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PREFACE

While the state-of-the-art has advanced dramatically in the ten years since

publication of our first edition, the fundamentals still abide. The first, nine chapters

on fundamentals of low pressure partially ionized plasmas (Chapters 2–6) and gas-

phase and surface physics and chemistry (Chapters 7–9) have been revised mainly

to clarify the presentation of the material, based on the authors’ continuing teaching

experience and increased understanding. For plasmas, this includes significant

changes and additions to Sections 5.2 and 5.3 on diffusion and diffusion solutions,

6.2 on the Bohm criterion, 6.4 on sheaths with multiple positive ions, and 6.6 on

Langmuir probes in time-varying fields. For gas phase and surface physics and

chemistry it includes revised presentations in Sections 9.2 and 9.3 of sputtering

physics, loss rates for neutral diffusion, and loss probabilities. The argon and

oxygen rate coefficient data sets in Chapters 3 and 8 have been brought up to date.

Chapters 10–14 on discharges have been both revised and expanded. During the

last decade, the processing community has achieved a more thorough understanding

of electronegative discharge equilibrium, which lies at the core of the fluorine-,

chlorine-, and oxygen-containing plasmas used for processing. Electronegative dis-

charges are described in the new or revised Sections 10.3–10.5. An important new

processing opportunity is the use of pulsed power discharges, which are described in

a new Section 10.6. Chapter 11 on capacitive discharges has been expanded to incor-

porate new material on collisionless sheaths, dual-frequency, high-frequency, and

electronegative discharges. New Sections 11.5 and 11.6 have been added on high-

density rf sheaths and ion energy distributions, which are important for rf-biased,

high-density processing discharges. Chapter 12 on inductive discharges now incor-

porates the electron inertia inductance in the discharge model and includes a new

subsection on hysteresis and instabilities, whose effects can limit the performance
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of these discharges for processing. Section 13.2 on helicon discharges has been

expanded to incorporate new understanding of helicon mode absorption and

neutral gas depletion, both important for helicon discharge modeling. Two Sections

14.4 and 14.6 have been added on hollow cathode discharges and on ionized phys-

ical vapor deposition. Hollow cathode discharges have important applications in

both processing and for gas lasers, and serve as an example of low pressure dc dis-

charge analysis. Ionized physical vapor deposition has some important applications

for thin film deposition and illustrates the combined use of dc and rf discharges for

processing.

Chapters 15 and 16 on etching, deposition, and implantation have been brought

up to date. In Section 15.4, a brief subsection on copper etching has been included. A

new Section 15.5 on charging effects has been added, since differential substrate

charging is now fairly well understood and is known to damage thin film oxides.

During the last decade, particulates in discharges have been studied both with a

view to controlling their formation, to avoid generating defects during processing,

and for producing powders and nanocrystalline materials. In a new Chapter 17 on

dusty plasmas, the physics and technology of this important area is described,

including particulate charging and discharge equilibrium, particulate equili-

brium, particulate formation and growth, diagnostics, and removal and production

techniques.

Also during the last decade, discharge analysis based on kinetic theory has

advanced considerably, and kinetic techniques have found increasing use. In a

new Chapter 18, we give an introduction to the kinetic theory of discharges, includ-

ing the basic concepts, local and nonlocal kinetics, quasi-linear diffusion and

stochastic heating, and examples of discharge kinetic modeling.

Errors in the first and second printings of the first edition have been corrected. All

topics treated have been brought up to date and incorporate the latest references to

the literature. The list of references has been expanded from about 6 to 14 pages.

Because we emphasize the development of a strong foundation in the fundamen-

tal physical and chemical principles, our one-semester course teaching this material

to a mixed group of mainly graduate students in electrical, chemical, and nuclear

engineering, materials science, and physics has not changed much over the years.

The outline in the first preface for a 30, 11
2
hour lecture course is still relevant,

with, perhaps, some additional emphasis on electronegative plasma equilibria and

on pulsed plasmas. (Some sections have been renumbered.)

Our colleagues C.K. Birdsall and J.P. Verboncoeur and the plasma theory

and simulation group (PTSG) at Berkeley continue to maintain a set of user-friendly

programs for PCs and workstations for computer-aided instruction and demon-

strations. The software and manuals can be downloaded from their web site

http://ptsg.eecs.berkeley.edu.
In preparing this revision, we have received encouragement and benefited from

discussions with many friends and colleagues. We thank I.D. Kaganovich for care-

fully reviewing Chapter 18 on kinetic theory. We are indebted to J.T. Gudmundsson

for assistance in updating the argon and oxygen rate coefficient data sets (for more

complete data, see his web site http://www.raunvis.hi.is/tumi/), and to Z. Petrović
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and D. Marić, who provided assistance in updating the field-intensified ionization

coefficient and the breakdown voltages given in Chapter 14. We thank B. Cluggish,

R.N. Franklin, V.A. Godyak, and M. Kilgore for their comments clarifying various

calculations. We have benefited greatly from the insight and suggestions of our col-

leagues C.K. Birdsall, J.P. Booth, R.W. Boswell, P. Chabert, C. Charles, S. Cho,

T.H. Chung, J.W. Coburn, R.H. Cohen, D.J. Economou, D. Fraser, D.A. Graves,

D.A. Hammer, Y.T. Lee, L.D. Tsendin, M. Tuszewski, J.P. Verboncoeur,

A.E. Wendt, and H.F. Winters. Our recent postdoctoral scholars S. Ashida,

J. Kim, T. Kimura, K. Takechi, and H.B. Smith, and recent graduate students

J.T. Gudmundsson, E. Kawamura, S.J. Kim, I.G. Kouznetsov, A.M. Marakhtanov,

K. Patel, Z. Wang, A. Wu, and Y. Wu, have taught us much, and some of their

work has been incorporated into our revised text. The authors gratefully acknowl-

edge the hospitality of R.W. Boswell at the Australian National University,

Canberra, and M.G. Haines at Imperial College, London, where considerable

portions of the revision were written.

MICHAEL A. LIEBERMAN

ALLAN J. LICHTENBERG

September, 2004
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PREFACE TO THE FIRST EDITION

This book discusses the fundamental principles of partially ionized, chemically

reactive plasma discharges and their use in thin-film processing. Plasma processing

is a high-technology discipline born out of the need to access a parameter space in

materials processing unattainable by strictly chemical methods. The field is inter-

disciplinary, combining the areas of plasma physics, surface science, gas-phase

chemistry, and atomic and molecular physics. The common theme is the creation

and use of plasmas to activate a chain of chemical reactions at a substrate surface.

Our treatment is mainly restricted to discharges at low pressures, ,1 Torr, which

deliver activation energy, but not heat, to the surface. Plasma-based surface pro-

cesses are indispensable for manufacturing the integrated circuits used by the elec-

tronics industry, and we use thin-film processes drawn from this field as examples.

Plasma processing is also an important technology in the aerospace, automotive,

steel, biomedical, and toxic waste management industries.

In our treatment of the material, we emphasize the development of a strong foun-

dation in the fundamental physical and chemical principles that govern both discharges

and gas- and surface-phase processes. We place little emphasis on describing state-of-

the-art discharges and thin-film processes; while these change with time, the funda-

mentals abide. Our treatment is quantitative and emphasizes the physical insight and

skills needed both to do back-of-the-envelope calculations and to do first-cut analyses

or designs of discharges and thin-film processes. Practical graphs and tables are

included to assist in the analysis. We give many examples throughout the book.

The book is both a graduate text, including exercises for the student, and a research

monograph for practicing engineers and scientists. We assume that the reader has the

usual undergraduate background in mathematics (2 years), physics (1 1
2
years), and,

chemistry (1
2
or 1 year). Some familiarity with partial differential equations as
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commonly taught in courses on electromagnetics or fluid dynamics at the junior or

senior undergraduate level is also assumed.

After an introductory chapter, the book is divided into four parts: low-pressure

partially ionized plasmas (Chapters 2–6); gas and surface physics and chemical

dynamics (Chapters 7–9); plasma discharges (Chapters 10–14); and plasma proces-

sing (Chapters 15 and 16). Atomic and molecular collision processes have been

divided into two relatively self-contained chapters (Chapters 3 and 8, respectively)

inserted before the corresponding chapters on kinetics in each case. This material

may be read lightly or thoroughly as desired. Plasma diagnostics appear in conclud-

ing sections (Sections 4.6, 6.6, 8.6, and 11.6) of various chapters and often also serve

as applications of the ideas developed in the chapters.

For the last five years, the authors have taught a one-semester course based on this

material to a mixed group of mainly graduate students in electrical, chemical, and

nuclear engineering, materials science, and physics. A typical syllabus follows for

30 lectures, each 1 1
2
hours in length:

Chapter Lectures

1 1

2 2

3 2 (light coverage)

4 1 (Sections 4.1 and 4.2 excluding waves, only)

5 2 (Sections 5.1–5.3 only)

6 3 (omit Section 6.4)

7 2

8 2 (light coverage, omit Section 8.6)

9 3

10 1 (omit Section 10.3)

11 2 (Sections 11.1 and 11.2 only)

12 1 (Section 12.1 only)

13 1 (Section 13.1 only)

14 2

15 3

16 2 (omit Section 16.4)

The core ideas of the book are developed in the sections of Chapters 2, 4–7, 9, and

10 listed in the syllabus. Atomic and molecular collisions (Chapters 3 and 8) can be

emphasized more or less, but some coverage is desirable. The remaining chapters

(Chapters 11–16), as well as some sections within each chapter, are relatively

self-contained and topics can be chosen according to the interests of the instructor.

More specialized material on guiding center motion (Section 4.3), dynamics

(Section 4.4), waves (Section 4.5) and diffusion in magnetized plasmas (Sections

5.4 and 5.5) can generally be deferred until familiarity with the core material has

been developed.
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Our colleagues C.K. Birdsall and V. Vahedi and the plasma simulation group at

Berkeley have developed user-friendly programs for PCs and workstations for

computer-aided instruction and demonstrations. A number of concepts in discharge

dynamics have been illustrated using various output results from these programs

(see Figures 1.11, 2.2, and 6.3). We typically do four or five 20-minute simulation

demonstrations in the course during the semester using this software. The software

and manuals can be obtained by contacting the Software Distribution Office, Indus-

trial Liaison Program, Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley, CA 94720; the electronic mail

address, telephone, and fax numbers are software@eecs.berkeley.edu, (510) 643-

6687, and (510) 643-6694, respectively.

This book has been three years in writing. We have received encouragement

and benefited from discussions with many friends and colleagues. We acknowledge

here those who contributed significantly to our enterprise. We are indebted to

D.L. Flamm who was a MacKay Visiting Lecturer at Berkeley in 1988–89 and

co-taught (with A.J.L.) an offering of our course in which he emphasized the chemi-

cal principles of plasma processing. One of the authors (M.A.L.) has taught abbre-
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SYMBOLS AND ABBREVIATIONS

SYMBOLS

a radius (m); atomic radius; a0, Bohr radius; aj, chemical activity of species j;

av, etching anisotropy

a acceleration (m/s2)
A area (m2); a constant; AR, reduced mass (amu)

b impact parameter (m); radius (m)

B magnetic induction (T); a constant; Brot, rotational constant of molecule

c velocity of light in vacuum

C a constant; capacitance (F/m); CV , specific heat at constant volume

(J/mol K); Cp, specific heat at constant pressure

C a contour or closed loop

d denotes an exact differential

�d denotes a nonexact differential (Chapter 7)

d distance (m); plasma size (m)

D diffusion coefficient (m2/s); displacement vector (C/m2);Da, ambipolar dif-

fusion coefficient; Daþ, ambipolar diffusion coefficient in the presence of

negative ions;Dv, velocity space diffusion coefficient (m
3/s3);DE , energy

diffusion coefficient (V2/s);DSiO2
, deposition rate of silicon dioxide (m/s)

e unsigned charge on an electron (1.602 � 10219 C)

e the natural base (2.718)

E electric field (V/m); etch (or deposition) rate (Å/min)

E the voltage equivalent of the energy (V); i.e., energy(J) ¼ eE (V)

f frequency (Hz); distribution function (m26 s3); fm, Maxwellian

distribution; fpe, electron plasma frequency; fpi, ion plasma frequency

xxv



fc collisional force per unit volume (N/m3)

F force (N)

g degeneracy; �g, statistical weight; energy distribution function; gravita-

tional constant

g denotes a gas

G Gibbs free energy (J); volume ionization rate (m23 s21); Gf , Gibbs free

energy of formation; Gr, Gibbs free energy of reaction; conductance

(V�1); particle density source (m23 s21)

h center-to-edge density ratio; hl, axial ratio; hR, radial ratio

H enthalpy (J); magnetic field (A/m); height (m); Hf , enthalpy of formation;

Hr, enthalpy of reaction

H Boltzmann H function

i integer

I electrical current (A); differential scattering cross section (m2/sr); IAB, Imol,

moment of inertia of molecule (kg m2)

I modified Bessel function of the first kind

j
ffiffiffiffiffiffiffi�1

p
; integer

J electrical current density (A/m2); rotational quantum number

J Bessel function of the first kind

J J j denotes chemical species j

k Boltzmann’s constant (1.381 � 10223 J/K); wave number or wave

vector (m21)

K first-order (s21), second-order (m3/s), or third-order (m6/s) rate

constant

K modified Bessel function of the second kind

K equilibrium constant

l discharge length (m); antenna length (m); quantum number; integer

l denotes a liquid

‘ denotes length for a line integral

L length (m); volume loss rate (m23 s21); inductance (H); particle density

sink (m23 s21)

m electron mass (9.11 � 10231 kg); mass (kg); azimuthal mode number; ml,

ms, and mJ , quantum numbers for axial component of orbital, spin, and

total angular momentum

M ion mass (kg)

M number of chemical species

n particle density (m23); principal quantum number (an integer); ni, ion

density; ne, electron density; ng, neutral gas density

n0 area density (m�2); n00, area density of surface sites

N quantity of a substance (mol); index of refraction of a wave

N number of turns

p pressure (N/m2); particle momentum (kg m/s); p�, standard pressure

(1 bar or 1 atm); pd, electric dipole moment (C m); pohm, ohmic power

density (W/m3)

P power (W); probability
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q electric charge (C)

q heat flow vector (W/m2)

Q heat (J); electric charge (C)

Q resonant circuit or cavity quality factor

r radial position (m); rc, gyroradius; rce, electron gyroradius

R gas constant (8.314 J/(K mol)); cylinder radius (m); center-of-mass

coordinate (m); nuclear separation (m); reaction rate (m23 s21); resist-

ance (V)

s sheath thickness (m); sticking coefficient; �s, thermal sticking coefficient; sv
or sh, etching selectivity

s denotes a solid

S energy flux (W/(m2 s)); entropy (J/K); closed surface area (m2);

Sp, pumping speed (m3/s)
S denotes a closed surface

t time (s)

T temperature (K); T0, standard temperature (298 K)

T temperature in units of volts (V)

u average velocity (m=s); uB, Bohm velocity; uE, E� B velocity; uD, dia-

magnetic drift velocity

U energy (J); internal energy (J); potential energy (J)

v velocity (m/s); vibrational quantum number; �v, average speed; vth, thermal

velocity; vR, relative velocity; vph, phase velocity

V voltage or electric potential (V); ~V , rf voltage; �V , dc or time-average

voltage

V volume (m3)

w energy per unit volume (J/m3); width (m)

W kinetic energy (J); work (J)

x rectangular coordinate (m); xj, mole fraction of species j; xiz, fractional

ionization

X reactance (V)

y rectangular coordinate (m)

Y admittance (V�1)

z rectangular or axial cylindrical coordinate (m)

Z relative charge on an ion, in units of e; impedance (V)

a spatial rate of variation (m21); spatial attenuation or decay constant (m21);

first Townsend coefficient (m21); ratio of negative ion to electron

density; aj, stochiometric coefficient of species j; ap, atomic or molecu-

lar polarizability (m3)

b spatial rate of variation (m21); a constant

g secondary electron emission coefficient; wall loss probability; ratio of elec-

tron-to-ion temperature; ratio of specific heats; complex propagation

constant; gse, secondary electron emission coefficient; gsput, sputtering
coefficient

G particle flux (m22 s21)

G the Gamma function
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d Dirac delta function; layer thickness (m); dp, collisionless skin depth (m);

dc, collisional skin depth (m); de, anomalous skin depth (m)

D denotes the change of a quantity

e dielectric constant (F/m); e0, vacuum permittivity (8.854 � 10212 F/m);

ep, plasma dielectric constant

z a small displacement (m); zL, fractional energy loss for elastic collision

u angle (rad); spherical polar angle; scattering angle in laboratory system;

fractional surface coverage

Q scattering angle in center of mass system (rad)

h efficiency factor

k relative dielectric constant; kp, relative plasma dielectric constant; kT,
thermal conductivity

l mean free path (m); lc, collisional mean free path; le, electron mean free

path; li, ion mean free path; lDe, electron Debye length (m)

L diffusion length (m); ratio of Debye length to minimum impact

parameter

m mobility (m2/V s); chemical potential (J/mol); m0, vacuum permeability

(4p � 1027 H/m); mmag, magnetic moment

n collision or interaction frequency (s21 or Hz); nc, collision frequency

j a constant

p 3.1416

P stress tensor (N/m2)

r volume charge density (C/m3); rS, surface charge density (C/m2)

s cross section (m2); sdc, dc electrical conductivity (V21 m21); srf , rf

electrical conductivity

t mean free time (s); time constant (s); tc, collision time

f angle (rad); spherical azimuthal angle

w magnetic flux (T m2)

F electric potential (V); Fp, plasma potential; Fw, wall potential

x angle (rad); x01, first zero of zero order Bessel function

c spherical polar angle in velocity space

C helix pitch (rad)

v radian frequency (rad/s); vpe, electron plasma frequency; vc, gyration

frequency; vce, electron gyration frequency

V solid angle (sr)

r, rr vector spatial derivative; rv, vector velocity derivative; rT, vector

derivative in total energy coordinates

A scalar

A vector

Â unit vector (has unit magnitude)
~A oscillating or rf part
�A average or dc part; equilibrium value
_A dA/dt
€A d2A/dt2

kAl average
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A0 areal density (m22); variable of integration

jAj absolute magnitude

SUBSCRIPT ABBREVIATIONS

a activation; adsorption

abs absorbed

adet associative detachment

ads adsorbed

aff affinity

appl applied

at atomic, atom

att attachment

c denotes collision or collisional, except vc and rc denote gyration frequency

and gyration radius, respectively

chemi chemisorption

cond conduction

cx charge transfer (charge exchange)

d desorption; denotes dust particles

dc constant in time (direct current)

desor desorption

det detachment

dex de-excitation

diss dissociation, dissipation

diz dissociative ionization

D diffusion

e denotes electron

ecr electron cyclotron resonance

edet electron detachment

eff effective or effective value

el elastic

esc escape

ex excitation

ext external

f formation

fin final

g denotes gas atom

h denotes hot or tail electrons; denotes horizontal

i denotes positive ion

in in

inel inelastic

init initial

inc incident

ind induced
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iz ionization

l left-hand circularly polarized

L Langevin (capture)

loss loss

m electron momentum transfer; metal; Hm, Sm, and Gm denote per mole

mag magnetic; magnetization

max maximum of a quantity

mi ion momentum transfer

min minimum of a quantity

mol molecule

ohm ohmic

out out

ox oxide

p usually denotes plasma; pumping

ph phase

physi physisorption

pol polarization

poly polysilicon

pr photoresist

q quenching

QL quasilinear

r right-hand circularly polarized; reaction

R denotes reduced or relative value

rad radiation

rec recombination

refl reflected

res resonance

rf radio frequency

rot rotational

s denotes sheath edge

S denotes surface

sc scattering

se denotes secondary electron

sh sheath

sput sputtering

stoc stochastic

subl sublimation

T denotes total

th thermal

thr threshold

trans transmitted

v denotes vertical

vap vaporization

vib vibrational

w denotes wall
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a denotes presence of negative ions

0 denotes initial value, uniform value, or central value; zero order quantity

1 first order quantity

k parallel

? perpendicular

� cross term (off-diagonal term in matrix)

* denotes excited states

þ denotes positive ion quantities

� denotes negative ion quantities
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PHYSICAL CONSTANTS AND
CONVERSION FACTORS

Quantity Symbol Value

Boltzmann constant k 1.3807 � 10223 J/K
Elementary charge e 1.6022 � 10219 C

Electron mass m 9.1095 � 10231 kg

Proton mass M 1.6726 � 10227 kg

Proton/electron mass ratio M/m 1836.2

Planck constant h 6.6262 � 10234 J s

h� ¼ h=2p 1.0546 � 10234 J s

Speed of light in vacuum c 2.9979 � 108 m/s
Permittivity of free space e0 8.8542 � 10212 F/m
Permeability of free space m0 4p � 1027 H/m
Bohr radius a0 ¼ 4pe0h

� 2=e2m 5.2918 � 10211 m

Atomic cross section pa20 8.7974 � 10221 m2

Temperature T associated

with T ¼ 1 V

11605 K

Energy associated with E ¼ 1V 1.6022 � 10219 J

Avogadro number

(molecules/mol)

NA 6.0220 � 1023

Gas constant R ¼ kNA 8.3144 J/(K mol)

Atomic mass unit 1.6606 � 10227 kg

(continued)
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Quantity Symbol Value

Standard temperature (258C) T0 298.15 K

Standard pressure

(760 Torr ¼ 1 atm)

p� 1.0133 � 105 Pa

Loschmidt’s number

(gas density at STP)

n� 2.6868 � 1025 m23

Pressure of 1 Torr 133.32 Pa

Energy per mole at T0 RT0 2.4789 kJ/mol

calorie (cal) 4.1868 J
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PRACTICAL FORMULAE

In the following practical formulae, ne is in units of cm23, Te is in volts, and B is in

gauss (1 tesla ¼ 104 gauss).

Electron plasma frequency vpe ¼ (e2ne=e0m)
1=2 fpe ¼ 9000

ffiffiffiffiffi

ne
p

Hz

Electron gyration frequency vce ¼ eB=m fce ¼ 2:8BMHz

Electron Debye length lDe ¼ (e0Te=ene)
1=2 lDe ¼ 740

ffiffiffiffiffiffiffiffiffiffiffiffi

Te=ne
p

cm

Mean electron speed �ve ¼ (8eTe=pm)1=2 �ve ¼ 6:7� 107
ffiffiffi

T
p

e cm=s

Bohm velocity uB ¼ (eTe=M)1=2 uB ¼ 9:8� 105
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Te=AR

p
cm=s
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CHAPTER 1

INTRODUCTION

1.1 MATERIALS PROCESSING

Chemically reactive plasma discharges are widely used to modify the surface prop-

erties of materials. Plasma processing technology is vitally important to several of

the largest manufacturing industries in the world. Plasma-based surface processes

are indispensable for manufacturing the very large scale integrated circuits (ICs)

used by the electronics industry. Such processes are also critical for the aerospace,

automotive, steel, biomedical, and toxic waste management industries. Materials

and surface structures can be fabricated that are not attainable by any other commer-

cial method, and the surface properties of materials can be modified in unique ways.

For example, 0.2-mm-wide, 4-mm-deep trenches can be etched into silicon films or

substrates (Fig. 1.1). A human hair is 50–100 mm in diameter, so hundreds of these

trenches would fit endwise within a human hair. Unique materials such as diamond

films and amorphous silicon for solar cells have also been produced, and plasma-

based hardening of surgically implanted hip joints and machine tools have extended

their working lifetimes manyfold.

It is instructive to look closer at integrated circuit fabrication, which is the key

application that we describe in this book. As a very incomplete list of plasma pro-

cesses, argon or oxygen discharges are used to sputter-deposit aluminum, tungsten,

or high-temperature superconducting films; oxygen discharges can be used to grow

SiO2 films on silicon; SiH2Cl2=NH3 and Si(OC2H5)4=O2 discharges are used for the

plasma-enhanced chemical vapor deposition (PECVD) of Si3N4 and SiO2 films,

1

Principles of Plasma Discharges and Materials Processing, by M. A. Lieberman and A. J. Lichtenberg.
ISBN 0-471-72001-1 Copyright # 2005 John Wiley & Sons, Inc.



respectively; BF3 discharges can be used to implant dopant (B) atoms into silicon;

CF4=Cl2=O2 discharges are used to selectively remove silicon films; and oxygen dis-

charges are used to remove photoresist or polymer films. These types of steps

(deposit or grow, dope or modify, etch or remove) are repeated again and again

in the manufacture of a modern IC. They are the equivalent, on a micrometer-size

scale, of centimeter-size manufacture using metal and components, bolts and

solder, and drill press and lathe. For microfabrication of an IC, one-third of the

tens to hundreds of fabrication steps are typically plasma based.

Figure 1.2 shows a typical set of steps to create a metal film patterned with sub-

micrometer features on a large area (300 mm diameter) wafer substrate. In (a), the film

is deposited; in (b), a photoresist layer is deposited over the film; in (c), the resist is

selectively exposed to light through a pattern; and in (d), the resist is developed,

removing the exposed resist regions and leaving behind a patterned resist mask.

In (e), this pattern is transferred into the film by an etch process; the mask protects

the underlying film from being etched. In ( f ), the remaining resist mask is

removed. Of these six steps, plasma processing is generally used for film deposition

(a) and etch (e), and may also be used for resist development (d) and removal ( f ).

