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Preface

This book is about anisotropy and structure–property relationships. Tensors
and matrices provide the mathematical framework, and symmetry is helpful in
determining which coefficients are absent, and which must be equal, but they say
nothing about the sizes of the property coefficients. Magnitudes depend more
on atomistic arguments. I have tried to point out some of the crystallochem-
ical parameters (such as bond lengths, coordination numbers, and electronic
structure) that correlate with property coefficients. These relationships provide
a qualitative understanding of the molecular mechanisms which underlie the
choice of materials for various engineering applications.

The book contains 32 chapters and about 370 pages. It covers a wide range of
topics and is suitable as an introduction to the physical properties of materials.
The use of tensors and matrices provides a common theme which ties the topics
together. I have taught the course at the advanced undergraduate level and to
beginning graduate students. Instructors can select topics for a one semester
course or use the entire book for a two-semester course.

The only prerequisites for the course are college-level physics and chemistry.
Such courses are commonly offered during the first year or two at American
Universities. No special training in tensor or matrix algebra is required, but
knowledge of basic crystallography is helpful.

In teaching the course and in writing the book, I had the following questions
in mind.

How do physical properties depend on direction?

How are these properties described mathematically, and what do the geometric
representations look like?

How do matrix representations differ from the tensor descriptions?

How do polar tensor properties differ from axial tensor properties? And what
determines the tensor rank?

How are the property coefficients measured and how are they influenced by
measurement conditions such as temperature, frequency, pressure, and external
fields?

How does symmetry influence the physical properties?

Which coefficients are zero by symmetry, which are equal, and how many
measurements are required to specify the property?

How is anisotropy related to crystal structure and texture?

Are there chains or layers in the structure that correlate with the directional
properties?

How do the magnitudes of the tensor components depend on bond lengths,
bond strengths, and chemical composition?
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What are the most important engineering applications?

What combination of properties are involved in the “figure of merit”?

How might future improvements be made in the properties?

The goal of this process—a process some call “Molecular Engineering”—is
the optimization of materials and devices through an understanding of structure–
property relationships.

Many, many colleagues and friends helped me prepare this book: The faculty,
staff, and students at the Pennsylvania State University and the Hong Kong
Polytechnic University were especially helpful. The sustained support of the
Office of Naval Research is also gratefully acknowledged.

I dedicate this book to my wife Patricia, the mother of our two wonderful
children, and my lifelong companion in the House of Love and Good Suppers.
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Introduction 1
1.1 Outline 1

1.2 Structure–property
relationships 3

1.3 Symmetry of physical
properties 4

1.4 Atomistic arguments:
Density 5

The physical and chemical properties of crystals and textured materials often
depend on direction. An understanding of anisotropy requires a mathemat-
ical description together with atomistic arguments to quantify the property
coefficients in various directions.

Tensors and matrices are the mathematics of choice and the atomistic
arguments are partly based on symmetry and partly on the basic physics and
chemistry of materials. These are subjects of this book: tensors, matrices,
symmetry, and structure–property relationships.

1.1 Outline

We begin with transformations and tensors and then apply the ideas to the vari-
ous symmetry elements found in crystals and textured polycrystalline materials.
This brings in the 32 crystal classes and the 7 Curie groups. After working out
the tensor and matrix operations used to describe symmetry elements, we then
apply Neumann’s Law and the Curie Principle of Symmetry Superposition to
various classes of physical properties.

The first group of properties is the standard topics of classical crystal
physics: pyroelectricity, permittivity, piezoelectricity, elasticity, specific heat,
and thermal expansion. These are the linear relationships between mechanical,
electrical, and thermal variables as laid out in the Heckmann Diagram (Fig. 1.1).
These standard properties are all polar tensors ranging in rank from zero to four.

Axial tensor properties appear when magnetic phenomena are introduced.
Magnetic susceptibility, the relationship between magnetization and magnetic

Stress Thermal 
expansion

Temperature

Pyroelectricity

Susceptibility

Electric field

Strain Entropy

Elasticity Specific heat

Polarization

Piezoelectricity

Fig. 1.1 The Heckmann Diagram relating
mechanical, electrical, and thermal variables.
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Fig. 1.2 Magnetic properties are coupled to
thermal, electrical, and mechanical effects
through axial tensor relationships.

Electric field

Magnetoelectricity

Magnetization

Piezomagnetism

Mechanical stress

Temperature change

Pyromagnetism

Table 1.1 Polar and axial tensor properties of rank
0, 1, 2, 3, and 4. The rank of a tensor is nothing
mysterious. It is simply the number of directions

involved in the measurement of the property.
A few examples are included

Rank Polar Axial

Zero Specific heat Rotatory power
First Pyroelectricity Pyromagnetism
Second Thermal expansion Magnetoelectricity
Third Piezoelectricity Piezomagnetism
Fourth Elastic compliance Piezogyrotropy

field, is a polar second rank tensor, but the linear relationships between
magnetization and thermal, electrical, and mechanical variables are all axial
tensors. As shown in Fig. 1.2, magnetization can be added to the Heckmann
Diagram converting it into a tetrahedron of linear relationships. Pyromagnetism,
magnetoelectricity, and piezomagnetism are the linear relationships between
magnetization and temperature change, electric field, and mechanical stress.

Examples of tensors of rank zero through four are given in Table 1.1.
In this book we will also treat many of the nonlinear relationships such as
magnetostriction, electrostriction, and higher order elastic constants.

The third group of properties is transport properties that relate flow to a
gradient. Three common types of transport properties relate to the movement
of charge, heat, and matter. Electrical conductivity, thermal conductivity, and
diffusion are all polar second rank tensor properties. In addition, there are
cross-coupled phenomena such as thermoelectricity, thermal diffusion, and
electrolysis in which two types of gradients are involved. All these properties are
also influenced by magnetic fields and mechanical stress leading to additional
cross-coupled effects such as piezoresistivity and the Hall Effect. The transport
properties analogous to the Heckmann Diagram are shown in Fig. 1.3.

A fourth family of directional properties involves hysteresis and the move-
ment of domain walls. These materials can be classified as primary and
secondary ferroics according to the types of fields and forces required to move
the walls. The primary ferroics include such well-known phenomena as ferro-
magnetism, ferroelectricity, and ferroelasticity (Fig. 1.4). Less well known
are the secondary ferroic effects in materials like quartz which show both
ferrobielasiticity and the ferroelastoelectric effect.

The final portions of the book concern wave phenomena. Crystal optics has
long been an important part of crystal physics with roots in classical optical
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Concentration
gradient

Thermal
diffusion

Temperature
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Electrical conductivity

Electric field

Matter flow Heat flow

Diffusion Thermal conductivity

Electric current

Electrolysis Thermoelectricity

Fig. 1.3 Cross-coupled transport phenomena.
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Fig. 1.4 Nine types of primary and secondary
ferroics involving domain wall motion.

mineralogy. In modern times this has become an important component of the
information age through the applications of nonlinear optics, magneto-optics
and electro-optics. Linear and nonlinear ultrasonic phenomena are an important
part of physical acoustics which are analogous to the optical effects.

Crystalline and noncrystalline media with handedness exhibit several types of
gyrotropy in which the plane of polarization rotates as the wave passes through
the medium. This leads to an interesting group of tensor properties known as
optical activity, acoustical activity, and the Faraday Effect.

The last chapter of the book deals with chemical anisotropy, with emphasis
on crystal morphology and etching phenomena.

1.2 Structure–property relationships

This book is about crystal physics and crystal chemistry, and their applications to
engineering problems. When faced with the task of identifying useful materials,
the materials scientist uses atomic radii, chemical bond strengths, anisotropic
atomic groupings, electronic band structure, and symmetry arguments as criteria
in the material selection process.
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Crystal physics is mainly concerned with the relationships between sym-
metry and the directional properties of crystals. Symmetry and its relationships
to physical properties is reviewed in the next section. In general, symmetry
arguments are useful in determining which property coefficients are absent
and which are equal, but not in estimating the relative sizes of the coefficients.
Magnitudes depend more on the atomistic arguments based on crystal chemistry
and solid-state physics. Using examples drawn from engineering technology,
I have tried to point out the crystallochemical parameters most important to the
understanding of a molecular mechanism, and to the choice of new materials.

For most scientists and engineers, an important goal is to develop
fundamental understanding while at the same time remaining alert for possible
applications. In solving solid-state problems it is helpful to ask, what atoms
are involved and what are their electron configurations? What types of chem-
ical bonds are formed? What is the symmetry of the crystal? How are the
atoms arranged in the crystal structure? Are there chains or layers that give
rise to anisotropy? Do these arrangements promote certain mechanisms for
electronic or atomic motions or distortions? How do these mechanisms give
rise to the observed properties? Which properties are important in engineering
applications?

These are the questions I had in mind when I wrote the book.

1.3 Symmetry of physical properties

In determining the effect of symmetry on physical properties, there are four
symmetries to be considered: (1) the symmetry of the material, (2) the symmetry
of the external forces, (3) the symmetry of resulting change or displacement,
and (4) the symmetry of the physical property relating displacement to external
force. Here we are using the terms force and displacement in the general sense to
include electric, magnetic, and thermal quantities as well as mechanical effects.

All materials—whether crystalline or not—show some kind of symmetry.
Single crystals have symmetry belonging to one of the 32 crystal classes
(Chapter 3). Ferromagnetic, ferrimagnetic, and antiferromagnetic crystals
exhibit long-range magnetic order. Additional symmetry groups involving time
reversal operators are used to describe magnetic structures (Chapter 14).

Amorphous materials, glasses, and liquids have spherical symmetry, ∞∞m,
one of the seven Curie groups (Chapter 4). Liquid crystals and liquids made of
the enantiomorphic molecules exhibit somewhat lower symmetry (Chapter 30).
Ceramics, metals, rocks, and other polycrystalline solids made up of grains
with random orientation have spherical symmetry. The properties of platy or
fibrous materials with aligned crystallites conform to cylindrical symmetry,
∞/mm. A rectangular plank cut from a large tree has orthorhombic symmetry
because of the different properties associated with the longitudinal, tangential,
and radial directions. Thus wood has nine independent elastic constants just as
orthorhombic crystals do.

The physical forces of importance in materials science are mechan-
ical stress, electric field, magnetic field, and temperature. Tensile stresses
possess cylindrical symmetry (∞/mm) while shear stresses have orthorhombic
symmetry (mmm). Both are centric because a balance of forces is required to
prevent translational or rotational motion. Electric fields can be represented
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by a vector with polar cylindrical symmetry, ∞m. Moving electric charges
produce magnetic fields so that a current loop can be used as the symmetry
representation. Magnetic fields have axial cylindrical symmetry, point group
∞/mm′. Temperature is a scalar quantity with spherical symmetry, ∞∞m.

When a polycrystalline solid is hot-pressed, it adopts the cylindrical sym-
metry of the compressive stress. Poled ferroelectric ceramics are cooled through
the Curie temperature in the presence of an electric field to influence the domain
structure. The resulting symmetry is ∞m with the ∞-fold rotation axis parallel
to the applied field. Magnetically-poled ceramics have symmetry ∞/mm′.
When subjected to two forces, a ceramic retains the symmetry elements
common to both. An electrically-poled, hot-pressed ceramic has symmetry ∞m
when field and stress are parallel and mm2 when perpendicular. According to
Curie’s Principle, “when certain causes lead to certain effects, the symmetry
elements of the causes should be observed in these effects.”

The same principle applies to the symmetry of any change or displacement:
a crystal under an external influence will exhibit only those symmetry elements
that are common to the crystal without the influence and the influence without
the crystal. As an illustration, when a tensile stress is applied along the [111]
direction of a cubic crystal belonging to m3m, the symmetry of the strained
crystal is 3m, the highest group common to m3m and cylindrical symmetry about
[111]. This principle is true regardless of the size of the force or its effect on the
material. The displacement may be permanent (plastic flow), semi-permanent
(domain change), or reversible (elastic). In the latter case, the symmetry of the
crystal reverts to its original class when the force is removed, but when the
external forces produces permanent changes, the crystal retains the symmetry
of the displacement after the force is removed.

Symmetry arguments like these are used to determine the number of
independent property coefficients required for each material. Using Neumann’s
Principle (Chapter 5), it will be shown that quartz crystals (point group 32) are
not pyroelectric (Chapter 8), but have two independent dielectric constants
(Chapter 9), two independent piezoelectric constants (Chapter 12), and six
independent elastic constants (Chapter 13). In contrast, polycrystalline quartz
(point group ∞∞m) is neither pyroelectric nor piezoelectric, and has only one
dielectric constant and only two independent elastic constants.

1.4 Atomistic arguments: Density

The relationship between density and crystal structure illustrates how the
crystal chemistry can sometimes be used to predict the magnitude of a physical
property.

The density of a crystal is intimately related to chemical composition and
crystal structure through the relation

ρ = MZ

N0V
.

The density ρ (g/cm3) is determined by the molecular weight M, the number of
molecules per unit cell Z , Avogadro’s number N0, and the unit cell volume V ,
measured in cm3. For a triclinic crystal, V is abc(1 − cos2 α − cos2 β −
cos2 γ )1/2, where a, b, c are the cell dimensions and α, β, γ are the interaxial



6 Introduction

angles. Unit cell volumes for higher symmetry crystals are easily deduced from
the triclinic formula.

A sample density calculation from quartz is carried out for β-quartz (Fig. 1.5).
0.1

0.1

0.15/6

1/6

1/6

1/3
1/6

1/6

1/3

5/62/3

0.15/6

Silicon

5/62/3

1/2

1/2

a

b

Oxygen

Fig. 1.5 The unit cell of β-quartz viewed
along c. The heights of the oxygen and silicon
atoms are expressed in cell fractions.

The drawing outlines the structure as viewed along the c-axis. β-quartz
(SiO2) belongs to the hexagonal crystal system and has a molecular weight
of 60.09 g/mole. Avogadro’s number N0 is 6.023 × 1023 molecules/mole. The
unit cell dimensions are a = b = 4.913 Å, c = 5.405 Å. Interaxial angles for
the hexagonal system are α = β = 90◦, γ = 120◦. From this information, the
unit cell volume is

V = a2c(
√

3/2) = 113 Å3 = 1.13 × 10−22 cm3.

Examining the unit cell drawing, it can be seen that there are eight silicons at
the corners of the unit cell, and four more on the side faces. Since each corner
belongs to eight cells and each face to two cells, the number of silicons in the
cell is 8/8 + 4/2 = 3. The number of oxygens can be counted in a similar way.
There are eight O on side faces and two more inside the hexagonal cell. This
adds up to 8/2 + 2 = 6 oxygens. Thus there are three formula units of SiO2

per cell: Z = 3. Collecting all numbers, the density

ρ = MZ/N0V = 2.65 g/cm3.

The most important factor affecting density is molecular weight because
atomic weights vary over a wider range than do atomic volumes. Among
difluorides, densities increase with cation atomic weight: BeF2 1.99,
MgF2 3.14, CaF2 3.18, SrF2 4.24, BaF2 4.89, PbF2 8.24. The densities of
MgF2 and CaF2 are nearly the same because the fluorite structure is more open
than the rutile arrangement.

A similar trend is observed in alkali halides when density is plotted as a func-
tion of molecular weight (Fig. 1.6). If all the atoms were similar in size, density
would be linearly proportional to molecular weight. Obviously this is not the
case. Going from LiF to CsI there is an overall increase in density but the rela-
tionship is far from linear. In fact, the fluorides are denser than the chlorides
because of the large increase in ionic radius going from F− to Cl−. This gives
a dip in the density vs. molecular weight curve that is also observed in some
oxides, semiconductors, and metals.

As a rule, crystals with close-packed atoms have larger densities than those
that do not. Thus the densities of corundum, spinel, chrysoberyl, and olivine

Fig. 1.6 The density of alkali halides with
the rocksalt structure plotted as a function of
molecular weight. Density usually increases
with weight but size changes cause anomalies.
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Fig. 1.7 Density vs. atomic weight curves for
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Fig. 1.8 Transition metal elements are very
dense and have high melting points.

lie in the range 3.3–4.0, considerably larger than those of quartz, beryl, and
feldspar that are near 2.7 g/cm3. The differences in densities of the minerals
are useful in separating them by flotation methods.

Among polymorphs, high-pressure phases are denser than low-pressure
phases because of the importance of the PV term in the free energy when
P is large. Kyanite, the stable high-pressure form of Al2SiO5, has a density of
3.63, compared to 3.15 for andalusite. For the same reason, low-temperature
polymorphs are often denser than high-temperature forms. When T is very
small, the PV term dominates the TS term in the free energy function. As an
example, quartz (ρ = 2.65) is denser than its high-temperature polymorph
cristobalite (ρ = 2.32).

The density vs. molecular weight curves for semiconductors and metals
resemble those of the alkali halides. Silicon has a lower density than diamond,
and calcium is less dense than beryllium and magnesium (Fig. 1.7). Among
metals the highest densities are found in the 5d transition metal series (Fig. 1.8).
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Note the peaks near the middle of the 4d and 5d series where the d electrons
participate strongly in interatomic bonding. The d electrons in 3d transition
metals are buried further inside the atoms and participate less in bonding, but
give rise to impressive magnetic behavior.

Density is a scalar quantity that does not depend on direction. In the next
chapter, we begin the discussion of anisotropic properties.

Problem 1.1
Sanidine feldspar, KAlSi3O8, is monoclinic with lattice parameters a = 8.56,
b = 13.03, c = 7.17 Å, β = 116◦. There are four molecular units in the unit
cell. Calculate the density of this common rock-forming mineral.

Problem 1.2

a. Silver and palladium both crystallize with a face-centered cubic crystal
structure. Make a sketch of the structure and count the number of atoms
per unit cell. The cubic cell edges are 3.890 for palladium and 4.086 Å
for silver.

b. Compute the densities of these two metals.
c. Ag–Pd alloys are often used as electrodes. As pointed out in Chapter 17,

they form a complete solid solution with Pd atoms substituting randomly
for Ag. The measured density of a certain Ag–Pd alloy is 11.00 g/cm3.
Estimate the composition of this Ag1−xPdx alloy in atomic% Pd and
weight% Pd. There are several ways of doing this. One method presumes
Vegard’s Law, and another is based on Retger’s Rule. Vegard’s Law
states that the lattice parameter of a solid solution changes linearly with
composition, and Retger’s Rule states that the unit cell volume changes
linearly with composition. How much difference does it make for the
estimated composition of the Ag–Pd alloy?
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2.2 Axis transformations 9

2.3 Orthogonality
conditions 10
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Many physical properties depend on direction and the resulting anisotropy is
best described with the use of tensors. Tensors are classified according to how
they transform from one coordinate system to another. Therefore, we begin by
describing transformations.

2.1 Why transformations?

There are several reasons why we want to do this: (1) transformations help
us define tensors, (2) these tensors can be used to describe physical properties,
(3) the effects of symmetry on physical properties can be determined by how the
tensor transforms under a symmetry operation, (4) the magnitude of a property
in any arbitrary direction can be evaluated by transforming the tensor, (5) using
these numbers, we can draw a geometric representation of the property, and
(6) the transformation procedure provides a way of averaging the properties
over direction. This is useful when relating the properties of polycrystalline
materials to those of the single crystal.

Z3

Z1 Z2

Z�1

Z�3
Z�2

cos–1a12

cos–1a23

Fig. 2.1 Direction cosines relate “old”
(unprimed) and “new” (primed) axial
systems.

Mathematically, there is nothing fancy about these transformations. We
are simply converting one set of orthogonal axes (Z1, Z2, Z3) into another
(Z ′

1, Z ′
2, Z ′

3). The two sets of axes are related to one another by nine direction
cosines: a11, a12, a13, a21, a22, a23, a31, a32, and a33. Collectively all nine can
be written as aij where i, j = 1, 2, 3.

The axes and direction cosines are illustrated in Fig. 2.1. It is important not
to confuse the subscripts of the direction cosines. As defined in the drawing,
a12 is the cosine of the angle between Z ′

1 and Z2, whereas a21 is the cosine of
the angle between Z ′

2 and Z1. The first subscript always refers to the “new” or
transformed axis. The second subscript is the “old” or original axis. The original
or starting axes is usually a right-handed set, but it need not be. The transformed
“new” axes may be either right- or left-handed, depending on the nature of the
transformation. This will become clearer when we look at some transformations
representing various symmetry operations. In any case, both the old and new
axes are orthogonal.

2.2 Axis transformations

We now proceed to write out these transformations in mathematical form.
The “new” coordinate system Z ′

1, Z ′
2, Z ′

3 is related to the “old” axes by the
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equations

Z ′
1 = a11Z1 + a12Z2 + a13Z3

Z ′
2 = a21Z1 + a22Z2 + a23Z3

Z ′
3 = a31Z1 + a32Z2 + a33Z3.

(2-1)

These equations can also be written in matrix form


Z ′
1

Z ′
2

Z ′
3


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







Z1

Z2

Z3




or in shortened form as

3 × 1
(Z ′) =

3 × 3
(a)

3 × 1
(Z).

In tensor form the same equations are

Z ′
i =

∑
j

aijZj = aijZj,

where i, j = 1, 2, 3. Here we adopt the Einstein convention in which repeated
subscripts imply summation.

In dealing with physical property tensors, sometimes we transform from
“old” to “new”, as we have just done, and sometimes we transform in the
reverse direction from “new” to “old”:

Z1 = a11Z ′
1 + a21Z ′

2 + a31Z ′
3

Z2 = a12Z ′
1 + a22Z ′

2 + a32Z ′
3

Z3 = a13Z ′
1 + a23Z ′

2 + a33Z ′
3.

Note that rows and columns have interchanged with respect to Equation 2-1.
In matrix form, 


Z1

Z2

Z3


 =




a11 a21 a31

a12 a22 a32

a13 a23 a33







Z ′
1

Z ′
2

Z ′
3




3 × 1
(Z) =

3 × 3
(a)t

3 × 1
(Z ′).

Matrix (a)t is the transpose of (a) with rows and columns interchanged. In tensor
form the new to old transformation is

Zi =
∑

j

ajiZ
′
j = ajiZ

′
j ,

where i, j = 1, 2, 3.

2.3 Orthogonality conditions

In writing out these equations for a complicated transformation there is
always the possibility of numerical error. Therefore, it is helpful to check
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the orthogonality conditions that arise because of transforming between two
orthogonal systems. In an orthogonal system all the angles are right angles.
This places restrictions on the direction cosine matrix.

(a) =

a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

The restrictions are such that for any row or column, the sum of the squares
is one. Therefore there will be nine equations of the following form:

a2
11 + a2

12 + a2
13 = 1

and

a2
11 + a2

21 + a2
31 = 1.

For adjacent rows or adjacent columns, the products sum to zero:

a11a12 + a21a22 + a31a32 = 0

a11a21 + a12a22 + a13a23 = 0.

Taken all together, the orthogonality conditions can be represented by the
expressions

aikajk = akiakj = δij,

where i, j, k = 1, 2, 3, and δij is the Kronecker δ. δij = 1 if i = j and δij = 0
if i �= j.

Because of the orthogonality conditions not all the aij values are independent,
and this provides a valuable check on the numerical values.

As an example, the direction cosine matrix for a clockwise rotation of φ◦
about axis Z1 is

(a) =

1 0 0

0 cos φ − sin φ

0 sin φ cos φ


 .

When dealing with a transformation such as this, it is helpful to keep track
of the determinant |a|. Its value will be ±1. No other values are permitted.
If the transformation does not involve a handedness change, |a| = +1. For the
rotation of φ◦ about Z1,

|a| = cos2 φ + sin2 φ = 1.

Therefore the original right-handed axes remain right-handed in the new axial
system. For mirror planes and other symmetry operations involving a change
in handedness, |a| = −1. As explained later, certain physical properties such
as optical activity are associated with handedness.

Problem 2.1

a. Work out the direction cosines for a counterclockwise rotation of 30◦
about Z3. Check the orthogonality conditions.

b. How do the values change if the 30◦ rotation is clockwise rather than
counterclockwise?

c. Suppose the rotation was carried out about Z ′
3 rather than Z3. How do

the (a) matrices compare?
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2.4 General rotation (Eulerian angles)

Three angles (φ, θ , ψ) are required in specifying the mutual orientation of two
sets of orthogonal axes. Two angles (θ , φ) are needed to specify the orientation
of a single direction in space. A third angle ψ fixes the other two axes of an
orthogonal set of axes. This can be pictured as three consecutive rotation opera-
tions. The standard way of deriving the direction cosine matrix for a general
rotation is as follows.

I. First rotation: a counterclockwise rotation of φ◦ about Z3.

(a)I =

 cos φ sin φ 0

− sin φ cos φ 0
0 0 1


 .

II. Second rotation: a counterclockwise rotation of θ◦ about Z ′
1

(a)II =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 .

III. Third rotation: a counterclockwise rotation of ψ◦ about Z ′′
3

(a)III =

 cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1


 .

The three rotations are illustrated in Fig. 2.2.
The general rotation is the product of the three individual rotations:

(a) = (a)III(a)II(a)I

(a) =

 cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1





1 0 0

0 cos θ sin θ

0 − sin θ cos θ





 cos φ sin φ 0

− sin φ cos φ 0
0 0 1




(a) =




(
cos φ cos ψ

− cos θ sin φ sin ψ

) (
cos ψ sin φ

+ cos θ cos φ sin ψ

)
sin θ sin ψ

(− cos θ cos ψ sin φ

− cos φ sin ψ

) (
cos θ cos φ cos ψ

− sin φ sin ψ

)
cos ψ sin θ

sin θ sin φ − cos φ sin θ cos θ




.

Fig. 2.2 Three angular rotations required to
specify a general rotation of orthogonal axes.

Z1

Z�1

Z2

Z�2

Z3 = Z�3

Z �1 = Z �1

Z �3 = Z�3

( I ) (II) (III)

�
�

�

�

�

�

Z �3
Z �3

Z �2

Z �2

Z �2

Z �2

Z �1

Z �1
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Problem 2.2
Like all transformations, the general Eulerian rotation must satisfy the
orthogonality conditions. Check this result and determine the value of the
determinant |a|.

The general rotation is not used very often in common crystal physics,
but in advanced product development—as in the quartz crystal industry—
doubly- and triply-rotated cuts are used to eliminate unwanted temperature
and stress effects. In these cases three orientation angles are used to specify
the optimum orientation. Usually, however, we will be dealing with only one
rotation.

Symmetry will be discussed in the next chapter, and transformation matrices
for various symmetry operations will be given in Chapter 4. This will lead to
Neumann’s Law and the effect of symmetry on anisotropic physical properties.
Symmetry greatly simplifies many of the property matrices and reduces the
number of measurements required to describe anisotropy.

Problem 2.3
For cubic crystals, the [100] = Z1, [010] = Z2, and [001] = Z3 directions
constitute a set of orthogonal right-handed axes. The [112̄] = Z ′

1, [1̄10] = Z ′
2,

and [111] = Z ′
3 directions are also perpendicular to one another.

a. Write out the set of direction cosines relating the new axes to the old.
b. Describe this transformation by a set of Eulerian angles φ, θ , and ψ .
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All single crystals possess translational symmetry, and most possess other
symmetry elements as well. In this chapter we describe the 32 crystallographic
point groups used for single crystals. The seven Curie groups used for textured
polycrystalline materials are enumerated in the next chapter.

3.1 Symmetry operations

We live in a three-dimensional world which means that there are basically
four kinds of geometric symmetry operations relating one part of this world to
another. The four primary types of symmetry are translation, rotation, reflec-
tion, and inversion. As pictured in Fig. 3.1, these symmetry operators operate
on a point with coordinates Z1, Z2, Z3 and carry it to a new position. By def-
inition, all crystals have a unit cell that is repeated many times in space, a
point Z1, Z2, Z3 is repeated over and over again as one unit cell is translated to
the next.

A mirror plane perpendicular to one of the principal axes is a two-dimensional
symmetry element that reverses the sign of one coordinate. Rotation axes are

Fig. 3.1 Four types of symmetry elements.
Mirror and inversion transformation are
accompanied by a handedness change;
rotations and translations are not.

Z3

Z3

Z1

Z2 Z2

Z1

Z3

Z1

Z2

Z3

Z2

Z1

Translation

Rotation 2 || Z3 Inversion

Mirror

RH RH
RHLH

RH

180°

LH

RH

m ⊥ Z2

RH
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one-dimensional symmetry elements that change two coordinates, while an
inversion center is a zero-dimensional point that changes all three coordinates.

In developing an understanding of the macroscopic properties of crystals,
we recognize that the scale of physical property measurements is much larger
than the unit cell dimensions. It is for this reason that we are not concerned
about translational symmetry and work with the 32 point group symmetries
rather than the 230 space groups. This greatly simplifies the structure–property
relationships in crystal physics.

3.2 Symmetry elements and stereographic
projections

Aside from the identity operator 1, there are only four types of rotational
symmetry consistent with the translation symmetry common to all crystals.
Fig. 3.2 shows why. Parallelograms, equilateral triangles, squares, and
hexagons will pack together to fill space but, pentagons∗ and other polygons ∗ Some quasicrystalline alloys have fivefold

symmetry but do not possess the trans-
lational periodicity of single crystals (see
Section 17.8).

will not. This means that only 2-, 3-, 4-, and 6-fold symmetry axes are found in
crystals. This is the starting point for generating the 32 crystal classes. When
taken in combination with mirror planes and inversion centers, these four types
of rotation axes are capable of forming 32 self-consistent three-dimensional
symmetry patterns around a point. These are the so-called 32 crystal classes or
crystallographic point groups.

To visualize these crystal classes, we make use of stereographic projections
(Fig. 3.3). Stereographic projections are an easy way of representing three-
dimensional objects in two dimensions. The projection begins with an object
located at the center of a sphere. Any point of interest is then projected to the
surface of the sphere by drawing a straight line from the center of the sphere
through the point in question, and on to the surface of the sphere. If the point
ends in the northern hemisphere, then connecting it to the South Pole com-
pletes the operation. Where this line intersects the equatorial plane is the point
on the stereographic projection. If the point on the sphere is in the southern
hemisphere, then it is connected to the North Pole, again noting the intersection
with the equatorial plane. Closed and open circles identify points originating

2-Fold (180°)

3-Fold (120°)

4-Fold (90°)

6-Fold (60°)

Fig. 3.2 Planar figures with 2-, 3-, 4-, or
6-fold symmetry generate geometric patterns
that fill space.
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Fig. 3.3 The stereographic projection used
to visualize three-dimensional objects in two
dimensions.

Equatorial plane

N

S
Sphere

Point in southern
hemisphere

Point in northern
hemisphere

Fig. 3.4 Stereograms for (a) a mirror (m)
perpendicular to Z2, (b) a mirror (m) perpen-
dicular to Z3, and (c) an inversion center (1̄),
sometimes called a center of symmetry. Z1

Z3Z2

(a) (b) (c)

from the northern and southern hemispheres, respectively. In general, then, the
stereographic projection is simply the equatorial plane with its collection of
open and closed circles.

To illustrate the use of the stereographic projection, we draw stereograms for
several of the symmetry elements that occur in crystals. The usual orientation
for the stereographic projection is to place Z3 along the N–S axis and Z1 and Z2

in the equatorial plane. Consider first a mirror plane perpendicular to Z2, as in
the monoclinic crystal system. The mirror plane shown in Fig. 3.4(a) is drawn
as a straight line. The solid circle to the right of the mirror plane is an arbitrarily
chosen point in the northern hemisphere. To generate the symmetry-related
point to the left of the mirror plane, a perpendicular is drawn from the reference
point to the mirror plane, and then extended an equal distance on the other side.
The second point is also in the northern hemisphere, as shown in the diagram.

The stereogram looks rather different for a mirror plane perpendicular to
Z3 (Fig. 3.4(b)). In this case the mirror plane is the equatorial plane, and is
denoted by a heavy line drawn around the equator. Dropping a perpendicular
from a point in the northern hemisphere to the equatorial plane, and bringing
it out on equal distance on the other side, generates a symmetry-related point
in the southern hemisphere. In the stereogram this appears as an open circle
directly beneath the solid circle.

As a third example, consider a center of symmetry or inversion center.
The stereogram shown in Fig. 3.4(c) has a center of symmetry at the center.
Beginning with a reference point in the northern hemisphere, a line is drawn
to the center and brought out an equal distance on the other side. This gives an
equivalent point in the southern hemisphere.

Problem 3.1
Draw the stereograms for a twofold rotation axis along Z1 and then along Z3.
Compare these stereograms with those of the mirror planes and the inversion
center.
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3.3 Point groups and their stereograms

Point group symmetry controls anisotropy and therefore it is an important
concept. A point group is a self-consistent set of symmetry elements opera-
ting around a point. By “self-consistent” we mean that the symmetry elements
return the starting point to its original position in a finite number of steps. Since
handedness also changes for certain symmetry operations such as mirror planes
or inversion centers, it is also important the reference point return to its original
position with the same handedness.

Some point groups have only one symmetry element and are rather easy to
visualize. Ten of the 32 crystal classes fall into this category: 1,1̄, 2, m, 3, 3̄, 4,
4̄, 6, and 6̄. Stereograms are grouped into six crystal systems in Figs. 3.5–3.11.

In the triclinic system there are only two point groups, 1 and 1̄. Other than
translational symmetry, there is only the inversion symmetry of point group 1̄.

Twofold symmetry is characteristic of the monoclinic system that has three
point groups 2, m, and 2/m. By convention, Z2 is chosen as the twofold
symmetry axis, the b crystallographic axis. The mirror plane m is equivalent to
a twofold inversion axis (2̄) in which 180◦ rotation is accompanied by inversion.
Point group 2/m has two independent symmetry elements, a twofold axis and
a mirror plane perpendicular to it.

Orthorhombic crystal classes (Fig. 3.7) possess three orthogonal twofold
axes or twofold inversion axes (2̄ = m). Again there are three point groups in
this system: 222, mm2, and mmm. Comparing Fig. 3.7, Fig. 3.6, and Fig. 3.5
it is immediately apparent which point groups contain inversion symmetry,
and which do not. The two equivalent points for point group 1̄ are present

1 1
– Fig. 3.5 Point groups 1 and 1̄ in the triclinic

system.

2 m 2/m
Fig. 3.6 Three monoclinic point groups with
a twofold axis, a mirror plane, or both.

222 mm2 mmm
Fig. 3.7 Orthorhombic point groups 222,
mm2, and mmm.
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Fig. 3.8 Crystal classes in the trigonal
system.

3 3
–

3m 3m
–

32

Fig. 3.9 Seven tetragonal point groups. 4mm 42m
–

4/mmm

4 4
–

4/m 422

in point groups 2/m and mmm but not in the other five groups 1, 2, m, 222,
and mm2. Inversion symmetry eliminates odd-rank physical properties such as
pyroelectricity and piezoelectricity.

Continuing to the trigonal, tetragonal, and hexagonal crystal systems, Z3 is
always chosen as the axis of high symmetry. There are five trigonal classes with
a threefold rotation or inversion axis along Z3 (Fig. 3.8): 3, 3̄, 3m, 32, and 3̄m.
The secondary symmetry axis, typified by the twofold axis in point group 32,
is chosen along Z1. These choices for orientations are only for convenience.
There is no reason why Z3 must be the threefold symmetry axis, but it causes
less confusion if everyone follows the same convention.

Tetragonal crystals possess a single fourfold symmetry axis along Z3. There
are seven crystal classes 4, 4̄, 4/m, 4̄2m, 4mm, 422, and 4/mmm (Fig. 3.9). It
is worth noting that there are often more symmetry elements than appear in the
symbol. Point group 4/mmm possesses one 4, five m, four 2, and 1̄.

Hexagonal crystal classes are analogous to the trigonal case with seven
members: 6, 6̄, 6/m, 6̄m2, 6mm, 622, and 6/mmm (Fig. 3.10). The question
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often arises, which symmetry elements are needed to generate the group? For
the point groups like 6̄ with only one symmetry element, the answer is obvi-
ous. For those with two elements like 6/m, both are needed. For those with
three or four like 6mm and 6/mmm often the last element is redundant and is
not needed to generate the group. So why are unnecessary symmetry elements
included in the symbol? Partly it is custom, but they also serve as a reminder
that they are there. In the case of 6mm, for example, the second mirror plane is
crystallographically distinct from the first one.

The remaining five crystal classes belong to the cubic crystal system
(Fig. 3.11). As a minimum, all the cubic classes contain four threefold axes
along the body-diagonal 〈111〉 directions of cube. In the five classes, twofold,
fourfold, or fourfold inversion axes lie along the 〈100〉 cube axes corresponding
to the Z1, Z2, and Z3 property axes. In three of the classes the 〈110〉 face
diagonals are also symmetry directions.

6 6
–

6mm 6m2
–

6/mmm

6/m 622

Fig. 3.10 Seven hexagonal crystal classes.

23

43m
–

m3m

m3 432

Fig. 3.11 Cubic crystal classes.
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Problem 3.2
Fivefold symmetry is observed in quasicrystals and certain composite materials.
Draw the stereographic projections of point groups 5, 5̄, 5m, 52, 5/m, and 5̄m.

3.4 Crystallographic nomenclature

The symbols used for the 32 crystal class are those recommended by the
International Union of Crystallography, and sometimes referred to as the
Herman–Mauguin symbols. The earlier Schoenflies symbols are still used by
some chemists and spectroscopists. Equivalences between the two sets are listed
in Table 3.1 along with representative compounds.

3.5 Point group populations

Not all symmetries are equally abundant. A survey of 127,000 inorganic and
156,000 organic compounds shows that most crystals have low symmetry.
Table 3.2 lists the percentages for the 32 crystal classes. A total of 94% of
organic crystals and 72% of inorganic crystals are orthorhombic, monoclinic,
or triclinic. Point group 2/m is by far the most common in both classes of

Table 3.1 Examples of the 32 crystal classes

1 = C1 Kaolinite Al2Si2O5(OH)4

1̄ = Ci Copper sulfate CuSO4 · 5H2O
2 = C2 Sucrose C12H12O11
m = CS Potassium nitrite KNO2
2/m = C2h Orthoclase KAlSi3O8
222 = D2 Iodic acid HIO3
mm2 = C2V Sodium nitrite NaNO2
mmm = D2h Forsterite Mg2SiO4
3 = C3 Nickel tellurate Ni3TeO6

3̄ = C3i Ilmenite FeTiO3
32 = D3 Low-quartz SiO2
3m = C3V Lithium niobate LiNbO3

3̄m = D3d Corundum Al2O3
4 = C4 Iodosuccinimide C4H4INO2

4̄ = S4 Boron phosphate BPO4
4/m = C4h Scheelite CaWO4
422 = D4 Nickel sulfate NiSO4 · 6H2O
4mm = C4V Barium titanate BaTiO3

4̄2m = D2d Potassium dihydrogen KH2PO4
phosphate

4/mmm = D4h Rutile TiO2
6 = C6 Nepheline NaAlSiO4

6̄ = C3h Lead germanate Pb5Ge3O11
6/m = C6h Apatite Ca5(PO4)3F
622 = D6 High-quartz SiO2
6mm = C6V Zincite ZnO
6̄m2 = D3h Benitoite BaTiSi3O9
6/mmm = D6h Beryl Be3Al2Si6O18
23 = T Sodium chlorate NaClO3
m3 = Th Pyrite FeS2
432 = O Manganese β-Mn
4̄3m = Td Zincblende ZnS
m3m = Oh Rocksalt NaCl
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Table 3.2 Population statistics for the 32 crystallographic point
groups gathered from more than 280,000 chemical compounds.

Inorganic (I) and organic (O) have somewhat different percentages
(data collected by G. Johnson)

I O I O

1 0.67% 1.24% 422 0.40% 0.48%
1̄ 13.87 19.18 4mm 0.30 0.09
2 2.21 6.70 4̄2m 0.82 0.34
m 1.30 1.46 4/mmm 4.53 0.69
2/m 34.63 44.81 6 0.41 0.22
222 3.56 10.13 6̄ 0.07 0.01
mm2 3.32 3.31 6/m 0.82 0.17
mmm 12.07 7.84 622 0.24 0.05
3 0.36 0.32 6mm 0.45 0.03
3̄ 1.21 0.58 6̄m2 0.41 0.02
32 0.54 0.22 6/mmm 2.82 0.05
3m 0.74 0.22 23 0.44 0.09
3̄m 3.18 0.25 m3 0.84 0.15
4 0.19 0.25 432 0.13 0.01
4̄ 0.25 0.18 4̄3m 1.42 0.11
4/m 1.17 0.67 m3m 6.66 0.12

materials. Within each system, centrosymmetric crystals are more common
than noncentrosymmetric classes. Among organic crystals, 75% are centric, and
among inorganic it is even higher at 82%. This means that odd-rank tensor pro-
perties such as piezoelectricity and pyroelectricity are absent in most crystals.
Only about 22% are potentially piezoelectric and 12% potentially pyroelectric.

Regarding optical properties, more than 95% of crystals show double refrac-
tion, 87% are biaxial, 8% uniaxial, and 5% optically isotropic. About 15% of
all crystals are enantiomorphic and potentially optically active.

There are some interesting differences between inorganics and organics.
Higher symmetry crystals (trigonal, tetragonal, hexagonal, and cubic) are more
abundant among metals, oxides, and halides with relatively simple chemical
formulae. As a result, cubic crystals in point group m3m are very common.
Rocksalt, spinel, garnet, perovskite, diamond, and fluorite are all in m3m, as
are face-centered cubic metals, body-centered cubic metals, and several of the
important intermetallic Laves phases. Many of these structures are based on
close-packing principles.

Close packing is also important in organic crystals, but it is the molecules that
are close-packed, rather than individual atoms or ions. Most organic molecules
have complex shapes that do not conform to rotational symmetry higher than
twofold axes.

But if complex molecular shapes and complex chemistry favor low symmetry,
why is it that centrosymmetric crystals are three times more common than
noncentrosymmetric crystals? It is unclear why most crystals possess a center
of symmetry. What physical principle favors inversion symmetry? Is it that
atoms and molecules reside in potential wells where the interatomic forces
are balanced? Inversion symmetry leads to equal forces in opposing directions
favoring stability.

Another interesting difference has to do with enantiomorphism. In bio-
chemistry, inversion symmetry and mirror planes of all types are practically
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nonexistent, because most living systems, from people on down, have a hand-
edness. A dominant handedness is present at the molecular level as well, often
in the form of helices, and in crystals as screw axes. This is quite different from
minerals like quartz where the right- and left-handed forms are found in equal
abundance.

The main theme of this book is anisotropy, and Table 3.2 makes it clear
why anisotropy is important. Most crystals have anisotropic physical properties
because of their low symmetry. It is important to know how to describe this
anisotropy and explain its causes, and make use of the variation in properties
with direction.

Problem 3.3
Which type of handedness dominates at the molecular level in living systems?
Give some examples.
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Since the physical property tensors depend on symmetry, mathematical methods
for determining the influence of symmetry are needed. More specifically, trans-
formation matrices are required for the symmetry elements that generate the
crystal class. As explained earlier, some classes require only one symmetry
element while others may require two or three. None require more than three.
This chapter also includes a brief discussion of the seven Curie groups used for
textured solids and liquids.

4.1 Transformation operators for the
crystallographic symmetry elements

As explained in Chapter 2, transformations from one coordinate system to
another can be specified by a set of nine direction cosines, aij where i, j =
1, 2, 3. The first index, i, refers to the “new” or transformed axis, the second
index j to the “old” or reference axis.

There are four types of symmetry elements that require discussion: rotation
axes, mirror planes, inversion centers, and inversion axes in which rotation is
accompanied by inversion. All rotations are assumed to be in the counterclock-
wise direction. Other symmetry elements such as rotoreflection axes are not
needed.

The fourteen symmetry elements in Table 4.1 generate the 32 crystal classes.
No proof is offered here but this statement can be verified geometrically using
the stereographic projections in Chapter 3.

There are two final points concerning these transformation matrices. First,
keep in mind that they must obey the orthogonality conditions described in
Chapter 2. This provides a useful way of avoiding mistakes.

The second point concerns handedness. Symmetry elements involving
reflection or inversion reverses the handedness of the coordinate system. This
of course includes inversion axes such as 1̄, 2̄ = m, 3̄, 4̄, and 6̄. The handedness
change can be verified by showing that the determinant of the transformation
matrix is −1. For ordinary rotation axes such as 2, 3, 4, and 6, there is no change
in handedness, and the determinant is +1.

Problem 4.1
In cubic crystals, there is sometimes a twofold axis parallel to 〈110〉 axes.
Draw the stereographic projection and work out the transformation matrix for
this symmetry element.
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Table 4.1 Transformation matrices for selected crystallographic symmetry
operations

Identity operator 1


1 0 0

0 1 0
0 0 1




Inversion center 1̄


−1 0 0

0 −1 0
0 0 −1




Twofold rotation (2) parallel to Z1 2 ‖ Z1


1 0 0

0 −1 0
0 0 −1




Twofold rotation (2) parallel to Z2 2 ‖ Z2


−1 0 0

0 1 0
0 0 −1




Mirror (m) perpendicular to Z1 m ⊥ Z1


−1 0 0

0 1 0
0 0 1




Mirror (m) perpendicular to Z2 m ⊥ Z2


1 0 0

0 −1 0
0 0 1




Mirror (m) perpendicular to Z3 m ⊥ Z3


1 0 0

0 1 0
0 0 −1




Threefold rotation (3) parallel to Z3 3 ‖ Z3


 −1/2

√
3/2 0

−√
3/2 −1/2 0

0 0 1




Threefold rotation (3) parallel to [111] 3 ‖ [111]

0 1 0

0 0 1
1 0 0




Threefold inversion axis (3̄) parallel to Z3 3̄ ‖ Z3


 1/2 −√

3/2 0√
3/2 1/2 0
0 0 −1




Threefold inversion axis (3̄) parallel
to [111] in cubic crystals

3̄ ‖ [111]

 0 −1 0

0 0 −1
−1 0 0




Fourfold rotation (4) parallel to Z3 4 ‖ Z3


 0 1 0

−1 0 0
0 0 1




Fourfold inversion axis (4̄) parallel to Z3 4̄ ‖ Z3


0 −1 0

1 0 0
0 0 −1




Sixfold rotation (6) parallel to Z3 6 ‖ Z3


 1/2

√
3/2 0

−√
3/2 1/2 0

0 0 1




Sixfold inversion axis (6̄) parallel to Z3 6̄ ‖ Z3


−1/2 −√

3/2 0√
3/2 −1/2 0
0 0 −1



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Table 4.2 Minimum symmetry elements for the
32 crystal classes

Crystal class Symmetry elements

1 1
1̄ 1̄
2 2 ‖ Z2
m m ⊥ Z2
2/m 2 ‖ Z2, m ⊥ Z2
222 2 ‖ Z1, 2 ‖ Z2
mm2 m ⊥ Z1, m ⊥ Z2
mmm m ⊥ Z1, m ⊥ Z2, m ⊥ Z3
3 3 ‖ Z3

3̄ 3̄ ‖ Z3
32 3 ‖ Z3, 2 ‖ Z1
3m 3 ‖ Z3, m ⊥ Z1

3̄m 3̄ ‖ Z3, m ⊥ Z1
4 4 ‖ Z3

4̄ 4̄ ‖ Z3
4/m 4 ‖ Z3, m ⊥ Z3
422 4 ‖ Z3, 2 ‖ Z1
4mm 4 ‖ Z3, m ⊥ Z1

4̄2m 4̄ ‖ Z3, 2 ‖ Z1
4/mmm 4 ‖ Z3, m ⊥ Z3, m ⊥ Z1
6 6 ‖ Z3

6̄ 6̄ ‖ Z3
6/m 6 ‖ Z3, m ⊥ Z3
622 6 ‖ Z3, 2 ‖ Z1
6mm 6 ‖ Z3, m ⊥ Z1

6̄m2 6̄ ‖ Z3, m ⊥ Z1
6/mmm 6 ‖ Z3, m ⊥ Z3, m ⊥ Z1
23 2 ‖ Z1, 3 ‖ [111]
m3 m ⊥ Z1, 3 ‖ [111]
432 4 ‖ Z3, 3 ‖ [111]
4̄3m 4̄ ‖ Z3, 3 ‖ [111]
m3m m ⊥ Z1, 3 ‖ [111], m ⊥ [110]

4.2 Transformation operations for the
thirty-two crystal classes

In Table 4.2 we list the minimum symmetry requirements for each of the 32
crystal classes. These are the transformation operations needed to develop
the physical property matrices for single crystals. These techniques will be
described in the next chapter.

As explained later, in simplifying property matrices these symmetry opera-
tions are applied in consecutive steps. For example, for point group 4̄2m, first
the property tensor is simplified using the 4̄ symmetry element and then it is
further simplified using the twofold axis. It is unnecessary to use the m operator.

Problem 4.2

a. For any point group, the product of any two operators generates another
symmetry element. Show that for point group 2/m, the product of the
twofold axis and the mirror plane generates a center of symmetry.

b. For cubic class 432, what symmetry element is generated by the product
of the first two symmetry elements?
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Problem 4.3
Some symmetry elements are automatically included within other symmetry
elements. What elements are included in 6 and 6̄?

4.3 Standard settings

The question often arises how are the physical property axes (Z1, Z2, Z3) related
to the crystallographic axes (a, b, c)? It is obvious that the two coordinate
systems will not always coincide since property axes are always orthogonal,
whereas crystallographic axes are not. In selecting the initial measurement axis
we recommend the IEEE standard settings:

In the triclinic system, Z3 is chosen parallel to c, and Z2 is normal to the ac
plane (010). The Z1 axis lies in the (010) plane and is perpendicular to Z2 and
Z3 forming a right-handed coordinate system.

For monoclinic crystals, Z2 is chosen parallel to the b [010] axis. It is
parallel to the twofold symmetry axis or perpendicular to the mirror plane,
as is customary in crystallography. Axis Z3 is chosen along c, and Z1 is
perpendicular to Z2 and Z3, again forming a right-handed system.

In the orthorhombic system it is customary to select a unit cell in which
c < a < b. The Z1, Z2, and Z3 property axes are taken as a, b, and c,
respectively.

Trigonal crystals have threefold symmetry along [001], the c crystallographic
axis. For physical properties this is the Z3 direction. The Z1 axis is parallel
to [100], a crystallographic direction, with Z2 completing the right-handed
orthogonal set.

For the tetragonal system, Z3 and c lie along the fourfold axis, Z1 and Z2 are
parallel to a and b, respectively.

Among hexagonal crystals, Z3 is again selected along c, the sixfold symmetry
axis. As with trigonal crystals, Z1 is parallel to a, and Z2 is mutually
perpendicular to Z1 and Z3.

Cubic crystals have Z1, Z2, and Z3 parallel to a, b, and c, respectively.

For crystallographic groups possessing more than one symmetry axis these
settings will turn out to be the principal axes (Section 9.4). For groups with only
one symmetry axis only one of the principal axes is fixed. For the two triclinic
groups, none of the principal axes will correspond to crystallographic axes.
There are further complications in certain point group such as 4̄2m, 6̄2m, but
the generating symmetry elements in Table 4.2 and the stereographic projections
in Chapter 3 make the labeling clear. When dealing with polar axes, the positive
end of the axis is normally chosen to make the principal piezoelectric coefficient
a positive number. It should be remembered that not all authors follow the IEEE
conventions.

4.4 Curie group symmetries

In many practical applications engineers work with amorphous or polycrys-
talline materials rather than single crystals. Such materials are often processed
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Fig. 4.1 The seven Curie groups can be
represented geometrically as spheres, cylin-
ders, and cones, with or without handedness.

in such a way that their properties are anisotropic. The symmetry of these
textured materials can often be described by Curie group symmetries (Fig. 4.1).
The Curie groups are sometimes called the limiting groups or the continuous
groups.

The Curie groups all have a common symmetry element represented by an
∞-fold rotation axis. The transformation matrix for an ∞-fold axis parallel
to Z3 is

∞ ‖ Z3


 cos θ sin θ 0

− sin θ cos θ 0
0 0 1


 ,

which holds true for all values of θ . Required symmetry elements for the seven
Curie groups are listed in Table 4.3.

In materials science and engineering there are many examples of textured
materials belonging to the Curie groups. Polycrystalline metals and ceramics
with randomly oriented grains possess spherical symmetry, ∞∞m. Organic
substances with randomly oriented right-handed crystallites, like dextrose,
belong to point group ∞∞. Polycrystalline levose with its left-handed
molecules also belongs to ∞∞, but a racemic mixture of dextrose and levose
grains restores a statistical mirror plane, shifting the symmetry up to ∞∞m.

Table 4.3 Minimum symmetry
operations for textured materials in

limiting groups

Curie group Symmetry operators

∞ ∞ ‖ Z3

∞m ∞ ‖ Z3, m ⊥ Z1

∞2 ∞ ‖ Z3, 2 ‖ Z1

∞/m ∞ ‖ Z3, m ⊥ Z3

∞/mm ∞ ‖ Z3, m ⊥ Z3, m ⊥ Z1

∞∞ ∞ ‖ Z3, ∞ ‖ Z1

∞∞m ∞ ‖ Z3, ∞ ‖ Z1, m ⊥ Z1
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Fig. 4.2 Liquids and liquid crystals exhibit a
number of different Curie group symmetries.
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Preferred orientation is often observed after uniaxial hot-pressing polycrys-
talline materials. The resultant symmetry is cylindrical, point group ∞/mm,
with the ∞-fold axis in the direction of the applied force. If such a procedure
is carried out on a right- or left-handed medium, the symmetry is ∞2.

Poled polycrystalline ferroelectrics belong to ∞m, and magnetized polycrys-
talline ferromagnets are in ∞/m. A poled right- or left-handed polycrystalline
substance belongs to the lowest Curie group, ∞.

Processed polycrystalline materials may also adopt crystallographic
symmetry. Ferroelectric polymers such as polyvinylidene fluoride, are often
stretched in one direction to align the molecules, and then electrically poled
in a perpendicular direction. This results in an orthorhombic texture, point
group mm2.

Liquids and liquid crystals may also exhibit Curie group symmetries. An
ordinary liquid such as water or a molten salt, with randomly oriented molecular
structure, has spherical symmetry ∞∞m. When sugar is dissolved in water it
induces optical activity causing the plane of polarization of light to be rotated.
This changes the symmetry of liquid to ∞∞. In a nematic liquid crystal the
molecules align in a parallel fashion to give cylindrical symmetry ∞/mm,
with a preferred direction. Cholesteric liquid crystals adopt a helical patterning
conforming to point group∞2, while ferroelectric liquid crystals possess a polar
axis. They belong to ∞m or ∞, depending on whether or not the molecules
have a handedness. Liquid crystals are discussed further in Section 30.5.

A schematic illustration of limiting group liquids is shown in Fig. 4.2.

Problem 4.4

a. Molecules sometimes have symmetry elements that are not allowed
in crystals. Molecular symmetry is not constrained by the need for
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translational periodicity. Some simple molecules have Curie groups
symmetry. Examples include He, N2, CO2, and CO. Sketch the
molecules and show the location of the symmetry elements.

b. Other molecules like H2O and C6H6 belong to crystallographic point
groups. Sketch the molecular structures of water and benzene and assign
them to the appropriate crystal class.

c. Boron hydride, B12H12, forms pentagonal dodecahedra. What are
symmetry elements of this molecule? Fivefold symmetry is also observed
in quasicrystals and buckyballs.
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In this chapter we introduce the tensor description of physical properties along
with Neumann’s Principle relating symmetry to physical properties.

5.1 Physical properties

As pointed out in the introduction, many different types of anisotropic properties
are described in this book, but all have one thing in common: a physical property
is a relationship between two measured quantities. Four examples are illustrated
in Fig. 5.1.

Elasticity is one of the standard equilibrium properties treated in crystal
physics courses. The elastic compliance coefficients relate mechanical strain,
the dependent variable, to mechanical stress, the independent variable. For
small stresses and strains, the relationship is linear, but higher order elastic
constants are needed to describe the departures from Hooke’s Law.

Thermal conductivity is typical of the many transport properties in which a
gradient leads to flow. Here the dependent variable is heat flow and the inde-
pendent variable is a temperature gradient. Again the relationship is linear for
small temperature gradients.

Hysteretic materials such as ferromagnetic iron exhibit more complex
physical properties involving domain wall motion. In this case magnetization
is the dependent variable responsive to an applied magnetic field. The result-
ing magnetic susceptibility depends on the past history of the material. If the
sample is initially unmagnetized, the magnetization will often involve only

Fig. 5.1 Four types of physical properties.
Elasticity is a typical equilibrium property
relating stress and strain. Thermal conductiv-
ity is representative of the transport properties.
Ferromagnetism is hysteretic in nature while
electric breakdown is an irreversible property
in which the material is permanently altered.

Strain
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Heat flow

Temperature gradient

Magnetization

Magnetic field

Current

Electric field
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reversible domain wall motion for small magnetic fields. In this case the sus-
ceptibility is anhysteretic, but for large fields the wall motion is only partly
reversible leading to hysteresis.

The fourth class of properties leads to permanent changes involving
irreversible processes. Under very high electric fields, dielectric materials
undergo an electric breakdown process with catastrophic current flow. Under
small fields Ohm’s Law governs the relationship between current density and
electric field with a well-defined resistivity, but high fields lead to chemical,
thermal, and mechanical changes that permanently alter the sample. Irreversible
processes are sometimes anisotropic but they will not be discussed in
this book.

5.2 Polar tensors and tensor properties

Measured quantities such as stress and strain can be represented by tensors,
and so can physical properties like elastic compliance that relate these
measurements. This is why tensors are so useful in describing anisotropy.

All tensors are defined by the way in which they transform from one coord-
inate system to another. As explained in Chapter 2, all these transformations
involve a set of direction cosines aij, where i, j = 1, 2, 3.

In this book we deal mainly with two kinds of tensors: polar tensors and axial
tensors. Axial tensors change sign when the handedness changes, whereas polar
tensors do not. Their transformation laws are slightly different.

For a polar tensor, the general transformation law for a tensor of rank N is

T ′
ijk... = ailajmakn . . . Tlmn...,

where T ′
ijk... is the tensor component in the new axial system, Tlmn . . . is a

tensor component in the old system, and ail, ajm, akn . . . are the direction cosines
relating the two coordinate systems. In this expression, each tensor component
has N subscripts and there are N direction cosines involved in the product
ail ajm akn . . .. The tensor rank N has a very simple meaning. It is simply
the number of directions involved in measuring the property. As an example,
the thermal conductivity k relates the heat flow h to the temperature gradient
dT/dZ:

h = −k
dT

dZ
.

There are two directions involved in measuring k: the direction in which we set
up the temperature gradient, and the direction that the heat flow is measured.
In general the two directions will not be the same. In tensor form this equation
becomes

hi = −kij
dT

dZj
.

The minus sign in these two expressions remind us that heat always flows down
the temperature gradient from hot to cold. Here there are three tensors: hi and
dT/dZj are first rank polar tensor quantities that transform as

h′
i = aijhj
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and

dT ′

dZi
= aij

dT

dZj

while the thermal conductivity, that depends on both measurement directions,
is a second rank tensor property.

k′
ij = ailajmklm.

There are two important points to remember here. First, repeated subscripts
always imply summation so there will be nine terms on the right side of the
last equation. Second, hi and dT/dZj are not properties of the material. We
are at liberty to choose these experimental conditions in any way we wish, but
the thermal conductivity is a property that belongs to the material. It therefore
depends on the symmetry of the material, whereas the heat flow and temperature
gradient do not.

The tensor rank of other physical properties is determined in a similar way.
Pyroelectricity describes a relationship between thermal and electrical vari-
ables: a change in temperature	T creates a change in the electric polarization P.
Polarization is a vector (= first rank tensor) and temperature is a scalar (= zero
rank tensor). Therefore the pyroelectric coefficient, defined by Pi = pi	T , is a
first rank tensor property.

Four directions are involved in the measurement of elastic constants. There
are two directions for mechanical force and two for mechanical strain. Stress is
force per unit area, and one direction is needed for the force, and another for the
normal to the face on which the force acts. Strain is change in length per unit
length, and directions are needed for both the reference line and the direction
of the change. Therefore two subscripts are needed for stress Xij and two for
strain xij. Elastic compliance, that relates the two through Hooke’s Law, will
therefore require four subscripts:

xij = sijklXkl.

The elastic constants, sijkl, are represented by a fourth rank tensor.

5.3 Axial tensor properties

Later in the book we will deal with several properties that change sign when
the axial system changes from right-handed to left-handed. Properties such
as pyromagnetism, optical activity, and the Hall Effect are axial tensors that
depend on the handedness. Axial tensors transform in the following manner:

T ′
ijk... = |a|ailajmakn . . . Tlmn...

which is almost identical to that of a polar tensor. The difference is |a|, the deter-
minant of the direction cosine matrix. As explained previously, |a| = ±1,
depending on whether or not the handedness of the axial system changes during
the transformation. For symmetry operations involving mirror planes or inver-
sion centers, |a| = −1 and the sign of the tensor coefficient changes. No change
occurs for rotation axes.

Magnetoelectricity is a good example of an axial tensor property. The mag-
netoelectric coefficients relate a change in magnetization (a first rank axial
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tensor) to a change in electric field (a first rank polar tensor). Since two directions
are involved in the measurement, magnetoelectricity is a second rank axial
tensor property.

5.4 Geometric representations

Tensor properties involve the product of direction cosines, as listed in Table 5.1.
A second rank polar tensor will include terms like cos2 φ, for example, and can
therefore be represented by a quadric surface.

Representative geometries are shown in Fig. 5.2. Scalar properties such as
density and specific heat are independent of sample orientation and therefore the
property can be visualized as a sphere. A vector property like pyroelectricity
will have its maximum value along the polar axis and then fall to zero for
directions perpendicular to the polar axis. The pyroelectric coefficients will
change sign for opposing directions creating a negative lobe. Other odd-rank
polar tensors will also show positive and negative lobes.

Even rank tensor properties will occasionally have positive and negative lobes
as well. As discussed later, some physical properties such as permittivity and
elasticity are constrained to have positive principal coefficients, while others
such as thermal expansion, may have both positive and negative values. The
illustrations in Fig. 5.2 are typical for permittivity and elasticity. Numerous
examples will be presented later.

Table 5.1 Transformation laws for polar tensors of various ranks.
The rank of a tensor denotes the number of different directions

that must be specified in carrying out the measurement of a
physical property

Tensor rank Transformation law Geometric
representation

0 T ′ = T Sphere

1 T ′
i = aijTj Vector

2 T ′
ij = aikajlTkl Quadric

3 T ′
ijk = ailajmaknTlmn Cubic

4 T ′
ijkl = aimajnakoalpTmnop Quartic

Zero rank (scalar)

Second rank
tensor

Density

Thermal conductivity

Fourth rank tensor
elasticity

First rank (vector)

–

–

–

–

+

+

+

+

Third rank tensor

Piezoelectricity

Pyroelectricity

Fig. 5.2 Typical geometric surfaces of
physical properties plotted as a function of
measurement directions.
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5.5 Neumann’s Principle

The most important concept in Crystal Physics is Neumann’s Principle that
states: “The symmetry of any physical property of a crystal must include the
symmetry elements of the point group of the crystal.” The proof of Neumann’s
Principle is common sense. What it says is that measurements made in
symmetry-related directions will give the same property coefficients.

Z2 = [010]

Z1 = [100]

[110]

Fig. 5.3 Crystal structure of NaCl showing
the equivalence of [100] and [010] directions.

Sodium chloride is a cubic crystal belonging to point group m3m. The [100]
and [010] directions are equivalent fourfold symmetry axes (Fig. 5.3). Since
these directions are physically the same, it makes sense that measurements
of permittivity, elasticity, or any other physical property will be the same in
these two directions. This means that when the magnitudes of the property
are plotted as a function of direction, the resulting figure will show fourfold
symmetry when viewed along the [100] or [010] directions. In other words the
symmetry of the physical property will include the symmetry elements of the
point group.

But the reverse is not true, for the symmetry of the physical property may
be much higher than that of the point group. This becomes obvious when we
visualize a scalar property such as specific heat. Here the geometric representa-
tion is a sphere (symmetry group ∞∞m) that includes the symmetry of sodium
chloride (point group m3m) but not vice versa.

The argument just applied to [100] directions in NaCl, holds for other direc-
tions as well. In NaCl, the [110] and [1̄10] directions are symmetry-related
twofold axes, and therefore the properties will be the same when measurements
are carried out in a similar way along [110] and [1̄10].

What about the properties along [100] and [110]? Will they sometimes be
the same? For scalar properties the answer is, of course, yes. For higher rank
tensor properties, it will depend upon the point group symmetry and the tensor
rank. In cubic crystals, second rank tensors like permittivity and resistivity,
measurements along [100] and [110] will be the identical, but not for fourth
rank tensor properties like elastic compliance. The reasons will become clearer
after applying Neumann’s Principle to a number of different situations.

5.6 Analytical form of Neumann’s Principle

In expressing Neumann’s Principle mathematically, we begin with the definition
of a tensor

T ′
ijk... = ailajmakn . . . Tlmn....

The direction cosine matrix for any symmetry operation is expressed through
the (a) matrix. These (a) coefficients are then substituted into the above equation
to transform the tensor coefficients under the action of the symmetry operator.
If the crystal possesses this symmetry element, the property coefficient must be
left unchanged.

Mathematically this means

T ′
ijk... = Tijk....

As an example, consider a monoclinic crystal belonging to point group m.
There is only one symmetry element, a mirror plane perpendicular to
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Z2 = [010], the b crystallographic axis. The direction cosine matrix for
m ⊥ Z2 is

(a) =

1 0 0

0 −1 0
0 0 1


 =


a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

We now apply Neumann’s Principle to a third rank tensor property, beginning
with tensor coefficient T ′

111,

T ′
111 = a3

11T111 + a2
11a12T112 + · · · + a2

13T333.

For the mirror plane, all terms go to zero except the first term:

T ′
111 = T111.

By Neumann’s Law this coefficient remains unchanged. This means coefficient
T111 is unaffected by the mirror plane.

The situation is different for T222.

T ′
222 = a3

22T222 + a2
22a21T221 + · · · .

Again all terms disappear except the first, and T ′
222 = −T222. In this case

Neumann’s Principle says −T222 = T222 which is only possible if T222 = 0.
Therefore this property coefficient must disappear for crystals belonging to
point group m.

This is why Neumann’s Principle is useful to an experimentalist. It greatly
simplifies the description of physical properties by eliminating some coeffi-
cients and equalizing others.

To illustrate, consider two of the standard single crystal materials available
to scientists and engineers: quartz (SiO2) and corundum (Al2O3). Both belong
to the trigonal crystal system but have different point group symmetries. Quartz
is in point group 32 while corundum is somewhat higher in 3̄m.

Symmetry arguments based on Neumann’s Principle tell us that neither crys-
tal is pyroelectric since first rank polar tensors disappear for both point groups.
In regard to permittivity, resistivity, thermal expansion, and other second
rank tensor properties, there will be three nonzero coefficients, but only two
measurements are required because two of the three coefficients are equal.

For piezoelectricity and other third rank polar tensors, quartz and corundum
are very different. Quartz is an outstanding piezoelectric material while corun-
dum is totally useless. The center of symmetry in point group 3̄m causes all
piezoelectric coefficients disappear. Quartz, on the other hand, has five nonzero
coefficients, two of which are independent. A large number of piezoelectric
resonators and timing devices make use of these two coefficients.

Elasticity is a fourth rank tensor property so there are many different direc-
tions to consider. For a triclinic crystal with no mirror planes or rotation axes,
there would be 18 independent elastic constants, but the higher symmetry of
quartz and corundum reduce the required number of experiments consider-
ably. Only six independent elastic coefficients are present in point group 32
and 3̄m.

Comparable simplifications are found for other polar and axial tensor
properties. These ideas will be discussed throughout the book.
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Problem 5.1
The cubic crystal structure of rocksalt is pictured in Figs. 5.3 and 13.4. The
[100] direction is equivalent to [010], [001], [1̄00], [01̄0], and [001̄], a total of
six directions. How many directions are related to [110] by symmetry? What
about [111] and [210]?

Problem 5.2
There are ten properties listed in Table 1.1. Each is represented by a different
tensor. Write out the tensor transformation for each property. For pyroelectricity,
a first rank polar tensor, there are three coefficients. How many for the other
properties?
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In the next few chapters we shall discuss tensors of rank zero to four which
relate the intensive variables in the outer triangle of the Heckmann Diagram
(Fig. 1.1) to the extensive variables in the inner triangle. Effects such as pyro-
electricity, permittivity, pyroelectricity, and elasticity are the standard topics in
crystal physics that allow us to discuss tensors of rank one through four. First,
however, it is useful to introduce the thermodynamic relationships between
physical properties and consider the importance of measurement conditions.

6.1 Linear systems

Before discussing all the cross-coupled relationships, we first define the
coupling within the three individual systems. In a thermal system, the
basic relationship is between change in entropy δS [J/m3] and change in
temperature δT [K]:

δS = CδT ,

where C is the specific heat per unit volume [J/m3 K] and T is the absolute
temperature. S, T , and C are all scalar quantities.

In a dielectric system the electric displacement Di [C/m2] changes under
the influence of the electric field Ei [V/m]. Both are vectors and therefore the
electric permittivity, εij, requires two-directional subscripts. Occasionally the
dielectric stiffness, βij, is required as well.

Di = εijEj

Ei = βijDj.

Some authors use polarization P rather than electric displacement D. The
three variables are interrelated through the constitutive relation

Di = Pi + ε0Ei = εijEj.

The third linear system in the Heckmann Diagram is mechanical, relating
strain xij to stress Xkl [N/m2] through the fourth rank elastic compliance
coefficients sijkl [m2/N].

xij = sijklXkl.

Alternatively, Hooke’s Law can be expressed in terms of the elastic stiffness
coefficients cijkl [N/m2].

Xij = cijklxkl.
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6.2 Coupled interactions: Maxwell relations

When cross coupling occurs between thermal, electrical, and mechanical vari-
ables, the Gibbs free energy G(T , X, E) is used to derive relationships between
the property coefficients. Temperature T , stress X, and electric field E are the
independent variables in most experiments.

From the exact differential

dG = −SdT − xijdXij − DmdEm [J/m3]
we obtain the relations:

S = −
(

∂G

∂T

)
X,E

Dm = −
(

∂G

∂Em

)
T ,X

xij = −
(

∂G

∂Xij

)
T ,E

.

Physical constants are defined and interrelated by taking the second deriv-
atives. The order of differentiation can be reversed leading to equivalent
coefficients for the direct and converse piezoelectric effects, between the pyro-
electric coefficient and the electrocaloric effect, and between thermal expansion
coefficients αij and the piezocaloric effect.

Specific heat

CX,E

T
= −

(
∂2G

∂T2

)
X,E

=
(

∂S

∂T

)
X,E

Permittivity

εX,T
nm = −

(
∂2G

∂En∂Em

)
X,T

=
(

∂Dn

∂Em

)
X,T

Elastic compliance

sE,T
ijkl = −

(
∂2G

∂Xij∂Xkl

)
E,T

=
(

∂xij

∂Xkl

)
E,T

Direct and converse piezoelectric effects

dT
nij = −

(
∂2G

∂Xij∂En

)
T

=
(

∂Dn

∂Xij

)
E,T

=
(

∂xij

∂En

)
X,T

Pyroelectricity and the electrocaloric effect

pX
n = −

(
∂2G

∂T∂En

)
X

=
(

∂Dn

∂T

)
X,E

=
(

∂S

∂En

)
X,T

Thermal expansion and the piezocaloric effect

αE
ij = −

(
∂2G

∂Xij∂T

)
E

=
(

∂xij

∂T

)
X,E

=
(

∂S

∂Xij

)
E,T

.
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The general expressions for a coupled system are obtained by differentiating
the free energy function G.

δS = (
CX,E/T

)
δT + αE

ij Xij + pX
mEm

xij = αE
ij δT + sE,T

ijkl Xkl + dT
mijEm

Dn = pX
n δT + dT

nklXkl + εX,T
nm Em

Nine linear relationships, requiring six sets of property coefficients, are
described by these three equations.

The examples just given point out the importance of thermodynamics to
the physical properties of crystals. The equivalence of the electrocaloric effect
and the pyroelectric effect together with the other Maxwell relations greatly
simplifies the subject.

Linear magnetic phenomena can be introduced in a similar way. For a
thermomagnetic system the Gibbs free energy is controlled by changes in the
temperature T and magnetic field components Hi [A/m]:

dG = −SdT − IidHi.

The magnetization Ii [Wb/m2] and entropy S are partial derivatives of the Gibbs
potential:

Ii = −
(

∂G

∂Hi

)
T

, S = −
(

∂G

∂T

)
H

.

Further differentiation gives:

∂2G

∂Hi∂T
= −

(
∂Ii

∂T

)
H

= ∂2G

∂T∂Hi
= −

(
∂S

∂Hi

)
T

.

This shows the equivalence of the pyromagnetic and magnetocaloric
coefficients. Analogous Maxwell relations can be derived for the linear
magnetoelectric and piezomagnetic phenomena discussed in Chapter 14.

The direct and converse magnetoelectric coefficients are related through the
partial derivatives (

∂Ii

∂Ej

)
H

=
(

∂Pi

∂Hj

)
E

.

For a piezomagnetic system, the direct and converse effects are(
∂Ii

∂Xjk

)
H

=
(

∂xjk

∂Hi

)
X

.

Higher order effects are handled in a similar way. Electrostriction and
magnetostriction are good examples. Strain is proportional to the square of
the electric field in electrostrictive materials. Expanding the Gibbs free energy
into second order effects we find for an electromechanical system,

∂2G

∂X∂E2
= ∂2x

∂E2
= M

= ∂3G

∂E∂X∂E
= ∂2G

∂X∂E
= ∂d

∂E

= ∂3G

∂E∂E∂X
= ∂2D

∂E∂X
= ∂ε

∂X
.
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The electrostriction coefficient M is equal to the field dependence of the
piezoelectric coefficient ∂d/∂E and to the stress dependence of the electric
permittivity ∂ε/∂X . This means that the electrostrictive coefficients can be
measured in three different ways.

Magnetostriction, the dependence of strain on the square of the magnetic
field, can also be measured in three different ways. It is equivalent to the
dependence of the piezomagnetic coefficient on magnetic field and to the stress
dependence of the magnetic susceptibility. The tensor form of these higher
order effects are presented in Chapter 15.

6.3 Measurement conditions

Fig. 7.1 shows the specific heat measured under two different boundary condi-
tions: at constant pressure p, and constant volume V . Over much of the temp-
erature range CP and CV are nearly equal but the two curves begin to diverge
above room temperature. Typically they differ by a few percent. Other boundary
conditions become important for electrical and magnetic measurements, and
for ultrasonic and optical experiments carried out at higher frequencies.

Experimentalists often find it difficult to maintain ideal measurement condi-
tions. Isothermal (T constant) experiments are carried out slowly to keep the
sample in equilibrium with its surroundings at all times. Adiabatic (S constant)
measurements are conducted in such a way that heat does not flow in or out
of the specimen. This can be done by thermally isolating the sample from the
environment or by making measurements faster than the times needed for heat
transfer. These adiabatic experiments are referred to as dynamic, in contrast
with the static isothermal tests.

Speed is also important in meeting mechanical boundary constraints. In a
mechanically free or unclamped (constant stress X) test, the sample is allowed
to slowly deform. Deformation takes time because strain travels with the speed
of sound. By careful control of the mounting scheme it is possible to carry out
such tests under static conditions. Mechanically clamped (constant strain x)
experiments are difficult at low frequencies because they require that the crystal
be surrounded by a medium of infinite stiffness. Normally they are carried out at
high frequencies in which the deformations are too slow to follow the external
fields or forces.

Magnetic and electric boundary conditions are sometimes important as well.
Electrically free (E constant) conditions are met by keeping the surface at a con-
stant potential. Short-circuiting the sample with a metal coating accomplishes
this result. Embedding the specimen within a high permeability matrix ensures a
magnetically free (H constant) environment. Electrically clamped (P constant)
or magnetically clamped (I constant) boundary conditions are not easy to satisfy
since some polarization and magnetization mechanisms are capable of follow-
ing very high frequencies. Working under open-circuit conditions is often the
best that can be done. Mobile domain walls make significant contributions to the
polarization and magnetization in ferroelectric and ferromagnetic substances.
The nucleation and growth process involved in wall motion requires time so
that this process is effectively clamped at high frequencies.

Measurement conditions sometimes make a big difference, and sometimes
not. The differences are determined thermodynamically. As an example,
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consider the electrocaloric effect described in Section 7.3. The heat capacities
under electrically free and electrically clamped conditions are evaluated as
follows. Changes in electric displacement Di and entropy S arise from changes
in temperature T and electric field Ei:

dDi =
(

∂Di

∂Ej

)
T

dEj +
(

∂Di

∂T

)
Ej

dT

dS =
(

∂S

∂Ej

)
T

dEj +
(

∂S

∂T

)
Ej

dT .

Eliminating dEj between these two equations and setting dDi = 0 gives

dS =
(

∂S

∂T

)
E

dT −
(

∂Di

∂T

)
E

(
∂S

∂Ej

)
T

(
∂Ei

∂Dj

)
T

dT

at constant D. Dividing through by dT and using the Maxwell relation
(∂S/∂Ej)T = (∂Dj/∂T)E leads to

(
∂S

∂T

)
E

−
(

∂S

∂T

)
D

=
(

∂Di

∂T

)
E

(
∂Dj

∂T

)
E

(
∂Ei

∂Dj

)
T

.

Multiplying through by temperature and converting to property coefficients
gives the differences between electrically free and electrically clamped

Table 6.1 Difference between heat capacities (C), pyroelectric coefficients ( p), thermal
expansion coefficients (α), dielectric permittivities (ε), piezoelectric constants (d), and

elastic compliances (s), measured under different boundary conditions

Mechanically clamped (Cx) and free (CX ) specific heat measured at constant field.
CX − Cx = Tαijαklcijkl

Electrically clamped (CD) and free (CE ) specific heat measured at constant stress.
CD − CE = Tpipjβ

T
ij

Pyroelectric and electrocaloric coefficients measured at constant stress ( pX
i ) and constant

strain ( px
i ).

pX
i − px

i = αE
jkcE,T

jklmdT
ilm

Mechanically clamped (εx
ij) and free (εX

ij ) dielectric permittivities measured under isothermal
conditions.
εX

ij − εx
ij = dikldjmncE

klmn

Isothermal (εT
ij ) and adiabatic (εS

ij) permittivities measured at constant stress.
εT

ij − εS
ij = pipjT/CE

Electrically clamped (αD
ij ) and free (αE

ij ) thermal expansion and piezocaloric coefficients.

αE
ij − αD

ij = dT
ijkβ

X ,T
kl pX

l

Isothermal (dT
ijk) and adiabatic (dS

ijk) direct and converse piezoelectric coefficients.
dT

ijk − dS
ijk = Tpx

i α
E
jk/Cx,E

Isothermal (sT
ijkl) and adiabatic (sS

ijkl) elastic compliances measured at constant field.
sT

ijkl − sS
ijkl = αijαklT/Cx

Electrically clamped (sD
ijkl) and free (sE

ijkl) elastic compliances measured at constant
temperature.
sE

ijkl − sD
ijkl = dmijdnklβ

x
mn
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specific heat.

CE − CD = Tpipjβ
T
ij .

In this expression, pi and pj are components of the pyroelectric effect and βT
ij is

a component of the isothermal dielectric stiffness.
Differences in other measured coefficients are similar in form (Table 6.1).

In most oxides and other good insulators, the differences are seldom larger
than 1%. Pyroelectricity is the one exception. Secondary pyroelectricity arising
from piezoelectricity and thermal expansion is sometimes larger than the
primary pyroelectric effect. Coefficients can also be quite different in ferroic
crystals especially near phase transitions.
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Before beginning the discussion of directional properties, we pause to
consider specific heat, an important scalar property of solids which helps
illustrate the important thermodynamic relationships between measured prop-
erties. Heat capacity, compressibility, and volume expansivity are interrelated
through the laws of thermodynamics. Based on these ideas, similar relation-
ships are established for other electrical, thermal, mechanical, and magnetic
properties. Several atomistic concepts are introduced to help understand the
structure–property relationships involved in specific heat measurements.

7.1 Heat capacity of solids

The heat capacity or specific heat is the amount of heat required to raise the
temperature of a solid by 1 K. It is usually measured in units of J/kg K. Theorists
prefer to work in J/mole K, and older scientists sometimes use calories rather
than joules. One calorie is 4.186 J. For solids and liquids, the specific heat is
normally measured at a constant pressure:

CP =
(

	Q

	T

)
P

,

where 	Q is the heat added to increase the temperature by 	T . Measurements
on gases are usually carried out at constant volume:

CV =
(

	Q

	T

)
V

.

Electrical methods are generally employed in measuring specific heat. A heat-
ing coil is wrapped around the sample and the resulting change in temperature is
measured with a thermocouple. If a current I flows through a wire of resistance
R, the heat generated by the wire in a time 	t is given by

	Q = I2R	t.

To eliminate heat loss to the surroundings, especially at low temperatures where
CP is small, the sample is suspended in a vacuum by very thin thread. The
temperature change 	T is measured as a function of time. The molar heat
capacity at constant pressure, is given by

CP = I2R	t

n	T
,

where n is the number of moles in the sample. The specific heat at constant
volume, CV , is much more difficult to measure and is usually obtained from
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the thermodynamic relation

CP − CV = TVβ2/K

in which V is the molar volume, β the volume expansivity and K the isothermal
compressibility. Expansivity will be discussed later in Section 11.2, in connec-
tion with linear thermal expansion. Compressibility is described in Section 13.7
with elasticity.
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Fig. 7.1 Temperature variation of CP and CV
in sodium chloride and copper.

The quantity A = Vβ2/KC2
P is found to be nearly temperature independent.

For copper, it is 1.55 × 10−5 moles/cal from 100 to 1200 K. Therefore, CV can
be evaluated from the so-called Nernst–Lindemann equation:

CP − CV = AC2
PT .

CV is obtained for other materials by measuring CP(T) and evaluating A at
room temperature. It is unnecessary to measure V , β, and K as a function of
temperature.

Fig. 7.1 shows the specific heat curves for copper and rocksalt. From this
it is apparent that metals and nonmetals have similar temperature dependence,
though they differ in detail. For both materials CP and CV go to zero as T
approaches zero, but the temperature dependence is different. For NaCl and
other insulators, C is proportional to T3 at very low temperatures. Lattice
vibrations control the specific heat in these materials. In metals like copper
the free electrons make a contribution to specific heat that results in a linear
dependence of C on T at low temperature.

Above 10 K the lattice vibrations dominate in both metals and insulators.
In most solids the atoms vibrate about their equilibrium positions but there
are no rotational degrees of freedom. Classically, each vibrational degree of
freedom involves both potential and kinetic energy giving a thermal energy
of kT per degree of vibrational freedom. Since there are three independent
directions, the average vibrational energy is 3kT . For N atoms, the internal
energy U = 3NkT and the specific heat is

CV =
(

∂U

∂T

)
V

= 3Nk = 3R,

where k is Boltzmann’s Constant and R is the Universal Gas Constant.
An element like Cu contains N0 = 6.023 × 1023 atoms/mole, giving CV =

3N0k = 6 cal/K/mole = 25 J/K/mole. Thus the classical result depends only
on the number of atoms, and is independent of the atomic species, chemical
bonding, and crystal structure. This is the so-called Law of Dulong and Petit.
Near room temperature and above, measured values agree well with classical
theory. Some typical values for solid elements are Al 6.0, Cu 5.7, Ag 5.8, and
Pb 6.2 cal/K/mole.

Diatomic solids contain 2N0 atoms/mole, doubling the specific heat. The
specific heat of sodium chloride at room temperature is 12.0 cal/K/mole. For
a mole of triatomic CaF2, the observed value is 17.1, in accordance with the
number of atoms per mole.

At lower temperatures, the specific heat approaches zero at 0 K. Debye
developed a theory that describes the temperature dependence of CV with an
expression governed by a characteristic temperature θD, the Debye temperature.
Debye treated the vibrating solid as a continuous medium rather than a collection
of discrete atoms, but disregarded all vibrations with wavelengths shorter than
near-neighbor bond lengths.
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In the liquid helium range at very low temperatures, Debye theory predicts
a specific heat

CV ∼= 3nR

[
4

5
π4

(
T

θD

)3

+ · · ·
]

= 1944n

(
T

θD

)3 [
J

mole K

]
,

where n is the number of atoms per molecule, R is the Gas Constant,
8.31 J/mole K, and θD is the empirical Debye constant. At high temperature,
the Debye theory predicts that CV → 3nR in agreement with the experimental
Law of Dulong and Petit. In between the high- and low-temperature regimes,
the specific heat values are expressed as series

CV ∼= 3nR

[
1 − 1

20

(
θD

T

)2

+ 1

560

(
θD

T

)4

+ · · ·
][

J

mole K

]

and fitted to the experimental values with the Debye constant θD.
For substances with small θD, CV increases rapidly with temperature, level-

ing off at the classical value well below room temperature. The characteristic
temperature is controlled by the elastic constants and chemical bonding
(Table 7.1). Soft metals have low Debye temperatures: Pb 70 K, Cd 168 K. The
θD values for ionic crystals are somewhat higher (NaCl 280 K, CaF2 475 K)
but much less than diamond (1860 K).

The Debye temperature is largest for solids with high melting points.
Lindemann has shown that for many solids θD is roughly proportional to the
melting point:

θD (K) ∼= 200

V1/3

(
Tm

M

)1/2

,

where V is the molar volume in cm3/mole, M the molar mass in grams/mole,
and Tm the melting point in Kelvin.

Anisotropic crystals show unusual behavior at low temperatures, where the
specific heat of most simple structures is proportional to T3. Layer structures
such as arsenic and antimony follow a T2 dependence while selenium and other
chain structures show a linear relation between specific heat and temperature.

Benzol and other molecular crystals have peculiar specific curves because
chemical bonding within a molecule is much stronger than between molecules.
As a result, the intermolecular vibrations are much easier to excite than the

Table 7.1 Debye temperature θD and root-mean-square vibration amplitudes
at room temperature

Element, structure, and interatomic distance (Å) θD (K)
√

U2 (Å)

Al FCC 2.86 395 0.101
Au FCC 2.88 175 0.084
Cu FCC 2.56 314 0.084
Li BCC 3.04 316 0.209
Mg HCP 3.20, 3.21 320 ‖ c 0.125

c/a = 1.624 ⊥ c 0.130
Pb FCC 3.50 70 0.206
Zn HCP 2.67, 2.91 250 ‖ c 0.153

c/a = 1.856 ⊥ c 0.091
C D 1.54 1860 0.050
Si D 2.34 550 0.075
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internal vibrations within a single molecule, and the material behaves as if it
had two characteristic temperatures.

The specific heats of some molecular solids are unusually large because of
rotational motions. The onset of molecular rotations is accompanied by large
changes in CV .

In metals such as copper there is a contribution to the specific heat from
conduction, but only electrons with energies close to the Fermi Level can be
raised to higher energy states. Using Fermi–Dirac statistics it can be shown that
the electronic contribution to the specific heat is

CV ∼= Nkπ2

2

kT

EF
,

where N is the number of conduction electrons per mole, k is Boltzmann’s
Constant, and EF is the Fermi energy. For copper, even at high temperature
near the melting point, the electronic contribution is less than 0.8 J/mole K.
Therefore the specific heat of metals differs little from other inorganic solids.
It is only at very low temperatures where the linear dependence dominates the
T3 dependence of lattice vibrations.

Debye temperatures for a number of semiconductor crystals with the
zincblende structure are shown in Fig. 7.2. Note the decrease in θD with
increasing lattice parameter. Short strong bonds give large Debye temperatures.

Problem 7.1
Experimental values of CP (in cal/mole K) measured as a function of
temperature (in K) for water:

T CP T CP T CP

0 0.00 100 3.75 280 18.03
40 1.57 150 5.16 300 18.00
60 2.39 200 6.57 340 18.03
80 3.09 273 8.64 373 18.09

a. Compare these values with the Dulong and Petit prediction and explain
the structure–property relationships.

b. Calculate CV at 273 K from CP using the measured values for expansivity
(β = 158 × 10−6/K) and compressibility (12.7 × 10−11 m2/N).

7.2 Lattice vibrations

Since lattice vibrations control many of the thermal properties of solid it is
important to have a visual picture of these atomic motions.

Rigid models made of plastic balls and metal rods are often used to represent
crystal structures, but the atoms in a real solid are in ceaseless motion, oscillating
rapidly about the equilibrium sites. As Dame Kathleen Lonsdale once wrote,
“a crystal is like a class of children arranged for drill, but standing at ease, so
that while the class as a whole has regularity both in time and space, but each
individual child is a little fidgety.”
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Fig. 7.2 Crystal structures with long,
weak bonds have higher specific heat at low
temperature because the atoms vibrate very
easily.

In a crystal this fidgetiness usually amounts to a few percent of the interatomic
distance. For the elements listed in Table 7.1, the vibration amplitudes near room
temperature are 3–7% of the nearest neighbor distances. As might be expected,
the vibrations are largest for soft materials such as lithium and lead, and smallest
for diamond.

Vibration amplitudes increase with temperature, but not very rapidly. The
root-mean-square vibration amplitude of aluminum increases from 0.057 Å at
10 K, to 0.152 Å at 600 K. Motion continues to low temperatures because of
the presence of zero point energy.

Atoms do not vibrate with equal amplitude in all directions. Magnesium and
zinc crystallize in the hexagonal close-packed structure with twelve neighbors
around each atom, six in the same (001) layer, three in the layer above, and three
below. The packing in magnesium is almost ideal with nearly equal interatomic
distances, and the thermal vibrations are nearly isotropic (Table 7.1). In zinc,
the c/a ratio exceeds the ideal value (1.633) so that the Zn–Zn distances within
a close-packed plane are shorter than those between atoms in adjacent layers.
As a result atoms can vibrate more easily along c than perpendicular to c where
atomic motion is more restricted.

For diatomic compounds the lighter of the two atoms generally vibrates
with the larger amplitude. Thermal vibration amplitudes estimated from X-ray
diffraction intensities for LiH show that H− vibrates more than Li+ because
it is lighter. Measurements on LiF, NaF, NaCl, KCl, and CaF2 verify this
result.

In organic molecular crystals where C, N, and O all have about the same
atomic weight, the atoms near perimeter of the molecule usually undergo larger
vibrations than those near the center where the bonding is stronger.
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7.3 Entropy and the magnetocaloric effect

For a reversible process an increase in temperature produces a change in entropy:

dQ = T dS = CV dT ,

Order–disorder Thermal vibration

Molecular
reorientation

Point defects Electron motion

Spin disorder

Fig. 7.3 Some of the origins of entropy. Inter-
metallic compounds frequently show local
disorder, while molecular reorientation is
common in ice and other hydrogen-bonded
systems. Thermal vibrations are present in all
solids. Paramagnetic and paraelectric materi-
als possess randomly oriented dipoles, metals
have mobile electrons, and point defects are
prevalent in many silver salts. In its simplest
formulation (S = k ln W) is proportional to
W , the number of ways to disorder.

where S is the entropy in J/mole. Entropy is a measure of the disorder of the
system, but it is difficult to describe because there are so many ways to introduce
disorder into a system (Fig. 7.3). For a solid consisting of atoms, molecules,
and conduction electrons, a number of different types of motions, excitations,
and defects can occur:

a. Vibrations of atoms and molecules about their lattice positions.
b. Molecular rotations.
c. Spin disorder of conduction electrons.
d. Translational motions of charge carriers.
e. Disordered magnetic and electric dipoles.
f. Vacancies, interstitials, and other defects.
g. Atomic order–disorder.
h. Electronic excitations.

In terms of their contribution to specific heat, none are as important as lattice
vibrations, but several interesting interactions take place under external fields
and forces.

The magnetocaloric effect is a coupling between thermal and magnetic
properties that has long been used to cool cryogenic systems to temperatures
approaching absolute zero. The process is known as adiabatic demagnetization
and takes advantage of the entropy stored in paramagnetic salts with randomly
oriented magnetic dipoles. To produce temperatures below 1 K, a small para-
magnetic crystal is suspended in a cryostat on tiny threads. The vessel contains
gaseous helium at low pressure and is immersed in a bath of liquid helium
cooled to 1 K by pumping away He vapor. A magnetic field is then switched on,
partially aligning the magnetic dipoles. This is an isothermal process because
the He gas in the cryostat maintains thermal contact with the liquid He bath.
After equilibrating, the gaseous He is pumped out of the cryostat, thermally
isolating the paramagnetic crystal and its aligned spins from the environment.
The magnetic field is then decreased to zero causing the sample to cool to a very
low temperature as the magnetic dipoles return to a disordered state. Heat is
removed from the lattice vibrations by the magnetic spin system. At these low
temperatures well below 1 K, any residual He gas surrounding the sample con-
denses, and the sample can be maintained at low temperature for an appreciable
period of time.

The magnetocaloric effect just described makes use of one of the Maxwell
relations governing reversible changes in thermodynamic systems (Chapter 6).
For the adiabatic demagnetization experiment, the change in entropy with mag-
netic field under isothermal conditions is equal to the change in magnetization
with temperature under adiabatic conditions.

In equation form,

(
∂S

∂H

)
T

=
(

∂I

∂T

)
H

,

where S is entropy, H magnetic field, I the induced magnetization, and
T temperature. For a dilute paramagnetic salt such as KCr(SO4)2 · 12H2O,
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the unpaired spins of the chromium ions maintain their random orientations
to very low temperature. As a result the Curie Law behavior characteristic of
a paramagnetic solid is maintained below 1 K. Therefore (∂I/∂T)H is negative
and so is (∂S/∂H)T . The extraction of heat from the lattice by the chromium
spins is a small effect but it is significant at very low temperatures because the
lattice vibration energy has almost disappeared.

Effects similar to the magnetocaloric effect occur in electrically- and
mechanically-aligned systems. Crystals like KTaO3 are the electric analogs to
the paramagnetic salts used in adiabatic demagnetization. The dielectric con-
stants of paraelectric solids follow a Curie Law in which the electric dipoles
become very easy to align at low temperature. The electrocaloric effect is
governed by the Maxwell relation(

∂S

∂E

)
T

=
(

∂P

∂T

)
E

,

where E is electric field and P the field-induced polarization. Adiabatic depol-
arization leads to cooling when carried out in a two-step process in which an
electric field polarizes the crystal under isothermal conditions, and then the
crystal is depolarized adiabatically to lower the temperature.

The field-induced magnetocaloric and electrocaloric effects just described are
not quite the same as the magnetocaloric and electrocaloric effects described
in later chapters. Pyroelectric crystals possess an electrocaloric effect even
in the absence of an applied electric field. The effect is associated with the
temperature dependence of the spontaneous polarization PS . In this case the
Maxwell relation is (

∂S

∂E

)
T

=
(

∂PS

∂T

)
E=0

.

As demonstrated later (Chapter 8), PS is observed in only ten of the 32 crystal
classes. Field-induced electrocaloric effects have no symmetry restrictions.

Pyromagnetism is the magnetic counterpart to pyroelectricity. The temper-
ature dependence of the spontaneous magnetization (IS) in ferromagnetic and
ferrimagnetic materials gives rise to a spontaneous magnetocaloric effect:(

∂S

∂H

)
T

=
(

∂IS

∂T

)
H=0

.

The spontaneous magnetocaloric effect is found in only 31 of 90 magnetic point
groups (Chapter 14).

A coupling between entropy and mechanical stress leads to a piezocaloric
effect related to thermal expansion:(

∂S

∂X

)
T

=
(

∂x

∂T

)
X

,

where X is mechanical stress and x is strain. The piezocaloric effect is especially
large in rubber and other elastomers with large thermal expansion coefficients.
When rubber is in an unstretched state, the molecules are coiled in an amorphous
form, but when it is stretched, they align in a semicrystalline state that causes
a large decrease in entropy.
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As the name implies, pyroelectricity is a first rank tensor property relating a
change polarization P to a change in temperature δT . The defining relation can
also be written in terms of the electric displacement D since no field is applied:

Pi = Di = piδT [C/m2]

8.1 Pyroelectric and electrocaloric tensors

Pyroelectricity is a first rank polar tensor because of the way it transforms.
Being polar vectors, Pi and Di transform as

D′
i = aijDj

whereas the temperature change transforms as a zero rank tensor, or a scalar:

δT ′ = δT .

Transforming the defining relation for pyroelectricity we get

D′
i = aijDj = aijpjδT = aijpjδT ′ = p′

iδT ′.
Both the independent variable δT and the dependent variable Di have now been
transformed to the new coordinate system. The property relating D′

i to δT ′ is
the transformed pyroelectric coefficient

p′
i = aijpj.

Thus the pyroelectric coefficient is a polar first rank tensor property.
In Sections 6.1 and 7.3 it was shown that the electrocaloric effect and the

pyroelectric effect are governed by the same set of coefficients pi. The change
in entropy per unit volume caused by an electric field is

δS = piEi [J/m3].
The pyroelectric (=electrocaloric coefficient) coefficient is usually expressed

in units of µC/m2 K and can be either positive or negative in sign depending
on whether the spontaneous (built-in) polarization is increasing or decreasing
with temperature.

8.2 Symmetry limitations

Pyroelectricity disappears in all centrosymmetric materials. The proof follows.
For a first rank tensor there are, in general, three nonzero coefficients p1, p2,
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and p3 representing the values of the pyroelectric coefficient along property
axes Z1, Z2, and Z3, respectively. The principal axes are perpendicular to each
other and are chosen in accordance with the IEEE convention (Section 4.3).

The tensor coefficients are often written in matrix form:

3 × 1
( p′) =

3 × 3
(a)

3 × 1
( p).

By Neumann’s Principle (p′) = (p) if the direction cosine matrix (a) is a
symmetry element of the material. For a center of symmetry operation we have

( p′) =



p′
1

p′
2

p′
3


 =




−1 0 0

0 −1 0

0 0 −1







p1

p2

p3


 =




−p1

−p2

−p3


 = −( p).

By Neumann’s Principle 
−p1

−p2

−p3


 =


p1

p2

p3


 ,

which can only be satisfied if all three pyroelectric coefficients are zero:
p1 = p2 = p3 = 0. Therefore, pyroelectricity disappears in all point groups
containing inversion symmetry (10 of the 32 crystal classes and 3 of the 7 Curie
groups).

The pyroelectric effect sometimes disappears in other point groups as well.
Quartz is an important piezoelectric crystal that does not exhibit pyroelectricity.
The point group is 32 with a threefold axis along Z3 and a twofold axis along
Z1. Under the threefold transformation,


p′
1

p′
2

p′
3


 =




−1/2
√

3/2 0

−√
3/2 −1/2 0

0 0 1







p1

p2

p3


 =




−p1/2 + √
3p2/2

−√
3p1/2 − p2/2

p3


 =




p1

p2

p3




the last equality being Neumann’s Principle. This can be satisfied only if
p1 = p2 = 0. Next we operate with the second symmetry element, the twofold
axis along Z1, and equate it to the already reduced pyroelectric matrix.


p′

1

p′
2

p′
3


 =


1 0 0

0 −1 0
0 0 −1





p1

p2

p3


 =


 p1

−p2

−p3


 =


 0

0
p3


 .

The result is that p1 = p2 = p3 = 0.
Two final examples will conclude the discussion. Pyroelectricity was first dis-

covered in the mineral tourmaline, point group 3m. There are two independent
symmetry elements, a threefold axis along Z3 and a mirror plane perpendicular
to Z1. Following the procedure for quartz, the threefold axis causes p1 and p2

to disappear. The mirror plane then gives the result.


p′
1

p′
2

p′
3


 =




−1 0 0

0 1 0

0 0 1







p1

p2

p3


 =




−p1

p2

p3


 =


 0

0
p3


 .
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Therefore tourmaline is pyroelectric long the Z3 axis with one nonzero
coefficient p3.

A similar result is found for poled ferroelectric ceramics. Here the grains
are randomly oriented but a strong DC field aligns the domains within each
grain. Pyroelectricity and piezoelectricity are observed after the poling field
is removed. The symmetry of the poled ceramic is ∞m with the ∞-fold axis
along Z3, the direction of poling field. There are an infinite number of mirror
planes parallel to this axis.

The appropriate operators for the symmetry operations are given in
Section 4.3. For the infinite-fold axis the transformation is


p′

1

p′
2

p′
3


 =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







p1

p2

p3




=



p1 cos θ − p2 sin θ

p1 sin θ + p2 cos θ

p3


 =




p1

p2

p3


 .

The equality must hold for all θ values. This is only possible if p1 = p2 = 0.
For a mirror plane perpendicular to Z1,


p′

1

p′
2

p′
3


 =




−1 0 0

0 1 0

0 0 1







p1

p2

p3


 =




−p1

p2

p3


 =




0

0

p3


 .

As with tourmaline there is no effect on p3. The same holds true for any mirror
plane parallel to Z3.

8.3 Polar axes

Pyroelectric matrices for the 32 crystal classes and seven Curie groups are listed
in Table 8.1. For triclinic crystals in point group 1, three measurements are
necessary to specify the pyroelectric effect. For monoclinic point group m, two
measurements, p1 and p3, are required. All other pyroelectric classes require
only one measurement. The direction of the polar axis is fixed by symmetry
in these classes, and cannot change with temperature or pressure unless the
symmetry changes. The magnitude of p3 will change but not its orientation.

It is easy to visualize the polar axis directions by examining stereographic
projections. Stereograms for the three monoclinic point groups (2, m, 2/m) are
shown in Fig. 8.1. By drawing vectors from the origin to each equivalent point,
the vectors can be summed to give the polar axis direction. For point group 2,
the polar axis lies along the twofold symmetry axis, while for point group m the
polar axis lies in the plane of the mirror. The four vectors for point group 2/m
sum to zero, confirming the absence of polar symmetry and pyroelectricity in
this point group.

The two ends of a polar axis are not related by any symmetry element
of the crystal. Symmetry elements that destroy polarity include a center of sym-
metry or a mirror plane or twofold axis perpendicular to the axis. Pyroelectricity
always occurs along a polar axis but not all polar axes exhibit pyroelectricity.
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Table 8.1 Matrices for the ten pyroelectric
crystal classes and two pyroelectric Curie groups

(all others are zero)

Point group 1




p1

p2

p3




Point group 2




0

p2

0




Point group m


p1

0
p3




Point groups mm2, 3, 3m, 4,
4mm, 6, 6mm, ∞, ∞m


 0

0
p3




Point group 2Point group m Point group 2/m
Z1

Z2 Z2

Mirror ⊥ Z2

Two-fold
axis || Z2

Fig. 8.1 Vector summations in the mono-
clinic point groups m, 2, and 2/m. By drawing
a vector from the origin at the center of the
stereographic projection to each equivalent
point, the direction of the polar axes can easily
be visualized.

The Z1 axis of quartz, for example, is a polar axis but pyroelectric charges do
not occur in this direction when the temperature is changed. This is because the
pyroelectric charges in the three symmetry-related polar axes in point group 32
sum to zero. Pyroelectricity occurs only along unique polar axes unrelated to
other polar axes.

8.4 Geometric representation

Z3

Z1 or Z2

Z�1

p3

–p3

p�1
�

Fig. 8.2 A geometric representation of the
pyroelectric representation of the pyroelectric
effect in crystals like tourmaline.

By plotting the pyroelectric coefficient as a function of measurement direction,
one obtains a geometric view of the pyroelectric effect. For a crystal plate cut
perpendicular to an arbitrarily chosen direction Z ′

1 (Fig. 8.2), the pyroelectric
coefficient is given by

p′
1 = aijpj = a11p1 + a12p2 + a13p3.

Converting to spherical coordinates,

p′
1 = p1 sin θ cos φ + p2 sin θ sin φ + p3 cos θ .

Pyroelectricity was first discovered in the mineral tourmaline that belongs to
point group 3m. The pyroelectric coefficients of tourmaline are p1 = p2 = 0,
p3 = 4 µC/m2 K. The geometric representation of the pyroelectric effect in
tourmaline consists of two spheres, one positive and one negative, centered
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Fig. 8.3 Two methods of measuring the
pyroelectric coefficient.

X–Y Recorder

C0

R0

at Z3 = ±2 µC/m2 K. The spheres are obtained by plotting the equation
p′

1 = 4 cos θ for all φ and θ values.

8.5 Pyroelectric measurements

An electroded sample is heated in a sample chamber and its change in polariza-
tion monitored with the measurement circuit shown in Fig. 8.3. The coefficient
p is obtained by measuring the voltage V across a reference capacitor C0 or by
measuring the pyroelectric current through a reference resistor R0.

Pyroelectric voltage method:

p = C0

A

dV

dT
[C/m2 K].

Pyroelectric current method:

p = i

A dT/dt
[C/m2 K],

where A is the electrode area, T temperature, t time, V voltage, and i current.

8.6 Primary and secondary pyroelectric effects

Pyroelectric coefficients are sometimes measured under different boundary
conditions. When measured at constant strain, thermal expansion effects do
not contribute to the polarization, and this so-called “primary” pyroelec-
tric effect originates from internal rearrangements in structure. This can be
pictured as cations moving relative to anions with no change in unit cell
dimensions. But this is not the way pyroelectric coefficients are normally
measured.

Most pyroelectric experiments are carried out at constant stress rather than
constant strain. This means that the unit cell dimensions can change through
thermal expansion, and since all pyroelectric materials are also piezoelectric,
there will be a contribution to the pyroelectric effect. This is the so-called
“secondary” pyroelectric effect given by the thermodynamic relation.

p X
i − p x

i = αE
jkc E, X

jklm dX
ilm.

