
Spontaneous Core Rotation in Ferrofluid Pipe Flow

Alexei Krekhov1 and Mark Shliomis2
1Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany

2Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
(Received 3 August 2016; published 17 March 2017)

Ferrofluid flow along a tube of radius R in a constant axial magnetic field is revisited. Our analytical
solution and numerical simulations predict a transition from an initially axial flow to a steady swirling one.
The swirl dynamo arises above some critical pressure drop and magnetic field strength. The new flow
pattern consists of two phases of different symmetry: The flow in the core resembles Poiseuille flow in a
rotating tube of the radius r� < R, where each fluid element moves along a screw path, and the annular
layer of the thickness R − r�, where the flow remains purely axial. These phases are separated by a thin
domain wall. The swirl appearance is accompanied with a sharp increase in the flow rate that might serve
for the detection of the swirling instability.
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Rotating flows arising in the absence of obvious sources of
rotation are rather widespread. Swirl generation is observed
in spiral galaxies, hurricanes, tornadoes, or dust devils. An
everyday manifestation of the phenomenon is the vortex in
the drain of a bathtub or a kitchen sink. Earlier studies
supposed [1] that the vortex is driven by Coriolis forces,
which are counterclockwise in the Northern hemisphere of
Earth and clockwise in the Southern one, and this assertion
was confirmed both in Boston, Massachusetts [1] and
Sydney, Australia [2]. Later, however, careful experiments
[3,4] have shown that the rotation occurs in consequence of a
supercritical bifurcation as the speed of swirl-free sink flow
exceeds some threshold value, while Earth’s rotation only
removes the twofold degeneracy of the swirl direction,
making the bifurcation a tiny bit imperfect [5].
One amazing example of self-rotation was discovered

120 years ago by Quincke [6]. He reported that dielectric
spheres and cylinders suspended in weakly conducting
liquids would spin spontaneously when subjected to strong
enough electrostatic fields. To explain this effect [7],
modern theory [8,9] uses the concept of an effective dipole
directed against the applied field. Since this orientation is
unstable, the sample starts to spin if the electric torque
overcomes the viscous one.
Spontaneous rotation of insulating liquids inside elec-

trified menisci was studied in great detail. Above some
critical voltage, the meniscus acquires a shape referred to as
the Taylor cone [10], and the fluid is injected through its
apex [11]. Self-rotation caused by the electric stress acting
on the gas-liquid interface appears as bifurcation from a
primary swirl-free meridional flow [12,13].
Here we present a novel, very unusual, swirl dynamo

arising in an originally axial pipe flowof a ferrofluid under the
action of a constant longitudinal magnetic field. This Hagen-
Poiseuille flow in both constant and oscillating magnetic
fields has been widely studied experimentally [14–20] and
theoretically [17,20–25]. At small shear rates,Ωτ ≪ 1 (2Ω is

the flow vorticity, τ stands for the magnetization relaxation
time), the velocity profile remains parabolic, but the flow rate
is reduced due to the increase of viscosity (the so-called
magnetoviscous effect [21,26]). With larger pressure drops
(Ωτ > 1), the magnetoviscosity becomes dependent on the
shear rate as well [21,24,26–29]—the ferrofluid acquires
non-Newtonian properties. Since the shear rate in pipe flow is
nonuniform over the pipe cross section, magnetoviscosity is
obviously a function of radial distance r; hence, the flow
profile ceases to be parabolic.
In the previous investigations, the ferrofluid pipe flow

was always assumed to be purely axial. We remove this
restriction and demonstrate that the specific dependence
of magnetoviscosity on the shear rate leads to swirling
instability. The term “swirl” denotes here screw streamlines
in the core and straight ones near the wall. With the
appearance of azimuthal component of the velocity, its
axial component increases. The latter may be treated as a
manifestation of the Le Chatelier principle: the magnetic
field reduces the flow rate because of magnetoviscosity but
gives rise to swirl, which counteracts the magnetoviscous
effect and thus maintains the flow rate.
Basic equations.—The conventional set of hydrody-

namic equations for incompressible ferrofluids [21,30]
consists of the generalized Navier-Stokes equation (1),
the magnetization equation (2), and Maxwell’s magneto-
static equations (3):

