ω0(k) = s0k.
As a result of simple calculations, we get the following frequency dependence of the
modulus of a wave vector providing the maximum Im G:

(s0k)2 = ω2

(
1 − c

ε∗(ω2 − ω2
q)

(ω2 − ω2
q)2 + Γ2

)
. (11.7.2)

The plot of k = k(ω) (Fig. 11.6) can be considered as the dependence of the wave
vector on the frequency of the crystal eigenvibrations in this case.

The function k = k(ω) has extrema kmax and kmin between which the “anoma-
lous dispersion” region is situated. The difference in heights of the maximum and
minimum in Fig. 11.6 is equal, in order of magnitude, to

kmax − kmin

k0
=

∆k
k0

∼ c
ε∗
Γ

∼ c
(

∆m
m

)3/2

∼ c
c0

.
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With increasing concentration the minimum in Fig. 11.6 decreases and, at concen-
trations c ∼ c0, kmin may reach zero. For long-wave vibrations, one should then
expect phenomena such as total internal reflection in optics. In fact, for c 	 c0, in
addition to ω = 0, there appear two more frequency values corresponding to k = 0.
These frequencies lying somewhat higher than ωq limit the range of frequencies at
which the crystal has no collective excitations described by the wave vector.

Therefore, in the case of large concentrations of impurities with pronounced quasi-
local frequencies the spectra of long-wave crystal vibrations change significantly.

Fig. 11.6 The dependence k = k(ω) that provides the maximum of
Im G(ε, k).

We consider Im G(ε, k) as a function of ε at fixed k (just this dependence is gen-
erally studied in neutron experiments). The maximum value of this function is deter-
mined by the condition (11.7.1), so that the frequency range where vibrations such as
plane waves are absent is wide enough and satisfies the condition

∣∣∣ω2 − ω2
q

∣∣∣ 	 Γ ∼ (ω/ωD)3ε∗. (11.7.3)

The inequality (11.7.3) enables us to omit Γ in the real part of the function Π(ω2)
and the condition (11.7.1) will be replaced by a similar one:

[ω2 − ω2
0(k)][ω2 − ω2

q ] = cε∗ω2. (11.7.4)

It follows from (11.7.4) that Im G as a function of ε at any fixed k has two maxima
instead of one in an ideal crystal. The dependence of the frequencies on k providing
the maximum Im G (Fig. 11.7a) resembles a typical diagram of frequency splitting
near the resonance point, i. e., in the vicinity of the intersection of the dispersion
curves ω = s0k and ω = ωq = const (Fig. 11.7b). The choice of the parameters
∆m/m, ωk , and c in the plot is matched to the experiment of Zinken et al. (1977).
A hypothetical degeneration of frequencies arising in Fig. 11.7b is removed and the
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dependence ω = ω(k) in the isotropic model is obtained by solving an algebraic
equation

ωn(ω) = s0k, (11.7.5)

where the function n(ω) is the coefficient of sound wave refraction in a crystal and is
determined by (11.7.2) with Γ = 0:

n(ω) =

[
1 − cε∗

ω2 − ω2
q

]1/2

=

√
ω2 − ω2

0
ω2 − ω2

q
. (11.7.6)

Here ω2
0 = ω2

q + cε∗. We note that n(0) =
√

1 + c(∆m/m) and n(∞) = 1.
A plot of ω(k) is constructed in an obvious way (Fig. 11.7c).

The vertical dashed lines in Fig. 11.7c cut off the value of the wave vector k at
which (11.7.6) becomes meaningless. Near ω = ωq these are the values of k at which
the wavelengths are comparable with the distance between the impurities, and near
ω = ω0 these are the values of k at which the damping length is comparable with the
wavelength (ωτ ∼ 1).

Figure 11.7c shows the dispersion law asymptotes at small frequencies (straight
line 1) ω = s0k/[1 + c(∆m/m)]1/2, ω � ωq and at high frequencies (straight line
2) ω = s0k, ωq � ω � ωD.

We note that the plot in Fig. 11.7c resembles the plot of the dispersion law of trans-
verse optical vibrations of an ionic crystal in Fig. 3.7.

Fig. 11.7 A scheme of the phonon dispersion law for a crystal with large
impurity concentration: (a) experimental observation of two branches;
(b) the intersection of the sound dispersion law with the quasi-local fre-
quency of homogeneously distributed impurities; (c) two branches of
long-wave vibrations divided by a quasi-gap.
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The most remarkable property of the plot is the presence of a forbidden range
of frequencies (ωq, ω) or a quasi-gap. For c 	 c0 a new limiting frequency

ω0 = ωq
√

1 + c(∆m/m) is displaced from the frequency ωq by a distance greatly
exceeding the broadening due the concentration c of a quasi-local frequency
δω ∼ c1/3ωq. The frequency ω0 plays the role of a limiting frequency of optical
vibrations (vibrations of a system of impurities relative to a crystal lattice). Thus,
there are two branches of the spectrum of long-wave vibrations such as plane waves in
a crystal with a large concentration of defects (Kosevich, 1965; Slutskin and Sergeeva,
1966; Ivanov,1970).

11.7.1
Problems

1. Find the frequency of a local vibration connected with an isotope-defect in a 1D
crystal with interaction of nearest neighbors.

Hint. Make use of the dispersion law (2.1.6) and (11.1.12) or the vibration density
(4.4.18) and (11.1.13).

Solution.
ω =

ωm√
1 − (∆m/m)2

, ∆m < 0.

Fig. 11.8 The dispersion law for crystal vibrations with a small concen-
tration of point impurities.

2. Find, in the isotropic approximation, the dispersion law for crystal vibrations with
a small concentration of heavy impurities (c � c∗ = (m/∆m)2 � 1).

Hint. Take into account (11.6.13) and the fact that for c � c∗ for all frequencies
|cΠ(ε)| � ε and |cΠ′(ε)| � 1.

Solution.

ω = s0k

[
1 + c

ε∗(s2
0k2 − ω2

q)

(s2
0k2 − ω2

q)2 + Γ2

]1/2

.

The plot of this dependence is shown in Fig. 11.8.



12
Localization of Vibrations Near Extended Defects

12.1
Crystal Vibrations with 1D Local Inhomogeneity

In any macroscopic specimen of a real crystal there are dislocations. A dislocation,
being a quasi-one-dimensional structure, breaks the lattice regularity only in a small
region near a certain line – its axis. Vibrations localized near the dislocation have the
form of waves running along the dislocation line.

We are interested in small atomic vibrations near new equilibrium positions and
thus in a zero approximation the dislocation axis may be considered to be fixed. We
assume that the dislocation is a straight-line and its axis is perpendicular to the crystal
symmetry plane. We direct the z-axis along the dislocation line and denote by ξ a 2D
radius vector in the plane xOy: r = (ξ, z), ξ = (x, y). Assume also that the disloca-
tion does not change the substance density along its axis. The perturbation introduced
by a dislocation is then connected with a local change in the matrix of atomic force
constants. To analyze the long-wave crystal vibrations (λ � a), this perturbation is
assumed to be concentrated on the dislocation axis. Using a scalar model we con-
sider the displacement as a continuous function of the coordinates: u = u(ξ, z). The
equation of long-wave lattice vibrations near the linear singularity can be represented
as

ω2u(ξ, z) − 1
m ∑

n′
α(n − n′)u(ξ′, z′) = a2δ(ξ) ∑

z′
U(z − z′)u(0, z′), (12.1.1)

where δ(ξ) is a two-dimensional δ-function (δ(ξ) = δ(x)δ(y)) and the summation
over the lattice sites can be replaced by the integration

∑
z
· · · =

1
a

∫
dz · · · , ∑

ξ

· · · =
1
a2

∫
dx dy · · · ,

∑
n
· · · =

1
V0

∫
dV · · · .

(12.1.2)
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The function U(z) in (12.1.1) describing the force matrix perturbation is indepen-
dent of frequency and can be regarded as an even function of z. It satisfies the obvious
requirement

∑
z

U(z) = 0. (12.1.3)

Using the property of homogeneity of the crystal along the Oz direction and apply-
ing a one-dimensional Fourier transformation relative to the z coordinate we obtain

u(ξ, z) =
a

2π

∫
χk(ξ)eikz dk, χk(ξ) = ∑

z
u(ξ, z)eikz. (12.1.4)

The equation for χk(ξ) is derived from (12.1.1)

ω2λk(ξ) − ∑
ξ′

Λk(ξ − ξ′)χk(ξ′) = a2δ(ξ)Ukχk(0), (12.1.5)

where

Λk(ξ) =
1
m ∑

nz

α(n)eikanz , Uk = ∑
z

U(z)e−ikz. (12.1.6)

Equation (12.1.5) is the equation of a 2D crystal vibrations with a point defect at the
origin of the coordinates. The wave-vector component k = kz enters this equation as
a parameter and determines the local perturbation intensity Uk. In the case ak � 1,
the function Uk has an obvious expansion following from (12.1.6), (12.1.3)

Uk = −k2W0, W0 =
1
2 ∑

z
U(z)z2. (12.1.7)

To find the function χk(ξ), we use a 2D Fourier expansion

χk(ξ) =
a2

(2π)2

∫
χk(κ, k)eikξ dkx dky, χk(κ, k) = ∑

ξ

χk(ξ)eikξ , (12.1.8)

where κ is a two-dimensional wave vector κ = (kx, ky).
The Fourier components χ(κ, k) are determined from the relation

[
ω2 − ω2

0(κ, k)
]

χ(κ, k) = −k2W0χk(0), (12.1.9)

where the function ω2
0(κ, k) is the dispersion law of an ideal crystal.

To simplify calculations, we assume the axis Oz is a four-fold or six-fold symmetry
axis. Then in the long-wave limit

ω2
0(κ, k) = s2

0κ2 + s2k2. (12.1.10)

The dependence of the vibration amplitude on ξ follows directly from (12.1.8)–
(12.1.10)

χk(ξ) = −(ak)2 W0

(2π)2 χk(0)
∫ cos(κξ) dkx dky

ω2 − s2k2 − s2
0κ2

. (12.1.11)
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If we set ξ = 0 in (12.1.11), we obtain an equation for the vibration frequencies

1 + (ak)2 W0

2π

k0∫

0

κdκ

ω2 − s2k2 − s2
0κ2

= 0. (12.1.12)

The upper limit of integration in (12.1.12) can be estimated as κ0 ∼ 1/a. The
fact that the integration limit in (12.1.12) is determined by the order of magnitude
only, and has the character of some “cut off” parameter, is connected with a model
assumption of the point-like character of a perturbation in (12.1.5). The assumption
(12.1.1) of a delta-like localization of the perturbation on the dislocation axis as well
as the dispersion law (12.1.10) are valid for the long-wave vibrations only (aκ � 1).

At the same time the integration in (12.1.11), (12.1.12) should be extended to
the whole interval of a continuous spectrum of frequencies. Since the integrand in
(12.1.11) does not exhibit a decrease at infinity necessary for the integral to converge,
we have to take into account the natural limit of integration over the quasi-wave vector
(aκ0 ∼ π).

Simplifying (12.1.12) we obtain

1 − (ak)2 W0

4πs2
0

log
s2

0κ2
0

s2k2 − ω2 = 0, (12.1.13)

by omitting small terms of the order of magnitude

s2k2 − ω2

s2
0κ2

0
� s2k2

s2
0κ2

0
∼ (ak)2 � 1.

As in Chapter 11, (12.1.13) has a solution for eigenfrequency squares ω2 with a def-
inite sign of W0 only, namely, for W0 > 0, so that necessarily ω2 < s2k2. If the
condition W0 > 0 is satisfied, (12.1.13) always has a solution (Lifshits and Kosevich,
1965)

ω2 = s2k2 − s2
0κ2

0 exp

{
− 4πs2

0
(ak)2W0

}
. (12.1.14)

We recall that in (12.1.14), W0 > 0 and s2
0κ2

0 ∼ ωD.
The frequencies (12.1.14) have an exponential dependence on the perturbation in-

tensity, i. e., on Uk that is characteristic for two-dimensional problems. Their defi-
nition has no critical value of the perturbation intensity at which the local vibration
frequency starts splitting off and that is typical for point defects. The existence of
the vibrations localized near a dislocation requires a definite sign of the perturbation
(W0 > 0), and the corresponding frequency is always separated by a certain finite gap
δω the origin of the spectrum of bulk crystal vibrations

δω = sk − ωd ∼ ω2
D

sk
exp

{
4πs2

0
(ak)2W0

}
.
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We have considered elastic waves traveling along the dislocation. Their existence is
due to changes in the elastic moduli in the dislocation core, but the vibrations localized
near the chain of impurity atoms also have frequencies such as (12.1.14). Such a chain
is also a linear defect. The long-wave vibrations near this defect are described by the
same equation (12.1.1), but with a different perturbation matrix

U(z) = U0aδ(z) = −
(

∆m
m

)
ω2aδ(z). (12.1.15)

It is clear that the problem of crystal vibrations with the perturbation (12.1.15) is
reduced to finding a solution to the two-dimensional equation (12.1.5) in which the
replacement Uk → U0 is necessary. Thus, the equation for local frequencies remains
the same, replacing k2W0 → (∆m/m) ω2,

1 −
(

∆m
m

)
(aω)2

4πs2
0

log
s2

0κ2
0

s2k2 − ω2 = 0. (12.1.16)

For ∆m > 0, (12.1.16) has the following solution in a frequency region of the
spectrum (ω2 � (m∆m) ω2

D),

ω2 = s2k2 − s2
0κ2

0 exp
{
− 4π

(ak)2

( s0

s

)2 m
∆m

}
. (12.1.17)

It is clear that (12.1.17) is not qualitatively different from (12.1.14).
Let us note that the frequencies (12.1.14), (12.1.17) do correspond to vibrations

localized near the linear defect. According to (12.1.11), we perform the integration

χk(ξ) = −(ak)2 W0

(2π)2 χk(0)

∞∫

0

κdκ

ω2 − s2k2 − s2
0κ2

×
∮

cos(κρ cos φ)dφ,

(12.1.18)

where ρ2 = x2 + y2 and the upper limit of integration over κ is shifted to infinity since
for ρ �= 0 the integral in (12.1.18) converges.

The integrals on the r.h.s. of (12.1.18) can be taken from any reference book; there-
fore, we give only the final expressions for the vibration amplitude

χk(ξ) ≡ χ(ρ) = (ak)2 W0

2πs2
0

K0(κ⊥ρ)χk(0), (12.1.19)

where K0(x) is a cylindrical zero-order Hankel function (of an imaginary argument);
κ⊥ is the inverse radius of localization of vibrations near the dislocation line

κ2
⊥(k) =

s2k2 − ω2

s2
0

. (12.1.20)
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The behavior of the function K0(x) at small and large values of its argument is well
known:

K0(x) = − log
x
a

, x � 1, K0(x) =
√

π

2x
e−x, x � 1.

Thus, the vibration amplitude distant from the dislocation axis has a characteristic
exponential decrease confirming that the vibrations are localized near the dislocation.
The limiting dependence K0(x) for x � 1 shows that the vibration amplitude has a
logarithmic singularity as ρ → 0. The equation (12.1.19) derived in the long-wave
approximation is valid only for ρ � a; therefore, the extremely small distance ρ for
which (12.1.19) is valid may not be smaller than a.

12.2
Quasi-Local Vibrations Near a Dislocation

The equation for the eigenfrequencies (12.1.2) is equivalent to the condition

1 − UkG2(ε, k) = 0, (12.2.1)

where G2(ε, k) is the Green function of the equation for 2D crystal vibrations (ε =
ω2), with the spectrum of frequency squares (12.1.10) beginning with s2k2, where k
is a fixed parameter. This function has an obvious definition

G2(ε, k) =
a2

(2π)2

∫
G0(ε, k) d2k,

where G0(ε, k) is the Green function of an ideal crystal in a scalar model (4.5.10).
The dislocation localized waves have frequencies for which Im G2(ε, k) = 0. But

by examining quasi-local vibrations near a heavy impurity, we made it clear that in
the frequency range where Im G2 �= 0, resonance vibrational states may exist. In this
case the frequencies of these vibrations are determined by

1 − Uk Re G2(ε, k) = 0. (12.2.2)

Using (12.1.12), it is easy to see that

Re G2(ε, k) =
a2

4πs2
0

log

∣∣s2k2 − ε
∣∣

s2
0k2

0
. (12.2.3)

It is clear that the r.h.s. of (12.2.3) tends to −∞ at the point ε = s2k2 and determines
the function symmetrical with respect to this point (Fig. 12.1). Finding from the plot
a solution to (12.2.1), (12.2.2) we conclude that for Uk < 0 there are simultaneously
solutions both to (12.2.1) for ε < s2k2 (dislocation waves) and to (12.2.2) for ε > s2k2

(quasi-local vibrations near the dislocation). But the latter have the physical meaning
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Fig. 12.1 The real (1) and imaginary (2) parts of the Green function as
functions of ε at fixed kz.