In this expression α, c, d are thermal expansion, elastic stiffness, and piezo-
electric coefficients, respectively. The unclamped pyroelectric coefficient pX

i
measured at constant stress is equal to the sum of the pyroelectric effect caused
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Table 8.2 Pyroelectric coefficients measured at room temperature for ferroelectric
and nonferroelectric materials. The so-called “primary” pyroelectric coefficient is

measured at constant strain and represents the rearrangement of polarization
charges inside the unit cell. The “secondary” contribution comes from change in

unit cell dimensions with temperature. Together they give the experimental
pyroelectric coefficient that is normally measured at constant stress

(the units are µC/m2 K)

Experimented Secondary Primary
value (p X ) effect (p X − p x) effect (p x

n )

Ferroelectrics
Poled ceramic (∞m)

BaTiO3 −200 +60 −260
PbZr0.95Ti0.05O3 −268 +37.7 −305.7

Crystal
LiNbO3(3m) −83 +12.8 −95.8
LiTaO3(3m) −176 −1 −175
Pb5Ge3O11(3) −95 +15.5 −110.5
Ba2NaNb5O15(mm2) −100 +41.7 −141.7
Sr0.5Ba0.5Nb2O6(4mm) −550 −48 −502
(CH2CF2)n(mm2) −27 −13 −14
TGS (2) −270 −330 +60

Nonferroelectrics
Crystal

CdSe (6mm) −3.5 −0.56 −2.94
CdS (6mm) −4.0 −1.0 −3.0
ZnO (6mm) −9.4 −2.5 −6.9
Tourmaline (3m) +4.0 −3.52 −0.48
Li2SO4 · 2H2O (2) +86.3 +26.1 +60.2

by the atomic rearrangements inside the unit cell ( px
i ) and the piezoelectric

contribution due to thermal expansion.

8.7 Pyroelectric materials

Table 8.2 lists the measured pyroelectric coefficients for several ferroelectric
and nonferroelectric crystals together with a few poled polycrystalline mater-
ials. Note that the coefficient is negative in most ferroelectrics because the
spontaneous polarization decreases as temperature is raised. The polarization
goes to zero at Tc, the Curie temperature, where the symmetry changes to a
nonpolar point group. Note that, the secondary contribution to the pyroelectric
coefficients is generally smaller than the primary effect, especially in ferro-
electrics where the atoms involved in the phase transformation are undergoing
substantial movements.

8.8 Temperature dependence

Pyroelectric coefficients approach zero at very low temperatures where thermal
motion decreases dramatically. This is illustrated for zinc oxide in Fig. 8.4
showing how the pyroelectric coefficient correlates well with specific heat
since both are caused by thermal motions. ZnO has the hexagonal wurtzite
structure with polar axis along [001] direction. All the ZnO4 tetrahedra point
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Fig. 8.4 (a) Crystal structure of zinc
oxide showing the polar orientation of the
zinc–oxygen bonds along the hexagonal
c-axis. ZnO has the wurtzite structure and
belongs to polar group 6mm. (b) The pyroelec-
tric coefficients of nonferroelectric crystals
are generally small and correlate well with
specific heat.
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along the hexagonal c-axis causing the electric dipoles associated with the
cations and anions to add rather than cancel.

At high temperatures the pyroelectric effect increases as thermal motion
becomes more pronounced. This is especially true for ferroelectric crys-
tals and poled ceramics in which the spontaneous polarization decreases
rapidly near the Curie temperature. Lead titanate (PbTiO3) and triglycine
sulfate (TGS = (NH2CH2COOH)3 · H2SO4) are typical ferroelectrics with
first- and second-order phase transitions, respectively. Both are widely used in
pyroelectric devices.
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Fig. 8.5 In poled ferroelectric crystals the
pyroelectric effect is the temperature deriv-
ative of the spontaneous polarization. PbTiO3
polarizes along the tetragonal c-axis. Both Ps
and the pyroelectric coefficient p3 are zero
above Tc where the symmetry changes to
cubic at 490◦C.
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Fig. 8.6 Triglycine sulfate crystals exhibit a
substantial pyroelectric effect below the Curie
temperature of 47◦C. The crystals are mono-
clinic with the maximum pyroelectric coeffi-
cient along the [010] twofold symmetry axis.

The spontaneous polarization and pyroelectric coefficients of PbTiO3 and
TGS are shown in Figs 8.5 and 8.6, respectively. PbTiO3 has a first-order phase
transformation at 490◦C at which the spontaneous polarization drops abruptly
to zero. The pyroelectric coefficient, which is the temperature derivative of
the spontaneous polarization, also disappears at Tc. Above Tc, PbTiO3 has
the cubic perovskite structure, point group m3m. Below Tc it develops a large
spontaneous polarization along the [001] direction as the symmetry changes
to polar point group 4mm. As shown in Fig. 8.5 the pyroelectric coefficient p3

increases to very large values near Tc.
Similar behavior is observed for ferroelectric triglycine sulfate (Fig. 8.6).

In TGS the spontaneous polarization decreases smoothly to zero at its Curie
temperature of 47◦C. The pyroelectric coefficient increases slowly near room
temperature, then more rapidly as it approaches Tc. Large triglycine sulfate
crystals are grown easily from water solution and are often doped with alanine
to stabilize the polarization state. The ferroelectric effect, spontaneous polar-
ization, and pyroelectric behavior are caused by changes in hydrogen bonding.
Protons linking two of the molecular groups undergo an order–disorder phase
change at the Curie temperature. Hydrogen bonds parallel to the [010] twofold
symmetry axis freeze into either an up- or down-position in a double potential
well. This creates dipole moments and spontaneous polarization within each
ferroelectric domain. Above Tc the protons oscillate back and forth between
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the two potential wells effectively destroying the polarization. The point group
is 2/m above Tc and 2 below Tc.

In a few crystals the pyroelectric coefficient changes sign with temperature.
For lithium sulfate p passes through zero mean 120 K, and for barium nitrite,
reversal takes place at 160 K. This means that the spontaneous polarization
passes through a maximum (or minimum) at the crossover point.

8.9 Applications

Pyroelectric detectors are widely used as burglar alarms, fire detectors, and
infrared imaging systems. The material figure of merit for many of these
applications is

p

CV
√

K tan δ
,

where p is the pyroelectric coefficient, CV is the volume specific heat, K is the
dielectric constant, and tan δ the electrical dissipation factor. Many of the best
ferroelectric materials are unsuitable because of their large dielectric constants.
It is also important to keep the specific heat and thermal mass small to allow
a rapid rise in temperature.

Certain glass composites can be converted to pyroelectric sensors by appro-
priate heat treatment. Polar glass-ceramics of Li2Si2O5 and Ba2TiSi2O8

(fresnoite) are made as glasses at high temperature and then annealed in a tem-
perature gradient to produce aligned polar crystallites. The pyroelectric and
piezoelectric properties are similar to those of the silicate minerals tourmaline
and quartz. The aligned crystallites nucleate on the surface of the glass and
then grow into the glass with polar symmetry. The symmetry group is ∞m, the
same as a poled ferroelectric, but no poling is required, and there is no phase
transition.

Problem 8.1
There are three orthorhombic point groups 222, mm2, and mmm.

a. Draw the stereographic projections showing the symmetry elements and
symmetry-equivalent points. Determine the polar axis directions.

b. Write out the transformation matrices for the symmetry elements
required to generate each of the orthorhombic groups.

c. Using Neumann’s Principle, determine the pyroelectric matrices for
orthorhombic crystals.

Problem 8.2
As shown in Table 8.2, the electrocaloric effect is related to the pyroelectric
effect through the Maxwell relation.

∂S

∂E
= ∂P

∂T
.

When an electrical field is applied to a pyroelectric crystal, its temperature
changes. Using the data shown in Fig. 8.4, estimate the temperature change in
ZnO under a field of 105 V/m. How large is the electrocaloric effect at room
temperature? What is the temperature change?
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The dielectric constant K is a measure of a material’s ability to store electric
charge. In scalar form the defining relations are as follows:

D = εE,

where D is the electric displacement measured in C/m2, ε is the electric per-
mittivity in F/m, and E is electric field in V/m. The dielectric constant K is the
relative permittivity:

K = ε/ε0,

where ε0 = 8.85 × 10−12 F/m is the permittivity of free space. The electric
displacement D is equal to the sum of the charges stored on the electrode plus
those originating from the polarization, P [C/m2]

D = ε0 E + P.

In this chapter we discuss the tensor nature of the dielectric constant, how it is
represented geometrically, and some typical structure–property relationships.

9.1 Origins of the dielectric constant

Dielectric constants range over about four orders of magnitude in insulator
materials. Because of their low density, gases have dielectric constants only
slightly larger than one. At one atmosphere, the dielectric constant of air is
1.0006. Most common ceramics and polymers have dielectric constants in the
range between 2 and 10. Polyethylene is 2.3 and silica glass is 3.8. These
are low-density dielectrics with substantially covalent bonding. More ionic
materials like NaCl and Al2O3 have slightly higher K values in the 6–10
range. High K materials like water (K ∼ 80) and BaTiO3 (K ∼ 1000)

have special polarization mechanisms involving rotating dipoles or ferroelectric
phase transformations.

A schematic view of the principal types of polarization mechanisms is
illustrated in Fig. 9.1. The electronic component of polarization arising from
field-induced changes in the electron cloud around each atom is found in all
matter. The ionic contribution is also common and is associated with the relative
motions of cations and anions in an electric field. Orientational polarizability
arises from the rotation of molecular dipoles in the field. These motions are
common in organic substances. Many materials also contain mobile charge
carriers in the form of ions or electrons that can migrate under applied fields.
All four types of polarization are capable of creating anisotropy as well.
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By measuring the dielectric constant as a function of frequency, one can
separate the various polarization components. Each polarization mechanism
has a limiting characteristic frequency. Electrons have very small mass and
are therefore able to follow high frequency fields up through the optical range
(Fig. 9.2). Ions are a thousand times heavier but continue to follow fields up
to the infrared range. Molecules—especially those in liquids and solids—are
heavier yet and are severely impeded by their surroundings. Most rotational
effects, like those in water, are limited to microwave frequencies. Space charge
effects are often in the kilohertz range or even lower. Fig. 9.2 shows a typical
frequency spectrum of a dielectric containing all four types of polarization.
Dielectric constants are complex numbers with real (K ′) and imaginary (K ′′)
components.
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Fig. 9.1 Polarization mechanisms underlying
electric permittivity.

In simple inorganic solids, the two most important mechanisms are the
electronic and ionic polarizabilities. The dielectric constants of twelve alkali
halide crystals are compared in Fig. 9.3. The electronic contribution n2 is
obtained from the optical refractive index n. Subtracting n2 from the low
frequency dielectric constant gives the ionic part. The two parts are nearly
equal except for the lithium salts where the ionic polarization dominates. This
is probably due to the small size of the Li+ ion that oscillates more easily than
the larger Na+, K+, and Rb+ ions.

Thermal measurements also shed light on the various types of polarization.
Lead zirconate titanate (PZT = PbZr1−xTixO3) is a ferroelectric ceramic used
in piezoelectric and dielectric applications. Domain walls make an important
contribution to dielectric properties of ferroelectric materials. Fig. 9.4 compares
the measured dielectric constants of a typical “hard” and “soft” PZT. Soft PZTs
have mobile domain walls that make a very large contribution to permittivity
at room temperature but freeze out at low temperatures. The effect is much
smaller in hard PZT where the defect structure makes it difficult to move domain
walls. The intrinsic part of the dielectric constant coming from electronic and
ionic motions within each domain can be ascertained from thermodynamic
modeling. The chemical compositions of hard and soft PZTs differ only slightly.

Frequency

Space charge

Dipole rotation

Infrared vibration

Electronic polarizability

Conduction losses

Radio and television

IR and microwave spectra

Microwaves

Infrared modes

Visible

Near ultraviolet

K �

K �

Fig. 9.2 Dielectric spectrum of a com-
plex solid contain several polarization
mechanisms.
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Fig. 9.3 Electronic and ionic contributions
to the dielectric constants of alkali halide
crystals.
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Hard PZTs are doped with acceptor ions such as Fe3+ while soft PZTs are
doped with Nb5+ or other donor ions. The dopants create defects that either
impede or promote domain wall motion.

9.2 Dielectric tensor

Both electric displacement and electric field are vectors, or first rank
tensors. Therefore there are two directions involved in measuring the electric
permittivity, making it a second rank tensor:

Di = εijEj.

Transforming these tensors between coordinate systems we obtain

D′
i = aijDj = aijεjkEk = aijεjkalkE′

l

D′
i = ε′

ilE
′
l .
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Therefore the permittivity and the dielectric constant transform as a polar second
rank tensor.

ε′
il = aijalkεjk

K ′
il = ε′

il

ε0
= aijalkKjk .

This is the way K transforms in tensor notation. In matrix notation the
transformation looks like this

3 × 1
(D′) =

3 × 3
(a)

3 × 1
(D) =

3 × 3
(a)

3 × 3
(ε)

3 × 1
(E)

=
3 × 3
(a)

3 × 3
(ε)

3 × 3
(a)−1

3 × 1
(E′) =

3 × 3
(ε′)

3 × 1
(E′) ,

where (a)−1 is the reciprocal direction cosine matrix. It is equal to (a)t , the
transpose of the (a) matrix. In matrix form the dielectric constant transforms as

(K ′) = (a)(K)(a)t .

Based on energy arguments, the (K) matrix must be symmetric. When an
electric field is applied to a dielectric, the change in energy is

dU = Ei dDi = εijEi dEj.

Expanding,

dU = ε11E1dE1 + ε12E1dE2 + ε21E2dE1 + · · ·
and taking differentials with respect to the field components E1 and E2,

∂U

∂E1
= ε11E1 + ε21E2 + ε31E3

∂U

∂E2
= ε12E1 + ε22E2 + ε32E3.

The second derivatives give the permittivity coefficients.

∂2U

∂E1∂E2
= ε21

∂2U

∂E2∂E1
= ε12.

Since the stored energy is the same regardless of which field component is
applied first, ε21 = ε12. The permittivity and dielectric constant matrices are
therefore symmetric:

εij = εji and Kij = Kji.

Energy arguments also place certain restrictions on the signs and magnitudes
of the dielectric constant. The stored electric energy per unit volume must be
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a positive number.∫ E

0
εijEi dEj = 1

2
εijEiEj > 0

= 1

2
ε11E2

1 + 1

2
ε22E2

2 + 1

2
ε33E2

3 + ε12E1E2 + ε13E1E3

+ ε23E2E3 > 0.

No matter what combination of fields is applied, the energy is greater than zero.
If E1 �= 0 = E2 = E3, then 1

2ε11E2
1 > 0. Therefore ε11 > 0 and so is K11. By

the same argument K22 and K33 must also be positive numbers.
Off diagonal components such as K12 are not necessarily positive, but there

are restrictions which apply. Referring to the energy expression, suppose E1 =
E2 �= 0 = E3, then K11 + K22 > −2K12. And if E1 = −E2 �= 0 = E3, then
K11 + K22 > 2K12. Combining these two inequalities,

K11 + K22 > |2K12|.
And if K11 = K22 by symmetry, then K11 > |K12|. Thus the off-diagonal
components are generally smaller than the diagonal values.

9.3 Effect of symmetry

We illustrate by deriving the dielectric constant matrix for cubic crystals. The
minimum symmetry found in cubic crystals corresponds to point group 23 with
twofold axes along 〈100〉 directions and threefold axes along 〈111〉 axes. The
two independent symmetry elements needed to generate symmetry group 23
are shown in Fig. 9.5.

To carry out the simplification process for cubic crystals we first apply the
twofold symmetry operation.

(K ′) = (a)(K)(a)t

=

1 0 0

0 −1 0
0 0 −1





K11 K12 K13

K21 K22 K23

K31 K32 K33





1 0 0

0 −1 0
0 0 −1




=

 K11 −K12 −K13

−K21 K22 K23

−K31 K32 K33


 =


K11 K12 K13

K21 K22 K23

K31 K32 K33


 .

By Neumann’s Principle, the transformed and untransformed matrices must be
equal. Therefore K12 = K13 = K21 = K31 = 0.

Next we take the simplified (K) matrix and apply the second element, a
threefold rotation about [111].

(K ′) =

0 1 0

0 0 1
1 0 0





K11 0 0

0 K22 K23

0 K32 K33





0 0 1

1 0 0
0 1 0




=

K22 K23 0

K32 K33 0
0 0 K11


 =


K11 0 0

0 K22 K23

0 K32 K33


 .
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(a) = (a) = Fig. 9.5 Two symmetry elements found in all
cubic crystals.

Again applying Neumann’s Principle, the result is K11 = K22 = K33, and
K23 = K32 = 0. Therefore the final result is that the dielectric constant for
cubic crystals is a scalar.

(K) =

K11 0 0

0 K11 0
0 0 K11




The same symmetry-reduction procedure can be done easier and faster by the
direct inspection method. For point group 23, the twofold axis along Z1 carries
Z1 → Z1, Z2 → −Z2, and Z3 → −Z3, or in shorthand notation: 1 → 1,
2 → −2, 3 → −3. Next apply these operations to the subscripts of the dielectric
constant tensor, and then apply Neumann’s Principle.

K11 11 → 11 = 11

K12 12 → −12 = 12 ∴ K12 = 0

K13 13 → −13 = 13 ∴ K13 = 0
...

Next apply the same procedure to the second symmetry element, the threefold
rotation about the body diagonal [111] : 1 → 2, 2 → 3, 3 → 1. Then

K11 11 → 22 = 11 ∴ K11 = K22
...

The direct inspection method can be used for symmetry operations involving
most symmetry elements, but not for three- or sixfold axes where the angles
differ from 90◦ or 180◦. The tensor or matrix techniques are necessary for
nonorthogonal transformations.

Applying Neumann’s Principle to the 32 crystal classes and seven Curie
groups leads to the dielectric matrices in Table 9.1.

9.4 Experimental methods

The dielectric constant is anything but constant. It depends on frequency, elec-
tric field, temperature, pressure, and many other variables, and it is a complex
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Table 9.1 Dielectric constant matrices for the various symmetry groups.
Depending on the symmetry, between one and six measurements are

required to specify the dielectric properties

Triclinic crystals
Classes 1 and 1̄
Six coefficients


K11 K12 K13

K12 K22 K23
K13 K23 K33




Monoclinic crystals
Classes 2, m, and 2/m
Four coefficients


K11 0 K13

0 K22 0
K13 0 K33




Orthorhombic crystals
Classes 222, mm2, and mmm
Three coefficients


K11 0 0

0 K22 0
0 0 K33




Uniaxial crystals
Classes 3, 3̄, 32, 3m, 3̄m, 4, 4̄, 4/m, 422,
4mm, 4̄2m, 4/mmm, 6, 6̄, 6/m, 622,
6mm, 6̄m2, and 6/mmm

Curie groups ∞, ∞m, ∞/m, ∞2, and ∞/mm
Two coefficients


K11 0 0

0 K11 0
0 0 K33




Cubic crystals
Classes 23, m3, 432, 4̄3m and m3m
Curie groups ∞∞ and ∞∞m
One coefficient


K11 0 0

0 K11 0
0 0 K11




quantity K = K ′ − iK ′′. The loss factor tan δ = K ′′/K ′ can be very appreciable
near resonant frequencies or in conducting solids. Measurement techniques
depend on the frequency range (Fig. 9.6).

For anisotropic solids, measurements must be carried out in two or more
directions. To illustrate, we consider the most general case, a triclinic crystal.
There are no symmetry directions in triclinic crystals and therefore six meas-
urements in different directions are required. From these six experiments we
obtain the three principal dielectric constants and the three angles relating the
principal axes to the measurement axes. All six quantities must be remeasured at
different temperatures and frequencies because the principal axes are not fixed
by symmetry. Moreover, the principal axes for K ′, the real part of dielectric
constant, are not the same as those for the imaginary part, K ′′.

We begin the process by identifying the measurement axes Z ′
i . The choice

is arbitrary but must be fixed relative to the triclinic crystallographic axes
(Fig. 9.7). Since the property axes are orthogonal and triclinic axes are not,
the two coordinate systems cannot coincide. For convenience, we selected the
[100] direction for Z ′

1, and Z ′
2 to lie between [100] and [010] in the (001) plane.

In keeping with customary crystallographic notation, the triclinic interaxial
angles are α, β, and γ .

In practice the triclinic axes are generally located using X-ray diffraction,
although crystal morphology often provides a useful short cut. It is helpful
to have a set of back-reflection Laue photographs and a crystal goniometer to
orient the triclinic crystal along the measurement axes Z ′

i . Using a saw, a cube-
shape crystal is cut from the triclinic crystal, and six different measurement
directions are identified (Fig. 9.8). For convenience, three directions are chosen
along Z ′

1, Z ′
2, Z ′

3. Three plates cut in these orientations are labeled measurement
directions I, II, and III, respectively. The normal to the first plate, Z ′

1, has
direction cosines a11 = 1, a12 = 0, a13 = 0 relative to the measurement
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Fig. 9.6 Frequency ranges and measuring
techniques (von Hippel).

coordinate system Z ′
i . For plate II cut perpendicular to Z ′

2 the direction cosines
for the field direction are a11 = 0, a12 = 1, a13 = 0. And for plate III, a11 = 0,
a12 = 0, a13 = 1. Three more measurements are needed for triclinic crystals.
As shown in Fig. 9.8, plates IV, V, and VI are cut perpendicular to three body
diagonal directions of the cube. The normal to these plates form angles of 54.7◦
or 125.3◦ with respect to the Z ′

i coordinate system. The six plates and their
direction cosines are illustrated in Fig. 9.8.

After cutting and polishing, the six plates are electroded on their major faces,
and the capacitance is measured to give six values of the dielectric constant:
K I, K II, K III, K IV, KV, and KVI. In shaping the samples it is important to
keep the plate thickness small compared to the lateral dimensions. This ensures
that the electric field will be parallel to the surface normal, remembering that in
anisotropic solids the electric displacement is parallel to the applied electric field
only in principal axis directions. Having the equipotential surface electrodes
close together defines the electric field direction.

�

�
�

[100] = Z�1

[010]

[001]

Z �2

Z�3

Fig. 9.7 Orientation of the measurement axes
Z ′

1, Z ′
2, Z ′

3 relative to the triclinic axes [100],
[010], [001].

The dielectric constant matrix (K ′) for measurement coordinate system are
determined from the six experimental values K I −KVI ·K I, the measured value
for the plate cut perpendicular to Z ′

1, is equal to K ′
11. And for the other five

plates the measured values are given by

KM = a1ia1jK
′
ij M = I–VI.

Using the direction cosines for each plate,

K I = K ′
11

K II = K ′
22

K III = K ′
33



66 Dielectric constant

Fig. 9.8 Six plates, labeled I–VI, are cut from
a cube whose axes are Z ′

1, Z ′
2, Z ′

3. Dielec-
tric constants K I, K II, K III, K IV, KV, and
KVI are measured for the six orientations
with direction cosines listed below. The six
K values are then combined to give the three
principal dielectric constants and the three
angles required to specify the orientation of
the principal axes.
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K IV = 1

3
(K ′

11 + K ′
22 + K ′

33 + 2K ′
12 + 2K ′

13 + 2K ′
23)

KV = 1

3
(K ′

11 + K ′
22 + K ′

33 + 2K ′
12 − 2K ′

13 − 2K ′
23)

KVI = 1

3
(K ′

11 + K ′
22 + K ′

33 − 2K ′
12 − 2K ′

13 + 2K ′
23).

Solving for the off-diagonal components,

K ′
12 = 3

4
(K IV + KV) − 1

2
(K I + K II + K III)

K ′
13 = 3

4
(KV + KVI) + 1

2
(K I + K II + K III)

K ′
23 = 3

4
(K IV + KVI) − 1

2
(K I + K II + K III).

All six components of K ′
ij are now known.

The next step is to convert to principal axes Z1, Z2, Z3. In so doing, we need to
find the three principal dielectric constants K11, K22, K33, and the nine direction
cosines relating the principal axes to the measurement axes (Fig. 9.9).

Cos–1 a32

Cos–1 a13

Cos–1 a21

Z �3

Z �1

Z �2

Z2

Z3

Z1

Fig. 9.9 Direction cosines relating the
measurement axes Z ′

i to the principal axes Zi.

Beginning with the matrix transformation from the measurement axes to the
principal axes, (K ′) = (a)(K)(a)t . Post-multiplying by the direction cosine
matrix (a), we obtain

(K ′)(a) = (a)(K),

which is written out as


K ′
11 K ′

12 K ′
13

K ′
12 K ′

22 K ′
23

K ′
13 K ′

23 K ′
33





a11 a12 a13

a21 a22 a23

a31 a32 a33


 =


a11 a12 a13

a21 a22 a23

a31 a32 a33





K11 0 0

0 K22 0
0 0 K33


 .
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This leads to nine equations in K′
ij, aij, and Kii

K ′
11a11 + K ′

12a21 + K ′
13a31 = a11K11

K ′
11a12 + K ′

12a22 + K ′
13a32 = a12K22

...
...

...
...

...
...

K ′
13a13 + K ′

23a23 + K ′
33a33 = a33K33.

In solving for the nine aij values and the three Kij values, we must also make use
of the orthogonality conditions for the direction cosines: aikajk = akiakj = δij

(Section 2.3). For the nine equations written above, the determinant of the K ′
ij

and Kii coefficients must equal zero for a nontrivial solution.∣∣∣∣∣∣∣
K ′

11 − Kii K ′
12 K ′

13

K ′
12 K ′

22 − Kii K ′
23

K ′
13 K ′

23 K ′
33 − Kii

∣∣∣∣∣∣∣ = 0.

Solving the determinant for the three roots Kii, gives the magnitudes of the
three principal dielectric constants of K11, K22, and K33. To obtain the direction
cosines aij, we substitute the Kii values into the nine equations relating K ′

ij to
Kii and make use of the orthogonality conditions as well. The process involves
many arithmetic operations but can easily be solved by a computer.

The process just described used six measurements to obtain six unknowns.
To obtain greater accuracy and to assess the experimental errors, it is useful
to carry out the measurements in more than six different directions. A least
squares refinement allows standard errors to be assigned to each of the prin-
cipal dielectric constants and the three angles relating the principal axes to the
measurement axes, and ultimately to the triclinic crystallographic axes.

It is a tedious task to specify the anisotropic properties of low symmetry
crystals, which is one reason that relatively few such measurements have been
carried out.

9.5 Geometric representation

When plotted as a function of direction, the dielectric constant K ′
11 is easily

calculated from the principal dielectric constants.

K ′
11 = a2

11K11 + a2
12K22 + a2

13K33.

Using spherical coordinates this becomes

K ′
11 = K11 cos2 φ sin2 θ + K22 sin2 φ sin2 θ + K33 cos2 θ

To illustrate, we plot the room temperature dielectric constant of potassium
dihydrogen phosphate (KDP = KH2PO4). Large crystals of KDP are easily
grown from water solution and have been used as piezoelectric transducers and
electro-optic light shutters. As shown in Fig. 9.10, the permittivity of KDP is
highly anisotropic and strongly temperature dependent. At room temperature
KDP is tetragonal, point group 4̄2m. The principal dielectric constants are
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K11 = K22 = 60 and K33 = 24. The geometric surface representing the
longitudinal dielectric constant is given by

K ′
11 = 60 sin2 θ + 24 cos2 θ ,

where θ is the angle between the measurement direction and Z3, the 4̄ symmetry
axis.

K33

K11

Temperature

10,000

1000

100

10

50 100 150 200 250 K

K

Fig. 9.10 Principal dielectric constants of
KH2PO4 single crystals plotted as a function
of temperature. Note change in sign of the
anisotropy with K11 > K33 at room temper-
ature, and K33 > K11 as the crystal cools
toward the ferroelectric Curie point.

Fig. 9.11 shows the directional dependence of the dielectric constant at room
temperature. The surface is cylindrically symmetric about Z3 and resembles a
doughnut without a hole in the center. As temperature is lowered, the surface
becomes a sphere at the crossover point where K11 = K33, and then develops
into a long narrow peanut shape along Z3.

Z3

Z1

K33
�

K�11

K11

Fig. 9.11 The dielectric constant of KH2PO4
plotted as function of direction.

There is another way of plotting symmetric second rank tensors like the
dielectric constant. By plotting 1/

√
K rather than K , the surface is a simple

quadric figure. To show that a quadric surface can be used to represent the
dielectric constant, consider the general quadric equation referred to an arbitrary
set of coordinates Z ′

i .

S′
11Z ′2

1 + S′
22Z ′2

2 + S′
33Z ′2

3 + 2S′
12Z ′

1Z ′
2 + 2S′

13Z ′
1Z ′

3 + 2S′
23Z ′

2Z ′
3 = 1.

In shortened tensor form this is S′
ijZ

′
i Z

′
j = 1. The tensor character is

demonstrated by inquiring how the coefficients S′
ij transform.

S′
ijZ

′
i Z

′
j = S′

ijaikZkajlZl = SklZkZl.

Thus Skl = aikajlS′
ij which is the way a second rank tensor transforms. When

referred to principal axes, the quadric equation is

S11Z2
1 + S22Z2

2 + S33Z2
3 = 1.

Comparing this expression with the usual expression for an ellipsoid,

X2

a2
+ Y2

b2
+ Z2

c2
= 1,

it is apparent that S11 = 1/a2, etc. Therefore the intercept a = 1/
√

S11.
To obtain the quadric surface one plots 1/

√
K rather than K .

Since the principal dielectric constants are always positive numbers, the
quadric surface is always an ellipsoid (Fig. 9.12), but for other second rank
tensor properties like thermal expansion, the coefficient can be either positive
or negative. Hyperboloid surfaces may be generated in these cases.

Z2

Z3

Z1

K33

1

K11

1

K22

1

Fig. 9.12 By plotting 1/
√

K as a function
of direction, the geometric surface represent-
ing the dielectric constant is an ellipsoid.
The property coefficients can be negative for
thermal expansion, magnetoelectricity, and
certain other second rank tensors. In this case,
hyperboloids may be generated.

The quadric surfaces also make it easy to visualize the effect of symmetry on a
physical property. The intrinsic symmetry of an ellipsoid is 2/m 2/m 2/m, point
group mmm. If the symmetry of the crystal is orthorhombic the twofold sym-
metry axes will be coincident with the principal axes. For monoclinic crystals
only one principal axis is fixed, and for triclinic crystals, none. In tetragonal,
trigonal, and hexagonal crystals, the quadric surface becomes an ellipsoid of
revolution with a circular cross-section perpendicular to Z3, the high sym-
metry direction. Cubic crystals have four threefold axes along body diagonal
directions, and therefore there will be four circular cross-sections. Under this
restriction the quadric surface representing the dielectric properties becomes a
sphere.
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Problem 9.1
At 25◦C a single-crystal (Single domain) of BaTiO3 is tetragonal, point
group 4mm.

a. Using Neumann’s Law, deduce the dielectric constant matrix.
b. Measured values of the dielectric constants are

KX
11 = 4100 KX

33 = 160 (X = constant stress)

and

Kx
11 = 1970 Kx

33 = 109 (x = constant stress)

c. Why is KX different from Kx? Discuss how they might be measured.
d. Plot (KX)′ as a function of direction, showing the geometric representa-

tion. Replot as a quadric surface.

Problem 9.2
Muscovite mica, KAl2[AlSi3O10](OH)2, is a layer silicate that cleaves easily
into thin transparent crystals. In the past, it has been used as a capacitor because
of its heat resistance, high electric resistivity, and high breakdown strength. The
hexagonal crystals are highly anisotropic, which a dielectric constant of 6.9
perpendicular to the layers, and 8.7 parallel to the layers. The dissipation factor
(K ′′/K ′) is also very anisotropic. At 1 kHz, the loss factors are 0.0002 and
0.0980 in the perpendicular and parallel directions. Make drawings of K ′ and
K ′′ as a function of direction and discuss the structure–property relationships.

9.6 Polycrystalline dielectrics

Many of the most useful dielectrics are polycrystalline ceramics with randomly
oriented grains. These include barium titanate capacitors, alumina electronic
packages, and porcelain high voltage insulators. To obtain the statistical
average of the dielectric constant, we integrate the direction cosines over all
angles:

〈K ′
11〉 = K11〈a2

11〉 + K22〈a2
12〉 + K33〈a2

13〉

〈a2
11〉 =

∫ +1
−1 a2

11 da11∫ +1
−1 da11

= 1

3
= 〈a2

12〉 = 〈a2
13〉.

The polycrystalline dielectric constant is simply the numerical average of the
principal dielectric constants.

〈K ′
11〉 = 1

3
(K11 + K22 + K33).
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Fig. 9.13 Dielectric constants of Al2O3
crystals and SiO2 glass.
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Fig. 9.14 Permittivity of ferroelectric NaNO2
measured at 100 kHz.

9.7 Structure–property relationships

The dielectric constants of isotropic silica glass, a trigonal alumina crystal,
and orthorhombic ferroelectric sodium nitrite are shown in Figs 9.13 and 9.14.
Alumina and silica are typical of the low-K dielectrics used as insulators and
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electronic packages. The anisotropy is generally small and there is very little
change in the permittivity over wide ranges in frequency and temperature.
Sodium nitrite is a ferroelectric below 160◦C with complex domain struc-
ture and hysteresis under high fields. The dielectric constant undergoes large
changes with temperature and frequency as the molecular dipoles of the NO−

2
ions undergo rapid changes in orientation. Large anisotropies often occur in
ferroelectric crystals.

The average dielectric constant of low-permittivity inorganic materials can
be estimated using the Clausius–Mosotti equation. This involves assigning
an atomic or molecular polarizability to each chemical species, and esti-
mating the dielectric constant from the sum of the polarizabilities divided
by the molar volume. The formula takes various forms depending on how
the local electric fields are approximated, and how the polarizabilities are
defined.

Working with dielectric data from a large number of simple oxides and
fluorides, Shannon (1993) devised a predictive equation that generates K values
accurate to about 0.5%. The structure–property relationship uses a table of
dipolar polarizabilities derived from the Clausius–Mosotti equation:

αD = 3

4π

(
Vm

(K − 1)

(K + 2)

)
.

Vm is the molar volume and K is the dielectric constant. Polarizability values
for a number of cations and anions found in simple inorganic solids are listed in
Table 9.2. It is interesting to note that the largest polarizabilities are from anions
with large loosely bonded electron clouds, and from metals like Fe2+ and Ca2+
with more electrons than the lighter metals. The small, highly charged cations
like B3+, Be2+, Si4+, and Al3+ make only modest contributions to the dielectric
constant. Fig. 9.15 shows how high (n2) and low frequency dielectric constant
depends on density. Oxides like silica with short, strong bonds, and low density
have low dielectric constants while those with close packed structures and more
ions per unit volume have larger permittivities.
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Fig. 9.15 Low-frequency dielectric constant
K and high-frequency value (n2) plotted as a
function of density for simple oxide ceramics.

The Clausius–Mossotti equation has also been used to predict polymer
permittivities (Takahashi 1992). A listing of polymer components is given in
Table 9.3 along with their molar polarizabilities a defined as the molar polar-
ization divided by the molar volume (a = Pm/Vm). The molecular values

Table 9.2 Polarizabilities for cations and
anions found in low-permittivity oxides

and fluorides (Shannon 1993)

Anions Cations

F− 1.63 Å3 B3+ 0.05 Å3

O2− 2.01 Be2+ 0.3
OH− 2.18 Si4+ 0.85

Al3+ 0.29
Mg2+ 1.31
Fe2+ 2.22
Ca2+ 3.15
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Table 9.4 Average dielectric constants and tan δ values

K tan δ

Polyethylene 2.3 10−4

Polypropylene 2.3 10−4

Polystyrene 2.5 10−4

Polymethylsiloxane 3.6 10−4

of a are obtained by averaging the a values for the components. To illustrate,
for polyethylene (–CH2–CH2 · · · )n, the molar polarizability is 0.29 and the
expected dielectric constant is

K = 1 + 2a

1 − a
= 1.58

0.71
= 2.23.

Table 9.3 Molar
polarizabilities for organic

crystals and polymers
(Takahashi 1992)

a

–CH3 0.24
–CH2– 0.29
–CH 0.38

0.38
–CH=CH– 0.38
–O– 0.52
–C=C– 0.54
–CO–O– 0.82

N 0.82

–CONH– 1.04
–COOH 1.30
–OH 2.06

For polystyrene the molecular formula is

( −−− CHCH2 )

and ā = 1
3 (0.29 + 0.38 + 0.38) = 0.35, giving K = 2.6. The experimental

values for polyethylene and polystyrene are 2.3 and 2.5 (Table 9.4). Note that
the groups containing the more ionic oxygen and hydroxyl ions give the largest
polarizabilities.
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Fig. 9.16 Real and imaginary parts of the
dielectric constant of rutile (TiO2). Dielectric
spectra are sometimes highly anisotropic.

Many physical properties measurements are accompanied by loss
phenomena. The dielectric constant is a complex quantity K∗ = K ′ − iK ′′ with
real (K ′) and imaginary (K ′′) components. As shown in Fig. 9.16, the losses
are sometimes highly anisotropic. The losses in rutile are anisotropic because
of electrical conduction along the octahedral chains parallel to Z3 (=[001]).
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10.1 Mechanical stress 72

10.2 Stress
transformations 74

10.3 Strain tensor 75

10.4 Matrix transformation for
strain 77

Stress (force per unit area) and strain (change in length per unit length) are
both symmetric second rank tensors like the dielectric constant, but they are
not property tensors. Experimenters are at liberty to apply different types of
forces to a specimen, therefore there is no reason that the stress tensors (and the
resulting strain tensor) must conform to the crystal symmetry. Stress and strain
tensors do not obey Neumann’s Law. They are sometimes called field tensors
to distinguish them from property tensors like the dielectric constant. Property
tensors are relationships between field tensors.

For the same reason, electric and magnetic fields are first rank field tensors, as
are magnetization and polarization. They do not obey the symmetry principles
as first rank property tensors such as pyroelectricity or the magnetocaloric effect
are required to do.

X33

X13

X23

X31

X11

X21

X32

X12
X22

Z3

Z1

Z2

Fig. 10.1 Nine stress components (three
tensile and six shear components) acting on
a cube-shaped specimen. By convention, the
directions shown in the drawing are taken as
positive.

10.1 Mechanical stress

In arbitrary coordinate systems, the state of stress in a specimen is described
by nine components of the stress tensor:

(Xij) =

X11 X12 X13

X12 X22 X23

X13 X23 X33


 [N/m2]

The first subscript refers to the direction of the force, the second to the normal
to the face on which the force acts (Fig. 10.1). To prevent translational motion,
each force is balanced by an equal and opposite force on the reverse side of the
specimen. Stress component X22 is a tensile stress in which both the force and
the normal are along Z2, and X12 is a shear stress in which a force along Z1 acts
on a face normal to Z2. For static equilibrium, the torques must be balanced,
otherwise rotation occurs; this means that the stress tensor must be symmetric
with X12 = X21, X13 = X31, and X23 = X32. Thus the stress state is specified
by six independent components: three tensile stresses X11, X22, and X33, and
three shear components X12, X13, and X23.

For an arbitrary axial system (new axes) the general stress tensor can be
rewritten as a 6 × 1 column matrix:


X ′

11 X ′
12 X ′

13
X ′

12 X ′
22 X ′

23
X ′

13 X ′
23 X ′

33


 =




X ′
1 = X ′

11
X ′

2 = X ′
22

X ′
3 = X ′

33
X ′

4 = X ′
23

X ′
5 = X ′

13
X ′

6 = X ′
12



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The first three components in the column matrix are tensile stresses along Z ′
1,

Z ′
2, Z ′

3, and the last three are shear stresses about Z ′
1, Z ′

2, Z ′
3. Both the tensor

and matrix forms are widely used in the literature.
When rotated to principal axes, the generalized stress becomes


X11 0 0

0 X22 0
0 0 X33


 =




X1 = X11

X2 = X22

X3 = X33

0
0
0




with no shear stress components. It should be remembered that the stress tensor
is not a property tensor. Therefore the principal axes for stress will not coincide
with symmetry axes unless the forces are applied in a symmetric manner.

There are several special forms of the stress tensor that are often used in
experiments. A uniaxial tensile stress is


X11 0 0

0 0 0
0 0 0


 =




X1 = X11

0
0
0
0
0




.

Biaxial stresses are represented by


X11 0 0

0 X22 0
0 0 0


 =




X1 = X11

X2 = X22

0
0
0
0




.

Hydrostatic pressures are described by


−p 0 0

0 −p 0
0 0 −p


 =




−p
−p
−p
0
0
0




.

A pure shear about Z3 can be written in three equivalent ways


−X11 0 0

0 X11 0
0 0 0


 =


 0 X12 0

X12 0 0
0 0 0


 =




0
0
0
0
0

X6




,

where X11 = X12 = X6. The first two forms are related by a 45◦ rotation
about X3.

By convention, the tensile and shear stresses are positive if applied in the
directions shown in Fig. 10.1. This means that a hydrostatic pressure, p, is
a negative stress. One must be careful about signs because some authors use
a different convention.
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Problem 10.1
Stress is force per unit area and is expressed in a number of different units
including N/m2, dynes/cm2, Pascals, atmospheres, pounds per square inch,
and mm of Hg. Convert 1 N/m2 into these various systems.

10.2 Stress transformations

Like other second rank tensors, stress transforms as

X ′
ij = aikajlXkl,

but how do the matrix coefficients transform? The 6 × 1 column matrices take
the following form.



X ′
1

X ′
2

X ′
3

X ′
4

X ′
5

X ′
6




=




α11 α12 α13 α14 α15 α16

α21 α22 α23 α24 α25 α26

α31 α32 α33 α34 α35 α36

α41 α42 α43 α44 α45 α46

α51 α52 α53 α54 α55 α56

α61 α62 α63 α64 α65 α66







X1

X2

X3

X4

X5

X6




.

The unknown α coefficients in the 6×6 matrix transformation are determined by
writing out the tensor and matrix transformations and equating equivalent terms.
For the tensile stress component X ′

11 = X ′
1, the matrix and tensor expressions are

X ′
1 = α11X1 + α12X2 + · · · + α16X6

X ′
11 = a2

11X11 + a11a12aX12 + a12a11X21 + · · · + a2
12X22 + · · · .

Therefore α11 = a2
11, α12 = a2

12, α16 = 2a11a12. The other α coefficients are
obtained in a similar way. The complete (α) matrix and reciprocal (α)−1 matrix
are given in Table 10.1.

The (α) and (α)−1 matrices can be written in a more compact form. To find
αmn (or α−1

mn ) in terms of the direction cosines, rewrite the matrix coefficient
subscripts in terms of the equivalent tensor subscripts:

1 = 11, 2 = 22, 3 = 33, 4 = 23, 5 = 31, and 6 = 12.

Table 10.1 Transformation matrices for stresses and strains written in matrix form

(α)




(
a2

11

) (
a2

12

) (
a2

13

)
(2a12a13) (2a13a11) (2a11a12)(

a2
21

) (
a2

22

) (
a2

23

)
(2a22a23) (2a23a21) (2a21a22)(

a2
31

) (
a2

32

) (
a2

33

)
(2a32a33) (2a33a31) (2a31a32)

(a21a31) (a22a32) (a23a33) (a22a33 + a23a32) (a21a33 + a23a31) (a22a31 + a21a32)

(a31a11) (a32a12) (a33a13) (a12a33 + a13a32) (a13a31 + a11a33) (a11a32 + a12a31)

(a11a21) (a12a22) (a13a23) (a12a23 + a13a22) (a13a21 + a11a23) (a11a22 + a12a21)




(α−1)




(
a2

11

) (
a2

21

) (
a2

31

)
(2a21a31) (2a31a11) (2a11a21)(

a2
12

) (
a2

22

) (
a2

32

)
(2a22a32) (2a32a12) (2a12a22)(

a2
13

) (
a2

23

) (
a2

33

)
(2a23a33) (2a33a13) (2a13a23)

(a12a13) (a22a23) (a32a33) (a22a33 + a32a23) (a12a33 + a32a13) (a22a13 + a12a23)

(a13a11) (a23a21) (a33a31) (a21a33 + a31a23) (a31a13 + a11a33) (a11a23 + a21a13)

(a11a12) (a21a22) (a31a32) (a21a32 + a31a22) (a31a12 + a11a32) (a11a22 + a21a12)



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The elements in the (α) and (α)−1 matrices are then given by the expressions

αmn = αijkl = aikajl + (1 − δkl)ailajk

and

α−1
mn = α−1

ijkl = akialj + (1 − δkl)akjali.

As examples,

α56 = α3112 = a31a12 + (1 − 0)a32a11 = a31a12 + a32a11

α−1
23 = α−1

2233 = a32a32 + (1 − 1)a32a32 = a2
32.

Problem 10.2
A crystal is subjected to a tensile stress of 1 N/m2 along Z1 and a compressive
stress of 2 N/m2 along Z2. A new coordinate system Z ′

i is chosen. It is related
to the original coordinate by a counterclockwise rotation of θ◦ about Z3.

Write out the new stress components X ′
ij in tensor form. Using the α matrix,

repeat the exercise in matrix form to obtain the stress components of X ′
i . Plot X ′

1,
X ′

2, and X ′
6 as a function of the angle θ using the numerical values given above.

10.3 Strain tensor

Strain refers to the fractional change in shape of a specimen. It is a dimensionless
quantity that refers to the change in length per unit length.

In order to describe strain, consider a solid in an orthogonal coordinate system
Z1, Z2, Z3 with a fixed origin (Fig. 10.2(a)). All other points can be displaced.

Strain is a symmetric second rank tensor like stress. The strain tensor relates
two vectors: displacement ui and coordinate Zj. Written in differential form the
strain is

(xij) = δui

δZj
=


x11 x12 x13

x12 x22 x23

x13 x23 x33


 .

The strain is symmetric (xij = xji) to eliminate body rotations that are not part of
the shape change. The meaning of x11 and x12 = x21 is illustrated in Fig. 10.2(b)
and (c). x11 is a tensile strain and x12 = x21 is a shear strain about Z3.

As an illustration of an actual strain calculation, consider the object shown in
Fig. 10.3(a) plotted in the Z1–Z2 plane. The initial coordinates of four points are
listed. How will the shape change when a strain takes place? Let the strain be

(xij) =

 0.1 −0.1 0

−0.1 0.2 0
0 0 0


 .

Z2 Z2 Z2

Z1 Z1 Z1

x11 x12

x21 = x12

(a) (b) (c)

Fig. 10.2 Drawing illustrating (a) an unstra-
ined solid, (b) tensile strain x11, and (c) shear
strain x12 = x21.
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Fig. 10.3 A two-dimensional object illustrat-
ing how shape changes for a given strain.

(0, 0) (2, 0)

(1, 1)

(0, 2)

Z1

Z2 Z2

Z1
(0, 0)

(2.2, –0.2)

(1, 1.1)

(–0.2, 2.4)

(b)(a)

Remembering that the origin is fixed, integration of the differential strain
equation gives displacements

ui = xijZj.

For the point at Z1 = 2 and Z2 = 0, the displacements are u1 = 0.1(2)−0.1(0),
u2 = −0.1(2) + 0.2(0), and the strained coordinates Z1 = 2.2 and Z2 = −0.2.
Displacements for the other three points are illustrated in Fig. 10.3(b).

Problem 10.3
Verify the new coordinates for the other points in Fig. 10.3.

As with the stress tensor, the generalized strain tensor can be rewritten as
a 6 × 1 matrix.




x′
11 x′

12 x′
13

x′
12 x′

22 x′
23

x′
13 x′

23 x′
33


 =




x′
1 = x′

11

x′
2 = x′

22

x′
3 = x′

33

x′
4 = 2x′

23

x′
5 = 2x′

13

x′
6 = 2x′

12




,

where x′
1, x′

2 and x′
3 are the tensile strains along an arbitrary set of axes Z ′

1, Z ′
2,

and Z ′
3. The remaining three strain coefficients, x′

4, x′
5, and x′

6, are shear strains
about Z ′

1, Z ′
2, and Z ′

3, respectively. Note the factors of two that appear between
shear tensor coefficients and matrix coefficients, as shown in Fig. 10.2(c),

x′
6 = x′

12 + x′
21 = 2x′

12.

Factors of two are encountered for strains but not for stresses.
When transformed from measurement axes (Z ′

i ) to principal axes (Zi), the
strain tensor has no shear components. The principal axes are not necessarily
along symmetry directions since strain is not a property tensor. It is not covered
by Neumann’s Principle. For principal axis


x11 0 0

0 x22 0
0 0 x33


 =




x1

x2

x3

0
0
0




.

Volume changes are easily visualized from principal axes (Fig. 10.4).
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Z1 Z1

Z2 Z2

Z3 Z3

1
1

Unit cube unstrained

1 + x1

1 + x3

1 + x2

Strained
(a) (b)

1

Fig. 10.4 A unit cube in (a) unstrained and
(b) strained states referred to principal axes.

The volume change between the strained and unstrained states is

	V = (1 + x11)(1 + x22)(1 + x33) − 1 ∼= x11 + x22 + x33

for small strains. The fractional volume change for the unit cube is

	V

V
= x11 + x22 + x33.

10.4 Matrix transformation for strain

In tensor form strain transforms as a symmetric second rank tensor

x′
ij = aikajlxkl.

Stress also transforms as a symmetric second rank tensor, and in matrix form
it transforms according to the α matrix (Section 10.2):

6 × 1
(X ′) =

6 × 6
(α)

6 × 1
(X)

To determine how the strain matrix transforms, it is helpful to recall that the
product of stress and strain is mechanical energy density, W . Energy density is
a scalar quantity. In matrix form,

W = xiXi = x1X1 + x2X2 + x3X3 + x4X4 + x5X5 + x6X6

= (x1 x2 x3 x4 x5 x6)




X1

X2

X3

X4

X5

X6




= (x)t(X).

Since energy density is a scalar, it has the same value in both the new and old
coordinate systems (W ′ = W).

W = (x)t(X) = (x)t(α)−1(α)(X) = (x)t(α)−1(X ′)
= W ′ = (x′)t(X

′).

Therefore (x′)t = (x)t(α)−1.
Taking the transpose of both sides, this becomes

((x′)t)t = (x′) = [(x)t(α)−1]t = (α)−1
t (x).

Therefore the strain matrix transforms as

(x′) = (α)−1
t (x) from old to new, and as

(x) = (α)t(x
′) from new to old.
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The transpose matrices (α)t and (α)−1
t are easily obtained from Table 10.1 by

interchanging rows and columns in the (α) and (α)−1 matrices. The stress and
strain matrix transformations are often used in working with higher rank tensor
properties such as piezoelectricity (Chapter 12) and elasticity (Chapter 13).

Problem 10.4
Mathematically, stress and strain are symmetric second rank tensors like the
dielectric constant. This means that a strain tensor such as

(x′) =



x′
11 x′

12 x′
13

x′
12 x′

22 x′
32

x′
13 x′

23 x′
33


 =


5 1 2

1 4 −1
2 −1 3


 × 10−3

can be diagonalized in principal axes to

(x) =

x11 0 0

0 x22 0
0 0 x33


 ,

where

(x′)(a) = (a)(x).

a. Find the three principal strains x11, x22, and x33.
b. Find the nine direction cosines a11, a12, a13, . . . , a33 that relate the

measurement axes to the principal axes.
c. What is the fractional change in volume for this set of strains?

The procedure for doing this was outlined in the previous chapter, Section 9.4.
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11.1 Effect of symmetry 79

11.2 Thermal expansion
measurements 81

11.3 Structure–property
relations 82

11.4 Temperature
dependence 85

When a material is heated uniformly it undergoes a strain described by the
relationship

xij = αij	T ,

where αij are the thermal expansion coefficients and 	T is the change in
temperature. Room temperature thermal expansion coefficients range from
about 10−6/K for an oxide like silica glass to 10−3/K for an elastomeric
polymer. Thermal expansion coefficients are often a strong function of temper-
ature, as shown in Fig. 11.1. Simple linear relations are insufficient to describe
thermal expansion over a wide temperature range. A power series consisting
of terms in 	T , (	T)2 and higher order terms can be used to describe this
thermal expansion over extended temperature ranges. In hexagonal zinc oxide
both coefficients are slightly negative at low temperatures and exhibit increasing
anisotropy at high temperatures. The negative thermal expansion coefficients
are attributed to the low-energy transverse vibrations that dominate at very low
temperatures.

11.1 Effect of symmetry

Thermal expansion relates a second rank tensor (strain) to a scalar (temper-
ature change). It is a symmetric second rank tensor because the strain tensor
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Fig. 11.1 Zinc oxide is a hexagonal crystal
with tetrahedrally bonded zinc and oxy-
gen atoms. The thermal expansion coeffi-
cients approach zero at 0 K. Anisotropy also
changes sign at low temperatures with both
coefficients becoming slightly negative.
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Fig. 11.2 Anisotropy surface for the thermal
expansion coefficient of low symmetry
crystals.

Z3

Z3

�

�

Z1�
Z1�

Z1

Z2 Z2

Spherical
coordinates

��11

�22

�33

is symmetric. Therefore thermal expansion and the dielectric constant are the
same type of tensor, and the effect of symmetry is the same. This means that
for the general case (a triclinic crystal), six measurements are required to find
the three principal thermal expansion coefficients and the three angles needed
to orient the principal axes. The appropriate matrices for other symmetries are
given in Table 9.1. Four measurements are needed for monoclinic crystals, three
for orthorhombic, two for trigonal, tetragonal, and hexagonal crystals, and only
one for cubic crystals.

When referred to principal axes, the thermal expansion coefficient in an
arbitrary direction is

α′
11 = α11 cos2 φ sin2 θ + α22 sin2 φ sin2 θ + α33 cos2 θ ,

where θ and φ are the spherical coordinate angles. When all three prin-
cipal coefficients are positive numbers, the resulting surface is shaped like
a peanut (Fig. 11.2). For trigonal, tetragonal, and hexagonal crystals, the thermal
expansion coefficient surface is

α′
11 = α11 sin2 θ + α33 cos2 θ

and for cubic crystals the surface is a sphere of radius α′
11 = α11.

Z3 = [001]

Zero �

Negative �

Positive �

Z1

+

–

Fig. 11.3 Thermal expansion surface of
calcite with circular symmetry about Z3, the
trigonal axis. The maximum expansion is
perpendicular to the flat carbonate groups of
the structure.

Unlike the dielectric constant, thermal expansion coefficients can be positive,
negative, or both positive and negative. Trigonal calcite (CaCO3) is a
good example. At room temperature, the thermal expansion coefficients are
α11 = α22 = −5.6 × 10−6/K and α33 = +25×10−6/K. The resulting surface
(Fig. 11.3) has both positive and negative lobes. In between the two lobes is
a cone of zero thermal expansion given by α′

11 = 0 = α11 sin2 θ + α33 cos2 θ

or tan2 θ = −α33/α11. The zero expansion angle is θ = 65◦.

Problem 11.1
Al2TiO5 is orthorhombic, point group mmm. The structure contains chains
of TiO6 octahedra along the c-axis, the direction of negative thermal expan-
sion. Measured values along the principal axes are α11 = 9.51, α22 = 19,
α33 = −1.4, all in units of 10−6/K. Plot the thermal expansion as a
function for direction in the (100), (010), and (001) planes. Replot this
data as a quadratic surface. The large anisotropy in α leads to inter-
granular microfracture and low mechanical strength in aluminum titanate
ceramics.
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Fig. 11.4 Lever-arm dilatometers and optical
interferometers are two of the experimental
methods used to measure thermal expansion.

11.2 Thermal expansion measurements

Schematic illustrations of two of the classical techniques are shown in Fig. 11.4.
Ceramists use push-rod dilatometers to measure the expansion of heated
specimens inside a furnace. The lever arm amplifies the thermal motion.
Physicists traditionally favored optical techniques. Small changes in thickness
of a heated specimen were measured by counting light fringes formed by optical
interference across a small air gap.

The classical techniques are sufficient for isotropic polycrystalline specimens
or cubic crystals but low symmetry crystals require up to six different crystal
orientations. Fortunately there is another method to measure the thermal expan-
sion coefficients of anisotropic materials. The single crystal coefficients can all
be determined from X-ray powder patterns.

0° Angle � 90°

Intensity Hot

Cold

Fig. 11.5 An X-ray powder pattern recorded
at two different temperatures showing the
shifts in θ from which thermal expansion
coefficients are calculated. The shifts are
especially large in the back reflection region
near 90◦.

The interplanar d-spacing are given by Bragg’s Law

λ = 2d sin θ ,

where θ is the Bragg angle and λ is the X-ray wavelength. Differentiating this
equation with respect to temperature gives

dd

dT
= −λ

2

cos θ

sin2 θ

dθ

dT

from which the thermal expansion coefficient

αd = 1

d

dd

dT
= − cot θ

dθ

dT
.

The shifts in Bragg angle, dθ/dT , are determined by recording the powder
pattern at two different temperatures (Fig. 11.5).

After determining the angular shifts and computing the thermal expansion
coefficients for each reflection, the coefficients are plotted as a function of
direction. The measured values αd refer to the directions perpendicular to each
Bragg plane (hkl). Thus for the 2̄13 reflection, the αd value is plotted for the
direction normal to (2̄13).

If, instead of plotting αd , one plots ±1/
√

αd , then a representation quadric
surface is obtained (see Section 9.5). A sample surface for a monoclinic crystal
is shown in Fig. 11.6.



82 Thermal expansion

Fig. 11.6 Thermal expansion ellipsoid for a
monoclinic crystal. By plotting 1/

√
α for

various planes, the principal axes can be
identified.

Other
planes

Normal to reflection plane 

�
1

Quadric surface
[100]

[001]

The major and minor axes of the ellipse correspond to two of the prin-
cipal axes. For a monoclinic crystal, the third principal axis is along the [010]
direction.

The volume expansivity β is defined as the fractional change in volume for
a 1◦ change in temperature: β = (1/V)(dV/dT). When referred to principal
axes,

β = α11 + α22 + α33.

The temperature dependence of the density, ρ, is

1

ρ

dρ

dT
= −β = −(α11 + α22 + α33).

Problem 11.2
As pointed out in Section 6.2, there is a thermodynamic relationship between the
linear thermal expansion coefficient and the piezocaloric effect. A piezocaloric
experiment is performed on calcite (CaCO3) using two plates cut parallel and
perpendicular to the threefold symmetry axis. From the values of α11 and α33

listed in Table 11.1, calculate the changes in entropy and temperature when
the plates are subjected to a compressive stress of 1000 N/m2. Use the Law
of Dulong and Petit in estimating the specific heat. The density of calcite is
2.71 g/cm3.

11.3 Structure–property relations

Strong interatomic forces are associated with low thermal expansion, weak
forces with high expansion (Fig. 11.7). The room temperature thermal expan-
sion coefficients of cubic inorganic crystals illustrates the trend. Fig. 11.8 shows
the thermal expansion coefficients of six compounds with univalent and divalent
ions. In every case the divalent compounds have stronger bonds and smaller
expansivities. The product of the charges differs by a factor of four and so do
the thermal expansion coefficients.

Megaw has shown that α is inversely proportional to the Pauling bond
strength, defined as the cation valence divided by its coordination number.
For cubic ZrO2 the Zr–O bond strength is 4/8 = 0.5. Fig. 11.8 shows the ther-
mal expansion coefficients plotted against bond strength. The bond strength is
approximately proportional to α−1/2.

Although α depends mainly on bond strength, there are variations among
isomorphous crystals. Thermal expansion coefficients for alkali halides with the
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Table 11.1 Thermal expansion coefficients near room
temperature in units of 10−6/K

Cubic crystals α

Diamond (C) 1.4
Silicon (Si) 4.2
Germanium (Ge) 5.9
Copper (Cu) 17
Silver (Ag) 20
Gold (Au) 15
Iron (Fe) 12
Platinum (Pt) 8.3
Tungsten (W) 4.3

Hexagonal crystals α11 α33

Magnesium (Mg) 27 28
Zinc (Zn) 14 61
Cadmium (Cd) 19 48
Magnesium Hydroxide (Mg(OH)2) 11 45

Tetragonal crystals α11 α33

Tin (Sn) 46 22
Titanium Oxide (TiO2) 7.1 9.2

Trigonal crystals α11 α33

Calcium Carbonate (CaCO3) −3.8 21
Sodium Nitrate (NaNO3) 11 120
Tellurium (Te) 28 −1.7
Antimony (Sb) 8.2 16
Aluminum Oxide (Al2O3) 5.4 6.6

Orthorhombic crystals α11 α22 α33

Iodine (I2) 133 95 35
Lead Chloride (PbCl2) 34 39 17

rocksalt structure range from NaF 34×10−6/K to LiI 56×10−6/K. Radius-ratio
appears to be important since α is largest for LiI, LiBr, LiCl, NaI, and NaBr
where r+/r− is small. Anion–anion repulsion loosens the structure making
expansion easier.

Rocksalt structure
NaCl � = 40 × 10–6/K
MgO � = 10 × 10–6

Fluorite structure
CaF2 � = 19 × 10–6

ZrO2 � = 4.5 × 10–6

� = 19 × 10–6

� = 4.5 × 10–6

Zincblende structure
CuBr
ZnS

Fig. 11.7 For simple ionic structures
like rocksalt and fluorite, higher valence
compounds have lower thermal expansion
coefficients.

Thermal expansion of layer-type crystals is largest normal to the layer.
In hydrocarbons and other planar molecular crystals, expansion coefficients
for crystalline benzene (−193◦C to 3◦C) are 11.9, 10.6, and 22.1 × 10−5/K
parallel to the a, b, and c orthorhombic axes. The C6H6 molecules in benzene
lie close to the (001) plane, perpendicular to the direction of largest expansion.
The same is true of naphthalene (C10H8) and anthracene (C14H10). Expan-
sion coefficients are greater for crystals with small molecules than their larger
homologs. The average α values for benzene, naphthalene, and anthracene are
14.7, 12.7, and 8.0×10−5/K. Because of the weak bonding between molecules,
the thermal expansion coefficient of organic crystals are an order of magnitude
larger than those of metals and ceramics.

Anisotropy in inorganic crystals follow similar trends. Calcite is an ionic
crystal consisting Ca2+ cations and (CO3)

2− anions. The flat triangular carbon-
ate groups are perpendicular to the trigonal c-axis, the direction of maximum
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Fig. 11.8 Thermal expansion coefficients
are inversely proportional to Pauling bond
strength.
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thermal expansion (Fig. 11.3). Table 11.1 lists thermal expansion coefficients
for a number of isotropic and anisotropic crystals.

Layer structures like antimony, brucite (Mg(OH)2), and graphite also have
the largest thermal expansion coefficients α33 perpendicular to the layers.
Tellurium and tin have strong bonding along the c-axis making α11 > α33.
Metals also show similar anisotropy effects. Metallic zinc has a distorted hexa-
gonal close-packed structure with the shortest bonds in the (001) plane. The
thermal expansion coefficient in the perpendicular direction α33 is much greater
than α11.
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Fig. 11.9 Thermal expansion coefficients of
polyethylene fibers measured parallel and
perpendicular to the draw axis. As the (CH2)n
chains align under stress, the bonding and
thermal expansion becomes very anisotropic.

Thermal expansion depends on the strength of the chemical bonds in dif-
ferent directions. Polymers form very long molecules with covalent bonds
in the chain direction and van der Waals forces in the perpendicular direc-
tions between adjacent chains. A large anisotropy in thermal expansion is
therefore expected. X-ray measurements on crystalline polyethylene along
the orthorhombic axes gave αa = 20 × 10−5/K, αb = 6.4 × 10−5, and
αc = −1.3 × 10−5. The negative value αc along the chain axis is somewhat
surprising but has been verified in other polymers. Thermal agitation gives rise
to lateral vibrations in the chain which produce an effective contraction by
bending motions.

In an isotropic polymer the chains are entangled in random directions, so that
thermal expansion is controlled by the weak bonds between chains. When drawn
into fibers, however, the polymer becomes anisotropic with a large decrease in
α parallel to the fiber axis and modest increase in the perpendicular directions
(Fig. 11.9).

Thermal expansion anisotropy leads to problems in polycrystalline ceramics
and metals. Under thermal cycling, neighboring grains expand differently,
leading to stresses at the grain boundaries. Ceramics made of cubic materials
do not experience this problem because grains expand and contract uniformly
as temperature changes. To relieve the intergranular stresses in anisotropic
materials, it is sometimes possible to choose a composition that is accidentally
isotropic. Consider the trigonal Al2−xCrxO3 grains in a ruby ceramic. The phys-
ical properties of a solid solution change smoothly from one end member to the
other. In the Al2O3–Cr2O3 solid solution the thermal expansion coefficients
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Fig. 11.10 Melting points and room
temperature thermal expansion coefficients
for a number of different chemical elements.

change from a positive (α33 > α11) to a negative (α33 < α11) anisotropy.
In between there is an isotropic composition where α33 = α11 and the inter-
granular stresses are minimized. This is an interesting bit of tensor engineering
that improves thermal shock resistance.

11.4 Temperature dependence

There is an inverse relationship between thermal expansion and melting point, as
shown in Fig. 11.10. The product αTm is approximately constant. Low melting
elements like the alkali metals have much larger coefficients than the refractory
transition metal elements.

The crystal structures of MgO, BeO, Al2O3, MgAl2O4, and BeAl2O4 are
all based on close-packed oxygen lattices and all exhibit fairly large thermal
expansion coefficients, 5–10×10−6/K. The effect of temperature is to increase
thermal vibration, and in close-packed structures this results in atoms vibrat-
ing against one another since they are in close contact. The situation is more
complicated in open structures where two additional effects can occur. The
atoms can vibrate anisotropically toward open spaces in the structure, resulting
in low thermal expansion coefficients. Thus many open structure oxides have
small thermal expansion coefficients; compounds like spodumene (2×10−6/K)

are therefore useful because of their thermal shock resistance. Second, there
can be cooperative rotational effects that lead to a rapid change in thermal
expansion coefficients with temperature, as in quartz. The small expansivity
of silica glass (<10−6/K) has been attributed to the fact that the densities
are low and also that cooperative rotations are not possible in amorphous
materials.

Fig. 11.11 Silica rings consist of tetra-
hedrally coordinated silicon atoms linked
together by oxygens. Open spaces in the
silicate structures leads to transverse motions
of the oxygen atom causing large displacive
phase transformations and unusual thermal
expansion effects.

Thermal expansion coefficients often change dramatically with temperature,
especially when phase transformations are involved. The correlation between
thermal expansion and melting points has already been mentioned. Refractory
compounds like silica glass have small thermal expansion coefficients but the
crystalline forms of silica (cristobalite, tridymite, and quartz) all have displacive
phase transformations that can lead to thermal shock in silica refractories. Silica
ceramics must be heated or cooled slowly below 600◦C where the transitions



86 Thermal expansion

Fig. 11.12 Thermal expansion of various
forms of silica and silica brick.
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occur. At higher temperatures the crystalline phases have small α values similar
to silica glass and the silica bricks are more resistant to thermal shock. The rapid
increase in volume at the phase α–β phase transformations can be understood as
an opening up of the silicate rings. At room temperature the rings (Fig. 11.11) are
partially crumpled but the increase in thermal motion straightens out the silicate
rings. The transverse vibrations of oxygen also explain the peculiar behavior at
very low temperatures. Silica has a negative thermal expansion coefficient near
0 K because the lowest energy vibration modes are the transverse motions of
the oxygen atoms. This leads to a crumpling of the silicate rings and thermal
shrinkage. Zinc oxide (Fig. 11.1) shows a similar effect.

Problem 11.3
Using the data for silica brick refractories in Figure 11.12, estimate the thermal
expansion coefficient α as a function of temperature from 100◦C to 1400◦C.
Express the dependence of α on T as a power series in 	T , (	T)2, (	T)3,
etc., and derive a set of coefficients which fit the measured values of α over this
temperature range.
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The prefix “piezo” (pronounced pie-ease-o) comes from the Greek word for
pressure or mechanical force. Piezoelectricity refers to the linear coupling
between mechanical stress and electric polarization (the direct piezoelectric
effect) or between mechanical strain and applied electric field (the converse
piezoelectric effect). The equivalence between the direct and converse effects
was established earlier using thermodynamic arguments (Section 6.2).

The principal piezoelectric coefficient, d, relates polarization, P, to stress, X ,
in the direct effect (P = dX) and strain, x, to electric field E (x = dE). Thus the
units of d are [C/N] or [m/V] which are equivalent to one another. Typical sizes
for useful piezoelectric materials range from about 1 pC/N for quartz crystals
to about 1000 pC/N for PZT (lead zirconate titanate) ceramics.

12.1 Tensor and matrix formulations

To understand how the piezoelectric effect varies with direction and how it is
affected by symmetry, it is necessary to determine how piezoelectric coefficients
transform between coordinate systems. Since polarization is a vector and stress
a second rank tensor, the physical property relating these two variables must
involve three directions:

Pj = djklXkl.

In the new coordinate system

P′
i = aijPj = aijdjklXkl.

Transforming the stress to the new coordinate system gives

P′
i = aijdjklamkanlX

′
mn = d′

imnX ′
mn.

Thus piezoelectricity transforms as a polar third rank tensor.

d′
imn = aijamkanldjkl.

In general there are 33 = 27 tensor components, but because the stress tensor is
symmetric (Xij = Xji), only 18 of the components are independent. Therefore
the piezoelectric effect can be described by a 6 × 3 matrix. The matrix form
of the piezoelectric effect uses only two subscripts: Pi = dijXj where i = 1–3,
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and j = 1–6. Written out it is


P1

P2

P3


 =


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36







X1

X2

X3

X4

X5

X6




.

To determine the relationships between the tensor coefficients dijk and the matrix
coefficient dij, it is helpful to write out the equations and identify correspond-
ing coefficients. To illustrate, write out P1 first in tensor form and then in
matrix form.

P1 = d1jkXjk = d111X11 + d112X12 + d113X13 + d121X21 + d122X22

+ d123X23 + d131X31 + d132X32 + d133X33.

And in matrix form,

P1 = d1j = d11X1 + d12X2 + d13X3 + d14X4 + d15X5 + d16X6.

Identifying corresponding stresses and piezoelectric coefficients in the two
expressions for P1:

X11 = X1, X22 = X2, X33 = X3, X12 = X21 = X6,

X13 = X31 = X5, and X23 = X32 = X4.

d111 = d11, d122 = d12, d133 = d13, d123 + d132 = 2d123 = d14,

d131 + d113 = 2d113 = d15, d112 + d121 = 2d112 = d16.

Factors of two enter the matrix–tensor relations for piezoelectric coeffi-
cients involving shear stresses or shear strains. If j = 1, 2, 3 matrix coefficient
dij = dijj. If j = 4, 5, 6, then dij = 2dikl.

For the converse piezoelectric effect, strain (x) is related to electric field (E).
In tensor form, strain is a second rank tensor, and electric field a first rank tensor.
Therefore the converse piezoelectric coefficient is a third rank tensor.

xij = dijkEk .

It was shown earlier (Section 6.2) that the direct and converse piezoelectric
coefficients are equal based on thermodynamic arguments.

In matrix form the converse coefficient matrix is the transpose of the direct
effect matrix

(x) = (d)t(E).

Written out, the converse effect is


x1

x2

x3

x4

x5

x6




=




d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36





E1

E2

E3


 .
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12.2 Matrix transformations and
Neumann’s Law

In matrix form the direct piezoelectric effect is (P) = (d)(X). When written
in tensor form the piezoelectric coefficients transform as a third rank tensor,
but how do they transform in matrix notation? Here we make use of the matrix
transformations for stress (Section 10.2):

(X ′) = (α)(X) and (X) = (α)−1(X ′),

where the (α) and (α)−1 matrices are functions of the direction cosines aij

(Table 10.1). For the direct piezoelectric effect, the matrix transformation is
derived as follows.

(P′) = (a)(P) = (a)(d)(X) = (a)(d)(α)−1(X ′)
= (d′)(X ′).

Therefore the matrix transformation in going from the old to the new coordinate
system is

(d′) = (a)(d)(α)−1.

Premultiplying this equation by (a)−1 and postmutiplying by (α) gives the
transformation from new to old.

(d) = (a)−1(d′)(α).

To illustrate how the matrix transformation is used, we derive the piezoelectric
coefficients for monoclinic crystals belonging to point group 2. By convention,
the twofold symmetry axis is along the crystallographic [010] direction and
is labeled Z2 for the physical properties. The direction cosine matrix for 180◦
rotation about Z2 is

(a) =

−1 0 0

0 1 0
0 0 −1


 .

Since this is a symmetry element for sucrose and other crystals belong-
ing to point group 2, the piezoelectric matrix must remain the same after
the transformation (Neumann’s Law). We carry out this transformation in
matrix form.

(d′) = (a)(d)(α)−1

(d′) = (a)


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36







1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1




.
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The reciprocal (α) matrix was obtained by substituting the aij direction
cosines for a twofold rotation in the (α)−1 matrix in Table 10.1.

(d′) =

−1 0 0

0 1 0
0 0 −1





d11 d12 d13 −d14 d15 −d16

d21 d22 d23 −d24 d25 −d26

d31 d32 d33 −d34 d35 −d36




=

−d11 −d12 −d13 +d14 −d15 +d16

+d21 +d22 +d23 −d24 +d25 −d26

−d31 −d32 −d33 +d34 −d35 +d36


 .

Equating this transformed matrix (d′) to the original piezoelectric matrix (d)
shows that 10 of the coefficients are zero. The piezoelectric matrix for point
group 2 has eight nonzero coefficients and all eight are different. Therefore
a minimum of eight piezoelectric measurements will be required for these
crystals.

Sucrose (C12H22O11) and triglycine sulfate (TGS = (NH2CH2COOH)3·
H2SO4) are monoclinic crystals belonging to point group 2. Their piezo-
electric coefficients are given in Table 12.1. TGS is ferroelectric with active
domain walls but sucrose (common table sugar) is not. Note that the some of
piezoelectric coefficients of ferroelectric TGS are much larger than those of
sucrose.

Piezoelectric matrices for other symmetry groups are derived in a similar
manner. An important case is that of a poled ferroelectric ceramic. The poling
process is carried out with a strong DC field at elevated temperatures where
domain walls move more easily. The symmetry of a uniform DC field is ∞m,
one of the Curie group textures.

Point group ∞m has an ∞-fold axis parallel to Z3 and an infinite number of
mirror planes parallel to Z3. Three of these mirror planes are perpendicular to
Z1, perpendicular to Z2, and at 45◦ to Z1 and Z2. Using these three mirrors and
the direct inspection method for tensor coefficients, we derive the piezoelectric
matrix for poled ferroelectric ceramics by the direct inspection method.

For the mirror perpendicular to Z1, 1 → −1, 2 → 2, 3 → 3. Therefore
for coefficient d111, 111 → −111, which means that according to Neumann’s
Principle, d111 = 0. In matrix form d11 = d111 = 0. Carrying out the same
procedure for other tensor coefficients, it is obvious that dijk = 0 whenever there
is an odd number of 1s in the subscript. Thus, for example, d123 = 0 = 1

2 d14.

Table 12.1 Piezoelectric coefficients of sucrose and
triglycine sulfate measured in units of pC/N at room

temperature

Coefficient Sucrose Triglycine sulfate

d21 1.48 23.6
d22 −3.42 7.9
d23 0.74 25.3
d14 1.25 2.8
d16 −2.42 −4.6
d25 −0.87 24.3
d34 −4.22 −3.2
d36 0.42 2.8
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The resulting matrix for m ⊥ Z1 is
 0 0 0 0 d15 d16

d21 d22 d23 d24 0 0
d31 d32 d33 d34 0 0


 .

The second symmetry element is m ⊥ Z2 for which 1 → 1, 2 → −2, 3 → 3.
In this case all the remaining tensor coefficients with an odd number of 2s go
to zero. Thus d222 = 0 = d22 and d122 = 1

2 d16 = 0. The remaining matrix
coefficients are 

 0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0


 .

The third symmetry element is a mirror plane at 45◦ to X1 and X2. Such
a transformation takes 1 → 2, 2 → 1, and 3 → 3. For the remaining
tensor coefficients 113 → 223, or in matrix notation, d15 = d24. Similarly
311 → 322, and d31 = d32. The final coefficient d33 is left unchanged.

For poled ferroelectric ceramics and other materials belonging to point
group ∞m, the piezoelectric matrix has five coefficients, three of which are
independent: 

 0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0


 .

12.3 Piezoelectric symmetry groups

Applying Neumann’s Principle to the 32 crystal classes and seven Curie groups
leads to the matrices listed in Table 12.2. Piezoelectricity is a null property,
which means that the piezoelectric effect disappears for certain symmetry
groups. Eleven of the crystal classes and four of the Curie groups are non-
piezoelectric. All but two of the nonpiezoelectric groups are centrosymmetric.
The presence of a center of symmetry eliminates all piezoelectric coefficients.

Table 12.2 Piezoelectric matrices for the crystallographic and limiting
point groups

Point groups 1̄, 2/m, mmm, 3̄, 3̄m, 4/m,
4/mmm, 6/m, 6/mmm, m3, 432,
m3m, ∞/m, ∞/mm, ∞∞, ∞∞m


0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




Point group 1


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36




(18)

Point group 2


 0 0 0 d14 0 d16

d21 d22 d23 0 d25 0
0 0 0 d34 0 d36




(8)

Continued overleaf
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Table 12.2 (Continued)

Point group m


d11 d12 d13 0 d15 0

0 0 0 d24 0 d26
d31 d32 d33 0 d35 0




(10)

Point group mm2


 0 0 0 0 d15 0

0 0 0 d24 0 0
d31 d32 d33 0 0 0




(5)

Point group 222


0 0 0 d14 0 0

0 0 0 0 d25 0
0 0 0 0 0 d36




(3)

Point group 3


 d11 −d11 0 d14 d15 −2d22

−d22 d22 0 d15 −d14 −2d11
d31 d31 d33 0 0 0




(6)

Point group 32


d11 −d11 0 d14 0 0

0 0 0 0 −d14 −2d11
0 0 0 0 0 0




(2)

Point group 3m


 0 0 0 0 d15 −2d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0




(4)

Point group 4, 6, ∞

 0 0 0 d14 d15 0

0 0 0 d15 −d14 0
d31 d31 d33 0 0 0




(4)

Point group 4̄


 0 0 0 d14 −d15 0

0 0 0 d25 d14 0
d31 −d31 0 0 0 d36




(3)

Point group 4mm, 6mm, ∞m


 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0




(3)

Point group 422, 622, ∞2


0 0 0 d14 0 0

0 0 0 0 −d14 0
0 0 0 0 0 0




(1)

Point group 4̄2m


0 0 0 d14 0 0

0 0 0 0 d14 0
0 0 0 0 0 d36




(2)

Point group 6̄


 d11 −d11 0 0 0 −2d22

−d22 d22 0 0 0 −2d11
0 0 0 0 0 0




(2)

Point group 6̄m2


 0 0 0 0 0 −2d22

−d22 d22 0 0 0 0
0 0 0 0 0 0




(1)

Point group 4̄3m, 23


0 0 0 d14 0 0

0 0 0 0 d14 0
0 0 0 0 0 d14




(1)
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12.4 Experimental techniques

The number of independent piezoelectric coefficients varies from 18 for triclinic
group 1 to one for crystals in cubic classes 4̄3m and 23. The piezoelectric
constants can be measured under static or quasistatic conditions with reason-
able accuracy, although the precision is inferior to the resonance method. The
Berlincourt d33 Meter is a widely used instrument that applies a vibrating
mechanical force to the sample and simultaneously to a standard piezoelectric
with a known d33 coefficient. By comparing the electric signals from the two
samples, the d33 coefficient of the sample is obtained. Other coefficients are
measured by using crystal plates of various orientations.

The resonance method is the most widely used measurement technique.
Using the schematic circuit in Fig. 12.1, the impedance of the sample is
monitored as function of frequency. The piezoelectric coefficients couple
the electric field to mechanical strain leading to various resonant motions.
Five of these resonances for poled piezoelectric ceramics are illustrated in
Fig. 12.2. Two are length extensional modes generated with slender bars,
two use poled disks, and the fifth is a thickness shear mode. The three
piezoelectric coefficients are obtained by measuring the resonant frequencies,
together with the sample dimensions, dielectric properties, and elastic constants.
Details of the measurements are given in the IEEE Standards on Piezoelectric
Crystals.

fR fA

(b)

Nonpiezoelectric capacitor

Piezoelectric
resonance

FrequencyReactance

(a)

Signal
generator

Detector

Frequency 
meter

R

Fig. 12.1 (a) Electronic network for deter-
mining the resonant (fR) and antiresonant
(fA) frequencies of a piezoelectric resonator.
(b) The reactance curve associated with a
piezoelectric resonance.

Problem 12.1
At room temperature KNbO3 belongs to orthorhombic point group mm2
which has five independent piezoelectric coefficients. For a crystal plate
oriented perpendicular to an arbitrary direction Z ′

3, the piezoelectric coeffi-
cient in the thickness direction is d′

33. Determine d′
33 for KNbO3 in terms

of the five piezoelectric constants and the orientation angles θ and φ of the
plate.

The Berlincourt d33 Meter described in Section 12.4 works well for strong
piezoelectrics like KNbO3. Which of its piezoelectric coefficients can be
determined by this method? What orientations should be used?

Z3

Z1

–Z2

Z1

Z3

Z3

Z3

Z3

Transversely poled
length extensional mode

Thickness shear
mode

Thickness mode Longitudinally poled length extensional mode

Planar mode

Fig. 12.2 Resonant modes used in determin-
ing the piezoelectric coefficients of poled
ferroelectric ceramics. The transversely poled
extensional mode and planar mode are
governed by d31, the shear mode gives
d15, and d33 can be measured by either the
longitudinally poled extensional mode or the
thickness mode. All five modes are used in
piezoelectric devices as well.
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12.5 Structure–property relations

Data for a number of piezoelectric crystals and poled ceramics are collected in
Table 12.3.

S

O

Fig. 12.3 Pyramidal groups such as the
sulfite ion with polar symmetry sometimes
play an important role in piezoelectric and
pyroelectric crystals.

All piezoelectric coefficients are zero in centric crystals and untextured poly-
crystalline materials. In some acentric crystals the causes of piezoelectricity can
be readily identified from molecular shapes. NiSO3 ·6H2O contains Ni2+ ions in
octahedral coordination with six water molecules and pyramidal sulfite groups
(Fig. 12.3). In nickel sulfite hexahydrate, all the sulfite groups point in the some
direction with the trigonal axis of the crystal coinciding with the symmetry of
the molecule. It is obvious why the crystal is piezoelectric when squeezed in
this direction.

Crystals containing tetrahedral groups are often piezoelectric as well. Zincite
(ZnO), zincblende (ZnS), and quartz (SiO2) are examples. The symmetry of a

Table 12.3 Piezoelectric strain coefficients in pC/N

Cubic (4̄3m) d14

Bi12SiO20 40
NaClO3 1.7
GaAs 2.6
ZnS 3.2

Hexagonal (6mm) d31 d33 d15

ZnO −5.0 12.4 −8.3
CdS −5.2 10.3 −14.0
AlN −2.0 5.0 4.0

Tetragonal (4mm) d31 d33 d15

BaTiO3 −34.5 85.6 392
PbTiO3 −25 117 62

Tetragonal (4̄2m) d14 d36

KH2PO4 1.3 21
NH4H2PO4 1.8 48

Tetragonal (422) d14

TeO2 8.1

Trigonal (3m) d31 d22 d33 d15

LiNbO3 −1.0 21 16 74
LiTaO3 −3.0 9.0 9.0 26
Tourmaline −0.3 −0.3 −1.8 −3.6

Trigonal (32) d11 d14

α-Quartz 2.3 −0.67

Orthorhombic (222) d14 d25 d36

Rochelle salt 2300 −56 12

Orthorhombic (mm2) d31 d32 d33 d15 d24

PbNb2O6 −43 24 60 180 170

Poled ceramics (∞m) d31 d33 d15

BaTiO3 −78 190 260
Pb(Zr, Ti)O3

PZT-5H −274 593 741
PZT-8 −27 225 330

K0.5Na0.5NbO3 −51 127 306
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Z3

Z2

Z1

Z �1 Z �1

θ

φ

Principal axes

PlatePolarization P1�

Stress X �1 Fig. 12.4 Orientation of the longitudinal
piezoelectric experiment in an arbitrary
direction.

regular tetrahedron is 4̄3m, a noncentrosymmetric point group. It is interesting
to examine the piezoelectric surface for point group 4̄3m and to speculate on
the size of the piezoelectric coefficient.

For the longitudinal piezoelectric surface each radius vector has a length
proportional to the charge per unit area generated by a stress in the same
direction. Imagine a plate cut from a crystal and electroded on its major faces
(Fig. 12.4).

Direction Z ′
1 is normal to the electroded surfaces and parallel to stress

direction. In tensor notation the piezoelectric coefficient in this direction is
d′

111 = a1ia1ja1kdijk where dijk are the measured coefficients referred to the
principal axes Z1, Z2, Z3. For point group 4̄3m (see Table 12.1), all the piezo-
electric coefficients are zero except d14 = d25 = d36. In tensor notation the
nonzero coefficients are

d123 = d132 = d213 = d231 = d312 = d321.

Therefore

d′
111 = 6a11a12a13d123 = 3d14 cos θ sin2 θ sin φ cos φ.

Plotting out the surface gives four lobes pointing along the [111], [1̄11̄] [11̄1̄],
and [1̄11̄] cube axes. The four lobes resemble the tetrahedral sp3 hybrid
bonds found in chemistry. A cross-section of one of the lobes is shown
in Fig. 12.5.

[110]

[111]
[001]

0

Fig. 12.5 Cross-section of piezoelectric
surface for cubic crystals belonging to point
group 4̄3m.

(a)

(b)

Z3

Z2

Zn

Fig. 12.6 A ZnS4 tetrahedron in zincblende
in the unstressed state (a) and then under
a shear stress X4 (b). To equalize the four
bondlengths in the sheared state, the divalent
zinc atom moves in the Z1 direction, creating
piezoelectric coefficients d14.

Zincblende and other crystals belonging to this point group are not
piezoelectric when stressed along the 〈100〉 cube edges or the 〈110〉 face
diagonals.

Many piezoelectric crystals have rather complicated structures, but
zincblende (cubic ZnS) is relatively simple. It has a diamond-like structure
with both zinc and sulfur in tetrahedral coordination (Fig. 12.6(a)). As pointed
out previously, the point group is 4̄3m with just one independent piezoelectric
coefficient d14. When subject to a shear stress X4 acting about Z1 = [100],
the crystal structure shears, deforming the tetrahedra (Fig. 12.6(b)). As a result
two of the sulfur atoms near each zinc move closer, and two move further
away. To maintain four equal bonds, the zinc ion moves in the Z1 direction
creating a polarization P1. This is the underlying mechanism of piezoelectric
coefficient d14.

Polymers—both natural and synthetic—are sometimes piezoelectric because
of the chain configurations and polar side groups. In its β form,
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Fig. 12.7 Stretched molecules of PVDF
aligned in a strong poling field have
an orthorhombic texture and a strong
piezoelectric effect.
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C C C C

H H H

C C C C C

F F F F F
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X1

polyvinylidene fluoride (PVDF = (CH2CF2)n) is strongly piezoelectric when
mechanically stretched and electrically poled (Fig. 12.7). With the electric field
along Z3 and the stretching force along Z1, the polymer develops an orthorhom-
bic texture in polar point group mm2. This is an interesting example of Curie’s
Principle of Symmetry Superposition. The symmetry of the electric field is Curie
group ∞m, and that of a tensile stress is ∞/mm. When the two ∞-fold axes are
at right angles to one another along Z3 and Z1, respectively, there are three sym-
metry elements that are common to the two groups: mirror planes perpendicular
to Z1 and Z2 and a twofold rotation axis parallel to Z3. The resulting symmetry
group, orthorhombic mm2, has five independent piezoelectric coefficients: d31,
d32, d33, d15, and d24. Measured values for the coefficients are d31 = 20 pC/N,
d32 = 2, d33 = −30, and d15, d24 are small.

The atomistic origin of these effects can be visualized from the molecular
structure (Fig. 12.7). Under tensile force, the carbon backbone of the PVDF
polymer will align along Z1, but electric dipoles in this direction are small. The
dipoles are associated with the hydrogen and fluorine side groups. A DC field
in the Z3 direction aligns the dipoles with the protons parallel to Z3 and the
fluorine ions parallel to −Z3.

Natural polymers such as cellulose also exhibit weak piezoelectric effects.
There are no strong poling fields in this case but the spiral nature of the molecules
together with the natural texture of a tree again imparts orthorhombic symmetry
to pieces of wood. As shown in Fig. 12.8, the three principal axes are radial
(Z1), tangential to the tree rings (Z2), and parallel to the height (Z3) of the tree.
Because of the helical nature of the cellulose molecules and the orthorhombic
texture, wood has been assigned to point group 222, which has three piezo-
electric coefficients. Measurements carried out on rectangular pieces of birch
gave shear coefficients d14 = −0.18, d25 = 0.30, d36 = 0.07 pC/N, more
than an order of magnitude smaller than engineering materials. The origin of
the weak piezoelectric effects in living systems (including our bodies) and the
role it may play in growth and healing mechanisms has been a subject of much
speculation.

Z1

Z1

Z2

Z3

Wood

Fig. 12.8 The texture of wood. The ring
structure of a large tree has orthorhombic
symmetry.

Problem 12.2
Zinc oxide crystals belong to point group 6mm with three independent piezo-
electric coefficients d31, d33, and d15. Using the information in Tables 12.2
and 12.3, plot the longitudinal piezoelectric coefficient d′

11 = d′
111 as a function

of direction in the Z1–Z2 and Z1–Z3 planes.
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12.6 Hydrostatic piezoelectric effect

Hydrostatic stress is a scalar (zero-rank tensor) quantity like temperature. There-
fore, the hydrostatic piezoelectric effect is analogous to the pyroelectric effect
(Chapter 8) with the same symmetry restrictions. Only ten of the 32 crystal
classes and two of the seven Curie groups exhibit the hydrostatic piezoelectric
effect.

As discussed in Section 10.1, the nonzero stress components associated with
a change in pressure are X11 = X22 = X33 = −p. The resulting components of
electrical polarization are,

P1 = −(d11 + d12 + d13)p

P2 = −(d21 + d22 + d23)p

P3 = −(d31 + d32 + d33)p.

These expressions simplify for the various symmetry groups. For a poled
ceramic (group ∞m),

P1 = P2 = 0 and P3 = −(2d31 + d33)p.

The vector sum of the polarization is the hydrostatic piezoelectric effect,
P = dhp, where dh is the hydrostatic charge coefficient. Also of interest is the
hydrostatic voltage coefficient gh = dh/ε, where ε is the dielectric permittivity.
The dhgh product is often used as a figure of merit for underwater hydrophones.

Hydrostatic piezoelectric coefficients for a number of crystals and poled
ceramics are given in Table 12.4. Since the symmetry requirements for pyro-
electricity and hydrostatic are identical, all the materials are also pyroelectric.

For the purposes of discussion, they can be divided into ferroelectric pyro-
electrics and ordinary (nonferroelectric) pyroelectrics. As shown in Table 12.4,
the ferroelectrics have substantial dh coefficients but the gh values are not very
big because of their large permittivities.

Ordinary pyroelectrics can be further subdivided into water-soluble pyro-
electrics and oxide pyroelectrics. Oxides and sulfides with the wurtzite structure
(Fig. 8.4) have very small hydrostatic piezoelectric effects. The wurtzite crys-
tal structure is based on a hexagonal close-packed anion lattice with cations in
tetrahedral interstices. Compared to the other pyroelectrics, the atomic bonding
in wurtzite is very isotropic. It is not surprising, therefore, that under hydrostatic
pressure they deform isotropically, leading to very small piezoelectric effects.

Silicate pyroelectrics have somewhat larger hydrostatic coefficients than
the wurtzite group. Tourmaline is a complex borosilicate mineral containing
tetrahedral SiO4 groups. The silica tetrahedra are arranged in Si6O18 rings
oriented perpendicular to the pyroelectric axis. This imparts an anisotropy
to the structure not found in the wurtzite group, but the silicate and borate
groups are linked together by Al3+ and Mg2+ ions that also form fairly strong
chemical bonds and hence tourmaline is not as anisotropic as some other
crystals.

More anisotropic structures are found among the water-soluble pyroelectrics.
Lithium sulfate monohydrate (Li2SO4·H2O) is an important example with
an extremely large gh coefficient, so large that the crystals have been used
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as hydrostatic pressure sensors. The crystal structure of lithium sulfate con-
tains Li+ cations, tetrahedral SO2−

4 anions, and water molecules. Ionic bonds
between cations and anions extend in all directions in the crystals but the hydro-
gen bonding between water molecules extends only along b, the unique polar
axis (Fig. 12.9(a)). Tension in this direction produces a large electric polar-
ization. Short hydrogen bonds like those in lithium sulfate make an important
contribution to the piezoelectric effect because the proton position changes as
the oxygen–oxygen is stretched. In short hydrogen bonds the proton is midway
between the oxygens, whereas the proton is asymmetrically positioned in long
H bonds. Mechanical stress, therefore, directly affects the dipole moments of
the water molecules, producing electric polarization along the b-axis and an
unusually large d22 coefficient in lithium sulfate. The large piezoelectric effect
together with a small dielectric constant gives it the largest hydrostatic voltage
coefficient (gh) of any material, including ferroelectrics.

Because of their large polarizabilities, ferroelectrics also have large piezo-
electric constants but the hydrostatic coefficients are not large for those with
nearly symmetric crystal structures. BaTiO3, (Na, K)NbO3 and Pb(Zr, Ti)O3

have the perovskite structure that has a close-packed array of oxygens and large

Table 12.4 Hydrostatic piezoelectric coefficients for a number of
materials. For a given pressure, dh measures the electric polarization, and

gh the open-circuit electric field. dh is expressed in units of 10−12 C/N and
gh in 10−3 m2/C

dh gh

Water-soluble pyroelectrics
Ethylene diamine tartrate (EDT)

C2H4(NH3)2 C4H4O6 1.0 15
Lithium sulphate monohydrate (LH)

Li2SO4 · H2O 16.4 180
Others <4.0 <100

Pyroelectric silicate minerals
Tourmaline
(Na, Ca)(Mg, Fe)3B3Al6Si6(O, OH, F)31 2.5 38

Others <3.0 <30

Wurtzite-family pyroelectrics
BeO, ZnO, CdS, CdSe <0.2 <3

Ferroelectric single crystals
Barium titanate

BaTiO3 16.6 11
Triglycine sulfate (TGS)
(NH2CH2COOH)3H2SO4 8.0 30

Antimony sulfur iodide (10◦C)
SbSI 1100 14

Lithium niobate
LiNbO3 14.5 57

Poled ferroelectric ceramics
Barium titanate

BaTiO3 34.0 2
Lead niobate

PbNb2O6 67.0 34
Lead zirconate titanate (PZT)

Pb(Ti, Zr)O3 20–50 2–9
Sodium potassium niobate

(Na, K) NbO3 40 10
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cations. The LiNbO3 structure also has close-packed oxygens. The hydrostatic
piezoelectric coefficients for these materials are small compared to antimony
sulfur iodide (SbSI) that has the largest dh coefficient in Table 12.4.

The structure of SbSI (Fig. 12.9(b)) is very anisotropic with covalently-
bonded chains parallel to the polar axis. Neighboring chains are only weakly
bonded by ionic or van der Waals forces. Crystals of SbSI cleave readily par-
allel to the polar c-axis. Under tensile force parallel to c, the crystals develop
a large piezoelectric polarization similar in origin to that in lithium sulfate.
The antimony cations displace relative to the anions causing the polarization.
Piezoelectric effects in the perpendicular directions are much smaller because
of the loose packing of chains. The gh coefficient of SbSI is small because of
its large permittivity.

S I

O S H

Sb

(a)

(b)

Fig. 12.9 (a) In lithium sulfate monohydrate
the water molecules form a chain of hydro-
gen bonds along the polar axis, but are not
linked laterally. (b) Ferroelectric SbSI also
has a chain structure and great hydrostatic
sensitivity. Both materials provide the parallel
connectivity required for large longitudinal d
coefficients and small transverse piezoelectric
effects.

In summary, the best piezoelectrics for hydrostatic sensors are those with
anisotropic structures and a molecular mechanism for piezoelectricity. This
structure–property relation is the basic idea behind an important family of
transducers made from poled ferroelectric ceramics and elastically-compliant
polymers. Parallel fibers of PZT embedded in a polymer matrix give larger dh

and gh coefficients than solid PZT.

12.7 Piezoelectric ceramics

For the past 50 years PZT (PbZr1−xTixO3) has been the workhorse of transducer
technology. Underwater sonar, biomedical ultrasound, multilayer actuators for
fuel injection, piezoelectric printers, and bimorph pneumatic valves all make
use of poled PZT ceramics. PZT is one of a number of ferroelectric substances
crystallizing with the perovskite structure (Fig. 12.10). Lead atoms appear at
the corners of the unit cell and oxygens at the face centers. Together they make
up a cubic close-packed array, having a lattice parameter near 4 Å. Octahedrally
coordinated titanium or zirconium ions are located at the center of the unit cell.

Zr/Ti

Pb

PbZrO3

PbTiO3

350°C

Ps

Ps

Tc
O

[001]

[110]

Cubic perovskite

TetragonalRhombohedral
MPB

Fig. 12.10 A portion of the PbZrO3–PbTiO3
phase diagram showing the structure change
at the Curie temperature (Tc) and the mor-
photropic phase boundary. Compositions near
the morphotropic phase boundary (MPB)
have 14 possible orientations of the polar axis
in the coexisting tetragonal and rhombohedral
domain structures.
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On cooling from high temperature, the cubic unit cell undergoes a displacive
phase transformation with atomic displacements of about 0.1 Å. For Ti-rich
compositions, the point symmetry changes from cubic m3m to tetragonal 4mm at
the Curie temperature. The tetragonal state with its polar axis along [001] = Z3

persists to 0 K. The structure changes are shown in Fig. 12.10. Zr-rich com-
positions prefer rhombohedral point group 3m with the polar axis along a [111]
direction.

To enhance the piezoelectric properties of PZT ceramics, compositions near
a phase transition are chosen. The compositions that pole best lie near the
morphotropic boundary between the rhombohedral and tetragonal distortions of
the perovskite structure. At the boundary there are 14 possible poling directions,
six 〈100〉 directions in the tetragonal state and eight 〈111〉 directions in the
rhombohedral phase. Domain wall movements and phase changes between the
rhombohedral and tetragonal phases occur during the poling process.

As pointed out in Section 12.1, electrically poled ceramics belong to
symmetry group ∞m with five piezoelectric coefficients d31 = d32, d33, and
d15 = d24. Both intrinsic and extrinsic contributions to these piezoelectric
coefficients are important. The intrinsic effects coming from the distortions of
the crystal structure under mechanical stress are pictured in Fig. 12.11. Under
a tensile stress parallel to the dipole moment, there is an enhancement of the
polarization along [001] = Z3. When a tensile stress is applied perpendicular
to the dipole, the polarization along Z3 is reduced. These are the d33 and d31

effects, respectively. When the dipole is tilted by shear stress, charges appear
on the side faces, the d15 coefficient. There are extrinsic contributions to the
piezoelectric coefficients as well. For PZT compositions near the morphotropic
phase boundary, these can be very large, often involving reversible domain wall
motions and phase changes. Domain wall contribution to the piezoelectric and
dielectric properties of PZT are controlled by doping the ceramic with higher-
or lower-valent ions. Substituting a small amount of Nb5+ for Ti4+ gives a soft-
PZT with easily movable domain walls and a large piezoelectric coefficient.
Hard PZTs are made by adding Fe3+ for Ti4+. High-power transducers use
hard PZT because they will not depole under high fields in the reverse direc-
tions. Soft PZT is preferred for hydrophones and other sensors. In Table 12.2,
the poled ceramics labeled PZT-8 and PZT-5H are representative of hard- and
soft-PZT, respectively.

The multimillion-dollar market for PZT actuators and transducers includes
multilayer d33 thickness mode actuators, d31 transverse mode transducers, and
various bender types. Typical applications, forces, and displacements for these
three families of actuators are shown in Fig. 12.12. High power PZT transmitters
for underwater sonar systems operate in the kHz range and are up to a meter
in size. Biomedical ultrasonic transducers are much smaller and operate in the
MHz range.

PbTiO3
Symmetry 4mm

Pb

O

Ti

Z3

Z1

P3 = d33 X3

d33 ≈ 120 pC/N

+ +

– –

P3 = d31 X1

d31 ≈ 50 pC/N

– –

+ +

P3 = d15X5

d15 ≈ 300 pC/N

–

–
+

+

(a)

(b)

(d)

(c)

Fig. 12.11 Structure–property relations for
the intrinsic piezoelectric effect in PbTiO3.
In the unstressed state there is an electric
dipole associated with the off-center shift of
the titanium atom. Under stress, this dipole
can be increased (d33), decreased (d31), or
tilted (d15). 12.8 Practical piezoelectrics: Quartz crystals

Piezoelectric quartz crystals are used to control frequency and time standards
in electronic circuits. Despite its modest piezoelectric coefficients, quartz has
dominated this market for many years because of its low losses (high Q) and
zero-temperature coefficient cuts (Fig. 12.13). In addition to wristwatches and
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Pneumatic valve

Fuel injection

Piezo printer
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d33

Bender

F

F

x

x

x

F

50–500 N
5–20 µm

100 N–10 N
20–100 µm
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Fig. 12.12 Ceramic multilayer actuators
consist of thin layers of piezoelectric ceramic
and metal electrodes. In contrast to traditional
piezoelectrics, even low voltages produce
large forces and substantial displacements.
A tradeoff exists between force and dis-
placement. The multilayer stack utilizing the
d33 coefficient give kilonewton forces cap-
able of pushing heavy weights through small
distances. Bimorph benders make use of the
smaller transverse of d31 coefficients to give
larger displacements in the millimeter range,
but only small forces.

other time-keeping devices, quartz is used in selective band-pass filters for
long-distance telephone lines and other broadband carrier frequency systems.

Quartz belongs to crystal class 32 with five nonzero piezoelectric coefficients.
Only two of the coefficients are independent. The converse piezoelectric effect
is given by the matrix relation (see Table 12.1):



x1

x2

x3

x4

x5

x6




=




d11 0 0
−d11 0 0

0 0 0
d14 0 0
0 −d14 0
0 −2d11 0





E1

E2

E3


 .

For right-handed quartz, d11 = 2.27 and d14 = −0.67 pC/N.
The three principal axes (Fig. 12.12) are chosen such that the threefold sym-

metry axis is along Z3, the twofold axis along Z1, and Z2 is perpendicular to
both Z1 and Z3. In the quartz literature, plates cut perpendicular to Z1, Z2, and
Z3 are known as X-, Y -, and Z-cuts, respectively. The vibration modes set up
by the five piezoelectric coefficients are pictured in Fig. 12.13.

35 4
1°

49˚

ATBT

Y-cut

Z2 = Y

Z1 = X

–Z2

Z3 = Z

(10.0)

(11.1)

(02 1.1)

(10.1)(11.1)

(01.1)

(01.1)

(65.1)

X-cut

Fig. 12.13 Right-handed quartz crystal
showing the orientation of the orientation
X-, Y -, AT-, and BT-cuts.

The AT- and BT-cuts shown in Fig. 12.13 are two of the commonly used
orientations for quartz oscillator plates. For frequency- and time-standards it is
important that the resonant frequency does not change with temperature. Both
the AT- and BT-cuts are rotated Y -cuts that have been rotated about X(=Z1), the
twofold symmetry axis. By rotating in the Y–Z plane, the field component E1

remains zero, thus avoiding excitation of the X-cut modes shown in Fig. 12.14.
The AT- and BT-cut modes are thickness shear modes driven by piezoelectric
coefficient d′

26, where

x′
6 = d′

26 E′
2.
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Fig. 12.14 Electrically driven vibration
modes of X- and Y -cut quartz. There are no
active modes for the Z-cut.

Z1

X1 = d11E1

X4 = d14E1
X2 = –d11E1

X5 = –d14E2 X6 = –2d11E2

Transverse mode Face shear mode

Face shear mode

Thickness mode

Thickness shear mode

Z3

Z1
Z2

X-Cut

Y-Cut

For the rotated cuts (Fig. 12.13) the axis Z1 remains unchanged while Z2 and
Z3 are rotated through an angle θ to two new axes Z ′

2 and Z ′
3. The shear motion

x′
6 is about Z ′

3 while the field E′
2 is in the Z ′

2 direction.
Further discussion is required to explain how the orientation angles of

the AT- and BT-cuts were determined. The resonant frequency depends on
the sample dimensions, density, and elastic constants. We will return to this
discussion in the next chapter on elasticity.

Problem 12.3
Compute the sign and magnitude of coefficient d′

26 in terms of θ , d11, and d14.
Since only one coefficient is needed, it is easiest to carry out the calculation in
tensor notation. Substitute the angles for the AT- and BT-cuts from Fig. 12.13
to evaluate the magnitudes of the d′

26 coefficients.
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All solids change shape under mechanical force. Under small stresses, the
strain x is related to stress X by Hooke’s Law (x) = (s)(X), or the con-
verse relationship (X) = (c)(x). The elastic compliance coefficients (s)
are generally reported in units of m2/N, and the stiffness coefficients (c)
in N/m2. For a fairly stiff material like a metal or a ceramic, c is about
1011 N/m2 = 1012 dynes/cm2 = 100 GPa = 0.145 × 108 PSI. Hooke’s Law
is a linear relation between stress and strain, and does not describe the elas-
tic behavior at high stress levels that requires higher order elastic constants
(Chapter 14). Irreversible phenomena such as plasticity and fracture occur at
still higher stress levels.

