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Preface

This book covers the physical aspects of synchrotron radiation generation and
is designed as a textbook and reference for graduate students, teachers and
scientists utilizing synchrotron radiation. It is my hope that this text may
help especially students and young researchers entering this exciting field to
gain insight into the characteristics of synchrotron radiation.

Discovered in 1945, synchrotron radiation has become the source of pho-
tons from the infrared to hard x-rays for a large community of researchers in
basic and applied sciences. This process was particularly supported by the
development of electron accelerators for basic research in high energy physics.
Specifically, the development of the storage ring and associated technologies
resulted in the availability of high brightness photon beams far exceeding
other sources.

In this text, the physics of synchrotron radiation for a variety of magnets
is derived from first principles resulting in useful formulas for the practitioner.
Since the characteristics and quality of synchrotron radiation are intimately
connected with the accelerator and electron beam producing this radiation,
a short overview of relevant accelerator physics is included.

In the first four chapters radiation phenomena in general and synchrotron
radiation in particular are introduced based on more visual and basic phys-
ical concepts. Where exact formulas are required, we borrow results from
rigorous derivations in Chaps. 9 and 10. This way the physics of synchrotron
radiation can be discussed without extensive deviations into mathematical
manipulations, which can be quite elaborate although straightforward. The
consequence for the reade, of this dual approach to synchrotron radiation is
that, here and there, one will find some repetitive discussions, which the au-
thor hopes will provide easier reading and continuity in the train of thought.

Chapters 5 to 8 give an overview of beam dynamics in storage rings and
guidance for the optimization of a storage ring for synchrotron radiation pro-
duction. The theory of synchrotron radiation is derived rigorously in Chap.
9 and that of undulator or insertion device radiation in Chap. 10. Finally, in
Chap. 11 the physics of a free electron laser is discussed.

Each chapter includes a set of exercises. For those exercises which are
marked with the argument (S), solutions are provided in Appendix A. In
support of the practitioner utilizing synchrotron radiation most relevant for-



VIII Preface

mulas together with useful mathematical and physical formulas and constants
are compiled in Appendices B - D.

The author would like to thank the editorial stafl at Springer Verlag and
especially Drs. H. Lotsch and C. Ascheron for suggesting the writing of this
book. The trained eyes of Dr. A. Lahee and Mrs. Dimler contributed much to
minimize typographical errors and to greatly improve the overall appearance
of the book. Special thanks goes to Professors J. Dorfan and K. Hodgson at
Stanford University for granting a sabbatical and to Professor T. Vilaithong
at the Chiang Mai University in Thailand for providing a quiet and peaceful
environment during the final stages of writing this book.

Chiang Mai, Helmut Wiedemann
December 2, 2001



Contents

1. Chargesand Fields ......... ... ... ... ... ... ... . ... ........ 1
1.1 Radiation from Moving Charges . ......................... 1
1.1.1 Why do Charged Particles Radiate? ................ 2
1.1.2 Spontaneous Synchrotron Radiation ................ 2
1.1.3 Stimulated Radiation ............................. 4
1.1.4 Electron Beam . .......... ... ... . . .. 5

1.2 Maxwell’'s Equations .......... ... . i i, 6
1.2.1 Conversion from cgs to MKS Units ................. 6
1.2.2 Torentz Force ......... . ... i, 8

1.3 The Lorentz Transformations ............................ 10
1.3.1 Lorentz Transformation of Coordinates.............. 11
1.3.2 Energy and Momentum ........................... 13
BXErCISES . . vt e 14
2. Fundamental Processes ............ ... ... ... . i 17
2.1 Conservation Laws and Radiation ........................ 17
2.1.1 Cherenkov Radiation ............................. 18
2.1.2 Compton Radiation............................... 19

2.2 The Poynting Vector .. ......... ..., 20
2.3 Electromagnetic Radiation.............. ... ... . ... .... 21
2.3.1 Coulomb Regime ..............cciiiiiiiinan.... 22
2.3.2 Radiation Regime ........... .. ... .. .. .. .. 23

2.4 Spatial and Spectral Properties of Radiation ............... 26
BXErCISES . . vt e 28
3. Overview of Synchrotron Radiation....................... 31
3.1 Radiation Power ......... ... . .. . 32
3.2 OPECUIUIL. . vttt e e e 36
3.3 Spatial Photon Distribution............... ... ... ... .. 41
3.4 Fraunhofer Diffraction ................ .. ... ... ... ..... 42
3.5 Spatial Coherence ............o ittt 45
3.6 Temporal Coherence .............. i, 47
3.7 Spectral Brightness ........ .. ... .. i 50

371 Matching....... ... . i 51



Contents

BXErCISES . . vt e 53
Radiation Sources ........ ... .. ... L i 55
4.1 Bending Magnet Radiation ................. ... ... ... ... 55
4.2 Superbends ... ... 56
4.3 Wavelength Shifter ........ ... .. ... 57
4.4 Wiggler Magnet Radiation.................. ... ... ... ... 58
4.5 Undulator Radiation .. .......... ... ... . .. ... . ... 62
4.6 Back Scattered Photons . ............coiiiiiiniinin.. 68
46.1 Photon Flux ......... .. . . . i, 68
Exercises. . ... o 70
Accelerator Physics. .. ... ... .. .. ... .. . ... ... 73
Exercises. . ... o 76
Particle Beam Optics ........ . ... . . i 77
6.1 Deflection in Bending Magnets . ........... ... ... ... 77
6.2 Beam Focusing............ .. ... i i 79
6.2.1 Principle of Focusing ............... ... 80
6.2.2 Quadrupol Magnet .................ciiviiinin.... 80
6.3 Equation of Motion . ......... ... ... i, 82
6.3.1 Solutions of the Equations of Motion................ 84
6.3.2 Matrix Formalism ........... .. ... .. .. . ... 84
6.3.3 FODO Lattice ........voiiiiiii i 85
6.4 Betatron Function ......... .. ... .. ... .. . . 86
6.4.1 Betatron Phaseand Tune ......................... 87
6.4.2 Beam Envelope ........... .. .. i 88
6.5 Phase Ellipse ....... . 88
6.6 Beam Emittance ........... .. .. . . . . 89
6.6.1 Variation of the Phase Ellipse . . .................... 90
6.6.2 Transformation of Phase Ellipse .................... 91
6.7 Dispersion Function ......... ... . ... ... . L 92
6.8 Periodic Lattice Functions .............. ... ... . ... .... 93
6.8.1 DPeriodic Betatron Function in a FODO Lattice. .. .... 93
6.8.2 Periodic Dispersion or 7-Function .................. 95
6.83 Beam Size...........ciiiiiii 95
BXErCISES . . vt e 96
Radiation Effects .......... ... ... .. ... ... ... . ... 99
7.1 Synchrotron Oscillations. .. ........ ... ... i, 99
7.1.1 Longitudinal Phase Space Motion .................. 103
7.2 Damping . ....c.vtii e 104
7.3 Quantum Effects ....... ... .. . 105
7.4 Equilibrium Beam Parameters ................. ... ... .. 106

7.4.1 Equilibrium Energy Spread ........................ 106



10.

Contents XI

742 Bunch Length........... ... . ... . . ... . ... .. 107
7.4.3 Horizontal Beam Emittance ....................... 108
7.4.4 Vertical Beam Emittance .......................... 109
7.5 'Transverse Beam Parameters............................. 110
7.5.1 Beam SizZes .. ... 111
7.5.2 Beam Divergence........... ... .. . . i 112
7.6 Beam Emittance and Wiggler Magnets .................... 112
7.6.1 Damping Wigglers.......... ... ... i, 115
7.6.2 Variation of the Damping Distribution .............. 117
7.6.3 Can we Eliminate the Beam Energy Spread?......... 119
7.7 Photon Source Parameters.................. ... i, 121
BXErCISES . . vt e 122

Storage Ring Design

as a Synchrotron Light Source ............................ 125
8.1 Storage Ring Lattices ........... ... i, 126
8.1.1 FODO Lattice .......vvuniiiiiiii i, 126
8.2 Optimization of a Storage Ring Lattice.................... 127
8.2.1 Minimum Beam Emittance ........................ 128
8.2.2 The Double Bend Achromat (dba) Lattice ........... 131
8.2.3 The Triple Bend Achromat (tba) Lattice ............ 134
8.2.4 Limiting Effects .......... ... .. ... .. . i 134
Theory of Synchrotron Radiation ......................... 137
9.1 Radiation Field ........ .. .. .. . . . 137
9.2 Total Radiation Power and Energy Loss ................... 144
9.2.1 Transition Radiation.............. ... ... . ... ... 144
9.2.2  Synchrotron Radiation Power ...................... 147
9.3 Radiation Lobes......... ... ... . i 150
9.4 Synchrotron Radiation Spectrum ......................... 155
9.5 Radiation Field in the Frequency Domain ................. 155
9.5.1 Spectral Distribution in Space and Polarization ...... 160
9.5.2 Spectral and Spatial Photon Flux .................. 163
9.5.3 Harmonic Representation.......................... 165
9.6 Spatial Radiation Power Distribution ..................... 165
9.6.1 Asymptotic Solutions ......... ... ... ... i 167
9.7 Angle-Integrated Spectrum ........... ... ... ... .. 168
9.7.1 Statistical Radiation Parameters ................... 174
Exercises. . ... o 176
Insertion Device Radiation .......... ... ... .. ... ... .. 177
10.1 Periodic Magnetic Field ............ . .. .. ... ... ... 178
10.1.1 Periodic Field Configuration ....................... 179
10.1.2 Particle Dynamics in a Periodic Field Magnet ........ 182

10.1.3 Focusing in a Wiggler Magnet ..................... 183



XII

11.

Contents
10.1.4 Hard Edge Wiggler Model ......................... 186
10.2 Undulator Radiation .. .......... ... ... . . it 187
10.2.1 Fundamental Wavelength.......................... 188
10.2.2 Radiation Power ....... ... ... ... . .. 189
10.2.3 Spatial and Spectral Distribution................... 190
10.2.4 Line Spectrum ... ..ottt 203
10.2.5 Spectral Undulator Brightness ..................... 207
10.3 Elliptical Polarization ............. ... ... . ... . ... 208

10.3.1 Elliptical Polarization from Bending Magnet Radiation 208
10.3.2 Elliptical Polarization from Periodic Insertion Devices. 211

Exercises. ... o e 214
Free Electron Lasers . ... ... ... . ... . ... ... ... .. ....... 217
11.1 Small Gain FEL .. ... o i e e 220

11.1.1 Energy Transfer ....... ... .. . i, 220

11.1.2 Equation of Motion .. ......... ... iiiiininnin.. 222

11.1.3 FEL-Gain .. ..ot e i 225
Exercises. ... o e 230
Solutions to Exercises ........... ... ... ... ... .. ... . ... ..... 231
Mathematical Constants and Formulas ................... 243
B.l Constants .....vuriiti i e 243
B.2 Series EXpansions ............ouiriiiiiniiii, 243
B.3 Multiple Vector Products . .......... ... . ... .. oot 244
B.4 Differential Vector Expressions . ...........covvriinen.... 244
B.5 Theorems ......... . 245
B.6 Coordinate Systems. ... ...t 245
B.7 Gaussian Distribution ... .......... it 247
B.8 Miscelaneous Mathematical Formulas ..................... 248
Physical Formulas and Parameters........................ 251
C.l Constants .. .ovut it e e 251
C.2 Unit Conversion .. .......uiviutet i, 252
C.3 Relations of Fundamental Parameters . .................... 253
C.4 Energy Conversion . ...........ouuuuiirereinennnnunanain. 253
C.5 Maxwell’s Equations . ..., 253

C.5.1 Lorentz Force ........oovuiuin i, 253
C.6 Wave and Field Equations . .. ..., 254
C.7 Relativistic Relations ............. i, 254
C.8 FoUI-VeCtors . o oottt ettt e e e e e e 255



Contents XIII

D. Electromagnetic Radiation......... ... ... ... ... ... ..., 257
D.1 Radiation Constants ............covtiiirnir e 257
D.2 Bending Magnet Radiation ................. ... .. ... ... 258
D.3 Periodic Insertion Devices ........... ... .. .. ..., 261

D.3.1 Insertion Device Parameter ........................ 261

D.3.2 Field Scaling for Hybrid Wiggler Magnets ........... 262

D.3.3 Particle Beam Parameter .......................... 262

D.4 Undulator Radiation ............... ... .. ... ... 263
D.5 Photon Beam Brightness ............ ... . .. ... ... ... ... 265
D.5.1 Effective Source Parameter ........................ 265
References .. .......... .. .. . . . e 267



1. Charges and Fields

Ever since J.C. Maxwell formulated his unifying electromagnetic theory in
1873, the phenomenon of electromagnetic radiation has fascinated the minds
of theorists as well as experimentalists. The idea of displacement currents
was as radical as it was important to describe electromagnetic waves. It was
only fourteen years later when G. Hertz in 1887 succeeded to generate, emit
and receive again electromagnetic waves, thus, proving experimentally the
existence of such waves as predicted by Maxwell’s equations. The sources
of the radiation are oscillating electric charges and currents in a system of
metallic wires. In this text, we discuss the generation of electromagnetic ra-
diation emitted by free electrons from first principles involving energy and
momentum conservation as well as Maxwell’s equations.

1.1 Radiation from Moving Charges

Analytical formulation of the emission of electromagnetic radiation posed a
considerable challenge. Due to the finite speed of light one cannot make a
snapshot to correlate the radiation field at the observer with the position
of radiating charges. Rather, the radiation field depends on the position of
the radiating charges some time earlier, at the retarded time, when the ra-
diation was emitted. Already 1867 L. Lorenz included this situation into
his formulation of the theory of electromagnetic fields and introduced the
concept of retarded potentials. He did, however, not offer a solution to the
retarded potentials of a point charge. Liénard [1] in 1898 and independently
in 1900 Wiechert [2] derived for the first time expressions for retarded po-
tentials of point charges like electrons. These potentials are now called the
Liénard-Wiechert potentials relating the scalar and vector potential of elec-
tromagnetic fields at the observation point to the location of the emitting
charges and currents at the time of emission. Using these potentials, Lié-
nard was able to calculate the energy lost by electrons while circulating in a
homogenous magnetic field.

In 1907 [3, 4] and 1912 [5] Schott formulated and published his classical
theory of radiation from an orbiting electron. He was primarily interested
in the spectral distribution of radiation and hoped to find an explanation
for atomic radiation spectra. Verifying Liénard’s conclusion on the energy
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loss, he derived the angular and spectral distribution and the polarization of
radiation. Since this classical approach to explain atomic spectra was destined
to fail, his paper was forgotten and only forty years later were many of his
findings rediscovered.

1.1.1 Why do Charged Particles Radiate?

Before we dive into the theory of electromagnetic radiation in more detail we
may first ask ourselves why do charged particles radiate at all? Emission of
electromagnetic radiation from charged particle beams (microwaves or syn-
chrotron radiation) is a direct consequence of the finite velocity of light. A
charged particle in uniform motion through vacuum is the source of elec-
tric field lines emanating from the charge radially out to infinity. While the
charged particle is at rest or moving uniformly these field lines also are at
rest or in uniform motion together with the particle. Now, we consider a
particle being suddenly accelerated for a short time. That means the field
lines should also be accelerated. The fact that the particle has been acceler-
ated is, however, still known only within the event horizon in a limited area
close to the particle. The signal of acceleration travels away from the source
(particle) only at the finite speed of light. Field lines close to the charged par-
ticle are directed radially toward the particle, but far away, the field lines still
point to the location where the particle would be had it not been accelerated.
Somewhere between those two regimes the field lines are distorted and it is
this distortion travelling away from the particle at the speed of light what
we call electromagnetic radiation. The magnitude of these field distortions is
proportional to the acceleration.

In a linear accelerator, for example, electrons are accelerated along the
linac axis and therefore radiate. The degree of actual acceleration, however,
is very low because electrons in a linear accelerator travel close to the velocity
of light. The closer the particle velocity is to the velocity of light the smaller is
the actual acceleration gained from a given force, and the radiation intensity
is very small. In a circular accelerator like a synchrotron , on the other hand,
particles are deflected transversely to their direction of motion by magnetic
fields. Orthogonal acceleration or the rate of change in transverse velocity
is very large because the transverse particle velocity can increase from zero
to very large values in a very short time while passing through the magnetic
field. Consequently, the emitted radiation intensity is very large. Synchrotron
radiation sources come therefore generally in form of circular synchrotrons.
Linear accelerators can be the source of intense synchrotron radiation in
conjunction with a transversely deflecting magnet.

1.1.2 Spontaneous Synchrotron Radiation

Charged particles do not radiate while in uniform motion, but during accel-
eration a rearrangement of its electric fields is required and this field per-
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turbation, traveling away from the charge at the velocity of light, is what
we observe as electromagnetic radiation. Free accelerated electrons radiate
similarly to those in a radio antenna, although now the source (antenna) is
moving. Radiation from a fast moving particle source appears to the observer
in the laboratory as being all emitted in the general direction of motion of
the particle. This forward collimation is particularly effective for highly rel-
ativistic electrons where most of the radiation is concentrated into a small
cone around the forward direction with an opening angle of 1/, typically 0.1
to 1 mrad, where v is the particle energy in units of its rest mass.

Radiation can be produced by magnetic deflection in a variety of ways.
Whether it be a single kick-like deflection or a periodic right-left deflection,
the radiation characteristics reflect the particular mode of deflection. Specific
radiation characteristics can be gained through specific modes of deflections.
Here, we will only shortly address the main processes of radiation generation
and come back later for a much more detailled discussion of the physical
dynamics.

In an undulator the electron beam is periodically deflected transversely
to its direction of motion by weak sinusoidally varying magnetic fields, gen-
erating periodic perturbations of the electric field lines. A receiving electric
field detector recognizes a periodic variation of the transverse electromag-
netic field components and interprets this as quasi monochromatic radiation.
In everyday life periodic acceleration of electrons occurs in radio and TV
antennas and we may receive these periodic field perturbations with a ra-
dio or TV receiver tuned to the frequency of the periodic electron motion in
the emitting antenna. The fact that we consider relativistic electrons is not
fundamental, but we restrict ourselves in this text to high energy electrons
only.

To the particle the wavelength of the emitted radiation is equal to the
undulator period length ()\,) divided by < due to relativistic Lorentz con-
traction. In a stationary laboratory system, this wavelength appears to the
observer further reduced by another factor 2y due to the Doppler effect.
The undulator period length of the order of centimeters is thus reduced by
a factor 2 (10°-10%) to yield short wavelength radiation in the VUV and
x-ray regime. The spectral resolution of the radiation is proportional to the
number of undulator periods N, and its wavelength can be shifted by vary-
ing the magnetic field. Most radiation is emitted within the small angle of
CAVAN I

Increasing the magnetic field strength causes the pure sinusoidal trans-
verse motion of electrons in an undulator to become distorted due to relativis-
tic effects generating higher harmonic perturbations of the electron trajec-
tory. Consequently, the monochromatic undulator spectrum exhibits higher
harmonics and changes into a line spectrum. For very strong fields, many
harmonics are generated which eventually merge into a continuous spectrum
from IR to hard x-rays. In this extreme, we call the source magnet a wig-
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gler magnet. The spectral intensity varies little over a broad wavelength range
and drops off exponentially at photon energies higher than the critical photon
energy, €ui; o< B2, Changing the magnetic field, one may vary the critical
photon energy to suit experimental requirements. Compared to bending mag-
net radiation, wiggler radiation is enhanced by the number of magnet poles
N, and is well collimated within an angle of 1/« to say 10/, or a few mrad.

A bending magnet is technically the most simple radiation source. Ra-
diation is emitted tangentially to the orbit similar to a search light while
well collimated in the non-deflecting, or vertical plane. The observer at the
experimental station sees radiation from only a small fraction of the circular
path which can be described as a piece of a distorted sinusoidal motion. The
radiation spectrum is therefore similar to that of a wiggler magnet while the
intensity is due to only one pole. Because bending magnets define the geom-
etry of the electron beam transport system or accelerator, it is not possible
to freely choose the field strength and the critical photon energy is therefore
fixed. Sometimes, specially in lower energy storage rings, it is desirable to ex-
tend the radiation spectrum to higher photon energies into the x-ray regime.
This can be accomplished by replacing one or more conventional bending
magnet with a superconducting magnet, or superbends, at much higher field
strength. To preserve the ring geometry the length of these superbends must
be chosen such that the deflection angle is the same as it was for the conven-
tional magnet that has been replaced. Again, superbends are part of the ring
geometry and therefore the field cannot be changed.

A more flexible version of a radiation hardening magnet is the wavelength
shifter. This is a magnet which consists of a high field central pole and two
weaker outside poles to compensate the deflection by the central pole. The
total deflection angle is zero and therefore the field strength can be chosen
freely to adjust the critical photon energy. It’s design is mostly based on
superconducting magnet technology, particularly in low energy accelerators,
to extend (shift) the critical photon energy available from bending magnets
to higher values.

A variety of more complicated magnetic field arrangements have been
developed to primarily generate circularly or elliptically polarized radiation.
In such magnets horizontal as well as vertical magnetic fields are sequentially
employed to deflect electrons into some sort of helical motion giving raise to
the desired polarization effect.

1.1.3 Stimulated Radiation

The well defined time structure and frequency of undulator radiation can be
used to stimulate the emission of even more radiation. In an optical kiystron
[6] coherent radiation with a wavelength equal to the fundamental undulator
wavelength enters an undulator together with the electron beam. Since the
electron bunch length is much longer than the radiation wavelength, some
electrons loose energy to the radiation field and some electrons gain energy
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from the radiation field while interacting with the radiation field. This en-
ergy modulation can be transformed into a density modulation by passing
the modulated electron beam through a dispersive section. This section con-
sists of deflecting magnetic fields arranged in such a way that the total path
length through the dispersive section depends on the electron energy. The pe-
riodic energy modulation of the electron bunch then converts into a periodic
density modulation. Now we have microbunches at a distance of the undula-
tor radiation wavelength. This microbunched beam travels through a second
undulator where again particles can loose or gain energy from the radiation
field. Due to the microbunching, however, all particles are concentrated at
phases where there is only energy transfer from the particle to the radiation
field, thus providing a high gain of radiation intensity.

In a more efficient variation of this principle, radiation emitted by elec-
trons passing through an undulator is recycled by optical mirrors in such a
way that it passes through the same undulator again together with another
electron bunch. The external field stimulates more emission of radiation from
the electrons, and is again is recycled to stimulate a subsequent electron
bunch until there are no more bunches in the electron pulse. Generating
from a linear accelerator a train of thousands of electron bunches one can
generate a large number of interactions, leading to an exponential grows of
electromagnetic radiation. Such a devise is called a free electron laser, FEL.

1.1.4 Electron Beam

In this text we consider radiation from relativistic electron beams. Such
beams can be generated efficiently by acceleration in microwave fields. The
oscillatory nature of microwaves makes it impossible to produce a uniform
stream of particles, and the electron beam is modulated into bunches at the
distance of the microwave wavelength. Typically the bunch length is a few
percent of the wavelength. The circumference of the storage ring must be an
integer multiple, the harmonic number, of the rf-wavelength. The rf-system
actually provides potential wells, rf-buckets, which rotate around the ring.
These buckets may or may not be filled with electrons and those electrons
contained in a bucket are said to form an electron bunch. With special equip-
ment in the injector it is possible to store any arbitrary pattern of electron
bunches consistent with the equidistant distribution of the finite number of
buckets equal to the harmonic number. Specifically, it is possible to operate
the storage ring with all buckets filled or with just a single bunch or only
a few bunches. The bunched nature of the electron beam and the fact that
these bunches circulate in a storage ring determines the time structure and
spectrum of the emitted radiation. Typically, the bunch length in storage
rings is 30-100 ps at a distance of 2-3 ns depending on the rf-frequency.
During the storage time of the particle beam, the electrons radiate and
it is this radiation that is extracted and used in experiments of basic and
applied research. Considering, for example, only one bunch rotating in the
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storage ring, the experimenter would observe a light flash at a frequency
equal to the revolution frequency f..,. Because of the extremely short dura-
tion of the light flash many harmonics of the revolution frequency appear in
the light spectrum. At the low frequency end of this spectrum, however, no
radiation can be emitted for wavelength longer than about the dimensions of
the metallic vacuum chamber surrounding the electron beam. For long wave-
lengths the metallic boundary conditions for electromagnetic fields cannot be
met prohibiting the emission of radiation. Practically, useful radiation is ob-
served from storage rings only for wavelengths below the microwave regime,
or for A £ 1 mm.

1.2 Maxwell’s Equations

Radiation theory deals largely with the description of charged particle dy-
namics in the presence of external electromagnetic fields or of fields generated
by other charged particles. We use Maxwell’s equations in a vacuum or mate-
rial environment with uniform permittivity € and permeability p to describe
these fields. Furthermore, the Lorentz force provides the tool to formulate
particle dynamics under the influence of these electromagnetic fields?.

47
VE = — 1.1
e e " (L.1)
VB =0, (1.2)
Faraday’s law :
[c] oB
VXE=—-——— 1.3
x e (1.3)
Ampére’s law :
At 1 ¢ € i, OF
Y x B == || ol pv + [ecopo) 12 (L4)

Here, p is the charge density and v the velocity of the charged particle. In
general, we are interested in particle dynamics in a material free environment
and set therefore ¢, = 1 and u, = 1. For specific discussions we do, however,
need to calculate fields in a material filled environment in which case we come
back to this more general form of Maxwell’s equations.

1.2.1 Conversion from cgs to MKS Units
In related literature we are faced with different choices of a system of units,
mostly the cgs-or the MKS-system of units. While the cgs-system provides

2 In this text we formulate equations both in the MKS-system (include factors in
square brackets) and the cgs-system (ignore square brackets).
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simple formulation of physical laws without the use of artificial factors, we
cannot escape reality where we quantify and measure our results. In this text,
we try to avoid differences in the formulation of physical laws between these
systems whenever possible. Where this is not possible we include into the
formulas factors in square brackets like [47eg] which are to be used in case of
MEKS-units and to be ignored in case of cgs-units.

Generally, we use MKS-units to quote numerical results or expressing
practical formulas. Sometimes, however, we find it necessary to perform nu-
merical calculations with parameters given in different units or to compare
with results given in another system of units. For such cases some helpful
numerical conversions are compiled in Table 1.1.

Table 1.1. Numerical conversion factors

quantity label replace cgs units by SI units

voltage U 1 esu 300 V

electric field B 1 esu 3 10" V/em

current I 1 esu 10 ¢ = 2.9979 10° A
charge q 1 esu (10c)™* = 3.3356 1071° C
resistance R 1s/ecm 8.9876 10! 2
capacitance C 1 cm mlﬂfu F
inductance L 1 cm 1 10° Hy

magnetic induction B 1 Gauss 3 10~ * Tesla
magnetic field H 1 Oersted 0= 79,577 A/m
force f 1 dyn 107° N

energy E 1 erg 1077 J

Analogous conversion factors can be derived for electromagnetic quantities
in formulas. Table 1.2 includes some of the most frequently used conversions
from cgs to MKS-units which were used in this text to define the square
bracket factors.

The dielectric constant or permittivity of free space is

107 C
T 4wV m

C
= 8.854187817 x 107 12— 1.5
€0 7817 x Vm s ( )

and the magnetic permeability

\% \%
Lig = 47 x 10*7ﬁ = 1.2566370614 x 10~ ﬁ. (1.6)

Both constants are related to the speed of light v by
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Table 1.2. Equation conversion factors

variable replace cgs variable by SI Variable
potential,voltage Vegs VATeo Viuks
electric field Eees VAreo Evks
current, current density Icgs, fegs \/f—eo Iviks, jMKs
charge, charge density qQ, p \/f—eo gMKS s PMKS
resistance Regs VAreo Rvks
capacitance Clegs \/f—eo Cnixs
inductance Legs VAreo Lviks
magnetic induction Begs i—z Buks
o piopt, V2 =1, (1.7)

or in vacuum by

coptgc® =1, (1.8)

1.2.2 Lorentz Force

Whatever the interaction of charged particles with electromagnetic fields and
the reference system may be, in accelerator physics we depend on the invari-
ance of the Lorentz force equations under coordinate transformations. All
acceleration and beam guidance in accelerator physics will be derived from
the Lorentz force which quantifies the force of an electric E and magnetic
field B on a particle with charge ¢ by

[c]

F:qE—l—q?('v x B). (1.9)

Throughout this text, we use particles with one unit of electrical charge e like
electrons and protons unless otherwise noted. In case of multiply charged ions
the single charge e must be replaced by e/ where 7 is the charge multiplic-
ity of the ion. Both components of the Lorentz force are used in accelerator
physics where the force due to the electrical field is mostly used to actually
increase the particle energy while magnetic fields are mostly used to guide
particle beams along desired beam transport lines. This separation of func-
tions, however, is not exclusive as the example of the betatron accelerator
shows where particles are accelerated by generating a time dependent mag-
netic field. Similarly, electrical fields are used in specific cases to guide or
separate particle beams.

