9. Theory of Synchrotron Radiation

The phenomenon of synchrotron radiation has been introduced in a concep-
tual way in Chap. 3 and a number of basic relations have been derived. In
this chapter we will approach the physics of synchrotron radiation in a more
formal way to exhibit detailed characteristics. Specifically, we will derive ex-
pressions for the spatial and spectral distribution of photon emission in a way
which is applicable later for special insertion devices.

The theory of synchrotron radiation is intimately related to the electro-
magnetic fields generated by moving charged particles. Wave equations can be
derived from Maxwell’s equations and we will find that any charged particle
under the influence of external forces can emit radiation. We will formulate
the characteristics of this radiation and apply the results to highly relativistic
particles.

9.1 Radiation Field

The electromagnetic fields for a single moving point charge will be derived
first and then applied to a large number of particles. The fields are determined
by Maxwell’s equations (C.1 to C.4) for moving charges in vacuum, ¢, = 1

and g, = 1. The magnetic field can be derived from a vector potential A
defined by
B=VxA. (9.1)

Inserting the vector potential into Maxwell’s curl equation (C.4) we have
V x (E + L?%—‘?) = 0, or after integration

E= _[—f% _vo, 9.2)

where ¢ is the scalar potential. We choose the scalar potential such that
[(] VA + %%% = 0, a condition known as the Lorentz gauge. With (B.24)
applied to A the expression for the electric field together with (C.4) results
in the wave equation

1 9%A A

VA - —— =
2 92 [4me)

pB. (9.3)
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Similarly, we derive the wave equation for the scalar potential

1 9% a7
;72 — —_— =
LAY [47eo) P (94)

These are the well-known wave equations with the solutions

L1 [ vp(z,y,2)
Alt) = - drdyd 9.5
0= e [ 25 dsaya: (95)
and
L 1 [ pxy2)
t) = - drdydz. 9.6
p(1) [47TC€0]C/ R . rdydz (9.6)

Because of the finite velocity of light, all quantities under the integrals must
be evaluated at the retarded time

b=t %R(tr) (9.7)

when the radiation was emitted by the moving charge, in contrast to the
time ¢ when the radiation is observed at a distant point. The quantity R is
the distance between the observation point P(x,y, z) and the location of the
charge element p(x.,¥., 2, )dz,dy,dz at the retarded time ¢,. The vector

R :(xr — T, Y — Y, — Z) (98>

points away from the observation point to the charge element at the retarded
time as shown in Fig. 9.1.

Special care must be exercised in performing the integrations. Although
we consider only a point charge ¢, the integral in (9.6) cannot be replaced
by ¢/R but must be integrated over a finite volume followed by a transition
to a point charge. As we will see this is a consequence of the fact that the
velocity of light is finite and therefore the movement of charge elements must
be taken into account.

To define the quantities involved in the integration we use Fig. 9.1. The
combined field at the observation point P at time ¢ comes from all charges
located at a distance R away from P. We consider the contribution from all
charges contained within a spherical shell centered at P with a radius R and
thickness dr to the radiation field at P and time {. Radiation emitted at
time ¢, will reach P at the time t. If do is a surface element of the spherical
shell, the volume element of charge is dx dy dz =dodr. The retarded time for
the radiation from the outer surface of the shell is ¢, and the retarded time
for the radiation from the charge element on the inner surface of the shell is
t, — d—c’". From Fig. 9.1 we find the electromagnetic field observed at P at time
t to originate from the fractional charges within the volume element dodr
or from the charge element dg = p dodr.
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Fig. 9.1. Retarded position of a moving charge distribution

The radiation observed at point P? and time ¢ is the sum of all radiation
arriving simultaneously at . Elements of this radiation field may have been
emitted by different charge elements and at different times and locations. In
case of only one electrical charge moving with velocity v, we have to include
in the integration those charge elements that move across the inner shell
surface into the volume dodr during the time dr/c. For a uniform charge
distribution this additional charge is dg = pvndido where n is the vector
normal to the surface of the shell and pointing away from the observer

R
=—. 9.9
n=_ (9.9)
With dt =dr/cand 8 = v/c, we get then for both contributions to the charge

element
dg=p(1+nB)drdo. (9.10)

Depending on the direction of the velocity vector B, we find an increase or
a reduction in the radiation field from moving charges. We solve (9.10) for
pdrdo and insert into the integrals (9.5, 9.6). Now we may use the assump-
tion that the electrical charge is a point charge and get for the retarded
potentials of a moving point charge ¢ at time ¢ and observation point PP

__! 4 B8
AP = [mceo] R1+ nB|, (9.11)
and
__t a_1
PP = ] R1TnB . (912)

These equations are known as the Liénard—Wiechert potentials and ex-
press the field potentials of a moving charge as functions of the charge pa-
rameters at the retarded time. To obtain the electric and magnetic fields we
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insert the retarded potentials into (9.1, 9.2) noting that the differentiation
must be performed with respect to the time ¢ and location P of the observer
while the potentials are expressed at the retarded time ..

In both equations for the vector and scalar potential we have the same
denominator

r=R(1+ng). (9.13)

It will become necessary to calculate the derivative of the retarded time with
respect to the time ¢ and since ¢, =t — R/c the time derivative of f, is

dq__l 1dR dt,
dt cdt, dt

(9.14)

The variation of the distance R with the retarded time depends on the
velocity v of the moving charge and is the projection of the vector vdt, onto
the unity vector n. Therefore,

dR= vndt, (9.15)

and (9.14) becomes

dt, 1 R
= —= (9.16)
.

A 1+nB8

The electric field (9.2) is with (9.11,9.12) and (9.16) after a few manipulations
expressed by

E 1RO8 pBRoOr 1

4 —_—= =+ — —=V.,r. 9.1
[ 7T60] p c7“28tr+cr3 atr+7“2 r ( 7)

In evaluating the nabla operator and other differentials we remember that
all parameters on the r.h.s. must be taken at the retarded time (9.7) which
itself depends on the location of the observation point P. To distinguish
between the ordinary nabla operator and the case where the dependence of
the retarded time on the position P(x,y,2) must be considered, we add to
the nabla symbol the index , like V.. The components of this operator are

then % L= % %%, and similar for the other components. We evaluate
first
V.r=V.,R+ V. (BR) (9.18)

and with VR = —n from (9.8)

oR
V,.R=—
v n+8tr

\ (9.19)

For the gradient of the retarded time, we get
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1 1 1 OR
Vt, =V |[t—-R(t,)| =—V,R=—| — Vi, 9.20
[ c ( )} c c < n+8tr ) ( )

and performing the differentiation we get with %rf- = Vg, ...

OR 0ROz, OR Oy, n OR 0z,

= = . 9.21
o, o, Ot, | By, Ot, " 9z 0, ¢ (9-21)
Solving (9.20) for Vi, we get
R
Vi, = = (9.22)
er
and (9.19) becomes finally
R
V.R=—n+—(0n). (9.23)

r
For the second term in (9.18) we note that the velocity v does not depend
on the location of the observer and with V,R—1, (9.22) and

dR
= (9.24)
we get for the second term in (9.18)
_ IBR), _ IBYR R
V. (BR)=-08+ oL Vi, =-06B+ <R8tr - +4 . (9.25)

To complete the evaluation of the electric field in (9.17), we express the

derivative 88_15 with

or OR O(BR) 2. 08
ot = or. + o cnB+cf +R6tr , (9.26)

where we made use of (9.21). Collecting all differential expressions required
in (9.17) we get with (9.18, 9.23, 9.25, 9.26)

[47eo] % = T—lg [—n -8B+ % (n6+62 + %BR)} r
—?RQB + BT—RS <n6+62 + %BR)r , (9.27)

where B:d,@/d t.. After some manipulation and using (B.10), the equation
for the electrical field of a charge ¢ moving with velocity v becomes

|

[4meo]

2
% 1-5 8 , (9.28)

1
== (R+Rﬁ)r+$ {R>< [(R+ RB), x %

r T
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where we have added the index , as a remainder that all quantities on the
r.hus. of (9.28) must be taken at the retarded time ¢..

This equation for the electric field of a moving charge has two distinct
parts. The first part is inversely proportional to the square of the distance
between radiation source and observer and depends only on the velocity of
the charge. For a charge at rest $=0 this term reduces to the Coulomb field
of a point charge gq. The area close to the radiating charge where this term
is dominant is called the Coulomb regime. The field is directed toward the
observer for a positive charge at rest and tilts into the direction of propagation
as the velocity of the charge increases. For highly relativistic particles we note
the Coulomb field becomes very small.

We will not further consider this regime since we are interested only in
the radiation field far away from the moving charge. The second term in
(9.28) is inversely proportional to the distance from the charge and depends
on the velocity as well as on the acceleration of the charge. This term scales
linear with the distance r falling off much slower than the Coulomb term and
therefore reaches out to large distances from the radiation source. We call
this regime the radiation regime and the remainder of this chapter will focus
on the discussion of the radiation from moving charges. The electrical field
in the radiation regime is

E(t 1
®) = —<{Rx [(R+RpB) x
erd r
The polarization of the electric field at the location of the observer is purely
orthogonal to the direction of observation R. Similar to the derivation of the
electric field, we can derive the expression for the magnetic field and get from

(9.1) with (9.11)

ds
dt,

[47eo)]

(9.29)

rad

r

B =V.xA =¢q [erg

q q
; [Vr X /8] - 7“_2 [Vrr X /8] ’ (9'30>
where again all parameters on the r.h.s. must be evaluated at the retarded

time. The evaluation of the “retarded“ curl operation V, x 3 becomes obvious
if we evaluate one component only, for example, the x component

o ot o o ot o dg
= = \8,-(= =8, =V Vi, x —=| . (9.31
<6y+6y6tr>ﬁz <6z+6z6tr>ﬁy [ Xﬁ]m+[ “a ] - O3

In a similar way, we get the other components and find with (9.22) and the
fact that the particle velocity 3 does not depend on the coordinates of the
observation point (V x 3 = 0),

dg 1 dg
V.r x 3| =1|V x Vi, x =— |Rx —|,
[Ver < Bl =1 '6]+[ dtr} cr[ dtr}
The gradient V,.r has been derived earlier in (9.18) and inserting this into
(9.30) we find the magnetic field of an electrical charge moving with velocity
v
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B 1 R [d3
;:—T—Q(an)—ﬁ [Exn} )

+ 2 (ﬁn+62 + %% R) (3 x n]

Again, there are two distinct groups of field terms. In case of the electrical
field the terms that fall off like the square of the distance are the Coulomb
fields. For magnetic fields such terms appear only if the charge is moving
8#0 and are identical to the Biot—Savart fields. Here we concentrate only
on the far fields or radiation fields which decay inversely proportional to the
distance from the source. The magnetic radiation field is then given by

B R |d R /d
% =-=3 [d—fan +3 <d_lfR> B x n], (9.33)

Comparing the magnetic field (9.33) with the electrical field (9.28) reveals
a very simple correlation between both fields. The magnetic field can be
obtained from the electric field, and vice versa, by mere vector multiplication
with the unit vector n

B =% [Exn], . (9.34)

(9.32)

r

[47ceg)
rad

From this equation we can deduce special properties for the field directions
by noting that the electric and magnetic fields are orthogonal to each other
and both are orthogonal to the direction of observation n. The existence of
electric and magnetic fields can give rise to radiation for which the Poynting
vector is

§= limeco] - [ExB], = [drec) ﬁ [Ex(E x n)]. . (9.35)

Using again the vector relation (B.10) and noting that the electric field is
normal to n, we get for the Poynting vector or the radiation flux in the
direction to the observer

S= — [4mceg] 4£ En
T

L (9.36)

Equation (9.36) defines the energy flux density measured at the observa-
tion point P and time ¢ in form of synchrotron radiation per unit cross section
and parallel to the direction of observation n. All quantities expressing this
energy flux are still to be taken at the retarded time. For practical reasons
it becomes desirable to express the Poynting vector at the retarded time
as well. The energy flux at the observation point, in terms of the retarded
time is then dW/dt, = (dW/dt) (dt/dt,) and instead of (9.36) we express the
Poynting vector with (9.16) like

dt
di,

The Poynting vector in this form can be readily used for calculations like
those determining the spatial distribution of the radiation power.

S, = S— = _ [47eeo] iEQ [(1+8n) n]. . (9.37)
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9.2 Total Radiation Power and Energy Loss

So far, no particular choice of the reference system has been assumed, but a
particularly simple reference frame £* is the one which moves uniformly with
the charge before acceleration. From now on, we use a single particle with a
charge e. To an observer in this reference system, the charge moves due to
acceleration and the electric field in the radiation regime is from (9.29)

_1 e n><(n><—*
[4meg] cR dt

The synchrotron radiation power per unit solid angle and at distance R from
the source is from (9.37) with v =0

E*(t) = (9.38)

r

dpr*
= —nS* R? = [4mceg] =
4w

dn

EVR| . (9.39)

Introducing the classical particle radius r,mec? = 2/ [47¢g] to obtain expres-
sions which are independent of electromagnetic units and with (9.38)

* 2 2 *
d o d
nx(,,x B8 )‘ _ reme® dB

2

dP* . 2
— e sin2 4, , (9.40)

d2  4xe

di 4dre dt

where ¥, is the retarded angle between the direction of acceleration and the
direction of observation n. Integration over all solid angles gives the total
radiated power. With df2 = sin®,d?¥,d¢, where ¢ is the azimuthal angle
with respect to the direction of acceleration, the total radiation power is in
agreement with (3.1)

(9.41)

This equation has been derived first by Larmor [49] within the realm of clas-
sical electrodynamics. The emission of a quantized photon, however, exerts a
recoil on the electron varying its energy slightly. Schwinger [50] investigated
this eflect and derived a correction to the radiation power like

* % 55 6_(3
P = classical <1 - 16\/§ E) ’ (942>

where €. is the critical photon energy and F the electron energy. The correc-
tion is generally very small and we ignore therefore this quantum mechanical
effect in our discussions.

9.2.1 Transition Radiation

Digressing slightly from the discussion of synchrotron radiation we turn our
attention to the solution of (9.39). Generally, we do not know the fields E*
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and to solve (9.40) we need to know more about the particular trajectory
of the particle motion. In the case of transition radiation, we have, however,
all information to formulate a solution. Transition radiation is emitted when
a charged particle passes through the boundary of two media with different
dielectric constant. We will not go into the detailed general theory of tran-
sition radiation but concentrate on the case where a charged particle passes
through a thin metallic foil in vacuum. As the particle passes through the foil
backward transition radiation is emitted when the particle enters the foil and
forward radiation is emitted when it appears on the other side. The emitted
radiation energy can be derived directly from (9.39) .First, we replace the
electric radiation field by the magnetic field component and (9.39) becomes
simply

de(t)
di

— [dmeeo] — B2()R?| d. (9.43)
47 r
From Parceval’s theorem (B.32) we know that

/OO B(t)dt = L B?*(w)dw, (9.44)

oo 27 J_ o

where B(t) = 5= [ B(w)e “dw and B(w) = [ B(t)€*! dt. The emission of
transition radiation occurs in a very short time 7 = w, ", where wy, is the
plasma frequency. For this reason, the transition radiation frequency reaches
into the x-ray regime. We limit ourselves here to frequencies w, which are
much lower such that 7 < w™'. The magnetic field is nonzero only during
the emission process and we can therefore set

Bw) = [ T B et dt ~ / " By, (9.45)

o0 —7/2

To solve this integral we recall the definition of the vector potential B(t) =
V x A, and keep in mind that all quantities are to be taken at the retarded
time. Expressing in component form

HA . .
VXA, = 24, 4y 04,  BA, 94, 84, the derivatives are
T Ay Oz ' Oz dx ' Oz oz :
r=t—LRr(t)

A, _ DA, Bt w1 b ly—y _ My dA, 84y _ 10A _
Dy = B py cte. With Fr = 2555 = Z2 we get 5= — 2 = S50,
194y
e Nz Or finally

1 3] 10

B)=VxA =-nx—A == [nx Al . (9.46)
c Ot c Ot,

The magnetic field spectrum (9.45) becomes then simply

Bw) = [ " Bty at = % [ x A [ (9.47)

r |initial
T/2
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Initially, while the electron has not yet vanished into the metallic foil,
the vector potential is made up of the Liénard—Wiechert potentials of a free
electron and its image charge (a positron) moving in the opposite direction.
The vector potential is therefore

el el
A= + . 9.48
R(14+8n) R(1-—(8n) (9.48)
electron positron

Instead of (9.43) we use the spectral radiation energy
de(w) = [4mcey] = R*dN2 5=B}*(t) dw 2, where the extra factor of two comes

from using only positive frequencies w > 0, and get with (9.48) and e? =
2

reme
d%e 1 remc® [ nx B nx G 2
dwd?  4m? ¢ 1+8n 1—-08n

2
_ remc? 2 5
] o e
™ 1 - §°(nz)
sin? 9 N——
cos2 ¥

where we used B ~ 8z and where z is the unit vector along the z-axis. The
emission angle ¥ is taken with respect to the 2-axis. The spectral and spatial
transition radiation distribution from a single electron is finally

d%e romc? 5% sin? ¥

= . 9.49
dwd(? T2¢ (1 — 3% cos? 19>2 ( )

The spatial radiation distribution of transition radiation is shown in Fig.
9.2. No radiation is emitted along the axis ©# = 0 while the radiation intensity
reaches a maximum at an emission angle of 1/v. Equation (9.49) does not
exhibit any frequency dependence, which is due to the fact that the emission
process occurs in a very short time generating a uniform spectrum. Very high
frequencies in the x-ray regime, where the spectral intensity is expected to
drop, have been excluded in this derivation.