13.1 Tensor and matrix coefficients

Two directions are needed to specify stress (the direction of the force and the
normal to the face on which the force acts), and two directions are needed
to specify strain (the direction of the displacement and the orientation of the
measurement axis). Thus there are four directions involved in measuring elastic
stiffness, which is therefore a fourth rank tensor:

Xij = cijklxkl.

The tensor transformation from old to new goes as follows.

X ′
ij = aikajlXkl = aikajlcklmnxmn

= aikajlcklmnaomapnx′
op

= c′
ijopx′

op.

Therefore the stiffness coefficient transforms as a polar fourth rank tensor
involving the product of four direction cosines relating the new (primed)
coordinate system to the old (unprimed) coordinate system:

c′
ijop = aikajlaomapncklmn.

The directional subscripts all range from 1 to 3 so there are (3)4 = 81 tensor
components for the elastic stiffness or the elastic compliance. The number
coefficients is considerably reduced by the fact that both stress and strain are
symmetric second rank tensors for which Xij = Xji and xkl = xlk . Therefore
cijkl = cjikl = cijlk = cjilk . These equalities reduce the number of independent
stiffness coefficients from 81 to 36, and make it possible to describe the elastic
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constants by a 6 × 6 matrix:


X1

X2

X3

X4

X5

X6




=




c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66







x1

x2

x3

x4

x5

x6




.

The matrix can be further simplified by an energy argument. The product of
stress and strain is the stored mechanical energy density. In differential form,
the energy density is

dW = Xidxi = cijxjdxi

= c11x1dx1 + c12x2dx1 + c21x1dx2 + · · · .

Taking the partial derivatives with respect to strain components x1 and x2,
∂W

∂x1
= c11x1 + c12x2 + · · · + c16x6

∂W

∂x2
= c21x1 + c22x2 + · · · + c26x6.

The second derivatives are
∂2W

∂x1∂x2
= c12

and
∂2W

∂x2∂x1
= c21

and since the order of differentiation does not affect the energy density,

c12 = c21.

Applying the same argument to the other stiffness coefficients shows that they
are all symmetric, cij = cji. Therefore only 21 independent elastic coefficients
are needed to describe Hooke’s Law. For symmetries higher than triclinic, the
number is reduced even further.

Before proceeding further it is necessary to establish the relationships
between the tensor coefficients cijkl and the matrix coefficients cij. Equival-
ences are established by writing out Hooke’s Law first in tensor form, and then
in matrix form, and identifying equivalent terms. In tensor form a tensile stress
along Z1 is

X11 = c1111x11 + c1112x12 + c1121x21 + c1122x22 + · · · .

The corresponding terms in matrix form are

X1 = c11x1 + c12x2 + · · · + c16x6,

where the strains are x6 = x12 + x21 = 2x12, x1 = x11 and x2 = x22

(see Section 10.3). Therefore c11 = c1111, c12 = c1122, and c16 =
1
2 (c1112 + c1121) = c1112.

Carrying out the same procedure for the shear stress about Z3, in tensor form,
and remembering that X12 = X21:

X12 = c1211x11 + c1212x12 + c1221x21 + c1222x22 + · · ·
X21 = c2111x11 + c2112x12 + c2121x21 + c2122x22 + · · · .
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The equivalent stress in matrix form (see Section 10.2) is

X6 = c61x1 + c62x2 + · · · + c66x6.

Identifying corresponding terms and remembering that X6 = X12 = X21 and
x6 = x12+x21, leads to the result that c61 = c1211 = c2111, c62 = c1222 = c2122,
and c66 = c1212 = c1221 = c2112 = c2121.

In summary, no factors of two or four are needed when converting stiffness
coefficients from tensor to matrix form. This is not true for the compliance
coefficients. In tensor form the compliances are given by

xij = sijklXkl.

And in matrix form

xi = sijXj.

Written out, a tensile strain along Z1 is

x11 = s1111X11 + s1112X12 + s1121X21 + s1122X22 + · · ·
in tensor form, and

x1 = s11X1 + s12X2 + · · · + s16X6

in matrix form.
Since x11 = x1, X11 = X1, X12 = X21 = X6, and X22 = X2, it is apparent

that s11 = s1111, s12 = s1122, and s16 = s1112 + s1121 = 2s1112.
For shear strains about Z3,

x12 = s1211X11 + s1212X12 + s1221X21 + s1222X22 + · · ·
x21 = s2111X11 + s2112X12 + s2121X21 + s2122X22 + · · ·

in tensor form. The corresponding matrix terms are

x6 = s61X1 + s62X2 + · · · + s66X6.

Remembering that x6 = x12 + x21 = 2x12, X1 = X11, X2 = X22, and
X6 = X12 = X21, it is clear that s61 = s1211 + s2111 = 2s1211, and that
s66 = s1212 + s1221 + s2112 + s2121 = 4s1212.

In general, sijkl = smn when m, n = 1, 2, 3; 2sijkl = smn when m or
n = 4, 5, 6; and 4sijkl = smn when m, n = 4, 5, 6. It is important to remember
these factors of two or four when working with compliance coefficients.

13.2 Tensor and matrix transformations

In tensor form the stiffness and compliance coefficients transform as fourth
rank polar tensors:

c′
ijkl = aimajnakoalpcmnop

and

s′
ijkl = aimajnakoalpsmnop.

Matrix transformations for stress and strain were discussed in Sections 10.2
and 10.3. In transforming between new (primed) and old (unprimed) coordinate
systems, stress (X) and strain (x) transform as follows

(X ′) = (α)(X),

(X) = (α)−1(X ′),

(x′) = (α)−1
t (x),
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and

(x) = (α)t(x
′).

The 6 × 6 (α) matrices involve the direction cosine coefficients and are written
out in Table 10.1.

Using these relationships, together with Hooke’s Law, the compliance and
stiffness transformations are easily obtained. For compliances,

(x′) = (α)−1
t (x) = (α)−1

t (s)(X) = (α)−1
t (s)(α)−1(X ′)

= (s′)(X ′).

Therefore (s′) = (α)−1
t (s)(α)−1. In a similar way it can be shown that

(s) = (α)t(s
′)(α),

(c′) = (α)(c)(α)t ,

and

(c) = (α)−1(c′)(α)−1
t .

13.3 Stiffness-compliance relations

In matrix form the compliance coefficients are given by

(x) = (s)(X).

Premultiplying both sides by the reciprocal compliance matrix

(s)−1(x) = (s)−1(s)(X) = (X) = (c)(x).

Therefore (s)−1 = (c) or (c)(s) = 1.
Multiplying out these symmetric 6 × 6 matrices leads to a set of linear

equations of which these are the first two:

c11s11 + c12s12 + c13s13 + c14s14 + c15s15 + c16s16 = 1

c11s12 + c12s22 + c13s23 + c14s24 + c15s25 + c16s26 = 0.

In shorthand notation the relationships between the matrix stiffness and
compliance coefficients can be written as

cijsjk = δik = 1 when i = k

= 0 when i �= k.

For tensor notation the corresponding equations are

cijklsklmn = δimδjn.

For triclinic crystals where all 36-matrix coefficients are nonzero, it is neces-
sary to solve the equations in full, but the relationships between stiffness and
compliance coefficients are greatly simplified for higher symmetry materials.

For cubic crystals there are three independent elastic constants.

c11 = (s11 + s12)/(s11 − s12)(s11 + 2s12)

c12 = −s12/(s11 − s12)(s11 + 2s12)

c44 = 1/s44.
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Hexagonal crystals have five independent coefficients related by the equations:

c11 + c12 = s33/S

c11 − c12 = 1/(s11 − s12)

c13 = −s13/S

c33 = (s11 + s12)/S

c44 = 1/s44,

where S = s33(s11 + s12) − 2s2
13.

Problem 13.1
Using the appropriate matrix from Table 13.1, derive the correspond-
ing stiffness-compliance relations for crystals belonging to tetragonal point
group 4/mmm.

13.4 Effect of symmetry

To demonstrate the way in which Neumann’s Principle simplifies the elastic
constant matrix, consider the tetragonal point group 4/m. The mineral scheelite
(CaWO4) belongs to this symmetry class. There are two independent symmetry
elements, a fourfold rotation axis parallel to Z3 and a mirror plane perpendicular
to Z3.

Working with tensor notation and the direct inspection method, 4 ‖ Z3 takes
1 → 2, 2 → −1, 3 → 3. Beginning with compliance coefficient s1111 and then
proceeding to others, it can be seen that under the symmetry transformation

1111 → 2222 (s11 = s22)

2222 → 1111 (s22 = s11)

3333 → 3333 (s33)

1122 → 2211 (s12 = s21)

1133 → 2233 (s13 = s23)

1212 → 2121 (s66)

1313 → 2323 (s55 = s44)

1233 → −2133 (s63 = −s63 = 0)

2321 → 1312 (s46 = s56)

1312 → −2321 (s56 = −s46 = −s56 = 0)

1112 → −2221 (s16 = −s26)...

The corresponding matrix coefficients are given in parentheses. The resulting
compliance matrix is



s11 s12 s13 0 0 s16

s12 s11 s13 0 0 −s16

s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0

s16 −s16 0 0 0 s66




.
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Table 13.1 Elastic constant matrices for the 32 crystal classes and seven limiting groups

Triclinic
1, 1̄




c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66




Monoclinic
2, m, 2/m




c11 c12 c13 0 c15 0
c12 c22 c23 0 c25 0
c13 c23 c33 0 c35 0
0 0 0 c44 0 c46

c15 c25 c35 0 c55 0
0 0 0 c46 0 c66




Orthorhombic
222, mm2, mmm




c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66




Tetragonal
4, 4̄, 4/m




c11 c12 c13 0 0 c16
c12 c11 c13 0 0 −c16
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0

c16 −c16 0 0 0 c66




Tetragonal
4mm, 4̄2m, 422, 4/mmm




c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66




Trigonal
3, 3̄




c11 c12 c13 c14 −c25 0
c12 c11 c13 −c14 c25 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 c25

−c25 c25 0 0 c44 c14

0 0 0 c25 c14
1
2 (c11 − c12)




Trigonal
32, 3m, 3̄m




c11 c12 c13 c14 0 0
c12 c11 c13 −c14 0 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 0
0 0 0 0 c44 c14

0 0 0 0 c14
1
2 (c11 − c12)




Hexagonal
6, 6̄, 6/m, 622, 6mm, 6̄m2,

6/mmm
Curie groups
∞, ∞m, ∞/m, ∞2, ∞/mm




c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 1

2 (c11 − c12)




Cubic
23, m3, 432, 4̄3m, m3m




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44



Continued overleaf
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Table 13.1 (Continued)

Curie groups
∞∞, ∞∞m




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 1

2 (c11 − c12) 0 0
0 0 0 0 1

2 (c11 − c12) 0
0 0 0 0 0 1

2 (c11 − c12)




The second symmetry element in point group 4/m is the mirror plane per-
pendicular to Z3. For m ⊥ Z3, 1 → 1, 2 → 2, 3 → −3. This means that any
tensor coefficient such as s1312 or s1333 with an odd number of 3s will disappear.
Beginning with the already simplified matrix for 4 ‖ Z3, none of the remaining
nonzero coefficients is affected by the mirror operation. Therefore there is no
further simplification of the compliance matrix. Point group 4/m has seven
independent elastic constants: s11, s12, s13, s33, s44, s16, and s66. For scheelite
and other crystals belonging to 4/m, at least seven measurements are required.

Elastic constant matrices for other crystallographic point groups and for the
limiting groups are given in Table 13.1. The proofs are carried out by tensor or
matrix transformations, or by the direct inspection method, using Neumann’s
Principle. The number of independent elastic constant range from 21 for triclinic
crystals down to 2 for isotropic bodies such as glass or polycrystalline metals
and ceramics.

13.5 Engineering coefficients and
measurement methods

For isotropic groups ∞∞m and ∞∞, there are just two independent elastic
compliance coefficients s11 and s12. The shear coefficient s44 = 2(s11 − s12).
In engineering texts the elastic properties of isotropic materials are usually
described by Young’s Modulus E, Poisson’s Ratio ν, and the Rigidity
Modulus G. The basic experiments are illustrated in Fig. 13.1. Young’s Modulus
is change in length per unit length for a tensile stress: x1 = s11X1 = (1/E)X1.
Poisson’s Ratio is also measured under a tensile stress X1. It is the ratio of the
transverse contraction to the longitudinal elongation: ν = |x1|/|x2| = −s12/s11.
The Rigidity Modulus G is a measure of shear strain under shear stress. For
shear about Z1, x4 = s44X4 = (1/G)X4. Therefore G = 1/s44 = 1/2(s11−s12).
Since there are only two independent coefficients for isotropic bodies, E, ν, and
G are interrelated. The relationship is G = E/2(1 + ν).

The most commonly used experimental techniques for measuring elastic con-
stants can be classified as static and dynamic methods. The optical experiment
illustrated in Fig. 13.2 is a typical static method carried out under slowly applied
bending stress. A long thin bar cut in the Z ′

1 direction is deformed in a four-point
bending experiment through a small angle θ . The resulting deflection can be
measured using a collimated light beam reflected from mirrors attached to the
sample. The radius of curvature R = l/θ where l is the separation of the two
mirrors and θ is the bending angle expressed in radians. The bending moment
B = F/a where F is the applied force and a is the separation between loading
points. Young’s Modulus E = 1/s′

11 is obtained from R, B, and I , the moment of
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Fig. 13.1 Engineering coefficients for
isotropic solids, Young’s Modulus is a
measure of longitudinal elongation and
Poisson’s Ratio the transverse contraction.
The Rigidity Modulus measures the shear
stiffness.

1/2x1

1/2x1

x4

x4

–1/2x2

Z1

G = 1/s44

Z1 E = 1/s11

� = –s12/s11

Young’s Modulus E

Poisson’s Ratio �

Rigidity Modulus G

Fig. 13.2 A static optical method used for
measuring bending strains. Long optical paths
provide the accuracy necessary to measure
small strains. Anisotropic elastic constants are
obtained by using samples cut along different
crystal directions.

�
Small �Angle measured from

reflected light beam

FF

a a

F F

l

Reflected light
beam change = 2�

inertia of the bar: E = BR/I = 1/s′
11. For crystals and other anisotropic mater-

ials the bars are cut in various orientations to evaluate the elastic compliance
coefficients.

Typical of the dynamic methods used to measure elastic constants is the
pulse propagation experiment in Fig. 13.3. The velocity v of longitudinal and
transverse acoustic waves are measured for various crystal orientations to obtain
the elastic stiffness coefficients. As explained later in the chapter on acoustics
(Chapter 23), the wave velocity v = √

c/ρ where c is the stiffness coefficient
governing the acoustic vibration and ρ is the crystal density. In the experiment,
a piezoelectric quartz crystal is used to launch the wave and to detect the return
signal reflected from the opposite side of the sample. The converse and direct
piezoelectric effect in quartz are used to generate the wave and to sense the
return reflection. An oscilloscope measures the time t required to traverse the
specimen. The velocity v = 2d/t where d is the specimen thickness. X-cut
quartz is used to launch longitudinal waves and AC-cuts for transverse waves.
The AC-cut is described in Section 13.10.

13.6 Anisotropy and structure–property
relations

Beginning from either the matrix or tensor transformation equations, the lon-
gitudinal stiffness coefficient can be derived as a function of crystallographic
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Pulser 20 MHz
oscillator

20 MHz
receiver

Specimen d

t

Oscilloscope

Quartz crystal
Fig. 13.3 Dynamic pulse propagation method
used to measure elastic stiffness coefficients.
An acoustic wave is launched into specimen
by applying an electric pulse to a piezoelectric
quartz crystal. The quartz plate later detects
the wave reflected from the opposite side
of the specimen. Roundtrip time t is meas-
ured with an oscilloscope to give the acoustic
velocity and the elastic constant.

Table 13.2 Elastic stiffness coefficients (in units of 1011 N/m2) for
several alkali metal crystals, semiconductors, and alkali halide crystals all

with cubic structure (A is the anisotropy factor 2c44/(c11 − c12))

c11 c12 c14 A

Alkali metals (body-centered cubic)
Li 0.135 0.114 0.088 8.4
Na 0.074 0.062 0.042 7.2
K 0.037 0.031 0.019 6.7

Semiconductors (diamond structure)
C 10.20 2.50 4.92 1.3
Si 1.66 0.64 0.80 1.6
Ge 1.30 0.49 0.67 1.7

Alkali halides (NaCl structure)
NaCl 0.485 0.125 0.127 0.7
KCl 0.405 0.066 0.063 0.37
RbCl 0.363 0.062 0.047 0.31

direction. With stress and strain both measured along an arbitrary direction Z ′
1,

the stiffness is

c′
11 = c′

1111 = a1ia1ja1ka1lcijkl,

where the direction cosines a1i relate Z ′
1 to the principal axes. For cubic crystals,

c′
11 = c11 − 2(c11 − c12 − 2c44)(a

2
11a2

12 + a2
11a2

13 + a2
12a2

13).

Note that fourth rank tensor properties like the elastic constants are anisotropic
even in cubic crystals. The only exception is when c11 = c12 + 2c44. The
quantity A = 2c44/(c11 − c12) is often referred to as the anisotropy factor.
When A = 1, c′

11 = c11 for all directions. If A < 1 the crystal is stiffest along
〈100〉 cube axes, and when A > 1 it is stiffest along the 〈111〉 body diagonals.

The elastic constants for three types of cubic crystals are listed in Table 13.2.
Note the major changes in the anisotropy factor A. The body-centered cubic
alkali metals are much stiffer along 〈111〉 directions, as are the column IV
elements with the diamond structure. In both structures the nearest-neighbor
bonds are also in 〈111〉 directions. For alkali halide crystals with the rocksalt
structure, the cation–anion bonds are oriented along 〈100〉 directions. These
are usually the directions of greatest elastic stiffness as well (Fig. 13.4).

Similar trends can be seen in crystals of lower symmetry. Chain silicates
(pyroxenes) and double chain silicates (amphiboles) crystallize in monoclinic
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Fig. 13.4 Crystal structures and stiffness
surfaces for sodium and sodium chloride. The
stiffest directions are generally aligned with
near-neighbor bonds.

Sodium [111]

[110]

[001]

[110]

[001]

[111]

Na Cl

Fig. 13.5 Graphite (C) has a very anisotropic
crystal structure with strong bonds in the (001)
plane and weak interatomic forces between
layers. As a result, c11 is much larger than
c33, and c66 is much bigger than c44. Elastic
stiffnesses are in units of 1011 N/m2. C–C bond 1.42 Å
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or orthorhombic structures with silicate chains parallel to the Z3 = [001] direc-
tions. These crystals tend to be stiffest along the chain directions. In micas and
other layer silicates, the silica tetrahedra are bonded together in layers perpen-
dicular to Z3 = [001]. The bonding between layers is relatively weak. For this
reason c11 and c22 are about three times larger than c33.

Graphite is even more anisotropic than mica. The crystal structure is
hexagonal with strong covalent bonds (bondlength 1.42 Å) in the (001) plane.
The bonding between the layers is very weak (interatomic distance 3.35 Å)
leading to easy cleavage and extreme elastic anisotropy. The c11 and c22 coeffi-
cients are similar to those of diamond but c33 is much smaller. Elastic constants
and crystal structure are shown in Fig. 13.5. Note that the anisotropy in shear
stiffness is also very large with c66 
 c44.

A similar, but less dramatic, trend is found in hexagonal close-packed (HCP)
metals (Table 13.3). In the ideal HCP structure each metal atom is bonded to 12
neighbors with equal bond lengths and a c/a ratio of 1.63. For most HCP metals
the ratio is slightly smaller with slightly longer bond lengths in the (001) plane.
As a result c33 is slightly larger than c11. Cadmium and zinc are the exceptions.
Their c/a ratios are much larger than other HCP metals, leading to six short
strong bonds in the (001) plane. The elastic stiffness coefficients c11 = c22 are
much greater than c33.
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Table 13.3 Elastic constants (in units of 1011 N/m2)
and lattice parameters (in Å) of hexagonal

close-packed metals. Zn and Cd have strong bonds in
the (001) plane giving large c/a ratios and small

c33/c11 ratios

Metal c11 c33 c33/c11 a c c/a

Be 2.92 3.36 1.16 2.29 3.58 1.56
Cd 1.16 0.51 0.44 2.98 5.62 1.89
Co 3.07 3.58 1.17 2.51 4.07 1.62
Hf 1.81 1.97 1.09 3.20 5.06 1.58
Mg 0.60 0.62 1.03 3.21 5.21 1.62
Re 6.13 6.83 1.12 2.76 4.46 1.62
Ti 1.62 1.81 1.12 2.95 4.69 1.59
Zn 1.61 0.61 0.38 2.66 4.95 1.86
Zr 1.43 1.65 1.15 3.23 5.15 1.59

Polyethylene single crystals have enormous anisotropy in elastic stiffness.
Parallel to the chain direction Young’s Modulus (1/s33) is 283 GPa at room
temperature. The C–C covalent bonds in this direction give a Young’s Modulus
greater than that of steel (200 GPa). In the transverse direction the modulus
of polythylene crystal (1/s11) is only about 7 GPa. Heavily drawn polyethyl-
ene fibers have similar anisotropy. The anisotropy remains large over a wide
temperature range.

Problem 13.2
Ice crystals are hexagonal with five independent elastic compliance coefficients
(units of 10−11 m2/N): s11 = 10.1, s12 = −4.1, s13 = −1.9, s33 = 8.3,
s44 = 32.5. The full matrix is given in Table 13.3.

Show that the elastic compliance surface for ice is cylindrically symmetric
about the hexagonal axis (Z3 = [001]) by deriving s′

1111 = s′
11 in spherical

coordinates θ and φ. Prove that

s′
11 = s11 sin4 θ + s33 cos4 θ + (s44 + 2s13) sin2 θ cos2 θ .

Plot Young’s Modulus (E = 1/s′
11) as a function of θ in the Z1–Z3 plane.

13.7 Compressibility

The compressibility of a solid is defined as

K = − 1

V

dV

dp
,

where V is volume and p is hydrostatic pressure. As pointed out earlier
(Section 10.4), the change in volume per unit volume is x11 + x22 + x33 = xii,
the sum of the three longitudinal strains. To evaluate K for an anisotropic solid,
it is only necessary to obtain xii from Hooke’s Law.

xii = siiklXkl = −siikl p δkl

K = siikk = s1111 + s1122 + s1133 + s2211 + s2222 + s2233

+ s3311 + s3322 + s3333

= s11 + s22 + s33 + 2s12 + 2s13 + 2s23.
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Fig. 13.6 Compressibilities of alkali halide
crystals with the rocksalt structure. Crystals
with long weak bonds are more easily
compressed. K values in units of 10−11 m2/N.
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The compressibility can be quickly computed from the elastic compliance
matrix by summing the nine coefficients in the upper left quadrant.

As might be expected, solids with long weak bonds generally have higher
compressibilities than those with short strong bonds. This is nicely illustrated
with the compressibilities of alkali halide crystals having the rocksalt structure
(Fig. 13.6).

Problem 13.3
Calculate the electric compliance coefficients and compressibilities of diamond,
silicon, and germanium, and discuss the trends among these column IV
elements.

13.8 Polycrystalline averages

If the single crystal coefficients are known, the elastic constants of polycrys-
talline solids can be estimated to within a few percent using the Voigt–Reuss–
Hill method. Finite element calculations are required to obtain more accurate
predictions.

Polycrystalline solids with large numbers of randomly oriented grains pos-
sess spherical symmetry, point group ∞∞m. (If the grains all have the same
handedness, as in a sugar cube, the appropriate group is ∞∞.) In either case
there are two independent elastic constants, c11 and c12. The shear stiffness
c44 = 1

2 (c11 − c12). As pointed out in Section 13.5, the elastic properties of
isotropic solids can also be described in terms of Young’s Modulus E, Poisson’s
Ratio ν, and the Rigidity Modulus G.

The Voigt–Reuss–Hill method begins by calculating the Voigt averages for
the average elastic stiffness 〈c′

11〉, 〈c′
12〉, and 〈c′

44〉. For the most general case of
a triclinic crystal, there are 36 elastic constants, 21 of which are independent.
In tensor form,

c′
11 = c′

1111 = a1ia1ja1ka1lcijkl

= c1111a4
11 + 2c1122a2

11a2
12 + 2c1133a2

11a2
13

+ 4c1123a2
11a12a13 + · · · + 8 c1312a2

11a12a13 + 4c1212a2
11a2

12.
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In matrix form the average value is

〈c′
11〉 = c11〈a4

11〉 + 2c12〈a2
11a2

12〉 + 2c13〈a2
11a2

13〉
+ 4c14〈a2

11a12a13〉 + · · · + 8 c56〈a2
11a12a13〉 + 4c66〈a2

11a2
12〉.

When averaged over all angles, the direction cosine a11 is

〈a11〉 =
∫ 1
−1 a11 da11∫ 1

−1 da11

= 0.

All odd powers of direction cosines average to zero. For the even powers,
〈a2

11〉 = 1
3 , 〈a4

11〉 = 1
5 , and 〈a2

11a2
12〉 = 1

15 .
Therefore

〈c′
11〉 = 3

15 (c11 + c22 + c33) + 2
15 (c12 + c13 + c23) + 4

15 (c44 + c55 + c56).

Similarly,

〈c′
12〉 = 1

15 (c11 + c22 + c33) + 4
15 (c12 + c13 + c23) − 2

15 (c44 + c55 + c66)

and

〈c′
44〉 = 1

15 (c11 + c22 + c33) − 1
15 (c12 + c13 + c23) + 3

15 (c44 + c55 + c66).

Note that the Voigt averages satisfy the isotropy condition

〈c′
44〉 = 1

2 (〈c′
11〉 − 〈c′

12〉).
To obtain the Voigt average for Young’s Modulus EV = 1/s11, convert s11

to stiffness coefficients for an isotropic solid (Section 13.3 and Table 13.1).

s11 = (c11 + c12)/(c11 − c12)(c11 + 2c12).

Therefore EV = (〈c′
11〉 − 〈c′

12〉)(〈c′
11〉 + 2〈c′

12〉)/〈c′
11〉 + 〈c′

12〉. The Voigt
average for the Rigidity Modulus GV = 1/〈s′

44〉 and Poisson’s Ratio is
νV = (EV /2GV ) − 1. Numerical values for EV , GV , and νV are evaluated from
the single crystal stiffness coefficients.

The second part of the Voigt–Reuss–Hill averaging procedure is the Reuss
average of the compliance coefficients, beginning with the tensor transformation

s′
ijkl = aimajnakoalpsmnop.

Following the same procedure used for the stiffness coefficients gives the Reuss
averages:

ER = 15/[5(s11 + s22 + s33) + 2(s12 + s13 + s23) + (s44 + s55 + s66)]
GR = 15/[4(s11 + s22 + s33) − 4(s12 + s13 + s23) + 3(s44 + s55 + s66)]
νR = (ER/2GR) − 1.

Neither the Reuss average or the Voigt average is quite right. The Reuss
averaging procedure assumes the polycrystalline specimen is in a condition of
uniform stress, while the Voigt method assumes uniform strain. In fact there are
bound to be variations in stress and strain throughout the sample, especially near
grain boundaries where mismatched orientations occur. The truth lies between
these two extremes: this is an average of the average.

To illustrate, the Voigt and Reuss averages for three metals are listed in
Table 13.4, along with the observed experimental value. In every case the Voigt
values are too high, and Reuss moduli too low, but the average of the averages
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Table 13.4 Experimental values of
(in 1011 N/m2) Young’s Modulus (E) and
Rigidity Modulus (G) for polycrystalline

copper, gold, and iron. Averages calculated
from single crystal elastic constants by the
Voigt (EV and GV ) and Reuss (ER and GR)

methods are shown for comparison. The
experimental values lie about halfway between

the calculated results

Moduli Copper Gold α-Iron

ER 1.09 0.69 1.93
E 1.23 0.79 2.13
EV 1.44 0.87 2.29
GR 0.40 0.24 0.74
G 0.46 0.28 0.83
GV 0.54 0.31 0.86

Table 13.5 A comparison of stiff, low-density ceramics
with common metals, glass and wood

(E values expressed in 1011 N/m2)

Specific gravity Young’s Modulus Ratio

Iron 7.8 2.10 0.25
Titanium 4.5 1.20 0.25
Aluminum 2.7 0.73 0.25
Common glass 2.5 0.70 0.26
Spruce wood 0.5 0.13 0.25

AlN 3.3 3.4 1.03
Al2O3 4.0 3.8 0.95
Boron 2.3 4.1 1.80
C whiskers 2.3 7.5 3.30
SiC 3.2 5.1 1.6
Si3N4 3.2 3.8 1.2

is very close. This is the Voigt–Reuss–Hill procedure for estimating the elastic
properties of polycrystalline materials from the single crystal values.

Problem 13.4
Using the Voigt–Reuss–Hill procedure, estimate the Young’s Modulus, E, the
Rigidity Modulus, G, and the Poisson Ratio, ν, for polycrystalline beryllium.
Single crystal stiffness coefficients are listed in Table 13.3. Beryllium is one of
the stiffest of metals and has a superb stiffness/weight ratio.

For many engineering applications, it is not the stiffness that is important,
but the stiffness per unit weight. It is here that ceramics excel with much
greater stiffnesses than common construction materials such as steel and wood
(Table 13.5).

13.9 Temperature coefficients

Most materials become more compliant with increasing temperature as ther-
mal vibrations increase in amplitude, leading to longer interatomic dis-
tances, and weaker chemical bonds. The temperature coefficients of elastic
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Table 13.6 Temperature coefficients of the elastic
stiffnesses for several cubic crystals (the fractional change

in stiffness with increasing temperature is expressed in units
of 10−4/K, and is measured near room temperature)

Tc11 Tc12 Tc44

Diamond structure
Carbon −0.137 −0.57 −0.125
Silicon −0.81 −1.1 −0.63
Germanium −1.2 −1.1 −1.15

Body-centered cubic
Iron −1.7 −0.8 −1.5
Sodium −6.3 −5.6 −17

Face-centered cubic
Aluminum −3.1 −1.3 −4.45
Copper −2.01 −1.24 −3.33
Gold −1.8 −1.5 −3.0

stiffness, defined as Tc = (1/c) (dc/dT ) is generally a negative number. It
ranges from about 10−5/K in strongly bonded solids like diamond to 10−2/K
in molecular solids with low melting points.

Typical values for cubic metals and semiconductor crystals are listed
in Table 13.6.

Changes in the elastic stiffnesses of diamond, aluminum, and anthracene
(Fig. 13.7) illustrate typical behavior over a wide temperature range. The coef-
ficients of diamond vary little with temperature compared to those of weakly
bonded metals and molecular crystals.

Phase transformations cause rapid changes in elastic stiffness, and often these
changes are highly anisotropic depending on the modes of vibration associated
with the transformation. The melting of tin (Fig. 13.8) and the ferroelectric
phase transformation in barium titanate are good examples. The common white
tin structure is tetragonal, point group 4/mmm. Each Sn atom is bonded to
six Sn neighbors, four in a distorted tetrahedron at 3.02 Å and two others at
3.17 Å along the c-axis. The two additional neighbors stiffen the structure along
Z3 and lower the compliance coefficient s33. As temperature increases toward
the melting point of 505 K, the thermal oscillations lead to further softening
of s11.

Barium titanate has three displacive phase transformations at 130◦C, 0◦C,
and −90◦C. Around room temperature in the ferroelectric tetragonal phase
(point group 4mm), the unit cell is elongated along the polar c-axis. As a result,
s33 is much larger than s11. It grows especially large near the Curie temperature
where the c lattice parameter changes rapidly with temperature. On cooling
toward the tetragonal–orthorhombic transition at 0◦C, s44 softens dramatically
as the polar axis swings from [001] to [011].

The elastic properties of polymers are also strongly temperature dependent.
Amorphous polymers like polyisobutylene (Fig. 13.9) show a pronounced glass
transition in which the shear stiffness increases by three orders of magnitude on
cooling below −50◦C. The polymer loses its rubber-like properties as it freezes
into a brittle glass-like state. Cross-linking between chains greatly stiffens
polymeric materials, increasing Young’s Modulus from about 108 N/m2 in
polyethylene to 1012 N/m2 in diamond.
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Fig. 13.7 Elastic stiffness coefficients of (a) diamond, (b) aluminum, and (c) anthracene plotted as a function of temperature. Stiffnesses are
expressed in GPa= 109 N/m2. Anthracene (C14H10) belongs to monoclinic point group 2/m and is highly anisotropic because of its aromatic
structure. The weak van der Waals bonding between molecules leads to low stiffness that softens rapidly with increasing temperature.

13.10 Quartz crystal resonators

Vibrating quartz crystals are used as time and frequency standards in wrist-
watches, radio oscillators, and computers. The optimization of these resonant
devices present many interesting applications in crystal physics. As pointed out
in Section 12.8, quartz is piezoelectric with a very high mechanical Q leading to
very sharp resonances. The five basic vibration modes excited by electric fields
were pictured in Fig. 12.13. Here we discuss two families of interesting rotated
Y -cuts: (1) the AT- and BT-cuts with zero temperature coefficients, and (2) the
AC- and BC-cuts used to generate pure shear waves. Both types of resonators
use thickness shear vibrations driven by the largest piezoelectric coefficient
d26 = −2d11.
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13.10.1 AT- and BT-cuts

The resonant frequency for the thickness shear mode is given by

f = 1

2t

√
c′

66

ρ
,

where t is thickness of the quartz plate (Fig. 12.12) and ρ is the density.
Elastic stiffness coefficient c′

66 governs shear motions about Z ′
3 for the rotated

Y -cut. The engineering objective is to find an orientation angle θ for which the
resonant frequency does not drift with changes in temperature. The temperature
derivative of f is

1

f

df

dT
= −1

t

dt

dT
+ 1

2c′
66

dc′
66

dT
− 1

2ρ

dρ

dT
.

To make df /dT = 0, requires that the three terms governed by t, c′
66, and ρ

have off-setting temperature changes.
The changes in the thickness t and the density ρ are controlled by the ther-

mal expansion coefficients. Quartz is trigonal so there are two independent
thermal expansion coefficients α11 = α22 and α33. The room temperature ther-
mal expansion coefficients are α11 = 14.3 × 10−6/K and α33 = 7.8 × 10−6/K.
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As shown in Section 10.2, the temperature derivative of the density is

1

ρ

dρ

dT
= −(2α11 + α33) = −36.4 × 10−6/K.

For the thickness shear mode the controlling dimension is the thickness t
measured in the Z ′

2 direction. The temperature change comes from thermal
expansion coefficient α′

22:

1

t

dt

dT
= α′

22 = α11 cos2 θ + α33 sin2 θ .

Together these two terms are rather small compared to the temperature deriv-
atives of the elastic constants (Tc = (1/c)(dc/dT)). Quartz belongs to trigonal
point group 32 with seven independent stiffness coefficients, each with a
different temperature coefficient (Table 13.7).

Table 13.7 Elastic stiffnesses
(in 1011 N/m2) and temperature

coefficients (in 10−4/K) for quartz

c11 0.860 Tc11 −0.465
c12 0.051 Tc12 −33
c13 0.105 Tc13 −7
c14 0.183 Tc14 −9
c33 1.070 Tc33 −2.05
c44 0.590 Tc44 −1.66
c66 0.410 Tc66 +1.64

c′
66 is obtained by rotating the coordinate system about the X = Z1 = [100]

axis. In tensor notation

c′
66 = c′

1212 = a1ia2ja1ka2lcijkl

(a) =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ




c′
66 = c1313 sin2 θ + c1312 sin θ cos θ + c1213 cos θ sin θ + c1212 cos2 θ .

Converting back to matrix form and noting that c55 = c44 and c56 = c65 = c14

for point group 32, c′
66 = c44 sin2 θ + 2c14 sin θ cos θ + c66 cos2 θ .

Taking the temperature derivative of c′
66 and substituting the values into the

equation for the temperature derivative of the resonant frequency gives

1

f

df

dT
= −α11 cos2 θ − α33 sin2 θ + 1

2
(2α11 + α33)

+ (1/2)(c44Tc44 sin2 θ + 2c14Tc14 sin θ cos θ + c66Tc66 cos2 θ)

c44 sin2 θ + 2c14 sin θ cos θ + c66 cos2 θ
.

To find the orientation of the zero temperature coefficient cuts, set (1/f )
(df /dT) = 0 and solve for θ . The equation has two roots, θ = −35◦ and
+49◦ corresponding to the widely used AT- and BT-cuts.

It should be pointed out that zero temperature coefficient cuts are not possible
for many piezoelectric crystals. The positive temperature coefficient Tc66 makes
it possible for quartz. Tc coefficients are generally negative since most crystals
soften elastically with increasing temperature, but quartz has a displacive phase
transformation at 573◦C, the so-called α–β transition. As explained later in the
chapter on Ferroic Crystals, the α–β transformation involves rotational changes
in the crystal structure. The stiffening of c66 is one of the results.

13.10.2 AC- and BC-cuts

The second example concerns mode coupling in quartz and the identification
of crystal orientations with pure shear motions. As pointed out in Section 13.5,
AC-cut quartz plates are used to generate pure shear waves.
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Interfering vibration modes arise either from electromechanical coupling or
from mechanical coupling. For the AT- and BT-cuts an electric field E′

2 excites
a thickness shear vibration x′

6 through piezoelectric coefficient d′
26. But E′

2
also excites a face shear vibration through d25 (see Fig. 12.13). This mode has
a much lower frequency but care must be exercised that the harmonics of the
face shear mode do not come close to the thickness shear. Other piezoelectric
vibrations can be excited by E1. Rotated Y -cuts with E1 = 0 are used to avoid
these modes.

Mechanical coupling between modes takes place through elastic constants
which couple one motion to another. For example, stiffness coefficient c12

couples motions in the Z1 and Z2 directions. For thickness shear motions in
rotated Y -cuts, a shear strain x′

6 is excited by E′
2 through piezoelectric coefficient

d′
26. The strain component x′

6 is coupled to stress component X ′
6 through c′

66.
It is also coupled to stress components X ′

1, X ′
2, X ′

3, X ′
4, and X ′

5 through elastic
constants c′

16, c′
26, c′

36, c′
46, and c′

56. The stresses generated through these
five stiffness coefficients will excite additional vibrations coupled to the shear
motion about Z ′

3.

Problem 13.5
To avoid coupled modes of motion, it is necessary to make c′

16 = c′
26 = c′

36 =
c′

46 = c′
56 = 0. This can be done for quartz if the angle θ is chosen correctly.

As an exercise, evaluate these five coefficients for a Y -cut rotated through
an angle θ and determine the critical angles for AC- and BC-cuts. These are
the orientation angles for the piezoelectric transducers that are widely used in
acoustics to generate transversely-polarized waves.
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In this chapter we deal with a number of magnetic properties and their
directional dependence: pyromagnetism, magnetic susceptibility, magnetoelec-
tricity, and piezomagnetism. In the course of dealing with these properties, two
new ideas are introduced: magnetic symmetry and axial tensors.

14.1 Basic ideas and units

Moving electric charge generates magnetic fields and magnetization. Macro-
scopically, an electric current i flowing in a coil of n turns per meter
produces a magnetic field H = ni amperes/meter [A/m]. On the atomic scale,
magnetization arises from unpaired electron spins and unbalanced electronic
orbital motion.

The weber [Wb] is the basic unit of magnetic charge m. The force between
two magnetic charges m1 and m2 is

F = m1m2

4πµ0r2
[N],

where r is the separation distance and µ0 (=4π ×10−7 H/m) is the permeability
of vacuum. In a magnetic field H , magnetic charge experiences a force F =
mH [N]. North and south poles (magnetic charges) separated by a distance r
create magnetic dipole moments mr [Wb m]. Magnetic dipole moments provide
a convenient way of picturing the atomistic origins arising from moving electric
charge.

Magnetization (I) is the magnetic dipole moment per unit volume and is
expressed in units of Wb m/m3 = Wb/m2. The magnetic flux density (B =
I + µ0H) is also in Wb/m2 and is analogous to the electric displacement D.

All materials respond to magnetic fields, producing a magnetization I = χH,
and a magnetic flux density B = µH where χ is the magnetic susceptibility and
µ is the magnetic permeability. Both χ and µ are in henries/m (H/m). The per-
meability µ = χ + µ0 and is analogous to electric permittivity. χ and µ are
sometimes expressed as dimensionless quantities (χ̄ and µ̄) like the dielectric
constant, where χ̄ = χ/µ0 and µ̄ = µ/µ0. Other magnetic properties will be
defined later in the chapter.

A schematic view of the submicroscopic origins of magnetic phenomena is
presented in Fig. 14.1. Most materials are diamagnetic with only a weak mag-
netic response induced by an applied magnetic field. In most compounds the
electrons are paired in bonding, but magnetic fields cause small changes in
orbital motion that results in a small negative susceptibility (χ̄ ≈ 10−5).
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Fig. 14.1 Origins of magnetic phenomena in crystals. Electric currents come from both free and bound electrons and from atomic nuclei.
The largest effects are in ferromagnetic, ferrimagnetic, and superconductor materials.

Induced currents enclose larger areas in aromatic molecules, giving larger
effects. In a field gradient diamagnetic materials experience a force driving
them out of the field.

Magnetization is also linearly proportional to field in paramagnetic mater-
ials but χ̄ is positive and usually larger, about 10−4. Paramagnetism is common
in dilute transition-metal salts, in which the metal ions with unpaired elec-
trons interact with one another only weakly. The spins are randomly oriented
at elevated temperatures but align slightly when a field is applied. Alignment
becomes more difficult at high temperatures causing a decrease in susceptibility
with temperature following the Curie Law. Superparamagnets contain clusters
of paramagnetic ions. Exchange interactions are strong within a cluster, but
weak between clusters. Yet another type of paramagnetism is found in metals
where the conduction electrons create temperature independent Pauli paramag-
netism. The effect is caused by small changes in the band structure for electrons
of opposite spin.

When spins of neighboring atoms interact appreciably, three types of
ordered configurations occur: antiferromagnetism, ferromagnetism, and
ferrimagnetism. All three show Curie–Weiss Law behavior at high tempera-
tures in the paramagnetic region. On cooling, the materials undergo a phase
transition to a state in which the atomic dipoles are aligned, even in the absence
of an applied field.

Antiferromagnetism is the most common of the three phenomena. In a simple
collinear antiferromagnet, adjacent spins are aligned in antiparallel directions,
producing zero net moment at zero field. Canted, spiral, and other more
complicated antiferromagnetic arrays have also been observed. The magnetic
susceptibility is small and field-independent, with a pronounced maximum near
the transition temperature, called the Néel point. A few antiferromagnets such
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as FeCl2 undergo spin reversal under applied fields, converting to ferromagnets
with all spins aligned. Dysprosium and other materials with antiferromagnetic–
ferromagnetic transitions exhibit peculiar field dependence, causing them to be
classified as metamagnets.

The most useful magnetic materials are ferromagnets and ferrimagnets. Both
possess a spontaneous magnetization that shows hysteresis under applied fields
and disappears at the Curie temperature. The ordered spin array of a ferromagnet
such as Co consists of parallel spins. Ferromagnets are rare among oxides,
with only CrO2, EuO, and a few other examples. In a simple ferrimagnet,
neighboring spins are antiparallel but are either unequal in size or unequal in
number. A number of important ferrimagnetic materials are found in the spinel
and garnet families.

Parasitic ferromagnetism is an effect found in αFe2O3 and certain other
antiferromagnets. A weak ferromagnetism caused by canting of the spins is per-
mitted for certain magnetic point groups. Parasitic ferromagnetism disappears
at the Néel temperature.

14.2 Magnetic structures and time reversal

Thousands of ordered magnetic structures have been determined by neutron
diffraction and various resonance techniques. As shown in Fig. 14.2, some are
simple collinear structures with all the magnetic moments aligned in parallel or
antiparallel configurations, but others have more complex configurations with
spins arranged in canted or helical structures.

Geometric representations are helpful in determining the effect of symmetry
on physical properties. In picturing magnetic structures, atomic magnetic
moments are often visualized as arrows, but this is somewhat misleading.
Magnetization arises from moving electric charge so that a current loop is
a more meaningful symbol. It is helpful, however, to retain the arrow indicat-
ing the magnetization direction as an aid in visualizing the orientation of the
current loop.

The transformations of a current loop under various symmetry operations are
shown in Fig. 14.3. A twofold axis reverses the direction of atomic moments
oriented perpendicular to the axis but does not affect the parallel components.
The reverse is true for mirror planes: magnetic moments parallel to the mirror
are reversed by the reflection operation, whereas perpendicular components
are unaffected. An inversion center leaves the moment unaltered, regardless of
orientation.

Time reversal, a nonspatial symmetry operation, is also used in describ-
ing magnetic structures. Reversing time reverses the direction of current flow,
reversing the direction of magnetization. In describing magnetic structures the
time reversal operator often occurs in combination with the geometrical sym-
metry elements. As an example, consider two identical atoms whose positions
are related by a twofold rotation axis (Fig. 14.4). The magnetic moments asso-
ciated with these atoms may also obey the rotational operation, or they may
not, depending the orientation of the moments. If both spins are parallel to the
twofold axis (Fig. 14.4(a)), the twofold axis is retained. If they are collinear with
the twofold axis and antiparallel to one another (Fig. 14.4(b)), the twofold axis is



14.3 Magnetic point groups 125

Collinear
ferromagnet

Collinear
antiferromagnet

Collinear
ferrimagnet

Non collinear 
weak

ferromagnet

Non collinear
weak

antiferromagnet
Strongly
canted

ferrimagnet

Antiferromagnetic
helicoid

Ferromagnetic
helicoid

Cycloidal
antiferromagnet

Fig. 14.2 Representative magnetic struc-
tures for ferromagnetic, ferrimagnetic, and
antiferromagnetic materials. Each can be
assigned to a magnetic symmetry group.

almost retained. In this case, reversing the spin retains the symmetry element.
Spin reversal is brought about by time reversal, so that the two moments in
Fig.14.4(b) are related by a twofold rotation accompanied by time reversal,
designated 2′. The spins need not be parallel or antiparallel to the symmetry
axis to maintain 2 or 2′ symmetry operators. The spin configurations shown in
Fig. 14.4(c) and (d) also possess twofold axes.

14.3 Magnetic point groups

Magnetic point groups govern magnetic properties, just as nonmagnetic
properties are subject to Neumann’s Principle and crystallographic point
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Fig. 14.3 Transformation of a current loop
under (a) twofold rotation, (b) reflection,
(c) inversion, and (d) time reversal. Note that
for rotation and reflection, the transformation
depends on the orientation of the loop relative
to the symmetry element.

Current loop

Resulting magnetization

(a)

(b)

(c) (d)

Fig. 14.4 Spin configurations in (a) and (c)
possess twofold symmetry, while in (b) and
(d) the rotational symmetry is accompanied
by time reversal.

(a) 2 (b) 2�

2 2�(c) (d)

symmetry. Introduction of the time reversal operator increases the number of
classes by adding 90 additional magnetic point groups.

To illustrate, we shall derive the magnetic point groups associated with 2/m,
one of the 32 crystallographic point groups. This a monoclinic point group with
a twofold symmetry axis parallel to Z2 = [010], and a mirror plane perpendic-
ular to Z2. Point group 2/m also contains a center of symmetry (1̄) that does not
appear in the symbol. Orthoclase feldspar (KAlSi3O8) and other nonmagnetic
crystals belonging to 2/m contain six types of symmetry: 2, 2′, m, m′, 1̄, and 1̄′.
They possess regular crystallographic symmetry elements and time-reversed
symmetry elements. Two atoms in the feldspar structure related by the mirror
plane m are also related by m′ (reflection plus time reversal). Reversing time
reverses spin directions, but since spin-up and spin-down electron distributions
are identical in nonmagnetic crystals, both m and m′ are present. This is not
true in materials with long-range magnetic order. One symmetry element may
be obeyed, but not both.

When discussing magnetic symmetry, it is necessary to distinguish the crys-
tallographic point groups from the magnetic point groups. The crystallographic
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Fig. 14.5 Stereograms of the four magnetic
point groups associated with crystallographic
point group 2/m1′. Solid and open symbols
represent equivalent points in the northern
and southern hemispheres. Square and circu-
lar symbols represent points related by time
reversal. Both time-reversed and nontime-
reversed symmetry elements are present in
2/m1′ so there are twice the number of sym-
metry elements in the crystallographic group.

group is written as 2/m1′ which indicates that it contains both the regular and
the time-reversed symmetry elements. When written as 2/m it contains 2, m,
and 1̄, but not 2′, m′, and 1̄′. 2/m is one of the magnetic point groups associ-
ated with crystallographic group 2/m1′. As shown in Fig. 14.5 there are three
more: 2/m′, 2′/m, and 2′/m′. They are easily deduced from 2/m by systematic
substitution of time-reversed symmetry elements.

Examples of many of the magnetic point groups have been determined by
neutron diffraction (Oles). Referring to the four monoclinic groups in Fig. 14.5,
ferromagnetic Fe3Se4 belongs to 2′/m′, while the low temperature magnetic
structures of antiferromagnetic DyOOH and ErOOH are in 2/m′ and 2′/m,
respectively. Between 250 and 950 K, hematite (α-Fe2O3) is a weak ferrimagnet
in magnetic point group 2/m.

A full listing of the magnetic point groups and their associated physical
properties is given in Table 14.1.

Problem 14.1
The ninety magnetic point groups can be deduced using stereographic
projections. Derive the nine magnetic point groups belonging to the ortho-
rhombic system. Begin with the three that do not contain time reversal (222,
mm2, mmm) and generate six more. Label each group and indicate which are
pyromagnetic.

Problem 14.2
Derive the magnetic Curie groups and list their generating symmetry
elements.

Examples of four magnetic structures and their magnetic point groups are
shown in Figs. 14.6 and 14.7. Common α-Fe is ferromagnetic with magnetic
moments aligned parallel to the [001] direction. The body-centered cubic crystal
structure (point group m3m1′ above Tc) distorts very slightly on cooling through
the magnetic transition where the spins become ordered and the symmetry
changes to magnetic point group 4/mm′m′.

Cobalt is also ferromagnetic with magnetic spin along [001]. The crystal
structure is hexagonal close-packed (Fig. 14.6(b)), point group 6/mmm1′ in
the high temperature paramagnetic state, which changes to magnetic group
6/mm′m′ when the spins align. In this case the metal is hexagonal in both
paramagnetic and ferromagnetic phases.
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Table 14.1 Ninety magnetic point groups. Number of nonzero matrix
coefficients for pyromagnetism, magnetoelectricity, and piezomagnetism are

listed along with the number of independent coefficients in parentheses
(the symmetry elements required to generate the group are also included)

Pyromagnetic Magnetoelectric Piezomagnetic Generating elements

Triclinic
1 3(3) 9(9) 18(18) 1
1̄ 3(3) 0 18(18) 1̄
1̄′ 0 9(9) 0 1̄′

Monoclinic
2 1(1) 5(5) 8(8) 2 ‖ Z2
2′ 2(2) 4(4) 10(10) 2′ ‖ Z2
m 1(1) 4(4) 8(8) m ⊥ Z2
m′ 2(2) 5(5) 10(10) m′ ⊥ Z2
2/m 1(1) 0 8(8) 2 ‖ Z2, m ⊥ Z2
2′/m′ 2(2) 0 10(10) 2′ ‖ Z2, m′ ⊥ Z2
2/m′ 0 5(5) 0 2 ‖ Z2, m′ ⊥ Z2
2′/m 0 4(4) 0 2′ ‖ Z2, m ⊥ Z2

Orthorhombic
222 0 3(3) 3(3) 2 ‖ Z2, 2 ‖ Z3
2′2′2 1(1) 2(2) 5(5) 2′ ‖ Z2, 2 ‖ Z3
mm2 0 2(2) 3(3) m ⊥ Z2, 2 ‖ Z3
m′m′2 1(1) 3(3) 5(5) m′ ⊥ Z2, 2 ‖ Z3
m′m2′ 1(1) 2(2) 5(5) m ⊥ Z2, 2′ ‖ Z3
mmm 0 0 3(3) m ⊥ Z1, m ⊥ Z2, m ⊥ Z3
m′m′m 1(1) 0 5(5) m′ ⊥ Z1, m′ ⊥ Z2, m ⊥ Z3
m′m′m′ 0 3(3) 0 m′ ⊥ Z1, m′ ⊥ Z2, m′ ⊥ Z3
m′mm 0 2(2) 0 m′ ⊥ Z1, m ⊥ Z2, m ⊥ Z3

Trigonal
3 1(1) 5(3) 13(6) 3 ‖ Z3

3̄ 1(1) 0 13(6) 3̄ ‖ Z3

3̄′ 0 5(3) 0 3̄′‖Z3
32 0 3(2) 5(2) 2 ‖ Z1, 3 ‖ Z3
32′ 1(1) 2(1) 8(4) 2′ ‖ Z1, 3 ‖ Z3
3m 0 2(1) 5(2) m ⊥ Z1, 3 ‖ Z3
3m′ 1(1) 3(2) 8(4) m′ ⊥ Z1, 3 ‖ Z3

3̄m 0 2(1) 5(2) m ⊥ Z1, 3̄‖Z3

3̄m′ 1(1) 0 8(4) m′ ⊥ Z1, 3̄‖Z3

3̄′m′ 0 3(2) 0 m′ ⊥ Z1, 3̄′‖Z3

3̄′m 0 0 0 m ⊥ Z1, 3̄′‖Z3

Tetragonal
4 1(1) 5(3) 7(4) 4 ‖ Z3
4′ 0 4(2) 7(4) 4′ ‖ Z3

4̄ 1(1) 4(2) 7(4) 4̄ ‖ Z3

4̄′ 0 5(3) 7(4) 4̄′ ‖ Z3
4/m 1(1) 0 7(4) m ⊥ Z3, 4 ‖ Z3
4′/m 0 0 7(4) m ⊥ Z3, 4′ ‖ Z3
4/m′ 0 5(3) 0 m′ ⊥ Z3, 4 ‖ Z3
4′/m′ 0 4(2) 0 m′ ⊥ Z3, 4′ ‖ Z3
422 0 3(2) 2(1) 2 ‖ Z1, 4 ‖ Z3
4′22 0 2(1) 3(2) 2 ‖ Z1, 4′ ‖ Z3
42′2′ 1(1) 2(1) 5(3) 2′ ‖ Z1, 4 ‖ Z3
4mm 0 2(1) 2(1) m ⊥ Z1, 4 ‖ Z3
4′mm′ 0 2(1) 3(2) m ⊥ Z1, 4′ ‖ Z3
4m′m′ 1(1) 3(2) 5(3) m′ ⊥ Z1, 4 ‖ Z3

4̄2m 0 2(1) 2(1) 2 ‖ Z1, 4̄ ‖ Z3

4̄′2m′ 0 3(2) 3(2) 2 ‖ Z1, 4̄′ ‖ Z3

4̄′2′m 0 2(1) 3(2) 2′ ‖ Z1, 4̄′ ‖ Z3

4̄2′m′ 1(1) 2(1) 5(3) 2′ ‖ Z1, 4̄ ‖ Z3
4/mmm 0 0 2(1) m ⊥ Z1, m ⊥ Z3, 4 ‖ Z3

Continued overleaf
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Table 14.1 (Continued)

Pyromagnetic Magnetoelectric Piezomagnetic Generating elements

Tetragonal
4′/mmm′ 0 0 3(2) m ⊥ Z1, m ⊥ Z3, 4′ ‖ Z3
4/mm′m′ 1(1) 0 5(3) m′ ⊥ Z1, m ⊥ Z3, 4 ‖ Z3
4/m′m′m′ 0 3(2) 0 m′ ⊥ Z1, m′ ⊥ Z3, 4 ‖ Z3
4/m′mm 0 2(1) 0 m ⊥ Z1, m′ ⊥ Z3, 4 ‖ Z3
4′/m′mm′ 0 2(1) 0 m ⊥ Z1, m′ ⊥ Z3, 4′ ‖ Z3

Hexagonal
6 1(1) 5(3) 7(4) 6 ‖ Z3
6′ 0 0 6(2) 6′ ‖ Z3

6̄ 1(1) 0 7(4) 6̄ ‖ Z3

6̄′ 0 5(3) 6(2) 6̄′ ‖ Z3
6/m 1(1) 0 7(4) m ⊥ Z3, 6 ‖ Z3
6′/m′ 0 0 6(2) m′ ⊥ Z3, 6′ ‖ Z3
6/m′ 0 5(3) 0 m′ ⊥ Z3, 6 ‖ Z3
6′/m 0 0 0 m ⊥ Z3, 6′ ‖ Z3
622 0 3(2) 2(1) 2 ‖ Z1, 6 ‖ Z3
6′22′ 0 0 3(1) 2 ‖ Z1, 6′ ‖ Z3
62′2′ 1(1) 2(1) 5(3) 2′ ‖ Z1, 6 ‖ Z3
6mm 0 2(1) 2(1) m ⊥ Z1, 6 ‖ Z3
6′mm′ 0 0 3(1) m ⊥ Z1, 6′ ‖ Z3
6m′m′ 1(1) 3(2) 5(3) m′ ⊥ Z1, 6 ‖ Z3

6̄m2 0 0 2(1) m ⊥ Z1, 6̄ ‖ Z3

6̄′m′2 0 3(2) 3(1) m′ ⊥ Z1, 6̄′ ‖ Z3

6̄′m2′ 0 2(1) 3(1) m ⊥ Z1, 6̄′ ‖ Z3

6̄m′2′ 1(1) 0 5(3) m′ ⊥ Z1, 6̄ ‖ Z3
6/mmm 0 0 2(1) m ⊥ Z1, m ⊥ Z3, 6 ‖ Z3
6′/m′mm′ 0 0 3(1) m ⊥ Z1, m′ ⊥ Z3, 6′ ‖ Z3
6/mm′m′ 1(1) 0 5(3) m′ ⊥ Z1, m ⊥ Z3, 6 ‖ Z3
6/m′m′m′ 0 3(2) 0 m′ ⊥ Z1, m′ ⊥ Z3, 6 ‖ Z3
6/m′mm 0 2(1) 0 m ⊥ Z1, m′ ⊥ Z3, 6 ‖ Z3
6′/mmm′ 0 0 0 m ⊥ Z1, m ⊥ Z3, 6′ ‖ Z3

Cubic
23 0 3(1) 3(1) 2 ‖ Z1, 3 ‖ [111]
m3 0 0 3(1) m ⊥ Z1, 3 ‖ [111]
m′3 0 3(1) 0 m′ ⊥ Z1, 3 ‖ [111]
432 0 3(1) 0 4 ‖ Z1, 3 ‖ [111]
4′32 0 0 3(1) 4′ ‖ Z1, 3 ‖ [111]
4̄3m 0 0 0 4̄ ‖ Z1, 3 ‖ [111]
4̄′3m′ 0 3(1) 3(1) 4̄′ ‖ Z1, 3 ‖ [111]
m3m 0 0 0 m ⊥ Z1, 3 ‖ [111],

m ⊥ [100]
m3m′ 0 0 3(1) m ⊥ Z1, 3 ‖ [111],

m′ ⊥ [110]
m′3m′ 0 3(1) 0 m′ ⊥ Z1, 3 ‖ [111],

m′ ⊥ [110]
m′3m 0 0 0 m′ ⊥ Z1, 3 ‖ [111],

m ⊥ [110]

Transition metal oxides are often antiferromagnetic because of strong
superexchange interactions through neighboring oxygen atoms. Hematite
(α-Fe2O3) and chrome oxide (Cr2O3) are corundum-family oxides with rhom-
bohedral (trigonal) unit cells (Fig. 14.6(c) and (d)). The corundum (α-Al2O3)

structure belongs to point group 3̄m1′. Below TN , the Neel temperature,
α-Fe2O3 exhibits a weak parasitic ferromagnetism between −20◦C and 675◦C.
In this temperature range the atomic moments lie in the basal (001) plane
(point group 2/m). Parasitic ferromagnetism occurs when a small ferromagnetic
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component can be developed without violating the point group symmetry. Point
group 2/m is a subgroup of ∞/mm′, the Curie group symmetry associated
with the magnetization vector. Weak ferromagnetism occurs along the twofold
rotation axis of 2/m in the crystallographic (001) plane. The canted spin arrange-
ment corresponds to the noncollinear weak ferromagnet pattern in Fig. 14.2
Below −20◦C the spins in hematite are aligned along [001] in an antiparallel
configuration (magnetic point group 3̄m, Fig. 14.7(c)). Weak ferromagnetism
does not occur in this point group. In antiferromagnetic Cr2O3 the spins are
also along [001] but arranged in different pattern conforming to point group
3̄′m′, Fig. 14.7(d). Stereograms for the four magnetic point groups are shown
in Fig. 14.7.

(a)

(b)

(c) (d)

Fig. 14.6 Magnetic structures of (a) α-Fe,
(b) Co, (c) α-Fe2O3 (T < 250 K), and
(d) Cr2O3.

In all the examples just discussed the symmetry of the crystal structure is
modified by introducing a magnetic dipole array. When a spontaneous magnet-
ization is superposed on crystallographic symmetry, the point group is changed
to one of the magnetic subgroups, depending on the direction of the magnet-
ization. The symmetry group of magnetization is ∞/mm′, and the magnetic
groups of α-Fe, Co, Ni are all subgroups of ∞/mm′.

14.4 Magnetic axial vectors

Electric and magnetic phenomena are related to one another through Maxwell’s
Equations. The equations are written out in vector and tensor notation in
Table 14.2. From the first two equations it is apparent that electric and mag-
netic variables are related through vector products. In tensor form the vector
product is written as the rotation tensor εijk which is equal to zero unless all
three subscripts are different (i �= j �= k �= i); εijk = +1 if i, j, k are cyclic, and
εijk = −1 if they are anticyclic. In other words the vector product changes sign
when the handedness changes. Transformations such as inversion or reflection
change the sign of a vector product. The vector product of two polar vectors
creates an axial vector.

From the first Maxwell equation, the magnetic flux density Bi is related to
the cross product of the spatial derivative of the electric field Ek with respect
to coordinate Zj. Since the electric field E and coordinate Z both transform as
polar first rank tensors (vectors), and the time t is a scalar, then B must transform
as an axial first rank tensor (axial vector). In tensor form,

B′
i = |a|aijBj

and since B, I , and H are all related by the constitutive equation, they are all
axial vectors.

I ′
i = |a|aijIj and H ′

i = |a|aijHj.

Fig. 14.7 Magnetic point groups of (a) α-Fe,
(b) Co, (c) α-Fe2O3 (T < 250 K), and
(d) Cr2O3. The squares and circles are related
by time reversal. 4/mm�m� 6/mm�m� 3m 3

–
�m�

(a) (b) (c) (d)
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Table 14.2 Maxwell’s Equations in
vector and tensor notation

along with the linear constitutive equations
(ρ is the free charge density [C/m3])

Vector form Tensor form

�∇ × �E = − ∂ �B
∂t

εijk
∂Ek

∂Zj
= − ∂Bi

∂t

�∇ × �H = �J + ∂ �D
∂t

εijk
∂Hk

∂Zj
= Ji + ∂Di

∂t

�∇ · �B = 0
∂Bi

∂Zi
= 0

�∇ · �D = ρ
∂Di

∂Zi
= ρ

If time reversal is involved in the transformation, there will be an additional
sign change. Reversing the sign of the flow in the current loop reverses the mag-
netic field vector. Therefore in applying Neumann’s Principle to an axial tensor
property there will be two possible sign changes, one for the handedness change
|a| and the other for time reversal. The nature of the transformation will become
clearer when axial tensor properties such as pyromagnetism, magnetoelectricity,
and piezomagnetism are considered.

14.5 Saturation magnetization
and pyromagnetism

Ferromagnetic and ferrimagnetic materials are hysteretic. When a large mag-
netic field is applied and all the magnetic moments are aligned with the field,
the magnetization saturates to Is [Wb/m2]. The magnetization process involves
domain wall motion together with rotation of the magnetization vector into the
field direction. Field reversal leads to hysteresis and magnetization saturation
to −Is in the reverse direction. A schematic view of the experiment is shown in
Fig. 14.8. The specimen is shaped as a toroid (or a picture frame for single crys-
tals) with coils wrapped around opposite arms. The hysteresis loop is obtained
under an AC drive using an oscilloscope. Extrapolating the saturation value
back to the H = 0 vertical axis gives the spontaneous magnetization Is. The
variation of Is with temperature is the pyromagnetic coefficient Q (in units
of Wb/m2 K):

	Is = Q	T .

When written in tensor in tensor form, the defining transformation goes as
follows

	I ′
i = ±|a|aij	Ij = ±|a|aijQj	T

= ±|a|aijQj	T ′ = Q′
i	T ′.

Therefore the pyromagnetic coefficients transform as an axial first rank tensor.

Q′
i = ±|a|aijQj.
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Fig. 14.8 Experimental determination of the
saturation magnetization Is under high drive
conditions. The pyromagnetic coefficient is
determined by measuring Is as a function of
temperature.
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In matrix form it is a 3 × 1 column matrix.

3 × 1
(Q′) = ±|a|

3 × 3
(a)

3 × 1
(Q).

To illustrate Neumann’s Principle for the pyromagnetic effect we use ferro-
magnetic cobalt as an example. As shown in Fig. 14.6(b), Co has a hexagonal
close-packed structure with the magnetic spins parallel to [001] = Z3. The
magnetic point group is 6/mm′m′ and the three generating symmetry elements
are 6 ‖ Z3, m ⊥ Z3 and m′ ⊥ Z1.

For the mirror plane perpendicular to X3

(Q′) = (+1)(−1)


1 0 0

0 1 0
0 0 −1


 (Q) =


−Q1

−Q2

Q3


 .

Equating this result to the starting matrix tell us that Q1 = −Q1 = 0,
Q2 = −Q2 = 0, Q3 = Q3 is unchanged.

For the mirror accompanied by time reversal perpendicular to Z1,

(Q′) = (−1)(−1)


−1 0 0

0 1 0
0 0 1





 0

0
Q3


 =


 0

0
Q3


 .

The coefficient Q3 remains. Applying the sixfold axis leads to no further change.
As expected from the structure, there is only one nonzero coefficient Q3.

The 31 magnetic point groups exhibiting pyromagnetism are listed in
Table 14.3. Generally only one measurement is required to specify the effect.
Only low symmetry monoclinic and triclinic classes require two or three
measurements.

The temperature dependence of the saturation magnetization in two of the
magnetic garnets is illustrated in Fig. 14.9. The curve for YIG (=Y3Fe5O12)

is quite normal with Is dropping to zero at the Curie temperature. The largest
Q values occur just below Tc. Similar behavior is observed for most other
pyromagnetic materials and for many pyroelectric materials.

Gadolinium iron garnet (Gd3Fe5O12) has a more unusual behavior. The spon-
taneous magnetization begins with a very high value at low temperatures, then
drops rapidly to zero near room temperature, and then changes sign before
decreasing to zero at Tc. The pyromagnetic coefficient changes sign as well.
This unusual behavior is caused by the competition between the magnetic
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Table 14.3 The 31 pyromagnetic point groups

Magnetic point groups Pyromagnetic matrix

1, 1̄ (Q1, Q2, Q3)

2′, m′, 2′/m′ (Q1, 0, Q3)

2, m, 2/m (0, Q2, 0)

2′2′2, m′m′2, m′2′m, (0, 0, Q3)

m′m′m, 3, 3̄, 32′, 3m′,
3̄m′, 4, 4̄, 4/m, 42′2′,
4m′m′, 4̄2′m′, 4/mm′m′, 6
6̄, 6/m, 62′2′, 6m′m′, 6̄m′2′,
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Fig. 14.9 Spontaneous magnetization Is (in
Bohr magnetons/molecule) of two garnet
crystals plotted as a function of temperature.

dipoles associated with gadolinium and iron. At high temperature above Tc

both moments are randomized by thermal fluctuations. On cooling through Tc

the iron atoms align to create the spontaneous magnetization. Further cool-
ing leads to alignment of the gadolinium moments in the opposite direction.
As the large Gd moments align, the net magnetization decreases to zero and
then reverses sign. Magnetism arises from the unpaired 3d electrons in Fe and
the 4f electrons of Gd. The 4f electrons are buried further inside the atoms and
do not interact with neighboring atoms as extensively as 3d electrons.

Pyroelectricity has a thermodynamically related converse effect in which
an applied electric field produces a change in entropy. The magnetic analog
to this electrocaloric effect is the magnetocaloric effect observed in Fe, Ni,
and other ferromagnetic materials. In these materials the magnetocaloric effect
is due to the change in the net number of aligned spins within one domain
as the temperature changes. As expected the effect is largest near the Curie
temperature where a small magnetic field can cause a large change in entropy.
In Fe, temperature changes of 1 K are observed near 1000 K.

As discussed in Section 6.2, the thermodynamic relationship between the
magnetocaloric and pyromagnetic effects is(

∂S

∂H

)
T

=
(

∂I

∂T

)
H

.

At T = 0 K, the entropy is zero irrespective of all parameters includ-
ing the magnetic field H. Therefore (∂S/∂H)T = 0 at T = 0, and the
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magnetocaloric and pyromagnetic effects disappear at very low temperatures.
The same argument applies to the electrocaloric and pyroelectric effects.

14.6 Magnetic susceptibility and permeability

All materials respond to a magnetic field, producing a magnetization I = χH
and a magnetic flux density B = µH . The susceptibility χ and permeability
µ are in H/m. As with the dielectric constant, it is often easier to work in
dimensionless quantities by expressing χ and µ in units of µ0: χ̄ = χ/µ0

and µ̄ = µ/µ0 = χ̄ + 1. For strongly magnetic materials µ̄ and χ̄ can
be used interchangeably. At room temperature the relative susceptibility χ̄

ranges from about 10−5 in weakly magnetic materials to 106 in strong magnets.
At low temperatures, superconductors expel magnetic lines of force through
the Meissner Effect. This makes B = 0 and χ̄ = −1, a perfect diamagnet.
In general, χ̄ may be linear or nonlinear, and positive or negative, and is often
temperature-sensitive.

Magnetic susceptibility and magnetic permeability are both second rank
polar tensors. This can be seen by examining the transformation between
coordinate systems. Consider the susceptibility tensor χij relating Ii to Hj:

I ′
i = ±|a|aijIj = ±|a|aijχjkHk

= ±|a|aijχjk(±|a|alkH ′
l ) = χ ′

ilH
′
l .

In this relation the magnetization I and the magnetic field H transform as
axial first rank tensors (axial vectors). The same is true for the flux density B.
Therefore the axial nature cancels out for χ and µ, making them polar second
rank tensors:

χ ′
ij = aikailχkl

µ′
ij = aikajlµkl = χ ′

ij + µ0.

In matrix form

3 × 3
(χ ′) =

3 × 3
(a)

3 × 3
(χ)

3 × 3
(a)t and

3 × 3
(µ′) =

3 × 3
(a)

3 × 3
(µ)

3 × 3
(a)t .

These expressions are identical to those of the electric permittivity and the
dielectric constant (the relative permittivity).

Applying Neumann’s Principle to χ and µ leads to the same result as the
dielectric constant. As shown in Table 9.1, the matrices contain between 1 and 6
independent coefficients, depending on symmetry. Triclinic crystals require six
measurements and cubic crystals only one. The procedure for finding the prin-
cipal axes follows that for the dielectric constant (Section 9.4). It is important
to point out, however, that χ̄ and µ̄ often depend strongly on temperature,
pressure, frequency, and the size of the magnetic field.

The permeabilities of metals and ceramics with long-range magnetic order are
strongly influenced by domain structure. Values of the relative permeability of
ferromagnetic metals and ferrimagnetic oxides are comparable to the dielectric
constants of ferroelectric oxides. Soft magnets like permalloy have permeabil-
ities of 105–106 while values of 10–1000 are more common in hard magnets
where the domain walls are fixed in position.
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Fig. 14.10 The permeability spectrum of
yttrium iron garnet measured in small fields.

The magnetic permeability spectrum of cubic yttrium iron garnet is shown in
Fig. 14.10. The spectrum is characterized by two distinct regions of dispersion.
Relaxation of the domain-wall contribution takes place between 105 and 107 Hz.
The dispersion in the microwave range between 108 and 109 Hz is due to
gyromagnetic resonance of the Fe3+ spin system caused by anisotropy and the
internal demagnetization field.

Above a few GHz the permeability of magnetic oxides is almost zero. There
is no magnetic refractive index analogous to the optical permittivity (K̄ ≈ n2),
so that µ ∼= µ0 in the infrared and optical range.

Other causes of loss in ferromagnetic and ferrimagnetic materials include
hysteresis loss caused by irreversible domain wall motion, and eddy current
losses from conduction. These losses are minimized by keeping the measure-
ment fields small and by using magnetic oxides like YIG with high electrical
resistivity. The high frequency limit f for magnetic oxides is governed by
Snoek’s Law which states that µ̄f ∼= 0.56 GHz. Soft ferrites with high
permeability (µ̄) have lower limits that low permeability ferrites. The limit
is controlled by the gyromagnetic resonance. Further discussion of magnetic
resonance can be found in Section 31.3.

14.7 Diamagnetic and paramagnetic crystals

The magnetic susceptibility of a diamagnetic material is negative so that a dia-
magnet tends to move out of a magnetic field. Paramagnetic materials possess
positive susceptibilities and move into a magnetic field.

Most compounds are weakly diamagnetic because of Lenz’s Law. A change
in magnetic flux passing through an electric circuit induces a current that
opposes the flux change by creating a field in the opposite direction. In atoms
or molecules, electrons moving about the nucleus create the “electric currents”;
an applied field causes changes in the orbits, inducing a diamagnetic moment
that disappears when the field is removed.

Diamagnetic anisotropy is generally small in most inorganic crystals.
Quartz and calcite crystals are typical. Quartz (point group 32) the rela-
tive susceptibilities at room temperature are χ̄11 = χ̄22 = −1.51 × 10−5

and χ̄33 = −1.52 × 10−5. For calcite (point group 3̄m) the values are
χ̄11 = χ̄22 = −1.24 × 10−5 and χ̄33 = −1.38 × 10−5.
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Fig. 14.11 (a) Relative diamagnetic
susceptibilities of four aromatic crystals
(b) Susceptibilities referred to molecular
axes. Dimensionless, all multiplied by 10−5.

(b) (a) Principal axes
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Much larger anisotropy is observed in graphite and various aromatic crystals.
Flat aromatic molecules show large diamagnetic susceptibilities when the
molecules are oriented perpendicular to the applied magnetic field. This can
be explained in terms of the π -orbitals associated with the benzene-like rings.
The applied field induces electron currents that move around the molecule in
wide orbits, and since the induced magnetization is proportional to the product
of the current times the enclosed area, a large diamagnetic effect results. The sus-
ceptibility in graphite, measured perpendicular to the hexagonal layers, is about
five times larger than in the perpendicular direction (χ̄11 = χ̄22 = −5.0×10−5

and χ̄33 = −27.4 × 10−5). Magnetic properties of other aromatic molecules
are described in Fig. 14.11. When referred to molecular axes the susceptibilities
are very anisotropic, approaching those of graphite.

In paramagnetic solids, the magnetic susceptibility is positive and usually
somewhat larger in magnitude. Paramagnetism is common in dilute transition-
metal salts in which the metal ions with unpaired spins interact with one another
only weakly. In alums such as KCr(SO4)2·12H2O, the magnetic chromium
ions are widely spaced because of the intervening sulfate groups and water
molecules, and the interactions between spins are very small. At room tem-
perature the spins are randomly oriented and align only slightly when a field
is applied. Alignment becomes easier at very low temperatures where the sus-
ceptibility becomes large in accordance with the Curie Law (χ = C/T ). As
pointed out in Section 7.3, alums and other dilute paramagnetic salts are used
in cryogenic systems to achieve temperatures below 0.001 K by the process of
adiabatic demagnetization.

Yet another type of paramagnetism is found in metals like titanium. Pauli
paramagnetism is caused by small changes in band structure in the presence
of a magnetic field. Conduction electrons with spins parallel to the field have
slightly lower energy than those with antiparallel spins. The susceptibility of
many nonmagnetic metals is nearly temperature independent.

Anisotropy also appears at low temperature in antiferromagnetic crystals. In
manganese oxide the spins are parallel to 〈110〉 directions (Fig. 14.12). Above
the Neel temperature TN in the paramagnetic state, the magnetic susceptibility
of cubic MnO is isotropic, following a Curie–Weiss Law. Below the transition
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Fig. 14.12 Anisotropic magnetic susceptibil-
ity of antiferromagnetic MnO. The compon-
ent parallel to the magnetic spins is much
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dicular directions.
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in the antiferromagnetic state, there is marked anisotropy with the suscepti-
bility perpendicular to the spins much greater than the parallel component.
The large susceptibility for χ⊥ comes from the reorientation of Mn spins.
For polycrystalline MnO, the susceptibility averages in the same way as the
dielectric constant: 〈χ〉 = (2χ⊥ + χ||)/3.

14.8 Susceptibility measurements

Two of the ways of measuring magnetic susceptibility in diamagnetic, para-
magnetic and antiferromagnetic substances are illustrated in Fig. 14.13. The
magnetic Guoy balance involves weighing the sample in a magnetic field
gradient, dH/dZ . Diamagnetic samples move out of the field and weigh less
when the field is switched on. Paramagnetic solids are attracted to the field and
gain weight. The magnitude of the weight change is a measure of the induced
magnetization.

The vibrating sample magnetometer (Fig. 14.13(b)) is another commonly-
used method. The sample and a reference magnet are attached to a vibrating
rod. The sample is positioned between the poles of a large magnet with pick-
up coils nearby. Coils are also placed near the vibrating reference magnet.
AC voltages are generated in both sets of coils as the magnetic lines of force
intersect the coils. The induced magnetization in the sample is obtained by
comparing the two voltages.
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Fig. 14.14 The direct and converse magneto-
electric effects. In the electrically-induced
effect (ME)E , an electric voltage is applied
to the sample and a magnetic response
is measured with a pick-up coil. In the
magnetically-induced magnetoelectric effect
(ME)H , a current is passed through a coil
wrapped around the sample. The resulting
electric polarization creates a voltage across
electrodes attached to the sample. (ME)E (ME)H

14.9 Magnetoelectricity

The magnetoelectric effect is especially interesting because it involves an unex-
pected coupling between electric and magnetic variables that does not normally
appear in Maxwell’s Equations. For Cr2O3 and other magnetoelectric materials,
an applied magnetic field not only induces magnetization, but electric polar-
ization as well (Fig. 14.14). The converse phenomenon, electrically-induced
magnetization, is thermodynamically related to the direct effect.

The induced magnetization Ii [Wb/m2] is linearly proportional to the applied
electric field Ej [V/m] through the magnetoelectric coefficients Qij [Wb/V m].
Since E is a polar first rank tensor and I is an axial first rank tensor, the
magnetoelectric effect is an axial second rank tensor which transforms as
follows.

I ′
i = ±|a|aijIj = ±|a|aijQjkEk

= ±|a|aijQjkalkE′
l = Q′

ilE
′
l

Q′
il = ±|a|aijalkQjk .

In matrix form, the linear magnetoelectric effect transforms in a similar way
in going from the old (unprimed) system to the new (primed) system.

3 × 1
(I ′) = ±|a|

3 × 3
(a)

3 × 1
(I) = ±|a|

3 × 3
(a)

3 × 3
(Q)

3 × 1
(E)

= ±|a|
3 × 3
(a)

3 × 3
(Q)

3 × 3
(a)t

3 × 1
(E′) =

3 × 3
(Q′)

3 × 1
(E′)

3 × 3
(Q′) = ±|a|

3 × 3
(a)

3 × 3
(Q)

3 × 3
(a)t .

The magnetoelectric effect vanishes for all symmetry groups containing time
reversal symmetry (1′).

(Q′) = (−1)(+1)(+1)(Q)(+1) = (−Q) = (Q) = 0.

Therefore it only occurs in magnetic point groups. The effect also disappears
for ordinary inversion (1̄) operations:

(Q′) = (+1)(−1)(−1)(Q)(−1) = (−Q) = (Q) = 0.

For space inversion accompanied by time inversion (1̄′), the magnetoelectric
effect is permitted.

(Q′) = (−1)(−1)(−1)(Q)(−1) = (Q) = (Q).
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The magnetoelectric effect was first observed experimentally in antiferro-
magnetic chromium oxide. Below TN = 307 K, Cr2O3 belongs to magnetic
point group 3̄′m′ (see Figs. 14.6 and 14.7). The generating elements are a mirror
plane accompanied by time reversal (m′) perpendicular to Z1 and a threefold
roto-inversion axis along Z3, again accompanied by time reversal (3̄′). Applying
Neumann’s Principle, first for m′ ⊥ Z1:


Q′
11 Q′

12 Q′
13

Q′
21 Q′

22 Q′
23

Q′
31 Q′

32 Q′
33


 = (−1)(−1)




−1 0 0

0 1 0

0 0 1







Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33




×



−1 0 0

0 1 0

0 0 1




=



Q11 −Q12 −Q13

−Q21 Q22 Q23

−Q31 Q32 Q33


 =




Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 .

This equality can be satisfied if Q12 = Q13 = Q21 = Q31 = 0. Next the matrix
is transformed under 3̄′ ‖ Z3.


Q′
11 Q′

12 Q′
13

Q′
21 Q′

22 Q′
23

Q′
31 Q′

32 Q′
33


 = (−1)(−1)




1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 −1







Q11 0 0

0 Q22 Q23

0 Q32 Q33




×




1
2

√
3

2 0

−
√

3
2

1
2 0

0 0 −1




=




( 1
4 Q11 + 3

4 Q22
) ( −

√
3

4 Q11 +
√

3
4 Q22

) (√
3

2 Q23
)

(√
3

4 Q11 −
√

3
4 Q22

) ( 3
4 Q11 + 1

4 Q22
)

(−1
2 Q23

)
(√

3
2 Q32

) ( − 1
2 Q32

)
(Q33)




=

Q11 0 0

0 Q22 Q23

0 Q32 Q33




that can be satisfied only if Q11 = Q22 and Q23 = Q32 = 0. Therefore the
magnetoelectric matrix for point group 3̄′m′ is


Q11 0 0

0 Q11 0

0 0 Q33


 .

Magnetoelectric matrices for other magnetic point groups are listed in
Table 14.4. Only 58 of the 90 magnetic point groups are magnetoelectric.

Magnetoelectric coefficients of chromium oxide crystals are shown in
Fig. 14.15. Note that Q33 and Q11 go to zero at the Neel point where
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Table 14.4 Magnetoelectric matrices for the 90 magnetic crystal classes and 14 magnetic
Curie groups

1, 1̄′




Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33




2, m′, 2/m′




Q11 0 Q13

0 Q22 0

Q31 0 Q33




2′, m, 2′/m


 0 Q12 0

Q21 0 Q23
0 Q32 0




222, m′m′2, m′m′m′




Q11 0 0

0 Q22 0

0 0 Q33




22′2′, 2mm, m′m2′, m′mm




0 0 0

0 0 Q23

0 Q32 0




3, 3̄′, 4, 4̄′, 4/m′, 6, 6̄′, 6/m′, ∞, ∞m′




Q11 Q12 0

−Q12 Q11 0

0 0 Q33




4′, 4̄, 4′/m′




Q11 Q12 0

Q12 −Q11 0

0 0 0




32, 3m′, 3̄′m′, 422, 4m′m′, 4̄′2m′, 4/m′m′m′, 622, 6m′m′, 6̄′m′2,
6/m′m′m′, ∞2, ∞/m′m′, ∞m′




Q11 0 0

0 Q11 0

0 0 Q33




4′22, 4′mm′, 4̄2m, 4̄2′m′, 4′/m′mm′




Q11 0 0

0 −Q11 0

0 0 0




32′, 3m, 3̄′m, 42′2′, 4mm, 4̄′2′m, 4/m′mm, 62′2′, 6mm, 6̄′m2′,
6/m′mm, ∞2′, ∞/m′m




0 Q12 0

−Q12 0 0

0 0 0




23, m′3, 432, 4̄′3m′, m′3m′, ∞∞, ∞∞m′




Q11 0 0

0 Q11 0

0 0 Q11




Other magnetic groups




0 0 0

0 0 0

0 0 0




long-range order in the magnetic structure disappears. Antiferromagnetic crys-
tals like Cr2O3 contain antiferromagnetic domains, similar to ferromagnetic
substances. It is therefore necessary to “pole” the crystals in parallel mag-
netic and electric fields before measuring the magnetoelectric coefficients of
a single domain. This point will be discussed further in Section 16.8. The
antiferromagnetic domains in Cr2O3 are illustrated in Fig. 14.15.
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Fig. 14.15 Magnetoelectric effect in Cr2O3
single-domain single crystals. The two
domain states are related by the time rever-
sal operator 1′. Annealing in parallel E and
H fields are required to produce the single
domain state.

The magnetoelectric poling process has also been carried out on ceramic
specimens of Cr2O3 by applying electric and magnetic fields. The fields are
applied to the ceramic as it cools through the Neel point. The poling fields are
then removed and the magnetoelectric coefficients are evaluated using either
the direct or the converse effect. If the poling fields are parallel the effective
magnetic point group is∞m′. If they are perpendicular, the point group is 2′mm′.
Experiments have verified these effects and their relationships to the single
crystal value.

The atomistic origin of the magnetoelectric effect is illustrated in Fig. 14.16.
Consider an electrically-induced magnetoelectric effect in an antiferromagnetic
crystal. Initially, with no applied field, both the net polarization and the net
magnetization are zero. When a field is applied parallel to the chain direction,
the positive ions move in the field direction and negative ions in the opposite
direction, creating electric polarization. For the configuration in Fig. 14.16, the
cation and anion move closer together in one pair, and further apart in the other.
The resulting increase or decrease in electron overlap will effect the electron
orbital motion in the cations, changing their magnetic moments. Since “up”
moments are differently affected than “down” moments, the net magnetization
is no longer zero. Thus an applied electric field induces a small magnetization,
the magnetoelectric effect.

Note that the model structure in Fig. 14.16 possesses a center of symmetry
accompanied by time reversal accompanied by time reversal (1̄′). As pointed
out earlier, magnetoelectricity is forbidden in magnetic materials with ordinary
spatial inversion (1̄). This means that ferromagnetic materials like α-Fe and
Co do not exhibit magnetoelectricity. The symmetry restriction is similar to that
for piezoelectricity since all centric magnetic groups are nonmagnetoelectric.

Measurements have been reported for about thirty magnetoelectric materials.
Coupling coefficients are small, limiting interest in device development, but
composite magnetoelectrics offer some interesting possibilities.

Sintered diphasic ceramics containing grains of a poled ferroelectric in intim-
ate contact with grains of a magnetized ferromagnet exhibit surprisingly large
magnetoelectric coefficients. Under an electric field the ferroelectric grains
change shape through the piezoelectric effect. This shape change distorts
the neighboring magnetic grains causing a changed in magnetization though
the converse magnetostriction effect. Measurements on BaTiO3–CoFe2O4
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Fig. 14.16 One-dimensional model of the
magnetoelectric effect in antiferromagnets.
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composites gave larger magnetostriction coefficients than Cr2O3. A converse
magnetoelectric effect takes place under a magnetic field.

Problem 14.3
Poled ferroelectric ceramics have the same symmetry as an electric vector.
Magnetized ferrites possess the symmetry of a magnetic field. Using Curie’s
Principle of symmetry superposition, determine the symmetry group of the
magnetoelectric composite (a) when the two poling fields are parallel, and
(b) when they are perpendicular. What are the appropriate magnetoelectric
matrices for these two geometries? Explain how the coefficients should be
measured.

14.10 Piezomagnetism

Piezomagnetism is the magnetic analog to piezoelectricity. The direct piezo-
magnetic effect is a linear relation between magnetization I and mechanical
stress X:

Ii [Wb/m2] = Qijk [Wb/N]Xjk [N/m2].
The converse effect relates strain x to magnetic field H.

xij [ ] = Qijk [m/A]Hk [A/m].
The piezomagnetic coefficients transform as a third rank axial tensor.

I ′
i = ±|a|aijIj = ±|a|aijQjklXkl

= ±|a|aijamkanlQjklX
′
mn = Q′

imnX ′
mn

Q′
imn = ±|a|aijamkanlQjkl.
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Fig. 14.17 Cobalt fluoride crystal structure
and magnetic structure below TN = 38 K.

In matrix form, the transformation involves the 6×6 α matrix from Table 10.1.
3 × 1
(I ′) = ±|a|

3 × 3
(a)

3 × 1
(I) = ±|a|

3 × 3
(a)

3 × 6
(Q)

6 × 1
(X)

= ±|a|
3 × 3
(a)

3 × 6
(Q)

6 × 6
(α)−1

6 × 1
(X ′) =

3 × 6
(Q′)

6 × 1
(X ′)

3 × 6
(Q′) = ±|a|

3 × 3
(a)

3 × 6
(Q)

6 × 6
(α)−1.

Problem 14.4
What is Q113 in matrix form? Are the two equal in magnitude? Describe how
they might be measured experimentally.

The piezomagnetic 3 × 6 matrix is similar in form to the 3 × 6 piezo-
electric matrix but the symmetry requirements are entirely different because
of its axial nature. Like the magnetoelectric effect, the piezomagnetic effect
disappears whenever the time reversal element is present. Therefore the normal
crystallographic point groups do not show the effect. For time reversal (1′):

(Q′) = (−1)(+1)(+1)(Q)(+1) = −(Q) = (Q) = 0.

Piezomagnetism has been demonstrated in cobalt fluoride (CoF2). The crystal
structure and magnetic structure are illustrated in Fig. 14.17. CoF2 is antifer-
romagnetic and piezomagnetic below 38 K with Co spins aligned along the
[001] = Z3 axis. The crystal structure is isomorphous with rutile (TiO2), tetra-
gonal point group 4/mmm1′. Below TN the magnetic point group is 4′/mmm′
as determined by neutron diffraction.

We now proceed to derive the piezomagnetic matrix for magnetic group
4′/mmm′ using tensor notation and the direct inspection method. The three
symmetry elements that generate the group are 4′ ‖ Z3, m ⊥ Z3, and m ⊥ Z1. The
4′ axis along Z3 consists of fourfold rotation combined with time reversal 1′.
By direct inspection coefficient Q111 undergoes the following transformations.

111
4→ 222

1′→ −222
4→ 111

1′→ −111 → 0 ∴ Q111 = Q222 = 0

or in matrix terms, Q11 = Q22 = 0.

333
4→ 333

1′→ −333 → 0 ∴ Q333 = Q33 = 0.

122
4→ 211

1′→ −211
4→ 122

1′→ −122 → 0 ∴ Q122 = Q211 = 0,

Q12 = Q21 = 0.

In a similar way it can be shown that Q13 = Q23 = 0, Q16 = Q26 = 0,
Q14 = Q25, Q31 = −Q32, and Q15 = −Q24.
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Therefore for point group 4′,

(Q) =



0 0 0 Q14 Q15 0

0 0 0 −Q15 Q14 0

Q31 −Q31 0 0 0 Q36


 .

The mirror plane m perpendicular to Z3 does not change this matrix but the
mirror perpendicular to [100] = Z1 leads to further simplification. For a mirror
operation the handedness changes so |a| = −1, and 1 → 1, 2 → −2, and
3 → −3. For the four remaining coefficients,

14 = 123 → 123

15 = 113 → −113 ∴ Q15 = 0

31 = 311 → −311 ∴ Q31 = 0

36 = 312 → 312.

The final result for point group 4′/mmm′ is

(Q) =



0 0 0 Q14 0 0

0 0 0 0 Q14 0

0 0 0 0 0 Q36


 .

Experiments on cobalt fluoride crystals at low temperatures gave

Q14 = 2.7 × 10−11 Wb/N and Q36 = 1.0 × 10−11 Wb/N.

Problem 14.5
A tensile stress is applied to a CoF2 crystal in an arbitrary direction speci-
fied by spherical coordinates θ and φ. What are the resulting components of
magnetization along [100] and [001]?

Piezomagnetic matrices for other magnetic point groups are listed in
Table 14.5. Of the 90 magnetic groups 66 are piezomagnetic along with 5
of the 14 magnetic Curie groups. Thirty-five of the 66 piezomagnetic groups
are antiferromagnetic, 31 are not.

Table 14.5 Piezomagnetic matrices for the various magnetic symmetry groups

1, 1̄




Q11 Q12 Q13 Q14 Q15 Q16

Q21 Q22 Q23 Q24 Q25 Q26

Q31 Q32 Q33 Q34 Q35 Q36




2, m, 2/m




0 0 0 Q14 0 Q16

Q21 Q22 Q23 0 Q25 0

0 0 0 Q34 0 Q36




2′, m′, 2′/m′




Q11 Q12 Q13 0 Q15 0

0 0 0 Q24 0 Q26

Q31 Q32 Q33 0 Q35 0




222, mm2, mmm




0 0 0 Q14 0 0

0 0 0 0 Q25 0

0 0 0 0 0 Q36




Continued overleaf
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Table 14.5 (Continued)

2′2′2, m′m′2, m′2′m, m′m′m




0 0 0 0 Q15 0

0 0 0 Q24 0 0

Q31 Q32 Q33 0 0 0




3, 3̄




Q11 −Q11 0 Q14 Q15 −2Q22

−Q22 Q22 0 Q15 −Q14 −2Q11

Q31 Q31 Q33 0 0 0




32, 3m, 3̄m




Q11 −Q11 0 Q14 0 0

0 0 0 0 −Q14 −2Q11

0 0 0 0 0 0




32′, 3m′, 3̄m′




0 0 0 0 Q15 −2Q22

−Q22 Q22 0 Q15 0 0

Q31 Q31 Q33 0 0 0




4, 4̄, 4/m, 6, 6̄, 6/m, ∞, ∞/m




0 0 0 Q14 Q15 0

0 0 0 Q15 −Q14 0

Q31 Q31 Q33 0 0 0




4′, 4̄′, 4′/m




0 0 0 Q14 Q15 0

0 0 0 −Q15 Q14 0

Q31 −Q31 0 0 0 Q36




422, 4mm, 4̄2m, 4/mmm, 622, 6mm, 6̄m2,
6/mmm, ∞2




0 0 0 Q14 0 0

0 0 0 0 −Q14 0

0 0 0 0 0 0




4′22, 4′mm′, 4̄′2m′, 4̄′2′m, 4′/mmm′




0 0 0 Q14 0 0

0 0 0 0 Q14 0

0 0 0 0 0 Q36




42′2′, 4m′m′, 4̄2′m′, 4/mm′m′, 62′2′,
6m′m′, 6̄m′2′, 6/mm′m′, ∞2′, ∞/mm′




0 0 0 0 Q15 0

0 0 0 Q15 0 0

Q31 Q31 Q33 0 0 0




6′, 6̄′, 6′/m′




Q11 −Q11 0 0 0 −2Q22

−Q22 Q22 0 0 0 −2Q11

0 0 0 0 0 0




6′22′, 6′mm′, 6̄′m′2, 6̄′m2′, 6′/m′mm′




Q11 −Q11 0 0 0 0

0 0 0 0 0 −2Q11

0 0 0 0 0 0




23, m3, 4′32, 4̄′3m′, m3m′




0 0 0 Q14 0 0

0 0 0 0 Q14 0

0 0 0 0 0 Q14




All other magnetic groups




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



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Problem 14.6
Orthorhombic LiCoPO4(Fig. 14.18) belongs to magnetic point group mmm′.
What other symmetry elements are present in this point group? Using
Neumann’s Law and either tensor or matrix transformations, derive the
pyromagnetic, magnetoelectric, piezomagnetic, and magnetic susceptibility
matrices for this point group.

Cobalt

Lithium

Phosphate
tetrahedra

Fig. 14.18 Structure of antiferromagnetic
LiCoPO4. Cobalt spins are aligned along Z3
below the Neel temperature of 25 K.

Stress

No
stress

Fig. 14.19 A simple model representing the
intrinsic piezomagnetic effect under mechani-
cal stress, the changes in interatomic distances
lead to changes in the local crystal fields and
the magnetic exchange interactions. These
electronic effects create a stress-induced
change in magnetization. The converse effect
is a field-induced mechanical strain. Piezo-
magnetic strains are generally small com-
pared to magnetostrictive strains. Linear
effects are usually larger than higher order
effects but it is not true in this case.

The piezomagnetic coefficients reported for CoF2 are two orders of mag-
nitude smaller than the effective piezomagnetic coefficients associated with
magnetostriction. As explained in Section 15.5 the linearized portion of the
magnetostriction effect has piezomagnetic coefficients in the 10−9 to 10−8 m/A
(=Wb/N) range. Magnetostrictive strains are caused by rotation of the magnet-
ization vector and by domain wall movements. They are much larger than the
intrinsic piezomagnetic effect pictured in Fig. 14.19.

14.11 Summary

Four magnetic properties were discussed in this chapter: Linear relation-
ships between magnetization and temperature (pyromagnetism), magnetization
and magnetic field (magnetic susceptibility), magnetization and electric field
(magnetoelectricity), and magnetization and mechanical stress (piezomag-
netism). Pyromagnetism, magnetoelectricity, and piezomagnetism are axial
tensor properties that occur only among the 90 magnetic point groups. All
three effects are absent in the nonmagnetic crystallographic groups. Magnetic
susceptibility is a polar second rank tensor property found in all crystallographic
and magnetic point groups. It is interesting to compare the symmetry require-
ments for pyromagnetism and piezomagnetism with their electric analogs,
pyroelectricity and piezoelectricity. Very similar group–subgroup relationships
apply as shown in Fig. 14.20.

Fig. 14.20 Effect of symmetry on odd-rank
polar tensors (pyroelectricity and piezoelec-
tricity) and odd-rank axial tensor properties
(pyromagnetism and piezomagnetism).

66 Piezomagnetic

Ferromagnetic

Magnetic

12 Nonpiezoelectric 20 Piezoelectric

22 Nonpyroelectric 10 Pyroelectric

Ferroelectric

90 magnetic point groups

24 Nonpiezomagnetic

Electric

59 Nonpyromagnetic 31 Pyromagnetic

32 Crystallographic point groups
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The physical properties discussed thus far are linear relationships between two
measured quantities. This is only an approximation to the truth, and often not
a very good approximation, especially for materials near a phase transforma-
tion. A more accurate description can be obtained by introducing higher order
coefficients.

To illustrate nonlinearity we discuss electrostriction, magnetostriction, and
higher order elastic, and dielectric effects. These phenomena are described in
terms of fourth and sixth rank tensors.

15.1 Nonlinear dielectric properties

Many of the recent innovations in the field of electroceramics have exploited the
nonlinearities of material properties with factors such as electric field, mechan-
ical stress, temperature, or frequency. The nonlinear dielectric behavior of
ferroelectric ceramics (Fig. 15.1), for example, has opened up new markets
in electronics and communications. In these materials the electric polarization
saturates under high fields. Electric displacement Di varies with applied electric
field Ej as

Di = εijEj + εijkEjEk + εijklEjEkEl + · · · ,

where εij is the dielectric permittivity and εijk and εijkl are higher order terms.
The data in Fig. 15.1 were collected for a relaxor ferroelectric in its paraelectric
state above Tc where the symmetry is centrosymmetric. Therefore the third rank

3.53.02.52.01.51.00.50.0
0.0

0.1

0.2

0.3

D
(C

/m
2
)

E (MV/m)

Fig. 15.1 Nonlinear dielectric behavior for
the relaxor ferroelectric 0.9PMN–0.1PT
[Pb(Mg0.3Nb0.6Ti0.1)O3] in its cubic para-
electric state. The electric permittivity is
the slope of this curve. Under a bias field
the dielectric constant drops to much lower
values.



148 Nonlinear phenomena

tensor εijk is zero, and the shape of the curve is largely controlled by the first
and third terms. For cubic crystals, the fourth rank tensor εijkl is similar in form
to the elastic constants discussed in Chapter 13.

Tunable microwave devices utilize nonlinear dielectrics in which the polar-
ization saturates as in Fig. 15.1. By applying a DC bias the dielectric constant
can be adjusted over a wide range.

Problem 15.1
Polycrystalline PMN ceramics contain randomly oriented grains conforming
to Curie group ∞∞m. Using the data in Fig. 15.1, derive approximate values
for the linear and nonlinear dielectric constants.

15.2 Nonlinear elastic properties

In a similar way, the nonlinear properties of elastomers and other polymers have
been exploited in composite structures. In natural vulcanized rubber (Fig. 15.2),
the strain saturates as stress is increased. Linear stress–strain behavior conform-
ing to Hooke’s Law is observed only in regions of low stress. Nonlinear elastic
behavior in general may be described by

Xij = cijklxkl + cijklmnxklxmn + · · · ,

where Xij is stress, xkl strain, cijkl the elastic stiffness, and cijklmn the higher
order elastic constants.

cijklmn is a sixth rank tensor which transforms as the product of six direction
cosines:

c′
ijklmn = aioajpakqalramsantcopqrst .

When written in matrix form the linear and nonlinear terms are

Xi = cijxj + cijkxjxk + · · · .

The cij and cijk coefficients have the same dimensions [N/m2] and are often
referred to as the second order and third order elastic constants. Typical values
for third order elastic constants are given Table 15.1.
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2
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M
ic
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in

Fig. 15.2 Nonlinear stress–strain behavior
of a typical vulcanized rubber. The strain is
measured in parts per million.

Note that the principal third order stiffnesses (c111) are negative for inorganic
crystals. The third order elastic constants of NaCl, Cu, and other inorganic
crystals are negative while those of many polymers are positive. This is because

Table 15.1 Third order elastic constants for rocksalt, germanium, copper, and magnesium
(stiffnesses are given in units of 1011 N/m2)

Cubic crystals (m3m) c111 c112 c123 c144 c155 c456

NaCl −8.43 −0.5 +0.46 +0.29 −0.6 +0.26
Ge −7.20 −3.80 −0.3 −0.1 −3.05 −0.45
Cu −13.50 −8.00 −1.2 +0.66 −7.20 −0.32

Hexagonal crystals (6/mmm) c111 c112 c113 c123 c133

Mg −6.63 −1.78 +0.30 −0.76 −0.86

c144 c155 c222 c333 c344

−0.30 −0.58 −8.64 −7.26 −1.93
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the nonlinearity has different origins. Consider the crystals first. When a tensile
stress (positive sign) is applied to the crystal, the atoms are pulled further apart
and the interatomic force is weakened. This reduces the elastic stiffness and
when a large compressive force is applied (negative stress) the atoms are pushed
close together causing the electron clouds to overlap. This results in repulsive
forces that increase the elastic stiffness. Therefore the third order elastic constant
is negative.

In a polymer the situation is different. Here there are two kinds of forces
between atoms: strong covalent bonds within the polymer chain and weak van
der Waals bonds between the chains. When a strong tensile force (positive)
is applied the randomly oriented chains are rotated into the force direction.
This aligns the strong covalent bonds with the stress and leads to a stiffening
of the material. Just the opposite occurs when a compressive force (negative)
is applied. The chains are now rotated perpendicular to the stress that now the
force acts primarily on the weaker van der Waals bonds. This leads to a decrease
in stiffness and a positive third order stiffness coefficients. The stiffening under
stress is illustrated in Fig. 15.2.

The third order elastic stiffnesses in Table 15.1 are written in the three sub-
script matrix notation. Conversion from the six subscript tensor form to the
three subscript matrix form goes as follows: 11 = 1, 22 = 2, 33 = 3,
23 or 32 = 4, 31 or 13 = 5, 12 or 21 = 6. Therefore c111111 = c111,
c121111 = c611, c122111 = c661, etc. As with the second order stiffnesses, there
are no factors of 2 or 4 between the third-order tensor and matrix stiffness
coefficients.

In general, there are 36 = 729 tensor coefficients, but the coefficients are
commutative within the index pairs (cijklmn = cjiklmn = · · · ) and between
the index pairs (cijklmn = cklijmn = · · · ). In matrix notation this means that
cijk = cjik = · · · , where i, j, and k = 1–6. Commutation reduces the number
of tensor coefficients from 729 to 216, of which 56 are independent. Thus, 56
measurements are needed for a triclinic crystal.

As shown in Table 15.2, a large number of measurements are required even
for the most symmetric point groups. A full listing of the matrix coefficients is
given in the Landolt–Bornstein Tables.

The most important third order measurements are those carried out on earth
materials. The pressure derivatives of the elastic coefficients of minerals control

Table 15.2 The number of independent second and third order elastic
constants for the 32 crystallographic point groups

Symmetry Second order Third order

Triclinic (1, 1̄) 21 56
Monoclinic (2, m, 2/m) 13 32
Orthorhombic (222, mm2, mmm) 9 20
Trigonal (3, 3̄) 7 20
(32, 3m, 3̄m) 6 14
Tetragonal (4, 4̄, 4/m) 7 16
(422, 4mm, 4̄2m, 4/mmm) 6 12
Hexagonal (6, 6̄, 6/m) 5 12
(6̄m2, 622, 6mm, 6/mmm) 5 10
Cubic (23, m3) 3 8
(432, 4̄3m, m3m) 3 6
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Table 15.3 Comparison of elastic stiffness and their initial pressure derivatives for four oxide
minerals (Adiabatic stiffness cij are expressed in megabars, and the pressure derivatives

δcij/δP are dimensionless. The point groups are given in parentheses.)

ij Beryl (6/mmm) Quartz (32) Corundum (3̄m) Fosterite (mmm)

cij δcij/δp cij δcij/δp cij δcij/δp cij δcij/δp

11 2.80 4.5 0.86 3.3 4.98 6.2 3.29 8.3
22 2.80 4.5 0.86 3.3 4.98 6.2 2.01 5.9
33 2.48 3.4 1.07 10.8 5.02 5.0 2.36 6.2
44 0.66 −0.2 0.59 2.7 1.47 2.2 0.67 2.1
55 0.66 −0.2 0.59 2.7 1.47 2.2 0.81 1.7
66 0.91 0.3 0.41 −2.7 1.68 1.5 0.81 2.3
12 0.99 3.9 0.051 8.7 1.63 3.3 0.66 4.3
13 0.67 3.3 0.105 6.0 1.17 3.7 0.68 4.2
23 0.67 3.3 0.105 6.0 1.17 3.7 0.73 3.5
14 0 0 0.18 1.9 −0.23 0.1 0 0

changes in seismic wave velocities deep within the earth, and are strong
indicators of the onset of phase transformations and earthquakes. Elastic stiff-
ness coefficients and their initial pressure derivatives for four oxides are listed
in Tab1e 15.3.