Integrating the Lorentz force over the interaction time of a particle with
the field we get the change in its momentum,
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Ap = /th. (1.10)

On the other hand, if the Lorentz force is integrated with respect to the
path length we get the change in kinetic energy Ey;, of the particle

AByn = /Fds. (1.11)

Comparing the last two equations we find with ds = vdf the relation between
the momentum and kinetic energy differentials

¢Bdp = dBy, . (1.12)

With the Lorentz force equation (1.9) and d s = vdt in the second integral
of (1.11) we get

Ay, = € /Eds—l—e[—z] /('v x B)vdt. (1.13)
The kinetic energy of a free particle increases whenever a finite electric field
E component along the beam axis exists. This acceleration is independent
of the particle velocity and acts even on a particle at rest v = 0. Transverse
field components do not affect the particle’s kinetic energy, but do change
its momentum vector (1.10). The second component of the Lorentz force,
in contrast, depends on the particle velocity and is directed normal to the
direction of propagation and normal to the magnetic field direction. The
kinetic energy cannot be changed by the presence of magnetic fields since
the scalar product (v x B)w =0 vanishes. The magnetic field causes only
a change in the transverse momentum (1.10) or a deflection of the particle
trajectory.

The Lorentz force is used to derive the equation of motion of charged
particles in the presence of electromagnetic fields

d d [¢]

—p= —(ymv) = eZE+eZ

—p= = (v x B), (1.14)

c
noting that for ion accelerators the particle charge e must be replaced by eZ.
The fields can be derived from electrical and magnetic potentials

__ oA
E=—— — V9, (1.15)
B=VxA, (1.16)

where ¢ is the scalar potential and A the vector potential. The particle
momentum p = ymwv and it’s time derivative
dp dv dvy

= m~y 2L @ 1.1
a - "M Ty (1.17)
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With
dy d 1 dé = 38 dv

dt ~ dg 1_525_7 ¢ dt
we get the equation of motion

dp dv 3 B dv
F=—-= — - — . 1.18
at m<701t+7 cdtv> (1.18)

For a force parallel to the particle propagation v we have vv = 9v and

dpy

dy 5 do|
dt ’

v
= my (1—0—726;) — =m

1.19
i T (1.19)

On the other hand, if the force is directed normal to the particle propa-
gation we have v = 0 and (1.18) reduces to

dp. dv
SPL oy 8L 1.20
a " (1.20)

It is evident from these results how differently the dynamics of particle
motion is affected by the direction of the Lorentz force. Specifically, the dy-
namics of highly relativistic particles under the influence of electromagnetic
fields depends greatly on the direction of the force with respect to the direc-
tion of particle propagation. The difference between parallel and perpendicu-
lar acceleration has a great impact on the design of electron accelerators. The
ultimate achievable electron energy depends greatly on the type of accelerator
due to the emission of synchrotron radiation. This limitation is most severe
for electrons in circular accelerators where the magnetic forces act perpendic-
ular to the propagation compared to the acceleration in linear accelerators
where the accelerating fields are parallel to the particle propagation. This
argument is also true for protons or for that matter, any charged particle,
although the much larger mass renders the amount of synchrotron radiation
negligible except for extremely high energies.

1.3 The Lorentz Transformations

Beam dynamics is expressed in a fixed laboratory system of coordinates but
some specific problems are better discussed in the moving coordinate system
of a single particle or of the center of charge for a collection of particles.
We use therefore frequently transformations of coordinates as well as fields
between the laboratory frame of reference and the particle rest frame or some
other suitable moving reference frame.
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1.3.1 Lorentz Transformation of Coordinates

To define the transformation of coordinates we consider two reference systems
of which one is fixed to the laboratory £, and the other L* is attached to
the particle moving with respect to £. For simplicity, we assume that the
the particle and with it the system L£* is moving with velocity v, along
the positive z-axis of system L. Transformation between the two reference
systems is effected through a Lorentz transformation

*

=z,
f =y,
2* = Z_—ﬁzd:'y(z—ﬁz ) , (1.21)
-5
-0,z

z

182

where 5, = v, /¢, 7y is the total particle energy E in units of the particle rest

energy mc?

E 1
Y = _ 7 (1.22)
m c? 2
1- ﬁz

and quantities designated with * are measured in the moving system L.
These Lorentz transformations can be expressed in matrix formulation by

z* 10 0O 0 x
vyl _[01 O 0 Y
> 1= oo v 8y M (1.23)
ct* 0008y «v ct

Characteristic for relativistic mechanics is the Lorentz contraction and
time dilatation, both of which become significant in the description of particle
dynamics. To describe the Lorentz contraction, we consider a rod at rest in
L along the 2-coordinate with the length Az = 29 — 21. In the system L* this
rod appears to have the length Az* = 25 — 27 related to the length in the
L—system by

Az = (25 +0,8%) — (2] +v,t") = vA2*
or
Az = vAz*. (1.24)

The rod appears shorter in the moving particle system by the factor v and
is longest in it’s rest system.
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Because of the Lorentz contraction, the volume of a body at rest in the
system L appears also reduced in the moving system £* and we have for the
volume of a body in three dimensional space

Vo=V, (1.25)

Only one dimension of this body is Lorentz contracted and therefore the
volume scales only linearly with . As a consequence, the charge density p
of a particle bunch with the volume V is lower in the laboratory system
L compared to the density in the system L£* moving with this bunch and
becomes

p= —. (1.26)
v
Similarly, we may derive the time dilatation or the elapsed time between two
events occurring at the same point in both coordinate systems. From the
Lorentz transformations we get with 25 = 27

25 2
At =to—t1 = v <t§+ﬁz_c2> — <t;+ﬁz71>

or
At =y At* . (1.27)

For a particle at rest in the moving system £* the time t* varies slower than
the time ¢ in the laboratory system. This is the mathematical expression for
the famous twin paradox where one of the twins moving in a space capsule at
relativistic speed would age more slowly than the other twin who remains be-
hind. This phenomenon becomes reality for unstable particles. For example,
high-energy pion mesons, observed in the laboratory system, have a longer
lifetime by the factor v compared to low-energy pions with v = 1. As a con-
sequence we are able to transport high-energy pion beams a longer distance
than low energy pions before they decay. This effect is of great importance,
for example, where a pion beam is used for cancer therapy and must be trans-
ported from the high radiation environment of the source to a safe location
behind shielding walls where the patient can be placed.

Lorentz transformation of fields. Electromagnetic fields and the interac-
tion of charged particles with these fields play an important role in accelerator
physics. We find it often useful to express the fields in either the laboratory
system or the particle system. Transformation of the fields from one to the
other system is determined by the Lorentz transformation of electromagnetic
fields. We assume again the coordinate system £* to move with the particle at
a velocity v, along the positive z-axis with respect to a right-handed (z,y, s)
reference frame L. The electromagnetic fields in this moving reference frame
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can be expressed in terms of the fields in the laboratory frame of reference

E ¥y 000 —6,40 E,
E; 0 708~y 0 O B,
B . 0 01 0 (U E,
de; [T o Br0 4 0 of| B (1.28)
[c]B; B,y 00 0 v 0]][dBy
[]B? 0 000 0 1/ \[dB,

These transformations exhibit interesting features for accelerator physics,
where we often use magnetic or electrical fields, which are pure magnetic
or pure electric fields when viewed in the laboratory system. For relativistic
particles, however, these pure fields become a combination of electric and
magnetic fields.

1.3.2 Energy and Momentum
The total energy of a particle is given by
E = vEy = ymc?, (1.29)

where Ey = mc? is the rest energy of the particle. The kinetic energy is
defined as the total energy minus the rest energy

Byn = E—FEy = (y—1)me. (1.30)

In discussions of energy gain through acceleration we consider only energy
differences and need therefore not to distinguish between total and kinetic
energy. The particle momentum finally is defined by

¢p? = B — B2 (1.31)

or

ep=+/F2—F2=mc*\/y?2—-1=038vymc=8E, (1.32)

where 8 = v/c. The simultaneous use of the terms energy and momentum
might seem sometimes to be misleading. In this text, we use physically correct
quantities in mathematical formulations even though we sometimes use the
term “energy“ for the quantity cp rather than calling it the particle momen-
tum. In high energy electron accelerators, the numerical distinction between
energy and momentum is insignificant and both “energy“ and “momentum “
are used synonymous. For proton accelerators and even more so for heavy
ion accelerators the difference in both quantities is significant.

Often we need differential expressions or expressions for relative variations
of a quantity in terms of variations of another quantity. Such relations can
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be derived from the definitions in this section. From the variation of c¢p =

mc? /72 — 1 we get, for example,

m02 dE dEkin
cdp=——dy=— = ——— 1.33
5= =5 :33)
and
d 1d
=L _ 2 (1.34)
BT
Varying cp = v3mc? and eliminating dy we get
cdp = v¥mc? dg (1.35)
and
d d
op _ 295 (1.36)
cp g

In a similar way other relations can be derived.

Exercises *

Exercise 1.1 (S). Use the definition for 3, the momentum, the total and
kinetic energy and derive expressions p(3, Fyin), P(Fxin ), and Fii, (7).

Exercise 1.2 (S). Simplify the expressions obtained in exercise 1.1 for large
energies, v > 1. Derive from the relativistic expressions the classical nonrel-
ativistic formulas.

Exercise 1.3 (S). Protons are accelerated to a kinetic energy of 200 MeV
at the end of the Fermilab Alvarez linear accelerator. Calculate their total
energy, their momentum and their velocity in units of the velocity of light.

Exercise 1.4 (S). Consider electrons to be accelerated in the 3 km long
SLAC linear accelerator with a uniform gradient of 20 MeV/m. The electrons
have a velocity v = ¢/2 at the beginning of the linac. What is the length of
the linac in the rest frame of the electron? Assume the particles at the end of
the 3 km long linac would enter another 3 km long tube and coast through
it. How long would this tube appear to be to the electron?

Exercise 1.5 (S). An electron beam orbits in a circular accelerator with
a circumference of 300 m at an average current of 250 mA and the beam
consists of 500 equally spaced bunches each 1 cm long. How many particles
are orbiting? How many electrons are there in each bunch? Assuming, the
time structure of synchrotron radiation is the same as the electron beam time
structure specify and plot the radiation time structure in a photon beam line.

* The argument (S) indicates an exercise for which a solution is given in
Appendix A.
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Exercise 1.6 (S). A 7 -meson is created at a kinetic energy of Fy;, = 100
MeV. Calculate it’s velocity. What is the probability P = exp (—t/7¢) for the
7 -meson to travel 15 m before it decays. The pion half lifetime at rest is
To = 26.0 ns. This result is important for pion cancer therapy facilities. The
pions are created in a highly radioactive environment where a high intensity
proton beam strikes a target to produce pion-mesons. The beam line to carry
the pions to the patient outside the thick radiation shielding wall is about 15

m long.

Exercise 1.7 (S). The half-life of muons p at rest is 79 = 2.20 ps. In 1941
the muon flux was measured on top of Mount Washington (2000 m above
sea level) at 570 counts per hour. Another measurement at sea level detected
400 muons per hour. Estimate the kinetic energy of the cosmic ray muons
(mﬂc2 =105.7 MeV).

Exercise 1.8 (S). Consider a relativistic electron traveling along the z-axis.
In its own system, the electrical field lines extend radially from the charge.
Considering only the xz-plane, derive an expressions for the electrical field
lines in the laboratory frame of reference. Sketch the field pattern in the
electron rest frame and in the laboratory system of reference.

Exercise 1.9 (S). A circular accelerator with a circumference of 100 m con-
tains a uniform distribution of singly charged particles orbiting with the speed
of light. If the circulating current is 1 amp, how many particles are orbiting?
We instantly turn on an ejection magnet so that all particles leave the ac-
celerator during the time of one revolution. What is the peak current at the
ejection point? How long is the current pulse duration? If the accelerator is
a synchrotron accelerating particles at a rate of 100 acceleration cycles per
second, what is the average ejected particle current?

Exercise 1.10. Verify the correctness of the unit conversion factors in
Maxwell’s equations (1.1) through (1.4).

Exercise 1.11. Show that %z— = 736%%.

Exercise 1.12. Determine the kinetic energy of an electron, a proton, and
a ArT-ion which travel together at a speed of 0.95c.

Exercise 1.13. How far will a 200 MeV pion travel before it has a 50%
probability to decay?

Exercise 1.14. In a storage ring of 800 m circumference a total of 3 x 10'2
relativistic electrons are circulating. They are distributed into 300 bunches.
Show that the circulating beam current is 180 mA and the bunch current is
0.6 mA. Sketch the temporal structure of the photon beam.
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Exercise 1.15. A total of 2.34 x 10'2 electrons orbit in a circular accelerator
with a revolution frequency of 1 MHz. Show that the circumference of the
accelerator is 300 m and the total beam current 375 mA. The total beam
be subdivided into 500 equally distant bunches. The instantaneous bunch
current is 20.8 A. Show, that the bunch length is 1.2 ¢cm and the distance
between bunches 60 cm. Is the frequency of the rf-system 500 MHz? Why?

Exercise 1.16. Use the accelerator of exercise 1.15, but fill only every 5"
bunch. Keep the total circulating beam current. Show that the temporal
distance between photon pulses is 180 ps. Now fill the ring only with one
bunch for timing experiments. What is the temporal distance between photon
pulses?

Exercise 1.17. Assume a beam of 1.46 x 10'? electrons circulating in a 243
m storage ring. Due to gas scattering, you loose a fraction 10~° per second.
Show that is takes 27.8 hours for the beam current to decay to 110 mA. What
is the initial circulating beam current? How many electrons do you loose in
the first turn? and how many per turn after 27.8 hours?



2. Fundamental Processes

The emission of electromagnetic radiation from free electrons is a classical
phenomenon. We may therefore use a visual approach to gain some insight
into conditions and mechanisms of radiation emission. First, we will discuss
necessary conditions that must be met to allow an electron to emit or absorb
a photon. Once such conditions are met, we derive from energy conserva-
tion a quantity, the Poynting vector, relating energy transport or radiation
to electromagnetic fields. This will give us the basis for further theoretical
definitions and discussions of radiation phenomena.

2.1 Conservation Laws and Radiation

The emission of electromagnetic radiation involves two components, the elec-
tron and the radiation field. For the combined system energy-momentum
conservation must be fulfilled. These conservation laws impose very specific
selection rules on the kind of emission processes possible. To demonstrate
this, we plot the energy versus momentum for both electron and photon.

In relativistic terms, we have the relation v = /14 (67)2 between energy
~v and momentum (7. For consistency in quantities used we normalize the
photon energy to the electron rest energy, v, = ¢, /mc?, where €p is the pho-
ton energy and mc? the electron rest mass. Similarly, we express the speed
of light by 8, = ¢,/c = 1/n where n > 1 is the refractive index of the
medium surrounding the photon. With these definitions and assuming, for
now, vacuum as the medium (n = 1) the location of a particle or photon in
energy-momentum space is shown in Fig. 2.1a.

Energy and momentum of a particle are related such that it must be lo-
cated on the “particle“-line in Fig. 2.1a. Similarly, a photon is always located
on the “photon“line. Transfer of energy between particle and photon must
obey energy-momentum conservation. In Fig. 2.1b we apply this principle to
a free electron in vacuum emitting (absorbing) a photon. To create a pho-
ton the electron would have to loose (gain) an amount of momentum which
is numerically equal to the energy gained (lost) by the photon. Clearly, in
this case the electron would end up at a location off the “particle“-line, thus
violating momentum conservation. That cannot be, and such a process is
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P photon . photon creation

/ v i
4 By [ AvgAy, By

APY)=AY,

Fig. 2.1. Energy-momentum relationship for particles and photons (left). Viola-
tion of energy or momentum conservation during emission and absorption of elec-
tromagnetic radiation by a free electron travelling in perfect vacuum (ﬁp =1)

(right).

therefore not permitted. A free electron in vacuum cannot emit or absorb a
photon without violating energy-momentum conservation.

2.1.1 Cherenkov Radiation

We have been careful to assume an electron in perfect vacuum. What happens
in a material environment is shown in Fig. 2.2. Because the refractive index
n > 1, the phase velocity of radiation is less than the velocity of light in
vacuum and with 3 = 1/n, the “photon “-line is tilted towards the momentum
axis.

Formally, we obtain this for a photon from the derivative dy/d(57) ,which
we expand to d—&_]% = %i—%ﬁ and get with v = fiw/mc?,k = n%, and the

momentum (v = %k, the derivative

dv, 1
m—n<l7 (2.1)

where we have added the subscript , to differentiate between photon and
electron parameters.

The dispersion function for a photon in a material environment has a
slope less than unity as shown in Fig. 2.2. In this case, the numerical value
of the photon momentum is less than the photon energy, analogous to the
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Y

P photon creation
Y i/r{’ypzA'Ye B'}/

ABDSAY,

Fig. 2.2. Energy and momentum conservation in a refractive environment with
n>1

particle case. To create a photon of energy v, we set v, = —Ay = —GASy
from (1.30), where from (2.1) the photon energy v, = %(ﬁy)pand get from
both relations (ﬁ'y)p = —nBApPy . Because of symmetry, no momentum
transverse to the particle trajectory can be exchanged, which means radiation
is emitted uniformly in azimuth. The change in longitudinal momentum along

the trajectory is —AGy = (ﬁ'y)p | = (ﬁ'y)p cos 0. In a dielectric environment,

free electrons can indeed emit or absorb a photon although, only in a direction
given by the angle § with respect to the electron trajectory. This radiation
is called Cherenkov radiation, and the Cherenkov angle 8 is given by the
Cherenkov condition

nfBcosh =1. (2.2)

Note , that this condition is not the same as saying whenever an electron
passes though a refractive medium with n > 1 there is Cherenkov radiation.
The Cherenkov condition requires that ng > 1 which is, for example, not the
case for an electron beam of less than 20 MeV traveling through air.

2.1.2 Compton Radiation

To generate electromagnetic radiation from free electrons in vacuum without
violating energy-momentum conservation, we may employ the Compton ef-
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fect which is the scattering of an incoming photon by the electron. In energy-
momentum space this process is shown in Fig. 2.3. The electron, colliding
head-on with an incoming photon absorbs this photon and emits again a
photon of different energy. In this process it gains energy but looses momen-
tum bringing the electron in the energy-momentum space to an intermediate
point, Pr , from where it can reach its final state on the “particle“-line by
emitting a photon as shown in Fig. 2.3. This is the process involved in the
generation of synchrotron radiation. Static magnetic fields in the laboratory
system appear as electromagnetic fields like an incoming (virtual) photon in
the electron system with which the electron can collide. Energy-momentum
conservation give us the fundamental and necessary conditions under which
a free charged particle can emit or absorb a photon. We turn our attention
now to the actual interaction of charged particles with an electromagnetic

field.

Y

photon emission

photon creation

photon absorption

By

Fig. 2.3. Energy and momentum conservation for Compton scattering process

2.2 The Poynting Vector

The rate of work done in a charged particle-field environment is defined by
the Lorentz force and the particle velocity

Fro= <eE —I—e[—z] [v % B]) v. (2.3)

Noting that [v x B]v =0 we set eEv = jE and the total rate of work
done by all particles and fields is the integral over all particles and fields
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/jEdV - é [47eo] / <[c] VxB— %E) EdV. (2.4)

With the vector relation (B.17) we get

/jE av =< [47r60]/ [ BYXE — [V (E x B)— 1EE| av
47 S—— ¢
__1p
C

:/[%Jr—[meo]V(ExB)

dv, (2.5)
dt 4w

where © = % (E2 + [02] B 2) is the field energy density. Applying Gauss’s

theorem (B.28) to the vector product we get an expression for the energy
conservation of the complete particle-field system

d
pm udV + /jEdV + %Snds =0, (2.6)
particle energy o
change of 1 . radiation loss through
0ss or gain
field energy closed surface s

where the Poynting vector is defined by
s:i [47ceo] (ExB) . (2.7)

Equation (2.7) exhibits characteristic features of electromagnetic radia-
tion. Both electric and magnetic fields are orthogonal to each other (E_LB),
orthogonal to the direction of propagation (E_Ln, B1ln), and the vectors
E, B, S form a right handed orthogonal system. For plane waves,

nx E=[]B, (2.8)
(Exercise 2.7) and (2.7) reduces to

s:i [d7eo) E2n. (2.9)

The Poynting vector is defined as the radiation energy flow through a

unit surface area in the direction n and scales proportionally to the square
of the electric radiation field.

2.3 Electromagnetic Radiation

Phenomenologically, synchrotron radiation is the consequence of a finite value
for the velocity of light. Electric fields extend infinitely into space from
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charged particles in uniform motion. When charged particles become acceler-
ated, however, parts of these fields cannot catch up with the particle anymore
and give rise to synchrotron radiation. This happens more so as the particle
velocity approaches the velocity of light.

The emission of light can be described by applying Maxwell’s equations to
moving charged particles. The mathematical derivation of the theory of radi-
ation from Maxwell’s equations is straightforward although mathematically
somewhat elaborate and we will postpone this to Chap. 10 and 11 of this
text. Here we follow a more intuitive discussion [7] which displays visually
the physics of synchrotron radiation from basic physical principles.

Electromagnetic radiation occurs wherever electric and magnetic fields
exist with components orthogonal to each other such that the Poynting vector

Cc

S
47

[4mceo] [E x B] £ 0. (2.10)

It is interesting to ask what happens if we have a static electric and
magnetic field such that [E x B] # 0. We know there is no radiation but
the Poynting vector is nonzero. Applying (2.6), we find the first two terms
to be zero which renders the third term zero as well. For a static electric and
magnetic field the integral defining the radiation loss or absorption is equal
to zero and therefore no radiation or energy transport occurs.

Similarly, in case of a stationary electrostatic charge, we note that the
electrostatic fields extend radially from the charge to infinity which violates
the requirement that the field be orthogonal to the direction of observation
or energy flow. Furthermore, the charge is stationary and therefore there is
no magnetic field.

2.3.1 Coulomb Regime

Next we consider a charge in uniform motion. In the rest frame of the moving
charge we have no radiation since the charge is at rest as just discussed. In
the laboratory system, however, the field components are different. Since
the charge is moving, it constitutes an electric current which generates a
magnetic field. Formulating the Poynting vector in the laboratory system we
express the fields by the pure electric field in the particle rest frame £*. That
we accomplish by an inverse Lorentz transformations to (1.28), where the
laboratory system £ now moves with the velocity —f3, with respect to L*
and (3, in (1.28) must be replaced by -3, for

F, v 0 0 0 B0 E;
B, 0 v 0-3, 00 E;
E, | o o1 0 00 E?
@B |~ | 0 =80 4 oo||@B | (211)
[c] By B,y 0 0 0 40 [c]B;
[c] B, 00 0 01 []B?
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In the laboratory system £, the components of the Poynting vector (2.10)
become then

4
— 8, = Hrely 8. EL B,

47

— 5y = [meo]yB8. B B (2.12)
47

7SZ = —[47r60]726z (E;2 —l—E;Q) ,

where * indicates quantities in the moving system £*, and 3, = v, /c. The
Poynting vector is nonzero and describes the flow of field energy in the en-
vironment of a moving charged particle. The fields drop off rapidly with
distance from the particle and the “radiation® is therefore confined close to
the location of the particle. Specifically, the fields are attached to the charge
and travel in the vicinity and with the charge. This part of electromagnetic
radiation is called the Coulomb regime in contrast to the radiation regime
and is, for example, responsible for the transport of electric energy along
electrical wires and transmission lines.

We will ignore this regime in our further discussion of synchrotron radi-
ation because we are interested only in free radiation which is not anymore
connected to electric charges. It should be noted, however, that measure-
ments of radiation parameters close to radiating charges may be affected by
the presence of the Coulomb radiation regime. Such situations occur, for ex-
ample, when radiation is observed close to the source point. Related theories
deal with this mixing by specifying a formation length defining the minimum
distance from the source required to sufficiently separate the Coulomb regime
from the radiation regime.

2.3.2 Radiation Regime

In this text we are only interested in the radiation regime and therefore
ignore from now on the Coulomb regime. To describe the physics of emission
of radiation, we consider a coordinate system moving with a constant velocity
equal to that of the charged particle and associated electric fields. The charge
is at rest in the moving reference system, the electric field lines extend radially
out to infinity, and there is no radiation as discussed before. Acceleration of
the charge causes it to move with respect to this reference system generating
a distortion of the purely radial electric fields of a uniformly moving charge
(Fig. 2.4). This distortion, resulting in a rearrangement of field lines to the
new charge position, travels outward at the velocity of light giving rise to
what we call radiation.

To be more specific, we consider a positive charge in uniform motion for
t < 0, apply an accelerating force at time £ = 0 for a time AT and observe the
charged particle and its fields in the uniformly moving frame of reference. Due
to acceleration the charge moves in this reference system during the time AT
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from point A to point B and as a consequence the field lines become distorted
within a radius cAT from the original location A of the particle. It is this
distortion, travelling away from the source at the speed of light, that we call
radiation.

The effects on the fields are shown schematically in Fig. 2.4 for an ac-
celeration of a positive charge along its direction of motion. At time £ = 0
all electric field lines extend radially from the charge located at point A to
infinity. During acceleration fieldlines emerge from the charge now at loca-
tions between A and B. The new field lines must join the old field lines
which, due to the finite velocity of light, are still unperturbed at distances
larger than cAT. As long as the acceleration lasts, a nonradial field compo-
nent, parallel and opposite to the acceleration, is created. Furthermore, the
moving charge creates an azimuthal magnetic field H, ;(t) and the Poynting
vector becomes nonzero causing the emission of radiation from an accelerated
electrical charge.

}

electrical fi
\ Iif;rlc ! /‘ charge>0
\

? Poynting vector: S

component E,

\
\
\ / long. electricfield
|
T
/

/ magnetic field Bw

acceleration

Fig. 2.4. Distortion of fields due to longitudinal acceleration

Obviously, acceleration would not result in any radiation if the velocity
of propagation for electromagnetic fields were infinite, ¢ — oo. In this case
the radial fields at all distances from the charge would instantly move in
synchrony with the movement of the charge. Only the Coulomb regime would
exist.

The electrical field perturbation is proportional to the electrical charge ¢
and the acceleration a*. Acceleration along the z-axis generates an electric
field E # 0 and its component normal to the direction of observation scales
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SO

Fig. 2.5. Spatial radiation distribution in the rest frame of the radiating charge

like sin ©*, where @* is the angle between the line of observation and the
direction of particle acceleration. During the acceleration a fixed amount of
field energy is created which propagates radially outward from the source.
Since the total radiation energy must stay constant and the volume of the
expanding spherical sheath of field perturbation increases like R?, the field
strength decays linear with distance R. With this, we make the ansatz

1 ea*

for the electric field, where we have added a factor ¢? in the denominator to
be dimensionally correct. For an electron, ¢ < 0, and the field perturbation
points in the direction of the acceleration. As expected from the definition
of the Poynting vector, the radiation is emitted predominantly orthogonal
to the direction of acceleration and is highly polarized in the direction of
acceleration. From (2.9)

_ C *2 %
S—E[Meo]EH n*, (2.14)

where n* is the unit vector in the direction of observation from the observer
toward the radiation source. The result is consistent with our earlier finding
that no free radiation is emitted from a charge at rest or uniform motion
(a* — 0). The spatial radiation distribution is from (2.13) and (2.14) char-
acterized by a sin? ©*-distribution resembling the shape of a doughnut as
shown in Fig. 2.5, where the acceleration occurs along the z-axis.

Acceleration may not only occur in the longitudinal direction but also in
the direction transverse to the velocity of the particle as shown in Fig. 2.6. The
distortion of field lines in this case creates primarily transverse or radial field
components. The radiation field component transverse to the direction of
observation is
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Fig. 2.6. Distortion of field lines due to transverse acceleration

1 |ea*
El=—|—| —= or. 2.15
+ [47%0} 2R " (215)

This case of transverse acceleration describes the appearance of syn-
chrotron radiation created by charged particles being deflected in magnetic
fields. Similar to (2.14) the Poynting vector for transverse acceleration is

c * *
S=—l4meo] EP?n". (2.16)

2.4 Spatial and Spectral Properties of Radiation

Although the acceleration and the creation of radiation fields is not periodic,
we may Fourier-decompose the radiation pulse and obtain a spectrum of
plane waves

E* = Eel? | (2.17)
where the phase is defined by

O =w [t — L (npat +nyt +nl2t)] . (2.18)

&

The phase of an electromagnetic wave is proportional to the product of
the momentum-energy and space-time 4-vectors. Like any other product of
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two 4-vectors this product is invariant under Lorentz transformations. We
have therefore the equality ¢* = & or

*

Y

Yt —np2| = wlet —ngx —nyy — n,2] (2.19)

w* et —njat —n
between the phases as measured in both the laboratory £ and the particle
frame of reference L£*. To derive the relationships between similar quantities
in both systems, we use the Lorentz transformations noting that the particle
reference frame is the frame, where the particle or radiation source is at
rest. We use the Lorentz transformations (1.23) to replace the coordinates
(x*,y*, 2% ct*) in (2.19) by those in the laboratory system. Since the space-
time coordinates are independent we may equate their coeflicients on either
side of the equation separately. In so doing, we get from the ct-coeflicients
for the oscillation frequency

W1+, =w, (2.20)

which expresses the relativistic Doppler effect. Looking parallel to the direc-
tion of particle motion n} =1 the observed oscillation frequency is increased
by the factor (1+ 3,)y = 2 for highly relativistic particles. The Doppler ef-
fect is reduced if the radiation is viewed at some finite angle or even normal
to the direction of motion when n} = 0. For viewing angles in between these
two extremes we set n) = cos ©*.