The etch process in (e) is illustrated as leading to vertical sidewalls aligned with

the resist mask; that is, the mask pattern has been faithfully transferred into the metal

film. This can be accomplished by an etch process that removes material in the

vertical direction only. The horizontal etch rate is zero. Such anisotropic etches

are easily produced by plasma processing. On the other hand, one might imagine

FIGURE 1.1. Trench etch (0.2 mmwide by 4 mm deep) in single-crystal silicon, showing the

extraordinary capabilities of plasma processing; such trenches are used for device isolation

and charge storage capacitors in integrated circuits.
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that exposing the masked film (d ) to a liquid (or vapor phase) etchant will lead to the

undercut isotropic profile shown in Figure 1.3a (compare to Fig. 1.2e), which is

produced by equal vertical and horizontal etch rates. Many years ago, feature spa-

cings (e.g., between trenches) were tens of micrometers, much exceeding required

film thicknesses. Undercutting was then acceptable. This is no longer true with

submicrometer feature spacings. The reduction in feature sizes and spacings

makes anisotropic etch processes essential. In fact, strictly vertical etches are some-

times not desired; one wants controlled sidewall angles. Plasma processing is the

only commercial technology capable of such control. Anisotropy is a critical

process parameter in IC manufacture and has been a major force in driving the

development of plasma processing technology.

The etch process applied to remove the film in Figure 1.2d is shown in

Figure 1.2e as not removing, either the photoresist or the underlying substrate.

This selectivity is another critical process parameter for IC manufacture. Whereas

FIGURE 1.2. Deposition and pattern transfer in manufacturing an integrated circuit:

(a) metal deposition; (b) photoresist deposition; (c) optical exposure through a pattern;

(d ) photoresist development; (e) anisotropic plasma etch; ( f ) remaining photoresist removal.
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wet etches have been developed having essentially infinite selectivity, highly selec-

tive plasma etch processes are not easily designed. Selectivity and anisotropy often

compete in the design of a plasma etch process, with results as shown in Figure 1.3b.

Compare this to the idealized result shown in Figure 1.2e. Assuming that film-

to-substrate selectivity is a critical issue, one might imagine simply turning off

the plasma after the film has been etched through. This requires a good endpoint

detection system. Even then, variations in film thickness and etch rate across the

area of the wafer imply that the etch cannot be stopped at the right moment every-

where. Hence, depending on the process uniformity, there is a need for some

selectivity. These issues are considered further in Chapter 15.

Here is a simple recipe for etching silicon using a plasma discharge. Start with

an inert molecular gas, such as CF4. Excite the discharge to sustain a plasma by

electron–neutral dissociative ionization,

eþ CF4 �! 2eþ CFþ3 þ F

and to create reactive species by electron–neutral dissociation,

eþ CF4 �! eþ Fþ CF3

�! eþ 2Fþ CF2

FIGURE 1.3. Plasma etching in integrated circuit manufacture: (a) example of isotropic

etch; (b) sidewall etching of the resist mask leads to a loss of anisotropy in film etch;

(c) illustrating the role of bombarding ions in anisotropic etch; (d ) illustrating the role of

sidewall passivating films in anisotropic etch.
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The etchant F atoms react with the silicon substrate, yielding the volatile etch product

SiF4:

Si(s)þ 4F(g) �! SiF4(g)

Here, s and g indicate solid and gaseous forms, respectively. Finally, the product is

pumped away. It is important that CF4 does not react with silicon, and that the etch

product SiF4 is volatile, so that it can be removed. This process etches silicon

isotropically. For an anisotropic etch, there must be high-energy ion (CFþ3 ) bombard-

ment of the substrate. As illustrated in Figures 1.3c and d, energetic ions leaving the

discharge during the etch bombard the bottom of the trench but do not bombard the

sidewalls, leading to anisotropic etching by one of two mechanisms. Either the ion

bombardment increases the reaction rate at the surface (Fig. 1.3c), or it exposes the

surface to the etchant by removing passivating films that cover the surface (Fig. 1.3d).

Similarly, Cl and Br atoms created by dissociation in a discharge are good etch-

ants for silicon, F atoms and CF2 molecules for SiO2, O atoms for photoresist, and Cl

atoms for aluminum. In all cases, a volatile etch product is formed. However, F

atoms do not etch aluminum, and there is no known etchant for copper, because

the etch products are not volatile at reasonable substrate temperatures.

We see the importance of the basic physics and chemistry topics treated in this

book: (1) plasma physics (Chapters 2, 4–6, and 18), to determine the electron and

ion densities, temperatures, and ion bombardment energies and fluxes for a given dis-

charge configuration; and (2) gas-phase chemistry and (3) surface physics and chem-

istry (Chapters 7 and 9), to determine the etchant densities and fluxes and the etch

rates with and without ion bombardment. The data base for these fields of science

is provided by (4) atomic and molecular physics, which we discuss in Chapters 3

and 8. We also discuss applications of equilibrium thermodynamics (Chapter 7) to

plasma processing. The measurement and experimental control of plasma and

chemical properties in reactive discharges is itself a vast subject. We provide brief

introductions to some simple plasma diagnostic techniques throughout the text.

We have motivated the study of the fundamentals of plasma processing by exam-

ining isotropic and anisotropic etches for IC manufacture. These are discussed in

Chapter 15. Other characteristics motivate its use for deposition and surface modi-

fication. For example, a central feature of the low-pressure processing discharges

that we consider in this book is that the plasma itself, as well as the plasma–

substrate system, is not in thermal equilibrium. This enables substrate temperatures

to be relatively low, compared to those required in conventional thermal processes,

while maintaining adequate deposition or etch rates. Putting it another way, plasma

processing rates are greatly enhanced over thermal processing rates at the same sub-

strate temperature. For example, Si3N4 films can be deposited over aluminum films

by PECVD, whereas adequate deposition rates cannot be achieved by conventional

chemical vapor deposition (CVD) without melting the aluminum film. Chapter 16

gives further details.

Particulates or “dust” can be a significant component in processing discharges

and can be a source of substrate-level contamination in etch and deposition
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processes. One can also control dust formation in useful ways, for example, to

produce powders of various sizes or to incorporate nanoparticles during deposition

to modify film properties. Dusty plasmas are described in Chapter 17.

The nonequilibrium nature of plasma processing has been known for many years,

as illustrated by the laboratory data in Figure 1.4. In time sequence, this shows first,

the equilibrium chemical etch rate of silicon in the XeF2 etchant gas; next, the

tenfold increase in etch rate with the addition of argon ion bombardment of the sub-

strate, simulating plasma-assisted etching; and finally, the very low “etch rate” due

to the physical sputtering of silicon by the ion bombardment alone.

Amore recent application is the use of plasma-immersion ion implantation (PIII) to

implant ions into materials at dose rates that are tens to hundreds of times larger than

those achievable with conventional (beam based) ion implantation systems. In PIII, a

series of negative high-voltage pulses are applied to a substrate that is immersed

directly into a discharge, thus accelerating plasma ions into the substrate. The devel-

opment of PIII has opened a new implantation regime characterized by very high dose

rates, even at very low energies, and by the capability to implant both large area and

irregularly shaped substrates, such as flat panel displays or machine tools and dies.

This is illustrated in Figure 1.5. Further details are given in Chapter 16.

1.2 PLASMAS AND SHEATHS

Plasmas

A plasma is a collection of free charged particles moving in random directions that

is, on the average, electrically neutral (see Fig. 1.6a). This book deals with weakly

FIGURE 1.4. Experimental demonstration of ion-enhanced plasma etching. (Coburn and

Winters, 1979.)
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ionized plasma discharges, which are plasmas having the following features:

(1) they are driven electrically; (2) charged particle collisions with neutral gas mol-

ecules are important; (3) there are boundaries at which surface losses are important;

(4) ionization of neutrals sustains the plasma in the steady state; and (5) the electrons

are not in thermal equilibrium with the ions.

A simple discharge is shown schematically in Figure 1.6b. It consists of a voltage

source that drives current through a low-pressure gas between two parallel conduct-

ing plates or electrodes. The gas “breaks down” to form a plasma, usually weakly

ionized, that is, the plasma density is only a small fraction of the neutral gas

density. We describe some qualitative features of plasmas in this section; discharges

are described in the following section.

Plasmas are often called a fourth state of matter. As we know, a solid substance in

thermal equilibrium generally passes into a liquid state as the temperature

is increased at a fixed pressure. The liquid passes into a gas as the temperature is

further increased. At a sufficiently high temperature, the molecules in the gas

decompose to form a gas of atoms that move freely in random directions, except

for infrequent collisions between atoms. If the temperature is further increased,

FIGURE 1.5. Illustrating ion implantation of an irregular object: (a) In a conventional ion

beam implanter, the beam is electrically scanned and the target object is mechanically

rotated and tilted to achieve uniform implantation; (b) in plasma-immersion ion

implantation (PIII), the target is immersed in a plasma, and ions from the plasma are

implanted with a relatively uniform spatial distribution.

V

FIGURE 1.6. Schematic view of (a) a plasma and (b) a discharge.
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then the atoms decompose into freely moving charged particles (electrons and

positive ions), and the substance enters the plasma state. This state is characterized

by a common charged particle density ne � ni � n particles/m3 and, in equilibrium,

a temperature Te ¼ Ti ¼ T. The temperatures required to form plasmas from pure

substances in thermal equilibrium range from roughly 4000 K for easy-to-ionize

elements like cesium to 20,000 K for hard-to-ionize elements like helium. The

fractional ionization of a plasma is

xiz ¼ ni

ng þ ni

where ng is the neutral gas density. xiz is near unity for fully ionized plasmas, and

xiz � 1 for weakly ionized plasmas.

Much of the matter in the universe is in the plasma state. This is true because

stars, as well as most interstellar matter, are plasmas. Although stars are plasmas

in thermal equilibrium, the light and heavy charged particles in low-pressure proces-

sing discharges are almost never in thermal equilibrium, either between themselves

or with their surroundings. Because these discharges are electrically driven and are

weakly ionized, the applied power preferentially heats the mobile electrons, while

the heavy ions efficiently exchange energy by collisions with the background gas.

Hence, Te � Ti for these plasmas.

Figure 1.7 identifies different kinds of plasmas on a log n versus log Te diagram.

There is an enormous range of densities and temperatures for both laboratory and

space plasmas. Two important types of processing discharges are indicated on the

figure. Low-pressure discharges are characterized by Te � 1–10 V, Ti � Te, and

n � 108–1013 cm23. These discharges are used as miniature chemical factories in

which feedstock gases are broken into positive ions and chemically reactive etch-

ants, deposition precursors, and so on, which then flow to and physically or chemi-

cally react at the substrate surface. While energy is delivered to the substrate also,

for example, in the form of bombarding ions, the energy flux is there to promote

the chemistry at the substrate, and not to heat the substrate. The gas pressures for

these discharges are low: p � 1 mTorr–1 Torr. These discharges and their use for

processing are the principal subject of this book. We give the quantitative frame-

work for their analysis in Chapter 10.

High-pressure arc discharges are also used for processing. These discharges have

Te � 0.1–2 V and n � 1014–1019 cm23, and the light and heavy particles are more

nearly in thermal equilibrium, with Ti . Te. These discharges are used mainly to

deliver heat to the substrate, for example, to increase surface reaction rates,

to melt, sinter, or evaporate materials, or to weld or cut refractory materials. Opera-

ting pressures are typically near atmospheric pressure (760 Torr). High-pressure

discharges of this type are beyond the scope of this book.

Figure 1.8 shows the densities and temperatures (or average energies) for various

species in a typical rf-driven capacitively coupled low-pressure discharge; for

example, for silicon etching using CF4, as described in Section 1.1. We see that

the feedstock gas, etchant atoms, etch product gas, and plasma ions have roughly
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the same temperature, which does not exceed a few times room temperature

(0.026 V). The etchant F and product SiF4 densities are significant fractions of the

CF4 density, but the fractional ionization is very low: ni � 10�5ng. The electron

temperature Te is two orders of magnitude larger than the ion temperature Ti.

However, we note that the energy of ions bombarding the substrate can be

100–1000 V, much exceeding Te. The acceleration of low-temperature ions
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across a thin sheath region where the plasma and substrate meet is central to all pro-

cessing discharges. We describe this qualitatively below and quantitatively in later

chapters.

Although ni and ne may be five orders of magnitude lower that ng, the charged

particles play central roles in sustaining the discharge and in processing. Because

Te � Ti, it is the electrons that dissociate the feedstock gas to create the free

radicals, etchant atoms, and deposition precursors, required for the chemistry at

the substrate. Electrons also ionize the gas to create the positive ions that sub-

sequently bombard the substrate. As we have seen, energetic ion bombardment

can increase chemical reaction rates at the surface, clear inhibitor films from the

surface, and physically sputter materials from or implant ions into the surface.

Te is generally less than the threshold energies Ediss or Eiz for dissociation and

ionization of the feedstock gas molecules. Nevertheless, dissociation and ionization

occur because electrons have a distribution of energies. Letting ge(E) dE be the

number of electrons per unit volume with energies lying between E and E þ dE,
then the distribution function ge(E) is sketched in Figure 1.9. Electrons having ener-
gies below Ediss or Eiz cannot dissociate or ionize the gas. We see that dissociation

and ionization are produced by the high-energy tail of the distribution. Although the

distribution is sketched in the figure as if it were Maxwellian at the bulk electron

temperature Te, this may not be the case. The tail distribution might be depressed

below or enhanced above a Maxwellian by electron heating and electron–neutral

collision processes. Two temperature distributions are sometimes observed, with Te
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for the bulk electrons lower than Th for the energetic electron tail. Non-Maxwellian

distributions can only be described using the kinetic theory of discharges, which we

introduce in Chapter 18.

Sheaths

Plasmas, which are quasi-neutral (ni � ne), are joined to wall surfaces across thin

positively charged layers called sheaths. To see why, first note that the electron

thermal velocity (eTe=m)
1=2 is at least 100 times the ion thermal velocity

(eTi=M)1=2 because m=M � 1 and Te & Ti. (Here, Te and Ti are given in units of

volts.) Consider a plasma of width l with ne ¼ ni initially confined between two

grounded (F ¼ 0) absorbing walls (Fig. 1.10a). Because the net charge density r ¼
e(ni � ne) is zero, the electric potential F and the electric field Ex is zero every-

where. Hence, the fast-moving electrons are not confined and will rapidly be lost

to the walls. On a very short timescale, however, some electrons near the walls

are lost, leading to the situation shown in Figure 1.10b. Thin (s � l) positive ion

sheaths form near each wall in which ni � ne. The net positive r within the

sheaths leads to a potential profile F(x) that is positive within the plasma and

falls sharply to zero near both walls. This acts as a confining potential “valley”

for electrons and a “hill” for ions because the electric fields within the sheaths

point from the plasma to the wall. Thus the force �eEx acting on electrons is

directed into the plasma; this reflects electrons traveling toward the walls back

into the plasma. Conversely, ions from the plasma that enter the sheaths are accel-

erated into the walls. If the plasma potential (with respect to the walls) is Vp, then we

expect that Vp � a few Te in order to confine most of the electrons. The energy of

ions bombarding the walls is then Ei � a few Te. Charge uncovering is treated quan-

titatively in Chapter 2, and sheaths in Chapter 6.

Figure 1.11 shows sheath formation as obtained from a particle-in-cell (PIC)

plasma simulation. We use PIC results throughout this book to illustrate various dis-

charge phenomena. In this simulation, the left wall is grounded, the right wall is

floating (zero net current), and the positive ion density is uniform and constant in

time. The electrons are modeled as N sheets having charge-to-mass ratio �e=m

FIGURE 1.9. Electron distribution function in a weakly ionized discharge.
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FIGURE 1.10. The formation of plasma sheaths: (a) initial ion and electron densities and

potential; (b) densities, electric field, and potential after formation of the sheath.

FIGURE 1.11. PIC simulation of positive ion sheath formation: (a) vx–x electron phase

space, with horizontal scale in meters; (b) electron density ne; (c) electric field Ex;

(d) potential F; (e) electron number N versus time t in seconds; ( f ) right hand potential

Vr versus time t.
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that move in one dimension (along x) under the action of the time-varying fields pro-

duced by all the other sheets, the fixed ion charge density, and the charges on the

walls. Electrons do not collide with other electrons, ions, or neutrals in this simu-

lation. Four thousand sheets were used with Te ¼ 1V and ni ¼ ne ¼ 1013 m�3 at

time t ¼ 0. In (a), (b), (c), and (d ), we, respectively, see the vx–x electron phase

space, electron density, electric field, and potential after the sheath has formed, at

t ¼ 0.77 ms. The time history of N is shown in (e); 40 sheets have been lost to

form the sheaths. Figures 1.11a–d show the absence of electrons near each wall

over a sheath width s � 6mm. Except for fluctuations due to the finite N , the

field in the bulk plasma is near zero, and the fields in the sheaths are large and

point from the plasma to the walls. (Ex is negative at the left wall and positive at

the right wall to repel plasma electrons.) The potential in the center of the discharge

is Vp � 2:5V and falls to zero at the left wall (this wall is grounded by definition).

The potential at the right wall is also low, but we see in ( f ) that it oscillates in time.

We will see in Chapter 4 that these are plasma oscillations. We would not see them

if the initial sheet positions and velocities were chosen exactly symmetrically about

the midplane, or if many more sheets were used in the simulation.

If the ions were also modeled as moving sheets, then on a longer timescale we

would see ion acceleration within the sheaths, and a consequent drop in ion

density near the walls, as sketched in Figure 1.10b. We return to this in Chapter 6.

The separation of discharges into bulk plasma and sheath regions is an important

paradigm that applies to all discharges. The bulk region is quasi-neutral, and both

instantaneous and time-averaged fields are low. The bulk plasma dynamics are

FIGURE 1.11. (Continued).
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described by diffusive ion loss at high pressures and by free-fall ion loss at low

pressures. In the positive space charge sheaths, high fields exist, leading to dynamics

that are described by various ion space charge sheath laws, including low-voltage

sheaths and various high-voltage sheath models, such as collisionless and collisional

Child laws and their modifications. The plasma and sheath dynamics must be joined

at their interface. As will be seen in Chapter 6, the usual joining condition is to

require that the mean ion velocity at the plasma-sheath edge be equal to the ion-

sound (Bohm) velocity: uB ¼ (eTe=M)1=2, where e and M are the charge and mass

of the ion, respectively, and Te is the electron temperature in volts.

1.3 DISCHARGES

Radio Frequency Diodes

Capacitively driven radio frequency (rf) discharges—so-called rf diodes—are

commonly used for materials processing. An idealized discharge in plane parallel

geometry, shown in Figure 1.12a, consists of a vacuum chamber containing two

planar electrodes separated by a spacing l and driven by an rf power source. The sub-

strates are placed on one electrode, feedstock gases are admitted to flow through the

discharge, and effluent gases are removed by the vacuum pump. Coaxial discharge

geometries, such as the “hexode” shown in Figure 1.12b, are also in widespread use.

Typical parameters are shown in Table 1.1. The typical rf driving voltage is

Vrf ¼ 100–1000 V, and the plate separation is l ¼ 2–10 cm. When operated at

low pressure, with the wafer mounted on the powered electrode, and used to

remove substrate material, such reactors are commonly called reactive ion etchers

(RIEs)—a misnomer, since the etching is a chemical process enhanced by energetic

ion bombardment of the substrate, rather than a removal process due to reactive ions

alone.

For anisotropic etching, typically pressures are in the range 10–100 mTorr,

power densities are 0.1–1 W/cm2, the driving frequency is 13.56 MHz, and mul-

tiple wafer systems are common. Typical plasma densities are relatively low,

109–1011 cm23, and the electron temperature is of order 3 V. Ion acceleration ener-

gies (sheath voltages) are high, greater than 200 V, and fractional ionization is low.

The degree of dissociation of the molecules into reactive species is seldom measured

but can range widely from less than 0.1 percent to nearly 100 percent depending on

gas composition and plasma conditions. For deposition and isotropic etch appli-

cations, pressures tend to be higher, ion bombarding energies are lower, and fre-

quencies can be lower than the commonly used standard of 13.56 MHz.

The operation of capacitively driven discharges is reasonably well understood.

As shown in Figure 1.13 for a symmetrically driven discharge, the mobile plasma

electrons, responding to the instantaneous electric fields produced by the rf

driving voltage, oscillate back and forth within the positive space charge cloud of

the ions. The massive ions respond only to the time-averaged electric fields. Oscil-

lation of the electron cloud creates sheath regions near each electrode that contain
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net positive charge when averaged over an oscillation period; that is, the positive

charge exceeds the negative charge in the system, with the excess appearing

within the sheaths. This excess produces a strong time-averaged electric field

within each sheath directed from the plasma to the electrode. Ions flowing out of

the bulk plasma near the center of the discharge can be accelerated by the sheath

fields to high energies as they flow to the substrate, leading to energetic-ion

enhanced processes. Typical ion-bombarding energies Ei can be as high as Vrf=2
for symmetric systems (Fig. 1.13) and as high as Vrf at the powered electrode for

asymmetric systems (Fig. 1.12). A quantitative description of capacitive discharges

is given in Chapter 11.

FIGURE 1.12. Capacitive rf discharges in (a) plane parallel geometry and (b) coaxial

“hexode” geometry (after Lieberman and Gottscho, 1994).
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TABLE 1.1. Range of Parameters for rf Diode and High-Density Discharges

Parameter rf Diode High-Density Source

Pressure p (mTorr) 10–1000 0.5–50

Power P (W) 50–2000 100–5000

Frequency f (MHz) 0.05–13.56 0–2450

Volume V (L) 1–10 2–50

Cross-sectional area A (cm2) 300–2000 300–500

Magnetic field B (kG) 0 0–1

Plasma density n (cm23) 109–1011 1010–1012

Electron temperature Te (V) 1–5 2–7

Ion acceleration energy Ei (V) 200–1000 20–500

Fractional ionization xiz 1026–1023 1024–1021

FIGURE 1.13. The physical model of an rf diode (after Lieberman and Gottscho, 1994).
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We note that the positive ions continuously bombard the electrode over an rf

cycle. In contrast, electrons are lost to the electrode only when the oscillating

cloud closely approaches the electrode. During that time, the instantaneous sheath

potential collapses to near zero, allowing sufficient electrons to escape to balance

the ion charge delivered to the electrode. Except for such brief moments, the instan-

taneous potential of the discharge must always be positive with respect to any large

electrode and wall surface; otherwise the mobile electrons would quickly leak out.

Electron confinement is ensured by the presence of positive space charge sheaths

near all surfaces.

We will see that a crucial limiting feature of rf diodes is that the ion-bombarding

flux Gi ¼ nuB and bombarding energy Ei cannot be varied independently. The situ-

ation is analogous to the lack of independent voltage and current control in diode

vacuum tubes or semiconductor pn junctions. For a reasonable (but relatively

low) ion flux, as well as a reasonable dissociation of the feedstock gas, sheath vol-

tages at the driven electrode are high. For wafers placed on the driven electrode, this

can result in undesirable damage, or loss of linewidth control. Furthermore, the com-

bination of low ion flux and high ion energy leads to a relatively narrow process

window for many applications. The low process rates resulting from the limited

ion flux in rf diodes often mandates multiwafer or batch processing, with consequent

loss of wafer-to-wafer reproducibility. Higher ion and neutral fluxes are generally

required for single-wafer processing in a clustered tool environment, in which a

single wafer is moved by a robot through a series of process chambers. Clustered

tools are used to control interface quality and are said to have the potential for

significant cost savings in fabricating ICs. Finally, low fractional ionization poses

a significant problem for processes where the feedstock costs and disposal of

effluents are issues.

To meet the linewidth, selectivity, and damage control demands for next-

generation fabrication, the mean ion bombarding energy, and its energy distribution,

should be controllable independently of the ion and neutral fluxes. Some control

over ion-bombarding energy can be achieved by putting the wafer on the undriven

electrode and independently biasing this electrode with a second rf source. Although

these so-called rf triode systems are in use, processing rates are still low at low

pressures and sputtering contamination is an issue. Another approach is dual fre-

quency operation, in which a high- and a low-frequency rf source are used to

drive one or both plates of an rf diode. The high frequency mainly controls the

ion flux and the low frequency controls the ion bombarding energy. Using a fre-

quency higher than the conventional frequency of 13.56 MHz for the high-frequency

drive results in an increased ion flux to the substrate for a fixed power input and

allows the low-frequency drive to better control the ion energy. High frequencies

of 27.1, 60, or 160 MHz, and low frequencies of 2 or 13.56 MHz, are used

commercially.

Various magnetically enhanced rf diodes and triodes have also been developed to

improve performance of the rf reactor. These include, for example, magnetically

enhanced reactive ion etchers (MERIEs), in which a direct current (dc) magnetic

field of 50–300 G is applied parallel to the powered electrode, on which the
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wafer sits. The magnetic field increases the efficiency of power transfer from the

source to the plasma and also enhances plasma confinement. This results in a

reduced sheath voltage and an increased plasma density when the magnetic field

is applied. However, the plasma generated is strongly nonuniform both radially

and azimuthally. To increase process uniformity (at least azimuthally), the magnetic

field is slowly rotated in the plane of the wafer, for example, at a frequency of

0.5 Hz. While this is an improvement, MERIE systems may not have good uniform-

ity, which may limit their applicability to next-generation, submicrometer device

fabrication.