Three observations can be made: (1) The pressure derivatives are all about
1 to 10 megabars/megabar (dimensionless). (2) Large stiffnesses usually show
greater pressure derivatives than small ones: if c11 > c22, then (δc11/δp) >

(δc22/δp). (3) Pressure derivatives of the stiffnesses are positive in dense-
packed structures but in open structures are occasionally negative. Quartz
and beryl each have one negative derivative but the close-packed corun-
dum and forsterite structures show none. When a close-packed structure is
compressed, the atoms move closer together but this need not be true in
an open structure where rotation scan take place. The stiffness coefficients
for bending are considerably smaller than for stretching. Thus, rotation
can lead to negative pressure dependence of shear stiffness coefficients.
Note that the pressure derivatives are positive numbers because pressure is
negative.

The second observation, that the stiffness coefficients tend to have larger
pressure derivatives, can be rationalized as follows. When subjected to very
high hydrostatic pressures, the atoms are crowded together, closer and closer,
until the electron shells begin to overlap and strong repulsive forces come into
play. In this highly compressed state, the overlap is greatest in the directions
of strong bonding which are directions of high stiffness. This leads to added
stiffening of the strongly bonded directions under compressive forces, so that
if c11 > c22, then δc11/δp > δc22/δp.

Problem 15.2
Forsterite is very similar to olivine, one of the very common minerals in the
upper mantle, where pressures range up to 10 GPa at depths near 400 km. Using
the data in Table 15.3, make a plot of c11, c22, and c33 as a function of pressure
in the earth’s mantle.

At the earth’s surface the density of forsterite is 3.22 g/cm3. Estimate its
density under pressures of 10 GPa. In the lower mantle forsterite converts to
denser crystalline phases with the spinel and perovskite structures.
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15.3 Electrostriction

The converse piezoelectric effect is a linear relation between strain and electric
field. Electrostriction relates strain to the square of the electric field. Written in
tensor form

xij = dijkEk + MijklEkEl.

Piezoelectricity is a third rank polar tensor that disappears in centrosymmetric
materials, but electrostriction does not. Electrostriction is a fourth rank polar
tensor that, like the elastic constants, is present in all point groups. The matrices
are listed in Table 15.5.

Electrostriction can also be defined as a quadratic relationship between strain
and electric polarization:

xij = QijklPkPl.

The need for defining a polarization-related electrostriction tensor arises
from the fact that ferroelectrics often show nonlinear dielectric properties
(see Fig. 15.1). Electrostrictive strain is not a quadratic function of field in
relaxor ferroelectrics such as lead magnesium niobate (PMN). Both the polar-
ization and the strain saturate at high field levels (Figs. 15.1 and 15.3(a))
When plotted as a function polarization, however, the electrostrictive strain
is proportional to P2 (Fig. 15.3(b)) showing that the Q coefficients are prefer-
able to M. Electrostrictive strain arises from the field induced polarization. For
linear dielectrics, the M and Q coefficients can be used interchangeably.

Electric
field (kV/cm)

Transverse strain

Linear

Polarization squared (C2/m4)
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Fig. 15.3 (a) Field-induced
transverse strain of PMN–PT
(Pb(Mg0.3Nb0.6Ti0.1)O3) ceramic. For small
fields, the strain is quadratic but the curve
saturates under high fields. (b) The same
data plotted as a function of the polarization
squared.

The electrostriction tensor can be written in matrix form using the following
notation. For cubic crystals,



x1

x2

x3

x4

x5

x6




=




Q11 Q12 Q12 0 0 0
Q12 Q11 Q12 0 0 0
Q12 Q12 Q11 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q44 0
0 0 0 0 0 Q44







P2
1

P2
2

P2
3

P2P3

P3P1

P1P2




while for ceramics and other isotropic materials, 2Q44 = Q11 − Q12 just as it
does for the elastic stiffnesses.

Electrostrictive ceramics are used in active optic systems to eliminate
vibrations and atmospheric turbulence. In adjusting the position of optical
components, electrostrictive ceramics have an advantage over piezoelec-
tric ceramics because there is little or no hysteresis from domain wall
motions. The most widely used compositions are modified PMN ceramics,
typically Pb(Mg0.3Nb0.6Ti0.1)O3 relaxor ferroelectrics, operating in the pseudo-
cubic state above Tc. Relaxor ferroelectrics consist of temperature-sensitive
microdomains from the many different active ion linkages in the disordered
octahedral framework.

Compared to piezoelectricity, which utilizes an acentric material,
electrostrictive transducers make use of a cubic material poised on an instability
with microregions fluctuating in polarization. On the average, the atoms reside
in the ideal cubic sites but are continually shifting off these positions. An atomic
view of the Q11, Q12, and Q44 motions in the cubic perovskite structure appear
in Fig. 15.4. The underlying origin of these effects, as well as the large non-
linear polarization in Fig. 15.1, is a partial ordering of the octahedral cations.
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Fig. 15.4 Electrostriction in cubic
perovskites, showing the physical basis of
the electrostriction coefficients Q11, Q12,
and Q44.
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Mg and Nb ions alternate in position but only over a very short range, typically
30–50 Å—just a few unit cells. Within these ordered islands there are fluctuating
dipoles that produce large polarizations and large electrostrictive motions.

Relaxor ferroelectrics are very common among Pb-based perovskites,
suggesting that Pb2+ and its “lone-pair” electrons play an important role in
the microdomain process, possibly by adjusting the orientation of the lone pair
and the associated electric dipole moment.

Electrostriction coefficients for various insulators range over about many
orders of magnitude. Q11 values for soft elastomers are as high as 106 m4/C2

while those of relaxor ferroelectrics are only about 10−2 m4/C2. Other insulators
are in between with the Q coefficients roughly proportional to s/ε, the elastic
compliance divided by the dielectric permittivity. This can be rationalized in the
following way. Since Q = x/P2, and x is large when the material deforms easily
(like an elastomer), then Q ∼ s. The permittivity determines how a material
interacts with an electric field. Since both the strain and the polarization are
proportional to ε, the Q coefficient will be proportional to 1/ε. Hence Q varies as
s/ε, and the M coefficient as sε. The large electrostrictive strain in polyurethane
and other elastomers comes from the high elastic compliance, while that of the
relaxor ferroelectrics is from the huge values of the dielectric constant and
the induced polarization. Both are useful in electrostrictive transducers and
actuators.

A variety of experimental methods have been employed to measure the wide
range of electrostrictive effects in dielectric materials. The direct and con-
verse electrostriction effects offer three independent ways of measuring the Q
coefficients: (a) by measuring the strains induced in the dielectric in response
to electrically-induced polarization, (b) measuring the change in permittivity
(via the change in capacitance) under mechanical stress, and (c) the change in
piezoelectric voltage coefficient resulting from a change in polarization. All
three relations are derived from the Gibbs free energy function (Section 6.2).

Interferometric and compressometer measurements on four fluoride crystals
are presented in Table 15.4. Elastic compliance coefficients are shown for
comparison since both phenomena depend on how easily the crystals deform.
The anisotropy plots in Fig. 15.5 show that fluorite crystals distort most easily
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Table 15.4 Electrostriction and elastic compliance coefficients for cubic fluoride crystals (the
Q values are in m4/C2 and the s coefficients in 10−11 N/m2)

Material Q11 Q12 Q44 s11 s12 s44

CaF2 −0.49 −0.48 2.01 0.69 −0.15 2.99
SrF2 −0.33 −0.39 1.90 0.99 −0.26 3.18
BaF2 −0.31 −0.29 1.48 1.53 −0.47 4.06
KMnF3 0.49 −0.10 1.15 1.21 −0.35 3.75

[001]

[111]

[110]

[001]

[111]

[110]
Fig. 15.5 Field- and stress-induced strain
in cubic CaF2. Elastic compliance and
electrostrictive coefficients show similar
anisotropy with the largest coefficients in
body diagonal directions.

along 〈111〉 directions when driven by mechanical stress or electric field. In
the fluorite structure the fluorine ions form continuous chains along 〈100〉 axes
making the crystal stiffest along the cube axes. Note that the electrostrictive
strain is negative in the [100] direction but the elastic strain is not. s11 coef-
ficients are required to be positive numbers because the product of stress and
strain is an energy density. This argument does not apply to electrostriction.

15.4 Magnetostriction

Magnetostriction is the magnetic analog to electrostriction and is governed by
the same type of tensor transformation. The magnetostrictive coefficients Nijkl

relate strain xij to the square of the magnetization IkIl.

xij = NijklIkIl.

As such, it is a higher order effect to piezomagnetism, but in practical
magnetic materials the quadratic magnetostrictive effect is often far larger than
the linear piezomagnetic effect. The tensor transformation goes as follows.

x′
ij = aikajlxkl = aikajlNklmnImIn

= aikajlNklmn(±|a|aomI ′
o)(±|a|apnI ′

p)

= N ′
ijopI ′

oI ′
p

N ′
ijop = aikajlaomapnNklmn.

Therefore the axial nature of the magnetization cancels out and the magneto-
striction coefficients transform as a polar fourth rank tensor. In the contracted
matrix form the magnetostriction effect is



x1

x2

x3

x4

x5

x6




=




N11 N12 N13 N14 N15 N16

N21 N22 N23 N24 N25 N26

N31 N32 N33 N34 N35 N36

N41 N42 N43 N44 N45 N46

N51 N52 N53 N54 N55 N56

N61 N62 N63 N64 N65 N66







I2
1

I2
2

I2
3

I2I3

I3I1

I1I2




The tensor and matrix coefficients are related by Nmn = Nijkl.
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Magnetostriction matrices for the various symmetry groups are given in
Table 15.5. The number of measurements required ranges from 36 in the tri-
clinic classes (1 and 1̄) to 2 in isotropic materials (∞∞ and ∞∞m). Note
that the electrostriction and magnetostriction matrices are not required to be
symmetric like the elastic constants. The energy argument does not apply here.

15.5 Modeling magnetostriction

Many properties of ferromagnetic and ferrimagnetic crystals are awkward to
describe because the spontaneous magnetization is not tied strongly to the
crystal lattice. Strong magnetic fields rotate Is and eventually it aligns with
the magnetic field (Fig. 15.6). This leads to an apparent change in symmetry as
the magnetization saturates in the field direction.

The magnetostrictive strain saturates as well, and is characterized by its
saturation value λ. As indicated in Fig. 15.7, the strain is mainly caused by
rotation rather than domain wall motion. For most magnetic materials the λ

values are small, typically 10−5, but larger strains of 10−4–10−3 are found in
some ceramics and intermetallic compounds like CoFe2O4 and TbFe2.

To model the rotation effects, we assign a set of direction cosines to the
magnetization vector and another set to the direction in which the strain is
measured (Fig. 15.8). The direction cosines for the components of the rotated
magnetization are

I1 = α1Is, I2 = α2Is, and I3 = α3Is,

Table 15.5 Matrices for the electrostriction and magnetostriction coefficients in
crystallographic and Curie groups

1, 1̄




N11 N12 N13 N14 N15 N16
N21 N22 N23 N24 N25 N26
N31 N32 N33 N34 N35 N36
N41 N42 N43 N44 N45 N46
N51 N52 N53 N54 N55 N56
N61 N62 N63 N64 N65 N66




2, m, 2/m




N11 N12 N13 0 N15 0
N21 N22 N23 0 N25 0
N31 N32 N33 0 N35 0
0 0 0 N44 0 N46

N51 N52 N53 0 N55 0
0 0 0 N64 0 N66




222, mm2, mmm




N11 N12 N13 0 0 0
N21 N22 N23 0 0 0
N31 N32 N33 0 0 0
0 0 0 N44 0 0
0 0 0 0 N55 0
0 0 0 0 0 N66




3, 3̄
N66 = 1

2 (N11 − N12)




N11 N12 N13 N14 −N25 N16
N12 N11 N13 −N14 N25 −N16
N31 N31 N33 0 0 0
N41 −N41 0 N44 N45 N52

−N52 N52 0 N45 N44 N41
−N16 N16 0 N25 N14 N66




Continued overleaf
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Table 15.5 (Continued)

32, 3m, 3̄m
N66 = 1

2 (N11 − N12)




N11 N12 N13 N14 0 0
N12 N11 N13 −N14 0 0
N31 N31 N33 0 0 0
N41 −N41 0 N44 0 0
0 0 0 0 N44 N41

0 0 0 0 N14 N66




4, 4̄, 4/m




N11 N12 N13 0 0 N16

N12 N11 N13 0 0 −N16

N31 N31 N33 0 0 0
0 0 0 N44 N45 0
0 0 0 −N45 N44 0

N61 −N61 0 0 0 N66




422, 4mm, 4̄2m, 4/mmm




N11 N12 N13 0 0 0
N12 N11 N13 0 0 0
N31 N31 N33 0 0 0
0 0 0 N44 0 0
0 0 0 0 N44 0
0 0 0 0 0 N66




6, 6̄, 6/m, ∞, ∞/m
N66 = 1

2 (N11 − N12)




N11 N12 N13 0 0 N16

N12 N11 N13 0 0 −N16

N31 N31 N33 0 0 0
0 0 0 N44 N45 0
0 0 0 −N45 N44 0

−N16 N16 0 0 0 N66




622, 6mm, 6̄m2, 6/mmm,
∞2, ∞m, ∞/mm
N66 = 1

2 (N11 − N12)




N11 N12 N13 0 0 0
N12 N11 N13 0 0 0
N31 N31 N33 0 0 0
0 0 0 N44 0 0
0 0 0 0 N44 0
0 0 0 0 0 N66




23, m3




N11 N12 N21 0 0 0
N21 N11 N12 0 0 0
N12 N21 N11 0 0 0
0 0 0 N44 0 0
0 0 0 0 N44 0
0 0 0 0 0 N44




432, 4̄3m, m3m




N11 N12 N12 0 0 0
N12 N11 N12 0 0 0
N12 N12 N11 0 0 0
0 0 0 N44 0 0
0 0 0 0 N44 0
0 0 0 0 0 N44




∞∞, ∞∞m
N44 = 1

2 (N11 − N12)




N11 N12 N12 0 0 0
N12 N11 N12 0 0 0
N12 N12 N11 0 0 0
0 0 0 N44 0 0
0 0 0 0 N44 0
0 0 0 0 0 N44



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Fig. 15.6 Under strong magnetic fields the
domain pattern changes and the magnetiza-
tion rotates into the field direction. The usual
sequence is pictured here.

H H H H

Fig. 15.7 Magnetostriction strain x′
3 = 	�/�

saturates at a value λ under large magnetic
fields. The dependence of strain on field can
be approximated by an “effective” piezomag-
netic coefficient Q33 given by the slope of
the dotted line. For nickel, Q33 is about
−3 × 10−9 m/A.

Saturation
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Domains
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where Is is the magnitude of the saturation magnetization. For cubic crystals
the three components lie along [100], [010], and [001].

Z ′
3 is the direction in which the strain is measured. Its orientation is specified

by direction cosines β1, β2, and β3. The longitudinal strain x′
33 along Z ′

3 is
related to the strains along the crystal axes by

x′
33 = βiβjxij = β2

1 x11 + β1β2x12 + · · · .

Z3

Z2

Z1

�1

�3

�2

�3

�2�1

IZ�3

Fig. 15.8 Direction cosines (α1 α2 α3) spe-
cify the direction of the magnetization relative
to the principal axes. For the cubic crystals
considered here, the principal axes Z1, Z2,
Z3 are along the cube edges [100], [010],
and [001]. A second set of direction cosines
(β1 β2 β3) specify the direction Z ′

3 in which
the strain x′

33 is measured.

To simplify the mathematics the discussion is limited to cubic crystals (more
properly these are pseudocubic magnetic crystals). Most of the magnetostrictive
crystals of practical interest have high symmetry crystal structures belong-
ing to point group m3m. The magnetostriction matrix for point group m3m
(Table 15.5) is




x1

x2

x3

x4

x5

x6




=




N11 N12 N12 0 0 0
N12 N11 N12 0 0 0
N12 N12 N11 0 0 0
0 0 0 N44 0 0
0 0 0 0 N44 0
0 0 0 0 0 N44







α2
1I2

s

α2
2I2

s

α2
3I2

s

α2α3I2
s

α3α1I2
s

α1α2I2
s




.

Expanding and remembering that α2
1 + α2

2 + α2
3 = 1,

x1 = h0 + h1α
2
1

x2 = h0 + h1α
2
2

x3 = h0 + h1α
2
3

x4 = h2α2α3

x5 = h2α3α1

x6 = h2α1α2,
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where the magnetostrictive coefficients are

h0 = N12I2
s

h1 = (N11 − N12)I
2
s

h2 = N44I2
s .

Substituting the strain components into the expression for saturation strain
measured along an arbitrary direction Z ′

3:

xs = x′
3 = h0 + h1(α

2
1β2

1 + α2
2β2

2 + α2
3β2

3 )

+ 2h2(α1α2β1β2 + α1α3β1β3 + α2α3β2β3).

In specifying strain, care must be taken to choose the correct reference state
xs(0). Generally the measurements begin with the sample in a multidomain
demagnetized state (Fig. 15.6).

For cubic magnetic materials the easy axes for magnetization are usually
along the cube edges 〈100〉 or along body diagonal 〈111〉 directions. (These
correspond to magnetic point groups 4/mm′m′ or 3̄m′ for each domain state.)
If the 〈111〉 directions are the easy axes there are eight domain states, with all
equally abundant in the demagnetized reference state. The eight domains and
their direction cosines are

[111] α1 = 1√
3

, α2 = 1√
3

, α3 = 1√
3

[1̄11] α1 = − 1√
3

, α2 = 1√
3

, α3 = 1√
3

[11̄1] α1 = 1√
3

, α2 = − 1√
3

, α3 = 1√
3

plus five more. To obtain the strain of the reference state, xs(0), we assign equal
weight (1/8) to each domain state and substitute the direction cosine values into
the expression for xs. The result is

xs(0) = h0 + h1

3
.

If the 〈100〉 axes are the easy directions, there are six domain states with the
following direction cosines:

[100] α1 = 1, α2 = 0, α3 = 0

[1̄00] α1 = −1, α2 = 0, α3 = 0

[010] α1 = 0, α2 = 1, α3 = 0

plus three more. With all six domains of equal abundance, the resulting strain
of the demagnetized state is

xs(0) = h0 + h1

3
.

Since this is the same result as the 〈111〉 case, the reference state strain is
independent of the easy axis direction.
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Therefore the net magnetostrictive strain relative to the demagnetized state is

λ = xs − xs(0) = h1

(
α2

1β2
1 + α2

2β2
2 + α2

3β2
3 − 1

3

)

+ h2(α1α2β1β2 + α1α3β1β3 + α2α3β2β3).

The h1 and h2 coefficients are replaced with two measured coefficients λ100

and λ111. If the magnetic field H is along [100], and the magnetostrictive strain
is measured in the same direction,

α1 = β1 = 1 and α2 = β2 = α3 = β3 = 0.

The saturation strain is

λ = h1

(
1 − 1

3

)
= 2h1

3
= λ100.

If the field and strain are along [111],

α1 = β1 = α2 = β2 = α3 = β3 = 1√
3

and

λ = h2

3
= λ111.

Using these two measured values of the saturation strain, the strains for any
direction can be evaluated from the following expression.

λ = xs(H) − xs(0)

= 3

2
λ100

(
α2

1β2
1 + α2

2β2
2 + α2

3β2
3 − 1

3

)

+ 3λ111(α1α2β1β2 + α1α3β1β3 + α2α3β2β3).

The magnetostriction coefficients of cubic crystals are usually measured with
a single crystal disk cut parallel to the (11̄0) plane. The [001], [111], and [110]
directions all lie in this plane. Piezoresistive strain gages can be attached to the
plate parallel to these directions. The disk is then suspended between the pole
pieces of an electromagnet and rotated about [11̄0] to magnetize the specimen
along the various cube axes. The resulting strains are measured with the strain
gages.

Magnetostriction constants for several metal and oxide single crystals are
given in Table 15.6. Note the large coefficients in magnetic materials containing
cobalt (see Section 16.4).

Table 15.6 Magnetostriction coefficients of
three ferromagnetic metals and several ferrites
(all coefficients are measured at 20◦C and are

multiplied by 10−6)

λ100 λ111

Iron (Fe) 20.7 −21.2
Nickel (Ni) −45.9 −24.3
Co0.5Fe0.5 119 41
Fe3O4 −20 78
MnFe2O4 −25 −33
Co0.8Fe2.2O4 −590 120
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Problem 15.3
Plot the saturation strain for magnetite (Fe3O4) using the coefficients in
Table 15.6. Carry out the calculation in the (11̄0) plane in two ways: First,
with the strain measurement parallel to the magnetic field, and second with the
strain measured perpendicular to the field.

15.6 Magnetostrictive actuators

Lead zirconate titanate (PZT) and lead magnesium niobate (PMN) ceramics are
outstanding piezoelectric and electrostrictive actuator materials, but equally
interesting developments are taking place in ferroelastic and ferromagnetic
materials. As discussed in Chapter 16, all these ferroic materials have a domain
structure in which the walls can be moved with electric fields, magnetic fields,
or mechanical stresses.

A listing of some of the more useful polycrystalline magnetostrictors is given
in Table 15.7. Magnetostrictive alloys like Terfenol-D (Tb1−x Dyx Fe2) function
well as both sensors and actuators. High-power actuators can deliver forces
greater than 50 MPa with strains up to 0.6% while magnetostrictive sensor
materials can provide hundreds of times the sensitivity of semiconductor strain
gauges. Magnetoelastic materials also have tunable elastic moduli that can be
controlled by magnetic fields.

The rare-earth atoms in Terfenol have large orbital moments that interact with
magnetic fields to give large magnetostrictive strains. As pointed out earlier,
rotation of the magnetization is largely responsible for the shape change. The
field-induced strain (λs) in Terfenol-D is about a hundred times larger than those
in iron and nickel (Table 15.7).

The iron in Terfenol produces the high Curie temperature. The rare-earth
terbium and dysprosium atoms produce the large magnetostrictive effects.
In combination these three elements produce the useful actuator alloys.
A portion of the Tb–Dy–Fe magnetic phase diagram is shown in Fig. 15.9.
TbFe2 and DyFe2 are cubic and paramagnetic at high temperatures and
then undergo magnetic phase transformation to ferrimagnetic structures with

Table 15.7 Room temperature magnetostriction
coefficients and Curie temperatures for several

polycrystalline metals and ceramics

Material 3/2λs (×10−6) Tc (◦C)

Ni −50 360
Fe −14 770
Co −93 1130
Fe3O4 60 585
CoFe2O4 −165 520
Y3Fe5O12 −3 275
SmFe2 −2340 415
GdFe2 59 525
TbFe2 2630 431
DyFe2 650 362
HoFe2 120 332
ErFe2 −449 320
TmFe2 −185 287
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magnetic spins along either 〈111〉 or 〈100〉 directions. Compositions near
Tb0.3Dy0.7Fe2 are poised on an instability in spin orientation. Like PZT it
is close to a rhombohedral–tetragonal phase boundary. The phase diagram
of Terfenol is the magnetic equivalent to the morphotropic boundary of PZT
(Fig. 12.9).

The figure of merit for magnetostrictive actuators is proportional to the satura-
tion strain coefficient λs. But in addition to having a large shape change, the
strain must be easy to move. Therefore the anisotropy coefficient K1, which
controls the rotation of the magnetization, also comes into the figure of merit,
λs/K1. Magnetic anisotropy is discussed in Section 16.4. TbFe2 has a very large
λs coefficient but also has a large K1, which reduces the figure of merit. DyFe2

has an anisotropy coefficient of the opposite sign. By tuning the composition
close to the point where the anisotropy coefficient goes to zero, the strain is
easy to re-orient. This maximizes the figure of merit.Composition
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Fig. 15.9 Binary phase diagram for the
Tb1−xDyxFe2 system. Compositions near the
magnetic spin boundary at x = 0.7 are used
in magnetostrictive applications.

Fig. 15.10 shows the two magnetic phase changes in Terfenol-D. At high
temperature, it is paramagnetic with randomly oriented spins. Below Tc near
700 K, the spins align along 〈111〉 directions giving a rhombohedral distortion
of the unit cell. The strong antiferromagnetic interactions between the iron and
rare-earth spins make the alloy ferrimagnetic rather than ferromagnetic. Near
room temperature there is spin reorientation to the tetragonal 〈001〉 directions of
the cubic unit cell. The point group changes from m3m1′ → 3m′ → 4/mm′m′.

The large magnetostrictive strains in Terfenol-D are caused by the orbital
motion of the rare-earth 4f electrons that impart a shape anisotropy to the atoms.
Trivalent terbium and dysprosium atoms resemble flattened oblate ellipsoids,
while other rare earths such as erbium, thulium, and samarium have elongated
prolate shapes. Note the sign changes in λs in Table 15.7.

15.7 Electromagnetostriction and
pseudopiezoelectricity

An unexpectedly large deformation, sometimes referred to as electromagneto-
striction, has been observed in conducting MnZn ferrite crystals. When placed
in an electric field an electric current passes through the crystal inducing a

Fig. 15.10 Magnetic phase transformations
in Terfenol-D (Tb0.3Dy0.7Fe2) magnetostric-
tive actuators. At Tc the spins align along
〈111〉 and then to 〈100〉 near room temper-
ature. The drawings show only a section
through the complex C15 structure.
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magnetic field around the current. If the deformation is regarded as electro-
strictive, the M coefficient defined by x = ME2/2 (x is strain, E is electric field)
is about 10−10 m2/V2. This is about 1011 times larger than the electro-
striction coefficient of barium titanate. The M coefficient of BaTiO3 is about
10−21 m2/V2 in both the ferroelectric and paraelectric phases. More accur-
ately, however, the deformation should be regarded as a magnetostrictive effect
induced by an electric current within the ferrimagnetic crystal. The current
induces a closed magnetic flux around the applied electric field. When evalu-
ated as a magnetostrictive strain, x = NH2/2 (x is strain, H is magnetic field),
the coefficient N has a reasonable value of 10−8 m2/A2.

When a static magnetic field is superimposed on the applied electric field,
the resulting strain is linearly proportional to the electric field. The sign of the
deformation changes when the magnetic field is reversed, and when mechani-
cally stressed, electrical signals are observed. In other words, the ferrite crystal
exhibits a magnetically-induced pseudopiezoelectric effect with both a direct
and a converse effect. The pseudopiezoelectric coefficient is about 10−9 C/N,
about the same size as a soft PZT ceramic.
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Twinned crystals are normally classified according to twin-laws and morpho-
logy, or according to their mode of origin, or according to a structural basis,
but there is another classification that deserves wider acceptance, one that is
based on the tensor properties of the orientation states. An advantage of such a
classification is the logical relationship between free energy and twin structures,
for it becomes immediately apparent which forces and fields will be effective
in moving twin walls. The domain patterns in ferroelectric and ferromagnetic
materials are strongly affected by external fields, but there are many other types
of twinned crystals with movable twin walls and hysteresis. These materials
are classified as ferroelastic, ferrobielastic, and various other ferroic species.
As explained in the next section, each type of switching arises from a particular
term in the free energy function.

Ferroic crystals possess two or more orientation states or domains, and under
a suitably chosen driving force the domain walls move, switching the crystal
from one domain state to another. Switching may be accomplished by mechan-
ical stress (X), electric field (E), magnetic field (H), or some combination
of the three. Ferroelectric, ferroelastic, and ferromagnetic materials are well
known examples of primary ferroic crystals in which the orientation states
differ in spontaneous polarization (P(s)), spontaneous strain (x(s)), and spon-
taneous magnetization (I(s)), respectively. It is not necessary, however, that
the orientation states differ in the primary quantities (strain, polarization, or
magnetization) for the appropriate field to develop a driving force for domain
walls. If, for example, the twinning rules between domains lead to a different
orientation of the elastic compliance tensor, a suitably chosen stress can then
produce different strains in the two domains. This same stress may act upon
the difference in induced strain to produce wall motion and domain reorienta-
tion. Aizu suggested the term ferrobielastic to distinguish this type of response
from ferroelasticity, and illustrated the effect with Dauphine twinning in quartz.
Other types of secondary ferroic crystals are listed in Table 16.1, along with
the difference between domain states, and the driving fields required to switch
between states. The derivation of the various ferroic species from a free energy
function is considered next.

16.1 Free energy formulation

The stability of an orientation state is governed by the free energy G. In
differential form dG is comprised of thermal energy and various work terms:

dG = SdT − xijdXij − PidEi − IidHi,
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Table 16.1 Classification of primary and secondary ferroics

Ferroic class Orientation state differ in Switching force Example

Primary
Ferroelectric Spontaneous polarization Electric field BaTiO3
Ferroelastic Spontaneous strain Mechanical stress CaAl2Si2O8
Ferromagnetic Spontaneous magnetization Magnetic field Fe3O4

Secondary
Ferrobielectric Dielectric susceptibility Electric field SrTiO3
Ferrobimagnetic Magnetic susceptibility Magnetic field NiO
Ferrobielastic Elastic compliance Mechanical stress SiO2
Ferroelastoelectric Piezoelectric coefficients Electric field and

mechanical stress
NH4Cl

Ferromagnetoelastic Piezomagnetic coefficients Magnetic field and
mechanical stress

FeCO3

Ferromagnetoelectric Magnetoelectric coefficients Magnetic field and
electric field

Cr2O3

S is entropy, T temperature, xij strain, Xij stress, Pi electric polarization, Ei

electric field, Ii magnetization, and Hi magnetic field. The directional subscripts
refer to Cartesian coordinates: i, j = 1, 2, 3. The entropy term is neglected in
what follows since we assume the experiments are performed under isothermal
conditions.

Strain x is measured relative to an extrapolation of the prototype high temper-
ature structure and can be written as a spontaneous strain x(s) plus an induced
strain. Induced strain may arise from applied mechanical stress (elasticity),
from applied electric fields (piezoelectricity) or from applied magnetic fields
(piezomagnetism).

xij = x(s)ij + sijklXkl + dkijEk + QkijHk .

In this equation sijkl is a component of the fourth-rank elastic compliance tensor.
The piezoelectric coefficients dkij constitute a third rank tensor, as do the piezo-
magnetic coefficients Qkij. Compliance and piezoelectricity are polar tensors
whereas piezomagnetism is an axial tensor.

Electric polarization can be expanded in a manner similar to strain, with a
spontaneous contribution P(s) and several induced effects.

Pi = P(s)i + ψijEj + dijkXjk + QijHj.

The second rank tensors ψij and Qij represent the electric susceptibility and
magnetoelectric coefficients, respectively. ψij is a polar tensor and Qij is an
axial tensor. Only the ten polar crystal classes in Table 8.1 possess spontaneous
polarization P(s).

Magnetization can be expanded in terms of the spontaneous magnetization,
and induced effects arising from electric and magnetic fields, and mechanical
stress.

Ii = I(s)i + χijHj + QijkXjk + QjiEj.

Only ferromagnetic and ferrimagnetic crystals have nonzero spontaneous mag-
netization. Table 14.3 lists the 31 magnetic symmetry groups with spontaneous
magnetization.

Substituting the expressions for xij, Pi, and Ii into the differential form for free
energy, combining terms, and integrating gives the thermodynamic potential G,
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which applies to all orientation states. Now consider a multidomain crystal
together with a set of measurement axes. The domain states will be oriented
differently relative to these measurement axes. Let 1G represent the free energy
for the first orientation state and 2G for the second, with the tensor terms referred
to the measurement axial system.

The driving potential for a state shift accompanied by domain wall motion is
the difference in free energy 	G = 1G−2G. In the absence of external fields and
forces, the energies of all orientation states are equal, so that 	G = 0. Under
external forces the difference in free energy for the two orientation states is

	G = 	x(s)ijXij + 	P(s)iEi + 	I(s)iHi + 1
2	sijklXijXkl + 1

2	ψijEiEj

+ 1
2	χijHiHj + 2	dijkEiXjk + 2	QijkHiXjk + 2	QijHiEj.

In this expression 	x(s)ij is 2x(s)ij − 1x(s)ij, the difference in a certain compon-
ent of spontaneous strain for orientation states 1 and 2. 	P(s)i and 	I(s)i are
the differences in the ith component of spontaneous polarization and spontan-
eous magnetization for the two domains. Differences in elastic compliance
coefficients are represented by 	sijkl. The remaining five terms in 	G arise
from differences in electric and magnetic susceptibility, and from differences
in piezoelectric, piezomagnetic, and magnetoelectric coefficients.

A wide variety of ferroic phenomena is possible, depending on which
terms in 	G are important. If 	P(s) is nonzero, the material is ferroelec-
tric provided the coercive field does not exceed the electric breakdown limit.
Materials with 	x(s) �= 0 are ferroelastic if the mechanical stress required
to move domain walls does not result in fracture. Ferromagnetic domains—
the third type of primary ferroic—possess finite differences in spontaneous
magnetization.

In a ferroelectric the transition between domain states is said to be primary
ferroic behavior because 	G is proportional to E. If 	P(s) = 0 and 	ψ �= 0,
then 	G ∼ E2 and the material is potentially ferrobielectric. This and other
types of secondary ferroics are listed in Table 16.1. For a ferrobielastic
	G ∼ X2, and for a ferrobimagnetic 	G ∼ H2. Cross-coupled ferroics
include ferroelastoelectrics (	G ∼ EX), ferromagnetoelastics (	G ∼ HX),
and ferromagnetoelectrics (	G ∼ EH).

Because of these many coupling coefficients, the ferroic classes are not
mutually exclusive. For example, in any dielectric material there may be a
coupling between polarization and lattice strain through the piezoelectric or
electrostriction coefficients; if a crystal spontaneously polarizes, it also spon-
taneously strains. If all the orientation states of a ferroelectric differ also in the
orientation of the spontaneous strain tensor, then the material may be termed
fully ferroelectric, fully ferroelastic. In most ferroelectrics, however, some but
not all domain states differ in the orientation of the strain tensor. For example,
in BaTiO3, 90◦ domains differ in the orientation of the strain tensor, but 180◦
domains do not. Such systems may be described as fully ferroelectric, par-
tially ferroelastic. Cobalt ferrite is fully ferromagnetic, partially ferroelastic,
while nickel iodine boracite is fully ferromagnetic, fully ferroelectric, and fully
ferroelastic. In this type of crystal, all domain walls can be driven by electric,
magnetic, or mechanical stress fields.
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16.2 Ferroelasticity

A crystal is ferroelastic if it has two or more orientation states differing in
spontaneous strain, and can be transformed reversibly from one to another of
these states by an external mechanical stress. It is a type of mechanical twin-
ning in which the lattice reorients rapidly in response to an applied force. There
is no diffusion or breaking of primary chemical bonds, only small rearrange-
ments of the crystal structure with atomic displacements of the order of 0.1 Å.
At elevated temperatures the domains disappear as the crystal transforms to
a higher symmetry point group.

Twinning is often used in mineral identification and in elucidating the forma-
tion conditions of rocks. The distribution of mechanical twins in feldspars
and other rock-forming minerals enables petrologists to analyze thermal
environments and stress patterns.

Ferroelastic twinning is almost universal in the feldspar family that makes up
more than half of the earth’s outer crust. Two views of the stripe-like twins in
the plagioclase (NaAlSi3O8-CaAl2Si2O8) series and in microcline (KAlSi3O8)

feldspars are shown in Fig. 16.1. The change in optical extinction angles across
domain walls is one of the chief methods of identifying various feldspars. The
two most important types of twins in feldspars are albite and pericline polysyn-
thetic twins. Albite twin lamellae are parallel to (010) cleavage planes, and the
twin structures are related by reflection across (010). This is a symmetry ele-
ment of the prototype point group 2/m found in the high temperature feldspar
structure. Microcline, low-temperature KAlSi3O8, belongs to triclinic point
group 1̄, as do the plagioclase feldspars. The polysynthetic twins disappear
when the triclinic structure transforms to monoclinic. In pericline twins, the
two orientation states are related by rotation of 180◦ about [010], the twofold
symmetry axis in the prototype point group. The pseudosymmetry in triclinic
feldspars is caused by crumpling of the aluminosilicate framework about the
alkali or alkaline earth ions (Fig. 16.2).

The spontaneous strain in the ferroelastic state is measured relative to the
high temperature prototype structure. Strain is a symmetric second rank tensor
with six components: three longitudinal strains x11, x22, x33, and three shear
components x23, x31, and x12. For the feldspars the symmetry change giving
rise to the ferroelastic twin states is from the prototype structure (point group
2/m) to the twinned triclinic structure (point group 1̄). To determine which
components of spontaneous strain appear at the phase transformation, we take

(001) Cleavage and 
cleavage traces

Pericline  twin
lamellae

�

(010) Cleavage and
cleavage traces

Albite twin 
lamellae

(a) (b)
Fig. 16.1 Plagioclase feldspars exhibit per-
fect cleavage parallel to (001), and less perfect
cleavage parallel to (010). Albite twin lamel-
lae (a) are usually present on (001) cleavage
surfaces albite twins are parallel to the straight
edge formed by the intersecting (010) and
(001) cleavage planes. Crystal platelets par-
allel to (010) cleavage surfaces (b) sometimes
show pericline twins. Here the twin lamellae
intersect the (010)–(001) edge at an angle σ ,
the so-called rhombic section.
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the difference between the strain matrices for 1̄ and 2/m:
x11 x12 x13

x12 x22 x23

x13 x23 x33


 −


x11 0 x13

0 x22 0
x13 0 x33


 =


 0 x12 0

x12 0 x23

0 x23 0


 .

The two orientation states in the plagioclase feldspars are related by reflection
across the (010) pseudo-mirror plane. Reflection reverses the sign of Z2, leaving
Z1 and Z3 unchanged. Tensor components with an odd number of two subscripts
change sign under this operation. Thus the nonzero components of spontaneous
strain are x(s)23 and x(s)12, shear strains about Z1 and Z3 respectively.

b

a

Na

Na

Na

Fig. 16.2 Projection of the triclinic albite
(NaAlSi3O8) structure along the c-axis. The
tetrahedrally coordinated (Al, Si) ions (•) and
oxygens (◦) form an aluminosilicate frame-
work with Na+ ions in cavities. Sodium ions
are not large enough to contact all the oxygen
ions lining the cavity walls so the frame-
work partially collapses, and the symmetry is
lowered from monoclinic (point group 2/m)
to triclinic (point group 1̄). When heated,
the sodium ions vibrate to fill the cavity and
change the symmetry back to monoclinic.
Pseudo-mirror planes in the triclinic unit cell
are shown as vertical lines.

Domain wall orientations in ferroelastic crystals minimize strain mismatch.
For the two domain states S1 and S2 the wall coordinates Zi and Zj satisfy the
zero strain condition

(x(s)ij(S1) − x(s)ij(S2))ZiZj = 0.

For the feldspars the two states have the following spontaneous strains.

x(s)ij(S1) =

 0 x12 0

x12 0 x23

0 x23 0


 ,

x(s)ij(S2) =

 0 −x12 0

−x12 0 −x23

0 −x23 0


 .

Substituting these values into the wall coordinate equation gives

2x12Z1Z2 + 2x12Z2Z1 + 2x23Z2Z3 + 2x23Z3Z2 = 0.

Simplifying, the zero strain condition is

x12Z1Z2 + x23Z2Z3 = 0.

The two solutions to this equation give the two wall orientations shown in
Fig. 16.1. Albite twins parallel to (010) correspond to the solution Z2 = 0. The
second solution Z1/Z3 = −x23/x12 dictates the orientation of pericline twin
walls. The rhombic angle σ is determined by the ratio of the two spontaneous
strain components x23/x12.

Crystallographic data are often used to estimate the spontaneous strain com-
ponents. For the feldspar varieties that exhibit mechanical twinning, the triclinic
unit cell angles are α = 93.5 ± 0.5◦, β = 116.0 ± 0.5◦, γ = 90.5 ± 0.5◦, com-
pared to α = 90◦, β = 116.0 ± 0.5◦, γ = 90◦ for the monoclinic prototype
structure. Neglecting the small difference between the triclinic γ and 90◦, the
two components of spontaneous strain are x(s)12 ∼= 0 and x(s)23 = (π/360◦)
(α◦ − 90◦) = 0.03. Based on this analysis, the difference in free energy for
the two orientation states takes the form 	G ∼= 4x(s)23X23. The most effective
stress in moving domain walls is X23 = X4 a shearing stress about Z1.

In mechanical twinning experiments, albite and pericline twin lamellae
spaced by about 0.03 mm are introduced under uniaxial stresses of about
25 × 108 N/m2. Similar observations have been made on cleavage flakes using
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Table 16.2 Ferroelastic crystals with phase
transition temperatures, spontaneous strains, and

symmetry changes

Tc (K) x(s) Symmetry species

As2O5 578 0.023 422F222
HCN 170 0.10 4mmFmm2
NdTaO4 1601 0.008 4̄2mF2/m
Pb3(AsO4)2 548 0.02 3̄mF2/m
YBa2Cu3O7 970 0.02 4/mmmFmmm

c c

c

(a)

(c)

(b)

Fig. 16.3 Body-centered intermetallics often
show a structural transformation from (a)
a high-temperature disordered body-centered
cubic phase (space group Im3m) to an
annealed ordered austenite phase (b) with the
CsCl structure (space group Pm3m). At lower
temperatures, there is a second phase trans-
ition from austenite to a twinned martensite
phase, pictured here as three variants of a
body-centered tetragonal phase (space group
P4/mmm) (c) with ferroelastic and antiphase
domain walls.

a polarizing microscope. When pressed with the tip of a needle, twin lamellae
appear and disappear.

Several other ferroelastic crystals are listed in Table 16.2. Typical strains are
of the order of 1%.

Problem 16.1
Gadolinium molybdate has a phase transition at 160◦C that changes its
symmetry from tetragonal 4̄2m at high temperature to orthorhombic mm2 at
room temperature. Remembering that the symmetry of the high-temperature
prototype structure must include the symmetry elements of the low-temperature
ferroic structure, show that the polar axis of mm2 must lie along Z3. Draw
the stereographic projections of 4̄2m and the two domain states of mm2. What
symmetry elements are destroyed on cooling through the phase transformation?

Gadolinium molybdate is both ferroelastic and ferroelectric. Following the
procedure used for the feldspars, determine the difference in free energy for
the two domain states. What are the components of mechanical stress and
elastic field that will move domain walls? What are orientations of strain-free
walls?

Shape memory alloys are an important family of thermomechanical actuators
utilizing ferroelasticity and stress-induced phase changes. NiTi intermetallic
compounds, commonly known as Nitinol, exhibit martensitic phase transforma-
tions similar to those observed in the processing of steel. Two characteristics
of martensitic phase changes are the absence of long-range diffusion and
the appearance of a shape change. Ferroelastic phase transformations are also
distortive and diffusionless, and have much in common with the martensites.
Ferroelastic crystals exhibit mechanical hysteresis between stress and strain
caused by the stress-induced movement of domain walls. Martensites are also
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internally twinned, but mechanical stress causes phase changes as well as
domain wall motion.

Typically these shape memory alloys undergo a transformation from a
disordered body-centered cubic structure to a partially ordered CsCl struc-
ture at high temperature (Fig. 16.3). In steel-making this is the so-called
austenite phase. On further cooling the intermetallic compound undergoes a
second phase change into a distorted multidomain martensite phase. Fig. 16.3
shows three martensite twins produced by a cubic to tetragonal phase change.
Under stress the martensite easily deforms, and when reheated, goes back to
the original morphology of the high temperature austenite structure. This is the
so-called shape memory effect.

Some of the martensite structures are very complex (Fig. 16.4). The
monoclinic structure of NiTi belongs to point group 2/m and has a β angle about
8◦ different from 90◦. This generates a large spontaneous strain accompany-
ing the martensite phase change and is the shape change upon which applied
mechanical stresses or thermally-induced stresses act. During the diffuse phase
change, the high temperature austenite phase only partially transforms into the
low-temperature martensite phase. Then under mechanical stress, two things
happen: ferroelastic domain wall movement in the martensite phase is accom-
panied by conversion of remaining metastable austenite phase into marten-
site. Both events make important contributions to the stress-induced shape
change.

1/4

1/4

1/4 1/4

1/4

3/4 3/4

3/4 3/43/4

c

a

Ti
Ni

[001]

[100]

Fig. 16.4 Crystal structure of the martensitic
phase of Nitinol, NiTi. The space group is
P21/m with lattice parameters a = 2.884,
b = 4.110, c = 4.665 Å, β = 98.10◦. Some-
times referred to as the low AuCd structure,
there are 12 orientation states of this mono-
clinic phase with respect to the cubic austenite
phase.

A magnetic shape memory (MSM) occurs in Ni2MnGa alloys. This is a new
class of actuator materials that combines the advantages of magnetostriction
(magnetic drive) with conventional shape memory effects (large strains up to
10%). MSM alloys have the ability to develop large strokes under precise and
rapid control. Reorienting martensite twins rather than rotating the magnet-
ization away from the easy axis achieves the high strains. A large magnetic
anisotropy is required (Section 16.4).

Ni2MnGa has the cubic Heusler alloy structure at high temperature. Nickel
atoms occupy the corners of a BCC unit cell with Mn and Ga atoms in altern-
ate body-centered sites. On cooling through martensitic transition the unit cell
becomes tetragonal with c/a < 1 similar to Fig. 16.3(c). Twin planes are par-
allel to {110}. At still lower temperatures, the alloy passes through a magnetic
transition aligning the spins.

16.3 Ferromagnetism

The orientation states of a ferromagnet differ in spontaneous magnetization,
and can be switched by a magnetic field. This broad definition encompasses
ferrimagnets (magnetite, Fe3O4) and weak ferromagnets (hematite, α-Fe2O3),
as well as ordinary ferromagnets (iron). It does not include antiferromagnetic,
paramagnetic, and diamagnetic substances that have no spontaneous magnet-
ization. Such materials are not ferromagnetic but may exhibit other types of
ferroic behavior.

Magnetite is the best example of a magnetic mineral and is the forerunner of
a large family of useful ferrite ceramics. Below 585◦C, it is ferrimagnetic with
a magnetization of four Bohr magnetons per molecule corresponding to the
four unpaired electron spins of Fe2+. In the inverse spinel magnetic structure
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of magnetite, tetrahedral Fe3+ spins are directed antiparallel to octahedral
Fe3+ and Fe2+ spins so that the Fe3+ moments cancel, leaving a spontaneous
magnetization equivalent to one Fe2+ moment per molecule.

The direction of easy magnetization is 〈111〉, giving rise to eight orientation
states for I(s). Magnetite belongs to magnetic point group 3̄m′ one of the 21
pyromagnetic classes (Table 14.1), although the trigonal distortion is too small
to be seen by normal X-ray diffraction. Magnetic domains are difficult to see
because magnetite is opaque in visible light, even in thin section.

In transparent ferromagnetic and ferrimagnetic crystals domains are visible
in polarized light because of the Faraday Effect, a nonreciprocal rotation of the
plane of polarization (Chapter 31). The angle of rotation φ is given by φ =
ρt cos θ , where t is the specimen thickness, ρ the rotation per unit thickness,
and θ the angle between the magnetization vector and the light path. Faraday
rotation coefficients (ρ) for ferrites are typically 1000◦/cm.

1mm

Fig. 16.5 Magnetic domains in a hematite
crystal observed by means of the Faraday
Effect. Three orientations of the parasitic
ferromagnetism give rise to different light
intensities when the platelet is tilted with
respect to the light beam.

Hematite, α-Fe2O3, exhibits both antiferromagnetism and weak ferromag-
netism. Above 950 K hematite is paramagnetic with the corundum (α-Al2O3)

crystal structure. From 250 to 950 K the spins lie in the trigonal (001) plane
and are nearly antiparallel, but with a small ferromagnetic component, also
in (001). Crystallographers generally assign hematite to crystallographic point
group 3̄m (magnetic point group 3̄m1′) but the magnetic point group symme-
try is 2/m at room temperature. Antiferromagnetic crystals often exhibit weak
(parasitic) ferromagnetism when the ferromagnetic component does not violate
the symmetry elements of the magnetic spin array. In hematite, weak sponta-
neous magnetization appears along the monoclinic twofold axis in 2/m. Below
room temperature at 250 K, the spin direction changes to the trigonal [001]
direction and the weak ferromagnetic effect disappears. At temperatures below
the spin flop transition, the magnetic point group is 3̄m (see Fig. 14.5(c)).

Magnetic domains in hematite have been observed using the Faraday Effect.
The white, gray, and black regions in Fig. 16.5 correspond to domains with three
different magnetic axes; magnetic fields of only 10 A/m produce significant
changes in the domain pattern. When cooled through the spin-flop transition
at 250 K, the domains disappear, and then reappear in a different pattern on
heating.

Barium ferrite is one of the most widely used hard magnetic mater-
ials. BaFe12O19 is a ferrimagnetic oxide with the magnetoplumbite structure
(Fig. 16.6), a close-packed structure with a large hexagonal unit cell. The
Ba2+ and O2− ions from a close-packed array with Fe3+ cations distributed
over octahedral, tetrahedral, and trigonal bipyramid interstices. The structure
and saturation magnetization are similar to magnetite but the anisotropy is
much larger because of the lower symmetry. Spins are locked tightly to the
[001] = Z3 direction giving a high coercive field. Hot pressing under a magnetic
field is very effective in aligning the easy axes of fine-grained barium ferrite
ceramics.

On cooling through Tc the symmetry changes from 6/mmm1′ in the para-
magnetic state to 6/mm′m′ in the ferromagnetic state. Of the twelve Fe3+ ions
in the unit cell, eight are spin up and four spin down. Only 180◦ domains are
observed (Fig. 16.7). Domain wall orientations are not constrained because the
spontaneous strain is the same for both domain states.

A listing of commonly used ferromagnetic and ferrimagnetic materials is
given in Table 16.3.
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Fig. 16.6 Cross-section of the barium ferrite
structure with the hexagonal c-axis vertical.
Arrows denote the spin orientation of the iron
atoms. Layers containing barium atoms are
mirror planes.

Fe3+ Ba2+

m
Mirror plane 

m

m

O2–

c-axis spin 

direction

16.4 Magnetic anisotropy

Experimentally it is found that spontaneous magnetization tends to lie along
certain crystallographic axes, the so-called easy axes. In the magnetics liter-
ature, this effect is known as magnetic anisotropy or as crystalline anisotropy.
The existence of magnetic anisotropy is demonstrated by the magnetization
curves of ferromagnetic single crystals. Fig. 16.8 shows the magnetization
curves for Fe, Co, and Ni.

When a magnetic field is applied to a ferromagnetic material the domain
structure changes in such a way as to increase the magnetization parallel to
the external field. This continues until the specimen is filled with favorably
oriented domains. If the field is applied along an easy axis, the magnetization
rapidly saturates. For other directions the magnetization process continues by
rotating the magnetization vectors into the direction of the field until saturation
is achieved. Thus the magnetization process generally involves domain wall
motion followed by rotation. A third contribution—the induced magnetization
coming from the intrinsic magnetic susceptibility—is generally small compared
to the contributions from spontaneous magnetization.

Fig. 16.7 Barium ferrite 180◦ domains
viewed along the hexagonal c-axis. Colloidal
suspensions of magnetite particles make the
domain walls visible.

Magnetic anisotropy energy is defined as the work required to align the mag-
netization in a certain direction compared to that required for the easy direction.
In quantifying the energy it is customary to describe directions trigonometrically
with a set of direction cosines. Let α1, α2, and α3 be the direction cosines
between the magnetization vector and the principal axes.

Since most of the important magnetic materials are cubic or hexagonal, we
are primarily concerned with crystals belonging to point groups m3m1′ and
6/mmm1′. Magnetic anisotropy energy is expressed as a power series in the
direction cosines α1, α2, α3. For centric crystals, odd power terms disappear,
as do cross-coupled terms like α1α2. And for cubic crystals, the energy must be
independent of interchange of any two coefficients. Moreover since α2

1 + α2
2 +

α2
3 = 1 no anisotropy can arise from such a term. The two lowest power terms

for the anisotropy energy of cubic crystals are

F = K1(α
2
1α2

2 + α2
2α2

3 + α2
3α2

1) + K2 α2
1α2

2α2
3 .
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Table 16.3 Ferromagnetic and ferrimagnetic crystals with Curie
temperature Tc (K), spontaneous magnetization

(Bohr magnetons/formula unit) and symmetry changes

Tc I(s) Symmetry

Ferromagnetic metals
Fe 1043 2.22 m3m1′F4/mm′m′
Co 1403 1.7 6/mmm1′F6/mm′m′
Ni 631 0.6 m3m1′F3̄m′

Ferrimagnetic oxides
MnFe2O4 573 5.0 m3m1′F3̄m′
Fe3O4 858 4.2 m3m1′F3̄m′
CoFe2O4 793 3.3 m3m1′F4/mm′m′

NiFe2O4 858 2.3 m3m1′F3̄m′
Y3Fe5O12 560 4.7 m3m1′F3̄m′
Gd3Fe5O12 564 15.2 m3m1′F3̄m′

BaFe12O19 720 20 6/mmm1′F6/mm′m′
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Fig. 16.8 Magnetization curves of single
crystals of (a) iron, (b) nickel, and (c) cobalt.
The direction of the applied field with respect
to the crystallographic axes is indicated for
each curve.

For hexagonal crystals the corresponding expression is

F = K1 sin2 θ + K2 sin4 θ ,

where θ is the angle between the measurement direction and the hexagonal axis.
A listing of anisotropy coefficients for important magnetic materials is

presented in Table 16.4. There are several different methods for measuring
magnetic anisotropy, including the torque magnetometer in which the speci-
men is suspended between the pole pieces of rotatable electromagnet. The
specimen is a single crystal cut in the form of a disk. When a strong magnetic
field is applied, the disk rotates in such a way as to bring the easy axis into
the field direction. The torque on the support wire can be measured optically
from the angle of twist (Fig. 16.9). By rotating the magnet the torque can be
measured for many different crystallographic orientations.

Problem 16.2
The anisotropy constants for cubic yttrium iron garnet (YIG = Y3Fe5O12) are
K1 = −0.60 and K2 = −0.23 J/m3 at room temperature and K1 = −2.58
and K2 = −0.17 J/m3 at 4 K. Plot the anisotropy energy F in the (1̄10) plane
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Table 16.4 Anisotropy constants of various cubic and
hexagonal crystals in kJ/m3

K1 K2 Easy axis

Cubic crystals
Fe 46 15 [100]
Ni −5 — [111]
Fe3O4 −11 −28 [111]
MnFe2O4 −4 — [111]
NiFe2O4 −7 −11 [111]
Co0.8Fe2.2O4 290 440 [100]
Y3Fe5O12 −0.6 −0.2 [111]

Hexagonal crystals
Co 410 100 || [001]
BaFe12O19 330 — || [001]
BaFe18O27 300 — || [001]
BaCo2Fe16O27 −400 — ⊥ [001]

showing the values along [001], [110], and [111] directions. What are the easy
axes of magnetization? Discuss the temperature dependence.

Problem 16.3
The easy axis directions can be predicted from the K1/K2 ratio by setting
dF/dθ = 0. Determine the conditions for hexagonal crystals such as metallic
cobalt.

NS

Mirror

Wire Torque

Fig. 16.9 Schematic diagram of a torque
magnetometer used to measure magnetic
anisotropy. When placed in a magnetic field,
the single crystal disk tends to rotate to align
the easy axes with the field. The resulting
torque provides a measure of the anisotropy
energy.

As shown in Fig. 16.8, and Table 16.4 nickel magnetizes most easily along
the 〈111〉 body diagonals (negative K1). In the FCC structure of Ni the spins
point perpendicular to the (111) close-packed layers, and away from the nearest
neighbors. The same is true for α-Fe which has a BCC crystal structure and
K1 > 0. The spins point along 〈100〉 directions between four neighboring Fe
atoms. Cobalt (HCP structure) is similar to nickel with the spins along [001]
perpendicular to the close-packed layers. Note that the anisotropy coefficients
of Co are much larger than those of Ni and Fe. The K1 coefficient of cobalt
decreases rapidly when heated causing the easy axis to shift away from [001]
and eventually becoming perpendicular to [001]. The symmetry changes from
6/mm′m′ to 2′/m′ to mm′m′.

d

eg

t2g

(a) (b)

Fig. 16.10 (a) Environment of the octahe-
drally coordinated cation in the spinel struc-
ture. Metal ions and oxygen are denoted
by solid and open circles, respectively. (b)
d orbitals for an octahedrally coordinates
transition metal ion in a slightly trigonal field.

For most ferrites K1 is small and negative—but in CoFe2O4 it is large and
positive. Cobalt is commonly used as an additive to increase anisotropy and
coercive field. The strong preference of Co2+ spins for certain crystal axes
appears to be related to its orbital degeneracy. The two ions with the greatest
orbital degeneracy in octahedral sites are Fe2+ and Co2+. Since the orbital
configuration can be changed without changing the energy, the degenerate state
possesses appreciable orbital angular momentum.

In the spinel structure the octahedral sites are only approximately octahedral
in symmetry. The true point symmetry of the so-called octahedral site is not
m3m but trigonal, crystal class 3̄m. Nearest and next-nearest neighbors are
illustrated in Fig. 16.10. The next-nearest metal atoms superpose a trigonal field
(with principal axis along 〈111〉) on the octahedral field created by the oxygens.
As a result, the triply degenerate t2g orbitals are split into a doublet and a singlet.
The doublet wave functions lie principally in the plane perpendicular to [111],
while the singlet extends parallel to [111]. Since the second nearest neighbors,
six octahedral cations, are grouped close to [111], the singlet orbital is lower in
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energy because of the attraction between electrons and cations. Therefore, the
energy level diagram is that shown schematically in Fig. 16.10.

In the case of Fe2+, five electrons go in with spin up, one with spin down. The
latter is in the singly degenerate ground state so that Fe2+ has no orbital angular
momentum in the ground state. For Co2+, which has one more electron, the
extra electron occupies half the doubly degenerate state. Therefore Co2+ is free
to change its state in the plane perpendicular to [111], giving the atom angular
momentum parallel to [111]. The angular momentum is fixed in direction and,
because of spin-orbit coupling, the spin magnetic moments are also strongly
aligned along [111]. This explains why the anisotropy constant of CoFe2O4

is of opposite sign and larger than those of the other ferrites. This model has
been used to explain magnetic anisotropy and magnetic annealing in ferrites. In
Fe–Co ferrite ceramics annealed in a magnetic field, Co2+ ions diffuse to sites
in which the trigonal axis is closest to the applied field direction. Upon cooling
the unbalanced Co2+ distribution is retained giving rise to uniaxial anisotropy.

There are other ways to create magnetic anisotropy in addition to cobalt
substitutions. One way is through poling, another is compositional gradients,
and a third is through shape anisotropy. The iron oxide used in magnetic type,
γ -Fe2O3, provides an example of the imaginative use of crystal chemistry in
providing shape anisotropy through topotaxy.

Single-domain acicular particles of γ -Fe2O3 oriented parallel to the length
of the tape are the magnetic constituent of most tape recorders. When prepared
with particle lengths about 0.5µ and length-to-width ratios about five, γ -Fe2O3

particles behave like single domain arrays. But it is not easy to prepare cubic
materials such as γ -Fe2O3 in fine-grained acicular (needlelike) morphology to
develop the required shape anisotropy. The processing method involves pseudo-
morphism, the retention of crystal habit during conversion of one compound
to another. Pseudomorphism is fairly common in mineralogy (limonite after
pyrite is an example) and can be used to good advantage in materials science
as well.

Beginning from a ferrous salt solution, precipitation conditions are care-
fully controlled to give α-FeOOH, an orthorhombic crystal of acicular habit.
The ferric oxyhydroxide is gently oxidized to α-Fe2O3, then reduced to mag-
netite Fe3O4, and finally oxidized again to γ -Fe2O3, retaining the original
habit. Firing temperatures do not exceed 250◦C to 400◦C. Magnetic γ -Fe2O3 is
slightly superior to magnetite because the latter exhibits oxidation and magnetic
accommodation—making it difficult to erase a recording.

Improvements in the magnetic anisotropy of polycrystalline materials have
been achieved by controlling the directional alignment of the crystallites. There
are several different ways of developing texture. Directional solidification
is most suitable for brittle materials that cannot be mechanically deformed.
By withdrawing heat in one direction from a molten metal, crystals grow from
the cool side, following the direction of heat in the mold. Alnico and other
permanent magnet materials are often cast by directional solidification.

Wire drawing, rolling and other deformation processes are used to produce
texture in ductile materials. During deformation, the slip planes slide past each
other, causing the crystals to assume a common directional alignment. The
degree of control over the texture depends on the number of slip planes and
the deformation techniques. By adjusting die size, or the spacing between
rollers, the metal is reduced in stages, leading to different textures.
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16.5 Ferroelectricity

Many capacitor formulations are based on BaTiO3, one of a number of ferro-
electric substances crystallizing with the perovskite structure. Barium atoms are
located at the corners of the unit cell and oxygens at the face center positions.
Both barium and oxygen have ionic radii of about 1.4 Å and together they make
up a face centered cubic array having a lattice parameter near 4 Å. Octahedrally
coordinated titanium ions located at the center of the perovskite unit cell are
the active ions in promoting ferroelectricity. The low-lying d orbitals of Ti lead
to displacive phase transformations and large electronic polarizability.
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Fig. 16.11 Structural changes occurring at
three ferroelectric phase transformations in
BaTiO3 result in large values of the dielectric
constant over a wide temperature range.

On cooling from high temperature, the crystal structure of BaTiO3 under-
goes three ferroelectric phase transitions. All three are displacive in nature with
atomic movements of 0.1 Å or less. The point symmetry changes from cubic
m3m to tetragonal 4mm at the Curie point of 130◦C. The tetragonal state with
its spontaneous polarization along [001] persists down to 0◦C where it trans-
forms to orthorhombic symmetry (point group mm2) as P(s) shifts to a [110]
direction. On further cooling, the orthorhombic state transforms to rhombo-
hedral (point group 3m) near −90◦C. The structural changes are illustrated in
Fig. 16.11. A peak in the dielectric constant occurs at each of the phase trans-
formations. Note in Fig. 16.11 that the dielectric constants along the a and
b axes are larger than along the polar c-axis. The instability of the structure
makes it easy to tilt the spontaneous polarization vector and a transverse elec-
tric field. In regard to capacitor technology, it is extremely important that the
dielectric constant is high over a wide temperature range. The presence of the
two lower ferroelectric phase changes ensures that the permittivity remains high
below Tc.

The two types of domains and domain walls are shown in Figs. 16.12–16.14.
Barium titanate 180◦ domains with polarization along [001] and [001̄] are com-
pared in Fig. 16.12. In this case the walls exhibit ferroelectric behavior but not
ferroelasticity, and since there is no strain change across 180◦ walls, the wall
orientations are not controlled by strain mismatch. There is a second criterion,

Fig. 16.12 Tetragonal 180◦ domains in
BaTiO3 polarized along ±Z3. The difference
in free energy shows that the walls can be
driven electrically with fields along Z3 but not
with mechanical stress.
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Fig. 16.13 Crystal structure drawings and
free energy terms for two 90◦ domains polar-
ized along Z2 and Z3. Mechanical stresses
and electric fields are both effective in moving
domain walls.
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Fig. 16.14 Hysteresis loops for ferroelectric
BaTiO3 single crystals and ceramics. Near
room temperature, the spontaneous polariza-
tion is 0.26 C/m2. Typical domain structure
and field-induced domain wall movements are
shown below.

however, that involves the spontaneous polarization. As shown in Fig. 16.12
there is a substantial change in P(s) across 180◦ walls. Therefore the wall will
be charged unless it is parallel to P(s) and to −P(s). For domains polarized
along ±Z3, (h k 0) planes satisfy this criterion. Similar rules apply for 180◦
domain walls separating domains polarized along ±Z1 or ±Z2.
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The 90◦ domains in BaTiO3 (Fig. 16.13) show both ferroelectric and ferro-
elastic behavior. Differences in spontaneous polarization and spontaneous
strain for neighboring domains are both substantial. The spontaneous polari-
zation is measured from hysteresis loops (Fig. 16.14) while the spontaneous
strain can be estimated from lattice parameters. For a tetragonal crystal,
	x(s) = (c − a)/

3
√

a2c.



176 Ferroic crystals

xI
(s) =




−xs/2

−xs/2

+xs

0
0
0




, xIII
(s) =




−xs/2

+xs

−xs/2

0
0
0




, 	x(s) =




0
−3x(s)/2

+3x(s)/2

0
0
0




,

PI
(s) =


 0

0
Ps


 , PIII

(s) =

 0

Ps

0


 , 	P(s) =


 0

−Ps

+Ps




	G = −Ps(E3 − E2) − 3xs

2
(X3 − X2).

The 90◦ walls are parallel to {110} planes to minimize strain mismatch.
Because of the c/a strain ratio, 90◦ domains are actually 90◦ 36′ apart resulting
in slightly tapered domain wall configurations, and are optically distinguishable
in a polarizing microscope.

There are many other ferroelectric oxides with the perovskite, tungsten
bronze, pyrochlore, and bismuth titanate layer structure (Table 16.5). Compared
with other oxides, all have high dielectric constants, high refractive indices, and
large electromechanical coupling coefficients, and all contain corner-linked
octahedral networks of Ti4+, Nb5+, or other d◦ ions. These transition-metal
elements are the highly polarizable “active” ions promoting ferroelectricity,
and the high permittivities and piezoelectric constants required for transducers
and capacitors. With reference to the periodic system, there are two major
groups of active ions, and both are near electronic “crossover” points where
different types of atomic orbitals are comparable in energy and where hybrid
bond formation is prevalent. The first group typified by Ti4+, Nb5+, Ta5+,
and W6+, consists of d◦ ions octahedrally coordinated to oxygen. For Ti4+
the electronic crossover involves the 3d, 4s, and 4p orbitals, which combine

Table 16.5 Ferroelectric crystals, Curie temperatures (Tc), additional phase
transitions (Tt), spontaneous polarization, and symmetry groups

Compound Symmetry Tc (K) Tt (K) P(s) (C/m2)

Ba2NaNb5O15 4/mmm F 4mm F mm2 858 573
BaTiO3 m3m F 4mm F mm2 F 3m 408 278,183 0.26
Bi4Ti3O12 4/mmm F m 949
(CH2NHCOOH)3H2SO4 2/m F 2 322 0.031
Gd2(MoO4)3 4̄2m F mm2 432 0.0017
KH2PO4 4̄2m F mm2 122 0.048
KNa(C4H4O6) · 4H2O 222 F 2 F 222 297 255 0.025
KNbO3 m3m F 4mm F mm2 F 3m 708 498,263 0.30
LiNbO3 3̄m F 3m 1473 0.71
LiTaO3 3̄m F 3m 938 0.50
NaNO2 mmm F mm2 437 0.085
Pb5Ge3O11 6̄ F 3 450

Pb3MgNb2O9 m3m F 3m 263
PbNb2O6 4/mmm F mm2 843
PbTiO3 m3m F 4mm 763 0.57
SbSI mmm F mm2 295 0.25
Sr2Nb2O7 mmm F mm2 1623
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with the σ and π orbitals of its six O2− neighbors to form a number of molec-
ular orbitals for the (TiO6)

8− complex. The bond energy of the complex can
be lowered by distorting the octahedron to a lower symmetry. This leads to
molecular dipole moments and ferroelectric and ferroelastic hysteresis as the
dipoles reorient under electric fields or mechanical stress. A second group of
active elements contributing to polar distortions in oxide dielectrics are the
lone-pair ions having two electrons outside a closed shell in an asymmetric
hybrid orbital. Among oxides, the most important of these lone-pair ions are
Pb2+ and Bi3+ that are found in a number of ferroelectrics (PbTiO3, PbNb2O6,
Bi4Ti3O12) with high Curie temperatures. In many of these compounds, Pb2+
and Bi3+ are in pyramidal coordination with oxygen and therefore contribute
to the spontaneous polarization.

Among the other ferroelectric compounds listed in Table 16.5, there are other
molecular mechanisms for ferroelectricity. Hydrogen bonding plays a key role
in Rochelle Salt, triglycine sulfate, and potassium dihydrogen phosphate. In
many water-soluble ferroelectric crystals such as these, the transition from
the paroelectric state above Tc to the low-temperature ferroelectric state is
essentially an order—disorder phenomenon. Above the transition, protons are
statistically distributed in double potential wells. Below Tc they freeze into
ordered positions, lowering the symmetry and creating ferroelectric domains.

Problem 16.4
Bismuth titanate, Bi4Ti3O12, is ferroelectric below the Curie temperature of
949 K where it changes from tetragonal (4/mmm) to monoclinic (m). At room
temperature, the components of spontaneous polarization are P(s)1 = 0.50,
P(s)2 = 0, and P(s)3 = 0.05 C/m2 along the principal axes. Make plots of
the spontaneous polarization as a function of direction for the eight domain
states, remembering that Z1 and Z2 are equivalent to one another in the high
temperature structure.

The spontaneous strains are x(s)11 = −x(s)22 = 0.0068. All other components
are zero or near zero. Write out the equation for the difference in free energy
between two domain states (	G) and determine the components of electric field
and mechanical stress that will move the domain wall between them.

16.6 Secondary ferroics: Ferrobielectricity and
ferrobimagnetism

Examples of the six types of secondary ferroic phenomena are listed in
Table 16.1. Ferrobielectricity is a secondary ferroic effect arising from field-
induced electric polarization, rather than spontaneous polarization as in a
ferroelectric. Switching between orientation states occurs because of differ-
ences in the dielectric permittivity tensor. Permittivity is a secondary tensor
like strain and magnetic susceptibility. Any orientation states differing in spon-
taneous strain will also differ in both electric and magnetic susceptibility.
Therefore all ferroelastics are potentially ferrobielectric and ferrobimagnetic.

Ferrobielectricity can be expected in nonpolar crystals with mimetic twin-
ning and substantial dielectric anisotropy. Antiferroelectric materials such
as NaNbO3 and SrTiO3 are promising candidates because the dielectric
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permittivities are large enough to make a sizeable contribution to the induced
polarization term in the free energy function. Below 110 K, SrTiO3 is ferro-
elastic and possibly ferrobielectric. The phase transition involves a symmetry
change from cubic (class m3m) to tetragonal (4/mmm) at low temperature.
The TiO6 octahedra of the ideal perovskite structure rotate about a fourfold
axis. Alternate octahedra rotate clockwise and counterclockwise causing the
structure to crumple about the Sr2+ ions. On cooling through the transition
the tetragonal c-axis may develop along any of the three cubic edges, giving
rise to 90◦ domains in SrTiO3, the difference in free energy is proportional to
(K33 − K11) E2. There is no apparent discontinuity in the dielectric constant
or its slope at the cubic-tetragonal transition, but anisotropy in the permittiv-
ity develops at low temperatures. Dielectric constants as large as 25,000 have
been reported below 50 K, where electric double hysteresis loops are observed,
along with changes in weak-field permittivity under DC bias. Such behavior
may be associated with ferrobielectric domain wall movement. The symmetry
change at low temperature is from m3m to 4/mmm, the same as many of the
shape memory alloys.

Multidomain crystals with anisotropic magnetic susceptibility can exhibit
ferrobimagnetism. Magnetic susceptibility is a polar second-rank tensor like
strain and electric permittivity, therefore ferrobimagnetism has the same sym-
metry requirements as ferroelasticity and ferrobielectricity. In materials with
spontaneous magnetization, ferrobimagnetism will be masked by the larger
ferromagnetic effect. The ferrobimagnetic effect is most likely to occur in anti-
ferromagnetic crystals since χij is relatively small and nearly isotropic in most
paramagnetic and diamagnetic solids.

Antiferromagnetic nickel oxide is both ferroelastic and ferrobimagnetic.
At temperatures above the Neel point of 523 K, NiO is paramagnetic with
the cubic rocksalt structure. Below TN , antiferromagnetic ordering of the Ni2+
spins results in a small rhombohedral distortion. The unit cell contracts slightly
along one of the 〈111〉 body diagonals with the angle between cube axes chang-
ing from 90◦ to 90◦ 4′. Crystallographic twinning occurs because the contraction
may take place along any of the four body diagonals. Each domain is optically
uniaxial with the optical axis parallel to the contraction direction. The birefrin-
gence (ne − no = 0.003 at 5900 Å) is large enough to make domains visible in
polarized light.

In a well-annealed crystal, domain walls are easily displaced by a mechanical
stress (ferroelasticity) or by a magnetic field (ferrobimagnetism). Elastic energy
is lowest for domains with the contraction axis parallel to the applied stress.
The walls can be moved distances of several mm and the movement observed
with a polarizing microscope. Only small mechanical stresses (<105 N/m2) are
required to move domain walls. A multi-domain specimen can be converted to
an untwinned state by pinching the crystal between thumb and index finger.

Untwinned NiO crystals possess anisotropic magnetic susceptibility. For
domains contracted along [111], the magnetic susceptibility parallel to [111]
exceeds those measured in the perpendicular directions. In such a domain,
spins lie in the (111) plane perpendicular to the [111] contraction directions.
As in most antiferromagnetic materials, the magnetic susceptibility is largest
perpendicular to the spins.

Moderate magnetic field of 400 kA/m are sufficient to move domain walls
in well-annealed crystals. Induced magnetic energy (and total free energy) is
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Fig. 16.15 Displacement of domain walls in antiferromagnetic NiO by a magnetic field. The crystal is a thin plate approximately 1 mm on edge
with the major face parallel to (111). A magnetic field was first applied along [1̄1̄2] and then along [1̄10] to produce ferrobimagnetic switching.
Domains are visible in polarized light because of the spontaneous strain associated with antiferromagnetic ordering. Viewed between crossed
polarizer and analyzer, the major portion of the crystal has domains contracted along [111]. Dark stripes sloping up to the left and up to the right
correspond to domains contracted along [1̄11] and [111̄], respectively.

minimized when the maximum magnetic susceptibility is parallel to the applied
magnetic field. Antiferromagnetic domains with contraction direction parallel
to H are favored over other orientations. The response to an applied field is
highly erratic because the walls are easily pinned by crystal imperfections.
Domain wall movement in ferrobimagnetic NiO is illustrated in Fig. 16.15.

16.7 Secondary ferroics: Ferrobielasticity and
ferroelastoelectricity

Ferrobielasticcrystalsareaclassof secondary ferroics inwhichorientationstates
differ in elastic compliance, a fourth-rank polar tensor. Ferrobielastic switching
in α-quartz has been known for many years. Under applied stress the Dauphiné
twins in quartz strain differently. This creates a difference in free energy favor-
ing one domain over the other, causing domain walls to move. Ferrobielasticity
is a second order effect in which the strain difference between orientation states
is induced by applied stress. When the stress is removed, the induced strain
and difference in free energy also disappear. Domain changes under stress
can be observed optically because of differences in the photoelastic tensor for
the two twin segments. Photoelasticity—the change in refractive indices with
stress—is a fourth-rank tensor like elasticity. Orientation states differing in
elastic constants will also differ in photoelastic coefficients (Chapter 27).

β-quartz is hexagonal, crystal class 622. On cooling through the phase
transition at 573◦C, the symmetry is lowered to 32. Transformation twins
develop as β-quartz converts to α-quartz. The transformation twins, often called
Dauphiné twins or electrical twins, consist of two orientation states related
by 180◦ rotation about [001], the trigonal axis. Dauphiné twins combine two
right-handed (or two left-handed) orientation states, often with irregular com-
position planes. Such twinning renders the crystals useless for piezoelectric
applications because it reverses the direction of the Z1-axis and the signs of
the d11 piezoelectric coefficients. Because of the importance of piezoelectric
quartz in communications applications, techniques for detwinning quartz were
developed during the Second World War when untwinned mineral specimens
were very scarce.

When referred to the same measurement axes, Dauphiné twin orientation
states differ in elastic constants. Class 32 has six independent compliance coef-
ficients: s1111, s1122, s1133, s1123, s3333, and s2323. The twins are related by
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180◦ rotation about Z3 which reverses the signs of Z1 and Z2. Polar tensor
coefficients with an odd number of 1 or 2 subscripts change sign under such
an operation. Therefore s1123 changes sign for the two orientation states but
the other coefficients do not. Under an appropriate stress X the difference in
free energy between Dauphiné states is proportional to s1123X2. As shown in
Fig. 16.16, a uniaxial stress at 45◦ to Z2, and Z3 is effective in switching the
ferrobielastic domains.

In matrix form, the applied stress X ′
2 creates a difference in free energy of

	G = s14 (X1X4−X2X4+2X5X6) = −s14 (X ′
2)

2/4. The coercive stress required
to introduce twins into quartz is about 5 × 108 N/m2 at room temperature but
drops to very small values above 250◦C.

Atomic movements in the Dauphiné twin operation are small and do not
involve the breaking of Si–O bonds. In shifting from one orientation state
to other, silicon atoms are displaced by 0.3 Å, and oxygens by about twice
amount. Across the composition plane there is a slight difference in bond angles.
Dauphiné twinning disappears at the α–β transformation. The atomic structures
of the twin states are illustrated schematically in Fig. 16.17.

[120]

[001]

Fig. 16.16 Ferrobielastic switching of Dauphiné twins in quartz produced by uniaxial stress applied at 45◦ to Z2 and Z3. As the mechanical
stress is increased slowly from 4.9 to 5.0 × 104 N/m2, the striped twin pattern changes abruptly. Specimen dimensions are 5 × 5 × 3 mm.
Orthogonal property axes (Z1, Z2, Z3) correspond to the [100], [120], [001] crystallographic axes, respectively. The crystal is viewed along Z1
between crossed polarizer and analyzer. Domains are visible because of the photoelastic effect; the contrast in brightness disappears when the
stress is removed.
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Fig. 16.17 Dauphiné and Brazil twins in quartz. Brazil twins are growth twins that differ in handedness. They are common in natural quartz
but are not found in synthetic crystals where the handedness of seed crystals is carefully controlled. Twin walls in Brazil twins are immobile
because motion would involve the breaking of Si–O chemical bonds. Dauphiné twins appear on cooling through the α–β phase transition where
the symmetry changes from hexagonal (622) to trigonal (32). The slight puckering of the structure can be influenced by mechanical stresses
applied in certain directions. Only the Si atoms are shown in the crystal structure drawings projected along Z3 onto the {001} plane. The circular
arrows indicate the direction of the helical spirals in the quartz structure.
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When referred to a common set of axes, the domain states of a true ferro-
elastoelectric differ in the piezoelectric tensor coefficients. The crystal can be
switched from one state to another when an electric field and a mechanical stress
are applied simultaneously. A ferroelastoelectric is not simply a ferroelectric
that is also ferroelastic. Such materials can be switched by either an electric or
mechanical force. Both forces are required to switch a true ferroelastoelectric,
for it is neither ferroelectric nor ferroelastic.

Since all polar classes are potentially ferroelectric, a likely source of ferro-
elastoelectrics are the ten nonpolar piezoelectric classes: 222, 32, 4̄, 4̄2m,
422, 6̄, 6̄m2, 622, 23, and 4̄3m. Quartz is a potential ferroelastoelectric since
Dauphiné twins differ in piezoelectric constants as well as elastic constants,
but ammonium chloride (sal ammoniac, NH4Cl) is the only proven ferroelas-
toelectric. Ammonium chloride undergoes a near second-order transition at
−30◦C accompanied by a λ-anomaly in the specific heat. The crystal structure
is cubic, both above and below the transition, but the space group changes
from Pm3m at room temperature to P4̄3m at low temperatures. The NH4Cl
structure resembles CsCl with Cl at (0, 0, 0) and N at ( 1

2 , 1
2 , 1

2 ). Hydrogens
lie along the body diagonals forming N–H–Cl hydrogen bonds. There are two
possible orientations for tetrahedral NH4 group with hydrogens at x, x, x; x, x̄,
x̄; x̄, x, x̄; x̄, x̄, x(x = 0.347), or at x̄, x, x; x, x̄, x; x, x, x̄; x̄, x̄, x̄. Neutron
diffraction data recorded at room temperature indicate random disorder between
the two orientations. Measurements below the transition at liquid air tempera-
ture have established an ordered model with only one set of positions occupied
(Fig. 16.17). In the absence of external forces the two orientation states are equal
in energy, giving rise to domains at low temperatures. Reflection across (100)
brings the two states into coincidence. This is a very subtle type of twinning
since the physical properties of the two orientation states are nearly identical.
Only through third-rank tensor properties such as piezoelectricity and the linear
electro-optic effect can the two states be distinguished.

Crystal class 4̄3m has but one independent piezoelectric modulus d123 relating
polarization along [100] to a shearing stress about [100]: P1 = d123X23. For the
two orientation states, d123 is equal in magnitude but opposite in sign. Reflection
across (100) takes Z1 to −Z1, and leaves Z2 and Z3 unchanged. Therefore d123

transforms to −d123 for two domains related by a mirror parallel to (100).
Ammonium chloride is a potential ferroelastoelectric because its two

orientation states differ in piezoelectric coefficients (Fig. 16.18). Applying a
uniaxial stress X along [011] together with an electric field E along [100] leads
to a difference in free energy 	G = 2d123XE. Domain switching will take
place if the driving potential 	G is large enough to overcome the resistance to
domain wall motion. In matrix notation the full difference in free energy is

	G = 4d14(E1X4 + E2X5 + E3X6),

Fig. 16.18 Twin orientation states in ferro-
elastoelectric ammonium chloride at low tem-
peratures. The twins are related by reflection
across (100) which reverse the signs of the
piezoelectric coefficients d14 = d25 = d36.
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where d14 is about 6 pC/N and the coercive stress-field is about 1 MN/m2 ×
1 MV/m at −30◦C.

Problem 16.5
Dauphiné twin walls in quartz can be moved using the ferroelastoelectric effect.
There are two independent piezoelectric coefficients in α-Quartz: d11 and d14.
Determine what components of electric field and mechanical stress are needed
to move domain walls.

16.8 Secondary ferroics: Ferromagnetoelectrics
and ferromagnetoelastics

The domains of a ferromagnetoelastic material differ in piezomagnetic coef-
ficients. Siderite (FeCO3) is antiferromagnetic below 30 K. The magnetic
structure (Fig. 16.19) consists of antiparallel Fe2+ spins aligned along the
hexagonal c-axis. Siderite belongs to crystal class 3̄m1′, and magnetic point
group 3̄m. Symmetry elements 3̄′ and m′, in which the spatial operation is
accompanied by time reversal, are absent. Crystals with magnetic symme-
try 3̄m are potentially piezomagnetic (Table 14.5). There are two independent
piezomagnetic coefficients, Q222 and Q123. In matrix notation, these tensor
coefficients correspond to Q22 and Q14. Q222 relates a tensile stress along Z2

to a magnetization in the same direction; Z2 is the crystallographic [120] direc-
tion perpendicular to both the twofold (Z1) and threefold (Z3) symmetry axes.
Piezomagnetic coefficient Q123 relates the magnetization component along Z1

resulting from a shearing stress about Z1.
The piezomagnetic effect has been studied in iron carbonate crystals at liquid

hydrogen temperature using a magnetic torsion balance in which a press con-
taining the specimen is suspended between the pole pieces of the magnet. Q123

was measured, but Q222 was below the limit of observation. The magnitude of
Q123 is sensitive to bias during annealing. When cooled through the Neel point
without stress bias, the effect was smaller, presumably because of antiferro-
magnetic domains. Domains in antiferromagnetic siderite are of the 180◦ type
in which all spins are reversed (Fig. 16.19). The magnetic structures of neigh-
boring domains are related by reflection across (21̄0) accompanied by time
reversal m′ converting Q123 to −Q123, so that the piezomagnetic coefficient is
of opposite sign for the two domains. Siderite is therefore a potential ferromag-
netoelastic crystal in which domains can be switched by applying mechanical

Fig. 16.19 Domain states in antiferromag-
netic FeCO3 at low temperatures. The two
magnetic structures are related by the time
reversal operator 1′ which reverses all spin
directions. Annealing in combining magnetic
fields and mechanical stress is required before
measuring the piezomagnetic effect. Carbon-
ate groups are not shown.

Fe2+
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stress and magnetic field simultaneously. The field should be directed along Z1

together with a shearing stress about Z1.
The magnetoelectric coupling between electric and magnetic variables was

described earlier in Section 14.9. In analytic form the electrically-induced
magnetoelectric effects is Ii = QijEj, and the magnetically induced effect is
Pi = QijHj. Magnetoelectric coefficients have been measured for about twenty
materials, including Cr2O3, LiFePO4 (triphylite) and LiMnPO4 (lithiophilite).
LiMnPO4 undergoes a paramagnetic-antiferromagnetic phase transition at
50 K. Magnetic susceptibility data collected in the paramagnetic region show
typical Curie–Weiss behavior with an effective atomic moment of 5.45 µB and
an extrapolated Neel temperature of 88 K.

Triphyllite and lithiophyllite are isostructural with olivine; lattice parameters
for the orthorhombic unit cell are a = 10.31, b = 6.00, c = 4.69 Å. The space
group is Pnma1′ with four molecules per unit cell (Fig. 14.18). Divalent iron
atoms occupy mirror plane positions (equipoint 4c) with coordinates ±(0.28,
0.25, 0.98; 0.22, 0.75, 0.48). In triphyllite low temperature neutron diffraction
studies gave a magnetic structure in which two of the Fe2+ spins are parallel to
+b, the other two to −b. All four spins are reversed for the antiferromagnetic
180◦ domain.

The magnetic structure of triphylite conforms to magnetic point group mmm′,
one of the magnetoelectric groups. The symbol m′ means that the mirror oper-
ation perpendicular to c includes a time reversal operator. Time reversal flips
the spins by 180◦ since magnetic moments are associated with moving electric
charge. The only nonzero magnetoelectric coefficients for mmm′ are Q12 = Q21.

Magnetoelectric measurements provide ample evidence for the existence of
antiferromagnetic domains. The magnetoelectric coefficient Q12 is identical in
magnitude for the two domains but opposite in sign. If the sample is raised
above the Neel temperature and cooled through the transition, the sign of Q can
be positive or negative. Rapid cooling produces both kinds of domains. Powder
specimens exhibit no magnetoelectric effect unless annealed in bias fields to
remove the degeneracy between two domains. The principle of the method is
quite simple. In an electric field the induced magnetization for one domain is
opposite to that of the other. If a magnetic field is then applied, the energies
differ for the two time-reversed structures, making one more probable than the
other. Poling works best just below the Neel point where coercive fields are
usually smallest.

16.9 Order parameters

The macroscopic classification of ferroic crystals into primary and secondary
ferroics is helpful in designing experiments, but provides very little understand-
ing of the underlying atomistic phenomena involved in the phase transformation
responsible for the twinning. A more useful approach is based on an order
parameter Q and identifying its atomistic origin. The basic ideas of Landau
theory are introduced in this section.

Ferroic phase transformations involve a change in symmetry from a high
temperature prototype state to a low temperature ferroic state. The point group
symmetry of the ferroic state is a subgroup of the prototype state. In the feldspar
family, for instance, this symmetry change is represented by the symmetry
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species 2/m F1̄. The symmetry elements 2 and m are lost on cooling through
the phase transformation but the center of symmetry 1̄ is retained as the crystal
changes from monoclinic to triclinic. 1̄ is a subgroup of 2/m since both phases
possess a center of symmetry.

The breaking of symmetry at the phase transition introduces a new variable
called the order parameter. This order parameter Q is used to describe the
difference in free energy 	G between the ferroic state and the prototype phase.
It is this difference in free energy that stabilizes the ferroic state. (Note that this
	G is different than the 	G in Section 16.1. There we were comparing the
difference in free energy between two domain states. Here we are comparing
the difference in free energy between the high and low temperature phases.)

This difference in free energy, sometimes called the excess free energy,
depends on temperature through the order parameter Q. A typical relationship is

	G =
(

A

2

)
(T − Tc)Q

2 +
(

B

4

)
Q4 +

(
C

6

)
Q6 + · · · ,

where A, B, and C are independent of temperature and Tc is the transition
temperature. The exact form of the power series depends on the nature of the
transition and the symmetries involved.

The structural meaning of the order parameter may be related to a macro-
scopic quantity such as polarization or strain, or it may come from the softening
of an optic mode, an acoustic mode, or a spin mode (Fig. 16.20). Order–disorder
phenomena involving hydrogen bonds or atom exchange are also potential order
parameters. Some ferroics have more than one order parameter.

The displacive phase transition in the ferroelastic feldspars (Section 16.2) is
strongly influenced by Al–Si ordering in the tetrahedral sites of the structure.
Similar coupling between displacive transitions and cation ordering occurs in
relaxor ferroelectrics like Pb3MgNb2O9 and shape memory alloys such as NiTi.
This often leads to broad, diffuse phase transitions.

Polarization is the order parameter in barium titanate and most other ferro-
electric crystals. The excess free energy is expanded as a power series in P

Fig. 16.20 Ferroic phase transformations
have a number of different origins. In a
proper ferromagnet, the order parameter is
proportional to the spontaneous magnetiza-
tion, but ferromagnetism can also arise from
acoustic modes, spontaneous strain, and other
improper causes. In weak ferromagnets the
spontaneous magnetization is coupled to an
antiferromagnetic spin mode. Polarization is
the order parameter for proper ferroelectrics,
and strain for proper ferroelastics.
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and the various coefficients are determined by experiment using the measured
values of spontaneous polarization, dielectric permittivity, pyroelectric effect,
and spontaneous strain. Proper ferroelectrics like BaTiO3 and KH2PO4 are
characterized by a dielectric instability in which the dielectric constant follows
a Curie–Weiss law

K = C

(T − To)
,

where C is the Curie constant and To is approximately equal to Tc, the transition
temperature.

Proper ferroelectrics can be divided into two main groups. Displacive
ferroelectrics like BaTiO3, PbTiO3, and KNbO3 were discussed in Section 16.5.
Perovskite ferroelectrics and related oxides have Curie constants of about 105 K.
The second group of hydrogen-bonded ferroelectrics have much smaller Curie
constants near 103 K. Triglycine sulfate, potassium dihydrogen phosphate,
Rochelle salt, and other members of this family are driven by an order–
disorder transformation in which protons oscillate in a double potential well.
Below Tc they freeze into an ordered configuration creating the spontaneous
polarization.

Improper ferroelectrics behave very differently. The classic example is
gadolinium molybdate, Gd2(MoO4)3, that has a dielectric constant of about
10 that hardly changes at Tc. The order parameter is a soft acoustic mode that
couples to the spontaneous polarization through a piezoelectric coefficient. The
spontaneous polarization in gadolinium molybdate is a hundred times smaller
than barium titanate.

Proper ferroelastics, in which the order parameter is linearly coupled to
the spontaneous strain, are relatively rare. Arsenic pentoxide (As2O5) and
disordered feldspars are the best examples. Most ferroelastics are improper
ferroelastics in which strain is not the order parameter.

The excess free energy and the order parameter describe the underlying
causes of ferroic behavior. Lead zirconate titanate (PZT = PbZr1−xTixO3)

is a proper ferroelectric that is widely used as a piezoelectric transducer. Com-
positions near the morphotropic phase boundary at x = 0.5 have very large
electromechanical coupling coefficients. The properties and phase diagram
were described in Section 12.7. Above Tc the perovskite structure is cubic,
point group m3m. Below Tc the ferroic phase is rhombohedral (3m) for x < 0.5
and tetragonal (4mm) for x > 0.5. For these symmetries, the leading terms in
the excess free energy function is

	G = A(T − Tc)(P2
1 + P2

2 + P2
3)

2
+ BI(P4

1 + P4
2 + P4

3)

4

+ BII(P2
1P2

2 + P2
3P2

1 + P2
2P2

3)

2
+ · · · .

In the cubic paraelectric state above Tc, the spontaneous polarization dis-
appears and 	G = 0 when P1 = P2 = P3 = 0. Just below Tc for Ti-rich
compositions (x > 0.5), the excess free energy is maximized for the tetragonal
polar state in which P1 = P2 = 0 and P3 = Ps. In this case 	GT = BIP4

s /4.
For the Zr-rich compositions at x < 0.5, the rhombohedral phase is stabilized
with P1 = P2 = P3 = Ps/31/2. The excess free energy for the rhombohedral
state is 	GR = BIP4

s /12 + BIIP4
s /6. Comparing 	GR with 	GT , we see that
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	GR = 	GT when BI = BII. This corresponds to the morphotropic phase
boundary near x = 0.5. When BII > BI the tetragonal state is stable, and when
BI > BII PZT is rhombohedral.

The PZT properties are especially useful near the tetragonal–rhombohedral
phase boundary where BI = BII = B. Substituting this condition into 	G gives

	G = A(T − Tc)(P2
1 + P2

2 + P2
3)

2
+ B(P2

1 + P2
2 + P2

3)
2

4
+ · · · .

The dielectric, elastic, and piezoelectric properties near the boundary can be
derived using the thermodynamic relationships in Chapter 6. When this is done,
it can be shown that for compositions on the tetragonal side of the boundary
K11 = K22 ∼ 1/(BII − BI) → ∞ and c44 = c55 ∼ BI − BII → 0. At the
phase boundary PZT is transversely unstable with large dielectric constants
and large elastic shear compliance perpendicular to the polarization direction.
It is this transverse instability that is responsible for the remarkable piezoelectric
properties near the morphotropic phase boundary.

Over the past several decades there has been a growing interest in the
fundamental causes of ferroic phase transitions, focusing on soft modes,
order parameters, and improper transitions. Cross-coupled improper domain
phenomena caused by electric, elastic, and magnetic interactions result in
unusual ferroic behavior. Lithium ammonium tartrate, for instance, is a type of
elastoferroelectric in which mechanical strain is the primary order parameter
at the 98 K phase transition. Strain gives rise to ferroelectricity through piezo-
electric coupling with the polarization. The opposite effect occurs in sodium
potassium tartrate (Rochelle salt) where electric polarization is the primary
order parameter. Domains can be switched with mechanical stress as well as
with electric fields because of the small spontaneous strain resulting from piezo-
electric coupling to the polarization. Since the ferroelastic effect has its origin
in an electric instability, we refer to it as electroferroelasticity. An even more
subtle type of instability takes place in lithium thallium tartrate in which the
order parameter resides in the electromechanical coupling coefficient.

Other interesting cross-coupling effects arise when magnetic phenomena
are included. There are a number of examples of elastoferromagnetism and
magnetoferroelasticity and at least one good example of electroferromagnetism:
nickel iodine boracite. At room temperature, NiI boracite is cubic, point
group 4̄3m. Below room temperature at 120 K, it undergoes a transition
to an antiferromagnetic state as the Ni2+ moments align; at this stage, the
material is an antiferromagnetic piezoelectric, but it is neither ferromagnetic
nor ferroelectric. On further cooling, a second phase transition to an orthorhom-
bic ferroelectric state takes place at 64 K. As the crystal structure develops
a spontaneous polarization, the magnetic structure is also altered, destroying
the balance of spins in the antiferromagnetic state and producing a weak ferro-
magnetism. The ferromagnetic effect is of electric origin and can be referred to
an electroferromagnet.

The opposite effect is magnetoferroelectricity in which a reversible spon-
taneous polarization is developed on passing through a magnetic phase
transition. Chromium chrysoberyl (Cr2BeO4) exhibits such an effect at low
temperature. Cr2BeO4 is orthorhombic and isostructural with the minerals
chrysoberyl (Al2BeO4) and forsterite (Mg2SiO4). The crystal structure con-
sists of a close-packed lattice of oxygen ions with Cr3+ in octahedral sites and
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Be2+in tetrahedral positions. At room temperature, Cr2BeO4 is paramagnetic
and centrosymmetric (point group mmm1′) and, therefore, nonpiezoelectric,
nonpyroelectric, and nonferroelectric.

Low-temperature magnetic susceptibility measurements show a cusp-shaped
peak at 28 K characteristic of a paramagnetic–antiferromagnetic transition.
The magnetic structure determined by neutron diffraction at 4.5 K is a
cycloidal spiral with a periodicity of about 65 A, roughly 12 unit-cell
lengths. Antiferromagnetic resonance experiments confirmed the spiral struc-
ture and Neel temperature. The symmetry of the magnetic structure is triclinic,
point group 1, making chromium chrysoberyl potentially magnetoferroelectric
below 28 K.

When electrically poled, chromium chrysoberyl shows a weak pyroelectric
effect in its antiferromagnetic state. The sign of the pyroelectric coefficient
changes when the bias field is reversed. Like other ferroelectrics, the pyro-
electric effect disappears above the transition. The reversible spontaneous
polarization in the magnetoferroelectric state is approximately a million times
smaller than that of BaTiO3.

Magnetoferroelectrics are a type of improper ferroelectric, like gadolinium
molybdate, in which polarization is not the order parameter driving the trans-
formation. Because of the weakness in coupling between magnetic and electric
effects, magnetoferroelectrics might be termed the ultimate impropriety.
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The next six chapters describe the transport phenomena associated with the
flow of charge, heat, and matter. In each case there is a vector flux that is
governed by a vector field. Linear relationships between flux and field include
electrical resistivity (Chapter 17), thermal conductivity (Chapter 18), diffu-
sion (Chapter 19), and thermoelectricity (Chapter 21). All are represented by
second rank tensors similar to electric permittivity (Chapter 9), but the under-
lying physics is somewhat different. Transport properties are nonequilibrium
phenomena governed by statistical mechanics and the concept of microscopic
reversibility, rather than the second law of thermodynamics that applies to
equilibrium properties such as specific heat, permittivity, and elasticity.

Higher order tensors appear when the transport experiments are carried out
in the presence of magnetic fields or mechanical stresses. Galvanomagnetic,
thermomagnetic (Chapter 20), and piezoresistance effects (Chapter 22) require
third- and fourth-rank tensors.

17.1 Tensor and matrix relations

When an electric field is applied to a conductor, an electric current flows
through the sample. The field Ei (in V/m) is related to the current density
Jj (in A/m2) through Ohm’s Law, where ρij is the electrical resistivity (in � m).
In tensor form,

Ei = ρijJj.

Ei and Jj are polar vectors (first rank polar tensors) and ρij is a second rank
polar tensor property which follows Neumann’s law in the usual way. Some-
times it is more convenient to use the reciprocal relation involving the electrical
conductivity σij:

Ji = σijEj.

Conductivity is expressed in �−1 m−1 or S/m.
In matrix form

3 × 1
(E) =

3 × 3
(ρ)

3 × 1
(J) and

3 × 1
(J) =

3 × 3
(σ )

3 × 1
(E).

The reciprocal relation between conductivity and resistivity is derived as follows

(E) = (ρ)(J) = (ρ)(σ )(E).

Therefore (ρ)(σ ) = 1 or (ρ) = (σ )−1.
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Individual components are related through the relation

ρij = (−1)i+j	σ
ij

	σ
,

where 	σ is the determinant of the conductivity matrix and 	σ
ij is the cofactor

of conductivity component σij.
As an illustration, find the resistivity matrix (ρ) corresponding to the

conductivity matrix

(σ ) =

3 1 0

1 4 0
0 0 2


 S/m

ρ11 = (−1)2(8 − 0)

24 − 2
= 4

11

ρ12 = (−1)3(2 − 0)

24 − 2
= − 1

11
= ρ21

ρ22 = (−1)4(6 − 0)

24 − 2
= 3

11
etc.

(ρ) = 1

11


 4 −1 0

−1 3 0
0 0 5


 � m.

Note that in general ρij �= 1/σij.

17.2 Resistivity measurements

Resistivity and conductivity range over many orders of magnitude (Fig. 17.1)
For superconductors ρ = 0, and for common metals ρ ∼ 10−6–10−8 � m.
For good insulators ρ ∼ 1012–1016 � m. Semiconductors like Si and Ge lie in
between, typically in the 10−2–102 � m range.

Electrical resistivity is defined in terms of Fig. 17.2, where the resistivity ρ

is given by

ρ = VA

IL
and is measured in ohm m, provided the current I is measured in amperes,
the voltage drop V in volts, and the dimensions in meters. The simplest tech-
nique involves measuring the voltage drop across the sample and the current
through the sample. If a voltmeter and ammeter are used, it is called the I–V
measurement (Fig. 17.2(a)).

When the contacts at the ends of the sample have appreciable resistance,
as in many experiments on metals and semiconductors, the simple I–V
method is subject to serious errors. Fig. 17.2(b) illustrates the potential-probe
method which two extra electrodes are used to eliminate errors associated
with contact resistance. In this technique, the voltage drop is measured across
the probes, and the probe separation D replaces the sample length L. The
potential drops used are the average obtained for both directions of current
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Fig. 17.1 Electrical resistivities vary over
many orders of magnitude for metals, semi-
conductors, and insulators.
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Fig. 17.2 Two ways of measuring electrical
resistivity. (a) The I–V method using a volt-
meter and ammeter. (b) the potential-probe
method using two extra contacts to measure
the voltage drop.
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flow. This procedure eliminates some of the errors caused by thermoelec-
tric effects or rectifying boundaries. Further improvement is achieved by
using a potentiometer that draws very little current. With this method the
resistivity is

ρ = VDA

DI
,

where VD is the potential drop across the probes and D is the distance between
probes. The potential-probe method can be used for DC and AC measure-
ments. A long thin sample shape defines the current flow direction. This is
especially important in anisotropic materials where current and field directions
often diverge. To simplify the field patterns, electrical measurements are taken
along principal axes whenever possible.

Problem 17.1
A metal alloy belonging to point group 2/m crystallizes as very thin plates
oriented perpendicular to the twofold symmetry axis. Describe how the resis-
tivity coefficients can be measured, specifying the shape and orientation of
the samples. How are the principal axes located? How will they change with
temperature?
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17.3 Electrode metals

Nearly all of the commonly used electrode metals are cubic, and therefore
electrically isotropic. Four important properties are the electrical resistivity,
melting point, thermal conductivity, and thermal expansion (Table 17.1).

In the processing of capacitors, resistors, and other electrical components, the
electrodes are often sintered with the component. Melting points and thermal
expansion coefficients are therefore important. Copper, silver, and gold, all
excellent conductors, are limited to 1000◦C, and are obviously unsuitable for
co-firing with alumina substrates at 1500◦C. Tungsten and molybdenum are
a better match, despite their higher resistivity.

For many years silver–palladium alloys have been used as electrode metals
for BaTiO3 multilayer capacitors. Precious metals like Pd are expensive but
they raise the melting point allowing silver to be cofired with barium titanate.
The Ag–Pd phase diagram (Fig. 17.3) shows that the two metals form a com-
plete solid solution with a continuous increase in melting point. Many of the
electrode metals have face-centered cubic crystal structures (point group m3m)
with lattice parameters near 4 Å. The phase diagrams and resistivity curves are
generally similar to those of the Ag–Pd system. For solid solutions such as these
the resistance of the alloy is greater than that of the end members. The random
distribution of Ag and Pd atoms reduces the electron mobility and increases the
electrical resistance. This is part of what is often referred to as Matthiessen’s
Rule. The electrical resistivity of dilute metal alloys ρ(c, T) is partly dependent

Table 17.1 Physical properties of various electrode metals: melting point (MP, ◦C),
electrical resistivity (ρ, 10−8 � m), thermal expansion (α, 10−6/K), and thermal

conductivity (k, W/m K)

Metal MP (◦C) ρ (×10−8 � m) α (×10−6/K) k (W/m K)

Silver (Ag) 960 1.6 19.7 418
Gold (Au) 1063 2.2 14.2 297
Copper (Cu) 1083 1.7 17.0 393
Lead (Pb) 327 19.2 29.0 35
Palladium (Pd) 1552 10.8 11.0 71
Platinum (Pt) 1774 10.6 9.0 71
Nickel (Ni) 1455 6.8 13.3 92
Chromium (Cr) 1900 20.1 6.3 67
Molybdenum (Mo) 2625 5.2 5.0 146
Tungsten (W) 3415 5.5 4.5 201
Aluminum (Al) 660 2.5 23.8 238
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Fig. 17.3 The phase diagram and room tem-
perature resistivity of Ag–Pd alloys used as
electrodes in electroceramics. Melting points
increase smoothly from Ag to Pd but the resis-
tivity is greatest at intermediate compositions.
Similar behavior is observed with many other
electrode alloys including the Pd–Cu, Pd–Au,
Pd–Ni, Pd–Pt, Ag–Au, and Ag–Pt systems.
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on composition (c) and partly on temperature (T ):

ρ(c, T) = ρ(c) + ρ(T).

As the equation indicates, the composition dependence and the temperature
dependence are additive. Electrons are scattered by solute atoms and by thermal
vibrations, giving rise to the total resistance.

C = Al concentration (at.%)
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Fig. 17.4 The electrical resistivity of Ag–Al
concentration. Data taken at high- and low-
temperature show the same linear depend-
ence. For dilute alloys the increase in
resistivity is temperature independent.
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Fig. 17.5 Linde’s Law for silver-based alloys
doped with 1% of several different metals.
The increase in resistivity depends on the type
of dopant. For elements in different columns
in the periodic system the increase is propor-
tional to concentration c and also to (	Z)2 ,
where 	Z is the difference in valence.

Fig. 17.4 illustrates the composition dependence for Ag–Al alloys. For dilute
alloys the resistivity increases linearly with composition, with the same increase
occuring at room temperature and at liquid helium temperature. The ρ(c) term
is linearly proportional to c and independent of T .