Similarly, we obtain from (2.19) also the transformation of spatial direc-
tions

*

n

"= T g (2.21)
/n/*
ny = 7(1+—yﬁn) : (2.22)
B+ n]
= ) (2.23)

These transformations define the spatial distribution of radiation in the
laboratory system. In case of transverse acceleration the radiation in the
particle rest frame is distributed like cos? @* about the direction of motion.
This distribution becomes greatly collimated into the forward direction in
the laboratory system. With n}? —I—n;Q = sin? ©* and n? —l—nz =sin? © ~ 62
and n} = cos ©* we find

sin ©*

N T e ®) (2.24)

In other words, radiation from relativistic particles, emitted in the particle
system into an angle —7w/2 < @* < 7/2 appears in the laboratory system
highly collimated in the forward direction within an angle of
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O ~—. (2.25)

This angle is very small for highly relativistic electrons like those in a
storage ring, where 7 is of the order of 10° — 10*,

Exercises *

Exercise 2.1 (S). Usea 10 MeV electron beam passing through atmospheric
air. Can you observe Cherenkov radiation and if so at what angle? Answer
the same questions also for a 50 MeV electron beam. Describe and explain
with Fig. 2.2 the fundamental difference of your results (n,;, = 1.0002769 for
A = 5600 A).

Exercise 2.2 (S). A 10 MeV electron beam passes with normal incidence
through a plate of translucent plastic (n = 1.7). Is there any Cherenkov
radiation and if so at what angle? Where does this radiation escape the
plate?

Exercise 2.3 (S). Show that the product of two 4-vectors is Lorentz invari-
ant.

Exercise 2.4 (S). Show that the product of the 4-momentum and 4-
spacetime of a photon is proportional to the phase of the electromagnetic
wave.

Exercise 2.5 (S). Derive from (2.20) the formula for the classical Doppler
effect valid for sound waves emitted at a frequency f; from a source moving
with velocity v and received at an angle ¢.

Exercise 2.6 (S). From Heisenberg’s uncertainty relation construct a “char-
acteristic volume* of a photon with energy e,, = fiw. What is the average
electric field in this volume for a 1 eV photon and an x-ray photon of 10 keV?

Exercise 2.7 (S). Prove that n x E = [¢] B for plane waves.

Exercise 2.8 (S). Show that equations (2.7) and (2.9) are the same for
electromagnetic waves.

Exercise 2.9. Resketch Fig. 2.4 to show the electric field lines from the
charge to infinity at a time ¢ > At after the acceleration has stopped.

Exercise 2.10. Derive the equations of transformation for the frequency
(2.20), and the direction of observations (2.21-2.23), from (2.19).

* The argument (S) indicates an exercise for which a solution is given in
Appendix A.
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Exercise 2.11. Verify the equality of (C.25) and (C.26).

Exercise 2.12. Consider a beam of 123.8 meV and 10 keV photons, both at
a power density of 100 Watt/mm?. How many photons occupy their respective
“characteristic volumes“? . Show that the photon flux density is 1.875 x 10'°
photons(100 meV)/mm? and 1.875 x 10° photons(10 keV)/mm?. Verify that,
61.07 photons(123.8 meV) and 1.44 x 10~ photons (10 keV) occupy, on
average, each characteristic volume in a 100 W/mm? beam. The x-ray photon
distribution is indeed sparse among it’s characteristic volume. What are the
respective characteristic volumes?

Exercise 2.13. Verify that for a 10 MeV electron colliding head-on with a
Ti-Saphire laser (A = 0.8 pm) the wavelength in it’s own system is \* =
40.88 nm. Also show that the wavelength of the backscattered photon in the
laboratory system is A, = 10.4 A. What electron beam energy do you need
to produce 1 A radiation? What is the maximum acceptance angle allowable
to still get a photon beam with a band width of 10% or less? Show that the
acceptance angle is £18.15 mrad.



3. Overview of Synchrotron Radiation

After Schott’s [3] unsuccessful attempt to explain atomic radiation with his
electromagnetic theory no further progress was made for some 40 years mainly
because of lack of interest. Only in the mid forties did the theory of electro-
magnetic radiation from free electrons became interesting again with the
successful development of circular high-energy electron accelerators. At this
time powerful betatrons [8] have been put into operation and it was Ivanenko
and Pomeranchouk [9], who first in 1944 pointed out a possible limit to the
betatron principle and maximum energy due to energy loss from emission of
electromagnetic radiation. This prediction was used by Blewett [10] to cal-
culate the radiation energy loss per turn in a newly constructed 100 MeV
betatron at General Electric. In 1946 he measured the shrinkage of the orbit
due to radiation losses and the results agreed with predictions. On April 24,
1947 visible radiation was observed for the first time at the 70 MeV syn-
chrotron built at General Electric [11, 12, 13]. Since then, this radiation is
called synchrotron radiation.

The energy loss of particles to synchrotron radiation causes technical and
economic limits for circular electron or positron accelerators. As the particle
energy is driven higher and higher, more and more rf-power must be supplied
to the beam not only to accelerate particles but also to overcome energy
losses due to synchrotron radiation. The limit is reached when the radiation
power grows to high enough levels exceeding technical cooling capabilities
or exceeding the funds available to pay for the high cost of electrical power.
To somewhat ameliorate this limit, high-energy electron accelerators have
been constructed with ever increasing circumference to allow a more gentle
bending of the particle beam. Since the synchrotron radiation power scales
like the square of the particle energy (assuming constant magnetic fields)
the circumference must scale similar for a constant amount of rf-power. Usu-
ally, a compromise is reached by increasing the circumference less and adding
more rf-power in spaces along the ring lattice made available by the increased
circumference. In general the maximum energy in large circular electron ac-
celerators is limited by the available rf-power while the maximum energy of
proton or ion accelerators and low energy electron accelerators is more likely
limited by the maximum achievable magnetic fields in bending magnets.
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What is a nuisance for researchers in one field can provide tremendous op-
portunities for others. Synchrotron radiation is emitted tangentially from the
particle orbit and within a highly collimated angle of +1/+. The spectrum
reaches from the far infrared up to hard x-rays, the radiation is polarized
and the intensities greatly exceed other sources specifically in the vacuum
ultra violet to x-ray region. With these properties synchrotron radiation was
soon recognized to be a powerful research tool for material sciences, crystal-
lography, surface physics, chemistry, biophysics, and medicine to name only
a few areas of research. While in the past most of this research was done
parasitically on accelerators built and optimized for high-energy physics the
usefulness of synchrotron radiation for research has become important in its
own right to justify the construction and operation of dedicated synchrotron
radiation sources all over the world.

3.1 Radiation Power

Integrating the Poynting vector (2.14) over a closed surface enclosing the
radiating charge we get with (2.13) and n*dA* = R%sin©*dO©*d®* the
radiation power

2
. v 1A% 2 MCT o
P —/S dA —g?"c?a s (31)
where we have set ¢? = [4me] romc?. From the discussion of 4-vectors in

Chapter C, we know that the square of the 4-acceleration is invariant to
Lorentz transformations and get from (C.26) finally for the radiation power
in the laboratory system

pP= %TCmC'yG [,62 — (,BXB)2 . (3.2)

Equation (3.2) expresses the radiation power in a simple way and allows
us to calculate other radiation characteristics based on beam parameters in
the laboratory system. The radiation power is greatly determined by the
geometric path of the particle trajectory through the quantities 8 and ,8
Specifically, if this path has strong oscillatory components we expect that
motion to be reflected in the synchrotron radiation power spectrum. This
aspect will be discussed later in more detail. Here we distinguish only between
acceleration parallel BH or perpendicular ,8 | to the propagation 3 of the charge
and set therefore

B:BH_'_BL' (3.3)

Insertion into (3.2) shows the total radiation power to be composed of
separate contributions from parallel and orthogonal acceleration. Separating
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both contributions we get the synchrotron radiation power for both parallel
and transverse acceleration respectively

.2

P = %TCmC'yG,BH , (3.4)
.2

P = 2r.mevy*3] . (3.5)

Expressions have been derived that define the radiation power for parallel
acceleration like in a linear accelerator or orthogonal acceleration found in
circular accelerators or deflecting systems. We note a similarity for both con-
tributions except for the energy dependence. At highly relativistic energies
the same acceleration force leads to much less radiation if the acceleration is
parallel to the motion of the particle compared to orthogonal acceleration.
Parallel acceleration is related to the accelerating force by mo| = W—lade /dt
and after insertion into (3.4) the radiation power due to parallel acceleration
becomes

2 Te de 2
P==——— . 3.6
I 3me < dt ( )

The radiation power for acceleration along the propagation of the charged
particle is therefore independent of the energy of the particle and depends
only on the accelerating force or with dp /dt =dE/dz on the energy increase
per unit length of accelerator. Different from circular electron accelerators
we encounter therefore no practical energy limit in a linear accelerator at
very high energies. In contrast very different radiation characteristics exist
for transverse acceleration as it happens, for example, during the transverse
deflection of a charged particle in a magnetic field. The transverse acceleration
¥ is expressed by the Lorentz force

dd% =ymb | :e[—z] [v x B] (3.7)

and after insertion into (3.5) the radiation power from transversely acceler-
ated particles becomes

T dp 2
_2'c 2
PL=sme7 (W) ~ (38

From (3.6, 3.8) we find that the same accelerating force leads to a much
higher radiation power by a factor 2 for transverse acceleration compared
to longitudinal acceleration. For all practical purposes, technical limitations
prevent the occurrence of sufficient longitudinal acceleration to generate no-
ticeable radiation. From here on we will stop considering longitudinal accel-
eration unless specifically mentioned and eliminate, therefore, the index L
setting for the radiation power P, = P,. We also restrict from now on the
discussion to singly charged particles and set ¢ = e ignoring extremely high
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energies, where multiple charged ions may start to radiate. Replacing the
force in (3.8) by the Lorentz force (3.7) we get

i) 2r?
= [—q el 2R = CpB2E2, (3.9)
Ho | 3 (mc?)
where
Ar] 202
Op = | —| =5 = 6.0779x 108 ——— = 379.35 ——— . (3.10)
Ho | 3 (mc?) T GeV T“GeVs

The synchrotron radiation power scales like the square of the magnetic field
and the square of the particle energy. Replacing the deflecting magnetic field
B by the bending radius p (6.7) the instantaneous synchrotron radiation
power becomes

4, 4
P, = %rcmcgﬁ J (3.11)
p
or in more practical units,
cC, B
= 7? . (3.12)

Here we use the definition of Sand’s radiation constant for electrons [14]

i, W
Oy = = — == = 141733 x 10" 222 = 88460 x 1075 —— . (3.13)
3 (mc?) GeV GeV

The electromagnetic radiation of charged particles in transverse magnetic
fields is proportional to the fourth power of the particle momentum 3y and
inversely proportional to the square of the bending radius p. The synchrotron
radiation power increases very fast for high-energy particles and provides the
most severe limitation to the maximum energy achievable in circular accel-
erators. We note, however, also a strong dependence on the kind of particles
involved in the process of radiation. Because of the much heavier mass of
protons compared to the lighter electrons we find appreciable synchrotron
radiation only in electron accelerators.

In storage rings with different magnets and including insertion devices it
is important to formulate the average radiation power of an electron during
the course of one turn. In this case we calculate the average

_ i 4 i _ 4frev %
(Py) = 5-C B <p2> =0, B2 7([)2. (3.14)

The radiation power of protons actually is smaller compared to that for
electrons by the fourth power of the mass ratio or by the factor



3.1 Radiation Power 35

P
= = 1836 = 1.1367 x 10'3. (3.15)

p

In spite of this enormous difference measurable synchrotron radiation has
been predicted by Coisson [15] and was indeed detected at the 400 GeV
proton synchrotron, SPS (Super Proton Synchrotron), at CERN in Geneva
[16, 17]. Substantial synchrotron radiation is expected in multi-TeV proton
colliders like the LHC (Large Hadron Collider) at CERN [18§].

Knowledge of the synchrotron radiation power allows us now to calculate
the energy loss per turn of a particle in a circular accelerator by integrating
the radiation power along the circumference of the circular accelerator

ds
Uo = %Pwdt = grcm0253y47§—2. (3.16)
p
In an isomagnetic lattice, where the bending radius is the same for all
bending magnets p =const., the integration around a circular accelerator can
be performed and the energy loss per turn due to synchrotron radiation is

27 4
Up = Vﬁ_cp = %TCmCQB?’%. (3.17)

The integration obviously is to be performed only along those parts of the
circular accelerator, where synchrotron radiation occurs, or along bending
magnets only. In more practical units, the energy loss of relativistic electrons
per revolution in a circular accelerator with an isomagnetic lattice and a
bending radius p is given by

EY(GeVt)

Uiso GeV)=C,
oo (GEV) =

(3.18)

For a beam of IV, particles or a circulating beam current I = ef,., IV, the
total average radiation power is

() =Tt (3.19)

or in more practical units

4
. =0.088463 £ (GeV)
p(m)

The total synchrotron radiation power scales like the fourth power of the
particle energy and is inversely proportional to the bending radius. The strong
dependence of the radiation on the particle energy causes severe practical

(£ (MW)) I(A). (3.20)

limitations on the maximum achievable energy in a circular accelerator.
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3.2 Spectrum

Synchrotron radiation from relativistic charged particles is emitted over a
wide spectrum of photon energies. The basic characteristics of this spectrum
can be derived from simple principles as suggested in [19]. For an observer
synchrotron light has the appearance similar to the light coming from a light-
house. Although the light is emitted continuously an observer sees only a
periodic flash of light as the aperture mechanism rotates in the lighthouse.
Similarly, synchrotron light emitted from relativistic particles will appear to
an observer as a single flash if it comes from a bending magnet in a transport
line passed through by a particle only once or as a series of equidistant light
flashes as bunches of particles orbit in a circular accelerator.

Since the duration of the light flashes is very short the observer notes a
broad spectrum of frequencies as his eyes or instruments Fourier analyze the
pulse of electromagnetic energy. The spectrum of synchrotron light from a
circular accelerator is composed of a large number of harmonics with fun-
damental frequency equal to the revolution frequency of the particle in the
circular accelerator. These harmonics reach a cutofl, where the period of the
radiation becomes comparable to the duration of the light pulse. Even though
the aperture of the observers eyes or instruments are assumed to be infinitely
narrow we still note a finite duration of the light flash. This is a consequence

particle trajectory ﬂ
-
p/ 1 —

1 light pulse

/ to observer

21y

21y

Fig. 3.1. Temporal pulse formation of synchrotron radiation

of the finite opening angle of the radiation as illustrated in Fig. 3.1. Syn-
chrotron light emitted by a particle travelling along the orbit cannot reach
the observer before it has reached the point %) when those photons emitted
on one edge of the radiation cone at an angle —1/+ aim directly toward the
observer. Similarly, the last photons to reach the observer are emitted from
point P; at an angle of +1/+. Between point Py and point P, we have there-
fore a deflection angle of 2/+. The duration of the light flash for the observer
is not the time it takes the particle to travel from point Py to point P, but
must be corrected for the finite time of flight for the photon emitted at P . If
particle and photon would travel toward the observer with exactly the same
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velocity the light pulse would be infinitely short. However, particles move
slower following a slight detour and therefore the duration of the light pulse
equals the time difference between the first photons from point Py arriving
at the observer and the last photons being emitted by the particles at point
P,. Although the particle reaches point I}, at time ¢ = 0 the first photon can
be observed at point P; only after a time
2psin %

ty = — (3.21)
The last photon to reach the observer is emitted when the particle arrives at
point P; at the time

2p
te=—. 3.22
Bey (3:22)
The duration of the light pulse 8t is therefore given by the difference of both
travel times (3.21, 3.22)

2 2psin £
5t:te—t7:—p——7. (3.23)
Bey c
The sine-function can be expanded for small angles keeping linear and
third order terms only and the duration of the light pulse at the location of
the observer is after some manipulation

4p
ot = . 3.24
3cy3 ( )
The total duration of the electromagnetic pulse is very short scaling inversely
proportional to the third power of «. This short pulse translates into a broad
spectrum. Using only half the pulse length for the effective pulse duration
the spectrum reaches up to a maximum frequency of about

1 o~

5t

W =~

nolw

3
Py (3.25)
0

(N1

which is called the critical photon frequency of synchrotron radiation. The
critical photon energy €. =hw, is then given by

3
e =0 (3.26)
0
with
C, = 2(3—%2)3 . (3.27)
mc

For electrons, numerical expressions are
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I3 (GeV?)
p(m)

The synchrotron radiation spectrum from relativistic particles in a circu-
lar accelerator is made up of harmonics of the particle revolution frequency
wo with values up to and beyond the critical frequency (3.28). Generally,
a real synchrotron radiation beam from say a storage ring will not display
this harmonic structure. The distance between harmonics is extremely small
compared to the extracted photon frequencies in the VUV and x-ray regime
while the line width is finite due to the energy spread and beam emittance.

For a single pass of particles through a bending magnet in a beam trans-
port line we observe the same spectrum. Specifically, the maximum frequency
is the same assuming similar parameters. Synchrotron radiation is emitted in
a particular spatial and spectral distribution, both of which will be derived in
Chapter 9, and we will use here only some of these results. A useful parameter
to characterize the photon intensity is the photon flux per unit solid angle
into a frequency bin Aw/w and from a circulating beam current, I defined by

g, (keV) = 2.2183 = 0.66503 E? (GeV?) B(T) . (3.28)

d*N,,
d0da

2
= ot 2 (2] (6 F(e0). (3.29

where % is the angle in the deflecting plane and 6 the angle normal to the
deflecting plane,

3 hot
Cp = ———— =1.3255 x 10'¢ oo , (3.30)
42e (mc?) s mrad® GeV® A 100%BW
« the fine structure constant and
202 K7 ,4(6)
2 Y 0 1/3
FE,0) =0+ [1+ . 3.31
&0 =0+70) L+ 920% K3 5 (€) (330

The functions Ky,3(§) and Kas3(§), displayed in Fig. 3.2, are modified
Bessel’s functions with the argument

§=1= (144707 . (3.32)

Synchrotron radiation is highly polarized in the plane normal (o-mode),
and parallel (m-mode), to the deflecting magnetic field. The relative flux in
both polarization directions is given by the two components in the second
bracket of function F' (£,8) in (3.31). The first component is equal to unity
and determines the photon flux for the polarization normal to the magnetic
field or o-mode, while the second term relates to the polarization parallel to
the magnetic field which is also called the m-mode. Equation (3.29) expresses
both the spectral and spatial photon flux for both the o-mode radiation in
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Fig. 3.2. Modified Bessel’s functions Kj /3 (£) and Ky /3 ()

the forward direction within an angle of about +1/v and for the m-mode off
axis.

For highly relativistic particles the synchrotron radiation is collimated
very much in the forward direction and we may assume that all radiation in
the nondeflecting plane is accepted by the experimental beam line. In this
case we are interested in the photon flux integrated over all angles 6. This
integration will be performed in Chapter 9 with the result (9.158)

= — 4= (3.33)

deh_4a IAwS w
dw 9 'e w ’

where ¥ is the deflection angle in the bending magnet, « the fine structure
constant and the function S () is defined by

w 93 w T N
w/we

with Kj/3(2) a modified Bessel’s function. The function S(w/w,) is known
as the universal function of synchrotron radiation and is shown in Fig. 3.3.
In practical units, the angle integrated photon flux is

WNon _ o A g <i> (3.35)
dvy w We

with Cy defined by
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4o 19 bhotons
Co = 9emc2 39614 10 srad A GeV '’
The spectral distribution depends only on the particle energy, the critical
frequency w. and a purely mathematical function. This result has been de-
rived originally by Ivanenko and Sokolov [20] and independently by Schwinger
[21]. Specifically it should be noted that the spectral distribution, if normal-
ized to the critical frequency, does not depend on the particle energy and can
therefore be represented by a universal distribution shown in Fig. 3.3.

(3.36)

1.000
S(o/o)

0.100 —

0.010 <
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Fig. 3.3. Universal function of the synchrotron radiation spectrum, S(w/w.)

The energy dependence is contained in the cubic dependence of the critical
frequency acting as a scaling factor for the actual spectral distribution. The
synchrotron radiation spectrum in Fig. 3.3 is rather uniform up to the critical
frequency beyond which the intensity falls off rapidly. This synchrotron ra-
diation spectrum has been verified experimentally soon after such radiation
sources became available [22, 23].

Equation (3.33) is not well suited for quick calculation of the radiation
intensity at a particular frequency. We may, however, express (3.33) in much
simpler form for very low and very large frequencies making use of limiting
expressions of Bessel’s functions for large and small arguments. For small
arguments © = 2 < 1 an asymptotic approximation [24] for the modified

Bessel’s functionw;nay be used to give instead of (3.35)

dN,,
dyp
Similarly, for high photon frequencies x = - > 1 we get

VT
e

A 1/3
~C, EITW 1.333 <i> . (3.37)

We

dN,p
dy)

A
~ Oy B1=20.77736 (3.38)
W
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where x = w% Both approximations are included in Fig. 3.3 and display ac-
tually a rather good representation of the real spectral radiation distribution
over all but the central portion of the spectrum. Specifically, we note the slow
increase in the radiation intensity at low frequencies and the exponential drop
off above the critical frequency.

3.3 Spatial Photon Distribution

The expressions for the photon fluxes (3.29, 3.33) provide the opportunity to
calculate the spectral distribution of the photon beam divergence. Photons
are emitted into a narrow angle and we may represent this narrow angular
distribution by a Gaussian distribution. The effective width of a Gaussian
distribution is /270g and we set

dNpn &’ Npn
dy  dody

V2rog . (3.39)

With (3.29, 3.35) the angular divergence of the forward lobe of the photon
beam or for a beam polarized in the o-mode is
Cy 1 S (x) f(z)

q) = 1 - 3.40
(o] (mra ) /27TCQ E LU2K22/3 (%.’,U) E (GeV) ’ ( )

where ©# = w/w,.. For the forward direction # =2 0 the function f(z) =
0¢ (mrad) F (GeV) is shown in Fig. 3.4 for easy numerical calculations.
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Fig. 3.4. Scaling function f(z) = oe(mrad) E(GeV) for the photon beam diver-
gence in (3.40)
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For wavelengths w < w,, (3.40) can be greatly simplified to become in
more practical units

0.54626 [ w \'/® 7.124
og (mrad) ~ —— [ — = , 3.41
o (mrad) £ (GeV) (w) [p (m) epn (eV)]'? (341

where p is the bending radius and ¢, the photon energy. The photon beam
divergence for low photon energies compared to the critical photon energy is
independent of the particle energy and scales inversely proportional to the
third root of the bending radius and photon energy.

3.4 Fraunhofer Diffraction

Synchrotron radiation is emitted from a rather small area equal to the cross
section of the electron beam. In the extreme and depending on the photon
wavelength the radiation may be spatially coherent because the beam cross
section in phase space is smaller than the wavelength. This possibility to
create spatially coherent radiation is important for many experiments specif-
ically for holography and we will discuss in more detail the conditions for the
particle beam to emit such radiation.

Reducing the particle beam cross section in phase space by diminishing
the particle beam emittance reduces also the source size of the photon beam.
This process of reducing the beam emittance is, however, effective only to
some point. Further reduction of the particle beam emittance would have no
effect on the photon beam emittance because of diffraction effects. A point
like photon source appears in an optical instrument as a disk with concentric
illuminated rings. For synchrotron radiation sources it is of great interest
to maximize the photon beam brightness which is the photon density in
phase space. On the other hand designing a lattice for a very small beam
emittance can causes beam stability problems. It is therefore prudent not to
push the particle beam emittance to values much less than the diffraction
limited photon beam emittance. In the following we will therefore define
diffraction limited photon beam emittance as a guide for low emittance lattice
design.

For highly collimated synchrotron radiation it is appropriate to assume
Fraunhofer diffraction . Radiation from an extended light source appears
diffracted in the image plane with a radiation pattern which is characteristic
for the particular source size and radiation distribution as well as for the
geometry of the apertures involved. For simplicity, we will use the case of
a round aperture being the boundaries of the beam itself although in most
cases the beam cross section is more elliptical. In spite of this simplification,
however, we will obtain all basic physical properties of diffraction which are
of interest to us. We consider a circular light source with diameter 2a. The
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radiation field at point P in the image plane is then determined by the
Fraunhofer diffraction integral [25]

a 2m
UP)=C /0 /0 e~ kP cos(®=9)qQ pdp. (3.42)

Here & is the wave number of the radiation and w is the sine of the angle
between the light ray and the optical axis as shown in Fig. 3.5.

W

W =sing

source

image plane

Fig. 3.5. Diffraction geometry

With o = © — % and the definition of the lowest order Bessel’s function
Jo (z) = 5= 2T —izcosaq, (3.42) can be expressed by the integral

U(P) = 27C /0 " Jo (kpw) pdp. (3.43)

This integral can be solved analytically as well with the identity foz Jo (y) ydy =
aJ1 (). The radiation intensity is proportional to the square of the radiation
field and we get finally for the radiation intensity in the image plane at the
point P

4J 2 (kaw)

I(P)ZIOW7

(3.44)
where I (P) = |U(P)|* and Iy = I (w — 0) is the radiation intensity at the
image center. This result has been derived first by Airy [26]. The radiation
intensity from a light source of small circular cross section is distributed in
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Fig. 3.6. Fraunhofer diffraction for a cicular uniform light source

the image plane due to diffraction into a central circle and concentric rings
illuminated as shown in Fig. 3.6.

Tacitly, we have assumed that the distribution of emission at the source
is uniform which is generally not correct for a particle beam. A Gaussian
distribution is more realistic resembling the distribution of independently ra-
diating particles. We must be careful in the choice of the scaling parameter.
The relevant quantity for the Fraunhofer integral is not the actual particle
beam size at the source point but rather the apparent beam size and dis-
tribution. By folding the particle density distribution with the argument of
the Fraunhofer diffraction integral we get the radiation field from a round,

Gaussian particle beam,
00 ,02
Ug(P) = const./ exp <_F> Jo (kpw) pdp, (3.45)
0 o

where 0, is the apparent standard source radius. Introducing the variable
x = p/\/20, and replacing kpw = 2xk o,w = 2x+/Z we get from (3.45)

Uq (P) = const. / e T xdy (200/7) da (3.46)
0
and after integration
Ug (P) = const. exp [—% (korw)Q] . (3.47)

The diffraction pattern from a Gaussian light source (Fig. 3.7) does not
exhibit the ring structure of a uniform source. The radiation field assumes
rather the form of a Gaussian distribution in the emission angles w with a
standard width of 62, = <w2> or

1
ko,

(3.48)

07“’ e
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Fig. 3.7. Fraunhofer diffraction for a Gaussian luminescence at the light source

3.5 Spatial Coherence

Synchrotron radiation is emitted into a broad spectrum with the lowest fre-
quency equal to the revolution frequency and the highest frequency not far
above the critical photon energy. Detailed observation of the whole radia-
tion spectrum, however, may reveal significant differences to these theoretical
spectra at the low frequency end. At low photon frequencies we may observe
an enhancement of the synchrotron radiation beyond intensities predicted by
the theory of synchrotron radiation as discussed so far. We note from the
definition of the Poynting vector that the radiation power is a quadratic ef-
fect with respect to the electric charge. For photon wavelengths equal and
longer than the bunch length, we expect therefore all particles within a bunch
to radiate coherently and the intensity to be proportional to the square of
the number IV, of particles rather than linearly proportional as is the case
for high frequencies. This quadratic effect can greatly enhance the radiation
since the bunch population can be from 108 — 10" electrons.

Generally such radiation is not emitted from a storage ring beam because
radiation with wavelengths longer than the vacuum chamber dimensions are
greatly damped and will not propagate along a metallic beam pipe [27] . This
radiation shielding is fortunate for storage ring operation since it eliminates
an otherwise significant energy loss mechanism. Actually, since this shielding
affects all radiation of sufficient wavelength both the ordinary synchrotron
radiation and the coherent radiation is suppressed. New developments in stor-
age ring physics, however, may make it possible to reduce the bunch length by
as much as an order of magnitude below presently achieved short bunches of
the order of 10 mm. Such bunches would then be much shorter than vacuum
chamber dimensions and the emission of coherent radiation in some limited
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frequency range would be possible. Much shorter electron bunches of the or-
der of 1 - 2 mm and associated coherent radiation can be produced in linear
accelerators [28] [29], and specifically with bunch compression [30] a signifi-
cant fraction of synchrotron radiation is emitted spontaneously as coherent
radiation [31].

In this section we will discuss the physics of spontaneous coherent syn-
chrotron radiation while distinguishing two kinds of coherence in synchrotron
radiation, the temporal coherence and the spatial coherence. Temporal co-
herence occurs when all radiating electrons are located within a short bunch
of the order of the wavelength of the radiation. In this case the radiation from
all electrons is emitted with about the same phase. For spatial coherence the
electrons may be contained in a long bunch but the transverse beam emit-
tance must be smaller than the radiation wavelength. In either case there is
a smooth transition from incoherent radiation to coherent radiation as de-
termined by a formfactor which depends on the bunch length or transverse
emittance.