Integrating (9.49) over a half space, we get

2 /2 2 - 2
E:%Cmc/ B°sin” ¥ _sind o
dw e 0 (1 _ 52 cos2 19)
2r,me? 1 o, 1+
= — | (1 In—— —2 9.50
e sl -2 (9.50)

which is for relativistic particles v > 1

d 2romc?
defw) |, 2reme”, (9.51)

dw T
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Fig. 9.2. Intensity distribution

The spectral energy emitted into one half space by a single electron in
form of transition radiation is uniform for all frequencies reaching up into the
soft x-ray regime and depends only logarithmically on the particle energy.

9.2.2 Synchrotron Radiation Power

Coming back to synchrotron radiation we must define the electron motion
in great detail. It is this motion which determines many of the photon beam
characteristics. The radiation power and spatial distribution in the electron
system is identical to that from a linear microwave antenna being emitted
normal to the direction of acceleration with a sin-distribution.

In Section C.8 we have shown that the radiation power is invariant to
Lorentz transformations, we may set P = P* and the total radiation power
in the laboratory system is

P=2r.mce® ,@2—(,8 X 6)2 . (9.52)

which has been discussed before leading to (3.2). Equation (9.52) expresses
the radiation power in a simple way and allows us to calculate other radi-
ation characteristics based on beam parameters in the laboratory system.

Specifically, we will distinguish between acceleration parallel %% | and per-

pendicular 481 §o the propagation B of the charge and set therefore
1

di
dg_d@| 4B
== = 9.53
at— at H+ohsL (0.53)
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Insertion into (9.52) shows the total radiation power to consist of separate
contributions from parallel and orthogonal acceleration. Separating both con-
tributions, we get the synchrotron radiation power for both parallel and trans-
verse acceleration, respectively

2
d
Py = 2r.meq® d—'f , (9.54)
l
2
d
P, = Zr.mey* d_lf . (9.55)
i

Expressions have been derived that define the radiation power for parallel
acceleration like in a linear accelerator or orthogonal acceleration found in
circular accelerators or deflecting systems. We note a similarity for both con-
tributions except for the energy dependence. At relativistic energies, the same
acceleration force leads to much less radiation if the acceleration is parallel
to the motion of the particle compared to orthogonal acceleration. Parallel
acceleration is related to the accelerating force Fby v = 7—13%“' and after
insertion into (9.54) the radiation power due to parallel acceleration becomes

p = 2IC <di>2 . (9.56)

T 3me \ dt

The radiation power for acceleration along the propagation of the charged
particle is therefore independent of the energy of the particle and depends
only on the accelerating force or with de/dt = BcdF/dz on the energy
increase per unit length, dF /dx, of the accelerator.

In contrast, we find very different radiation characteristics for transverse
acceleration as it happens, for example, during the transverse deflection of
a charged particle in a magnetic field. The transverse acceleration v, is ex-
pressed by the Lorentz force

T ymd, = [c] e[BxB] (9.57)
and after insertion into (9.55) the radiation power from transversely acceler-
ated particles becomes

dp. )
Py = 2r.mey? (W) . (9.58)

Comparing (9.56) with (9.58) we find that the same accelerating force leads
to a much higher radiation power by a factor v? for transverse acceleration
with respect to longitudinal acceleration. For all practical purposes technical
limitations prevent the occurrence of sufficient longitudinal acceleration to
generate noticeable radiation. We express the deflecting magnetic field B by
the bending radius p and get the instantaneous synchrotron radiation power
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4, 4
cBy
P, =Zr.mc? o (9.59)
or in more practical units
cC, E*
where we use Sands’ definition of the radiation constant [14]
4T 7, _5 3

This numerical value is correct for relativistic electrons and positrons and
must be modified for other particles.

From here on we will stop considering longitudinal acceleration unless
specifically mentioned and replace therefore the index | by setting P, = P,.
We also restrict from now on the discussion to singly charged particles and
set ¢ = e ignoring extremely high energies where multiple charged ions start
to radiate.

The electromagnetic radiation of charged particles in transverse magnetic
fields is proportional to the fourth power of the particle momentum 3y and
inversely proportional to the square of the bending radius p. The radiation
emitted by charged particles being deflected in magnetic fields is called syn-
chrotron radiation. The synchrotron radiation power increases very fast for
high energy particles and provides the most severe limitation to the maximum
energy achievable in circular accelerators. We note also a strong dependence
on the kind of particles involved in the process of radiation. Because of the
much heavier mass of protons compared to the lighter electrons, we find ap-
preciable synchrotron radiation only in circular electron accelerators. The
radiation power of protons actually is smaller compared to that for electrons
by the fourth power of the mass ratio or by the factor

Pe

5 = 1836% = 1.36 10'3. (9.62)

p

In spite of this enormous difference measurable synchrotron radiation has
been predicted by Coisson [15] and was indeed detected at the 400 GeV
proton synchrotron SPS at CERN [16, 17]. Substantial synchrotron radiation
is expected in circular proton accelerators at a beam energy of 10 TeV and
more.

The knowledge of the synchrotron radiation power allows us now to calcu-
late the energy loss of a particle per turn in a circular accelerator by integrat-
ing the radiation power along the circumference Lg of the circular accelerator

AE = %Pw dt = %TC me? 3344 /

Lo

ds

2 (9.63)
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If we assume an isomagnetic lattice where the bending radius is the same
for all bending magnets p = const, and integrate around a circular accelerator,
the energy loss per turn due to synchrotron radiation is given by

4
AR = 4Zr, m2 3. (9.64)
p

The integration obviously is to be performed only along those parts of
the circular accelerator where synchrotron radiation occurs or along bending
magnets only. In more practical units, the energy loss of relativistic electrons
per revolution in a circular accelerator with an isomagnetic lattice and a
bending radius p is given by

4
AE = CWE7 . (9.65)

From this energy loss per particle in each turn we calculate the total syn-
chrotron radiation power for a beam of IN. particles. The total synchrotron
radiation power for a single particle is its energy loss multiplied by the rev-
olution frequency of the particle around the circular orbit. If Lg is the cir-
cumference of the orbit we have for the revolution frequency f... = B¢/Lo
and for the circulating particle current I = ef,.,N.. The total synchrotron
radiation power is then

E*(GeV)

PV(MW) = C“Y p(m)

I(A). (9.66)
The total synchrotron radiation power scales like the fourth power of
energy and is inversely proportional to the bending radius. The strong de-
pendence of the radiation on the particle energy causes severe practical lim-
itations on the maximum achievable energy in a circular accelerator.

9.3 Radiation Lobes

Expressions for the radiation fields and Poynting vector exhibit strong vecto-
rial dependencies on the directions of motion and acceleration of the charged
particles and on the direction of observation. These vectorial dependencies
indicate that the radiation may not be emitted isotropic but rather into spe-
cific directions forming characteristic radiation patterns. In this section we
will derive these spatial radiation characteristics and determine the direction
of preferred radiation emission.

In (9.40) the radiation power per umit solid angle is expressed in the
reference frame of the particle

dpP A %2
0= T47:Cﬁr281n2 e (9.67)
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Fig. 9.3. Radiation pattern in the particle frame of reference or for nonrelativistic
particles in the laboratory system

showing a particular directionality of the radiation as shown in Fig. 9.3. The
radiation power is mainly concentrated in the x,y-plane and is proportional
to sin? © where © is the angle between the direction of acceleration, in this
case the z-axis, and the direction of observation n. The radiation pattern
in Fig. 9.3 is formed by the end points of vectors with the length dP/df?
and angles © with respect to the z-axis. Because of symmetry, the radiation
is isotropic with respect to the polar angle ¢ and therefore, the radiation
pattern is rotation symmetric about the direction of acceleration or in this
case about the z-axis.

This pattern is the correct representation of the radiation for the ref-
erence frame of the radiating particle. We may, however, also consider this
pattern as the radiation pattern from non relativistic particles like that from
a linear radio antenna. For relativistic particles the radiation pattern differs
significantly from the non relativistic case. The Poynting vector in the form
of (9.37) can be used to calculate the radiation power per unit solid angle in
the direction to the observer —n

% = — nS R?| = [4mce) 4—; E*(1+8n)R?| . (9.68)

We calculate the spatial distribution of the synchrotron radiation for the
case of acceleration orthogonal to the propagation of the particle as it happens
in beam transport systems where the particles are deflected by a transverse
magnetic fields. The particle is assumed to be located at the origin of a right-
handed coordinate system as shown in Fig. 9.4 propagating in the z-direction
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and the orthogonal acceleration in this coordinate system occurs along the
Z-axis.

direction of
acceleration particle path
—

to observer

Fig. 9.4. Radiation geometry in the laboratory frame of reference for highly rela-
tivistic particles

With the expression (9.29) for the electric fields in the radiation regime
the spatial radiation power distribution (9.68) becomes

% = Z;TCmCQ% {n>< [(n—l—,@)x,@] }2 . (9.69)

We will now replace all vectors by their components to obtain the directional
dependency of the synchrotron radiation. The vector n pointing from the
observation point to the source point of the radiation has from Fig. 9.4 the
components

n = (—sinf cos p, —sinf sinp,cos ) , (9.70)

where the angle 6 is the angle between the direction of particle propagation
and the direction of emission of the synchrotron light —n. The z-component
of the acceleration can be derived from the Lorentz equation

dps

ymb, = T [c] e8,By . (9.71)

With v, =~ v we have 1/p = [¢] eB,/cp = [c] eBy/(ymcv) and the acceleration
vector is

b, = (,0,0) = (%,0,0) . (9.72)

The velocity vector is
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v = (0,0,v) (9.73)
and after replacing the double vector product in (9.69) by a single vector sum

nx[(n+B)xf] = (n+B) (nB)-B(1+np), (9.74)

we may now square the r.h.s. of (9.69) and replace all vectors by their com-
ponents. The denominator in (9.69) then becomes

> = R°(1+n8)° = R5(1 — Bcosb)®, (9.75)

and the full expression for the radiation power exhibiting the spatial distrib-
ution is finally

dp Tcm0206_4 (1—Bcos)? — (1 — 62) sin? 6 cos? ¢

dgn AT p? (1 — Bcos )5 (9.76)

This equation describes the instantaneous synchrotron radiation power
per unit solid angle from charged particles moving with velocity v and being
accelerated normal to the propagation by a magnetic field. The angle 6 is
the angle between the direction of observation —n and propagation v/v.
Integration over all angles results again in the total synchrotron radiation
power (9.59).

In Fig. 9.5 the radiation power distribution is shown in real space as
derived from (9.76). We note that the radiation is highly collimated in the
forward direction along the z-axis which is also the direction of particle propa-
gation. Synchrotron radiation in particle accelerators or beam lines is emitted
whenever there is a deflecting electromagnetic field and emerges mostly tan-
gentially from the particle trajectory. An estimate of the typical opening angle
can be derived from (9.76). We set ¢ = 0 and expand the cosine function for
small angles cos 8 ~ 1 — % 0?. With 8~ 1— % v~ 2 we find the radiation power
to scale like (y~2 4 92)’3. The radiation power therefore is reduced to about
one eighth the peak intensity at an emission angle of 6, = 1/« or virtually
all synchrotron radiation is emitted within an angle of

1
O =% (9.77)

with respect to the direction of the particle propagation.

From Fig. 9.5 we observe a slightly faster fall off for an azimuthal angle of
0 = 0 which is in the plane of particle acceleration and propagation. Although
the synchrotron radiation is emitted symmetrically within a small angle of
the order of :I:% with respect to the direction of particle propagation, the
radiation pattern from a relativistic particle as observed in the laboratory is
very different in the deflecting plane from that in the nondeflecting plane.
While the particle radiates from every point along its path, the direction of
this path changes in the deflecting plane but does not in the nondeflecting
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radiatiorn
ntensity

Fig. 9.5. Spatial synchrotron radiation distribution

synchrotron radiation

Fig. 9.6. Synchrotron radiation from a circular particle accelerator

plane. The synchrotron radiation pattern from a bending magnet therefore
resembles the form of a swath where the radiation is emitted evenly and
tangentially from every point of the particle trajectory as shown in Fig. 9.6.

The extreme collimation of the synchrotron radiation and its high in-
tensity in high energy electron accelerators can cause significant heating
problems as well as desorption of gas molecules from the surface of the vac-
uum chamber. In addition, the high density of thermal energy deposition on
the vacuum chamber walls can cause significant mechanical stresses causing
cracks in the material. A careful design of the radiation absorbing surfaces
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to avoid damage to the integrity of the material is required. On the other
hand, this same radiation is a valuable source of photons for a wide variety
of research applications where, specifically, the collimation of the radiation
together with the small source dimensions are highly desired features of the
radiation.

9.4 Synchrotron Radiation Spectrum

Synchrotron radiation from relativistic charged particles is emitted over a
wide spectrum of photon energies. The basic characteristics of this spectrum
can be derived from simple principles as suggested in [19] and discussed in
Chap. 3. The spectrum extends from very low photon energies up to about
the critical photon energy

3
e, = 3he . (9.78)
p
The significance of the critical photon energy is its definition for the upper
bound for the synchrotron radiation spectrum. The spectral intensity falls
off rapidly for photon energies above the critical photon energy. In practical
units, the critical photon energy is

E3(GeV)
p(m)

The synchrotron radiation spectrum from relativistic particles in a circu-
lar accelerator is made up of harmonics of the particle revolution frequency
wo and extends to values up to and beyond the critical frequency (9.78).
Generally, a real synchrotron radiation beam from say a storage ring will
not display this harmonic structure. The distance between the harmonics is
extremely small compared to the extracted photon frequencies in the VUV
and x-ray regime while the line width is finite due to the energy spread in a
beam of many particles and the spectrum becomes therefore continuous. For
a single pass of particles through a bending magnet in a beam transport line,

ce(keV) = 2.218 = 0.665 £%(GeV) B(T). (9.79)

we observe the same spectrum, although now genuinely continuous as can be
derived with the use of Fourier transforms of a single light pulse. Specifically,
the maximum frequency is the same assuming similar parameters.

9.5 Radiation Field in the Frequency Domain
Synchrotron radiation is emitted within a wide range of frequencies. As we

have seen in the previous paragraph, a particle orbiting in a circular accel-
erator emits light flashes at the revolution frequency. We expect therefore in
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the radiation frequency spectrum all harmonics of the revolution frequency
up to very high frequencies limited only by the very short duration of the ra-
diation pulse being sent into a particular direction toward the observer. The
number of harmonics increases with beam energy and reaches at the critical
frequency the order of v3.

The frequency spectrum of synchrotron radiation has been derived by
many authors. In this text, we will stay closer to the derivation by Jackson
[19] than others. The general method to derive the frequency spectrum is to
transform the electric field from the time domain to the frequency domain by
the use of Fourier transforms. Applying this method, we will determine the
radiation characteristics of the light emitted by a single pass of a particle in
a circular accelerator at the location of the observer. The electric field at the
observation point has a strong time dependence and is given by (9.29) while
the total radiation energy for one pass is from (9.38)

aw T ap 7 cR? T
— = | =d&t= [ $,nR2dt=4 =— | E%t)dit. (9.80
5= [ Gpt= [ smEa=lrea S5 [ Ba. 50

The transformation from the time domain to the frequency domain is per-
formed by a Fourier transform or an expansion into Fourier harmonics. This
is the point where the particular characteristics of the transverse acceleration
depend on the magnetic field distribution and are, for example, different in a
single bending magnet as compared to an oscillatory wiggler magnet. We use
here the method of Fourier transforms to describe the electric field of a single
particle passing only once through a homogeneous bending magnet. In case
of a circular accelerator the particle will appear periodically with the period
of the revolution time and we expect a correlation of the frequency spectrum
with the revolution frequency. This is indeed the case and we will later dis-
cuss the nature of this correlation. Expressing the electrical field E, (t) by its
Fourier transform, we set

E.(v) = /OO E.(t)e ¥t , (9.81)

where —00 < w < 00. Applying Parseval’s theorem we have

/Oo B, () [ dw = 27r/°o B, () P dt (9.82)

and the total absorbed radiation energy from a single pass of a particle is
therefore

dw R2 [°
S = limeeo] S5 [ 1B ) P . (9.83)
Evaluating the electrical field by its Fourier components, we derive an ex-

pression for the spectral distribution of the radiation energy



9.5 Radiation Field in the Frequency Domain 157

*w
dN2dw

(&
= [drce] 5 | Bx(w) > R2, (9.84)

where we have implicitly used the fact that E.(w) = E,(—w)since E,(t)
is real. To calculate the Fourier transform, we use (9.29) and note that the
electrical field is expressed in terms of quantities at the retarded time. The
calculation is simplified if we express the whole integrand in (9.81) at the
retarded time and get with ¢, = 1 — %R(tr) and di, = @dt instead of
(9.81)

—iw(t+5&
oy e w( )dtr.