High-Density Sources

The limitations of rf diodes and their magnetically enhanced variants have led to the

development of a new generation of low-pressure, high-density plasma sources. A

few examples are shown schematically in Figure 1.14, and typical source and

plasma parameters are given in Table 1.1. A quantitative description is given in

Chapters 12 and 13. In addition to high density and low pressure, a common

feature is that the rf or microwave power is coupled to the plasma across a dielectric

window, rather than by direct connection to an electrode in the plasma, as for an rf

diode. This noncapacitive power transfer is the key to achieving low voltages across

all plasma sheaths at electrode and wall surfaces. Direct current (dc) voltages, and

hence ion acceleration energies, are then typically 20–30 V at all surfaces. To

control the ion energy, the electrode on which the wafer is placed can be indepen-

dently driven by a capacitively coupled rf source. Hence independent control of the

ion/radical fluxes (through the source power) and the ion-bombarding energy

(through the wafer electrode power) is possible.

The common features of power transfer across dielectric windows and separate

bias supply at the wafer electrode are illustrated in Figure 1.14. However, sources

differ significantly in the means by which power is coupled to the plasma. For the

electron cyclotron resonance (ECR) source shown in Figure 1.14a, one or more elec-

tromagnet coils surrounding the cylindrical source chamber generate an axially

varying dc magnetic field. Microwave power is injected axially through a dielectric

window into the source plasma, where it excites a right-hand circularly polarized

wave that propagates to a resonance zone, for cold electrons at v ¼ vce, where

the wave is absorbed. Here v ¼ 2pf is the applied radian frequency and vce ¼
eB=m is the electron gyration frequency at resonance. For the typical microwave fre-

quency used, f ¼ 2450 MHz, the resonant magnetic field is B � 875 G. The plasma

streams out of the source into the process chamber in which the wafer is located.

A helicon source is shown in Figure 1.14b. A weak (50–200 G) dc axial magnetic

field together with an rf-driven antenna placed around the dielectric cylinder that

forms the source chamber allows excitation of a helicon wave within the source

plasma. Resonant wave–particle interaction is believed to transfer the wave

energy to the plasma. For the helical resonator source shown in Figure 1.14c, the

external helix and conducting cylinder surrounding the dielectric discharge

chamber form a slow wave structure, that is, supporting an electromagnetic wave
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with phase velocity much less than the velocity of light. Efficient coupling of the rf

power to the plasma is achieved by excitation of a resonant axial mode. An inductive

(or transformer) coupled source is shown in Figure 1.14d. Here the plasma acts as a

single-turn, lossy conductor that is coupled to a multiturn nonresonant rf coil across

the dielectric discharge chamber; rf power is inductively coupled to the plasma by

transformer action. In contrast to ECR and helicon sources, a dc magnetic field is

not required for efficient power coupling in helical resonator or inductive sources.

Figure 1.14 also illustrates the use of high-density sources to feed plasma into a

relatively distinct, separate process chamber in which the wafer is located. As shown

in the figure, the process chamber can be surrounded by dc multipole magnetic fields

to enhance plasma confinement near the process chamber surfaces, while providing

a magnetic near-field-free plasma environment at the wafer. Such configurations are

often called “remote” sources, a misnomer since at low pressures considerable

plasma and free radical production occurs within the process chamber near the

FIGURE 1.14. Some high-density “remote” sources (after Lieberman and Gottscho, 1994).
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wafer. Sometimes, the source and process chambers are more integral, for example,

the wafer is placed very near to the source exit, to obtain increased ion and radical

fluxes, reduced spread in ion energy, and improved process uniformity. But the

wafer is then exposed to higher levels of damaging radiation.

Although the need for low pressures, high fluxes, and controllable ion energies

has motivated high-density source development, there are many issues that need

to be resolved. A critical issue is achieving the required process uniformity over

300-mm wafer diameters. In contrast to the nearly one-dimensional geometry of

typical rf diodes (two closely spaced parallel electrodes), high-density cylindrical

sources can have length-to-diameter ratios of order or exceeding unity. Plasma for-

mation and transport in such geometries are inherently radially nonuniform. Another

critical issue is efficient power transfer (coupling) across dielectric windows over a

wide operating range of plasma parameters. Degradation of and deposition on the

window can also lead to irreproducible source behavior and the need for frequent,

costly cleaning cycles. Low-pressure operation leads to severe pumping require-

ments for high deposition or etching rates and hence to the need for large, expensive

vacuum pumps. Furthermore, plasma and radical concentrations become strongly

sensitive to reactor surface conditions, leading to problems of reactor aging and

process irreproducibility. Finally, dc magnetic fields are required for some source

concepts. These can lead to magnetic field-induced process nonuniformities and

damage, as seen, for example, in MERIE systems.

Figure 1.15 illustrates schematically the central problem of discharge analysis,

using the example of an rf diode. Given the control parameters for the power

source (frequency v, driving voltage Vrf , or absorbed power Pabs), the feedstock

gas (pressure p, flow rate, and chemical composition), and the geometry (simplified

here to the discharge length l), then find the plasma parameters, including the plasma

density ni, the etchant density nF, the ion and etchant fluxes Gi and GF hitting the

substrate, the electron and ion temperatures Te and Ti, the ion bombarding energy

Ei, and the sheath thickness s. The control parameters are the “knobs” that can be

“turned” in order to “tune” the properties of the discharge.

The tuning range for a given discharge is generally limited. Sometimes one type

of discharge will not do the job no matter how it is tuned, so another type must be

selected. As suggested in Figures 1.12 and 1.14, a bewildering variety of discharges

are used for processing. Some are driven by rf, some by dc, and some by microwave

power sources. Some use magnetic fields to increase the plasma confinement or the

efficiency of power absorption. One purpose of this book is to guide the reader

toward making wise choices when designing discharges used for processing.

1.4 SYMBOLS AND UNITS

The choice of symbols is always vexing. While various fields each have their

consistent set of symbols to represent physical quantities, these overlap between

different fields, for example, plasma physics and gas-phase chemistry. For

example, H is standard for enthalpy in chemistry but is also standard for magnetic
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field in plasma physics. This also occurs within a given field; for example, k is stan-

dard for Boltzmann’s constant but also for wave number. Then there is always the

occasional symbol that must stand for many things in different contexts. We some-

times distinguish these by using different lettering (Roman, italic, script, boldface);

for example, I is a current and I is a modified Bessel function; M is an ion mass and

M is the number of chemical species. We can often distinguish commonly used

symbols by the use of subscripts; for example, s denotes a cross section, but srf

and sdc denote electrical conductivities; we have done this whenever the notation

is not too cumbersome. The meaning should be clear from the context, in most

cases. To help avoid confusion, we have provided a table of symbols and abbrevi-

ations in the front matter of this book. These give the normal usage of symbols

and their units.

As far as possible, we use the SI (MKS) system of units: meters (m), kilograms

(kg), seconds (s), and coulombs (C) for charge. In these units, the charge on an elec-

tron is �e � �1:602� 10�19 C. The unit of energy is the joule (J), but we often use

the symbol E for the voltage that is the equivalent of the energy; that is,

U ( joules) ¼ eE
where E is in volts. We also occasionally use the calorie (cal): 1 cal � 4.187 J. The

SI unit of pressure is the pascal (Pa), but we more commonly give gas pressures in

Torr:

1 Torr � 133:3 Pa

We occasionally use 1 atm � 1:013� 105 Pa � 760 Torr and 1 bar ¼ 105 Pa to refer

to gas pressures. The SI unit for the magnetic induction B is tesla (T), but we

more often give B in gauss (G): 1 T ¼ 104 G. We use the symbol T to refer to the
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FIGURE 1.15. The central problem of discharge analysis.
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temperature in kelvins (K). The energy equivalent temperature in joules is kT, where

k � 1:381� 10�23 J/K is Boltzmann’s constant. We often use the roman typeface

symbol T for the voltage equivalent of the temperature, where

eT (volts) ¼ kT (kelvins)

Hence room temperature T ¼ 297K is equivalent to T � 0:026V. Even within the

standard unit system, quantities are often designated by subunits. For example, cross

sections are often given in cm2 rather than m2 in tables, and wavelengths at micro-

wave frequencies are commonly given in cm rather than in meters.

To assist our readers in making calculations, we give the commonly used con-

stants in the SI system of units and the most common conversions between units

in the front matter of the book. It is sometimes tempting to make a calculation in

nonstandard units. For example, the collision frequency n ¼ nsv, which has units

(m�3 �m2 �ms�1), could equally well be calculated in the commonly used units

(cm�3 � cm2 � cm s�1), since the length units cancel. However, we urge the student

not to take such shortcuts, but to systematically convert to standard units, before

making a calculation.
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CHAPTER 2

BASIC PLASMA EQUATIONS
AND EQUILIBRIUM

2.1 INTRODUCTION

The plasma medium is complicated in that the charged particles are both affected by

external electric and magnetic fields and contribute to them. The resulting self-

consistent system is nonlinear and very difficult to analyze. Furthermore, the inter-

particle collisions, although also electromagnetic in character, occur on space and

time scales that are usually much shorter than those of the applied fields or the

fields due to the average motion of the particles.

To make progress with such a complicated system, various simplifying approxi-

mations are needed. The interparticle collisions are considered independently of the

larger scale fields to determine an equilibrium distribution of the charged-particle

velocities. The velocity distribution is averaged over velocities to obtain the macro-

scopic motion. The macroscopic motion takes place in external applied fields and

in the macroscopic fields generated by the average particle motion. These self-

consistent fields are nonlinear, but may be linearized in some situations, particularly

when dealing with waves in plasmas. The effect of spatial variation of the distri-

bution function leads to pressure forces in the macroscopic equations. The collisions

manifest themselves in particle generation and loss processes, as an average friction

force between different particle species, and in energy exchanges among species. In

this chapter, we consider the basic equations that govern the plasma medium, con-

centrating attention on the macroscopic system. The complete derivation of these
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equations, from fundamental principles, is beyond the scope of the text. We shall

make the equations plausible and, in the easier instances, supply some derivations

in appendices. For the reader interested in more rigorous treatment, references to

the literature will be given.

In Section 2.2, we introduce the macroscopic field equations and the current and

voltage. In Section 2.3, we introduce the fundamental equation of plasma physics,

for the evolution of the particle distribution function, in a form most applicable

for weakly ionized plasmas. We then define the macroscopic quantities and indicate

how the macroscopic equations are obtained by taking moments of the fundamental

equation. References given in the text can be consulted for more details of the aver-

aging procedure. Although the macroscopic equations depend on the equilibrium

distribution, their form is independent of the equilibrium. To solve the equations

for particular problems the equilibrium must be known. In Section 2.4, we introduce

the equilibrium distribution and obtain some consequences arising from it and from

the field equations. The form of the equilibrium distribution will be shown to be a

consequence of the interparticle collisions, in Appendix B.

2.2 FIELD EQUATIONS, CURRENT, AND VOLTAGE

Maxwell’s Equations

The usual macroscopic form of Maxwell’s equations are

r � E ¼ �m0

@H

@t
(2:2:1)

r �H ¼ e0
@E

@t
þ J (2:2:2)

e0r � E ¼ r (2:2:3)

and

m0r �H ¼ 0 (2:2:4)

where E(r, t) and H(r, t) are the electric and magnetic field vectors and where

m0 ¼ 4p� 10�7 H/m and e0 � 8:854� 10�12 F/m are the permeability and per-

mittivity of free space. The sources of the fields, the charge density r(r, t) and the

current density J(r, t), are related by the charge continuity equation (Problem 2.1):

@r

@t
þ r � J ¼ 0 (2:2:5)

In general,

J ¼ Jcond þ Jpol þ Jmag
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where the conduction current density Jcond is due to the motion of the free charges,

the polarization current density Jpol is due to the motion of bound charges in a

dielectric material, and the magnetization current density Jmag is due to the magnetic

moments in a magnetic material. In a plasma in vacuum, Jpol and Jmag are zero and

J ¼ Jcond.

If (2.2.3) is integrated over a volume V, enclosed by a surface S, then we obtain

its integral form, Gauss’ law:

e0

þ

S
E � dA ¼ q (2:2:6)

where q is the total charge inside the volume. Similarly, integrating (2.2.5), we

obtain

dq

dt
þ
þ

S
J � dA ¼ 0

which states that the rate of increase of charge inside V is supplied by the total

current flowing across S into V, that is, that charge is conserved.
In (2.2.2), the first term on the RHS is the displacement current density flowing in

the vacuum, and the second term is the conduction current density due to the free

charges. We can introduce the total current density

JT ¼ e0
@E

@t
þ J (2:2:7)

and taking the divergence of (2.2.2), we see that

r � JT ¼ 0 (2:2:8)

In one dimension, this reduces to d JTx=dx ¼ 0, such that JTx ¼ JTx(t), independent

of x. Hence, for example, the total current flowing across a spatially nonuniform

one-dimensional discharge is independent of x, as illustrated in Figure 2.1. A

generalization of this result is Kirchhoff’s current law, which states that the sum

of the currents entering a node, where many current-carrying conductors meet, is

zero. This is also shown in Figure 2.1, where Irf ¼ IT þ I1.

If the time variation of the magnetic field is negligible, as is often the case in

plasmas, then from Maxwell’s equations r � E � 0. Since the curl of a gradient

is zero, this implies that the electric field can be derived from the gradient of a

scalar potential,

E ¼ �rF (2:2:9)
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Integrating (2.2.9) around any closed loop C gives

þ

C
E � d‘ ¼ �

þ

C
rF � d‘ ¼ �

þ

C
dF ¼ 0 (2:2:10)

Hence, we obtain Kirchhoff’s voltage law, which states that the sum of the voltages

around any loop is zero. This is illustrated in Figure 2.1, for which we obtain

Vrf ¼ V1 þ V2 þ V3

that is, the source voltage Vrf is equal to the sum of the voltages V1 and V3 across the

two sheaths and the voltage V2 across the bulk plasma. Note that currents and vol-

tages can have positive or negative values; the directions for which their values are

designated as positive must be specified, as shown in the figure.

If (2.2.9) is substituted in (2.2.3), we obtain

r2F ¼ � r

e0
(2:2:11)

Equation (2.2.11), Poisson’s equation, is one of the fundamental equations that we

shall use. As an example of its application, consider the potential in the center

(x ¼ 0) of two grounded (F ¼ 0) plates separated by a distance l ¼ 10 cm and con-

taining a uniform ion density ni ¼ 1010 cm23, without the presence of neutralizing

electrons. Integrating Poisson’s equation

d2F

dx2
¼ � eni

e0

FIGURE 2.1. Kirchhoff’s circuit laws: The total current JT flowing across a nonuniform

one-dimensional discharge is independent of x; the sum of the currents entering a node is

zero (Irf ¼ IT þ I1); the sum of voltages around a loop is zero (Vrf ¼ V1 þ V2 þ V3).
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using the boundary conditions that F ¼ 0 at x ¼ +l=2 and that dF=dx ¼ 0 at x ¼ 0

(by symmetry), we obtain

F ¼ 1

2

eni

e0

l

2

� �2

� x2

" #

The maximum potential in the center is 2.3 � 105 V, which is impossibly large

for a real discharge. Hence, the ions must be mostly neutralized by electrons,

leading to a quasi-neutral plasma.

Figure 2.2 shows a PIC simulation time history over 10210 s of (a) the vx–x phase

space, (b) the number N of sheets versus time, and (c) the potential F versus x for

100 unneutralized ion sheets (with e/M for argon ions). We see the ion acceleration

in (a), the loss of ions in (b), and the parabolic potential profile in (c); the maximum

potential decreases as ions are lost from the system. We consider quasi-neutrality

further in Section 2.4.

Electric and magnetic fields exert forces on charged particles given by the

Lorentz force law:

F ¼ q(Eþ v� B) (2:2:12)

FIGURE 2.2. PIC simulation of ion loss in a plasma containing ions only: (a) vx–x ion phase

space, showing the ion acceleration trajectories; (b) numberN of ion sheets versus t, with the

steps indicating the loss of a single sheet; (c) the potentialF versus x during the first 10210 s of

ion loss.
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where v is the particle velocity and B ¼ m0H is the magnetic induction vector. The

charged particles move under the action of the Lorentz force. The moving charges in

turn contribute to both r and J in the plasma. If r and J are linearly related to E and

B, then the field equations are linear. As we shall see, this is not generally the case

for a plasma. Nevertheless, linearization may be possible in some cases for which

the plasma may be considered to have an effective dielectric constant; that is, the

“free charges” play the same role as “bound charges” in a dielectric. We consider

this further in Chapter 4.

2.3 THE CONSERVATION EQUATIONS

Boltzmann’s Equation

For a given species, we introduce a distribution function f (r, v, t) in the six-

dimensional phase space (r, v) of particle positions and velocities, with the interpret-

ation that

f (r, v, t)d3r d3v ¼ number of particles inside a six-dimensional phase

space volume d3r d3v at (r, v) at time t

The six coordinates (r, v) are considered to be independent variables. We illus-

trate the definition of f and its phase space in one dimension in Figure 2.3. As

particles drift in phase space or move under the action of macroscopic forces,

they flow into or out of the fixed volume dx dvx . Hence the distribution function

f should obey a continuity equation which can be derived as follows. In a

FIGURE 2.3. One-dimensional vx–x phase space, illustrating the derivation of the

Boltzmann equation and the change in f due to collisions.

28 BASIC PLASMA EQUATIONS AND EQUILIBRIUM



time dt,

f (x, vx, t) dx ax(x, vx, t) dt particles flow into dx dvx across face 1

f (x, vx þ dvx, t) dx ax(x, vx þ dvx, t) dt particles flow out of dx dvx across face 2

f (x, vx, t) dvx vx dt particles flow into dx dvx across face 3

f (xþ dx, vx, t) dvx vx dt particles flow out of dx dvx across face 4

where axvdvx=dt and vx ; dx=dt are the flow velocities in the vx and x directions,

respectively. Hence

f (x, vx, t þ dt) dx dvx � f (x, vx, t) dx dvx

¼ ½ f (x, vx, t)ax(x, vx, t)� f (x, vx þ dvx, t)ax(x, vx þ dvx, t)� dx dt
þ ½ f (x, vx, t)vx � f (xþ dx, vx, t)vx� dvx dt

Dividing by dx dvx dt, we obtain

@f

@t
¼ � @

@x
( f vx)� @

@vx
( fax) (2:3:1)

Noting that vx is independent of x and assuming that the acceleration ax ¼ Fx=m of

the particles does not depend on vx, then (2.3.1) can be rewritten as

@f

@t
þ vx

@f

@x
þ ax

@f

@vx
¼ 0

The three-dimensional generalization,

@f

@t
þ v � rr f þ a � rv f ¼ 0 (2:3:2)

with rr ¼ (x̂ @=@xþ ŷ @=@yþ ẑ @=@z) and rv ¼ (x̂ @=@vx þ ŷ @=@vy þ ẑ @=@vz) is

called the collisionless Boltzmann equation or Vlasov equation.

In addition to flows into or out of the volume across the faces, particles can

“suddenly” appear in or disappear from the volume due to very short time scale

interparticle collisions, which are assumed to occur on a timescale shorter than

the evolution time of f in (2.3.2). Such collisions can practically instantaneously

change the velocity (but not the position) of a particle. Examples of particles sud-

denly appearing or disappearing are shown in Figure 2.3. We account for this

effect, which changes f, by adding a “collision term” to the right-hand side of

(2.3.2), thus obtaining the Boltzmann equation:

@f

@t
þ v � rr f þ F

m
� rv f ¼ @f

@t

�

�

�

�

c

(2:3:3)

2.3 THE CONSERVATION EQUATIONS 29



The collision term in integral form will be derived in Appendix B. The preceding

heuristic derivation of the Boltzmann equation can be made rigorous from various

points of view, and the interested reader is referred to texts on plasma theory,

such as Holt and Haskel (1965). A kinetic theory of discharges, accounting for

non-Maxwellian particle distributions, must be based on solutions of the Boltzmann

equation. We give an introduction to this analysis in Chapter 18.

Macroscopic Quantities

The complexity of the dynamical equations is greatly reduced by averaging over the

velocity coordinates of the distribution function to obtain equations depending on

the spatial coordinates and the time only. The averaged quantities, such as species

density, mean velocity, and energy density are called macroscopic quantities, and

the equations describing them are the macroscopic conservation equations. To

obtain these averaged quantities we take velocity moments of the distribution func-

tion, and the equations are obtained from the moments of the Boltzmann equation.

The average quantities that we are concerned with are the particle density,

n(r, t) ¼
ð

f d3v (2:3:4)

the particle flux

G(r, t) ¼ nu ¼
ð

vf d3v (2:3:5)

where u(r, t) is the mean velocity, and the particle kinetic energy per unit volume

w ¼ 3

2
pþ 1

2
mu2n ¼ 1

2
m

ð

v2f d3v (2:3:6)

where p(r, t) is the isotropic pressure, which we define below. In this form, w is sum

of the internal energy density 3
2
p and the flow energy density 1

2
mu2n.

Particle Conservation

The lowest moment of the Boltzmann equation is obtained by integrating all terms

of (2.3.3) over velocity space. The integration yields the macroscopic continuity

equation:

@n

@t
þ r � (nu) ¼ G� L (2:3:7)

The collision term in (2.3.3), which yields the right-hand side of (2.3.7), is equal to

zero when integrated over velocities, except for collisions that create or destroy
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particles, designated as G and L, respectively (e.g., ionization, recombination).

In fact, (2.3.7) is transparent since it physically describes the conservation of

particles. If (2.3.7) is integrated over a volume V bounded by a closed surface S,
then (2.3.7) states that the net number of particles generated per second within

V, either flows across the surface S or increases the number of particles within V.
For common low-pressure discharges in the steady state, G is usually due to ioniz-

ation by electron–neutral collisions:

G ¼ nizne

where niz is the ionization frequency. The volume loss rate L, usually due to recom-

bination, is often negligible. Hence

r � (nu) ¼ nizne (2:3:8)

in a typical discharge. However, note that the continuity equation is clearly not

sufficient to give the evolution of the density n, since it involves another quantity,

the mean particle velocity u.

Momentum Conservation

To obtain an equation for u, a first moment is formed by multiplying the Boltzmann

equation by v and integrating over velocity. The details are complicated and involve

evaluation of tensor elements. The calculation can be found in most plasma theory

texts, for example, Krall and Trivelpiece (1973). The result is

mn
@u

@t
þ u � rð Þu

� �

¼ qn Eþ u� Bð Þ � r �Pþ f

�

�

�

�

c

(2:3:9)

The left-hand side is the species mass density times the convective derivative of the

mean velocity, representing the mass density times the acceleration. The convective

derivative has two terms: the first term @u=@t represents an acceleration due to an

explicitly time-varying u; the second “inertial” term (u � r)u represents an

acceleration even for a steady fluid flow (@=@t ; 0) having a spatially varying u.

For example, if u ¼ x̂ ux(x) increases along x, then the fluid is accelerating along

x (Problem 2.4). This second term is nonlinear in u and can often be neglected in

discharge analysis.

The mass times acceleration is acted upon, on the right-hand side, by the body

forces, with the first term being the electric and magnetic force densities. The

second term is the force density due to the divergence of the pressure tensor,

which arises due to the integration over velocities

Pij ¼ mnk vi � uð Þ vj � u
� �

lv (2:3:10)
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where the subscripts i, j give the component directions and k�lv denotes the velocity
average of the bracketed quantity over f.� For weakly ionized plasmas it is almost

never used in this form, but rather an isotropic version is employed:

P ¼
p 0 0

0 p 0

0 0 p

0

@

1

A (2:3:11)

such that

r �P ¼ rp (2:3:12)

a pressure gradient, with

p ¼ 1

3
mnk(v� u)2lv (2:3:13)

being the scalar pressure. Physically, the pressure gradient force density arises as

illustrated in Figure 2.4, which shows a small volume acted upon by a pressure

that is an increasing function of x. The net force on this volume is p(x) dA� p(xþ
dx) dA and the volume is dA dx. Hence the force per unit volume is �@p=@x.

The third term on the right in (2.3.9) represents the time rate of momentum trans-

fer per unit volume due to collisions with other species. For electrons or positive ions

the most important transfer is often due to collisions with neutrals. The transfer is

usually approximated by a Krook collision operator

fjc ¼ �
X

b

mnnmb(u� ub):� m(u� uG)Gþ m(u� uL)L (2:3:14)

where the summation is over all other species, ub is the mean velocity of species b,
nmb is the momentum transfer frequency for collisions with species b, and uG and uL
are the mean velocities of newly created and lost particles. Generally juGj � juj for
pair creation by ionization, and uL � u for recombination or charge transfer loss

processes. We discuss the Krook form of the collision operator further in Chapter

18. The last two terms in (2.3.14) are generally small and give the momentum trans-

fer due to the creation or destruction of particles. For example, if ions are created at

rest, then they exert a drag force on the moving ion fluid because they act to lower

the average fluid velocity.

A common form of the average force (momentum conservation) equation is

obtained from (2.3.9) neglecting the magnetic forces and taking ub ¼ 0 in the

�We assume f is normalized so that k f lv ¼ 1.
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Krook collision term for collisions with one neutral species. The result is

mn
@u

@t
þ u � ru

� �

¼ qnE� rp� mnnmu (2:3:15)

where only the acceleration (@u=@t), inertial (u � ru), electric field, pressure gradi-

ent, and collision terms appear. For slow time variation, the acceleration term can

be neglected. For high pressures, the inertial term is small compared to the collision

term and can also be dropped.