Similar to the particle beam characterization through its emittance we
may do the same for the photon beam and doing so for the horizontal or
vertical plane we have with o, , = UT/\/i and 0y 4 = 0y /\/5 the photon
beam emittance

A

el (3.49)

€ph,z,y — %O-’I“O-T‘/ =

This is the diffraction limited photon emittance and reducing the electron
beam emittance below this value would not lead to an additional reduction
in the photon beam emittance. To produce a spatially coherent or diffraction
limited radiation source the particle beam emittance must be less than the
diffraction limited photon emittance

€py < yep (3.50)

Obviously, this condition is easier to achieve for long wavelengths. For
visible light, for example, the electron beam emittance must be smaller than
about 5x 1078 rad-m to be a spatially coherent radiation source. After having
determined the diffraction limited photon emittance we may also determine
the apparent photon beam size and divergence. The photon source extends
over some finite length L along the particle path which could be either the
path length required for a deflection angle of 2/ or a much longer length in
the case of an undulator radiation source to be discussed in the next section.
With o, the diffraction limited beam divergence the photons seem to come
from a disc with diameter (Fig. 3.8)

D=o.L. (3.51)

On the other hand, we know from diffraction theory the correlation
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Fig. 3.8. Apparent photon source size

Dsino, =~ Do =\ (3.52)

and eliminating D from both equations gives the diffraction limited photon
beam divergence

07“’ e

A
= (3.53)

With this we get finally from (3.48) also the diffraction limited source size
1
or =—VAL. (3.54)
27

The apparent diffraction limited, radial photon beam size and divergence
depend both on the photon wavelength of interest and the length of the
source.

3.6 Temporal Coherence

To discuss the appearance of temporal coherent synchrotron radiation, we
consider the radiation emitted from each particle within a bunch. The radi-
ation field at a frequency w from a single electron is

& oc el(@ttes) (3.55)

where ¢; describes the position of the j-th electron with respect to the bunch
center. With z; the distance from the bunch center, the phase is
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27
Here we assume that the cross section of the particle beam is small com-
pared to the distance to the observer such that the path length differences
from any point of the beam cross section to observer are small compared to
the shortest wavelength involved. The radiation power is proportional to the
square of the radiation field and summing over all electrons we get

N, N.
RIS SELTS s
Jit Jit

N, N,
= Zexpi((pj — ) :Ne+ZeXPi<<Pj —¥) - (3.57)
gil J#l

The first term V. on the r.h.s. of (3.57) represents the ordinary incoherent
synchrotron radiation with a power proportional to the number of radiating
particles. The second term averages to zero for all but long wavelengths. The
actual coherent radiation power spectrum depends on the particular particle
distribution in the bunch. For a storage ring bunch it is safe to assume a
Gaussian particle distribution and we use therefore the density distribution

Ve (2) = \/];[—;0 exp (—%) : (3.58)

where ¢ is the standard value of the Gaussian bunch length. Instead of sum-
ming over all electrons we integrate over all phases and folding the density
distribution (3.58) with the radiation power (3.57) we get with (3.56)

N, —1
P N, + No—==—— 1,15, 3.59
(@) e Ne = No—a= I I (3.59)

where the integrals I; and Is are defined by

oo 22 z
Il = [m exp <—F —+ 127'(';) dZ7 (3603)
400 2
w . w
12 = [m exp <—F —+ 127'(';) dU)7 (360b)

and z = %W)\(pj and w = %W)\(pl. The factor N, — 1 reflects the fact that we
integrate only over different particles. Both integrals are equal to the Fourier
transform for a Gaussian particle distribution. With

/+OO exp (—Z—z + 12w3> d2 =270 exp [—27r2 (3)1 (3.61)

. 2072 ) )

we get from (3.59) for the total radiation power at the frequency w = 2we/A
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P(w) = p(w) Ne [1 + (Ne - 1) 92 (07)‘)] ’ (362>
where p (w) is the radiation power from one electron and the Fourier transform

(2

g% (0. A) = exp [—27r2 (X)T (3.63)

is called the formfactor. With the effective bunch length
{=+2ro (3.64)
this formfactor becomes finally

g*(€,\) = exp [-wi—i} ) (3.65)

The coherent radiation power falls off rapidly for wavelengths as short or
even shorter than the effective bunch length £. In Fig. 3.9 the relative co-
herent radiation power is shown as a function of the effective bunch length
in units of the radiation wavelength. The fast drop off is evident and for an
effective bunch length of about ¢ =~ 0.6 A the radiation power is reduced to
only about 10% of the maximum power for very short bunches, when £ < \.
Particle beams from a linear accelerator have often a more compressed parti-
cle distribution of a form between a Gaussian and a rectangular distribution.
If we take the extreme of a rectangular distribution

12
g2(0,0) - Gaussian
0.1 = distribution
0.01 <
] rectangular -
0.001 7 distribution
0-0001 ] I I \\HH‘ I I \\HH‘ I I \\HH‘
0.01 0.1 1 - 10

Fig. 3.9. Formfactor g2 (¢, ) for a Gaussian and rectangular particle distribution

0 otherwise ’

1 1
!I/r(z):{l for —50<2< 3¢ (3.66)

we expect to extend the radiation spectrum since the corners and sharp
changes of the particle density require a broader spectrum in the Fourier
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transform. Following the procedure for the Gaussian beam we get for a rec-
tangular particle distribution the Fourier transform
sinx

g(O)=—, (3.67)

where x = wf/)\. Fig. 3.9 also shows the relative coherent radiation power
for this distribution and we note a significant but scalloping extension to
higher radiation frequencies. Experiments have been performed with picosec-
ond electron bunches from linear accelerators both at Tohoku University [28]
and at Cornell University [29] which confirm the appearance of this coherent
part of synchrotron radiation.

3.7 Spectral Brightness

The optical quality of a photon beam is characterized by the spectral bright-
ness defined as the six-dimensional volume occupied by the photon beam in
phase space
N,
B= B (3.68)
An20, 0, 040, 2

w

where Nph is the photon flux defined in (3.35). For bending magnet radiation
there is a uniform angular distribution in the deflecting plane and we must
therefore replace the Gaussian divergence o, by the total acceptance angle
A of the photon beam line or experiment. The particle beam emittance
must be minimized to achieve maximum spectral photon beam brightness.
However, unlimited reduction of the particle beam emittance will, at some
point, seize to further increase the brightness. Because of diffraction effects
the photon beam emittance need not be reduced significantly below the limit
(3.49) discussed in the previous section.

For a negligible particle beam emittance and deflection angle A the
maximum spectral brightness is therefore from (3.49, 3.68)

4

Bmax:)\g_d_wNph - (369)

For a realistic synchrotron light source the finite beam emittance of the
particle beam must be taken into account as well which is often even the
dominant emittance being larger than the diffraction limited photon beam
emittance. We may add both contributions in quadrature and have for the
total source parameters
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— 2 1.2
Otot,z = \/ Ub,;r + 20,
— 2 152
Ttot,y = /0y T 307, (3.70)

— 2 1.2
Otot,z’ = ab,m’ + 2 G5

— 2 1.2
Ototyy’ = /by T 20,

where o), refers to the respective particle beam parameters.

3.7.1 Matching

A finite particle beam emittance does reduce the photon beam brightness
from it’s ideal maximum. The amount of reduction, however, depends on
the malching to the pholon beam. The photon beam size and divergence are
the result of folding the diffraction limited source emittance with the elec-
tron beam size and divergence. In cases where the electron beam emittance
becomes comparable to the diffraction limited emittance the effective pho-
ton beam brightness can be greatly affected by the mutual orientation of
both emittances. Matching both orientations will maximize the photon beam
brightness.

This matching process is demonstrated in Fig. 3.10. The left side shows a
situation of poor matching in 2-dimensional 2 — z’-phase space. In this case
the electron beam width is very large compared to the diffraction limited
source size and while its divergence is small compared to the diffraction limit.
The effective photon beam distribution in phase space is the folding of both
electron beam parameters and diffraction limit and is much larger than either
one of its components. The photon beam width is dominated by the electron
beam width and the photon beam divergence is dominated by the diffraction
limit. Consequently, the effective photon density in phase space and photon
beam brightness is reduced.

To improve the situation one would focus the electron beam to a smaller
beam size at the source point at the expense of beam divergence. The reduc-
tion of the electron beam width increases directly the photon beam brightness
while the related increase of the electron beam divergence is ineffective be-
cause the diffraction limit is the dominant term. Applying more focusing may
give a situation shown on the right side of Fig. 3.10 where the folded pho-
ton phase space distribution is reduced and the brightness correspondingly
increased. Of course, if the electron beam is focused too much we have the
opposite situation as discussed. There is an optimum focusing for optimum
matching.

To find this optimum we use the particle beam parameters

2 2
Ub,;r,y == 61-7?/61,7?/ and Ub,;r’,y’ == 6 5 (3.71)
.y
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Fig. 3.10. Matching of the electron beam emittance to the diffraction limited
emittance to gain maximum photon beam brightness

where ﬁm,y are the betatron functions at the photon source location and
€2,y the beam emittances, in the horizontal and vertical plane respectively.
Including diffraction limits, the product

€
Otot,a0tote’ = \/€alp + 302 6_;1: 102 (3.72)
xz

has a minimum (%UtonmatotJ/ = 0) for
N

oy L

Ba= 0 = 5 (3.73)

A similar optimum occurs for the vertical betatron function at the source
point. The optimum value of the betatron functions at the source point de-
pends only on the length of the undulator.

The values of the horizontal and vertical betatron functions should be
adjusted according to (3.73) for optimum photon beam brightness. In case
the particle beam emittance is much larger than the diffraction limited pho-
ton beam emittance, this minimum is very shallow and almost nonexistent
in which case the importance of matching becomes irrelevant. As useful as
matching may appear to be, it is not always possible to reach perfect match-
ing because of limitations in the storage ring focusing system. Furthermore
it is practically impossible to get a perfect matching for bending magnet
radiation since the effective source length L is very small, L = 2p/7.
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Exercises *

Exercise 3.1 (S). Consider an electron storage ring at an energy of 800
MeV, a circulating current of 1 amp and a bending radius of p = 1.784 m.
Calculate the energy loss per turn, and the total synchrotron radiation power
from all bending magnets. What would the radiation power be if the particles
were 800 MeV muons.

Exercise 3.2 (S). For the electron beam of exercise 3.1 calculate the critical
energy and plot the radiation spectrum. What is the useful frequency range
for experimentation assuming that the spectral intensity should be within 1
% of the maximum value? Express the maximum useful photon energy in
terms of the critical photon energy (only one significant digit!).

Exercise 3.3 (S). What beam energy would be required to produce x-rays
from the storage ring of Exercise 3.1 at a critical photon energy of 10 keV? Is
that energy feasible from a conventional magnet point of view or would the
ring have to be larger? What would the new bending radius have to be?

Exercise 3.4 (S). The design of the European Large Hadron Collider [18],
calls for a circular proton accelerator for energies up to 10 TeV. The circum-
ference is 26.7 km and the bending radius p = 2887 m. Calculate the energy
loss per turn due to synchrotron radiation and the critical photon energy.
What is the synchrotron radiation power for a circulating beam of 164 ma?

Exercise 3.5 (S). Consider a 7 GeV electron ring with a circulating beam
of 200 mA and a bending radius of p = 20 m. Your experiment requires a
photon flux of 10® photons/sec at a photon energy of 8 keV, within a band
width of 107% onto a sample with a cross section of 10 x 10 pum? and your
experiment is 15 m away from the source point. Can you do your experiment
on a bending magnet beam line of this ring?

Exercise 3.6 (S). Bending magnet radiation (p = 2 m) from a 800 MeV,
500 mA storage ring includes a high intensity component of infrared ra-
diation. Calculate the photon beam brightness for A =10 pm radiation at
the experimental station which is 5 m away from the source. The elec-
tron beam cross section is 0y, ; X 0, = 1.1 x 0.11 mm and its divergence
Ob,z X Opy = 0.11 x 0.011 mrad. What is the corresponding brightness for
infrared radiation from a black body radiator at 2000 °K with a source size
of z x y = 10 x 2 mm? (Hint: the source length L = p26,.4, where +6,,4 is
the vertical opening angle of the radiation.)

Exercise 3.7 (S). How well are the electron beam parameters of Exercise
3.6 at the source matched to the photon beam? Show the phase space ellipses
of both the electron and the photon beam in phase space and in z and y.

* The argument (S) indicates an exercise for which a solution is given in
Appendix A.
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Exercise 3.8. With the definition of the world time 7 = 1/—8§2 show that
~d7T =dt and express the 4-velocity and 4-acceleration in terms of laboratory
coordinates.

Exercise 3.9. Verify the equality of (3.1) and (3.2)

Exercise 3.10. Verify the numerical validity of Eqs. (3.20, 3.28, D.5, D.6)
and (3.40).



4. Radiation Sources

Deflection of a relativistic particle beam causes the emission of electromag-
netic radiation which can be observed in the laboratory system as broadband
radiation, highly collimated in the forward direction. The emission is related
to the deflection of a charged particle beam and therefore sweeps like a search
light across the detection apparatus of the observer. It is this shortness of the
observable radiation pulse which implies that the radiation is detected as syn-
chrotron radiation with a broad spectrum as shown in Fig. 3.3. The width
of the spectrum is characterized by the critical photon energy (3.26) and
depends only on the particle energy and the bending radius of the magnet.
Generally, the radiation is produced in bending magnets of a storage ring,
where an electron beam is circulating for hours.

In order to adjust the radiation characteristics to special experimental
needs, other magnetic devices are being used as synchrotron radiation sources.
Such magnets are known as insertion devices since they do not contribute to
the overall deflection of the particle beam in the circular accelerator. Their
effect is localized and the total deflection in an insertion device is zero. In this
chapter, we give a short overview of all radiation sources and their charac-
teristics and postpone more detailed discussions of insertion device radiation
to Chap. 10.

4.1 Bending Magnet Radiation

The radiation from bending magnets is emitted tangentially from any point
along the curved path like that of a searchlight and appears therefore as
a swath of radiation around the storage ring as shown in Fig. 4.1. In the
vertical, nondeflecting plane, however, the radiation is very much collimated
with a typical opening angle of +1/+.

The temporal structure of synchrotron radiation reflects that of the elec-
tron beam. Electrons circulating in the storage ring are concentrated into
equidistant bunches. The distance between bunches is equal to an integer
multiple (usually equal to unity) of the rf-wavelength (60 cm for 500 MHz)
while the bunch length itself is of the order of 1 to 3 cm or 30 to 100 ps de-
pending on beam energy and rf-voltage. As a consequence, the photon beam
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Fig. 4.1. Radiation swath from bending magnets in an electron storage ring

consists of a series of short 30-100 ps flashes every 2 ns (500 MHz) or integer
multiples thereof.

Radiation is emitted in a broad spectrum (see Fig. 3.3) reaching, in prin-
cipal, from mircowaves up to the critically photon energy (3.26) and beyond
with fast declining intensities. The long wavelength limit of the radiation
spectrum is actually limited by the vacuum chamber, which causes the sup-
pression of radiation at wavelength longer than its dimensions. The strength
of bending magnets, being a part of the geometry of the storage ring cannot
be freely varied to optimize for desired photon beam characteristics. This
is specifically limiting in the choice of the critical photon energy. While the
lower photon energy spectrum is well covered even for rather low energy stor-
age rings, the x-ray region requires high beam energies and/or high magnetic
fields. Often, the requirements for x-rays cannot be met with existing bending
magnet and storage ring parameters.

4.2 Superbends

The critical photon energy from bending magnet radiation (3.28) is deter-
mined by the magnet field and the particle energy. The combination of both
quantities may not be sufficient to extend the synchrotron radiation spec-
trum into the hard x-ray regime, especially in low energy storage rings. In
this case, it is possible to replace some or all original bending magnets by
much stronger but shorter magnets, called superbends. To be more specific,
conventional bending magnets are replaced by high field, shorter supercon-
ducting magnets deflecting the electron beam by the same angle to preserve
the storage ring geometry. Since conventional bending magnet fields rarely
exceed 1.5 Tesla, but superconducting magnets can be operated at 5 to 6
Tesla or higher, one can gain a factor of 3 to 4 in the critical photon energy
and extend the photon spectrum towards or even into the hard x-ray regime.
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4.3 Wavelength Shifter

The installation of superbends is not always feasible or desirable. To still
meet the need for harder x-ray radiation in a low energy storage ring, it is
customary to use a wavelength shifter. Such a device may consist of three
or five superconducting dipole magnets with alternating magnetic field direc-
tions. For this latter reason, a wavelength shifter is a true insertion device.
The limitation to three or five poles is purely technical and may be eased
as superconducting magnet and cryo-technology progresses. Figure 4.2 shows
schematically a three-pole wavelength shifter.

particle trajectory

T T =
central pole U
compensating poles

Fig. 4.2. Magnetic field distribution along the beam path for a wave length shifter

VA

The particle beam passing through this wavelength shifter is deflected up
and down or left and right in such a way that no net deflection remains.
To meet this condition, the longitudinal field distribution of a horizontally
deflecting wavelength shifter must obey the condition

/OO B,(y=0,2)dz=0. (4.1)

— o

A wavelength shifter with such field properties is neutral on the geometry of
the particle beam path through a storage ring and therefore can be made in
principle as strong as necessary or technically feasible.

Only the central high field pole is used as the radiation source, while the
two side poles compensate the beam deflection from the central pole. In a
five-pole wavelength shifter the three central poles would be used as radia-
tors, while both end poles again act as compensators. Mostly, the end poles
are longer than the central poles and operate at a lower field. As their name
implies, the primary objective in wavelength shifters is to extend the photon
spectrum while the enhancement of intensity through radiation accumulation
from many poles, while desirable, is of secondary importance. To maximize
the desired effect, wavelength shifters are often constructed as high field su-
perconducting magnets to maximize the critical photon energy for the given
particle beam energy. Some limitations apply for such devices as well as for
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any other insertion device. The end fields of magnets can introduce particle
focusing and nonlinear field components may introduce aberrations and cause
beam instability. Both effects must either be kept below a critical level or be
compensated.

4.4 Wiggler Magnet Radiation

The principle of a wavelength shifter is extended in the case of a wiggler-
magnet. Such a magnet consists of a series of equal dipole magnets with
alternating magnetic field direction. Again, the end poles must be configured
to make the total device neutral to the geometry of the particle beam path
such that the condition (4.1) is met.

The main advantage of using many magnet poles is to increase the photon
flux. Like a single bending magnet, each of the IV,, magnet poles produces a
fan of radiation in the forward direction and the total photon flux is IV, -times
larger than that from a single pole. Wiggler-magnets may be constructed as
electromagnets with fields up to 27" to function both as a flux enhancer and
as a more modest wavelength shifter compared to the superconducting type.
An example of an 8-pole, 1.8 T electromagnetic wiggler-magnet [32] is shown
in Fig. 4.3.

In this picture, the magnet gap is wide open, to display the flat vacuum
chamber running through the magnet between the poles. The pole pieces in
the lower row are visible surrounded by water cooled excitation coils. During
operation, both rows of wiggler poles are closed to almost touch the flat
vacuum chamber. When the magnet is closed, a maximum magnetic field of
1.8 T can be obtained. Strong fields can be obtained from electromagnets,
but the space requirement for the excitation coils limits the number of poles
that can be installed within a given length.

Progress in the manufacturing of high field permanent magnet material
permits the installation of many more poles into the same space compared to
an electromagnet. An example of a modern 26 pole, 2.0 T permanent magnet
wiggler magnet is shown in Fig. 4.4 [33].

Figure 4.4 shows the wiggler magnet during magnetic measurement, with
the rail in front of the magnet holding and guiding the Hall probe. The
increased number of poles and simplified design compared to the electromag-
netic wiggler in Fig. 4.3 are clearly visible.

For short wiggler poles, we express the magnetic field by

2
B, (z,y=0,2) = By sin¥ (4.2)
P

and the maximum beam deflection from the axis is equal to the deflection
angle per half pole (6.11)
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By [™/* 2 Bo A
=2 sin—= 4y = 2228

4.3
Bp Jo Ap Bp2n’ (43)

where Bp is the beam rigidity defined in (6.7). Multiplying this with the
beam energy v, we define the wiggler strength parameter

[c] eBo A\p

K= ’[9:
v me2 2w

=0.934 By (T) Ap (cm) . (4.4)

This wiggler strength parameter is generally much larger than unity. Con-
versely, a series of alternating magnet poles is called a wiggler magnet if the
strength parameter K > 1 and condition (4.1) is met. As we will see later, a
weak wiggler magnet with K < 1 is called an undulator and produces radia-
tion with significant different characteristics. The magnetic field strength can
be varied in both electromagnetic wigglers as well as in permanent magnet
wigglers . While this is obvious for electromagnets, the magnetic field strength
in permanent magnets depends on the distance between magnet poles or on
the gap height g. By varying mechanically the gap height of a permanent
magnet wiggler, the magnetic field strength can be varied as well. The field
strength also depends on the period length and on the design and magnet
materials used. For a wiggler magnet constructed as a hybrid magnet with
Vanadium Permendur poles, the field strength along the midplane axis scales
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o magunlls sam———]

Fig. 4.4. Permanent magnet wiggler magnet with 26 poles, a 175 mm period length
and a maximum field of 2.0 T

approximately like [34]

B,(T) ~ 3.33 exp [—i (5.47 - 1.8i>} . for 01X, SgS 10N, , (4.5)
Ap Ap

where ¢ is the gap aperture between magnet poles. This dependency is also
shown in Fig. 4.5 and we note immediately that the field strength drops off
dramatically for magnet gaps of the order of a period length or greater.

On the other hand, significant field strengths can be obtained for small
gap apertures and it is therefore important to install the insertion device at a
location, where the beam dimension normal to the deflection plane is small.

The total radiation power can be derived by integrating (3.9) through the
wiggler magnet. The result of this integration is

4 2
(Py) = §reme® chKQAig , (4.6)
P
or in practical units
(P,(W)) =632.7TE* B I L, , (4.7)

where [ is the ciculating beam current, and L, = N\, the length of the
wiggler magnet.
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Fig. 4.5. On-axis field strength in a vanadium Permendur hybrid wiggler magnet
as a function of gap aperture (4.5)

For a sinusoidal field distribution By sin ?\—”z, the desired wavelength shift-
ing property of a strong wiggler magnet can be obtained only in the forward
direction. Radiation emitted at a finite angle with respect to the wiggler axis
is softer because it is generated at a source point where the field is lower.
The hardest radiation is emitted in the forward direction from the crest of
the magnetic field. For a distance Az away from the crest, the emission angle

. . . A .
in the deflection plane is ¢ = pLE% sin %\—”Az and the curvature at the source
6] P

2
point is % = p—lo 1-— (371-1(2) , where we have made use of (4.4). Consequently,

the critical photon energy for radiation in the direction ¥ with respect to the
wiggler axis varies with the emission angle ¢ like

2
€. =€/l — <%> . (4.8)

At the maximum deflection angle ¢, = 6 = K/~ the critical photon energy
has dropped to zero, reflecting a zero magnetic field at the source point.
This property is undesirable if more than one experimental station is sup-
posed to receive hard radiation from the same wiggler magnet. The strength
of the wiggler magnet sweeps the electron beam over a considerable angle, a
feature which can be exploited to direct radiation not only to one experimen-
tal station along the axis but also to two or more side-stations on either side
of the wiggler axis. However, these side beam lines at an angle 1 # 0 receive
softer radiation than the main beam line. This can be avoided if the poles of
the wiggler magnet are lengthened thus flattening the sinusoidal field crest.
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As the flat part of the field crest is increased, hard radiation is emitted into
an increasing angular cone.

4.5 Undulator Radiation

So far, we discussed insertion devices designed specifically to harden the
radiation spectrum or to increase the radiation intensity. Equally common is
the implementation of insertion devices to optimize photon beam quality by
maximizing its brightness or to provide specific characteristics like elliptically
polarized radiation. This is done with the use of undulator magnets, which are
constructed similar to wiggler magnets, but are operated at a much reduced
field strength.

Fundamentally, an undulator magnet causes particles to be only very
weakly deflected with an angle of less than +1/ and consequently the trans-
verse motion of particles is nonrelativistic. In this picture, the electron mo-
tion viewed from far away along the beam axis appears as a purely sinusoidal
transverse oscillation similar to the electron motion in a linear radio antenna
driven by a transmitter and oscillating at the station’s carrier frequency. The
radiation emitted is therefore monochromatic with a period equal to the os-
cillation period.

To be more precise, viewed from far away the particle appears to be at
rest or uniform motion as long as the electron has not yet reached the un-
dulator magnet. Upon entering the magnet the electron performs sinusoidal
transverse oscillations and returns to its original motion again after it exits
the undulator. As a consequence of this motion and in light of earlier dis-
cussions, we observe emission of radiation at the frequency of the transverse
oscillating beam motion. If IV, is the number of undulator periods, the electric
field lines have been perturbed periodically N,-times and the radiation pulse
is composed of IV, oscillations. In the particle rest frame L£* the undulator
periodlength is Lorentz contracted to )\: = A, /7 which is the wavelength of
the emitted radiation. Because the radiation includes only a finite number of
N, oscillations, the radiation is not quite monochromatic but rather quasi
monochromatic with a band width of 1/N,. This situation is illustrated in
Fig. 4.6a.

In Fig. 4.6b the radiation lobe and spectrum is shown the laboratory sys-
tem. The monochromatic nature of the radiation is somewhat lost because
radiation emitted at different angles experiences different Doppler shifts. Of
course, the radiation is again quasi monochromatic even in the laboratory
system when observed through a narrow pin hole along the axis. This mono-
chromatic radiation is called the fundamental undulator radiation and has
for K <« 1 a wavelength of

A
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a) electron rest system
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Fig. 4.6. Beam dynamics and radiation lobes in the particle rest system (a) and
the laboratory system (b) for a weak undulator (K < 1).

The situation becomes more complicated as the undulator strength is
increased. Two new phenomena appear, an oscillatory forward motion and a
transverse relativistic effect. The first phenomenon that we need to discuss
is the fact that the transverse motion becomes relativistic. As a consequence
of this, the pure sinusoidal transverse motion becomes distorted. There is a
periodic Lorentz contraction of the longitudinal coordinate, which is larger
when the particle travels almost parallel to the axis in the vicinity of the
oscillation crests and is smaller when in between crests. The cusps and valleys
of the sinusoidal motion become Lorentz-contracted in the particle system
thus perturbing the sinusoidal motion as shown in Fig. 4.7.

This perturbation is symmetric about the cusps and valleys causing the
appearance of odd and only odd (3¢, 5", 7¢% ) harmonics of the fundamen-
tal oscillation period. From an undulator of medium strength (K > 1) we
observe therefore along the axis a line spectrum of odd harmonics in addition
to the fundamental undulator radiation.

The second phenomenon to be discussed is the periodic modulation of the
longitudinal motion. The longitudinal component of the particle velocity is
maximum when the particle travels close to the crest of the oscillations and
at a minimum when it is close to the axis crossings. In a reference system
which moves uniformly with the average longitudinal particle velocity along
the axis, the particle performs periodic longitudinal oscillations in addition to
the transverse oscillations. For each transverse period, the particle performs
two longitudinal oscillations and its path looks therefore like a figure of “8¢.
This situation is shown in Fig. 4.8.
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Fig. 4.7. Distortion of sinusoidal motion due to relativistic perturbation of trans-
verse motion

I(oa*)

1 | | | | | | | | | |
harmonic number

electron motion radiation lobes

Fig. 4.8. Beam dynamics and radiation lobes in the particle rest system (a) and
the laboratory system (b) for a stronger undulator (K 2 1).

We have now two orthogonal accelerations, one transverse and one longi-
tudinal, and two radiation lobes as indicated in Fig. 4.8. Since the longitudinal
motion occurs at twice the frequency of the transverse motion, we observe
now radiation also at twice the fundamental frequency. Of course, the rela-
tivistic perturbation applies here too and we have therefore a line spectrum
which includes two series, one with all odd harmonics and one with only
even harmonics. Even and odd harmonic radiation is emitted in the particle
system in orthogonal directions and therefore we find both radiation lobes in
the laboratory system spatially separated as well. The odd harmonics all have
their highest intensities along the undulator axis, while the even harmonic
radiation is emitted preferentially into an angle 1/ with respect to the axis
and has zero intensity along the axis.

In another equally valid view of undulator radiation, the static and pe-
riodic magnetic undulator field appears in the rest frame of the electron as
a Lorentz contracted electromagnetic field or as monochromatic photon of
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wavelength A* = A, /7. The emission of photons can therefore be described
as Thomson scattering of virtual photons by free electrons [35] resulting in
monochromatic radiation in the direction of the particle path. Viewed from
the laboratory system, the radiation is Doppler shifted and applying (2.20)
the wavelength of the backscattered photons is
A
Apph = ——2——. 4.10
(L4 Bny) (110
Viewing the radiation parallel to the forward direction (¢ =~ 0), (2.23)
becomes with n, = cos¥* ~ 1 — %19*2, and G~ 1
% *2

2

1+8n, =
n, n,

(4.11)

Setting n, =~ 1, the fundamental wavelength of the emitted radiation is

A 1 A
N =B = TR (1419 4.12
L 722_%179;2 272<+4 ) (4.12)

With (2.24) the angle #* of the particle trajectory with respect to the di-
rection of observation is transformed into the laboratory system for 4" = 2~9.
We distinguish two configurations. One where # = K /v =const. describing
the particle motion in a helical undulator, where the magnetic field being nor-
mal to the undulator axis rotates about this axis. The other more common
case is that of a flat undulator , where the particle motion follows a sinusoidal
path in which case 9 = Dundq + Pobs . Here Fyna = £ sin ky % is the observation
angle due to the periodic motion of the electrons in the undulator and ¥, is
the actual observation angle. With these definitions and taking the average
<1912md> we get 729? = 1K+ 7292, .. Depending on the type of undulator,
the wavelength of radiation from an undulator with a strength parameter K
is

>

= (1 + K2+ 72193105) for a helical undulator

Ay = (4.13)

-]

;2 (1 + % K? 4+ 72193105) for a flat undulator.