— o0 T

Er(w) = [7eo] ¢

1 e 7 Rx [(R+BR) x 3 055

We require now that the radiation be observed at a point sufficiently far
away from the source that during the time of emission the vector R(f,) does
not change appreciably in direction. This assumption is generally justified
since the duration of the photon emission is of the order of 1/(wr,), where
wr, = ¢/p is the Larmor frequency. The observer therefore should be at a
distance from the source large compared to p/v. Equation (9.85) together
with (9.14) may then be written like

1 e 7n>< [(n+6)><6}

Bulw) = [47meo)] 07%7 (1+npB)? @ s i (986)
With
n X [(n—l—,@) X ,8} _ d nx(nxg) 0.87)

(1+npB)? dt, 1+ng

we integrate (9.86) by parts while noting that the integrals vanish at the
boundaries and get

B, (w) = [4;60] _Ci;“ / [ (n x B)], e = (++%) a, | (9.88)

After insertion into (9.84) the spectral and spatial intensity distribution is

00 2
AW rome? : e
dQdw T4mc o / [nx (nx B)e () az,| (9.89)
0y e

r

The spectral and spatial radiation distribution depends on the Fourier
transform of the particle trajectory which itself is a function of the magnetic
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field distribution. The trajectory in a uniform dipole field is different from
say the step function of real lumped bending magnets or oscillating deflecting
fields from wiggler magnets and the radiation characteristics may therefore
be different. In this chapter, we will concentrate only on a uniform dipole field
and postpone the discussion of specific radiation characteristics for insertion
devices to Chap. 10.

The integrand in (9.89) can be expressed in component form to simplify
integration. For that we consider a fixed coordinate system (x,y, z) as shown
in Fig. 9.7. The observation point is far away from the source point and we
focus on the radiation that is centered about the tangent to the orbit at the
source point. The observation point P and the vectors R and n are therefore
within the (y,2)-plane and radiation is emitted at angles # with respect to
the z-axis.

observation point P

electron attime t

Fig. 9.7. Radiation geometry

The vector from the origin of the coordinate system P to the observation
point P is 7, the vector R is the vector from P to the particle at F, and 7,
is the vector from the origin to F,. With this we have

r=r,—R(t), (9.90)
where r,and R, are taken at the retarded time. The exponent in (9.89) is
then

nr, nr

Wt + R, /¢) = w(t, + nR./¢) = w (tr+7 —7) (9.91)
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and the term —w™F is independent of the time generating only a constant

phase factor which is completely irrelevant for the spectral distribution and
may therefore be ignored.

In determining the vector components, we note from Fig. 9.7 that now
the coordinate system is fixed in space. Following the above discussion the
azimuthal angle is constant and set to ¢ = % 7 because we are interested only
in the vertical radiation distribution. the horizontal distribution is uniform
by virtue of the tangential emission along the orbit. With these assumptions,

we get the vector components for the vector n from (9.70)
n =(0,—sinf#, —cosf). (9.92)

The vector r, is defined by Fig. 9.7 and depends on the exact variation of
the deflecting magnetic field along the path of the particles. Here we assume
a constant bending radius p and have

7y = [—pcos(wity),0, psin(wit.)] (9.93)

where wy, = B¢/ p is the Larmor frequency. From these component represen-
tations the vector product

KL sin(wr,t, ) cos (9.94)

c c

Noting that both arguments of the trigonometric functions in (9.94) are very
small, we may expand the r.h.s. of (9.94) up to third order in ¢, and the factor
t, +nr,/cin (9.91) becomes

o= =t = Bt — dwnt) (1 - 467)] (9.95)
With w, = Be/p we get t.(1 — pwr/c) = (1 — B)t, = t,/(27?). Keeping
only up to third order terms in wr,f, and 8 we have finally for high energetic
particles 3 =~ 1

nr
i+ Tp =3 (v 24+0°)t + it (9.96)

The triple vector product in (9.89) can be evaluated in a similar way. For the
velocity vector we derive from Fig. 9.7

B =3 [—sign(1/p) sin(wr,t;),0,cos(wrt,)] . (9.97)

Consistent with the definition of the curvature in (6.7), the sign of the curva-
ture sign(1/p) is positive for a positive charge and a positive magnetic field
vector By. The vector relation (B.10) and (9.92, 9.97) can be used to express
the triple vector product in terms of its components

nx (n x B) = G [sign(1/p) sin(wrt,), 3 sin 20 cos(wt.), —sin? 6 cos(wrt,)]
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(9.98)

Splitting this three-dimensional vector into two parts will allow us to char-
acterize the polarization states of the radiation. To do this, we take the unit
vector u | in the z-direction and u| a unit vector normal to © | and normal
to r. The y and 2z — components of (9.98) are then also the components of
u| and we may express the vector (9.98) by

nx (n x B) = Bsign(1/p) sin(wrt,) w1 + Bsinb cos(wrt:)u , (9.99)

Inserting (9.96) and (9.99) into the integrand (9.88) we get with 5~ 1

-1 oo
E,(w) = lreo] % [m [sign(1/p) sin(wi.t,) w, +sinf cos(wyt,)uy] e di,
(9.100)
where
X = —i— [(1+~26%) ¢, + 372wie?] .
22 3 r

Two polarization directions have been defined for the electric radiation
field. One of which, u |, is in the plane of the particle path being perpendic-
ular to the particle velocity and to the deflecting magnetic field. Following
Sokolov and Ternov [51] we call this the o-mode (u, = u,). The other polar-
ization direction in the plane containing the deflecting magnetic field and the
observation point is perpendicular to n and is called the m-mode (uH = Upy).
Since the emission angle 6 is very small, we find this polarization direction
to be mostly parallel to the magnetic field. Noting that most accelerators or
beam lines are constructed in the horizontal plane, the polarizations are also
often referred to as the horizontal polarization for the o-mode and as the
vertical polarization for the m-mode.

9.5.1 Spectral Distribution in Space and Polarization

As was pointed out by Jackson [19], the mathematical need to extend the in-
tegration over infinite times does not invalidate our expansion of the trigono-
metric functions where we assumed the argument wr, t, to be small. Although
the integral (9.100) extends over all past and future times, the integrand os-
cillates rapidly for all but the lowest frequencies and therefore only times of
the order c¢t, = 4 p/v centered about t, contribute to the integral. This is a
direct consequence of the fact that the radiation is emitted in the forward
direction and therefore only photons from a very small segment of the parti-
cle trajectory reach the observation point. For very small frequencies of the
order of the Larmor frequency, however, we must expect considerable devi-
ations from our results. In practical circumstances such low harmonics will,
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however, not propagate in the vacuum chamber [27] and the observed photon
spectrum therefore is described accurately for all practical purposes.

The integral in (9.100) can be expressed by modified Bessel’s functions
in the form of Airy’s integrals as has been pointed out by Schwinger [21].
Since the deflection angle wyt, is very small, we may use linear expansions
sin(wrt,) ~ wrt.and cos(wrt,) ¢ 1. Inserting the expression for the elec-
tric field (9.100) into (9.83) we note that cross terms of both polarizations
vanish %, u| = 0 and the radiation intensity can therefore be expressed by
two separate orthogonal polarization components. Introducing in (9.100) the
substitutions [21]

1
wit, = ?jue%, (9.101)
w1 2,2:\3/2 _ 1 ¥ 212\3/2
=s——(1 0 ==—/1 0 9.102
3 3%73( +9°07) ch( +770%)77, (9.102)

where 7w, is the critical photon energy, the argument in the exponential
factor of (9.100) becomes

w 2
57 [(1+720%) 8. + 37%witd] = L £(3a + 27). (9.103)
With these substitutions, (9.100) can be evaluated noting that only even
terms contribute to the integral. With wr, ¢, and 8 being small quantities we
get integrals of the form [52]

/0 cos [$£(3x +2°)] dw = %Kl/g(g) , (9.104a)
/0 sin [4 £(3z 4+ 2°)] do = T K23(8), (9.104b)

where the functions K, are modified Bessels’s functions of the second kind.
These functions assume finite values for small arguments but vanish expo-
nentially for large arguments as shown in Fig. 9.8. Fast converging series for
these modified Bessels’s functions with fractional index have been derived
by Kostroun [53]. The Fourier transform of the electrical field (9.100) finally
becomes

E.(w) = mﬁw_ﬂ(lﬂ%g) sign(1/p) Kz/3(€) uo — 1 —Jﬁ tr
(9.105)

describing the spectral radiation field far from the source for particles trav-
eling through a uniform magnetic dipole field. Later, we will modify this
expression to make it suitable for particle motion in undulators or other
nonuniform fields.
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Fig. 9.8. Modified Bessel’s functions K /3(x) and Ko 3(x)
The spectral synchrotron radiation energy emitted by one electron per

pass is proportional to the square of the electrical field (9.105) and is from
(9.84)

ddw 472 7 14+~202 7
(9.106)

C

*w 3rome w\? 7292[(2 3(5)
= o4 <w_> (1++%6%)2 lKg/a(f) ul 4 2

The radiation spectrum has two components of orthogonal polarization,
one in the plane of the particle trajectory and the other almost parallel to
the deflecting magnetic field. In (9.105) both polarizations appear explicitly
through the orthogonal unit vectors. Forming the square of the electrical field
to get the radiation intensity, cross terms disappear because of the orthogo-
nality of the unit vectors u,and u,. The expression for the radiation inten-
sity therefore preserves separately the two polarization modes in the square
brackets of (9.106) representing the o-mode and 7-mode of polarization,
respectively.

It is interesting to study the spatial distribution for the two polarization
modes in more detail. Not only are the intensities very different but the spatial
distribution is different too. The spatial distribution of the o-mode is directed
mainly in the forward direction while the m-mode radiation is emitted into
two lobes at finite angles and zero intensity in the forward direction § = 0. In
Fig. 9.9 the instantaneous radiation lobes are shown for both the o- and the
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Fig. 9.9. Radiation lobes for 0— and m—mode polarization

m-mode at the critical photon energy and being emitted tangentially from
the orbit at the origin of the coordinate system. A more detailed discussion
of elliptical polarization properties can be found in Sect. 10.3.

9.5.2 Spectral and Spatial Photon Flux

The radiation intensity W from a single electron and for a single pass may
not always be the most useful parameter. A more useful parameter is the
spectral photon flux per unit solid angle into a frequency bin Aw/w and for
a circulating beam current [

Ny (w) _ dW (w) 1T Aw

dfdy  dwdfhe w ' (9.107)

Here we have replaced the solid angle by its components, the vertical angle
# and the bending angle ?. In more practical units the differential photon
flux is

d* Ny (w) Aw [ w2
Wy~ ColPI— ( — ) K353() F(£,0), (9.108)
where
3a photons
Cop=———=1327310"° ——————— 0.100
? dr?e(mc?)? s mrad? GeV?A '’ ( )

I the circulating particle beam current, « the fine structure constant, and

7202 K?/g(i)
14+ ’)/292 K %/3(5)

F(5,0) = (1+7°6%)% |1+ (9.110)
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For approximate numerical calculations of photon fluxes, we may use the
graphic representation in Fig. 9.8 of the modified Bessel s function.

The spatial radiation pattern varies with the frequency of the radiation.
Specifically, the angular distribution concentrates more and more in the for-
ward direction as the radiation frequency increases. The radiation distribu-
tion in frequency and angular space is shown for both the o-(Fig. 9.10) and
the m-mode (Fig. 9.11) at the fundamental frequency. The high collimation
of synchrotron radiation in the forward direction makes it a prime research
tool to probe materials and its atomic and molecular properties

-
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Fig. 9.11. Distribution in frequency and angular space for m-mode radiation
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9.5.3 Harmonic Representation

Expression (9.106) can be transformed into a different formulation empha-
sizing the harmonic structure of the radiation spectrum. The equivalence
between both formulations has been shown by Sokolov and Ternov [51] ex-
pressing the modified Bessel’s functions K;,3 and K3 by regular Bessel’s
functions of high order. With v = ﬁ the asymptotic formulas for v > 1 are

Ky (6) = Y57
1/3(&) = m

V3
Ky3(8) = T:OSQH

Jy(vB cos ), (9.111)

J ! (vBcosb), (9.112)

where § = £ (1 — 3% cos? 9)3/2 ~ g (772 —0—5292)3/2 for small angles. These
approximations are justified since we are only interested in very large har-
monics of the revolution frequency. The harmonic number v for the critical
photon frequency, for example, is given by v, = w,/w, = %73 which for
practical cases is generally a very large number. Inserting these approxima-
tions into (9.106) gives the the formulation that has been derived first by
Schott [3, 4, 5] in 1907 long before synchrotron radiation was discovered in
an attempt to calculate the radiation intensity of atomic spectral lines

d*p me
N0 = 7;:;2 V2 [J (v cos ) + 6705 (v eos 0)] (9.113)

where we have introduced the radiation power P = W27fp. This form still

exhibits the separation of the radiation into the two polarization modes.

9.6 Spatial Radiation Power Distribution

Integrating over all frequencies we obtain the angular distribution of the
synchrotron radiation. From (9.106) we note the need to perform integrals
of the form ffooo wQKg(aw) dw, where aw = £. The solution can be found
in the integral tables of Gradshteyn and Ryzhik [54] as solution number
GR(6.576.4)

o0 214
/ VK2 (aw) dw = — iy (9.114)
0 32a3 coswp

Applying this solution to (9.106) and integrating over all frequencies, we get
for the angular distribution of the synchrotron radiation

! In this chapter we will need repeatedly results from mathematical tables. We
abbreviate such solutions with the first letters of the authors names and the
formula number.
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dW 21 romc? 5 5 ~202
— 2 Lne i ( i ) (9.115)

a2 " 32 ) (14 ~20%)5/2 ?1_,_7292

This result is consistent with the angular radiation power distribution
(9.76) where we found that the radiation is collimated very much in the
forward direction with most of the radiation energy being emitted within an
angle of +1/v. There are two contributions to the total radiation intensity,
the o-mode and the m-mode. The o-mode has a maximum intensity in the
forward direction, while the maximum intensity for the m-mode occurs at an
angle of 0, = 1/(\/5/_2 7). The quantity W is the radiation energy per unit
solid angle from a single electron and a single pass and the average radiation
power is therefore P, = W /T, or (9.115) becomes

dpP, 2reme? o 5 720>
A2 6mp? (1 +~20%)5/2 71 + 26>

(9.116)

Integrating (9.116) over all angles § we find the synchrotron radiation
power into both polarization modes, the o-mode perpendicular to the mag-
netic field and the m-mode parallel to the magnetic field. In doing so, we note
first that (9.116) can be simplified with (9.59) and 5 =1

dP, 21P 5 ~26?
- S I E— P . (9.117)
df?2 3227 (1 4 ~26%)5/2 71+ 20

This result is consistent with (9.76) although it should be noted that
(9.117) gives the average radiation power from a circular accelerator with
uniform intensity in 4, while (9.76) is the instantaneous power into the for-
ward lobe. Equation (9.117) exhibits the power into each polarization mode
for which the total power can be obtained by integration over all angles. First,
we integrate over all points along the circular orbit and get a factor 27 since
the observed radiation power does not depend on the location along the orbit.
Continuing the integration over all angles of 8, we find the contributions to
the integral to become quickly negligible for angles larger than 1/+. If it were
not so, we could not have used (9.117) where the trigonometric functions
have been replaced by their small arguments. Both terms in (9.117) can be
integrated readily and the first term becomes with GR(2.271.6) [54]

frexr>1 do 4

/ . (9.118)
bueyt (L+7207)5/2 3

The second term is with GR[2.272.7] [54]

=—. (9.119)

/Qmaxﬁ>>1 7392 do 4
bueent (L+720%)72 15

With these integrals and (9.117) we express the radiation power into the
o-and 7-mode with P, from (9.59) by
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P, =
P, =

Py, (9.120a)
P,. (9.120D)

ool ocol~1

The horizontally polarized component of synchrotron radiation greatly
dominates the photon beam characteristics and only 12.5% of the total in-
tensity is polarized in the vertical plane. In the forward direction the o-
polarization even approaches 100%. Obviously, the sum of both components
is equal to the total radiation power. This high polarization of the radia-
tion provides a valuable characteristic for experimentation with synchrotron
radiation. In addition, the emission of polarized light generates a slow polar-
izing reaction on the particle beam orbiting in a circular accelerator like in a
storage ring [55].