Equations (2.3.7) and (2.3.9) together still do not form a closed set, since the

pressure tensor P (or scalar pressure p) is not determined. The usual procedure to

close the equations is to use a thermodynamic equation of state to relate p to n.

The isothermal relation for an equilibrium Maxwellian distribution is

p ¼ nkT (2:3:16)

so that

rp ¼ kTrn (2:3:17)

where T is the temperature in kelvin and k is Boltzmann’s constant

(k ¼ 1.381 � 10223 J/K). This holds for slow time variations, where temperatures

are allowed to equilibrate. In this case, the fluid can exchange energy with its sur-

roundings, and we also require an energy conservation equation (see below) to deter-

mine p and T. For a room temperature (297 K) neutral gas having density ng and

pressure p, (2.3.16) yields

ng (cm�3) � 3:250� 1016 p (Torr) (2:3:18)

p

p p

A

A

x

x x x

x x

FIGURE 2.4. The force density due to the pressure gradient.
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Alternatively, the adiabatic equation of state is

p ¼ Cng (2:3:19)

such that

rp
p

¼ g
rn
n

(2:3:20)

where g is the ratio of specific heat at constant pressure to that at constant

volume. The specific heats are defined in Section 7.2; g ¼ 5/3 for a perfect gas;

for one-dimensional adiabatic motion, g ¼ 3. The adiabatic relation holds for

fast time variations, such as in waves, when the fluid does not exchange energy

with its surroundings; hence an energy conservation equation is not required.

For almost all applications to discharge analysis, we use the isothermal equation

of state.

Energy Conservation

The energy conservation equation is obtained by multiplying the Boltzmann

equation by 1
2
mv2 and integrating over velocity. The integration and some other

manipulation yield

@

@t

3

2
p

� �

þ r � 3
2

puð Þ þ pr � uþ r � q ¼ @

@t

3

2
p

� �
�

�

�

�

c

(2:3:21)

Here 3
2
p is the thermal energy density (J/m3), 3

2
pu is the macroscopic thermal energy

flux (W/m2), representing the flow of the thermal energy density at the fluid velocity

u, pr � u (W/m3) gives the heating or cooling of the fluid due to compression or

expansion of its volume (Problem 2.5), q is the heat flow vector (W/m2), which

gives the microscopic thermal energy flux, and the collisional term includes all col-

lisional processes that change the thermal energy density. These include ionization,

excitation, elastic scattering, and frictional (ohmic) heating. The equation is usually

closed by setting q ¼ 0 or by letting q ¼ �kTrT , where kT is the thermal conduc-

tivity. For most steady-state discharges the macroscopic thermal energy flux is

balanced against the collisional processes, giving the simpler equation

r � 3

2
pu

� �

¼ @

@t

3

2
p

� �
�

�

�

�

c

(2:3:22)

Equation (2.3.22), together with the continuity equation (2.3.8), will often prove suf-

ficient for our analysis.
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Summary

Summarizing our results for the macroscopic equations describing the electron and

ion fluids, we have in their most usually used forms the continuity equation

r � (nu) ¼ nizne (2:3:8)

the force equation,

mn
@u

@t
þ u � ru

� �

¼ qnE� rp� mnnmu (2:3:15)

the isothermal equation of state

p ¼ nkT (2:3:16)

and the energy-conservation equation

r � 3

2
pu

� �

¼ @

@t

3

2
p

� ��

�

�

�

c

(2:3:22)

These equations hold for each charged species, with the total charges and currents

summed in Maxwell’s equations. For example, with electrons and one positive

ion species with charge Ze, we have

r ¼ e Zni � neð Þ (2:3:23)

J ¼ e Zniui � neueð Þ (2:3:24)

These equations are still very difficult to solve without simplifications. They consist

of 18 unknown quantities ni, ne, pi, pe, Ti, Te, ui,ue,E, and B, with the vectors each

counting for three. Various simplifications used to make the solutions to the

equations tractable will be employed as the individual problems allow.

2.4 EQUILIBRIUM PROPERTIES

Electrons are generally in near-thermal equilibrium at temperature Te in discharges,

whereas positive ions are almost never in thermal equilibrium. Neutral gas mol-

ecules may or may not be in thermal equilibrium, depending on the generation

and loss processes. For a single species in thermal equilibrium with itself (e.g., elec-

trons), in the absence of time variation, spatial gradients, and accelerations, the
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Boltzmann equation (2.3.3) reduces to

@f

@t

�

�

�

�

c

¼ 0 (2:4:1)

where the subscript c here represents the collisions of a particle species with itself.

We show in Appendix B that the solution of (2.4.1) has a Gaussian speed distribution

of the form

f (v) ¼ C e�j 2mv 2 (2:4:2)

The two constants C and j can be obtained by using the thermodynamic relation

w ¼ 1

2
mnkv2lv ¼

3

2
nkT (2:4:3)

that is, that the average energy of a particle is 1
2
kT per translational degree of

freedom, and by using a suitable normalization of the distribution. Normalizing

f (v) to n, we obtain

C

ð2p

0

df

ðp

0

sin u du

ð1

0

exp �j2mv2
� �

v2 dv ¼ n (2:4:4)

and using (2.4.3), we obtain

1

2
mC

ð2p

0

df

ðp

0

sin u du

ð1

0

exp �j2mv2
� �

v4dv ¼ 3

2
nkT (2:4:5)

where we have written the integrals over velocity space in spherical coordinates. The

angle integrals yield the factor 4p. The v integrals are evaluated using the relation�

ð1

0

e�u2u2i du ¼ (2i� 1)!!

2iþ1

ffiffiffiffi

p
p

, where i is an integer �1: (2:4:6)

Solving for C and j we have

f (v) ¼ n
m

2pkT

	 
3=2

exp �mv2

2kT

� �

(2:4:7)

which is the Maxwellian distribution.

�!! denotes the double factorial function; for example, 7!! ¼ 7� 5� 3� 1.
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Similarly, other averages can be performed. The average speed �v is given by

�v ¼ m=2pkTð Þ3=2
ð1

0

v exp � v2

2v2th

� �� �

4pv2 dv (2:4:8)

where vth ¼ (kT=m)1=2 is the thermal velocity. We obtain

�v ¼ 8kT

pm

� �1=2

(2:4:9)

The directed flux Gz in (say) theþz direction is given by nkvzlv, where the average is
taken over vz . 0 only. Writing vz ¼ v cos u we have in spherical coordinates

Gz ¼ n
m

2pkT

	 
3=2
ð2p

0

df

ðp=2

0

sin u du

ð1

0

v cos u exp � v2

2v2th

� �

v2 dv

Evaluating the integrals, we find

Gz ¼ 1

4
n�v (2:4:10)

Gz is the number of particles per square meter per second crossing the z ¼ 0 surface

in the positive direction. Similarly, the average energy flux Sz ¼ nk 1
2
mv2vzlv in the

þz direction can be found: Sz ¼ 2kTGz. We see that the average kinetic energyW per

particle crossing z ¼ 0 in the positive direction is

W ¼ 2kT (2:4:11)

It is sometimes convenient to define the distribution in terms of other variables.

For example, we can define a distribution of energies W ¼ 1
2
mv2 by

4pg Wð Þ dW ¼ 4p f vð Þv2 dv

Evaluating dv=dW , we see that g and f are related by

g Wð Þ ¼ v(W) f ½v(W)�
m

(2:4:12)

where v(W) ¼ (2W=m)1=2.

Boltzmann’s Relation

A very important relation can be obtained for the density of electrons in thermal

equilibrium at varying positions in a plasma under the action of a spatially varying
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potential. In the absence of electron drifts (ue ; 0), the inertial, magnetic, and fric-

tional forces are zero, and the electron force balance is, from (2.3.15) with @=@t ; 0,

eneEþ rpe ¼ 0 (2:4:13)

Setting E ¼ �rF and assuming pe ¼ nekTe , (2.4.13) becomes

�enerFþ kTerne ¼ 0

or, rearranging,

r(eF� kTe ln ne) ¼ 0 (2:4:14)

Integrating, we have

eF� kTe ln ne ¼ const

or

ne(r) ¼ n0 e
eF(r)=kTe (2:4:15)

which is Boltzmann’s relation for electrons. We see that electrons are “attracted” to

regions of positive potential. We shall generally write Boltzmann’s relation in more

convenient units

ne ¼ n0 e
F=Te (2:4:16)

where Te is now expressed in volts, as is F.

For positive ions in thermal equilibrium at temperature Ti, a similar analysis shows

that

ni ¼ n0 e
�F=Ti (2:4:17)

Hence positive ions in thermal equilibrium are “repelled” from regions of positive

potential. However, positive ions are almost never in thermal equilibrium in low-

pressure discharges because the ion drift velocity ui is large, leading to inertial or

frictional forces in (2.3.15) that are comparable to the electric field or pressure gra-

dient forces.

Debye Length

The characteristic length scale in a plasma is the electron Debye length lDe. As we
will show, the Debye length is the distance scale over which significant charge

densities can spontaneously exist. For example, low-voltage (undriven) sheaths

are typically a few Debye lengths wide. To determine the Debye length, let us intro-

duce a sheet of negative charge having surface charge density rS , 0 C/m2 into an
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infinitely extended plasma having equilibrium densities ne ¼ ni ¼ n0. For simplicity

we assume immobile ions, such that ni ¼ n0 after the sheet is introduced. However,

the negative sheet “repels” nearby electrons, leading to a reduced electron density

near the sheet. The situation after introduction of the sheet is shown in Figure 2.5.

To determine the potential and density variation, we use Poisson’s equation,

which in one dimension can be written as

d2F

dx2
¼ � e

e0
ni � neð Þ (2:4:18)

Setting ne ¼ n0 exp(F=Te), from the Boltzmann relation (2.4.16), and taking

ni ¼ n0, Poisson’s equation becomes

d2F

dx2
¼ en0

e0
eF=Te � 1
� �

(2:4:19)

Expanding exp F=Teð Þ in a Taylor series for F � Te, (2.4.19) becomes, to lowest

order in F=Te,

d2F

dx2
¼ en0

e0

F

Te

(2:4:20)

The symmetric solution of (2.4.20) that vanishes at x ¼ +1 is

F ¼ F0 e
�jxj=lDe (2:4:21)

where

lDe ¼ e0Te

en0

� �1=2

(2:4:22)

x

n

s < 0

ne

n i = n0

0

x0

FIGURE 2.5. Calculation of the electron Debye length lDe. A negatively charged sheet is

introduced into a plasma containing electrons in thermal equilibrium.

2.4 EQUILIBRIUM PROPERTIES 39



In practical units, we find

lDe (cm) � 743
ffiffiffiffiffiffiffiffiffiffiffiffi

Te=ne
p

(2:4:23)

with Te in volts and ne in cm23. We find for Te ¼ 4 V and ne ¼ 1010 cm23 that

lDe ¼ 0.14 mm. It is on space scales larger than a Debye length that the plasma

will tend to remain neutral.

The Debye length is useful in many contexts. In the next chapter we shall see that

it serves as a characteristic scale length to shield the Coulomb potentials of individ-

ual charged particles when they collide. Although we have calculated the above

effect for electron shielding, it is also possible on slower time scales for the ions

to contribute. We leave the calculation for a problem. Ion shielding plays a key

role in dusty plasmas, which we treat in Chapter 17.

Quasi-neutrality

The potential variation across a plasma of length l 	 lDe can be estimated from

Poisson’s equation (2.2.11):

r2F � F

l2
� e

e0
(Zni � ne)

�

�

�

�

�

�

�

�

(2:4:24)

We generally expect that

F . Te ¼ e

e0
nelDe

2 (2:4:25)

where the equality on the right follows from the definition of lDe. Combining

(2.4.24) and (2.4.25) we have

jZni � nej
ne

. l2De
l2

(2:4:26)

For l2De=l
2 � 1, (2.4.26) implies that

jZni � nej � ne (2:4:27)

such that we can set

Zni ¼ ne (2:4:28)

except when used in Poisson’s equation. Relation (2.4.27) is the basic statement of

quasi-neutrality of a plasma, and is often called the plasma approximation.We shall

see in Chapter 6 that the plasma approximation is violated within a plasma sheath, in

proximity to a material wall, either because the sheath thickness s � lDe, or because
F 	 Te.
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PROBLEMS

2.1. Charge Conservation Derive the conservation of charge law (2.2.5) from

Maxwell’s equations.

2.2. Homogeneous Discharge Model A plasma is confined between two

grounded (F ¼ 0) parallel plates located at x ¼ 0 and x ¼ l. The ion density

is ni(x) ¼ n0 for 0 , x , l. The electron density is ne(x) ¼ n0 for s , x ,
l� s and is ne(x) ¼ 0 in the “sheath” regions 0 , x , s and l� s , x , l.

(a) Solve Poisson’s equation to determine the potential F(x) everywhere

within the discharge 0 , x , l. Find F0 ¼ F(l=2) in the center of the dis-

charge. Plot F(x) versus x for 0 , x , l for s ¼ l=8.

(b) Plot the electric field Ex versus x and show that it acts to confine electrons

within the bulk plasma at both sheaths.

(c) ChoosingF0 ¼ 4Te, find an expression for s and show that s is of the order

of an electron Debye length.

2.3. Potential in Asymmetric Discharge A plasma is confined between two

grounded (F ¼ 0) parallel conducting plates located at x ¼ 0 and x ¼ l. The

ion density is ni(x) ¼ n0 for 0 , x , l. The electron density is ne(x) ¼ n0 for

l=4 , x , l and is ne(x) ¼ 0 in the “sheath” region 0 , x , l=4 near the

left-hand plate.

(a) Plot the volume charge density r(x) within the plates.

(b) Solve Poisson’s equation to determine the potential F(x) everywhere

within the discharge 0 , x , l. Plot F(x) versus x for 0 , x , l. (Make

sure that F and dF=dx are continuous functions at x ¼ l=4 and that F ¼
0 at the two plates x ¼ 0, l, consistent with Maxwell’s equations.)

(c) Plot the electric field Ex versus x within the plates.

(d) Find the surface charge density rS on each of the plates. (Since both plates

are grounded, there is no electric field outside the plates.)

2.4. Bernoulli’s Law Starting from the force equation (2.3.9), derive Bernoulli’s

law for an incompressible fluid in steady one-dimensional flow:

1

2
mnu2(x)þ p(x) ¼ const

How would you use this effect to measure the change in the velocity of a fluid

as it flows through a constriction in a pipe?

2.5. Compressional Heating of a Fluid Show using a one-dimensional calcu-

lation that the relative rate of change with time of a small volume DV
moving with the fluid velocity u can be written as

1

DV
d(DV)
dt

¼ r � u

Hence, show from (2.3.21) that if the fluid expands, its internal energy decreases.
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2.6. Adiabatic Equation of State Derive the adiabatic equation of state (2.3.19)

using particle conservation (2.3.7) and energy conservation (2.3.21), by assum-

ing that the heat flow vector q and all collision terms in these equations are

zero.

2.7. Averages Over a Maxwellian Distribution

(a) Show by integrating (2.4.8) that the average speed of electrons in a

Maxwellian distribution is �ve ¼ (8eTe=pm)
1=2.

(b) Show by integrating the equation above (2.4.10) that the average one-way

particle flux is Ge ¼ ne �ve=4.

(c) Find the average one-way energy flux Se by integrating the energy flux over

a Maxwellian distribution. Comparing Se to Ge, show that (2.4.11) holds,

that is, the average kinetic energy per particle crossing a surface is

We ¼ 2kTe.

2.8. Debye Length Including Ions In the derivation of the Debye length in

Section 2.4, it was assumed that the ions were immobile. Assuming mobile

electrons and ions with densities given by the Boltzmann factors (2.4.16)

and (2.4.17), derive an expression for the Debye length lD. For Te 	 Ti,

show that the Debye length depends on the ions alone. [However, note that

in a typical discharge, the ions are not in thermal equilibrium, and (2.4.17) is

not valid. The effective Debye length is then usually determined by the elec-

trons alone: lD � lDe.]

2.9. Sphere Immersed in a Plasma A conducting sphere of radius a is immersed

in an infinite uniform plasma having density n0 , electrons in thermal equili-

brium at temperature Te , and infinite mass (immobile) ions. A small dc

voltage V0 � Te is applied to the sphere with respect to the plasma.

(a) Starting from Poisson’s equation in spherical coordinates and using

Boltzmann’s relation for the electrons at temperature Te , derive an

expression for the potential F(r) everywhere in the plasma.

(b) Find an expression for the Debye length from your expression for F(r).

(c) The capacitance of the sphere (with respect to the plasma) is C ¼ q=V0,

where q is the total charge on the sphere and V0 is the voltage of the

sphere with respect to the plasma. Find C.

Hint: Note that for spherical symmetry, r2F ¼ (1=r)d2(rF)=dr2.
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CHAPTER 3

ATOMIC COLLISIONS

3.1 BASIC CONCEPTS

When two particles collide, various phenomena may occur. As examples, one or

both particles may change their momentum or their energy, neutral particles can

become ionized, and ionized particles can become neutral. We introduce the funda-

mentals of collisions between electrons, positive ions, and gas atoms in this chapter,

concentrating on simple classical estimates of the important processes in noble gas

discharges such as argon. For electrons colliding with atoms, the main processes are

elastic scattering in which primarily the electron momentum is changed, and inelas-

tic processes such as excitation and ionization. For ions colliding with atoms, the

main processes are elastic scattering in which momentum and energy are exchanged,

and resonant charge transfer. Other important processes occur in molecular gases.

These include dissociation, dissociative recombination, processes involving

negative ions, such as attachment, detachment, and positive–negative ion charge

transfer, and processes involving excitation of molecular vibrations and rotations.

We defer consideration of collisions in molecular gases to Chapter 8.

Elastic and Inelastic Collisions

Collisions conserve momentum and energy: the total momentum and energy of the

colliding particles after collision are equal to that before collision. Electrons and

fully stripped ions possess only kinetic energy. Atoms and partially stripped ions

have internal energy level structures and can be excited, de-excited, or ionized,
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corresponding to changes in potential energy. It is the total energy, which is the sum

of the kinetic and potential energy, that is conserved in a collision.

If the internal energies of the collision partners do not change, then the sum of

kinetic energies is conserved and the collision is said to be elastic. Although the

total kinetic energy is conserved, kinetic energy is generally exchanged between

particles. If the sum of kinetic energies is not conserved, then the collision is inelas-

tic. Most inelastic collisions involve excitation or ionization, such that the sum

of kinetic energies after collision is less than that before collision. However, super-

elastic collisions can occur in which an excited atom can be de-excited by a

collision, increasing the sum of kinetic energies.

Collision Parameters

The fundamental quantity that characterizes a collision is its cross section s (vR),

where vR is the relative velocity between the particles before collision. To define

this, we consider first the simplest situation shown in Figure 3.1, in which a flux G ¼
nv of particles having mass m, density n, and fixed velocity v is incident on a half-

space x . 0 of stationary, infinitely massive “target” particles having density ng. In

this case, vR ¼ v. Let dn be the number of incident particles per unit volume at

x that undergo an “interaction” with the target particles within a differential distance

dx, removing them from the incident beam. Clearly, dn is proportional to n, ng, and

dx for infrequent collisions within dx. Hence we can write

dn ¼ �s nng dx (3:1:1)

where the constant of proportionality s that has been introduced has units of area

and is called the cross section for the interaction. The minus sign denotes removal

from the beam. To define a cross section, the “interaction” must be specified, for

example, ionization of the target particle, excitation of the incident particle to a

given energy state, or scattering of the incident particle by an angle exceeding

p=2. Multiplying (3.1.1) by v, we find a similar equation for the flux:

dG ¼ �sGng dx (3:1:2)

A

FIGURE 3.1. A flux of incident particles collides with a population of target particles in the

half-space x . 0.
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For a simple interpretation of s , let the incident and target particles be hard

elastic spheres of radii a1 and a2, and let the “interaction” be a collision between

the spheres. In a distance dx there are ng dx targets within a unit area perpendicular

to x. Draw a circle of radius a12 ¼ a1 þ a2 in the x ¼ const plane about each target.

A collision occurs if the centers of the incident and target particles fall within this

radius. Hence the fraction of the unit area for which a collision occurs is

ng dxpa
2
12. The fraction of incident particles that collide within dx is then

dG

G
¼ dn

n
¼ �ngs dx (3:1:3)

where

s ¼ pa212 (3:1:4)

is the hard sphere cross section. In this particular case, s is independent of v.

Equation (3.1.2) is readily integrated to give the collided flux

G(x) ¼ G0(1� e�x=l) (3:1:5)

with the uncollided flux G0 e
�x=l. The quantity

l ¼ 1

ngs
(3:1:6)

is the mean free path or the decay of the beam, that is, the distance over which the

uncollided flux decreases to 1=e of its initial value G0 at x ¼ 0. If the velocity of

the beam is v, then the mean time between interactions is

t ¼ l

v
(3:1:7)

Its inverse is the interaction or collision frequency

n ; t�1 ¼ ngs v (3:1:8)

and is the number of interactions per second that an incident particle has with the

target particle population. We can also define the collision frequency per unit

density, which is called the rate constant

K ¼ s v (3:1:9)
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and, trivially, from (3.1.8) and (3.1.9)

n ¼ Kng (3:1:10)

Differential Scattering Cross Section

Let us consider only those interactions that scatter the particles by u ¼ 908 or more.

For hard spheres, taking the angle of incidence equal to the angle of reflection, the

908 collision occurs on the x ¼ 458 diagonal (see Fig. 3.2), therefore having a cross

section

s 90 ¼ pa212
2

, (3:1:11)

which is a factor of two smaller than (3.1.4). Of course, multiple collisions at smaller

angles (radii larger than a12=
ffiffiffi

2
p

) also eventually scatter incident particles through

908. This indeterminacy indicates that a more precise way of determining the scat-

tering cross section is required. For this purpose we introduce a differential scatter-

ing cross section I(v, u). Consider a beam of particles incident on a scattering center

(again assumed fixed), as shown in Figure 3.3. We assume that the scattering force is

symmetric about the line joining the centers of the two particles. A particle incident

at a distance b off-center from the target particle is scattered through an angle u, as
shown in Figure 3.3. The quantity b is the impact parameter and u is the scattering

angle (see also Fig. 3.2). Now, flux conservation requires that for incoming flux G,

G2pb db ¼ �GI(v, u)2p sin u du (3:1:12)

a

a a b

FIGURE 3.2. Hard-sphere scattering.
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b

b

FIGURE 3.3. Definition of the differential scattering cross section.
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that is, that all particles entering through the differential annulus 2pb db leave

through a differential solid angle dV ¼ 2p sin u du. The minus sign is because an

increase in b leads to a decrease in u. The proportionality constant is just I(v, u),
which has the dimensions of area per steradian. From (3.1.12) we obtain

I(v, u) ¼ b

sin u

db

du

�

�

�

�

�

�

�

�

(3:1:13)

The quantity db=du is determined from the scattering force, and the absolute value is

used since db=du is negative. We will calculate I(v, u) for various potentials in

Section 3.2.

We can calculate the total scattering cross section s sc by integrating I over the

solid angle

s sc ¼ 2p

ðp

0

I(v, u) sin u du (3:1:14)

It is clear that s sc ¼ s for scattering through any angle, as defined in (3.1.2). It is

often useful to define a different cross section

s m ¼ 2p

ðp

0

(1� cos u) I(v, u) sin u du (3:1:15)

The factor (1� cos u) is the fraction of the initial momentum mv lost by the incident

particle, and thus (3.1.15) is the momentum transfer cross section. It is s m that is

appropriate for calculating the frictional drag in the force equation (2.3.9). For a

single velocity, we would just have nm ¼ s mv, where s m is generally a function

of velocity. In the macroscopic force equation (2.3.15), nm must be obtained by aver-

aging over the particle velocity distributions, which we do in Section 3.5.

We illustrate the use of the differential scattering cross section to calculate the

total scattering and momentum transfer cross sections for the hard-sphere model

shown in Figure 3.2. The impact parameter is b ¼ a12 sin x, and differentiating,

db ¼ a12 cos x dx, so that

b db ¼ a212 sin x cos x dx ¼ 1

2
a212 sin 2x dx (3:1:16)

From Figure 3.2 the scattering angle u ¼ p� 2x, such that (3.1.16) can be written as

b db ¼ � 1

4
a212 sin u du (3:1:17)
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Substituting (3.1.17) into (3.1.13), we have

I(v, u) ¼ 1

4
a212 (3:1:18)

Using the definitions of s sc and s m in (3.1.14) and (3.1.15), respectively, we find

s sc ¼ s m ¼ pa212 (3:1:19)

for hard-sphere collisions. In general, s sc = s m for other scattering forces. For

electron collisions with atoms the electron radius is negligible compared to the

atomic radius so that a12 � a, the atomic radius. Although the value of a �
10�8 cm gives s sc ¼ s m � 3� 10�16 cm2, which is reasonable, it does not

capture the scaling of the cross section with speed.