From now on only flat undulators will be considered in this text and
readers interested in more detail of helical undulators are referred to [36]. No
special assumptions have been made here which would prevent us to apply

\]

this derivation also to higher harmonic radiation and we get the general
expression for the wavelength of the k-th harmonic

A
P (14 K% +9202,,) . (4.14)

A =
P o2k

The additional terms %K 2 —0—72193105 compared to (4.9) comes from the correct
application of the Doppler effect. Since the particles are deflected periodically
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in the undulator, we view even the on-axis radiation at a periodically varying
angle which accounts for the %K 2-term. Of course, observation of the radia-
tion at a finite angle 9,5 generates an additional red-shift expressed by the
term 292, _.

In more practical units, the undulator wavelengths for the &-th harmonic
are expressed from (4.14) by
A, (cm)

A (A) = 13.056 —F

W (1 + % K2 + ')/219ng> (415)

and the corresponding photon energies are

k B2 (GeV?)

€, (V) =950 .
e (eV) Ap (em) (1+ 3 K2 +v219§bs)

(4.16)

Recollecting the discussion of undulator radiation, we found that the first
harmonic or fundamental radiation is the only radiation emitted for K < 1.
As the undulator parameter increases, however, the oscillatory motion of
the particle in the undulator deviates from a pure sinusoidal oscillation. For
K > 1 the transverse motion becomes relativistic, causing a deformation of
the sinusoidal motion and the creation of higher harmonics. These harmonics
appear at integral multiples of the fundamental radiation energy. Only odd
harmonics are emitted along the axis (¢ ~2 0) while even harmonics are
emitted into a small angle from the axis. As the undulator strength is further
increased more and more harmonics appear, each of them having a finite
width due to the finite number of undulator periods, and finally merging into
the well-known broad spectrum of bending or wiggler magnet radiation (Fig.

41.9).

K=0.1 K=0.5 K=

1.0 K=2.0
mﬂﬂm
L I B 1 ‘ I e A

photon energy

intensity

Fig. 4.9. Transition from quasi-monochromatic undulator radiation to broad band
wiggler radiation

We find no fundamental difference between undulator and wiggler mag-
nets, one being just a stronger version of the other. From a practical point of
view, the radiation characteristics are very different and users of synchrotron
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radiation make use of this difference to optimize their experimental capa-
bilities. In Chapter 10 we will discuss the features of undulator radiation in
much more detail.

The electron motion through an undulator with NV, periods includes that
many oscillations and so does the radiation field. Applying a Fourier trans-
formation to the field, we find the spectral width of the radiation to be

AN 1
-V (4.17)

p

In reality, this line width is increased due to the finite aperture of the
radiation detection elements, and due to a finite energy spread and finite
divergence of the electron beam. Typical experimental undulator spectra are
shown in Fig. 4.10 for increasing undulator strength K [37].
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Fig. 4.10. Measured radiation spectrum from an undulator for different strength
parameters K . The intensity at low photon energies are reduced by absorption in
a Be-window

Although this radiation was measured through a pin hole and on-axis,
we still recognize even harmonic radiation since the pin hole covers a finite
solid angle and lets some even harmonic radiation through. Furthermore,
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the measured intensities of the line spectrum does not reflect the theoretical
expectation for the lowest harmonics at higher values of K. This is an artifact
of the experimental circumstances, where the x-rays have been extracted from
the storage ring vacuum chamber through a Be-window. Such a window works
very well for hard x-rays but absorbs heavily at photon energies below some
3 keV.

The concentration of all radiation into one or few spectral lines is very
desirable for many experiments utilizing monochromatic photon beams since
radiation is produced only in the vicinity of the desired wavelength at high
brightness. Radiation at other wavelengths creating undesired heating effects
on optical elements and samples is greatly eliminated.

4.6 Back Scattered Photons

The principle of Thomson backscattering or Compton scattering of the static
undulator fields can be expanded to that of photon beams colliding head on
with the particle beam. In the electron system of reference the electromag-
netic field of this photon beam looks fundamentally no different than the
electromagnetic field from the undulator magnet. We may therefore apply
similar arguments to determine the wavelength of back scattered photons.
The basic difference of both effects is that in the case of back scattered pho-
tons the photon beam moves with the velocity of light towards the electron
beam and therefore the electron sees twice the Lorentz contracted photon
frequency and we expect therefore a back scattered photon beam at twice
Doppler shifted frequency. That extra factor of two does not apply for un-
dulator radiation since the undulator field is static and the relative velocity
with respect to the electron beam is ¢. If A;, is the wavelength of the incident
radiation or incident laser, the wavelength of the backscattered photons is

A :A—L(1+72192 ) (4.18)

Y 4,)/2 obs/ » .

where ¥.,,5 is the angle between the direction of observation and the particle
beam axis. Scattering, for example, a high intensity laser beam from high-
energy electrons produces a monochromatic beam of hard x-rays which is
highly collimated within an angle of +1/~. If the laser wavelength is, for
example, A\, =10 pgm and the particle energy is 100 MeV the wavelength of
the backscattered x-rays would be 1.3 A or the photon energy would be 9.5
keV which is well within the hard x-ray regime.

4.6.1 Photon Flux

The intensity of the backscattered photons can be calculated in a simple way
utilizing the Thomson scattering cross section [35]
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oy, = 8r? =6.65 x 107 % cm”. (4.19)

The total scattering event rate or the number of back scattered photons
per unit time is then

NSC = UThﬁ, (420)

where L is called the luminosity. The value of the luminosity is independent
of the nature of the physical reaction and depends only on the intensities
and geometrical dimensions of the colliding beams. The definition of the
luminosity is the product of the target density of one beam by the “particle“-
flux of the other beam onto this target. Therefore the luminosity can be
determined by folding the particle density in one beam with the incident
“particles* per unit time of the other beam. Obviously, only those parts of
the beam cross sections count which overlap with the cross section of the other
beam. For simplicity, we assume a Gaussian distribution in both beams and
assume that both beam cross sections are the same. In a real setup one would
focus the electron beam and the photon beam to the same optimum cross
section given by the Rayleigh length (11.58). We further consider the particle
beam as the target for the photon beam.

With IV, electrons in each bunch of the particle beam within a cross sec-
tion of 270 ,0, the particle density is N, /270 ,0,.We consider now a photon
beam with the same time structure as the electron beam. If this is not the
case only that part of the photon beam which actually collides with the parti-
cle beam within the collision zone may be considered. For an effective photon
fux Nph the luminosity is

_ NeNph

L= .
2m0 40y,

(4.21)

Although the Thomson cross-section and therefore the photon yield is very
small, this technique can be used to produce photon beams with very specific
characteristics. By analyzing the scattering distribution this procedure can
also be used to determine the degree of polarization of an electron beam in
a storage ring.

So far, it was assumed that the incident and scattered photon energies
are much smaller than the particle energy in which case it was appropriate to
use the classical case of Thomson scattering. However, we note from (4.18)
that the backscattered photonenergy increases quadratically with the particle
energy and therefore at some energy the photon energy becomes larger than
the particle energy which is nonphysical. In case of large photon energies
comparable with the particle energy, Compton corrections [38] [39] [40] must
be included. The Compton cross-section for head-on collision is given by [41]

30Th 4 8 8 1
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4~

where x = =225 and Fwo the incident photon energy. The energy spectrum

of the scattered photons is then [41]

dog 307 1 4y 492

— = 1—y+ — +
dy 4z l—y z(1+y) 22(1-y)°

, (4.23)

where y =hw/F is the scattered photon energy in units of the particle energy.

Exercises *

Exercise 4.1 (S). Assume a proton storage ring in space surrounding the
earth at an average radius of 150 km. Further, assume a circulating current
of 10 mA and 50 W of rf-power available to compensate for synchrotron
radiation. What is the maximum proton energy that can be reached with
permanent magnets producing a maximum field of 2 Tesla? Is the energy
limited by the maximum magnetic field or synchrotron radiation losses? Cal-
culate the energy loss per turn, critical photon energy, and the total radiation
power.

Exercise 4.2 (S). Specifly main parameters for a synchrotron radiation
source for digital subtractive angiography. In this medical procedure, two
hard x-ray beams are selected from monochromators, one just below and the
other just above the K-edge of iodine. With each beam an x-ray picture of,
for example, the human heart with peripheral arteries is taken, while the
blood stream contains some iodine. Both pictures differ only where there
is iodine because of the very different absorption coeflicient for both x-ray
beams. Displaying the difference of both pictures shows the blood vessels
alone. Select parameters for beam energy, wiggler magnet field, number of
poles and beam current to produce an x-ray beam at 33 keV of 2 x 10™
photons/sec/0.1%BW into an opening angle of 25 mrad, while keeping the
66 keV and 99 keV contamination to less than 1% of the 33 keV radiation.

Exercise 4.3 (S). Consider a 30-pole wiggler magnet with 10 cm wide poles,
a field distribution B,(T) = 2.0sin 2%z and a period length of A, = 7.0 cm.
Determine the magnetic force betweén the upper and lower row of poles. Is
this force attractive or repulsive? why?

Exercise 4.4 (S). Derive an expression for the total synchrotron radiation
power from a wiggler magnet.

Exercise 4.5 (S). In Chapter 2 we described undulator radiation as a result
of Compton scattering of the undulator field by the electrons. Derive the
fundamental undulator wavelength from the process of Compton scattering.

* The argument (S) indicates an exercise for which a solution is given in
Appendix A.
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Exercise 4.6 (S). An undulator is constructed from hybrid permanent mag-
net material with a period length of A\, = 5.0 cm. What is the fundamental
wavelength range in a 800 MeV storage ring and in a 7 GeV storage ring if
the undulator gap is to be at least 10 mm?

Exercise 4.7 (S). Determine the tuning range for a hybrid magnet undu-
lator in a 2.5 GeV storage ring with an adjustable gap ¢ = 10 mm. Plot
the fundamental wavelength as a function of magnet gap for two different
period lengths, A, = 15 mm and A, = 75 mm. Why are the tuning ranges so
different?

Exercise 4.8. Consider an electron storage ring at an energy of 1 GeV, a
circulating current of 200 mA and a bending radius of p = 2.22 m. Calcu-
late the energy loss per turn, the critical energy and the total synchrotron
radiation power. At what frequency in units of the critical frequency has the
intensity dropped to 1% of the maximum? Plot the radiation spectrum and
determine the frequency range available for experimentation.

Exercise 4.9. What beam energy would be required to produce x-rays from
the storage ring of exercise 4.8 at a critical photon energy of 10 keV? Is that
energy feasible from a conventional magnet point of view or would the ring
have to be larger? What would the new beam energy and bending radius
have to be?

Exercise 4.10. Consider a storage ring with an energy of 1 GeV and a
bending radius of p = 2.5 m. Calculate the angular photon flux density
dN/dw for a high photon energy & where the intensity is still 1% of the
maximum spectral intensity. What is this maximum photon energy? Installing
a wavelength shifter with a field of B = 6 T allows the spectrum to be greatly
extended. By how much does the spectral intensity increase at the photon
energy ¢ and what is the new photon energy limit for the wavelength shifter?

Exercise 4.11. Derive an expression for the average velocity component

B, = v,/c of a particle traveling through an undulator magnet of strength

K.

Exercise 4.12. Consider an electromagnetic wavelength shifter in a 1 GeV
storage ring with a central pole length of 30 cm and a maximum field of 6 T.
The side poles are 60 cm long and for simplicity, assume that the field in all
poles has a sinusoidal distribution along the axis. Determine the focal length
due to edge focusing for the total wavelength shifter. To be negligible, the
focal length should typically be longer than about 30 m. Is this the case for
this wavelength shifter?

Exercise 4.13. Use the tuning graphs of the two undulators of problem 4.7
and add the tuning ranges for the 3" and 5" harmonic to it. Is it possible
in both cases to produce radiation over the whole spectral range between 15
and 5" harmonic?
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Exercise 4.14. Consider a 26-pole wiggler magnet with a field B,(T) =
2.0sin ?\—”z and a period length of A, = 15.0 cm as the radiation source for
a straigflt through photon beam line and two side stations at an angle ¢ =
44 mr in a storage ring with a beam energy of 2.0 GeV. What is the critical
photon energy for the photon beam in the straight ahead beam line and in
the two side stations?

Exercise 4.15. Collide a 25 MeV electron beam with a 1 kW CO5 laser
beam (A = 10.0 pm). What is the energy of the backscattered photons?
Assume a diffraction limited interaction length of twice the Rayleigh length
and an electron beam cross section matching the photon beam. Calculate the
x-ray photon flux for an electron beam from a 3 GHz linear accelerator with
a pulse length of 1 ym and a pulse current of 100 mA.
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A beam of charged particles can emit synchrotron radiation whenever it is
deflected by a magnetic or electric field. The intensity and spectrum of the
radiation depends greatly on the relativistic factor v of the charged particle.
For this reason, only electron or positron beams are considered as poten-
tial synchrotron radiation sources and we concentrate on accelerator systems
which can produce highly relativistic electron or positron beams. In the future
we will not distinguish anymore between electrons and positrons. Some syn-
chrotron radiation facilities operate with a positron beam to avoid sometimes
detrimental effects of positive ion-clouds surrounding an electron beam.

The energy of an electron is measured in units of an “electron Volt“. This
is equal to the kinetic energy gained by an electron while being accelerated in
the field between two electrodes with a potential difference of 1 Volt. Electrons
become relativistic if their kinetic energy exceeds that of the restmass or
about 511000 eV. Most synchrotron radiation sources are based on electron
beams with kinetic energies of several hundred million electron volts and
higher. We use for such high energies the units MeV (10° eV) or GeV(10° eV).
The photon energy of synchrotron radiation is also measured in eV. Photon
energies of general interest reach up to about 20 keV, where 1 keV=1000
eV. For scaling it is useful to remember that a photon wavelength of 1A is
equivalent to an energy of 12398 eV or 12.4 keV.

In this brief overview on accelerator physics, we consider only magnetic
fields for relativistic electron beam guidance since technically feasible mag-
netic fields are much more effective than equally feasible electric fields (1 Tesla
of magnetic field corresponds to 3.0 MV/cm of electric field!). For application
and research one would like to have a continuous emission of photons which
can be accomplished in an electron storage ring.

A storage ring is a circular accelerator which is widely used as a syn-
chrotron radiation source. After injection, electrons circulate in this ring
for many hours at constant energy serving as the source of continuous syn-
chrotron radiation. A storage ring is therefore not a true accelerator although
a beam can be accelerated very slowly if required (e.g. if the injection energy
is lower than the operating energy). While the electrons circulate in the stor-
age ring they emit electromagnetic radiation whenever they pass through a
magnetic field. This radiation can be extracted from the ring through long
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pipes, called photon beam lines leading to experimental stations and be used
for basic and applied science.

The intensity of synchrotron radiation is proportional to the number of
electrons circulating in the storage ring. We define a circulating beam current
by

Ib - eNefrev P

where IV, is the total number of electrons circulating in the storage ring, e
the unit of electric charge, and f.e, is the revolution frequency.

The storage ring operating at energies above several hundred MeV is en-
closed in a concrete tunnel or behind a concrete shielding wall to shield people
from ionizing radiation. The photon beam escapes this radiation environ-
ment through small holes in the shielding wall to the experimental stations.
To establish and sustain an electron beam in a storage ring, many technical
components are required. The nature and functioning of the major ones will
be discussed in more detail.

Every circular accelerator is composed of technical components, like mag-
nets, ultra-high vacuum system, rf-system, injector system, beam monitoring,
control system etc. Basically, all main components are installed along a closed
loop defining the orbit along which the electrons travel. In the schematic Fig.
5.1 the principle layout of the main components is displayed.

photonbeam Ii'\ne

\(vac uum
chamber

> A Insertion devic
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Fig. 5.1. Main storage ring components

e Bending magnets are used to deflect the electron beam. Placing bending
magnets in a well ordered arrangement such as to form a closed ring forces
the beam to follow a closed path along the circular accelerator. The location
and deflection angle of bending magnets defines the geometry of the storage
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ring. Although we call this a circular accelerator, the shape is actually
not circular. A series of arc sections (bending magnets) is interrupted by
straight sections to make space for other components. Bending magnets
also serve as sources of synchrotron radiation.

Quadrupole magnets are placed in straight sections between bending
magnets. Quadrupoles act much like glass lenses in light optics by providing
a restoring or focusing force to particles which deviate too much from the
orbital path or ideal orbit, thus assuring the survival of the particle beam
for many revolutions. We will borrow many terms and techniques from
light optics since the functions are very similar.

Sextupole magnets are used to correct for chromatic aberrations caused
by focusing errors on particles with different energies.

Vacuum system: The electron beam must be enclosed in a vacuum cham-
ber where the air pressure is reduced to some 10~° Torr or lower to pre-
vent particle losses due to scattering on residual gas atoms. Electrons,
once injected into a storage ring, are expected to circulate and produce
synchrotron radiation for many hours with a minimum rate of loss. This
low pressure is achieved by placing many vacuum pumps along the circu-
lar path. Due to gas desorption caused by radiation hitting the vacuum
chamber surface continuous pumping is required.

Rf-system: Electrons are expected to circulate for many hours at con-
stant energy in a storage ring to produce synchrotron radiation. Although
the particle energy is kept constant, energy loss into synchrotron radiation
occurs and must be compensated by equivalent acceleration. Special ac-
celerating cavities are installed along the orbit generating an accelerating
electric field in synchronism with the arrival of electrons. The acceleration
exactly compensates for the energy loss to radiation. The electric fields
oscillate at frequencies of the order of 500 MHz and proper acceleration
occurs only when electrons pass through the cavity at a specific time which
is the reason for the bunched character of the circulating electron beam.
The circulating beam is composed of one or more electron clusters, called
bunches, where the distance between bunches is an integer multiple of the
rf-wavelength. For the same reason, the circumference also must be an
integer multiple of the rf-wavelength.

Beam controls: A number of beam controls are included in the design of
a storage ring. Beam monitors are used to measure the circulating beam
current, beam lifetime and transverse beam position. Due to field and align-
ment errors of main magnets, the particle beam follows a distorted closed
loop. These distortions must be corrected as much as possible by steering
magnet. Generally, a storage ring is controlled by a computer, setting and
recording component parameters as well as monitoring beam current and
safety equipment.

Injection system: Electrons are generated in an injector system consist-
ing of an electron source, a low energy accelerator (mostly a linear accel-
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erator) and a booster synchrotron to accelerate the electrons from the low
linac energy to the operating energy of the storage ring. After acceleration
in the booster, the electrons are transferred to the storage ring. To reach
high beam intensities in the storage ring many booster pulses are injected.

Insertion devices. Synchrotron radiation emitted from bending magnets
do not always meet all requirements of the users. In order to provide the
desired radiation characteristics (photon energy, broad band, narrow band
etc.) insertion devices are placed in magnetfree sections along the orbit. Such
magnets are composed of more than one pole with opposing polarities such
that the total beam deflection in the insertion device is zero.

¢ Wiggler magnets are used to produce high intensity broad band radiation,
up to photon energies which can greatly exceeding those available from
bending magnets. In addition, a wiggler is composed of many poles thus
increasing the total photon flux by a factor equal to the number of wiggler
poles.

e Wavelength shifters are generally 3-pole wiggler magnets with a super-
high field in the central pole to reach hard x-rays in low energy storage
rings. The lateral poles are of opposite and much lower field strength to
compensate the deflection of the central pole.

e Undulator magnets are essentially weak field wiggler magnets and pro-
duce high brightness, quasi monochromatic radiation.

e Other, specially designed magnets, may produce circularly polarized ra-
diation.

Exercise *

Exercise 5.1 (S). An electron bunch of 7 =30 ps duration and an instan-
taneous current of current of I, =100 mA is injected into a storage ring with
a circumference of 300 m. Calculate the circulating beam current per bunch.
How many electrons are injected into the storage ring during each pulse con-
taining only one bunch. How many such pulses must be injected to reach a
circulating beam current of 200 mA? What is the storage ring filling time,
if the injection system can operate at 10 Hz? How many bunches must be
injected per pulse to keep the injection time at 5 min or less?

* The argument (S) indicates an exercise for which a solution is given in
Appendix A.
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Bending and focusing of high energy, relativistic particles are effected by the
Lorentz force

F:eE—l—e[—i]['va]. (6.1)

A magnetic field of 1 Tesla exerts the same force on a relativistic elec-
tron as does an electric field of 3.0 MV/cm. A magnetic field of 1 Tesla is
rather easy to produce while the corresponding electric field is beyond tech-
nical feasibility. For the manipulation of relativistic particles we use therefore
magnetic fields.

6.1 Deflection in Bending Magnets

Charged particle beams are deflected in the uniform field of bending magnets.
A transverse magnetic field being constant and homogeneous in space at least
in the vicinity of the particle beam, is the lowest order field in beam guidance
or beam transport systems. Such a field is called a dipole field and can be
generated, for example, between the poles of an electromagnetic bending
magnet with a cross section as shown schematically in Fig. 6.1.

excitation 4 %
coil ®
return yoke | 2l
©®
pole gap \ #
magnet pole integration path

Fig. 6.1. Cross section of bending magnet
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The magnetic field B is generated by an electrical current I in current
carrying coils surrounding the magnet poles. A ferromagnetic return yoke
provides an efficient return path for the magnetic flux. The magnetic field is
determined by one of Maxwell’s equations

B 4
VxZ = {M} 2y (6.2)
Ly T 1 ¢

where (. is the relative permeability of the ferromagnetic material and j is
the current density in the coils. We integrate (6.2) over an area enclosed by
the integration path as shown in Fig. 6.1 and apply Stoke’s theorem (B.29)
to get

1 1 1
—/VdeA:—jdes S [M} /jdA. (6.3)
I I ¢ Ldm

The integration on the r.h.s. is just the total current in both excitation coils
2Lt = fjdA. The L.h.s. must be evaluated along an integration path sur-
rounding the excitation coils. We choose an integration path which is con-
venient for analytical evaluation. Starting in the middle of the lower magnet
pole and integrating straight to the middle of the upper pole, we know from
symmetry that the magnetic field along this path has only a vertical nonva-
nishing component B, # 0, which is actually the desired field in the magnet
gap and g, = 1. Within the iron the contribution to the integral vanishes
since we assume no saturation effects and set p, = co. The total path inte-
gral becomes therefore

GB, = [M

} 47
47

- Liot , (6.4)

where I, is the total current through one coil. Solving (6.4) for the total
excitation current in each coil we get in more practical units

Toot (Amp) = MiBy [1] Glm] = 795774 B, [T] G[m]. (6.5)
0
The total required excitation current in each magnet coil is proportional
to the desired magnetic field and proportional to half the gap between the
magnet, poles.

As a practical example, we consider a magnetic field of 1 Tesla in a dipole
magnet with a gap of 2G' =10 cm. From (6.5) we find a total electrical current
of about 40,000 A is required in each of two excitation coils to generate this
field. Since the coil in general is composed of many turns, the actual electrical
current is usually much smaller by a factor equal to the number of turns and
the total coil current I, therefore, is often measured in units of Ampere-
turns. For example two coils each composed of 40 windings with sufficient
cross section to carry an electrical current of 1000 A would provide the total
required current of 40,000 A-turns each to produce a magnetic field of 1 Tesla.
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Beam deflection in a magnetic field is derived from the equilibrium of the
centrifugal force and Lorentz force

ymu?

e
= [¢]-vB, (6.6)
p c
where we assumed that the direction of the particle velocity v is orthogonal
to the magnetic field: v 1 B. A pure dipole field deflects a charged particle
beam onto a circular path with a bending radius p given by

1 ¢eB B

~ =

p B_E _B_p 5 (6.7)

where 8 = v/c, F the particle energy, and Bp is defined as the beam rigidity

In practical units

L) = €, (6.9
with

C, = [d e = 0.299792 iev . (6.9)
The beam rigidity is

Bp(Tm) = 3.3356 cp (GeV) . (6.10)
A magnet of length ¢, deflects a particle beam by the angle

Yv==0/p. (6.11)

Distributing a set of magnets bending the electron beam by appropriate de-
flection angles along a closed loop establishes the geometric shape of the
storage ring.

6.2 Beam Focusing

A ring consisting only of bending magnets would not work since any particle
beam has the tendency to spread out. Similar to a light beam, we require
focusing elements to confine the particle beam to the vicinity of the orbit
defined by the location of the bending magnets.
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6.2.1 Principle of Focusing

We borrow much from light optics to describe the focusing of particle beams.
To learn how to focus charged particles, we recall the principle of focusing in
light optic (Fig. 6.2). The deflection of a light ray parallel to the optical axis
by a focusing lens is proportional to the distance of the ray from the optical
axis. The distance from the lens to the focal point, where all parallel rays are
focused to a point, is called the focal length .

Applying this to the focusing of particle beams, we note from the discus-
sion on bending magnets that in a focusing magnet the deflection angle «
must increase linearly with x

a:gz[c]ﬂocx. (6.12)

p cp
To accomplish this, we consider now a field expressed by B = By + gz which
gives two contributions to the deflection, one a constant deflection due to the
uniform dipole field By and the other is an xz-dependent deflection

a = [0]6—ng = klz, (6.13)

cp
as desired for focusing. The z-dependent field component gz can be created
by a quadrupole magnet, which functions as the focusing element for charged
particle beams. The quantity g is the field gradient , and & is defined as the
quadrupole strength

k(m2) = Op%. (6.14)

The focal length of the quadrupole is 1/ f = k{, where { is the length of the
quadrupole.

6.2.2 Quadrupol Magnet

How do we produce the desired field gradient or a field: B, = gz in a quadru-
pole magnet? Static magnetic fields can be derived from a magnetic potential

focusing lens' focal length, f - - -~ -~

Fig. 6.2. Principle of focusing
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and a field B, = gz can be derived from the potential V = —gzy by simple
differentiation giving the field-components

ov.

ov
= gx, and B, = =

=gy, 6.15
5 = %Y (6.15)

y—_a_y

Because ferromagnetic surfaces are equipotential surfaces (just like metallic
surfaces are equipotential surfaces for electric fields) we use magnetic poles
shaped in the form of a hyperbola (Fig. 6.3) given by

x-y=+5R?, (6.16)

where R is the aperture radius between the four hyperbolas. Along the z-axis
the magnet cross section is assumed to be the same. A quadrupole is made of
four hyperbolic poles with alternating magnetization producing the desired
focusing field gradient.

Fig. 6.3. Cross section of a quadrupole (schematic)

Each of the four poles is excited by electrically powered coils wound
around it. Although quadrupoles function as focusing elements just like glass
lenses function as focusing elements in light optics there is a fundamental
difference. Quadrupoles focus in one plane but defocus in the other depend-
ing on the sign of the excitation current. An actual particle beam, however,
requires focusing in both planes. To solve this problem, we borrow again
from light optics the characteristics of focusing in a lens-doublet. The focal
length of two lenses is 1/f* =1/f; +1/fs — d/ fi1f2 where f; and f5 are the
focal lengths, and d is the distance between both lenses. If we choose, for
example, f; = —fa = f we get 1/f* = d/f? > 0 which is focusing in both
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planes. By using combinations of focusing and defocusing quadrupoles, one
can create overall focusing systems. The quadrupoles in a storage ring or a
general beam transport line are therefore polarized alternately as focusing or
defocusing quadrupoles. It is common in this regard to consider a quadrupole
to be focusing if it focuses a particle beam in the horizontal plane. Tacitly,
we know that this same quadrupole is defocusing in the vertical plane.

6.3 Equation of Motion

Bending magnets and quadrupoles are the main components to guide and fo-
cus a charged particle beam. Sextupole magnets are used to correct chromatic
aberration introduced by quadrupole focusing. In the following discussion we
will formulate mathematical equations to describe the path of individual par-
ticles along a beam transport line including any of theses magnet types.

The equation of motion in the presence of dipole (By), quadrupole (g)
and sextupole (¢') fields can be derived from the general expression for the
curvature 1/p of paraxial beams. Here, we define the curvature very general
to include all fields (dipole, quadrupole, sextupole...) although in any one
magnet only one field type may be present. There are exceptions to this sep-
aration of fields in some special cases. Specifically, in some new synchrotron
light sources, we find a combination of a dipole and gradient field in the same
bending magnet. For paraxial beams (2’ < 1) the curvature 1/p is

o=, (6.17)
p cp
where
B=By+gr+ig2*+... or (6.18)
B 1
[c]e— = —+hkr+ima®+ ...
cp Po

Before we proceed to derive the equation of motion, we notice that the field
term t describes the ideal beam guidance through the bending magnets. The
solution of the equations of motion would be a rather complicated expression
describing the alternating straight and curved segments of the ideal orbit as
defined by the location and strength of the bending magnets. We are not
interested in this solution, because we already know from the placement of
bending magnets where the beam should be. We rather concern ourselves with
deviation of particle trajectories from this ideal orbit and redefine (6.17) by
a transformation eliminating the geometric expression of the idea orbit and
set
LIV []

Po cp

€

(B — Bo) . (6.19)

=
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With the expansions (10.8) inserted into (6.19) the equation of motion
becomes

2= —kxe focusing term
1

+ —b. dispersion

Po
+ E2bn chromatic aberration (6.20)
—Lma? chromatic and geometric aberration

2
+O3) i higher order terms,

where § = AF/Fy is the relative energy deviation of a particle from the ideal
energy Fo and m the sextupole strength defined in (10.8).