Fig. 12.2 The position of local ωd and quasi-local ωq frequencies of
dislocational vibrations with fixed kz.

of isolated frequencies only in the case when the damping of a corresponding reso-
nance frequency (i. e., the imaginary part of this frequency) is small. We know that
the damping is determined by Im G2(ε, k) = πg(2)(ε, k), where g(2)(ε, k) is a two-
dimensional vibration density. In the considered range of frequency squares, πg(2) is
practically constant (line 2 in Fig. 12.1) πg(2) = (a/s0)2 ∼ 1/ω2

D. Analyzing the
width of the quasi-local vibration peak, we have

Γ = πg(2)
(

d
dε

Re G2

)−1

= g(2)
(

2πs0

a

)2 (
ε − s2k2

)
∼ ε − s2k2 , (12.2.4)

i. e., it has the order of magnitude of the square of a resonance frequency measured
from the edge of the spectrum s2k2. This means that the quasi-local frequency near a
dislocation is very weakly pronounced.

In conclusion, we consider in brief a short qualitative characteristic of disloca-
tion localized vibrations of a real crystal lattice that has three polarizations of the
displacement vector with three branches of the dispersion law. In the isotropic ap-
proximation, there exist two branches of transverse vibrations with the dispersion law
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ω2 = s2
t (κ2 + k2) and one branch of longitudinal vibrations with the dispersion law

ω2 = s2
l (κ2 + k2), so that sl > st always. If the value of k is fixed, there are two

bands of continuous frequency values of the bulk vibrations (Fig. 12.2) ω > sk.
With the corresponding sign of the perturbation Uk, the frequency lying near the

boundary of the corresponding band may split off from the lower edge of each of the
bands. One of these frequencies (the lowest one, ωd) corresponds to the vibration
localized near the dislocation. It arises near the edge of the transverse vibration band
and the localized vibrations have the form of transverse waves running along the dis-
location. The dislocation axis participates in these vibrations, bending and vibrating
like a spanned string. As the quantity stk − ωd is exponentially small, the bending
waves have a velocity that practically does not differ from that of st. The character
of vibrations allows us to formulate the elastic string model often used in different
applications of a dynamic theory of dislocations. In this model a dislocation line is
considered as a heavy string vibrating in a slip plane. The ratio of linear tension to
dislocation mass is such that the dispersion law of string-bending vibrations coincides
practically with the dispersion law of transverse sound waves in a crystal ω = stk.

The frequency “split off” from the boundary of the longitudinal vibrations spectrum
(the frequency ωd in Fig. 12.2) could be considered as discrete only if the interaction
between different branches of vibrations is disregarded. But the linear defect violates
the independence of different types of vibrations so that they are “mixed together”.
Since the frequency ω2

d is in the region of a continuous spectrum of transverse vibra-
tions, it gets broadened and the corresponding vibration is transformed into a quasi-
local one.

Finally, even in the case of an independent branch of vibrations, the quasi-local
vibrations discussed in detail above are possible. These vibrations in Fig. 12.2 corre-
spond to the frequencies ω1

q and ω3
q. The quasi-local peak width at the frequency ω1

q

has been evaluated, and the peak width at ω2
q cannot be smaller. Hence, only the fre-

quencies of bending vibrations of a dislocation as a spanned string are actually singled
out.

12.3
Localization of Small Vibrations in the Elastic Field of a Screw Dislocation

The elastic vibrations near the dislocation as a source of static stresses in a crystal
can be included, using a simple anharmonic approximation, into the initial state of a
vibrating crystal and small vibrations on the background of a distorted lattice can be
considered.

We represent the vibrating crystal displacement in the form

uz(ξ, z, t) = u0(ξ) + u(ξ, z, t) ,

where u0(ξ) is a static field of the screw dislocation coinciding with the axis Oz
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((10.2.8) is convenient for this case)

u0(ξ) =
bθ

2π
=

b
2π

arctan
( y

x

)
, (12.3.1)

u(ξ, z, t) are small dynamic displacements relative to a stationary crystal with a dislo-
cation.

Apart from a static deformation, the equations of motion of a vibrating crystal with
a dislocation will include anharmonicities (cubic and fourth-order ones). Then, re-
stricting ourselves to the approximation linear in dynamic displacements, we get in a
scalar model the following equation for the displacement u:

ρ0
∂2u
∂t2 − µ

∂2u
∂x2

α
− (λ + 2µ)

∂2u
∂z2

= A
∂u0

∂xα

∂2u
∂xα∂z

+ B
(

∂u0

∂xα

)2 ∂2u
∂x2

β

+ C
(

∂u0

∂xα

)2 ∂2u
∂z2 ,

(12.3.2)

where λ and µ are the renormalized second-order elastic moduli taking into account
anharmonicities (µ > 0, λ + 2µ > 0); A is the third-order elastic modulus; B and
C are the fourth-order elastic moduli of a nonlinear elasticity theory (from general
considerations, A ∼ B ∼ C ∼ µ).

Equation (12.3.2) should be supplemented with a certain boundary condition on the
surface of a dislocation tube r = r0 to describe the phonon reflection from the dislo-
cation axis. We use further the fact that no phonons penetrate into the region of the
dislocation core. But we try, using the same approximation in which (12.3.2) is writ-
ten to take correctly into account in the boundary conditions the symmetry of lattice
distortions along the screw dislocation axis. If f (θ, z) is some function characterizing
these distortions on a dislocation tube, it should have screw symmetry

f (θ + θ0, z) = f
(

θ, z − bθ0

2π

)
, f (θ, z + b) = f (θ, z), (12.3.3)

that takes into account static displacements (12.3.1) about the screw dislocation.
In view of (12.3.3), we write the solution (12.3.2) as

u = χ(r)eik(z+bθ)+imθ−iωt, (12.3.4)

where m = 0,±1,±2, . . ..
It is typical that the solution (12.3.4) satisfying the screw symmetry (12.3.3) is

nonperiodic with respect to the angle θ, and, therefore, is not a single-valued function
of the coordinate x(ξ, z). We remember that u(x) is the atomic displacement relative
to their equilibrium positions in a crystal with a dislocation, and x(ξ, z) are the atomic
positions (coordinates) in a nondeformed crystal. The atom coordinates in a crystal
with a dislocation, i. e., in a statically deformed medium, are different from those in
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the initially nondeformed medium, namely, the coordinates ξ(x, y) are unchanged and
the third coordinate (along the dislocation axis) is Z = z + u0(θ) = z + (bθ/2π).
If we consider (12.3.4) as a function of atomic coordinates X(ξ, Z) in a deformed
medium, then it is a single-valued function. Ambiguity of the expression (12.3.4) for
the displacement u as a function x(ξ, z) is a direct result of the fact that (12.3.2) is
written in the coordinate system connected with the initial undeformed medium.

Before writing the equation for χ(r) that follows from (12.3.2) we note that the
spatial derivatives in (12.3.2) have different orders. It follows from (12.1.14) that the
frequency square of a local vibration ω2 differs insignificantly from (s0k)2. But then

∂2u
∂x2

α
∼ κ2

⊥u ∼ s2
0k2 − ω2

(s0k)2
∂2u
∂z2 � ∂2u

∂z2 ,

where κ⊥ is the inverse radius of the vibration localization near the dislocation axis.
Thus, it is meaningless to retain on the r.h.s. of (12.3.2) the term with a fourth-order
elastic modulus B. Taking this into account, we get the following ordinary differential
equation

d2χ

dr2 +
1
r

dχ

dr
−

(
κ2
⊥ +

ν

r2

)
χ = 0, (12.3.5)

where

ν =
(

m +
bk
2π

)2

+ m
(

bk
2π

)
A
µ

+
(

bk
2π

)2 A + C
µ

, (12.3.6)

and the parameter κ⊥ is determined by a relation such as (12.1.20)

κ2
⊥(k) =

s2
l k2 − ω2

s2
t

, ρs2
l = λ + 2µ , ρs2

t = µ . (12.3.7)

Equation (12.3.5) is a Schrödinger equation for the radial part of the wave function
in cylindrical coordinates where the Planck constant should be equal to unity, and the
particle mass to 1/2. It describes a particle located in the potential field U = ν/r2

and having the energy E = −κ2
⊥.

If m �= 0, it follows from (12.3.6) that in the long-wave approximation (bk � 1)

ν ≈ m2 > 0 . (12.3.8)

But under the condition (12.3.8) and with a repulsive potential on the dislocation axis
(12.3.5) has no discrete spectrum corresponding to finite (localized) states. Thus, in
the long-wave approximation for m �= 0 there are no localized vibrations near the
dislocation.

The situation is quite different in the case m = 0 when

ν =
(

bk
2π

)2 (
1 +

M
µ

)
, M = A + C.

For M > −µ, as before, ν > 0 and there are no localized vibrations near the disper-
sion, but if M < −µ, then ν < 0 and the situation changes. The (12.3.5) describes
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the particle motion in a 2D potential well, and there is an infinite number of discrete
levels with the point of condensation at E = 0. These levels can be calculated quasi-
classically.

Equation (12.3.5) corresponds to the Hamiltonian

H = p2
x + p2

y + U(r) ≡ p2
r −

τ2

r2 ,

(here τ2 = −ν). Thus, the Bohr quasi-classical quantization condition is

rm∫

r0

pr dr ≡
rm∫

r0

√
τ2

r2 + E dr = π

(
N +

1
2

)
, (12.3.9)

where N is a natural number (N � 1); r2
m = τ2/ |E| = (τ/κ⊥)2.

We perform a trivial integration in (12.3.9) and retain logarithmically large terms
only (ln(rm/r0) � 1)

τ ln
(

λ

r0
τ

)
= π

(
N +

1
2

)
, λ =

1
κ⊥

. (12.3.10)

The dispersion law for localized vibrations follows from (12.3.6), (12.3.7), (12.3.9)

ω2 = s2
l k2 − |ν|

(
st

r0

)2

exp


− 2π2(2N + 1)

b |k|
√

|M|
µ − 1


 , (12.3.11)

where the pre-exponential factor is determined to an order of magnitude only.
Let us note two important peculiarities of the dispersion law (12.3.11). First, the

second term on its right-hand side depends less on k than in (12.1.14). Second, the
eigenfrequencies of localized vibrations form an infinite geometric progression that
describes the concentration of local frequencies toward the edge of the continuous
spectrum. The latter should be taken into account in evaluating the statistical weight
of local vibrations that determines their contribution to the low-temperature thermo-
dynamic properties of a crystal.

If the signs of the perturbations on the dislocation axis and the ratio of M to µ

are such that there are vibrations with frequencies (12.1.14), (12.1.11), then these
frequencies are mixing. But these vibrations “do not interfere” with one another under
the condition that the frequency (12.1.14) is lower than the first of the frequencies
determined by (12.3.11) (with a given k).

12.4
Frequency of Local Vibrations in the Presence of a Two-Dimensional (Planar)
Defect

A two-dimensional defect of the crystal breaks the lattice regularity along a certain
surface inside a solid. If the character of the crystal structure distortions is the same
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along the indicated surface (more frequently, it is a plane), the break in the rigorous
lattice periodicity is called a stacking fault (Fig. 12.3). The possible types of planar
stacking fault are completely determined by the crystallography of a given lattice.

Fig. 12.3 Planar stacking fault that is perpendicular to the z-axis.

We consider an unlimited, extended planar defect, assuming it to be coincident with
a plane z = 0 parallel to some crystallographic plane. We restrict ourselves to the case
of a symmetric lattice and assume that the z-axis is a four-fold symmetry axis of an
ideal crystal. In general, the symmetry group of the plane defect is smaller than the
corresponding group of atomic planes for an unbounded crystal lattice. Thus, there is
no four-fold symmetry axis perpendicular to the defect plane in Fig. 12.3.

We show first that the equations of vibrations localized near such a defect coincide
with the equations of vibrations of a certain 1D crystal. The stacking fault does not,
generally, change the atomic mass; thus, it may seem that its influence on lattice vi-
brations is described only by the corresponding force matrix perturbations (just such
perturbations are usually taken into consideration in qualitatively discussing the prob-
lem). However, if the interatomic distances in the stacking fault differ from those in a
nondefect crystal lattice (h �= a in Fig. 12.3) a local change in the mass density takes
place. We intend to account for this fact.

The planar defect running through the whole crystal does not break the lattice ho-
mogeneity in a plane perpendicular to the z-axis. Then the perturbation potential U∗
due to the change in the mass density along the defect layer can be written in the form
analogous to (11.1.7)

U∗(n, n′) = U0δnz0δn′
z0, U0 = −ω2 ∆ρ

ρ
,

where ∆ρ is the change in the mass density. Assuming such a form of the perturbation
we unite two atomic layers (or crystallographic planes) on both sides of the plane
z = 0 in Fig. 12.3 into one planar defect.
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The perturbation of the force matrix U(n, n′) in this crystal should be dependent
on the differences nx − n′

x and ny − n′
y and obey the requirement

∑
n

U(nx, ny; nz, n′
z) = ∑

n
U(nx, ny; n′

z, nz) = 0 . (12.4.1)

Therefore, an equation of crystal vibrations including both types of perturbations is

ω2(n) − 1
m ∑

n′
α(n − n′)u(n′)

= ∑
n′

U(nx − n′
x, ny − n′

y; nzn′
z)u(n′) + U0u(nx , ny, 0)δnz0 .

(12.4.2)

Since the crystal is structurally uniform in the x0y plane, it is convenient to switch
in the equations of motion from a site representation in this plane to a two-dimensional
k-representation, retaining the site representation along the the z-axis. We represent
the amplitude of vibrations in the form

u(n) = χκ(nz)eia(kxnx+kyny) , κ = (kx, ky),

and rewrite (12.3.2) in the κ-representation

ω2χκ(nz) −∑
n′

z

Λκ(nz − n′
z)χκ(n′

z) = ∑
n′

z

Uκ(nz, n′
z)χκ(n′

z) + U0χκ(0)δnz0 ,

(12.4.3)
where

Λκ(nz) =
1
m ∑

n′
xn′

y

α(n)e−ia(kxnx+kyny) ,

Uκ(nz, n′
z) = ∑

n′
xn′

y

U(nx, ny; nz, n′
z)e−ia(kxnx+kyny) .

It is very important that the quantity κ appears in (12.4.3) as a parameter. If we
assume this parameter to be fixed and are interested only in the dependence of the
vibration amplitude on z, then omitting the index κ in all the quantities in (12.4.3), we
obtain an equation for 1D crystal vibrations

ω2χ(n) − ∑
n′

Λ(n − n′)χ(n′) = ∑
n′

V(n, n′)χ(n′) , (12.4.4)

where n = nz and the matrix V(n, n′) is equal

V(n, n′) = U(n, n′) + U0δn0δn′0.

The matrix Λ(n) has the following property ∑ Λ(n) = ω2
0(κ, 0), where the function

ω0(κ, kz) determines the dispersion relation of an ideal crystal.
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In order to take into account a band structure of the dispersion relation and have
at the same time a possibility to obtain simple analytical results of calculations we
analyze the dynamics of the planar defect in a strongly anisotropic crystal (see Sec-
tion 2.10). Let the crystal has possess a primitive body-centered tetragonal lattice.
Assume that neighboring atomic layers perpendicular to the four-fold symmetry axis
have weak interlayer bonds and the stacking fault is parallel to such layers. The disper-
sion relation for a crystal of this type is given in the nearest-neighbors approximation
by (2.10.2) that determines the vibration band of the strongly anisotropic crystal.

Under the condition ω1 � ω2 the band width (for any value of k) is determined
by the weak interlayer interaction and is proportional to ω2. The maximum frequency
of the vibrations is determined by the strong interlayer interaction and is proportional
to ω1. As a result the band is very narrow and strongly elongated. This specific form
of the frequency distribution allows us to propose a simple description of the crystal
dynamics at low enough frequencies ω � ω1 admitting ω ∼ ω2.

For the frequencies mentioned above we can use the long-wave approximation in re-
spect to κ-dependence, and the dispersion relation (2.10.2) acquires the form (2.10.4):

ω2 = ω2
0(κ, kz) ≡ s2

1κ2 + ω2
2 sin2 bkz

2
; κ2 = k2

x + k2
y), s2

1 =
1
4

a2ω2
1, (12.4.5)

where b is the interatomic distance along the z-axis and s1 is the sound velocity in the
basal plane.