In the following sections of this chapter, we consider collisional processes in

more detail. Except for Coulomb collisions, we confine our attention to electron–

atom and ion–atom processes. After a discussion of collision dynamics in

Section 3.2, we describe elastic collisions in Section 3.3 and inelastic collisions in

Section 3.4. We reserve a discussion of some aspects of inelastic collisions until

Chapter 8, in which a more complete range of atomic and molecular processes is

considered. In Section 3.5, we describe the averaging over particle velocity distri-

butions that must be done to obtain the collisional rate constants. Experimental

values for argon are also given in Section 3.5; these are needed for discussing

energy transfer and diffusive processes in the succeeding chapters. A more detailed

account of collisional processes, together with many results of experimental

measurements, can be found in McDaniel (1989), McDaniel et al. (1993), Massey

et al. (1969–1974), Smirnov (1981), and Raizer (1991).

3.2 COLLISION DYNAMICS

Center-of-Mass Coordinates

In a collision between projectile and target particles there is recoil of the target as

well as deflection of the projectile. In fact, both may be moving, and, in the case

of like-particle collisions, not distinguishable. To describe this more complicated

state, a center-of-mass (CM) coordinate system can be introduced in which projec-

tiles and targets are treated equally. Without loss of generality, we can transform to a

coordinate system in which one of the particles is stationary before the collision.

Hence, we consider a general collision in the laboratory frame between two particles

having mass m1 and m2, position r1 and r2 , velocity v1 and v2 ; 0, and scattering

angle u1 and u2 , as shown in Figure 3.4a. We assume that the force F acts along the

line joining the centers of the particles, with F12 ¼ �F21.
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The center-of-mass coordinates may be defined by the linear transformation

R ¼ m1r1 þ m2r2

m1 þ m2

(3:2:1)

and

r ¼ r1 � r2 (3:2:2)

with the accompanying CM velocity

V ¼ m1v1 þ m2v2

m1 þ m2

(3:2:3)

and the relative velocity

vR ¼ v1 � v2 (3:2:4)

b

1

2

v2́

v1¢

m2

v2 ∫ 0

v1
m1

b

vR¢

vR
mR

r(t)

Fixed
center

b

(a)

(b)

FIGURE 3.4. The relation between the scattering angles in (a) the laboratory system and (b)

the center-of-mass (CM) system.
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The force equations for the two particles are:

m1 _v1 ¼ F12(r), m2 _v2 ¼ F21(r) ¼ �F12(r) (3:2:5)

Adding these equations we get the result for the CMmotion that _V ¼ 0, such that the

CM moves with constant velocity throughout the collision. Now dividing the first of

(3.2.5) by m1 and the second by m2, and using the definition in (3.2.4) we have

mR _vR ¼ F12(r) (3:2:6)

which is the equation of motion of a “fictitious” particle with a reduced mass

mR ¼ m1m2

m1 þ m2

(3:2:7)

in a fixed central force F12(r). The fictitious particle has mass mR, position r(t),

velocity vR(t), and scattering angle Q, as shown in Figure 3.4b. This result holds

for any central force, including the hard-sphere, Coulomb, and polarization forces

that we subsequently consider. If (3.2.6) can be solved to obtain the motion, includ-

ingQ, then we can transform back to the laboratory frame to get the actual scattering

angles u1 and u2. It is easy to show from momentum conservation (Problem 3.2) that

tan u1 ¼ sinQ

(m1=m2)(vR=v0R)þ cosQ
(3:2:8a)

and

tan u2 ¼ sinQ

vR=v0R � cosQ
(3:2:8b)

where vR and v0R are the speeds in the CM system before and after the collision,

respectively.

For an elastic collision, the scattering force can be written as the gradient of a

potential that vanishes as r ¼ jrj ! 1:

F12 ¼ �rU(r) (3:2:9)

It follows that the kinetic energy of the particle is conserved for the collision in the

CM system. Hence v0R ¼ vR, and we obtain from (3.2.8) that

tan u1 ¼ sinQ

m1=m2 þ cosQ
(3:2:10)
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and, using the double-angle formula for the tangent,

u2 ¼ 1

2
(p�Q) (3:2:11)

For electron collisions with ions or neutrals, m1=m2 � 1 and we obtain mR � m1

and u1 � Q. For collision of a particle with an equal mass target, m1 ¼ m2, we

obtain mR ¼ m1=2 and u1 ¼ Q=2. Hence for hard-sphere elastic collisions against

an initially stationary equal mass target, the maximum scattering angle is 908.
Since the same particles are scattered into the differential solid angle

2p sinQ dQ in the CM system as are scattered into the corresponding solid angle

2p sin u1 du1 in the laboratory system, the differential scattering cross sections

are related by

I(vR,Q) 2p sinQ dQ ¼ I(vR, u1) 2p sin u1 du1 (3:2:12)

where dQ=du1 can be found by differentiating (3.2.10).

Energy Transfer

Elastic collisions can be an important energy transfer process in gas discharges, and

can also be important for understanding inelastic collision processes such as ioniz-

ation, as we will see in Section 3.4. For the elastic collision of a projectile of massm1

and velocity v1 with a stationary target of mass m2, the conservation of momentum

along and perpendicular to v1 and the conservation of energy can be written in the

laboratory system as

m1v1 ¼ m1v
0
1 cos u1 þ m2v

0
2 cos u2 (3:2:13)

0 ¼ m1v
0
1 sin u1 � m2v

0
2 sin u2 (3:2:14)

1

2
m1v

2
1 ¼

1

2
m1v

0
1
2 þ 1

2
m2v

0
2
2

(3:2:15)

where the primes denote the values after the collision. We can eliminate v01 and u1
and solve (3.2.13)–(3.2.15) to obtain

1

2
m2v

0
2
2 ¼ 1

2
m1v

2
1

4m1m2

(m1 þ m2)
2
cos2 u2 (3:2:16)

Since the initial energy of the projectile is 1
2
m1v

2
1 and the energy gained by

the target is 1
2
m2v

0
2
2, the fraction of energy lost by the projectile in the laboratory
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system is

zL ¼ 4m1m2

(m1 þ m2)
2
cos2 u2 (3:2:17)

Using (3.2.11) in (3.2.17), we obtain

zL ¼ 2m1m2

(m1 þ m2)
2
(1� cosQ) (3:2:18)

where Q is the scattering angle in the CM system. We average over the differential

scattering cross section to obtain the average loss:

kzLlQ ¼ 2m1m2

(m1 þ m2)
2

Ð

(1� cosQ)I(vR,Q)2p sinQ dQ
Ð

I(vR,Q)2p sinQ dQ

¼ 2m1m2

(m1 þ m2)
2

s m

s sc

(3:2:19)

where s sc and s m are defined in (3.1.14) and (3.1.15).

For hard-sphere scattering of electrons against atoms, we have m1 ¼ m (electron

mass) and m2 ¼ M (atom mass), and s sc ¼ s m by (3.1.19), such that kzLlQ ¼
2m=M � 10�4. Hence electrons transfer little energy due to elastic collisions with

heavy particles, allowing Te � Ti in a typical discharge. On the other hand, for

m1 ¼ m2, we obtain kzLlQ ¼ 1
2
, leading to strong elastic energy exchange among

heavy particles and hence to a common temperature.

Small Angle Scattering

In the general case, (3.2.6) must be solved to determine the CM trajectory and the

scattering angle Q. We outline this approach and give some results in Appendix A.

Here we restrict attention to small-angle scattering (Q � 1) for which the

fictitious particle moves with uniform velocity vR along a trajectory that is practi-

cally unaltered from a straight line. In this case, we can calculate the transverse

momentum impulse Dp? delivered to the particle as it passes the center of force

at r ¼ 0 and use this to determine Q. For a straight-line trajectory, as shown in

Figure 3.5, the particle distance from the center of force is

r ¼ (b2 þ v2Rt
2)1=2 (3:2:20)

where b is the impact parameter and t is the time. We assume a central force of the

form (3.2.9) with

U(r) ¼ C

r i
(3:2:21)
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where i is an integer. The component of the force acting on the particle perpendicu-

lar to the trajectory is (b=r)jdU=drj. Hence the momentum impulse is

Dp? ¼
ð1

�1

b

r

dU

dr

�

�

�

�

�

�

�

�

dt (3:2:22)

Differentiating (3.2.20) to obtain

dt ¼ r

vR

dr

(r2 � b2)1=2

substituting into (3.2.22), and dividing by the incident momentum pk ¼ mRvR, we

obtain

Q ¼ Dp?
pk

¼ 2b

mRv
2
R

ð1

b

dU

dr

�

�

�

�

�

�

�

�

dr

(r2 � b2)1=2
(3:2:23)

The integral in (3.2.23) can be evaluated in closed form (Smirnov, 1981, p. 384) to

obtain

Q ¼ A

WRbi
(3:2:24)

where WR ¼ 1
2
mRv

2
R is the CM energy and

A ¼ C
ffiffiffiffi

p
p

G ½(iþ 1)=2�
2G ½(iþ 2)=2� (3:2:25)

FIGURE 3.5. Calculation of the differential scattering cross section for small-angle

scattering. The center-of-mass trajectory is practically a straight line.
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with G, the Gamma function.� Inverting (3.2.24), we obtain

b ¼ A

WRQ

� �1=i

(3:2:26)

and differentiating, we obtain

db ¼ � 1

i

A

WR

� �1=i
dQ

Q1þ1=i
(3:2:27)

Substituting (3.2.26) and (3.2.27) into (3.1.13), with sinQ � Q, we obtain the differ-

ential scattering cross section for small angles:

I(vR,Q) ¼ 1

i

A

WR

� �2=i
1

Q2þ2=i
(3:2:28)

The variation of s , n, and K with vR are determined from (3.2.28) and the basic

definitions in Section 3.1. If (3.2.28) is substituted into (3.1.14) or (3.1.15), then we

see that a scattering potential U / r�i leads to s / v
�4=i
R and n/ K / v

�(4=i)þ1
R .

These scalings are summarized in Table 3.1 for the important scattering processes,

which we describe in the next section.

3.3 ELASTIC SCATTERING

Coulomb Collisions

The most straightforward elastic scattering process is a Coulomb collision between

two charged particles q1 and q2 , representing an electron–electron, electron–ion, or

ion–ion collision. The Coulomb potential is U(r) ¼ q1q2=4pe0r such that i ¼ 1 and

TABLE 3.1. Scaling of Cross Section s, Interaction Frequency n,
and Rate Constant K, With Relative Velocity vvvvvR, for Various

Scattering Potentials U

Process U(r) s n or K

Coulomb 1/r 1/vR
4 1/vR

3

Permanent dipole 1/r2 1/vR
2 1/vR

Induced dipole 1/r4 1/vR Const

Hard sphere 1/ri, i!1 Const vR

�G (l) ¼ (l� 1)! ¼ lG (l� 1) with G (1=2) ¼ ffiffiffiffi

p
p

.
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we obtain

A ¼ C ¼ q1q2

4pe0

from (3.2.25). Using this in (3.2.28), we find

I ¼ b0

Q2

� �2

(3:3:1)

where

b0 ¼ q1q2

4pe0WR

(3:3:2)

is called the classical distance of closest approach. The differential scattering cross

section can also be calculated exactly, which we do inAppendix A, obtaining the result

I ¼ b0

4 sin2(Q=2)

� �2

(3:3:3)

However, due to the long range of the Coulomb forces, the integration of I over

small Q (large b) leads to an infinite scattering cross section and to an infinite

momentum transfer cross section, such that an upper bound to b, bmax, must be

assigned. This is done by setting bmax ¼ lDe, the Debye shielding distance for a

charge immersed in a plasma, which we calculated in Section 2.4. For momentum

transfer, the dependence of s m on lDe is logarithmic (Problem 3.5), and the exact

choice of bmax (or Qmin) makes little difference. For scattering, s sc � pl2De,
which is a very large cross section that depends sensitively on the choice of bmax.

However, we are generally not interested in scattering through very small angles,

which do not appreciably affect the discharge properties. The cross section for

scattering through a large angle, say Q � p=2, is of more interest.

There are two processes that lead to a large scattering angle Q for a Coulomb

collision: (1) a single collision scatters the particle by a large angle; (2) the cumu-

lative effect of many small-angle collisions scatters the particle by a large angle. The

two processes are illustrated in Figure 3.6; the latter process is diffusive and, as we

will see, dominates the former.

To estimate the cross section s 90(sgl) for a single large-angle collision, we inte-

grate (3.3.3) over solid angles from p=2 to p to obtain (Problem 3.6)

s 90(sgl) ¼ 1

4
pb20 (3:3:4)

To estimate s 90(cum) for the cumulative effect of many collisions to produce a

p=2 deflection, we first determine the mean square scattering angle kQ2l1 for a
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single collision by averagingQ2 over all permitted impact parameters. Since the col-

lisions are predominantly small angle for Coulomb collisions, we can use (3.2.24),

which is Q ¼ b0=b. Hence

kQ2l1 ¼
1

pb2max

ðbmax

bmin

q1q2

4pe0WR

� �2
2pb db

b2
(3:3:5)

The integration has a logarithmic singularity at both b ¼ 0 and b ¼ 1, which is cut

off by the finite limits. The singularity at the lower limit is due to the small-angle

approximation. Setting bmin ¼ b0=2 is found to approximate a more accurate calcu-

lation. The upper limit, as already mentioned, is bmax ¼ lDe. Using these values and
integrating, we obtain

kQ2l1 ¼
2pb20
pb2max

lnL (3:3:6)

where L ¼ 2lDe=b0 � 1.

The number of collisions per second, each having a cross section of pb2max or

smaller, is ngpb
2
maxvR, where ng is the target particle density. Since the spreading

of the angle is diffusive, we can then write

kQ2l(t) ¼ kQ2l1ngpb2maxvRt

Setting t ¼ t90 at kQ2l ¼ (p=2)2 and using (3.3.6), we obtain (see also Spitzer, 1956,
Chapter 5)

n90 ¼ t�1
90 ¼ ngvR

8

p
b20 lnL

(a) (b)

FIGURE 3.6. The processes that lead to large-angle Coulomb scattering: (a) single large-

angle event; (b) cumulative effect of many small-angle events.
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Writing n90 ¼ ngs 90vR, we see that

s 90 ¼ 8

p
b20 lnL (3:3:7)

Although L is a large number, typically lnL � 10 for the types of plasmas we are

considering.

Comparing s 90(sgl) to s 90, we see that due to the large range of the Coulomb

fields, the effective cross section for many small-angle collisions to produce a

root mean square (rms) deflection of p=2 is larger by a factor (32=p 2) lnL.
Because of this enhancement, it is possible for electron–ion or ion–ion particle col-

lisions to play a role in weakly ionized plasmas (say one percent ionized). Another

important characteristic of Coulomb collisions is the strong velocity dependence.

From (3.3.2) we see that b0 / 1=v2R. Thus, from (3.3.4) or (3.3.7)

s 90 / 1

v4R
(3:3:8)

such that low-velocity particles are preferentially scattered. The temperature of the

species is therefore important in determining the relative importance of the various

species in the collisional processes, as we shall see in subsequent sections.

Polarization Scattering

The main collisional processes in a weakly ionized plasma are between charged and

neutral particles. For electrons at low energy and for ions scattering against neutrals,

the dominant process is relatively short-range polarization scattering. At higher

energies for electrons, the collision time is shorter and the atoms do not have

time to polarize. In this case the scattering becomes more Coulomb-like, but with

bmax at an atomic radius, inelastic processes such as ionization become important

as well. The condition for polarization scattering is vR . vat, where vat is the charac-

teristic electron velocity in the atom, which we obtain in the next section. Because of

the short range of the polarization potential, we need not be concerned with an upper

limit for the integration over b, but the potential is more complicated. We determine

the potential from a simple model of the atom as a point charge of value þq0 , sur-

rounded by a uniform negative charge sphere (valence electrons) of total charge

�q0 , such that the charge density is r ¼ �q0=
4
3
pa3, where a is the atomic radius.

An incoming electron (or ion) can polarize the atom by repelling (or attracting)

the charge cloud quasistatically. The balance of forces on the central point charge

due to the displaced charge cloud and the incoming charged particle, taken to

have charge q, is shown in Figure 3.7, where the center of the charge cloud and

the point charge are displaced by a distance d. Applying Gauss’ law to a sphere
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of radius d around the center of the cloud,

4pe0d
2Eind ¼ �q0

d3

a3

we obtain the induced electric field acting on the point charge due to the displaced

cloud

Eind ¼ � q0d

4pe0a3

The electric field acting on the point charge due to the incoming charge is

Eappl ¼ q

4pe0r2

For force balance on the point charge, the sum of the fields must vanish, yielding an

induced dipole moment for the atom:

pd ¼ q0d ¼ qa3

r2
(3:3:9)

The induced dipole, in turn, exerts a force on the incoming charged particle:

F ¼ 2pdq

4pe0r3
r̂ ¼ 2q2a3

4pe0r5
r̂ (3:3:10)

d

r

q0

q

a
Gaussian
sphere

FIGURE 3.7. Polarization of an atom by a point charge q.
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Integrating F with respect to r, we obtain the attractive potential energy:

U(r) ¼ � q2a3

8pe0r4
(3:3:11)

The polarizability for this simple atomic model is defined as ap ¼ a3. The

relative polarizabilities aR ¼ ap=a
3
0, where a0 is the Bohr radius, for some simple

atoms and molecules are given in Table 3.2.

The orbits for scattering in the polarization potential are complicated (McDaniel,

1989). As shown in Figure 3.8, there are two types of orbits. For impact parameter

b . bL , the orbit has a hyperbolic character, and for b � bL, the straight-line trajec-

tory analysis in Section 3.2 can be applied (Problem 3.7). For b , bL, the incoming

particle is “captured” and the orbit spirals into the core, leading to a large scattering

angle. Either the incoming particle is “reflected” by the core and spirals out again, or

the two particles strongly interact, leading to inelastic changes of state.

The critical impact parameter bL can be determined from the conservation of

energy and angular momentum for the incoming particle having mass m and

speed v0 , with the mass of the scatterer taken to be infinite for ease of analysis. In

cylindrical coordinates (see Fig. 3.8a), we obtain

1

2
mv20 ¼

1

2
m(_r2 þ r2 _f

2
)þ U(r) (3:3:12a)

mv0b ¼ mr2 _f (3:3:12b)

TABLE 3.2. Relative Polarizabilities aR 5 ap/a0
3 of

Some Atoms andMolecules, Where a0 is the Bohr Radius

Atom or Molecule aR

H 4.5

C 12.

N 7.5

O 5.4

Ar 11.08

CCl4 69.

CF4 19.

CO 13.2

CO2 17.5

Cl2 31.

H2O 9.8

NH3 14.8

O2 10.6

SF6 30.

Source: Smirnov (1981).
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At closest approach, _r ¼ 0 and r ¼ rmin. Substituting these into (3.3.12) and elimi-

nating _f, we obtain a quadratic equation for r2min:

v20r
4
min � v20b

2r2min þ
apq

2

4pe0m
¼ 0

Using the quadratic formula to obtain the solution for r2min, we see that there is no

real solution for r2min when

(v20b
2)2 � 4v20

apq
2

4pe0m
	 0

Choosing the equality at b ¼ bL, we solve for bL to obtain

s L ¼ pb2L ¼ papq
2

e0m

� �1=2
1

v0
(3:3:13)

which is known as the Langevin or capture cross section. If the target particle has a

finite mass m2 and velocity v2 and the incoming particle has a mass m1 and velocity

v1, then (3.3.13) holds provided m is replaced by the reduced mass mR ¼
m1m2=(m1 þ m2) and v0 is replaced by the relative velocity vR ¼ jv1 � v2j. We

b

φ
r

(a)

b

(b)

FIGURE 3.8. Scattering in the polarization potential, showing (a) hyperbolic and (b)

captured orbits.
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note that the cross section s L / 1=vR. Hence the collision frequency for capture is

nL ¼ ngs LvR ¼ ngKL (3:3:14)

where

KL ¼ papq
2

e0mR

� �1=2

(3:3:15)

is the rate constant for capture and ng is the target particle density. Both nL and KL

are independent of velocity. In practical units, the rate constants for electrons and

ions are (with q ¼ +e)

KLe ¼ 3:85� 10�8a1=2
R cm3=s (3:3:16)

KLi ¼ 8:99� 10�10 aR

AR

� �1=2

cm3=s (3:3:17)

where AR is the reduced mass in atomic mass units (hydrogen�1 amu) and aR is the

relative polarizability. Because s L / 1=
ffiffiffiEp
, where E is the collision energy in the

CM system, the Langevin cross section dominates the elastic and inelastic colli-

sional behavior at thermal energies (E � 0:026V), especially for ion–neutral

collisions. Some molecules (but not atoms) have permanent dipole moments,

leading to a scattering potential U / 1=r2 and an enhanced Langevin cross

section. We describe this briefly in Chapter 8.

What is the actual velocity dependence of elastic electron–atom collisions? At

low energies we might expect quantum effects to be significant, which is indeed

the case, such that some gases show low-energy resonances in their cross sections.

An example of a simple velocity dependence is shown for hydrogen and helium in

Figure 3.9. Here a normalized cross section unit is used called the probability of col-

lision Pc, defined as the average number of collisions in 1 cm of path through a gas at

1 Torr at 273 K. The elastic collision frequency in these units is

nel ¼ vp0Pc

where p0 ¼ 273p=T . We see from the figure that at low energy the cross section is

hard-sphere-like, being independent of velocity. At higher energies s / v�1 and

thus the polarization potential governs the behavior.

The low-energy cross sections can, in fact, be quite complicated, depending on

quantum mechanical effects. For example, in many gases the quantum mechanical

wave diffraction of the electron around the atom at low energy leads to a “hole”

in the elastic collision frequency at some low energy. This is true for some noble

gases, as seen in Figure 3.10, as well as some processing gases, such as CF4. At
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higher (but still moderate) energy the approximate proportionality for polarization

scattering s / v�1 is still found.

3.4 INELASTIC COLLISIONS

Atomic Energy Levels

The physics and spectroscopy of atoms is a vast area, and we give only a brief

summary here. The reader should consult textbooks such as Bransden and Joachain

(1983) and Thorne (1988) for a more thorough treatment. Atoms consist of one or

more electrons bound to a heavy positive nucleus. In a classical description, elec-

trons move in a circular orbits whose radii a are set by the balance between the

inward electrostatic and the outward centrifugal forces. For the hydrogen atom,

the inward force is the Coulomb force of the proton, leading to the force balance:

e2

4pe0a2
¼ mv2

a
(3:4:1)

From (3.4.1), all radii (and corresponding velocities) are possible. A quantum

description limits the orbits to those for which the angular momentum is an integral

multiple of h� ,

mva ¼ nh� (3:4:2)

where here n � 1 is an integer called the principal quantum number, and h� ¼ h=2p,
with Planck’s constant h � 6:626� 10�34 J s. Solving (3.4.1) and (3.4.2) yields the

0
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1 2 3 4 5 6 7 8 9 10

Volts

20

30

40

50

60

Pc
H2

He

FIGURE 3.9. Probability of collision Pc for electrons in H2 and He; the cross section is s �
2:87� 10�17 Pc cm

2 (after Brown, 1959).
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quantized radii

an ¼ n2a0 (3:4:3)

where, for the lowest level (n ¼ 1),

a0 ¼ 4pe0h
�2

e2m
� 5:29� 10�11 m (3:4:4)

is the Bohr radius. The velocity is

vn ¼ vat

n
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FIGURE 3.10. Probability of collision Pc for electrons in Ne, Ar, Kr, and Xe, showing the

Ramsauer minima for Ar, Kr, and Xe; the cross section is s � 2:87� 10�17 Pc cm2 (after

Brown, 1959).
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where

vat ¼ e2

4pe0h
� � 2:19� 106 m=s (3:4:5)

is the electron velocity in the first Bohr orbit. The characteristic atomic timescale is

then

tat ¼ a0

vat
� 2:42� 10�17 s (3:4:6)

The electron energy Wn is the sum of the kinetic and potential energy,

Wn ¼ 1

2
mv2n �

e2

4pe0an
(3:4:7)

Defining Wn(J) ¼ eEn(V), we obtain

En ¼ �Eat

n2
(3:4:8a)

where

Eat ¼ 1

2

m

e

e2

4pe0h
�

� �2

� 13:61V (3:4:8b)

is the ionization potential of the hydrogen atom in its lowest energy state (n ¼ 1).

For a many-electron atom, a valence electron sees some effective positive charge

Zeffe. This leads to a radius for the first Bohr orbit aeff ¼ a0=Zeff and to an ionization
potential Eiz ¼ Z2

effEat. When we combine these expressions, the radius of an atom is

found to scale as

aeff � a0
Eat

Eiz

� �1=2

(3:4:9)

where Eat is given by (3.4.8b).

This picture, while qualitatively correct, is incomplete. Quantum mechanics spe-

cifies the state of each electron in an atom in terms of four quantum numbers, n, l,ml,

and ms (n, l, and ml are integers), with the restrictions lþ 1 	 n, jmlj 	 l, and with

ms ¼ +1
2
. The quantum numbers l and ml specify the total orbital angular momen-

tum and its component in a particular direction; the quantum numberms specifies the

direction of the electron spin.

For the preceding model, the energy of each level depends only on n. By the res-

trictions on l, ml, and ms, there are 2n2 electron states having the same energy En.
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The energy level En is said to have degeneracy 2n2. For an atom with more than

one electron, the force balance includes not only the attractive force of the

nucleus, but also the repulsive forces of the other electrons. In the central field

model, each electron moves under the influence of a spherically symmetric potential

that includes the average effects of all the other electrons. This breaks the degener-

acy such that the energy is a function of both n and l. Figure 3.11 shows a typical

energy level diagram with the different l values displaced to the right. For historical

reasons, electrons having l ¼ 0, 1, 2, and 3 are known as s, p, d, and f electrons,

respectively.