9.6.1 Asymptotic Solutions

Expressions for the radiation distribution can be greatly simplified if we re-
strict the discussion to very small or very large arguments of the modified
Bessel’s functions for which approximate expressions exist [24]. Knowledge of
the radiation distribution at very low photon frequencies becomes important
for experiments using such radiation or for beam diagnostics where the beam
cross section is being imaged to a TV camera using the visible part of the
radiation spectrum. To describe this visible part of the spectrum, we may in
most cases assume that the photon frequency is much lower than the critical
photon frequency.

Low frequencies and small observation angles. For very small argu-
ments or low frequencies and small angles, we find the following approxima-

tions AS(9.6.9) [24]

23 (o ¥ 1
Kijs(§ — 0) m —5— o T (9.121a)
—4/3
L 0) my 923772 w 1
Ka3(6 — 0) = 2%2/372(2/3) <w> TETrh (9.121b)

where the Gamma functions 7'(1/3) = 2.6789385 and 1'(2/3) = 1.351179 and
from (9.103)

£ = wi(l +A20%)3/2 (9.122)

N =

Inserting this into (9.108) the photon flux spectrum in the forward direction
becomes for § = 0 and = <1

2/3
~ Cp B2 1%(2/3) (2—“)) =22 (9.123)
W

We

d*N,,
d6dz
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The photon spectrum at very low frequencies is independent of the particle
energy since w, oc E2. Clearly, in this approximation there is no angular de-
pendence for the o-mode radiation and the intensity increases with frequency.
The m-mode radiation on the other hand is zero for § = 0 and increases in
intensity with the square of 8 as long as the approximation is valid.

High frequencies or large observation angles. For large arguments of
the modified Bessel’s functions or for high frequencies and large emission
angles different approximations hold. In this case, the approximate expres-
sions are actually the same for both Bessel’s functions indicating the same
exponential drop off for high energetic photons AS(9.7.2)

Te %
Kfj5(§ — 00) = 5 e (9.124a)
2 Te %
K3)3(6 — 00) m 5= (9.124b)

The photon flux distribution in this approximation becomes from (9.106)

2 2
d"Nph _ 3reme 2 W 2

5 Aw
a0dy  dwhe | w.

’
W

1+ ~20 (9.125)
where N}, is the number of photons emitted per pass. The spatial radiation
distribution is greatly determined by the exponential factor and the relative
amplitude with respect to the forward direction scales therefore like

exp{—wi (147267 - 1}} . (9.126)

C

We look now for the specific angle for which the intensity has fallen to 1/e.
Since w > we, this angle must be very small 78 < 1 and we can ignore other
f-dependent, factors. The exponential factor becomes equal to 1/e for

gwiy%f/e ~1 (9.127)

and solving for 6, ,. we get finally

1 we
01/ = %3% for w> w.. (9.128)
The high energy end of the synchrotron radiation spectrum is more and
more collimated into the forward direction. The angular distribution is graph-
ically illustrated for both polarization modes in Figs. 9.10 and 9.11.

9.7 Angle-Integrated Spectrum

Synchrotron radiation is emitted over a wide range of frequencies and it is
of great interest to know the exact frequency distribution of the radiation.
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Since the radiation is very much collimated in the forward direction, it is
useful to integrate over all angles of emission to obtain the total spectral
photon flux that might be accepted by a beam line with proper aperture. To
that goal, (9.106) will be integrated with respect to the emission angles to
obtain the frequency spectrum of the radiation. The emission angle 6 appears
in (9.106) in a rather complicated way which makes it difficult to perform
the integration directly. We replace therefore the modified Bessel’s functions

by Airy’s functions defined by AS(10.4.14) and AS(10.4.31) [24]

Ai(2) = \/;Kl 15(6), (9.1202)
Ali (2) = ——— Ky 3(6). (9.129b)

p=32 (9.130)
we get from (9.103)

2= (36)"7 =P (144%0%) . (9.131)

We apply this to the periodic motion of particles orbiting in a circular ac-
celerator. In this case the spectral distribution of the radiation power can be
obtained by noting that the differential radiation energy (9.106) is emitted
every time the particle passes by the source point. A short pulse of radiation
is sent towards the observation point at periodic time intervals equal to the
revolution time Ti.y = 5= The spectral power distribution (9.106) expressed
P
by Airy functions is

4°P, 9P, v

= 2/3 4152 4/3,.202 4.2
Wwd0 — on o 1 AT @ ETCAT )] (9.132)

To obtain the photon frequency spectrum, we integrate over all angles of
emission which is accomplished by integrating along the orbit contributing
a mere factor of 27 and over the angle 8. Although this latter integration is
to be performed between -m and +m, we choose the mathematically easier
integration from —oo to +00 because the Airy functions fall off very fast for
large arguments. In fact, we have seen already that most of the radiation is
emitted within a very small angle of +1/+. The integrals to be solved are
of the form fooo 0" Ai? [772/3(1 + 7292] d 8 where n = 0 or 2. We concentrate
first on the second term in (9.132), and form with (9.104) and (9.129a) the
square of the Airy function

2 4:2 L [% 1,3 % 2 1,3

0*Ai*(2) = ﬁ/o 0% cos [32° + 21 dx/o 0% cos [34° + 2y dy. (9.133)

We solve these integrals by making use of the trigonometric relation
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cos(a + ) cos(aw— 33) = cosa cos §. (9.134)

After introducing the substitutions  +y = s and x — y = ¢, we obtain
integrals over two terms which are symmetric in s and ¢ and therefore can be
set equal to get

02 A =3 2/ / 0% cos [5® +35¢% + 25] dsdy, (9.135)
7

where the factor % comes from the transformation of the area element ds dy =
d—\/s-d—\/i In our problem we replace the argument z by the expression 2z =
' (

1+ 7292) and integrate over the angle

2/02Ai2(z) do = / / /92008 [11—283—0—33152—0—8772/3 (1+7292)} dsdyde.

(9.136)

The integrand is symmetric with respect to 6 and the integration therefore
needs to be performed only from O to co with the result being doubled.
We also note that the integration is taken over only one quadrant of the
(s,t)-space. Further simplifying the integration, the number of variables in
the argument of the cosine function can be reduced in the following way.
We note the coefficient itQ + 12/3420% which is the sum of squares. Setting

/349 = rsin¢ this term becomes simply 72. The area

%t = rcosy and 7
element transforms like didf = 2/(771/3')/)7“d7“ dy and integrating over ¢
from O to 7/2, since we need integrate only over one quarter plane, (9.136)

becomes finally

/HQAZ (2) 27”7’73//TQCOS 283—|—S772/3—|—7“2 rdr ds. (9.137)
—00 0 0

The integrand of (9.137) has now a form close to that of an Airy integral
and we will try to complete that similarity. With ¢ = (3¢/2)/32 the definition
of the Airy functions AS(10.4.31)[24] are consistent with (9.129)

Ai(z) = l/ cos [1¢° + 2 ¢ dg. (9.138)
0

™

Equation (9.137) can be modified into a similar form by setting

3

w? =41

3 and s +r)) =yw. (9.139)

N

Solving for w we get w = s /2%/3and with y = 2%/3(n?/3 +r2), ds = 22/3dw
and dy = 25/37r dr equation (9.137) becomes
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(o0}

2 42 _ 1 Yy a3 .
[m PAP (2)d0 = 1 (22/3 )Az (y)dy (9.140)

Yo

where we have used the definition of Airy’s function and where the integration
starts at

yo = (20)*? = <%i>2/3 (9.141)

corresponding to r = 0.

We may separate this integral into two parts and get a term y.Ai (y)
under one of the integrals. This term is by definition of the Airy’s functions
AS(10.4.1) [24] equal to Ai" . Integration of this second derivative gives

" A () dy = — A (o) (0.142)

Yo

and collecting all terms in (9.140) we have finally

2 42 _ 1 At (yo) o
[ AR ()= 4771/373[ 2 [ aa) 0w

The derivation of the complete spectral radiation power distribution
(9.132) requires also the evaluation of the integral [ .Ai'(2)d#. This can be
done with the help of the integral f Ai(z) df and the 1ntegra1 we have just
derived. We follow a similar derivation that led us just from (9.136) to (9.137)
and get instead of (9.143)

o0 1 o]
Ai? (2)df = ——/ Ai (y)dy . (9.144)
/m 20139 Jy,

Recalling the definition of the argument z = 7%/3 (1 + 7292), we differen-

tiate (9.144) twice with respect to 7?3 to get
o0 0 21/3
17 -1 -]
2[m A" (2) + A% ()] 0 =~ i () (9.145)

Using the relation Ai"(z) = 2.A4i (2) and the results (9.142, 9.143) in (9.145)
we get

/ Ai%(2)d0 = — [3“42%( 34 (o) | /y OO Ai (y) dy} . (9.146)

At this point, all integrals have been derived that are needed to describe
the spectral radiation power separately in both polarization modes and the
spectral radiation power from (9.132) becomes
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ap,  2TPw | [ 3A4i'(w) [ ..
dw 162 [\~ - [ A

2y [aiway) |- (9.147)

The first term describes the o-mode of polarization and the second term
the m-mode. Combining both polarization modes, we may derive a compar-
atively simple expression for the spectral radiation power. To this goal, we
replace the Airy’s functions by modified Bessel’s functions

A (yo) _

% \/—ﬂ_Kg/g(.’Iio) (9148)

where from (9.129, 9.130), and (9.140) 2o = w/w.. With \/ydy =dz, the
recurrence formula 2Ké/3 = —Ky/3 — K53 and (9.129) the Airy integral is

/A()dy— \/-/ Kyjgrdr — /K5/3
Yo

= 7 Kays(6) - ﬁ/ﬂj Ks/3(€)dg. (9.149)

We use (9.148) and (9.149) in (9.147) and get the simple expression for the
synchrotron radiation spectrum

dPW
—_— = Ks/a(x)dx = S 9.150
Ao / 5/3 T = < ) ) ( )

where we defined the universal function
w w [
S <w—> — B Ks3(z)d. (9.151)

The spectral distribution depends only on the critical frequency w., the
total radiation power and a purely mathematical function. This result has
been derived originally by Ivanenko and Sokolov [20] and independently by
Schwinger [21]. Specifically, it should be noted that the synchrotron radiation
spectrum, if normalized to the critical frequency, does not depend on the
particle energy and is represented by the universal function shown in Fig.
9.12. The energy dependence is contained in the cubic dependence of the
critical frequency acting as a scaling factor for the real spectral distribution.

The mathematical function is properly normalized as we can see by inte-
grating over all frequencies.
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Fig. 9.12. Universal function: S(§) = 948775{ f;o Ky /3(x)de, with £ =w/w.

/ —ldw = %@PW/ / Kss(x)dz dz . (9.152)

0 0 Zo

After integration by parts, the result can be derived from GR[6.561.16] [54]
/ g =2Ep, / @3 K5 (o) dao = I' (4/3) I'(2/3). (9.153)
0 0

Using the triplication formula AS(6.1.19) [24] the product of the gamma
functions becomes

I'(4/3)1(2/3) = 3277;_). (9.154)

With this equation the proper normalization of (9.152) is demonstrated

< dP
/ S aw=p,. (9.155)
0 dw

Of more practical use is the spectral photon flux per unit angle of deflection
in the bending magnet. With the photon flux dV,, =dP/hw we get from
(9.150)

deh P, Aw w
— =5 — 9.156
dvy 2rhw, w We ( )

and with (9.59) and (9.78)

deh 4o I Aw w
LS (2
dvy 9 "e w

We

(9.157)
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where 9 is the deflection angle in the bending magnet and « the fine structure
constant. In practical units, this becomes

dN, A
S o, pr =g (2 (9.158)
iy w T \we
with
4o photons
Cyp=———==23.967 -10"6 ———— | 9.159
Y7 9e me2 7 s mrad A GeV ( )

The synchrotron radiation spectrum in Fig. 9.12 is rather uniform up to
the critical frequency beyond which the intensity falls off rapidly. Equation
(9.150) is not well suited for quick calculation of the radiation intensity at a
particular frequency. We may, however, express (9.150) in much simpler form
for very low and very large frequencies making use of approximate expressions
of Bessel’s functions for large and small arguments.

For small arguments (x =2« 1) we find with AS(9.6.9) [24]

22/3

Ks/3(x — 0) zf(g)m, (9.160)

which allows us to integrate (9.153) readily and get instead of (9.150)

/3 1/3
dr, 93{3]w 2/3 w\! « Py
— —12 I'2/3) | — ~1.333 | — —. 9.161
dw 87 W (2/3) We ( )

C wC

For high photon frequencies (x ==2> 1) the modified Bessel’s function
becomes from AS(9.7.2) [24]

Te *

2/
and after integration with GR(3.361.1) and GR(3.361.2), [54] (9.150) becomes

deY QJ@PFY W / Pry W /
— = — [ —e¥/¥ 077736 — , [ —e¥/ Ve . 9.163
dw \/ﬁwc wce i We wce ( )

Both approximations are included in Fig. 9.12 and display actually a rather
good representation of the real spectral radiation distribution. Specifically,
we note the slow increase in the radiation intensity at low frequencies and
the exponential drop off above the critical frequency.

9.7.1 Statistical Radiation Parameters

The emission of synchrotron radiation is a classical phenomenon. For some
applications it is, however, useful to express some parameters in statistical
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form. Knowing the spectral radiation distribution, we may follow Sands [14]
and express some quantities in the photon picture. We have used such pa-
rameters in Chapter 7 to derive expressions for the equilibrium beam size
and energy spread. Equilibrium beam parameters are determined by the sta-
tistical emission of photons and its recoil on the particle motion. For this
purpose, we are mainly interested in an expression for eih and the photon
flux at energy epn. From these quantities, we may derive an expression for the

average photon energy <€§h> emitted along the circumference of the storage
ring. ’

With I (e,1) being the probability to emit a photon with energy e, we
have

(eon) :/ epntl (epn) dep - (9.164)
0

The probability I (¢,1) is defined by the ratio of the photon flux 7(epn)
emitted at energy epp to the total photon flux Nyp

I (e,1) = %";) (9.165)

The photon flux at €1, can be derived from e, 72(epn ) depn = P (epn ) depn.
Integrating (9.156) over all angles ¢ and multiplying by fiw = ¢,;, we get for
the spectral radiation power

dN P Son
P(éph) deph = €ph?ph déph = 8_: S < ;C ) deph s
and
P, S
f(epn) = g—; ;x) . where x= ?;h (9.166)

The total number of emitted photons per unit time is just the integral

. 00 P, [*S 15V3 P
Ny :/ f(epn) deph = — / () 4, - V3P, (9.167)
0 e Jo x 8 e

With this, the probability to emit a photon of energy e, is finally

8 1 S(2)
15v3e x

I (epy) = (9.168)

and

82 11
2 _ c _ 2
<€Ph>s =505 /0 xS(x)dxr = 57 - (9.169)
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To calculate equilibrium beam parameters in Section 7.4.1 and thereafter,
we need to know the quantity <Nph<€§h>> which is now from (9.167,9.169)

<N ph <€2>>
where the average is to be taken along the orbit and around the storage ring

through all magnets. Expressing the critical photon energy by (9.78) and the
radiation power by (9.59) and we get finally

. 55 1
<Nph<52>>s = 24\/§7“Ccm02 hen” <F> . (9.171)

55
TG (e.Py), (9.170)

8

Exercises *

Exercise 9.1 (S). Integrate the radiation power distribution (9.76) over all
solid angles and prove that the total radiation power is equal to (9.59).

Exercise 9.2 (S). In the ESRF (European Synchrotron Radiation Facility)
synchrotron radiation source in Grenoble (France) an electron beam of 200
mA circulates at an energy of 6 GeV. The bending magnet field is 1.0 T.
Calculate and plot the spectral photon flux into a band width of 0.1% and
an acceptance angle of 10 mrad as a function of photon energy.

Exercise 9.3 (S). Derive an expression identifying the angle at which the
spectral intensity has dropped to p% from the maximum intensity. Derive
approximate expressions for very low or very large photon energies. Find the
angle at which the total radiation intensity has dropped to 10%.

Exercise 9.4. Derive the wave equations (9.3) and (9.4).
Exercise 9.5. Derive (9.17).