If the value of κ is fixed then (12.4.5) can be considered as a dispersion relation
for 1D crystal vibrations of the optical type. Remembering the results of Section 11.1
we expect to find discrete frequencies of localized 1D modes outside the continuous
spectrum of an ideal crystal, namely the discrete frequencies squared should lie either
under ω2

1(κ) or above ω2
1(κ) + ω2

2. Assume the perturbation to be small enough
and refer to Section 1.1 where it was shown that in such a case (1) possible discrete
frequencies are located close to the edges of the continuous spectrum; (2) the planar
defect can be assumed to be concentrated in the plane z = 0. The later means that the
Kronecker delta δn0 in the r.h.p. of (12.4.3) can be substituted with the Dirac delta-
function and the total perturbation matrix V0 should be assumed to have the following
form

V(n, n′) = b2V0δ(z)δ(z′) , V0 = [U1(κ) + U0(ω)] . (12.4.6)

Of course, (12.4.6) can be used only for calculations of the localized frequencies close
to boundaries of the continuous spectrum.

Due to the condition (12.4.1) and the broken symmetry of the problem, the function
U1(κ) has the following general expansion in powers of κ: U1(κ) = −Wαβkαkβ,
(α, β = 1, 2). We substitute (12.4.6) into (12.4.4)

ω2χ(z) − ∑
z′

Λ(n − n′)χ(z′) = bV0χ(0)δ(z) , (12.4.7)
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and use the ordinary Fourier expansion

χ(z) =
b

2π

∫
χkeikz dk , χk = ∑

z
χ(z)e−ikz . (12.4.8)

The equation for the Fourier component is then reduced to the relation
[
ω2 − ω2

0(κ, k)
]

χk = V0χ(0) . (12.4.9)

In the approximation taken for calculations, the dispersion law of the crystal concerned
is given by (12.4.5).

From (12.4.8), (12.4.9) we just find the dependence of the vibration amplitude on
the coordinate z,

χ(z) =
bV0

2π
χ(0)

π
2∫

− π
2

cos kz dk
ω2 − ω2

0(κ, k)
. (12.4.10)

Setting z = 0 in (12.4.10), we find an equation for the possible frequencies of such
vibrations

bV0

2π

π
2∫

− π
2

dk

ω2 − s2
1κ2 − ω2

2 sin2 bkz

2

= 1. (12.4.11)

Before calculations of the integral in (12.4.11) look on the sketch of the vibration
spectrum in Fig. 12.4. In Fig. 12.4. the hatched region corresponds to a band in the
continuous spectrum of vibrations of an ideal crystal at small κ. The bottom ωlow(κ)
and top ωup(κ) boundaries of this band are given by the expressions

ωlow(κ) = s1κ, ω2
up(κ) = ω2

2 + s2
1κ2 . (12.4.12)

Notations proposed in (12.4.12) allow us to give the simple representation of the cal-
culation in (12.4.11):

V0 =
√

ω2 − ω2
low(κ)

√
ω2 − ω2

up(κ) . (12.4.13)

Analyzing (12.4.12) and (12.4.13) we obtain localized states and their dispersion
relations of the following types.

1. V0 > 0. In this case a frequency of the localized wave lies above the band of the
continuous spectrum

(
ω > ωup(κ)

)
:

V2
0 = [ω2 − ω2

low(κ)][ω2 − ω2
up(κ)] . (12.4.14)

Considering small perturbations we suppose |V0| � ω2
2. Under such a condition

(12.4.14) has the following solution

ω2
d = ω2

up(κ) +
1

ω2
2

(
∆ρ

ρ
ω2

2 +
∆ρ

ρ
s2

1κ2 + Wαβkαkβ

)2

. (12.4.15)
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If ∆ρ < 0 then there is a gap at κ = 0 between the local frequency ω2
d and the band

of the continuous spectrum:

ω2
d − ω2

up =
(

∆ρ

ρ
ω2

)2

. (12.4.16)

It is interesting to note that this gap is proportional to the perturbation squared ( ∆ρ
ρ )2.

To continue our analysis at κ �= 0 we assume Wαβ = W0δαβ for the sake of sim-
plicity; then

V0(κ) = −∆ρ

ρ
ω2

2 −
(

∆ρ

ρ
s2

1 + W0

)
κ2 . (12.4.17)

One can see that the behavior of ωd as a function of κ depends on the signs of the
perturbation parameters ∆ρ and W0. For ∆ρ < 0

V0 =
|∆ρ|

ρ
ω2

2 +
( |∆ρ|

ρ
s2

1 −W0

)
κ2 . (12.4.18)

If W0 < 0 a dispersion relation for the localized wave is characterized by curve (1)
in Fig. 12.4 for all κ. At W0 > 0, localized states can exist only for wave numbers
0 < κ < κ0 (curve (2) in Fig. 12.4). The value of κ0 for which the dispersion curve
corresponding to the localized wave touches the top boundary of the band can be found
from the equation

V0(κ0) = 0.

Fig. 12.4 Dispersion lines of localized waves: (1) vibrations exist at
all wave vectors; (2) the dispersion line ends on the boundary of the
frequency band; (3) the dispersion line for localized vibrations of the
type of a surface wave.

2. V0 < 0. Now (12.4.10) necessarily has a solution for ω < s1κ

ω2
d = s2

1κ2 −
(

aV0

bω2

)2

= s2
1κ2 −

(
1

ω2

)2 (
∆ρ

ρ
s2

1κ2 + Wαβkαkβ

)2

. (12.4.19)
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The specific feature of this spectrum is that at fixed κ the frequency of the corre-
sponding vibrations is separated from the spectrum of bulk crystal vibrations by a gap
vanishing as κ → 0 as a power law. It follows from (12.4.11) that as κ → 0 not only
the gap width but also its relative value tends to zero (curve 3 in Fig. 14.4). Using the
simplification (12.4.17) we can obtain

s1κ − ωd

ωd
∼

(
κ

ω2

)2 (
∆ρ

ρ
s2

1 + W0

)2

. (12.4.20)

It is easily seen that these vibrations are localized near the planar defect. Since small
wave vectors k play the main role in the integral in (12.4.10) we can take into account
the approximation bk � 1 and simplify the integral:

χ(z) =
aV0

2π
χ(0)

∞∫

−∞

cos kz dk
ω2 − s2

1κ2 − s2k2 , (12.4.21)

where s is the sound velocity along the z-axis (2s = bω2).
Perform the integration in (12.4.21) and use (12.4.19):

χκ(z) = χκ(0) exp
{
−

√
s2

1κ2 − ω2
d
|z|
s

}

= χκ(0) exp
{
−1

2

∣∣∣∣V0(κ)
bz
s2

∣∣∣∣
}

= χκ(0) exp
{

1
2

V0(κ)
a |z|
s2

}
.

(12.4.22)

One should remember that the case V0(κ) < 0 is considered. As we see, the amplitude
χ(z) exhibits an exponential decay typical for surface waves. The rate of decay of the
amplitude depends on the direction of the vector κ. If V0(κ) is not negative at all κ, the
localized wave with the dispersion relation (12.4.19) and the coordinate dependence
(12.4.22) exist only for the directions κ for which V0(κ) < 0.

The scheme presented allows one in principle to describe the vibrations of the free
surface of a crystal. Generally, the atomic interaction in a crystal decreases with in-
creasing distance between the atoms. Thus, in analyzing the equations for the lattice
vibrations, only the elements of the matrix α(n) with comparatively small n are taken
into account. In a model where a small number of elements α(n) is nonzero, the free
crystal surface is equivalent to a certain planar defect. Indeed, a crystal with a free
surface can be obtained from an unbounded ideal crystal by cutting along a certain
plane between two atomic layers and replacing the force matrix of an ideal crystal
by another matrix of atomic force constants that results in the interaction between the
atomic planes vanishing.

A scalar model is convenient for describing the bulk vibrations, but is unsatisfactory
for analyzing the surface vibrations. To construct a consistent theory of long-wave
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surface vibrations it is natural to turn to elasticity theory making some assumptions on
the properties of a planar defect that models the free crystal surface.

The vibrations localized near the planar defect are described as follows. The equa-
tions of elasticity theory for the bulk vibrations that occur with frequency ω have the
form

ρω2uk + ∇lλklmn∇mun = 0 , (12.4.23)

and the elasticity modulus tensor of a crystal λiklm in an isotropic approximation is
reduced to the two Lamé coefficients λ and G

λiklm = λδikδlm + G(δilδkm + δimδkl).

If a solid has a defect coincident with the plane z = 0, the “perturbed” Lamé
coefficients and the mass density are given by

λ′ = λ + Lhδ(z), G′ = G + Mhδ(z) ,

ρ′ = ρ + ∆ρhδ(z) = ρ [1 − (h − a)δ(z)] ,
(12.4.24)

where h is the “thickness” of the planar defect; L and M are characteristics of its
elastic properties; a is the interatomic distance along the z-axis in an ideal crystal.

Substituting (12.4.24) into (12.4.23), we get a system of equations generalizing the
scalar equation (12.4.7). It is clear that such a description of the planar defect has
a literal meaning only for hk � 1. Therefore, the singular functions describing the
space perturbation localization in (12.4.24) must be treated with caution. Analyzing
the vibrations near the linear defect, we have seen that using the δ-like perturbation in
the long-wave approximation leads to introducing a finite upper limit of the integration
over the wave vectors. Similarly, in the case of a perturbation of the type (12.4.24)
caused by the planar defect, when we use the method of Fourier transformations along
the z-axis, it is necessary to restrict the possible values of kz by the limiting value
k0 ∼ 1/h. In the case we are interested in it is determined by

hk0 = π . (12.4.25)

The solution of a similar elasticity theory problem has shown that the frequency of
waves localized near the defect splits off from the edge of the lowest-frequency band
of vibrations (in the isotropic approximation, from the boundary of the transverse
vibration frequency). This frequency is at a distance of δω ∼ κ3 from the band
boundary, in agreement with (12.4.20).

This approach may also be used to study surface waves in an elastic half-space
(Rayleigh waves), assuming that they are localized vibrations near the planar defect.

If this planar defect is a free crystal surface, than as a result of the perturbation of
elastic moduli the connection between elastic half-spaces z > 0 and z < 0 vanishes.

The latter can be provided in a straightforward way by setting

L = −λ, M = −G, h = a . (12.4.26)
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Substituting (12.4.26) into (12.4.24), taking (12.4.25) into account, and using the
described method of finding the possible frequencies of surface vibrations, one can
show that these waves have the dispersion relation ω = ssκ, where ss coincides with
the known velocity of Rayleigh waves (Kosevich and Khokhlov, 1970). We do not
prove this statement here because the calculations are cumbersome.



13
Elastic Field of Dislocations in a Crystal

13.1
Equilibrium Equation for an Elastic Medium Containing Dislocations

Our initial definition of a dislocation
∮

L

dxi∇iuk = −bk (13.1.1)

may be rewritten in a somewhat different form using the notation of a distortion tensor
uik = ∇iuk ∮

L

uik dxi = −bk. (13.1.2)

In dislocation theory the elastic distortion tensor may be regarded as an independent
quantity describing the crystal deformation. Similarly to the strain tensor ε ik and the
stress tensor σik it is a single-valued function of the coordinates even in the presence
of a dislocation.

Let us write down the condition (13.1.2) in a differential form. For this purpose
we transform the integral around the contour L into an integral over any surface S
spanning this contour:

∮

L

dxiuik =
∫

dSieilm∇lumk.

The constant vector b is represented in the form of an integral over the same surface
by means of the 2D δ-function introduced in (10.3.4)

bk =
∫

S

τibkδ(ξ) dSi. (13.1.3)

The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Second Edition. Arnold M. Kosevich
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40508-9
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As the contour L is arbitrary, the equality of these integrals means the equality of the
integrand expressions:

eilm∇lumk = −τibkδ(ξ). (13.1.4)

This is just the desired differential form of (13.1.1). It is clear that on the disloca-
tion line (ξ = 0), which is a line of singular points, a representation in the form of
derivatives is meaningless.

If there are simultaneously many dislocations in a crystal with relatively small sep-
arations (but large compared to the lattice constant), their averaged consideration be-
comes important. This consideration is useful in problems where an exact field distri-
bution between separate dislocations is of no interest and in which a theory operates
with physical quantities averaged over small volume elements. It is clear that many
dislocation lines should run through such “physically infinitesimal” volume elements.

The equation that expresses the main property of dislocation deformations is for-
mulated by generalizing (13.1.4). We introduce the dislocation density tensor αik by
requiring its integral on the surface spanned on any contour L to be equal to the sum
of Burgers vectors b of all dislocation lines enveloped by this contour:

∫

S

dSiαik = bk. (13.1.5)

The tensor αik replaces the expression on the r.h.s. of (13.1.4)

eilm∇lumk = −αik, (13.1.6)

and describes a continuous dislocation distribution in a crystal.
It follows from (13.1.4), (13.1.6) that in the case of a discrete dislocation

αik = τibkδ(ξ). (13.1.7)

As is seen from (13.1.6), the tensor αik should satisfy the condition

∇iαik = 0, (13.1.8)

which in the case of a single dislocation shows that the Burgers vector is constant
along the dislocation line.

With such an interpretation of dislocations, the tensor uik becomes the primary
quantity that describes the crystal deformation. The displacement vector u cannot
then be introduced. Indeed, at uik = ∇iuk the l.h.s. of (13.1.4) would identically
become zero over the whole crystal volume.

Equations (13.1.6) or (13.1.4), together with

∇iσik + fk = 0, (13.1.9)

and Hooke’s law constitute a complete system of equilibrium equations of an elastic
medium with dislocations.
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In a scalar elastic field the role of a distortion tensor is played by the vector h that
in a medium without vortices is determined by

h = grad u. (13.1.10)

If vortex dislocations are present in the medium, the vector h obeys the equation

curl h = −α, (13.1.11)

where α is the density of vortices. For a separate vortex, α = τbδ(ξ).
An analog of the stress tensor is the vector σ = Gh that is determined by the elastic

scalar field equilibrium equation:

div σ = − f , (13.1.12)

where f is the analog of the force density.

13.2
Stress Field Action on Dislocation

Let us consider a dislocation loop D in a field of external (with respect to a dislocation)
elastic stresses σik and find a force acting on the dislocation. We calculate the work
done by external forces δR for an infinitely small movement of the loop. If this work
is given as

δR =
∮

D
FδX dl, (13.2.1)

where δX is the displacement element of a dislocation line, F will determine the force
with which an elastic stress acts on a unit length of the dislocation.

Let the dislocation displacement generate a certain change in the displacement vec-
tor δu. The work of external stresses performed in a volume V with a dislocation loop
is

δR =
∮

σikδuk dS∞
i , (13.2.2)

where S∞ is the surface enveloping the volume V.
In the given case it is convenient to use transformations of the integral (13.2.2)

based on Gauss’s theorem. Therefore the displacement u near a dislocation should
be considered as a single-valued function of the coordinates. Then, the vector u will
have a discontinuity along the surface SD spanned on the dislocation loop. To exclude
discontinuity points of the vector u, we surround the loop D with a certain closed
surface SD outside which (in the volume V′) the function u = u(r) is continuous.
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Then,

δR =
∫

∇i(σikδuk) dV′ −
∮

σikδuk dS0
i

=
∫

∇iσikδuk dV′ +
∫

σikδε ik dV′ +
∮

σikδukn0
i dS0,

(13.2.3)

where the unit normal vector n0 is directed outwards with respect to the surface S0.
Since the dislocation is not associated with additional volume force in a crystal,

then ∇iσik = 0 and the first integral on the r.h.s. of (13.2.3) vanishes. To calculate
the last two integrals, we choose S0 as the surface going along the upper and lower
banks of the cut SD (with a “clearance” h) and connected by an infinitely thin tube St

of radius ρ that envelopes the line D (Fig. 13.1).

Fig. 13.1 Scheme of closed surface surrounding the cut SD .

Fig. 13.2 Dilatation field of a screw dislocation with an axis along [111]
in a α-Fe crystal calculated by Chou (1965).
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If we disregard the inhomogeneity of material generated by a dislocation and that is
unimportant in evaluating the interaction between the dislocation and an elastic field,
the volume integral remaining on the r.h.s. of (13.2.3) is simplified. Indeed, when the
cut banks come closer (h → 0) and the tube radius decreases (ρ → 0), the integral
over the volume V′, because of continuity of σik and ε ik, transforms into an integral
over the whole volume ∫

V ′

σikδε ik dV →
∫

V

σikδε ik dV. (13.2.4)

The surface integral in (13.2.3) can also be simplified by a corresponding limiting
transition. We note that the integral over the surface of the tube St vanishes as ρ → 0,
since the dislocation field has the following obvious property:

lim
ρ→0

ρu(r) = 0.