Linde’s Law further refines the composition dependence. Electrical resistivity
increases more rapidly for some solutes than other. The resistivity of silver
doped with elements of different valence is shown in Fig. 17.5. For a given host
element, the increase in resistivity is proportional to the product of the solute
concentration (c) times the square of the difference in valence between the host
and solute element, (	Z)2:

	ρ ∼ c(	Z)2.

In the case of silver, the increase in resistivity for Cd dopant is much less than
that for In, Sn, and Sb. Silver is in Column I of the periodic system, Cd in II,
In in III, Sn in IV, and Sb in V. Therefore the electron scattering power caused
by the charge difference is greater for Sb than for Cd. Linde’s Law is used to
predict which solute elements increase the resistivity most rapidly. It works
satisfactorily for alloys based on Ag, Au, Cu, Cd, Al, and Zn.

The effect of temperature on the resistivity of metals is remarkably constant
across the periodic system. Fractional changes in ρ resistivity with temper-
ature are listed in Table 17.2. With a few exceptions most of the values fall
in the range 0.004 to 0.006/K. This is the second term ρ(T) that appears in
Matthiessen’s Rule. Electrons are scattered by phonons leading to a linear
increase in resistivity with temperature (Fig. 17.6).

Phase transitions can have a pronounced effect on electrical resistance.
Resistivity values for a number of conducting oxides are compared in Fig. 17.7.
Most contain transition metal elements with overlapping d orbitals. Some, like
ReO3, behave like electrode metals with a slight increase in resistivity with
temperature. Others such as VO2 show a large anomaly indicating a phase
transition from a semiconducting state at low temperature to a metallic state at
room temperature.

Thick film resistive glazes are widely used in hybrid microelectronic systems.
Many of the successful resistor formulations are based on highly conducting
oxides, with low temperature coefficients. Beginning with the PdO–Ag glaze
introduced many years ago, the oxides of platinum-family metals have found
wide application in the thick film industry.

Barium ruthenate is typical of the family. Ceramic specimens of BaRuO3

are highly conducting (ρ ∼ 10−5 � m) with a positive temperature coefficient
indicative of metallic-type conductivity. RuO6 octahedra share faces in the
BaRuO3 structure bringing ruthenium ions into very close contact. In fact, the
Ru–Ru distance for such pairs is 2.55 Å, which is shorter than the separation
in ruthenium metal (2.65 Å). This suggests overlap of the d orbitals, leading to
collective behavior and metallic conductivity.
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Table 17.2 Electrical resistivity of metals increases with
temperature. The resistivity ρ is in units of µ� cm

ρ (1/ρ)(dρ/dT)

Electrode metals
Copper 1.54 0.0046/K
Silver 1.47 0.0040
Gold 2.03 0.0040
Aluminum 2.43 0.0046

Alkali metals
Lithium 8.50 0.0044
Sodium 4.29 0.0048
Potassium 6.20 0.0050
Rubidium 11.24 0.0051
Cesium 18.0 0.0048

Alkaline earths
Beryllium 2.71 0.0090
Magnesium 4.10 0.0042
Calcium 3.08 0.0040
Strontium 11.0 0.0040
Barium 29.8 0.0049

Transition metals
Iron 8.70 0.0058
Cobalt 5.49 0.0056
Nickel 6.24 0.0059
Molybdenum 4.88 0.0047
Palladium 9.82 0.0040
Platinum 9.74 0.0039

17.4 Anisotropic conductors

Electrical resistivity and electric conductivity are symmetric second rank
tensors like the dielectric constant. Cubic crystals and amorphous materials
have the same resistivity in all directions so that ρ and σ are scalar prop-
erties. Tetragonal, hexagonal, and trigonal crystals have two independent
coefficients measured parallel and perpendicular to the major symmetry axis,
Z3 = [001] = c. Lower symmetry crystals have three independent coefficients.
Table 17.3 lists the room temperature resistivities of several anisotropic metals.
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Fig. 17.7 Some conducting oxides show
resistivities comparable to electrode metals.

There is usually a change in anisotropy with temperature. Zinc and cadmium
become more isotropic with increasing temperature.

The copper oxide superconductor compounds exhibit highly anisotropic
electrical resistivity above Tc. Yttrium barium cuprate, YBa2Cu3O7, has
planar copper oxide layers separated by barium and yttrium ions (Fig. 17.8).
Electrical resistivity is much lower parallel to the conducting Cu–O bonds than
in the perpendicular direction.

The electrical anisotropy of nonstoichiometric rutile, TiO2−x, can also be
very large. In these crystals the titanium sites are occupied by a mixture of
Ti4+ and Ti3+ ions. The Ti ions are octahedrally coordinated to oxygen with
shared edges along the c-axis, and corner-sharing in the perpendicular direc-
tions. Extensive overlap of the d-orbitals along c leads to high conductivity
values of 0.1 S/m near room temperature. In perpendicular directions where
there is no overlap, the conductivity of these nonstoichiometric crystals is about
three orders of magnitude smaller.
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Table 17.3 Principal resistivities of anisotropic metals in units
of 10−8 � m

Metal Point group ρ11 ρ22 ρ33

Antimony 3̄m 36.0 36.0 26.3
Beryllium 6/mmm 3.13 3.13 3.57
Bismuth 3̄m 109.0 109.0 138.3
Cadmium 6/mmm 6.8 6.8 8.3
Gallium mmm 55.5 17.3 7.87
Indium 4/mmm 8.33 8.33 7.94
Magnesium 6/mmm 4.22 4.22 3.50
Tin 4/mmm 9.9 9.9 14.3
Zinc 6/mmm 5.91 5.91 6.13

Highly anisotropic conductivity also occurs in intermetallic compounds inter-
colated with organic molecules. Crystals of TaS2C5H5N consist of TaS2 layers
alternating with pyridine molecules giving a periodicity of 1.2 nm. A chemi-
cal bond is formed from the lone pair electrons of nitrogen and the half-filled
conduction band of the TaS2 layers. Conductivity in such two-dimensional
materials is primarily parallel to the planes. Resistivity experiments require
nearly perfect single crystals since dislocations and other defects tend to
“short-out” the electrical anisotropy, which can be as large as 105 : 1.
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Fig. 17.8 (a) Crystal structure of YBa2Cu3O7
showing the conducting Cu–O layers perpen-
dicular to c. (b) Resistivity of twinned single
crystals with highly anisotropic conduction.
The true symmetry is orthorhombic (mmm)
but the ferroelastic twinning in the (001) plane
makes the resistivities along the a and b axes
equal.

One-dimensional conductivity is observed in TCNQ salts. Organic crystals
such as these have electrical conductivities comparable to metals yet contain
no metal atoms. TTF–TCNQ crystals contain molecules of tetrathiofulrane
and tetracyanoquinodimethane stacked face-to-face forming linear chains. The
highly polarizable TTF molecule donates an electron to the TCNQ molecule,
resulting in a half-filled conduction band with easy electron transfer parallel to
the chain.

In anisotropic crystals, the current flow is generally not parallel to the electric
field vector. Only for principal axes is the current parallel to E. Therefore care
must be taken in resistivity measurement to define directions accurately. This
is done by using either flat plate specimens or long thin rods as explained in
Chapter 18. Flat plate specimens are used for conductivity measurements, and
long thin bars for resistivity measurements.

Problem 17.2
In a conducting crystal of symmetry 3̄m, determine

a. The angle 	 between J and E for a given direction of E.
b. The direction of E that maximizes 	.
c. The maximum value of 	.
d. Evaluate the numbers for antimony.

17.5 Semiconductors and insulators

Materials with ionic, covalent, or mixed ionic–covalent bonding are normally
either insulators or semiconductors. Most useful semiconductors, including Si,
Ge, and GaAs, have predominantly covalent bonding. An important distinction
between metals and nonmetals is that the conductivity of a metal decreases with
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increasing temperature while the conductivity of semiconductors and insulators
increases with increasing temperature.

Diamond Zincblende

Fig. 17.9 In the diamond structure every
carbon atom is tetrahedrally bonded to four
neighboring carbon atoms. The zincblende
structure is derived from that of diamond
by replacing alternate atoms with zinc and
sulfur. Most semiconductors of commercial
importance are isomorphous with diamond or
zincblende.

Solid-state electronics is centered about the classical elemental semiconduc-
tor silicon that crystallizes in the diamond structure (Fig. 17.9). Each atom
forms electron-pair covalent bonds to four nearest neighbors. Because of its
importance in electronics, Si has been prepared at purity levels never achieved
with other synthetic materials. Crystal perfection is correspondingly high, with
large dislocation-free crystals a practical reality.

Compound semiconductors have also been of immense interest despite
the formidable materials problems. Elements positioned symmetrically about
Group IV are generally used in compound semiconductors. GaAs (III–V), ZnS
(II–VI), and SiC (IV–IV) are representative of a class of materials finding
applications at higher speeds, higher power, higher frequencies, and higher
temperatures than Si or Ge. Gallium arsenide varactor diodes and oscillators
operate well in the microwave region used for automobile radar. Narrow band
gap semiconductors such as indium antimonide are used in Hall Effect devices
and as infrared detectors. Yet compared with silicon, compound semiconduc-
tors have made little impact in solid-state electronics. In addition to the usual
materials problems of purity and crystal perfection, the equally difficult problem
of stoichiometry must be surmounted.

Structure–property relations in semiconductors are of great interest because
of their importance to the electronics industry. Two of the questions one might
ask are these: Given the chemical composition and structure, is it possible to
predict whether the material is a semiconductor or not? And second, how do
the important properties, such as band gap and mobility, depend on crystal
chemistry?

Mooser and Pearson have given a formula that can be used to predict
semiconductors. Semiconductor compounds satisfy the relation

ne

na
+ Na − Nc = 8,

where ne is the number of valence electrons per formula unit, na is the num-
ber of the anions per formula unit, Na is the average number of anion–anion
bonds, per anion, and Nc is average number of cation–cation bonds formed by
each cation. ne and na are obtained from the chemical composition, and Nc

and Na determined from the structure. A number of illustrations are given in
Table 17.4.

Some of the examples listed require further comment. The elements Ge, As,
and Se point up the similarity between the 8-N rule and the Mooser–Pearson
relation. The 8-N rule is used to predict the number of valence bonds formed
by an element in the N th column of the periodic system. For example, selenium
in Column VI forms 8 − 6 = 2 valence bonds, as observed in both the ring and
helical forms. According to the Mooser–Pearson relation, selenium is a semi-
conductor because it forms electron-pair bonds with two near neighbors, and
in this way every atom acquires a filled shell, and every electron participates in
bonding. High electrical conductivity (metallic behavior) occurs in compounds
in which not all of the valence electrons are involved in bonding.

The importance of cation–cation and anion–anion bonds is apparent in GaTe,
FeS2, and CdSb (Table 17.4). Gallium telluride forms a layer-like structure with
one short Ga–Ga bond per gallium. Gallium would normally contribute three
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Table 17.4 Representative semiconductors satisfying the Mooser–Pearson relation

Compound ne na Na Nc (ne/na) + Na − Nc

Ge 4 1 4 0 8
As 5 1 3 0 8
Se 6 1 2 0 8
SiC 8 2 4 0 8
GaAs 8 1 0 0 8
CdTe 8 1 0 0 8
AgInTe2 16 2 0 0 8
PbS 8 1 0 0 8
Mg2Sn 8 1 0 0 8
LiMgSb 8 1 0 0 8
Li3Bi 8 1 0 0 8
Mg3Sb2 16 2 0 0 8
Bi2Te3 24 3 0 0 8
Fe2O3 24 3 0 0 8
BaTiO3 24 3 0 0 8
FeS2 14 2 1 0 8
CdSb 7 1 1 0 8
GaTe 9 1 0 1 8

valence electrons to the anion, but one electron is involved in an electron-pair
bond with another cation, leaving two for each tellurium atom. Thus the anion
electron shell is filled with eight electrons and GaTe is a semiconductor. Anion–
anion bonds occur in FeS2 and CdSb. Cadmium antimonide has a very deformed
diamond arrangement in which Sb is coordinated to three Cd and one Sb, all
near 2.8 Å. From the structure it is therefore reasonable to postulate that an
Sb–Sb bond is formed, allowing the anions to satisfy their valence requirements.
Pyrite is a better example of anion–anion bonds. The structure of FeS2 contains
Fe2+ ions and S2−

2 dimers.
Additional semiconducting compounds can be derived from known examples

by a process of cross-substitution, replacing one element by pairs from other
columns of the periodic system while keeping the valence-electron to atom radio
constant. The III–V and II–VI compounds based on the column IV semicon-
ductors are familiar examples. The substitution process can be carried several
steps further. The semiconductor AgInTe2 is derived from CdTe by substituting
equal amounts of monovalent silver and trivalent indium for divalent cadmium.
Successive substitutions in the cation sublattice leads to Ag2CdSnTe4 and
Ag5InSn2Te8. Cation vacancies occur in semiconducting In2Te3 and HgIn2Te4.
Substitutions need not be confined to the cation sublattice; cross-substitution
involving the anion sublattice, or both sublattices are also possible. Symmetric
substitutions in the anion sublattice occur in Al2CO, a derivative of AlN. Double
substitution takes place in LiMgSb, a semiconductor derived from Mg2Sn by
replacing half of the cations and all the anions. Similar derivative structures
occur in nature. The minerals zincblende (ZnS), chalcopyrite (CuFeS2), and
stannite (Cu2FeSnS4) are three minerals in such a series.

17.6 Band gap and mobility

A number of relations between band gap and structure have been proposed,
many of them empirical. Band gaps for Column IV elements are compared
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Fig. 17.10 Semiconductor bond gaps plotted
as a function of unit cell lattice parameters.

with II–V and II–VI compounds in Fig. 17.10. All have the tetrahedrally-bonded
diamond or zincblende structures (Fig. 17.9). Within each family there is an
inverse relationships between band gap (Eg) and bond length. In general, longer
bonds are weaker bonds with more easily liberated electrons.

Band gaps of III–V compounds are larger than the corresponding Column IV
elements: AlP has a larger gap than Si, GaAs exceeds Ge, and InSb is greater
than Sn. From examples such as these, relations between electronegativity
differences and Eg have been established. Ionic compounds have greater Eg

value than most covalent compounds. To illustrate how the band gap can
be adjusted, consider the two examples mentioned earlier. Comparing CdTe
and its derivative AgInTe2, we note that electronegativity differences to the
three bonds are in the order Ag–Te > Cd–Te > In–Te, with the latter being
the weakest bond. Energy gap is determined by the weakest bond since it
has the smallest interband separation. Therefore this type of cross-substitution
usually lowers Eg. The energy gap is 0.96 eV for AgInTe2 and 1.5 eV for CdTe.
In the second example, LiMgSb is derived from Mg2Sn, increasing Eg, because
electronegativity differences are in the order Li–Sb > Mg–Sb > Mg–Sn.

The electronegativity scale not only provides a measure of the bonding
type but is also useful in predicting physical properties. An empirical rela-
tion between electronic band gap and electronegativity is shown in Fig. 17.11.
Band gaps range from a fraction of an eV in semiconductors to several eV in
good insulators.

The band gap Eg of a semiconductor is important in determining its electrical
conductivity σ ,

σ ∼ µe−Eg/kT ,

where the mobility µ depends chiefly on imperfections and temperature. When
the band gap is comparable to thermal energies (kT ∼ 1/40 eV at room
temperature), large numbers of electrons are promoted from the valence to the
conduction band, greatly increasing the electrical conductivity. Among com-
pound semiconductors Eg increases with ionicity as shown in Fig. 17.11. Ionic
compounds show a large band gap and optical transparence extending well into
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Fig. 17.11 Band gap generally increases with
ionicity. The more ionic compounds with the
rocksalt structure usually have wider band
gaps than covalently bonded materials with
the zincblende structure.
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the ultraviolet region, whereas most covalent semiconductors are either opaque
or colored because of their narrow band gaps. As ionicity increases, electrons
are more tightly bound to the cores with a greater degree of localization of
charge carriers. Fluorine has a very large electronegativity resulting in large
band gaps in fluoride crystals. Calcium fluoride (CaF2, fluorite) is very trans-
parent in the near ultraviolet region where the processing of integrated circuits
is carried out.

Mobility is very sensitive to imperfections so that most experimental
measurements are more indicative of crystal growth technique than intrinsic
limitations. Experimental mobility values for undoped Si and Ge have increased
over the years as better crystals have been grown.

In pure materials free from defects, mobility is determined by the effective
mass interaction with lattice vibrations. Heavy masses reduce the latter, decreas-
ing the scattering by lattice vibrations and contributing to the large mobilities
(>10,000 cm2/V s) found in HgTe and InSb. Compounds with highly ionic
bonding have extremely low mobilities, both for electrons and holes. When
the electronegativity difference is greater than 1 unit, mobilities greater than
1000 cm2/V s are unlikely.

Generally mobilities increase with molecular weight and decrease with
electronegativity difference (Fig. 17.12). The explanation lies in the polariza-
tion effect of mobile electrons or holes on the surrounding atoms. The motion
of charge carriers is accompanied by an adjustment in position of the ions that is
intrinsically slow. Coulomb coupling between charge carriers and ions occurs
in ionic compounds.

Chemical impurities are used to control the conductivityσ of semiconductors,
σ = nµe + pµh. The density of conduction-band electrons and valence-band
holes are n and p, respectively, with mobilities µe and µh. For wide band
gap materials near 1 eV or larger, the room-temperature carrier concentrations
are controlled by doping. Donor atoms contribute electrons to the conduction
band, and acceptor atoms remove electrons from the valence band, leaving
holes behind. Donor (n) and acceptor ( p) doped resistivities for silicon, germa-
nium, and gallium arsenide (Fig. 17.13) extend over many orders of magnitude.
Silicon and germanium have four outer electrons forming tetrahedral sp3 hybrid
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Fig. 17.12 Correlation between the elec-
tron mobility and the electronegativity dif-
ference of some zincblende and rocksalt type
compounds.

bonds to four neighboring atoms in the crystal. Substitutional impurities with
more than four outer electrons tend to be donors because only four electrons
are needed for bonding. The remaining electrons can be ionized away to the
conduction band if the temperature is high enough.
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Fig. 17.13 The room-temperature resistiv-
ities of high quality semiconductor
crystals are largely controlled by dopant
concentrations.

Column V and VI elements are donors whereas Column III, Column II, and
transition-metal elements tend to be acceptors. Gallium, a Column III element,
requires one additional outer electron to form four covalent bonds. An electron
is thermally-excited to this acceptor state from a filled state of lower energy,
leaving a hole behind. Zinc needs two electrons and copper three, therefore Ga,
Zn, and Cu create 1-, 2-, and 3-acceptor states, respectively.

Many elements do not substitute for Si or Ge because of size mismatch. Small
atoms such as hydrogen enter interstitial sites and are not electrically active.

Impurity atoms also affect the mobility. The coulomb fields associated with
ionized impurities exert forces on charge carriers, tending to scatter them and
reduce the mobility. Defects and disorder also reduce mobility.

17.7 Nonlinear behavior: Varistors and
thermistors

Not all conductors are ohmic. Varistors are ceramic semiconductors with a
highly nonlinear current–voltage relationship (Fig. 17.14). They are used to
protect circuit elements against inductive surges that often damage contacts,
relays, and rectifiers. By connecting the varistor in parallel with the circuit
element, any voltage spikes greater than the reversible breakdown voltage
cause currents to flow through the varistor rather than the circuit elements.
Ceramic varistors have proved especially useful as lightning arrestors. Most
varistors are made from doped zinc oxide with a bismuth-rich phase in the
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grain boundaries. At low field levels, the varistor behaves like a semicon-
ductor with small temperature-dependent currents. At a certain critical voltage,
however, the resistance diminishes suddenly and currents increase dramati-
cally. The phenomenon differs from normal electric breakdown in that the J–E
characteristic is reversible and controllable by the ceramic composition and
microstructure.
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Fig. 17.14 Typical current–voltage relation-
ship in a zinc oxide varistor. Ohmic
behavior is observed at low and high
fields with a reversible breakdown effect
between. Quantum mechanical tunneling
through Schottky barriers formed at the grain
boundaries are responsible for this behavior.

Ohm’s Law breaks down for varistors. Higher order terms such as

Ei = ρijJj + ρijklJjJkJl + ρijklmnJjJkJlJmJn + · · ·
are required to fit the experimental data. Odd-rank terms such as ρijk are zero
because the J–E relation is the same when the current flow is reversed.

This is not true for samples exhibiting diode behavior. In this case both
odd- and even-rank tensor coefficients are needed model rectification. Poled
BaTiO3 thermistors and tourmaline crystals are also capable of exhibiting
asymmetric J–E characteristics.

In most metals the electrical resistivity increases linearly with temperature.
Data for silver, copper, and other electrode metals were presented in Table 17.2.
Typical values of (1/ρ)(dρ/dT) are about 0.5% per degree. Thermistors have
much larger temperature coefficients, and often the effects are highly nonlinear.
Three types of ceramic thermistors are in widespread use: NTC thermis-
tors, PTC thermistors, and critical temperature thermistors. Typical resistance
changes with temperature are illustrated in Fig. 17.15.

Vanadium dioxide is often used in critical temperature thermistors. Below
80◦C, VO2 is a semiconductor with a negative temperature coefficient of
resistance. Above 80◦C it shows metallic behavior with a great increase in
conductivity (typically two orders of magnitude) and very little change with
temperature. The critical temperature of 80◦C can be modified by changes in
chemical composition.

The V4+ ion in VO2 has a peculiar electron configuration with one 3d electron
outside a closed shell. In the low temperature state, adjacent V4+ ions form
electron-pair bonds giving rise to a band gap and semiconductor behavior.
A phase transition takes place near 80◦C in which the 3d electrons are liberated
from the pair bonds and are free to conduct electricity (see Fig. 17.7).

Electrical resistance decreases exponentially with increasing temperature in
an NTC thermistor. Unlike critical temperature thermistors, there is no phase
transition involved. Most NTC thermistors are composed of doped transition-
metal oxides. Typical of these controlled valency semiconductors are Fe2O3 : Ti
and NiO : Li.

Fig. 17.15 Typically the electrical resistance
of thermistors changes by several orders of
magnitude with temperature. In NTC ther-
mistors the resistance decreases steadily with
increasing temperature, but sudden changes
at phase transitions are involved in PTC and
critical temperature thermistors. A, critical
temperature thermistor; B, PTC thermistor;
C, NTC thermistor.
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Doped nickel oxide has the rocksalt structure with lithium partially replacing
nickel in the cation sites. Ionic radii for Ni2+ (0.84 A), Ni3+ (0.74 A), and
Li+ (0.88 A) all favor octahedral coordination with oxygen. For semiconducting
compositions near Ni0.95Li0.05O, the band gap is about 0.15 eV. The physical
origin of this band gap is attributed to the attractive forces between Li+ dopant
ions and the compensating Ni3+ ions.

NTC thermistors are used in flowmeters in which the velocity is measured
by monitoring the temperature difference between two thermistors. A heater
positioned between the two thermistors provides the temperature difference.
Thermistors are also used as inrush limiters to protect diodes, fuses, switches,
and light bulbs. The sudden surge of current which occurs when a light bulb is
turned on often ruptures the bulb filament. With an NTC thermistor in series
with the bulb, the energy of the initial surge is dissipated as heat in the thermistor.
The temperature coefficient (1/ρ)(dρ/dT) for a commercial NTC thermistor
is about −4%/K near room temperature.

PTC thermistors differ from NTC thermistors in several important respects.
The resistance of a PTC thermistor increases with temperature, but only over
a limited temperature range near a phase transition. The resistance change is
very large at this temperature because of grain boundary effects.

Barium titanate ceramics are widely used in PTC thermistors. When doped
with donor ions such as La3+ or Ce3+ (for Ba2+) or Nb5+ (for Ti4+), the
resistivity material shows a pronounced PTC effect. Explanation of the PTC
effect rests upon understanding the defect structure. When sintered at high
temperature, lanthanum-doped BaTiO3 becomes an n-type semiconductor with
conduction taking place via transfer of electrons between titanium ions, Ti4+
and Ti3+. Thus the barium titanate grains in the ceramic are conducting, and
remain conducting on cooling to room temperature.

But the grain boundary region changes during cooling. Oxygen is adsorbed
on the surface of the ceramic and diffuses to grain boundary sites, altering
the defect structure along the grain boundaries. The added oxygen ions attract
electrons from nearby Ti3+ ions, thereby creating an insulating barrier between
grains.

To explain the PTC effect it is necessary to consider the ferroelectric phase
transition in BaTiO3 and its effect on the insulating barriers between grains.
Barium titanate is cubic and paraelectric above 130◦C, the Curie temperature.
Below this temperature the perovskite structure distorts to a tetragonal ferro-
electric state in which a large spontaneous polarization Ps develops at the
grain boundaries. Near room temperature the resistance of a PTC thermistor
is low because the electron charge trapped in grain boundary regions is par-
tially neutralized by spontaneous polarization. Wherever the domain structure
is advantageously positioned, positive polarization charge will cancel the neg-
atively charged barriers between conductive grains, thereby establishing low
resistance paths across the ceramic. Above Tc the spontaneous polarization
disappears and the resistivity increases, giving rise to the PTC effect.

PTC thermistors are used as protection against overvoltage and short circuits.
When connected in series with the load, a PTC thermistor limits the current to
safe levels. Large currents cause the temperature of the thermistor to rise into
the PTC range, thereby raising the resistance and lowering the current.

Regarding the symmetry of ceramic thermistors, the appropriate point
groups for randomly oriented grains and grain boundaries would be Curie
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group ∞∞m, but textured ceramics have lower symmetry. Grain orientation
would give cylindrical symmetry (∞/mm) and poled BaTiO3 thermistors would
have conical symmetry (∞m). Under these circumstances the resistivity is
anisotropic. The coefficients relating resistivity to temperature over the oper-
ating range 	T of the thermistors can be described by a power series in 	T ,
(	T)2, (	T)3, etc. All the coefficients are second rank tensors since 	T is
a scalar.

Two
tiles

Penrose
tiling

72° 36°

Fig. 17.16 Aperiodic tiling of two different
parallelograms can produce quasicrystalline
structures with fivefold symmetry.

17.8 Quasicrystals

Quasicrystals are an interesting form of solid matter with symmetries not found
in normal crystals. They lack the three-dimensional translational periodicity
characteristic of crystals, but often possess fivefold symmetry along one or more
directions. Two commonly observed point groups in intermetallic quasicrystals
are icosahedral (m35̄) and decagonal (1̄0/mmm).

The existence of quasicrystalline matter has been explained in terms of
Penrose Tiling in which two or more cells pack together to fill space. An
example of aperiodic two-dimensional tiling is shown in Fig. 17.16. Parallelo-
grams with 72◦ and 36◦ angles pack together to form aligned star-like patterns
with fivefold rotational symmetry. Certain Al–Mn alloys show quasicrystalline
structures like this which are periodic along the fivefold axis but not in the
perpendicular directions.

Compared to other alloys, intermetallic quasicrystals exhibit unusually high
electrical resistance. Quasicrystals have higher resistance than amorphous
alloys of the same composition. The temperature dependence of the electri-
cal resistivity of an Al7Pd2Re alloy is shown in Fig. 17.17. These icosahedral
quasicrystals have a very large negative temperature coefficient, especially
at low temperatures. Most metals have a positive temperature coefficient, as
pointed out in Section 17.3. The absence of periodicity promotes electron
scattering and increases the resistance.
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Fig. 17.17 Quasicrystalline icosahedral
alloys are electrically isotropic with high
resistivity.

Decagonal quasicrystals are periodic along the 10-fold symmetry axis and
aperiodic in the perpendicular directions. As a result, the resistivity is about 10
times smaller parallel to the axis than in the perpendicular directions.

Problem 17.3
Using Neumann’s Principle, determine the number of independent tensor
coefficients for quasicrystals with a fivefold symmetry axis parallel to Z3. Carry
out the analysis for polar tensors of rank 1, 2, 3, and 4. Compare the results
with those obtained for point groups 4 and 6 in Chapters 8, 9, 12, and 13.
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When different portions of a solid are at different temperatures, thermal energy
is transported from the warmer to the cooler regions. The thermal conductivity
coefficient provides a quantitative measure of the rate at which thermal energy
is transported along the thermal gradient.

Thermal conductivity coefficients k relate the heat flux h [W/m2] to
temperature gradient dT/dZ . In tensor form,

hi = −kij

(
dT

dZj

)
.

The minus sign appears because heat flows from hot to cold. Thermal
conductivity is measured in units of W/m K.

Four contributions to thermal conductivity are illustrated in Fig. 18.1. The two
principal mechanisms are from conduction electrons and from lattice vibration
phonons. In transparent solids, especially at high temperature, photon transport
can also be important. In porous media, convection currents from gas or liquid
molecules can contribute to the thermal conductivity.

18.1 Tensor nature and experiments

Thermal conductivity is a polar second rank tensor like electric permittivity,
magnetic susceptibility, and electrical resistivity but there is a basic question

Phonons Electrons

Photons Convection

Fig. 18.1 Thermal conduction mechanisms
in solids. Near room temperature elec-
tron transport dominates in metals, and
phonon transport in ceramics. Photon trans-
port contributes to thermal conductivity in
glasses, and convection currents in gas or
liquid filled porous materials.
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regarding the symmetry of transport properties such as electrical and thermal
conductivity. The symmetry of tensors is partly dictated by geometrical con-
siderations through Neumann’s Principle, and partly through thermodynamic
arguments. For triclinic crystals there are nine nonzero conductivity coeffi-
cients kij. If the tensor is symmetric then kij = kji, and there are only six
independent coefficients to be determined. For the dielectric constant it was
shown that Kij = Kji, based on thermostatic energy arguments (Section 9.2).
This argument does not hold for transport properties, but there is another prin-
ciple based on irreversible thermodynamics. Onsager’s Theorem states that for
transport properties, involving the flow of charge, heat, or atomic species, then

kij = kji.

The proof of Onsager’s Theorem depends on statistical mechanics and is beyond
the scope of this book.

From a practical point of view, Onsager’s Theorem is not very important
because most transport experiments are performed on high symmetry metals,
semiconductors, and insulators. Neumann’s Principle controls the conduct-
ivity matrices for m3m, 4̄3m, m3, 432, 23, 6/mmm, 6̄m2, 622, 4/mmm, 4̄2m,
4mm, 422, 3̄m, 32, 3m, mmm, mm2, and 222. For triclinic crystals (point
groups 1 and 1̄) Onsager’s Theorem ensures that k12 = k21, k23 = k32, and
k13 = k31, and for monoclinic crystals (point groups 2, m, and 2/m) it shows
that k13 = k31. For the remaining point groups (3, 3̄, 4, 4̄, 4/m, 6, 6̄, and
6/m) k12 = −k21 according to symmetry arguments, but the Onsager Theorem
together with Neumann’s Principle combine to give k12 = k21 = −k12 = 0.
Crystals belonging to these point groups provide a testing ground for Onsager’s
Theorem. If Onsager’s Theorem is wrong, k12 = −k21 �= 0, then there should be
spiral heat flow in disk-shaped specimens oriented perpendicular to the principal
symmetry axis. A careful search for spiral heat flow led to negative results,
supporting the Onsager Theorem.

Therefore the electrical resistivity, thermal conductivity, and diffusion
tensors are generally assumed to be symmetric. The tensor and matrix forms
are identical to those of the dielectric constant.

For anisotropic materials the heat flow h is generally not parallel to the
temperature gradient dT/dZ . In such a situation it is important to define
the measured values carefully. By far the most common geometry is that of
rod- or disk-shaped specimens with axial heat flow. If L is the distance between
isothermals T1 and T2, and A is the cross-sectional area, then the heat flow is

h = k(T1 − T2)A

L
.

As pointed out earlier, the shape of the sample is very important. A long thin
rod forces the heat flow to be parallel to the axial direction, while a flat plate
specimen defines the direction of the temperature gradient (Figs. 18.2 and 18.3).

The flat plate experiment is used to determine the thermal conductivity of
good insulators. A thin layer of the insulator is positioned between metal blocks
of known thermal conductivity kM . The heat flow h is the same in the metal and
the insulators, so that

h = kMA

(
dT

dZ

)
M

= kI A

(
dT

dZ

)
I

,
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Fig. 18.2 Thermal conductivity measure-
ment for thin plate insulators. Four thermo-
couples are used to determine the temperature
gradients across the sample and the two sup-
porting metal blocks. By making the sample
very thin, the temperature gradient is fixed
perpendicular to the axial direction.
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ference T1 − T2 is monitored by two thermo-
couples. When heat losses to the surroundings
are small, the heat flow is parallel to the axial
direction Z ′

1.

where A is the cross-sectional area, and kI the thermal conductivity of the
insulator. As shown in Fig. 18.2, four thermocouples are used to determine
the temperature gradients (dT/dZ)M and (dT/dZ)I across the metal block and
the insulator. The thermal conductivity of the insulator is equal to

kI = kM(dT/dZ)M

(dT/dZ)I
.

As with all thermal measurements, great care must be taken to minimize heat
loss to the surroundings.

In regard to anisotropic materials, where the heat flow is not parallel to the
temperature gradient, the flat plate geometry ensures that the temperature gra-
dient is parallel to the axial direction Z ′

1. Therefore the radial gradients are zero
and dT/dZ ′

2 = dT/dZ ′
3 = 0. The thermal conductivity component measured in

this experiment is k′
11 = h′

1/(dT/dZ ′
1). For the general case of a triclinic crystal,

six measurements of this type would be required with plates cut in six different
orientations. Fewer plates would be needed for crystals of higher symmetry. The
general procedure is the same as that for the dielectric constant (Section 9.4).

A thin rod geometry is preferred for metals and other good conductors. This is
a thermal resistivity measurement rather than a thermal conductivity measure-
ment. For a thin rod, heat flow is confined to the axial direction Z ′

1. Therefore
h′

2 = h′
3 = 0 and the temperature gradient along the rod is(

dT

dZ ′
1

)
= r′

11h′
1,

where r′
11 is the thermal resistivity measured along Z ′

1. Knowing the length of
the rod L and its cross-sectional area A, the value of r′

11 can be determined from
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the heat input I2R and the temperature drop across the specimen, T1 − T2.

r′
11 = A(T1 − T2)

LI2R
.

As before, the experiment must be carefully insulated from the environment to
ensure that all the heat flows down the metal rod.

Triclinic crystals would require six such measurements to specify the three
principal coefficients and the three orientation angles. Thermal resistivity coef-
ficients are related to thermal conductivity coefficients by the matrix inversion
procedure described in Section 17.1. Fig. 18.3 illustrates the thermal resistivity
experiment for metals and other good conductors.

Problem 18.1
The hexagonal lattice parameters of graphite are a = 2.46 and c = 6.70 Å.
Using the k11 and k33 values in Table 18.1, evaluate the thermal conductivities
in the [110], [111], and [123] directions.

Problem 18.2
A 1 mm thick plate of silicon is in good thermal contact with a 2 mm thick
layer of germanium. The outer temperatures are 30◦C and 100◦C. What is the
heat flow per unit area? What is the temperature at the junction between the
two crystals?

18.2 Structure–property relationships

Room-temperature thermal conductivity coefficients for solid materials range
over about four orders of magnitude (Table 18.1). The best thermal conductors
are either metals like copper or covalent crystals like diamond with short strong
chemical bonds. For metals, conduction involves free electrons while in dia-
mond phonons are very easily transmitted by the tightly bonded carbon atoms.
At the other extreme are some superinsulators made from supercritically-dried
porous silica aerogels. The thermal conductivity of these light-weight tiles
is around 0.01 W/m K, which is even lower than air. Molecular crystals like
Rochelle salt also have low thermal conductivity. There are no free electrons

Table 18.1 Principal thermal conductivity coefficients measured near
room temperature (W/m K)

k11 k22 k33

Diamond m3m 550 550 550
Silicon m3m 175 175 175
Germanium m3m 65 65 65
Copper m3m 400 400 400
Graphite 3̄m 355 355 89
Quartz 32 6.5 6.5 11.3
Corundum 3̄m 22.5 22.5 25.1
Rutile 4/mmm 9.3 9.3 12.9
Lithium fluoride m3m 16 16 16
Sodium chloride m3m 6.5 6.5 6.5
Rochelle salt 222 0.50 0.61 0.60
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to transmit heat and the organic molecules are only loosely bonded together by
van der Waals forces or hydrogen bonds. Weak intermolecular bonding makes
polymers and other molecular materials good thermal insulators.

Metals contain many free electrons so that the electronic thermal conductivity
predominates over the lattice contribution. The electric conductivity σ and
thermal conductivity k are proportional to one another since both are controlled
by the free electron concentration. The Wiedemann–Franz law (k/σT = L)
works well for many metals (Fig. 18.4). The Lorenz Ratio L is usually near its
theoretical value (π2/3)(kB/e)2 = 2.443 × 10−8 W �/K2 as predicted by the
free electron model for metals.

For glasses and cubic crystals thermal conductivity is scalar, but k depends
on direction for lower symmetries. Among anisotropic materials, chain and
layer structures show greater conductivity in the directions of closest bonding.
Tellurium crystallizes in helices parallel to the trigonal c-axis and the ratio of
conductivities parallel and perpendicular to the chains is about 1.5. In the layer
structure of graphite, the conductivity of single crystals is four times greater
within the layer than perpendicular to it. Graphite conducts heat best parallel to
the carbon layers where phonons are transmitted easily along the strong covalent
bonds. Thermal conductivity is much lower perpendicular to the layers where
the bonds are weak (Fig. 18.5). Because of this, graphite and boron nitride have
been used as heat shields in space vehicles. Below room temperature both k11

and k33 increase to a peak below 100 K.
Immense anisotropy is observed in thermal conductivity measurements on

drawn polyethylene fibers. For draw ratios of 350 : 1 the thermal conductivity
parallel to the draw axis is about three times that of steel. Normally one thinks
of polymers as thermal insulators and metals as thermal conductors, but it is not
true in this case. The thermal conductivity measured perpendicular to the draw
axis is 0.3 W/m K at room temperature, giving a k33/k11 anisotropy of more than
two orders of magnitude. C–C covalent bonds control k33 while van der Waal
forces are operative in the transverse directions. The temperature dependence
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Fig. 18.4 Room temperature thermal and
electrical conductivity of metals demonstrat-
ing the Wiedemann–Franz relationship.
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Fig. 18.5 Crystal structures of (a) graphite
and (b) boron nitride. Both are layer structures
with highly anisotropic physical properties.
The stacking of the layers is slightly different
in the two structures.

(a) (b)

Fig. 18.6 Highly anisotropic thermal con-
ductivity is observed in drawn polymer fibers.
For polyethylene fibers the k values parallel
to the fiber axis are about 100 times larger
than those measured perpendicular to the draw
direction (Choy).
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is shown in Fig. 18.6. In ultradrawn polyethylene the protofibrils (CH2)n begin
to approximate a one-dimensional diamond structure.

18.3 Temperature dependence

The thermal conductivity of a solid can be expressed as the sum of lattice and
electronic components: k = kL + ke. For nonmetals, the electronic components
are negligible, and k ≡ Cυ�/3, where C is the contribution of the lattice
waves to the specific heat, υ is the wave velocity and � the mean free path.
At high temperatures, kL varies inversely with T because the mean free path
is shortened by thermal vibrations. As the temperature is lowered, thermal
conductivity goes through a maximum and then approaches zero as T goes to
0 K. The low temperature behavior is governed by imperfections and by sample
dimensions.

The thermal conductivity of rutile (TiO2) between room temperature and
800◦C is shown in Fig. 18.7. Rutile is tetragonal (point group 4/mmm) with
chains of edge-sharing TiO6 octahedra extending along the c-axis. The bonding
is somewhat weaker in the directions perpendicular to c where the octahedra
share only corners. As a result, the conductivity is higher along c. At room
temperature the thermal conductivity of polycrystalline rutile ceramic lies
between k11 and k33 as would be expected. Ideally the average conductivity
for randomly oriented grains would be (2k11 + k33)/3 but at high temperature
both single crystal values are far larger than that of the ceramic. The reason
becomes apparent when one realizes that rutile single crystals are transpar-
ent but the ceramic is opaque. Photons make a strong contribution to thermal
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Fig. 18.7 Thermal conductivity of rutile
crystals and rutile ceramic.

conductivity at elevated temperature. Normally k decreases above room temper-
ature because of phonon–phonon scattering but the photons cause an increase
in k in transparent media.

Similar behavior is observed in crystalline and amorphous silica (Fig. 18.8).
The crystal structure of α-quartz consists of corner-linked SiO4 tetrahedra
arranged in a spiral around the trigonal c-axis. Quartz belongs to point group 32
so there are two independent thermal conductivity coefficients, k11 = k22 and
k33. The k33 coefficient is significantly larger than k11 because of the spiral
chains along c. Both components increase rapidly as the temperature is cooled
below room temperature. At about 10 K the conductivities pass through a peak
and then drop to very low values near 0 K. At very low temperatures there are
very few phonons to transport heat, but as temperature increases, the number
of activated vibrations increases raising the thermal conductivity. It reaches a
peak when the phonons begin to interact strongly causing thermal resistance.
As the phonon scattering increases, k continues to decrease until photons begin
to make a contribution at high temperatures.
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Fig. 18.8 Thermal conductivity of crystalline
α-quartz and vitreous fused silica.

In silica glass (fused quartz) the situation is somewhat different. Again the
structure consists of corner-linked SiO4 tetrahedra, but there is no long range
periodicity characteristic of crystalline materials. Amorphous solids like silica
glass have smaller conductivities than crystals because the phonon waves are
scattered more often in an aperiodic structure. Gemologists distinguish glass
imitations from crystalline gems by touching the stone with the tongue. Glass
feels warm compared to crystal because of its smaller thermal conductivity.
The thermal conductivity of glass is usually smaller than that of a crystal of
similar composition because of phonon scattering by the irregular structure.
At ordinary temperatures the mean free path is of the order of 10 Å, about
the size of silicate rings in the disordered structure. The thermal conductivity
of glass increases sharply at high temperature because of its transparency to
photon transmission. Silica glass does not show the large low-temperature peak
in thermal conductivity characteristic of crystalline materials.

Radiation damage has a similar effect. When quartz is exposed to neutrons,
the thermal conductivity is suppressed and approaches the values observed for
silica glass. Chemical impurities and isotopes also promote phonon scattering.
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Fig. 18.9 Thermal conductivity of the Ge–Si
solid solution. The scattering of lattice waves
leads to a marked decrease in conductivity.

Solid solutions have lower thermal conductivities than do the end member
compositions. The solid solution of Si and Ge (Fig. 18.9) illustrate the reduction
in thermal conductivity caused by phonon scattering. The random occupation of
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lattice sites by Si and Ge atoms reduces the mean free path of phonons. This is
a thermal analog to Matthiessen’s Rule for electrical resistance (Section 17.3).

In metals, thermal conduction is mainly due to free electrons. The lattice
contribution can generally be ignored except for heavily alloyed specimens.
The electronic thermal conductivity is nearly constant at high temperatures.
For pure, well-annealed crystals there is a large peak in k at very low temper-
atures, similar to that observed in quartz crystals. Measurements on high quality
gold crystals show a peak of 2800 W/m K at 20 K, almost an order of magnitude
larger than the room temperature value.

18.4 Field dependence

Magnetic and electric fields have an influence on thermal conductivity. In the
presence of a magnetic field, the thermal conductivity of metals and ceramics
decrease noticeably. These thermomagnetic phenomena arise from the Lorentz
force and are discussed in Section 20.5.

Interacting electric fields and temperature gradients lead to a number of inter-
esting thermoelectric effects in metals and semiconductors. These are discussed
in Chapter 21. For insulators, the changes in thermal conductivity with elec-
tric field are normally rather small, except near phase transformations at low
temperatures. Low frequency phonons dominate the heat transport and storage
capacity of materials at very low temperatures. Appreciable control of thermal
conductivity by external electric fields is possible in soft-mode materials. Stron-
tium titanate (SrTiO3) exhibits soft-mode behavior at low temperatures where
TiO6 octahedra undergo rotational motions about [001]. At 5 K an electric field
of 23 kV/cm induces a fivefold increase in the thermal conductivity of SrTiO3.
Rapid thermal switches have been constructed from soft-mode materials with
field-tunable thermal conductivity.

In tensor form these dielectrothermal effects are given by

hi = −kij(∂T/∂Zj) − kijk(∂T/∂Zj)Ek − kijkl(∂T/∂Zj)EkEl − · · · .

The heat flow hi created by a temperature gradient dT/dZj is altered by electric
fields components Ek and El through third- and fourth-rank polar tensors kijk

and kijkl. For centrosymmetric crystals such as SrTiO3, third rank tensors are
zero. Therefore the change in thermal conductivity is proportional to E2.
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The phenomenon of atomic and ionic migration in crystals is called solid-
state diffusion, and its study has shed light on many problems of technological
and scientific importance. Diffusion is intimately connected to the strength of
metals at high temperature, to metallurgical processes used to control alloy
properties, and to many of the effects of radiation on nuclear reactor materials.
Diffusion studies are important in understanding the ionic conductivity of the
materials used in fuel cells, the fabrication of semiconductor integrated circuits,
the corrosion of metals, and the sintering of ceramics.

19.1 Definition and tensor formulation

When two miscible materials are in contact across an interface, the quantity
of diffusing material which passes through the interface is proportional to the
concentration gradient. The atomic flux J is given by

J = −D
dc

dZ
,

where J is measured per unit time and per unit area, c is the concentration of
the diffusing material per unit volume, and Z is the gradient direction. The
proportionality factor D, the diffusion coefficient, is measured in units of m2/s.
This equation is sometimes referred to as Fick’s First Law. It describes atomic
transport in a form that is analogous to electrical resistivity (Ohm’s Law) or
thermal conductivity.

There are several objections to Fick’s Law, as discussed in Section 19.5.
Strictly speaking, it is valid only for self-diffusion coefficients measured in
small concentration gradients.

Fig. 19.1 Two layers of the PbI2 structure.
Small circles are divalent lead atoms which
diffuse most easily parallel to the layers.

Since J and Z are both vectors, the diffusion coefficient D is a second rank
tensor.

Ji = −Dij
dc

dZj
.

As with other symmetric second rank tensors, between one and six
measurements are required to specify Dij, depending on symmetry.

The relationship between structure and anisotropy is more apparent in PbI2.
Lead iodide is isostructural with CdI2 in trigonal point group 3̄m (Fig. 19.1). The
self-diffusion of Pb is much easier parallel to the layers where the Pb atoms are
in close proximity to one another. Diffusion is more difficult along Z3 = [001]
because Pb atoms have a very long jump distance in this direction.

The mineral olivine, (Mg, Fe)2SiO4, is an important constituent of the deeper
parts of the earth’s crust. Geochemists have studied diffusion in olivine single
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crystals. The crystal structure is orthorhombic, point group mmm, with three
independent diffusion coefficients. Experiments on the diffusion of Ni in olivine
at high temperature show that D33 is much larger than D11 and D22. The
origin of this large anisotropy can be explained by the crystal structure. In
the olivine structure, nickel substitutes for magnesium and iron which occupy
octahedral positions. Edge-sharing chains of octahedra lie along Z3 = [001]
making diffusion especially easy in this direction. Only corner sharing is found
in the Z1 and Z2 directions so the cation–cation spacing is much longer.

Experimental methods for measuring diffusion coefficients are relatively
simple conceptually but require a good deal of skill and patience. Typically
two metal bars are brought into contact and placed in a furnace. After being
held at a carefully controlled temperature for a specified time, the bicrystal is
removed from the furnace and sectioned into thin slices parallel to the interface.
Each slice is then analyzed to determine its chemical composition. From these
results, the amount of metal A that has diffused into B, and the amount of B that
has diffused into A can be determined as a function of the distance from the
interface. The diffusion coefficient D is determined from this information. For
anisotropic materials one uses either long thin bars which define the direction
of J , or flat plates which define the concentration gradient dc/dZ (Section 18.2).
Long bars are generally easier to section into thin slices. The atomic distribu-
tion can be determined by chemical analysis or by using radioactive tracers in
the diffusion specimens. With radioactive tracers it is possible to study self-
diffusion (e.g. oxygen in MgO) which is of great significance in studying the
densification process.

Diffusion coefficients depend exponentially on temperature, and are gener-
ally written in the form

D = D0 exp

(−Q

RT

)
,

where Q is the activation energy, R the universal gas constant, T the absolute
temperature, and D0 the diffusion pre-exponential factor which is generally
assumed to be independent of temperature. This equation is often referred to as
the Arrhenius relationship for the diffusion coefficient.

Converting the equation to logarithmic form gives

ln D = −Q

RT
+ ln D0

and a plot of ln D against 1/T for the experimental values over a range of temper-
atures gives a straight line. The heat of activation Q is calculated from the slope
of the line, and D0 from the intercept. Experimental results are summarized by
giving Q and D0 values (Table 19.1).

Problem 19.1
Using the coefficients in Table 19.1, draw a graph of the diffusion coefficient
(D) of tungsten from room temperature to the melting point.

19.2 Structure–property relationships

When normalized to the melting point, the self-diffusion coefficients are sur-
prisingly similar for many materials. This can be seen in several ways. Near the
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Table 19.1 Self-diffusion in cubic crystals. Melting points Tm (K), pre-exponential constants
D0 (m2/s), activation energies Q (kJ/mole) and diffusion coefficients near the melting point,

D (Tm) in m2/s (the ratio Q/Tm is remarkably constant)

Tm D0 Q D(Tm) Q/Tm

Alkali metals (BCC)
Li 454 2.3 × 10−5 55.3 9.9 × 10−12 0.122
Na 371 2.4 × 10−5 43.8 1.6 × 10−11 0.118
K 337 3.1 × 10−5 40.8 1.5 × 10−11 0.121
Rb 312 2.3 × 10−5 39.4 5.8 × 10−12 0.126

Transition metals (BCC)
Ti 1933 1.1 × 10−4 251 1.8 × 10−11 0.130
V 2163 2.8 × 10−5 309 9.7 × 10−13 0.143
Cr 2130 2.0 × 10−5 309 5.4 × 10−13 0.145
Zr 2125 1.3 × 10−4 274 2.5 × 10−11 0.129
Nb 2741 1.2 × 10−3 440 5.2 × 10−12 0.160
Mo 2890 1.8 × 10−4 461 8.4 × 10−13 0.159
Ta 3269 1.2 × 10−4 413 3.1 × 10−11 0.126
W 3683 4.3 × 10−3 641 3.4 × 10−12 0.174

Electrode metals (FCC)
Al 933 1.7 × 10−4 142 1.9 × 10−12 0.152
Ni 1726 1.9 × 10−4 280 6.5 × 10−13 0.162
Cu 1356 3.1 × 10−5 200 5.9 × 10−13 0.147
Pd 1825 2.1 × 10−5 266 4.9 × 10−13 0.146
Ag 1234 4.0 × 10−5 185 6.1 × 10−13 0.150
Pt 2046 2.2 × 10−5 278 1.7 × 10−13 0.136
Au 1336 1.1 × 10−5 177 1.3 × 10−12 0.133

Alkali halides (Rocksalt structure)
LiF 1115 6.4 × 10−3 212 7.5 × 10−13 0.190
NaCl 1074 6.2 × 10−3 206 5.8 × 10−13 0.192
NaBr 1028 5.0 × 10−3 195 6.5 × 10−13 0.190
KCl 1049 3.6 × 10−3 202 3.0 × 10−13 0.193
RbCl 988 3.3 × 10−3 192 2.4 × 10−13 0.194

melting point the diffusion coefficients are generally within an order of magni-
tude of 10−12 m2/s. Second, the ratios of the activation energy to the melting
point are in the range 0.12–0.19, and are even more tightly grouped within the
various structure types. Most engineering metals are close to 0.15. The activa-
tion energy for diffusion is also closely related to the heat of fusion Lm. The
ratio Q/Lm is about 15 for many metals.

Tammann’s Rules are useful in choosing annealing temperatures for sintering
or for microstructural homogenization. The rules state that diffusion in metals
becomes significant at 33% of the melting point in K. Diffusion is generally
more difficult in ionic crystals and only becomes significant at about 57% of
the melting point. The bonding is even stronger in covalent materials where
annealing is often done at temperatures above 90% of the melting temperature.

Somewhat higher temperatures are required to promote plastic flow and
deformation. For metals, the minimum hot-working temperature is about 50%
of the melting point in K, with corresponding increases in other materials.

The relationship between melting point and diffusion is quite apparent in
many solid solutions. Fig. 19.2 shows the phase diagrams and diffusion coef-
ficients for the Pd–Cu and Cu–Au systems. The diffusion coefficients were
measured at temperatures slightly below the lowest melting point in each
system. Note that in both cases the diffusion coefficients are highest for
compositions close to their melting point.
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Fig. 19.2 Binary phase equilibrium diagrams
and diffusion coefficients for Pd–Cu and
Cu–Au alloys. Note that compositions with
low melting points have large diffusion coef-
ficients.
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Table 19.2 Comparison of self-diffusion coefficients for four HCP
metals. Note the correlation between and D11/D33 ratio and the

crystallographic c/a ratio

(D0)11 (D0)33 Q11 Q33 D11/D33 c/a
(×10−4 m2/s) (×10−4 m2/s)

Cd 0.1 0.05 82 76 1.21 1.89
Mg 1.5 1.0 136 134 0.82 1.63
Tl 0.4 0.4 94 96 0.73 1.60
Zn 0.58 0.13 102 91 1.67 1.86

Anisotropy in self-diffusion can be correlated with crystal structure.
Magnesium single crystals (point group 6/mmm) have an almost ideal hexa-
gonal close-packed structure with twelve nearly equidistant neighbors sur-
rounding each Mg atom and a c/a ratio of 1.63. The structure is more distorted
for other HCP metals. Diffusion coefficients for four HCP metals (Table 19.2)
show that the D11/D33 ratio scales with c/a. In zinc and cadmium diffusion
takes place best in the (001) plane within the tightly bonded close-packed layers.

Ring

Vacancy

Dissociation

Interstitial

Grain boundary

Interchange

Fig. 19.3 Six diffusion mechanisms involv-
ing defects in crystals.

D values are extremely temperature-sensitive since most diffusion processes
are thermally activated. At elevated temperatures, thermal vibration increases
in amplitude leading to atom transport and diffusion, usually by one of the pro-
cesses illustrated in Fig. 19.3. The ring and interchange mechanisms are more
important in metals than in ionic solids where an exchange of neighboring
cations and anions requires a great deal of energy. Vacancy and interstitial pro-
cesses require less energy than interchange because only one atom is displaced,
rather than two or more. Diffusion via vacancies requires a neighboring lattice
vacancy and therefore tends to be less rapid than the interstitial mechanism.
Atom sizes are very important. In many metals small atoms like hydrogen and
carbon diffuse rapidly via interstitial sites. Thus D depends on the nature of
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Fig. 19.4 Diffusion coefficients for various
dopants in silicon. Self-diffusion is far more
difficult than for H and other small atoms
which diffuse interstitially.

the diffusing atom and the host lattice. For rapid diffusion, the host lattice must
provide suitable interstitial sites and the “necking down” between sites must
not be excessive. Zeolites are ideal from this point of view, with many cavities
connected by open channels, making them useful in ion-exchange applications.

The importance of defects can be illustrated with the diffusion rates of various
dopants in single crystal silicon (Fig. 19.4). Because of its importance in the
processing of integrated circuits, the diffusion of impurities in silicon has been
studied extensively. Small monovalent atoms such as lithium are thought to
occupy interstitial sites in the diamond-like structure of silicon. The geometry
of the jump process involved in interstitial diffusion is pictured in Fig. 19.5(a).
In order to move from one interstitial site to another, the lithium atom must
pass through a puckered hexagon of six silicon atoms. The activation energy
for this process is quite low, leading to rapid diffusion through the crystal.

(a) (b)

Fig. 19.5 (a) Interstitial migration in silicon
involves passing through a hexagonal ring of
Si atoms which is fairly easy for small atoms
like Li and H. (b) The vacancy mechanism for
self-diffusion and for substitutional dopants is
much less favorable energetically (Girifalco).

Self-diffusion in silicon is much more difficult and probably involves
a vacancy mechanism (Fig. 19.5(b)). Four strong covalent bonds must be broken
to create a vacancy in the diamond structure. This leads to a high activation
energy and much lower diffusion coefficients as shown in Fig. 19.4. This also
applies to substitutional dopants such as As, P, B, Ga and Al. These n- and
p-type dopants from columns III and V of the periodic system are less well
bonded than tetravalent Si or Ge atoms so their diffusion coefficients are some-
what larger. In general, poorly bonded atoms, which differ in size and valence
from the host element, diffuse more rapidly than those which are similar in size
and valence.

Vacancy diffusion is also important in most alloys which have close-
packed crystal structures and where only very small foreign atoms can be
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accommodated in interstitial sites. Fig. 19.6 shows the activation energies in
silver and copper alloys doped with neighboring element of higher or lower
atomic number (Z). Note that diffusion is easier for dopants like Cd and As
(	Z > 0) and more difficult for elements like Ru and Co (	Z < 0). This effect
has been attributed to Coulomb interactions between the dopants and vacan-
cies in Ag or Cu lattice. A missing Cu+ or Ag+ core in the metal alloy has
a negative charge and is attracted to the positively charged cores of the Cd2+ or
As5+ dopants. Thus Cd and As diffuse more easily because of the presence of
a nearby vacancy. Elements with 	Z < 0 tend to repulse vacancies and diffuse
more slowly.

In compounds, different ion species often diffuse at vastly different rates,
although electrical neutrality requires that the diffusion rates be coupled.
Diffusion coefficients for several oxides are shown in Fig. 19.7. Thermal
vibration assists diffusion, causing the increase in D with temperature. Multiple-
valence transition metals have high diffusion rates because of the importance
of defects. The diffusion coefficients of the large oxygen ions are usually
small except for structures like calcium-stabilized zirconia which contains anion
vacancies.
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Fig. 19.6 Activation energies for self-
diffusion in copper and silver together with
activation energies for the diffusion of dopants
from neighboring columns of the periodic
system. Elements with 	Z > 0 diffuse more
easily than those with 	Z < 0.

Uraninite, one of the principal ores of uranium, has an interesting diffusion
mechanism involving interstitial oxygens (Fig. 19.8). Despite its large ionic
radius, oxygen diffuses faster than uranium as it migrates in and out of the
interstitial sites. Ideally, uraninite has the chemical formula UO2 with tetraval-
ent uranium coordinated to eight oxygens in the fluorite structure. In practice,
however, the chemical formula is

U4+
1−xU6+

x O2+x ≈ U3O8.

The excess oxygen occupies interstitial sites at the center of the unit cell and
diffuses relatively easily through other empty interstitial sites.

Crystal chemistry is helpful in controlling diffusion coefficients. The rapid
sintering of ceramics calls for large diffusion coefficients, but it is important
to realize that all types of atoms must be transported. Thus the most import-
ant diffusion coefficient is the smallest diffusion coefficient, the rate-limiting
coefficient. In oxides and similar materials, the anion usually has the smallest
coefficient because it is usually larger than the cations. Anion diffusion can be

Fig. 19.7 Diffusion coefficients for cations
and anions in several oxides. Generally the
cations diffuse faster than oxygen, although
there are exceptions such as uraninite.
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increased by introducing anion vacancies. There are several ways of doing this.
Doping the material with cations of smaller valence (Li2O in MgO) or anions
of higher valence (oxygen in a fluoride) are two chemical methods. Aluminum
oxide can be sintered to theoretical density by adding about 0.1% MgO in
solid solution. Another related technique is to heat the material in a reducing
atmosphere, thereby creating oxygen vacancies.

Uranium

Oxygen

Interstitial
oxygen

Fig. 19.8 Uraninite has the fluorite structure
with excess oxygen occupying interstitial
sites.

19.3 Ionic conductivity

Ionic conductivity σ is a second rank tensor like electronic conductivity

Ji = σijEj,

but is closely related to diffusion through the Nernst–Einstein equation

σ = Dnq2

kT
.

Here n is the number of charge carriers per unit volume, q the charge per
ion, k is Boltzmann’s Constant, and T the absolute temperature. The diffusion
coefficient (D) generally refers to the more rapidly moving species, as pointed
out earlier. Diffusion generally occurs by the movement of ions to neighboring
vacancies. For stoichiometric compounds, the vacancy concentration and ionic
conductivity are very small, although suitable doping will increase both.

Impurities and other defects often play a decisive role in electrolytic con-
duction. In a salt crystal, the movable charges may be interstitial ions (Frenkel
defects) or vacancies (Schottky defects). The position of a vacancy changes
when a neighboring ion moves in to fill it. Schottky defects predominate
in KCl where both cation and anion vacancies occur. In AgCl, some Ag+
ions occupy interstitial sites, producing positive Frenkel defects and negative
Schottky defects.

The close relationship between ionic conductivity and diffusion is illustrated
in Fig. 19.9 where the diffusion coefficient of NaCl is measured in two ways.

DCond. =
σkT
ce2

Sodium ions
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Fig. 19.9 Diffusion and ionic conduction in
rocksalt (NaCl).
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Fig. 19.10 (a) Mobile Na+ ions in a
framework of corner-linked SiO4 tetrahedra.
(b) Electrical resistivity of soda–silica glasses.
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First, using a concentration gradient and the radioactive tracer method, and
second from the ionic conductivity and the Nernst–Einstein relation. At high
temperature, where thermally induced vacancies predominate, the two values
for D are in very close agreement. The agreement is not so good at lower
temperatures where various types of crystal defects control the movement
of ions.

Transport numbers are often used to characterize conduction processes.
In most solids, charge is carried by cations (tc), anions (ta), electrons (te)
and holes (th). (Transport numbers (tj) are defined as the fraction of the total
current carried by the jth particle.) The sum of the transport numbers is one:
tc + ta + te + th + · · · = 1.

For NaCl and Na2O–SiO2 glasses the charge is carried by Na+ ions (tc ≈ 1).
In glass (Fig. 19.10) the Na+ ions move from one cavity to another within the
stationary silicate network. As expected, the electrical resistivity decreases with
increasing sodium content and with increasing temperature.

Ionic conduction also controls the resistivity of crystalline silica. Quartz
has a relatively open structure with channels along the trigonal c-axis, causing
anisotropy in the electrical conductivity. In directions normal to the c-axis,
quartz is a good insulator, but parallel to c, conduction of an electrolytic nature
occurs readily. Ionic conduction may involve impurity ions already in the struc-
ture, or deliberately-introduced foreign ions. At 250◦C, Na+ ions are easily
transported through the crystal from a sodium amalgam anode, but K+ ions from
a potassium amalgam anode pass through with much less facility. Activation
energies for diffusion increase steadily with ionic radius, rising from 75 kJ/mole
for Li+ (0.6 Å radius) to 138 kJ/mole for Cs+ (1.7 Å). Passage through the
c-axis channels becomes increasingly difficult for ions exceeding the channel
diameter in size. The behavior of Ag+ ions in quartz is especially interest-
ing because of the visible silver deposits left behind. Thread-like formations
parallel to c, and platelets perpendicular to c are observed.

In BaCl2 and most other ionic compounds with the fluorite structure, charge
is carried by anions (ta ∼ 1). The fluorite structure favors anion motion because
the anions have less charge and are closer together than the cations. The
possibility of using interstitial sites, as in uraninite, also promotes Cl− motion
in BaCl2.
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19.4 Superionic conductors

There are a few solids that have ionic conductivities comparable to liquids. At
room temperature, aqueous electrolytes have conductivities near 100 S/m, while
non-aqueous electrolytes are generally somewhat lower. Two of the best solid
ionic conductors are RbAg4I5, and NaAl11O17, which have rather open struc-
tures in which cations diffuse rapidly. The room temperature conductivities of
these compounds lie between 10 and 100 S/m. Anions will also diffuse but with
greater difficulty because of their larger size. At 1000◦C, rapidly moving oxy-
gen ions increase the conductivity of defect solid solutions in the ZrO2–Y2O3

system to as high as 10 S/m (Fig. 19.11).
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Fig. 19.11 Ionic conductivities of several
solid electrolytes compared with KCl, a typ-
ical ionic solid.

Superionic conductors exhibit very high ionic conductivity with negligibly
small electronic conductivity. Three main groups of superionic conductors are
listed in Table 19.3. The silver halide group is characterized by cation disorder,
as are the beta-alumina structures. In both these groups the univalent cations
Ag+, Na+, Cu+ are especially mobile. Oxygens are the conducting species in
the defect-stabilized oxide group. In calcia-stabilized zirconia, calcium intro-
duces a large number of anion vacancies into zirconia as indicated by the formula
Ca2+

x Zr4+
1−xO2−

2−x. The oxygen sites are only 2.5 Å apart in the zirconia structure.
The ionic conductivity of RbAg4I5 near room temperature is about 17 orders

of magnitude larger than that of NaCl. The activation energies are small, since
the large conductivities are attained well below the melting point of the super-
ionic conductor. Such materials contain a large number of mobile charge carriers
which is independent of temperature. Schottky or Frenkel defects are respons-
ible for ionic conductivity in ordinary ionic compounds, so that the number of
charge carriers is small and temperature dependent. Not only is the number of
carriers large in a superionic conductor, but the mean free paths may be large
as well. In the stabilized zirconia group, mobile oxygen ions are transported
over many interatomic distances by a cooperative mechanism. In conventional
ionic conductors, the mean free path is one “hop” between neighboring sites.

Several silver halides are excellent solid electrolytes with conductivities
approaching those of liquid electrolytes. The silver ions occupy interconnected
passageways formed by face-sharing anion polyhedra. The number of poly-
hedra exceeds the number of mobile cations. In α-AgI and other electrolytes
based on a body-centered cubic arrangement of iodine atoms, the anions form
passageways of face-sharing tetrahedra. The α-Ag2HgI4 structure consists of

Table 19.3 Superionic conductors

Halides and chalcogenides
α-AgI Na2S KAg4I5
α-CuI Ag3SBr CsAg4I5
α-Ag2Te α-Ag3SI NH4Ag4I5
α-Ag2Se α-Ag3HgI4 RbAg4I5
α-Cu2Se Ag4HgSe2I2

Beta-alumina A2O·nM2O3
A = Na, Rb, Ag, K, Li, Tl
M = Al, Ga, Fe3+
n = 5–11 (integer)

Defect-stabilized ceramic oxides
CaO·AO2 A = Zr, Hf, Th, Ce
M2O3·ZrO2 M = La, Sm, Y, Yb, Sc
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a face-centered cubic arrangement of iodine atoms with silver ions moving
through passageways formed by face-sharing octahedra and tetrahedra. In the
more complex RbAg4I5 structure, the passageways are made up of face-sharing
tetrahedra.

Fig. 19.12 A perspective drawing of half of
the unit cell of β-alumina. The large circles
represent Na, the small ones oxygen, and the
black dots aluminum atoms.

Solid electrolytes with anomalously high ionic conductivity are of interest
for solid state batteries and fuel cells. Thermodynamic data can be helpful
in selecting new superionic conductors. In good conductors like AgI there is
a phase transition to the high conductivity states (Fig. 19.11). The entropy
change (	St) accompanying this transition is anomalously large compared to
other solid state transitions, and is comparable to the entropy of melting (	Sm).
This is consistent with an highly disordered atomistic model in which Ag+
ions flow through a body-centered cubic lattice of I− anions. Other superionic
conductors such as Cu2S and Ag2S also have large 	St values.

Anisotropic conduction is observed in β-alumina (NaAl11O17) where ionic
motion take place in the (001) plane perpendicular to the hexagonal c-axis.
The structure consists of spinel-type layers separated by Na–O layers. The
oxygen functions as spacers between spinel blocks as sodium migrates with
ease (Fig. 19.12).

19.5 Cross-coupled diffusion

19.5.1 Binary diffusion equations

Most inorganic, organic, and metal alloys contain two or more different
elements and complex crystal structures. In β-brass, for example, the Cu and
Zn atoms undergo an order–disorder phase transformation similar to the shape
memory alloys (Section 16.2). Because of their different sizes and surroundings
the Cu and Zn atoms are subject to different internal forces, and have differ-
ent diffusion rates. The situation is similar to the different transport numbers
noted in NaCl and BaCl2 where one species has a much higher diffusion coef-
ficient than the other. A generalized binary diffusion equation can be used to
describe experiments where two (or more) elements contribute to atomic trans-
port. For atoms A and B, the tensor relations involve three second rank tensor
diffusion coefficients and two composition gradients:

J A
i = −D AA

ij
dc A

dZj
− D AB

ij
dc B

dZj

J B
i = −D AB

ij
dc A

dZj
− D BB

ij
dc B

dZj
.

These equations point out the fact that the atomic flux in element A depends on
the gradient in element B as well as the concentration gradient in A. This is one
of the major objections to Fick’s First Law (Section 19.1). It is for this reason
that many authors prefer to describe diffusion and ionic conduction in terms of
chemical potentials rather than concentration gradients. Chemical potential µA

of element A is defined by

µA = ∂G

∂nA
,

where G is the Gibbs free energy and nA is the number of A atoms per unit
volume. For binary systems nA + nB = N , the total number of lattice sites.
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A term in the free energy arising from mixing entropy is required to establish the
relationships between diffusion coefficients and chemical potential gradients.

Binary diffusion experiments are often carried out with two metals in contact
with one another. Metals A and B are brought together and held at high temper-
ature to promote diffusion across the A–B interface. As diffusion proceeds, the
interface spreads out as A diffuses into B and B into A. The diffusion of A into
B will, in general, differ from that of B into A. This gives rise to a movement
of the interface, the so-called Kirkendall Effect.

19.5.2 Thermal diffusion equations

Since diffusion coefficients are extremely sensitive to temperature, great care
must be taken in ordinary diffusion experiments to maintain isothermal con-
ditions. Thermal diffusion experiments involve the transport of atoms in a
controlled temperature gradient dT/dZ . As with the case of binary diffusion,
there are two gradients and three second rank tensor coefficients. The atom flow
is represented by

Ji = −Dij
dc

dZj
− βij

dT

dZj

and the heat flow by

hi = −βij
dc

dZj
− kij

dT

dZj
,

where Dij is the diffusion tensor [m2/s], kij the thermal conductivity [W/mK],
and βij the so-called Soret coefficient [m−1s−1K−1] describing atom motion in
a temperature gradient.

An important example of the Soret effect is the migration of carbon atoms
in steel. A temperature gradient is established across an iron bar containing
a small amount of uniformly distributed carbon. One end is hot, the other cool.
When this condition is maintained for a period of time, and various parts of the
bar are then analyzed for carbon content, it is found that carbon has migrated
from the cold to the hot regions.

In the Soret experiment, a temperature gradient induces mass flow; some-
times the flow is from hot to cold regions, sometimes from cold to hot. In α-Fe,
for example, interstitial H moves from hot to cold, and interstitial C and N in
the reverse direction. Similar effects occur in other metals. Soret experiments
have also been performed on zinc doped with In, Tl, or Ag. In this case In and
Tl move in the direction of the temperature gradient, while silver migrates in
the opposite direction.

19.5.3 Electrolysis and electron wind

Ionic conductivity involves the movement of atoms under applied electric fields,
but what about metals and heavily doped semiconductors with large electronic
conductivities? Both electron flow Je and atom flow Ja take place under the
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combined influence of concentration gradients and electric fields. In tensor form

Ja
i = −Dij

dc

dZj
− γijEj

Je
i = −γij

dc

dZj
− σijEj.

When a large electric current is passed through a hot metal wire it is found that
solute atoms in the alloy migrate toward an electrode.

Originally, the solute motion was attributed to electrolysis, similar to the
ionic conductivity in alkali halides, but two observations argued against this
interpretation. First, the solute motion was always toward the anode, regard-
less of the charge difference between the solute and the solvent. It did not
matter whether the effective charge was positive or negative, the motion was
always toward the positive electrodes. The second observation concerns the
field-induced diffusion in pure metal wires. Again mass transport is toward the
anode, confirming the result on alloy systems.

Electron wind is one of the proposed explanations. In a metal, an applied
voltage causes large numbers of electrons to move toward the anode. In a hot
wire, the negative electrons that constitute the electric current collide with
migrating atoms and give them a push toward the positive electrode. The colli-
sions between electrons and atoms constitute an electron wind that controls the
migration direction of diffusing metal atoms.

Problem 19.2
Thermal diffusion experiments are to be carried out on an orthorhombic crys-
tal (point group mmm) in the presence of an electric field. The electric field,
temperature gradient, and concentration gradient are in perpendicular direc-
tions along the orthorhombic axes. Write out the defining equations for heat
flow, electric current, and diffusion. Which coefficients must be measured?

19.5.4 Effects of mechanical stress

Hydrostatic pressure generally slows down atomic migration in crystals. The
underlying cause of this decrease in diffusion coefficients has to do with the
decrease in free volume. Defects such as vacancies and interstitials are crit-
ical diffusion mechanisms, and both types of defects lead to increased volume.
Hydrostatic pressure inhibits the formation of these defects, and further inhibits
the additional volume increases accompanying atom motion from one crystal-
lographic site to another. If V∗ is the activation volume required for diffusion,
an energy PV∗ is needed to work against the external pressure P. The resulting
effect on diffusion appears as an activation energy. Under pressure, the diffusion
coefficient is given by

D(P) = D(0) exp

(−PV∗

RT

)
.

Tracer measurements have been carried out on several metals at pressures of
a thousand atmospheres or more. In zinc, sodium, and most other metals the
diffusion coefficient decreases exponentially with increasing pressure.
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The Lorentz force that a magnetic field exerts on a moving charge carrier is
perpendicular to the direction of motion and to the magnetic field. Since both
electric and thermal currents are carried by mobile electrons and ions, a wide
range of galvanomagnetic and thermomagnetic effects result. The effects that
occur in an isotropic polycrystalline metal are illustrated in Fig. 20.1. As to be
expected, many more cross-coupled effects occur in less symmetric solids.

The galvanomagnetic experiments involve electric field, electric current, and
magnetic field as variables. The Hall Effect, transverse magnetoresistance, and
longitudinal magnetoresistance all describe the effects of magnetic fields on
electrical resistance.

Analogous experiments on thermal conductivity are referred to as thermo-
magnetic effects. In this case the variables are heat flow, temperature gradient,
and magnetic field. The Righi–Leduc Effect is the thermal Hall Effect in which
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Fig. 20.1 Galvanomagnetic effects describe
the influence of magnetic fields on electrical
resistivity measurements. Thermomagnetic
effects describe the effect of a magnetic field
on thermal conduction. For an isotropic solid
there are six such phenomena.
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magnetic fields deflect heat flow rather than electric current. The transverse
thermal magnetoresistance (the Maggi–Righi–Leduc Effect) and the longi-
tudinal thermal magnetoresistance are analogous to the two galvanomagnetic
magnetoresistance effects.

Additional interaction phenomena related to the thermoelectric and
piezoresistance effects will be discussed in the next two chapters.

20.1 Galvanomagnetic effects

In tensor form Ohm’s Law is

Ei = ρijJj,

where Ei is electrical field, Jj electric current density, and ρij the electrical resis-
tivity in � m. In describing the effect of magnetic field on electrical resistance,
we expand the resistivity in a power series in magnetic flux density B. B is
used rather than the magnetic field H because the Lorentz force acting on the
charge carriers depends on B not H. In tensor form the Lorentz force Fi acting
on a moving electron is represented by the vector product

Fi = −eεijkvjBk ,

where e is the charge on the electron, vj its velocity, Bk the flux density and εijk

the rotation tensor used to represent cross products (Section 15.4).
The power series for the electric resistivity relation is

Ei = ρijJj + ρijkJjBk + ρijklJjBkBl + · · · .

To determine the types of tensors that represent the higher order terms ρijk and
ρijkl, we examine the way in which they transform between coordinate systems.
The electric field in the new system is

E′
i = aimEm = aimρmnJn + aimρmnpJnBp + aimρmnpqJnBpBq + · · · .

Electric field and electric current density J are first rank polar tensors and B is
a first rank axial tensor. In going from new to old coordinates,

Jn = ajnJ ′
j , Bp = |a|akpB′

k and Bq = |a|alqB′
l.

Substituting into the expression for E′
i :

E′
i = aimajnρmnJ ′

j + |a|aimajnakpρmnpJ ′
j B

′
k

+ |a||a|aimajnakpalqρmnpqJ ′
j B

′
kB′

l + · · ·
= ρ′

ijJ
′
j + ρ′

ijkJ ′
j B

′
k + ρ′

ijklJ
′
j B

′
kB′

l + · · · .

Identifying, term by term, it is apparent that the tensor transformations are

ρ′
ij = aimajnρmn

ρ′
ijk = |a|aimajnakpρmnp

ρ′
ijkl = aimajnakpalqρmnpq.

In this expansion, even-rank tensors likeρmn andρmnpq are polar, while odd-rank
tensors such as ρmnp are axial.

Neumann’s Principle applies to galvanomagnetic phenomena in the
usual way. Most experimental studies have been carried out on semiconductors
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with the diamond, zincblende or wurtzite structures, or metals with the BCC,
FCC, or HCP structures. The point groups of interest are cubic m3m and 4̄3m,
or hexagonal point groups 6/mmm and 6mm.

For point group m3m and 4̄3m, second rank polar properties like resistivity
are isotropic with ρ11 = ρ22 = ρ33. For fourth rank polar tensors there are
three independent coefficients:

ρ1111 = ρ2222 = ρ3333

ρ1122 = ρ2211 = ρ3311 = ρ1133 = ρ2233 = ρ3322

ρ1212 = ρ1221 = ρ2112 = ρ2121 = ρ3131 = ρ1313 =
ρ1331 = ρ3113 = ρ2323 = ρ2332 = ρ3223 = ρ3232.

Axial third rank tensors for point group m3m have one independent coefficient,
ρ123. The proof goes as follows

ρ′
ijk = |a|aimajnakpρmnp.

For the mirror perpendicular to Z1:

|a| = −1, 1 → −1, 2 → 2, 3 → 3.

Therefore

111 → −(−1)(−1)(−1) → 111

222 → −(2)(2)(2) → −222 → 0

123 → −(−1)(2)(3) → 123

112 → −(−1)(−1)(2) → −112 → 0...

For the threefold rotation axes parallel to [111],

|a| = + 1, 1 → 2, 3 → 1, 2 → 3

111 → 222 → 0

333 → 111 → 0

123 → 231 → 312 → 123

213 → 321 → 132 → 213.

All coefficients with two identical subscripts are zero.
For the mirror perpendicular to [110]

|a| = − 1, 1 → −2, 2 → −1, 3 → 3

123 → (−1)(−2)(−1)(3) → −213...

Therefore ρ123 = ρ231 = ρ312 = −ρ213 = −ρ321 = −ρ132 are the only
nonzero coefficients.

Thus expanding out to second order in magnetic field leads to five inde-
pendent coefficients, for point group m3m. An identical result is achieved for
4̄3m. The five coefficients (ρ11, ρ123, ρ1111, ρ1122, ρ1212) correspond to five
experiments: The resistivity in zero field plus four galvanomagnetic effects.
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20.2 Hall Effect and magnetoresistance

Consider a series of experiments in which a current J is flowing along the
Z1 (=[100]) axis of a cubic crystal. The resulting electric field components are
given by

Em = ρm1J1 + ρm1pJ1Bp + ρm1pqJ1BpBq.

For point group m3m the resulting voltage components are

E1 = ρ11J1 + ρ1111J1B2
1 + ρ1122J1B2

2 + ρ1133J1B2
3

E2 = ρ213J1B3 + (ρ2112 + ρ2121)J1B1B2

E3 = ρ312J1B2 + (ρ3113 + ρ3131)J1B1B3.

If no magnetic field is present, then the only remaining term is E1 = ρ11J1,
which is the standard electrical resistivity measurement.

The first two of the galvanomagnetic coefficients are obtained with the
magnetic induction aligned along Z3 (=[001]) such that B1 = B2 = 0 �= B3.
The electric field components are

E1 = ρ11J1 + ρ1133J1B2
3

E2 = ρ213J1B3

E3 = 0.

From the measured value of E2 we get the Hall Effect, R = ρ213, which is
linearly proportional to the applied field.

The second galvanomagnetic effect comes from the measurement of E1.
After applying the magnetic field, the change in resistivity is

	ρ11 = E1 − ρ11J1

J1
= ρ1133B2

3.

The fractional change in resistivity 	ρ11/ρ11 is called the transverse magneto-
resistance. The longitudinal magnetoresistance, the third of the galvanomag-
netic effects, is obtained by measuring E1 with the current J1 and magnetic
induction B1 in the same direction.

E1 = ρ11J1 + ρ1111J1B2
1.

The change in resistivity is

	ρ11 = E1 − ρ11J1

J1
= ρ1111B2

1

and the fractional change in resistivity, 	ρ11/ρ11, is the longitudinal magneto-
resistance.

The fourth galvanomagnetic effect is obtained from the remaining nonlinear
coefficient ρ1212. With current J1 flowing along [100] and magnetic induc-
tion directed along [110], the field E2 is measured along [010]. Under these
conditions J1 �= 0 = J2 = J3 and B1 = B2 �= 0 = B3, giving

E2 = (ρ2112 + ρ2121)J1B1B2 = ρ2112J1B2
110,

where B110 is the magnetic induction in the [110] direction. This is called the
Planar Hall Effect.

A typical sample shape for measuring the resistivity and galvanomagnetic
effects is shown in Fig. 20.2. All measurements are carried out under isothermal
conditions to keep temperature gradients small.

Current leads

Hall and potential leads

Fig. 20.2 Resistivity Hall Effect, and mag-
netoresistance coefficients are measured on
samples with several contact probes. Silicon
and other brittle materials are prepared with
an ultrasonic cutter.
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Table 20.1 The number of second, third and fourth rank
galvanomagnetic coefficients for the 32 crystal classes

(the number of independent coefficients is given in parentheses)

Point groups ρij ρijk ρijkl

Triclinic
1, 1̄ 9(6) 18(9) 54(36)

Monoclinic
2, m, 2/m 5(4) 10(5) 28(20)

Orthorhombic
222, mm2, mmm 3(3) 6(3) 15(12)

Trigonal
3, 3̄ 3(2) 10(3) 47(11)
32, 3m, 3̄m 3(2) 6(2) 25(7)

Tetragonal
4, 4̄, 4/m 3(2) 10(3) 25(10)
422, 4mm, 4̄2m, 4/mmm 3(2) 6(2) 15(7)

Hexagonal
6, 6̄, 6/m 3(2) 10(3) 25(7)
622, 6mm, 6̄m2, 6/mmm 3(2) 6(2) 15(6)

Cubic
23, m3 3(1) 6(1) 15(4)
432, 4̄3m, m3m 3(1) 6(1) 15(3)

Relatively few galvanomagnetic measurements have been made on noncubic
crystals. One of the reasons is the large number of property coefficients
(Table 20.1) for low symmetry crystals. Even in fairly symmetric structures such
as hexagonal close-packed metals (point group 6/mmm) and wurtzite family
semiconductors (point group 6mm) there are twice as many effects as in cubic
crystals.

Problem 20.1
Magnesium and other hexagonal close-packed metals belong to point group
6/mmm. Wurtzite family semiconductors are in 6mm. Work out the Hall Effect
and magnetoresistance tensors for these point groups. Describe the experimental
arrangements required to measure each of the eight independent coefficients.

When plotted as a function of direction, galvanomagnetic properties reflect
the symmetry of the crystal. Fig. 20.3 shows the transverse magnetoresistance
effect for three metal crystals. Tin is tetragonal (point group 4/mmm), lead is
cubic (m3m), and thallium is hexagonal (6/mmm). The experimental results
shown in Fig. 20.3 are for resistivity measurements made along symmetry
directions in the three crystals. The plots of 	ρ(B)/ρ(0) for various orientation
of the magnetic field clearly show the symmetry of the direction in which the
resistivity is measured.

20.3 Underlying physics

Two interesting effects occur in a conductor when a magnetic field is applied at
an angle to the current. The first is the Hall Effect which results in a voltage at
right angles to the current and is caused by the Lorentz force. A second effect
is the change in current density across the sample, leading to an increase in
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Fig. 20.3 Polar diagrams of the resistance change 	ρ/ρ in a constant transverse magnetic field as a function of the angle, φ, between the
crystallographic axes of the specimen and the direction of H. T = 4.2 K. (a) Sn, current in [001] direction. (b) Pb, current in [111] direction.
(c) Tl, in [110] direction.

electric resistivity. The magnetoresistance effect is also caused by the Lorentz
force. In the presence of the magnetic field the current has a longer path and
the charge carriers are crowded together on one side of sample. The crowding
phenomenon is called the magnetoconcentration or Suhl Effect.

Electrical conductivity σ is proportional to the product of the number of
charge carriers per unit volume (N) times the mobility µ. Mobility is the drift
velocity divided by the electric field. For a metal or an n-type semiconductor,

σ = Neeµe,

where e is the electronic charge. In p-type semiconductors where holes are the
charge carriers,

σ = Nheµh.

The Hall coefficient R is inversely proportional to the number of charge carriers.
R = 1/Nee for n-type materials and for p-type, R = 1/Nhe. Combining the
Hall coefficient with the conductivity gives the mobility: µ = |R|σ .

The resistivity of a metal usually increases when a magnetic field is applied.
In low fields the increase in resistance is proportional to B2, but in some metals
	ρ/ρ saturates in very large fields. Kohler’s Rule states that the fractional
change in resistivity in a magnetic field is independent of temperature and
resistivity. It is quite well obeyed experimentally.

For a typical metal like copper the charge carrier density is very large,
usually on the order of the number of atoms per unit volume. Therefore R is
small (Table 20.2). The mobility µ is also small compared to semiconductors.
Structure–property relationships between mobility and crystal chemistry were
discussed in Section 17.5. Typically for a metal µ is about 10−3 m2/V s, approx-
imately a hundred times smaller than the semiconductors listed in Table 20.3.
Silicon and indium antimonide are the preferred materials for the Hall Effect
and the magnetoresistive devices used for measuring magnetic flux, or as
microphones and variable resistors.

Although most metals have small galvanomagnetic properties, magnetic
conductors sometimes have large permeabilities µm which amplify the mag-
netic flux, B = µmH. Thus we can distinguish three major classes of magnetic
sensor materials (Fig. 20.4).

Magnetic field sensors sometimes make use of the high permeability of soft
magnets to concentrate the flux for increased sensitivity. Enhanced sensitivity
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Table 20.2 Hall constant R and mobility µ for several
metals. R is in V m3/A Wb = m3/C. Calculated values

obtained by assuming one conduction electron
per atom in Cu, Li, and Na, and three per atom in Al

(observed µ values are in m2/V s)

Metal Robs Rcalc µ

Cu −0.55 × 10−10 −0.74 × 10−10 0.0032
Li −1.70 −1.35 0.0018
Na −2.50 −2.46 0.0053
Al −0.30 −0.35 0.0012

Table 20.3 Carrier mobilities (in m2/V s) and energy
gaps for semiconductors with large galvanomagnetic

coefficients (Mason)

Material µe µh Eg

Si 0.12 0.025 1.11 eV
Ge 0.36 0.17 0.80
InSb 7.5 0.11 0.25
InAs 2.3 0.024 0.45
GaAs 0.85 0.040 1.35

Lorentz force on electrons 

Magnetic metals Semiconductors Insulators

Magnetoresistance magnetostriction Faraday rotation 

Linear Quadratic

Hall voltage Carrier deflection Magnetoconcentration Magnetoresistance
Fig. 20.4 Family tree of magnetic phenom-
ena used to sense magnetic fields.

to magnetic fields is achieved in magnetoresistors made of permalloy (Ni0.81

Fe0.19), in magneto-optic sensors made of ferromagnetic garnets, and in optical
fibers clad with magnetostrictive coatings.

20.4 Galvanomagnetic effects in
magnetic materials

The effects of magnetic phase transformations on electrical resistivity are appar-
ent even in ordinary resistivity measurements. Departures from the normal
linear temperature dependence are clearly visible with enhanced resistance at
the transition temperatures (Fig. 20.5). Antiferromagnetic metals like europium
show a peak similar to the ferromagnetic alloys.

Anisotropy becomes apparent in single-domain single crystals. Fig. 20.6
shows the fractional change in resistivity of nickel plotted as a function of
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Fig. 20.5 Internal magnetoresistive effects
lead to resistivity anomalies at magnetic phase
transitions. Temperature (K)
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magnetic field. Nickel has a face-centered cubic crystal structure above its
Curie temperature (613 K) but is tetragonal in its ferromagnetic state below Tc.
At room temperature the average symmetry of the unmagnetized multidomain
state is m3m1′, changing to 4/mm′m′ for the single domain state. This change
in symmetry takes place in a magnetic field applied parallel to one of the 〈100〉
easy axes.

The resulting change in resistivity is shown in Fig. 20.6. At zero field the
nickel crystal is unmagnetized and is electrically isotropic. When the magnetic
field is switched on, domain walls begin to move and anisotropy develops. The
resistivity component measured parallel to the magnetic field is several percent
larger than the resistivity perpendicular to H. At about 300,000 A/m, a single
domain state is achieved. The symmetry then changes to magnetic point group
4/mm′m′ and a linear decrease in 	ρ/ρ is observed for both components. This
linear magnetoresistance effect comes from the third rank axial componentsρ333

and ρ113. Component ρ333 corresponds to the experiment in which the resis-
tivity is measured parallel to the magnetic field, and ρ113 from the experiment
where the resistivity is measured perpendicular to the magnetic field.

Magnetic field (H)

–2%

–1

0

+1

+2%

H || J

H ⊥ J

0.5 1.0 1.5 × 106A/m

∆�
�

Fig. 20.6 The field-induced change in electri-
cal resistivity of ferromagnetic nickel at room
temperature. The rapid changes at low field
are caused by domain wall movement. The
linear decrease at higher fields takes place in
the single domain state.

As shown in Section 20.1, ρijk is a third rank axial tensor. Components ρ113

and ρ333 are zero in nonmagnetic cubic crystals but not in magnetic group
4/mm′m′. To prove this, refer to Section 14.10. The linear magnetoresistance
effect is analogous to piezomagnetism that is also a third rank axial tensor. The
nonzero coefficients for the magnetic symmetry groups are listed in Table 14.5.
Piezomagnetic matrix coefficient Q31 corresponds to linear magnetoresistance
coefficient ρ113 and Q33 to ρ333. Both components are permitted in 4/mm′m′.

There is a third contribution to the magnetoresistivity of magnetic materials,
one that is closely related to magnetostriction (Chapter 15). Under strong
magnetic fields, the magnetization vector will rotate away from the easy axis
into the direction of the field. For cubic crystals, this results in mechan-
ical deformations leading to a saturation strain λ given by the equation in
Section 15.5:

λ = xs(H) − xs(0) = 3

2
λ100

(
α2

1β2
1 + α2

2β2
2 + α2

3β2
3 − 1

3

)
+ 3λ111

×(α1α2β1β2 + α1α3β1β3 + α2α3β2β3),
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where α1, α2, and α3 are the direction cosines specifying the direction in which
the strain is measured, and β1, β2, and β3 are direction cosines for the magnetic
field vector. λ100 is the measured value of λ when the strain and field are both
along [100]. λ111 is the measured value when both are oriented along the body
diagonal [111].

Other properties, including the electrical resistivity are also affected by the
rotation of the magnetization. Strain and electric resistivity are both polar second
rank tensors so the mathematical expression for magnetostrictive strain can be
adapted to the change in resistivity.

For cubic crystals, the saturation value is

	ρ = 3

2
	ρ100

(
α2

1β2
1 + α2

2β2
2 + α2

3β2
3 − 1

3

)

+ 3	ρ111(α1α2β1β2 + α1α3β1β3 + α2α3β2β3).

In this expression, the direction cosines α and β refer to the orientation of the
resistivity measurement and the orientation of the magnetic field. 	ρ100 and
	ρ111 are experimental values along the cube edge and body diagonal. For
nickel, 	ρ100/ρ = 4.3% and 	ρ111/ρ = 1.9%. The corresponding values for
iron are somewhat smaller: 	ρ100/ρ = 0.10% and 	ρ111/ρ = 0.40%. Using
these numbers, the change in resistivity caused by rotation of the magnetization
can be readily estimated.

To summarize, there are at least three important factors governing the
galvanomagnetic properties of magnetic crystals: domain wall motion, rotation
of the magnetization, and intrinsic single domain effects.

In recent years two types of very large magnetoresistance have been reported.
Colossal magnetoresistance has been observed in transition-metal oxides in
which a magnetic transition is accompanied by a pronounced change in
electrical conductivity. One of the best examples is the perovskite phase
(La2Ca)Mn3O9 (Fig. 20.7). At the Curie temperature near 270 K, the oxide
changes from ferromagnetic-metallic behavior to a paramagnetic insulator.
Large negative magnetoresistance coefficients are observed with resistance
values substantially reduced under a magnetic field. All three effects, the
magnetic and electric transitions together with the colossal magnetostric-
tion, are caused by the 3d electrons of the octahedrally-coordinated Mn2+
and Mn3+ ions. Trivalent manganese is a well-known Jahn–Teller ion that
promotes displacive phase transformations in ceramics and minerals such as
Hausmannite, Mn3O4. Temperature (K)
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Fig. 20.7 The colossal magnetoresis-
tance effect in manganese oxides with the
perovskite structure. A large decrease in
resistance occurs in strong magnetic fields.

Giant Magnetoresistance (GMR) is a very different phenomenon observed
in layered magnetic thin films. GMR is quantum mechanical effect involving
spin-polarized electron transport in thin-film structures composed of altern-
ating layers of ferromagnetic and nonmagnetic metals. When the magnetic
moments of the ferromagnetic layers are parallel (Fig. 20.8), the spin-dependent
scattering of the conduction electrons is minimized, and the material has its
lowest resistance. When the magnetization vectors are antiparallel, the spin-
dependent scattering is maximized, and the material has its highest resistance.
Magnetization and magnetoresistance coefficients are manipulated with applied
magnetic fields. The first major market for GMR devices are the “read” heads
for magnetic hard disk drives.

Spin-polarized transport is emerging into a new family of anisotropic trans-
port properties and devices. The field of magnetoelectronics is based on the
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Fig. 20.8 (a) Schematic representations of
electron transport that is parallel to the plane
of a layered magnetic sandwich structure for
aligned (low resistance) and antialigned (high
resistance) orientations of GMR devices.
(b) The density of electronic states available
to electrons in a normal metal and in a ferro-
magnetic metal whose majority spin states
are completely filled. E, the electron energy;
EF , the Fermi level; N(E), density of states.
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transport of up or down spins of the electrons rather than electrons or holes, as in
traditional semiconductor electronics. Spin-polarized transport occurs naturally
in ferromagnetic metals because the density of states available to spin-up and
spin-down electrons are shifted in energy with respect to each other (Fig. 20.8).
This shift causes the number of spin-up and spin-down charge carriers to be
different in number and in mobility. When sandwiched with another conductor,
spin-polarized carriers can be injected into a semiconductor, superconductor,
or normal metal, and can also be used to tunnel through an insulating barrier.
The most dramatic effects are generally seen for highly polarized currents with
only one occupied spin band at the Fermi level. At present only the partially
polarized conduction in the alloys of Fe, Co, and Ni are available. The best
values of (n↑ − n↓)/(n↑ + n↓) are typically 0.4 to 0.5.

The exploitation of spin polarized charge carriers represents a new field of
magnetic transport phenomena with great promise for future magnetoelectronic
systems.

20.5 Thermomagnetic effects

Under an applied magnetic field, the thermal resistivity of metals increases
just as the electrical resistivity does. This is to be expected since electrons
contribute to both the thermal conductivity and electrical conductivity. The
tensor formulation for the various thermomagnetic effects follows the same
procedure used for galvanomagnetic phenomena in Section 20.1. Writing out
the heat flow h as a power series in magnetic induction gives

hm = −kmn
dT

dZn
− kmnp

dT

dZn
BP − kmnpq

dT

dZn
BPBq,

where kmn is the thermal conductivity and kmnp and kmnpq are third and fourth
rank tensors describing the dependence of the thermal conductivity on the
magnetic flux density. dT/dZ and B are the temperature gradient and flux
density, respectively.

Again confining attention to point groups m3m and 4̄3m, the symmetry groups
of many important semiconductors and metals, there are just four independ-
ent thermomagnetic phenomena. Three are pictured in Fig. 20.1: The thermal
Hall Effect and the longitudinal and transverse thermal magnetoresistance.
The fourth phenomenon is the planar thermal Hall Effect.

If a temperature gradient dT/dZ is established along the [100] axis with
a magnetic field along [001], the result is a heat flow and a thermal
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Righi–Leduc coefficient 
= (∆T ) (L)
   (B)(W )(T1–T2)
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T2 Fig. 20.9 In the Righi–Leduc experiment
a temperature gradient is measured perpendic-
ular to the heat flow direction and the applied
magnetic field.

gradient along [010].

h2 = −k213
dT

dZ1
B3 = −k11

dT

dZ2
.

As shown in Fig. 20.9, the experiment involves measuring the thermal gradient
in a direction perpendicular to the heat flow and the magnetic field. In terms of
the tensor coefficients, dT/dZ2 = (k213/k11)(dT/dZ1)B3 .This is the so-called
Righi–Leduc Effect or the Thermal Hall Effect.

The second of the thermomagnetic phenomena, the transverse thermal
magnetoresistance, is measured under similar conditions with heat flowing
along Z1 = [100] and a magnetic field parallel to Z3 = [001]. In this experi-
ment, the change in thermal conductivity is measured under an applied magnetic
field. The change in conductivity 	k11 is proportional to B2

3:

	k11 = k1133B2
3.

The fractional change in thermal conductivity 	k11/k11 = k1133/k11 per unit
flux density is the Maggi–Righi–Leduc coefficient.

The remaining two effects are the thermal analogs to the electrical longit-
udinal magnetoresistance and the electrical planar Hall Effect. The tensor
coefficient for the longitudinal effect is k1111 relating the change in thermal
conductivity 	k11 = k1111B2

1 in a magnetic field parallel to the heat transport.
The thermal resistivity of metals generally increases in magnetic fields just

as the electrical resistivity does. Surprisingly large effects have been observed
in cadmium at low temperatures. At 4 K a magnetic field of 3000 gauss
(0.21 MA/m), doubles the longitudinal thermal resistance while the transverse
effect is increased by a factor of four.

In the experiment called the thermal planar Hall Effect, the temperature
gradient is applied parallel to [100] with the magnetic flux directed along [110].
The resulting heat flow is along [010]. The size of the effect is governed by
tensor coefficient k2121.

For lower symmetry crystals the number of thermomagnetic coefficients is
identical to the galvanomagnetic effects in Table 20.1. Thermomagnetic effects
are further complicated by accompanying thermoelectric effects that appear
when temperature gradients are present. Thermoelectricity is discussed in the
next chapter.

Problem 20.2
In this chapter the galvanomagnetic and thermomagnetic coefficients are written
in tensor notation. Show how these coefficients can be rewritten in matrix
notation. Define the symbols carefully and show how the matrix and tensor
coefficients are related to one another.
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When two different metals are connected together in a circuit (Fig. 21.1(a)) and
the two junctions are held at different temperatures, five physical phenomena
take place simultaneously. Thermal and electric currents flow in the circuit,
giving rise to Joule heating and thermal conduction. The driving forces for
these currents are three interrelated thermoelectric phenomena: the Seebeck
Effect, the Peltier Effect, and the Thomson Effect.

21.1 Seebeck Effect

For commonly used thermocouples (Fig. 21.1(b)), a voltage is developed when
the junctions are held at different temperatures. In practice, one junction is held
at a constant temperature (often the melting point of ice), and the open circuit
voltage is measured as a function of the temperature of the second junction. If the
reference temperature is 0◦C, then the thermocouple voltage can be expressed
as a power series.

V = αT + βT2 + γ T3 + · · · ,

where T is the temperature in ◦C and the coefficients depend on the choice of
metals. Data for Cu–Ni and Cu–Fe thermocouples are presented in Fig. 21.2
along with the governing equations. If the cold junction is at a temperature
other than 0◦C, it is only necessary to add a constant term. From this it follows
that dV/dT at one junction is independent of the temperature of the second
junction. The Seebeck coefficient α is defined as

α = lim
	T→0

	V

	T
= dV

dT
,

Fig. 21.1 Thermoelectric phenomena.
(a) Simple circuit of two metals. (b) Seebeck
Effect. (c) Peltier Effect. (d) Thomson Effect.
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where 	T is the difference in temperature between the two junctions of metals a
and b. 	V is the resulting open circuit voltage. The absolute Seebeck coefficient
or thermoelectric power for a single metal will be introduced later after deriving
the Kelvin Relations.
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Fig. 21.2 The Seebeck Effect is used
in thermocouples to measure temperature.
Equations and graphs are given for Cu–Ni and
Cu–Fe thermocouples showing the voltages
and their temperature dependence.

21.2 Peltier Effect

Consider a thermocouple with a battery as part of the circuit (Fig. 21.1(c)).
A current I flows through the circuit causing Joule heating (I2R), but there
is an additional thermal effect caused by the Peltier Effect. Heat is either
lost or gained, depending on the direction of the current through the junc-
tion between metals a and b. The Peltier coefficient π is defined by the
relation

Q = π I ,

where Q is the heat generated (or withdrawn) per second from the junction,
and I is the current flowing through the junction.

The Peltier coefficient is measured by passing a known current through a
junction and measuring the change in temperature with time. Knowing the rate
of change of temperature and the heat capacity of the junction gives the rate
at which heat is exchanged with the surroundings. The Peltier coefficient is
obtained after correcting for I2R loss.

Based on these measurements it is found that the Peltier heat is linearly
proportional to the current I , and is reversed in sign when I is reversed in
direction. The magnitude of the Peltier coefficient depends on the materials
and on temperature. Peltier coefficients for a Cu–Ni thermocouple are listed in
Table 21.1.

Problem 21.1
Using the data for the Cu–Fe thermocouple given in Fig. 21.2, calculate the
Peltier heat transferred at a junction at a temperature T by a current of 1 µA in
an hour. Carry out the calculations for temperatures between 100◦C and 500◦C.
At what temperature is the Peltier heat zero?

21.3 Thomson Effect

Heat is conducted along both wires of a thermocouple when the junctions are at
different temperatures. When a battery is connected and current flows through

Table 21.1 Peltier coefficients for Cu–Ni junctions at
temperatures between 0◦C and 100◦C. The data for the
Peltier coefficient and the temperature dependence of
the Seebeck voltage provide a test of the first Kelvin

Relation, π/T = α

T (K) π (mV) π/T (µV/K) α (µV/K)

273 5.08 18.6 20.4
302 6.73 22.3 21.7
373 9.10 24.4 24.9
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Table 21.2 Thomson coefficients for Cu and Fe. The
difference between the coefficients is related to the Seebeck
and Peltier coefficients through the second Kelvin Relation

(γCu − γFe)/T = −dα/dT

273 K 373 K

γCu 1.6 µV/K 2.0 µV/K
γFe 7.2 µV/K 16.4 µV/K
(γCu − γFe)/T −0.020 µV/K2 −0.039 µV/K2

dα/dT +0.028 µV/K2 +0.033 µV/K2

the wires (Fig. 21.1(d)), heat must be added to keep the temperature gradient
constant. Allowing for Joule heating, heat must be added or extracted all along
the wires to restore the original temperature distribution.

To measure the Thomson heat in a portion of the wire, one allows a known
current to pass along a known temperature gradient. The rate at which Thomson
heat is transferred between the wire and the environment is equal to the rate
at which energy is dissipated in the wire minus the rate at which it is con-
ducted away. After correcting for Joule heating and thermal conductivity, the
Thompson heat is obtained from the remainder.

In a differential element of the wire, the Thomson heat term is

dQ = γ I dT ,

where Q is the heat, T the absolute temperature, I the current, and γ the
Thomson coefficient. The magnitude of the Thomson coefficient depends on
the metal and the mean temperature of the differential element. The sign of
the Thomson and Peltier coefficients reverse with current. Thomson coefficients
for copper and iron are given in Table 21.2.

21.4 Kelvin Relations and absolute thermopower

Thermodynamic relationships between the Seebeck, Peltier, and Thomson
coefficients are expressed through the two Kelvin Relations. For the thermo-
couple depicted in Fig. 21.1(a), operating under steady state conditions with a
small current I , the Joule heating is negligible. From energy conservation and
the First Law of Thermodynamics,

{(πab)2 − (πab)1}I
Peltier Heat

+
∫ 2

1
(γa − γb)I dT

Thomson Effect

=
∫ 2

1
αabI dT

Seebeck Effect

Differentiating, (
dπab

dT

)
+ (γa − γb) = αab.

Under these closed-system conditions there is no overall change in entropy.
From the Second Law of Thermodynamics,∫

I d
(πab

T

)
+

∫
γa − γb

T
I dT = 0.

Again differentiating,(
dπab

dT

)
−

(πab

T

)
+ (γa − γb) = 0.
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Combining the two differential forms gives the two Kelvin Relations:

First Kelvin Relation αab = πab

T

Second Kelvin Relation

(
dαab

dT

)
= γa − γb

T
.

Typical experimental verification of the two relations are given in Tables 21.1
and 21.2.

The values of the Seebeck and Peltier effects are obviously dependent on the
nature of both metals in the thermocouple. From the second Kelvin Relation
we can define an absolute Seebeck coefficient (or Thermopower) for a single
metal: To define the Seebeck coefficient αa for metal a, let

dαa

dT
= γa

T
,

where γa is the Thomson coefficient metal a. From the Third Law of Thermo-
dynamics it is known that α → 0 as T → 0. Therefore, for any metal,∫ α

0
dα =

∫ T

0
γ

dT

T
= α(T) = π(T)

T
.