BEach term in the equation of motion makes its specific (sometimes un-
wanted) contribution to beam dynamics. Deflection of the beam in a bending
magnet depends on the particle energy. Particles with a slightly different en-
ergy are deflected differently and this difference cannot be neglected and is
covered by the term %5. The same is true for focusing giving rise to the
chromatic aberration term, kxd. Finally, to avoid beam instability, we must
correct one of the most serious chromatic effects, the chromaticity, by the
installation of sextupole magnets. Unfortunately, such sextupole magnets in-
troduce nonlinear terms into the otherwise linear beam dynamics causing
significant stability problems for particles at large amplitudes x. A similar
equation exists for the vertical plane keeping in mind that the magnet para-
meters must change signs (k — —k), etc.

In the approximation of linear beam optics, we keep only linear terms in
(10.8) and get the differential equation of motion

o+ h(s)r = 8. (6.21)
Po

This equation is similar to that of a perturbed harmonic oscillator although
in this case we have a s-dependent rather than a constant restoring force.

The solution of this equation is composed of the solution of the homo-
geneous differential equation and a particular solution of the inhomogeneous
differential equation. The physical significance of both solutions is the fol-
lowing. Solutions for the homogeneous equation represent oscillations about
an equilibrium orbit. Such oscillations are called betatron oscillations. In this
case, the equilibrium orbit is £ = 0 because it is the path we defined by the
placement of the magnets and x represents only the deviation from this ideal
orbit. For off-energy particles, we must consider the perturbation term on the
right hand side of the equation. This perturbation is on average a constant
generating a shift of the particle trajectory from the ideal orbit. For example,
particles with a higher energy, § > 0, would oscillate about a path which is
mostly outside (2 > 0) of the ideal path. The solution of the inhomogeneous
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equation of motion therefore defines the reference orbit for particles with en-
ergy = Fo(1 + 8). Such particles perform oscillations about this reference
orbit. In the following we discuss both solutions in more detail.

6.3.1 Solutions of the Equations of Motion

First, we set § = 0 and solve the homogeneous equation: z'' + k(s)x = 0.
We cannot solve this equation in general since k = k(s) is a function of
s describing the distribution of quadrupoles along the beam transport line.
Within each individual quadrupole, however, the solution for k¥ =const >0 is
simply

z(s) = a cos(Vks) + bsin(Vks), (6.22a)
2'(s) = —avksin(Vks) + 0Vkcos(Vks) . (6.22b)

The integration constants a, b are determined by initial conditions. With x =
zo and ¢’ =z at s =0, we get at the location s the particle coordinates

z = xgcos(Vks) s1n(\/_s) (6.23a)

+ 2y —= D
2" = —xoVk sin(Vks) + xf cos(Vks). (6.23D)

For a particle with ideal energy, these two equations express the position and
slope at point s as a function of initial particle coordinates at s = 0.

6.3.2 Matrix Formalism

Both equations can be expressed in matrix formulation

x cos(Vks) \/LE sin(vks) Zo
r] = . 1] (6.24)
x —Vk sin(vVks)  cos(Vks) Zo
For the case of a defocusing quadrupole & < 0 we derive a similar transfor-
mation matrix

cosh(/|k|s) — sinh(y/|k|s
(2) - (VIFls) b= sinh(y/TFls) (). e
T || sinh(4/|k|s)  cosh(y/|k|s) o
A special case appears for k — 0 describing a drift space of length s for which
the transformation matrix is

()= (a7 () 020

The transformations are expressed for quadrupoles of finite length. Sometimes
it is desirable to perform quick calculations in which case we use the thin lens
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approximation just like in light optics by setting s — O while 1/f = ks =
const and get a thin lens transformation matrix for a quadrupole

(#) = (50) () 021

Of course, in this case half the length of the actual quadrupole must be
assigned to the drift space on either side.

Transformation of particle trajectories through complicated, multi-magnet
arrangements, called lattice, with transformation matrices My, Ma,... are
derived by simple matrix multiplication

M = My-My_y-- My M. (6.28)

This matrix formalism is quite powerful and well matched to the capabilities
of computers.

6.3.3 FODO Lattice

As an example of a beam line appropriate to demonstrate the usefulness
of the matrix formalism we use what is called the FODO structure. This
magnet structure consist of an alternating series of focusing and defocusing
quadrupoles, thence the name FODO lattice as shown in Fig. 6.4. This lattice
has been used to construct large high energy physics storage rings by filling
the space between the quadrupoles with bending magnets. The FODO lattice
is a very stable magnet configuration and its simplicity lends itself to “back-
of-an-envelope* calculations.

‘ 2L ,
ﬂ — ] H
N E— I
12QF B Q B 1ngr
b - FODOcell —~—--—-——-————-—-- ]

Fig. 6.4. FODO lattice

To formulate particle dynamics in a FODO-lattice we keep the formalism
simple by starting in the middle of a quadrupole. The transformation through
a half cell, 1/2 QF-DRIFT-1/2 QD, in thin lens approximation becomes

20 Gr) (B0)=(50
_ L _1 = 1 L ) (6-29)
< fdl 01 ffl -7 1_E
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where 2L is the length of the FODO-cell, 1/f* = 1/f; + 1/fq — L/(fi f1).
Bending magnets are ignored in (6.29) because they do not contribute to
focusing in first approximation used here. For the second half cell we get the
transformation matrix by replacing f; = fq and vice versa. For simplicity,
we consider a symmetric FODO lattice by setting f; = —f; = f and get
from both half cell transformation matrices the transformation matrix of a
full FODO-cell starting in the center of a QF and ending in the middle of the
next QF
2

—22 o (1 - %)

2
H(1-4) 1%

Mcell,qf = (630)

This transformation matrix is valid for the horizontal plane. In the vertical
plane, we have the same matrix except that the sign of the focal length must
be changed, f — —f.

We may combine the transformation in both planes into one 4 x 4 trans-
formation matrix which we can use to transform a particle trajectory with
initial coordinates zo, Z(, Yo, ¥} to through a full FODO-cell

-2 2 <1+%]f) 0 0

r 2L (1_L _ 2 To
' VE <1 f) 12 0 0 .’,U(,)
y |~ 0 0 1— %2 o — %]f Yo
Yy’ Y0

2L L 212

0 0 -7 (1 + ?) -5

(6.31)

For practical reasons, however, mostly only 2 x2 matrices are used to describe
beam dynamics in one plane only.

The matrix formalism is a very powerful tool to calculate the trajectories
of single particles. Yet, in a storage ring there are of the order of 10! or
more particles circulating and it would be prohibitive to have to recalculate
the trajectories of all particles whenever a quadrupole strength is changed.
A more simple formalism has been developed which allows us to determine
the overall behavior of a multi-particle beam.

6.4 Betatron Function

Although the quadrupole strength is a function of s, k = k(s), the homoge-
neous part of the equation of motion( 6.21) looks very much like that of a
harmonic oscillator " 4+ k(s)xz = 0. As an analytical solution of the equation
of motion we try the solution of a harmonic oscillator with variable amplitude
and phase
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2(s) = aiy/B(s) cos[¢(s) + @il , (6.32)

where a; and @, are the integration constants for particle ¢ and 3(s), %(s) are
so far unidentified functions of s. We insert this ansatz into the differential
equation and get from the coefficients of both the sine-and cosine-terms two
conditions for 3(s) and %(s)

Vo +h(s)\/B+B =0, (6.33)

ds?
(6.34)

where the primes ' are derivations with respect to s.

Equation (6.32) describes the oscillatory motion of particles about the
ideal orbit leading through the center of all magnets. These oscillations are
defined separately in both the horizontal and vertical plane and are called
betatron oscillations. The function 3(s) is called the betatron function and
is defined by the placement and strength of the quadrupole magnets. It is
a periodic function of s resembling the periodic distribution of quadrupoles
along the ring circumference. The periodicity is the circumference of the
machine or shorter if quadrupoles are arranged around the ring in a higher
periodicity.

Because of the nonlinearity of the differential equation for the betatron
function (6.33), there is only one periodic solution in each plane for a given
lattice configuration. Matrix formalism is used to determine this one betatron
function in each plane utilizing special computer programs. For each lattice
configuration a tabulated list of the values of betatron functions exists which
can be used to determine beam sizes. The betatron function is, however, of
much higher importance in beam dynamics beyond the ability to calculate
single particle trajectories as we will discuss in the next section.

6.4.1 Betatron Phase and Tune

The second equation (6.34) can be integrated immediately for
_ [ do
s B(0)
defining the phase of the betatron oscillation at point s and is measured
from the starting point s = sg. Integrating along the full orbit produces the

betatron tune v, , of the machine which is equal to the number of betatron
oscillations per revolution. Again, tunes are defined separately in both planes.

_ Y., (O) 1 d
y__%jf

o
Vegy = .
Y 2 Beyl0)

The significance of the tune is that it may not be an integer or a half integer
value. If one or the other assumes such a value, beam dynamics becomes

¥(s) (6.35)

(6.36)
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instantly unstable leading to beam loss. This becomes obvious for an integer
resonance (v , = n) when considering a small dipole field perturbation at
say one point along the orbit. This dipole field gives the beam a transverse
kick at the same phase of its betatron oscillations after every turn building
up larger and larger oscillation amplitudes until the beam gets lost on the
vacuum chamber walls.

6.4.2 Beam Envelope

Solution (6.32) describes individual particle trajectories with different ampli-
tudes a; and phases ;. If we choose only particles with the largest amplitude
a; = G within a beam and further look among these particles for the one for
which cos [¢4(s) + ¢;] = 1, we have defined the beam envelope at point s by

Eopy(s) = £iny/0,,(5). (6.37)

No other particle will have a greater amplitude at this point. Knowledge
of the betatron functions in both the z and y-plane and knowledge of the
quantity @ in both planes will allow us to define the beam dimensions at any
point along the ring orbit.

As important the knowledge of the beam width and height at some point
s is, we do not yet have the tools to calculate either the numerical value of the
betatron functions nor that of the beam emittances in both the horizontal
and vertical plane.

6.5 Phase Ellipse

Particles perform oscillatory motion, called betatron oscillations, about the
ideal reference orbit and its amplitude and slope is given by

2(s) = ay/B(s) cos [(s) + ], (6.38)
g(s) cos [¥(s) + ¢ — ar/B(s)sin [(s) + ] - ¥'(s), (6.39)

where o = —1 3" and v = h‘@ﬁ All functions «(s), 5(s) and v(s) are defined
separately in x and y and are known as betatron functions or lattice functions.
Eliminating the phase %(s) + ¢ from both equations results in a constant of
motion or the Courant—Snyder invariant[42].

z'(s) = —a

va? + 2022’ + B’ = d?. (6.40)

This equation describes an ellipse with an area ma. While travelling around
the storage ring and performing betatron oscillations, individual particles
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move in phase space along the contour of an ellipse. Each particle ¢ has a
different amplitude a; and travels therefore along a different phase ellipse.
Again, there exist two different sets of phase ellipses for each particle, one in
(2,2")-and the other in (y,y’)-phase space.

6.6 Beam Emittance

Liouville’s theorem states with respect to particle dynamics that in the pres-
ence of only external macroscopic fields the particle density in phase space
is a constant of motion. That means, no particle can cross the phase ellipse
of any other particle. We may therefore look for particles with the maximum
amplitude @ travelling along an ellipse which encloses all other particles. This
phase ellipse then becomes representative for the whole beam (Fig. 6.5) be-
cause it encloses all other particles and due to Liouville no particle can cross
this maximum phase ellipse. We have thereby succeeded in describing the
dynamics of a many-particle beam by the dynamics of a single particle. Due
to the variation of the betatron functions along the orbit, the phase ellipses
also change their form and orientation but the area of the phase ellipses stay
constant. At a particular point s along the closed orbital path in a storage
ring the phase ellipse has always the same shape/orientation while the actual
particle appears at different points on the ellipse after each revolution. The

///////// (
i_a(g/B 1/2

X

e

Fig. 6.5. Phase space ellipse with ellipse area A

constant wa is the area of the largest phase ellipse in a beam and we use
this area to define the beam emittance. Because of synchrotron radiation, an
electron beam in a storage ring has a Gaussian distribution and it is custom-
ary to define the beam emittance for a Gaussian particle distribution by the
amplitude of the one-sigma particle
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(@*) _ o2
B.(s)  Bals)

From (6.38) we find (22)/8,(s) =142 or a2 = 2¢,.The standard beam size is
then defined by

(6.41)

—_

O = /€0, and oy = 4/60, (6.42)

and the beam divergence by

Oz = \/€aVs and Oy = ey - (6.43)

Ignoring for the moment effects due to the finite energy spread in the beam
and diffraction, the photon source parameters in transverse phase space are
equal to those of the electron beam.

electron beam parameter = photon beam parameter .

6.6.1 Variation of the Phase Ellipse

While the area of the phase ellipse is a constant of motion, the shape of the
ellipse is not. The orientation and aspect ratio continuously change through
the action of quadrupole focusing and even along a fieldfree drift space. In
Fig. 6.6 the variation of the phase ellipse is shown for a beam in a drift space
while converging to a minimum followed by divergence.

beam env elop e
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Fig. 6.6. Evolution of the phase ellipse along a drift space

The phase ellipse for a converging beam is tilted to the left while that
for a diverging beam is tilted to the right. Of special interest is the upright
ellipse which occurs at any symmetry point. At such a point o, , = 0 and
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Yoy = 1/8,, and the beam emittance is simply € = Z - 2’ or for a Gaussian
beam € =0, -0, .

Fig. 6.7 shows the variation of the phase ellipse as the beam travels
through a focusing quadrupole. We note the divergent nature of the beam
before the quadrupole. Focusing turns the phase ellipse around resembling a
convergent beam.
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Fig. 6.7. Evolution of phase ellipse through a focusing quadrupole

6.6.2 Transformation of Phase Ellipse

The transformation matrix for a single particle can be used to determine
the transformation of a phase ellipse from one point to another. Liouville’s
theorem requires that

va? 4+ 20wz’ + B’ = vo22 + 200z0h + Borlh” = a2, (6.44)

where the particle coordinates (xg,z() and (x,2') are related by the trans-
ab
cd
collecting all coefficients for 22, /2 and zx’, we obtain a relation of the be-
tatron functions from one point to another. Noting that the coordinates are
independent variables we expect all three coeflicients to be equal to zero inde-
pendently. These three conditions are sufficient to determine the three lattice
functions 8, @ and «. In matrix formulation the transformation of betatron
functions is then given by

formation matrix M = < . Replacing coordinates (x¢, z)) by (z,2') and
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&4 a*  —2ab b Bo Bo
a | = | —acad+be —bd ag | = Mg-| ao | . (6.45)
v & —2cd d? Yo Yo

The transformation of betatron functions can be expressed by the elements
of single particle transformation matrices. We apply this transformation to a
drift space to formulate the evolution of the betatron function and find from
(6.45) for a drift space

3 (s) = By — 2008 + 78> - (6.46)
Specifically, we look at a beam waist where g = 0 and get the betatron
function a distance s away from the waist

52

Bo
The betatron function increases quadratically with distance from the waist
and the beam size evolves like

€2 52
o(s) =001+ —, (6.48)
)

where € is the beam emittance.

B(s) = Bo + (6.47)

6.7 Dispersion Function

So far, we have treated particle dynamics for a monochromatic beam only
and the solutions for particle trajectories cover only those of the homogeneous
differential equation of motion. This is not correct for a real beam and we
must consider corrections due to effects related to energy errors. Chromatic
effects are described by a particular solution of the inhomogeneous differential
equation

z" + <1<:+ %) x = ié, (6.49)
o Po

where § = AFE/Fy. On the left hand side, we have added the term 1/p2
which takes care of a second order focusing effect from a bending magnet.
So far we have neglected this weak focusing term, but we need to include
it now because we are about to determine a chromatic aberration due to
the right hand term which is of the same order of magnitude. The general
solution is x = 23 + x5, where the betatron oscillation x4 is the solution of
the homogeneous differential equation and zs the offset for off-momentum
particles. Assuming a pure dipole field (k = 0) and § = 1 a special solution
to (6.49) , called the dispersion function D(s) = x/4, is
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D(s) = py (1 —cos i) . (6.50)
Po

This solution is nonvanishing only within a bending magnet of length Ly, and

for 0 < s < Ly. The 2 x 2-matrix formulation can be expanded to include

off-energy particles by defining 3 x 3-transformation matrices

T ab D To
y|l=|cadaD Yo | - (6.51)
6 00 1 6

The matrix elements (D, D’) are nonzero only for bending magnets. For drift
spaces and quadrupoles D = 0, and D’ = 0. This is not to say that the dis-
persion in drift spaces and quadrupoles is zero if there was a bending magnet
upstream. The chromatic contribution to the particle trajectory starting at
the first bending magnet will transform through the beam line just like a reg-
ular trajectory, but getting specially modified within each bending magnet.
Knowledge of the dispersion function allows the calculation of chromatic
offsets for any value of the energy deviation 6. The dispersion function 6 D(s)
defines the reference path for particles with an energy deviation 6 just like
the ideal path (z = 0) is the reference path for § = 0. Particles with energy
Eo(1+6) perform betatron oscillations about their respective reference paths

defined by 6 D(s).

6.8 Periodic Lattice Functions

In circular accelerators the betatron functions at any point s are the same
from turn to turn and therefore 8= Mgz B¢ = Bo. This periodic solution of the
betatron functions can be derived from the eigenvalues of the eigenfunction
equation

(Mg —1)B=0, (6.52)

where My is the transformation matrix from point s through a whole orbit
to point s + C, C' the ring circumference and I is the unit matrix.

Generally, storage rings are composed of a number of equal sections with
equal magnet distributions. In this case, each section, called either cell or
unit, is representative for all cells and we need to find the periodic solution
for one cell only. This solution then repeats from cell to cell as we progress
along the orbit.

6.8.1 Periodic Betatron Function in a FODO Lattice

As an example, we look for the periodic solution of the betatron function in a
FODO lattice. With ap =0, and yq = 1/, in the middle of the QF, we solve
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(6.52) with (6.30) for the periodic betatron function and get from (6.45) with
(6.30) the periodic solution 8 = 8, = (1 —2L?/ f2)28, +4L*(1+ L/ £)?/8,.
Similarly, we can go from the middle of the QD to the middle of the next QD
and get the value of the periodic betatron function in the middle of the QD.
Since a QF is a QD in the vertical plane and vice versa, the two solutions
just described present the horizontal and vertical betatron functions in the
middle of the QF and interchangeably those in the middle of the QD. With
the FODO parameter x = f /L, the betatron functions in the middle of the
QF are

Kk(k+1)
2 _

Kk(k—1)

: 6.53
— (6.53)

6;1:0:[’

7 and B, =L

For values of the betatron functions in the middle of the QD we merely
interchange indices x with y. Obviously, a solution and therefore beam sta-
bility exists only if & > 1 or if f > L. Knowing the betatron functions at
one point is enough to allow the calculation of those functions at any other
point in the lattice by virtue of (6.45). In Fig. 6.8 the betatron functions are
shown for one cell of a FODO lattice. Note the similarity of the horizontal
and vertical betatron functions being only one quadrupole distance shifted
with respect to each other. The periodic nature of the solutions allows us to
construct a circular accelerator made up of a series of equal FODO cells with
periodic repetition of betatron functions and beam sizes.

Fig. 6.8. Betatron functions in a FODO lattice



6.8 Periodic Lattice Functions 95
6.8.2 Periodic Dispersion or n7-Function

In a circular accelerator there is also only one periodic solution for the dis-
persion function. Utilizing the 3 x 3 -transformation matrix for a cell or the
whole circumference, the periodic dispersion function, called the n-function,
is defined by

Mo ab D Mo
n |=cadD |- (6.54)
1 001 1

Again, knowledge of the n-function at one point permits the calculation of
n(s) at any point around the circular accelerator. The 7-function defines the
equilibrium orbit 7(s)§ for off-energy particles about which they perform
betatron oscillations. The ideal orbit, z = 0, is the equilibrium orbit for
particles with the design energy Fg or 6 = 0. The n-function varies generally
between zero and positive values. Particles with § > 0 follow therefore a
path which is farther away from the ring center while lower energy particles
follow a path closer to the ring center than the ideal orbit. The length of
the closed path is also energy dependent which becomes of great significance
later in connection with synchrotron oscillations as will be discussed in the
next chapter.

Periodic dispersion or n-function in a FODO lattice. To illustrate the
determination of the n-function, we take the FODO lattice as an example. A
storage ring can be constructed from a series of FODO cells which include
bending magnets between the quadrupoles. These bending magnets cause the
appearance of a dispersion establishing a periodic n-function. Based on the
transformation matrix through one FODO cell and assuming for simplicity
that the bending magnets are as long as the thin-lens FODO cell we may
calculate the 3 x 3 transformation matrix through one FODO cell. From that
we get for the n-functions in the middle of the QF or QD
L? L?
Nyt = 2—pf$(2f$ +1) and Negd = 2—pf£(2f£ -1), (6.55)

respectively. Knowing the 7-function at one point allows us to calculate its
values at any other point around the storage ring. The result for a FODO
lattice is shown in Fig. 6.8.

6.8.3 Beam Size

With the addition of these chromatic effects, the total beam sizes (6.42, 6.43)
are modified to become

Onpe = \J €0, +726°  and 0, =,/¢,0,, (6.56)
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where 6 = 6/ Fy is the relative energy spread in the beam. The total beam
divergence is

Our =\ €y + 128 and Oy = /G, - (6.57)

There is no effect on the vertical beam parameters since we assume a storage
ring with only horizontal bending magnets.

Exercises *

Exercise 6.1 (S). Consider a uniform static magnetic field B in the labora-
tory system. Determine the electromagnetic field in the restframe of a moving
electron. Show that the Lorentz force in both reference systems point in the
same direction. In the laboratory system, the static magnetic field causes a
transverse deflection of the moving charge. Show, that the angular deflection
is the same in both systems.

Exercise 6.2 (S). Consider a transverse electric field of 10 kV/cm and a
transverse magnetic field of 1 Tesla. At what kinetic energy of an electron
are the forces of both fields the same?

Exercise 6.3 (S). Construct a £ = 3 GeV circular accelerator from a series
of bending magnets. The magnet length shall be £ = 2 m each and the
magnetic field shall not exceed B = 1.2 T. Determine the number n;, of
magnets needed and the exact field strength to complete the ring. What is
the bending radius and the deflection angle per magnet?

Exercise 6.4 (S). Derive equation (6.16).

Exercise 6.5 (S). Focus a parallel 1.5 GeV beam to a point 5 m downstream
from a thin quadrupole (I = 0.2 m). Determine the quadrupole strength & and
field gradient g. For an aperture radius of R = 5 c¢m calculate the required
excitation current to reach this field gradient g.

Exercise 6.6 (S). Consider a drift space of length I and a symmetric elec-
tron beam cross section along this drift space. Derive an expression for the
value of the betatron function at the beginning of the drift space that results
in the minimum beam size anywhere along this drift space. By how much
does the beam size vary between the waist and ends of the drift space?

Exercise 6.7 (S). Use the bending magnets of Exercise 6.3 and add quad-
rupoles to form a FODO lattice. Choose the optimum quadrupole strength
for minimal beam sizes and calculate the value of the horizontal and vertical
betatron function in the middle of the defocusing quadrupole? What is the
focal length of the quadrupole?

* The argument (S) indicates an exercise for which a solution is given in
Appendix A.
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Exercise 6.8 (S). For a FODO lattice derive an expression (thin lens ap-
proximation) for one betatron function between quadrupoles and calculate
the phase advance for the full FODO cell.

Exercise 6.9. Construct a bending magnet with a length of 1.2 m which
deflects a 1.5 GeV beam by 20 degrees. What is the required magnetic field.
For a gap height between poles of ¢ = 7 cm calculate the required excitation
current per coil to reach the design field and how many turns must each coil
have if the power supply can deliver a current of about 500 A?

Exercise 6.10. Derive (6.33) and (6.34) form (6.32).

Exercise 6.11. Consider an electron beam entering a magnet{ree straight
section with (3, ap) = (5.0 m, 2.0) . Plot the beam size o () for an emittance
of € = 10 nm for 0 m< s < 5.0 m. What is the value of the betatron function
at the symmetry point « =0 7

Exercise 6.12. The horizontal beam size reaches a maximum value in the
middle of the focusing quadrupole (QF) in a FODO lattice. Plot the beam
size in the middle of the QF as a function of the FODO parameter «. For
which value of K becomes the beam size in a QF a minimum?



7. Radiation Effects

Particle dynamics is greatly influenced by the emission of radiation as well as
by the restoration of the energy loss in accelerating cavities. These processes
are both beneficial and perturbing while fundamentally determining the elec-
tron beam parameters and thereby the characteristics of the photon beam.
We will briefly discuss these effects to illuminate the basic physics responsible
for the photon beam characteristics in a synchrotron light source.

As electrons travel through magnetic fields, they experience a Lorentz
force which deflects the beam orthogonal to the field and velocity vector.
This force is the cause for the emission of electromagnetic radiation and the
instantaneous radiation power is given by (3.12) or (3.20). This loss of energy
into synchrotron radiation during each revolution, while small compared to
the electron energy, is sufficiently strong to cause perturbations in beam
dynamics which must be compensated.

7.1 Synchrotron Oscillations

One or more rf-cavities are located along the orbit of the ring. These cavities
are excited by external microwave sources to generate electric fields parallel to
the beam path providing the acceleration needed. Since the ri-fields oscillate
very fast (order of 500 MHz) the particle arrival time at the cavity is very
critical (Fig. 7.1). Ideally, particles should pass through the cavities exactly at
a phase such that they gain the same energy from the accelerating field as they
lost to synchrotron radiation. That phase or time is called the synchronous
phase ¥, or synchronous time .. Not all particles follow that ideal timing.
Observing orbiting particles, we notice that particles with a higher than
ideal energy follow a path which is mostly outside the ideal orbit while particle
with lower energies follow a path mostly inside of the ideal path. All particles
are highly relativistic, travel close to the speed of light and the going around
travel time depends therefore on the length of the path around the ring and
therefore on the particle energy. In spite of variations in the revolution time or
arrival time at the cavity, a stable beam is ensured by virtue of the principle
of phase focusing [43][44], which forces particles to arrive at the cavity, if not
exactly, then at least close to the synchronous phase or time. The way this
works can be explained with the help of Fig. 7.1. A particle with the ideal



100 7. Radiation Effects

chf (t)

t time, t

Fig. 7.1. Cavity acceleration voltage as a function of time

energy Fy passing through the cavity at the synchronous time ¢, will arrive
again at the synchronous time after one turn. This synchronous particle will
gain from the cavity fields the energy

Uop = eVigsing, , (7.1)

where Uy is the energy loss per turn of a particle with ideal energy Fy to
synchrotron radiation.. A particle with a higher than ideal energy starting,
for example, at time ¢, will take longer to orbit the storage ring and will arrive
at the cavity after a time £ > t; to gain an energy AFE < Uy thus reducing the
positive energy deviation of this particle. The next time this same particle will
arrive closer to the synchronous time ;. A similar process occurs for lower
energy particles. The energy dependent revolution time together with the
time varying rf-voltage provide a restoring force for particles with a wrong
energy. By this process, nonideal particles are made to oscillate about the
synchronous time ¢, similar to betatron oscillation due to the restoring forces
from fields of quadrupole magnets. These oscillations are called synchrotron
or phase oscillations.

To formulate this phase focusing, we consider the total energy change per
turn de = eVi¢(t) — U(E), where eV.¢(t) is the energy gained by a particle
passing through a cavity at time ¢, and U(F) the energy loss per turn at
energy F. We have defined the ideal energy Fy and synchronous time f, such
that the ideal particle would gain an energy exactly equal to its lost energy
Uy = U(Fy). Fxpanding at t = t, + 7 and F = Fy + ¢, keeping only linear
terms and dividing by the revolution time 7y we get the total energy gain
per turn

de 1 Vit au
e —U(Ey) — <=
at T ef(HeattST (£o) a5 |, ©
1 [ ove au
T |“ o |, dB|g, |’ (7.2)

where we made use of the fact that eV,¢(t,) = U(Ep). The revolution time
depends on the particle velocity and momentum dependent path length (v,
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momentum compaction factor ). The revolution time for a particle with en-
ergy deviation ¢ is different from the ideal revolution time Ty and we find

with AT/Ty = dr/d¢

dr 9 €

— = —(v ‘—a,)—=- 7.3
=0 a0 (73)
The 1/+%-term is due to the velocity variation with energy and the momentum
compaction factor a, is defined by the ratio of the relative change of the
orbital path length to the relative energy error,

AC AF

= —a = 4

Co  “Ey (74
and is

-(3)

averaged over the circumference. Differentiation of (7.2) with respect to ¢
and replacing 7 by (7.3) results in the equation of motion for synchrotron
oscillations

d2e de

— +2a,— + 2% =0, 7.6

di? dt (7.6)
where the damping decrement for synchrotron oscillations has been defined
by

_ L AUl 1d(p) ()

- L4 7 .7
T dB|,, ~ 2 dE o (7.7)

where (P, ) has been defined in (3.14). The synchrotron oscillation frequency
{2 has been introduced with wg = 27/7p by the definition

(v % — o) edVie(t) 2P (72 — ) eV cos Y,

02 = =
Folh ot o o7

(7.8)

A more detailed derivation of the damping decrement (7.9) reveals a cor-
rection, which is necessary to add for specific bending magnet types. The
corrected expression reads like (see for example [45])

LAY (P

Qg = 2 dE = Js Fo s (79)
where
Jo=2+79 (7.10)

is the synchrotron partition number with
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_ f% (14 2kp?) ds
¢ p% ds

The term ¥ is a correction to the damping resulting from specific properties

)

(7.11)

in some bending magnets. The first term under the integral in the nominator
occurs only in sector magnets and is zero in rectangular magnets. The second
term becomes nonzero only in gradient magnets where k £ 0 and p # 0.