On the cut banks still present in the integrals, the values of the continuous functions
σik in the limit are the same and the limiting values of u are different in a constant
value b. Thus, instead of (13.2.3), we get

δR =
∫

σ′
ikδε′ik dV +

1
3

∫
σllδεkk dV + biδ

∫

SD

σik dSk, (13.2.5)

where σ′
ik is the stress deviator and ε′ik is the strain deviator [(ε′ik = ε ik − (1/3)δikε ll)].

The first two terms of the integral (13.2.3) due to the obvious identity in (13.2.5) follow
from

σikε ik =
(

σik −
1
3

δikσll

)
+

1
3

σllεkk = σ′
ikε′ik +

1
3

σllεkk.

In the last term on the r.h.s. in (13.2.5) the symbol of an infinitely small variation
δ is taken outside the integral sign since the stress distribution σik is assumed to be
given.

If the element of the dislocation line dl is displaced by δX the area of the surface
element SD changes by

δSi = eimnδXmτn dl. (13.2.6)

The relation (13.2.6) should be used in transforming the last integral in (13.2.5).
If the displacement δX is in the dislocation slip plane, (13.2.6) characterizes the

changes in the crystal completely. If the displacement is perpendicular to the slip
plane, additional conditions have to be taken into account that follow from the medium
continuity. When the dislocation moves without breaking the medium continuity the
local relative variation of the volume given by (10.3.4) exists. Using this formula, a
formal replacement can be made to transform the second integral in (13.2.5)

δεkk dV → eimnbmτnδXi dl. (13.2.7)
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Taking into account (13.2.6), (13.2.7), we single out in the work δR the part con-
nected with inelastic medium deformation that accompanies the dislocation migration:

δR =
∫

σikδε ik dV +
∮

eimnτm

(
σnk −

1
3

δnkσjj

)
bkδXi dl. (13.2.8)

The first integral in (13.2.8) equals the increase in elastic energy of a medium in a
solid volume. The linear integral over the dislocation loop

δRD =
∮

eilmτlσ
′
mkδXi dl (13.2.9)

will determine the work done for a dislocation displacement. Comparing (13.2.1),
(13.2.9) it is clear that the force acting per unit length is

Fi = eilmτiσ
′
mkbk. (13.2.10)

A formula such as (13.2.10) where the stress deviator σ′
ik is replaced by the stress

tensor σik was first obtained by Peach and Koehler (1950). The necessity of taking
into account an inelastic change in the medium volume in climbing of a dislocation,
i. e., the necessity to replace σik by σik − (1/3)δikσll, was indicated by Weertman
(1965).

As simple examples of using (13.2.10), we consider the forces acting on screw and
edge dislocations. Let the Oz-axis be parallel to the dislocation line (τz = −1). In the
case of a screw dislocation, bz = b and

Fscr
x = bσyz, Fscr

y = −bσxz. (13.2.11)

In the case of an edge dislocation, we direct the Oz-axis along its Burgers vector
(bx = b). Then,

Fedg
x = bσxy, Fedg

y = −bσ′
xx =

1
3

b(2σxx − σyy − σzz). (13.2.12)

It is interesting to determine the projection of the force (13.2.10) on the slip plane
of the corresponding dislocation element. Let κ be a vector that is perpendicular to
the dislocation line in the slip plane. Then, this projection (we denote it as f ) is equal
f = κF = eiklkiτkσlmbm or

f = nlσlmbm, (13.2.13)

where n = [kτ] is the vector normal to the slip plane.
Since the vectors n and b are mutually perpendicular, by choosing two of the co-

ordinate axes along these vectors, we see that the force f is determined by one of the
components σik only. If the dislocation is a plane curve lying in its slip plane and is in
a homogeneous elastic stress field then the force f is the same for all dislocation line
elements, independent of their position on the slip plane.
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13.3
Fields and the Interaction of Straight Dislocations

If the dislocation is linear, the dependence on the distance of elastic stresses around
it can easily be elucidated in a general case. In cylindrical coordinates r, ϕ, z (with
the z-axis along the dislocation line) the deformation will be dependent only on r
and ϕ. The integral (13.1.2) should not change, in particular, with an arbitrary sim-
ilarity transformation of the integration contour in the plane xOy. It is obvious that
this is possible only if all the elements of the tensor uik are inversely proportional to
the distance uik ∼ 1/r. The strain tensor ε ik and also the stress tensor σik will be
proportional to 1/r.

As an example of calculations of the elastic deformation generated by dislocations,
we consider the dislocation around straight screw and edge dislocations in an isotropic
medium. The physical meaning of these and other problems referring to an isotropic
medium is conventional, since real dislocations are basically inherent only to crystals,
i. e., to an anisotropic medium. These problems, however, are of interest as illustra-
tions.

We start with a screw dislocation along which τ ‖ b (it is clear that only a straight
dislocation may have pure screw character). We choose the axis z along the dislocation
line, the Burgers vector then has the components bx = by = 0, bz = b. It follows
from symmetry considerations that the displacement u is parallel to the z-axis and
is independent of the coordinate z. Since in an isotropic medium σik = 2Gε ik for
i �= k, the equilibrium equation (13.1.9) without bulk forces ( f = 0) is reduced to a
2D harmonic equation for uz:

∆uz = 0, ∆ ≡ ∂2

∂x2 +
∂2

∂y2 . (13.3.1)

The solution (13.2.2) satisfying (13.1.1) has the form 1

uz =
b

2π
ϕ ≡ b

2π
arctan

y
x

. (13.3.2)

The solution (13.3.2) is equivalent to (10.2.8).
The tensors ε ik and σik have the following nonzero components in cylindrical coor-

dinates:

εzϕ =
b

4πr
, σxϕ =

Gb
2πr

, (13.3.3)

where G is the shear modulus. Thus, the deformation around a screw dislocation in
an isotropic medium is pure shear.

We recall that the field of a screw dislocation in an isotropic elastic medium coin-
cides with the vortex field in a scalar model. In cylindrical coordinates it looks like:

hϕ =
b

2πr
, σϕ =

Gb
2πr

. (13.3.4)

1) In all problems with straight dislocations we take the vector τ in the negative
direction of the z-axis (τz = −1).
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A screw dislocation generates around itself a pure shear strain field due to the
isotropic medium. To show the role of anisotropy in the elastic field variation we show
the distribution of dilatation deformation (the distribution of εkk = div u) around the
screw dislocation parallel to [111] in a cubic crystal. In Fig. 13.2, the levels of con-
stant div u value forming a rosette that exhibits the anisotropy of a α-Fe monocrystal
are given.

Calculation of elastic fields around a straight edge dislocation is much more com-
plicated (in contrast to a screw dislocation, a purely edge dislocation can be curvi-
linear if the dislocation line is in a plane perpendicular to the vector b). Let the z-
axis be directed along the dislocation axis and the x-axis along the Burgers vector:
bx = b, by = bz = 0. It follows from the symmetry of the problem when εzz = 0 that
the deformation vector lies in the plane xOy and is independent of z.

Since the solution to this seemingly simple elasticity theory problem is cumber-
some, we do not repeat it here in detail.

We write down the final results for the displacement field2

ux =
b

2π

{
arctan

y
x

+
1

2(1 − ν)
xy

x2 + y2

}
,

uy = − b
4π(1 − ν)

{
(1 − 2ν) log

√
x2 + y2 +

x2

x2 + y2

}
,

(13.3.5)

where ν is Poisson’s ratio.
The first term in the expression for ux is written in a form analogous to (13.3.2).

Thus, the condition (13.1.1) is satisfied.
The stress tensor calculated on the basis of (13.3.5) has the Cartesian components

σxx = −bM
y(3x2 + y2)
(x2 + y2)2 , σyy = −bM

y(x2 − y2)
(x2 + y2)2 ,

σxy = bM
x(x2 − y2)
(x2 + y2)2 ,

(13.3.6)

or in polar coordinates (the corresponding coordinates r, ϕ in the plane xOy):

σrr = σϕϕ = −bM
sin ϕ

r
, σrϕ = bM

cos ϕ

r
, (13.3.7)

with M = G/2π(1 − ν).
It follows from the condition εzz = 0 that σzz = ν(σxx + σyy) = ν(σrr + σϕϕ).

Therefore, the mean hydrostatic pressure generated by the edge dislocation in an
isotropic medium is

p0 = −1
3

σkk = −1
3
(1 + ν)(σrr + σϕϕ) =

2(1 + ν)
3

bM
sin ϕ

r
. (13.3.8)

2) The solution to this problem can be found in the literature on dislocation
theory.
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In an isotropic medium the levels of constant pressure p0 are at the same time the
levels of constant dilatation ε0 ≡ εkk = −p0/K (K is the compression modulus).
Therefore, the distribution of an elastic dilatation of the deformation field of an edge
dislocation is characterized by the levels

sin ϕ

r
≡ y

x2 + y2 = constant. (13.3.9)

The curves (13.3.9) represent a family of circles where centers are on the Oy-axis and
pass through the coordinate origin (the dislocation axis).

In a crystal the dilatation distribution around the edge dislocation has levels that
are different from circles (13.3.9), but preserving the same character on the whole
(Fig. 13.3).

Fig. 13.3 The dilatation field of an edge dislocation in plane (110):
(a) the crystal α-Fe; (b) the crystal Li calculated by Chou (1965).

The expressions for the elastic fields of straight dislocations allow us to describe
the interaction of parallel dislocations easily.

To determine the force acting from one dislocation on another and parallel to it,
we use (13.2.11), (13.2.12) and the expression for the stress tensor of an elastic field
around the second dislocation. As seen from Fig. 13.2, the elastic field around a screw
dislocation in a crystal differs considerably from that in an isotropic medium. There-
fore, a detailed description of the interaction of screw dislocations in the isotropic
model is meaningless, although it is justified for edge dislocations, and therefore we
shall now describe the interaction of edge dislocations in an isotropic medium.

If a dislocation coincides with the z-axis, it acts on a second dislocation running
through the point (x, y) in the (xOy) plane with a force whose projection on the slip
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Fig. 13.4 Stable equilibrium configurations of a system of two parallel
edge dislocations: (a) of a single sign, (b) of opposite signs.

plane is

Fx = Mb1b2
cos ϕ cos 2ϕ

r
, M =

G
2π(1 − ν)

. (13.3.10)

Just this projection is of great interest, since in the slip plane only migration of
the dislocation may have the character of a mechanical motion. The vanishing of
this force projection corresponds to the equilibrium configuration of two dislocations
relative to gliding. It follows from (13.3.10) that Fx vanishes at ϕ = π/2 and ϕ =
π/4. It is easy to verify that the first of these positions (Fig. 13.4a) corresponds to
the stable equilibrium condition of two dislocations of the same sign (b1b2 > 0),
and the second one (Fig. 13.4b) to that of two dislocations of different sign (b1b2 <

0). Obviously, the first configuration (Fig. 13.4a) remains in stable equilibrium if the
number of dislocations is greater than two. This is the reason for the dislocation wall
(Section 10.5, Figs 10.8) to be an equilibrium and stable structure.

If a dislocation pair is formed by two dislocations of opposite sign (Fig. 13.4b)
separated by a small distance (e. g., dislocations are positioned in the neighboring slip
planes) such a pair is called a dislocation dipole. This system is stable enough to occur
as a single dislocation entity.

Edge dislocations that are in the same glide plane (whose trace is the Ox-axis)
interact in a very simple way

Fx =
Mb1b2

x
. (13.3.11)

The formula (13.3.11) is also valid in an anisotropic medium when the constant M
is connected in a different way with the elastic moduli, but remains positive.

We consider a set of a large number of identical edge dislocations placed parallel to
one another in the same slip plane. The interaction of each pair of them will then be
determined by the force (13.3.11).

We choose the x-axis along the Burgers vector and assume that the dislocations
are distributed on the part (a1, a2) of the x-axis. For definiteness, we can assume
that at the point x = a2 there is an obstacle holding the dislocations and the whole
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set of them undergoes the action of a certain external stress σe
xy, that “presses” the

dislocations to the obstacle (σe
xy < 0). Under these conditions we have a planar array

of parallel dislocations on the same glide plane that is called a dislocation pile-up.
The conditions of mechanical equilibrium of the pile-up are determined as follows.

We assume that there is such a large number of dislocations per unit length of the
x-axis that their distribution can be described by the linear density ρ(x), which is
a continuous function of the coordinate x. Then, ρ(x) dx is the Burgers vector of
dislocations going through the points of the interval dx.

We single out a dislocation at the point x and write the condition of its mechanical
equilibrium. The remaining dislocations of the pile-up act on a separated dislocation
with a force that is found by taking account of (l4.3.11)

F(x) = bM P.V.

a2∫

a1

ρ(ξ) dξ

x − ξ
, (13.3.12)

P.V. means the principal value of the integral. The action of a dislocation on itself
should be excluded.

Externally, the dislocation is acted upon by the force bσe
xy so that in equilibrium

P.V.

a2∫

a1

ρ(ξ) dξ

ξ − x
= ω(x), ω(x) =

σe
xy(x)

M
. (13.3.13)

If the function ω(x) is given, the relation is an integral equation for the equilibrium
distribution ρ(x). It belongs to the type of singular integral equation with a Cauchy
kernel.

In conclusion, we calculate the energy of the elastic field generated by the straight
dislocation in a crystal. The free energy of a dislocation of unit length is given by the
integral

U +
1
2

∫
ε ikσik dx dy. (13.3.14)

For a screw dislocation the integral (13.3.14) equals

Uscr =
1
2

∫
2εzϕσzϕ2πr dr =

Gb2

4π

∫
dr
r

(13.3.15)

where the integration over r should be performed within (0, ∞). However, the integral
(13.3.15) diverges logarithmically at both limits. The divergence at r = 0 is connected
with the inapplicability of elasticity theory formulae at atomic distances. Therefore, as
the low integration limit we must take the value of r0 of the order of atomic distances
(r0 ∼ a ∼ b). Also, we have to omit the energy of the dislocation core U0 whose
maximum value is easy to estimate. In fact, in a dislocation core with cross sectional
area ∼ b2 the relative atomic displacement is of the order of unity. Thus,

U0 ∼ Gb2. (13.3.16)
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The upper integration limit (13.3.15) is determined by the quantity R that is of the
order of the dislocation length or crystal dimension. Then,

Uscr =
Gb2

4π
log

R
r0

. (13.3.17)

Comparing (13.3.16), (13.3.7), we see that (13.3.17) determines the main part of the
dislocation energy under the condition log R/r0 � 1. The formula (13.3.17) deter-
mines the dislocation energy with logarithmic accuracy.

We note that the scalar field vortex energy is exactly equal to (13.3.17).
For an edge dislocation the integral (13.3.14) equals

Uedg =
1
2

∫
(εrrσrr + εϕϕσϕϕ + 2εrϕσrϕ)r dr dϕ

= b2 M2 1 − ν

G

R∫

r0

dr
r

2π∫

0

sin2 ϕ dϕ =
Gb2

4π(1 − ν)
log

R
r0

.

It is natural that the energy of unit length of an edge dislocation has the same order
of magnitude as the screw dislocation. Moreover, it can be shown (although it is
quite obvious) that for any weakly distorted dislocation line (with radius of curvature
R � b) its energy per unit length will have the order of magnitude

U ∼ Gb2

4π
log

R
r0

. (13.3.18)

However, it should be noted that the theoretical “large parameter” log(R/r0) is,
in fact, small. Indeed, taking the relation R/r0 ∼ 105 − 106 (and it is often less),
we obtain that ln(R/r0) is not different from 4π. Therefore, for rough estimates the
energy per unit length of an isolated dislocation can be taken approximately equal to
U ≡ Gb2. Such an estimate also remains valid for an anisotropic medium.