ρ
dv
dt

¼ −∇pþ η∇2v þ ðM · ∇ÞHþ 1

2
∇ × ðM ×HÞ;

ð1Þ

dM
dt

¼ Ω ×M −
1

τ
ðM − χLHÞ

−
3χð1 − LÞ
2τM2

M × ðM ×HÞ; ð2Þ
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∇ ×H ¼ 0; ∇ · ðHþ 4πMÞ ¼ 0: ð3Þ

Here, d=dt ¼ ∂=∂tþ ðv ·∇Þ, M stands for the ferrofluid
magnetization, L ¼ 3LðζÞ=ζ, where LðζÞ ¼ coth ζ − 1=ζ
is the Langevin function, Ω ¼ 1

2
∇ × v, p is the pressure, ρ

and η are the ferrofluid density and viscosity, χ is the initial
magnetic susceptibility.
In the true equilibrium (v ¼ 0,H ¼ const) the solution of

Eq. (2) is described by the expressionMeq ¼ ðMs=3ÞLðξÞξ,
where ξ ¼ 3χH=Ms represents the nondimensional mag-
netic field, and Ms ¼ ϕMb is the saturation magnetization
(ϕ is the volume fraction of dispersed ferromagnetic grains,
Mb is their bulk magnetization). Out of equilibrium,M and
H are independent variables: M may exist (as typically
transient) even in the absence of H. It is convenient, none-
theless, to consider any instantaneous magnetization as an
equilibrium one in a certain nondimensional “effective” field
ζ: M ¼ ðMs=3ÞLðζÞζ. In equilibrium, of course, ζ ¼ ξ.
The range of validity of Eqs. (1), (2) is limited to the

weakly nonideal (WNI) ferrofluids (in the model of ideal
ones, interaction between magnetic grains is assumed to be
negligible). Most of the commercial ferrofluids belong to the
WNI type: interparticle interactions are able to magnify
essentially the initial magnetic susceptibility χ, but do not
provide the chainlike particle associations. As shown in
Ref. [31], dipolar particles form short chains and small rings
when the dimensionless coupling parameter λ (the ratio of the
energy of two adjoining grains to the thermal energy) is more
than 2 [32], while in commercial ferrofluids there is typically
λ < 1. Allowance for the magnetic interactions in WNI
ferrofluids can be realized by the replacement of the
Langevin’s magnetic susceptibility χL ¼ mMs=ð3kBTÞ of
ideal ferrofluid (herem is the particle magnetic moment) by
χ ¼ χLð1þ 4πχL=3Þ in the Langevin parameter ξ, that
yields a quite good approximation for many ferrofluids [33].
Analytical solution.—Let us start with Eqs. (1)–(3)

written in the dimensionless form—see Ref. [34]—using
as unit of length R, time τ, velocity R=τ, pressure η=τ,
magnetic field Ms=ð3χÞ, and the magnetization Ms=3.
In cylindrical coordinates ðr;φ; zÞ with the axis z along
the pipe axis, the above-mentioned vectors have compo-
nents v ¼ ð0; vφ; vzÞ, Ω ¼ ð0;Ω;ωÞ, ζ ¼ ðζr; ζφ; ζzÞ, and
ξ ¼ ðξr; 0; ξ0Þ. All these quantities (apart from ξ0 that
represents the uniform applied field H0) depend on r
and t. The regular solution of the second of Eqs. (3) is
given by ξr ¼ −ðμ − 1ÞLζr, where μ ¼ 1þ 4πχ is the
initial magnetic permeability.
In the case of low to moderate magnetization, when

LðζÞ ¼ 1 − ζ2=15þOðζ4Þ, one can replace everywhere L
with unity. Then, for a steady flow, one finds from Eq. (2)

ζr ¼
ξ0Ω

Ω2 þ Λ2 þ μ
; ζφ ¼ Λζr; ζz ¼

Λ2 þ μ

Ω
ζr;

ð4Þ

where Ω ¼ −ðdvz=drÞ=2. Furthermore, instead of the axial
component of the angular velocity ω ¼ ð2rÞ−1dðrvφÞ=dr,
we have introduced a new variable,