The Pauli exclusion principle states that no two electrons can have the same state.

Hence stable atoms are built by placing electrons into the available states in order of

increasing energy. For example, the electronic configurations of the lowest-energy

states (ground states) of hydrogen, oxygen, and argon are 1s, 1s22s22p4, and

1s22s22p63s23p6. In this notation, the values of n and l specify a given electron sub-

shell, and the superscript indicates the number of electrons in each subshell, which

holds a maximum of 2(2lþ 1) electrons. The valence electrons, which are those in

the last (usually incomplete) subshell, determine the collisional and other behavior

FIGURE 3.11. Atomic energy levels for the central field model of an atom, showing the

dependence of the energy levels on the quantum numbers n and l; the energy levels are

shown for sodium, without the fine structure (after Thorne, 1988).
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of atoms. For example, an electron collision with an argon atom can excite the atom

to a higher energy level,

eþ Ar �! Ar� þ e

corresponding to a change of state

3 p6 �! 3 p54s1

for the valence electrons.

For the light elements (roughly Z . 40), the energy levels are usually labeled by

the values of the permitted orbital and spin angular momentum L and S for the sum

of all the valence electrons. Levels with different L values are known as S, P, D, and

F levels for L ¼ 0, 1, 2, and 3, by analogy with single-electron terminology. The

integer or half-integer value of S is indicated by a superscript 2Sþ 1, the multi-

plicity, placed to the left of the L value. The degeneracy (number of states) for a

level with a given L and S is (2Lþ 1)(2Sþ 1). Part of the degeneracy is usually

removed by weak magnetic interactions between the spin and orbital motions,

giving rise to additional small splittings of the degenerate energy levels, the so-

called fine structure. This is specified by a quantum number J for the sum of the

total orbital and spin angular momentum, which can have integer or half-integer

value, and which is written as a subscript to the right of the L value. The remaining

degeneracy for each level with a given L, S, and J is 2J þ 1. The ground state energy

levels of hydrogen, oxygen, and argon in this notation are 2S1=2,
3P2 and 1S0,

respectively. For heavy elements, roughly Z & 40, the L and S values are no

longer meaningful quantum numbers, and the n and J values alone, along with

the j values of the individual electrons, can be used to specify a level.

Electric Dipole Radiation and Metastable Atoms

Atoms in their ground states can be excited by collisions or radiation to higher

energy bound states. In most cases, only a single-valence electron is excited.

Most bound states can emit a photon by electric dipole radiation and return to

some lower energy state or to the ground state:

eþ Ar �! Ar� þ e �! Arþ eþ h�v

Here h�v is the photon energy and v is its radian frequency. The radiation is usually

in the visible or ultraviolet. Electric dipole radiation is permitted between two states

only if the selection rules

Dl ¼ +1

DJ ¼ 0,+1 (but J ¼ 0 ! J ¼ 0 forbidden) (3:4:10a)
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are satisfied. For the light elements, with L and S also good quantum numbers,� the
additional rules

DL ¼ 0,+1 (but L ¼ 0 ! L ¼ 0 forbidden),

DS ¼ 0 (3:4:10b)

must also be satisfied.

We can estimate the timescale for electric dipole radiation from the time-average

energy per unit time radiated by a classical oscillating dipole pd(t) ¼ pd0 cosvt
(Jackson, 1975, Chapter 14):

Prad ¼ v4p2d0
12pe0c3

(3:4:11)

Dividing the energy radiated h�v by Prad, we obtain the radiation time

trad ¼ 12pe0h
�c3

v3p2d0
(3:4:12)

Taking the simple estimates pd0 ¼ ea0 and v ¼ eEat=h
� , with Eat given by (3.4.8b),

and using (3.4.6), we obtain

trad ¼ 24
4pe0h

�c

e2

� �3

tat � 6:2� 107tat

� 1:5� 10�9 s (3:4:13)

We see that trad is long compared to the characteristic atomic timescale tat. However,

the characteristic time between collisions is

t � (ngpa
2
0 �v)

�1

For electrons with Te � 3V and ng � 3:3� 1014 cm�3 (corresponding to a gas

pressure of 10 mTorr), we obtain

te � 3� 10�7 s (3:4:14)

For heavy particle collisions, we estimate for Ti � Te and M=m � 104 that

ti � 100te. Hence we have trad � te, ti in low-pressure discharges. This implies

that excited states will generally be de-excited by electric dipole radiation rather

than by collisions.

�If L and S are good quantum numbers, then the atomic state has both a unique orbital and spin angular

momentum.
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Certain excited states, however, cannot satisfy the selection rules (3.4.10) for elec-

tric dipole radiation; for these states pd0 ; 0. While other radiative transitions may

occur, such as electric quadrupole or magnetic dipole radiation, or radiationless tran-

sitions may occur, to states of nearly equal energy that subsequently do radiate, these

mechanisms are generally weak, leading to transition times that can be long compared

to the collision times te and ti. The energy levels fromwhich electric dipole radiation is

forbidden are called metastable, and the excited atoms are called metastable atoms.

Metastable atoms are often present at considerable densities in weakly ionized dis-

charges, where they can be further excited, ionized, or de-excited by collisions.

Figure 3.12a shows the energy levels for argon. The energies are given with

respect to the energy required to create a 2P3=2 Arþ ion from the 1S0 neutral

2P1/2 (Ar
+

) ionization limit

2P3/2 (Ar
+

) ionization limit
0
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(a)

1S0 (–2.280)
3P1 (–2.432)
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1P1 (–2.477)
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1D2 (–2.588)
3D1 (–2.607)
3D2 (–2.665)
3D3 (–2.684)
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FIGURE 3.12. The energy levels of the argon atom, showing (a) the (3p5nl) configurations

and (b) details of the 3p54s and 3p54p configurations, with the two metastable levels shown as

heavy solid lines (after Edgell, 1961).
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ground state. A ground state 3p electron (l ¼ 1) can be excited into one of the states

in the 4s configuration (l ¼ 0), the 4p configuration (l ¼ 1), and so on. Details of the

4s and 4p states are shown in Figure 3.12b, with the energy spacings not drawn to

scale, but with the energies given in parentheses. There are ten levels in the 4p con-

figuration and four levels in the 4s configuration. The 3P0 and
3P2 levels of the 4s

configuration, shown as heavy lines, are metastable, because (a) they do not

satisfy the selection rule on J given in (3.4.10a) for electric dipole radiation to the

ground state, and (b) electric dipole radiation from these levels to a lower energy

4s level does not satisfy the selection rule on l given in (3.4.10a). Accounting for

the degeneracies 2J þ 1, there is one metastable state in the 3P0 level and five in

the 3P2 level. The remaining two levels (1P1 and
3P1) in the 4s configuration, each

containing three states, can radiate to the 3p6 ground state. The resulting radiation

is in the ultraviolet and is called resonance radiation. The 3p54s(1P1) ! 3p6(1S0)

radiative transition at 104.9 nm is very strong, with a lifetime of 2.5 ns. The

3p54s(3P1) ! 3p6(1S0) transition at 106.7 nm is also strong, with a lifetime of

10.4 ns, even though this radiation is “prohibited” by the selection rule on DS given

in (3.4.10b). This is because the additional selection rules in (3.4.10b) apply most

strongly only to the light elements. Argon (mass ¼ 40 amu) satisfies them only

marginally (see Bransden and Joachain, 1983, for further details).

Another example of metastable levels is for the two-valence electron helium

system. Since electric dipole transitions between S ¼ 0 and S ¼ 1 states are forbid-

den by (3.4.10b), the energy level diagram decomposes into two nearly independent

energy level systems: the singlets (2Sþ 1 ¼ 1) and the triplets (2Sþ 1 ¼ 3).

Because Dl ¼ 0 and L ¼ 0 ! L ¼ 0 are forbidden, the 2s(1S0) and 2s(3S1) levels

are metastable. These states find application in He–Ne gas lasers, where they are

excited by e–He collisions and are collisionally de-excited by He� –Ne collisions

to create excited Ne� atoms that subsequently radiate, leading to laser action.

Electron Ionization Cross Section

Quantum mechanics is needed to properly treat electron–atom ionization. We give

here a simple classical description (Thomson, 1912) that provides a qualitative treat-

ment. The basic idea is to determine the condition for the incident electron (having

velocity v) to transfer to a valence electron (assumed to be at rest) an energy equal

to the ionization energy. Using (3.3.1) with q1 ¼ q2 ¼ �e and m1 ¼ m2 ¼ m, the

electron charge and mass, we have for a small angle collision that

I(v, Q) ¼ e2

4pe0

� �2
1

W2
R

1

Q4
(3:4:15)

whereWR ¼ 1
2
mRv

2 is the CM energy and mR ¼ m=2 is the reduced mass. Substitut-

ing u ¼ Q=2 in (3.4.15), we transform to the scattering angle in the laboratory frame,
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and using (3.2.12), we obtain

ds ¼ I(v, u) 2p sin u du ¼ 2p
e2

4pe0

� �2
1

W2

du

u3
(3:4:16)

where W ¼ 1
2
mv2 is the energy in the laboratory system. The energy transfer to a

stationary target from a moving one is

WL ¼ zL(Q)W (3:4:17)

where zL is given by (3.2.18). Again, making the small-angle assumption,

cosQ � 1�Q2=2, with equal mass electrons, we obtain

WL ¼ 1

4
Q2W ¼ u2W (3:4:18)

and

dWL ¼ 2u duW (3:4:19)

Substituting (3.4.18) and (3.4.19) in (3.4.16), we have

ds ¼ p
e2

4pe0

� �2
1

W

dWL

W2
L

(3:4:20)

For ionization, we integrate WL from the ionization energy Uiz (for W . Uiz) to W,

obtaining

s iz ¼ p
e2

4pe0

� �2
1

W

1

Uiz

� 1

W

� �

(3:4:21a)

or, using voltage units W ¼ eE, Uiz ¼ eEiz,

s iz ¼ p
e

4pe0

� �2
1

E
1

Eiz

� 1

E
� �

E . Eiz (3:4:21b)

which is the Thomson cross section. For E , Eiz, s iz ¼ 0. The ionization cross

section reaches its maximum value for E ¼ 2Eiz,

s iz(max) ¼ p

4

e

4pe0

� �2
1

E2
iz
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and falls proportional to E�1 for E � Eiz. The cross section in (3.4.21) should be

multiplied by the number of valence electrons if there is more than one.

Another classical estimate for s iz is found if the orbital electron motion and its

radial distribution is taken into account. Smirnov (1981, p. 253) gives the result:

s iz ¼ p

4

e

4pe0

� �2
1

E
5

3Eiz

� 1

E � 2Eiz

3E2

� �

, E . Eiz (3:4:22)

which has twice the maximum value of the Thomson cross section at E � 1:85Eiz.

Practical formulae for cross sections can be found in Barnett (1989). A quantum

mechanical calculation shows that s iz / ln E=E at high energies.

The ionization rate, at a given energy, is obtained from the cross section as

niz ¼ ngs izv

which falls as v�1 for E � Eiz. As with the collision frequency, the ionizations are

usually caused by a distribution of electron energies, and particularly for a low-

temperature Maxwellian (say Te ¼ 4V) niz is very sensitive to the exponential

tail of the distribution. This also implies great sensitivity to the form of the distri-

bution function. We shall encounter this effect, and the problems of analysis

arising from it, in calculating the particle balance in discharges. In the next

section we consider the effective collision parameters when integrated over the

particle distributions.

Electron Excitation Cross Section

A simple classical estimate for excitation to a given energy level En can be obtained

by following the Thomson procedure but integrating ds over the energy WL trans-

ferred from eEn (for W . eEn) to min(W , eEnþ1). For the total excitation cross

section s ex, ds can be integrated from eE2 (for W . eE2) to min(W , Uiz). We

leave this as an exercise for the reader. Quantum mechanics shows that the cross sec-

tions to levels that are optically forbidden (electric dipole radiation to the ground

state is forbidden) are smaller and fall off faster with energy above the peak than

for electron impact excitation to optically allowed levels.

For real gases, the atomic cross sections are only approximated by the analytic

expressions found here. More accurate determinations are made experimentally

using crossed beam techniques. As an example, for argon, which is a commonly

used gas in discharges, the electron elastic, ionization, and excitation cross sections

are shown in Figure 3.13. The ionization cross section reasonably follows the ana-

lytic estimates with Eiz ¼ 15:76V. The analytic form (3.4.21b) with six valence

electrons has s iz(max) � 3:9� 10�16 cm2 at E � 31:6V, while the experimental

values, from Figure 3.13, are s iz(max) � 3:9� 10�16 cm2 at E � 60V. The total

excitation cross section roughly follows the ionization cross section, except that it

extends to lower energies, because the average excitation energy is roughly
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Eex � 3
4
Eiz ; for argon Eex � 12:14V. The elastic scattering cross section, on the

other hand, has a low energy dependence due to a quantum mechanical resonance,

the Ramsauer minimum, and therefore follows neither the hard-sphere nor the polar-

ization models. At the higher energies the electrons can penetrate into the atomic

cloud and a cross section s el / v�2 is found, which implies an admixture of

polarization and Coulomb scattering.

Ion–Atom Charge Transfer

A positive ion can collide with an atom so as to capture a valence electron, resulting

in a transfer of the electron from the atom to the ion. In general, the energy of the

level from which the electron is released is not equal to the energy of the level

into which the electron is captured, leading to an energy defect DW , which may

be positive or negative. For DW = 0, the kinetic energy of the colliding particles

is not conserved in the collision. If, however, the atom and ion are parent and

child, then the transfer can occur with zero defect; for example,

Arþ (fast) þ Ar (slow)�!Ar (fast)þ Arþ (slow) (3:4:23)

and the process is said to be resonant. Although the ion and atom change their

internal states, their kinetic energy is conserved. The cross section for resonant

charge transfer is large at low collision energies, making this an important

process in weakly ionized plasmas. Here we give a simple classical estimate of

charge transfer that provides a qualitative picture of the process. A more complete

understanding depends on molecular phenomena that will be considered further in

FIGURE 3.13. Ionization, excitation and elastic scattering cross sections for electrons in

argon gas (compiled by Vahedi, 1993).
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Chapter 8. For a more thorough treatment of the phenomena, the reader should

consult the monograph by Bransden and McDowell (1992).

For the reaction

Aþ þ B (at rest) �! Aþ Bþ (at rest) (3:4:24)

the transfer from level n of B requires two steps: release from B and capture by Aþ.
For a center-to-center separation a12 of A

þ and B, the potential energy of the elec-

tron in level n of B is

W ¼ �UizB

n2
� e2

4pe0a12
(3:4:25)

where the first term, from (3.4.8), is the energy when Aþ is not present, and the second

term is the additional electrostatic energy due to the nearby positive charge Aþ. The
potential energy U(z) of an electron in the Coulomb fields of the Aþ and Bþ ions is

U(z) ¼ � e2

4pe0z
� e2

4pe0ja12 � zj (3:4:26)

where z is the distance from the center of Aþ toward B. As sketched in Figure 3.14,

U(z) ! �1 at the centers of Aþ and Bþ and has its maximum value

Umax ¼ � e2

pe0a12
(3:4:27)

at z ¼ a12=2. The condition for release from B is found by equating W to Umax (see

figure), giving

a12 ¼ 3e2n2

4pe0UizB

(3:4:28)

For capture into level n0 of A, the energy defect is

DWAB � UizB

n2
� UizA

n02
(3:4:29)

The capture is energetically possible only if

1

2
mAþv2Aþ � DWAB (3:4:30)

At the low incident velocities of interest in weakly ionized discharges, we have

vAþ � vat, where vat given by (3.4.5) is the characteristic electron velocity in the
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atom. In this case, capture of the released electron occurs with high probability

because the collision time t � a12=vAþ is long compared to the atomic timescale

tat given in (3.4.7). Hence we estimate

s cx �
pa212 for

1

2
mAþv2Aþ & DWAB

0 otherwise

8

<

:

(3:4:31)

with a12 given by (3.4.28). For ground-state resonant transfer (A ; B), (3.4.28)

gives a cross section that is independent of energy:

s cx � 36p
e2

8pe0Uiz

� �2

(3:4:32)

where the quantity in parentheses is approximately the atomic radius of the ground-

state atom.

The cross section (3.4.32) does not show a velocity dependence. However, more

detailed theoretical calculations and experiments show that s cx varies as (Rapp and

Francis, 1962)

s cx � 1

Eiz

(C1 � C2 ln vAþ)2 (3:4:33)

a

FIGURE 3.14. Illustrating the calculation of ion–atom charge transfer.
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in the range of vAþ from 105 to 108 cm=s, withC1 � 1:58� 10�7, C2 � 7:24� 10�8,

Eiz the ionization potential of A in volts, and s cx in cm2. The explanation is indi-

cated in Figure 3.14. Even though electron release from B is not permitted classi-

cally, the electron can tunnel through the potential barrier quantum mechanically.

We can understand the form of (3.4.33) as follows (Smirnov, 1981): The ground-

state valence electron in B oscillates in the Coulomb field of the nucleus with a

period t � h=eEiz. The probability P that the electron tunnels across a potential

barrier of height Eiz from x ¼ 0 to x ¼ b0 in one oscillation is found by solving

the Schrödinger equation for the electron wave function C(x),

� h�2

2m

d2C

dx2
¼ �eEizC (3:4:34)

within this interval of x. We obtain P ¼ jC(b0)=C(0)j2 ¼ e�2ab0 , where

a ¼ 2meEiz

h�2

� �1=2

(3:4:35)

The time for the electron to tunnel from B to Aþ is then tP. Equating this time to the

collision time b0=vAþ and solving for b0, we obtain

b0 � 1

2a
ln

hvAþ
eEizb0

� �

(3:4:36)

Estimating the cross section as s cx � pb20 and rearranging, we obtain the form

(3.4.33).

The cross section (3.4.33) is based on the assumption of straight-line trajectories

for the collision. At low collision energies, the trajectories are strongly perturbed by

the polarization force and the collision partners can be “captured,” as described in

Section 3.3. The cross section s L for capture is given by (3.3.13). For such a

capture, the probability of resonant charge transfer is 1
2
(equal probability that the

electron is found on either particle). Hence we can estimate

s cx � 1

2
s L (3:4:37)

for low collision energies. The condition that the trajectories be strongly perturbed

can be estimated from the dynamics in the polarization potential for typical polariz-

abilities to be vAþ . 105=A1=2
R cm=s, where AR is the reduced mass in amu.

Experimental values for resonant charge transfer and elastic (polarization) scat-

tering of noble gas ions in their parent gases are shown in Figure 3.15. Because

kinetic energy is conserved, resonant charge transfer acts as an elastic collision.

At low energies, the cross sections are large. Because the resonant charge transfer

cross section is large, the particles are practically undeflected in the CM system,
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(a)

(b)

(a)

(b)

(c)

FIGURE 3.15. Experimental values for elastic scattering (s), charge transfer (T), and the

sum of the two mechanisms (t) for helium, neon, and argon ions in their parent gases

(McDaniel et al., 1993).
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leading after the charge transfer to an effective scattering angle for the ion, in the

CM system, of 1808 and a momentum transfer of 2mRvR for every collision.

Hence the momentum transfer cross section for resonant charge transfer is

s mi ¼ 2s cx (3:4:38)

Ion–Atom Ionization

An ion colliding with an atom would be expected to transfer only a small fraction

�2m=M of its kinetic energy E to a valence electron. Hence one might expect

significant ionization only for E & (M=2m)Eiz � 104�105 V. Experimentally,

however, significant ionization is seen for E & 100V; e.g., for argon ions in

argon gas, s iz,i � 10�16 cm2 at E � 200V (Haugsjaa and Amme, 1970). This

phenomenon may be due to the formation of an unstable Arþ2 molecular complex.

We consider processes such as this in Chapter 8. Such a process may be important

in the high-voltage sheaths of capacitive rf discharges.

3.5 AVERAGING OVER DISTRIBUTIONS AND
SURFACE EFFECTS

Averaging Over a Maxwellian Distribution

To obtain the collision quantities in a plasma we integrate over the velocity distri-

bution functions of the particles. The collision frequency and rate constant are then

n ¼ ngK ¼ ngks (vR)vRlv1,v2

¼ ng

ð

d3v1 d
3v2 f1(v1)f2(v2)s (vR)vR (3:5:1)

where the distributions f1 and f2 have been normalized to unity and vR ¼ jv1 � v2j. If
the characteristic velocities of the target particles are much less than those of the

incident particles, which is often the case, then vR � jv1j, and the v2 integration

is trivially done. We usually take the incident distribution to be an isotropic

Maxwellian, since this is the natural outcome of collisional processes, as derived

in Appendix B.

The rate constant is then (writing v for v1)

K(T) ¼ ks (v)vlv

¼ m

2pkT

� �3=2
ð1

0

s (v)v exp �mv2

2kT

� �

4pv2 dv (3:5:2)

where m and T are the incident particle mass and temperature.
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For a hard-sphere collision, for which s ¼ pa212 independent of v, the integration
is easily performed, yielding

K(T) ¼ pa212 �v (3:5:3)

where �v/ T1=2 is the mean speed from (2.4.9). For polarization scattering with

s / 1=v, we find K(T) ¼ const, independent of T. For Coulomb scattering that

has a velocity dependence s el / 1=v4, from (3.3.7) (if we consider lnL as a constant

for purposes of integration), calculating Kel as in (3.5.2) leads to a logarithmic infin-

ity at v ¼ 0. This is apparent, rather than real, as the momentum transfer rate con-

stant Km obtained from (3.1.15), which we use in the force equation, remains

finite (see, e.g., Holt and Haskell, 1965, Chapter 10). For electron–atom ionization

and excitation, with Te � 4V � Eiz, Eex, the threshold energies, only the tail of the

Maxwellian and the behavior of s (v) near threshold contribute to the rate constant,

as shown in Figure 1.9. For ionization, we can expand the Thomson cross section

(3.4.21b) near E ¼ Eiz to obtain

s iz(E) ¼ s 0

E � Eiz

Eiz

E . Eiz

0 E 	 Eiz

8

<

:

where s 0 ¼ p(e=4pe0Eiz)
2 and where E ¼ 1

2
mv2=e. Inserting this into (3.5.2) and

integrating, we obtain

Kiz(Te) ¼ s 0 �ve 1þ 2Te

Eiz

� �

e�Eiz=Te (3:5:4)

where �ve ¼ (8eTe=pm)
1=2. We leave the details to a problem.

In general, for electron collisions with atoms, the experimentally determined

cross sections can be weighted by the electron distribution function and numerically

integrated. Using the measured ionization, excitation, and elastic scattering cross

sections for argon, given in Figure 3.13, we obtain the rate constants K(Te)

shown in Figure 3.16. The rate constants are smoothed by the integration. Below

the ionization and excitation threshold energies, there is an exponential decrease

of the ionization and excitation rate constants with Te, describing the exponentially

decreasing number of electrons that are able to ionize or excite the atom.

As crude analytical approximations to Kiz and Kex, over a limited range of Te, we

can fit the data to an Arrhenius form, obtaining, for example,

Kiz � Kiz0 e
�Eiz=Te (3:5:5)

where Eiz is the ionization energy and where the preexponential factor for argon is

Kiz0 � 5� 10�14 m3=s. For elastic scattering we can do a similar fit, but we most
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often approximate

Kel � Kel0 � 10�13 m3=s (3:5:6)

For ion–atom collisions, we most often require the total ion–atom scattering cross

section for low-energy ions (Ti � 0:05V), which we estimate from the data in

Figure 3.15 to be

s i � 10�14 cm2

Using (3.1.6), we obtain

li ¼ 1

ngs i

� 1

330p
cm, ( p in Torr) (3:5:7)

A more complete and accurate set of rate constants for argon is given in

Table 3.3. The first three collision processes describe elastic scattering, ionization,

and average energy loss-weighted excitation, with the corresponding rate constants

Kel, Kiz, and Kex. These are fits to the numerically determined rate constants in the

range 1 	 Te 	 7V, based on the measured cross sections. The remaining processes

describe excitations and de-excitations among the ground state, 4s metastable and

resonance levels, and 4p levels (see Fig. 3.12).

FIGURE 3.16. Electron collision rate constants Kiz, Kex, and Km versus Te in argon gas

(compiled by Vahedi, 1993).
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Energy Loss per Electron–Ion Pair Created

A very important quantity that we use in subsequent chapters is the collisional

energy loss per electron–ion pair created, Ec(Te), which is defined as

KizEc ¼ KizEiz þ KexEex þ Kel

3m

M
Te (3:5:8)

The terms on the RHS of (3.5.8) account for the loss of electron energy due to ion-

ization, excitation, and elastic (polarization) scattering against neutral atoms. These

are usually the dominant energy losses in weakly ionized electropositive discharges.

The quantity (3m=M)Te is the mean energy lost per electron for a polarization scat-

tering, as determined using (3.2.19). The resultant values of Ec for argon and oxygen

shown in Figure 3.17 are obtained using data such as that given in Figure 3.16 for

argon. Because Ec depends on ratios of rate constants that have sensitive dependence

on Te, accurate values must be used. A reasonable set for argon in the range 1 .
Te . 7V are the first three rate constants in Table 3.3, with Eiz ¼ 15:76V and

Eex ¼ 12:14V. At high temperatures, Ec asymptotes to about 18 V. At temperatures

below Eiz the energy loss per ionizing collision rises as the excitation energy loss

exceeds that due to ionizations, and at temperatures below about two volts the

elastic energy transfer becomes important. For a typical discharge with a tempera-

ture Te ¼ 3V, approximately 61 V of energy is lost per ionizing collision in argon.