Analyzing straight dislocation fields, we considered a screw and an edge disloca-
tion separately. This is so because in an isotropic medium any straight dislocation
with tangent vector τ can be represented as consisting of two independent disloca-
tions: a purely screw dislocation, the displacements around which are parallel to τ,
and a purely edge dislocation, the displacements around which are perpendicular to τ.
It is interesting to know whether the displacement field of a straight dislocation in an
anisotropic medium can be divided into a screw part where all displacements are par-
allel to the dislocation line and an edge part where all displacements are perpendicular
to this line. It turns out that this division is possible if the dislocation line is a two-fold
symmetry axis or if the dislocation line is perpendicular to the crystal symmetry plane.
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13.4
The Peierls Model

For a quantitative study of the role of crystal lattice discreteness in a dislocation de-
formation, Peierls (1940) suggested a semi-microscopic model that on the one hand,
takes into account the crystal translation symmetry, and on the other hand allows one
to obtain a direct limiting transition to the elasticity theory results.

We return to (13.3.12) and recall the geometrical meaning of the quantity ρ(x). We
assume that the shift generated by dislocations along the slip plane is absent at x = ∞.
By the definition of an edge dislocation the integral

u(x) =

∞∫

x

ρ(ξ) dξ (13.4.1)

equals the atomic layer displacement at the point x above the slip plane relative to that
under this plane. It follows from (13.4.1) that

ρ(x) = −du
dx

. (13.4.2)

Thus, knowing the relative crystal displacements on both sides of the slip plane we
can, using (13.4.2), find a corresponding dislocation density.

We now formulate a semi-microscopic model of an edge dislocation. Let nonde-
formed crystal atoms form a simple tetragonal lattice with the constant b along the
x-axis and the constant a along the y-axis (Fig. 13.5a). We consider two parts of this
crystal, one of which (A) contains an extra atomic plane compared to the other part
(B). We form a single crystal of these two parts, making the upper and lower parts
come closer at an interatomic distance a and matching the left and right edges of these
parts. To make the latter, with fixed right edges of parts A and B, it is necessary to
perform a relative shift along the x-axis by the value b of their left edges. After join-
ing the two parts of a crystal, the atoms form a single lattice with an edge dislocation
(Fig. 13.5b).

We denote by u(x) the relative displacement of the atoms on two sides of the slip
plane in the direction of the x-axis. At an infinitely large distance from the dislocation,
the lattice should be ideal. This means that

u(∞) = 0, u(−∞) = b. (13.4.3)

The function u(x) should have a form qualitatively similar to the plot in Fig. 5.1.
We set u(x0) = b/2, i. e., assume the dislocation center to be at the point x = x0 =
X. For an exact definition of the function u(x) the upper and lower parts of a crystal
can be regarded as two continuous elastic solids. However, the tangential stress in the
slip plane (in a plane where elastic half-spaces link) that prevents the deformation is
treated as a periodic function of the local relative displacement u(x) with period b.
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Fig. 13.5 A scheme of the formation of a monocrystal with an edge
dislocation: (a) crystal part A contains an extra atomic plane. (b) Parts
A and B are combined in a monocrystal with a dislocation.

Peierls chooses a simple periodic dependence, namely

σP
xy(x) = µ1 sin

[
2π

u(x)
b

]
, (13.4.4)

where the coefficient µ1 has the order of magnitude of crystal elastic moduli. The
procedure determining it will be indicated below.

The local stresses (13.4.4) should be coincident with the macroscopic stresses gen-
erated by an inhomogeneous distribution of the displacement u(x) along the slip
plane. We have already seen that an inhomogeneous relative displacement u(x) is
equivalent to a set of edge dislocations with the density (13.4.2) and, hence, it causes
the shear stresses (13.3.12). Substituting (13.4.4) into (13.3.12) and equating the result
to σP

xy, we get a singular integral equation for u(x):

M P.V.

∞∫

−∞

(
du
dξ

)
dξ

x − ξ
= −µ1 sin

[
2π

u(x)
b

]
. (13.4.5)

The solutions to (13.4.5) should have the property (13.4.3).
First, we shall find the relation between the coefficient µ1 and the crystal elastic

moduli. It is clear that far from the dislocation core (x � b), where the displacements
u(x) are small, the solution to (13.4.5) should coincide with the known solution of
elasticity theory if we take uyx = u/a. It follows from (13.4.5) that for x → ∞ when
u 	 b,

2πµ1u(x) =
Mb
x

∞∫

−∞

(
du
dξ

)
dξ ≡ Mb2

x
. (13.4.6)

We now calculate the derivative ∂ux/∂y using (13.3.5) for x → ∞ and compare
it with (13.4.6). We get µ1 = bG/πa(3 − 2ν). Thus, the Peierls equation takes the
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form

P.V.

∞∫

−∞

(
du
dξ

)
dξ

x − ξ
+

2(1 − ν)
3 − 2ν

b
a

sin
2πu

b
= 0. (13.4.7)

A very important property of (13.4.7) that distinguishes it from the Frenkel–Kontorova
equation for dislocations in a 1D crystal is the very slow variation of the quantity u(x)
with distance x. While in a 1D crystal the decay of u(x) as x → ∞ is exponential, the
solution to (13.4.7) decreases as a hyperbolic law (13.4.6). The solution corresponding
to the conditions (13.4.3) is

u(x) =
b
2

(
1 − 2

π
arctan

x − X
l

)
, (13.4.8)

where

l =
3 − 2ν

4(1 − ν)
a. (13.4.9)

The quantity l may conventionally be called a dislocation half-width. This notation
is tentative, because the displacement u(x) varies more slowly in space, which leads
to the dislocation width being dependent on a specific form of the periodic function
in (13.4.7). In the isotropic approximation the dislocation half-width depending on
Poisson’s ratio can range from l = (3/4a) (for ν = 0) to l = a (for ν = 1/2).

The Peierls model allows one to estimate the critical stress necessary to displace
the dislocation in the slip plane. This was made by Nabarro (1947) using the follow-
ing considerations. The stress σP

xy corresponds to the following potential energy per
interval b of the x-axis

U(x) = −b

u(x)∫

0

σP
xy du = −bµ1

u(x)∫

0

sin
2πu

b
du =

µ1b2

π
sin2 πu

b
. (13.4.10)

We now take into account the discrete structure of a slip plane and associate each
atomic layer with the coordinate

x = xn ≡ nb, n = 0,±1,±2, . . . , (13.4.11)

choosing the layer numeration origin in the vicinity of the dislocation center. If we
now substitute a discrete coordinate (13.4.11) into (13.4.10), then we obtain the n-th
atomic layer energy in a lattice distorted by the presence of a dislocation. Hence, the
dislocation energy related to local stresses along the slip plane is equal to

E =
∞

∑
n=−∞

U(xn) =
µ1b2

π

∞

∑
n=−∞

sin2 πu(xn)
b

. (13.4.12)

Using the explicit form of (13.4.8) for the function u(x), it is easy to obtain

sin2 πu(x)
b

= cos2
(

arctan
x − X

l

)
=

l2

(x − X)2 + l2 . (13.4.13)
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We recall that X is the dislocation center coordinate that is an independent character-
istic of the dislocation and noncoincident in general with the coordinate of any atomic
layer.

Finally, we substitute (13.4.13) into (13.4.12) using the Poisson summation formula
and obtain as a main approximation with regard to the small parameter b/(2πl) 	 1:

E = µ1b2 + 2µ1b2 exp
(
−2πλ

b

)
cos

(
2π

X
b

)
. (13.4.14)

It is clear that the dislocation energy is a periodic function of the coordinate of its
center. Differentiating (13.4.14) with respect to the coordinate X, we find the force
acting on a dislocation in the crystal:

F = − ∂E
∂X

= 4πµ1b exp
(
−2πl

b

)
sin

(
2π

X
b

)
. (13.4.15)

The formula (13.4.15) determines a Peierls force. The maximum value of this force
Fm determines the shear stresses σs = Fm/b to be applied to a crystal for the dislo-
cation to begin moving in the slip plane. To evaluate σs, we set l = a and a = b. It
appears then that σs ∼ 2πµ110−2 ∼ 10−2G. If a = (3/2)b, then σs ∼ 10−4G. Just
these limiting values are generally given in analyzing dislocation glide.

13.5
Dislocation Field in a Sample of Finite Dimensions

Point-defect fields decrease slowly with distance. Thus, analyzing the fields of elastic
point defects (Section 9) it is necessary to consider the effects associated with the
presence of free external crystal surfaces. But dislocation fields decrease with distance
even slower. Therefore, the finite dimensions of a crystal can result in effects that,
when disregarded, could distort the result of solving dislocation problems.

As an example we consider a screw dislocation positioned along the axis of a spec-
imen of finite dimensions having the form of a cylinder of radius R. Let the cylinder
length L be much larger then the radius (L � R), then it is possible to exclude from
our discussion a stress distribution near the cylinder ends. The stresses (13.3.3) result-
ing from (13.3.1) satisfy the boundary conditions σrr = σrz = σrϕ = 0 on a free side
surface of a specimen r = R. But these stresses generate a nonzero twisting moment
on cylinder ends

M0
z =

∫
rσzϕ dS = 2π

R∫

0

σzϕr2 dr =
1
2

GbR2. (13.5.1)

Thus, if the cylinder ends are free the solution (13.3.3) does not satisfy the boundary
conditions on the faces (even if the latter are infinitely distant). Thus, the true solution
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to the cylinder equilibrium equations should involve, apart from (13.3.3), additional
stresses compensating the twisting moment (13.5.1), i. e., creating an average moment
Mz = −M0

z . These stresses (and also the corresponding displacements) are easily
obtained from a rod torsion theory. It is known that for a rod twisted under the action
of the moment Mz, there arises a displacement vector component uϕ providing a
torsion angle that is homogeneous along the rod length:

dθ

dz
=

∂

∂z

( uϕ

r

)
=

1
r

∂uϕ

∂z
=

Mz

C
= constant,

where C = (1/2)πGR4 is the torsional rigidity of a rod.
Taking this into account, it is easy to write an equilibrium distribution of additional

displacements and stresses in a cylinder with a screw dislocation along its axis

uϕ = − brz
πR2 , δσzϕ = −Gb

2π
R2r. (13.5.2)

The second term on the r.h.s. of (13.5.2) shows the role of finite dimensions of the
specimen in generating the elastic stresses around the dislocation. With increasing
cylinder radius R, the contribution of the last term decreases for r 	 R. The torsion
angle also decreases:

dθ

dz
= − b

πR2 .

However, the total torsion of the cylindrical specimen

δθ = − bL
πR2 , (13.5.3)

for L � R may be essential. Torsional deformation is observed in long and thin
thread-like crystals with a screw dislocation (whiskers).

Now consider a superstructure formed by a system of a large number of screw dislo-
cations oriented along the axis of the cylinder of radius R and we will be interested in
the macroscopic properties of such a superstructure. Then, in the main approximation
the distribution of the dislocations can be assumed continuous, characterized by the
density n0 = 1/S0, where S0 is the average area of the xy plane per dislocation.

The dislocation creates a stress (13.3.3) in an unbounded media (denote it as σ0).
But because the stress field of the screw dislocations is similar to the electric field of
linear charges, the stresses at a distance r from the axis of the cylinder are created by
all the dislocations intersecting an area S = πr2 around the axis of the cylinder and
are equal to the stresses around one dislocation lying along the axis of the cylinder
(x = y = 0) and carrying the total “charge” (the Burgers vector bS/S0) of all those
dislocations:

σϕ ≡ σϕ =
S
S0

σ0 =
1
2

Gbn0r. (13.5.4)

These stresses, first, create a force acting on a dislocation lying a distance r from
the axis of the cylinder:

Fr = bσϕ =
1
2

Gb2n0r . (13.5.5)
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Second, the dislocation field (13.5.4) creates the following moment of torque on the
end of the cylinder:

Mz =
∫

rσϕ dS = 2π

R∫

0

σϕr2 dr =
π

4
GbR4 . (13.5.6)

One sees that (13.5.6) differs from (13.5.1) with the multiplier (1/2)πR2n0. Conse-
quently, in order to calculate strains and stresses produced by the dislocation system
in the cylinder it is sufficient to multiply (13.5.2) by this multiplier:

uϕ = − 1
π

bn0rz, δσϕ = −1
2

Gbn0r . (13.5.7)

The stresses described by the second relation in (13.5.7) can be looked upon as a
certain external field in relation to the dislocation system. Comparing (13.5.7) with
(13.5.4) and (13.5.5) one can see that the interaction force of a given dislocation with
remaining continuously distributed dislocations is exactly compensated by these “ex-
ternal stresses”. This means that the expected repulsion of discrete dislocations calcu-
lated according to formula (13.5.5) with the use of (13.3.3) is eliminated on average
when the boundary conditions and symmetry of the problem with a continuous distri-
bution of dislocations are correctly taken into account. In other words, the equilibrium
state of such a dislocation system is stabilized by the twisting of the sample.

Another more trivial example of the influence of boundary conditions for a free
crystal surface on the distribution of the elastic fields around the dislocation is the
problem of a screw dislocation parallel to the plane of a free surface of an isotropic
medium. Let the plane zOy coincide with a surface of the solid, and the dislocation
parallel to the z-axis have the coordinates x = x0, y = 0. The stress field leaving
the free medium surface is described by the sum of dislocation fields and its mirror
reflection in the plane yOz as if they were in an unbounded medium

σzx = −Gb
2π

[
y

(x − x0)2 + y2 − y
(x + x0)2 + y2

]
,

σxy =
Gb
2π

[
x − x0

(x − x0)2 + y2 − x + x0

(x + x0)2 + y2

]
.

(13.5.8)

The dependence of stresses (13.5.8) on the distance x0 is typical for any linear dis-
location near the crystal surface and is very important in discussing various boundary
problems.

13.6
Long-Range Order in a Dislocated Crystal

According to (13.3.5), far from the dislocation an unexpected dependence of uy on r
(uy ∼ b ln r) is observed. This dependence is quite natural, if we consider the dis-
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placement as a strain (or stress) field “potential” generated by a linear source. The
vector u has a simple physical meaning in a crystal with an isolated dislocation. It de-
termines the displacement of an atom in a dislocated crystal lattice with respect to its
equilibrium position in the same lattice without a dislocation. Thus, the displacements
of atoms extremely distant from the linear dislocation axis increase logarithmically
with increasing crystal dimension.

Although the relative displacements of the neighboring atoms, given by the defor-
mation tensor proportional to 1/r, are vanishingly small as r → ∞, it is necessary
to specify more accurately the notion of crystal order in a dislocated lattice since the
displacement vector increases at large distances from the dislocation. Since disloca-
tions can generate arbitrarily large atomic displacements without breaking the crystal
structure, it is unnecessary to require in describing the crystalline ordering in a real
crystal that the same periodic spatial atomic network is preserved in the whole space.

To determine the crystal order, we consider the scheme of a deformed crystal
(Fig. 7.7) used to explain the effect of lattice deformation on the phonon spectrum.
A system of atoms has no space periodicity, and the “unit cells” in its different parts
differ in form and dimension, but it is nevertheless considered as a deformed crystal.
To make this system ordered, we introduce a curvilinear net describing at each point
of the space a quite definite crystal structure. Going along this net, it is possible to es-
tablish a relation between a local short-range order and that in any part of the crystal.
The point defects do not break the general structure of the net.

In a crystal that has several dislocations (Fig. 13.6), in addition to local crystal net
distortions, there are “topological” faults of the spatial lattice that significantly deform
the long-range order.

Fig. 13.6 A dislocated crystal with topological long-range order.

The increase in the density of the opposite-sign dislocations makes the whole struc-
ture amorphous without breaking the short-range order. Thus, an amorphous solid can
be considered as the limiting state of a crystal with a large number of dislocations such
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that the average distance between them is of a comparable order of magnitude as the
lattice period.

However, we are interested in the crystal state, whose existence implies that the
long-range order distortions induced by dislocations are small. These distortions can
be displayed during the following process of observation. Basing our treatment on the
local short-range order in a crystal, we pass around a macroscopic contour that would
be closed in an ideal crystal. For instance, if we pass an external contour in a counter-
clockwise direction (Fig. 13.6) starting from the point a, it will not be closed and we
will arrive at the point e noncoincident with the contour origin. The impossibility of
closing a similar contour characterizes the fault in the long-range order in the crystal.

The situation when continuous “short-range ordering” in passing around a closed
contour cannot result in a common short-range order at all contour points has been
called (in a theory of crystal singularities) frustration.

In the given case the degree of “frustration” in the structure produced is character-
ized by the vector (ae), which is equal to the total Burgers vector B of all dislocations
enveloped by tracing around a contour. Thus, a quantitative measure of breaking the
long-range order in a certain part of a dislocated crystal is the total Burgers vector of
dislocations coupled with a “closed” macroscopic contour that envelopes the crystal
part concerned.