Λ ¼ ω −
vφ
r
¼ 1

2

�
dvφ
dr

−
vφ
r

�
¼ r

2

d
dr

�
vφ
r

�
: ð5Þ

As seen from the definition, Λ ¼ 0 either in the absence
of fluid rotation vφ ¼ 0, or if the liquid concentric cylinder
of radius r rotates with a uniform angular velocity vφ=r ¼
const. Nonzero ΛðrÞ arises only when different annular
liquid layers rotate differently.
After integration of azimuthal and axial steady-state

components of Eq. (1) [36] with boundary conditions vφ ¼
vz ¼ 0 at r ¼ 1, and elimination of ζ components [using
Eqs. (4) and the relation ξr ¼ −ðμ − 1Þζr], we obtain

Λ
�
1 −

h2Ω2

ðΩ2 þ Λ2 þ μÞ2
�

¼ 0; ð6Þ

Ω
�
1þ h2ðΩ2 þ μΛ2 þ μ2Þ

ðμ − 1ÞðΩ2 þ Λ2 þ μÞ2
�

¼ Pr: ð7Þ

Here we introduced two dimensionless parameters, h and
P. The former is linked with ξ0 and H0 by the simple
relations, the latter stands for the pressure gradient:

h ¼ ξ0
Ms

3

ffiffiffiffiffi
πτ

η

r
¼ χH0

ffiffiffiffiffi
πτ

η

r
; P ¼ τR

4η

�
Δp
l

�
;

where Δp is the pressure drop over the pipe length l.
Instability of the axial flow.—In the presence of rotation

(Λ ≠ 0), Eq. (6) is satisfied with the equality

hΩ ¼ Ω2 þ Λ2 þ μ; ð8Þ

which determines Λ as a function of Ω:

Λ2 ¼ ðΩ −Ω1ÞðΩ2 −ΩÞ; Ω1;2 ¼
1

2

�
h ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 − 4μ

q �
:

ð9Þ

Note that the sign of Λ (and, consequently, the direction of
fluid rotation) remains uncertain. Now Eq. (8) allows us to
eliminate Λ2 from Eq. (7):

μh
μ − 1

¼ Pr: ð10Þ

Thus, Λ differs from zero only on the cylindrical surface of
the radius r� ¼ μh=½ðμ − 1ÞP�. As we demonstrate below,
this result—Λ is the δ function of ðr − r�Þ—is a conse-
quence of the linear approximation in ζ: even a weak
nonlinearity of the magnetization law turns ΛðrÞ into a
smooth function. Meantime, ΛðΩÞ takes on the surface
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r ¼ r� entire values between 0 at Ω ¼ Ω1;2 and its

maximum Λm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=4 − μ

p
at ðΩ1 þ Ω2Þ=2 ¼ h=2.

The dimensionless effective viscosity ηeff is given by the
expression in large parentheses of Eq. (7). Hence, rewriting
Eq. (10) in the form

Ω
�

μh
ðμ − 1ÞΩ

�
¼ Pr;

we find the viscosity jump with respect to the two sides of
the surface of discontinuity:

½ηeff �r�−0r�þ0 ¼
μh

μ − 1

�
1

Ω1

−
1

Ω2

�
¼ 2hΛm

μ − 1
: ð11Þ

Insofar as viscosity decreases with increasing shear rate, the
fluid is most viscous in the core [37].
Swirling flow occurs at h > hc ¼ 2

ffiffiffi
μ

p
(when Ω1 ¼

Ω2 ¼ ffiffiffi
μ

p
) and P > μh=ðμ − 1Þ. When these conditions are

met, one has r� < 1. The region of swirling flow is limited
by two straight boundary lines: h ¼ ðμ − 1ÞP=μ from the
left and h ¼ hc from below—see Fig. 1(a). The flow
pattern is formed out of a liquid cylinder of radius r�
and an annular layer of thickness 1 − r�. The core rotates
with a constant angular velocity Θ ¼ vφ=r in addition to
the axial flow vzðrÞ; thus, any of its elements moves along a
corkscrew trajectory of the radius r and with the pitch
2πvzðrÞ=Θ. Meantime, streamlines of the fluid occupying
the annular layer are left to be straight [see Fig. 1(b)].
Numerical results.—To test the validity range of ana-

lytical results obtained for small to moderate magnetiza-
tion, we have performed direct numerical simulations of