To evaluate the absolute coefficients, it is necessary to measure one coefficient
that can be used as a standard. This has been done for lead by measuring the
Thomson coefficient γPb as a function of temperature, and then integrating the
expression

αPb(T) =
∫ T

0

γPb(T)

T
dT .

The thermopower of other elements can then be determined by measuring
the Seebeck coefficients of thermocouples with Pb as one of the metals
(Fig. 21.1(b)). For copper,

αCu = αCuPb − αPb.

The absolute Seebeck coefficients (thermopower) for ten metals are listed
Table 21.3, along with their pressure dependence. The temperature depend-
ence of the thermopower of aluminum and silver is shown in Fig. 21.3. α can
be either positive or negative and generally changes linearly with temperature.
At low temperatures below 100 K, the situation is more complicated, just as it is
for thermal conductivity (Fig. 18.8). The low temperature peak is caused by an
effect known as phonon drag. The electron transport caused by a temperature
gradient leads to changes in the phonon–electron interactions. As phonons
flow from the hot to the cold side, they drag electrons along, increasing the
thermopower.

Table 21.3 Thermopower coefficients of several metals measured at
273 K. The pressure dependence dα/dp is determined by compressing the
central wire in a thermocouple (Fig. 21.1(b)) and measuring the voltage in
a temperature gradient. α is expressed in µV/K and the pressure p in kbar

Metal α dα/dp Metal α dα/dp

Ag 1.4 8 Mg −1.4 −8
Al −1.85 −1.5 Ni −19 5.6
Au 1.9 4.0 Pd −9.0 22
Co −40 −14 Pt −4.6 14
Cu 1.7 3.0 W 0.1 11
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21.5 Practical thermoelectric materials

Thermoelectric refrigerators and generators are heat engines that employ the
Peltier or Seebeck Effects. Except for measuring temperature with thermo-
couples, the early work on thermoelectric devices made from metals was
disappointing because of the small thermoelectric coefficients and large ther-
mal conductivities. The situation changed with the discovery of much larger
Seebeck coefficients in semiconductors.

To understand the reasons, consider the origin of electrical conduction and
thermoelectric phenomena in metals and semiconductors. In metals each atom
contributes at least one electron that is able move freely. In semiconductors,
the number of charge carriers is hundreds or thousands of times smaller, which
accounts for the higher resistivity of these materials.
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Fig. 21.3 Absolute Seebeck Effect for Ag
and Al. Near room temperature α changes
slowly with temperature but phonon effects
increase α rapidly near 0 K.

When one end of the conductor is hotter than the other, electrons leave the
hot end more often than the cold end. Electrons tend to flow toward the cold
end, and since they are negatively charged, the cold end becomes negative.
(For p-type semiconductors, holes migrate to the cold end causing it to become
positively charged). As the charge builds up at the cold end, it begins to repulse
additional charge carriers, and an equilibrium is reached in which the net flow is
zero. Charges no longer accumulate but the cold end retains a negative charge.
The fewer the number of electrons available for the return flow to the hot end, the
higher will be the voltage attained at the cold end before equilibrium is reached.
Since the number of charge carriers is smaller in a semiconductor, a temperature
gradient creates a larger voltage than in a metal.

The efficiency for energy conversion in a thermoelectric power source or
refrigerator is proportional to the product(

TH − TC

TH

) (
α2

ρk

)
.

The first term is the Carnot efficiency which involves the absolute temperatures
of the hot (TH) and cold (TC) junctions. Greater efficiency is attained with
a large difference in temperature. The second term is the material figure of
merit where α is the Seebeck coefficient, ρ the electrical resistivity and k the
thermal conductivity. Schematically, when plotted as a function of the density
of charge carriers, α2 and ρ decrease while k increases. The material figure of
merit reaches a maximum at about 1025 charge carriers per cubic meter.

The thermoelectric circuit in most Seebeck and Peltier devices use p-type and
n-type semiconductors joined at the hot end (Fig. 21.4). Between the cold ends
may be an electric load such as a lamp, radio, or an electric motor. The current
produced in the n-type semiconductor flows from the hot to the cold end, while in
the p-type semiconductor it flows from cold to hot. Thus the current flows around

Fig. 21.4 Thermoelectric generators and
refrigerators operate between hot (TH ) and
cold (TC) temperatures using doped semi-
conductors. Typical efficiencies are in the
10–20% range.

n-type semiconductor

p-type semiconductor
p

n

Battery or load

TH

TC TC
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the entire circuit, including the load. It is important that the electrical resistivity
ρ in the thermoelectric material be low to minimize Joule heat dissipation.
It is also important that the thermal conductivity be small. Otherwise most of
the heat supplied to the hot side flows directly to the cold end without doing
useful work. This is why ρ and k appear in the figure of merit α2/ρk.

Near room temperature bismuth telluride (Fig. 21.5) is one of the most
efficient thermoelectrics. The Seebeck coefficients are about ±200 µV/K for
p- and n-type Bi2Te3, depending on doping level. Undoped material has mixed
electron–hole conduction, and therefore much smaller α coefficients. Like most
heavy-element compounds it also has low thermal conductivity which further
enhances the figure of merit. The thermopower of Bi2Te3, PbTe, and other
semiconductors are about two orders of magnitude larger than metals.

As pointed out earlier, the Carnot efficiency (TH − TC)/TH is also important
in thermoelectric devices. Semiconducting ceramics made of silicon carbide
are capable of operating over a wide temperature range, leading to much higher
efficiencies. Porous SiC has large α coefficients (Fig. 21.6), high electrical con-
ductivity, low thermal conductivity, and can operate at temperatures exceeding
1000◦C.

The use of functionally graded materials (FGM) is a second approach to
improving Carnot efficiency. Since the figure of merit (α2/ρk) material of each
thermoelectric material is rather sharply peaked with respect to temperature
(Fig. 21.7), a graded composite of two or three thermoelectrics can extend the
working range substantially. Semiconductors with increasingly wide band gaps,
are used in such a composite. The band gaps of Bi2Te3, PbTe, and Si0.7Ge0.3

are 0.13, 0.27, and 0.95 eV, respectively. Functionally graded materials such as
this generally belong to Curie group ∞m.

Te

Bi

a

c

Fig. 21.5 The crystal structure of Bi2Te3
consists of cubic close-packed layers of tel-
lurium and bismuth atoms. Easy cleavage
takes place between adjacent tellurium layers.
The point group is trigonal, 3̄m. Thermal
and electrical conductivities are largest in the
(001) planes. Similar anisotropy in the ther-
mopower has been observed in p-type bismuth
telluride.
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Fig. 21.6 Thermopower of silicon carbide
ceramics. p-type α-SiC is sintered in an argon
atmosphere while n-type β-SiC is prepared by
sintering in N2.

21.6 Tensor relationships

For anisotropic solids, the absolute Seebeck coefficient is a second rank tensor
αmn which relates electric field Em to a temperature gradient dT/dZn:

Em = αmn
dT

dZn
.

The corresponding relationship for the absolute Peltier coefficient πmn

(=Tαmn) is
hm = πmnJn,

where hm is the heat flow vector, and Jn is the electric current density. In describ-
ing thermoelectric phenomena these terms are combined with the second rank
tensors ρmn and kmn representing electrical resistivity and thermal conductivity.

Em = ρmnJn + αmn
dT

dZn

hm = πmnJn − kmn
dT

dZn
.

There is, however, an important difference between the transport tensors and
the thermoelectric tensors.
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0.0
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Temperature (°C)

Bi2Te3
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PbTe
Si0.7Ge0.3

�2 T
/�

k

Fig. 21.7 Functionally graded thermoelec-
tric devices utilize several different semicon-
ductors to provide a wider temperature range.

Onsager’s Principle requires that the electric resistivity and thermal conduct-
ivity tensors be symmetric, but this does not hold for the Seebeck and Peltier
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Table 21.4 Seebeck and Peltier coefficients for the 32 crystallographic
point groups and the seven Curie groups for textured solids

Point groups Tensor terms

1, 1̄


α11 α12 α13

α21 α22 α23
α31 α32 α33




2, m, 2/m


α11 0 α13

0 α22 0
α31 0 α33




222, mm2, mmm


α11 0 0

0 α22 0
0 0 α33




3, 3̄, 4, 4̄, 4/m, 6, 6̄, 6/m, ∞, ∞/m


 α11 α12 0

−α12 α11 0
0 0 α33




32, 3m, 3̄m, 422, 4mm, 4̄2m, 4/mmm
622, 6mm, 6̄m2, 6/mmm, ∞m, ∞2, ∞/mm


α11 0 0

0 α11 0
0 0 α33




23, m3, 432, 4̄3m, m3m, ∞∞m, ∞∞

α11 0 0

0 α11 0
0 0 α11




coefficients which relate two different flows. In the most general (triclinic) case
αmn �= αnm and πmn �= πnm. Thus there are nine coefficients to be determined
rather than six.

The thermoelectric tensor coefficients for other symmetry groups are given
in Table 21.4. Neumann’s Principle dictates that the Seebeck and Peltier
coefficients are symmetric for all the important thermoelectric materials in high
symmetry groups.
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Fig. 21.8 Magnetic fields affect the thermo-
power, resistivity and thermal conductivity.
The result can be an improvement in the
thermoelectric figure of merit.

21.7 Magnetic field dependence

When a magnetic field is applied to a thermoelectric device there can be sub-
stantially improved performance. Bi–Sb and other semimetal alloys show very
large changes in the figure of merit α2/ρk. In the presence of a transverse
field, the thermopower and the electrical resistivity increase while the thermal
conductivity decreases. The increase in resistivity is caused by the transverse
magnetoresistance effect (Section 20.2) and the decrease in thermal conductiv-
ity by the Maggi–Righi–Leduc Effect (Section 20.3). The net result of these
changes (Fig. 21.8) is an optimum value for the magnetic field.

To describe the effect of magnetic field on the absolute Seebeck and Peltier
coefficients, expand α in a power series in the magnetic flux density B. The
derivation follows the same procedure used earlier for the galvanomagnetic
effects (Section 20.1). The electromotive force Em coming from a temperature
gradient dT/dZn in the presence of a magnetic field is

Em = αmn

(
dT

dZn

)
+ αmnp

(
dT

dZn

)
Bp + αmnpq

(
dT

dZn

)
BpBq + · · · .

αmn is a polar second rank tensor, αmnp an axial third rank tensor, and αmnpq

a polar fourth rank tensor.
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Fig. 21.9 Nernst and Ettingshausen coeffi-
cients are related through the thermal
conductivity.

For cubic crystals and transverse magnetic fields, two important cross-
coupled phenomena are the Nernst and Ettingshausen Effects (Fig. 21.9). With
the magnetic field along Z3 = [001], the temperature gradient along Z1= [100],
and the voltage measured along Z2 = [010],

E2 = α213

(
dT

dZ1

)
B3.

This is the Nernst Effect that describes a voltage gradient perpendicular to the
heat flow. The Ettingshausen Effect relates a transverse thermal gradient trans-
verse to an electric current. Both are third rank tensor coefficients analogous to
the galvanomagnetic Hall Effect.

The magneto-Seebeck Effect controls the changes in thermopower with
magnetic field. With a transverse magnetic flux B3, the change in Seebeck
coefficient is

	α11 = E1

dT/dZ1
− α11(0) = α1133B2

3,

where α11(0) is the Seebeck coefficient measured in zero magnetic field.
This effect is analogous to the transverse magnetoresistance (Section 20.2).
Several other higher order effects are also involved in the coupling between the
thermoelectric effects and magnetic fields.

For lower symmetry crystals the number of cross-coupled effects proliferates
rapidly. The Onsager relations do not apply so there are far more second-, third-,
and fourth-rank coefficients than for the galvanomagnetic effects (Table 21.5).

Ferromagnetic crystals develop a thermoelectric effect that depends
of the direction of the saturation magnetization (specified by direction
cosines α1, α2, α3). It also depends on the direction of the temperature gra-
dient along which the thermoelectric voltage is measured (direction cosines β1,
β2, β3). For cubic ferromagnets the dependence of the thermoelectric voltage V
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Table 21.5 The number of second-, third-, and
fourth-rank coefficients for the Seebeck Effect and its

magnetic field dependence (the total number of nonzero
coefficients is followed by the number of independent

coefficients in parentheses)

Point groups αmn αmnp αmnpq

Triclinic
1, 1̄ 9(9) 27(27) 54(54)

Monoclinic
2, m, 2/m 5(5) 13(13) 28(28)

Orthorhombic
222, mm2, mmm 3(3) 6(6) 15(15)

Trigonal
3, 3̄ 5(3) 21(9) 47(18)
32, 3m, 3̄m 3(2) 10(4) 25(10)

Tetragonal
4, 4̄, 4/m 5(3) 13(7) 27(14)
422, 4mm, 4̄2m, 4/mmm 3(2) 6(3) 15(8)

Hexagonal
6, 6̄, 6/m 5(3) 13(7) 27(13)
622, 6mm, 6̄m2, 6/mmm 3(2) 6(3) 15(7)

Cubic
23, m3 3(1) 6(3) 15(15)
432, 4̄3m, m3m 3(1) 6(1) 15(3)

on the direction of Is is given by

V = 3

2
V100

(
α2

1β2
1 + α2

2β2
2 + α2

3β2
3 − 1

3

)

+ 3V111(α1α2β1β2 + α1α3β1β3 + α2α3β2β3).

The coefficients V100 and V111 refer to measurements carried out along the
[100] and [111] crystallographic axes with the temperature gradient and
magnetization parallel to the voltage measurement.

The derivation follows that of the magnetostrictive effect in Section 15.5.
Strain and thermopower are both second rank polar tensors so the mathematics
is similar.

Measurements on single crystals of iron and nickel gave the following results

Fe V100 = 0.70 µV/K V111 = −0.13 µV/K

Ni V100 = 0.57 µV/K V111 = 0.69 µV/K

Problem 21.2
Calculate the thermoelectric voltage V for Fe and Ni crystals fully magnetized
along the [110] direction. Plot V as a function of direction in the (110) plane
perpendicular to Is.
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Piezoresistivity, the change in electrical resistivity with mechanical stress, is
commonly used to monitor static or slowly varying stresses and strains. The
sensitivity of piezoresistive elements are often compared by means of a strain
gage factor: G = 	R/Rx. In this expression, 	R/R is the fractional change
in resistance associated with a strain x. G is a dimensionless quantity which
has a value of 2–4 for strain gages made from metal wire, and about 200 for
lightly-doped silicon.

22.1 Tensor description

In the discussion of galvanomagnetic effects, a power series expansion was
used to examine the dependence of resistivity on magnetic field (Section 20.1).
Other series expansions work equally well. Piezoresistivity involves the linear
and nonlinear relationships between electric field Ei, electric current density Jj,
and mechanical stress Xkl. Here the change in electric field dEi with current and
stress is expanded in a McLaurin Series.

dEi =
(

∂Ei

∂Jj

)
dJj +

(
∂Ei

∂Xkl

)
dXkl + 1

2

(
∂2Ei

∂Jj∂Jm

)
dJj dJm

+ 1

2

(
∂2Ei

∂Xkl∂Xno

)
dXkl dXno +

(
∂2Ei

∂Jj∂Xkl

)
dJj dXkl + · · · .

Each term in this series corresponds to a different physical property. (∂Ei/∂Jj)

is the electrical resistivity ρij, a second rank polar tensor. (∂Ei/∂Xkl) is the
piezoelectric voltage coefficient, gikl, a third rank polar tensor. (∂2Ei/∂Jj∂Jm)

is the change in electrical resistivity with current level. It is a third rank polar
tensor which describes deviations from Ohm’s Law. (∂2Ei/∂Xkl∂Xno) is a fifth
rank polar tensor representing the stress dependence of the piezoelectric voltage
coefficient.

The fifth term in the expansion, (∂2Ei/∂Jj∂Xkl), is the property of interest
in this chapter. It is a fourth rank polar tensor describing the dependence of
electrical resistivity on mechanical stress. The symbol πijkl is used to represent
piezoresistance in tensor form, and πij in matrix form.

Most strain gages are made from silicon and germanium crystals (point group
m3m). This is a centrosymmetric point group for which all odd rank polar tensors
disappear. Therefore the McLaurin series reduces to

dEi = ρijdJj + πijkldJj dXkl.
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Integrating, this becomes

Ei = ρijJj + πijklJjXkl.

The change in resistivity under stress is

	ρij = Ei − ρijJj

Jj
= πijklXkl.

In cubic crystals where ρij is a scalar, 	ρij is often written as a fractional
change in resistivity. For point group m3m there are three independent tensor
coefficients:

π1111 = π2222 = π3333

π1122 = π1133 = π2233 = π3322 = π2211 = π3311

π1212 = π1221 = π2112 = π2121 = π1313 = π1331

= π3113 = π3131 = π2323 = π2332 = π3223 = π3232.

All other tensor coefficients are zero.
The fourth rank piezoresistive tensor is similar, but not identical, to the fourth

rank elastic compliance tensor (Section 13.1). Comparing πijkl with sijkl, k and
l can be interchanged because the stress tensor Xkl is symmetric. Subscripts i
and j can also be interchanged because the conductivity σij and strain xij tensors
are also symmetric. But for πijkl, i and j cannot be interchanged with k and l
because the energy argument in Section 13.1 does not apply.

Therefore the piezoresistivity tensor is not quite as symmetric as the com-
pliance tensor in that sijkl = sklij but πijkl �= πklij. For silicon and other highly
symmetric crystals this does not make any difference because Neumann’s Law
applies in the usual way, and the matrices are identical.

22.2 Matrix form

Piezoresistive components are generally presented in the shortened matrix form.
For triclinic crystals,




	ρ1

	ρ2

	ρ3

	ρ4

	ρ5

	ρ6




=




	ρ11

	ρ22

	ρ33

	ρ23

	ρ13

	ρ12




=




π11 π12 π13 π14 π15 π16

π21 π22 π23 π24 π25 π26

π31 π32 π33 π34 π35 π36

π41 π42 π43 π44 π45 π46

π51 π52 π53 π54 π55 π56

π61 π62 π63 π64 π65 π66







X1

X2

X3

X4

X5

X6




.

Thirty-six measurements would be required to specify piezoresistivity in
a triclinic crystal but symmetry simplifies the matrix for other point groups.
For silicon and other crystals belonging to m3m, 4̄3m, or 432, there are just
three independent coefficients, π11, π12, and π44. For isotropic polycrystalline
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materials there are only two independent coefficients since π44 = π11 − π12.


	ρ1

	ρ2

	ρ3

	ρ4

	ρ5

	ρ6




=




π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44







X1

X2

X3

X4

X5

X6




.

Matrices for other crystallographic point groups are nearly identical to
the magnetostrictive matrices given in Table 14.3. The only differences are
in the expressions for N44 and N66 in those point groups where these elements
are equal to 1

2 (N11 − N12). The factor of 1
2 is not needed for the piezoresistivity

coefficients. Otherwise the matrices are the same for the π and N coefficients.
The relationship between the matrix and tensor coefficients involves factors

of 2 whenever πij has i = 1–6, j = 4–6. Therefore, π11 = π1111, π12 = π1122,
π16 = 2π1112, π66 = 2π1212, etc.

The three most important experimental configurations are for the longi-
tudinal and transverse stresses, and for hydrostatic pressures. Two of the three
piezoresistance coefficients for cubic crystals can be determined from these
measurements. Using a long slender crystal oriented along Z1 = [100], with
current, voltage and tensile stress in the same direction, the fractional change
in resistivity is

	ρ11

ρ(0)
= 	ρ1

ρ(0)
= π1111X11

ρ(0)
= π11X1

ρ(0)
,

where ρ(0) is the resistivity measured at zero stress.
Coefficient π12 is measured with current and voltage along [100] = Z1 with

stress applied in the transverse [010] = Z2 direction.

ρ11

ρ(0)
= ρ1

ρ(0)
= π1122X22

ρ(0)
= π12X2

ρ(0)
.

For hydrostatic conditions the resistivity is monitored under pressure p. In this
case X1 = X2 = X3 = −p and X4 = X5 = X6 = 0.

	ρ1

ρ(0)
= −p(π11 + 2π12)

ρ(0)
.

The third independent coefficient, π44, can be determined from measure-
ments in other directions.

22.3 Longitudinal and transverse gages

Piezoresistive stress and strain gages are generally made of doped silicon or
germanium crystals. The crystals are mounted on the test specimen with stress
applied either in the longitudinal or transverse direction (Fig. 22.1).

To determine the most sensitive orientation for the longitudinal gage,
coefficient π ′

11 is evaluated as a function of direction. For the longitudinal
gage, the stress is applied along Z ′

1, the same direction as the resistivity meas-
urement. The direction cosines between the arbitrary direction Z ′

1 and the cube
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Fig. 22.1 Longitudinal (a) and transverse (b)
piezoresistive strain gages.
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F
I
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(b)
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Tensile stress

Table 22.1 Piezoresistive coefficients for selected directions in cubic crystals.
All directions are equally sensitive if the anisotropy factor

π11 − π12 − π44 = 0. Isotropy has been observed in the Si–Ge solid solution
series

Longitudinal π� Transverse πt
direction direction

[100] π11 [010] π12
[001] π11 [110] π12

[111] 1
3 (π11 + 2π12 + 2π44) [11̄0] 1

3 (π11 + 2π12 − π44)

[11̄0] 1
2 (π11 + π12 + π44) [111] 1

2 (π11 + 2π12 − π44)

[1̄10] 1
2 (π11 + π12 + π44) [001] π12

[110] 1
2 (π11 + π12 + π44) [11̄0] 1

2 (π11 + π12 − π44)

axes are a11, a12, and a13. For a cubic crystal,

π ′
11 = π ′

1111 = a1ia1ja1ka1lπijkl

= (
a4

11+ a4
12+ a4

13

)
π1111 + (

a2
11a2

12 + a2
11a2

13 + a2
12a2

13

)
(2π1122+4π1212).

Substituting the matrix coefficients, and remembering that a2
11 + a2

12+
a2

13 = 1, the expression for π ′
11 can be further simplified using the identity(

a2
11 + a2

12 + a2
13

)2 = 1 = (
a4

11 + a4
12 + a4

13

) + 2
(
a2

11a2
12 + a2

11a2
13 + a2

12a2
13

)
.

The longitudinal piezoresistive coefficient π� = π ′
11 becomes

π� = π11 − 2(π11 − π12 − π44)(a
2
11a2

12 + a2
11a2

13 + a2
12a2

13).

This expression is evaluated for various directions in Table 22.1.
For the transverse gage in Fig. 22.1, the governing coefficient is π ′

12 = πt .
A tensile stress X ′

2 = X ′
22 is applied perpendicular to Z ′

1, the direction of the
resistivity measurement. For the cubic system,

πt = π ′
12 = π ′

1122 = a1ia1ja2ka2lπijkl

= π1111
(
a2

11a2
21 + a2

12a2
22 + a2

13a2
23

)
+ π1122

(
a2

11a2
22 + a2

12a2
21 + a2

13a2
21 + a2

13a2
22 + a2

12a2
23 + a2

11a2
23

)
+ π1212(a11a12a21a22 + a11a13a21a23 + a12a13a22a23).

Converting to matrix coefficients and making use of the identities

(a11a21 + a12a22 + a13a23)
2 = 0

or(
a2

11a2
21+ a2

12a2
22 + a2

13a2
23

) + 2(a11a21a12a22 + a11a21a13a23+ a12a22a13a23)

= 0
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and (
a2

11 + a2
12 + a2

13

)(
a2

21 + a2
22 + a2

23

) = 1,

we find that

πt = π12 + (π11 − π12 − π44)
(
a2

11a2
21 + a2

12a2
22 + a2

13a2
23

)
.

πt is evaluated for several cubic directions in Table 22.1. These expressions are
similar to those obtained for the elastic constants of cubic crystals. The maxima
and minima for the π ′

11surface will lie along [100] and [111] or vice versa.
When optimizing a longitudinal gage it is important to maximize the sens-

itivity to the longitudinal stress, but it is equally important to minimize the
sensitivity to transverse stress. The reverse is true for a transverse piezores-
istive gage in which the transverse sensitivity is maximized and the longitudinal
sensitivity is minimized.

22.4 Structure–property relations

Numerical values of the piezoresistance coefficients in four semiconductor crys-
tals are listed in Table 22.2. Note the very large anisotropy in the π coefficients.
π11 is extremely large in n-type silicon while π44 is largest in n-Ge, p-Ge,
and p-Si. The preferred orientation of longitudinal stress gages cut from n-Si
has the stress along [11̄0] with [111] in the transverse direction. For the other
three crystals stress is along [110], with [001] is the transverse direction. These
choices ensure that the gages are not affected by transverse stresses and shear
stresses.

The causes of the large anisotropy in piezoresistance coefficients have been
explained from the energy band structure in momentum space (Fig. 22.2).

Table 22.2 Fractional changes in piezoresistivity for doped silicon and
germanium crystals

Material-ρ(0) π11/ρ(0) π12/ρ(0) π44/ρ(0)

(×10−11 m2/N) (×10−11 m2/N) (×10−11 m2/N)

n-Ge 150 � m −2.3 −3.2 −138.1
p-Ge 110 � m −3.7 +3.2 +96.7
n-Si 1170 � m −102.2 +53.4 −13.6
p-Si 780 � m +6.6 −1.1 +138.3
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Fig. 22.2 E(k) curves for doped silicon and
germanium crystals.
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For n-Si the energy valleys in k-space extend along 〈100〉 directions, but in
the other three crystals (p-Ge, n-Ge, and p-Si) 〈111〉 directions are favored.

When a mechanical stress is applied to the crystal the atom spacings are
changed and the energy levels shifted. As a result conduction electrons (or holes)
shift between valleys, and the electrical resistivity changes. π11 is large in n-Si
because the shifts are large with valleys along [100]. The [111] body diagonal
valleys cause large π44 coefficients in the other crystals.

The piezoresistivity coefficients of the semiconductor sensors depend on
temperature and dopant concentration. At room temperature and above, the
coefficients are inversely proportional to temperature (π ∼ 1/T ) because of
intervalley scattering. For p-Si, the inverse relation holds over the range from
−100 to 80◦C.

The piezoresistance coefficients are also inversely proportional to dopant
level when measured at 300 K. The π11 coefficient of n-Si drops from
150 (×10−11 m2/N) to 40 as the dopant concentrations is increased from 1016

to 2020 impurities/cm3.

Problem 22.1
Describe how piezoresistance coefficient π44 can be measured using only
tensile force experiments.

Problem 22.2
Most piezoresistive sensors use p-type silicon because of orientation limita-
tions encountered during anisotropic etching (Section 32.6). Make plots of the
longitudinal (π�) and transverse (πt) piezoresistance coefficients in the (11̄0)

plane where the [111], [110], and [001] directions are found. Numerical values
for p-Si are listed in Table 22.2.

Problem 22.3
Elastoresistance refers to the linear relation between electrical resistivity and
mechanical strain, rather than mechanical stress as in piezoresistance. Show
how the two effects are related through the elastic constants. Set up the defin-
ing equations in both tensor and matrix form, and work out the relationships
between the elastoresistive and piezoresistive coefficients of cubic crystals.
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In this chapter we treat plane waves (Fig. 23.1) specified by a wave normal
�N and a particle motion vector �U. Two types of waves, longitudinal waves
and shear waves, are observed in solids. For low symmetry directions, there
are generally three different waves with the same wave normal, a longitudinal
wave and two shear waves. The particle motions in the three waves are perpen-
dicular to one another. Only longitudinal waves are present in liquids because
of their inability to support shear stresses. The transverse waves are strongly
absorbed.

λ/2

Plane waves

Wave 
normal

Wave front

Longitudinal
wave

Transverse
wave

Particle
motion

U
–

N
–

Fig. 23.1 Acoustic waves are described by a
wave normal �N and a particle motion vector
�U which is parallel to �N (or nearly so) for lon-
gitudinal waves. For shear waves the particle
displacement is in the perpendicular direction.
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Fig. 23.2 Longitudinal waves in alkali metals
travel at about twice the speed of transverse
sound waves. Measurements were carried
out on polycrystalline specimens at room
temperature.

Acoustic wave velocities (v) are controlled by elastic constants (c) and
density (ρ).

v = υλ =
√

c

ρ
.

For a stiff ceramic (c ∼ 5 × 1011 N/m2) and density (ρ ∼ 5 g/cm3 =
5000 kg/m3), the wave velocity is about 104 m/s. For low frequency vibra-
tions near 1 kHz the wavelength λ is about 10 m. The shortest wavelengths are
around 1 nm and correspond to infrared vibrations of 1013 Hz.

Acoustic wave velocities for polycrystalline alkali metals are plotted in
Fig. 23.2. Longitudinal waves travel at about twice the speed of transverse
shear waves since c11 > c44. Sound is transmitted faster in light metals like Li
which have shorter, stronger bonds and lower density than heavy alkali atoms
like Cs.

23.1 The Christoffel Equation

The tensor relation between velocity and elastic constants is derived using
Newton’s Laws and the differential volume element shown in Fig. 23.3(a). The
volume is equal to (δZ1) (δZ2) (δZ3).

Acoustic waves are characterized by regions of compression and rarefac-
tion because of the periodic particle displacements associated with the wave.
These displacements are caused by the inhomogeneous stresses emanating from
the source of the sound. In tensor form the components of the stress gradient
are ∂Xij/∂Zk and will include both tensile stress gradients and shear stress
gradients, as pictured in Fig. 23.3(b).

The force F acting on the volume element is calculated by multiplying
the stress components by the area of the faces on which the force acts.
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Fig. 23.3 A differential volume element (a)
and a section perpendicular to Z3 showing
stress gradients for both tensile and shear
forces (b).
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F1, the component of force along Z1, is given by

F1 =∂X11

∂Z1

(
1

2
δZ1 + 1

2
δZ1

)
(δZ2δZ3) + ∂X12

∂Z2

(
1

2
δZ2 + 1

2
δZ2

)
(δZ1δZ3)

+ ∂X13

∂Z1

(
1

2
δZ3 + 1

2
δZ3

)
(δZ1δZ2)

=∂X1j

∂Zj
(δZ1δZ2δZ3).

Generalizing this result to all three force components,

Fi = ∂Xij

∂Zj
δV = ∂Xij

∂Zj

δm

ρ
,

where δV is the volume of the differential element, δm is its mass, and ρ the
density.

From Newton’s Second Law, the force is equal to the product of the mass
and the acceleration üi.

Fi = (δm)üi = ∂Xij

∂Zj

(δm)

ρ
.

The equation of motion is

ρüi = ∂Xij

∂Zj
,

where ui is the displacement of the volume element in the ith direction.
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Elastic constants cijkl are introduced into the equation of motion through
Hooke’s Law

Xij = cijklxkl.

Referring back to the defining relation for strain (Section 10.3),

xkl = ∂uk

∂Zj
.

Substituting these two relationships into the equation of motion gives

ρüi = cijkl
∂

∂Zj

(
∂uk

∂Z�

)
.

The Christoffel Equation is obtained from the plane wave solution to the
equation of motion. A plane wave is represented by

uk = Ak exp i(ωt − �k · �Z) = Ak exp i(ωt − kiZi)

in which uk is the kth component of the displacement of the volume element from
its origin at rest. Ak is the wave amplitude, i is

√−1, ω is the angular frequency,
�k is the wave vector parallel to the wave normal, and �Z the coordinate vector.
The magnitude of |�k| is 2π/λ, where λ is the wavelength, and the scalar product

�k · �Z = k1Z1 + k2Z2 + k3Z3 = kiZi.

Taking the derivatives of u with respect to time and space gives the acceleration

üi = ∂2ui

∂t2
= −ω2ui,

strain

xkl = ∂uk

∂Z�

= −ik�uk

and strain gradient,

∂xkl

∂Zj
= ∂2uk

∂Z�∂Zj
= −k�kjuk .

The equation of motion now becomes

ρüi = −ρω2ui = cijkl
∂2uk

∂Zj∂Z�

= −cijklk�kjuk .

To simplify further, let Uk = Ak/A where �U is a unit vector denoting the
orientation of the particle motion relative to the coordinate axes. Uk is the
direction cosine of �U with the kth axis. A is the amplitude of the wave and Ak is
its projection on the kth axis.

In a similar way, �N is defined as a unit vector parallel to the wave normal.
Its projection on the reference axis Zj is given by

Nj = kj

k
,

where k (=2π/λ) is the wave vector and kj its jth component.
�U and �N are illustrated in Fig. 23.1, and Uk and Nj are the direction cosines

of the particle motion and wave normal.
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Substituting these concepts into the equation of motion,

ρüi = cijklk�kjuk

ρω2Ai exp i(ωt − kiZi) = cijklk�kjAk exp i(ωt − kiZi)

ρω2AUi = cijklN�Njk
2UkA.

The wave velocity v is introduced through the relation

v2 = (2πυ)2

(2π/λ)2
= ω2

k2

giving the Christoffel Equation

ρv2Ui = cijklNjUkN�.

The Christoffel Equation relates the ultrasonic wave velocities, wave normals,
polarization directions, and elastic constants.

23.2 Acoustic waves in hexagonal crystals

As an illustration of the Christoffel Equation, we examine sound waves in
hexagonal crystals. All seven hexagonal classes have the same elastic stiffness
matrix. 



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66




There are five independent elastic constants c11 = c1111, c12 = c1122, c13 =
c1133, c33 = c3333, and c44 = c2323. Coefficient c66 = 1

2 (c11 − c12).
For waves traveling along the Z1 = [100] axis, the direction cosines of the

wave normal are N1 = 1, N2 = N3 = 0. Therefore j = l = 1 in the Christoffel
Equation:

ρv2Ui = ci1k1Uk .

There are three solutions (i = 1, 2, 3) to the equation leading to three different
sound waves. For i = 1,

ρv2U1 = c11k1Uk

= c1111U1 + c1121U2 + c1131U3

= c11U1 + c16U2 + c15U3

= c11U1.

For hexagonal crystals since c15 = c16 = 0, the particle motion for this wave
is parallel to the wave normal Z1 making it a longitudinal wave. The velocity
of this wave is v = √

c11/ρ.
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The second solution with i = 2 is

ρv2U2 = c21k1Uk

= c2111U1 + c2121U2 + c2131U3

= c61U1 + c66 U2 + c65U3

= c66U2 = 1
2 (c11 − c12)U2

for hexagonal crystals. This is a transverse wave polarized along Z2 = [120],
perpendicular to the wave normal along Z1 = [100]. The speed is v =√

(c11 − c12)/2ρ.
The third wave (i = 3) gives a Christoffel relation

ρv2U3 = c3111U1 + c3121U2 + c3131U3 = c44U3.

For the hexagonal case, the third wave is a transverse shear wave polarized
along Z3 = [001] with velocity v = √

c44/ρ.
In summary, there are three acoustic waves moving along [100]: a longi-

tudinal wave polarized parallel to [100], a shear wave polarized parallel to
[120], and another polarized parallel to [001]. The longitudinal wave travels
faster since c11 is generally larger than c44 and c66.

With the wave normal along Z2 = [120] (N1 = N3 = 0 and N2 = 1), the
Christoffel Equation becomes

ρv2Ui = ci2k2Uk .

For hexagonal crystals, this leads to three similar waves with analogous polar-
ization directions and the same velocities as the three waves traveling along
Z1 = [100].

Waves along Z3 = [001] (N1 = N2 = 0, N3 = 1) are described by the
equation

ρv2Ui = ci3k3Uk .

For hexagonal crystals the three solutions are

i = 1 ρv2U1 = c44U1

i = 2 ρv2U2 = c44U2

i = 3 ρv2U3 = c33U3.

The first and second waves are shear waves transversely polarized along Z1 =
[100] and Z2 = [120]. They are referred to as degenerate modes since they
travel with the same velocity, v = √

c44/ρ.
The third wave is a longitudinally polarized wave with particle motion along

Z3 = [001]. Its velocity is v = √
c33/ρ.

As mentioned earlier (Section 13.5) elastic constants are often measured
ultrasonically. Quartz transducers are used to generate longitudinal and trans-
verse sound waves. AC-cuts are used for shear waves and the thickness mode of
X-cuts for longitudinal waves. The crystals are operated in a pulsed mode and
used to launch the wave and receive the reflected wave from the opposite face.
Wave velocities are measured by timing the waves electronically.

Of the five independent elastic constants for hexagonal crystals, four can be
measured from acoustic waves traveling along Z1 and Z3. Only stiffness coeffi-
cient c13 remains undetermined. This can be done from an inclined direction
such as N1 = 1/

√
2, N2 = 0, N3 = 1/

√
2.
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The Christoffel Equation becomes 2ρv2Ui = ci1k1Uk + ci1k3Uk + ci3k1Uk +
ci3k3Uk . Again there will be three waves corresponding to i = 1, 2, 3.

For i = 1, this simplifies to

2ρv2U1 = (c11 + c44)U1 + (c13 + c44)U3.

For i = 2

2ρv2U2 = (c66 + c44)U2 =
(

1

2
c11 − 1

2
c12 + c44

)
U2.

For i = 3

2ρv2U3 = (c44 + c13)U1 + (c44 + c33)U3.

The second root is a pure shear wave polarized parallel to Z2 = [120].
Coefficient c13 can be determined from the other two roots corresponding to i =
1 and i = 3. Multiplying the two equations together gives (2ρv2 − c11 − c44)×
(2ρv2 − c33 − c44) = (c13 + c44)

2.
Solving for the unknown coefficient c13,

c13 = ±
√

(2ρv2 − c11 − c44)(2ρv2 − c33 − c44) − c44.

To determine the polarization directions for these two waves we solve the two
equations for U3/U1:

U3

U1
= −1

2

[
c11 − c33

c13 + c44

]
±

√
(c11 − c33)2

4(c13 + c44)2
+ 1.

Consider the quantity c11 − c33 which appears in both terms. If the hexagonal
crystal was elastically isotropic, then c11 = c33, and U3/U1 = ±1. When
U3 = U1 then the vibration direction is parallel to the wave normal (N1 = N3).
When U3 = −U1 the vibration direction is perpendicular to the wave normal,
making it a transverse vibration. Thus these two situations correspond to a pure
longitudinal wave and a pure shear wave.

In most hexagonal crystals, however, c11 − c33 �= 0, and the vibration
directions of the two waves will not be purely longitudinal or purely trans-
verse. One will be quasilongitudinal and the other will be quasitransverse. The
quasilongitudinal wave will generally be faster than the quasitransverse wave.
The third wave traveling in this direction is a pure shear wave polarized parallel
to Z2 = [120].

For all four wave normals considered in this example, there was a longitud-
inal (or quasilongitudinal) wave and two transverse (or quasitransverse waves)
waves which usually travel at a slower velocity. This is true in general for
crystals.

If the wave (or phase) velocity is plotted as a function of the wave normal,
a triple surface is obtained corresponding to the three waves in any direction.

The phase velocity surfaces in α-quartz (point group 32) are shown in
Fig. 23.4. Note that the surfaces viewed along Z1 = [100] and Z3 = [001]
have two and threefold symmetry in accordance with Neumann’s Law which
says that the symmetry of a physical property must include the symmetry of
the point group.
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Fig. 23.4 Wave velocity surfaces for α-quartz
(SiO2) at room temperature. One surface
(usually the fastest wave) corresponds to
longitudinal polarization (or nearly so) and
two to transverse waves (labeled T ). Note
that the two transverse waves travel with
the same velocity along Z3, the so-called
“acoustic” axis.

23.3 Matrix representation

The previous section on hexagonal crystals outlines some of the basic ideas, but
now we need to generalize the discussion of acoustic waves to treat all directions
in all crystals, even those of lowest symmetry. When written in matrix form,
triclinic crystals have 36 elastic constants, 21 of which are independent. The
Christoffel Equation can be rewritten as

(cijklNjNl − ρv2δik)Ui = 0,

where δik is the Kronecker delta. To express the equation in matrix form we
introduce a set of Christoffel matrix coefficients Cik .

Cik ≡ 1

ρ
cijklNjNl.

In the general case of a triclinic crystal,

Cik = 1

ρ

[
ci1k1N2

1 + ci2k2N2
2 + ci3k3N2

3 + (ci2k3 + ci3k2)N2N3

+ (ci1k3 + ci3k1)N1N3 + (ci1k2 + ci2k1)N1N2
]
.

To illustrate the matrix method, we write out C22 and C13. The tensor stiffness
cijkl are converted to matrix stiffnesses cmn where m, n = 1–6.

C22 = 1

ρ

[
c66N2

1 + c22N2
2 + c44N2

3 + (c24 + c24)N2N3

+ (c46 + c46)N1N3 + (c26 + c26)N1N2
]

C13 = 1

ρ

[
c15N2

1 + c46N2
2 + c35N2

3 + (c36 + c45)N2N3

+ (c13 + c55)N1N3 + (c14 + c56) N1N2
]
.

The other four Christoffel coefficients (C11, C33, C12, and C23) are evaluated
in a similar way. All six can be combined in the Christoffel matrix given in
Table 23.1.
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Table 23.1 Matrix components of the Christoffel Tensor
Cik = (1/ρ)cijklNjNl . These coefficients are used to calculate the wave
velocities of sound waves in triclinic crystals. N1, N2, and N3 are the

direction cosines of the wave normal

N2
1 N2

2 N2
3 N2N3 N3N1 N1N2

C11 11 66 55 2 × 56 2 × 15 2 × 16
C22 66 22 44 2 × 24 2 × 46 2 × 26
C33 55 44 33 2 × 34 2 × 35 2 × 45
C23 56 24 34 23 + 44 36 + 45 25 + 46
C13 15 46 35 36 + 45 13 + 55 14 + 56
C12 16 26 45 25 + 46 14 + 56 12 + 66

Knowing the elastic constants of a crystal, it is a straightforward matter
to evaluate Christoffel matrix coefficients. For the solution of the Christoffel
Equation to be nonzero, the determinant of the coefficients of the equation must
vanish. This means that |Cik − v2δik| = 0.

Written as a matrix,∣∣∣∣∣∣∣
C11 − v2 C12 C13

C12 C22 − v2 C23

C13 C23 C33 − v2

∣∣∣∣∣∣∣ = 0.

When multiplied out,

(C11 − v2)(C22 − v2)(C33 − v2) − C2
23(C11 − v2) − C2

13(C22 − v2)

− C2
12(C33 − v2) + 2C12C13C23 = 0.

This is a cubic equation in v2 so there are three waves traveling in the direction
�N with wave normal direction cosines N1, N2, and N3. For the general triclinic
case the three waves will travel with different speeds vI, vII, and vIII. Each of
the so-called isonormal waves will have its own vibration direction UI, UII,
and UIII. In the general case, two of the waves will be quasitransverse and one
quasilongitudinal. The vibration directions are determined by substituting the
solutions for v in the Christoffel Equations.

23.4 Isotropic solids and pure mode directions

Polycrystalline solids, glasses, and normal liquids have isotropic (spherical)
symmetry, point group ∞∞m. The nonzero elastic constants are c11 = c22 =
c33, c12 = c13 = c23, and c44 = c55 = c66 = 1

2 (c11 − c12).
As an illustration of the Christoffel matrix method, we evaluate acoustic

waves in an isotropic solid. Since all directions are the same in an isotropic
material, we arbitrarily select the wave normal along Z1 for which N2

1 = 1,
N2

2 = N2
3 = 0, N1N2 = N2N3 = N3N1 = 0. The Christoffel coefficients are

C11 = c11

ρ
, C22 = c44

ρ
, C33 = c44

ρ
, C23 = C13 = C12 = 0.

The determinant used to obtain the phase velocities is (C11 −v2)(C22 −v2)×
(C33 − v2) = 0, leading to the result that there is a pure longitudinal wave
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with velocity vL = √
c11/ρ and two pure degenerate shear waves with velocity

vT = √
c44/ρ.

Acoustic waves in isotropic materials are always pure modes in the sense
that the particle velocity is always either parallel or perpendicular to the wave
normal �N . Pure modes are so much easier to handle than quasilongitudinal
or quasitransverse waves, that it is interesting to inquire where they are located
in solids of lower symmetry.

As pointed out earlier, for any given wave normal, there are always three
solutions to the Christoffel Equation. If there are no symmetry restrictions, the
three waves travel with different velocities with different vibration directions.
The three vibration directions are perpendicular to one another. The vibration
direction closest to the wave normal is called the quasilongitudinal wave. The
other two are called quasitransverse. When no mirror planes or rotation axes
are present, there are no pure modes. This is the case for triclinic crystals in
point groups 1 or 1̄. Since elastic vibrations are centrosymmetric, the inversion
center makes no difference.

Next consider a monoclinic crystal belonging to point group m. If the wave
normal is perpendicular to the mirror plane, two of the vibration directions
must be parallel to the mirror, and the other is parallel to the wave normal
and perpendicular to the mirror plane. In other words, all three waves are pure
vibration modes.

If the wave normal is parallel to the mirror then two of the vibration
directions may also lie in the plane without violating Neumann’s Principle. One
wave will be the quasilongitudinal wave, the other is quasitransverse. The third
wave is a pure transverse mode with the vibration direction perpendicular to
the mirror plane. It is required to be perpendicular to the other two vibration
directions.

When the wave normal is in any other orientation it is not a symmetry
direction and its vibration directions are not restricted by Neumann’s Law.
In this case the three waves are quasitransverse and quasilongitudinal as in the
triclinic system.

Similar symmetry arguments apply to acoustic waves in crystals belonging
to other symmetry groups. Restrictions are placed on the vibration directions
whenever the wave normal is either parallel or perpendicular to a mirror plane
or rotational symmetry axis. The key idea is the orientation of the wave normal
relative to the symmetry element. If the wave normal possesses a certain sym-
metry then the vibration directions of the three associated acoustic waves must
conform to this symmetry.

Table 23.2 identifies the pure modes and degenerate modes for various
wave normal orientations. When the wave normal is parallel to a rotation
axis of threefold symmetry or higher, the two transverse shear modes are
degenerate.

Pure modes may propagate along nonsymmetry directions when certain rela-
tionships between elastic constants are satisfied. In hexagonal crystals, for
example, when the wave normal makes an angle θ with the sixfold symmetry
axis, where θ is given by

cot2 θ = c11 − 2c44 − c13

c33 − 2c44 − c13
,

the shear wave is polarized perpendicular to the wave normal.
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Table 23.2 The symmetry of the wave normal determines which acoustic waves
are pure longitudinal (P) and which are quasilongitudinal (Q), and which

transverse waves are pure (P) and which are not (Q). The transverse waves
traveling along high symmetry directions are pure waves with the same

velocity (P = P)

Special orientation of wave normal Longitudinal wave Two transverse
waves

None Q Q Q
Parallel to a mirror plane or

perpendicular to a 2-, 3-, 4-, 6-,
or ∞-fold rotation axis

Q P Q

Parallel to twofold axis or
perpendicular to a mirror plane

P P P

Parallel to 3-, 4-, 6-, or ∞-fold
rotation axis

P P = P

Problem 23.1
The mineral aragonite (CaCO3) is orthorhombic, point group mmm, with
twofold symmetry axes along [100], [010], and [001]. The density of aragonite
is 2700 kg/m3. The following acoustic wave velocities were measured. Deter-
mine as many stiffness coefficients as possible from these data. Which elastic
constants remain to be determined? Suggest acoustic experiments that could be
used to complete the stiffness measurements.

Wave normal Polarization Speed
orientation [km/s]

[100] [100] 7.68
[100] [010] 3.96
[100] [001] 3.08
[010] [010] 5.68
[010] [100] 3.96
[010] [001] 3.90
[001] [001] 5.59
[001] [100] 3.08
[001] [010] 3.90

23.5 Phase velocity and group velocity

The group velocity of an elastic wave is the velocity of energy flux. In isotropic
materials the energy flow is parallel to the wave normal, but in anisotropic
media the two vectors are often oriented differently. This can create complica-
tions in experiments where the acoustic beam reflects from side faces of the
crystal (Fig. 23.5) causing multiple scattering and confusion in measuring
elastic constants.

∆

Piezoelectric transducer
Energy flux

Wave
normal

Fig. 23.5 Beam divergence takes place when
the energy flow is not parallel to the wave
normal. Difficulties arise when the divergence
angle 	 becomes large.

The phase velocities of zinc are plotted as a function of wave normal in
Fig. 23.6. As pointed out in Section 13.6, zinc has a hexagonal close-packed
crystal structure, but the unit cell has a rather large c/a ratio. Zn–Zn bonds in
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the close-packed [001] plane are therefore the shortest and strongest. As a result
the structure is stiffer in the Z1 and Z2 directions, and more compliant along
Z3, the sixfold symmetry axis. Stiffness coefficient c33 is therefore smaller than
c11 and c22, and longitudinal acoustic waves along Z3 are slower than in the
perpendicular directions. This is quite apparent in the phase velocity surface.
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Fig. 23.6 (a) The acoustic phase velocity sur-
face for zinc single crystals. Waves are fastest
in the hexagonal (001) plane where the bond
lengths are shorter. L refers to the longitudinal
wave, T1 the pure transverse wave, and T2 the
quasitransverse wave. (b) Divergence angles
	 for acoustic waves in single crystal zinc,
plotted as a function of θ , the angle between
the wave normal and Z3, the sixfold symmetry
axis. Note that 	 is large for the quasilongit-
udinal wave (L) and the quasitransverse wave
(T2) near θ = 10◦ where the phase velocity
changes rapidly with angle.

Another result of the elastic anisotropy is beam divergence. Divergence
angles 	 of almost 40◦ are observed for zinc single crystals (Fig. 23.6(b)).
Symmetry requires that 	 = 0 along Z3 = [001] and Z1 = [100]. Comparing
Fig. 23.6(a) and (b), it is apparent that the divergence increases rapidly for those
angles where the wave velocity is changing rapidly with direction.

The divergence angles and group velocities can be obtained in a simple geo-
metric procedure by replotting the wave (phase) velocity surface as a slowness
surface in which 1/vp is plotted as a function of the wave normal. The energy
flow is always normal to the slowness surface, as indicated in Fig. 23.7(a).
Divergence angles for the three waves associated with a given wave normal
are evaluated geometrically by drawing the normals to the wave surfaces.
After measuring the three 	 values, the group velocities are obtained from the
relation

vg = vp

cos 	
as shown in Fig. 23.7(b).

The proof of this procedure involves calculating the sum of the kinetic
and potential energies of an elastic wave, and leads to the so-called Acoustic
Poynting Vector, which defines the energy flow direction.

In the case of cubic crystals, the divergence angle 	 depends strongly on the
elastic anisotropy factor A = 2c44/(c11 − c12). If A = 1, then 	 = 0 and the
energy flow is parallel to the wave normal.

Tangent∆

1
vp

Wave  normal

Slowness 
surface

∆ Wave normal

vg vp

(a)

(b)

Energy flow 
direction

Energy flow 
direction

Fig. 23.7 (a) The slowness surface is used to
determine the directions of energy flow. For a
given wave normal, the flow is perpendicular
to the tangent to the surface. The divergence
angle 	 is the angle between the wave normal
and the energy flow direction. (b) The speed
of the energy flow (the group velocity vg) is
obtained from the phase velocity vp and the
divergence angle 	.

Problem 23.2
As an exercise, carry out this procedure for the wave velocity surface of zinc
(Fig. 23.6(a)). Using this drawing, plot out one quadrant of the correspond-
ing slowness surface. To avoid confusion, it is best to make separate plots for
the quasilongitudinal, pure transverse, and quasitransverse waves. Draw tan-
gents to the surface for orientation angles θ = 10◦, 45◦, and 70◦. The energy
flow directions for these wave normals will be perpendicular to the tangent
lines. Measure the corresponding 	 angles and compare with the values in
Fig. 23.6(b). Compute the corresponding group velocities from vg = vp/cos 	.

Acoustic anisotropy occurs in crystals with anisotropic bonding. Metal-
lic bismuth has a layer-like structure with easy cleavage between the layers.
Bismuth atoms form three strong bonds to nearby neighbors in a puckered
layer oriented perpendicular to Z3, the threefold symmetry axis. As a result, the
structure is stiffest in the Z1–Z2 plane, and the longitudinal acoustic waves are
fastest in these directions (Fig. 23.8).

Paratellurite (TeO2) is another interesting example with exceptionally fast
shear waves. Normally, longitudinally polarized waves travel at about twice the
speed of shear waves, but in paratellurite one of the shear wave velocities along
Z1 = [100] exceeds that of the longitudinal wave (Fig. 23.9).

This effect has been attributed to the Te4+ ion in TeO2 which has a distorted
coordination because of its lone-pair electronic configuration. The crystals also
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Fig. 23.8 Metallic bismuth has a layer struc-
ture belonging to trigonal point group 3̄m.
The longitudinal (L) and transverse waves
(T1 and T2) polarized parallel to the strongly
bonded (001) planes are faster than those
polarized parallel to the [001] = Z3 axis.
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Fig. 23.9 Paratellurite (tetragonal, point
group 422) has an unusual wave velocity
surface with very fast and very slow shear
waves.
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exhibit extremely slow shear waves. Transversely polarized waves along [110]
are about five times slower than those along [100]. In this case the phase
velocities are only about 600 m/s. By way of comparison the speed of sound in
air under normal conditions is about 340 m/s. Even slower speeds of 150 m/s
have been observed in low density aerogels and polymer foams.
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Acoustic impedance, acoustic losses, acoustic waves in piezoelectric solids, and
surface waves are discussed in this chapter, along with a number of nonlinear
acoustic phenomena.

24.1 Acoustic impedance

The reflection and transmission of acoustic waves across a boundary is governed
by acoustic impedance. One of the most important boundary value problems in
acoustics concerns a plane wave incident upon a planar surface, dividing one
medium from another. In the general case of an anisotropic medium, the incident
beam consists of three waves (one quasilongitudinal, two quasitransverse), each
traveling at a different velocity. Each of the three incident waves will be refracted
and reflected at the boundary. If the second medium is also anisotropic, each
incident wave will generate three reflected waves and three refracted waves,
a total of 27 waves in all. Wave propagation in a polycrystalline solid where
there are many grain boundaries becomes very complicated.

The simpler case of a pure longitudinally-polarized wave at normal incidence
to the boundary provides insight into the more general problem. In this case
the reflection and transmission coefficients are governed by the relatively simple
acoustic impedance parameter (ρc)1/2 = ρv, where ρ is the density, c the
stiffness coefficient, and v the phase velocity. The reflection coefficient R at
the interface between medium I and medium II is

R = (ρv)II − (ρv)I

(ρv)II + (ρv)I
.

The MKS unit for acoustic impedance is the Rayl (=kg/m2 s). A typical value
for a solid is about 107 rayls (Table 24.1).

In many acoustic applications it is desirable to reduce reflection by matching
the acoustic impedance of the two media. Lithium tantalate transducers are
well-matched to iron, for example. Sound transmission from the transducer to
the medium can be enhanced with composite materials or with graded coupling
layers. Backing materials are often selected to promote reflection. In this case
acoustic impedances are mismatched. Tungsten and air are two commonly used
backing materials.

In an isotropic material the acoustic impedance is (ρc11)
1/2 for longitud-

inal waves and (ρc44)
1/2 for shear waves. For anisotropic materials the wave

velocities and acoustic impedance change with direction as indicated earlier.
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Table 24.1 Longitudinal acoustic impedance (ρv)
values in megarayls = 106 kg/m2

Metals Nonmetals

Tungsten 105 LiTaO3 47
Platinum 89 Al2O3 44
Gold 62 ZnO 36
Nickel 53 Pb(Zr,Ti)O3 35
Iron 47 LiNbO3 34
Brass 36 PbNb2O6 21
Silver 36 SiO2 15
Lead 22 Polymers 1–4
Aluminum 17 Water 1.5

Air 4 × 10−4

Table 24.2 Damping decrement of common polycrystalline metals.
The fraction of vibration energy lost per cycle is given in percent

Lead 1.44% Copper 0.70 Molybdenum 0.10
Tin 1.08 Iron 0.40 Magnesium 0.04
Nickel 0.93 Zinc 0.15 Aluminum 0.01

24.2 Ultrasonic attenuation

Damping takes place in all real materials. For metals, the fraction of vibration
energy lost per cycle is typically around 1%. Light metals like Al and Mg have
much lower losses than Sn and Pb (Table 24.2). Elastic damping is significantly
smaller in insulators and semiconductors.

In most materials acoustic losses can be described by a viscous damping term
in the constitutive equation. Hooke’s Law is modified to include a viscosity
coefficient η:

Xij = cijklxkl + ηijkl
∂xkl

∂t
.

In tensor form the viscosity coefficients are components of a fourth rank
tensor like the elastic constants and transform in the usual way. Coefficients in
the new coordinate system are related to those in the old through the product
of four direction cosines.

η′
ijkl = aimajnakoalpηmnop.

The tensor coefficients can be rewritten as a 6×6 matrix in which η1111 = η11,
η1122 = η12, η1212 = η66, etc. In the MKS system, viscosity coefficients are
expressed in N s/m2 but much of the viscosity literature is in centipoise =
10−3 N s/m2. Typical numerical values cover about three orders of magnitude
from 100 cP for metals and amorphous materials to about 0.1 cP for the best
single crystal oxides.

In wave phenomena, damping is normally described by an attenuation
factor α. The amplitude of the wave decreases steadily in a lossy media. For a
one-dimensional system the particle displacement takes the form

u = A exp(−αZ) exp i(ωt − kZ),
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where A is the amplitude, ω the angular frequency, and k is the wave vector.
The resulting strain field is

x = ∂u

∂Z
= −i(k − iα)A exp(iωt) exp(−i(k − iα)Z).

For a longitudinal wave traveling along the [100] direction of a cubic crystal,
the stress field is

X1 = c11x1 + η11
∂x1

∂t

= i(k1 − iα1)(c11 + iωη11)A exp(iωt) exp(−i(k1 − iα1)Z1).

Substituting into the equation of motion

∂X1

∂Z1
= ρ

∂2u1

∂t2

gives the dispersion relation

(k − iα)2(c11 + iωη11) = ρω2.

Separating this equation into real and imaginary parts gives

c11(k
2
1 − α2

1) + 2α1k1ωη11 = ρω2

i((k2
1 − α2

1)ωη11 − 2α1k1c11) = 0.

Rearranging these equations and making use of the fact that ωη11 � c11

even for very high frequencies, leads to the wave number

k = ω

(
ρ

c11

)1/2
(

1 + 3

8

(
ωη11

c11

)2
)−1/2

and the attenuation coefficient

α =
(

ω2

2

) (
ρ

c11

)1/2 (
η11

c11

)
.

The result is that introducing loss leads to a small decrease in k and a small
increase in the phase velocity v = ω/k. A more important result is that attenu-
ation is proportional to the square of the frequency. As a consequence, high
quality low-loss single crystals must be used in applications above 100 MHz.
The attenuation per wavelength is αλ = 2πα/k. For the longitudinal wave
along [100] in a cubic crystal this is proportional to c11/ωη11, the so-called
acoustic Q. For a shear wave in the same direction Q = c44/ωη44.

As just shown, the amplitude of a wave traveling along the Z-axis decreases
exponentially. For two points separated by a distance 	Z the attenuation in
amplitude is e−α	Z . In experimental work it is more common to measure attenu-
ation on a logarithmic scale by taking the natural logarithm: attenuation = α	Z
[nepers]. A more commonly used scale is based on the decibel [dB]. In the
decibel scale,

attenuation = 20(log e)α	Z [dB].
α [dB/m] = 8.686α [nepers/m].

Experimental values for several single crystals are listed in Table 24.3. The
attenuation factors in oxide crystals are generally lower than those in semicon-
ductors and metals. YAG (Yttrium Aluminum Garnet = Y3Al5O12) is used in
acoustic delay line devices because of its acoustic transparency.
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Problem 24.1
To illustrate the relationship between the viscosity coefficient η and the attenu-
ation α, calculate the viscosity coefficients for MgO from the data in Table 24.3.
The density of magnesium oxide is 3650 kg/m3, and its elastic constants are
c11 = 28.6 × 1010, c12 = 8.7 × 1010, and c44 = 14.8 × 1010 N/m2.

24.3 Physical origins of attenuation

A wide variety of acoustic loss mechanisms have been proposed, but at room
temperature thermal effects dominate in single crystals. Longitudinal waves
consist of alternating regions of compression and rarefaction (Fig. 24.1(a)).
Since solids warm under pressure, this leads to localized temperature gradients
and an internal heat dissipation mechanism known as the thermoelastic effect.
The effect is absent in shear waves because no changes in volume are involved
in shear motions. A simple correlation exists between thermoelastic attenuation
and thermal conductivity. Semiconductors and metals have higher losses than
oxide insulators because of their high thermal conductivity (Table 24.3).

Table 24.3 Attenuation coefficients for cubic single
crystals at 1 GHz. Values at other frequencies may be

estimated according to the α ∼ f 2 dependence

Crystal Propagation Polarization Attenuation
direction direction α [dB/m]

MgO [100] [100] 330
[100] [010] 40

SrTiO3 [100] [100] 600
Y3Fe5O12 [100] [100] 200

[100] [010] 34
Y3Al5O12 [100] [100] 20–32

[100] [010] 110
Ge [100] [100] 2300

[100] [010] 1000
Si [100] [100] 1000

[111] [111] 650
Al [110] [110] 7500
Cu [100] [100] 27,000
Au [110] [110] 20,000

Fig. 24.1 Six of the dissipation mechan-
isms leading to acoustic attenuation are
pictured here. (a) Heat conduction from
regions of compression to regions of rarefac-
tion. (b) Interaction between acoustic wave
and thermal phonons in the Akhieser Effect.
(c) Scattering at grain boundaries in polycrys-
talline materials. (d) Quivering domain walls
in ferroic solids. (e) Movements in dislocation
loops. (f ) Point defect losses.

(a) (b)

(c) (d)

(e) (f)

Hot Cold
Heat

Dislocation loops
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A second type of phonon damping involves interactions between the acoustic
beam and the thermal phonons associated with lattice vibrations. Attenua-
tion arises because the frequency spectrum of thermal phonons is modified
by the strain field of the ultrasonic wave through lattice anharmonicity. This
damping mechanism is known as the Akhieser Effect (Fig. 24.1(b)) The
materials with the lowest losses have strong bonds with low atomic num-
bers, high Debye temperatures and complex structures. In addition to the
garnets, minerals like topaz (Al2SiO4F2), beryl (Be3Al2Si6O18), and tour-
maline (NaMg3Al6B3Si6O27(OH)4) satisfy these criteria, and all are found to
exhibit very low losses.

Four other causes of loss are also illustrated in Fig. 24.1. Damping is high
in polycrystalline solids because of multiple scattering at the grain bound-
aries. Changes in grain orientation at the boundary lead to elastic and acoustic
impedance mismatch, as pointed out in Section 24.1. Other types of losses are
associated with porosity, domain walls, dislocations, and point defects. All are
capable of interacting with acoustic waves, but some of these mechanisms
are not viscous in nature and will not lead to an ω2 dependence.

24.4 Surface acoustic waves

Technology based on elastic surface waves has led to the development of com-
pact and inexpensive signal-processing components. Surface waves are used in
delay lines, filters, and more sophisticated devices. The size and weight savings
can be as much as 105, corresponding to the ratio of the velocity of light to the
speed of sound. For instance, an acoustic path of 1 cm delays the signal several
microseconds—equivalent to a kilometer of coaxial cable or waveguide. Surface
waves are always accessible for signal processing, a clear advantage over bulk
waves. In the 1 GHz range, surface wave wavelengths are a few microns, on
the same scale as silicon microcircuits. The waves can be focused, channeled,
sensed, mixed, and are compatible with integrated circuit technology.

Rayleigh waves traveling on the surface of a crystalline solid cause a point
on the surface to undergo an elliptical motion with both vertical and horizontal
amplitude, like a ripple on a pond. Most of the energy is confined to a sur-
face layer one wavelength thick. Increasing the frequency increases the power
density giving larger signals (Fig. 24.2).

In a Rayleigh surface-wave device, an interdigital transducer converts an
electromagnetic signal to an elastic surface wave. Displacement amplitudes for
Rayleigh waves decrease exponentially with depth and are confined to within
one acoustic wavelength of the surface. At 103 MHz the acoustic wavelength
is about 4µ. An interdigital transducer consists of a thin-film metal grating
with half-wavelength spacing deposited on a piezoelectric substrate. Electrode
patterns are produced with the same photolithographic processes used for planar
integrated circuits. A voltage pulse applied to the grating produces a localized
mechanical strain that propagates along the surface.
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Fig. 24.2 Surface acoustic waves combine
shear and longitudinal motions with typical
amplitudes of about 1 Å (=10−10 m).

For a Rayleigh wave device with interdigital electrode spacing d, the operat-
ing frequency is vsaw/d. As with bulk wave devices, the velocity of the surface
acoustic wave (vsaw) is determined by the elastic constants and the density.
In general, however, the velocities are slightly lower because of the proximity
of the air boundary.
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Fig. 24.3 Rayleigh wave speeds are compa-
rable to those of bulk shear waves. Speeds are
fastest in materials like beryllium with low
density and high stiffness.
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Table 24.4 Rayleigh wave velocities and
electromechanical coupling factors for

surface acoustic wave substrates

vsaw k2

LiNbO3 3.4 km/s 0.05
SiO2 (quartz) 3.1 0.001
Bi12GeO20 1.7 0.01

For cubic crystals, the speeds are controlled by stiffness coefficients c11, c12,
and c44. Consider a plate cut parallel to the (100) face with surface acoustic
waves traveling parallel to [010]. A bulk longitudinal wave traveling in this
direction would have a speed v = (c11/ρ)1/2. For the surface wave the speed
is reduced by a factor R,

v2
saw = Rc11

ρ
,

where R is determined by the transcendental relation(
1 − c11R

c44

) (
1 − R − c2

12

c11

)2

= R2(1 − R).

The net result is that Rayleigh waves travel at a speed slightly lower than bulk
shear waves (compare the Rayleigh wave speeds in Fig. 24.3 with the shear wave
speeds in Fig. 23.1). Both are about half the speed of bulk longitudinal waves.

Surface acoustic wave devices require piezoelectric substrates to couple the
electric signal into Rayleigh wave motion. Because of the availability of good
quality crystals much of the work has been done on quartz, but materials with
higher piezoelectric coupling have lower insertion loss and wider bandwidth.
Lithium niobate, lithium tantalate, and bismuth germanium oxide have larger
piezoelectric constants than quartz, but zero-temperature coefficient cuts are
required for signal processing. A positive temperature coefficient for at least
one elastic stiffness constant is needed for temperature compensation. Only
quartz and tellurium dioxide have thus far yielded compensated cuts for surface
wave applications and neither is strongly piezoelectric. Rayleigh wave speeds
and electromechanical coupling factors are listed in Table 24.4.

24.5 Elastic waves in piezoelectric media

Electromechanical coupling occurs through the third rank piezoelectric coeffi-
cients dijk . The stresses and strains generated by acoustic waves produce electric
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polarization through the direct piezoelectric effect. In the reverse direction,
electric fields produce stresses and strains through the converse piezoelectric
effect. As a result the acoustic waves traveling in piezoelectric crystals require
a modified Christoffel Equation.

Wave propagation in piezoelectric media involves a coupled solution of the
mechanical equations of motion and Maxwell’s equations for electromagnetic
waves. In general, the coupling leads to five waves: three acoustic waves and
two electromagnetic waves. In this discussion we are mainly concerned with
the acoustic waves consisting of one longitudinal and two transverse waves.

The equation of state in a piezoelectric medium can be divided into terms
involving the applied electric field (E) and the mechanical strain (x) with stress
(X) and electric displacement (D) as dependent variables. We begin by writing
the terms in matrix form.

The electric displacement (D) originates from two terms. First an experiment
in which the crystal is mechanically clamped (x = 0) and an electric field is
applied. Normally this measurement is carried out at high frequencies. In this
case (D) = (εx)(E). The second term comes from an experiment in which there
is no applied electric field (E = 0). A mechanical stress (X) then produces an
electric displacement (D) = (P) = (d)(X).

In matrix form the sum of these two terms is

3 × 1
(D) =

3 × 3
(εx)

3 × 1
(E) +

3 × 6
(d)

6 × 1
(X).

The stress (X) can be converted to strain (x) through the stiffness coeffi-
cients (cE) measured under constant field conditions. This is done by measuring
the elastic constants on a fully electroded sample which short-circuits any
piezoelectric effect. The result is

(D) = (εx)(E) + (d)(cE)(x) =
3 × 3
(εx)

3 × 1
(E) +

3 × 6
(e)

6 × 1
(x).

The (e) coefficients are the so-called piezoelectric stress coefficients. The
matrices for (e) coefficients are almost identical in form to those of the (d)
coefficients tabulated in Section 12.3. There are small changes for point groups
3, 32, 3m, 6̄, and 6̄m2 where factors of 2 appear. The factors of 2 are dropped
for the (e) matrices. In point group 32, for instance, e26 = −e11 whereas
d26 = −2d11. All factors of 2 are removed from the other (e) matrices as well.

Next visualize two experiments in which strain is measured first in the absence
of electric field, and then in the absence of applied mechanical stress. The first
experiment is carried out on a fully electroded crystal and gives (x) = (sE) (X).
The second experiment is done on a partially electroded, unclamped crystal
resulting in a piezoelectric strain (x) = (dt) (E). The total strain is

6 × 1
(x) =

6 × 6
(sE)

6 × 1
(X) +

6 × 3
(dt)

3 × 1
(E).

Strain is converted to stress by multiplying through by (cE):

(cE)(x) = (cE)(sE)(X) + (cE)(dt)(E).

Since (cE)(sE) = 1, and (et) = (cE)(dt), we obtain the total stress as

6 × 1
(X) =

6 × 6
(cE)

6 × 1
(x) −

6 × 3
(et)

3 × 1
(E).
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Poled ferroelectric ceramics of PZT or barium titanate have piezoelectric
stress coefficients of about 10 C/m2. For normal piezoelectrics like quartz the
e coefficients are two orders of magnitude smaller near 0.1 C/m2.

In full tensor form the equations of the state are

Xij = cijklxkl − emijEm

and
Dm = emklxkl + εmjEj.

Using Newton’s second law, the acceleration components are given by

ρüi = ∂Xij

∂Zj

= cijkl
∂xkl

∂Zj
− emij

∂Em

∂Zj
.

With no free charges present, the corresponding Maxwell’s Equation for the
electromagnetic waves is

∂Dm

∂Zj
= 0 = ejkl

∂xkl

∂Zj
+ εmj

∂Em

∂Zj
.

Remembering that xkl = ∂uk/∂Zl and Ei = −∂φ/∂Zi, we can rewrite the
equations in terms of the displacement uk and the electric potential φ.

ρüi = cijkl
∂2uk

∂Zj∂Z�

+ emij
∂2φ

∂Zj∂Zm

0 = ejkl
∂2uk

∂Zj∂Z�

+ εmj
∂2φ

∂Zj∂Zm
.

For plane waves the solutions take the form

uk = Ak exp i(ωt − kiZi) and φ = � exp i(ωt − kiZi).

The solutions for uk lead to the three acoustic waves while those for φ

correspond to the electromagnetic waves. Substituting these expressions into
the previous equations,

ρω2ui = cijklkjkluk + emijkjkmφ

0 = ejklklkjuk − εmjkjkmφ.

Since we are mainly interested in the acoustic waves we eliminate φ and
solve for u. The wave vector components ki = (ω/v)Ni where v is the velocity,
ω the angular frequency and Ni the direction cosines of the wave normal. The
velocities are then obtained from[

1

ρ
cijklNjN� + 1

ρ

(NmemijNj)(Njejk�N�)

NmεmjNj
− v2δik

]
uk = 0.

The first term corresponds to the Christoffel Equation in Section 23.1, and
the second term to the piezoelectric interaction.

To solve this equation, we follow a similar procedure to the matrix repres-
entation used to solve the generalized Christoffel Equation (Section 23.2).
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Table 24.5 Components of the matrix Ci = emijNmNj used in determining
the phase velocities in piezoelectric crystals. C is the abbreviated dielectric

term C = ρεm jNmNj

N2
1 N2

2 N2
3 N2N3 N1N3 N1N2

C1 11 26 35 25 + 36 15 + 31 16 + 21
C2 16 22 34 24 + 32 14 + 36 12 + 26
C3 15 24 33 23 + 24 13 + 35 14 + 25
C 11 22 33 2 × 23 2 × 13 2 × 12

In matrix notation

Cik ≡ 1

ρ
cijklNjN�

and the components are written out in full in Table 23.1. For the piezoelectric
interaction term we introduce a second matrix operator.

Ci ≡ NmemijNj.

From which the corrections can be obtained. The components of the Ci matrix
are listed in Table 24.5. As an illustration,

C1 = e11N2
1 + e26N2

2 + e35N2
3 + (e25 + e36)N2N3

+ (e15 + e31)N1N3 + (e16 + e21) N1N2.

Note that the piezoelectric stress coefficients eijk (where i, j, k = 1–3) have
been converted to matrix coefficients eim where i = 1–3 and m = 1–6.

Also included in Table 24.5 is the shortened form of the electric permittivity
term

C ≡ ρNmεmjNj.

The full expression for the modified Christoffel Equation is(
Cik +

(
CiCk

C

)
− v2δik

)
uk = 0.

Since the piezoelectric correction is generally small, it constitutes a correction
	Cik = CiCk/C, and is often written as

(Cik + 	Cik)uk = v2ui.

The phase velocities v are obtained from this equation.

Problem 24.2
Write out the modified Christoffel Equation for point group 4̄3m. For this point
group the piezoelectric (e) matrix is similar to the corresponding (d) matrix.
Examine the solutions for waves traveling along the [100] and [110] directions.

The piezoelectric stiffening term is quite substantial for some waves but is
totally absent for others. In LiNbO3, for instance, the electromechanical factor
for longitudinal waves traveling along Z3 = [001] is(

e2
33

cE
33ε

x
33

)1/2

= 0.163

but for shear waves in same direction there is no piezoelectric coupling.
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Portions of the lithium niobate slowness surfaces are shown in Fig. 24.3 where
1/vp is plotted for wave normals in the Z2–Z3 plane. In point group 3m this is a
mirror plane and Z3 is the threefold symmetry axis. The slowness surfaces with
and without the piezoelectric contribution are compared in Fig. 24.4(b) and (a).

1
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3Z3
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Z2

Z3
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T

T
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L 2
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1

1 2

(a)

(b)

Fig. 24.4 Slowness surfaces for LiNbO3
plotted (a) without the piezoelectric terms,
and (b) with the piezoelectric stiffening.
The (1/vp) values are in units of 10−4 s/m.

The pointed out in Section 23.5, the slowness surfaces can be used to deter-
mine the energy flow directions. The ray directions are perpendicular to tangents
drawn to the surface.

A comparison of three piezoelectric crystals is given in Table 24.6. Quartz is a
weak piezoelectric, lithium niobate an average piezoelectric, and PZT-5 a strong
piezoelectric. As expected, the changes in elastic stiffness (	c/c = e2/cε) and
acoustic phase velocities (	v/v = e/

√
cε) are much larger in PZT. Of course

even in PZT there are some types of waves for which the piezoelectric stress
coefficient is zero. Under these conditions the acoustic waves are unaffected by
the piezoelectric effect.

24.6 Nonlinear acoustics

A quiet revolution is taking place in ultrasound technology that involves
departures from the normal equations of state governing the Christoffel
Equation. For linear, low-loss centrosymmetric solids, Hooke’s Law is normally
sufficient:

Xij = cijklxkl.

But as discussed earlier in this chapter, attenuation in acoustic beams takes
place when losses are present. For viscous media the equation of state becomes

Xij = cijklxkl + ηijkl
∂xkl

∂t
.

These losses increase rapidly with frequency, generally as ω2, and make
many acoustic materials unusable in the GHz region.

Elastic waves in piezoelectric media were discussed in the previous section
using a modified constitutive equation:

Xij = cijklxkl − emijEm.

The electric field components Em make sizable changes in the wave velocities
whenever the piezoelectric coefficients emij are large.

Similar effects occur in crystals with large electrostrictive effects. For
relaxor ferroelectrics like lead magnesium niobate (PMN) the electrostriction

Table 24.6 Fractional changes in the elastic stiffness and acoustic
phase velocity brought about by piezoelectric coupling

Quartz 32 LiNbO3 3m PZT-5 ∞m

N̂ [100] [001] [001]
Û L L L
e [C/m2] 0.171 1.3 23.3
c [N/m2] 8.67 × 1010 2.45 × 1010 11.7 × 1010

ε [F/m] 4.5ε0 29ε0 1470ε0

	c/c = e2/cε 0.0085 0.027 0.357
	vp/vp = e/

√
cε 0.09 0.16 0.60
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coefficients are large even above the Curie point where the crystal structure
is centrosymmetric and the piezoelectric effect is absent. In this case the
constitutive equation involves two fourth rank tensors:

Xij = cijklxkl − emnijEmEn.

The strong coupling between E2 and mechanical stress leads to second
harmonic signals analogous to those observed in optics.

Magnetostrictive materials have a similar effect with stress proportional
to H2, or if used under DC bias, will exhibit a piezomagnetic term with
X ∼ H(0)H(ω).

Geophysicists and oceanographers are concerned with the behavior of sound
waves deep within the earth’s mantle, and deep in the ocean. Temperature and
pressure changes control the elastic constants and speed of sound. Most mater-
ials soften with increasing temperature and stiffen with increasing pressure.
Temperature and pressure both increase with depth in the earth’s crust, but the
pressure effect dominates, leading to an increase in sound velocity. Changes
such as this come from elastic nonlinearity and higher order elastic constants.

Xij = cijklxkl + cijklmnxklxmn.

Polymers, seawater, and the human body are noticeably nonlinear elastically.
During the past few years, a number of complex nonlinear phenomena have
been investigated for use in harmonic imaging, parametric arrays, elastography,
sonoelasticity, and time-reversed acoustics. In these applications the transducer
may be called upon to transmit at one frequency and receive at another, or to
simultaneously transmit at two frequencies and receive at a sum or difference
frequency, or to interrogate at one frequency and deliver focused high power at
another, or to interrogate at high frequency while continuously repositioning the
transducer at a much lower frequency, or to transmit in narrow beam patterns
while receiving in an omnidirectional mode. As an example, a parametric
acoustic array emits two high intensity waves at frequencies ω1 and ω2. The
modulated beam is projected into an acoustically nonlinear medium that then
produces sum (ω1 + ω2) and difference (ω1 − ω2) frequencies. In viscous,
lossy media such as seawater or the human body, the higher frequencies ω1,
ω2, and ω1 +ω2 are absorbed while the low frequency acoustic wave (ω1 −ω2)

is transmitted. The net result is a narrow beam at low frequency with a wide
bandwidth suitable for signal processing.

~

Local
strain

Compression

Extension

Distance

Piezoelectric
semiconductorTransducer

Fig. 24.5 The acoustoelectric experiment
in which longitudinal acoustic waves inter-
act with conduction electrons through the
converse piezoelectric effect.

Acoustoelectricity is another interesting nonlinear effect which results from
interactions between acoustic waves and alternating electric currents Ji(ω).
The interaction term takes the form of a third rank relationship between stress
and current density:

Xij = cijklxkl + ρmijJm.

Since third rank tensors disappear in centrosymmetric media, and metals
are acoustically lossy, the prime candidates for acoustoelectric compounds
are acentric semiconductors. ZnO, CdS, GaAs, and other II–VI and III–V
compounds that crystallize in the wurtzite or sphalerite structures, which
are acentric. Piezoelectric semiconductor devices made from these materials
amplify or absorb ultrasonic waves, employing the principle shown in Fig. 24.5.
The acoustic wave generated by the transducer produces local mechanical strain
with regions of compression and extension, which in turn produce electric
fields through the direct piezoelectric effect. The local electric field has the
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periodicity of the acoustic wave and moves through the semiconductor where it
interacts with conduction electrons, causing bunching of the charge carriers. As
the acoustic wave moves, the electrons are dragged along and meet resistance,
dissipating energy as heat. To maintain their velocity, the electrons extract
energy from the local electric field which attenuates the acoustic wave.

Amplification rather than attenuation may result if an electric field is simul-
taneously applied to the semiconductor (Fig. 24.5). The electric field supplies
energy to the conduction electrons, and if the field is adjusted to give electron
velocities somewhat greater than the acoustic velocity, energy is transferred to
the acoustic wave.

Acoustic activity is another odd-rank nonlinear acoustic effect. This is the
acoustic analog to optical activity in which the plane of polarization is rotated
as the acoustic beam traverses through the crystal. The constitutive equation
takes the form

Xij = cijklxkl + bijklm
∂xkl

∂Zm
.

Being a fifth rank tensor, acoustic activity disappears in centric media.
The effect has been observed in α- and β-quartz at frequencies near 30 GHz.

Quartz belongs to acentric point group 32 which is both optically active
and acoustically active. Experiments were carried out along Z3, the acous-
tic axis. Transverse waves traveling in this direction are normally degenerate
(see Fig. 23.4) but at high frequencies the degeneracy is lifted causing right-
and left-handed circularly-polarized waves to travel at different velocities
(Fig. 24.6). The fast and slow waves are reversed when the experiments are
done on right- and left-handed crystals.

The underlying structure–property relation can be understood by exam-
ining the crystal structures of right- and left-handed quartz (Fig. 16.17).
The structures contain Si–O–Si–O helices spiraling up the trigonal Z3-axis.
Circularly-polarized shear waves that stay in phase with the spiral will travel
at a slower velocity than those which do not. The interaction becomes more
important at high frequencies where the acoustic wave length is closer to the
unit cell dimension (c = 5.48 Å).

Acoustic activity is analogous to optical activity (Chapter 30). Both effects
are caused by spatial dispersion of the constitutive parameters due to local fields
or forces on the atomic scale. This leads to frequency-dependent behavior of
the dielectric permittivity and the elastic compliance, which in turn lead to
optical activity and acoustic activity. In quartz, acoustic activity is larger than
optical activity. For transverse acoustic waves in the GHz region, the plane of
polarization rotates about 107 degrees/m. This is about 100 times larger than

Fig. 24.6 A small portion of the phase
velocity surface of quartz showing that right-
and left-circularly polarized transverse waves
along Z3 travel at different velocity. The effect
is largest at high frequencies and provides
a clear demonstration of acoustic activity.
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[010]

YIG H applied [100]

Detected amplitude

AC-cut quartz

Fig. 24.7 The Acoustic Faraday Effect
involves a rotation of a plane-polarized acous-
tic wave in a magnetoelastic crystal. Under
a pulsed field, an AC-cut transducer gener-
ates a transversely polarized wave, and later
detects the reflected return wave. No rotation
occurs unless a magnetic field is applied to
align the domains within the ferromagnetic
yttrium iron garnet crystal. Losses are low
for acoustic waves traveling along [100] and
polarized parallel [010]. (See Table 24.3.)

optical activity in the visible region. In both cases, the activity grows larger as
c/λ gets bigger in keeping with its underlying origin of spatial dispersion.

There is yet another nonlinear effect in acoustics that also comes from disper-
sion. In this case, it is temporal dispersion rather than spatial dispersion. This
is caused by interactions between the wave (optical or acoustic) with magnetic
spin waves in the presence of a DC magnetic field. As the acoustic or optic wave
propagates parallel to the field, the plane of polarization rotates about the field
direction. The optical effect was discovered by Michael Faraday in 1845, and
is known as the Faraday Effect. The corresponding Acoustic Faraday Effect,
sometimes called the magnetoelastic effect, has been investigated more recently.
The rotation angle is proportional to the thickness of the sample and to the
magnitude of the magnetic field parallel to the wave normal. At first glance, the
effect appears similar to optical or acoustic activity, but the effects are different
both in origin and in experiment. In the optical Faraday Effect and the acoustic
Faraday Effect, a wave traveling in the +Z3 direction, parallel to the applied
magnetic field, experiences a clockwise rotation of the plane of polarization.
For the −Z3 direction, antiparallel to the field, the rotation is counterclockwise.
Thus the rotation is doubled when the wave is reflected. For acoustic activity or
optical activity this is not true. In this case the rotation always proceeds in the
same sense relative to the wave normal. Therefore the reflected wave cancels
the original rotation when the wave normal is reversed.

Yttrium iron garnet (YIG = Y3Fe5O12) is an ideal candidate for magneto-
elastic experiments because of its low ultrasonic losses. At 10 MHz, the
mechanical Q of YIG is about 107 which is comparable to the very best quartz
crystals. A typical experiment is illustrated in Fig. 24.7. An AC-cut quartz
transducer is bonded to one face of a cylindrical YIG crystal. A DC magnetic
field is directed along the length of the crystal parallel to the acoustic beam. As
described previously in Section 13.10, AC-cut quartz generates a pure transverse
vibration that is often used in the ultrasonic measurement of elastic constants.
As the transversely-polarized wave proceeds through the YIG crystal parallel
to the magnetic field, the plane of polarization rotates through an angle θ of
the Acoustic Faraday Effect. The wave travels down the rod and is reflected at
the opposite end. The reflection travels back and excites the quartz transducer
which now acts as a receiver. The polarization of the returning shear wave is
rotated through an angle 2θ from its initial orientation.
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Calcite (CaCO3) is a beautiful transparent mineral that readily cleaves into
rhombohedra. Images viewed through a thin slice of a cleaved calcite crystal
are split into two images, an effect known as double refraction, or birefringence.
Birefringence is the most obvious manifestation of optical anisotropy in crystals.
For any given wave normal, there are two light waves, transversely polarized
in mutually perpendicular directions, traveling with different velocities, and
consequently different refractive indices.

Double refraction is caused by dielectric anisotropy. For transparent crystals
like calcite, the magnetic susceptibility is small and the permeability µ ∼= µ0,
the permeability of free space. In this class of materials the refractive index
n = c/v = √

K where c is the speed of light in vacuum, v the velocity of light
in the crystal, and K is the dielectric constant measured at optical frequencies.
Refractive indices of transparent materials lie between 1 and 3.

Electromagnetic waves differ from acoustic waves in that there are, for a
given wave normal, two waves rather than three. In the acoustic case there are,
in general, two quasitransverse waves and a quasilongitudinal wave.

25.1 Electromagnetic waves

Starting with Maxwell’s Equations and the material constitutive relations,
the propagation of electromagnetic waves through transparent crystals are
described in terms of the refractive indices, wave normals, and polarization
directions.

Written in tensor notation Maxwell’s Equations for a nonmagnetic, transpar-
ent insulator take the form

εijk
∂Hk

∂Zj
= ∂Di

∂t

εijk
∂Ek

∂Zj
= −µ0

∂Hi

∂t

∂Di

∂Zi
= 0

µ0
∂Hi

∂Zi
= 0.

The accompanying constituent equations for such a medium are Di = εij Ej

and Bi = µ0Hi. In these expressions, Ek and Hk are the components of the
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electric field and magnetic field associated with the electromagnetic wave; Di

and Bi are the resulting electric displacement and magnetic induction vectors
in the transparent insulator, t is time, Zi coordinate, and εijk the rotation tensor.
εijk = 0 unless i, j, k are all different, εijk = +1 if i, j, k are in cyclic order,
and −1 if they are in anticyclic order.

To describe the behavior of light waves in anisotropic media, we exam-
ine monochromatic plane waves with angular frequency ω and wave vector k.
The electric and magnetic fields take the form

Ek = E0k exp[i(ωt − kiZi)]
and

Hk = H0k exp[i(ωt − kiZi)],
where E0k and H0k are the field amplitudes.

Substituting the expressions for Ek and Hk into the first two Maxwell
Equations and replacing the wave vector ki = Niω/v, we find that

εijkNjEk = µ0vHi

and

εijkNjHk = −vDi.

B, H
S, vg

N, k, v

E
D

Fig. 25.1 The relative orientation of the
electric, magnetic, and wave normal direc-
tions for electromagnetic waves in transparent
media. S is the Poynting vector perpendic-
ular to E and H which defines the energy flow
direction. vg is the group velocity.

From the first of these two equations it can be seen that the magnetic field
vector H is perpendicular to the wave normal N and also to the electric field E.
The second equation shows that the electric displacement vector D is perpendic-
ular to the wave normal N and the magnetic field H . Note also that the electric
field vector E is, in general, not perpendicular to N but is coplanar with D and N
(Fig. 25.1). The magnetic induction vector B is parallel to H for the transparent
insulators under consideration.

To introduce refractive indices into the wave equation, we begin by solving
for the electric displacement. The result is

Di = 1

µ0v2
(Ei − Ni(EjNj)) = εijEj

= Ni(EjNj)

(1/εii) − µ0v2
.

Remembering that D and N are perpendicular to one another,

DiNi = 0 = N2
i (EjNj)

(1/εii) − µ0v2
.

Dividing through by (EjNj)/µ0 gives the wave velocity surfaces:

N2
i

(1/µ0εii) − v2
= N2

1

v2
1 − v2

+ N2
2

v2
2 − v2

+ N2
3

v2
3 − v2

= 0,

where v2
1 = 1/µ0ε11, v2

2 = 1/µ0ε22, and v2
3 = 1/µ0ε33. In terms of the

principal refractive indices v1 = c/n1, v2 = c/n2, and v3 = c/n3, where c is
the speed of light in vacuum equal to (µ0ε0)

−1/2.
To plot the phase velocity surfaces as a function of the wave normal, we

rewrite the equation as

N2
1 (v2

2 − v2)(v2
3 − v2) + N2

2 (v2
1 − v2)(v2

3 − v2) + N2
3 (v2

1 − v2)(v2
2 − v2) = 0.
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For waves traveling along Z1, the wave normal is specified by the direc-
tion cosines N1 = 1, N2 = N3 = 0, and wave velocity equation becomes
(v2

2 − v2
3)(v

2
3 − v2) = 0. For which the roots are v = ±v2 and v = ±v3.

Z1

Z2

Z2

Z3 Z3
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v1

v3
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v1 v1 v3 v3 v2
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V

Double-
valued
surface
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Fig. 25.2 Phase velocity (v) plotted as a
function of wave normal (N), assuming n1 >

n3 > n2. It is a double-valued surface in
every direction except for the two optic axes
where the birefringence is zero. The angle V
is determined from the expression tan2 V =
(v2

2 − v2
3)/(v

2
3 − v2

1).

The resulting wave velocity surface is plotted in Fig. 25.2. For all directions
except the two optic axes there are two values of v corresponding to two waves
with different polarization directions. In general there will be a fast wave and
a slow wave giving rise to double refraction. The difference in refractive indices
	n is called the birefringence.

Z3 Z3

Z3

Z1, Z2 Z1, Z2

Z1, Z2

(a) (b)

(c)

Fig. 25.3 Phase velocity surfaces for uniax-
ial and isotropic media. (a) For a uniaxially
positive crystal with n3 > n1 = n2, the
surfaces consist of a sphere inside an oblate
ellipsoid of revolution. The two surfaces inter-
sect tangentially at the optic axis Z3. (b) For
a uniaxial negative crystal with n1 = n2 > n3,
the reverse is true with a prolate ellipsoid
of revolution inside a sphere. (c) The wave
surface of cubic crystals and other isotropic
media is a single sphere.

The wave velocity surface shown in Fig. 25.2 is quite general since no
assumptions were made regarding the symmetry of the crystal. The only
assumption was that Z1, Z2, and Z3 are the principal axes of the optical permit-
tivity tensor. The intrinsic symmetry of the optical wave surface is mmm with
mirror planes perpendicular to the three principal axes. Neumann’s Law states
that the symmetry of a physical property (as represented by the wave velocity
surface) must include the symmetry of the point group of the material. In this
case, it is true for triclinic, monoclinic, and orthorhombic crystals since the
wave surface symmetry mmm includes the symmetry of point groups 1, 1̄, 2,
m, 2/m, 222, mm2, and mmm. Crystals belonging to these point groups will be
optically biaxial.

For higher symmetry point groups, it is necessary to modify the shape of
the wave surface. Trigonal, tetragonal, and hexagonal crystals have a rotational
symmetry axis (3, 4, or 6) along Z3 which is not included in point group mmm.
This places a restriction on the wave velocities, and makes v1 = v2 to give the
surfaces circular symmetry when viewed along Z3. Neumann’s law is satisfied
by making Z3 the optic axis. Trigonal, tetragonal, and hexagonal crystals are
optically uniaxial rather than biaxial. This is also true for nematic liquid crystals
and other textured materials containing a single ∞-fold axis. The wave surfaces
for uniaxial crystals are illustrated in Fig. 25.3.

Further constraints are required for cubic crystals and for the two Curie
Groups with more than one ∞-fold axis. All cubic crystals possess threefold
rotation axes along the 〈111〉 body diagonal directions. For the wave velocity
surface in Fig. 25.2 this is only possible if v1 = v2 = v3, converting the
doubly-valued surface into a single sphere (Fig. 25.3). Two ∞-fold axes in
different directions lead to the same result. When the wave surface is a sphere,
all directions are optic axes, and the material is optically isotropic. Birefringence
disappears. The symmetry discussion is summarized in Table 25.1.

25.2 Optical indicatrix and refractive index
measurements

In addition to the wave velocity surface, there is another way of plotting the
optical properties that is simpler and more informative. The optical indicatrix
is a single-valued surface which specifies the relationships between refract-
ive indices, wave normals, polarization directions, and energy flow directions
(= ray directions).

The optical indicatrix or index ellipsoid is generated by the equation

Z2
1

n2
1

+ Z2
2

n2
2

+ Z2
3

n2
3

= 1,
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Table 25.1 Effect of symmetry on the optical properties of crystals and textured media

Properties Symmetry groups

Biaxial n1 �= n2 �= n3 1, 1̄, 2, m, 2/m, 222, mm2, mmm

Uniaxial n1 = n2 �= n3 3, 3̄, 32, 3m, 3̄m, 4, 4̄, 4/m, 422, 4̄2m, 4mm, 4/mmm, 6, 6̄, 6/m,
622, 6mm, 6̄m2, 6/mmm, ∞, ∞2, ∞/m, ∞m, ∞/mm

Isotropic n1 = n2 = n3 23, m3, 4̄3m, 432, m3m, ∞∞, ∞∞m

where Z1, Z2, and Z3 are the principal axes, and n1, n2, and n3 are the principal
refractive indices. Fig. 25.4 shows the optical indicatrix of a biaxial crystal.
It is a general ellipsoid with n1 �= n2 �= n3 representative of the optical
properties of triclinic, monoclinic, and orthorhombic crystals. For biaxial crys-
tals, three or more measurements are required to specify the optical indicatrix.
In orthorhombic crystals the principal axes coincide with the crystallographic
axes [100], [010], and [001] so only three measurements are required.

Z2

Z3

Z1

Optic axes

Fig. 25.4 Optical indicatrix for biaxial
crystals in which the refractive index is plot-
ted as a function of polarization (electric
displacement) direction. The indicatrix is a
general ellipsoid with intercepts of n1, n2,
and n3 along the principal axes Z1, Z2,
and Z3, respectively. The optic axes are
oriented perpendicular to the two circular
cross-sections of the ellipsoid.

In monoclinic crystals, one principal axis is parallel to Z2 = [010], the
twofold symmetry axis. Z1 and Z3, the other two principal axes, lie in the (010)
plane so that four measurements are required to specify the three principal
refractive indices and the angle between [100] and Z1.

Six measurements are needed for triclinic crystals: three for the principal
refractive indices and three to specify the orientation of the principal axes. The
general procedure for determining these values follows the same procedure
described earlier (Section 9.4) for dielectric constants.

As indicated in Table 25.1, only two measurements are needed for trigonal,
tetragonal, and hexagonal crystals. The two principal indices of refraction are
for light waves polarized parallel and perpendicular to the optic axis Z3. These
are the so-called extraordinary (ne) and ordinary (no) refractive indices shown
in the uniaxial indicatrix in Fig. 25.5. The birefringence is 	n = ne − no. The
equation describing the uniaxial indicatrix is (Z2

1 + Z2
2 )/n2

o + Z2
3 /n2

e = 1.

Z1
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Z3 Optic axis

nE

no
no
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(b)

Fig. 25.5 Optical indicatrix for uniaxial
crystals. (a) The uniaxial positive indicatrix is
a prolate ellipsoid of revolution with ne > no.
(b) For uniaxial negative crystals the indica-
trix is an oblate ellipsoid of revolution with
ne < no.

Cubic crystals and glasses are optically isotropic. The indicatrix is therefore
a sphere of radius n and only one refractive index measurement is required.
It should be remembered, however, that the refractive index depends on
wavelength because of dispersion. This will be discussed in the next chapter.

It is relatively easy to measure refractive indices. Measurements can be
carried out in several ways, but for simplicity it is usually done with index
oils and a polarizing microscope (Fig. 25.6). The essential components
include a light source, a polarizer and analyzer, and several lenses to provide
magnification and to view optical interference figures in convergent light.

To determine the refractive index of a cubic crystal, a small crystal is placed
on a glass slide and immersed in an index oil of known refractive index. The
slide is positioned on the sample stage and examined in monochromatic light.
For cubic crystals it is not necessary to polarize the light. If the refractive indices
of the crystal and oil are identical, the crystal boundary disappears. When the
two indices are not matched, there will be a distinct boundary line. Using
commercially-available index liquids, the test is repeated with other oils until
a match is obtained. For uniaxial crystals (Fig. 25.5) the values of ne and no are
measured separately. A small crystal is positioned on the stage with the light
beam oriented perpendicular to the optic axis. By using the polarizer and rotating
the optical stage, the crystal is examined in light polarized perpendicular to the
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optic axis. The refractive index of the ordinary wave (no) is determined in this
position by comparing it with various index liquids. To obtain ne, the crystal
is rotated to the position in which the optic axis is parallel to the polarization
direction. A match with the index liquids is carried out again.

Sample stage

Axis of microscope
Ocular

Bertrand lens

Analyzer

Barrel

Accessory plates

Objective

Converging lens
Polarizer

Light
source

Fig. 25.6 The polarizing microscope is used
to determine the refractive indices of crystals.

The procedure for biaxial crystals (Fig. 25.4) is more complicated and usually
involves the use of interference figures obtained in convergent light. First the
principal axes (Z1, Z2, and Z3) are located from the interference figures and then
the refractive indices (n1, n2, and n3) are measured in sections cut perpendicular
to the principal axes.
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Fig. 25.7 (a) Biaxial indicatrix showing are
arbitrary wave normal �N , and (b) the ellipt-
ical section perpendicular to �N . The vibra-
tion directions ( �D′ and �D′′) of the two
waves traveling along �N , are oriented along
the major and minor axis of the ellipse.
Their phase velocities are c/n′ and c/n′′,
respectively.

25.3 Wave normals and ray directions

Next we consider optical waves traveling in an arbitrary direction specified by
a wave normal �N . Its relation to the generalized indicatrix of a biaxial crystal
is illustrated in Fig. 25.7. In this case the indicatrix is a triaxial ellipsoid with
intercepts n1, n2, and n3 along the principal axes (Fig. 25.4). In all directions
except the two optic axes there will be a fast wave and a slow wave (Fig. 25.2).
As proven earlier in Section 25.1, the polarization vectors (D′ and D′′) are
perpendicular to the wave normal N . The elliptical section of the indicatrix
perpendicular to the wave normal has a major and a minor axis (Fig. 25.7(b))
corresponding to D′ and D′′. The refractive indices obtained from elliptical
section determine the phase velocities. The speeds of the fast and slow waves
are c/n′′ and c/n′, respectively. For the wave normal N , the birefringence is
	n = n′ − n′′.

In addition to birefringence, there is another important feature of optical
anisotropy having to do with the flow of energy. As with acoustic waves (see
Figs. 23.5 and 23.6) the direction of energy flow does not always coincide with
the wave normal. For acoustic waves the two vectors may diverge by angles of
30◦ or more, presenting considerable difficulties in the study of elastic waves in
anisotropic crystals. Fortunately the divergence angles (	) are usually smaller
in optic experiments, even in highly anisotropic crystals like calcite.

The direction of energy flow, the ray direction, is determined by the Poynting
Vector �S = �E × �H as illustrated in Fig. 25.1. Since the vectors �D and �H are
perpendicular to the wave normal �N , then the divergence angle 	 between �S
and �N will be equal to the angle between �E and �D. In other words the divergence
is directly controlled by the dielectric anisotropy. For a transparent insulator the
optical dielectric constant is n2. The anisotropy in n2 is seldom larger than 25%,
and is usually more like 1%, whereas the anisotropy in elastic stiffnesses exceeds
200% in layer structures such as mica and graphite, and certain hexagonal close-
packed metals like zinc and cadmium. The divergence angle in optical waves
is usually less than 5◦.

The Nicol Prism polarizer used in polarizing microscopes provides a good
example of optical divergence. Nicol Prisms are made from calcite crystals
which have an exceptionally large birefringence: ne = 1.486, no = 1.658.
The prism is made from two calcite crystals glued together with a transparent
cement. As shown in Fig. 25.8(a), the ordinary and extraordinary beams diverge
on entering the crystal and the ordinary wave is totally reflected at the interface.
The transmitted extraordinary wave provides the desired polarized light beam.
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Fig. 25.8 (a) The Nicol Prism polarizer and
(b) the divergence of ordinary and extraord-
inary beams in calcite.

Because of its large birefringence, calcite crystals can provide divergence angles
as large as 6◦16′ (Fig. 25.8(b)). The ray direction for the ordinary wave is
always parallel to the wave normal but the extraordinary ray is not. Quartz has
a much smaller birefringence than calcite. The maximum divergence in quartz
is only 20′. For uniaxial crystals like calcite and quartz, the maximum angular
separation is given by tan2 	 = (n2

e − n2
o)/2none.

The divergence of ordinary and extraordinary light waves in uniaxial crystals
is easily visualized with the optical indicatrix. Since n ∼ 1/v, the indicatrix is a
slowness surface similar to those discussed for acoustic waves in Section 23.5.
Energy flow directions are determined by the tangents to the slowness sur-
face. The ray directions for an optically positive uniaxial crystal are shown in
Fig. 25.9. The wave normal defines the wave front and the two polarization
directions. �De, the polarization vector for the extraordinary wave lies in the
plane of the drawing and is perpendicular to �N . For a uniaxial positive crystal
this is the slow wave. �D0, the polarization vector for the ordinary wave, is per-
pendicular to the plane of the drawing, and also to the wave normal �N . In this
case, the ordinary wave is the fast wave.

De

Ee

n�e

Se

Wave front

Optic axis

N = S0�

Fig. 25.9 Ray direction and wave normals in
a uniaxial crystal with ne > no. For a general
wave normal there is a slow extraordinary
wave with Poynting vector �Se and a fast ordin-
ary wave with a Poynting vector �S0 parallel
to �N . The phase velocity of the extraord-
inary wave is c/n′

e where n′
e = (n2

o sin2 θ +
n2

e cos2 θ)1/2 and for the ordinary wave it
is c/no.

The ray direction for the extraordinary ray is obtained by drawing a tangent
to the indicatrix, as shown in Fig. 25.9. The ray forms an angle 	 with the wave
normal, and the group velocity vg = vp/ cos 	. The Poynting vector �Se of the
extraordinary wave is parallel to the ray direction and its electric field vector �Ee

is perpendicular to �Se.
For the ordinary wave, the polarization vector �D0 is already tangential to

the indicatrix because the uniaxial indicatrix is an ellipsoid of revolution.
Therefore the ray direction is parallel to the wave normal and perpendic-
ular to the wave front. Its group velocity vg and phase velocity (c/no) are
equal. The divergence angle 	 = 0 for the ordinary wave, which is why it is
called an ordinary wave.

Problem 25.1
Sodium nitrite (NaNO2) is orthorhombic with refractive indices n1 = 1.340,
n2 = 1.425, and n3 = 1.655 along the principal axes.

Write out the equations for the wave velocity surfaces and the indicatrix.
Simplify these expressions for Z1–Z2, Z1–Z3, and Z2–Z3 planes. Draw the three
projections for the indicatrix and wave velocity surfaces showing the location
of the optic axes. What are the speeds of waves along the optic axes and the
principal axes?

Problem 25.2
A hexagonal crystal with refractive indices no and ne is cut so that the optic axis
is perpendicular to the surface. Show that for a beam of light with an angle of
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incidence θ , the angle of refraction φe of the extraordinary ray is given by

tan φe = no sin θ

ne

√
n2

e − sin2 θ

.

25.4 Structure–property relationships

The refractive index for transparent materials is equal to the ratio of the speed
of light in vacuum to that in the material. Because of their low densities, gases
have refractive indices near 1, while for liquids and solids n ranges between
1.3 and 3 (Table 25.2). The magnitude of n is determined chiefly by the density
of packing and the polarizability of the ions. Densely packed arrays of highly
polarizable groups result in large refractive indices.

The polymorphs of SiO2 demonstrate the relationship between packing
density and refractive index (Fig. 25.10). Silica glass, cristobalite, and tridymite
are high temperature forms with low densities and low refractive indices.
Quartz is the stable form at room temperature and one atmosphere pressure.