We denote by L the length of the contour abcde (Fig. 13.6). For the system under
consideration, the inequality B 	 L is satisfied. If a similar inequality is satisfied for
any macroscopic contour in a dislocated crystal then the long-range order fault can be
assumed to be unessential.

For the atomic system concerned, in determining the crystal order we replace the
literal translational symmetry of an ordered system by a set of the following structural
properties.

1. The system has a short-range order given entirely by the crystallographic struc-
ture of substance. To formulate this property, it is necessary to exclude the
vicinities of point defects or of certain specific lines–dislocation cores.

2. During a continuous motion from a spatial point to the neighboring one, it is
possible to establish a correspondence between equivalent atoms and crystallo-
graphic directions in the unit cells positioned close to one another.

3. The total Burgers vector coupled with any closed macroscopic contour inside
the system remains small compared to the length of this contour. A closed
contour is constructed by using the short-range order at each of its intermediate
points, and the Burgers vector coupled with it equals the displacement of an
atom at the end of the contour relative to an atom at its beginning.

It is natural to consider the atomic system characterized by these properties as a
crystal with long-range order. A real crystal has long-range order only in this sense.
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We note that the suggested definition of crystal long-range order does not give the
information about the smallness of atomic displacements with respect to their equi-
librium positions in the initial crystal lattice. Sometimes, the long-range order deter-
mined in this way is called topological order.

The vanishing of topological long-range order means the destruction of a crystal
structure. When the absence of long-range order in a solid substance is not accompa-
nied by the loss of shear elasticity, we assume that a solid is in an amorphous state. If
the long-range order vanishes with increasing temperature simultaneously with shear
elasticity (the substance starts leaking), we can speak of crystal melting. Unfortu-
nately, there is no systematic theory of 3D crystal melting.

The situation is opposite in a 2D case. In a 2D crystal, a dislocation is a point
defect, whose 2D displacement vector field u(ux, uy) is not different from that of
a linear edge dislocation in a 3D crystal (13.3.5). The energy of this defect can be
obtained by multiplying the linear dislocation energy per unit length by the lattice
constant a:

E = ε0 ln
R
a

, ε0 =
aGb2

4π(1 − ν)
. (13.6.1)

Since the energy ε0 is comparable with the atomic energy of a 2D crystal and the de-
pendence on crystal dimension (13.6.1) is very weak, a thermo-fluctuational initiation
of the dislocation can be assumed in a 2D crystal.

With given temperature T, the thermodynamic equilibrium condition is determined
by the minimum of the free energy of the solid F. We consider the change in F associ-
ated with the appearance of one dislocation and note that the dislocation contribution
to the configuration entropy in a 2D crystal is

δS = ln
R2

a2 . (13.6.2)

Then

δF = E − TδS = (ε0 − 2T) ln
R
a

. (13.6.3)

It is clear that for T < (1/2)ε0 the appearance of a dislocation increases the free
energy of the system and, thus, the dislocation initiated fluctuationally will inevitably
escape from the crystal. In total thermodynamic equilibrium there are no isolated free
dislocations.

For T > (1/2)ε0, the free energy of the system decreases with the appearance of
a dislocation and thus the process of their initiation in a 2D crystal becomes advanta-
geous thermodynamically. Hence, with increasing temperature at T = T0 = (1/2)ε0
there occurs a phase transition of a 2D crystal into a state with an arbitrary number of
free dislocations (Berezinsky, 1970, Kosterlits, Taules, 1973). As a result, the initial
long-range order in a 2D crystal is broken.

It is easy to follow what mechanism is responsible for breaking the 2D crystal long-
range order. At low (T < T0) but finite temperatures a certain equilibrium density
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of dislocation dipoles exists in a crystal. This is the case because the energy of an
opposite-sign dislocation pair, in contrast to (13.6.2) is independent of crystal dimen-
sion. Indeed, the dipole energy can be written as ED = 2E + Eint, where the inter-
action energy of a dislocation pair Eint is determined by (13.6.7) shown in solving
Problem 2. In this formula it is necessary to put b1 = b = −b2. Thus,

ED = 2ε0

[
ln

r
a

+ sin2 ϕ
]

+ 2U0, (13.6.4)

where the angle ϕ determines the dipole orientation and U0 is the dislocation core
energy.

Since the energy (13.6.4) is bounded, there exists a finite density of dislocation
dipoles of the given dimension r, proportional to the Boltzmann factor exp(−βED),
where β = (1/T). We calculate the mean square of the dislocation dipole dimension:

〈〈r2〉〉 =

R∫

a

r2e−βEDr dr dϕ




R∫

a

e−βEDr dr dϕ




−1

(13.6.5)

=

R∫

a

r3−2βε0 dr




R∫

a

r1−2βε0 dr




−1

=
1 − βε0

2 − βε0

R4−2βε0 − a4−2βε0

R2−2βε0 − a2−2βε0
.

Since we are interested in the limit R → ∞ (R � a) the mean square (13.6.5) will
have different forms for 4 < 2βε0 when T < T0, and with 4 > 2βε0 when T > T0.
In the first case T < T0, in the limit R → ∞ we have

〈〈r2〉〉 =
1 − βε0

2 − βε0
a2 =

2T0 − T
T0 − T

(
a2

2

)2

. (13.6.6)

Thus, the average dimension of equilibrium dislocation dipoles in an ordered 2D
crystal is limited, but increases with increasing temperature and goes to infinity at the
phase transition point T = T0.

In the second case (T > T0), in the limit R → ∞ we get 〈〈r2〉〉 = ∞. Hence, it
follows that when T > T0 the dislocation dipoles are broken down, on average, and a
phase with free 2D dislocations is occurs. A more detailed description of the proper-
ties of the resulting phase requires taking into account the dislocation interaction and
a knowledge of how to treat disordered systems.
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13.6.1
Problems

1. Calculate the shear stresses generated by an infinitely extended dislocation wall
(Fig. 10.8c) at large distances.

Hint. Write down the total field of all dislocations

σxy(x, y) = bMx
∞

∑
n=−∞

x2 − (y − nh)2

[x2 + (y − nh)2]

and make use of the Poisson summation formula (9.4.3).

Solution.
σxy = 4π2bM

x
h2 e−2πx/h cos

(
2π

y
h

)
, x � h.

2. Find the interaction energy of two linear edge dislocations lying in the parallel glide
planes.

Hint. Make use of the fact that the desired energy is equal to the work done to remove
one dislocation in the glide plane from infinity (from crystal surface) to the line of its
location in the field of a fixed second dislocation. Thus, the interaction energy per unit
length of the dislocation equals

e12 =

R∫

r cos ϕ

Fxdx at R → ∞,

where Fx is determined by an equation such as (13.3.10).

Solution.
E21 = −b1b2 M

(
ln

r
R

+ sin2 ϕ
)

. (13.6.7)

3. Describe the distribution of straight dislocations near the obstacle under the action
of a homogeneous compressive stress.

Hint. Make use of (13.3.13), setting σe
xy = σ0 =constant, a2 = 0, and find a1 = −L

from the condition
∫ 0
−L ρ(x) dx = N.

Solution.

ρ(x) =
σ0

πbM

√
L + x
|x| , L =

2NbM
σ0

(−L < x < 0).
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Dislocation Dynamics

14.1
Elastic Field of Moving Dislocations

Let us now elucidate what form the total system of equations of elasticity theory takes
that determines strains and stresses in a crystal when dislocations perform a given
motion.

Equation (13.1.6) is independent of whether the dislocations are at rest or in motion.
However, in the dynamic case the distortion tensor should change with time and this
will be determined by the character of dislocation motion.

If during the deformation of a medium the dislocations remain stationary the fol-
lowing equality is valid

∂vk

∂xk
=

∂uik

∂t
, (14.1.1)

where v = v(r, t) is the velocity of displacement of a medium element with a coordi-
nate r at time t.

If the dislocations move and their density changes with time, (14.1.1) is incompati-
ble with (13.1.6). Thus, we replace it with

∂vk

∂xk
=

∂uik

∂t
− jik, (14.1.2)

where the tensor jik should be chosen so that these equations are compatible. The
compatibility condition of (13.1.6), (13.1.2) has the form

∂αik

∂t
+ eilm∇l

∂jmk

∂t
= 0 . (14.1.3)

To associate the tensor jik with dislocation motion, we note that the condition
(14.1.3) can be regarded as the differential form of the conservation law of the Burg-
ers vector in a medium. Indeed, we integrate both sides of (14.1.3) over the surface
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spanned on a certain closed line L and introduce the total Burgers vector b of the
dislocations enveloped by the contour L. Using Stokes’s theorem, we obtain

dbk

dt
= −

∮

L

dxi jik.

It is clear from this equality that the integral on its r.h.s. determines the Burgers
vector “flowing” per unit time through the contour L, i. e., carried over by dislocations
that cross the line L. Thus, it is natural to consider jik as the dislocation flux density
tensor, and (14.1.3) as an equation for the continuity of dislocation flow.

In particular, it is obvious that in the case of an isolated dislocation loop, the tensor
jik has the form

jik = eilmτlVmbkδ(ξ) , (14.1.4)

where V is the dislocation line velocity at a given point. The vector of the flux jik dli
through an element dl of the contour is then proportional to dl [τV ] = V [dlτ], i. e., to
the projection velocity V onto the direction perpendicular both to dl and τ. It follows
from geometrical considerations that only this projection results in the dislocation
crossing the element dl.

If the dislocation distribution is described by the continuous functions αs
ik (14.1.4)

is generalized by
jik = eilm ∑

s
αs

ikVs
m,

where the index s denotes the densities of dislocations of various types (for instance,
dislocations of different sign in the case of a system of parallel edge dislocations) and
the vector V s is equal to the average velocity of dislocations of the type s at a given
point in the crystal.

The tensor jik has an independent meaning and is the principal characteristic of
dislocation motion.

Finally, we obtain a total system of differential equations describing the elastic
fields in a crystal with moving dislocations. This system consists of (13.1.6), (14.1.2)
and the equations of motion of a continuous medium:

ρ
∂vi

∂t
= ∇kσki, σik = λiklmulm, eilm∇lumk = −αik,

∇ivk −
∂uik

∂t
= −jik .

(14.1.5)

In these equations the tensors αik and jik are the given functions of the coordinates
(and time) characterizing the dislocation distribution and motion.

The compatibility conditions for (14.1.5) are the conservation laws

∇iαik = 0,
∂αik

∂t
+ eilm∇l jmk = 0 . (14.1.6)
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Using the definition for the tensor of the dislocation flow density and the system of
(14.1.5), the dynamics of dislocations in an elastic medium can be developed (Kose-
vich, 1962; Mura, 1963).

The relation between the trace of the tensor jik (j0 ≡ jkk) and the equation for con-
tinuity of a continuous medium is of special interest. The convolution j0 is involved
in the equation obtained from (14.1.5):

div v − ∂εkk

∂t
= −j0. (14.1.7)

It is easy to explain the physical meaning of (14.1.7). Indeed, the convolution εkk
is a relative elastic change in the medium element volume obviously related with a
corresponding relative change in its density (ρ):

εkk = − δρ

ρ
. (14.1.8)

Substituting (14.1.8) into (14.1.7) and using the linearity of the theory, we get the
relation

∂ρ

∂t
+ div ρv = −ρj0. (14.1.9)

If, with a moving dislocation, the medium elements move without breaking continuity,
the l.h.s. of (14.1.9) vanishes due to the continuity equation and (14.1.10)

j0 ≡ jkk = 0. (14.1.10)

For linear dislocations (14.1.10) has a simple interpretation. Indeed, in the case of
an isolated linear dislocation, the convolution j0 is proportional to [bτ] V , i. e., propor-
tional to the projection of the dislocation velocity onto the directional perpendicular
to the vectors τ and b, or in other words, onto the direction perpendicular to the dis-
location glide plane. Thus, (14.1.10) implies that with medium continuity preserved
the vector of the dislocation velocity V lies in the glide plane, so that the mechanical
motion of a dislocation can only take place in this plane.

If dislocation motion is accompanied by the formation of some discontinuities, for
instance, by a macroscopic cluster of vacancies along some part of the dislocation line,
the l.h.s. of (14.1.9) is nonzero and equals the velocity of a relative inelastic increase
or decrease of the mass of some elementary volume of the medium.

The action of this mechanism amounts to a macroscopic clustering of vacancies
or interstitial atoms along the dislocation line. We denote by q(r) a relative increase
of the specific volume of a medium at the point r per unit time. According to the
formulae (14.1.4), (14.1.9), the motion of an isolated dislocation should then generate
the following value of q:

q(r) = V [bτ] δ(ξ), (14.1.11)

when ξ is a 2D radius vector measured from the dislocation axis.
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One of the methods of solving the system of equations (14.1.5) consists in replac-
ing an infinitely small displacement of the dislocation line element by an infinitely
small dislocation loop. This method is only fruitful when the time dependence of the
deformation field is studied.

We differentiate the equation of elastic medium motion with respect to time us-
ing (14.1.2). We then obtain a dynamic equation of elasticity theory for the velocity
vector v:

ρ
∂2vi

∂t2 − λiklm∇k∇lvm = λiklm∇k jlm . (14.1.12)

The role of the force density in this equation is played by the vector f D
i = λiklm∇k jim.

The solution to (15,1.12) can be written as

vi(r, t) =
∫

dV′
t∫

−∞

dt′ Gik(r − r′, t − t′) f D
k (r′, t′) ,

where Gik(r, t) is the Green tensor of the elasticity theory dynamic equation. This
formula solves completely the problem of finding the displacement velocity and de-
termines the time dependence of the displacements.

We recall that the Green dynamic tensor for an isotropic medium is written explic-
itly as

Gik(r, t) =
1

4πρr

[
nink

s2
l

δ

(
t − r

sl

)
+

δik − nink

s2
t

δ

(
t − r

st

)]

+
t(δik − 3nink)

4πρr3

[
Θ

(
t − r

st

)
− Θ

(
t − r

sl

)]
,

where sl and st are the longitudinal and transverse sound velocities; r = nr, Θ(x) is
the Heaviside discontinuity function.

The present Green tensor resembles the Green function for an electromagnetic field
in the medium. The equations for the dynamics of an elastic field with dislocations
are not very different from the dynamic equations for an electromagnetic field with
charges and currents. These are the differential equations in partial derivatives of the
type of wave equations with sources. Since nonstationary (accelerated) motion of
the sources generates a radiation field, the accelerated motion of dislocations induces
radiation of elastic (sound) waves. The description of acoustic radiation of disloca-
tions can be made by a standard scheme developed in field theory, but is somewhat
complicated by the tensor character of the deformation fields.
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14.2
Dislocations as Plasticity Carriers

Dislocation motion is accompanied (apart from changes of elastic deformation) by
changes in the crystal not associated directly with stresses, i. e., plastic deformation
(Fig. 14.1). By a plastic deformation we understand a residual crystal deformation
that does not vanish after the process that generates it is over.

Fig. 14.1 Scheme of a residual atomic rearrangement resulting from the
motion of an edge dislocation.

Let an edge dislocation pass through a crystal from left to right. As a result, part of
the crystal above the glide plane is displaced by one lattice period. Since the lattice
at any point inside the specimen is regular after the dislocation has moved through
it, the crystal remains unstressed. Unlike the elastic deformation associated directly
with the thermal state of a solid, plastic deformation is a function of the process. (In
considering stationary dislocations the question of distinguishing between elastic and
plastic deformation does not arise. We are interested in stresses that are independent
of the previous crystal history.)

It is clear that the dislocation displacement is inevitably related to the occurrence of
plastic deformation: dislocations are elementary plasticity carriers.

For a quantitative description of dislocation elasticity, it is necessary to return to
(14.1.2). We introduce the vector of the total geometric displacement of the points of
the medium u measured from their position before the deformation starts. The time
derivative of the vector u determines the displacement velocity of the medium element
v = ∂u/∂t. Therefore,

∂wik

∂t
= ∇ivk, (14.2.1)

where wik is the total distortion tensor, wik = ∇iuk.
Using (14.2.1) we rewrite (14.1.2) as

∂

∂t
(wik − uik) = −jik.

The difference wik − uik determines the part of the total distortion tensor that is not
associated with elastic stresses and is generally called the plastic distortion of a solid.

We denote this quantity by upl
ik and obtain

∂upl
ik

∂t
= −jik. (14.2.2)
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Thus, the variation in the plastic distortion tensor at a certain point of the medium
for small time δt is equal to

δupl
ik = −jikδt.

A similar relation for the plastic strain tensor ε
pl
ik has the form

δε
pl
ik = −1

2
(jik + jki)δt. (14.2.3)

The relation between dislocation flow density and plastic deformation velocity, i. e.,
the relations equivalent to (14.2.2) or (14.2.3) were indicated by Kroener and Rider
(1956).