Eqs. (1)–(3) (see Ref. [24] for details of the numerical
method). The strong variations in the velocity and mag-
netization components near r� have been resolved using
spatial discretization steps down to 10−4.
For steady flows, solutions of Eqs. (1)–(3) depend

on two dimensionless material parameters, μ and E ¼
M2

sτ=ð18ηχÞ, and two control parameters, P and ξ0.
Equally, with the latter we use the field parameter h linked
with ξ0 by the relation h ¼ ξ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμ − 1ÞE=2p
. The three

different pairs of μ-E values we used [34] cover a wide
range of real ferrofluids.
Our numerical stability analysis indeed confirms that the

axial steady flow becomes unstable inside the shaded
region in Fig. 1(a). The stability boundaries found numeri-
cally for three different sets of the material parameters
agree within an accuracy of ð1 − 3Þ% with analytical
results obtained in the linear approximation in ζ. To explain
such a perfect agreement, note that the critical values of
effective field ζc proved to be close to 0.5 for all three
mentioned ferrofluids. For ζ ¼ 0.5, the function LðζÞ takes
the value 0.984 that differs from its linear approximation,
Lð0Þ ¼ 1, by less than 2%.
Simulations of the full nonlinear equations demonstrate

that the swirling instability is supercritical.
The onset of the swirling flow is clearly visible in Fig. 2

where the pressure dependence of the volume flow rate
Q ¼ 2π

R
1
0 vzrdr is presented. Two upper smooth curves

correspond to subcritical values of magnetic field h ≤ hc
when the flow is purely axial. Each of the two supercritical
lower curves consists of parts corresponding to axial (at
smaller P) and swirling flows (at larger P) with a kink at the
critical point. The swirl appearance leads to a strong
increase of the axial velocity (compare the solid and the
dashed lines in Fig. 3), that results in a growth of the flow
rate. The abrupt increase of Q might serve as a detector of
swirling instability in experiments.
Figure 3 shows that the appearance of an azimuthal

component of the fluid velocity vφðrÞ at r ≤ r� is accom-
panied with a kink in the graph of the axial velocity vzðrÞ at
r�. If, however, the azimuthal component of velocity is

(a)

(b)

FIG. 1. Stability diagram in the P − h plane (a). In the region of
swirling flow (shaded) coordinates of any point K determine the
radius r� ¼ b=a of a rotating liquid cylinder. Sketch of the
swirling flow (b).
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FIG. 2. Volume flow rate Q as a function of the pressure
gradient P for ferrofluid with μ ¼ 9 at different values of
magnetic field h. Solid lines—purely axial flow, dashed lines
—swirling flow.
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suppressed in the simulations (vφ ¼ 0), the axial velocity
vzðrÞ remains a smooth function (dashed lines in Fig. 3).
The inset in the figure demonstrates an important difference
between the results obtained analytically under the
assumption of the linear magnetization law, and numeri-
cally, keeping safe the nonlinearity of LðζÞ. In the latter
case, Λ ceases to be the δ function of ðr − r�Þ. Even a small
deviation of LðζÞ from unity is enough to eliminate the
tangential discontinuities at r�. Nonlinearity of the mag-
netization law “washes away” the domain wall between the
uniformly rotating core and the nonrotating surroundings,
turning it into a thin transitional layer of thickness Δr.
In Fig. 4 components of the dimensionless magnetization