Exercise 9.6. Derive (9.28) from (9.27) .Show that the electrical field in the
radiation regime is purely orthogonal to the direction of observation. Is the
field also parallel to the acceleration?

Exercise 9.7. Design a synchrotron radiation source for a photon energy of
your choice. Use a simple FODO lattice and specify the minimum beam en-
ergy, beam current, and bending radius which will produce a bending magnet
photon flux of 10'* photons/sec/mrad at the desired photon energy and into
a band width of Aw/w = 1%. What is the minimum and maximum photon
energy for which the photon flux is at least 10*! photons/sec/mrad? How big
is your ring assuming a 30% fill factor for bending magnets?

* The argument (S) indicates an exercise for which a solution is given in

Appendix A.



10. Insertion Device Radiation

Synchrotron radiation from bending magnets is characterized by a wide spec-
trum from microwaves up to soft or hard x-rays as determined by the criti-
cal photon energy. To optimally meet the needs of basic research with syn-
chrotron radiation, it is desirable to provide specific radiation characteris-
tics that cannot be obtained from ring bending magnet but require special
magnets. The field strength of bending magnets and the maximum particle
beam energy in circular accelerators like a storage ring is fixed leaving no
adjustments to optimize the synchrotron radiation spectrum for particular
experiments. To generate specific synchrotron radiation characteristics, ra-
diation is often produced from special insertion devices installed along the
particle beam path. Such insertion devices introduce no net deflection of the
beam and can therefore be incorporated in a beam line without changing its
geometry. Motz [56] proposed first the use of undulators or wiggler magnets
to optimize characteristics of synchrotron radiation. By now, such magnets
have become the most common insertion devices consisting of a series of alter-
nating magnet poles deflecting the beam periodically in opposite directions
as shown in Fig. 10.1.

In Chapter 4 the properties of wiggler radiation were discussed shortly in
an introductory way. Here we concentrate on more detailed and formal deriva-
tions of radiation characteristics from relativistic electrons passing through
undulator and wiggler magnets.

wiggler
period sinusoidal beam path
|

Nl SIN|S|IN|S IN|S|IN|S|N|[S|N|S |N

Fig. 10.1. Trajectory of a particle beam in a flat wiggler magnet
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There is no fundamental difference between wiggler and undulator radia-
tion. An undulator is basically a weak wiggler magnet. The deflection in an
undulator is weak and the transverse particle momentum remains nonrela-
tivistic. The motion is purely sinusoidal in a sinusoidal field, and the emitted
radiation is monochromatic at the particle oscillation frequency which is the
Lorentz-contracted periodicity of the undulator period. Since the radiation is
emitted from a moving source the observer in the laboratory frame of refer-
ence then sees a Doppler shifted frequency. We call this monochromatic ra-
diation the fundamental radiation or radiation at the fundamental frequency
of the undulator.

As the undulator field is increased, the transverse motion becomes stronger
and the transverse momentum starts to become relativistic. As a consequence,
the so far purely sinusoidal motion becomes periodically distorted causing
the appearance of harmonics of the fundamental monochromatic radiation.
These harmonics increase in number and density with further increase of the
magnetic field and, at higher frequencies, eventually merge into one broad
spectrum characteristic for wiggler or bending magnet radiation. At very low
frequencies, the theoretical spectrum is still a line spectrum showing the har-
monics of the revolution frequency. Of course, there is a low frequency cut-off
at wavelength comparable or longer than vacuum chamber dimensions which
therefore do not show-up as radiation.

An insertion device does not introduce a net deflection of the beam and
we may therefore choose any arbitrary field strength which is technically
feasible to adjust the radiation spectrum to experimental needs. The radiation
intensity from a wiggler magnet also can be made much higher compared to
that from a single bending magnet. A wiggler magnet with say ten poles acts
like a string of ten bending magnets or radiation sources aligned in a straight
line along the photon beam direction. The effective photon source is therefore
ten times more intense than the radiation from a single bending magnet with
the same field strength.

Wiggler magnets come in a variety of types with the flat wiggler magnet
being the most common. In this wiggler type only the component B, is
nonzero deflecting the beam in the horizontal plane. To generate circularly or
elliptically polarized radiation, a helical wiggler magnet [36] may be used or a
combination of several flat wiggler magnets deflecting the beam in orthogonal
planes which will be discussed in more detail in Section 10.3.2.

10.1 Periodic Magnetic Field

Wiggler magnets are generally designed as flat wiggler magnets [56] with
field components only in one plane or as helical wiggler magnets [36][57][58],
where the transverse field component rotates along the magnetic axis. In this
discussion, we concentrate on flat wigglers which are used widely to generate,
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for example, intense beams of synchrotron radiation from electron beams,
to manipulate beam parameters or to pump a free electron laser .

Whatever the application may be, the wiggler magnet deflects the electron
beam transversely in an alternating fashion without introducing an overall
net deflection on the beam. Wiggler magnets are generally considered to be
insertion devices , meaning they are not part of the basic magnet lattice
of the accelerator but are installed in a magnet free straight section of the
lattice. They can be turned on or off without aflecting the functioning of the
accelerator.

10.1.1 Periodic Field Configuration

To eliminate an overall effect of wiggler fields on the particle beam trajectory,
the integrated magnetic field along the axis of the whole magnet must be zero

/. 1 B, dz = 0. (10.1)
wiggler

Within this boundary condition we derive the general field configuration.
Since a wiggler magnet is a straight device, we use a fixed Cartesian coordi-
nate system (z,y,2) with the z-axis parallel to the wiggler axis to describe
the wiggler field. The origin of the coordinate system is placed in the middle
of one of the wiggler magnet poles. The whole magnet may be composed of
N equal and symmetric pole pieces placed along the z-axis at a distance \,/2
from pole center to pole center as depicted in Fig. 10.1. Each pair of adja-
cent wiggler poles forms one wiggler period with a length A, and the whole
magnet is composed of N, = %N periods. Since all periods are assumed to
be equal and the beam deflection is compensated within each period no net
beam deflection occurs for the complete magnet. At either end of the wiggler
magnet, we must have “hall poles® or “half fields“ to match the external
beam path.

We consider only periodic fields which can be expanded into a Fourier
series along the axis including a strong fundamental component with a period
length A, and higher harmonics expressed by the ansatz

By = By Y bana1(2,y) cos[(2n+ 1) k2], (10.2)
n=0
where the wave number &k, = 27/),. The ideal configuration depends on

the application. For the production of high brightness photon beams from
an undulator one would choose a pure sinusoidal variation of the field with
period X\, and no higher harmonics. In applications where only flux or high
photon energies are desired one would look for a magnet which exhibits some
flat field profile along 2 in each pole. Such a configuration would include many
harmonics as reflected in (10.2).
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The functions by, 1(2,y) describe the variation of the field amplitude or-
thogonal to the beam axis for the harmonic (2n + 1). The content of higher
harmonics is greatly influenced by the particular design of the wiggler mag-
net and the ratio of the period length to the pole gap aperture. For very
long periods relative to the pole aperture the field profile approaches that
of a hard-edge dipole field with a square field profile along the z-axis. For
very short periods compared to the pole aperture, on the other hand, we
find only a significant amplitude for the fundamental period and very small
perturbations due to higher harmonics.

We may derive the magnetic field from Maxwell’s equations based on
a sinusoidal field along the axis. Each field harmonic may be determined
separately due to the linear superposition of fields. To eliminate a depen-
dence of the magnetic field on the horizontal variable x we assume a pole
width which is large compared to the pole aperture in which case we may
set bonr1(x,y) = bap11(y). For the same reason and from symmetry B, = 0.
The fundamental field component (n = 0) can then be expressed by

By(y,2) = Bobi(y) coskpz. (10.3)

From Maxwell’s curl equation V x B = 0 we get %B?‘f = %BZE and with (10.3)

we have
OB, OB .
a—y = a—zy = —BO bl(y) ]Cp Sin ]CPZ. (104)
We have not yet determined the y-dependence of the amplitude function
b1(y). From VB = 0 and the independence of the field on the horizontal
position we get with (10.3)

=—B
0z 0 oy

08 kp2 . (10.5)

Forming the second derivatives 9 B,/(dy 9z) from (10.4) and (10.5) we get
for the amplitude function the differential equation

A%b
#Q(y) = kﬁ bi(y), (10.6)

which can be solved by the hyperbolic functions
bi(y) = a coshkpy + bsinhkyy. (10.7)

Since b1(0) = 1 and the magnetic field is symmetric with respect to y = 0
the coeflicients are & = 1 and b = 0. Collecting all partial results, the wiggler
magnet field is finally determined by the components

B, =0,
B, = Bycoshk,y cosk,z, (10.8)
B, = Bgpsinh k,y sink, z,
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where B, is obtained by integration of (10.4) with respect to y.

The hyperbolic dependence of the field amplitude on the vertical position
introduces higher-order field-errors which we determine by expanding the
hyperbolic functions

(kot)® | (o)t (Bpw)® | (pw)®
coshkpy = 1+ p2! + Z! + pﬁl + %1 + .. (10.9a)
: _ (ko) | (hpw)” | (Rpw) 7
sinhk,y = kpy + sl Tt - +on (10.9b)

Typically, the vertical gap in a wiggler magnet is smaller than the period
length or y < Ap. For larger apertures the field strength reduces drastically.
Due to the fast convergence of the series expansions only a few terms are re-
quired to obtain an accurate expression for the hyperbolic function within the
wiggler aperture. The expansion displays the higher-order field components
explicitly which, however, do not have the form of higher-order multipole
fields and we cannot treat these fields just like any other multipole perturba-
tion but must consider them separately.

To determine the path distortion due to the wiggler fields, we follow the
reference trajectory through one quarter period starting at a symmetry plane
in the middle of a pole. At the starting point 2 = 0 in the middle of a
wiggler pole, the beam direction is parallel to the reference trajectory and
the deflection angle at a downstream point 2 is given by

Hz) = w/ B,dz = wBocoshkpy/ cosk,zdz
P Jo 0

cp
1
= —%Bok— cosh kpy sink, 2 . (10.10)
P

The maximum deflection angle is equal to the deflection angle for a quarter
period or half a wiggler pole and is from (10.10) for y = 0 and kp2 = 7/2

— By —. 10.11
cp 9 ( )

This deflection angle is used to define the wiggler strength parameter

(10.12)

where m c? is the particle rest energy and + the particle energy in units of
the rest energy. In more practical units this strength parameter is

K =Cg By (T) Ay (cm) =~ By (T) A, (cm) , (10.13)
where

Cx = L‘BQ =0.93373 7 tem b . (10.14)
mc
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10.1.2 Particle Dynamics in a Periodic Field Magnet

Particle dynamics and resulting radiation characteristics for an undulator
have been derived first by Motz [56] and later in more detail by other au-
thors [59]-[60]. A sinusoidally varying vertical field causes a periodic deflection
of particles in the (x,z)-plane shown in Fig. 10.1. To describe the particle
trajectory, we use the equation of motion

n [

where 3 is the particle velocity and get with (10.3) the equations of motion
in component form

d’z eBy dz
T ~medt cos (ky2) , (10.16a)

d?z eBy dx
— = — k 10.16b
de? +'ymc dt cos (kp2) ( )

where we have set k, = 27/\, and d 2z = Bedt with 8 =v/c.

Equations (10.16) describe the coupled motion of a particle in the sinu-
soidal field of a flat wiggler magnet. This coupling is common to the par-
ticle motion in any magnetic field but generally in beam dynamics we set
dz/dt =~ v and dx/dt =~ 0 because dx/dt <« dz/dt. This approximation
is justified in most beam transport applications for relativistic particles, but
here we have to be cautious not to neglect effects that might be of relevance
on a very short time or small geometric scale comparable to the oscillation
period and wavelength of synchrotron radiation.

We will keep the dxz/di-term and get from (10.16a) with dz2/dt ~ v
and after integrating twice that the particle trajectory follows the magnetic
field in the sense that the oscillatory motion reaches a maximum where the
magnetic field reaches a maximum and crosses the beam axis where the field
is zero. We start at the time ¢ = 0 in the middle of a magnet pole where
the transverse velocity g = O while the longitudinal velocity 29 = B¢ and
integrate both equations (10.16) utilizing the integral of the first equation in
the second to get

d K
d_i =~ sin (7). (10.17a)
d K?

d_j =fe|1- 35 sin? (ky 2) | - (10.17b)

The transverse motion describes the expected oscillatory motion and the
longitudinal velocity v exhibits a periodic modulation reflecting the varying
projection of the velocity vector to the z-axis. Closer inspection of this veloc-
ity modulation shows that its frequency is twice that of the periodic motion.
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It is convenient to describe the longitudinal particle motion with respect to a
Cartesian reference frame moving uniformly along the z-axis with the average
longitudinal particle velocity ¢ = {Z) which can be derived from (10.17b)

B=80-4%). (10.18)

In this reference frame the particle follows a figure-of-eight trajectory
composed of the transverse oscillation and a longitudinal oscillation with
twice the frequency. We will come back to this point since both oscillations
contribute to the radiation spectrum. A second integration of (10.17b) results
finally in the equation of motion in component representation

K _
x(t) = — cos (k:p ﬁct) , (10.19a)
Vhyp
2(t) = Bet + K2 sin? (2k, B ct) (10.19b)
8')/2kp P b .

where we set 2 = Bct. The maximum amplitude a of the transverse particle
oscillation is finally from

K A K
o=—= .
vkp 27y

(10.20)

This last expression gives another simple relationship between the wiggler
strength parameter and the transverse displacement of the beam trajectory
Ap (em) K

=0.8133 E—~2— 10.21

a () s (10.21)

For general cases, this beam displacement is very small.

10.1.3 Focusing in a Wiggler Magnet

As mentioned earlier, a wiggler magnet should be transparent to the electron
beam which can be achieved only approximately. Every pole end generates
some Iringe fields which cause a focusing effect on the particle beam. In low
energy storage rings with strong superconducting wavelength shifters this
effect can be a major perturbation which requires significant compensation
in the ring lattice proper. A detailed derivation of such fringe fields and their
effect on the beam can be found in [45][46]. Here, we will only repeat some
of the more salient features and results.

The beam path in a wiggler magnet is generally not parallel to the ref-
erence trajectory 2z because of the transverse deflection in the wiggler field
following a periodic sinusoidal form along the reference path. For this reason,
the fringe field component B, appears to the particle partially as a trans-
verse field which varies linearly with y. Such a field term constitutes focusing
similar to that in a quadrupole with a strength for each wiggler pole end of



184 10. Insertion Device Radiation

1 Ap
- = ——k 10.22
Ty 8/0(% ( )

The focusing occurs in the vertical plane only assuming that the wiggler
magnet deflects the beam in the horizontal plane, and is positive and inde-
pendent of the sign of the deflection. For IV wiggler poles, we have 2V times
the focusing strength of each individual pole end and the focal length of the

total wiggler magnet of length L., = %N Ap expressed in units of the wiggler
strength parameter K becomes

iy € =

2

LK Ly . (10.23)

£y 292 P
Tacitly, a rectangular form of the wiggler poles has been assumed (Fig. 10.2)
and consistent with our sign convention we find that wiggler fringe fields
cause focusing in the nondeflecting plane. Within the approximation used,
there is no corresponding focusing effect in the deflecting plane. This is the
situation for most wiggler magnet poles except for the first and last half pole
where the beam enters the magnetic field normal to the pole face and no
focusing occurs.

X N 8 N S N S N

wiggler poles

Fig. 10.2. Wiggler magnet with parallel pole end-faces

A reason to possibly use wiggler magnets with rotated pole faces like
wedge magnets originates from the fact that the wiggler focusing is asymmet-
ric, not part of the lattice focusing and may therefore need to be compensated.
For moderately strong wiggler fields the asymmetric focusing in both planes
can be compensated by small adjustments of lattice quadrupoles. The fo-
cusing eflect of strong wiggler magnets, however, may generate a significant
perturbation of the lattice focusing structure or create a situation where no
stable solution for betatron functions exist. The severity of this problem can
be reduced by designing the wiggler poles as wedge magnets in such a way as
to split the focusing equally between both the horizontal and vertical plane
(Fig. 10.3). In this case, local correction can be applied efficiently in nearby
lattice or separate quadrupoles.
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wiggler poles

Fig. 10.3. Wiggler magnet with wedge shaped poles

The focal length of one half pole in the horizontal deflecting plane is from
[45], Sect. 5.3.2

1 _n+0

aiarat (10.24)

where the pole face rotation angle 77 has been assumed to be small and of the
order of the wiggler deflection angle per pole and § = K/ is the deflection
angle of a half pole. In the case of a rectangular wiggler pole = — and the
focusing in the deflecting plane vanishes as we would expect.