If, during the dislocation motion, the elements of the medium move without break-

ing the continuity, then jkk = 0. It then follows from (14.2.2) that ε
pl
kk = 0. Thus,

we come to the assertion, known in plasticity theory, that a purely plastic deformation
taking place without breaking the medium continuity does not result in a hydrostatic
compression (which should be connected with internal stresses).

It is clear that (14.2.2), (14.2.3) are valid for any mechanism responsible for disloca-
tion migration, in particular, their nonconservative motion (climb). In the last case, as
shown above, the crystal volume changes locally, but the general scheme of plasticity
is not broken.

To evaluate the role of dislocation climb it is expedient to imagine a semi-
microscopic scheme for this process. In Fig. 14.2, the edge of an extra atomic
half-plane coincident with the edge dislocation axis is shown. When the interstitial
atom gets attached to the edge of a half-plane inserted in a crystal, it becomes a “reg-
ular” atom, resulting in a protuberance of atomic dimensions on the dislocation line.
The dislocation line itself is determined up to atomic dimensions, so that its position
can only be affected by the “condensation” of a macroscopic number of interstitial
atoms. The change in position of an extra half-plane edge under the condensation of a
great number of interstitial atoms (I), when an extended row of extra atoms is formed
on the dislocation, is shown in the middle of Fig. 14.2. The appearance of an extra
row of atoms results in the displacement of a corresponding part of the dislocation line
by the value a in a direction perpendicular to the slip plane. The dislocation appears
to go down by one atomic layer; it goes to the next slip plane.

The condensation of vacancies (V) on the edge dislocation leads to similar results,
the difference being that the dislocation displacement is oppositely directed – the dis-
location line goes up to a higher slip plane.

Both the glide and climb occur under the action of elastic stresses. The glide, when
viewed as a fast mechanical motion, differs from climb in its threshold character: it
only begins when the stress exceeds a definite value (the initiation stress). But in a
number of crystals (e. g., in many metals and quantum crystals) comparatively small
stresses are needed to start dislocation motion. If the crystal has a regular structure
the dislocations at the first stage of their motion glide easily and often travel large
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Fig. 14.2 Climb of an edge dislocation via elongation of an extra atomic
half-plane under the condensation of interstitial atoms (I) or shortening
of an extra half-plane under the condensation of vacancies (V).

distances in their slip planes. However, the process of easy gliding is short since
obstacles decelerating the dislocation motion arise in a crystal.

The obstacles decelerating the dislocation are different. These may be defects such
as impurities, fixing the dislocation line at some points only. But sometimes the dislo-
cation stops gliding over an extended part of its line. This occurs when the dislocation
is retarded by clusters of impurities or macroscopic heterogeneous inclusions. Ob-
stacles of any kind retard the dislocation motion. As a result, the velocity of crystal
plastic deformation is determined by factors such as climb and glide, and whether the
dislocation can overcome the obstacles.

14.3
Energy and Effective Mass of a Moving Dislocation

The system of equations (14.1.5) determines the elastic distortion tensor uik and the
vector vα of the medium displacement velocity using a given distribution of disloca-
tions and flows. The tensors αik and jik and, hence, the dislocation motion are assumed
to be given. For a system of equations to be completely closed and to determine a self-
consistent evolution of dislocations and elastic field, it is necessary to take into account
the changes in the dislocation density and their flow under the action of elastic fields.
In other words, it is necessary to know the equation of dislocation motion.

Since separate dislocation loops represent lines of elastic field singularities, the
equation for dislocation motion is an equation for the motion of an elastic field singu-
larity. The physical idea of obtaining the equation of motion of a field singularity (in
the given case, a dislocation) is well known.

A dislocation is a source of internal stress, which creates stress and strain fields
in a crystal free of external loads. A definite elastic energy that can be regarded as
the dislocation energy is associated with this field. When the dislocation moves, the
elastic field induced by it also moves, but it always has inertia, because the dynamic
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elastic field energy is different from the static field energy. The inertia of the elastic
field of the dislocation can be interpreted as the inertia of the dislocation, which can
be described by an effective mass. With such an approach, the energy and the mass of
the dislocation and, hence, the equation of the dislocation motion are of a pure field
origin.

Accordingly, to evaluate the dislocation dynamics, it is necessary to know the dislo-
cation energy. To calculate the latter it is necessary to express the elastic energy of the
field caused by a moving dislocation loop (or a system of loops) through the instanta-
neous coordinates and velocities of dislocation line elements. In accordance with the
electromagnetic field theory of moving charges, this procedure is generally possible
using an approximation that is quadratic in velocities (Section 3.6). Since the struc-
ture of the dynamical equations of an elastic field with dislocations is qualitatively the
same as that of Maxwell’s equations, the difficulties in carrying out the above pro-
cedure may be due to additional calculations only. The latter are rather cumbersome
(even in an isotropic approximation) for the general case of a dislocation loop moving
arbitrarily in a crystal. Taking this into account, we try, by analyzing a simple example
and its almost obvious generalizations, to explain the general features of deriving the
equation for dislocation motion.

We consider the uniform motion of a linear screw dislocation in an isotropic
medium. We choose the z-axis along the dislocation line and the x-axis parallel to
the direction of the dislocation velocity V . As in the static case (Section 3.14), the
elastic field of a screw dislocation is completely described by a single nonzero com-
ponent of the displacement vector uz = u(x, y, t) and the equations of the elastic
medium motion reduce to the 2D wave equation

∂2u
∂t2 = s2

(
∂2u
∂y2 +

∂2u
∂y2

)
, s2 =

G
ρ

. (14.3.1)

The solution to (14.3.1) should have a standard dislocation singularity on the line
x = Vt, y = 0, and, thus it is convenient by changing the variables

ξ =
x − Vt√

1 − β2
, β2 =

V2

s2 =
ρV2

G
,

to write it as

∆u0 = 0, ∆ ≡ ∂2

∂ξ2 +
∂2

∂y2 , (14.3.2)

where u0(ξ, y) = u(x, y, t).
Equation (14.3.2) coincides with (13.3.1) and its solution has a dislocation singular-

ity at the point ξ = y = 0. Thus the function u0(ξ, y) is identical to the corresponding
static solution (13.3.2) if the following replacement x → ξ is made.



14.3 Energy and Effective Mass of a Moving Dislocation 329

The total field energy per the dislocation unit length is

E =
1
2

∫ [
ρ

(
∂uz

∂t

)2

+ G
(

u2
xz + U2

yz

)2
]

dx dy

=
1
2

∫ [
1 + β2

1 − β2

(
∂u0

∂ξ

)2

+
(

∂u0

∂y

)2]
dx dy

=
1
2

G
√

1 − β2
∫ [

1 + β2

1 − β2

(
∂u0

∂ξ

)2

+
(

∂u0

∂y

)2]
dξ dy.

(14.3.3)

Using polar coordinates in the plane ξOy we obtain instead of (14.3.3) the following
expression:

E =
1
2

G
√

1 − β2
∫ (

1 + β2

1 − β2 sin2 ϕ + cos2 ϕ

)
u2

ϕzr dr dϕ

=
πG√
1 − β2

∫
ε2

ϕzr dr .

Finally, we substitute the expression for εϕz that follows from (13.3.3):

E =
(

b
2π

)2 πG√
1 − β2

∫
dr
r

=
Gb2

4π

log(R/r0)√
1 − β2

, (14.3.4)

where the parameters R and r0 are chosen as in the static case.
Expressing in (14.3.4) the shear modulus G through the transverse sound wave

velocity (G = ρs2), we arrive at the following formula for the energy per unit length
of a screw dislocation

E =
m∗s2√

1 − v2/s2
, m∗ =

ρb2

4π
log

R
r0

. (14.3.5)

In spite of the “relativistic” form of (14.3.5) this formula is valid only for small dis-
location velocities, assuming V � s. Such a “pseudodepletion” of (14.3.5) results
from the fact that the dislocation energy has the field as origin and involves, in par-
ticular, the interaction energy of different elements of the same dislocation line. To
take into account the interaction of distant dislocation loop elements in the case of
nonstationary motion the elastic dislocation field at a certain time should be expressed
through its coordinates and velocities at the same time. In the general case, because
the elastic waves are retarded, this expression does not exist. As mentioned above for
a nonstationary motion this is possible within the approximation quadratic in V/s.

Thus an expression for E, valid for any time dependence of the screw dislocation
velocity V will be obtained using the condition V � s and replacing (14.3.5) by

E = m∗s2 +
1
2

m∗V2 . (14.3.6)
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The first term in (14.3.6) coincides with the eigenenergy per unit length of the dislo-
cation at rest (13.3.17), the second is assumed to be its kinetic energy. Therefore, m∗

can be called the unit length effective mass of a screw dislocation. As in the case of a
rest energy, our assumption is justified, i. e., when a real dislocation moves in a crystal,
some atoms in the vicinity of the dislocation axis at a distance of the order of r0 from
it also start moving. This generates an additional dislocation inertia due to the usual
atomic mass. The order of magnitude of the atomic mass inside tube of radius r0 ∼ b
per unit length of the dislocation can be estimated as ρr2

0 ∼ ρb2. Comparing this
estimate with (14.3.5) for m∗, the dislocation mass can be regarded with logarithmic
accuracy as the field mass.

The inertial properties of an arbitrary weakly deformed dislocation loop are charac-
terized by some tensor of line density of the effective mass m∗

ik dependent on a point
on the dislocation line. It can be concluded that at a point where the radius of curva-
ture of the dislocation loop Rcurv � b, an estimate of the order of magnitude of the
effective mass is the same as that of the dislocation rest energy (13.3.18):

m∗ ∼ ρb2

4π
log

R
r0

. (14.3.7)

In the case of translational motion of the linear dislocation, Rcurv is the dislocation
length. If the dislocation vibrates, Rcurv equals the wavelength of the dislocation
bending vibrations.

A very important physical conclusion follows from the previous comments con-
cerning the estimation of the parameter Rcurv. By writing the dislocation energy in the
form of (14.3.6), we introduced the effective mass of unit length of the dislocation, but
characterized in fact the motion of the dislocation. This mass is not a local character-
istic of the dislocation. We recall that with the retardation of electromagnetic waves in
a 2D electron crystal taken into account, the mass of a vibrating atom has transformed
into a nonlocal characteristic of the inertial properties of the crystal. Analogously, the
inertial properties of a dislocation loop should be characterized by a nonlocal mass
density. This means that the energy of a moving dislocation loop can be written as

E = E0 +
1
2

∮ ∮
µik(l, l′)Vi(l)Vk(l′) dl dl′, (14.3.8)

where E0 is the quasi-static dislocation energy, which is dependent only on the instan-
taneous form and the instantaneous position of the dislocation and plays the role of a
rest energy. The second term in (14.3.8) should be considered as the kinetic energy of
the dislocation. V(l) is the velocity of a dislocation line element dl, and the double
integration is over the length of the entire dislocation loop. Then µik(l, l′) plays the
role of a nonlocal density of the effective mass of the dislocation.

Even in an isotropic medium, the effective mass density of the dislocation is
anisotropic. In view of the above expression for the effective mass of a screw dislo-
cation (14.3.5), it is easy to understand the general form of the tensor function of two
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variables µik(l, l′) for a dislocation moving in its slip plane in an isotropic medium.
This is, as follows (Kosevich, 1962):

µik(l, l′) =
1
2

ρb2 [
ττ′δik − τ′

i τk
] (

1 +
(

st

sl

)2

sin2 θ

)
K(l, l′) ,

b cos θ = nb , τ = τ(l) , τ′ = τ(l′) ,

(14.3.9)

where n is the unit vector in the direction of a straight line linking two points l and l′

on the dislocation: n = [r(l) − r(l′)] /(r − r′). The scalar function of two variables
K(l, l′) resembles the formula for the self-induction coefficient of a linear conductor
coincident with the dislocation loop. It is a purely geometrical characteristic of the
dislocation loop D, independent of the crystal properties and even of those physical
properties of the medium that are related with this line. This function characterizes the
self-action of any linear singularity of the classical field in a 3D space if the dynamic
field equations are differential equations in partial derivatives, such as wave equations
with sources. Its general form is

K(l, l′) =
1

4π

∫∫
γ(ξ)γ(ξ′) d2ξ d2ξ ′

|r(l, ξ) − r(l′, ξ′)| , (14.3.10)

where ξ is the two-dimensional radius vector measured from the dislocation axis in a
plane perpendicular to it; γ(ξ) is some smooth function localized in the vicinity of the
dislocation axis and describing the Burgers vector “distribution” in the cross section
of the dislocation core:

αik = τibkγ(ξ) ,
∫

γ(ξ) d2ξ = 1 . (14.3.11)

The necessity of introducing such an arbitrary function is “payment” for changing to
a continuum description of the dislocation as a specific crystal defect. If we replace
the function γ(ξ) by the delta-function γ(ξ) = δ(ξ), a two-fold integral (14.3.10)
will become meaningless. Thus, by introducing this function we avoid a nonphysical
divergence in elasticity theory. Since the dependence on the dislocation-core radius is
involved in the eigenenergy and the effective mass logarithmically, then arbitrariness
in choosing the function γ(ξ) does not affect the results. Generally, this function is
assumed to be constant and nonzero inside a cylinder of radius r0.

To obtain the expression (14.3.10) by direct calculation, it is necessary to calcu-
late the self-induction coefficient of a linear conductor and also to solve problems on
dislocation vortices in a scalar crystal model.

14.4
Equation for Dislocation Motion

Knowing the effective mass of the dislocation makes it possible to write its equation
of motion. The equation of motion of an element of a dislocation loop located at the
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point l on the dislocation line can be written similarly to Newton’s second law:
∮

µik(l, l′)Wk(l′)dl′ = F0
i (l) + eikmτk(l)σ′

mn(l)bn + Si(l, V), (14.4.1)

where W(l) = ∂V/∂t is the dislocation acceleration; F0 is the force of a quasi-static
self-action of a distorted dislocation, generated by the energy density (13.3.18). In a
line tension approximation used with certain reservations the order of magnitude of
this force is evaluated when R � b as

F0 =
TD

R
, TD ∼ GB2. (14.4.2)

The last term on the r.h.s. of (14.4.1) is the retardation force experienced by the
dislocation in a real crystal (this has not been discussed yet). We distinguish two
physically different parts in the value of this force.

The first part of the force S is composed of forces that arise because the crystal
structure is discrete and the dislocation core is constructed of atoms. Among these
forces there is a static component (the Peierls force) and a component dependent on
the dislocation motion. The last force is related to lattice distortions moving together
with the dislocation on its axis and the induced reconstruction of the dislocation core
in motion. The dislocation-core reconstruction involves, in particular, the formation
and migration (along the dislocation) of so-called steps (kinks) that link parts of the
same dislocation positioned in the neighboring “valleys” of the Peierls potential relief.
A similar defect (kink) was observed by us in studying solutions to the sine-Gordon
equation that, as a good model, can be applied to the kink dynamics on the dislocation.
In a number of cases the kink kinetics is the main mechanism of dislocation motion.

The second part of the force S is due to various dynamic mechanisms responsible
for the energy dissipation of a moving dislocation. First, these are the microscopic
processes of interaction between the dislocation and phonons and other elementary
crystal excitations. Then, there are the macroscopic processes of energy losses in the
dynamic elastic dislocation field connected with the dispersion of the elastic moduli
of a real crystal. Both processes are greatly dependent on the defect structure of a real
crystal.

As well as with the equation of motion of a dislocation element (14.4.1) we can
consider the equation of motion of the entire dislocation loop:

∮
mik(l)Wk(l) dl = eikmbn

∮
τkσ′

mn dl +
∮

Si(l) dl, (14.4.3)

where

mik =
∮

µik(l, l′) dl′. (14.4.4)

When the integration is over the whole loop, the first term on the r.h.s. of (14.4.1)
is omitted, as the total force of the dislocation static self-action is zero.
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It follows from (14.4.3) that just mik(l) can be considered as the value of the effec-
tive mass of a unit dislocation for the motion of the entire dislocation loop. But the
mass per unit length introduced in this way is not a local property of a given point on
the dislocation loop and is dependent on the dimensions and form of the entire loop.
Using (14.4.4) and the definition of the tensor µik it is easy to obtain the estimate
(14.3.7) for the effective mass per unit length of the dislocation.