TABLE 3.3. Selected Reaction Rate Constants for Argon Discharges

Number Reaction Rate Constant (m3/s) Source

1 eþAr elastic scattering 2.336E–14 Te
1.609

� e0:0618ðln TeÞ2�0:1171ðln TeÞ3
a

2 eþAr ! Arþ þ 2e 2.34E–14 Te
0.59 e217.44/Te a

3 eþAr ! Ar� þ e 2.48E–14 Te
0.33 e212.78/Te a,b

4 eþAr ! Ar(4s)þ e 5.0E–15 Te
0.74 e211.56/Te c

5 eþAr(4s) ! Arþ e 4.3E–16 Te
0.74 d

6 eþAr ! Ar(4p)þ e 1.4E–14 Te
0.71 e213.2/Te c

7 eþAr(4p) ! Arþ e 3.9E–16 Te
0.71 d

8 Ar(4s)þ e ! Ar(4p)þ e 8.9E–13 Te
0.51 e21.59/Te c

9 Ar(4p)þ e ! Ar(4s)þ e 3.0E–13 Te
0.51 d

10 eþAr(4s) ! Arþ þ 2e 6.8E–15 Te
0.67 e24.20/Te c

11 eþAr(4p) ! Arþ þ 2e 1.8E–13 Te
0.61 e22.61/Te c

12 eþArm ! Arrþ e 2E–13 c

13 Arr ! Arþ hn 3.0E7 s21 d,e

14 Ar(4p) ! Arþ hn 3.2E7 s21 d,e

Notes: Te in volts. ThenotationE–8means 1028. Subscriptsmand r denotemetastable and resonance4s levels.
aFit by Gudmundsson (2002) in the range 1 	 Te 	 7 V.
bAverage energy loss-weighted excitation rate constant for Eex ¼ 12:14V.
cKannari et al. (1985).
dAshida et al. (1995).
eAverage first-order rate constant in units of s21.
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For molecular gases, additional collisional energy losses include excitation of

vibrational and rotational energy levels, molecular dissociation, and, for electrone-

gative gases, negative ion formation. We discuss these processes in Chapter 8. As

shown in Figure 3.17, Ec is generally a factor of 2–10 times higher in a molecular

gas than in an atomic gas for electron temperatures below 7 V.

Surface Effects

A few facts must be described about collisions of particles with surfaces. Averaged

over short time scales, electrons and positive ions arrive at surfaces in equal

numbers, and almost all electron–ion pairs recombine on surfaces, leading to the

reinjection of neutral atoms back into the discharge. Hence we will treat surfaces

as “black holes” for charged particles. High-energy ions can also sputter neutral

atoms from surfaces or can cause secondary electrons to be emitted from surfaces.

If Gi is the incident ion flux, then, with secondary emission coefficients g,

Gsput ¼ gsputGi

Gse ¼ gseGi

For incident ion energies of order 1 kV, we find gsput � 1, gse � 0:1�0:2 for metals,

and gse � 1 for some insulators. Sputtering is an important process by which films

are deposited on substrates, and secondary emission is a critical process for main-

taining dc glow discharges. We describe surface processes in detail in Chapter

9. Applications of secondary electron emission and sputtering are described in

Chapters 14 and 16.

FIGURE 3.17. Collisional energy loss per electron–ion pair created, Ec, versus Te in argon

and oxygen (compiled by Gudmundsson, 2002).
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PROBLEMS

3.1. Mean Free Path An electron beam having density ne and velocity ve along

x is incident on a slab of thickness L along x consisting of a mixture of gases

A, B, and C having densities nA, nB, and nC. The collision cross sections for

electrons with each type of gas molecule are s A, s B, and s C.

(a) Assuming that ve is much greater than the thermal velocities of gas mol-

ecules, find the mean free path l of electrons in the gas mixture.

(b) What is the probability that a beam electron entering the slab suffers at

least one collision inside the slab?

3.2. Scattering Angle Transformations Show using momentum conservation

that for collision of a projectile with an initially stationary target (3.2.8)

holds for the transformation of scattering angles between the laboratory and

CM systems.

3.3. Hard Sphere Scattering Using (3.2.10) and (3.2.12), find the differential

scattering cross section in the laboratory system for a hard-sphere elastic col-

lision of a projectile of mass m1 with an initially stationary target of mass m2.

3.4. Differential Scattering Cross Section Using (A.13), (3.2.10), and (3.2.12),

find the differential scattering cross section in the laboratory system for

Coulomb scattering of an electron with an initially stationary electron.

3.5. Momentum Transfer for Coulomb Collisions Calculate the momentum

transfer cross section s m(vR) for Coulomb collisions.

(a) Use the small angle scattering result (3.3.1) in (3.1.15) and integrate from

Qmin toQmax to estimate s m(vR), whereQmin andQmax are determined by

setting b ¼ lDe and b ¼ b0 in (3.2.24), respectively.

(b) Using the exact (Rutherford) cross section (3.3.3), show that

s m(vR) ¼ pb20 ln (2=Qmin), if a lower limit for the scattering angle ofQ ¼
Qmin and an upper limit of Q ¼ p is assumed.

3.6. Large-Angle Coulomb Scattering Integrate (3.3.3) over the appropriate

solid angles to obtain (3.3.4).

3.7. Small-Angle Polarization Scattering For small-angle polarization scatter-

ing, determine the differential scattering cross section (3.2.28) in the CM

system using the potential (3.3.11).

3.8. Cross Sections A point mass m having incoming speed v is scattered by a

fixed (infinite mass) elastic hard sphere of radius a.

(a) Show that the differential elastic scattering cross section is I(v, u) ¼ a2=4.

(b) Find the elastic scattering cross section s el and the momentum transfer

cross section s m and compare.

(c) Modeling electron–neutral elastic scattering in 20 mTorr argon gas at

258C as hard-sphere scattering with a ¼ a1=3
p , where ap ¼ 11:08 a30 is

PROBLEMS 83



the polarizability of argon atoms (a0 � 0:53� 10�8 cm is the Bohr

radius), and with v corresponding to a 5-V electron, find the mean free

path lel and the collision frequency nel for scattering.

3.9. Elastic Scattering Power Losses Consider the average power pel per unit

volume lost by a Maxwellian distribution of electrons at temperature Te due

to elastic scattering of the electrons against a population of cold neutral gas

atoms having a density ng.

(a) Calculate pel if the elastic scattering is due to polarization scattering with a

polarization rate constantKel ¼ KL, given by (3.3.15). Note that in this case

KL is a constant, independent of electron speed. (To find pel, you must inte-

grate the electron energy loss over the Maxwellian distribution of electron

speeds.) Show that your answer agrees with the last term in (3.5.8).

(b) Repeat part (a) if the elastic scattering is due to hard-sphere scattering

with a constant cross section s 0.

3.10. Excitation Cross Section Estimate the total cross section s ex for electron

impact excitation of an atom having one valence electron in the n ¼ 1

ground state to the n . 1 bound states. As a simple model (the Bohr atom),

if Eiz is the ionization potential of the ground state, then the n . 1 states

have energies lying between 3Eiz=4 and Eiz.

(a) To do this, integrate the differential cross section I(v, u) for small-angle

Coulomb scattering of the incoming electron (energy E in volts) by the

(initially stationary) valence electron over all scattering angles u for

which the energy transfer EL to the valence electron lies in the energy

range from 3Eiz=4 to E for E , Eiz, and from 3Eiz=4 to Eiz for E . Eiz.

Note that s ex ¼ 0 for E , 3Eiz=4. The required procedure is similar to

that used to obtain the Thomson ionization cross section s iz.

(b) Plot (linear scales) s ex(E ) and the Thomson cross section s iz(E ) versus
E=Eiz on the same graph and compare.

3.11. Ionization Rate Constant For most gas discharges, the electron temperature

Te � Eiz, the ionization energy of the gas atoms. Thus, electrons in the tail of

the Maxwellian distribution are responsible for the ionization of the gas.

(a) Using the Thomson formula for the ionization cross section near the

threshold energy E ¼ Eiz, obtain the ionization rate constant Kiz given

in (3.5.4).

(b) Plot Kiz (log scale) versus Te (linear scale, in V) for Eiz ¼ 15:8V (argon

gas) and Te in the range 1–6 V.

3.12. Ionization from Metastable State Suppose that an n ¼ 2 metastable level

has an energy E� ¼ 3Eiz=4 above the ground state, such that the metastable

ionization energy is E�
iz ¼ Eiz=4.

(a) Following the Thomson procedure, estimate the ionization cross section

per valence electron from the metastable level, and find the ratio of the

maximum metastable-to-ground-state Thomson ionization cross sections.
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(b) Using your results in (a) and the expression (3.5.4) for the ionization rate

constant, find the ratio of the metastable to the ground-state ionization rate

constants for argon with Eiz ¼ 15:8V and Te ¼ 3 V.

3.13. Excitation of Metastable State Ground state argon atoms have six valence

electrons (3p electrons with orbital angular momentum quantum number

l ¼ 1) in a 1S0 energy level configuration. The first (lowest energy) excited

levels of argon are a group of four closely spaced energy levels (1P1,
3P0,1,2) at E� � 11:6V from the ground state (see Fig. 3.12), with the

excited electron having l ¼ 0 (a 4s electron). Recall that the number of

quantum states per level is 2J þ 1, where J is the total angular momentum

quantum number. The next higher group are the 4p levels at E�� � 13:2V.

(a) Which of the first excited levels are metastable? What fraction of the total

number of quantum states in this group of levels is metastable?

(b) Estimate the total cross section s �(E ) for electron impact excitation of

ground state argon to a metastable state. To do this, integrate the differ-

ential cross section I(v, u ) for small-angle Coulomb scattering of the

incoming electron (energy E in volts) by a (initially stationary) valence

electron over all scattering angles u for which the energy transfer EL to

the valence electron lies in the energy range from E� to E for E , E��,
and from E� to E�� for E . E��. Note that s � ¼ 0 for E , E�.

(c) Plot (linear scales) s �(E ) versus E for 0 , E , 20V. Make sure your

answer is reasonable. The maximum cross section should be of order

10�16 cm2 (see Fig. 3.13).

3.14. Charge Transfer to a Multiply Ionized Ion Following the approach used

in Section 3.4, determine the maximum charge transfer cross section from the

ground state of an atom to an ion having a positive charge of þZe, where

Z . 1.

3.15. Energy Transfer Consider the inelastic collision of two bodies A and B to

form a single body AB�, where AB� is an excited state of AB having exci-

tation energy Eex. Let A and B have masses mA and mB and initial speed vA
and vB ; 0. Using momentum and energy conservation, find the speed vAB�
and the excitation energy Eex after the collision. Hence show that Eex can

never be zero; that is, two bodies cannot collide elastically to form one body.

3.16. Collisional Energy Losses Using the rate constants for the first three col-

lision processes in Table 3.3, along with Eiz ¼ 15:76V and Eex ¼ 12:14V,

(a) Calculate Ec versus Te using (3.5.8) and compare with Figure 3.17.

(b) Show that elastic scattering energy losses are small compared to exci-

tation energy losses for Te & 2V.
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CHAPTER 4

PLASMA DYNAMICS

4.1 BASIC MOTIONS

The equations of motion for a particle acted on by electric and magnetic fields are

m
dv

dt
¼ q½E(r; t)þ v� B(r; t)� (4:1:1a)

dr

dt
¼ v(t) (4:1:1b)

where the RHS of (4.1.1a) is the Lorentz force (2.2.12) and v(t) is the Lagrangian

velocity. These equations cannot be solved for the general case where the force is

a nonlinear function of r, but solutions for various special cases can be found.

Motion in Constant Fields

For a constant electric field E ¼ E0 with B ; 0, the particle moves with a constant

acceleration along E0:

r(t) ¼ r0 þ v0t þ 1

2
a0t

2 (4:1:2)

where r0 and v0 are the particle position and velocity at t ¼ 0 and a0 ¼ qE0=m.
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For a constant magnetic field B ¼ ẑB0 which we take to lie along z, with E ; 0,

the components of (4.1.1a) are

m
dvx

dt
¼ qvyB0 (4:1:3a)

m
dvy

dt
¼ �qvxB0 (4:1:3b)

m
dvz

dt
¼ 0 (4:1:3c)

The trivial z motion is decoupled from the x and y motions. Differentiating (4.1.3a)

and eliminating vy using (4.1.3b), we obtain

d2vx

dt2
¼ �v2

cvx (4:1:4)

where

vc ¼ qB0

m
(4:1:5)

is the gyration or cyclotron frequency. Solving (4.1.4) and using (4.1.3a) to obtain

vy, we find

vx ¼ v?0 cos(vct þ f0) (4:1:6a)

vy ¼ �v?0 sin(vct þ f0) (4:1:6b)

vz ¼ vz0 (4:1:6c)

where v?0 is the speed perpendicular to B0, and f0 is an arbitrary phase. Integrating

(4.1.1b) yields the particle position

x ¼ rc sin(vct þ f0)þ (x0 � rc sinf0) (4:1:7a)

y ¼ rc cos(vct þ f0)þ (y0 � rc cosf0) (4:1:7b)

z ¼ z0 þ vz0t (4:1:7c)

where

rc ¼ v?0

jvcj (4:1:8)

is the gyration radius.
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Equations (4.1.6) and (4.1.7) show that the particle moves in a circular orbit

perpendicular to B having frequency vc and radius rc about a guiding center,

x ¼ x0 , y ¼ y0 , z ¼ z0 þ vz0t, that moves uniformly along z. Positive charges

gyrate around the magnetic field according to the left-hand rule, and negative

charges gyrate according to the right-hand rule. We can understand the motion

by equating the inward Lorentz force to the outward centrifugal force:

jqv?0B0j ¼ mv2?0

rc

as shown in Figure 4.1, which yields circular motion with a radius given by (4.1.8).

The gyrofrequency and radius are important frequency and length scales for

magnetized plasmas. In practical units, for electrons,

fce ¼ vce

2p
� 2:80� 106B0 Hz (B0 in gauss) (4:1:9)

rce � 3:37
ffiffiffiEp

B0

cm (E in volts) (4:1:10)

and for singly charged ions,

fci ¼ vci

2p
� 1:52� 103B0

AR

Hz (B0 in gauss) (4:1:11)

rci � 1:44� 102
ffiffiffiffiffiffiffiffiffiEAR

p
B0

cm (E in volts) (4:1:12)

where AR is the ion mass in atomic mass units (amu). At B0 ¼ 100 G (0.01 T) and for

a 15-V (ionizing) electron, we find fce � 280 MHz and rce � 1:3 mm, showing that

electrons are well confined perpendicular to B.

m

r

r

q B

FIGURE 4.1. Charged particle gyration in a uniform magnetic field; B is directed out of

the page.
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An argon ion (AR ¼ 40) in thermal equilibrium with neutrals (E ¼ 0.026 V) has

fci � 3:8 kHz and rci � 1:4 cm and is more weakly confined. With ambipolar accel-

eration (see Chapter 5), the ion can take on the electron temperature, which at 5 V

would give rci � 20 cm, which is larger than a typical discharge. Hence ions are not

well confined by the magnetic field. We will often model electrons as confined and

ions as not confined in weakly magnetized discharges.

E 3 B Drifts

A simple solution is obtained for a particle moving in uniform E and B fields.

Without loss of generality, we take B ¼ ẑB0 and E ¼ E? þ ẑEz0 ¼ x̂E?0 þ ẑEz0.

Letting v ¼ ẑvz(t)þ v?(t) in the Lorentz force equation (4.1.1a), we obtain a

uniform acceleration along z, as in (4.1.2), and the equation for the transverse

motion:

m
dv?
dt

¼ q(x̂E?0 þ v? � ẑB0) (4:1:13)

We let

v?(t) ¼ vE þ vc(t) (4:1:14)

where vE is a constant velocity. Using this in (4.1.13), we find

m
dvc

dt
¼ q(x̂E?0 þ vE � ẑB0 þ vc � ẑB0)

Choosing the first two terms on the RHS to cancel, we obtain

vE ¼ E� B

B2
0

(4:1:15)

and

m
dvc

dt
¼ qvc � ẑB0 (4:1:16)

We can write E rather than E? in (4.1.15) because ẑEz0 � B ; 0. We have seen that

the solution to (4.1.16) is gyration at frequency vc with gyration radius rc. Hence the

transverse motion is the sum of a guiding center drift vE and a gyration:

v?(t) ¼ vE þ Re(vc0 e
jvct) (4:1:17)

We note from (4.1.15) that vE is perpendicular to both E and B and is independent of

the mass and charge of the particles; hence electrons and ions drift with the same
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speed in the same direction. If ni ¼ ne, there is no net current. Integrating (4.1.1b)

using (4.1.17), we obtain

r?(t) ¼ r?0 þ vEt þ Re
1

jvc

vc0 e
jvct

� �

(4:1:18)

for the particle position. The orbits for electrons and ions are shown in Figure 4.2 for

the case where the particles are initially at rest. In this case, jvc0j ¼ jvEj and the

kinetic energies of the drift and gyration motions are equal. The orbits are cycloids

with maximum displacement 2jvE=vcj along y as shown. Physically, E? initially

accelerates the particles along y; as they gain speed, the v� B force turns them

back toward their initial y positions.

It is clear from the procedure used to solve (4.1.13) that any constant transverse

force F? acting on a gyrating particle in a constant magnetic field will give rise to a

drift perpendicular to both F? and B:

vF ¼ (F?=q)� B

B2
0

(4:1:19)

Nonuniform magnetic fields can give rise to additional forces both along (Fz) and

perpendicular (F?) to B. We consider these forces and the resulting particle

motion in Section 4.3.

Energy Conservation

Dot multiplying (4.1.1a) by v, we obtain

d

dt

1

2
mv2

� �

¼ qv � E½r(t); t� (4:1:20)

which shows that the magnetic field does no work on the particle. The rate of change

of kinetic energy is equal to the power qv � E transferred from the electric field to the

y

FIGURE 4.2. Motion of electrons and ions in uniform crossed E and B fields.

4.1 BASIC MOTIONS 91



particle. For a static field, E(r) ¼ �rF, (4.1.20) can be written as

d

dt

1

2
mv2

� �

¼ �q
dr

dt
� rF½r(t)� ¼ �q

d

dt
F½r(t)�

which can be integrated to yield

1

2
mv2(t)þ qF½r(t)� ¼ const (4:1:21)

This expresses the energy conservation for a particle in a static electric field.

For a collection of particles (a fluid consisting of one species), the force

equation

mn
du

dt
¼ qn(Eþ u� B)� rp� mnnmu (4:1:22)

repeated here from (2.3.15), is more complicated, with additional terms due to

pressure gradients and collisions with particles of other species. Recall that d=dt ;
@=@t þ u � r is the convective derivative and that u(r; t) is the Eulerian fluid

velocity, which is related to the Lagrangian particle velocity by v(t) ¼ u½r(t); t�.
Equation (4.1.22) cannot generally be solved, even when the fields are known. Fur-

thermore, in most cases the fields themselves are functions of the particle motions,

which act as charge and current sources in the Maxwell or Poisson equations. These

must be determined self-consistently with the particle motions. This coupling of

particles and fields lies at the root of all plasma phenomena.

In this chapter, we describe various solutions to (4.1.1) or (4.1.22), coupling the

particle motions to the fields as needed. In Section 4.2, we consider a uniform

unmagnetized plasma and introduce the coupling to describe such collective

phenomena as plasma oscillations, the plasma dielectric constant, and, equivalently,

the plasma conductivity. The conductivity determines the ohmic power dissipation,

which is an important mechanism for electron heating in discharges. We also intro-

duce wave phenomena, which can be important for plasma heating. The remainder

of the chapter is devoted to magnetized plasmas, which are finding increasing appli-

cation in materials processing. Guiding center motion in nonuniform magnetic fields

is described in Section 4.3. Guiding center concepts play an important role in hot

electron confinement in several low-pressure, high-density source concepts, which

we describe in Chapters 11, 13, and 14. The dielectric tensor for magnetized

plasmas is introduced in Section 4.4, and is used in Section 4.5 to describe waves

in uniform magnetized plasmas. These waves play a critical role in energy depo-

sition in several high-density sources, such as electron cyclotron resonance

(ECR) and helicon sources, which we discuss in Chapter 13, and are also important

for plasma diagnostics, which we introduce in Section 4.6. Wave phenomena in non-

uniform or bounded plasmas will be dealt with in the application chapters that

follow, when the need for the material naturally arises. The subject of waves in
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plasmas is vast, and the reader should consult more specialized monographs (Allis

et al., 1963; Stix, 1992; Ginzburg, 1964) for more thorough treatments. We defer the

study of steady-state solutions in nonuniform plasmas, which are important for

particle diffusion and transport, to Chapter 5.

4.2 NONMAGNETIZED PLASMA DYNAMICS

Plasma Oscillations

As the simplest example of the coupling of particles and fields, we consider the

undriven motion of a plasma slab of finite width l containing a density ne ¼ ni ¼
n0 of cold (Te ¼ 0) electrons and infinite mass (stationary) ions. Since ne ¼ ni ,

the electric field E ¼ 0 in the slab. Now let the slab of electrons be displaced to

the right with respect to the ions by a small distance ze(t) � l at time t, as shown

in Figure 4.3a. This leads to a surface charge density rS ¼ en0ze at the left edge

due to the uncovering of the stationary ion cloud. We similarly obtain rS ¼
�en0ze at the right edge. Using Gauss’ law (2.2.6) applied to the pillbox shown

in Figure 4.3b, these equal and opposite surface charges lead to an electric field

within the slab:

Ex ¼ en0ze
e0

(4:2:1)

The force equation for the electrons is�

m
d2ze
dt2

¼ �eEx (4:2:2)

FIGURE 4.3. Plasma oscillations in a slab geometry: (a) displacement of electron cloud

with respect to ion cloud; (b) calculation of the resulting electric field.

�Since ze is small, the u � ru term in (4.1.22) is small and there is no difference between Eulerian and

Lagrangian velocities.
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Substituting (4.2.1) into (4.2.2) yields

d2ze
dt2

¼ �v2
peze (4:2:3)

where

vpe ¼ e2n0

e0m

� �1=2

(4:2:4)

the electron plasma frequency, is the fundamental characteristic frequency of a

plasma. The solution of (4.2.3) is

ze(t) ¼ ze0 cos(vpet þ f0) (4:2:5)

which represents a sinusoidal oscillation of the electron cloud with respect to the ion

cloud at the natural frequency vpe. In practical units,

fpe ¼ vpe

2p
� 8980

ffiffiffiffiffi

n0
p

Hz; (n0 in cm�3) (4:2:6)

Plasma frequencies for discharges are typically in the microwave region

(1–10 GHz).

If the assumption of infinite mass ions is not made, then the ions also move

slightly and we obtain (Problem 4.1) the natural frequency

vp ¼ (v2
pe þ v2

pi)
1=2 (4:2:7)

where

vpi ¼ e2n0

e0M

� �1=2

(4:2:8)

is the ion plasma frequency. For M � m, vp � vpe.

The existence of plasma oscillations does not depend on the assumption of a slab

geometry. It can be shown that any perturbed charge density oscillates at the plasma

frequency (Problem 4.2). Note that the characteristic plasma scale length, velocity,

and frequency are related by

lDe ¼ vth

vpe

(4:2:9)

Plasma oscillations are damped in time by collisions (Problem 4.3) and can also

be damped collisionlessly by a mechanism known as Landau damping, which we
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describe below, when considering electrostatic waves. Collisional damping usually

dominates Landau damping in discharges, and the oscillations generally fall to noise

levels if there are no external drives.

Dielectric Constant and Conductivity

We now consider a uniform plasma in the presence of a background gas that is

driven by a small amplitude time-varying electric field:

Ex(t) ¼ ~Ex cosvt ¼ Re ~Ex e
jvt (4:2:10)

where ~Ex is the electric field amplitude. We again let the ion mass be infinite for ease

of calculation, and we assume that all quantities vary sinusoidally in time at

frequency v. The electron force equation is

m
dux

dt
¼ �eEx � mnmux (4:2:11)

where nm is the electron–neutral collision frequency. Letting

ux(t) ¼ Re ~ux e
jvt (4:2:12)

and using this and (4.2.10) in (4.2.11), we obtain the complex velocity amplitude

~ux ¼ � e

m

1

jvþ nm
~Ex (4:2:13)

From (2.2.7), the total current is

JTx ¼ e0
@Ex

@t
þ Jx (4:2:14)

where the conduction current Jx is due to the electron motion only, which, in the cold

plasma approximation, is

~Jx ¼ �en0 ~ux (4:2:15)

We also have that

@Ex

@t
¼ Re jv ~Ex e

jvt

such that the total current amplitude is

~JTx ¼ jve0 ~Ex � en0 ~ux (4:2:16)
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Using (4.2.13) in (4.2.16), we obtain

~JTx ¼ jve0 1� v2
pe

v(v� jnmÞ

" #

~Ex (4:2:17)

which relates the total current to the electric field in the sinusoidal steady state.