In the nondeflecting plane, equation (5.66) in [45] applies and the focal length
for small angles 77 and @ is

L _nxb_ 70 (10.25)
fy Pe APy

The focusing in each single wiggler pole is rather weak and we may apply
thin lens approximation to derive the transformation matrices. For this we
consider the focusing to occur in the middle of each wiggler pole with drift
spaces of length A,/4 on each side. With 2/ f being the focal length of a full
pole in either the horizontal plane (10.24) or the vertical plane (10.25) the
transformation matrix for each wiggler pole is finally

Mol = (é Ap1/4> <—21/f (1)> ((1) A131/4>

CAp A A 1
:(1 5?_220 /\Z?)>z< 21 5?}’) (10.26)
2 — ? ’
-2 132 /f
where the approximation A\, < f was used. For a wiggler magnet of length
Ly = %N Ap we have IV poles and the total transformation matrix is

Myiggler = MY - (10.27)
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This transformation matrix can be applied to each plane and any pole
rotation angle 7. Specifically, we set n = — K/~ for a rectangular pole cross
section and 7 = 0 for pole rotations orthogonal to the path like in sector
magnets.

10.1.4 Hard Edge Wiggler Model

Although the magnetic properties of wiggler magnets are well understood
and easy to apply it is nonetheless often desirable to derive the focusing
effects from hard-edge wiggler magnets. This is particularly true when special
numerical programs are to be used which are not designed to properly model
a sinusoidal wiggler field. We would like therefore to represent a sinusoidal
wiggler magnet by a constant field magnet, called a hard-edge model. On the
other hand, accurate field representation is important since frequently strong
wiggler magnets are to be inserted into a beam transport lattice.

For the proper representation of linear focusing properties of wiggler mag-
nets by a hard-edge model we require three conditions to be fulfilled. First,
the deflection angle for each hard-edge pole should be the same as that for
the real wiggler magnet. Second, the edge focusing must be the same. Third,
like any other bending magnet in an electron circular accelerator, a wiggler
magnet also contributes to quantum excitation and damping of beam emit-
tance and energy spread. The quantum excitation is in first approximation
proportional to the third power of the curvature while the damping scales
like the square of the curvature similar to focusing,.

We consider now a wiggler field

B(z) = B coskpz (10.28)

and try to model the field for a half pole with parallel endpoles by a hard-edge
magnet. The deflection angle of the hard-edge model of length ¢ and field B
must be the same as that for a wiggler half pole, or

¢ A
g b @/ B,(s)ds = —2e_ (10.29)
Ph CPo halfpole 27 Po

Here we use p), for the bending radius of the hard-edge model and p, for the
bending radius at the peak wiggler field B,. The edge focusing condition can
be expressed by

L % = %/ cos kpzdz = A—PQ (10.30)
f Ph o halfpole 8p0

Modeling a wiggler field by a single hard-edge magnet requires in linear beam
optics only two conditions to be met which can be done with the two available
parameters B(z) and ¢. From (10.29,10.30) we get therefore the hard-edge
magnet parameters (Fig. 10.4)
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4 2
pp=opo and by =5 A (10.31)
Vp——r actual wiggler field
‘ hard edge model
1/p,=r/4p
—1=2\ /A A
p p

Fig. 10.4. Hard edge model for a wiggler magnet pole

For a perfect modeling of the equilibrium energy spread and emittance
due to quantum excitation in electron storage rings we would also like the
cubic term to be the same

ghll
Py 0

A
/ cos® kprde = L. (10.32)
halfpole 3 Po

Since we have no more free parameters available, we can at this point only
estimate the mismatch. With (10.30,10.31) we get from (10.32) the inequality

=

T 32

which indicates that the quantum excitation from wiggler magnets is not
correctly treated although the error is only about 8%. Alternatively to the
choice of modeling conditions just made, one could decide that the quadratic
and cubic terms must be equal while the deflection angle is not constrained.
This would be a reasonable assumption since the total deflection angle of a
wiggler is compensated anyway. In this case the deflection angle would be
underestimated by about 8%. Where these mismatches are not significant,
the simple hard-edge model (10.32) can be applied. For more accuracy the

sinusoidal wiggler field must can be represented more accurately by splitting
each half-pole into a series of hard-edge magnets with.

10.2 Undulator Radiation

The physical process of undulator radiation is not different from the radia-
tion produced from a single bending magnet. However, the radiation received
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at great distances from the undulator exhibits special features which we will
discus in more detail. Basically, we observe an electron performing N, os-
cillations while passing through an undulator, where N, is the number of
undulator periods. The observed radiation spectrum is the Fourier transform
of the electron motion and therefore quasi-monochromatic with a finite line
width inversely proportional to the number of oscillations performed.

10.2.1 Fundamental Wavelength

Undulator radiation can also be viewed as a superposition of radiation fields
from N, sources yielding quasi-monochromatic radiation as a consequence of
interference. To see that, we observe the radiation at an angle © with respect
to the path of the electron as shown in Fig. 10.5.

Fig. 10.5. Interference of undulator radiation

The electron travels on its path at an average velocity given by (10.18)
and it takes the time

N Ap
T8 T B K @R)

to move along one undulator period. During that same time, the radiation
front proceeds a distance

(10.33)

)\P
Gl = K2/(47?)]

moving ahead of the particle since sy, > T¢f3. For constructive superposition
of radiation from all undulator periods, we require that the difference spn —
Ap cos ¥ be equal to an integer multiple of the wavelength A, or for small
observation angles ¥ < 1

Sph = TC =

(10.34)

Ap 192y, (10.35)

S T ey vee) R
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After some manipulations, we get with K?/9% < 1 and 3 ~ 1 for the k!
harmonic of the fundamental wavelength of radiation into and angle ¥

A
P (14 3K%++%0%) . (10.36)

pv—
FT o2k

From an infinitely long undulator, the radiation spectrum consists of spectral
lines at a wavelength determined by (10.36). In particular, we note that the
shortest wavelength is emitted into the forward direction while the radiation
at a finite angle ¥ appears red shifted by the Doppler effect. For an undulator
with a finite number of periods, the spectral lines are widened to a width of
about 1/N, or less as we will discuss in the next section.

10.2.2 Radiation Power

The radiation power is from (9.41)
P =2rome|B3 2, (10.37)

where * indicates quantities to be evaluated in the particle reference system.
We may use this expression in the particle system to calculate the total radi-
ated energy from an electron passing through an undulator. The transverse
particle acceleration is expressed by mv* = dp, /dt* = vdp, /dt where we
used t* =1t/ and inserting into (10.37) we get

7* (dp.\?
L3 <&> . (10.38)
mc dit

P =

wiro

The transverse momentum is determined by the particle deflection in the
undulator with a period length A, and is for a particle of momentum cpg

pL = psinwyl, (10.39)

where p = pof and w, = ckp, = 2r¢c/A,. The angle 8 = K/ is the maximum
deflection angle defined in (10.12). With these expressions and averaging over
one period, we get from (10.38) for the instantaneous radiation power from
a charge e traveling through an undulator

Posy = 3 coremc®y? K2E2 (10.40)

where 7. is the classical electron radius. The duration of the radiation pulse
is equal to the travel time through an undulator of length L, = A, N, and
the total radiated energy per electron is therefore

AE = $remc P K2 KL Ly (10.41)

In more practical units
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E?K? E%(GeV) K2
AE(eV) = Cu=—5— L, = 725.69(26—) Ly (m) (10.42)
AL 5 (cm)
with
An?r,
O, = ¢ = 72560 x 10720 - . (10.43)
3mc? eV

The average total undulator radiation power for an electron beam circulating
in a storage ring is then just the radiated energy (10.41) multiplied by the
number of particles IV}, in the beam and the revolution frequency or

Ly
Pug = 2rccmc®y* K2 k2 Ny 7 (10.44)
or
Pe (W) = 6.336 E*(GeV) B3 (kG) I(A) Ly(m), (10.45)

where I is the circulating electron beam current. The total angle integrated
radiation power from an undulator in a storage ring is proportional to the
square of the beam energy and maximum undulator field By and proportional
to the beam current and undulator length.

10.2.3 Spatial and Spectral Distribution

For bending magnet radiation, the particle dynamics is relatively simple be-
ing determined only by the particle velocity and the bending radius of the
magnet. In a wiggler magnet, the magnetic field parameters are different
from those in a constant field magnet and we will therefore derive again the
synchrotron radiation spectrum for the beam dynamics in a general wiggler
magnet. No special assumptions on magnetic field configurations have been
made to derive the radiation spectrum (9.89) and we can therefore use this
expression together with the appropriate beam dynamics to derive the radi-
ation spectrum from a wiggler magnet

2

2w mew? | T .
— = L Z‘C;‘) /n>< [nx Ble (=8 ag,| (10.46)
0y 7

The integrand in (10.46) can be evaluated from known particle dynamics in
a wiggler magnet noting that all quantities are to be taken at the retarded
time f.. The unit vector from the observer to the radiating particle is from
Fig. 10.6

n = —z cospsintd — y sinp sind? — z cos V. (10.47)

The exponent in (10.46) includes the term R/c = nR/c. We express again
the vector R from the observer to the particle by the constant vector r from
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-

Fig. 10.6. Particle trajectory and radiation geometry in a wiggler magnet

the origin of the coordinate system to the observer and the vector r, from
the coordinate origin to the particle for R = —r + 7, as shown in Fig. 10.6.

The r-term gives only a constant phase shift and can therefore be ig-
nored. The location vector 7, of the particle with respect to the origin of the
coordinate system is

ro(t,) = x(t,) &+ 2(t,) z

and with the solutions (10.19) we have

K _ 2
t) = — tr tr in(2wy, t. , 10.48
rolts) = g cos(wpt) o+ |Fet b g sin(opt) | 2, (1043)
where
wp = ky Be. (10.49)

The velocity vector finally is just the time derivative of (10.48)

2

K . - K
Bt.) = - B sin(wpt,)x+ 05 |1+ yoe] cos(2wpt,) | 2. (10.50)

We use these vector relations to evaluate the integrand in (10.46). First, we
express the triple vector product nx [n x 3] by its components and get with
(10.47, 10.50)
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K - K _
nx[nxBl=+=z [——ﬁ sin? 9 cos? ¢ coswpt, + — B sinwpt,
v v

2

- K
+0 <1 + e cos 2wptr> sin® cos® cos @}

K-
+y [——5 sin? 49 sin ¢ cos @ sin Wpty
Y

2

_ K
+3 <1 + e cos 2wptr> sin ¥ cos ¥ sin @} (10.51)

K-
+z [——ﬁ sin v cos ¥ cos ¢ cos wply
Y

2

- K
+5 <1 + 17 cos 2wptr> (008219 — 1) } .

This expression can be greatly simplified considering that the radiation
is emitted into only a very small angle ¥ < 1. Furthermore, we note that
the deflection due to the wiggler field is in most practical cases very small
and therefore K < v and # = 3 (1 - %22) = (. Finally, we carefully set

B = 1 where this term does not appear as a difference to unity. With this
and ignoring second order terms in ¢ and K/ we get from (10.51)

nx|[nxg@] = <6ﬁcos<p+ﬁ£sinwptr> x4+ BP9 sing y. (10.52)
Y

The vector product in the exponent of the exponential function is just the
product of (10.47) and (10.48)

1 Kp K23
-nr, (t.) = — g sin ¥ cos ¢ coswpt, — (5 i+ Tﬁ sin 2w, tr) cos .
c YWp 8y Wp

(10.53)

Employing again the approximation ? < 1 and keeping only linear terms we
get from (10.53)

1 . K39 23
t.+ Enrp(tr) =1.(1—0 cos?) — ’yfp oS (p oS Wply — m sin 2w, t, .
(10.54)
With (10.18) and cos ¥ ~2 1 — %192, the first term becomes
7 _ 1 17-2  A292) _ “p
1—Beost? = 5 (1+3K*++°0%) = =2, (10.55)

22 w1

where we have defined the fundamental wiggler frequency wqby
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2+?
W1 = Wp T 12 202 (1056)
1+ EK + v 9
or the fundamental wavelength of the radiation
A
A o= 2_72 (1+ 3 K2 ++20°) (10.57)

in full agreement with (10.36) . At this point, it is worth to remember that the
term § K2 becomes K* for a helical wiggler [36]. With (10.55), the complete
exponential term in (10.46) can be evaluated

—iw [t +Linr, ()] =
w K 619 w1 K 26 w1 .
Wply — —— —cosp coswpl, — —5 —sin2wyl, | .
w1 Wp 8v° wp
Equation (10.46) can be modified with these expressions into a form suitable
for integration by inserting (10.52) and (10.55) into (10.46) for

2w remew? —2
= —= 10.58
dwdf? 472 g ( )
o 2
K | . x
X Y cosp+ — sinwpty | ¢+ Psinpy| e dt|
Y
where

2
X = [—ii <wptr — K—ﬂ “r €Os ¢ coswpt, — % “r sin 2wy, tr>} .
w1 7 Wp 87" wp
We are now ready to perform the integration of (10.58) noticing that the
integration over all times can be simplified by separation into an integral
along the wiggler magnet alone and an integration over the rest of the time
while the particle is traveling in a field free space. We write symbolically

00 TNy [wy 00 7Ny Jwp
/: / (K#O)+/(K:0)— / (K =0). (10.59)
S —7 N, [wp —00 — 7Ny Jwp
First we evaluate the second integral for K = 0 which is of the form
7 27
ikwt
e"™rdt = — §(w),
4 g

where §(w) is the Dirac §-function. The value of the integral is nonzero only
for w = 0 in which case the factor w? in (10.58) causes the whole expression
to vanish. The second integral is therefore zero.
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The third integral has the same form as the second integral, but since the
integration is conducted only over the length of the wiggler magnet we get

TNy Jw . N,
i R 21N, Slng_fyg wi
e 'L, = P__1 e (10.60)
P EL R
—7mN, Jwp 277 wp

The value of this integral reaches a maximum of 27TgE for w — 0. From

(10.58) we note the coefficient of this integral to include the angle ¥ > 1/~
and the whole integral is therefore of the order or less than L,/(¢v), where
Ly = NpAp is the total length of the wiggler magnet. This value is in general
very small compared to the first integral and can therefore be neglected.
Actually, this statement is only partially true since the first integral, as we
will see, is a fast varying function of the radiation frequency with a distinct
line spectrum. Being, however, primarily interested in the peak intensities
of the spectrum we may indeed neglect the third integral. Only between
the spectral lines does the radiation intensity from the first integral become
so small that the third integral would be a relatively significant although
absolutely a small contribution.

To evaluate the first integral in (10.59) with K # 0 we follow Alferov [59]
and introduce with (10.56) the abbreviations

2K 30
_ 2K Dyhcosp (10.61a)
L+ 5K2 4429
K2 §
S = T b 5 (10.61b)
4(1+1K2 +420%)
and get from (10.58) the exponential functions in the form
efi #1 wptr ei ﬁ C coswpitr ei W&l S sin 2wty ) (1062)

The integral in the radiation power spectrum (10.58) has two distinct
forms, one where the integrand is just the exponential function multiplied by
a time independent factor while the other includes the sine function sinwt,
as a factor of the exponential function. To proceed further we replace the
exponential functions by an infinite sum of Bessel’s functions

pP=00
ey = N (k)€Y (10.63)
p=—00
and apply this identity to the first integral type in (10.58). Applying the

identity (10.63) also to the second and third exponential factors in (10.62),
we get with e?€0s? = asin(z+7/2) the product of the exponential functions
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oo oo
i == i " 1 : 1 H
e i ( oo wpte e C coswpitr oo S sin 2wptr> _ Z Z Jm(u) Jn(U) UL Ry wpts

?

(10.64)
where
R, = Lo n—2m,
w1
w
uw=—03_5, and (10.65)
w1
v = “ C.
w1

The time integration along the length of the wiggler magnet is straight for-
ward for this term since no other time dependent factors are involved and we
get

Ny /wp
e*l (W—17n72m> wpte dtr _

-7 N, Jwp

2rN, sinwTN, R,
TN, R,

(10.66)

Wp

In the second form of the integrand, we replace the trigonometric factor,
sinwpt,, by exponential functions and get with (10.66) integrals of the form

Ny /wp
sin wpt, e Rwwpte q ¢

—7Np /wp
TN, [wp
1 . . .
= —15 / (el wplr — e i wplr) gmiHuwpbqy, (10.67)
—7Np Jwp

. 7wN, sinwN, (R,+1) |, 7N, sinaN, (R, —1)

i
wp TN, (R, +1) wp TN, (Ry—1)

Both integrals (10.66) and (10.67) exhibit the character of multibeam in-
terference spectra well known from optical interference theory. The physical
interpretation here is that the radiation from the IV, wiggler periods con-
sists of NV, photon beamlets which have a specific phase relationship such
that the intensities are strongly reduced for all frequencies but a few specific
frequencies as determined by the Sigz—factors. The resulting line spectrum,
characteristic for undulator radiation, is the more pronounced the more peri-
ods or beamlets are available for interference. To get a more complete picture
of the interference pattern, we collect now all terms derived separately so far
and use them in (10.58) which becomes with (10.62)
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7Ng Jwp
42w _
dwd?