The given estimate for mik makes it possible to justify our assumption of a purely
field origin of the dislocation mass. When a real dislocation moves in a crystal, some
of the atoms in the vicinity of the dislocation axis (at distances of the order of r0)
also start moving. This leads to the appearance of an additional dislocation energy
associated with the ordinary mass of these atoms. The order of magnitude of atomic
masses inside a tube of radius r0 ∼ b per unit length of the dislocation can be estimated
as ρr2

0 ∼ ρb2. Comparing this estimate with (14.3.7), we see that for log Rcurv/r0 �
1, taking into account the mass of atoms moving near the dislocation axis practically
does not affect the dislocation energy and, up to a logarithmic accuracy, the dislocation
mass can be assumed to be the field mass.

For a linear dislocation, when the vectors τ and b remain unchanged along the
dislocation line, the tensor mik is

mik =
ρb2

4π
(δik − τiτk)

(
1 +

(
st

sl

)4

sin2 θ

)
ln

Rn

r0
,

b2 cos2 θ = (τb)2,
(14.4.5)

where Rm is the dislocation length (Rm � r0). In conclusion, we note that the inertia
term in the equation of motion is essential only for nonstationary motion of the dislo-
cation when its acceleration is too great. If the dislocation acceleration is small, the
action of retarding forces involving dissipative forces will be dominant. Their values
and the dependence on the dislocation velocity mainly determine the character of an
almost stationary motion of the dislocation.

The equation of dislocation motion is often applied in formulating a string model
where the dislocation line is considered as a heavy string possessing a certain tension
and lying in a “corrugated” surface. The corrugated surface relief is described by the
Peierls potential and the valleys on it correspond to the potential minima on the slip
plane that are occupied by a straight dislocation in equilibrium (Fig. 14.3).

Let the Ox-axis be directed along the equilibrium position of a straight disloca-
tion and the transverse dislocation displacement η be along the Oy-axis. In the string
model, this displacement as a function of x and t is described by the following equa-
tion of motion:

m
∂2η

∂t2 − TD
∂2η

∂x2 + bσP sin 2π
η

a
= bσ, (14.4.6)

where m is the mass per unit length of the dislocation; TD is the line tension; σp is
the Peierls stress; σ is the corresponding component of the stress tensor caused by
external loads.
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Fig. 14.3 Two types of dislocation motion in the field of the Peierls po-
tential: (a) the dislocation vibrates in one potential valley; (b) the disloca-
tion forms a kink moving along the x-axis.

It is clear that (14.4.6) is an inhomogeneous sine-Gordon equation, so that its soli-
tons are associated with the dislocation kinks.

Unfortunately, the local equation of motion for the dislocation element (14.4.6) can-
not be derived consistently from the equation of motion (14.4.1). In a crystal there are
no specific interactions decreasing so fast in space that it be possible to pass from the
integral equation (14.4.1) to the differential equation in partial derivatives (14.4.6).
The elastic stresses causing the interaction of various parts of the same dislocation
decrease very slowly with distance, so that such dislocation parameters as the mass
m per unit length or the linear tension coefficient TD are not local characteristics of
the dislocation. Although the string model is limited, it is often used to demonstrate
the physical phenomena generated by the dislocation bending vibrations. The model
is attractive primarily because it is simple and enables good results to be obtained.
However, the conclusions made from an analysis of (14.4.6) need to be re-examined.

We shall take the r.h.s. of (14.4.6) as an external force. In the absence of an ex-
ternal field (σ = 0), then the dislocation motion has the character of free oscillations
corresponding to the normal modes of string vibrations and having the dispersion law

ω2 = ω2
0 + c2

0k2, (14.4.7)

where
ω2

0 = 2πbσP/(ma), c2
0 = TD/m. (14.4.8)

Let us discuss the dispersion law (14.4.7). In analyzing the waves localized near
the dislocation (Section 12.2) it was noticed that its bending vibrations should have a
propagation velocity that does not actually differ from that of transverse sound vibra-
tions st. To confirm this conclusion with (14.4.7) we assume c0 = st, which does not
contradict the estimates (14.3.7), (14.3.8). But the dispersion law frequencies (14.4.7)
satisfy the inequality

ω > c0k = stk. (14.4.9)

The wave running along the dislocation with wave vector k and frequency (14.4.8)
cannot be localized near the dislocation because it inevitably excites bulk vibrations
whose frequencies satisfy the same condition (14.4.9). Thus, the string vibration with
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the dispersion law (14.4.7), if it exists, has the character of a quasi-local vibration. Un-
fortunately, it cannot be pronounced. Indeed, it is easily seen that the connection of the
dislocation line vibrations with the vibrations of crystal lattice atoms is characterized
by the same parameter that determines the eigenfrequency ω0.

We note that the periodic potential in whose valleys the dislocation vibrates is cre-
ated by the crystal atoms. Thus, it is more natural in (14.4.6) to write the periodic term
in a different way, i. e.,

∂2η

∂t2 − c2
0

∂2η

∂x2 +
aω2

0
2π

sin
(

2π
η − uy

a

)
= 0, (14.4.10)

where uy is the long-wave atomic displacement in the vicinity of the dislocation core.
In studying small vibrations, we have instead of (14.4.10)

∂2η

∂t2 − c2
0

∂2η

∂x2 + ω2
0η = ω2

0uy, (14.4.11)

where there is no small coupling parameter between the dislocation and sound dis-
placements that permits consideration of free dislocation vibrations in the valley of a
periodic potential relief.

Thus, examining the eigenvibrations of a dislocation-string leads to the conclusion
that (14.4.6) is not a satisfactory model for describing the motion of a free dislocation.

However, this model is quite applicable for investigating the dislocation vibrations
under the action of an oscillating external force. We consider the dislocation vibrations
under the conditions when the Peierls forces can be neglected (e. g., at high temper-
atures) and the retarding force of the dislocation that is proportional to its velocity
becomes important. In this case the dislocation motion obeys an equation similar to
(14.4.6), but the term appearing from the Peierls potential can be omitted and the dissi-
pative term B(∂η/∂t), where B is the multiplier depending on the nature of dissipative
forces, is added. As a result we get

m
∂2η

∂t2 + B
∂η

∂t
− TD

∂2η

∂x2 = bσ0e−iωt. (14.4.12)

We assume that the dislocation is fixed at the two points ±l/2. This fixing can be
produced by a strong interaction of the dislocation core with a poorly mobile impurity
in a crystal. Then, the solution for the forced vibrations of a dislocation segment is the
function

η =
bσ0e−iωt

k2TD

(
cos kx

cos 1
2 kl

− 1

)
, (14.4.13)

where k2 = (mω2 + iBω)/TD.
Equation (14.4.12) and its solution (14.4.13) are the basis for a dislocation theory

of internal friction worked out in detail by Granato and Lucke (1956).



336 14 Dislocation Dynamics

14.5
Vibrations of a Lattice of Screw Dislocations

Consider a superstructure formed by a lattice of parallel screw dislocations. By dislo-
cation lattice we mean a system of parallel screw dislocations oriented along the z-axis
and intersecting the xy plane at discrete periodically arranged points, forming a 2D
lattice, the unit cell of which has area S0: S = NS0, where S is the cross-sectional area
of the sample in the xy plane and N is the number of dislocations. The coordinates of
these points in the equilibrium lattice are

x(n) = Rn + ∑
n

dαnα, n = (n1, n2, 0), (14.5.1)

where dα (α = 1, 2) are the basic translation vectors of the lattice (dα ∼ d is the
distance between neighboring dislocations: S0 = d2).

We intend to use a simple one-component scalar model of vibrations in which it is
assumed that all the atoms are displaced only in one direction. The basis of using such
a model is the fact that a static screw dislocation in the isotropic media produces the
scalar field of displacements w along the z-axis. The model gives a correct description
of the elastic field created in an isotropic medium by parallel screw dislocations. The
solution of such a problem in a real vector displacement scheme can in principle be
found analytically, but it permits obtaining the dispersion relation of the dislocation
lattice only in implicit form. For the sake of simplicity we restrict ourselves to the
scalar model.

If there are rectilinear screw dislocations directed along the z axisx, then the elastic
field is more conveniently described not by the displacement w along the z-axis but
by the distortion and velocity of the displacements as functions of the coordinate and
time. Following (13.1.10) and (13.1.12), for describing the shear field of screw dislo-
cations we introduce a distortion vector h and a stress vector σ = Gh (G is the shear
modulus):

h = grad w, hi = ∇i w =
∂w
∂xi

, i = 1, 2, 3, (14.5.2)

and a velocity v: v = ∂w/∂t. Equation (13.1.11) conserves its form

curl h = −α, (14.5.3)

and the density of dislocations α is equal to

α = τb ∑
n

δ(x − Rn),

where b is the modulus of the Burgers vector and τ is the tangent vector to the dislo-
cation; for a static dislocation it is conveniently chosen as τ(0, 0,−1).

The wave equation for the elastic field in the medium between dislocations takes
the usual form (14.3.1):

div h − 1
s2

∂v
∂t

= 0 . (14.5.4)
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If the dislocations move (vibrate), then (14.5.3), (14.5.4) do not change, but a new
variable of the dislocation structure appears: u = (ux , uy, 0) (of course, u = u(n, t)
for the n-th dislocation), which determines the instantaneous coordinate of an element
of the dislocation:

xn = R(n) + u(n, t) .

The time dependence of the displacement vector u gives the velocity V of an element
of the dislocation (Vα = ∂u/∂t) that generates a dislocation flux. The dislocation flux
density vector j arises in the dynamical equation (14.1.3):

∂h
∂t

= grad v + j . (14.5.5)

In the case under consideration the flux density is given by the formula following
from (14.1.4):

jα = bεαβ ∑
n

Vβ(n)δ (x − R(n)) , α = 1, 2 , (14.5.6)

where the matrix εαβ

εαβ =


 0 1

−1 0


 . (14.5.7)

Collecting together (14.5.3)–(14.5.5) we obtain the total set of equations describing
the elastic field in the sample if the distribution of dislocations and their fluxes are
known. To close this system it is necessary to write equations of motion for the dislo-
cations under the influence of the elastic fields. The simplest form of such an equation
can be obtained using (14.4.1) and (14.4.4) for rectilinear dislocations:

m
∂Vα

∂t
= fα + Sα, α = 1, 2 , (14.5.8)

here m is the effective mass of a unit length of the dislocation (with the order of
magnitude (14.3.7), where R is the distance between dislocations in our case), and f
is equal to

fα = bεαβσβ = bGεαβhβ . (14.5.9)

In the case of a curved dislocation line expression (14.5.9) includes the self-force from
different elements of the same dislocation, which is proportional to the curvature of
the dislocation line at the given point. In the analysis of small vibrations the curvature
of the dislocations can not be taken into account, and the force (14.5.9) includes only
the stresses created by the other dislocations.

Usually S is the force due to the discreteness of the lattice, including dissipative
forces. As we are interested in the dispersion relation for small vibrations, we neglect
the latter and take the force in the form equivalent to that on (14.4.11), namely,

S = −mω2
0u, (14.5.10)
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where ω0 is the frequency of vibrations of the dislocation string in a valley of the
Peierls relief.

Let us investigate the long-wavelength vibrations of the dislocation lattice, assum-
ing the wavelength of the vibrations is much larger than the lattice period d(dk � 1).
In this approximation the distribution of the dislocations can be assumed continuous,
characterized by a density n(x, t). In equilibrium n = n0 = 1/S0. The dynamics
of the lattice is governed mainly by the average dislocation flux density, which in the
linear approximation has the nonzero components

jα(x, t) = bn0εαβVβ(xt), α = 1, 2, (14.5.11)

where V is the average velocity of the dislocations. The velocity V must be deter-
mined by the equation of motion of the dislocations (14.5.8). We write the equation
of motion with the use of (14.5.9) and (14.5.10):

∂Vα

∂t
+ ω2

0uα =
Gb
m

εαβhβ. (14.5.12)

We differentiate (14.5.12) with respect to time and use (14.5.5) and (14.5.11). After
elementary calculations we get

∂Vα

∂t
+ (ω2

0 + ω2
pl)Vα =

Gb
m

εαβ
∂v

∂xβ
, (14.5.13)

where

ω2
pl =

Gb2n0

m
. (14.5.14)

The frequency ωpl is the analog of the plasma frequency.
We now differentiate (14.5.4) with respect to time and again use (14.5.5):

(
∆ − 1

s2
∂2

∂t2

)
v = −bn0εαβ∇αVβ . (14.5.15)

Here ∆ is the Laplacian operator.
The pair of equations (14.5.13), (14.5.15) describe the collective dynamics of

the dislocation lattice and the elastic field. It is easy to show that the equation
for the “longitudinal” vibrations of the lattice separates. Indeed, for the variable
P = div V = ∇αVα it follows from (14.5.13) that

∂2P
∂t2 + ω2

l P = 0 , ω2
l = ω2

0 + ω2
pl, (14.5.16)

where ωl plays the role of the frequency of the longitudinal vibrations of the lattice.
The longitudinal component of the average velocity of the dislocations is derivable

from a potential: V(1)
α = ∇α Q, α = 1, 2. Taking that into account, we see that the

“longitudinal” vibrations of the elastic field v = v(z) do not depend on the lattice
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vibrations. Thus one branch of collective vibrations (we call it the branch of “longitu-
dinal” vibrations) corresponds to independent oscillations of the elastic filed v= v(z, t)
with the dispersion relation ω = skz and to compression–rarefaction oscillations of
the dislocation lattice P = P(z, t) with the dispersion relation ω = ωl .

To describe to “transverse” vibrations we introduce the variable

M = bn0(curl V)z = bn0εαβ∇αVβ. (14.5.17)

The equation for this variable follows from (14.5.13):

∂2 M
∂t2 + ω2

l M = −ω2
pl

∂2v
∂x2

α
. (14.5.18)

The “transverse” collective vibrations are described by (14.5.18) and the following
equation obtained from (14.5.15) for the function v(x, y, t):

(
1
s2

∂2

∂t2 − ∂2

∂x2
α

)
v = M. (14.5.19)

The compatibility conditions for (14.5.18) and (14.5.19) give the dispersion relation
for a wave with wave vector k(kx , ky, 0):

ω4 − (ω2
l + s2k2)ω2 − ω2

0s2k2 = 0. (14.5.20)

Equation (14.5.20) has two roots for ω2, which correspond to low-frequency and
high-frequency oscillations. Without writing the trivial expressions for these solutions
in quadratures, we note the following:

Low-frequency branch. For sk � ω0 the dispersion relation has the form

ω =
(

ω0

ωl

)
sk. (14.5.21)

The vibrations are characterized by a transverse sound velocity, the value of which
is less than the sound velocity s in the medium without the dislocations.

High-frequency branch. For sk � ωl the inertial dislocation lattice is not entrained
in the motion, and one observes only vibrations of the elastic field with the usual
sound dispersion relation ω = sk. Finally, in the long-wavelength limit (sk � ω0)
we obtain

ω2 = ω2
l +

(
ωpl

ωl

)
s2(k2

x + k2
y). (14.5.22)

In comparing the graphs of the two branches of the dispersion relation, one must
be particularly careful in rendering the low-frequency branch. The point is that dis-
persion relation (14.5.20) is valid for λ � a (or ak � 1). At large k the dispersion
relation of the lattice manifests a periodic dependence on the quasi-wave vector with
the reciprocal lattice period G: ω(k) = ω(k + G). Therefore the dispersion rela-
tion obtained is actually valid in all small neighborhoods of any 2D reciprocal lattice
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Fig. 14.4 Diagram of the dispersion relation : (1) ω = sk, (2) plot of
(14.5.21), (3) expected form of the graph in the short-wavelength region.

vector g, i. e., for a |k − g| � 1. Consequently, we are justified in drawing only the
part of the graphs shown by the heavy solid lines 1 and 2 in Fig. 14.4 for a certain
“good” direction in the reciprocal lattice. The continuation of the graph of the lower
branch at k ∼ π/a and also the indicated crossing of the graphs of the upper branch
at k = (p + 1/2)π/a, p = 1, 2, 3, . . . can be described only on the basis of a study of
the dynamics of the discrete dislocation lattice. That is a subject for a separate study.
We can only state that the graph of the lower branch is closed by the curves illustrated
schematically by the dotted lines 3 in Fig. 14.4. Whether or not there is a band of
forbidden frequencies between the upper and lower branches (gap in the spectrum)
one cannot say on the basis of a long-wavelength treatment. However, one can say
that the frequency spectrum has a limiting frequency ωl that marks the edge of the up-
per branch of vibrations, which can certainly be manifested in the acoustic resonance
properties of a crystal with a dislocation lattice.
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