The synchrotron radiation power (P,) = U(Fy)/Tp is the average radia-
tion power along the circumference. We also made use of the fact that the
integrated rf-field changes sinusoidally with time like Vi = Vjsin (w,t) and
therefore V = wegVpcosyy, = 2mh/ToVpcos ), where h is the integer har-
monic number defined by k= Cy/ A\ and ¥, = w,r t; the synchronous phase
at which a particle with energy Ej is accelerated to compensate exactly for
the energy loss Uy to radiation.

The differential equation of motion exhibits two significant terms. For
one, we may expect stable synchrotron oscillations with frequency 2 only
if the synchronous phase is chosen such that this frequency is real and not
imaginary. Furthermore, the damping term tells us that any deviation ¢ of a
particle from the ideal parameters in longitudinal phase space is damped due
to the emission of synchrotron radiation. Due to the fact that synchrotron
radiation depends on the particle energy in such a way that higher/lower
energy particles loose more/less energy, we observe an energy correcting effect
of the emission of synchrotron radiation.

The solution to the differential equation of motion (7.6) is that of a
damped harmonic oscillator

e(t) = ege " cos 2. (7.12)

Generally, the damping time 7, = 1/, is of the order of milliseconds, while
the synchrotron oscillation time is much shorter of the order of 10-50 us and
we can safely assume that 7, >> 1/2. This different time scale allows us to
treat synchrotron oscillations while ignoring damping.

Particles orbiting in the storage ring perform oscillations in energy about
the ideal energy Fy. At the same time, there is also an oscillation about the
synchronous time described by 7, which from (7.3) is 90° out of phase and
described by

7(t) = Toe ™! sin 02t (7.13)
where from (7.3)

—2
72— s

14
T (1.14)

To =
while ignoring damping. This longitudinal oscillation about the synchronous
time %, leads to a longitudinal distribution of particles and defines the bunch
length ¢;,, which is from (7.14)
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éb = 607’0 . (715)

Later, we will quantify this bunch length in a storage ring in more detail.
The energy spread in the beam is directly related to the bunch length and
the bunch length or bunch duration eventually defines the pulse length of the
photon pulse from each electron bunch.

7.1.1 Longitudinal Phase Space Motion

It is interesting at this point to discuss in some detail the particle motion in
longitudinal phase space because it relates directly to the process of radiation
production in a Free Electron Laser to be discussed in Chap. 11. We ignore
damping and eliminate from (7.12,7.13) the trigonometric functions to get
the formulation for the phase ellipse

2 12
S +==1. (7.16)
e T

While performing synchrotron oscillations, particles move along an ellipse
in phase space. This is true, however, only for small deviations from the ref-
erence point because we used only the linear term in the expansion (7.2) of
the rf-voltage in the vicinity of the synchronous time. For large synchrotron
oscillation amplitudes, the actual sinusoidal voltage variation must be taken
into account. In this case the typical phase space trajectories of particle mo-
tion under the influence of an electromagnetic field are shown in Fig. 7.2.

energy spread

AYAYAY AN

phase

separatrices

Fig. 7.2. Longitudinal phase space ellipses with separatrices

The phase space trajectories still look very much like ellipses for small
amplitudes, which become somewhat distorted towards the shape of a lens
as the oscillation amplitudes increase. The region of stable phase motion is
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enclosed by two intertwined separatrices, which separate the region of oscil-
latory motion with that of libration (see Fig. 11.2). This is similar to the
dynamics of a swing which performs oscillations at small amplitudes or en-
ergies and keeps rotating over the top in one direction for large energies. For
a stable beam, we require that all particles are contained well within the
separatrices. Observing an individual particle, we notice that it gains and
looses energy as it interacts with the electromagnetic field in the accelerating
cavity and travels along its phase space trajectory in a clockwise direction.
This motion will become specifically significant for a free electron laser as we
will discuss in more detail in Chapter 11.

7.2 Damping

Due to synchrotron radiation, all particle motion in 6-dim phase space be-
comes damped. As we have seen above, energy damping occurs at a rate
proportional to the average synchrotron radiation power (P,). Damping oc-
curs also in the transverse plane due to a geometric effect. While particles
perform betatron oscillations, they emit radiation in the direction of travel
which is generally at a finite angle with the beam axis. During this emission
of radiation the particles loose longitudinal as well as transverse momentum.
Yet in the rf-cavity, acceleration occurs only in the longitudinal direction. As
a consequence, the combined process of emission and acceleration results in
a net loss of transverse momentum which is equivalent to a reduction in the
betatron amplitude or transverse damping.

To be more quantitative, we note that the direction of the particle mo-
tion does not change with the emission of radiation since radiation is emit-
ted in the forward direction within a negligibly small angle of 1/v. The
momentum vector of the particle before emission is for small values of
xy in z,2-space (cpoxy,cPo). Emission of a photon caries away the mo-
mentum (—cApzx|, —cAp) and the transverse particle momentum becomes
([epo — cAp] xg, epo — cAp) . To compensate for this loss of momentum, the
particle gains energy in an accelerating cavity and its associated momentum
gain in the cavity is (0, 3P, dt) . Since the transverse momentum will not be
changed by the acceleration, which for simplicity we assume to occur at the
location of the radiation emission, we have

(cpo — cAp) xy = (cpo — cAp + B(Py) dt) z , (7.17)

where z(y, ] are the angles of the particle trajectories with respect to the
beam axis before and after acceleration, respectively and the acceleration is
equal to the energy loss, Py dt = (P,) dt. With =’ = &/8c and the particle
energy after emission of a photon but before acceleration SF = cp the particle
direction after acceleration is

. E . <P>dt .
= — PR () [ i A 7.18
T E+Pwdtx0 < B )5007 ( )
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where we made use of the fact that (P,)df < E and Ey ~ E. From this, the
horizontal damping decrement becomes

Ldi _  (P)
iodt ¢ Ho

(7.19)

Qyp =

Similar to the synchrotron damping decrement, this expression also has to
be corrected for second order effects in sector and gradient magnets, which
is done by introducing the partition number

Jp=1-19, (7.20)

where ¢ is defined in (7.11).
A similar expression is valid for the vertical plane:

1 dg (Py)
- —Z _ 7 21
Oéy y'o dt Yy EO ’ (7 )

where the vertical partition number J, = 1 for a flat storage ring without ver-
tical bending. The amplitude of a betatron oscillation z(t) = A(¥)/5 cos ¥(t)
scales then like

At) = Age o=t (7.22)

because of damping. Under certain circumstances, one or more damping
decrements may be modified, e.g. when we have a field gradient in a bend-
ing magnet. However, due to very general principles, the sum of all damping
decrements is a constant

P.
s+ oy + oy = 4m (7.23)
Ey
or
JotJ,+J, =4, (7.24)

also called the Robinson criterion. Whenever one decrement is modified an-
other one will be modified in the opposite direction. From here on we will
ignore such details and point to related discussions on this point to available
literature (for example [46]).

7.3 Quantum Effects

Damping of 6-dim phase-space coordinates is counterbalanced in a storage
ring by quantum effects [14]. We evaluate the emission of radiation in terms of
photon emission and discuss the effect of a single photon emission process on
particle dynamics. Consider, for example, a particle performing synchrotron
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oscillations, A = Age!?(t=t) where the last photon emission occurred at time
to. A new photon of energy ¢ be emitted at time #; causing an energy jump
in phase space which alters the synchrotron oscillation like

A = Apexp[i 2t —to)] —cexp[iN2(t —t1)]
= A1exp[i2(t—t1)] . (7.25)

Solving for the new amplitude we get
A2 = A2 42— 2cAgcos[2(t; —to)]. (7.26)

Radiation emission occurs many times during a synchrotron oscillation period
and we may therefore average over all times to get the average change in the
oscillation amplitude due to the emission of a photon with energy <.

(6A?) = (A2 — AZ) = (). (7.27)

Furthermore, we average now over all photon energies in the radiation spec-
trum and get the rate of change of the synchrotron oscillation amplitude

dA2> /00 5 S
—_— = e“n(e)de = {Npnle®)) (7.28)
< dt s,excitation 0 < P >S

where 7 () is the number of photons of energy ¢ emitted per unit time and
unit energy bin de, and Nph is the total number of all photons emitted per
unit time. The subscript ; indicates that the integral be taken along the
circumference of the ring. Since both photon energy and flux are positive we
get from this effect a continuous increase of the oscillation amplitude.

7.4 Equilibrium Beam Parameters

Two radiation effects reflect on the particle beam, damping and quantum
excitation which eventually determine the transverse beam sizes, beam di-
vergencies, energy spread and bunch length. The geometric and temporal
particle bunch parameters transform directly into those of the photon pulses.
Equilibrium values for all of these quantities are determined by damping and
quantum excitation.

7.4.1 Equilibrium Energy Spread

The equilibrium energy spread and bunch length can be derived by the re-
quirement that the amplitudes do not change or with (7.28) that

dAZ2 dAZ2 dAZ2
—\ = /= 4 (== =0, (7.29)
dt dt ot d¢ damnd
s s,excitation s,damping
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= —2a, (A%). With 7, = 1/, we get

dAZ
where < P >

sldamping

<A2> = %Ts <Nph<€2>> s (730)
where from the discussion in Section 9.7.1 (9.171)

- 55 1
<Nph<g2>>s = 24\/§rccm02 hey” <F> . (7.31)

The Gaussian energy spread is from ¢ = Asin §2¢ defined by % = <€2> =
1(A?%) and the equilibrium energy spread becomes from (7.30) and (7.31)

(E)Q —C M7 (7.32)

w) = 27
where
55 K
= e = 384107 m. (7.33)
323 mc

It should be noted that the bending radius p is always taken to be positive
independent of the direction of deflection. The emission of synchrotron ra-
diation does not depend on the sign of deflection. For an isomagnetic ring,
where all bending magnets are of the same strength, the energy spread is

2

5) = o o

depending only on the beam energy and magnet fields, B o v/p.

7.4.2 Bunch Length

The energy oscillation is correlated with a longitudinal oscillation about the
bunch center and a beam with a Gaussian energy spread will also have a
Gaussian longitudinal particle distribution. From (7.3), and 7 = 7¢ sin 2t we

find for the bunch length o, = CJ—O‘CL 5= = noting that ¢ = co-. Replacing
the synchrotron oscillation frequency by 1ts definition (7.8) we get finally for
the equilibrium bunch length (7.3)

o = 2e [l —aolFy o (7.35)
Wrey heVigcost, Fo' '

The bunch length is proportional to the energy spread and can be reduced
by increasing the rf-voltage although the reduction scales only like 1/+/V;;.
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7.4.3 Horizontal Beam Emittance

Similar to the beam energy spread, we find an excitation effect also in trans-
verse phase space. The emission of a photon occurs in a time short compared
to the damping time and therefore causes a sudden change in the particle
energy and consequently a sudden change of its reference orbit. Since the
electron cannot jump to the new reference orbit, it must oscillate about it
with a new betatron amplitude. The particle position is the sum of the be-
tatron amplitude and the offset due to its energy deviation. Emission of a
photon with energy € does not change the particle position z = x5 +
directly but causes a variation of its components

€

br =0=bz3 —l—nEiO—qu@:—nFO, (7.36a)
I n / ; € ;o ; €
bx —0—5x5+77§0—>5x@——77E—0. (7.36Db)

Particles orbiting the storage ring travel along their phase ellipses described
by
2 / 2 _ 2
Yrp® + 20xpr’ s+ Pr'y = a (7.37)
and its perturbation due to the emission of a photon is
v6(x5%) + 2a8(x5'g) + B6(x'5) = 6a®. (7.38)
Expressing these variations by (7.36) , we get
§(x3) = (wo,3 + bx3)* — x5 5 = 210,862 + 627,
§(zpz) = (z0,5 + 625) (20 5+ 82)5) — 0,370 4
= 10,8673 + T 625 + 6267 5 (7.39)
§(xfF) = (65 + 6xj)* — 2l = 21( sbafs + 62 .

Emission of a photon can happen at any phase of the betatron oscillation and
we therefore average over all betatron phases which causes the terms linear in
xg and x}; to vanish. Replacing the variations in (7.38) by their expressions
from (7.39) we get

§a? = @H(s) (7.40)
B

where we have averaged over all photon energies and have defined
H(s) = yi° + 2am’ + 5. (7.41)

This equation looks very similar to (7.27) and the rate of change of the
betatron oscillation amplitude is analogous to (7.28)
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d <a2> _ <Nph <€2> H>s
< dt >s,excitation B Eg ’ (742>

This excitation is again to be combined with damping to get an equilibrium
beam emittance

(a%), = 3 <Nph <52>H(s)> . (7.43)
The rms beam size is 05 = +(z*) = 14?8, and the equilibrium beam emit-
tance

€z = % _ C 72M (7.44)

Be YL (1P

The equilibrium beam emittance is proportional to the square of the particle
energy and further depends on lattice parameters like the strength of the
bending magnets and the function H(s). Depending on the design goal, the
magnet lattice can be optimized for a large beam emittance as is desired,
for example, in colliding beam storage rings for high energy physics. Many
such rings were and are in use now for the production of synchrotron radi-
ation and are known as first generation radiation sources. Another lattice
design approach is to minimize the beam emittance, which is the preferred
goal for synchrotron radiation sources to maximize photon beam brightness.
Synchrotron light sources with intermediate beam emittances and few or no
magnet-free straight sections for insertion devices are classified as second gen-
eration storage rings. Third generation storage rings have been designed for
as small a beam emittance as feasible and include many magnet free sections
to install insertion devices. Generally, the focusing power must be increased to
minimize the beam emittance leading to significant chromatic and geometric
aberrations which limit beam stability in a storage ring.

7.4.4 Vertical Beam Emittance

In most storage rings, there is no dispersion in the vertical plane, 7, = 0,
and it seems therefore that H,(s) = O resulting in a vanishing vertical beam
emittance €, = 0. In this situation we must reconsider the approximations
made so far which include the transverse recoil a particle may receive if a
photon is emitted not exactly in the forward direction but at a finite angle
within +1/~. Due to this recoil Ap; # 0 and the vertical equilibrium beam
emittance due to the transverse recoil turns out to be

2 1 3
-5 _ ¢ 7QM 7210713 radm, (7.45)

V=B, T R

indeed a very small emittance. This small value justifies the fact that we
neglected this effect for the horizontal beam emittance. The smallest beam
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emittance achieved so far in any electron storage ring operated in the world
is of the order of 10~ rad m, much higher than this fundamental lower limit
(7.45).

This result is actually so small that still other effects must be considered.
Coupling of horizontal betatron oscillations into the vertical plane due to
magnet misalignments (rotational errors of quadrupole alignment) contribute
much more to the vertical beam emittance. Actually, in existing storage rings
this coupling dominates the vertical beam emittance. For a well aligned stor-
age ring

€, < 0.01e, . (7.46)

7.5 Transverse Beam Parameters

Beam parameters like width, height, length, divergence, beam emittances and
energy spread are not all fixed independent quantities, but rather depend on
lattice and rf parameters. These dependencies on technical design parameters
allow the storage ring designer the adjustment of beam parameters, within
limits, to be optimum for the intended application. In this section we will
discuss such dependencies. A particle beam at any point along a beam trans-

y

Ap/p>0

Ap/p=0
—Ap/p<0

- T~nAp/p

Fig. 7.3. Distribution of beam ellipses for a beam with finite emittance, dispersion
and momentum spread (schematic). The variation in the shape of the phase ellipses
for different energies reflects the effect of chromatic aberrations

port line may be represented by a few phase ellipses for different particle
momenta as shown in Fig. 7.3. The phase ellipses for different momenta are
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shifted proportional to the dispersion function at that point and its deriva-
tive. Generally, the form and orientation of the ellipses are slightly different
too due to chromatic aberrations in the focusing properties of the beam line.
For the definition of beam parameters we need therefore the knowledge of the
lattice functions including chromatic aberrations and the beam emittance and
momentum spread.

7.5.1 Beam Sizes

The particle beam width or beam height is determined by the beam emit-
tance, the values of the betatron and dispersion functions, and the energy
spread. The betatron and dispersion functions vary along a beam transport
line and depend on the distribution of the beam focusing elements. The beam
sizes are therefore also functions of the location along the beam line. From
the magnet lattice these functions can be derived and the beam sizes be
calculated.

The beam size of a particle beam is generally not well defined since the
boundaries of a beam tends to become fuzzy. We may be interested in the
beam size that defines all of a particle beam. In this case we look for that
phase ellipse that encloses all particles and obtain the beam size in the form of
the beam envelope. The beam half-width or half-height of this beam envelope
is defined by

up(s) = VeuB,(s) (7.47)

with « = («,y). If there is also a finite momentum spread the overall beam
size or beam envelope is increased by the dispersion

Acp
Up(8) = N, (8) — 7.48
8) = ms) 22 (7.48)
and the total beam size is
Acp
Utot(8) = ug(s) +uy(s) = VeuB,(s) +m,(s) : (7.49)

€Po

This definition of the beam size assumes a uniform particle distribution within
the beam and is used mostly to determine the acceptance or the beam stay
clear of a beam transport system. The acceptance of a beam transport system
is defined as the maximum emittance a beam may have and still pass through
the vacuum chambers of a beam line. In Fig. 7.3 this would be the area of
that ellipse that encloses the whole beam including off momentum particles.
In practice, however, we would choose a larger acceptance to allow for errors
in the beam path.

Since the lattice functions vary along a beam line the required aperture,
to let a beam with the maximum allowable emittance pass, is not the same
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everywhere along the system. To characterize the aperture variation consis-
tent with the acceptance, a beam stay clear area, BSC, is defined as the
required material free aperture of the beam line.

For a more precise description of the actual beam size, the particle distri-
bution must be considered. In a storage ring, most particle beams assume a
Gaussian or near Gaussian density distribution in all six dimensions of phase
space and therefore the contributions to the beam parameters from differ-
ent sources add in quadrature. The beam parameters for Gaussian particle
distributions are defined as the standard values of the Gaussian distributions

O02,02,0y,04,05,0¢, (75())

where most designations have been defined and used in previous chapters
and where 05 = 0./¢po and o4 the bunch length. The beam size for Gaussian
beams is for u =z oru=1y

Cutor = y/€ulf(8) + 78 ()0%. (7.51)

Four parameters are required to determine the beam size in each plane al-
though in most cases the vertical dispersion vanishes.

7.5.2 Beam Divergence

The angular distribution of particles within a beam depends on the rotation
of the phase ellipse and we define analogous to the beam size an angular
beam envelope by

Ou’ tot — \/GU’Yu (S) + 77;,2(8) 0? . (752)

Again, there is a contribution from the betatron motion, from a finite momen-
tum spread and associated chromatic aberration. The horizontal and vertical
beam divergencies are also determined by four parameters in each plane.

7.6 Beam Emittance and Wiggler Magnets

In circular electron accelerators, the beam emittance is determined by the
emission of synchrotron radiation and the resulting emittance is not always
as desired. In such situations methods to alter the equilibrium emittance are
desired and we will discuss in the next sections methods which may be used
to either increase or decrease the beam emittance.

The beam emittance in an electron storage ring can be greatly modified
by the use of wiggler magnets both to increase [47] or to decrease the beam
emittance. Manipulation of the beam emittance in electron storage rings has



7.6 Beam Emittance and Wiggler Magnets 113

become of great interest specifically, to obtain extremely small beam emit-
tances, and we will therefore derive systematic scaling laws for the effect of
wiggler magnets on the beam emittance as well as on the beam energy spread.

The particle beam emittance in a storage ring is the result of two com-
peting effects, the quantum excitation caused by the quantized emission of
photons and the damping effect. Both effects lead to an equilibrium beam
emittance observed in electron storage rings. Independent of the value of the
equilibrium beam emittance in a particular storage ring, it can be further
reduced by increasing the damping without also increasing the quantum ex-
citation. More damping can be established by causing additional synchrotron
radiation through the installation of deflecting dipole magnets like strong wig-
glers magnets. In order to avoid quantum excitation of the beam emittance,
however, the placement of wiggler magnets has to be chosen carefully. As
discussed earlier, an increase of the beam emittance through quantum exci-
tation is caused only when synchrotron radiation is emitted at a place in the
storage ring where the dispersion function is finite.

Emittance reducing wiggler magnets must be placed in areas around the
storage ring where the dispersion vanishes to minimize quantum excitation.
To calculate the modified equilibrium beam emittance, we start from (7.42)
and get with (7.31) an expression for the quantum excitation of the emittance
which can be expanded to include wiggler magnets

de, H
—| = cCoF® <—3> , (7.53)
dt do P 0
where
55 h 2
e 20610 M (7.54)

7 243 (me2) GeV?

The quantity H is evaluated for the plane for which the emittance is to
be determined, F is the particle energy, and p, the bending radius of the
regular ring magnets. The average () is to be taken for the whole ring and
the index ¢ indicates that the average <'H/,03>0 be taken only for the ring
magnets without wiggler magnets.

Since the contributions of different magnets, specifically, of regular storage
ring magnets and wiggler magnets are independent of each other, we may use
the results of the basic ring lattice and add to the regular quantum excitation
and damping the appropriate additions due to the wiggler magnets,

e[,

W

de,
dt

Both, ring magnets and wiggler magnets produce synchrotron radiation
and contribute to damping of the transverse particle oscillations. Again, we
may consider both contributions separately and adding the averages the com-
bined rate of emittance damping is
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d B/l 1
Lol o 96Oy — [<—2> +<—2> } , (7.56)
de |, Iz P /o P/ w

where €,, is the beam emittance with wiggler magnets,

c T m?

Cy=- = 2110 ,
d 3 (m02)3 GeV3s

(7.57)

and J, the horizontal damping partition number, assuming a flat storage ring
in the horizontal plane. The equilibrium beam emittance is reached when the
quantum excitation rate and the damping rates are of equal magnitude. We
add therefore (7.55) and (7.56) and solve for the horizontal equilibrium beam

emittance
H H
2 () (B,
Crw = Cq_—7
(30, (3
/o 0/

where C, is defined in (7.33). With €,y being the original beam emittance for
P — 00, the relative emittance ratio due to the presence of wiggler magnets

o 1) (2),
ERE )

Making use of the definition of average parameter values and the circum-
ference of the storage ring C' = 2n R we get

H 1 7( H

2N = = ds, 7.60a
<p3 >0 c o (7.60a)

H 1 [ H

1 1 [1

—) == ¢ —ds, 7.60c
<p2 >0 C 7{ P8 (7.60c)

1 1 1

When evaluating these integrals, note, that the bending radii are always
positive, pg , > 0. Evaluation of these integrals for a particular storage ring
and wiggler magnet employed gives from (7.59) the relative change in the
equilibrium beam emittance. The quantum excitation term scales like the
cube while the damping scales only quadratically with the wiggler curvature.
This feature leads to the effect that the beam emittance is always reduced for
small wiggler fields and increases only when the third power terms become
significant.

(7.58)

(7.59)
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Concurrent with a change in the beam emittance a change in the momen-
tum spread occurs due to the wiggler radiation which can be derived in a
similar way for

02, _ 1+ (/) /{1/p%)0
o, 1+ 1/pw/ (/PP

Closer inspection of (7.59,7.61) reveals basic rules and conditions for the
manipulations of beam emittance and energy spread. If the ring dispersion
function is finite in the wiggler section, we have (H,) # 0 which can lead
to strong quantum excitation depending on the magnitude of the wiggler
magnet bending radius p,,. This situation is desired if the beam emittance
must be increased [47]. If wiggler magnets are placed into a storage ring
lattice were the ring dispersion function vanishes, only the small dispersion
function created by the wiggler magnets themselves must be considered for
the calculation of {H,,) and therefore only little quantum excitation occurs.
In this case the beam emittance can be reduced since the wiggler radiation
contributes more strongly to damping and we call such magnets damping
wigglers. Whenever wiggler magnets are used which are stronger than the or-
dinary ring magnets p,, < py the momentum spread in the beam is increased.
This is true for virtually all cases of interest.

Conceptual methods to reduce the beam emittance in a storage ring have
been derived which are based on increased synchrotron radiation damping
while avoiding quantum excitation effects. Optimum lattice parameters nec-
essary to achieve this will be derived in the next section.

(7.61)

7.6.1 Damping Wigglers

General effects of wiggler magnet radiation on beam emittance has been dis-
cussed and we found that the beam emittance can be reduced if the wiggler
is placed where 7 =0 to eliminate quantum excitation {H,) = 0. This latter
assumption, however, is not quite correct. Even though we have chosen a
place, where the storage ring dispersion function vanishes, we find the quan-
tum excitation factor H,, to be not exactly zero once the wiggler magnets are
turned on because they, being bending magnets, create their own dispersion
function. To calculate this dispersion function we assume a sinusoidal wiggler

field
B(z) = Bycosky?, (7.62)

where k, = 27/A, and A, the wiggler period length as shown in Fig. 7.4.
From (6.49) the differential equation for the dispersion function in a wiggler
magnet

1
= —coskpz, (7.63)
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n—function

p>0 p<O0 p>0

Fig. 7.4. Dispersion function in one period of a wiggler magnet

which can be solved by

O

n(z) = . (1 —coskyz) , (7.64)
P

n'(2) = Oy sinkpz, (7.65)

where we have assumed that the wiggler magnet is placed in a dispersion
free location 1y = 7y = 0 and where from (4.3) 0, = 1/(p, k) is with
the deflection angle per wiggler halfpole. With this solution, the first two
equations (7.60) can be evaluated. To simplify the formalism, we ignore the 2-
dependence of the lattice functions within the wiggler magnet and set o, = 0
and 3, = const. Evaluating the integrals (7.60), we note that the absolute
value of the bending radius p must be used along the integration path because
the synchrotron radiation does not depend on the sign of the deflection. With
this in mind, we evaluate the integrals f; (n?/|p%]) dz and [ (77’2/|,03|) dz. For
each half period of the wiggler magnet, the contribution to the integral is with

H=n?/8,+1"0,

A M/ 36 L s 18,035 48,03
A= T e YT
0 P x pw pw

(7.66)

where the approximation A\, < 3, was used. For the whole wiggler magnet
with N periods, the total quantum excitation integral

H 38 6;1: 3

Similarly, the damping integral for the total wiggler magnet is
1 0y
/—de = 71N, —. (7.68)
p Pw

Inserting expressions (7.60,7.67,7.68) into equation (7.59) we get for the emit-
tance ratio

8 8 P2 3
w1307 T, N 2 O 6
&0 l+LN. 2o, (769
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where (Ho), is the average value of H in the ring bending magnets excluding
the wiggler magnets. We note from (7.69) that the beam emittance indeed
can be reduced by wiggler magnets if 0, is kept small. For easier numerical
calculation we replace (Ho), by the unperturbed beam emittance which from
(7.58) in the limit p, — oo is

Jz Po €x0

<H0>P = C 72
q

(7.70)

and get instead of (7.69) with the wiggler strength parameter K = 6,

8C, B, K N 2
G _ 1300 o pe Top (7.71)

€20 N 1+%prﬂlgw

The beam emittance is reduced by wiggler magnets whenever the second term
in the nominator is smaller than the second term in the denominator or when
the condition

8 C4 B, K 2

— Xa =z <1 72
15m Jp ex0 P (7.72)

is fulfilled. For large numbers of wiggler periods, N, — oo, the beam emit-
tance reaches asymptotically a lower limit given by

Cxw 8Cy B, K2
w0 P¥a Ma I

. 7.73
€40 157, €x0 Py ( )

For many wiggler periods the increase in momentum spread also reaches an
asymptotic limit which is from (7.61)

EW

2
ev _, Lo _ B (7.74)
Te0 Pw By
where By is the magnetic field strength in the ring magnets. Beam stability
and acceptance problems may occur if the beam momentum spread is allowed
to increase too much and therefore inclusion of damping wigglers must be
planned with some caution.

7.6.2 Variation of the Damping Distribution

Robinson’s criterion (7.23) provides an expression for the overall damping in
six-dimensional phase space without specifying the distribution of damping
in the three degrees of freedom. In accelerators, we make an effort to decouple
the particle motion in the three degrees of freedom as much as possible and
as a result we try to optimize the beam parameters in each plane separately
from the other planes for our application. Part of this optimization is the
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adjustment of damping and, as a consequence, of beam emittances to desired
values. Robinson’s criterion allows us to modify the damping in one plane at
the expense of damping in another plane. This shifting of damping is done
by varying damping partition numbers defined in Section 7.2.

From the definition of the ¥ parameter is is clear that damping partition
numbers can be modified depending on whether the accelerator lattice is a
combined function or a separated function lattice. By choosing a combina-
tion of gradient and separated function magnets we may generate virtually
any distribution between partition numbers while staying within Robinson’s
criterion.

Damping partition and rf-frequency. Actually such “gradient magnets“
can be introduced even in a separated function lattice. If the rf-frequency is
varied, the beam will follow a path that meets the synchronicity condition.
Increasing the ri-frequency corresponds to a shorter wavelength and therefore
to a reduced orbit length to keep the harmonic number constant. As a conse-
quence of the principle of phase stability, the beam energy is reduced and the
beam follows a lower energy equilibrium orbit with the same harmonic num-
ber as the reference orbit for the reference energy. Decreasing the rf-frequency
leads just to the opposite effect. Off momentum orbits pass systematically off
center through quadrupoles which therefore function like combined function
gradient magnets.