[(Ao + Arsinwpt, ) €+ By y]
Ny /wp

—1 = wyt i i i
xe Wy Wetr Glv cos wptr elwsin 2wpty dtr ,

where a = %ﬁwQ , Ag = Vcosp, A = %,and By = #sing. Introducing
the identity (10.62), the photon energy spectrum becomes

TN, /wp

2w

a0 = ° / [(Ao + Arsinwpt, ) &+ By yl
Ny /wp

% Z Z )eQWTL*lRUJPrdt

m=—o0 nN=—0C

and after integration with (10.66) and (10.67)

azw i 21N, sinTN, R,
— A Jm Jn ]2 7Tn P W
dwdf? N Z Z (u) Jn(v) e Wp TN, R,

m= n=
— 00 — 00

+a AIZZJ el (10.68)

= n—=
700 (o0}

i TN, [sin7N, (R, +1) . 7N, sin7N, (R, — 1)
i —i
2wy, TNy (R, +1) wp TN, (R, —1)
2
G 21N, sinTN, R
B Jm Jn iz 7TTL p-w
Ty ; ; (u) Jnfv) e Wp TNy R,

To determine the frequency and radiation intensity of the line maxima, we
simplify the double sum of Bessel’s functions by selecting only the most dom-
inant terms. The first and third sums in (10.68) show an intensity maximum
for R, = 0 at frequencies

w = (n+2m)w, (10.69)

and intensity maxima appear therefore at the frequency w; and harmonics
thereof. The transformation of a lower frequency to very high values has two
physical components. In the system of relativistic particles, the static mag-
netic field of the wiggler magnet appears Lorentz contracted by the factor +,
and particles passing through the wiggler magnet oscillate with the frequency
Ywp in its own system emitting radiation at that frequency. The observer in
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the laboratory system receives this radiation from a source moving with rel-
ativistic velocity and experiences therefore a Doppler shift by the factor 2+.
The wavelength of the radiation emitted in the forward direction, ¢ = 0,
from a weak wiggler magnet, K < 1, with the period length A, is therefore
reduced by the factor 2v2. In cases of a stronger wiggler magnet or when ob-
serving at a finite angle ¥, the wavelength is somewhat longer as one would
expect from higher order terms of the Doppler effect.

From (10.68) we determine two more dominant terms originating from
the second term for R, +£1 = 0 at frequencies

w=(n+2m-—1) w; (10.70a)
w=n+2m+1)wy, (10.70b)

respectively. The summation indices n» and m are arbitrary integers between
—o0 and co. Among all possible resonant terms we collect such terms which
contribute to the same harmonic & of the fundamental frequency w;. To
collect these dominant terms for the same harmonic we set w = wj, = kw;
where k is the harmonic number of the fundamental and express the index n
by k and m to get

from (10.69): n==k-—2m,
and from (10.70a): n=k—2m+1 (10.71)
and(10.70b):  n=Fk—2m—1.

Introducing these conditions into (10.68) all trigonometric factors assume the
form 3n(rle Awe/wi) oy o0

TNy Awg /w1
Ave _ @y (10.72)
W1 W1

and we get the photon energy spectrum of the k—th harmonic

A2Wi(w)  7e chzNgw_Q <sin7er Awk/w1>2

dag = U A
X | +z Ag Z I (1) kazm(v)ei%”(kﬂm)
FY By YD Tnlw) Jioa (o) €72 (10.73)
+1%$A1 Z Jm(u)Jk72m+1(0)ei%77(k*2m+1)
_oo 2

—ite Ay D T (u) Jpgmo (v) € T2

m=—o
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f(x)=sin(mNXx)/(7NXx)
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Fig. 10.7. ;—J”Viva;ﬁ distribution for N, =5 and N, = 100

All integrals exhibit the resonance character defining the locations of the
spectral lines. The (sinx/x)-terms are known from interference theory and
represents the line spectrum of the radiation. Specifically, the number NV, of
beamlets, here source points, determines the spectral purity of the radiation.
In Fig. 10.7 the (sinz/z)-function is shown for N, = 5 and N, = 100. It is
clear that the spectral purity improves greatly as the number of undulator
periods is increased. This is one of the key features of undulator magnets to
gain spectral purity by maximizing the number of undulator periods.

The spectral purity or line width is determined by the shape of the
(sinz/x)-function. We define the line width by the frequency at which
sinz/z = 0 or where mN, Awy, /w; = 7 defining the line width for the &'t
harmonic

Awk 1

S , (10.74)

Wr ]CNP

The spectral width of the undulator radiation is reduced proportional
to the number of undulator periods, but reduces also proportional to the
harmonic number.

The Bessel functions .J,,(u) etc. determine mainly the intensity of the
line spectrum. For an undulator with K < 1, the argument u o< K2 <
1 and the contributions of higher order Bessel’s functions are very small.
The radiation spectrum consists therefore only of the fundamental line. For
stronger undulators with K > 1, higher order Bessel’s functions grow and
higher harmonic radiation appears in the line spectrum of the radiation.

Summing over all harmonics of interest, one gets the total power spectrum.
In the third and fourth terms of (10.73) we use the identities ie™7/2 = F 1,
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I (u) €™ = J_,.(u) and abbreviate the sums of Bessel’s functions by the
symbols

le Z S () T2 (V) (10.75a)

22 = > T [Je2m 1(0) + Jr 2mpa(v)] . (10.75b)

The total number of photons Npn emitted into a spectral band width
Aw/w by a single electron moving through a wiggler magnet is finally with
Non () = W (w)/ ()

dNpn (W) 922 s Aw o, (sinTN, Awy/wy 2
a9 AN w ;k TN, Awy, /wy (10.76)

(2y9 3 cosp — K 22)2 x% + (299 >, sin <p)2 y?
(14 3K2 +429%)

X

?

where « is the fine structure constant and where we have kept the coordinate
unit vectors to keep track of the polarization modes. The vectors x and y
are orthogonal unit vectors indicating the directions of the electric field or
the polarization of the radiation. Performing the squares does therefore not
produce cross terms and the two terms in (10.76) with the expressions (10.75)
represent the amplitude factors for both polarization directions, the o-mode
and m-mode respectively.
We also made use of (10.72) and the resonance condition

2
w o ket Ao S G ol — (10.77)
Wp Wp Wp 1+L K2 4 429
realizing that the photon spectrum is determined by the (sin x/x)Q—function.
For not too few periods, this function is very small for frequencies away from
the resonance conditions.

Storage rings optimized for very small beam emittance are being used
as modern synchrotron radiation sources to reduce the line width of undu-
lator radiation and concentrate all radiation to the frequency desired. The
progress in this direction is demonstrated in the spectrum of Fig. 10.8 derived
from the first electron storage ring operated at a beam emittance below 10
nm at 7.1 GeV [61]. In Fig. 10.8 a measured undulator spectrum is shown
as a function of the undulator strength K [37]. For a strength parameter
K <« 1 there is only one line at the fundamental frequency. As the strength
parameter increases, additional lines appear in addition to being shifted to
lower frequencies. The spectral lines from a real synchrotron radiation source
are not infinitely narrow as (10.88) would suggest. Because of the finite size
of the pinhole opening, some light at small angles with respect to the axis
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passes through, and we observe therefore also some signal of the even order
harmonic radiation.

1.6 intensity (a.u.)

1.2
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0.4 K=0.515
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Fig. 10.8. Measured frequency spectrum from an undulator for different strength
parameters K [37]

Even for an extremely small pin hole, we would observe a similar spectrum
as shown in Fig. 10.8 because of the finite beam divergence of the electron
beam. The electrons follow oscillatory trajectories due not only to the undu-
lator field but also due to betatron oscillations. We observe therefore always
some radiation at a finite angle given by the particle trajectory with respect
to the undulator axis. Fig. 10.8 also demonstrates the fact that all experi-
mental circumstances must be included to meet theoretical expectations. The
amplitudes of the measured low energy spectrum is significantly suppressed
compared to theoretical expectations which is due to a Be-window being used
to extract the radiation from the ultra high vacuum chamber of the acceler-
ator. This material absorbs radiation significantly below a photon energy of
about 3 keV.
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While we observe a line spectrum expressed by the (sin x/x)2-function,
we also notice that this line spectrum is red shifted as we increase the ob-
servation angle ¥#. Only, when we observe the radiation though a very small
aperture, pin hole, do we actually see this line spectrum. Viewing the un-
dulator radiation through a large aperture integrates the linespectra over a
finite range of angles ¥ producing an almost continuous spectrum with small
spikes at the locations of the harmonic lines.

The difference between a pin hole undulator spectrum and an angle-
integrated spectrum becomes apparent from the experimental spectra shown
in Fig. 10.9 [61]. While the pin hole spectrum demonstrates well the line char-
acter of undulator radiation, much radiation appears between these spectral
lines as the pin hole is removed and radiation over a large solid angle is col-
lected by the detector. The pin hole undulator line spectrum shows up as
mere spikes on top of a broad continuous spectrum.

\ angle integrated spectrum

pin hole Y ‘/’\/
I
1 12.5 1

intensity (a.u.)

5

7.5
photon energy (keV)

Fig. 10.9. Actual radiation spectra from an undulator with a maximum field of
0.2 T and a beam energy of 7.1 GeV through a pin hole and angle-integrated after
removal of the pin hole [61]

The overall spatial intensity distribution includes a complex set of differ-
ent radiation lobes depending on frequency, emission angle and polarization.
In Fig. 10.10 the radiation intensity distributions described by the last factor
in (10.76)

I, = (299 Xy cos p — K 35)?
> (1L K2 4 429%)2

for the o-mode polarization and
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(2v9 Xy sin p)?
(1+1 K2 +29°)2

Iﬂ',k =

for the m-mode polarization are shown for the lowest order harmonics.

c-mode n-mode

1st harmonic

2nd harmonic

Fig. 10.10. Undulator radiation distribution in - and m-mode for the lowest order
harmonics
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We note clearly the strong forward lobe at the fundamental frequency in o-
mode while there is no emission in m-mode along the path of the particle. The
second harmonic radiation vanishes in the forward direction, an observation
that is true for all even harmonics. By inspection of (10.76), we note that
v = 0 for ¥ = 0 and the square bracket in (10.75b) vanishes for all odd
indices or for all even harmonics k. There is therefore no forward radiation
for even harmonics of the fundamental undulator frequency.

A contour plot of the first harmonic o-and m-mode radiation is shown in
Fig. 10.11. There is an slight asymmetry in the radiation distribution between
the deflecting and nondeflecting plane as one might expect. It is obvious that
the pin hole radiation is surrounded by many radiation lobes not only from
the first harmonics but also from higher harmonics compromising the pure

line spectrum for large apertures.

Fig. 10.11. Contour plot of the first harmonic o-mode (solid) and m-mode (dashed)
undulator radiation distribution

10.2.4 Line Spectrum

To exhibit other important and desirable features of the radiation spectrum
(10.76), we ignore the actual frequency distribution in the vicinity of the
harmonics and set Awp = 0 because the spectral lines are narrow for large
numbers of wiggler periods V. Further, we are interested for now only in the



204 10. Insertion Device Radiation

forward radiation where ©# = 0, keeping in mind that the radiation is mostly
emitted into a small angle (¢#) = 1/7.

There is no radiation for the m-mode in the forward direction and the only
contribution to the forward radiation comes from the second term in (10.76)
of the o-mode. From (10.65), we get for this case with w /w; = k

2

uy = % and vo = 0. (10.78)
The sums of Bessel’s functions simplify in this case greatly because only the
lowest order Bessel’s function has a nonvanishing value for vg = 0. In the
expression for X5, all summation terms vanish except for the two terms for
which the index is zero or for which

k—2m—1=0, or k—2m+1=0 (10.79)

and

Z Z Jom(¥) [Jr—2m-1(0) + Jp—2m+1(0)]

m=—o

= Jfé(kfl) (UO) + J,%(lﬂ_l)(uo) . (1080)

The harmonic condition (10.79) implies that & is an odd integer. For even
integers, the condition cannot be met as we would expect from earlier dis-
cussions on harmonic radiation in the forward direction. Using the identity
J_n = (=1)"J, and (10.78), we get finally with N, = W / fw the photon
flux per unit solid angle from a highly relativistic particle passing through
an undulator

deh (w)
ds?

: 2
_ oz'yQNQ Aw Z sin 7NV, Awp/wq o ]
9—0 w (14 1K2 (14 Lr2)? TN, Awp/wy ’

(10.81)

where the JJ—function is defined by

kK? kK?

The amplitudes of the harmonics are given by

k? K2 9
Ap(K) = ————= JJ°. 10.83

The strength parameter greatly determines the radiation intensity as
shown in Fig. 10.12 for the lowest order harmonics. For the convenience of
numerical calculations, Az (K) is tabulated for odd harmonics in Table 10.1.
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For weak magnets, K <« 1, the intensity increases with the square of the
magnet field or undulator strength parameter There is an optimum value for
the strength parameter for maximum photon flux depending on the harmonic
under consideration. In particular, radiation in the forward direction at the
fundamental frequency reaches a maximum photon flux for strength parame-
ters K =~ 1.3. The photon flux per unit solid angle increases like the square
of the number of wiggler periods IV,, which is a result of the interference
effect of many beams concentrating the radiation more and more into one
frequency and its harmonics as the number of interfering beams is increased.

AKK) =1 (,,7\ )
\\\ k=7
\ &

0.010

| HHH‘

0.001 \\\HH‘ I \\\HH‘ I \\\HH‘

20

0.1 10 ° " 100 ° g™ 1000

Fig. 10.12. Undulator radiation intensity Ax(K) in the forward direction as a
function of the strength parameter K for the six lowest order odd harmonics

The radiation opening angle is primarily determined by the (sinz/ x)2—
term. We define the rms opening angle for the &*" harmonic radiation by

¥, being the angle for which sinz/x = 0 for the first time. In this case,
2 2

2

Ju— e 3 f— 2 f—
=7 or N, Awp/wi = 1. With wy = wp—V—H_%KQ, wr = kwp—v—u%K%w?ﬁi and
Aw N, k292 .
2%k —p ke

ok = |k , we get e o 1 or after solving for ¥

1+ 4 K2
92 = — 2 (10.84)

72 (kNp —-1)

Assuming an undulator with many periods & IV, > 1, the rms opening angle
of undulator radiation is finally
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Table 10.1. Amplitudes A (K) for k =1,3,5,7,9,11

K Al A3 A5 A? AQ All

0.1 0.010 O 0 0
0.2 0.038 0 0 0
0.4 0.132 0.004 O 0

0.6 0.238 0.027 0.002 O

0.8 0.322 0.087 0.015 0.002
1.0 0.368 0.179 0.055 0.015 0.004 0.001
1.2 0.381 0.276 0.128 0.051 0.019 0.007
14 0.371 0.354 0.219 0.118 0.059 0.028
1.8 0.320 0.423 0.371 0.286 0.206 0.142
2.0 0.290 0.423 0413 0.354 0.285 0.220
5.0 0.071 0.071 0.139 0.188 0.228 0.290
10.0 0.019 0.037 0.051 0.064 0.075 0.085
20.0 0.005 0.010 0.013 0.016 0.019 0.022

1 [1+3K?
o= ey o [ 10.85
o =R O TR N, (10.85)

Radiation emitted into a solid angle defined by this opening angle

ocCoocoo
ocCoocoo

df) =2ro? (10.86)

is referred to as the forward radiation cone. The opening angle of undulator
radiation becomes more collimated as the number of periods and the order
of the harmonic increases. On the other hand, the radiation cone opens up
as the undulator strength K is increased. We may use this opening angle to
calculate the total photon intensity of the &** harmonic within a bandwidth

% into the forward cone

Aw K?
Ny (w =raN, — k——7—JJ?, 10.87
ph( k)l’&:O p Wi 1—0—%K2 ( )
where wy = kwi. The radiation spectrum from an undulator magnet into
the forward direction has been reduced to a simple form exhibiting the most
important characteristic parameters. Utilizing (10.83), the number of photons
emitted into a band width % from a single electron passing through an
undulator in the k—th harmonic is
Aw 1+ 1 K?
N (wi)|y_g = TN, — —2— A(K). (10.88)
Wr k
Equation (10.88) is to be multiplied by the number of particles in the elec-
tron beam to get the total photon intensity. In case of a storage ring, particles
circulate with a high revolution frequency and we get from (10.88) by mul-
tiplication with I /e, where I is the circulating beam current, the photon
flux



10.2 Undulator Radiation 207

d Npp (wr) _ TAw 1+3K?