~M ¼ LðζÞζ are shown for h ¼ 8.8 and the same other
parameters as in Fig. 3. If the azimuthal component of
the velocity is suppressed (vφ ¼ Λ ¼ 0), solid lines of ~Mr

and ~Mz change smoothly into dashed lines at r�, while ~Mφ

does not occur at all. It arises simultaneously with Λ at the
swirl appearance; indeed, ~Mφ ∝ ζφ ¼ Λζr as it is seen
from Eq. (4).
Discussion.—The mechanism of swirl generation can be

explained within the concept of internal rotation [21]. In
the absence of a magnetic field, each particle in the
ferrofluid pipe flow rolls down the pipe with an angular
speed ΩðrÞ over the cylindrical shear surface of the radius
r. An applied axial field H0 tends to line up magnetic
moments of all magnetic particles parallel to itself and
thus impedes free particle rotation: The field turns on the
mechanism of magnetoviscosity. Under the action of
magnetic and viscous torques upon the particles, the
magnetization M deviates from the field direction: there
occurs a radial component of the magnetization together

with oppositely directed field component Hr ¼ −4πMr.
The last factor (opposite signs) provides positive feedback
for the instability of the initially axial ferrofluid pipe flow.
Consider a weak disturbance of the pipe flow: A liquid

cylinder of radius r� turns around clockwise; i.e., its
angular velocity is negative. The rotating cylinder spins
particles surrounding its surface counterclockwise, such
that the vector M moves out of the r − z plane producing a
positive azimuthal component Mφ (see Fig. 4). Just the
latter causes the rotation of the liquid cylinder.
Let us calculate the magnetic torque. Its dimensionless

specific value (in units of η=τ) is given by the expression

m ¼ ðM ×HÞz ¼ −2Eξrζφ ¼ 4Λ; ð12Þ

simplified with the help of Eqs. (4), (8). The total magnetic
torque M acting on the unit length of the liquid cylinder is
found by multiplying the specific torque m by 2πr and
integrating over the thickness Δr ¼ 2ε of the transitional
layer, within which ΛðrÞ differs from zero:

M ¼ 8π

Z
r�þε

r�−ε
rΛdr≃ 4πr2�

�
vφ
r

�
r�þε

r�−ε
¼ −4πr2�Θ; ð13Þ

here we took into account the narrowness of the layer
(ε ≪ 1) and boundary conditions at its inner and outer
surfaces, vφðr� − εÞ ¼ vmφ , vφðr� þ εÞ ¼ 0, where vmφ
means the maximum (minimum) azimuthal velocity.
Thus, the appearance of a positiveMφ gives rise also to a

positive magnetic torque M (having opposite sign of the
rotational speed Θ ¼ vmφ =r�), which intensifies the particle
rotation and accelerates it by the initial clockwise rotation
of the core. The torque (13) is balanced by the moment of

FIG. 3. Axial, vzðrÞ, and azimuthal, vφðrÞ, components of the
velocity for ferrofluid with μ ¼ 9 at P ¼ 11 and two values of
magnetic field h are solid lines. Profiles vzðrÞ obtained when the
azimuthal component of the velocity is suppressed (vφ ¼ 0) are
dashed lines. Inset: Enlarged view of vφðrÞ and function ΛðrÞ for
h ¼ 8.8 in the vicinity of r� ¼ 0.8931. The width of ΛðrÞ is
Δr ¼ 0.0138; its maximum magnitude Λmax ¼ 2.940.

FIG. 4. Magnetization components ~MiðrÞ for ferrofluid with
μ ¼ 9 at P ¼ 11 and h ¼ 8.8 shown by solid lines. Dashed lines
of ~MrðrÞ and ~MzðrÞ continue when the azimuthal component of
the velocity is suppressed (vφ ¼ 0); in this case ~Mφ ¼ 0. Inset:
Enlarged view in the vicinity of r� ¼ 0.8931.
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frictional forces: Mvisc ¼ −M; the balance comes in a
narrow transition layer where Λ ≠ 0.
Conclusion.—We have shown that the axial ferrofluid

pipe flow in a constant axial magnetic field becomes
unstable via spontaneous symmetry breaking. Such an
instability—like the Rosensweig free surface instability
or the labyrinthine instability in thin ferrofluid layers—has
no classical analogy. The origin of the concentric, two-
phase swirling flow is due to a specific dependence of the
magnetoviscosity on the shear rate; this dependence is
provided by the competition between magnetic and viscous
torques acting upon magnetic particles.
Our estimates [34] show that the swirling instability may

be detected in available ferrofluids in magnetic fields about
100 Oe and Reynolds numbers of some tens.

We are grateful to F. Busse and W. Pesch for stimulating
discussions and critical reading of the manuscript.
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