To quantify this effect, we use for ¥ only the second term in (7.11). The
first term, coming from sector magnets, will stay unaffected. Displacement of
the orbit in the quadrupoles will cause bending with a bending radius

1

— = kébx. 7.75
o (7.75)

An rf-frequency shift causes a momentum change of

4 _ 1A

= — , 7.76
Po Q¢ frf ( )
which in turn causes a shift in the equilibrium orbit of
A Af,
by = n 22— _ 1 A (7.77)
Po Q¢ frf
and the bending radius of the shifted orbit in quadrupoles is
1 A A
R (7.78)
qu Po Q¢ frf

Inserted into the second term of (7.11), where p, is the actual bending radius
of the ring bending magnets we get

i5§2k2n2ds Afe

AY = —
ac $ds/pl [

(7.79)
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We see that all quantities in (7.79) are fixed properties of the lattice and
changing the rf-frequency leads just to the effect we expected. Specifically,
we note that all quadrupoles contribute additive irrespective of their polarity.
We may apply this to a simple isomagnetic FODO lattice where all bending
magnets and quadrupoles have the same absolute strength. Integration of the
nominator in (7.79) leads to

7( 20212 ds = 2K+ 7an) la2 e

where 2l is the quadrupole length in a FODO lattice, 1., and 7., the
values of the n-function in the focusing QF and defocusing QD quadrupoles,
respectively, and 7, the number of FODO cells in the ring. The denominator
¢ ds/p* = 27/p, and the variation of ¢ in a FODO lattice is

2P0 Max T Mowin At
Ad = —n, a max min 80
" T Q¢ lq f2 frf ’ (7 )

where we have used the focal length f~! = kl,. We replace in (7.80) the
n functions by the expressions (6.55) derived for a FODO lattice, recall the
relation f = x L and get finally

pa 1 L 2 Afrf
A9 = — Lo Zgp2 2Lt 7.81
P Cc lq( ) frf ( )

where p is the average bending radius in the FODO cell as defined in Chap. 6.
The variation of the ¥ parameter in a FODO lattice is the more sensitive to
rf-frequency variations the longer the cell compared to the quadrupole length
and the weaker the focusing. For other lattices the expressions may not be
as simple as for the FODO lattice but can always be computed by numerical
evaluation of (7.79).

By varying the rf-frequency and thereby the horizontal and longitudinal
damping partition number, we have found a way to either increase or decrease
the horizontal beam emittance. To decrease the horizontal beam emittance
we would increase the horizontal partition number and at the same time the
longitudinal partition number would be reduced. The adjustments, however,
are limited. The limit is reached when the longitudinal motion becomes un-
stable or in practical cases when the partition number becomes less than
about 0.5. Other more practical limits may occur before stability limits are
reached if the momentum change becomes too large to fit in the vacuum

chamber aperture or within the dynamic aperture, whichever is smaller.

7.6.3 Can we Eliminate the Beamm Energy Spread?

To conclude the discussions on beam manipulation, we try to eliminate the en-
ergy spread in a particle beam. From beam dynamics, we know that the beam
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particles can be sorted according to their energy by introducing a dispersion
function. The distance of a particle from the reference axis is proportional to
its energy and given by

x5 = D6, (7.82)

where D is the value of the dispersion at the location under consideration
and 6 = AF/Fy the energy error. For simplicity, we make no difference
between energy and momentum during this discussion. We consider now a
cavity excited in a mode (TMp;;-mode) such that the accelerating field is
zero at the axis, but varies linearly with the distance from the axis. If now
the accelerating field, or after integration through the cavity, the accelerating
voltage off axis scales like

Vielas) = — =2 Ry, (7.83)
D
we have just compensated the energy spread in the beam. The particle beam
has become monochromatic, at least to the accuracy assumed here. In this
process Liouville’s theorem is violated because this scheme does not change
the bunch length and the longitudinal emittance has been indeed reduced by
application of macroscopic fields.

The problem is that we are by now used to consider transverse and lon-
gitudinal phase space separate. While this separation is desirable to manage
the mathematics of beam dynamics, we must not forget, that ultimately
beam dynamics occurs in 6-dimensional phase space. Since Liouville’s the-
orem must be true, its apparent violation warns us to observe changes in
other phase space dimensions. In the case of beam monochromatization, we
notice that the transverse beam emittance has been increased by virtue of
Maxwell’s equations. The transverse variation of the longitudinal electric field
causes the appearance of transverse magnetic fields which deflect the parti-
cles trajectories transversely thus increasing the transverse phase space at
the expense of the longitudinal phase space.

This is a general feature of electromagnetic fields known as the Panofsky—
Wenzel Theorem [48] . The Lorentz force due to electromagnetic fields causes
a change in the particle momentum which in the transverse direction is given
by

v =5 O/[Epu(ﬁx B).]d-. (7.84)

Expressing the fields by the vector potential E, = —9A | /0t and B, =
(V x A), the change in the transverse momentum can be expressed by

d

ep) = —eVL/ Edz, (7.85)
0
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where the integration is taken over the length d of the cavity. This is the
Panofsky—Wenzel theorem which states in our case that transverse accelera-
tion occurs whenever there is a transverse variation of the accelerating field.
In conclusion, we find that indeed a particle beam can be monochromatized
with the use of, for example, a TM;;9—mode cavity, but only at the expense
of transverse beam emittance.

7.7 Photon Source Parameters

With the knowledge of betatron functions, beam emittances and energy
spread we are in a position to define the particle beam cross sections and
photon source parameters. The total beam width or height is defined by the
contribution of the betatron phase space 0g ,, and the energy phase space
Og,z,y and is

g
Ototz,y = \/OF4,y 05 = \/ez,y57x7y+77§§z (7.86)

2 ’
3 2 el 1+a3 _1
with 03 , = €z,y0z y and 0y 5 = NoBes Yoy = —wy and agy = =50, .

Similarly, we get for the beam divergence

g
Otot,z’,y’ = \/0%737/7?// +0727/ = \/6;137?/)/377:,/ +77,2E_Z . (787)

These beam parameters resemble in general the source parameters of the

photon beam. Deviations occur when the beam emittance becomes very small,
comparable to the photon wavelength of interest. In this case, the photon
source parameters may be modified by diffraction effects which limit the ap-
parent source size and divergence to some minimum values even if the electron
beam cross section should be much smaller. For radiation at a wavelength X,

the diffraction limited, radial photon source parameters are '

1
or=5-VAL and ol =4/Z. (7.88)
T

Projection onto the horizontal or vertical plane gives 0, , =0,/ V2 ete. Due
to diffraction, it is not useful to push the electron beam emittance to values
much smaller than

A
3 = —.
T,y A
1 Many authors use a different definition o, = o,/ \/5 The difference is mainly
that the subscript , refers to radiation and the related beam parameters are

already projected to the x or y-plane. In this text we use the subscript ,. from
the radial coordinate since we derive the diffraction effects from a round beam.

(7.89)
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For an arbitrary electron beam cross section the photon source parameters
are the quadratic sums of both contributions

2 _ 2 1.2

Oph,z,y — Otot,z,y + 207, (790>
2 a2 1 /2

Otot,z,y — O tot,z,y + 20 - (791>

The contribution from diffraction can be ignored if

A
Coy > - (7.92)

Exercises *

Exercise 7.1 (S). Derive the equation of motion for synchrotron oscillations
with large amplitudes and for a sinusoidal variation of the rf—voltage.

Exercise 7.2 (S). Calculate the synchrotron damping time for the storage
ring in Exercise 6.3 or 4.1 and rectangular pure dipole magnets. What are
the damping times in that ring? Calculate the equilibrium energy spread.

Exercise 7.3 (S). What is the probability for a 6 GeV electron to emit a
photon with an energy of ¢ = 0. per unit time travelling on a circle with
radius p = 25 m. How likely is it that this particle emits another such photon
within a damping time? In evaluating quantum excitation and equilibrium
emittances, do we need to consider multiple photon emissions? (use isomag-
netic ring)

Exercise 7.4 (S). How many photons are emitted by an electron of energy
FE on average per turn.

Exercise 7.5. Consider an electron beam in a 6 GeV storage ring with a
bending radius of p = 20 m . Calculate the rms energy spread ¢./Fy and the
damping time 7.

Exercise 7.6. For the storage ring design in Exercise 6.3 estimate the aver-
age value (H) and calculate the beam emittance.

Exercise 7.7. An electron beam circulating in a 1.5 GeV storage ring emits
synchrotron radiation. The rms emission angle of photons is 1/+ about the
forward direction of the particle trajectory. Determine the photon phase space
distribution at the source point and at a distance of 10 m away while ignoring
the finite particle beam emittance. Now assume a Gaussian particle distri-
bution with a horizontal beam emittance of €, = 0.15 x 10~ ¢ rad—m. Fold
both the photon and particle distributions and determine the photon phase

* The argument (S) indicates an exercise for which a solution is given in
Appendix A.
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space distribution 10 m away from the source point if the electron beam size
is 0, = 1.225 mm, the electron beam divergence o, = 0.1225 mrad and
the source point is a symmetry point of the storage ring. Assume the dis-
persion function to vanish at the source point. For what minimum photon
wavelength would the vertical electron beam size appear diffraction limited
if the emittance coupling is 10% ?



8. Storage Ring Design
as a Synchrotron Light Source

Synchrotron radiation sources have undergone significant transitions and
modifications over past years. Originally, most experiments with synchrotron
radiation were performed parasitically on high energy physics colliding beam
storage rings. Much larger photon fluxes could be obtained from such sources
compared to any other source available. The community of synchrotron radi-
ation users grew rapidly and so did the variety of applications and fields. By
the time the usefulness storage rings for high energy physics was exhausted
some of these facilities were turned over to the synchrotron radiation com-
munity as fully dedicated radiation sources. Those are called first genera-
tion synchrotron radiation sources. They were not optimized for minimum
beam emittance and maximum photon beam brightness. Actually, the opti-
mization for high energy physics called for a maximum beam emittance to
maximize collision rates for elementary particle events. The radiation sources
were mostly bending magnets although the development and use of insertion
devices started in these rings. Typically, the beam emittance is in the 100’s
nm.

As the synchrotron radiation community further grew, funds became
available to construct dedicated radiation facilities. Generally, these rings
were designed as bending magnet sources but with reduced beam emittance
(< 100 nm) to increase photon brightness. The design emittances were much
smaller than those in first generation rings but still large by present day stan-
dards. The use of insertion devices did not significantly affect the storage ring
designs yet. These rings are called second generation rings.

Third generation synchrotron radiation sources have been designed and
constructed during the second half of the eighties and into the nineties. These
rings were specifically designed for insertion device radiation and minimum
beam emittance (4 < ¢, < 20 nm) or maximum photon beam brightness. As
such, they exhibit a large number of magnet-free insertion straight sections.

Finally, fourth generation synchrotron radiation sources are so far only
under discussion. A consensus seems to emerge within the community that
such sources may be based more on linear accelerators. For example, great
efforts are underway in a number of laboratories to design x-ray lasers. Such
a source would be based on the principle of a single pass FEL where a high
energy and high quality electron beam passing through a long undulator
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produces coherent undulator radiation in the x-ray regime. A storage ring
based alternative has been proposed which uses the ring structure only as a
distributor of radiation to individual beam lines. An electron beam is injected
continuously from a high performance electron linear accelerator. Such a linac
beam can have a very low beam emittance which is preserved in the storage
ring for some number of turns before quantum excitation takes over. To
compensate for the high energy cost the spent electron beam is ejected from
the storage ring again and its energy is recovered.

8.1 Storage Ring Lattices

To achieve a small particle beam emittance for maximum photon beam
brightness a number of different magnet lattices for storage rings are avail-
able. All lattices can basically be used to achieve as small a beam emittance
as desired, limited only by diffraction eflects of the photon beams. Other,
more practical considerations, however, limit the minimum beam emittance
achievable in a particular lattice. A variety of magnet lattices have been used
in the designs of existing storage ring based synchrotron radiation sources. In
this section three basic types and some variations thereof will be discussed:

e the FODO lattice
e the double bend achromat lattice (dba)
e the triple bend achromat lattice (tba)

All lattice types can provide long magnet free sections for the installation
of insertion devices, accelerating cavities and injection components. For inser-
tion devices one would prefer to have dispersion free sections available which
is easy to achieve in a dba-or tba-lattice but more complicated in a FODO
lattice. On the other hand, a FODO lattice is very compact and is therefore
mostly suitable for generating low emittance beams in so-called damping rings
for applications in high energy accelerator systems. The dba-and tha-lattices
are more open and provide easily magnetfree straight sections, a desired fea-
ture for high brightness synchrotron radiation sources. More recently, the
demand for dispersionfree insertion straight sections has been relaxed in fa-
vor of an even lower beam emittance achievable this way. Quantum excitation
is kept very low by using short period undulator and wiggler magnets.

8.1.1 FODO Lattice

We consider here briefly the FODO lattice because of its simplicity and its
ability to give us a quick feeling for the scaling of beam emittance with
lattice parameters. The beam emittance can be manipulated at design time
by adjusting {H) to the desired value. To calculate the average value (H) in a
FODO lattice is somewhat elaborate. Here, we are interested primarily in the
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scaling of the beam emittance with FODO lattice parameters. Recollecting
the results for the symmetric solutions of the lattice functions in a FODO
lattice (6.53,6.55) we notice the following scaling laws

B o L, (8.1)
8 o LV, (8.2)
noc L?/p, (8.3)
n o< Lip, (8.4)

where L is the distance between the centers of adjacent quadrupoles. All three
terms in the function H(s) = v(s) n? + 2a(s) nn' + B(s) n'?scale in a similar
fashion like

114 L2 L 2 2
H(s)} = ==—; [0=—=; L—} o = 8.5
e = {35 o2 1 o (5.5)

and the equilibrium emittance for a FODO lattice scales then like

€ =

(H/p) L
qVQW o VQF <27, (3.6)

where ¢ = #),/p is the deflection angle in each bending magnet. The propor-
tionality factor depends on the strengths of the quadrupoles and is large for
very weak or very strong quadrupoles. A minimum can be reached for a focal
length of | f | & 1.06 L in each hall-quadrupole resulting in a minimum beam
emittance achievable in a FODO lattice given in practical units by

¢ (radm) ~ 1071 £2(CeV) ¢ (deg?), (8.7)

where ¢ = 27/Ny, Ny the number of bending magnets in the ring and
Ny / 2 the total number of FODO cells in the ring. This result is significant
because it exhibits a general scaling law of the beam emittance proportional
to the square of the beam energy and the cube of the deflecting angle in each
bending magnet, which is valid for all lattice types. The coeflicients, though,
vary for different lattices. While the beam energy is primarily driven by the
desired photon spectrum, we find that high brightness photon beams from
low emittance electron beams require a storage ring design composed of many
lattice cells with a small deflection angle per magnet. Of course, there are
some limits on how far one can go with this concept due to other limitations,
not the least being size and cost of the ring which both grow with the number
of lattice cells.

8.2 Optimization of a Storage Ring Lattice

While the cubic dependence of the beam emittance on the bending angle
is a significant design criterion we discuss here a more detailed optimization
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strategy. The emittance is determined by the beam energy, the bending radius
and the H-function. Generally, we have no choice on the beam energy which
is mostly determined by the desired critical photon energy of bending magnet
and insertion device radiation or cost. Similarly, the bending radius is defined
by the ring geometry, desired spectrum etc. Interestingly, it is not the bending
radius but rather the bending angle which influences the equilibrium beam
emittance. The main process to minimize the beam emittance is to adjust
the focusing such that the lattice functions in the bending magnets generate
a minimum value for ().

8.2.1 Minimum Beam Emittance

The equilibrium beam emittance (7.44)

0'_;% = O, 42 (H(s)/p%) (8.8)

Be /)
depends only on the lattice function H(s) inside bending magnets where
1/p # 0. We may therefore, independent of any lattice type, consider this
function only within bending magnets. For the purpose of this discussion
we assume a regular periodic lattice, where all lattice functions within each
bending magnet are the same, and concentrate therefore our discussion just
on one bending magnet. The average value (H/p?®) for the whole ring will
then be the same as that for one magnet.

The contribution of any individual bending magnet with bending radius
p to the beam emittance can be determined by calculation of the average

€ =

£y,
(H) = é /H(s)ds, (8.9)

where L is the length of the bending magnet and the bending radius is as-
sumed to be constant within a magnet. From here on, we ignore the index ,
since we assume a flat storage ring in the horizontal plane. All lattice func-
tions are therefore to be taken in the horizontal plane.

Since in first approximation there is no focusing within bending magnets
we may treat such magnets as drift spaces. The lattice functions, starting
at the entrance to the magnet (Fig. 8.1) with values (8, a0, %o, 70,7 )vary
within the bending magnet like

B(s) = By — 2005 + 757,

a(s) = ag — 708,

7(8) = 705 (8.10)
n(s) = mg +m9s + p(1 — cosv),

n'(s) = ny + siny,
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Fig. 8.1. Lattice functions in a bending magnet
where 0 < s < {, and the deflection angle ¥ = %. Before we use these

equations, we assume lattices where 7, = 1, = 0. The consequences of this
assumption will be discussed later. Using (8.9) and (8.10) we get

(M) =By B+aopA+,pC. (8.11)

The coefficients A, B, and C are functions of the total deflection angle ¢ =
0,/ p defined by

in2
B=1 (1 - Sl;¢¢>, (8.12)
1— 3sin?
A=2 ;Os‘p_ S;I;‘p—%<p+%sin2<p, (8.13)
5sin 2 i
C=2 4 2cosp+ Sl;p‘p—ﬁ”;‘ﬁ%@?. (8.14)

For small bending angles and an isomagnetic ring, where all bending mag-
nets are the same, we have:

Bz%g@Q(l—%tpz), (8.15)
N3P0 B, 816
Cr Lot (1-2¢?), (8.17)

and the beam emittance (8.6) in the lowest order of approximation becomes
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—C 1 @ 1 ¢
e 0 T2+ 3% 0| (8.18)

where C is defined in (7.33).

This equation shows clearly the cubic dependence of the beam emittance
on the deflection angle ¢ per bending magnet, which is a general property of
all lattices since we have not yet made any assumption on a particular lattice.
Equation (8.18) has a minimum for both «g and §,. From the derivative
9 (H) / Dag = 0 we extract the optimum value for ag

1A60

e (8.19)

QQopt =

Inserting this result into (8.18), and evaluating the derivative 9(H) / 85, = 0
the optimum value for 3, becomes

2Cp

) = —Y———. 8.20
B e (8.20)
With 3, the quantity af is
—A
Q) = ——— 8.21
7 VABC — A2 (8.21)
and the minimum possible value for H is finally
(H),. = VABC — AZp. (8.22)

For small deflection angles ¢ < 1, and neglecting second and higher order
terms in ¢, the optimum lattice functions at the entrance to the bending
magnets are with 7y, =15 =0

X (1_§90 )\/_N\/—

Qg ~2
1/1—ﬁ(p

1— 2 g2)¢
85 = ‘/_( )b NEYS (8.23b)
V5 — 155 ¥*

(M) tnin = LAl R o (8.23¢)

s Ve
With this, the minimum obtainable beam emittance in any lattice is

from (7.44)

(8.23a)

H(s)/p%) i
a,min — C, 2 < ~C, 2 . 8.24
€db s q ’Y <1/p2> q ’Y 4\/ﬁ ( )

The results are very simple for small deflection angles but for angles larger
than about 33° per bending magnet the error for {H)_. exceeds 10% at which

min
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point higher order terms must be included. It is interesting to note that the
next order correction due to larger bending angles gives a reduction in beam
emittance compared to the lowest order approximation. Higher order terms,
however, quickly stop and reverse this reduction.

For simplicity, we assumed that the dispersion functions 1, = 0 and 7, =
0. Numerical methods must be used to find the optimum solutions for finite
dispersion functions. In the following we consider only very small values 1, <
1 and 7y < 1 to evaluate the impact of the correction for a finite dispersion
on the beam emittance. Retaining only linear terms in 7, 175,and ¢, the
expression for (H) becomes

(M) ymin = Hin + 75 (510 + 60065) . (8.25)

Obviously, the beam emittance can be further reduced for negative values
of ngand 7). This has been exploited in recent storage ring designs. Nonlinear
terms, however, quickly cause an increase in the beam emittance again, thus
limiting the gain.

In summary, it has been demonstrated that there are certain optimum
conditions for lattice functions in bending magnets to minimize the equilib-
rium beam emittance. No assumption about a particular lattice has been
made yet. Another observation is that the beam emittance is proportional
to the third power of the magnet deflection angle suggesting to use small
deflection angles in order to achieve a small beam emittance. Low emittance
storage rings therefore are characterized by many short magnet and lattice
periods.

8.2.2 The Double Bend Achromat (dba) Lattice

The dba-lattice is designed such as to make full use of the minimization possi-
bilities for the beam emittance as just discussed and to provide dispersionfree
insertion straight sections. Fig. 8.2 shows two renditions of the basic layout
for a dba-lattice. Other slightly different modifications have been used but the
basic design features are the same. Starting from the middle of an insertion
straight section a set of two or more quadrupoles provide the proper focus-
ing of the lattice functions into the bending magnet to achieve the minimum
beam emittance. The insertions are kept dispersion free which is the main
function of the focusing between the dipole magnets. The section between
and including the bending magnets is called an achromat because the disper-
sion is zero outside of the achromat. The ideal minimum beam emittance in
this lattice type is from (8.24)

Cq 2. 3
€dba,min = P
dba, 4\/57 2

or in more practical units:

(8.26)
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Fig. 8.2. dba Lattice

€aba (radm) = 5.036 x 1073 E2(GeV?) 3 (deg?). (8.27)

To achieve this minimum beam emittance, we must provide specific values
for the lattice functions at the entrance to the bending magnets. Specifically,
the initial horizontal betatron function must be strongly convergent reaching
a minimum about one third through the bending magnet. At the end of the
bending magnet the ideal betatron function, however, becomes quite large.
Note, that the vertical lattice functions can be chosen freely since they do
not affect the beam emittance as long as there is no vertical dispersion.

In an actual lattice design it appears difficult to achieve sufficient beam
stability if the lattice parameters at the entrance to the bending magnets are
set to the optimum values. A compromise between optimum lattice parame-
ters and beam stability must be reached resulting in a somewhat increased
beam emittance compared to the theoretical minimum. The source of the
problem are the large value of the betatron function at the exit of the bend-
ing magnet causing strong chromatic aberrations which must be corrected
by sextupole magnets. This correction, while essential for beam stability,
also generates geometric aberrations and a compromise between correction
of chromatic and generating geometric aberrations must be made. The result
of this compromise in a well designed storage ring must be a sufficiently large
aperture within which the beam can travel for many hours without losses.
Outside of this aperture, called the dynamic aperture, particles are lost due to
geometric aberrations. Generally, a sufliciently large dynamic aperture can-
not be obtained for the ideal solution of minimum beam emittance. On the
other hand, the dynamic aperture grows rapidly as the optimum conditions
on the lattice functions are relaxed.

An example of an actual dba-lattice is shown in Fig. 8.3 for the 1.3GeV
storage ring at the Laboratorio National de Luz Sincrotron (LNLS) in Camp-
inas, Brazil. The central part of the lattice between the bending magnets may
consist of one to four quadrupoles and its only function is to focus the dis-
persion function so that all insertions are dispersion free.
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Fig. 8.3. dba Lattice of the Laboratorio National de Luz Sincrotron, LNLS in
Campinas, Brazil

The choice of the optimum value for o = /15 causes the betatron func-
tion to reach a sharp minimum at about one third into the bending magnet,
Smin = %} = % 4y, and to increase from there on to large values causing prob-

[¢)

lems with nonlinear aberrations. We remove the minimum condition on ag
and express the beam emittance in terms of the minimum emittance

€dba 50 \/_ 1 2 58
—2 =820 _Vis5ap+=(1+a3) 2. 8.28
€dba,min 60 0 2 ( 0> 60 ( )

In Fig. 8.4 this ratio of emittances is shown for different values of o as a
function of 5y/8;. It is apparent from Fig. 8.4 that the minimum emittance
changes only little even for big variations of g about its optimum value
allowing us to choose much more forgiving values for ag without significant
loss in beam emittance. This weak dependence can be used to lessen the
problems caused by nonlinear aberrations.

For arbitrary values of g still an optimum value for 3, exists. We eval-
uate the derivative 3{H) / 98, = 0 only and get for the optimum betatron
function at the entrance to the bending magnet

By =6, 1/% (1 + a2). (8.29)

The beam emittance in this case becomes

_Sdba gy /1408 — VI a. (8.30)
€dba,min
For the condition (8.29) the value of the betatron function 5(¢;,) at the

end of the bending magnet reaches a minimum for ag = 441@ 22 0.911 at the
expense of a loss in beam emittance by a factor of two. In this case
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10— Edba/E dba ao=1 2 3 152 5 6

| B o/B *o
0 | | | |

0 1 2 3

04_8 =1 (8.31)
B
—g =2 (8.32)
5(€b) 17
. =1 8.33
Tl (53)
€dba 392
_— = == 8.34
€dba,min 17 ( )

The betatron function at the end of the bending magnet has been reduced
by almost a factor of two or by a factor of 17/32 which is a great improvement
with respect to instabilities. In a particular storage ring design one would
therefore reduce the value of « although by not more than necessary for
beam stability.

8.2.3 The Triple Bend Achromat (tba) Lattice

As a variation of the dba lattice a triple bend achromat lattice has become
popular in recent synchrotron radiation source designs. In this case, three
bending magnets are placed between each pair of insertion straight sections
(Fig. 8.5). That results in a reduction of the circumference although at the
expense of a similar reduction in available insertion straight sections. This
lattice type serves well for smaller facilities and lower energies.

8.2.4 Limiting Effects

Given the usefulness of maximum photon beam brightness for experimenters
one might wonder why don’t we just design storage rings with a beam emit-
tance below the diffraction limit. The answer has to do with limitations of
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Fig. 8.5. Implementation of a tba-lattice at the National Synchrotron Laboratory,
NSRL in Hefei, China

beam stability due to nonlinear betatron oscillations. To reduce the beam
emittance, we require stronger and/or more quadrupole focusing. The energy
spread in the beam causes a variation of focusing with lower energy parti-
cles being focused too much and higher energy particles focused too little as
indicated in Fig. 8.6. The total amount of focusing in a storage ring is a mea-
sure for these chromatic aberrations, which can cause beam instability if not
corrected. For this reason, we must compensate the chromatic aberrations
which we call the storage ring chromaticity. Because the chromaticity derives
from focusing and we have different focusing in both planes, there are two
chromaticities, one for the horizontal and the other for the vertical plane.

Correction of the chromaticities can be accomplished by installing sextu-
pole magnets into the storage ring at locations where the dispersion is not
zero. The dispersion causes some degree of segregation between higher and
lower energy particles with higher energy particles gathering more outside of
the ideal orbit and lower energy particles more on the inside. Sextupoles can
be considered as quadrupoles with varying focal strength across the horizon-
tal aperture. A sextupole therefore can add some focusing for higher energy
particles being outside of the ideal orbit (z > 0) and subtract some focusing
for lower energy particles at 2 < 0 (Fig. 8.6). That compensates the under and
over focusing these particles experience in the regular quadrupoles. Distrib-
uting sextupoles around the ring is therefore the preferred way to compensate
the storage ring chromaticity.

Every coin has two sides, however. The sextupole field increases quadrat-
ically with £ and while we compensate the chromaticities, these same sex-
tupoles generate nonlinear, quadratic perturbations especially for particles
with large betatron oscillation amplitudes. These perturbations are known
as geometric aberrations generating pillowcase perturbations in the images
as is well known from light optics. The art of storage ring design is then to
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Fig. 8.6. Origin and correction of chromatic effects and chromaticity

correct the chromatic aberrations while keeping the geometric aberrations
at a minimum. This can be achieved up to a certain degree by distributing
sextupoles along the orbit at properly selected locations. It would therefore
be wrong to use just two sextupoles to correct the two chromaticities. The
sextupole strengths would be too high generating serious geometric aberra-
tions. However, even with carefully distributing the sextupoles around the
ring lattice, we still deal with a nonlinear problem and we cannot expect to
get perfect compensation. There will always be a limit on the maximum sta-
ble betatron oscillation amplitude in the storage ring. The design objective
is to expand the limit for large amplitude betatron oscillations. This limit is
called the dynamic aperture in contrast to the physical aperture defined by
the vacuum chamber. There is no analytical solution for the dynamic aperture
and it is determined by numerical particle tracking programs which follow
individual particles for some thousands of turns through all nonlinear fields
to probe stability limits.

For a stable beam with a long beam lifetime, we must have a minimum
dynamic aperture to accommodate not only the beam proper but also a halo
of particles around the beam. This halo is made-up of particles which have
been deflected by a small angle during elastic collisions with a residual gas
atom. Such collisions occur quite frequently, constantly populating the halo
with new particles. By damping, these particles loose betatron oscillation
amplitudes and leave slowly the halo again to join the beam proper. While
there are only few particles in the halo at any one time, we cannot scrape off
this halo by lack of sufficient dynamic aperture. The beam lifetime could be
reduced considerable since there is a constant flow of particles into the halo
and back to the beam. This flow cannot be interrupted.
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