A(K). 10.89
i e (03 (10.89)

The spectrum includes only odd harmonic since all even harmonics are
suppressed through the cancellation of Bessel’s functions.

10.2.5 Spectral Undulator Brightness

The spectral brightness of undulator radiation is defined as the photon density
in six-dimensional phase space

Nph(w)

B = .
) A2 0,0, 0,0y (dw/w)

(10.90)

In the laser community, this quantity is called the radiance while the term
spectral brightness is common in the synchrotron radiation community. The
maximum value of the brightness is limited by diffraction to

(4/X%)
dw/w -~

Biax = Npn (10.91)

The actual photon brightness is reduced from the diffraction limit due to
betatron motion of the particles, transverse beam oscillation in the undulator,
apparent source size on axis and under an oblique angle. All of these effects
tend to increase the source size and reduce brightness.

The particle beam cross section varies in general along the undulator. We
assume here for simplicity that the beam size varies symmetrically along the
undulator with a waist in its center. From beam dynamics it is then known
that, for example, the horizontal beam size varies like 0% = 0%0 + o’ 1?)0 82,
where o0 is the beam size at the waist, o, the divergence of the beam at
the waist and —%L <s< %L the distance from the waist. The average beam

size along the undulator length L is then

(03) = oFg+ 50t L2 (10.92)

Similarly, due to an oblique observation angle ¢ with respect to the (y, 2)-
plane or ¢ with respect to the (x, 2)-plane we get a further additive contri-
bution %ﬁL to the apparent beam size. Finally, the apparent source size is
widened by the transverse beam wiggle in the periodic undulator field. This
oscillation amplitude is from (10.20) a = A\, K / (277).

Collecting all contributions and adding them in quadrature, the total
effective beam-size parameters are given by
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07, =500 400, + (;sj) 2 + 5000 o L2+ 50712 (10.93a)
0% =10% 40l (10.93b)
0}, =500 +0py,+ (;ﬁ) 2 + 5000, L7+ U L2, (10.93c)
o, =Ltot 1ol ., (10.93d)

where the particle beam sizes can be expressed by the beam emittance and
betatron function as 02 = €, 0{)2 = ¢/, and the diffraction limited beam

parameters are 0, = \/A\/L, and 0, = VA L/(27).

10.3 Elliptical Polarization

During the discussion of bending magnet radiation in Chap. 9 and insertion
radiation in this chapter we noticed the appearance of two orthogonal compo-
nents of the radiation field which we identified with the o-mode and 7-mode
polarization. The m-mode radiation is observable only at a finite angle with
the plane defined by the particle trajectory and the acceleration force vector,
which is in general the horizontal plane. As we will see, both polarization
modes can, under certain circumstances, be out of phase giving rise to ellip-
tical polarization. In this section, we will shortly discuss such conditions.

10.3.1 Elliptical Polarization from Bending Magnet Radiation

The direction of the electric component of the radiation field is parallel to
the particle acceleration. Since radiation is the perturbation of electric field
lines from the charge at the retarded time to the observer, we must take into
account all apparent acceleration. To see this more clear, we assume an elec-
tron to travel counter clockwise on an orbit travelling from say a 12-o’clock
position to 9-o’clock and then 6-o’clock. Watching the particle in the plane
of deflection, the midplane, we notice only a horizontal acceleration which
is maximum at 9-o’clock. Radiation observed in the midplane is therefore
linearly polarized in the plane of deflection.

Now we observe the same electron at a small angle above the midplane.
Apart from the horizontal motion, we notice now also a vertical motion.
Since the electron follows pieces of a circle this vertical motion is not uniform
but exhibits acceleration. Specifically, at 12-o’clock the particle seems to be
accelerated only in the vertical direction (downward), horizontally it is in
uniform motion; at 9-o’clock the acceleration is only horizontal (towards 3-
o’clock) and the vertical motion is uniform; finally, at 6-o’clock the electron
is accelerated only in the vertical plane again (upward). Because light travels
faster than the electron, we observe radiation first coming from the 12-o’clock
position, then from 9-o’clock and finally from 6-o’clock. The polarization
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of this radiation pulse changes from downward to horizontal (left-right) to
upward which is what we call elliptical polarization where the polarization
vector rotates with time. Of course, in reality we do not observe radiation
from half the orbit, but only from a very short arc segment of angle +1/+.
Yet, even this short piece of the orbit has all the features just used to explain
elliptical polarization in a bending magnet.

If we observe the radiation at a small angle from below the midplane,
the sequence of accelerations is opposite, upward-horizontal (left-right)-
downward. The helicity of the polarization is therefore opposite for an ob-
server below or above the midplane. This qualitative discussion of elliptical
polarization must become obvious also in the formal derivation of the radi-
ation field. Closer inspection of the radiation field (9.105) from a bending
magnet

-1 V3e w . . ’719K/ (€)
E.(w) = mﬁw—cv(lﬂwzw) sign(1/p) Kg/3(§) e — 1 ﬁ Uy
(10.94)

shows that both polarization terms are 90° out of phase. As a consequence,
the combination of both terms does not just introduce a rotation of the polar-
ization direction but generates a time dependent rotation of the polarization
vector which we identify with circular or elliptical polarization. In this par-
ticular case, the polarization is elliptical since the m-mode radiation is always
weaker than the o-mode radiation. The field rotates in time just as expected
from the qualitative discussion above.

Vx
X  particle E X

/ trajectory 2 x Ez
B X B . B X
P P 3 1 2 3 t 1 2 3
1
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Fig. 10.13. Acceleration along an arc-segment of the particle trajectory in (a)
a bending magnet, (b) polarization as a function of time, and (c) radiation field
components as a function of time

We may quantify the polarization property considering that the electrical
field is proportional to the acceleration vector ,8 Observing radiation at an
angle with the horizontal plane, we note that the acceleration being normal to
the trajectory and in the midplane can be decomposed into two components
BI and ﬁz as shown in Fig. 10.13a.

The longitudinal acceleration component together with a finite observa-
tion angle ¥ gives rise to an apparent vertical acceleration with respect to
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the observation direction and the associated vertical electric field component
is

E, OCBy = nyﬁz—l—nznyﬁm

An additional component appears, if we observe the radiation also at an angle
with respect to the (x,y)-plane which we, however, ignore here for this discus-
sion. The components n,,n, are components of the observation unit vector
from the observer to the source with n, = —sin?. We observe radiation first
from an angle ¥ > 0. The horizontal and vertical radiation field components
as a function of time are shown in Fig. 10.13b. Both being proportional to
the acceleration (Fig. 10.13a), we observe a symmetric horizontal field F,
and an antisymmetric vertical field E,. The polarization vector (Fig. 10.13c)
therefore rotates with time in a counter clockwise direction giving rise to
elliptical polarization with lefthanded helicity. Observing the radiation from
below with ¥ < 0, the antisymmetric field switches sign and and the helicity
becomes righthanded. The visual discussion of the origin of elliptical polar-
ization of bending magnet radiation is in agreement with the mathematical
result (10.94) displaying the sign dependence of the m-mode component with
9.

o/0=0.001
"7"(;/ O r-mode

]
6 8 0 10

Fig. 10.14. Relative intensities of c—mode and m-mode radiation as a function of
vertical observation angle € for different photon energies

The intensities for both polarization modes are shown in Fig. 10.14 as a
function of the vertical observation angle 1 for different photon energies. Both
intensities are normalized to the forward intensity of the o-mode radiation.
From Fig. 10.14 it becomes obvious that circular polarization is approached
for large observation angles. At high photon energies both radiation lobes
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are confined to very small angles but expand to larger angle distributions for
photon energies much lower than the critical photon energy.

The elliptical polarization is left or right handed depending on whether
we observe the radiation from above or below the horizontal mid plane. Fur-
thermore, the helicity depends on the direction of deflection in the bending
magnet or the sign of the curvature, sign(1/p). By changing the sign of the
bending magnet field the helicity of the elliptical polarization can be reversed.
This is of no importance for radiation from a bending magnet since we cannot
change the field without loss of the particle beam but is of specific impor-
tance for elliptical polarization state of radiation from wiggler and undulator
magnets.

10.3.2 Elliptical Polarization from Periodic Insertion Devices

We apply the visual picture for the formation of elliptically polarized ra-
diation in a bending magnet to the periodic magnetic field of wiggler and
undulator magnets. The acceleration vectors and associated field vectors are
shown in Fig. 10.15a and b for one period, and, similar to the situation in
bending magnets, we do not expect any elliptical polarization in the mid
plane where ¥ = 0. Off the mid-plane, we observe now the radiation from a
positive and a negative pole. From each pole we get elliptical polarization but
the combination of lefthanded polarization from one pole with righthanded
polarization from the next pole leads to a cancellation of elliptical polarization
from periodic magnets (Fig. 10.15¢). In bending magnets, this cancellation
did not occur for lack of alternating deflection. Since there are generally an
equal number of positive and negative poles in a wiggler or undulator mag-
net the elliptical polarization is completely suppressed. Ordinary wiggler and
undulator magnets do not produce elliptically polarized radiation.

. . X
polarization vectors b.) c.)

Fig. 10.15. Acceleration vectors along one period of (a) a wiggler magnet, (b)
associated polarization vectors, and (c¢) corresponding radiation fields

Asymmetric wiggler magnet. The elimination of elliptical polarization in
periodic magnets results from a compensation of left and righthanded helicity
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and we may therefore look for an insertion device in which this symmetry is
broken. Such an insertion device is the asymmetric wiggler magnet which is
designed similar to a wavelength shifter with one strong central pole and two
weaker poles on either side such that the total integrated field vanishes or
f B, ds = 0. A series of such magnets may be aligned to produce an insertion
device with many poles to enhance the intensity. The compensation of both
helicities does not work anymore since the radiation depends on the magnetic
field and not on the total deflection angle. A permanent magnet rendition of
an asymmetric wiggler magnet is shown in Fig. 10.16
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permanent magnet blocks

Fig. 10.16. Asymmetric wiggler magnet

The degree of polarization from an asymmetric wiggler depends on the
desired photon energy. The critical photon energy is high for radiation from
the high field pole, €, and lower for radiation from the low field pole, €_ .
For high photon energies ¢, ~ ¢! the radiation from the low field poles is
negligible and the radiation is essentially the same as from a series of bending
magnets with its particular polarization characteristics. For lower photon
energies ¢, < ¢pn < €7 the radiation intensity from high and low field pole
become similar and cancellation of the elliptical polarization occurs. At low
photon energies ¢, < € the intensity from the low field poles exceeds that
from the high field poles and we observe again elliptical polarization although
with reversed helicity.

Elliptically polarizing undulator. The creation of elliptically and circu-
larly polarized radiation is important for a large class of experiments using
synchrotron radiation and special insertion devices have therefore been devel-
oped to meet such needs in an optimal way. Different approaches have been
suggested and realized as sources for elliptically polarized radiation, among
them for example, those described in refs. [62][63]. All methods are based on
permanent magnet technology, sometimes combined with electromagnets, to
produce vertical and horizontal fields shifted in phase such that elliptically
polarized radiation can be produced. Utilizing four rows of permanent mag-
nets which are movable with respect to each other and magnetized as shown
in Fig. 10.17, elliptically polarized radiation can be obtained.
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8
P

Fig. 10.17. Permanent magnet arrangement to produce elliptically polarized un-
dulator radiation [64]

Figure 10.18 shows the arrangement in a three dimensional rendition to
visualize the relative movement of the magnet rows [62][64].
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Fig. 10.18. 3-D view of an elliptically polarizing undulator, EPU [64]

The top as well as the bottom row of magnet poles are split into two
rows, each of which can be shifted with respect to each other. This way,
a continuous variation of elliptical polarization from left to linear to right
handed helicity can be obtained. By shifting the top magnet arrays with
respect to the bottom magnets the fundamental frequency of the undulator
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radiation can be varied as well. Figure 10.19 shows a photo of such a magnet

[63].

Fig. 10.19. Undulator for elliptically polarized radiation [63].

Exercises *

Exercise 10.1 (S). Consider an undulator magnet with a period length of
Ap =5 cm in a 7 GeV storage ring. The strength parameter be K = 1. What
is the maximum oscillation amplitude of an electron passing through this
undulator? What is the maximum longitudinal oscillation amplitude with
respect to the reference system moving with velocity 57

Exercise 10.2 (S). An undulator with 50 poles, a period length of A, =5
cm and a strength parameter of K = 1 is to be installed into a 1 GeV storage
ring. Calculate the focal length of the undulator magnet. Does the installation

* The argument (S) indicates an exercise for which a solution is given in
Appendix A.
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of this undulator require compensation of its focusing properties? How about
a wiggler magnet with K =57

Exercise 10.3 (S). Consider the expression (10.89) for the photon flux into
the forward cone. We also know that the band width of undulator radiation
scales like Aw/wy o< 1/N,. With this, the photon flux (10.89) becomes in-
dependent of the number of undulator periods!? Explain in words, why this
expression for the photon flux is indeed a correct scaling law.

Exercise 10.4 (S). A hybrid undulator is to be installed into a 7 GeV
storage ring to produce undulator radiation in a photon energy range of 4
keV to 15 keV. The maximum undulator field shall not exceed a value of
By < 2T at a gap aperture of 10 mm. The available photon flux in the
forward cone shall be at least 10% of the maximum flux within the whole
spectral range. Specify the undulator parameters and show that the required
photon energy range can be covered by changing the magnet gap only.

Exercise 10.5 (S). Consider an electron colliding head-on with a laser
beam. What is the wavelength of the laser as seen from the electron sys-
tem. Derive from this the wavelength of the “undulator® radiation in the
laboratory system.

Exercise 10.6 (S). An electron of energy 2 GeV performs transverse oscil-
lations in a wiggler magnet of strength K = 1.5 and period length A\, = 7.5
cm. Calculate the maximum transverse oscillation amplitude. What is the
maximum transverse velocity in units of ¢ during those oscillations. Define
and calculate a transverse relativistic factor v . Note, that for K 2 1 the
transverse relativistic effect becomes significant in the generation of harmonic
radiation..

Exercise 10.7 (S). Calculate for a 3 GeV electron beam the fundamental
photon energy (% = 0) for a 100 period-undulator with X = 1.0 and a period
length of Ay = 5 cm. What is the maximum angular acceptance angle ¥ of
the beam line, if the radiation spectrum is to be restricted to a bandwidth of

10%?

Exercise 10.8. Add to the purely sinusoidal field of an ideal undulator ad-
ditional terms (say 3-5), which would become necessary for a symmetric per-
turbation of the fundamental field, for example due to relativistic effects in
strong undulators or due to long poles. Solve the equations of motion in the
moving reference system (10.16a, 10.16b) . Which harmonics are involved in
the perturbation of the purely sinusoidal motion? Can you relate them to the
radiation spectrum in the laboratory system?

Exercise 10.9. The undulator radiation intensity is a function of the strength
parameter K. Find the strength parameter K for which the fundamental ra-

diation intensity is a maximum. Determine the range of K-values where the

intensity of the fundamental radiation is at least 10% of the maximum.
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Exercise 10.10. Verify the relative intensities of o-mode and w-mode radi-
ation in Fig. 10.15 for two quantitatively different pairs of observation angles
©# and photon energies €/¢..

Exercise 10.11. Design an asymmetric wiggler magnet assuming hard edge
fields and optimized for the production of elliptical polarized radiation at a
photon energy of your choice. Calculate and plot the photon flux of polarized
radiation in the vicinity of the optimum photon energy.

Exercise 10.12. Show from (10.76) that along the axis, # = 0, radiation is
emitted only in odd harmonics.

Exercise 10.13. Show from (10.73) that undulator radiation does not pro-
duce elliptically polarized radiation.

Exercise 10.14. Design a hybrid undulator for a 3 GeV storage ring to pro-
duce 4 keV to 15 keV photon radiation. Optimize the undulator parameters
such that this photon energy range can be covered with the highest flux pos-
sible and utilizing lower order harmonics (order 7 or less). Plot the radiation
spectrum that can be covered by changing the gap height of the undulator.

Exercise 10.15. Calculate the total undulator (N, = 50, A, = 4.5 cm, K =
1.0) radiation power from a 200 mA, 6 GeV electron beam. Pessimistically,
assume all radiation to come from a point source and be contained within
the central cone. Determine the power density at a distance of 15 m from
the source. Compare this power density with the maximum acceptable of
10 W/mm?. How can you reduce the power density, on say a mask, to the
acceptable value or below?

Exercise 10.16. Use the beam and undulator from Exercise 10.15 and esti-
mate the total radiation power into the forward cone alone. What percentage
of all radiation falls within the forward cone?
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