Table 25.2 Typical refractive indices for inorganic
minerals

n1 n2 n3

Sulfur (S) mmm 1.96 2.01 2.25
Diamond (C) m3m 2.42 2.42 2.42
Sphalerite (ZnS) 4̄3m 2.37 2.37 2.37
Cinnabar (HgS) 32 2.91 2.91 3.27
Halite (NaCl) m3m 1.54 1.54 1.54
Fluorite (CaF2) m3m 1.43 1.43 1.43
Ice (H2O) 3̄m 1.309 1.309 1.311
Periclase (MgO) m3m 1.74 1.74 1.74
Corundum (Al2O3) 3̄m 1.77 1.77 1.76
Quartz (SiO2) 32 1.54 1.54 1.55
Rutile (TiO2) 4/mmm 2.62 2.62 2.90
Calcite (CaCO3) 3̄m 1.66 1.66 1.49

Fig. 25.10 The crystal structures, densities
and refractive indices of several polymorphs
of silica illustrating the dependence of n on ρ.
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Table 25.3 Refractive coefficients for some common oxide constituents for
use in the Gladstone–Dale relation. (After Larsen and Berman)

Molecular weight k Molecular weight k

H2O 18 0.34 Y2O3 226 0.14
Li2O 30 0.31 La2O3 326 0.15
Na2O 62 0.18 Bi2O3 464 0.16
K2O 94 0.19 CO2 44 0.22
BeO 25 0.24 SiO2 60 0.21
MgO 40 0.20 TiO2 80 0.40
CaO 56 0.23 ZrO2 123 0.20
SrO 104 0.14 SnO2 151 0.15
BaO 153 0.13 N2O5 108 0.24
PbO 223 0.15 P2O5 142 0.19
B2O3 70 0.22 Nb2O5 268 0.30
Al2O3 102 0.20 SO3 80 0.18

Coesite and stishovite are dense polymorphs formed under high pressure.
The average refractive index is plotted against specific gravity in Fig. 25.10.
The slope of the line (0.21) gives the refractive coefficient for SiO2 used in the
Gladstone–Dale relation.

The empirical Gladstone–Dale relation is useful in predicting the average
refractive indices of oxides:

n = 1 + ρ
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Fig. 25.11 Refractive index-density relation
for a number of oxide minerals containing Na,
Mg, Al, and Si. For anisotropic minerals the
refractive indices are averaged.

where ρ is density, and pi and ki are the weight fraction and refractive coefficient
of the ith component. An abbreviated table of the refractive coefficients is given
in Table 25.3. To illustrate its use we calculate the predicted refractive index
for pyrope garnet, Mg3Al2Si3O12. The molecular weight is 402 and the specify
gravity 3.56. The constituent oxides are 3MgO + Al2O3 + 3SiO2, for which
the weight fractions 3 × 40/402, 102/402, and 3 × 60/402. Substituting in the
Gladstone–Dale formula using the k values in Table 25.3 gives

n = 1 + 3.56(0.3 × 0.20 + 0.253 × 0.20 + 0.447 × 0.21) = 1.71,

in good agreement with the observed value 1.72. The equation gives agreement
to within 5% for a wide range of oxides. It works well because of the additivity
of atomic polarizabilities which change little from compound to compound.

Note that the oxides of the isoelectronic ions Na+, Mg2+, Al3+, and Si4+ all
have about the same refractive power. Therefore the refractive indices of min-
erals containing these ions are principally dependent on the density of packing.
This trend is illustrated with a number of complex oxides in Fig. 25.11.

A few of the constituent oxides in Table 25.4 possess unusually large refract-
ive coefficients. The k value for TiO2 is twice that of most others, for instance.
This is one of the oxides with electronic transitions in the very near ultraviolet,
a transition from 2p level of O2− to the 3d orbital of Ti4+. The presence
this low-lying excited state augments the electronic polarizability which in
turn contributes to the refractive index, the dielectric constant, and leads to
ferroelectricity in a number of titanates.

So far we have considered only oxides. The influence of other anions on
the refractive index can be seen from alkali halides with the rocksalt structure.
Table 25.4 compares the indices of fluorides, chlorides, bromides, and iodides.
In every case the iodides are the largest and the fluorides the smallest. Larger
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Table 25.4 Refractive indices of cubic
alkali halide crystals. The larger,

heavier anions like I− generally have
larger n values because of their higher

polarizabilities

n Anions

Fluorides
LiF 1.38 �10 F−
NaF 1.33
KF 1.36
RbF 1.39

Chlorides
LiCl 1.66 �18 Cl−
NaCl 1.54
KCl 1.49
RbCl 1.49

Bromides
LiBr 1.78 �36 Br−
NaBr 1.62
KBr 1.56
RbBr 1.55

Iodides
LiI 1.95 �54 I−
NaI 1.71
KI 1.68
RbI 1.65

anions with more loosely bound electrons have higher polarizability and larger
refractive indices.

(a)

(b)

High n

Low n

E

+
–

+
–

E

Fig. 25.12 The electric field of the light
wave is modified by the local dipole fields
from nearby atoms. (a) When the dipole
fields enhance the driving field E, the light
wave is slowed down, and the refractive
index is raised. (b) When the dipole fields
partially cancel the driving field, the velocity
is increased, and refractive index is reduced.
Molecular arrangments such as these are the
cause of birefringence in crystals.

25.5 Birefringence and crystal structure

The birefringence of crystals can be visualized using the indicatrix, an ellipsoid
showing the variation of the refractive indices with vibration direction. Each
radius vector from the center to the surface represents a vibration direction
whose length measures the index of refraction of a wave polarized parallel to
the radius vector.

In transparent materials, refractive index is proportional to the square root
of the electronic polarization. The latter is in turn proportional to the polariz-
abilities of the ions in the crystal and also the local electric field. To illustrate,
consider the triatomic molecule in Fig. 25.12. In (a) the electric vector of the
light waves is parallel to the length of the molecule and in (b) it is perpendic-
ular. The electric dipole moment of the atom is equal to the product of the local
field and polarizability. The local field is the vector sum of the applied field
E and the dipole fields associated with the neighboring atoms. In the paral-
lel orientation (a) the dipole field of the neighboring atom enhances E so that
both atoms are polarized more, giving rise to larger dipole moments and a larger
refractive index for this polarization direction. The opposite effect occurs in (b).
Here the dipole field is in opposition to E, reducing the dipole moments and
refractive index. Thus waves polarized parallel to the molecule travel slower
than waves polarized perpendicular to the molecule, creating birefringence in
crystals with aligned molecules.
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Fig. 25.14 Calcite crystals with aligned
carbonate groups are optically negative. Other
carbonate minerals such as dolomite and
aragonite have similar structures and similar
birefringence.

Birefringence in many compounds containing molecular groups can be
explained in this way. The basic relationship between crystal structure and
birefringence is illustrated in Fig. 25.13. For linear or near-linear groups,
positive birefringence occurs when they are parallel to another, and negative
when they lie in a plane perpendicular to a common direction. Under these
circumstances the shape of the indicatrix mimics the shape of the molecular
groups.

The classical examples of birefringence are the minerals calcite (CaCO3) and
rutile (TiO2). Calcite and other carbonate crystals such as aragonite (CaCO3)

and dolomite (CaMg(CO3)2) all contain triangular (CO3)
2− anions with car-

bon bonded to three oxygens. In these minerals the flat carbonate groups are
aligned in layers giving rise to an oblate optical indicatrix with strong negative
birefringence (Fig. 25.14).

When the planar molecular groups are not parallel to one another but are
parallel to a common direction, positive birefringence results with the vibra-
tion direction of large refractive index along the common direction. The rare
carbonate mineral vaterite is an example.

Rutile and its polymorphs have tetragonal crystal structures with chains of
edge-sharing TiO6 octahedra parallel to Z3, the fourfold symmetry axis. The
resulting anisotropy makes rutile, tellurite (TeO2), and cassiterite (SnO2) very
birefringent. Because of the chain-like structure they have a uniaxial positive
indicatrix (Fig. 25.15).
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Fig. 25.15 Rutile and isomorphic compounds
have strong birefringence with ne > no.
The prolate indicatrix has the same orientation
as the chains in the crystal structure.
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Table 25.5 Correlation between molecular shape and optic sign

Molecular shape n1 n2 n3 Optic sign

Ca(OCl)2·3H2O Linear molecule 1.535 1.535 1.630 +
NaNO2 Obtuse V-shaped 1.340 1.425 1.655 +
KClO3 Low pyramid 1.410 1.517 1.524 −
C10H8 Flat with parallel planes 1.422 1.775 1.932 −

Fig. 25.16 Birefringence 	n plotted against
hexagonality α for several ZnS and SiC poly-
types. Birefringence decreases as the fraction
of cubic close packed layers increases because
cubic crystals are optically isotropic.
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Calcite and rutile are both uniaxial, but biaxial crystals show similar correla-
tions between optic sign and crystal structure. Examples are given in Table 25.5.
When flat molecules are parallel to one another, a large negative birefrin-
gence results with the vibration direction of lowest index perpendicular to the
plane of the molecules, as in naphthalene. Its other two refractive indices are
considerably larger.

The final examples concern the polytypes of silicon carbide (SiC) and zinc
sulfide (ZnS). These structures are intermediate between the cubic sphalerite
structure and the hexagonal wurtzite structure, so that the various polytypes can
be characterized by parameter α which refers to fraction of layers stacked in
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hexagonal close-packed order, Thus α = 0 for the 3C polytype sphalerite and
α = 1 for wurtzite (2H) with all other polytypes in between 0 and 1.

Several of the physical properties of these compounds can be correlated
with α, including absorption edges, color, and birefringence (Fig. 25.16).
As might be expected the birefringence disappears as α approaches zero since
the structures are becoming more cubic.
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26.4 Thermo-optic effect 292

In this chapter we discuss dispersion, the dependence of the refractive index on
wavelength, and absorption that is related to the imaginary part of the refractive
index. The variation of the refractive index with temperature (thermo-optic
effect) is also described.

In terms of their directional behavior, all three of these effects can be rep-
resented by second rank tensors because of their relationship to the optical
dielectric constant K . The thermo-optic coefficients relate 	Kij to a temper-
ature change 	T . Dispersion refers to the frequency dependence of the optic
dielectric constant Kij (ω), and absorption to the imaginary part of the complex
dielectric constant K∗

ij = K ′
ij − iK ′′

ij .

26.1 Dispersion

Refractive index depends on wavelength, giving rise to dispersion. For most
transparent substances, n increases as λ decreases; refractive indices for violet
light are generally a few percent larger than those for red. Dispersion is caused
by electronic transitions in the ultraviolet region. When the photon energy
approaches the value required for transition, the electrons in the solid undergo
wide excursions, producing large polarizability and large refractive indices.
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Fig. 26.1 Refractive indices for cubic C, Si,
and Ge in the visible and near infrared range.
Ge and Si are nearly opaque in the visible
region because of their smaller band gaps.

In many crystals dispersion is small throughout the visible range from 0.4 to
0.7 µm. Diamond is the most striking example with a change in refractive index
from 2.465 in the violet to 2.407 in the red. The refracted rays from brilliant-cut
diamonds show a remarkable rainbow of colors in bright sunshine.

Dispersion in diamond is compared with silicon and germanium in Fig. 26.1.
All three have large refractive indices and very large dispersion because their
band gaps are near by. Many semiconductors and ferroelectric oxides have
band gaps in the near ultraviolet or in the visible range. These materials are
of special interest in optical applications because of their strong interactions
with light. Examples will be discussed later in the chapters on acousto-optics,
electro-optics, and nonlinear optics.

For oxides the refractive index is inversely related to the band gap Eg:

n2 ∼= 1 + 15

Eg
,

where Eg is expressed in electron-volts. Other classes of materials have some-
what different constants. If an oxide is to be transparent throughout the visible
range, the equation states that the band gap must be at least hc/4000 Å ∼= 3 eV,
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giving n ∼= 2.5. To obtain higher refractive indices, the minimum wave-
length must be raised, closing the window. The shortest wavelength for which
transmission is desired determines the maximum refractive index.
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Fig. 26.2 Dispersion in (a) Brookite, TiO2,
and (b) silver gallium sulfide, AgGaS2, show-
ing how optical symmetry can change with
frequency. In both crystals the absorption
edge overlaps the visible range creating color,
large refractive indices and large dispersion
effects.
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Fig. 26.3 Refractive indices of CdS plotted
as a function of wavelength into the infrared
range. In this case dispersion has little effect
on the birefringence.

Among oxides, rutile (TiO2) and other titanates have band gaps near 3 eV and
refractive indices larger than two. They also have large dispersion, like diamond,
which can give rise to interesting optical effects. Brookite, a polymorph of TiO2,
is orthorhombic and therefore optically biaxial. In blue light the two optic axes
lie in the (100) plane with n2 > n1 ≥ n3. As the wavelength is increased into
the yellow range, n1 decreases faster than n3 and there is a critical wavelength
where n2 > n1 = n3. At this wavelength, brookite is optically uniaxial with
[010] as the optic axis. On further increasing the wavelength into the red, the
crystal again becomes biaxial with n2 > n3 ≥ n1, but now the two optic axes
lie in the (001) plane. The dispersion curves are shown in Fig. 26.2(a).

A second interesting example is the tetragonal sulfide AgGaS2. Like dia-
mond and rutile, it has large refractive indices and large dispersion effects.
On increasing the wavelength from blue to red it changes from uniaxial
positive (ne > no) to isotropic (ne = no) to uniaxial negative (no > ne).
In both these cases the apparent optical symmetry changes with wavelength.

Problem 26.1
Make sketches of the indicatrix and wave velocity surfaces of brookite and
silver gallium sulfide. Show how the surfaces change going from green to
orange wavelengths.

More normal dispersion behavior is shown in Fig. 26.3. Cadmium sulfide
(CdS) is hexagonal, point group 6mm, with the wurtzite structure. It has strong
dispersion near the absorption edge at 0.5 µm but then flattens out in the near
infrared. The birefringence changes very little with wavelength, decreasing
only slightly from ne − no = 0.018 at 0.6 µm to 0.013 at 10.6 µm.

Dispersion curves like this are important to the designers of lenses and other
optical components. The variation of refractive indices are carefully meas-
ured and mathematically modeled to enhance or eliminate chromatic effects in
optical systems.

One of the expressions most often used to fit the dispersion curves is the
Sellmeier equation

n2 = A + B

C − λ2
+ Dλ2.

The coefficients for uniaxial LiNbO3 (trigonal, 3m) are listed in Table 26.1.
Dispersion is largest near absorption bands. On the short wavelength side,

dispersion is caused by electronic transitions in the near ultraviolet, while at

Table 26.1 Sellmeier coefficients for
LiNbO3 at 20◦C. Wavelength λ is expressed

in microns

no ne

A 4.9048 4.582
B 0.11768 0.099169
C 0.0475 0.044432
D 0.027169 0.02195
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long wavelengths dispersion increases again because of the infrared vibration
bands. Dispersion passes through a minimum in the optical window between
these two absorption bands. Refractive index measurements on alkali halide
crystals demonstrate this point (Fig. 26.4).
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Fig. 26.4 Dispersion in four alkali halide
crystals in the infrared range. CsI and other
high molecular weight halides have the widest
transmission range and the lowest dispersion.

As discussed in Chapter 30, dispersion can be very helpful in the phase-
matching methods used in nonlinear optics. To generate strong second harmonic
signals it is necessary keep the fundamental (frequency ω) and harmonic (2ω)
waves in phase. This is generally accomplished by matching the refractive index
of the harmonic n(2ω) with that of the fundamental n(ω). Because of dispersion,
this is difficult in an optically isotropic medium, but it is sometimes possible in
uniaxial crystals in which the birefringence exceeds the dispersion.

For a Y3−xNdxAl5O12 (neodymium YAG) laser, the fundamental wavelength
is at 1.06 µm and the second harmonic at 0.53 µm. Therefore the difference in
refractive indices between these two wavelengths is critical. In low refractive
index crystals like quartz n(ω)−n(2ω) is about 0.01, and about ten times larger
in ferroelectric crystals such as LiNbO3 and PbTiO3.

26.2 Absorption, color, and dichroism

The attractive colors of gemstones and other colored crystals are usually due to
absorption bands in the visible spectrum, though diffraction effects are occa-
sionally important, as in opal. The visible spectrum extends from 4000 to
7000 Å; in this region electronic transitions are the most important. There are
four common types: (1) internal transitions within transition-metal, rare-earth,
or other ions with incomplete electron shells; (2) charge transfer processes
in which an electron is transferred from one ion to another; (3) electronic
transitions associated with crystal imperfections; and (4) band gap transitions—
intrinsic coloration found in many semiconductor compounds. Types (1)–(3)
are usually associated with small amounts of dopants, impurities or defects,
whereas (4) is a bulk property.

The following examples will serve to illustrate the various types and the
cause of color in crystals. The color spectrum and their wavelengths are given
in Table 26.2. When an absorption band removes a certain color from the
transmitted beam, the eye collects the remaining colors and produces the com-
plementary color to the one removed. Thus when red light is absorbed—as by
Fe2+ in olivine—the crystal appears green, the complementary color. In oxides
and fluorides containing transition-metal ions, the absorption bands and color
depend principally on the nature of the ion and secondarily on the strength and
symmetry of the crystal field. The electron configuration of the ion is important.
Thus Fe3+ with five 3d electrons and a relatively stable half-filled shell, has
a far different spectrum than the 3d6 configuration of Fe2+. Chrysoberyl
(Al, Fe3+)2BeO4 has almost the same structure as olivine (Mg, Fe2+)2SiO4

yet the spectra are vastly different. Trivalent iron absorbs in the violet region,
giving chrysoberyl a pale yellow complementary color.

Absorption experiments are generally carried out on an optical or infrared
spectrometer. A thin sample of thickness t is inserted into the optical beam and
the intensity of the transmitted light I is compared with the incident intensity I0.
Corrections are made for the light lost by reflection. The absorption coefficient α
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Table 26.2 The spectral colors, their wavelengths, and the
complementary colors

λ (Å) Spectral color Complementary color

4100 Violet Lemon-yellow
4300 Indigo Yellow
4800 Blue Orange
5000 Blue-green Red
5300 Green Purple
5600 Lemon-yellow Violet
5800 Yellow Indigo
6100 Orange Blue
6800 Red Blue-green

is determined from the relationship.

I = I0 exp(−αt).

Measurements on anisotropic crystals are carried out using polarized light
waves transmitted along principal axes. Experiments are repeated for different
wavelengths to obtain the absorption spectrum.
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Fig. 26.5 Pleochroism in the mineral
cordierite. Light polarized parallel to the
orthorhombic [100] and [010] directions are
more strongly absorbed than along [001].

Some crystals absorb light differently for different polarization directions.
The effect is called pleochroism in biaxial crystals and dichroism in uniaxial
crystals. Cubic crystals do not show differential light absorption under normal
circumstances. In a few minerals such as cordierite, pleochroism is apparent
even in unpolarized light (Fig. 26.5). Cordierite is orthorhombic ( point group
mmm). Its chemical composition is (Mg2−xFex)Al4Si5O18·nH2O. The broad
peaks in the absorption spectra are attributed to Fe2+ and the narrow lines to
overtone vibrations from oriented water molecules trapped in cages within the
crystal structure. The absorption coefficients and colors are remarkably different
for light polarized in different directions. There has been speculation that the
Vikings used cordierite as a navigation aid in far northern waters where the
sun is often below the horizon. By using the stone to detect polarized scattered
light, they may have been able to locate the sun’s position.

Absorption anisotropy also appears in uniaxial crystals. The mineral tour-
maline (class 3m) absorbs light strongly for vibration directions perpendicular
to the trigonal axis but only weakly when the electric vector is parallel to c.
For many years mineralogists used tourmaline “tongs” made of crossed tourma-
line crystals to examine minerals in polarized light. The dichroism of tourmaline
arises from Fe2+ (t4e2) to Fe3+ (t3e2) charge transfer transitions. Di- and tri-
valent iron occupy octahedral sites in tourmaline with the octahedra clustered
in flat triangular arrangements separated by borosilicate groups. The octahedra
share edges in planes parallel to (0001) so that when the electric vector of the
light wave is perpendicular to c, the electrons move between octahedra, hopping
from one cation to the next, and absorbing light (Fig. 26.6).

Crystal fields are important in determining the colors of transition-metal
compounds because of the electronic transition within the incomplete 3d shell.
Transition metal ions are usually found in tetrahedral or octahedral coordination
in oxides and fluorides. The two coordinations show different spectra and dif-
ferent colors because the electronic ground state is often different for tetrahedral
and octahedral fields. Co2+, for example, has a e4t3

2 ground state in tetrahedral
environment and t5

2ge2
g symmetry in an octahedral field. Not only the symmetry
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of the field is important, but its strength as well. Chromium bearing oxides
illustrate this point: chromia, emerald, and most chromium containing oxides
are green, but ruby, spinel and a few others are red. Alexandrite is red or green,
depending on the source of illumination. The intense absorption bands of Cr3+
shift toward higher energy for the larger crystal fields (Fig. 26.7). Large crystal
fields are caused by close neighbors. In ruby the Cr–O distances are about 0.1 Å
shorter than in Cr2O3, and as a result, the important 4A2 → 4T1 and 4A2 → 4T2

absorption bands shift about 400 Å, changing the color from red to green.
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Fig. 26.6 Dichroism in tourmaline. (a) Light
polarized perpendicular to the optic axis is
much more strongly absorbed that the extraor-
dinary ray polarized parallel to c. (b) The
effect is attributed to charge transfer between
iron ions lying in the (001) plane.

In complex crystals such as these it is important for the experimentalist to
identify the origin of absorption and color. This is often done by preparing
crystals with different dopant levels. In the case of ruby, growing crystals
of Al2−xCrxO3 with different chromium content. By plotting the intensity
of various absorption peaks as a function of the percentage chromium, one
can determine which spectra are associated with single chromium ions, which
are associated with pairs of chromiums, and which have different origins.
The absorption data in Fig. 26.8 illustrate this point.

In organic dichroic materials, internal absorption takes place when the elec-
tric polarization vectors are parallel to the direction of chromophoric groups,
along chemical linkages such as

C C

C C

N N C C

If such groups are arranged parallel to one another in the crystal, or a textured
material, strong dichroism results. The oriented dye molecules used in polaroid
films and liquid crystal displays are good examples (Section 30.5).

Colors are also associated with imperfections in solids. When colorless alkali
halide crystals are irradiated or heated in the alkali vapor they change color:
NaCl becomes yellow, KBr blue, and KCl magenta. The most common type of
coloring imperfection is the F-center (Farbzentrum) in which single electrons
are trapped in anion vacancies. Visible radiation is absorbed by the trapped
electron whose energy states can be approximated by hydrogen-like wave
functions.

Undoped semiconductor crystals are colored according to the band gap.
Si and Ge are metallic-looking because all visible radiation promotes electrons

Fig. 26.7 Energy-level diagrams for octahe-
drally coordinated Cr3+ plotted as a function
of the crystal-field parameter 	.
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Fig. 26.8 The dichroic absorption peaks of
ruby are caused by electronic transitions
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to the conduction band. CdS (Eg = 2.45 eV) is yellow because blue and violet
can promote electrons but the longer wavelengths cannot. Hence blues are
absorbed and the crystal appears yellow, the complementary color.

26.3 Reflectivity and luster

Refractive index determines the intensity of reflected light from a surface. The
luster of a solid refers to its appearance in reflected light. For normal incidence
on a smooth surface, the ratio of reflected intensity to incident intensity is

R = (n − 1)2 + n2k2

(n + 1)2 + n2k2
.

The reflective index is n and k the absorption index. For transparent materials,
k = 0 and R depends on n only. Only about 2% of the light is reflected for
low-index solids, giving them a glassy-like appearance. The high reflectivity of
diamond (n = 2.41, R = 17%) imparts a high luster to the stone.

The luster of various solids are compared in Table 26.3. Many fluorides and
polymers have low refractive indices (n ∼ 1.3) and low luster making them
useful as nonreflective coatings. Silica and common silicate glasses (n ∼ 1.5)
have a vitreous luster, while zircon (n ∼ 2.0), zirconia (n ∼ 2.2), calcium
titanate (n ∼ 2.4) and rutile (n ∼ 2.7) have much larger reflection coefficients.
The zirconates and titanates are widely used in glazes, enamels, and paints for
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Table 26.3 Reflection coefficients for several types of luster,
together with mineral examples

R (%) Example

Transparent crystals
Subvitreous <4 Fluorite (CaF2)
Vitreous 4–8 Topaz (Al2SiO4F2)
Subadamantine 8–14 Zircon (ZrSiO4)
Adamantine 14–21 Diamond (C)
Adamantine splendent >21 Cinnabar (HgS)

Opaque crystals
Submetallic <20 Ilmenite (FeTiO3)
Metallic 20–50 Molybdenite (MoS2)
Metallic splendent 50 Gold (Au)

this reason. Because of their high refractive indices and high reflectivities they
have excellent covering power.
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Fig. 26.9 Reflection coefficients for various
conductors at f = 1014 Hz. The curve follows
the Hagen–Rubens relation.

The high reflectivity of gold and other metals comes from their large absorp-
tion coefficients that in turn are caused by high electrical conductivity. Light
waves interact strongly with conduction electrons. The effect of electrical
conductivity (σ) on the reflection coefficient (R) is quantified through the
Hagen–Rubens Law:

R = 1 −
(

16ε0 f

σ0

)1/2

,

where f is the frequency and σ0 is the DC conductivity. R values at 3 µm for
several metals, semimetals, and semiconductors are shown in Fig. 26.9. At high
frequency metals become transparent.

26.4 Thermo-optic effect

Thermo-optic coefficients relate changes in the optical indicatrix 	Bij to
changes in temperature 	T . Since temperature is a scalar, the thermo-optic
effect is a symmetric second rank tensor like the dielectric constant. The same
symmetry restrictions apply (Table 9.1).

The temperature dependence of the refractive index is generally small,
except near phase transformations. The situation is analogous to low frequency
dielectrics. For silica and alumina, the permittivity is nearly independent of
temperature (Fig. 9.12), but ferroelectrics exhibit enormous changes near Tc

(Fig. 9.13).
Similar effects can occur in other regions of the electromagnetic spectrum

with other variables. For example, the low frequency dielectric constants of
tetragonal KH2PO4 change anisotropy with temperature (Fig. 9.10). At room
temperature K11 > K33 and at low temperatures K33 > K11. At the crossover,
near 200 K, KH2PO4 crystals are dielectrically isotropic with K11 = K33.

In the optical range the dielectric constant K = n2, and its temperature
dependence is (dK/dT) = 2n(dn/dT). This quantity is plotted as a function
of wavelength in Figs. 26.10 and 26.11 for three transparent materials. Silica
glass has a low refractive index (n ∼ 1.45) and a small temperature coeffi-
cient (dn/dT ∼ 10−5). As pointed out in Section 25.4, the refractive index of
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common oxides increases with density (see Figs. 25.10 and 25.11). Because of
thermal expansion, density decreases with increasing temperature, and there-
fore refractive index decreases too. Thermal expansion makes a small negative
contribution to the temperature coefficient of refractive index dn/dT . This effect
is often overwhelmed by changes in the electronic band gap or by phase changes.
These effects can be either positive or negative, depending on the nature of the
energy levels or on the location of the phase transformation.
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Fig. 26.10 Temperature coefficient of the
optical dielectric constant plotted as a func-
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Fig. 26.11 Thermo-optic effects in lithium
niobate and lithium iodate.

Thermo-optic coefficients for LiNbO3 and LiIO3 are shown in Fig. 26.11.
These coefficients are about an order of magnitude larger than in silica glass.
Both crystals are uniaxial positive, but the changes in birefringence with temper-
ature and with wavelength are small. The thermo-optic coefficients of LiNbO3

and LiIO3 have opposite sign, possibly because of different physical origins.
On heating, the refractive indices of lithium niobate increases rather rapidly
in the visible range. This causes a troublesome thermal drift in high power
laser experiments. Both SiO2 and LiNbO3 have positive values of dn/dT . If the
band gap of these oxides decreases with increasing temperature, the ultraviolet
absorption edge will move toward the visible range, raising the refractive index.

The negative thermo-optic effect of LiIO3 could be explained by an absorp-
tion edge shift away from the visible range. A second possible explanation is
its low melting point that could lead to larger thermal expansion coefficients
and negative values of dn/dT .

Most alkali halides have negative dn/dT values ranging from about 10−5/K
for LiF to about 10−4/K for CsI. In these crystals, the large thermal expansion
coefficients control the thermo-optic effect. Stiffer materials with lower thermal
expansion coefficients usually have positive dn/dT values controlled by the
electronic band gap. The refractive indices of MgO, ZnS, SiC and diamond all
increase with temperature.

One of the most interesting thermo-optic phenomena is the Mitscherlisch
Effect. At room temperature, the mineral gypsum (CaSO4·2H2O, mono-
clinic 2/m) is optically biaxial positive. When heated, the optic angle gets
smaller and at 90◦C, 2V goes to zero causing the crystal to become optically
uniaxial for wavelengths near 0.589 µm. Above this temperature the gypsum
crystal is again biaxial but with the optic plane rotated by 90◦. The condition
for the Mitscherlisch Effect is that n3 > n2 ≈ n1. At the crossover tempera-
ture, n2 = n1. Because of dispersion, the crossover temperature will depend on
wavelength.

Even more spectacular thermo-optic phenomena can occur when all three
refractive indices are approximately equal. Orthorhombic Cs2SeO4 is espe-
cially interesting. For temperatures between 0◦C and 250◦C, each of the three
orthorhombic axes becomes the acute bisectrix, and the optic plane changes
from (100) to (010) to (001).

Problem 26.2
Make a drawing of how the refractive indices of Cs2SeO4 must change with
temperature to explain the optical observations. Draw the indicatrix for each of
the three temperature ranges.
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The change in refractive indices with mechanical stress, the photoelastic effect,
is used in analyzing stress patterns in engineering components of complicated
shape. It is also important in acousto-optic devices, optical switches, modu-
lators, and scanners in which ultrasonic waves modulate the refractive index,
producing an optical grating.

27.1 Basic concepts

Materials with sizable photoelastic coefficients (p) are required to enhance the
interaction between mechanical strain x and refractive index n. Changes in the
indicatrix are given by

	

(
1

n2

)
= px.

These quantities are actually tensors but are treated as scalars in the fol-
lowing discussion which is concerned with the magnitudes of the photoelastic
coefficients p, and not their variation with direction.

Unlike the linear electro-optic effect, photoelasticity occurs in all symmetry
classes and is not a null property. Photoelastic coefficients are dimensionless
because strain and refractive index are dimensionless. For most oxides and
halides, pmax ∼= 0.2. The maximum values of p measured for other materials
range from 0.1 to 0.6.

To gain a clearer understanding of the effects of stress on refractive index,
consider the effect of hydrostatic pressure on a cubic crystal. The Lorenz–
Lorentz equation is valid for many cubic materials:

n2 − 1

n2 + 1
= KNα.

K is a proportionality constant, N the number of molecules per unit volume,
and α the polarizability per molecule. Differentiating with respect to the density
ρ, gives

dn

dρ
= (n2 − 1)(n2 + 2)

6nρ

(
1 + ρ

α

dα

dρ

)
.

This leads to an estimated photoelastic coefficient

p = (n2 − 1)(n2 + 2)

3n4

(
1 + ρ

α

dα

dρ

)
.
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It is apparent that the refractive indices depend on pressure through both
the density ρ and the polarizability α. As the pressure increases, the atoms
are packed closer together causing an increase in the refractive index. Pressure
changes may also change the atomic polarizabilities so that dα/dρ �= 0. When
a solid is compressed, the electrons are bonded more tightly, reducing the
polarizability. Thus the term dα/dρ is negative, and the resulting change in
refractive index opposes the effect of a volume decrease. The two effects are of
the same order of magnitude, so that the refractive index increases with pressure
in some crystals (Al2O3), decreases in some (MgO), and is almost constant in
others (Y3Al5O12).

27.2 Photoelasticity

The photoelastic effect, sometimes called the piezo-optic effect, concerns the
changes in optical indicatrix with mechanical stress or strain. For an arbitrary
coordinate system (Z1, Z2, Z3) the indicatrix takes the form BijZiZj = 1 or

B11Z2
1 + B22Z2

2 + B33Z2
3 + 2B23Z2Z3 + 2B13Z1Z3 + 2B12Z1Z2 = 1.

Changes in the indicatrix under stress Xkl or strain xkl are represented through
the linear relations

	Bij = πijklXkl

or
	Bij = pijklxkl.

The coefficients πijkl and pijkl are fourth polar rank tensors, sometimes referred
to as the piezo-optic and elasto-optic effects, respectively. Since stress and strain
are related to one another through the elastic constants, the π and p coefficients
are also. In what follows we shall work mainly with the elasto-optic tensor pijkl.

Both the indicatrix coefficients and the strain tensors are symmetric, so that
Bij = Bji, xkl = xlk , and pijkl = pjikl = pijlk = pjilk . This means that 36
coefficients in a 6 × 6 matrix are sufficient to describe the linear photoelastic
effect: 



	B1

	B2

	B3

	B4

	B5

	B6




=




p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

p61 p62 p63 p64 p65 p66







x1

x2

x3

x4

x5

x6




,

where 	B1 = 	B11, 	B4 = 	B23, etc., and x1 = x11, x4 = 2x23, etc.
For the general case of an unstrained crystal, referred to its principal axes,

the indicatrix is governed by the equation

B0
1Z2

1 + B0
2Z2

2 + B0
3Z2

3 = 1.

Referring to Section 25.2, B0
1 = 1/n2

1, B0
2 = 1/n2

2, B0
3 = 1/n2

3 for biaxial
crystals. For uniaxial crystals B0

1 = B0
2 = 1/n2

0, and B0
3 = 1/n2

e , and for
isotropic media B0

1 = B0
2 = B0

3 = 1/n2.
Triclinic crystals require the measurement of 36 elasto-optic coefficients

but the number of coefficients is far smaller in higher symmetry crystals.
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The matrices for the elasto-optic effect are identical to those of the electro-
striction and magnetostriction effects (Table 15.4).

Photoelasticity is a fourth rank polar tensor that, like elasticity, is present
in all point groups. The elasto-optic matrix coefficients pmn are equal to the
corresponding tensor coefficients pijkl, such that p11 = p1111, p12 = p1122,
p66 = p1212, etc. This is not true for the piezo-optic coefficients πmn. In this
case πmn = πijkl if n = 1, 2, or 3, but πmn = 2πijkl if n = 4, 5, or 6.

As mentioned earlier, the piezo-optic and elasto-optic coefficients are
interrelated through the elastic constants:

pmn = πmpcpn and πmn = pmpspn,

where cpn and spn are the elastic stiffnesses and elastic compliances written
in matrix notation. Note that the elastic constant matrices are required to be
symmetric, but the photoelastic matrices are not. The energy argument does
not apply, so unless required by symmetry, πmn �= πnm and pmn �= pnm.

Elasto-optic coefficients for several isotropic and uniaxial materials are
compiled in Table 27.1.

27.3 Static photoelastic measurements

For many years, mechanical engineers have use the photoelastic effect to meas-
ure stress and strain patterns in complex designs. Fig. 27.1 shows a coupling
hook for railway cars which are subject to enormous tensile stresses. To test
the design, a model is made of a transparent material such as plexiglass, and
then placed under tensile load. For a flat design, the stresses are all in the
Z1–Z2 plane. In the photoelastic experiments (Fig. 27.2) the light beam is in the
perpendicular direction along Z3.

Plexiglass is optically isotropic so there are only two independent elasto-
optic coefficients p11 and p12. The shear coefficient p44 = 1

2 ( p11 − p12). The
strains at any given point in the test specimen are x1, x2, and x6. The resulting
changes in the indicatrix are given by



	B1

	B2

	B3

	B4

	B5

	B6




=




p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44







x1

x2

0
0
0
x6




.

Based on this expression, the equation of the indicatrix under strain is(
1

n2
+ p11x1 + p12x2

)
Z2

1 +
(

1

n2
+ p12x1 + p11x2

)
Z2

2

+
(

1

n2
+ p12x1 + p12x2

)
Z2

3 + 2

(
1

2

)
( p11 − p12)Z1Z2 = 1

or
B11Z2

1 + B22Z2
2 + B33Z2

3 + B12Z1Z2 = 1.

A Mohr circle construction can be used to determine the principal axes in the
Z1–Z2 plane (Fig. 27.3). The angle between the measurement axes and the
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Table 27.1 Room-temperature elasto-optic coefficients (dimensionless)
(full matrices for each point group are listed in Table 15.4)

Isotropic (∞∞m) glasses and polymers

SiO2 As2S3 Polystyrene Lucite

λ (µm) 0.630 1.150 0.633 0.633
p11 0.121 0.308 ±0.30 ±0.30
p12 0.270 0.299 ±0.31 ±0.28

Cubic crystals (point groups 4̄3m, m3m)

GaP GaAs β-ZnS Y3Al5O12

λ (µm) 0.630 1.150 0.633 0.633
p11 −0.151 −0.165 0.091 −0.029
p12 −0.082 −0.140 −0.01 −0.0091
p44 −0.074 −0.072 0.075 −0.0615

Tetragonal crystals (point groups 4̄2m, 422, 4/mm)

NH4H2PO4 KH2PO4 TeO2 TiO2

λ (µm) 0.589 0.589 0.633 0.514
p11 0.319 0.287 0.0074 −0.001
p12 0.277 0.282 0.187 0.113
p13 0.169 0.174 0.340 −0.167
p31 0.197 0.241 0.0905 −0.106
p33 0.167 0.122 0.240 −0.064
p44 −0.058 −0.019 −0.17 0.0095
p66 −0.091 −0.064 −0.0463 −0.066

Trigonal crystals (32, 3m, 3̄m)

Al2O3 LiNbO3 LiTaO3 α-SiO2

λ (µm) 0.644 0.633 0.633 0.589
p11 −0.23 −0.026 −0.081 0.16
p12 −0.03 0.09 0.081 0.27
p13 0.02 0.133 0.093 0.27
p14 0.00 −0.075 −0.026 −0.03
p31 −0.04 0.179 0.089 0.29
p33 −0.20 0.071 −0.044 0.10
p41 0.01 −0.151 −0.085 −0.047
p44 −0.10 0.146 0.028 −0.079

Stress

Stress pattern and lines of
principal stress

Coupling hook for
railroad cars

Plexiglass model

Fig. 27.1 Transparent model of a coupling
hook under tensile stress showing the regions
of maximum strain where fracture is likely to
occur. Photoelastic experiments are used to
determine the directions and magnitudes of
the strain.

principal axes (θ) and the difference between the principal strains (x1–x2) are
determined from the construction.

The principal advantage of these photoelastic experiments is that they provide
a rapid way of locating regions of stress concentration. They provide a useful
way of verifying calculations carried out by finite element analysis on complex
engineering designs.
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Fig. 27.2 A photoelastic polariscope is used
to map the stress and strain configuration
in engineering structures. (a) Directions of
principal strain (isotropic lines) are deter-
mined by examining the specimen between
crossed polarizers. (b) Isochromatic lines
give the difference in strain level between
the two principal strains (x1 and x2) at any
point. These patterns are obtained by inserting
quarter wave plates into the beam.

(a)

(b)

Lens Lens

Light
source Polarizer

Stress
Analyzer

Transparent specimen

Photo
plate

Lens

Lens
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27.4 Acousto-optics

There are a number of acousto-optic devices involving the interaction of light
waves with sound waves in a photoelastic medium. Acousto-optic phenomena
have been used to build spectral analyzers, beam deflectors, optical modulators,
and tunable filters. In many of these devices, laser beams in the optical range
interact with elastic waves in the microwave region through Bragg diffraction.

As an example, consider a longitudinal sound wave in an isotropic medium
(point group ∞∞m) such as silica glass. The elasto-optic coefficients p11 and
p12 are given in Table 27.1, and the elasto-optic matrix in Table 15.4. Let Z3

be the direction of the wave normal, and the vibration direction since the wave
is longitudinal. The strain field associated with the acoustic plane wave will be
periodic along Z3:

x3 = A sin(�t − KZ3),

where A is the amplitude of the wave, � the angular frequency, and K the wave
vector. (The symbols ω and k are reserved for the optical beam). The resulting
changes in the optical indicatrix are given by



	B1

	B2

	B3

	B4

	B5

	B6




=




p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44







0
0
x3

0
0
0




,

B12

B1 B11

B12

B2

B22 B1, B2, B11, B22

2�

Fig. 27.3 Principal axes for the strain at any
point in the plexiglass model are obtained
by a Mohr circle construction by plotting the
strained indicatrix components.

where p44 = 1
2 ( p11 − p12). This leads to a new uniaxial ellipsoid governed by

the equation (
Z2

1 + Z2
2

) (
1

n2
+ p12A sin(�t − KZ3)

)

+ Z2
3

(
1

n2
+ p11A sin(�t − KZ3)

)
= 1.

The important point is that, in the presence of an acoustic wave, the isotropic
medium becomes a dynamic anisotropic medium. In effect it is converted to
a volume grating with a periodicity � = 2π/K along the wave normal Z3.
Optical waves can be diffracted by this grating.
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The acoustic wave creates a perturbation that is periodic both in space and
time. However, the speed of the acoustic wave (typically 103 m/s) is many
orders of magnitude smaller than that of an optic wave (typically 108 m/s).
Thus the acoustic grating is essentially stationary with respect to the optical
beam. Accompanying the sound wave is a periodic change in refractive index
which scatters the optical waves. The refractive index change is caused by the
local changes in density and polarizability, as explained in Section 27.1.

The acousto-optic scattering process is pictured in Fig. 27.4. Consider a λ =
0.5 µm light wave in silica glass (n = 1.5) with a phase velocity v = 2×108 m/s
and an angular frequency ω = 2.5 × 1015 Hz. A 2 GHz acoustic wave in silica
has a speed V = 6 km/s and a wavelength � = 3 µm. The Bragg diffraction
condition for these two waves is

2� sin θ = λ,

which is satisfied for a scattering angle of about 5◦. The diffracted optical beam
is shifted in frequency by an amount equal to the sound frequency, which is
a relatively small change. During the diffraction process the optical photon
increases its energy by absorbing an acoustic phonon.

�
� �

��
�

V

Incident
optical

beam (�)

Ultrasonic
wavefront (Ω)

Diffracted
optical

beam (� + Ω)

Fig. 27.4 Bragg diffraction of optical waves
from an ultrasonic acoustic wave in the
microwave range.

Energy and momentum are conserved during the scattering of light waves by
the acoustic grating. For the isotropic medium just considered, the energies of
the incident and scattered photons are h̄ω and h̄ω′, where h̄ is Planck’s constant
divided by 2π . The phonons associated with the acoustic wave have energy h̄�.
Conservation of energy requires that

ω′ = ω + �.

If the direction of the acoustic beam is reversed ω′ = ω −� and a new phonon
is created as another is destroyed.

The momentum of the incident photon is h̄k̄ where |k| = 2π/λ is the wave
vector parallel to the wave normal. For the scattered photon and the acous-
tic phonon, the momenta vectors are h̄k̄′ and h̄k̄, respectively. Momentum
conservation requires that k̄′ = k̄ + K̄ .

For an isotropic solid, optical beams travel with the same velocity in all
directions. This condition is altered only slightly in the presence of the low
energy phonons. This means that

ω′ ∼= ω and |k̄′| ∼= |k̄|.
Therefore the momentum conservation condition leads to the Bragg diffraction
condition shown in Fig. 27.5(a). In this case the scattered angle θ ′ and the angle
of incidence θ are nearly equal. The magnitude of K is then 2k sin θ which is
equivalent to the Bragg equation 2� sin θ = λ.

Acoustic wave 
front

KK

kk

k�k�

� �

���� ��≠ �

(a) (b)

Fig. 27.5 Momentum conservation condi-
tions in (a) an isotropic solid and (b) an
anisotropic solid.
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27.5 Anisotropic media

For an anisotropic solid, the optical beams traveling in different directions
generally have different velocities and different refractive indices. Let n
and n′ represent the refractive indices of the incident and diffracted beams.
In anisotropic crystals such as calcite and rutile, n and n′ can differ by 10%.
Under these conditions the angles θ and θ ′ between the photon beams and
the ultrasonic wave front are no longer equal. The diffraction conditions are
obtained from the triangle specifying momentum conservation (Fig. 27.5(b)).
For the incident photon

2k sin θ = K − (k′2 − k2)

K
,

and for the diffracted photon

2k′ sin θ ′ = K + (k′2 − k2)

K
.

Rewriting these equations in terms of wavelengths and refractive indices and
remembering that ω′ ∼= ω, the diffraction conditions for anisotropic media
become

sin θ =
(

1

2n

) [(
λ

�

)
−

(
�

λ

)
(n′2 − n2)

]
and

sin θ ′ =
(

1

2n′

) [(
λ

�

)
+

(
�

λ

)
(n′2 − n2)

]
.

When n′ = n these expressions revert to the Bragg equation with θ ′ = θ .
For a uniaxial crystal, the maximum and minimum values of n′ and n would
correspond to ne and no, and the acousto-optic experiment would often involve
both ordinary and extraordinary rays with different polarization directions.

27.6 Material issues

The intensity of the diffracted light depends on the path length within the sample,
the optical wavelength, and a material figure of merit M.

M = n6p̄2

ρV3
.

n is the refractive index, V the acoustic wave velocity, ρ the density, and p̄ the
effective elasto-optic coefficient. V , p̄, n, and M all depend on the configura-
tion of the experiment: sample orientation, direction of propagation, and the
polarization states of the optical and ultrasonic waves. Therefore the numer-
ical values in Table 27.2 are only approximate. Nevertheless some general
conclusions can be drawn regarding the types of material that give the largest
acousto-optic interactions.

The dominant factors are the refractive index n and the acoustic velocity V .
Slow waves—both optic and acoustic—enhance the interaction time and the
diffracted intensities. Common oxides are generally mechanically stiff and
have fast acoustic waves. Therefore the figures of merit for silica, alumina,
lithium niobate, and most other oxides are small. An exception is paratellurite,
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Table 27.2 Representative figures of merit for
acousto-optic materials (all are expressed in units

of 10−15 MKS)

Amorphous Tetragonal

SiO2 1.5 NH4H2PO4 6.4
As2S3 433 KH2PO4 3.8
Polystyrene 120 TeO2 800

TiO2 3.9

Cubic Trigonal

GaP 45 Al2O3 0.34
GaAs 104 LiNbO3 7.0
β-ZnS 3.4 LiTaO3 1.4
Y3Al5O12 0.07

TeO2, which has an exceedingly slow shear wave along [110]. The acoustic
wave velocity surfaces for TeO2 were shown in Fig. 23.9. Transverse acoustic
waves generally travel slower than longitudinal waves in most materials, giving
them an advantage in acousto-optic experiments. Polymers, organic crystals,
and other low-melting compounds generally have weaker chemical bonds and
slower acoustic waves. Polystyrene, water, and iodic acid (HIO3) all have slow
acoustic waves and good M values.

Refractive indices are also very important. Common oxides and common
salts like SiO2 and LiF suffer here as well. Heavy metal sulfides such as CdS
and As2S3 have very high refractive indices because of their proximity to an
absorption band.

Elasto-optic coefficients (Table 27.1) show a great deal of scatter with few real
trends. As pointed out in Section 27.1 there are conflicting causes for the photo-
elastic coefficients which means they can be positive, negative, or near zero.
Because of the scatter, orientation of the wave normals and polarization direc-
tions are very important. In yttrium aluminum garnet, for instance, the figure of
merit for longitudinal acoustic waves along [110] have a much higher figure
of merit than those traveling along [100]. A listing of acousto-optic figures of
merit is presented in Table 27.2.
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Optical beams can be controlled by manipulating the refractive indices and
absorption coefficients with applied electric fields. In communication systems
electro-optic effects are used in phase and amplitude modulation, in beam
deflectors, and in tunable filters.

Three such effects are illustrated in Fig. 28.1. Lead lanthanum zirconate
titanate (PLZT) is a transparent electroceramic that can be prepared in
several different ferroelectric forms with large electro-optic coefficients. When
prepared in a normal ferroelectric form it can be used in two different ways.
A light-tunable shutter is constructed by coating a multidomain ceramic of
PLZT with a photoconducting layer and transparent electrodes (Fig. 28.1(a)).
A bias voltage on the electrodes is transferred to the ceramic when the photo-
conductor is illuminated. The electric field alters the domain structure and the
degree of light scattering, controlling the intensity of light.

Fully poled ferroelectric ceramics exhibit the linear electro-optic effect
(Fig. 28.1(b)) Using planar electrodes the PLZT is poled perpendicular to the
optical beam. Polarizer and analyzer are positioned in the ±45◦ positions, and
light intensity is controlled by altering the birefringence with an electric field.

The third experiment utilizes a pseudo-cubic PLZT composition with a large
quadratic electro-optic effect (Fig. 28.1(c)). No poling is required in this case.

Fig. 28.1 Three ways of controlling light
intensity are: (a) by light scattering from
domain walls, (b) by the linear electro-optic
effect, and (c) by the quadratic electro-
optic effect. Various compositions of trans-
parent PLZT ceramics made of ferroelectric
(Pb, La)(Zr, Ti)O3 have been used in these
experiments (Haertling).

(a)

(b)

(c)
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With polarizer and analyzer again in the ±45◦ positions, the transmitted light
intensity is proportional to E2 rather than E.

28.1 Linear electro-optic effect

Linear and quadratic electro-optic coefficients are defined in terms of the field-
induced changes in the optical indicatrix:

Bij(E) − Bij(0) = 	Bij = rijkEk + RijklEkEl.

Since the indicatrix components Bij are dimensionless, and the applied elec-
tric field components Ek and El are measured in volts/meter, the units of the
linear (rijk) and quadratic (Rijkl) electro-optic coefficients are m/V and m2/V2,
respectively.

The linear electro-optic effect is a third rank polar tensor known as the Pockels
Effect. Since the indicatrix components are symmetric (	Bij = 	Bji) the tensor
can be written as a 6 × 3 matrix with 18 Pockels coefficients:

	Bi = rijEj (i = 1–6, j = 1–3).

No factors of 2 appear in the relations between the tensor coefficients and the
matrix components. Thus, for example, r222 = r22 and r123 = r213 = r63.

For triclinic crystals (point group 1) there are 18 linear electro-optic coeffi-
cients but symmetry greatly reduces this number. In the next section we consider
the electro-optic effect in KH2PO4 (KDP), so we begin by deriving the Pockels
matrix for point group 4̄2m. Two symmetry elements are required to generate
this group, a fourfold inversion axis along Z3 and a twofold axis parallel to Z1.
The direct inspection method can be used for these symmetry elements. For
4̄ ‖ Z3, 1 → −2 → −1, 2 → 1 → −2, 3 → −3 → 3. The tensor coefficients
and their corresponding matrix coefficients transform as follows:

111 → −222 → −111, r11 = r22 = 0

112 → 221 → −112, r12 = r21 = 0

113 → −223 → 113, r13 = −r23

331 → −332 → −331, r31 = r32 = 0

333 → −333, r33 = 0

231 → 132 → 231, r41 = r52

233 → 133 → −233, r43 = r53 = 0

121 → 212 → −121, r61 = r62 = 0

123 → 213 → 123, r63.

For 2 ‖ Z1, 1 → 1, 2 → −2, 3 → −3 and the remaining nonzero coefficients
transform as follows.

113 → −113, r13 = r23 = 0

231 → 231, r41 = r52

232 → −232, r42 = r51 = 0

123 → 123, r63.



304 Electro-optic phenomena

Therefore only three nonzero electro-optic coefficients remain for point
group 4̄2m: r41 = r52 and r63. The experiment described in the next section
utilizes r63.

Electro-optic coefficients for the 32 crystallographic point groups and seven
Curie groups are given in Table 28.1. Except for a few factors of 2, the linear
electro-optic matrices are identical in form to those used for the converse piezo-
electric effect. Like the pyroelectric and piezoelectric effects, the Pockels Effect
disappears in all centrosymmetric point groups. Again from the direct inspec-
tion method, an inversion center takes 1 → −1, 2 → −2, and 3 → −3.
Therefore for any polar third-rank tensor subscript, ijk → −ijk = 0. The same
argument holds for other odd-rank polar tensors. They too disappear in centric
groups. Pockels coefficients are also zero in two noncentrosymmetric point
groups 432 and Curie group ∞∞.

In the absence of an electric field, the optical indicatrix is an ellipsoid

Z2
1

n2
1

+ Z2
2

n2
2

+ Z2
3

n2
3

= 1,

where n1, n2, and n3 are the refractive indices associated with the principal axes
Z1, Z2, Z3. In terms of the dielectric impermittivity coefficients, B11(0) = 1/n2

1,
B22(0) = 1/n2

2, and B33(0) = 1/n2
3. All other Bij(0) terms are zero.

When an electric field Ek is applied to the crystal, the ellipsoid is modified
to read, (

1

n2
1

+ r1kEk

)
Z2

1 +
(

1

n2
2

+ r2kEk

)
Z2

2 +
(

1

n2
3

+ r3kEk

)
Z2

3

+ 2r4kEkZ2Z3 + 2r5kEkZ1Z3 + 2r6kEkZ1Z2 = 1.

We have assumed the quadratic electro-optic effect to be negligibly small.
New principal axes are required whenever the cross-terms involving r4k , r5k ,
and r6k are present. A new set of principal axes are obtained by coordinate
rotation.

As explained in the next section, the preferred light path in most electro-
optic experiments is along an optic axis. The presence of birefringence makes
it difficult to observe the electro-optic effect.

28.2 Pockels Effect in KDP and ADP

Large transparent crystals of potassium dihydrogen phosphate (KDP =
KH2PO4) and ammonium dihydrogen phosphate (ADP = NH4H2PO4) can be
grown from water solution. KDP and ADP are good examples of a hydrogen-
bonded ferroelectric and antiferroelectric, respectively, but the electro-optic
experiments to be described here are carried out near room temperature where
the crystals are above Tc in the paraelectric state. The point group is 4̄2m.

The crystal structures of KDP and ADP consist of PO4 phosphate groups
bonded together by K+ or NH+

4 ions and hydrogen bonds (Fig. 28.2). At room
temperature the hydrogen atoms are disordered, occupying two sites with equal
probability. Both structures undergo phase transitions at low temperatures, with
the protons ordering in double potential wells.
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Table 28.1 Linear electro-optic matrices for the 32 crystal classes
and seven Curie groups

1 2 m


r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43
r51 r52 r53
r61 r62 r63







0 r12 0
0 r22 0
0 r32 0

r41 0 r43
0 r52 0

r61 0 r63







r11 0 r13
r21 0 r23
r31 0 r33
0 r42 0

r51 0 r53
0 r62 0




222 mm2 3


0 0 0
0 0 0
0 0 0

r41 0 0
0 r52 0
0 0 r63







0 0 r13
0 0 r23
0 0 r33
0 r42 0

r51 0 0
0 0 0







r11 −r22 r13
−r11 r22 r13

0 0 r33
r41 r51 0
r51 −r41 0

−r22 −r11 0




32 3m 4, 6, ∞


r11 0 0
−r11 0 0

0 0 0
r41 0 0
0 −r41 0
0 −r11 0







0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0

r51 0 0
−r22 0 0







0 0 r13
0 0 r13
0 0 r33

r41 r51 0
r51 −r41 0
0 0 0




4̄ 422, 622, ∞2 4mm, 6mm, ∞m


0 0 r13
0 0 −r13
0 0 0

r41 −r51 0
r51 r41 0
0 0 r63







0 0 0
0 0 0
0 0 0

r41 0 0
0 −r41 0
0 0 0







0 0 r13
0 0 r13
0 0 r33
0 r51 0

r51 0 0
0 0 0




4̄2m 6̄ 6̄m2


0 0 0
0 0 0
0 0 0

r41 0 0
0 r41 0
0 0 r63







r11 −r22 0
−r11 r22 0

0 0 0
0 0 0
0 0 0

−r22 −r11 0







0 −r22 0
0 r22 0
0 0 0
0 0 0
0 0 0

−r22 0 0




4̄3m, 23 Most other groups centric:


0 0 0
0 0 0
0 0 0

r41 0 0
0 r41 0
0 0 r41




1̄, 2/m,
mmm, 3̄, 3̄m
4/m, 4/mmm
6/m, 6/mmm

m3, m3m, ∞/m
∞/mm, ∞∞m

acentric: 432, ∞∞




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0




Below the Curie point, the hydrogens in KH2PO4 are in an ordered arrange-
ment with two hydrogens near every PO4 group. KH2PO4 polarizes along
the c crystallographic axis with Ps either parallel or antiparallel to c, form-
ing 180◦ domains. In domains with the spontaneous polarization parallel to c,
the protons at the base of the tetrahedra move close and the upper ones move
away (Fig. 28.2(a)). Applying an electric field parallel to −c switches Ps and
the lower protons move away while the upper protons move close.

NH4H2PO4 is nearly isomorphous with KH2PO4 but the proton ordering is
different. The symmetry of KH2PO4 changes from 4̄2m to mm2 at the transition,
whereas the ammonium salt transforms from 4̄2m to 222. At room temperature
the acid hydrogens in NH4H2PO4 are disordered, as in KH2PO4, and at low
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temperatures they adopt the arrangement shown in Fig. 28.2(b). In this case, one
lower H+ and one upper H+ move close to each PO4 group, canceling any shifts
along c. Ammonium dihydrogen phosphate does not polarize spontaneously at
the transition, and is, therefore, not a ferroelectric. It is called an antiferroelectric
because of the antiparallel shifts, and because it is closely related to ferroelectric
KH2PO4. ADP is ferroelastic and potentially ferrobielectric.

In any electro-optic experiment, the first questions concern the orientation
directions. How should the light beam be aligned and what are the preferred
directions for the electric field and the optical polarizers?

(a)

(b)

Fig. 28.2 Ordering of hydrogen ions on the
O–H–O bonds in (a) ferroelectric KH2PO4
and (b) antiferroelectric NH4H2PO4. Full
and empty proton sites are represented by
solid and open circles, respectively. Most of
the electro-optic experiments are carried out
at room-temperature where the protons are
disordered.

Electro-optic experiments are generally done along an optic axis because the
induced birefringence is much smaller than the standing birefringence. By way
of illustration, the intrinsic birefringence in KDP is 	n = 0.04. The linear
electro-optic coefficients in crystals are in the range 10−12 to 10−10 m/V.
To determine how the indicatrix coefficients depend on the electric field, we
recognize that the unmodified B coefficient is 1/n2, so dB/dn = −2n−3.
This means that the field-induced birefringence is

	n(E) =
(

−n3

2

)
(	B) = −

(
−n3

2

)
rE.

For KDP, n ∼ 1.5 and r ∼ 10−11 m/V, and even under a sizeable field of
106 V/m, 	n(E) ∼ 10−5 which is three orders of magnitude smaller than the
natural birefringence in most anisotropic crystals.

To avoid the standing birefringence, the light beam must be aligned along an
optic axis. Any direction in a cubic crystal will satisfy this requirement. Optic
axis directions in uniaxial or biaxial media will also eliminate birefringence,
but in biaxial crystals the optic axis directions change with wavelength and
temperature, and are awkward to work with.

The orientation of the field depends on which electro-optic coefficients are
available. For KDP and ADP (point group 4̄2m), the nonzero coefficients are
r41 = r52 and r63. The crystals are optically uniaxial with n1 = n2 = no and
n3 = ne and the optic axis along Z3, and we are most concerned with the section
of the indicatrix for which Z3 = 0.

With no field, the indicatrix is

1

n2
o
(Z2

1 + Z2
2 ) + 1

n2
e

Z2
3 = 1.

The section perpendicular to Z3 is a circle of radius no, the ordinary
refractive index (Fig. 28.3(b)). In the presence of an electric field the indicatrix
is altered to

1

n2
o
(Z2

1 + Z2
2 ) + 1

n2
e

Z2
3 + 2r41(E1Z2Z3 + E2Z1Z3) + 2r63E3Z1Z2 = 1.

The Z3 = 0 section perpendicular to the light path is

1

n2
o
(Z2

1 + Z2
2 ) + 2r63E3Z1Z2 = 1.

Based on this argument, the only effective direction for applying the electric
field is along Z3. This results in an elliptical section (Fig. 28.3(b)) with the
principal axes aligned parallel to the [110] and [1̄10] directions of the tetragonal
KDP crystal.
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The final point concerns the orientation of the polarizer and analyzer. Since
the goal is to modulate the intensity of the light beam with an electric field,
the polarizer and analyzer are crossed to assure extinction. With the polarizer
along Z1 = [100] and the analyzer along Z2 = [010], the intensity is zero when
E = 0. When the field E3 is switched on the crystal brightens as the principal
axes an aligned along [110] and [1̄10]. The brightness will be proportional
to E3.

(a)

(b)

(c)

Elliptical with field
E3 > 0

No field E3 = 0

Principal
axes in [110] 

and [1
–
10] directions

Circular
Ω = no

no

Z2

Z1

v

Light

KDP
crystal c Transparent

electrodes

Polarizer (P) || Z2

Analyzer (A) || Z1

E = E3

P Z2
Z2

Z1 Z1

View along optic axis

No field

Dark
when E3 = 0

Bright
when E3 > 0

With
field

A A

Fig. 28.3 Electro-optic experiment in KDP,
ADP, and other crystals belonging to point
group 4̄2m. (a) The light beam is directed
along Z3 = [001] to avoid standing birefring-
ence. The electric field must also be parallel
to Z3 to produce a linear electro-optic effect.
Polarizer and analyzer are aligned along Z1
and Z2, respectively, to modulate the intens-
ity of the light beam. (b) Sections of the
optical indicatrix perpendicular to the optic
axis, with and without an applied electric
field. (c) Positions of polarizer and analyzer
viewed along Z3. When E = 0 the light
is blocked, but brightens in the presence of
a field E3.

For maximum brightness, calculate the voltage that produces a half-
wavelength path difference. This is the so-called half-wavelength voltage Vλ/2

determined from the condition

	nt = λ

2
,

where t is the crystal thickness and 	n is the birefringence induced by the
applied electric field. Referring to the new principal axes for KDP (Fig. 28.3(b)),
the maximum (n′

1) and minimum (n′
2) refractive indices along [110] and {1̄10]

are given by (
1

n′
1

)2

=
(

1

n2
o

)2

+ r63E3

and (
1

n′
2

)2

=
(

1

n2
o

)2

− r63E3.

Combining these two terms and remembering that r63E3 is only a small
correction gives the field-induced birefringence

	n = n′
1 − n′

2
∼= r63E3n3

o.

Substituting 	n into the half-wavelength path difference condition gives the
half-wavelength voltage.

Vλ/2 = E3t = λ/2R63n3
o.

For KDP, r63 = 10.3 pm/V and no = 1.5115 at a wavelength of 0.546 µm.
The corresponding value of Vλ/2 is 7.8 kV.

Notice that the half-wave voltage is directly proportional to wavelength and
inversely proportional to the product rn3. To reduce the applied voltage it is
advantageous to use crystals with large refractive indices and large electro-
optic coefficients. Table 28.2 compares Vλ/2 values for several crystals and
transparent ceramics. Many of the better electro-optic materials operate near an
absorption edge (to increase n) or near a ferroelectric transition (to increase r),
or both.

The temperature dependence of the KDP coefficient r63 illustrates this point.
As KDP is cooled toward the paraelectric–ferroelectric phase transition r63

increases by two orders of magnitude (Fig. 28.4).

Table 28.2 Half-wave voltages for single crystals and poled
ceramics exhibiting the Pockels Effect

SiO2 (α-quartz) 290 kV ZnSe 7.1 kV
NaClO3 200 LiNbO3 2.8
Bi4Ge3O12 73 NaBa2Nb5O15 2.1
Bi12GeO20 6 Pb(Mg,Nb,Ti)O3 1.0
KH2PO4 7.8 (Pb,La) (Zr,Ti)O3 0.1
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28.3 Linear electro-optic coefficients

Poled PLZT has a sizeable Pockels Effect when prepared as a transparent
ceramic by hot-pressing. The point group of a poled ceramic is ∞m with five
electro-optic coefficients r13 = r23, r33, and r51 = r42. If as in Fig. 28.1(b),
the optical beam is directed along Z1 and the electric field along Z3, the
principal axes will remain unchanged but the birefringence will change from
	n(0) = (ne − no) to 	n(E) = (ne − no) − 1

2 (n3
er33 − n2

or13)E3. The change
in birefringence is quite large compared to most other electro-optic media and
leads to a very low half-wave voltage (Table 28.2).
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Fig. 28.4 The temperature dependence of
r63 and 1/r63 for KH2PO4. The ferro-
electric phase transformation leads to large
dipolar response to electric fields, with
r ∼ (T − Tc)

−1.

Electro-optic coefficients for a number of single crystals are collected in
Table 28.3. For non-ferroelectric crystals the r values are generally in the range
1–10 pm/V. Ferroelectrics can have much larger values.

Problem 28.1
Ferroelectric crystals are often used in electro-optic devices because only small
control voltages are required. The refractive indices and electro-optic coeffi-
cients of KNbO3 for λ = 0.63 µm are listed in Table 28.3. Determine the
orientations of the two optic axes. An electro-optic experiment is performed
with both the light beam and the applied electric field along an optic axis. Write
out equations governing the indicatrix with and without an electric field. How
should the polarizer and analyzer be positioned to maximize the electro-optic
effect?

The Pockels coefficients in Table 28.3 depend on the temperature of the
crystal, the wavelength of light, and the frequency of the applied electric field.
The temperature dependence is small in most crystals, often within experi-
mental error, but can be very large near phase transformations. As pointed out

Table 28.3 Linear electro-optical coefficients measured at room
temperature in the visible and near infrared range

Crystal λ (µm) n r (pm/V)

CdTe (4̄3m) 1.0 2.84 r41 = 4.5
GaAs (4̄3m) 1.15 3.43 r41 = 1.43
GaP (4̄3m) 0.63 3.32 r41 = −0.97
ZnS(4̄3m) 0.5 2.42 r41 = 1.81
ZnSe (4̄3m) 0.55 2.66 r41 = 2.0
ZnTe (4̄3m) 0.59 3.06 r41 = 4.51
CdS (6mm) 1.15 no = 2.32 r31 = 3.1, r33 = 3.2

ne = 2.34 r51 = 2.0
KH2PO4 (4̄2m) 0.55 no = 1.5115 r41 = 8.77

ne = 1.4698 r63 = 10.3
NH4H2PO4 (4̄2m) 0.55 no = 1.5115 r41 = 23.76

ne = 1.4698 r63 = 8.56
Ba Sr3Nb8O24 (4mm) 0.63 no = 2.3117 r13 = 67, r33 = 1340

ne = 2.2987 r51 = 42
LiNbO3 (3m) 0.63 no = 2.286 r13 = 9.6, r22 = 6.8

ne = 2.200 r33 = 30.9, r51 = 32.6
α-HIO3 (222) 0.63 n1 = 1.8365 r41 = 6.6

n2 = 1.984 r52 = 7.0
n3 = 1.96 r63 = 6.0

KNbO3 (mm2) 0.63 n1 = 1.8365 r13 = 28, r23 = 1.3
n2 = 1.984 r33 = 64, r42 = 380
n3 = 1.96 r51 = 105
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Fig. 28.5 (a) Pockels coefficient r63 of KDP
and ADP plotted as a function of wave-
length. (b) Effect of modulation frequency
on r63 for KDP and ADP showing the differ-
ence in the coefficient measured at constant
stress (r X

63) and constant strain (r x
63). At still

higher frequencies above the infrared range,
where optic and acoustic infrared modes are
clamped, only electronic contributions to the
Pockels coefficient remain.

previously for KDP, the r coefficient follows a Curie–Weiss law near the Curie
temperature (Fig. 28.4).

The dependence of r on optical wavelength are similar in size to the dispersion
of refractive indices. Data for KDP and ADP are shown in Fig. 28.5(a).

The effect of the modulating frequency follows the earlier discussion of
the dielectric constant (Section 9.1). Polarization mechanisms drop out, one
by one, as frequency increases. When the modulating frequency is low, the
crystal deforms through piezoelectric coefficients dijk . The electrically induced
strains affect the refractive indices through the elasto-optic coefficients pijkl.
At modulating frequencies above the piezoelectric resonances, the crystal does
not have time to deform but there is, nevertheless, an electro-optic effect.
This is the constant strain coefficient r x

ijk which is sometimes referred to as
the “true” or “primary” electro-optic coefficient. The low-frequency (stress-
free) coefficient r X

ijk is equal to the sum of the strain free coefficient and the
piezoelectric contribution:

r X
ijk = r x

ijk + pijlmdlmk .

The second term is sometimes called the “false” or “secondary” electro-optic
coefficient, but it is not really false. It is an important part of the Pockels Effect
at low frequency. When written in matrix form, the equation becomes

r X
mn = r x

mn + pmpdt
pn,

where m, p = 1–6, and n = 1–3.
The piezoelectric contribution drops out in the microwave region, leaving

only r x
mn. Since the piezoelectric and elasto-optic coefficients can be either

positive or negative, the change in Pockels coefficient can also be positive or
negative. Measured values for the r63 coefficient of KDP and ADP are shown
in Fig. 28.5(b).

28.4 Quadratic electro-optic effect

The quadratic electro-optic effect (the Kerr Effect) relates the changes in the
optical indicatrix 	Bij to the square of the applied electric field. In tensor form

Bij(E) − Bij(0) = 	Bij = RijklEkEl.
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The Kerr Effect tensor Rijkl is analogous to the electrostriction and magnetostric-
tion tensors in that it relates a symmetric second rank tensor to the product of
two first-rank tensors (see Sections 15.3 and 15.4). It is a fourth rank tensor, but
not a symmetric fourth rank tensor like the elastic constants, since the energy
argument does not apply. It is convenient to rewrite the quadratic electro-optic
coefficients as a 6 × 6 matrix. Remembering that the equation of the indicatrix
is that of an ellipsoid,

BijZiZj = B11Z2
1 + B22Z2

2 + B33Z2
3 + 2B12Z1Z2 + 2B13Z1Z3 + 2B23Z2Z3

= B1Z2
1 + B2Z2

2 + B3Z2
3 + 2B6Z1Z2 + 2B5Z1Z3 + 2B4Z2Z3.

There are no factors of 2 involved in going from the tensor coefficients
Bij (i, j = 1–3) to the matrix coefficients Bi (i, j = 1–6). This holds true
for the changes as well, 	Bij = 	Bi. Using the notation employed earlier
(Section 15.3) for electrostriction, E1E1 = E2

1 , E1E2 = E2
6 , E1E3 = E2

5 , etc.,
gives the matrix form

6 × 1
(	B) =

6 × 6
(R)

6 × 1
(E2)

Thus there are 36 terms in the Kerr Effect matrix for a triclinic crystal. Matrices
for the other point groups are identical to those for the magnetostriction effect
in Table 15.4. Symmetry greatly reduces the number of coefficients.
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Fig. 28.6 The quadratic electro-optic effect
is used in the Kerr cell. (a) a transverse elec-
tric field partially aligns the molecules of the
liquid. This introduces an optical birefrin-
gence for light waves polarized parallel and
perpendicular to the electric field. (b) Polar
liquids such as nitrobenzene have sizeable
Kerr Effects.

The quadratic Kerr Effect is generally smaller than the linear Pockels Effect
so experiments are usually performed on centrosymmetric solids and liquids
where the linear effect is absent.

Kerr cells employing liquid media have been used as high speed electro-
optic shutters to provide chopped light sources at frequencies of 109–1010 Hz.
The shutters consist of polarizer, analyzer, and a transparent liquid under
a transverse field (Fig. 28.6(a)). The quadratic electro-optic coefficient is
largest for molecules with large electric dipole moments such as nitrobenzene
(Fig. 28.6(b)).

In the presence of an electric field the symmetry of a liquid changes from
∞∞m to ∞m. Point group ∞m corresponds to an uniaxial indicatrix with
the optic axis Z3 directed along the applied electric field. The light beam is
perpendicular to the electric field and the optic axis. Let Z1 be the direction of
the optical beam.

The indicatrix of an isotropic solid or liquid is

Bi(0) = 1

n2
(Z2

1 + Z2
2 + Z2

3 ) = 1.

where n is the refractive index. When an electric is applied along Z3 the
indicatrix components change by



	B1

	B2

	B3

	B4

	B5

	B6




=




R11 R12 R12 0 0 0
R12 R11 R12 0 0 0
R12 R12 R11 0 0 0
0 0 0 R44 0 0
0 0 0 0 R44 0
0 0 0 0 0 R44







0
0

E2
3

0
0
0




=




R12E2
3

R12E2
3

R11E2
3

0
0
0




,
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Table 28.4 Quadratic electro-optic coefficients R11–R12 (in m2/V2) and Kerr constants K
(in m/V2) for several liquids and solids. The ferroelectrics are measured in the cubic state

λ (µm) n R11–R12 K

Benzene 0.55 1.503 1.6 × 10−21 4.9 × 10−15

CS2 0.55 1.633 1.0 × 10−20 3.9 × 10−14

CCl4 0.63 1.456 1.5 × 10−22 7.4 × 10−16

Water 0.59 1.333 2.5 × 10−20 5.1 × 10−14

Nitrotoluene 0.59 1.548 4.5 × 10−19 1.4 × 10−12

Nitrobenzene 0.59 1.552 7.6 × 10−19 2.4 × 10−12

BaTiO3 0.63 2.42 2.3 × 10−15 2.6 × 10−9

KNb0.37Ta0.63O3 0.63 2.29 2.9 × 10−15 2.8 × 10−9

SrTiO3 0.63 2.38 3.1 × 10−17 3.3 × 10−11

(Pb0.88La0.08)(Ti0.35Zr0.65)O3 0.55 2.45 1.8 × 10−15 2.4 × 10−9

where 2R44 = R11 – R12. Adding 	Bi(E) to Bi(0) gives the indicatrix equation
of the liquid in the presence of an electric field.(

1

n2
+ R12E2

3

)
(Z2

1 + Z2
2 ) +

(
1

n2
+ R11E2

3

)
Z2

3 = 1.

Since the light beam is parallel to Z1, the elliptical section perpendicular to Z1

determines the birefringence. The refractive indices along the major and minor
axes are

no = n − 1

2
n3R12E2

3 and ne = n − 1

2
n3R11E2

3

and the resulting birefringence is

	n = ne − no = 1

2
n3(R12 − R11)E

2
3 = −n3R44E2

3 .

Quadratic electro-optic coefficients R11–R12 for several solids and liquids are
given in Table 28.4. The coefficients for barium titanate and other ferroelectric
solids are several orders of magnitude larger than the liquids. Polar liquids
like water have larger electro-coefficients than carbon tetrachloride and other
nonpolar liquids. Also listed in Table 28.4 are the so-called Kerr constants K .
They are related to the quadratic electro-optic coefficients by the equation

K = (R12 − R11)n3

2λ
.

Like the linear effect, the quadratic electro-optic effect can be divided into low
and high frequency contributions. In tensor form,

R X
ijkl = R x

ijkl + pijmnMmnkl,

where pijmn and Mmnkl are the elasto-optic and electrostriction tensors,
respectively. R X

ijkl, the quadratic electro-optic coefficient is measured with
a low-frequency electric field under stress-free conditions. The strain-free
quadratic coefficient R X

ijkl is measured at high frequencies above mechani-
cal resonance. The difference between the two comes from the field-induced
electrostrictive strain coupled to the elasto-optic effect. The latter effect is
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sometimes referred to as the “secondary” or “false” quadratic electro-optic
effect.

Problem 28.2
Which of the Kerr Effect coeffiecients of rutile (point group 4/mmm) can be
determined with the light beam along the optic axis? How should the electric
field be oriented for each measurement?
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In most dielectrics, the linear relation between electric polarization and applied
electric field is accurately obeyed even for fairly large fields of 107 V/m. The
reason is that the atomic displacements are extremely small, in the range of
nuclear sizes—millions of times smaller than the size of atoms. Though non-
linear effects such as electrostriction have been known for some time, it was
not until the invention of the laser that sufficiently large optical fields became
available to produce sizeable nonlinear optical effects. The induced polarization
P can be written as a power series in an electric field,

P = χE + dE2 + · · · ,

where χ is the linear electric susceptibility, and the higher-order terms lead to
nonlinear effects such as second harmonic generation (Fig. 29.1).

The electric field associated with the incident light is sinusoidal, E = E0

sin ωt, and when E is substituted in the expression for P, a power series in
sin ωt results. The second term is dE2

0 sin2 ωt = 1
2 dE2

0(1 − cos 2ωt), which
includes a component of polarization with twice the frequency of the impressed
field E. This rapidly oscillating induced dipole moment is the source of second
harmonic light. The intensity of the light depends on the size of d, the second
order coefficient.

29.1 Structure–property relations

Crystal symmetry is a major factor in the second-order effect. The
one-dimensional polar chain in Fig. 29.2 illustrates the origin of the quadratic
term. When the applied field is directed to the left, the ions and bonding elec-
trons are in very close contact and the displacements will be small because of
short range repulsive forces. These forces do not oppose motion in the oppos-
ite direction, so that fields directed to the right give larger motions and larger
polarizations. A centric chain does not show this effect. Such a chain can give
rise to odd-order terms producing saturation but not to even power terms in the
P(E) relation.

Ruby laser
Quartz
crystal

Filter Detector
�

�

2�
2�

Fig. 29.1 Schematic representation of the second harmonic generation experiment. Intense
red light from ruby laser is incident upon piezoelectric quartz, generating second harmonic
blue light.
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This means that centric crystals are useless as second harmonic generators.
In fact, the second harmonic experiment is a good test for the existence of inver-
sion symmetry. A strong signal is proof of the absence of a center of symmetry
because intense SHG is possible only in acentric crystals. One approach to
obtaining acentric crystals is the use of the acentric molecules with permanent
distortions caused by nonbonded electrons. HIO3 and LiIO3 crystals contain
IO6 octahedra with large trigonal distortions and are promising nonlinear optical
materials.

Quartz is acentric but is not an outstanding second harmonic generator.
The best SHG materials have large refractive indices. According to Miller’s
Rule the SHG coefficients are proportional to (n2 − 1)3. Increasing n from 1.5
to 2.5 increases d by two orders of magnitude. Thus the titanates and niobates
are excellent nonlinear optical materials, and narrow band gap semiconductors
are also outstanding because of the inverse relation between n and Eg. InSb has
a refractive index of 3.5 at 1.06µ, and an SHG signal more than a thousand
times greater than quartz.

The physical origin of optical nonlinearity in cubic crystals can be demon-
strated with the zincblende structure. In cubic ZnS, each atom is tetrahedrally
coordinated to four nearest neighbors of opposite charge. The tetrahedral edges
are parallel to 〈110〉 directions as shown in Fig. 29.3.
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+– +–

E = 0

E

E

Fig. 29.2 A one-dimensional polar chain in
fields directed to the left and right, showing
the origin of nonlinear optical effects.
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Fig. 29.3 Displacement of a tetrahedrally-
coordinated cation in response to an alternat-
ing electric field. The path is curved upward
because of the attraction to anions, giving
rise to optical nonlinearity.

Consider an electromagnetic wave of frequency ω propagating through the
crystal in a [1̄10] direction and polarized alternately along [110] and [1̄1̄0].
The ion at the center of the tetrahedron responds to the electric force by initially
moving in the direction of the field. But as the ion leaves the equilibrium position
in either the [110] or [1̄1̄0] direction, it is attracted to the negatively charged ions
above as the distance to one of these ions decreases. The result is a displacement
which tends to follow the electric vector of the light wave but is curved upwards
at the extremes.

Two components can be identified when this curved motion is observed along
the direction of the light beam. One is a motion along [110] parallel to the
driving field E, and vibrating with the same frequency ω. But, there is also a
small component of displacement parallel to [001] and vibrating at frequency
2ω. For every cycle of E(ω), the ion will twice reach maximum excursion along
[001]. Thus a light wave traveling along [1̄10] and polarized parallel to [110]
generates a second harmonic polarized along [001]. This is the nonlinear optic
coefficient d14 for zincblende crystals in point group 4̄3m.

As explained later, birefringence can be useful in SHG materials. Greatly
amplified harmonics are possible if the velocities of the fundamental and
harmonic waves are made equal. This kind of phase matching is possible if the
difference in refractive index due to dispersion can be matched by birefringence.
Noncritical phase-matching in uniaxial crystals is the best because energy flow
directions are also coincident, thereby eliminating walk-off problems.

Optical images can be stored in crystals as phase gratings which can be
written and read by laser beams. The holograms are written by liberating free
charge carriers from traps with incident light. Electrons diffuse from the illu-
minated regions to the darker regions producing space-charge electric fields
which in turn modulate the refractive index through the electro-optic effect.
The refractive index of the crystal is, therefore, modulated according to the
optical image, forming a phase grating. In crystals such as LiNbO3 the image
can be fixed by gentle heating, allowing positive ions to diffuse to the regions
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of negative space charge, neutralizing the local electric fields. After cooling the
crystal, the field is restored and the phase grating fixed by uniform illumination.
This makes the electron configuration uniform but leaves behind a nonuniform
charge distribution which forms the phase grating.

29.2 Tensor formulation and
frequency conversion

Crystal optics involves solutions to Maxwell’s Equation for wave propagation
under various boundary conditions. Normally it is assumed that the electric
displacement D and electric polarization P are linearly proportional to the
electric field E through the electric permittivity ε and electric susceptibility χ .
This assumption breaks down when describing the properties of dielectrics
under large electric fields. Nonlinear effects can be described by expanding the
polarization in a power series.

Pi = χijEj + χijkEjEk + χijklEjEkEl + · · · .

The lead term is the electric susceptibility which is related to the optical
permittivity, χij = εij − ε0. The second and third terms are the focus of this
chapter. The second order nonlinear coefficient χijk is closely related to the
linear electro-optic effect. It is responsible for second harmonic generation
(SHG), for the production of sum and difference frequencies, and for para-
metric amplification and generation. The third order term χijkl is a fourth rank
tensor that gives rise to third harmonic generation (THG), Raman and Brillouin
scattering, and optical phase conjugation.

The various phenomena related to the quadratic term become clearer when
the tensor relations are written as a function of frequency, ω.

Pi(ω) = χijkEj(ω1)Ek(ω2).

If the fields are sinusoidal with time,

Ej(ω1) = E0j(ω1) cos ω1t

Ek(ω2) = E0k(ω2) cos(ω2t + φ),

where E0 represents the wave amplitudes and φ is the phase difference between
the two driving fields. The product of the two fields can be written in terms of
sum and difference frequencies

Ej(ω1)Ek(ω2) = 1

2
E0j(ω1)E0k(ω2){ cos[(ω1 − ω2)t − φ]

+ cos[(ω1 + ω2)t + φ]}.
This means the resulting polarization Pi(ω) that comes from the quadratic term
has either a difference (ω1 − ω2) or a sum (ω1 + ω2) frequency. The third rank
tensor χijk connecting the two driving fields and the polarization is nonzero in
only two cases:

χijk(ω1 − ω2, ω1, ω2) and χijk(ω1 + ω2, ω1, ω2).

Sum and difference waves are used in frequency-conversion processes which
include second harmonic generation (Fig. 29.1) and a number of parametric
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Fig. 29.4 Three examples of second-order
optical nonlinearity in crystals. (a) A para-
metric amplifier augments the intensity
of an input signal by drawing energy
from a laser. (b) Parametric oscillators make
use of a resonant cavity tuned to frequen-
cies ω1 and ω2. (c) Frequency upconversion
is accomplished by combining two low fre-
quency photons to generate a higher energy
photon. All three experiments utilize trans-
parent noncentrosymmetric crystals as the
nonlinear (NL) mixer.
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phenomena (Fig. 29.4). The parametric frequency-conversion processes are
used primarily for generation of radiation at new wavelengths, although some
of the interactions have also been used to amplify input signals.

Fig. 29.4(a) shows the basic configuration of a parametric amplifier. An input
signal at frequency ω1 is incident on a nonlinear optic crystal together with an
intense laser beam at frequency ω3. Wave mixing occurs inside the crystal with
the laser beam transferring energy to the input signal and to a second wave
satisfying the relation ω2 = ω3 − ω1. The amplification of the input signal ω1

is accompanied by the generation of an idler wave at frequency ω2. Parametric
gains are often relatively modest so this process is not widely used.

Parametric oscillators (Fig. 29.4(b)) use a similar configuration to generate
new frequencies. A pump wave at frequency ω3 supplies energy to optical
waves at frequencies ω1 and ω2 for which ω3 = ω1 + ω2. In this experiment,
the nonlinear crystal is positioned within an optical resonator that is resonant
at the signal frequency (ω1), or the idler frequency (ω2), or both. An important
advantage of the parametric oscillator is that the resonant cavity can be tuned
continuously over a wide range of frequencies.

Frequency upconversion (Fig. 29.4(c)) adds a signal frequency (ω1) and
a strong laser beam (ω2) to produce a higher frequency signal ω3 = ω1 + ω2.
Upconversion offers a way to detect infrared signals in wavelength ranges
where detectors are slow or inefficient. Parametric downconversion works on
a principle similar to upconversion.

29.3 Second harmonic generation

If a noncentrosymmetric crystal is illuminated by an intense laser beam, the
quadratic polarization term leads to a constant component and a second
harmonic. The sum and difference terms becomeχijk(2ω, ω, ω) andχijk(0, ω, ω).

Since χijk is a polar third rank tensor like piezoelectricity and the linear
electro-optic effect, second harmonic generation (SHG) does not occur in
centrosymmetric crystals. When measured by second harmonic experiments,
the χijk coefficients are replaced by dijk coefficients, where 2dijk = χijk .
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The factor of 2 appears because ω1 = ω2 = ω and the field components
Ej(ω) and Ek(ω) can be interchanged.

Pi(2ω) = dijkEj(ω)Ek(ω).

Written in matrix form, the nonlinear polarization becomes


 P1

P2

P3


 =


 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d23 d32 d33 d34 d35 d36







E2
1

E2
2

E2
3

2E2E3

2E1E3

2E1E2




.

The contracted dij matrix obeys the same symmetry restrictions as the direct
piezoelectric coefficients (Table 12.1). The only differences are the factors of 2
appearing in point groups 3, 32, 3m, 6̄, and 6̄m2. The factors of 2 are absent in
the SHG matrices.

There is also a close relation between the SHG coefficients and those of the
linear electro-optic coefficients rijk . Both are third rank tensors which inter-
connect electric fields and optical behavior. The SHG matrices appear like the
transpose of the electro-optic matrices, with the same set of coefficients for
each point group symmetry. The magnitudes of the coefficients are also related,
but not precisely because the measurement conditions are different. Referred
to principal axes, the relationship is

dijk = −εiiεjjrijk

4ε0
.

However, the applied electric fields in the Pockels experiments are generally
at much lower frequencies than the optical frequencies involved in second
harmonic generation. Therefore the polarization contributions are different.
Ionic motions influence the electro-optic coefficients but not the SHG constants.

Table 29.1 contains the second harmonic coefficients for a number of acentric
crystals used in nonlinear optics. Crystals with large refractive indices gener-
ally have large d coefficients but some are not transparent in the visible region.
Others cannot be used because phase-matching is impossible. Common oxides
like quartz and tourmaline have very modest values but BaTiO3 and other ferro-
electric oxides with large refractive indices have more useful SHG coefficients
in accordance with Miller’s Rule.

Nonlinear optic coefficients show dispersion similar to refractive indices.
Fig. 29.5 shows the variation of the d36 coefficients of ADP and KDP over
optical and near infrared wavelengths.

According to Miller’s Rule, The SHG coefficients are proportional to
(n2 − 1)3. For KDP and ADP the change in (n2 − 1)3 from 0.6 to 1.3 µm
for ne and no is about 15%. The nonlinear coefficient d36 decreases by about
the same percentage over this wavelength range.

Problem 29.1
Plot out the nonlinear optic coefficients of LiNbO3 in the Z1–Z3 and Z2–Z3

planes using the coefficients in Table 29.1. Make the corresponding drawings
for the Pockels Effect discussed in the previous chapter. Discuss the similarities
and differences between these two third-rank properties of LiNbO3.
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Table 29.1 Magnitudes of nonlinear optical constants measured in units of 10−23 F/V
(wavelengths λ refer to the fundamental frequency and are in µm)

Cubic 4̄3m (Zincblende structure)
III–V GaP GaAs GaSb
λ 10.6 10.6 10.6
d14 51 119 345

II–VI ZnS ZnSe ZnTe
λ 10.6 10.6 10.6
d14 27 71 80

I–VII CuCl CuBr CuI
λ 1.06 1.06 1.06
d14 8.6 9.2 5.6

Hexagonal 6mm (Wurtzite structure)
CdS CdSe ZnO

λ 10.6 10.6 1.06
d31 23 26 2.4
d33 39 49 8.0
d15 26 28 2.7

Tetragonal 4mm (Ferroelectric oxides)
BaTiO3 PbTiO3 SrBaNb4O12

λ 1.06 1.06 1.06
d31 20 52 5.9
d33 7.8 10.3 15.7
d15 20 47 8.3

Tetragonal 4̄2m
KH2PO4 NH4H2PO4 AgGaSe2

λ 1.06 1.06 10.6
d36 0.56 0.68 60

Trigonal 3m
LiNbO3 LiTaO3 Tourmaline

λ 1.06 1.06 1.06
d31 5.2 1.6 0.20
d33 30 23 0.69
d22 3.6 2.4 0.10
d15 6.8 0.32

Trigonal 32
α-quartz Se Te

λ 1.06 1.06 1.06
d11 0.44 86 814
d14 0.004

Orthorhombic mm2 (Ferroelectric oxides)
Ba2NaNb5O15 KNbO3

λ 1.06 1.06
d31 18 13
d32 18 16
d33 24 24
d15 18 14
d14 17 16

29.4 Phase matching

Constructive interference is required to maximize the intensity of the second
harmonic wave. The technique most widely used in keeping the fundamental (ω)

and harmonic (2ω) in phase takes advantage of the natural birefringence of
anisotropic crystals. The two waves travel with the same velocity if the refractive
indices are equal, n(2ω) = n(ω). Dispersion makes this difficult since normally
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Fig. 29.5 Dispersion of the d36 coefficient
of ammonium dihydrogen phosphate and
potassium dihydrogen phosphate.
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Fig. 29.6 Optical dispersion in tetragonal
potassium dihydrogen phosphate (KDP). The
ordinary wave refractive index no is larger
than ne and shows greater dispersion. The
resulting birefringence can be used to produce
second harmonic phase matching.

the refractive index of the harmonic exceeds that of the fundamental by several
percent. Fig. 29.6 shows the changes in ne and no for KDP over the visible and
near IR range. It is interesting to note that KDP is uniaxial negative with no > ne

and that the largest dispersion occurs in no. The ordinary refractive index no is
controlled by polarization in the (001) plane which is where the hydrogens bonds
undergo an order–disorder transformation (Fig. 28.2). The primary changes in
bonding are in (001) despite the fact that the ferroelectric polarization is in the
perpendicular direction along [001].

To equalize the refractive indices of the fundamental and the harmonic, we
make use of the fact that the speed of the extraordinary wave depends on the
direction of the wave normal. If the wave normal forms an angle θ with respect
to the optic axis (Z3), the refractive index of the extraordinary wave is given by

1

n2
e(θ)

= cos2 θ

n2
o

+ sin2 θ

n2
e

.

The variation of the ne with angle makes it possible to match the refractive
indices of the fundamental and the harmonic at an angle θm for which

ne(2ω, θm) = no(ω).

The phase-matching angle θm is given by

1

n2
e(2ω, θm)

= 1

n2
o(ω)

= cos2 θm

n2
o(2ω)

+ sin2 θm

n2
e(2ω)

.

Solving for θm gives the relation

sin2 θm = (1/n2
o(ω)) − (1/n2

o(2ω))

(1/n2
e(ω)) − (1/n2

o(2ω))
.
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Fig. 29.7 Refractive index ellipsoids for the
fundamental (ω) and harmonic (2ω) waves
in a uniaxial negative crystal such as KDP.
Phase matching between the ordinary wave at
frequency ω and the extraordinary wave at 2ω

occurs at the angle θm.

Optic axis

�m

no(�)
ne(2�)

no(2�)
ne(�)

The critical angle for a uniaxial negative crystal is illustrated in Fig. 29.7. Phase
matching is only possible in crystals with low dispersion and relatively large
birefringence.

The refractive indices of KDP (Fig. 29.6) are suitable for phase matching.
For a Nd-glass laser (λ = 1.06 µm) the second harmonic is in the visible
range at 0.53 µm. The refractive indices for these wavelengths are no(ω) =
1.4942, ne(2ω) = 1.4712. Substituting these values into the condition for
phase matching gives a critical angle of θm = 42◦.

In this case the extraordinary wave of the second harmonic was matched
with the ordinary wave of the fundamental, or (2ω, ω, ω) = (e, o, o) for short.
Another way of phase matching is (2ω, ω, ω) = (e, o, e). In this method, the
two components of the input field Ej(ω) and Ek(ω) correspond to different
polarization directions, one is an ordinary wave polarized perpendicular to
the optic axis and the other is an extraordinary wave polarized in the plane
containing the wave normal and the optic axis. For (e, o, e) phase matching the
critical angle is obtained from the equation

2

[
cos2 θm

n2
o(2ω)

+ sin2 θm

n2
e(2ω)

]1/2

= no(ω) +
[

cos2 θm

n2
o(ω)

+ sin2 θm

n2
e(ω)

]1/2

.

Thus, in general, there is more than one way to satisfy the phase-matching
condition.

The (e, o, o) and (e, o, e) phase-matching conditions just described apply to
uniaxial negative crystals such as KDP with no > ne. For uniaxial positive
crystals with ne > no, the second harmonic must be an ordinary wave, and the
phase-matching schemes are (o, e, e) and (o, e, o). It should be remembered that
phase-matching is not always possible. If the dispersion over the wavelength
interval between ω and 2ω exceeds the birefringence it is impossible to make
n(ω) = n(2ω). Birefringence is zero in cubic crystals and isotropic glasses.
Therefore phase matching is nearly impossible unless there is an absorption
band between ω and 2ω. In that case there might be an accidental match of the
fundamental and harmonic refractive indices (see Chapter 26).

For a uniaxial crystal, the phase-matching condition is satisfied for any wave
normal in the cone of directions forming an angle θ = θm with the optic
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axis Z3, but there are two other conditions that must also be met. There must be
a nonlinear optic coefficient connecting Pi(2ω) to the product Ej(ω)Ek(ω). The
third condition is that the polarization direction of the wave with doubled fre-
quency must be perpendicular to the polarization direction of the fundamental,
and both polarization directions are perpendicular to the wave normal.

For KDP in point group 4̄2m, the only nonlinear optic coefficients are
d14 = d25 and d36. Therefore the nonlinear polarization components referred
to the principal axes (Z1 = [100], Z2 = [010], and Z3 = [001]) are

P1(2ω) = 2d14E2(ω)E3(ω),

P2(2ω) = 2d14E3(ω)E1(ω),

and
P3(2ω) = 2d36E1(ω)E2(ω).

The (e, o, o) phase-matching scheme utilizes an ordinary wave at the funda-
mental frequency. The polarization direction of the fundamental is therefore in
the (001) plane perpendicular to the optic axis making D3(ω) = 0. Since the
birefringence of KDP is small, E3(ω) is nearly parallel to D3(ω), and E3(ω) ∼= 0
as well. Therefore the harmonic components P1(2ω) = P2(2ω) ∼= 0, leaving
only P3(2ω). To maximize P3, the E1(ω)E2(ω) product must be maximized.
This is accomplished by orienting the field along a [110] direction where E1 =
E2 = E/

√
2. Therefore P3(2ω) = d36E2(ω). The component of P3 in the

polarization direction of the harmonic is d36E2 sin θm where E is directed along
[110] and θm is the critical angle for phase-matching. θm is about 42◦ for a
Nd-glass laser (λ = 1.06 µm) and about 50◦ for a ruby laser (λ = 0.69 µm).

Fig. 29.8 shows the polarization direction of the harmonic wave and the
wave normal plotted in the (110) plane of KDP. The polarization direction of
the fundamental wave is in the [110] direction perpendicular to the (110) plane.
Since the harmonic is an extraordinary wave, its E vector is not parallel to the
polarization vector. This means that the energy flow is not parallel to the wave
normal causing a walk-off problem. However the birefringence of KDP is not
large and therefore the problem is not a serious one.

�m Wave normal

Harmonic
polarization
P(2�)

Optic axis
Z3 = [001]

110

Fig. 29.8 Phase-matched directions for
the wave normal and harmonic polarization
directions in KDP. The fundamental polariza-
tion is in the [110] direction perpendicular to
all four of the vectors shown in the drawing.

Several of the acentric point groups are unsuitable for SHG because it is dif-
ficult to obtain both phase-matching and a large nonlinear coefficient. Uniaxial
negative crystals in point groups 422, 622, and ∞2, and uniaxial positive
crystals in 4mm, 6mm, and ∞m are found to be totally unsuitable, while others
are generally very small. The most useful crystal groups are those like 4̄2m
where the phase-matching condition can be satisfied in orientations where the
nonlinear coupling coefficients are large. In addition to ADP and KDP, several
sulfide and selenide crystals also belong to 4̄2m and have proven useful in non-
linear optic experiments. Point group 3m with crystals such as LiNbO3 and
Ag3AsS3 (proustite) is also widely used. Heavy metal sulfides, selenides and
tellurides have large SHG coefficients and are also transparent in much of the
infrared range where CO2 lasers operate.

Problem 29.2
Phase matching conditions for uniaxial negative crystals were discussed in the
text. What are the corresponding relations between no(ω), ne(ω), no(2ω) and
ne(2ω) for uniaxial positive crystals? Illustrate the phase matching condition
with wave velocity surfaces. Show what the surfaces look like when dispersion
is very large and phase matching is impossible.
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29.5 Third harmonic generation

Third harmonic generation (THG) is one of the higher order effects arising
from the third order susceptibility relation

Pi = χijklEjEkEl.

Since χijkl is a fourth rank polar tensor it is found in all 32 crystal classes and all
seven Curie groups. All permutations of Ej, Ek , and El are indistinguishable so

χijkl = χijlk = χiljk = χilkj = χikjl = χiklj.

This reduces the number of coefficients from 81 to 30, making it possible to
represent third order effects by a 3 × 10 matrix:

P1

P2

P3


 =


χ11 χ12 χ13 χ14 χ15 χ16 χ17 χ18 χ19 χ10

χ21 χ22 χ23 χ24 χ25 χ26 χ27 χ28 χ29 χ20

χ31 χ32 χ33 χ34 χ35 χ36 χ37 χ38 χ39 χ30




×




E3
1

E3
2

E3
3

3E2E2
3

3E2
2E3

3E1E2
3

3E2
1E3

3E1E2
2

3E2
1E2

6E1E2E3




.

In matrix form χim = χijlk where i, j, k, l = 1–3, and m is used to represent the
following tensor subscripts.

m
jkl

=
=

1
111

2
222

3
333

4
233

5
223

6
133

7
113

8
122

9
112

0
123

Symmetry further reduces the number of coefficients. Applying Neumann’s
Law lowers the number of coefficients from 30 down to 9 in cubic crystals,
with only two independent matrix coefficients in the highest symmetry cubic
classes (Table 29.2).

Further simplification makes use of the Kleinmann approximation in which
the tensor coefficients are symmetric for all permutations. This means that the
first subscript for the polarization can be exchanged with any of the three field
subscripts. For example, χ1233 = χ2133 = χ3123. In matrix form this means
that χ14 ∼= χ26 ∼= χ30. The Kleinmann approximation has been verified by
experiment. In the most general case (triclinic crystals) this reduces the number
of independent coefficients from 30 to 15.

As indicated in Table 29.2, cubic crystals belonging to point group 432, 4̄3m,
and m3m have just nine nonzero coefficients. Only two of these are independent
χ11 and χ16. The other matrix components are

χ11 = χ22 = χ33

χ16 = χ18 = χ24 = χ29 = χ35 = χ37.
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Table 29.2 Effect of symmetry on third
harmonic generation coefficients. The total

number of nonzero matrix coefficients is listed
for each crystallographic point group with the

number of independent coefficients in
parentheses. Point groups that also exhibit
second harmonic generation are underlined

Triclinic 1, 1̄ 30(30)

Monoclinic 2, m, 2/m 16(16)

Orthorhombic 222, mm2, mmm 9(9)

Trigonal 3, 3̄ 25(10)
32, 3m, 3̄m 14(5)

Tetragonal 4, 4̄, 4/m 15(8)
422, 4̄2m, 4mm, 4/mmm 9(5)

Hexagonal 6, 6̄, 6/m 15(6)
622, 6̄m2, 6mm, 6/mmm 9(4)

Cubic m3, 23 9(3)
432, 4̄3m, m3m 9(2)

Table 29.3 Third order matrix coefficients for liquids,
glasses, and cubic crystals. χ11 and χ16 values are in

units of 10−33 Fm/V2

χ11 χ11 χ16

Cubic crystals
LiF 3 Y3Al5O12 22
NaCl 21 SrTiO3 4400
KCl 24 CaF2 5 2
KBr 37 SrF2 5 4
KI 3 BaF2 11 4
MgO 12 CdF2 18 6

Liquids Glasses
CS2 1300 SiO2 5
CCl4 19 Others 6–37
C6H6 69

All others are zero. A few numerical values for χ11 and χ16 are collected in
Table 29.3.

Liquids and glasses with isotropic (∞∞m) properties also possess third order
nonlinearities. For these materials there is only one independent coefficient:

χ11 = χ22 = χ33 = 3χ16 = 3χ18 = 3χ24 = 3χ29 = 3χ35 = 3χ37.

All other matrix components are zero. Representative χ11 values are included
in Table 29.3.

Note that polar high-index liquids like carbon disulfide and high refractive
index oxides like strontium titanate (n ∼ 2.4) have much higher THG coeffi-
cients in keeping with Miller’s Rule. This is borne out further in Fig. 29.9 where
nonlinearity is plotted as a function of refractive index. A number of different
glass compositions have been tested for use in optical beam control. Under
intense illumination the refractive index changes according to the relation

n = no + n2I ,
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Fig. 29.9 Silica and other optical glasses
are widely used in optical communication
systems. The nonlinear coefficient n2 relates
the change in refractive index 	n = n−no =
n2I where I is in W/m2 and n2 in m2/W. High
refractive index glasses generally have higher
nonlinear effects.
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where n2 is a nonlinear optic coefficient and I is the optical beam intensity
measured in W/m2. The nonlinear optic coefficient n2 is proportional to the
third order coefficient χ11 (=χ1111).

Phase matching for third harmonics is carried out in a similar manner to
second harmonic generation. Birefringence can sometimes compensate for
dispersion. Three types of phase-matching can be used for uniaxial negative
crystals. For THG the three possibilities are (3ω, ω, ω, ω) = (e, o, o, o),
(e, o, o, e), and (e, o, e, e) where e and o stand for extraordinary and ordinary
waves, respectively. The phase-matching angle θm for the (e, o, o, o) scheme is
given by

sin2 θm =
(
1/n2

o(ω)
) − (

1/n2
o(3ω)

)
(
1/n2

e(3ω)
) − (

1/n2
o(3ω)

) .

Many of the most important applications of third-order nonlinearity involve
phase conjugation by four-wave mixing. Phase conjugate optics makes use
of nonlinear optic techniques for the real-time processing of electromagnetic
waves. Among the many practical applications are image transmission, pulse
compression, and image processing in optical communication systems.

In four-wave mixing, the amplitude of the induced polarization at frequency
ω1 = ω2 + ω3 − ω4 is related to the electric fields of three input waves:

Pi(ω1) = χijkl(−ω1, ω2, ω3, −ω4)Ej(ω2)Ek(ω3)El(ω4).

Fig. 29.10 illustrates the basic experiment. A nonlinear medium is pumped
simultaneously by two intense plane waves traveling in opposite directions.
Pump waves 1 and 2 operate at frequency ω. Two other waves, 3 and 4, are
also present in the nonlinear medium. They are traveling in a different direction
than waves 1 and 2. Wave 3 is an input wave at frequency ω. When coupled
through the third-order nonlinear coefficient χijkl, waves 1, 2, and 3 generate
a fourth wave of frequency ω. The amplitude of the fourth wave is the complex
conjugate of the input signal wave 3.

Nonlinear
material

3
4

2

1

Fig. 29.10 Four-wave mixing experiment
used in phase conjugate optics. Nonlinear
media such as CS2 with large third-order coef-
ficients couple pumping waves 1 and 2 to the
input signal 3 to generate the output wave 4.
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When plane-polarized light enters a crystal it divides into right- and left-
handed circularly polarized waves. If the crystal possesses handedness, the
two waves travel with different speeds, and are soon out of phase. On leaving
the crystal, the circularly polarized waves recombine to form a plane polar-
ized wave, but with the plane of polarization rotated through an angle αt. The
crystal thickness t is in mm, and α is the optical activity coefficient expressed
in degrees/mm. The polarization vector of the combined wave can be visu-
alized as a helix, turning α◦/mm path length in the optically-active medium.
Because of the low symmetry of a helix, optical activity is not observed in
many high symmetry crystals. Point groups possessing a center of symmetry are
inactive.

30.1 Molecular origins

In relating α to crystal chemistry it is convenient to divide optically-active
materials into two categories: Those which retain optical activity in liquid
form, and those which do not. It has long been known that optically-active
solutions crystallize to give optically-active solids. This follows from the fact
that molecules lacking mirror or inversion symmetry can never crystallize
in a pattern containing such symmetry elements. Thus one way of obtain-
ing optically-active materials is to begin with optically-active molecules, as in
Rochelle salt, tartaric acid and cane sugar. Few of these crystals are very stable,
however, and the optical activity coefficients are usually small, typically 2◦/mm.

The same is true of many inorganic solids, though they are seldom optic-
ally active in the liquid state. For NaClO3 and MgSO4·7H2O, α is about
3◦/mm. Quartz and selenium, however, have coefficients an order of mag-
nitude larger (Fig. 30.1(a)), showing the importance of helical structures to
optical activity. Both compounds crystallize as right- and left-handed forms
in space groups P312 and P322, with helices spiraling around the trigonal
screw axes.

Quartz contains nearly regular SiO4 tetrahedra with Si–O distances of 1.61 Å.
Levorotatory quartz belongs to space group P312 and contains right-handed
helices; enantiomorphic dextrorotatory quartz crystallizes in P322. Trigonal
selenium also contains helical chains (Fig. 30.1(b)). Se–Se distances along the
chain are 2.32 Å, much less than the shortest distance to atoms in neighboring
chains, 3.46 Å.

When a solid contains helices it is obvious why right- and left-circularly
polarized light travel at different speeds causing optical activity. Optical activity
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Fig. 30.1 (a) Dispersion of the principal
optical-activity coefficient of quartz and sel-
enium. The plane of polarization is rotated in
opposite directions for right- and left-handed
crystals. (b) Both structures contain helical
chains along the trigonal c-axis.
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is a spatial dispersion effect in which the dipolar fields of nearby atoms influ-
ence the local fields caused by the incident optical wave. The wave with the
same handedness as the structure does more work because the electric vector
continuously polarizes matter, and the wave therefore travels slower.

There are several ways to enhance this effect to obtain larger activity coef-
ficients. Atoms with large polarizabilities can be expected to give larger
interactions with the light waves. Acentric crystals with large refractive indices
interact strongly with light waves. AgGaS2 (n ∼ 2.5, α ∼ 500◦/mm) and TeO2

(n ∼ 2.2, α ∼ 200◦/mm) have much larger rotatory power than low refractive
index compounds. Since polarizabilities increase near an absorption edge, the
optical activity coefficients also increase (Fig. 30.1(a)).

Another important parameter is the pitch of the helix. In most inorganic
crystals the helix pitch is 10 Å or less, far smaller than the wavelength of
visible light. Helices with larger pitches give greater rotatory power, as has been
demonstrated with liquid crystals. Cholesteric liquid crystals possess optical
activity coefficients as large as 105 ◦/mm. A critical parameter determining the
magnitude of α is the ratio of the pitch of the spiral to the wavelength of the
electromagnetic wave.

Ambidextrous behavior is observed in lead germanate, Pb5Ge3O11, an
unusual crystal which exhibits reversible optical rotatory power. Below 177◦C,
it is a ferroelectric in which a dextro–levo conversion accompanies reversal of
the spontaneous polarization. The rotatory power is 5◦35′/mm at 6328 Å, large
enough for opto-electronic devices. The molecular origin of the effect is illus-
trated in Fig. 30.2. In the high-temperature prototype structure, some of the lead
ions in lead germanate are coordinated to six oxygens arranged in a trigonal
prism. On transforming to the ferroelectric state, the lead ions are displaced
forming short bonds to three oxygens and creating spontaneous polarization.
Four oxygens are bonded to germanium, and the GeO4 tetrahedra are twisted
when Pb displaces. The twists impart a handedness to the molecular config-
uration, causing optical activity. The molecular groups resemble a three-bladed
airplane propeller of variable pitch.

(a)

(b)

Fig. 30.2 Domain states in the optically-
active ferroelectric Pb5Ge3O11. In the 0◦
domain (a) Pb bonds up, producing posit-
ive polarization and right-handed rotatory
power. It bonds down in the 180◦ domain (b),
reversing the polarization and the handedness.
An alternating electric field reverses both
the spontaneous polarization and the optical
activity coefficient.
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30.2 Tensor description

In an optically-active medium, right- and left-handed circularly-polarized
waves have slightly different velocities and refractive indices. Let n(R) and
n(L) represent the refractive indices of the two waves. When a plane-polarized
wave enters such a medium it divides into the right- and left-handed waves that
then recombine into a plane-polarized wave as they emerge from the crystal.
The polarization direction of the emerging wave is rotated through an angle φ

given by

φ = π t

λ
(n(L) − n(R)) = αt,

where t is the thickness of the crystal and λ is the wavelength in free
space.

It is important to estimate the size of the birefringence n(L)−n(R) associated
with optical activity. The optical activity coefficient α is linearly proportional
to this birefringence.

n(L) − n(R) = αλ

π
.

For quartz, α = 18.8◦/mm = 0.328 rad/mm at λ = 0.63 µm, giving
n(L)−n(R) = 6.6×10−5. This is small compared to the intrinsic birefringence
ne − no = 1.553 − 1.544 = 0.009, or about 1%, a typical number for many
anisotropic materials. For this reason it is difficult to observe optical activity
in the presence of birefringence. Most experiments are carried out along optic
axes, or in optically isotropic materials, where the birefringence is zero.

An optically-active fluid or solid is called right-handed (dextrorotatory) if
the sense of rotation of the plane of polarization is counterclockwise as viewed
looking into the optical beam toward the light source. If the rotation is clockwise,
the crystal is called left-handed (levorotatory). Many chemical compounds exist
in both right- and left-handed forms.

The sign of the optical activity coefficient α is positive if the rotation is
right-handed, and negative if it is left-handed. This means that α is an axial
zero-rank tensor, sometimes called a pseudoscalar. Under a transformation (a)
that involves a change in handedness, α reverses sign. Therefore α′ = |a|α
where |a| = ±1.

To determine how optical activity varies with direction, we first consider
a crystal without optical activity. The optical properties are represented by the
indicatrix, an ellipsoid in which refractive index is plotted as a function of
polarization direction (Section 25.2). For a given wave normal �N , there are two
optical waves with refractive indices n′ and n′′ corresponding to a fast wave and
a slow wave. The values of n′ and n′′ are the major and minor axes of the ellipse
perpendicular to the wave normal �N (Section 25.3). The wave velocity surface
for these two waves is

((v′)2 − v2)((v′′)2 − v2) = 0,

which leads to

(n2 − (n′)2)(n2 − (n′′)2) = 0,
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since v = c/n. These equations apply to an arbitrary wave normal in an optically
inactive medium.

For an optically active medium, a small correction is required. A gyration
vector G is introduced for which

(n2 − (n′)2)(n2 − (n′′)2) = G2.

Optical activity is easiest to observe near an optic axis where the birefringence
is small and

n′ ∼= n′′ ∼= n̄ = √
n′n′′.

Under these conditions, (n2 − n̄2)2 = G2 and n2 − n̄2 = ±G.
Since G is very small, n = n̄ ± G/2n̄. For the right- and left-circularly

polarized waves, n(L) = n̄ + G/2n̄ and n(R) = n̄ − G/2n̄.
The optical activity coefficient α is related to the gyration vector G through

the equation

α = φ

t
=

(π

λ

)
(n(L) − n(R)) =

(π

λ

) (
G

n̄

)
.

To determine how α and the gyration coefficient G depend on direction, we
make use of two experimental observations: (1) the optical activity coefficient
changes sign when the handedness of the crystal changes, and (2) if the wave
normal is reversed, the optical activity remains the same, both in magnitude
and sign. Based on these two facts, G is an axial tensor like α, and trans-
forms between new and old coordinate systems as G′ = |a|G. Its directional
dependence can be described by a power series.

G = giNi + gijNiNj + gijkNiNjNk + · · · ,

where Ni, Nj, and Nk are direction cosines of the wave normal �N . Since the
optical activity is unchanged when the wave normal is reversed,

G(Ni) = G(−Ni) = −giNi + gijNiNj − gijkNiNjNk + · · · .

Therefore all odd power terms are zero. Keeping only the lowest power term
gijNiNj, the gyration tensor transforms as

G′ = |a|G = |a|gijNiNj.

Since the wave normal is a polar first rank tensor Ni = akiN ′
k and Nj = aljN ′

l .

G′ = |a|G = |a|gijakiN
′
ka�jN

′
� = g′

klN
′
kN ′

�.

Therefore g′
kl = |a|akia�jgij. The directional part of the gyration tensor, gij,

transforms as an axial second rank tensor.
The optical activity coefficient is

α = π

λn̄
G = π

λn̄
gijNi Nj.
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30.3 Effect of symmetry

Optical activity is a null property that disappears in centrosymmetric point
groups. In matrix form, gij transforms as follows.

3 × 3
(g′) = |a|

3 × 3
(a)

3 × 3
(g)

3 × 3
(a)t

.

For a center of symmetry,

(a) =

−1 0 0

0 −1 0
0 0 −1


 = (a)t and |a| = −1.

Therefore, by Neumann’s Law,

(g′) = (−1)(−1)(g)(−1) = −(g) = 0.

Eleven of the 32 crystal classes, and three of the seven limiting groups contain
inversion symmetry, and are optically inactive.

Cubic sodium chloride (NaCl, point group m3m) is centrosymmetric and
optically inactive, but cubic sodium chlorate (NaClO3, point group 23) is
optically active in all directions. The two independent symmetry elements for
point group 23 are a twofold axis along Z1 = [100] and a threefold rotation
axis along the body-diagonal direction [111]. For the twofold axis,

(a) =

1 0 0

0 −1 0
0 0 −1


 = (a)t and |a| = +1.

(g′) = (+1)


1 0 0

0 −1 0
0 0 −1





g11 g12 g13

g21 g22 g23

g31 g32 g33





1 0 0

0 −1 0
0 0 −1




=

 g11 −g12 −g13

−g21 g22 g23

−g31 g32 g33


 =


g11 g12 g13

g21 g22 g23

g31 g32 g33




by Neumann’s Law. Therefore g12 = g13 = g21 = g22 = 0.
For the threefold axis along [111],

(g′) = (+1)


0 1 0

0 0 1
1 0 0





g11 0 0

0 g22 g23

0 g32 g33





0 0 1

1 0 0
0 1 0




=

g22 g23 0

g32 g33 0
0 0 g11


 =


g11 0 0

0 g22 g23

0 g32 g33


 .

by Neumann’s Law. Therefore g23 = g32 = 0 and g11 = g22 = g33.
The resulting matrix for point group 23 is

(g′) =

g11 0 0

0 g11 0
0 0 g11


 .
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Table 30.1 Gyration tensor for the 32 crystal classes and 7 texture groups

1


g11 g12 g13

g12 g22 g23
g13 g23 g33


 2


g11 0 g13

0 g22 0
g13 0 g33




m


 0 g12 0

g12 0 g23
0 g23 0


 222


g11 0 0

0 g22 0
0 0 g33




mm2


 0 g12 0

g12 0 0
0 0 0




3, 32
4, 422
6, 622
∞, ∞2


g11 0 0

0 g11 0
0 0 g33




4̄


g11 g12 0

g12 −g11 0
0 0 0


 4̄2m


g11 0 0

0 −g11 0
0 0 0




23, 432, ∞∞

g11 0 0

0 g11 0
0 0 g11


 All others


0 0 0

0 0 0
0 0 0




Optical activity matrices for other point groups are collected in Table 30.1.
The number of measurements required to specify the full gyration tensor range
from six in triclinic point group 1 to one in optically-active liquids (Curie
group ∞∞) and cubic crystals (crystal classes 23 and 432). The gij matrix is
symmetric because the direction cosines of the wave normal, Ni and Nj can be
interchanged.

Problem 30.1
Optical activity coefficients disappear in all centrosymmetric point groups. They
also disappear in the following acentric classes: 3m, 6̄, 6mm, 4mm, 6̄m2, 4̄3m,
and ∞m. Prove why this is so.

Symmetric tensors can be transformed to principal axes, thereby reducing
the number of coefficients. When rotated to principal axes, the six coefficients
of a triclinic crystal are reduced to three. The procedure is the same as that
outlined earlier for dielectrics. The gyration tensor is

G = gijNiNj = g11N2
1 + g22N2

2 + g33N2
3 .

For uniaxial crystals like quartz belonging to point group 32, g11 = g22. In
spherical coordinates, N1 = sin θ cos �, N2 = sin θ sin �, N3 = cos θ , and
G = g11 sin2 θ + g33 cos2 θ . The values measured for right-handed quartz at
0.51 µm are g11 = −5.82×10−5 and g33 = +12.96×10−5. Signs are reversed
for left-handed quartz.

The gyration surface of quartz is plotted in Fig. 30.3. Since the signs of g11

and g33 are opposite, there will be a critical angle θ for which G = 0. The angle
is given by tan2 θ0 = −g33/g11. For quartz, the directions of zero gyration form
a cone about the optic axis with θ0 = 56◦10′.

10

5
+

+

o
–

Z3

(a) (b) Z3

Fig. 30.3 Optical activity in α-quartz.
(a) When looking toward the light source
a right-handed crystal rotates the plane of
polarization in a counter-clockwise direction.
(b) The gyration surface is plotted as a func-
tion of wave normal for right-handed quartz.
Signs are reversed for a left-handed crystal.
Units of g are 10−5. At 20◦C and 0.589 µm
quartz rotates the plane of polarized light by
21◦40′/mm about the optic axis Z3.

Optical activity in biaxial crystals is more complex because there are two optic
axes and they do not coincide with symmetry directions. As an example, con-
sider monoclinic point group 2. Two different situations arise. In one case, the
twofold symmetry axis lies in the same plane as the two optic axes (Fig. 30.4(a))
and in the other case, it is perpendicular to the two optic axes (Fig. 30.4(b)).
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Fig. 30.4 Optical activity in monoclinic
crystals belonging to point group 2. (a) When
the twofold axis lies the plane of the two
optic axes, they both exhibit the same opti-
cal activity coefficient. (b) When the twofold
axis is perpendicular to the two optic axes,
the optical activity is different. In (a) the two
optic axes are related by 180◦ rotation around
the twofold axis Z2, but in (b) they are not.

For monoclinic point group 2 the gyration coefficient is

G = g11N2
1 + g22N2

2 + g33N2
3 + 2g13N1N3.

Referring to Fig. 30.4(a), the gyration for optic axis I (N1 = 0, N2 = sin θ ,
N3 = cos θ ) is G = g22 sin2 θ + g33 cos2 θ . For optic axis II (N1 = 0,
N2 = − sin θ , N3 = cos θ), G = g22 sin2 θ + g33 cos2 θ . Both axes exhibit
the same rotation.

A different result is obtained for the configuration in Fig. 30.4(b) where the
twofold axis Z2 is perpendicular to the optic axes. Now optic axes I and II
are not related to one another by symmetry and they have different optical
activity coefficients. For optic axis I (N1 = − sin φ, N2 = 0, N3 = cos φ),
G = g11 sin2 φ + g33 cos2 φ − 2g13 sin φ cos φ. For optic axis II (N1 = sin φ,
N2 = 0, N3 = cos φ), G = g11 sin2 φ + g33 cos2 φ + 2g13 sin φ cos φ. The two
optic axes may be quite different in this case.

Examples of both types are known. The two optic axes in tartaric acid both
have a rotatory power of +10.8◦/mm. In cane sugar, one axis is −1.6◦/mm and
the other is +5.4◦/mm. Statistically the first case is more common since the
twofold axis has equal probability of aligning along any of the three principal
axes. Only one-third of the many crystals in point group 2 have Z2 perpendicular
to the optic axes.

30.4 Relationship to enantiomorphism

Enantiomorphic crystals and molecules do not contain mirror or inversion
symmetry. Chemists refer to these compounds as chiral, coming from the Greek
word for “hand”.

Eleven of the 32 crystal classes and three of the seven Curie groups are
enantiomorphic (Table 30.2). Four null properties associated with noncentro-
symmetric point groups are compared in this table. Piezoelectricity, the linear
electro-optic (Pockels) effect and second harmonic coefficients occur in 20 of
21 acentric crystal classes. Pyroelectricity is observed in 10 of these 20 classes.
All pyroelectric crystals are also piezoelectric. Fifteen of the acentric classes are
optically active and 11 of the 15 are also enantiomorphic. All enantiomorphic
classes are optically active.

Enantiomorphic crystals can sometimes be distinguished by morphology.
Right- and left-handed crystals appear as mirror images when the appropriate
faces appear. The d- and l-sodium ammonium tartrate crystals studied by Louis
Pasteur are shown in Fig. 30.5(a). He went on to demonstrate the relationship
between enantiomorphism and optical activity. In many organic compounds
the chirality extends down to the molecular scale, where the molecules are
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Table 30.2 Properties associated with acentric crystals and textures: piezoelectricity (P),
pyroelectricity (P∗), optical activity (O), and enantiomorphism (E)

Crystal classes Curie groups

1 O E P P∗ ∞ O E P P∗
2 O E P P∗ ∞2 O E P
m O P P∗ ∞m P P∗
222 O E P ∞∞ O E
mm2 O P P∗
3 O E P P∗
32 O E P

Optical
activity

Enantio-
morphism

Crystal classes

Piezo-
electricity

Pyro-
electricity

21

15

11

20

10

Acentric
symmetry

3m P P∗
4 O E P P∗
4̄ O P
422 O E P
4mm P P∗
4̄2m O P
6 O E P P∗
6̄ P
622 O E P
6mm P P∗
6̄m2 P
23 O E P
432 O E
4̄3m P

right- and left-handed. The structures of d- and l-alanine (Fig. 30.5(b)) are a
good example. Pasteur was impressed by the fact that most natural products,
cellulose, sugar, quinine, and turpentine exist in only one handedness. In many
ways this dissymmetry was the beginning of biochemistry.

(a)

(b) COOH

d- l-

COOH

H H

CH3

l-Alanine d-Alanine

CH3

C C
NH2

NH2

Fig. 30.5 Enantiomorphism often appears in
crystal morphology and molecular structure.
(a) d- and l-sodium ammonium tartrate crys-
tals are mirror images of one another, as
are (b) the molecular structures of d- and
l-alanine, NH2CH(CH3)COOH.

The relationship between optical activity and enantiomorphism is very close
because optical activity is difficult to observe in all the symmetry groups that
are not enantiomorphic. Of the 18 point groups (15 crystal classes and 3 Curie
groups) that exhibit optical activity, all but four are enantiomorphic. The excep-
tions are m, mm2, 4̄, and 4̄2m. These four groups possess either mirror planes
or inversion operations that are not allowed in chiral groups.

At first glance, it is rather puzzling that optical activity can occur in these point
groups with mirror and inversion symmetry since optical rotation is normally
pictured as a helix (Fig. 30.3), and a helix does not contain these types of
symmetry. To understand why mirrors are sometimes allowed in optically active
crystals, consider the orientation of the mirror plane relative to the helix. Mirror
planes cannot exist parallel or perpendicular to the helix, but they can intercept
the helix at a different angle. This does not violate the symmetry of the helix,
but it generates another helix of the opposite handedness (Fig. 30.6).

This leads to a biaxial crystal in which one optic axis is right-handed and the
other left-handed. In monoclinic point group m, principal axis Z2 is perpendic-
ular to the mirror plane as shown in Fig. 30.6(b). If we assume that the principal
refractive indices are n3 > n2 > n1, then Z1 is perpendicular to the two optic
axes and Z3 lies midway between them. The nonzero optical activity coeffi-
cients for point group m are g12 = g21 and g23 = g32. The resulting gyration
equation is G = 2g12N1N2 + 2g23N2N3. The direction cosines for optic axis I
are N1 = 0, N2 = sin θ , N3 = cos θ , giving G = 2g23 sin θ cos θ . For optic
axis II, N1 = 0, N2 = − sin θ , N3 = cos θ , and G = −2g23 sin θ cos θ . Thus
the optical activity coefficients of the two optic axes are equal and opposite
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Fig. 30.6 Point group m is optically active
but is not enantiomorphic. (a) A mirror plane
turns a right-handed helix into a left-handed
helix. With axial orientation in (b), one optic
axis has right-handed optical activity, and the
other left.

in sign as predicted by the symmetry argument. And since the optical activ-
ity is equally balanced between right- and left-handed behavior, the crystal is
not chiral. Similar arguments can be developed for point group mm2, 4̄, and
4̄2m that are also optically active but not enantiomorphic. In 4̄2m, the only two
nonzero gyration coefficients are g11 = −g22. Therefore G = g11N2

1 − g11N2
2 .

The standard setting for 4̄2m is Z1 = [100] and Z2 = [010], with the optic axis
along Z3 = [001]. Hence the crystal shows right-handed optical activity along
[100] and left-handed optical activity along [010], but the optic axis [001] is
not optically active.

Birefringence makes it very difficult to observe optical activity in point group
4̄2m. A solution to this problem was found by taking advantage of the unusual
dispersion curves in silver gallium sulfide crystals. AgGaS2 changes optic sign
in the visible range and is therefore optically isotropic at the crossover wave-
length (Fig. 26.2(b)). This makes it possible to measure the optical activity
coefficients along [100] and [010].

30.5 Liquids and liquid crystals

Water is a transparent liquid with a modest refractive index (1.33) and zero
optical activity. Molecules of H2O (molecular symmetry mm2) possess no hand-
edness and are randomly oriented in the liquid state resulting in optical isotropy
(spherical symmetry ∞∞m). Dissolving 10 weight% d-glucose (C6H12O6) in
water gives a weak optical activity of 0.055◦/mm. In order for a fluid to be
optically active its constituent molecules must individually rotate the plane of
polarized light since, in a liquid, there is no long-range order. The random
orientation does not lead to cancellation of the effect because the handedness
of a chiral molecule like d-glucose is not dependent on direction. The sym-
metry group of a chiral liquid is ∞∞. Saccharimeters have long been used
to determine the sugar content of various fluids. The magnitude of the optical
rotation is proportional to the amount of dissolved sugar. A rather long optical
path, typically 10 cm or more, is required for an accurate reading because the
rotatory powers are small. Rotations for optically active organic liquids are
generally in the 0.01 to 1◦/mm range.

Much larger optical effects are observed in liquid crystals. Anisotropic
molecular interactions lead to several types of mesophases with properties
(and symmetries) intermediate between solids and liquids (Fig. 30.7). Crystals
have translational periodicity and orientational order. Plastic crystals have
translational periodicity but no orientation order. Molecular compounds such
as adamantane and WCl6 with near spherical shape and weak intermolecular
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Fig. 30.7 Four states of matter. When
crystals melt they normally lose both trans-
lational and orientational order. But some-
times the melting process proceeds in stages
through various mesophases showing partial
order. Liquid crystals retain some of the ori-
entational order and often show pronounced
anisotropy. Plastic crystals lose orienta-
tional order while retaining periodicity. The
name comes from their butter-like mechanical
properties.

Crystal

Nematic Cholesteric nematic Discoid nematic

Smectic A Smectic C Discotic I–D liquid

Liquid Plastic crystal

Liquid crystals

Two-dimensional liquids

bonds fall into this category. Liquid crystals have partial orientational order
but lack full translational periodicity. Liquids possess neither translational
periodicity nor orientational order.

Several different types of liquid crystals have been identified (Fig. 30.7). The
molecules tend to be long and slender or disk-like in shape. Shape anisotropy
promotes the stability of liquid crystal phases. A smectic liquid crystal is closest
in structure to a crystal. The molecules organize themselves in layers with one-
dimensional translational periodicity as well as orientational order. In smectic
A liquid crystals the molecules are oriented perpendicular to the layers, but in
smectic C they are tilted. The molecules tend to be long and thin with floppy
ends (Fig. 30.8(a)).

Nematic liquid crystals possess orientational order but lack translational peri-
odicity. The elongated molecules are parallel to a common direction but are
not organized into layers. As a result they are more disordered than smec-
tic liquid crystals and usually occur at high temperature. p-Azoxyanisole,
a long molecule with a stiff central portion, is a typical nematic liquid crystal
(Fig. 30.8(b)).

In cholesteric liquid crystals the molecular orientation is twisted from one
layer to the next. They form helical structures with a pitch that depends on
temperature. The nematic and cholesteric phases have the greatest number of
optical applications. Their strongly anisotropic electro-optic properties form
the basis for many types of optical displays used in television, computers, and
wristwatches. Cholesteric liquid crystals are sometimes referred to as chiral
nematic liquid crystals.

Discotic liquid crystals have quite different molecular geometries. As the
name implies, the molecules have a flat, disk-like shape (Fig. 30.8(d)). The
disks are sometimes stacked like pancakes to form a one-dimensional liquid,
while at higher temperature they remain parallel to one another but lose the
columnar order.
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Fig. 30.8 Four liquid crystal compounds
exhibiting (a) smectic, (b) nematic, (c) choles-
teric, and (d) discoidal behavior. Note the
rather limited temperature ranges.
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Fig. 30.9 Typical anisotropies developed at
the liquid–liquid crystal phase transition.

Because of their orientational order, liquid crystals conform to various Curie
group symmetries. Many possess cylindrical symmetry (∞/mm) but some
have ferroelectric properties with conical symmetry (∞m) in the poled state.
Cholesteric liquid crystals are optically active with chiral symmetry (∞2) and a
few are ferroelectric as well, reducing the symmetry to ∞. The only Curie group
that is not well represented in liquids and liquid crystals is ∞/m. Ferroliquid
crystals containing magnetic particles come close (Fig. 4.2).

The aligned molecules in liquid crystals give rise to highly anisotropic phys-
ical properties (Fig. 30.9). The anisotropy in dielectric constant 	K = K||−K⊥
can be very large since the chemical bonding is quite different parallel and
perpendicular to the alignment direction. The dielectric constants and refractive
indices are generally higher parallel to the alignment direction because the local
dipole fields reinforce the applied field in this direction (see Section 25.5).

This is not true for magnetic susceptibility. Liquid crystals tend to be dia-
magnetic with χ⊥ > χ||. Here the aromatic rings play a dominant role just as
they do in most strongly diamagnetic organic crystals (Section 14.7). In liquid
crystals the aromatic rings are usually parallel to the alignment direction giving
the maximum susceptibility in the perpendicular directions.
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Nematic and smectic liquid crystals are optically uniaxial positive with the
optic axis parallel to the elongated molecules. Liquid crystals have a number of
useful electro-optic effects. Under an applied field the molecules tend to rotate
into the field direction because of the dielectric anisotropy. The time constant
involved in the reorientation is often in the millisecond range, depending on the
viscosity.

A twisted nematic mode is used in many liquid crystal displays. A thin layer
of liquid crystal is aligned in a 90◦ helical pattern by surface treatment of the
electrodes (Fig. 30.10). When viewed between crossed polarizers in zero field,
the display is bright. An applied field aligns many of the molecules into the field
direction, removing the original 90◦ twist. The crossed polarizers then darken
the display.

Cholesteric liquid crystals with long helical pitch have very large optical
activity coefficients. Fig. 30.11 shows the optical rotatory effect in a mixture
of two cholesteric liquids. The α values are strongly temperature because of
thermal instability of liquid crystals. This makes cholesteric compounds useful
as temperature sensors in medical diagnosis and “mood” rings. Constructive
interference takes place when the pitch of the helix equals the wavelength of
light, resulting in bright reflected colors.

The strong temperature dependence is a disadvantage in other display appli-
cations. To overcome this difficulty, mixtures of liquid crystals are used to
broaden the mesophase stability range.

Dichroic dyes such as anthroquinone and azoquinone are often added to
nematic mixtures to produce colored liquid crystal displays. When the electric

Fig. 30.10 The twisted nematic liquid crys-
tal display works well in ambient illumina-
tion. Surface treatment leads to an artificial
optical activity by aligning molecules in a
90◦ rotation. When switched from the “off”
to “on” position with an applied voltage,
the reflected light intensity is altered as the
molecules align with the field.

Crossed
polarizers

Transparent
electrodes

Nematic
liquid
crystal

‘Off’ ‘On’
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+

–

Fig. 30.11 Cholesteric liquid crystals some-
times have long helical pitch comparable to
the wavelength of light resulting in very large
optical rotation coefficients. The pitch is very
sensitive to temperature causing a change in
sign and selective reflection at the crossover
point where t = λ. The data are from a mix-
ture of cholesteryl chloride and cholesteryl
myristate measured near room temperature.
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Fig. 30.12 Dichroic dyes are used in
guest-host LCDs to produce color changes.
Elongated dye molecules are re-oriented
under electric field along with the host liquid
crystal. The change in orientation causes a
change in optical absorption.

field is switched on the elongated dye molecules change orientation with the
host nematic liquid crystal molecules. A pronounced color change accompanies
the reorientation of the dichroic dye (Fig. 30.12).

Ferroliquid crystals are an interesting family of complex magnetic fluids in
which elongated single-domain magnetic particles are suspended in a liquid
crystalline carrier. The family includes ferrocholesteric, ferronematic, and
ferrosmectic ferroliquids. Being a composite medium, ferroliquid crystals
adopt some features of both parent phases. From the liquid crystal side, they
inherit orientational molecular order, optical birefringence, and optical activ-
ity. From the magnetic fluid side, they exhibit high magnetic susceptibility
and the possibility of spontaneous magnetization. But the real novelty of fer-
roliquid crystals is the presence of a strong interaction between the suspended
magnetic particles and the liquid crystal matrix. A number of different ori-
entational transitions can take place in an applied magnetic field, including
Frederik’s Transitions, in which a realignment of the magnetic vector causes a
reorientation of the nematic host molecule.

Problem 30.2
As discussed in the text, liquids and liquid crystals belong to several different
Curie groups including ∞∞m, ∞∞, ∞/mm, ∞m, ∞2, and ∞. Normally
these liquids are nonmagnetic, so they also possess 1′, the time reversal operator
(Section 14.2). Ferroliquids are composite liquids consisting of liquid crystals
with dispersed magnetic particles. The magnetization vectors (magnetic group
∞/mm′) of the particles align in a strong magnetic field. Using the Curie
Principle of symmetry superposition, what magnetic groups represent these
composites? Assume that the magnetic field is either parallel or perpendicular
to the alignment axis of the liquid crystal.

30.6 Dispersion and circular dichroism

In 1812 Biot noted an increase in the angle of rotation as the color of light
changed from red to violet. Quantitative measurements led to the Law of Inverse
Squares relating the optical activity coefficient, α, to the wavelength, λ; α is
proportional to 1/λ2. For normal dispersion, as in quartz, αλ2 is approximately
constant over the visible range. More precise measurements over wider wave-
length ranges led to Drude’s formula in which α is proportional to 1/(λ2 −λ2

0).
The coefficient λ0 corresponds to the absorption band, as shown in Fig. 30.1.
Further modifications are required when more than one absorption edge is
involved.
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The optical activity coefficient of quartz is accurately represented by the
equation

α = 9.5639

λ2 − 0.0127493
− 2.3113

λ2 − 0.000974
− 0.1905,

where λ is expressed in microns and α in degrees per millimeter. This formula
fits the data from λ = 3.2 µm in the infrared to 0.2 µm in the near ultraviolet.
α increases from 0.5 to over 250◦/mm in this wavelength range.

Most organic compounds show similar behavior approximating the inverse
square relationship. In this class of normal dispersive media, the rotatory power
increases progressively with diminishing wavelength. The rotatory power α,
and its first and second derivatives, dα/dλ and d2α/dλ2, remain constant in
sign throughout the region of transparency.

But not all optically-active substances behave normally. Anomalous rotatory
dispersion occurs in liquids and solids with optically active absorption bands
and is often accompanied by circular dichroism. Anomalous dispersion involves
a reversal of sign with α = 0 at the point of reversal, peaks in the rotatory
dispersion curve when dα/dλ = 0, and inflection points where d2α/dλ2 = 0.
The dispersion curve of potassium chromium tartrate (Fig. 30.14) illustrates the
anomalous behavior. In the near infrared, α is about +1◦/mm, rising to a peak in
the visible, then passes through zero to a negative peak before reversing again.
There are different causes for these anomalies. In transparent media the effect
may be due to presence of both right- and left-handed molecules with different
dispersion curves. This can occur in crystals or in solutions. The classic example
is tartaric acid. The right- and left-handed portions of complex molecules can be
responsible for such behavior. In other optically active materials the anomalies
are related to circular dichroism.

The discovery of circular dichroism may be regarded as a sequel to the
discovery of dichroism. Biot discovered dichroism in crystals of tourmaline in
1815. As pointed out in Section 26.2, the ordinary ray in tourmaline is absorbed
much more strongly than the extraordinary ray. In an isotropic optically-active
medium, there are also two kinds of rays, a right circularly-polarized ray
and a left circularly-polarized ray. The two rays travel with different velo-
cities leading to circular double refraction. It is therefore natural to ask if
the two circularly-polarized rays are absorbed differently. Circular dichroism
was observed in amethyst (purple quartz) in 1860, and later in a number of
optically-active colored solutions. Unequal absorption is observed in solutions
of potassium copper d-tartrate, with an equal but opposite effect in potassium
copper l-tartrate. No dichroism is observed in a racemic mixture of the d- and
l-tartrates. These phenomena and the accompanying anomalous dispersion near
the absorption peak are known as the Cotton Effect.

The Cotton coefficient governing circular dichroism is proportional to the dif-
ference in intensity for the right- and left-circularly polarized rays, I(R) − I(L).
It is related to the imaginary part of the optical activity coefficient gij and can
therefore be represented by an axial second rank tensor.

When a plane polarized ray passes through an optically-active medium
that absorbs the two circular components differently, not only is the plane
of polarization rotated, but the ray becomes elliptically polarized (Fig. 30.13).
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Fig. 30.13 Behavior of polarized light in
(a) inactive medium, (b) optically-active
medium, and (c) optically-active and circu-
larly dichroic medium.
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Fig. 30.14 Anomalous rotatory disper-
sion and elliptical polarization in potassium
chromium tartrate (Cotton).

The major and minor axes of the resultant elliptical polarization are equal to
the sum and difference, respectively, of the amplitudes of the right- and left-
circularly polarized waves. The angle through which the major axis has been
rotated is equal to half the difference in phase between the two rays, and the sign
of the ellipse is the same as that of the circular component of greatest intensity.

To fully characterize a circularly dichroic material, it is necessary to make two
measurements: (1) the rotation angle between the incident vibration direction
and the major axis of the ellipse, and (2) the circular dichroism, that can be
described either as the ellipticity of the emergent light, or as the difference in
intensity of the right- and left-circularly polarized beams. Measurements on
potassium chromium tartrate are shown in Fig. 30.14. Electronic transitions
in the 3d-shell of chromium causes a strong absorption band in the optical
range resulting in anomalous dispersion and circular dichroism. Measurements
on a number of different colored solutions containing chiral molecules led to
the following conclusions: (1) ellipticity reaches a maximum near where the
absorption is most intense, and (2) the rotatory power changes sign at the
same wavelength where the ellipticity is largest. Optically-active absorption
bands such as this are responsible for anomalous dispersion and for circular
dichroism. Bruhat devised a rule that summarizes the behavior of polarized
light in an optically active medium: “On the red side of the absorption band, the
ray that is less absorbed is propagated with the greater velocity; on the violet
side the reverse is the case.”

It should be noted, however, that not all absorption bands are optically active.
Cotton showed that circular dichroism and anomalous dispersion do not occur in
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colored solutions in which the optical activity and absorption band are caused by
different molecules. For example, no change in rotatory power was observed
in sugar solutions colored with magenta dye, nor was the transmitted light
elliptically polarized.

30.7 Electrogyration, piezogyration, and
thermogyration

External fields or forces will alter the optical activity effect. Under an applied
electric field, the change in the gyration coefficient can be written as a power
series:

	gij = gij(E) − gij(0) = AijkEk + AijklEkEl + · · · .

To describe the effect of symmetry on Aijk and Aijkl we must first determine
how they transform. When written in the new coordinate system,

	g′
ij = |a|aikajl	gkl = |a|aikajlAklmEm

= |a|aikajlAklmanmE′
n = A′

ijnE′
n.

Therefore the linear electrogyration coefficients Aijn transform as an axial third
rank tensor:

A′
ijn = |a|aikajlanmAklm.

In a similar way, it can be shown that the quadratic electrogyration
coefficients Aijkl constitute a fourth rank axial tensor which transforms as

A′
ijkl = |a|aimajnakpaloAmnpo.

In matrix form the Aijk coefficients can be written as a 6×3 matrix resembling
the piezoelectric effect.

6 × 1
(	g) =

6 × 3
(A)

3 × 1
(E).

However, the effect of symmetry is quite different because electrogyration
is an axial tensor whereas piezoelectricity is a polar tensor. Piezoelectricity
disappears in centrosymmetric media but electrogyration does not. As pointed
out earlier, the birefringence associated with optical activity is small compared
with standing birefringence, therefore the electrogyration experiment should
be carried out along an optic axis or an optically isotropic material. Moreover it
would be best to avoid competing electro-optic and piezoelectric effects by using
a centrosymmetric crystal. The experiment shown in Fig. 30.15 is a simple one
in which the electric field and optical beam are parallel to one another along an
optic axis. This set of conditions requires a nonzero coefficient A33 in a uniaxial

Fig. 30.15 Electrogyration experiment on
a uniaxial crystal with the optical light path
and electric field directed along the optic axis
Z3 = [001].

Polarizer Analyzer

Transparent
electrodes

+ –

E3

Z3
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centrosymmetric point group. Only point groups 3̄, 4/m, and 6/m satisfy these
criteria.

Measurements have been carried out on crystals of lead molybdate (point
group 4/m). In the experiment the coefficients of interest are A333 and A3333,
the first- and second-order electrogyration constants.

	g33 = g33(E) − g33(0) = A333E3 + A3333E2
3 .

Optical activity is absent in point group 4/m so g33(0) = 0. The effect of
4/m symmetry on A333 and A3333 are easily determined by the direct inspection
method. The fourfold symmetry axis along Z3 takes 1 → 2 → −1, and 3 → 3.
There is no handedness change so |a| = +1. Therefore 333 → 333 and 3333 →
3333. There is no effect on either A333 or A3333. For the mirror plane perpendic-
ular to Z3, 1 → 1, 2 → 2, and 3 → −3. In this case there is a handedness
change, |a| = −1. Under the mirror operation, 333 → (−1)(−3)(−3)(−3) →
333, and 3333 → (−1)(−3)(−3)(−3)(−3) → −3333. By Neumann’s Law,
A333 is allowed but A3333 = 0. For PbMoO4 a rotation of 1◦ was obtained for
an applied field of 5 kV/mm and a wavelength of 0.633 µm, confirming the
existence of A333.

The piezogyration effect describes the influence of mechanical stress on
optical activity.

	gij(X) = gij(X) − gij(0) = CijklXkl + CijklmnXklXmn + · · · .

The linear piezogyration coefficients Cijkl is a fourth rank axial tensor like
the quadratic electrogyration effect. The quadratic piezogyration effect Cijklmn

is a sixth rank axial tensor. Both of these effects disappear in centrosymmetric
materials. Even rank axial tensors and odd-rank polar tensors disappear when
inversion symmetry is present. Bear in mind, however, that the situation changes
when dealing with magnetic symmetry and time reversal.

Thermogyration, the influence of temperature on optical activity, can be
described as a power series in temperature. All the coefficients in 	gij(T) are
second rank axial tensors like gij since T , T2, T3, . . . are all scalars.

The rotatory power α often changes rapidly near phase transitions. As
pointed out in Section 30.5, α is very sensitive to temperature in liquid crystals.
Rotations of the order of 10,000◦/mm in cholesteric liquid crystals decrease to
very small values when heated into the normal liquid state. The large rotatory
power of liquid crystals is caused by the helical packing of molecules rather
than the chiral nature of individual molecules.

The α–β transition in quartz provides another example. The optical activ-
ity coefficient increases by 16% when heated from room temperature through
the phase transformation at 573◦C. In this case the change is due to thermal
expansion and the internal straightening of the Si–O–Si bonds to form more
perfect helices. The fractional change in rotatory power, (1/α)(dα/dT), is
about 0.00015 K−1 near room temperature.
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The magneto-optic properties of interest are the Faraday Effect, Kerr Rotation,
and the Cotton–Mouton Effect. In 1846, Michael Faraday discovered that when
linearly polarized light passes through glass in the presence of a magnetic
field, the plane of polarization is rotated. The Faraday Effect is now used in a
variety of microwave and optical devices. Normally the Faraday experiment is
carried out in transmission, but rotation also occurs in reflection, the so-called
Kerr Rotation that is used in magneto-optic disks with Mbit storage capability.
Other magneto-optic phenomena of less practical interest include the Cotton–
Mouton Effect, a quadratic relationship between birefringence and magnetic
field, and magnetic circular dichroism that is closely related to the Faraday
Effect. A number of nonlinear optical effects of magnetic or magnetoelectric
origin are also under study. Almost all these magnetooptical effects are caused
by the splitting of electronic energy levels by a magnetic field. This splitting
was first discovered by the Dutch physicist Zeeman in 1896, and is referred to
as the Zeeman Effect.

31.1 The Faraday Effect

When linearly polarized light travels parallel to a magnetic field, the plane of
polarization is rotated through an angle ψ . It is found that the angle of rotation
is given by

ψ(ω) = V(ω)Ht,
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(b)
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Fig. 31.1 Faraday Effect in a one-way glass.
(a) The Verdet coefficient for a commer-
cial rare-earth borate glass (Corning 8363).
(b) One-way optical system utilizing the
Faraday Effect in 8363 glass. Reflected waves
are rotated 90◦ and blocked by the polarizer.

where H is the applied magnetic field, t is the sample thickness, ω is
the angular frequency of the electromagnetic wave, and V(ω) is the Verdet
coefficient. Faraday rotation is observed in nonmagnetic materials as well as in
ferromagnets. The Verdet coefficient of a commercial one-way glass is plotted
as a function of wavelength in Fig. 31.1(a). Corning 8363 is a rare earth borate
glass developed to remove reflections from optical systems. A polarized laser
beam is transmitted through the glass parallel to the applied magnetic field.
The plane of polarization is rotated 45◦ by the Faraday Effect. The transmitted
beam passes through the analyzer that is set at 45◦ to the polarizer. But the
reflected waves coming from the surface of the glass and from the analyzer are
rotated another 45◦ as they return toward the laser. This puts them 90◦ out of
phase with the polarizer and blocks their return. The experimental configura-
tion is illustrated in Fig. 31.1(b). The Verdet coefficient in the rare-earth glass
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is large compared to other glasses and liquids (Table 31.1) but small compared
to magnetic materials.

Table 31.1 Verdet coefficients
measured at 0.589 µm and 20◦ in

degrees/G mm

Water (H2O) 2.2 × 10−5

Fluorite (CaF2) 1.5 × 10−6

Diamond (C) 2.0 × 10−5

Silica glass (SiO2) 2.8 × 10−5

Carbon disulfide (CS2) 7.0 × 10−5

At first glance the Faraday Effect appears similar to optical activity since
both involve the rotation of the plane of polarized light, but they differ in
both theory and experiment. The two experiments are compared in Fig. 31.2.
Optical activity originates from a helical internal structure and does not involve
any external field or forces. The sense of rotation bears a fixed relation to the
wave normal, such that when a beam of light is reflected back on itself, the net
rotation is zero. The Faraday Effect behaves quite differently. In this case the
rotation depends on the direction of the wave normal and the direction of the
magnetic field. Both are reversed on reflection, so that rotation continues in
the same direction, doubling the rotation.

H

Faraday Effect

Mirror
Doubled rotation

Canceled rotation

Optical activity

0°

0°
0°

2�°

�°

�°

Fig. 31.2 Rotatory effects associated with
optical activity and the Faraday Effect. When
polarized light transverses the specimen in
forward and reverse paths, the net rotation
cancels for optical activity and doubles for
the Faraday Effect.

The underlying origins of the two effects are also quite different. Faraday
rotation and optical activity arise from two different types of dispersion. Tempo-
ral or frequency dispersion is responsible for the Faraday Effect. It is produced
by interactions between the electromagnetic wave and moving electrical charge,
generally in the form of circulating currents or magnetic spins. The Faraday
Effect requires the presence of a DC magnetic field. Resonances associated with
the charge carrier motion cause a frequency-dependent response to the field,
and this appears as temporal dispersion in the electric permittivity or magnetic
permeability.

Optical activity arises from a different kind of dispersion, spatial dispersion.
The local field at any position in a solid depends not only on the E and H-fields
of the electromagnetic wave but also on the induced dipole fields coming from
neighboring atoms. In other words the dielectric response is partly nonlocal.
When the atomic arrangement has a handedness this can lead to different
behavior of left- and right-handed circularly polarized waves. When these two
waves recombine on exiting the crystal, the result is optical activity and circular
dichroism.

31.2 Tensor nature

In the presence of a magnetic field, all materials exhibit Faraday rotation,
regardless of symmetry. Unlike optical activity, it is not restricted to acentric
point groups. As pointed out earlier, the angle of rotation is proportional to the
path length t and to the size of the applied field H.

Relatively few measurements have been made on anisotropic crystals.
Natural birefringence makes the experiments difficult in any direction other
than optic axes. For angles close to the optic axes, the usual procedure is to
measure the Faraday rotation parallel and antiparallel to the applied magnetic
field. Averaging the two measurements eliminates some of the errors.

In nonmagnetic materials the Faraday Effect is very weak, usually much
weaker than optical activity and natural birefringence. It can only be seen
in non-enantiomorphic media which are either isotropic or oriented along an
optic axis.

In tensor form the Faraday rotation is given by

ψ = VijtNiHj,



344 Magneto-optics

where ψ is the angle of rotation, t is the specimen thickness, Ni are the direction
cosines of the wave normal, Hj are the components of DC magnetic field, and
Vij is Faraday tensor. In magnetic materials the Faraday Effect is much larger
and is proportional to the magnetization of the material.

To determine how the Faraday tensor transforms we consider how ψ , t, Ni,
and Hj transform. The rotation ψ follows a helical path through the medium.
It has a handedness and is therefore a pseudoscalar (axial zero rank tensor)
which transforms as ψ ′ = |a|ψ . Magnetic field H is a first rank axial tensor,
as are magnetic induction B and magnetization I . All three are also subject
to the time reversal operator, as discussed in Chapter 14. They transform as
H ′

i = ±|a|aijHj where the± signs refer to time reversal and |a| is the handedness
change. The wave normal Ni is a polar first rank tensor (=polar vector) but
is subject to time reversal. When time is reversed the direction of the wave is
reversed. Therefore N transforms as N ′

i = ±aijNj. The thickness t is a true
scalar so t′ = t. Remembering that the direction cosine subscripts are reversed
in going from the new to the old systems, ψ ′ = |a|ψ , t′ = t, Ni = ±akiN ′

k
and Hj = ±|a|aljH ′

l .
The Faraday coefficients Vij transform according to the following

derivation.

ψ ′ = |a|ψ = |a|VijtNiHj = |a|Vijt
′(±akiN

′
k)(±|a|aljH

′
l )

= akialjVijt
′N ′

kH ′
l = V ′

klt
′N ′

k H ′
l .

Therefore the Faraday coefficients constitute a polar second rank tensor relating
the rotation angle ψ to the wave normal and magnetic field:

V ′
kl = akialjVij.

Like other polar second rank tensors the Faraday Effect is present in all 32 crystal
classes and all seven Curie groups. The number of independent coefficients
ranges from nine in the two triclinic classes to one in the five cubic classes and
Curie groups ∞∞m and ∞∞. The matrix is not required to be symmetric by
energy arguments, so for low symmetry classes Vij �= Vji.

The matrices for Faraday coefficients are identical to those of the thermo-
electric coefficients listed in Table 21.4. For cubic and isotropic materials the
only nonzero coefficients are V11 = V22 = V33. This is the same as the Verdet
coefficient described in Section 31.1.

There is an inverse Faraday Effect in transparent materials. Electrodynamic
theory tells us that a rotating electric field acts as a magnetic field. From this
it follows that a solid is magnetized when exposed to an intense circularly-
polarized electromagnetic wave. Strong inverse Faraday Effects have been
observed in crystals doped with paramagnetic ions such as Cd1−xMnxTe. The
dominant mechanism appears to the alignment of paramagnetic ion spins by
polarized charge carriers.

Problem 31.1
The Faraday rotation angle ψ depends on the angle θ between the wave normal
and the direction of the magnetic field. Numerical values for the Verdet coeffi-
cient of several materials are given in Table 31.1. Estimate ψ for silica glass in
a magnetic field of 104 G and plot ψ as a function of θ for a specimen 1 mm
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thick. Compare the angle of rotation with that measured for the optical activity
effect in a quartz plate 1 mm thick.

31.3 Faraday Effect in microwave magnetics

Faraday rotation is used in the processing of electromagnetic waves in the
microwave region between 1 and 100 GHz. Strong interactions take place
between the microwaves and precessing electronic spins in magnetized ferrites.
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Fig. 31.3 (a) Precession of the magnetization
I about the applied DC field H . (b) Relative
permeability of a ferrite at a fixed microwave
frequency. Real (µ̄′) and imaginery (µ̄′′) per-
meabilities are plotted as a function of the
DC field H for right (R)- and left (L)-handed
circularly-polarized waves.

Consider a magnetic material with a saturation magnetization Is aligned
with a strong DC magnetic field H along the Z3 direction. If the alignment
of Is is disturbed, it precesses about H with all the electron spins precessing
together. The precession comes about because of the angular momentum of
each electron. If the spins and the magnetization are deflected by an angle θ ,
a restoring force µH sin θ acts to oppose the change, but the magnetization will
not return immediately to the field direction. Instead it will precess about Z3

with an angular frequency ω0 = γ H, where γ is the gyromagnetic ratio. For
electron spins, γ = 35 kHz m/A. When viewed along Z3, the magnetization Is

rotates in a clockwise direction about H (Fig. 31.3(a)). These rotational motions
are the cause of the temporal dispersion mentioned previously.

When a plane-polarized microwave enters a solid it becomes two circularly
polarized waves, one right-handed and one left-handed. As the two waves travel
along Z3, they interact differently with the precessing spins. The left-handed
wave rotates in the clockwise direction like the precessional motion of the
electron spins. It rotates in phase with I sin θ for ω < ω0, and as ω increases,
θ becomes larger. In contrast, the right-handed counterclockwise microwave
does not couple to the clockwise precession. In practice, it is customary to plot
the microwave permeability as a function of the DC magnetic field, keeping
the microwave frequency fixed. The real (µ′) and imaginary (µ′′) parts of the
permeability are plotted in Fig. 31.3(b). Absorption occurs at the resonance
condition H0 = ω/γ . The left-handed wave is absorbed but the right-handed
circularly-polarized microwave is not.

Microwave devices are generally operated in the low-loss region below
resonance where the permeabilities µ′(L) and µ′(R) are quite different. This
means that the two waves will travel at different velocities since v = c/µ̄′ε̄′
where c is the speed of light in vacuum, and µ̄′ and ε̄′ are the relative
permeabilities and permittivities at microwave frequencies. Below resonance,
µ̄′(L) > µ̄′(R) so that v(R) > v(L). As a result the plane of polarization of
the incident microwave traveling along Z3 will be rotated clockwise. A typical
value of the Faraday coefficient is 104 degrees/m, a much larger rotation than
those observed on nonmagnetic materials.

In microwave systems the Faraday Effect is used to accept or reject plane
polarized waves. Isolators, gyrators, phase shifters, and circulators all make use
of the effect. Ferrites with the garnet structure have good electrical resistivity
that lowers the Eddy current losses so common in other magnetic materi-
als. Though cubic, the garnet structure is rather complex with three types
of cation sites (Fig. 31.4). Gadolinium iron garnet (Gd3Fe5O12) is a typi-
cal magnetic garnet. Three out of five Fe3+ ions are in tetrahedral positions,
with the remainder in octahedral coordination. Gadolinium is in dodecahedral
coordination with four oxygen neighbors at 2.38 Å and four more at 2.44 Å.
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Ferric iron is octahedrally coordinated to six oxygens at 2.00 Å, slightly larger
than the tetrahedral Fe–O distance of 1.88 Å. Every oxygen is coordinated to
two yttrium and two iron, one octahedral and one tetrahedral. Iron atoms in
the octahedral and tetrahedral sites are coupled antiferromagnetically by the
superexchange mechanism. Gadolinium is weakly coupled to the net moment
of the iron atoms, again antiferromagnetically. Because of its large moment
and weak coupling, gadolinium contributes little to the saturation magnetiza-
tion at high temperatures, but tends to dominate at low temperatures. Between
these two extremes the magnetization changes sign, the so-called compensation
temperature (Fig. 14.9).

Y

Fe2+

Fe3+

Fig. 31.4 A portion of the Yttrium Iron
Garnet (YIG) structure illustrating the coord-
ination of the various cations with oxygen.

As explained earlier, the operation of these microwave devices depends on
ferrimagnetic resonance, in which energy from a circularly polarized radio-
frequency wave sustains precession of unpaired electrons about an applied static
magnetic field. In these devices it is important to control the magnetization
and its variation with temperature, as well as the resonance and remanence
properties, and the high-power characteristics.

31.4 Magneto-optic recording media

Ferrimagnetic garnets also have technological importance in the visible and
near infrared range. Compared to other magnetic materials, the garnets have
exceptionally low optical absorption coefficients. The ratio of the Faraday rota-
tion ψF to the absorption coefficient α is often used as an engineering figure
of merit for magneto-optic devices operated in a transmission mode. Magnetic
metals like Fe and Co have low ψF/α values because of their huge absorption
coefficients. Other more transparent ferromagnetic crystals like CrBr3 have
very low Curie temperatures.
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Fig. 31.5 Faraday rotation in Gd3−xBix-
Fe5O12 plotted as a function of wavelength
for several bismuth compositions. The high
dispersion has been attributed to charge
transfer effects.

Bismuth-substituted garnets are among the most promising magneto-optic
materials in the visible wavelength region. The Faraday rotation spectrum of
polycrystalline Gd3−xBixFe5O12 in the visible region is shown in Fig. 31.5.
A magnetic field is not required in ferrimagnetic materials such as this. Once
the magnetization has been saturated, the internal magnetic field creates the
Faraday rotation. The units are therefore degrees/m.

Problem 31.2
Since the best magneto-optic materials lack optical transparency, the figure
of merit for most technical applications is not the magnitude of the Faraday
rotation, but the ratio of Faraday rotation to the absorption coefficient α, ψF/α

expressed in degrees/dB. The largest value measured at room temperature is
about 9.6 degrees/dB for Gd2BiFe5O12 at 0.7 µm. Using the data in Fig. 31.5,
estimate the Faraday rotation at 0.7 µm for a crystal 1 mm thick. How does
the rotation change when the magnetization is reversed, as in 180◦ domains?
Compare these rotation angles with the optical activity coefficients for several
of the chiral crystals and liquid crystals in Chapter 30.

The development of magneto-optic memory systems and of magneto-optic
light modulators has revived interest in the Faraday Effect and related phenom-
ena. Magneto-optic recording was first introduced in 1957 using MnBi films
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Fig. 31.6 (a) In the magneto-optic Kerr Effect
polarized light is reflected from the surface
of a magnetic material. Different orientations
of the magnetization are used in the polar-,
longitudinal-, and transverse-Kerr effects.
(b) Most optical recording disks utilize the
polar Kerr Effect in which a change in rota-
tion of the polarized light is measured for 180◦
domains.

magnetized perpendicular to the surface. The films are interrogated optically by
reflecting polarized light from the surface. Rotation can be observed in reflec-
tion as well as transmission, the so-called Kerr Rotation. The Kerr Effect can
be seen in three different orientations (Fig. 31.6(a)) but the polar configuration
is generally preferred for high storage density. Optical rotation is reversed for
reflections from 180◦ magnetic domains (Fig. 31.6(b)).

Magneto-optic disks are widely used in the information and entertainment
industries. They combine the high-bit density of optical recording with the
best features of magnetic storage, permanence, and erasability. Information is
stored through the mechanism of Curie point writing in which light is absorbed
in a magnetic film, thereby heating the film. Regions of the film under intense
illumination revert to the paramagnetic state when heated above the Curie point.
When cooled in a suitable magnetic field, the paramagnetic region returns to
a magnetized state, but the direction of magnetization is changed. The resulting
domain pattern mimics the incident light beam. Information is read out by the
Kerr Effect.

Requirements for a useful storage medium are high bit-density, high write-
sensitivity and high read-out efficiency. Bit-density is determined by minimum
domain size, so that a large magnetocrystalline anisotropy is needed for thin-
film configurations. Important material parameters for Curie-point writing
include low thermal conductivity, a convenient Curie point, and high optical
absorption

Large heavy atoms favor low thermal conductivity as well as large Faraday
rotation. Large magneto-optic effects are necessary for read-out efficiency.
To avoid deleterious birefringence effects, it is advantageous to direct
the light beam along an optic axis. This is easiest in optically isotropic
media.

The spin-obit and charge transfer phenomena found in heavy elements with
mixed orbitals give rise to large Faraday rotations. The magneto-optic Kerr
effects in magnetic metals and intermetallic compounds are significantly larger
than in most ferrites.

Most of these requirements were met by MnBi and EuO but grain bound-
aries turned out to be a fatal flaw. Large background noise limited the use of
polycrystalline thin films. The introduction of amorphous intermetallic films
with no grain boundaries solved this problem. Amorphous thin films of rare
earth-transition metal alloys are made by a sputtering process. Among these



348 Magneto-optics

alloys, Tb20Fe74Co6 is widely used as a magneto-optic disk material. As pointed
out in Section 15.6, TbFe2 crystals have large magnetostriction coefficients and
large magnetic anisotropy because of spin-orbit coupling in terbium. Both con-
tribute to the uniaxial anisotropy Ku that makes it possible to magnetize the
films in upward and downward directions normal to the surface. The criterion
for perpendicular magnetization is Ku > 2π I2

s . To reduce Is the alloy composi-
tion is adjusted to be near a compensation point where the Tb and Fe magnetic
moments nearly cancel. This is possible because terbium and iron magnetize
in opposite directions as in magnetostrictive (Tb, Dy) Fe2 (Fig. 15.10). Similar
effects are observed in rare-earth iron garnets (Fig. 14.9). Information storage
in magneto-optic devices of this type are soon projected to reach the 1 Gbit/cm2

range.
A figure of merit often adopted for magneto-optic memories is R sin2 θK

where R is the reflectivity and θK is the Kerr rotation. Cerium-based compounds
such as CeBi and CeSb have figures of merit three orders of magnitude larger
than TbFeCo and other alloys, but only at very low temperatures under very
high fields. The enhanced magneto-optic effects have been attributed to 4f to
5d electronic transitions.

31.5 Magnetic circular dichroism

Magnetic circular dichroism is similar in origin to the Faraday Effect. In a
ferromagnet, two circularly polarized waves propagate with different refractive
indices and different absorption coefficients. After traveling a distance t in the
sample, there appears a phase difference between the right- and left-handed
waves given by

ψ = π t

λ
(n(L) − n(R)) = θFt,

where n(L) and n(R) are the refractive indices of the two circularly polarized
electromagnetic waves, and θF is the Faraday coefficient of a fully magnetized
material in degrees/m.

If the two circularly polarized waves are absorbed at different rates their
relative amplitudes will change as well. The magnetic circular dichroism is
defined as the difference of the absorption coefficient α for the right- and
left-circularly polarized light:

	α = α(L) − α(R).

	α and θF are both strong functions of frequency ω. Both are governed by the
same type of tensor relations.

When no magnetic field is applied, the intensity of light transmitted through
a sample of thickness t is

I = I0 exp(−αt),

where α is the absorption coefficient and I0 is input intensity. In the presence
of a magnetic field or a magnetization, the absorption coefficients for right- and
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Fig. 31.7 Measurement system for magnetic
circular dichroism. Alternating right- and left-
circularly polarized light beams are generated
using a polarizer (P) and a photoelastic modu-
lator (PEM). A photomultiplier (PM) and
a lock-in amplifier are used in the detection
system.

left-circularly polarized waves, α(L) − α(R), are different, leading to a differ-
ence in intensity I(R) − I(L). The magnetic circular dichroism, expressed in
degrees per gauss, is given by

ψ =
(

90

π

)
(I(R) − I(L))

(I(R) + I(L))
.

An experimental arrangement for studying magnetic circular dichroism
is shown in Fig. 31.7. Experiments are generally carried out over the
visible and near infrared range using transmission geometry. The polariza-
tion is driven between right- and left-handed circularly polarized states at
a frequency of 50 kHz using a photoelastic modulator. Transmitted light is
detected with a photomultiplier and a lock-in amplifier. A 7% change in
transmitted light intensity corresponds to one degree of magnetic circular
dichroism.

Magnetic circular dichroism is used in the study of dilute magnetic semicon-
ductors such as Cd1−xMnxTe. This class of materials has attracted considerable
interest because of their magnetic, electronic, and optical properties. The
valence band structure of a magnetic semiconductor is strongly influenced by
the d-orbital electronic states of the magnetic ions. Magneto-optic experiments
have made important contributions in clarifying the interactions between the
sp3 bonding states of the tetrahedrally-coordinated semiconductor atoms and
the d-levels of the transition-metal elements.
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Fig. 31.8 Magnetic circular dichroism spec-
trum of cubic MnTe with the zincblende
structure. The films are antiferromagnetic
below 67 K.

The magnetic circular dichroism spectrum of manganese telluride is shown
in Fig. 31.8. The large negative peak near 3.4 eV and the weaker positive peak
at 3.6 eV are attributed to optical band-gap transitions in the semiconductor.
The structure around 3.1 eV comes from the d–d transitions in the manganese
ions. Changes in the dichroic peak intensities take place with temperature and
composition as the samples undergo magnetic phase transformations. Two of
the exciting areas of research concern the superlattice structures and quantum
wells which appear in dilute magnetic semiconductors.

Apart from the interesting scientific questions, there are practical reasons for
investigating dilute magnetic semiconductors. New application areas combin-
ing “band-gap engineering” and “spin engineering” are expected to emerge.
One example is the optical isolator utilizing Cd1−x−yHgxMnyTe crystals as
amplifiers in Er-doped optical fiber communication systems.

Magnetooptical luminescence is defined in a manner analogous to mag-
netic circular dichroism. Luminescence originates from electronic transitions
between excited states and lower energy ground states. The difference in intens-
ity between right- and left-circularly polarized luminescence spectra provides
information about the magnetization state of the excited ions.
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31.6 Nonlinear magneto-optic effects

The effect of magnetic fields on refractive indices can be determined by
expanding the indicatrix components in a power series.

	Bij = Bij(H) − Bij(0) = qijkHk + qijklHkHl + · · · .

Since 	Bij is a polar second rank tensor and Hk is an axial first rank tensor, qijk

is a third rank axial tensor, and qijkl is a fourth rank polar tensor. Third rank
axial tensors have been discussed several times previously. The Hall Effect,
the piezomagnetic effect, and the electrogyration effect were all axial tensors
of rank three. For glasses, liquids, and high symmetry cubic crystals, the only
nonzero coefficients are q123 = q231 = q312 = −q213 = −q321 = −q132.
But the 	Bij tensor must be symmetric, therefore qijk = qjik = 0. The linear
dependence of refractive indices on magnetic field is zero, except for the Faraday
Effect.

Polarizer

Coil
Transparent

liquid

Analyzer

Light
H

Fig. 31.9 The Cotton–Mouton Effect, a weak
nonlinear magneto-optic phenomenon, can be
observed in polarized light with the magnetic
field orthogonal to the light beam. The
birefringence 	n is proportional to H2.

When the light beam is perpendicular to the magnetic field, the Faraday
Effect also disappears. Under these circumstances the nonlinear quadratic
term dominates. This is the Cotton–Mouton Effect which is similar to the
quadratic electro-optic effect (the Kerr Effect) but much weaker. In both cases
the birefringence is proportional to the square of the field. The Kerr Effect
equations in Section 28.4 apply equally well to the Cotton–Mouton Effect,
replacing E2 with H2. The experimental arrangement shown in Fig. 31.9 is
used to measure the Cotton–Mouton Effect in liquids. The biggest effects are
observed in aromatic liquids like benzene and chloroform which have low vis-
cosity and sizable diamagnetic susceptibilities. As the ring-like structures align
in the magnetic field the symmetry of the liquid changes from ∞∞m1′ to
∞/mm′, introducing birefringence. Even larger Cotton–Mouton effects are
observed in liquid crystals and magnetic liquids (Section 30.5).

In magnetically-ordered crystals the symmetry changes at the Curie temper-
ature Tc. For YIG (Y3Fe5O12) the change is from cubic point group m3m1′
above 560 K to trigonal point group 3̄m′ below. Unpaired spins are directed
along one of the body-diagonal directions in the low-temperature ferrimagnetic
state. Very small changes in the unit cell dimensions and atomic positions take
place at the phase transition. As a result, a small optical birefringence appears
in the YIG crystals. To measure the birefringence, a small magnetic field is
applied along [111], converting the crystal into a single domain state through
domain wall motion. The birefringence 	n = n‖ −n⊥ is then obtained with the
wave normal perpendicular to the field direction. The refractive indices n‖ and
n⊥ are measured with light polarized parallel and perpendicular to the applied
field. For YIG, the magnetic linear birefringence (	n) at 295 K is 5.16×10−5,
measured in the near infrared at a wavelength of 1.15 µm. Other rare earth
garnets give similar birefringences of 2–10 × 10−5.

By way of comparison, the corresponding birefringence in ferroelectric
crystals is much larger. The cubic to tetragonal in barium titanate generates
a birefringence of about 5×10−2, about three orders of magnitude greater than
the ferrimagnetic garnets.

Optical birefringence occurs in antiferromagnetic crystals as well. The
domain changes in ferrobimagnetic NiO (Fig. 15.16) were visualized in this
way. The absorption coefficients of crystals with long range magnetic order
show similar behavior, an effect sometimes referred to as magnetic linear



31.7 Magnetoelectric optical phenomena 351

dichroism. In these experiments, measurements are carried out with the light
beam perpendicular to the applied magnetic field. The difference in absorp-
tion coefficients 	α = α‖ − α⊥ is measured with light polarized parallel and
perpendicular to the field.

Other interesting nonlinear phenomena also occur in metals and inorganic
crystals with long range magnetic order. Nonlinear optical properties of mag-
netic origin are sometimes quite different from those with electric origin. Those
driven by the magnetic vector of the light wave can be distinguished experiment-
ally from those driven by the electric field vector. Consider the measurement of
refractive indices or absorption coefficients of a uniaxial crystal. Experiments
can be carried out in polarized light with three different orientations of the
electric vector (E), the magnetic vector (H), and the wave normal (N):

E H N

π-spectra ‖ c ⊥ c ⊥ c
σ -spectra ⊥ c ‖ c ⊥ c
α-spectra ⊥ c ⊥ c ‖ c

In most transparent nonmagnetic materials, the α-spectra is identical with the
σ -spectra, and we conclude that the properties are due to electric dipole interac-
tions with the electric vector of the light wave. Magnetic interactions dominate
when the α- and π -spectra are identical.

The best examples of magnetic dipole transitions are found in the microwave
and far infrared spectrum of transparent iron garnets. As discussed earlier
in Section 31.3, it is associated with the gyromagnetic contribution to the
Faraday Effect. A characteristic feature of the gyromagnetic Faraday Effect
in the infrared is that the rotation of the plane of polarization is independent
of frequency. At higher frequencies near the visible range, the Faraday Effect
increases rapidly because of electric dipole contributions associated with charge
transfer transitions (Fig. 31.5). The Faraday coefficients in the infrared are
smaller, generally in the 40–70 degrees/cm range.

31.7 Magnetoelectric optical phenomena

Some crystals exhibit both magnetic- and electric dipole behavior. Antiferro-
magnetic chromium oxide provides an interesting example of mixed dipole
excitation. The magnetoelectric effect discussed in Section 14.9 provides the
coupling mechanism between electric fields and magnetization.

The crystal structure of Cr2O3 is isomorphous with α-Al2O3 with chromium
ions octahedrally coordinated to hexagonally close-packed oxygen ions. Near
room temperature at 307 K, Cr2O3 undergoes a phase transformation from the
high temperature paramagnetic state to a low temperature antiferromagnetic
state in which the unpaired 3d electrons of Cr3+ align along the threefold sym-
metry axis in an antiparallel fashion (Fig. 14.6). The symmetry group changes
from 3̄m1′ above TN to 3̄′m′ below TN .

Nonlinear optical properties of nonmagnetic crystals were described in
Chapter 29. For second harmonic generation the electric polarization vector
of the second harmonic (Pi(2ω)) is related to the electric field components of
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the fundamental (Ej(ω)) and (Ek(ω)) through the SHG coefficients dijk :

Pi(2ω) = dijkEj(ω)Ek(ω).

Polarization and electric field are both polar first rank tensors, and therefore
dijk is a polar third rank tensor which, like the piezoelectric effect, disappears
in centrosymmetric media. Cr2O3 possesses a center of symmetry above TN ,
so the second harmonic signals disappear in the paramagnetic state.

Electric dipoles couple the electric vector E to the electric vector P. This is
the normal way in which second harmonic waves are generated, but it is not the
only way. There can also be coupling between magnetization (Ii) and electric
field components (Ej, Ek):

Ii(2ω) = dm
ijkEj(ω)Ek(ω).
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Fig. 31.10 Second harmonic experiment on
single-crystal Cr2O3 using linearly polarized
light at 2.6 eV. Incoming light is polarized
(P) parallel to Z1 and propagates along Z3.
Two types of harmonic waves are generated in
the antiferromagnetic state below TN . Electric
dipole response comes from polarization
component P1(2ω) = de

111E2
1 (ω), and mag-

netic dipole response I2(ω) = dm
211E2

1 (ω).
The electric dipole (ED) harmonic is observed
by setting the analyzer (A) parallel to Z1. For
the magnetic dipole harmonic, the analyzer
is oriented parallel to Z2. The ED harmonic
disappears at TN but MD does not.

The superscript m indicates that the interaction between E and I proceeds
through magnetic dipoles rather than through electric dipoles. To distinguish
the two types of SHG effects we use de

ijk for the electric dipole coefficients
and dm

ijk for the magnetic dipole coefficients. As pointed out previously, de
ijk is

a polar third rank tensor, but dm
ijk is not. Since magnetization is an axial first

rank tensor, and Ej and Ek are polar first rank tensors, dm
ijk is an axial third rank

tensor. Axial third rank tensors do not disappear in centrosymmetric classes,
including point group 3̄m1′, and therefore the second harmonic signals from
Cr2O3 above TN come from magnetic dipole interactions.

The temperature dependence of the second harmonic signals for Cr2O3 single
crystals is shown in Fig. 31.10. The electric dipole signal drops to zero at TN ,
but the magnetic dipole signal does not.

The experiment was carried out with the fundamental and harmonic wave
normals parallel to the threefold symmetry axis (c = [001] = Z3). The
incoming fundamental is polarized parallel to the twofold symmetry axis
(a = [100] = Z1). With Ej = Ek = E1, the SHG relations become

Pi(2ω) = de
i11E2

1

for the electric dipole harmonic, and

Ii(2ω) = dm
i11E2

1

for the magnetic dipole harmonic.
As can be seen in Fig. 31.10, both harmonics are observed below TN in

the antiferromagnetic state. The magnetic and electric dipole contributions are
distinguished by polarizing the harmonic wave. Below TN the symmetry group
is 3̄′m′. Using Neumann’s Law it is easily demonstrated that de

211 = 0 and
dm

111 = 0. Therefore second harmonic light polarized parallel to Z1 comes from
the electric dipole term, while second harmonic wavelengths polarized parallel
to Z2 have a magnetic dipole origin.

Antiferromagnetic domains in Cr2O3 (Fig. 14.15) can be observed using
the interference patterns between the two types of second harmonic waves.
The technique works best when the fundamental wavelength corresponds to
one of the absorption bands in chromium oxide crystal field spectrum in this case
the intense 4A2g → 4T2g transition (Fig. 26.7). Second harmonic generation
is a nonlinear optical process involving the simultaneous absorption of two
photons from the fundamental wave, followed by the emission of the photon
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with frequency 2ω. The presence of an intense absorption band aids in the
conversion process.

Nonlinear magnetoelectric and magneto-optics have yet to find an important
practical application, but a number of interesting experiments are in progress.
Thus both magnetically-induced second harmonic generation (MSHG) and
electrically-induced SHG (ESHG) take place in chromium oxide. MSHG has
also been observed in BiFeO3.
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Chemical anisotropy concerns the ways in which crystals grow or dissolve in
different directions. It is an appropriate subject to end this book because it
brings together the oldest and the newest parts of crystal physics. Long, long
ago mineralogists described the shapes of natural crystals and noted correla-
tions with cleavage, hardness, and other physical properties. Chemical etching
was another favorite topic in classical crystal physics that has undergone a
recent revival because of the interest in the micromachining of semiconductor
devices.

Chemical anisotropy involves the interaction of a crystal with a chemically
active environment that promotes dissolution or growth. For this reason it is
primarily a surface property, rather than a bulk property of the crystal. This
is one of the reasons why chemical anisotropy is not normally included in
crystal physics books. The other reason is that rates of growth and dissolu-
tion depend on the chemical nature of the environment much more than the
bulk properties of crystals do. Nevertheless, this is an important subject in
contemporary crystal physics. Surfaces become more and more important as
the scale of engineered devices grows smaller. The crystal physics of surface
properties is a natural extension of classical crystal physics. It is a topic still in
its infancy.

32.1 Crystal morphology

Under favorable conditions, crystal growth takes place in such a way that
the external surface is bounded by a set of plane faces. The preferred shape
of rocksalt family crystals is cube bounded by six symmetry-related {100}
faces. For diamond, an octahedral shape with eight {111} faces often appears.
Quartz, calcite, and rutile belong to lower symmetry crystal systems with more
anisotropic morphologies. Quartz crystals are often elongated along the c-axis
with a hexagonal cross-section bounded by six {100} faces while the ends are
terminated by six {101} and six {011} faces. Calcite tends to form rhombo-
hedra with six faces shaped like parallelograms. Rutile (TiO2) crystals are often
elongated along the c-axis forming slender needles. The needles have a square
cross-section consisting of four {110} faces terminated by eight small {111}
faces. The symmetry group is 4/mmm.

The morphology of the mineral dioptase is illustrated in Fig. 32.1. Dioptase
(CuSiO3·H2O) is a relatively rare mineral formed during the weathering of
copper sulfide ore. The emerald colored crystals are interesting because they
represent a beautiful example of trigonal point group 3̄ that has a single threefold
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Fig. 32.1 The mineral dioptase is formed as
trigonal crystals with six prism faces {21̄1̄0}
and six rhombodral faces {22̄01}. The pres-
ence of the smaller {134̄1} faces signifies that
the true symmetry is trigonal point group 3̄.
A perspective drawing is shown in the upper
right corner. The plane view can be used to
assemble a three-dimensional model.

inversion axis along the c-axis [001]. Specimens showing the full morphological
development are widely sought by mineral collectors.

Three types of faces are commonly observed on dioptase crystals. All faces
are labeled on the plan view in Fig. 32.1. The major faces are the six hexagonal
prism faces so common in many trigonal and hexagonal crystals. These are the
{21̄1̄0} faces on the plan view that are parallel to the [001] symmetry axis.
The other two types of faces are rhombohedral forms that are very common in
other trigonal crystals like calcite. These are the six {22̄01} faces and the six
{134̄1} faces on the dioptase plan view. The general form {134̄1} is especially
interesting because it illustrates the true point group symmetry 3̄. The relative
position of these faces shows that other types of symmetry elements such as
mirror planes and twofold rotation axes are absent in dioptase.

Unfortunately most crystals do not show the full point group symmetry illus-
trated in the drawings. If a general form is not present, the morphological
symmetry of the crystal may be higher than the true structural symmetry as
determined by X-ray diffraction. In dioptase, if only the larger {21̄1̄0} and
{22̄01} faces are present, the apparent symmetry of dioptase would be 3̄m
rather than 3̄, with twofold axes and mirror planes present. The general form
{134̄1} is required to identify the true symmetry.

Classical crystallography is based on the constancy of interfacial angles. In
crystallography, the interfacial angle is defined as the angle between the nor-
mals to the two faces. Before the advent of X-ray diffraction, these angles were
used to identify symmetry groups and gather crystallographic data. Groth’s
“Chemische Kristallographie” and Dana’s “System of Mineralogy” are the
classic compendia.

For hexagonal or trigonal crystals like dioptase, the angle � between the
normals to (h1k1l1) and (h2k2l2) is given by

cos �= h1h2 + k1k2 + 1
2 (h1k2 + h2k1) + (3a2/4c2)l1l2

[(h2
1 + k2

1 + h1k1 + (3a2/4c2)l2
1)(h

2
2 + k2

2 + h2k2 + (3a2/4c2)l2
2)]1/2

,

where a and c are the lattice parameters of the unit cell. Formulae for other
crystal systems are given in the International Tables for X-ray Crystallography.
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Problem 32.1
Calculate the angle between the (134̄1) and (112̄0) faces of dioptase. The unit
cell dimensions are a = 14.565 and c = 7.775 A. Remember that the third
Miller index for hexagonal crystals is redundant (i = −h–k).

Problem 32.2
Using an optical goniometer, the angles between crystal faces can be measured
quite accurately. The following data were collected for a trigonal crystal of
corundum (Al2O3). Calculate the c/a axial ratios and compare them with the
value measured by X-ray diffraction (a = 4.758, c = 12.991 A).

(0001)–(112̄3) = 61◦11′
(0001)–(112̄1) = 79◦37′
(0001)–(011̄2) = 57◦35′
(0001)–(101̄1) = 72◦23′

32.2 Growth velocity

The general rule relating morphology to growth velocity is that “fast-growing
faces disappear, slow-growing faces remain.” For rocksalt, the slow-growing
{100} faces form cubes. The fast-growing {111} and {110} faces grow out and
disappear.

Quantitative measurements of growth velocities are monitored by grinding
single crystals into spheres and immersing them in saturated solutions. As the
crystals grow, flat spots develop on the surface of the sphere and facets begin to
form. Growth velocities are obtained by measuring the diameter of the crystal
in different directions.

Like other members of the alum family, potassium chrome alum
(KCr(SO4)2·12H2O is a cubic water-soluble crystal that is readily grown from
saturated solution. Growth profiles of an alum sphere are illustrated in Fig. 32.2.
Flat faces corresponding to the {111} octahedron, the {100} cube, and {110}
dodecahedron are the first to develop. As growth proceeds, the slow-growing
octahedral faces begin to dominate the external shape. Relative growth rates
for different crystal faces are listed in Table 32.1. As indicated, the growth
velocities depend markedly on the degree of supersaturation. High index faces
grow very quickly and soon disappear.

Using the data from Table 32.1, the slowness surface can be visualized using
the reciprocal growth velocities. Fig. 32.3 shows the profile of this surface in
the (110) plane. Sharp peaks are observed along the slow growing 〈111〉, 〈110〉,
and 〈100〉 directions with deep minima for the high index faces in between.
The slowness surface applies to crystal dissolution as well as crystal growth. The
cavities etched into silicon devices are bounded by the slow-growth surfaces.

These ideas go back to the work of Gibbs and Curie. Each face is assigned
a surface free energy Fi and the crystals adopt a morphology which minimizes
the total surface energy. The free energies Fi are determined by measuring the
perpendicular distance hi from the point of origin of the crystal to each face,
such that

h1

F1
= h2

F2
= h3

F3
= · · · = hi

Fi
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[001]

[110]

[111]

Fig. 32.2 Growth velocity surface of potas-
sium chrome alum viewed along [110]. Fast
growing faces disappear leaving the {111}
faces to form an octahedron.

Table 32.1 Relative growth velocities of various faces formed on
potassium chrome alum crystals (Buckley)

Supersaturation (111) (110) (100) (112) (012) (122)

Weak 1.0 1.9 2.1 6.6 8.3 9.5
Strong 1.0 4.3 9.2 17.9 34.7

001
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221
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112

001
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221

110

221

111

112

Fig. 32.3 The slowness surface for potassium
chrome alum projected on the (110) plane.

is a constant. The relative areas of each face, therefore, depend on their surface
free energies.

Wulff represented this same principle geometrically, and identified the indi-
vidual surface free energies with the growth velocities. Wulff plots are often
used in predicting equilibrium crystal shapes.
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32.3 Crystal growth and crystal structure

Perhaps the simplest notion regarding the relationship between crystal
morphology and crystal structure is the concept of “dangling bonds.” Con-
sider the coordination of the Na+ and Cl− atoms in rocksalt. Inside the crystal
each ion is bonded to six neighbors forming an octahedron. But on the outer
surface of a crystal the situation is different. On the (100) face of the crystal
each sodium atom is bonded to four surface chlorines and to a fifth Cl neigh-
bor inside the crystal. This leaves one “dangling” bond protruding from the
surface. The unsatisfied bond becomes a point of attachment for an anion in
the surrounding medium.

Other faces on the rocksalt crystal will have different numbers of dangling
bonds per unit area, and therefore different growth rates. For the {110} dodeca-
hedral faces each surface atom has four neighbors and two dangling bonds,
and for {111} octahedral faces the surface atoms have three neighbors and
three dangling bonds.

Because of the large number of dangling bonds, the atoms on {110} and
{111} surfaces are not as well bonded as those on the cubic {100} faces. It
also means that outside atoms or molecules will attach to the {110} and {111}
faces more easily than to {100} faces. Therefore the 〈111〉 and 〈110〉 directions
are fast-growing directions and 〈100〉 axes are slow-growing. During crystal
growth, Na+ and Cl− ions are rapidly attached to the dangling bonds causing
fast growth. As growth proceeds, fast-growing faces tend to disappear leaving
the slow-growing faces behind. This explains why rocksalt generally grows as
cubes, but does not explain why high-index faces generally grow faster than
low-index faces.

Surface roughness also plays a role. The presence of steps or crevices
on a surface increases the growth rate by raising the sticking coefficient of
approaching atoms or molecules. As an example, compare the atomic smooth-
ness of the (100), (120), and (150) planes of sodium chloride. All three
planes have charge-neutral outer layers but the surface coverage is quite dif-
ferent. For (100), there is good coverage with 0.126 atoms/A2, compared
to 0.056 for (120) and 0.025 for (150). Rough high-order faces like (150)
tend to grow quickly and disappear. Stated another way, it costs energy
to put steps on a flat surface. For cubic crystals, the flattest surfaces are
(100), (110), and (111). These are the peaks on the slowness surface of alum
(Fig. 32.3).

Chemical anisotropy is also strongly influenced by surface layers of foreign
atoms or molecules that attach preferentially to certain faces. This can have the
effect of changing a fast-growing face into a slow-growing face, and altering the
morphology of a crystal. In the crystal growth literature, these shape-changing
additives are known as “poisons” or “habit modifiers.” Lead chloride poisons
the fast-growing (111) faces of KCl and changes the morphology from a cube
to an octahedron. Similar changes in morphology take place in KBr and KI.
An extensive listing of habit modifiers is given in the classic “Crystal Growth”
by H.E. Buckley.

Another way of altering crystal shape is to make use of intermediate pseu-
domorph phases. A pseudomorph is a crystal that resembles a chemically
and structurally different crystal. Pseudomorphs are common in nature where
one mineral is converted to another without changing shape. This is often an
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atom-by-atom replacement process in which for example, cubic iron sulfide
(pyrite, FeS2) is converted to orthorhombic goethite (FeOOH) without losing
the cubic morphology. A similar process has been used in the reverse direc-
tion to make magnetic tape. To obtain the desired needle-like morphology,
the iron oxide crystallites are first prepared as orthorhombic goethite and
then oxidized to cubic γ -Fe2O3 while retaining the fibrous morphology of
goethite. Shape anisotropy is important in fixing the magnetization direction
(Section 16.4).

Chemical anisotropy extends to the catalytic processes of interest to the
petroleum and chemical industries. The activity of certain chemical reactions
is observed to change dramatically when the experiments are carried out on
different surfaces of well crystallized catalysts. The catalyzed conversion of
linear hydrocarbons to aromatic ring compounds provides an important com-
mercial application. Structure-sensitive conversion of n-heptane to toluene
over platinum single crystals is illustrated in Fig. 32.4. The (111) surface is
far more efficient than (100). Platinum crystals have the face-centered cubic
structure with close-packed planes parallel to the (111) surfaces. It has been
suggested that the hexagonal symmetry of the (111) surface promotes the
formation of ring compounds more readily than the square network on (100)
planes.

Reaction rates increase even further on the stepped and kinked sur-
faces corresponding to high-index planes. Maximum activity is achieved on
stepped surfaces with hexagonal orientation. Similar results are obtained in
the conversion of n-hexane to benzene. Again the hexagonal aromatic ring
of benzene prefers the hexagonal arrangement of Pt atoms on the (111)
surface.

Alkane isomerization reactions behave quite differently. The square atomic
arrangement of Pt (100) gives a much higher reaction rate than Pt (111) for the
isobutene to n-butane process. Steps and kinks do not provide much additional
improvement.

The synthesis of ammonia over iron is also highly directional. Studies
with iron single crystals show that the Fe (111) and (211) surfaces possess
much higher reaction rates than (100), (210), and (110). One of the important
attributes of transition metal catalysts like Fe and Pt is their ability to atom-
ize diatomic molecules like H2, N2, and O2. The Fe–H and Pt–H bonds on
the surface of the catalyst are especially important in hydrocarbon conversion
reactions.
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Fig. 32.4 Catalytic conversion rates of
n-heptane to toluene at 573 K over Pt (111)
and Pt (100) surfaces.
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32.4 Surface structures and surface
transformations

The arrangement of atoms on a surface usually differs from a simple planar
termination of the bulk crystal structure. The “ideal” termination is the exception
rather than the rule. For ionic insulators like NaCl, the {100} cleavage faces
are probably close to ideal with a small puckering of the smaller Na+ ions
being shielded by Cl−. These are neutral nonpolar surfaces that cleave easily
indicating that the attractive forces to ions adjacent to the surface are relatively
weak. Polar surfaces can be quite different.

The reconstruction of the polar surfaces found in noncentrosymmetric
crystals is especially interesting because it can involve both chemical and crys-
tallographic changes. The {111} surfaces of the semiconductor InSb consist
of alternating indium and antimony layers. Opposing (111) and (1̄1̄1̄) faces
are positively and negatively charged in the ideal zincblende structure. Grazing
incidence X-ray experiments show that a massive reconstruction takes place to
achieve charge neutralization. On the indium surface (Fig. 32.5) one in four
In atoms are ejected, and the remaining surface atoms withdraw into the layer
beneath. The effective coordination of the In surface atoms is three rather than
four, giving a neutral bilayer.

Solid surfaces undergo a wide variety of phase transformations as a function
of temperature and chemical composition. Like phase transitions in the bulk,
these surface structures are often metastable and highly dependent on the pro-
cessing conditions. A cleaved (111) surface of silicon, for example, exhibits
a metastable reconstruction that transforms to a very complex 7×7 superstruc-
ture when annealed at 380◦C. Laser annealing at high temperatures returns the
(111) surface to the ideal 1×1 unit cell. Orbital rehybridization is an important
mechanism for surface reconstruction in covalent semiconductors. The surface
buckles as the normal sp3 hybrid changes to a deformed structure with fewer
dangling bonds. Silicon atoms on (100) surfaces bend toward one another to
form dimers (Fig. 32.6).

Surface reconstruction in metals is often more subtle with only small rear-
rangements of the mobile electrons and ion cores. At a surface, the electrons
lower their kinetic energy by smoothing the electron density in a flat plane
parallel to the surface. This smoothing process leaves the outer ion cores less
well shielded. As a result, there are small ion movements away from the surface
toward the interior of the crystal. Small motions can also take place parallel
to the surface. The (100) surface of tungsten is an interesting example with
a reversible transformation in the surface structure. At this low temperature
transition the tungsten atoms make small shifts parallel to the [011] directions

Fig. 32.5 Top and side views of the
indium (111) surface. The ideal structure is
shown in (a). The reconstructed surface in
(b) involves removal of some In atoms and
movements of others.

[01]

(a) (b)

[10]

In Sb
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Top atom(a)

(b)

Dangling bonds

Double bond

Silicon (100)—(1 × 1)

Silicon (100)—(2 × 1)

Fig. 32.6 (a) Ideally, the reactive (100) face
of silicon has two dangling bonds per sur-
face atom. (b) Electron diffraction experi-
ments indicate, however, that the true surface
is partially reconstructed with double bond
formation. Locally the surface symmetry is
2mm rather than 4mm.

distorting the surface symmetry from 4mm to 2mm. Two-dimensional domain
phenomena appear that are analogous to three-dimensional ferroic behavior.

A rich variety of surface structures are illustrated in the Atlas of Surface
Structures, Vol. IA and IB. Beautiful examples of ideal and reconstructed
surfaces, are shown, both with and without chemisorbed species.

32.5 Etch figures and symmetry relations

Cuprite (Cu2O), the red oxide of copper, is a cubic mineral found in the weath-
ered zones of copper deposits. Octahedral {111} morphologies are common,
accompanied by smaller cubic {100} and dodecahedral {110} faces. When
etched in dilute nitric acid, the etch pits on the {111} faces are equilateral trian-
gles with three planes of symmetry. Square etch figures oriented at 45◦ angles to
the crystal axes are observed on {100} faces. Simple canoe-shaped depressions
are found on the dodecahedral {110} surfaces. The planar symmetry groups
of these etch figures are 3m for {111}, 4mm for {100}, and mm for {110}.
These planar groups correspond to the projection symmetries of cubic point
group m3m. Similar results are achieved when cuprite crystals are etched in
ammonium chloride and sulfuric acid. An expanded planar view of the etched
surfaces is shown in Fig. 32.7

Note that it is not only the shape of the etch pits that is important, but
their orientation with respect to the symmetry axes must conform as well. The
striations on pyrite are a good example of orientation effects.

Pyrite (FeS2) or “fool’s gold” is a mineral that often occurs as beautiful
golden cubes with a metallic luster. Striations are sometimes seen on the
cube faces (Fig. 32.8(d)) with the striations on adjacent faces perpendicular
to one another. Surface features such as these are characteristic of certain point
groups.

Relationships between point groups and striations are illustrated in Fig. 32.8,
where all five cubic point groups are represented. Cubes are observed in all five
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Fig. 32.7 Etch figure patterns on cuprite,
Cu2O. The shape and orientation of the etch
pits are consistent with the most symmetric
cubic point group, m3m (Honess).

100 100

111 111

110

groups but the striations take different orientations. The cross-hatched striations
in Figs. 32.8(b) and (e), possess fourfold symmetry along the three 〈100〉 axes.
These two patterns correspond to point groups m3m and 432, respectively.
The striations in Fig. 32.8(b) have mirror symmetry while those in Fig. 32.8(e)
do not.

(a)
(001)

(100)

(001)

(100)

(010)(010)

(c)
43m

(d)
m3

(e)
432

(f)
23

(b)
m3m

Fig. 32.8 Striation patterns representative of
the five cubic point groups. Pyrite crystals
belong to point group m3 with the perpen-
dicular striations shown in (d).

The remaining three patterns have twofold symmetry along the 〈100〉 axes.
Fig. 32.8(c), (d), and (f) are representative of point groups 4̄3m, m3, and 23,
respectively. Fig. 32.8(c) has mirror planes parallel to {110} faces, while those
in Fig. 32.8(d) are parallel to {100} faces. Point group 23 patterns have threefold
rotation axes parallel to the body diagonal 〈111〉 directions. This is the minimum
symmetry common to all cubic crystals.

Etch figures are obtained by exposing crystal faces to a suitable reagent.
Dissolution begins sporadically at dislocations and other defect sites. After
a brief time a number of etch pits are formed with symmetries characteristic of
the experiment. The experiment involves two symmetries: the symmetry of the
crystal face and the symmetry of the reagent. The reagent is typically a liquid
acid or base with randomly oriented molecules. If the molecules possess mirror
or inversion symmetry, the symmetry of the reagent is ∞∞m, the highest
symmetry Curie group (Section 4.4). If the molecules possess handedness, like
d- or l-lactic acid, the symmetry of the liquid is ∞∞.

The symmetry of the crystal face corresponds to one of the ten two-
dimensional point groups (Fig. 32.9). Ideally, the symmetry of a (100) cube face
on rocksalt (point group m3m) is 4mm. A (111) octahedral face has 3m sym-
metry, and a (110) dodecahedral face belongs to 2mm. Each of these symmetries
is a projection symmetry of m3m. Projection symmetries for the 32 crystal
classes are listed in Table 32.2.

Polar crystals show different etch rates on opposite faces. LiNbO3 (point
group 3m) is a polar crystal used as an electro-optic modulator. The [001] polar
axis is terminated by (001) and (001̄) faces which etch differently in HF acid.
The (001̄) face terminated by loosely bonded Li+ ions etches faster than the
more tightly bounded (001) face terminated by highly-charged niobium ions.
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Similar symmetry relationships occur during crystal growth. Sodium chlor-
ate (NaClO3) belongs to point group 23 but often the crystals show higher
symmetry. When grown rapidly from water solution only the {100} cube
faces appear and the morphological symmetry is m3m. Only tetrahedral {111}
faces are observed when sodium thiosulfate is present in the solution, and the
apparent symmetry is 4̄3m. Both m3m and 4̄3m are supergroups of the true
symmetry (23), in keeping with Neumann’s Principle. Small additional faces
showing the true symmetry appear when sodium chlorate is grown slowly from
pure solution.

m

2mm

3m

4mm

6mm

1

2

3

4

6

Fig. 32.9 Etch figures representative of the
ten planar point groups. Five come in left- and
right-handed pairs.

Symmetries lower than the true symmetry can occur if crystal growth takes
place in chiral liquids. Lead chloride (PbCl2) belongs to orthorhombic point
group mmm, but when crystallized from solutions containing chiral dextrine
molecules it forms bisphenoidal crystals with 222 symmetry. Mirror symmetry
is lost because the left-handed dextrine molecules are preferentially adsorbed
on half of the {111} faces, altering the crystal morphology. Stereographic
projections can be used to verify these symmetries.

Curie’s Principle determines the symmetry of the experiment. Suppose
the liquid is water (∞∞m) and the surface is the (210) face of rocksalt.
The projection symmetry is two-dimensional point group m. Curie’s Principle
says that the symmetry of the experiment is the symmetry common to that of
the reagent and the crystal face. The symmetry common to ∞∞m and m is m.
If the reagent were a chiral liquid with handed molecules (Curie group ∞∞),
the common symmetry with the (210) face would be point group 1.

Will the etch figure show these symmetries? Perhaps. Neumann’s Principle
says that the symmetry of the experiment must include the symmetry of the
materials involved. If the etch rates were the same in all directions, no anisotropy
will develop. Therefore, the symmetry of the etch figures may be higher than the
predicted symmetry. If the etch rates change with directions, then the predicted
symmetries appear. A number of these experiments were carried out by Honess
using crystals of calcite, apatite, and other minerals with well-developed faces.
Chiral reagents in right- and left-handed forms, as well as racemic mixtures,
were used to demonstrate the Curie Principle.

32.6 Micromachining of quartz and silicon

Etch figures are obvious manifestations of chemical anisotropy and crystallo-
graphic symmetry. Natural quartz crystals are generally twinned which ruins
their piezoelectric performance. The atomic structures of Dauphine and Brazil
twins were illustrated in Fig. 16.17. The presence of twinning can be detected by
etching the crystals in hydrofluoric acid or ammonium bifluoride. The reaction
of quartz (SiO2) with hydrofluoric acid (HF) is given by

SiO2 + 6HF → SiF4 + 2H2O + 2HF → 2H2SiF6 + 2H2O.

Because of chemical anisotropy, the acid attacks quartz at different rates in
different directions. When examined at glancing incidence, the twinned regions
reflect light differently because of the etch pits. Synthetic quartz crystals are
not twinned but are etched for a different reason.

The micromachining of synthetic quartz crystals has become important in the
fabrication of tuning forks and other resonant structures for time and frequency
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Table 32.2 Etch figure symmetries for various faces in the 32 crystal classes

Point group {100} {010} {001} {0kl} {h0l} {hk0} {hkl}

1 1 1 1 1 1 1 1
1̄ 1 1 1 1 1 1 1
2 1 2 1 1 1 1 1
m m 1 m 1 m 1 1
2/m m 2 m 1 m 1 1
222 2 2 2 1 1 1 1
mm2 m m 2mm m m 1 1
mmm 2mm 2mm 2mm m m m 1

{001} {100} {110} {hk0} {h0l} {hkl} {hkl}
4 4 1 1 1 1 1 1
4̄ 2 1 1 1 1 1 1
4/m 4 m m m 1 1 1
422 4 2 2 1 1 1 1
4mm 4mm m m 1 m m 1
4̄2m 2mm 2 2 1 1 m 1
4/mmm 4mm 2mm 2mm m m m 1

{0001} {101̄0} {112̄0} {hki0} {h0h̄l} {hh2̄hl} {hkil}
3 3 1 1 1 1 1 1
3̄ 3 1 1 1 1 1 1
32 3 1 2 1 1 1 1
3m 3m m 1 1 m 1 1
3̄m 3m m 2 1 m 1 1
6 6 1 1 1 1 1 1
6̄ 3 m m m 1 1 1
6/m 6 m m m 1 1 1
622 6 2 2 1 1 1 1
6mm 6mm m m 1 m m 1
6̄m2 3m 2mm m m m 1 1
6/mmm 6mm 2mm 2mm m m m 1

{100} {111} {110} {hk0} {hhl} {hkl}
23 2 3 1 1 1 1
m3 2mm 3 m m 1 1
432 4 3 2 1 1 1
4̄3m 2mm 3m m 1 m 1
m3m 4mm 3m 2mm m m 1

standards. The dissolution slowness surface for quartz is shown in Fig. 32.10(a).
In reagents such as HF and NH4HF2, quartz dissolves much faster along Z3

([001]) than along Z1 ([100]) or Z2 ([120]). Large anisotropies of 30 to 100
times are observed. The slowness surface in Fig. 32.10(a) is projected along
Z1, the twofold symmetry axis of quartz. Note that the drawing has the required
180◦ rotational symmetry.

There are six major lobes on the slowness surface corresponding to the
largest faces on quartz crystals. (01.0) and (01̄.0) are two of the six hexa-
gonal prism faces (Fig. 32.10(b)). (01.1) and (01̄.1̄) are two of the six major
rhombohedron faces, and (01.1̄) and (01̄.1) are two of the six minor rhombo-
hedron faces. In keeping with the general rule for crystal growth, fast-growing
faces disappear, leaving the slow-growing faces to form the equilibrium shape.
These slow-etching faces correspond to the lobes on the slowness surface.

Natural quartz is generally long and slender because of fast growth along Z3,
the c-crystallographic direction. The underlying connection to the crystal struc-
ture can be explained in terms of dangling bonds. Inside the crystal each silicon
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Fig. 32.10 (a) Dissolution slowness surface
of quartz crystals. The slow-etching faces
correspond to the major faces of natural
quartz crystals as shown in (b).

atom is tetrahedrally bonded to four oxygen atoms. On the stable slow-growing
prism and rhombodral faces, there is one dangling bond per surface silicon.
However, on the fast-growing (00.1) face perpendicular to Z3 there are two,
leading to faster growth and faster dissolution.

Note that the commonly observed morphology shown in Fig. 32.10(b) has
higher symmetry than the internal crystal structure. The morphological sym-
metry is 3̄m while the true symmetry is 32. Point group 32 is a subgroup of
3̄m. The correct symmetry appears when the general form is present, as in
Fig. 12.13. The small {65̄.1} trapezohedral faces display the full symmetry but
are seldom seen on mineral specimens. They are fast-growing faces that usually
disappear during growth.

Similar phenomena occur during the micromachining of silicon. A wide
variety of semiconductor sensors are made by the anisotropic etching of silicon
crystals to form membranes, cantilevers, and many other shapes. Generally, the
etch rate is slowest on the octahedral {111} planes, and fastest on the {110}
and {100} planes. The differences depend on the atom density and the number
of dangling bonds per surface atom. The surface atoms on a (111) face of
Si have one dangling bond while those on the more reactive (100) face have
two (Fig. 32.6(a)). Surface reconstruction sometimes leads to changes in the
chemical reactivity (Fig. 32.6(b)).

Several alkaline reagents display highly anisotropic etching characteristics
that depend on temperature and chemical composition. S-EDP is a com-
monly used alkaline etchant made up of ethylene diamine (NH2(CH2)2NH2),
pyrocathechol (C6H4(OH)2), pyrazine (C4H4N2), and water. Over the tem-
perature range 50◦C to 115◦C, there is no solid residue with S-EDP. As
with other chemical reactions, the etch rate R is exponentially dependent of
temperature.

R = R0 exp

(
− Ea

kT

)
,
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Fig. 32.11 Dissolution rates of silicon in EDP
reagents. (a) (100) surfaces etch about a
hundred times faster than the well bonded
(111) faces. The rates increase exponen-
tially with temperature. (b) The etching rates
change rapidly with angle.
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where the activation energy (Ea) and the pre-exponential factor (R0) are
determined experimentally. T is the absolute temperature and k is Boltzmann’s
Constant. The temperature dependence is illustrated in Fig. 32.11(a).

The etch-rate anisotropy for the three principal planes depends on tem-
perature. At 115◦C the ratio for (100) : (110) : (111) is 30 : 30 : 1, rising to
100 : 150 : 1 at 50◦C. Even a small misalignment in orientation leads to large
changes in the etching rate (Fig. 32.11(b)). Below 50◦C, the anisotropy is
even larger but the etching rates are too low for micromachining. S-EDP
does not attack gold metallizations or silicon nitride coatings, and the ratio
between Si(100) and SiO2 exceeds 10,000. Many different structures with
precise dimensional control can be etched into the (100) and (110) faces of
silicon.

32.7 Tensor description

The surface of a crystal is generally a complex geometrical shape composed of
a number of planar surface elements. The orientations of these planar surfaces
are specified by Miller indices. When the growth (or dissolution) process
is anisotropic, as it usually is, the various surface elements follow different
trajectories as some faces grow in size while others recede and disappear. The
movement of a surface element can be described as a velocity vector v whose
magnitude and direction depend on the orientation of the element.

Tellier and coworkers have shown that the trajectory of the growth (dissolu-
tion) velocity vectors can be completely determined from the slowness vector �L
describing the so-called slowness surface. A straightforward way of describing
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the surface is to plot L, the magnitude of �L, as a function of direction. This can
be done in terms of direction cosines N1, N2, and N3 that specify the orienta-
tion of the slowness vector relative to the cartesian reference axes Z1, Z2, Z3.
Standard settings (Section 4.3) relate the reference axes to the crystal axes.

Since the slowness surface is a complex function of direction, L can be
expressed as a polynomial series.

L = Lo + LiNi + LijNiNj + LijkNiNjNk + LijklNiNjNkNl + · · · ,

where Lo, Li, Lij, and Lijk are tensor coefficients representing the growth and
dissolution processes as a function of the direction cosines.

The next step is to simplify the tensor by symmetry arguments. In discussing
the slowness surface we confine attention to the alum crystals described earlier
in Section 32.2. They are typical of most cubic crystals that prefer simple shapes
such as the cube and octahedron with {100} and {111} faces, respectively. For
alum, the octahedron dominates with smaller cube faces.

Symmetry simplification proceeds as follows. All five cubic classes (23, m3,
432, 4̄3m, and m3m) possess twofold symmetry along the 〈100〉 cube edges and
three fold symmetry along the 〈111〉 body diagonals. Applying these symmetry
operations to the slowness surface gives

L = Lo + L11 + 6L123N1N2N3 + L1111(N
4
1 + N4

2 + N4
3 )

+ 6L1123(N
2
1 N2

2 + N2
1 N2

3 + N2
2 N2

3 ) + · · · .

Alums belong to centric point group m3 for which all odd-rank tensor terms
disappear. Hence L123 = 0. And noting that

N4
1 + N4

2 + N4
3 = 1 − 2(N2

1 N2
2 + N2

1 N2
3 + N2

2 N2
3 )

we find that

L = Lo + L11 + L1111 + 2(3L1122 − L1111)(N
2
1 N2

2 + N2
1 N2

3 + N2
2 N2

3 ) + · · · .

For a (100) face N1 = 1, N2 = N3 = 0, and for (111), N1 = N2 = N3 =
1/

√
3. These directions are the extreme values for this surface. If 3L1122 >

L1111, (111) is the slowest growing face and the octahedron is the favored form.
If 3L1122 < L1111, the cube is favored. Based on this equation, the slowness
surface will be a fourth-order quartic function with maxima along the six 〈100〉
directions or the eight 〈111〉 directions, similar to the elastic constant surfaces
in Chapter 13.

Now compare this result with the observed slowness surface for alum
(Fig. 32.3). It is obvious this is not a quartic function, but has sharp peaks
in the 〈111〉, 〈100〉, 〈110〉 directions, with deep depressions at intermediate
directions. The tensor description with terms up to the fourth power gives poor
agreement with the experimental results. A much better fit can be obtained by
including higher order tensor coefficients. Etching patterns in silicon can be
explained by including tensors up to rank 10 in the slowness surface. Higher
power trigonometric functions are capable of modeling slowness surfaces like
those of silicon, quartz, and alum.

It is not surprising that tensors of high rank are needed to describe chemical
anisotropy. Every surface on a crystal is different. Each has its own chemistry, its
own structure, and its own symmetry. Therefore the mathematical representa-
tion of a surface-related property such as etch rate is bound to be complicated.
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It is complicated but it is also very important. Surface physics and surface chem-
istry are at the heart of modern materials technology. There is a rich variety of
surface properties that remain to be investigated, and then engineered into useful
systems. Nearly all the topics in this book need to be revisited—surface trans-
port, surface waves, surface phase transitions—and then reformulated in terms
of the appropriate surface tensors. New symmetry relations and new structure
property relations must be developed. In common slang it might be said that
“It’s a whole new ball game”, and that makes it a good place to end this book.
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Magnetic field dependence 240–242
Kelvin Relations 235–237
Peltier Effect 235, 237
Practical materials 238, 239
Seebeck Effect 234, 238, 241
Tensor relations 239, 240
Thomson Effect 235, 236
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Thermomagnetic effects 232–233
Maggi-Righi-Leduc Effect 233
Magnetothermal resistance 232, 233
Righi-Leduc Effect 233
Thermal Hall Effect 232, 233
Thermal planar Hall Effect 232

Thermo-optic Effect 292, 293
Thermopower 236–242
Third harmonic generation 315, 322–324
Time Reversal 124, 125

Thomson Effect 234–236
Transformations 1, 9–13

Axis 9
Transport numbers 218, 220

Cross-coupled effects 2, 223, 241
Nernst-Einstein Equation 217
Pressure dependence 150, 237
Superionic conductors 219, 220
Temperature dependence 44, 49, 55–57,

79, 85, 86, 132, 202, 207, 208–210

Varistors 199–202
Vegard’s Law 8
Voigt-Reuss-Hill average 114–116

Wave normals 252, 254, 259, 270, 274, 276,
278–280

Wave velocity surfaces 275, 279, 287, 301
Wiedemann-Franz Law 207
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