Hence we can introduce an effective plasma dielectric constant

ep ¼ e0kp ¼ e0 1� v2
pe

v(v� jnm)

" #

(4:2:18)

where kp is the relative dielectric constant. Maxwell’s equation (2.2.2) can then be

written

r� ~H ¼ jvep ~E (4:2:19)

where we can introduce the displacement vector ~D ¼ ep ~E, showing the correspon-

dence of a plasma to a dielectric material.

We can also introduce a plasma conductivity by writing (4.2.17) in the form
~JTx ¼ (sp þ jve0) ~Ex, with

sp ¼
e0v

2
pe

jvþ nm
(4:2:20)

such that (2.2.2) becomes

r � ~H ¼ (sp þ jve0) ~E (4:2:21)

Equations (4.2.19) and (4.2.21) are equivalent. Hence we can consider a plasma to

be either a dielectric ep or a conductor sp , as we find useful. For low frequencies

v � nm, vpe, we find that sp ! sdc, where

sdc ¼
e0v

2
pe

nm
¼ e2n0

mnm
(4:2:22)

which is the dc plasma conductivity in the cold plasma approximation. For electron–

ion rather than electron–neutral collisions, (4.2.22) is replaced by the parallel
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Spitzer conductivity

sei � 0:019T3=2
e

lnL
V�1 m�1 (Te in volts) (4:2:23)

where ln L is defined in (3.3.6).

For high frequencies, it is more useful to consider ep rather than sp . For v � nm ,
(4.2.18) reduces to the collisionless plasma dielectric constant

ep ¼ e0kp ¼ e0 1� v2
pe

v2

 !

(4:2:24)

At very high driving frequencies (in the high microwave regime) where v . vpe, ep
is positive but less than e0; hence the plasma acts as a dielectric with a relative

dielectric constant less than unity. At lower frequencies, v , vpe , which is true

for most discharges driven at rf frequencies, we see that ep , 0. A slab of such a

plasma of width l and cross-sectional area A then has a capacitance C ¼ epA=l
that is negative, corresponding to an impedance Z ¼ 1=( jvC) that is inductive (posi-
tive imaginary). Hence the plasma behaves like an inductor in this frequency regime.

Figure 4.4 illustrates the rf current and electric field amplitudes and phases in the

sheath and plasma regions in the regime nm � v � vpe , which is typical for low-

pressure rf discharges. From (2.2.8), ~JTx is the same in the sheath and plasma

regions. In the sheath regions, there is only displacement current and

~Ex(sheath) ¼
~JTx

jve0
(4:2:25a)

In the bulk plasma region,

~Ex( plasma) ¼
~JTx

jvep
(4:2:25b)

Since ep , 0 and jepj � e0, the field in the bulk plasma is much smaller than, and

1808 out of phase with, the fields in the sheaths, as shown in the figure. Hence almost

all of the rf voltage is dropped across the sheath regions, and comparatively little

voltage appears across the bulk plasma.

Ohmic Heating

Although the electric field within the bulk plasma is small, it gives rise to a signifi-

cant electron heating due to electron–neutral collisions. The time-average power per
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unit volume absorbed by the plasma, pabs , is given by

pabs ¼ 1

T

ðT

0

JT(t) � E(t) dt ¼ 1

2
Re (~JT � ~E�

) ¼ 1

2
Re (~J

�
T � ~E) (4:2:26)

where T ¼ 2p=v is the period, the asterisk denotes complex conjugation, and the

latter forms follow from (4.2.10) and the equivalent expression for JT(t) (Problem

4.5). If we substitute ~JT ¼ (sp þ jve0) ~E into (4.2.26), then we obtain the collisional

(ohmic) power absorbed by the electrons in terms of the electric field amplitude ~E:

pohm ¼ 1

2
j ~Ej2sdc

n2m
v2 þ n2m

(4:2:27)

In many cases, the current density is known rather than the electric field. Letting
~E ¼ ~JT=(sp þ jve0) in (4.2.26), we obtain

pohm ¼ 1

2
j~JTj2Re 1

sp þ jve0

� �

(4:2:28)

FIGURE 4.4. Radio frequency (rf) current and electric field amplitudes and phases in the

sheath and plasma regions of an rf discharge.
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Taking the real part of 1=(sp þ jve0), we obtain

Re
1

sp þ jve0

� �

¼ 1

sdc

v4
pe

(v2
pe � v2)2 þ v2n2m

 !

(4:2:29)

For v � vpe , the term in parentheses is unity and we obtain the simple result

pohm ¼ 1

2
j~JTj2 1

sdc

(4:2:30)

We shall apply (4.2.27) or (4.2.30) to find ohmic power absorption from waves as

well as from oscillating fields. We will return to the calculation in Chapter 11 on

rf discharges, where we determine ~JT, given the external driving source.

However, we shall also find that, for low-pressure discharges, the ohmic power

may not be the main source of power absorption by the plasma electrons. Rather,

a mechanism of electron collisions with the oscillating sheaths can provide the

principal electron heating.

Electromagnetic Waves

Waves can be important to carry energy from the surface of a plasma, where the

wave is excited, into the bulk plasma, where the wave energy can be absorbed.

Plasmas support both electromagnetic and electrostatic waves. Electromagnetic

waves in plasmas are similar to those in dielectric materials, and propagate due to

the exchange of energy between electric and magnetic forms. Letting the electric

and magnetic fields of the wave vary as

E;H � exp j(vt � k � r) (4:2:31)

where k is the propagation vector, then for a uniform, isotropic (no applied dc

magnetic field) plasma, the waves are transverse, with E,H, and kmutually perpen-

dicular. To obtain the dispersion relation, we use (4.2.31) in (2.2.1) and (4.2.19) to

obtain

k� ~E ¼ vm0
~H (4:2:32)

and

k� ~H ¼ �vep ~E (4:2:33)

Cross multiplying (4.2.32) by k and using (4.2.33), we obtain

k� (k� ~E) ¼ �v2epm0 (4:2:34)

4.2 NONMAGNETIZED PLASMA DYNAMICS 99



Expanding the triple cross product� and noting that k � ~E ¼ 0 for transverse waves,

we obtain

k2 ~E ¼ kp
v2

c2
~E

where k is the wave-vector magnitude, where we have written ep ¼ e0kp from

(4.2.18), and where we have used c ¼ 1=
ffiffiffiffiffiffiffiffiffiffi

m0e0
p

for the speed of light in vacuum.

A nonzero ~E exists only if

k ¼ +
ffiffiffiffiffi

kp
p

v

c
(4:2:35)

which is the dispersion relation for transverse waves. Using kp for a cold collision-

less plasma with infinite mass ions from (4.2.24), we see that the waves propagate

(k is real) for kp . 0; that is, for v . vpe , and are cut off for v , vpe. We plot v
versus k in Figure 4.5. Because v is generally less than vpe in a discharge, electro-

magnetic waves excited at the plasma surface are not able to propagate into the

plasma. In this case, the fields decay exponentially into the plasma. In general, if

(4.2.18) is inserted in (4.2.35), we find that k separates into real and imaginary

parts, k ¼ b� ja, with b the real propagating part and a the real decay constant.

An explicit calculation of a is in Problem 12.1, related to the determination of

the power transfer in inductive discharges. On the other hand, we show in Section

4.5 that electromagnetic waves can propagate into a magnetized plasma.

c

c

FIGURE 4.5. Dispersion v versus k for electromagnetic and electrostatic electron plasma

waves in an unmagnetized plasma.

�k� (k� E) ; (k � E)k� k2E:
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The two independent polarizations have the same propagation constant k. Letting

k ¼ x̂kx , the most general transverse wave propagates along x with a polarization

that is the superposition,

~E ¼ ŷ ~Ey þ ẑ ~Ez

which specifies a general elliptical polarization. As will be seen in Section 4.5, this is

not true for waves in a magnetized plasma.

Electrostatic Waves

In a warm plasma, waves can propagate having k k E. Such waves, which are not

possible in a vacuum (or dielectric), are similar to sound waves in a gas. The

waves propagate due to an exchange of energy between thermal and electric

forms. Thermal electron motion, not considered in deriving the dielectric constant

(4.2.23), leads to an additional term in the force equation due to rpe , the gradient

of the electron pressure. As a result of this, the electron plasma oscillations described

by (4.2.3), for which k k E, are converted into electron plasma waves.

To derive the dispersion relation, we use the property of an adiabatic equation of

state (2.3.20), with rpe=pe ¼ grne=ne , to describe the variation of pe , together with
the usual Maxwellian relation pe ¼ neeTe , with Te constant. Substituting these

quantities in (4.1.22), in the absence of a magnetic field and assuming that collisions

are unimportant, we have

mne
@ue
@t

þ (ue � r)ue
� �

¼ �eneE� geTerne (4:2:36)

We now make the usual assumptions of small signal quantities n1, E1, and u1,

ne ¼ n0 þ n1; E ¼ x̂E1; ue ¼ x̂u1 (4:2:37)

with no steady fields or drifts. We also assume sinusoidal wave motion, with all

quantities varying as

n1; E1; u1 � exp j(vt � kxx) (4:2:38)

where kx is the propagation constant. Unlike electromagnetic waves, the electric

field is parallel to k so that of the field equations only the divergence equation

(2.2.3) is required. We further consider that the ions are essentially stationary on

the timescale of the wave frequency. Assuming that all quantities vary as in

(4.2.37) and (4.2.38), substituting into the continuity equation (2.3.7) (but without

sources or sinks), the force equation (4.2.36), and the divergence equation (2.2.3),
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we obtain the first-order equations:

vn1 � kxn0u1 ¼ 0 (4:2:39)

jvmn0u1 ¼ �en0E1 þ jkxgeTen1 (4:2:40)

jkxe0E1 ¼ en1 (4:2:41)

Combining (4.2.39) through (4.2.41), we can factor out the first-order quantities to

find the dispersion equation:

v2 ¼ v2
pe þ k2xc

2
g (4:2:42)

where

cg ¼ geTe

m

� �1=2

(4:2:43)

is the adiabatic electron sound speed. For the one-dimensional motion considered

here, g ¼ 3. The dispersion (4.2.42) is plotted in Figure 4.5, with the value of kx ¼
2p=lDe indicated on the figure. As one might expect, for kx & 2p=lDe , thermal dis-

ruption of the collective process would be expected to be very important, and the

waves are strongly damped. This collisionless damping, called Landau damping, is

discussed in most books on fully ionized plasmas (e.g., Chen, 1984, Chapter 7).

For long wavelengths, kx � 2p=lDe , the waves are not strongly damped, but they

may be only weakly excited.

If the ions are also considered to bemobile, under certain circumstances, newwaves

can appear. For cold plasmas, the electronmotion dominates the behavior of the waves,

such that the plasma frequency in (4.2.42) is only slightlymodified, as given by (4.2.7).

For equal-temperature electrons and ions, this small modification still holds. However,

for Ti � Te , as usually exists in weakly ionized discharges, the electron random

motion prevents the electrons from neutralizing independent ion motion, and short

wavelength ion soundwaves can exist. These are usually heavily damped and therefore

not of great significance, but can become important if ions are streaming through elec-

trons or other plasma species. Then, if the ion streaming velocity exceeds the local ion

acoustic velocity, instabilities or nonlinear potential structures (shocks) can appear in

the plasma.We leave details of an ionwave calculation to Problem 4.8. A discussion of

ionwaves and shocks can be found inmany texts on fully ionized plasmas, for example,

Chen (1984, Chapter 4 and Section 8.3).

4.3 GUIDING CENTER MOTION

If the electric or magnetic field varies in space, the charged particle motion becomes

much more complicated, and generally analytic solutions cannot be found. One very
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important configuration is that of a spatially varying magnetic field in which the

gyration radius is much smaller than the scale length of the field variation. In that

situation, an expansion in the gyroradius can be performed that allows separation

into the fast gyromotion and slow drifts of the guiding center across field lines.

We have already seen this separation in Section 4.1 for the trivial case of uniform

B, where the guiding center moves uniformly along B. The separation of the

motion is particularly useful for calculating particle confinement in fully ionized

plasmas [see, e.g., Chen (1984, Chapter 2) or Schmidt (1979, Chapter 2)], but can

also be applied to a number of high-density source concepts for materials proces-

sing. Here we introduce the subject and point out a few implications for weakly

ionized plasmas. A more complete derivation can be found in Schmidt (1979,

Chapter 2).

The basic procedure is to expand the instantaneous position into a guiding center

and a gyroradius about that center,

r ¼ rg(t)þ rc(t) (4:3:1)

with an accompanying velocity,

v ¼ vg þ vc (4:3:2)

where vg ¼ drg=dt and vc ¼ drc=dt. The magnetic field in the neighborhood of the

guiding center is expanded as

B(r) ¼ B0(r)þ (rc � r)B(r) (4:3:3)

with

jrcrB=B0j � 1 (4:3:4)

With this approximation, jrc(t)j can be taken as a constant over a gyroperiod. Then,

averaging over a gyroperiod, the rapidly rotating terms average to zero in lowest

order, resulting in an equation for the drift motion:

m
dvg

dt
¼ Fext þ qvg � Bþ qkvc � (rc � r)Bl (4:3:5)

where k l denotes an average over a gyroperiod. The third term on the RHS has a

product of rapidly oscillating quantities and therefore a first-order average value,

giving, after some algebra,

m
dvg

dt
¼ Fext þ qvg � B0 �

1
2
mv2?
B0

rB (4:3:6)
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Here Fext includes all external forces, B0 ¼ jB0j, and v? ¼ jvcj, the velocity perpen-
dicular to the field line. All quantities are calculated on the guiding center of the

orbit. We indicate the effect of the various terms in (4.3.6) with some simple

examples.

Parallel Force

We justify (4.3.6) for a particle gyrating in a magnetic field ẑBz(z) that is increasing

along z. The magnetic field lines converge as shown in Figure 4.6, and the Lorentz

force qv? � B has a component along z given by

Fz ¼ �qvfBr (4:3:7)

where vf ¼ �v?0 , and Br is obtained from (2.2.4), which is, in cylindrical coordinates,

1

r

@

@r
(rBr)þ @Bz

@z
¼ 0

This yields Br upon integrating with respect to r :

Br � � rc

2

@Bz

@z
(4:3:8)

Substituting (4.3.8) in (4.3.7) and taking all quantities as constant over a gyro-orbit,

in keeping with our expansion, we obtain the average force acting on the guiding

center to be

Fz ¼ �
1
2
mv2?
Bz

@Bz

@z
(4:3:9)

We see that (4.3.9) corresponds to the z component of the third term on the RHS of

(4.3.6). The force Fz pushes the particle into regions of smaller B and is independent

x

y

z
z

q

q

B

B

FIGURE 4.6. Calculation of the parallel force due to a magnetic field gradient @Bz=@z.
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of charge. From the averaging procedure it is seen to be valid only for

rc � 1

Bz

dBz

dz

� ��1

(4:3:10)

which is equivalent to (4.3.4).

Adiabatic Constancy of the Magnetic Moment

For the field of Figure 4.6 we introduce the quantity

mmag ¼
1
2
mv2?
Bz

¼ W?
Bz

(4:3:11)

which can be shown to be the magnetic moment of the particle (see Problem 4.10).

As the particle moves, both Bz andW? can change; however, the total kinetic energy

of the particle is conserved because the magnetic field does no work. For the above

example,

W?(z)þWz(z) ¼ const (4:3:12)

where Wz ¼ 1
2
mv2z . If the particle moves a distance dz, then

dWz ¼ Fz dz ¼ �W?
Bz

dBz (4:3:13)

Differentiating (4.3.12) yields dWz ¼ �dW?; hence (4.3.13) becomes

dW?
W?

¼ dBz

Bz

(4:3:14)

which can be integrated to obtain

W?
Bz

; mmag ¼ const (4:3:15)

The magnetic moment is one example of an adiabatic invariant, a quantity that is

approximately conserved in the motion if the scale length condition (4.3.4) is

satisfied.

The constancy of mmag has an important consequence in the magnetic mirroring

of charged particles in an increasing magnetic field. As Bz increases,W? increases to

keep mmag constant, reflecting the particle when W? ¼ W (Wz ¼ 0). Although

this property is of primary concern in nearly collisionless plasmas where plasma

confinement is of greatest interest, it can also play a significant role in confining
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the higher-energy electrons in cyclotron resonance or magnetron discharges, which

we consider in Chapters 13 and 14.

Drift Due to Motion Along Field Lines (Curvature Drift)

Consider a curved field line in the x–z plane. As shown in Figure 4.7, although Bx ¼
0 at the origin, @Bx=@z is nonzero. The radius of curvature R of the field line is found

from (see figure)

dz

R
¼ � dBx

Bz

which yields

1

R
¼ � 1

Bz

@Bx

@z
(4:3:16)

The centrifugal force acting on the particle is

FR ¼ mv2z
R

x̂ ¼ 2Wz

R
x̂ ¼ � 2Wz

Bz

@Bx

@z
(4:3:17)

Since the force in (4.3.17) is an average force, we can substitute it into (4.1.19) to

obtain the drift of the guiding center due to the field line curvature:

vR ¼ 2Wz

qB2
z

@Bx

@z
ŷ (4:3:18)

B

B

x

zz

R

B
d

FIGURE 4.7. Calculation of the curvature drift due to a magnetic field gradient @Bx=@z.
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We see that electrons and ions drift in opposite directions perpendicular to both B

and the curvature force, giving rise to a net current. The drift given in (4.3.18) is not

immediately seen in the averaged equation (4.3.6). To obtain the drifts, (4.3.6) is

cross-multiplied by B=qB2, such that the second term on the right is vg?. The drift

(4.3.18) is then obtained from the vector decomposition of (m dvg=dt)� B=qB2. We

leave the calculation to Problem 4.11.

Drift Due to Gyration (Gradient Drift)

Consider a magnetic field Bz(x) with a gradient perpendicular to the lines of B, as

shown in Figure 4.8a. Viewing the motion of a gyrating particle in the x–y plane

(Fig. 4.8b), we see that there is a stronger Lorentz force at the upper half of the

orbit than at the lower half, producing a smaller gyration radius at the upper half

than at the lower, and leading to a net drift along y. This drift can be obtained directly

from the third term on the right in (4.3.6) with rB ¼ rBz ¼ @Bz=@x, which, as an
average force, can be substituted into (4.1.19) to give (see also Problem 4.12)

vrB ¼ �W?
qB2

z

r?Bz � ẑ (4:3:19)

Electrons and ions drift in opposite directions, giving rise to a net current, as with the

curvature drift.

Note that although the two drifts found in (4.3.18) and (4.3.19) are commonly

called curvature drift and gradient drift, they are really distinguished by a velocity

parallel to field lines and perpendicular to field lines, respectively. Both drifts

arise due to field gradients. If the zero-order magnetic fields are produced by

currents external to the plasma, then from (2.2.2),

r � B � 0 (4:3:20)

B x
x x

z

q

y

FIGURE 4.8. Calculation of the perpendicular gradient drift due to a magnetic field gradient

@Bz=@x: (a) the magnetic field lines; (b) the motion viewed in the x–y plane.

4.3 GUIDING CENTER MOTION 107



inside the plasma, where we have neglected the first-order (weak) currents produced

by the moving charges in the plasma. In this case,

@Bx

@z
¼ @Bz

@x
(4:3:21)

and the curvature and gradient drifts can be expressed in terms of a single

gradient.

Polarization Drift

Consider a uniform magnetic field ẑB0 and a transverse electric field x̂E(t) that

varies slowly with time. Then the E� B drift velocity also varies slowly with

time:

vE(t) ¼ �E(t)

B0

ŷ (4:3:22)

Hence the guiding center accelerates along ŷ. The acceleration in the lab frame is

a(t) ¼ � 1

B0

@E

@t
ŷ

In the frame of the particle, there is therefore an average inertial force transverse

to B:

Fp ¼ �F ¼ �ma ¼ m

B0

@E

@t
ŷ (4:3:23)

Using (4.1.19), this gives rise to a guiding center drift

vp ¼ m

qB2
0

@E

@t
(4:3:24)

that lies along E itself. Again ions and electrons drift in opposite directions, giving

an additive current, which for ni ¼ ne ¼ n0 is

Jp ¼ (M þ m)n0

B2
0

@E

@t
(4:3:25)

We see that the electron drift component of the current is negligible due to the mass

dependence in (4.3.25). Introducing a low-frequency perpendicular dielectric con-

stant e? through the relation Jp ¼ e?@E=@t, and dropping the electron mass term,
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we obtain

e? ¼ e0 1þ Mn0

e0B2
0

� �

¼ e0 1þ v2
pi

v2
ci

 !

(4:3:26)

For n0 � 1010 cm�3 and B0 � 100 G, we obtain e? � 106e0 . At low frequencies,

v � vci, this very large positive dielectric constant perpendicular toB shields amag-

netized plasma from external electric fields perpendicular to B. For electric fields

along B, we can introduce ek ¼ ep as given in (4.2.24), which at low frequencies is

large and negative, also shielding the plasma from electric fields lying along B.

The gyration motion itself also produces currents in a nonuniform plasma. To see

this, we form

M ¼ �ẑn(r)mmag (4:3:27)

the magnetization of the plasma, such that B and H are related by

B ¼ m0(HþM) (4:3:28)

Then substituting (4.3.28) into (2.2.2) yields

r � B ¼ m0Jþ m0Jmag þ e0
@E

@t
(4:3:29)

where

Jmag ¼ r�M (4:3:30)

is the magnetization current. Equation (4.3.29) shows explicitly the three sources of

B in a magnetized plasma: the conduction, magnetization, and polarization currents.

Since the currents of the gyrating charges act to weaken the applied field, the plasma

is diamagnetic. As we can see from (4.3.27), the diamagnetism depends both on the

plasma density and particle energies, and becomes important only in dense energetic

plasmas, primarily those encountered in fusion research. In all but the highest

density discharges, the weakening of an applied magnetic field due to plasma

diamagnetism is small.

The guiding center motion is derived by a formal expansion of (4.1.1) in most

books on fully ionized plasmas, for example, Schmidt (1979), rather than from

the more physical approach given here. A summary of the drifts is given in

Table 4.1.
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4.4 DYNAMICS OF MAGNETIZED PLASMAS

The response of a plasma immersed in a steady uniform magnetic field B0 and

subject to time-varying electric and magnetic fields is very complicated. The fact

that the gyromotion converts velocities being acted on by one field component to

another velocity component leads to a gyrotropic dielectric tensor, having

complex conjugate off-diagonal elements in the absence of dissipation. Further-

more, the inhibition of the electron motion perpendicular to B0 gives rise to an

important ion response, particularly at low frequencies. Collisional dissipation

further complicates the picture. Fortunately, for consideration of electromagnetic

waves, the wave velocities are generally much higher than the thermal velocities,

and thus the effects of the electron and ion thermal velocities can be ignored.

On the other hand, we have seen in Section 4.2, in the absence of B0 , that elec-

trostatic waves can resonate with thermal velocities, leading to strong temperature

effects. Similarly, in magnetized plasmas there are electrostatic waves that propa-

gate across the magnetic field, whose nature depends on thermal effects. These

waves are generally of little interest for weakly ionized plasmas and will not

be considered here. The interested reader is directed to the literature (e.g., Stix,

1992).

Our approach in this section will first be to derive the dielectric tensor in the sim-

plest case where only electrons participate, and the electron fluid is considered to be

cold and collisionless. It is then straightforward to include the effect of collisions and

the addition of a mobile ion species. Using this dielectric tensor, in any of the above

approximations, we can derive the dispersion relation for waves propagating at an

arbitrary angle to B0 . Because of the complexity of the wave problem, we leave a

detailed consideration of the waves to Section 4.5.

Dielectric Tensor

We begin with the force equation in rectangular coordinates as in (4.1.1), with

B0 ¼ ẑBz0. Assuming sinusoidal variation (4.2.31) of the electric field, the linearized

TABLE 4.1. Summary of Guiding Center Drifts

(Rc=R
2
c ¼ �rB=B)

General force drift
vF ¼ (F=q)� B

B2

Electric field drift
vE ¼ E� B

B2

Curvature drift
vR ¼ 2Wk

q

Rc � B

R2
cB

2

Grad-B drift
vrB ¼ W?

q

B� rB
B3

Polarization drift
vp ¼ m

qB2

@E

@t
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equations for the electron motion are then

jv~vx ¼ � e

m
~Ex � vce ~vy (4:4:1a)

jv~vy ¼ � e

m
~Ey � vce ~vx (4:4:1b)

jv~vz ¼ � e

m
~Ez (4:4:1c)

where we have chosen vce ¼ eBz0=m to be explicitly positive. Solving (4.1.1a) and

(4.4.1b) simultaneously, for ~vx and ~vy , we have

~vx ¼ e

m

jv ~Ex � vce
~Ey

v2 � v2
ce

(4:4:2a)

~vy ¼ e

m

jv ~Ey þ vce
~Ex

v2 � v2
ce

(4:4:2b)

Using our previous assumption that J ¼ �en0v and defining the dielectric properties

from Maxwell’s equation,

r � ~H ¼ jve0 ~Eþ ~J ; jv��ep � ~E (4:4:3)

we obtain

��ep ¼ e0 ��kp ¼ e0

k? �jk� 0

jk� k? 0

0 0 kk

0

@

1

A (4:4:4)

where

k? ¼ 1� v2
pe

v2 � v2
ce

(4:4:5a)

k� ¼ vce

v

v2
pe

v2 � v2
ce

(4:4:5b)

kk ¼ 1� v2
pe

v2
(4:4:5c)

The z or k component is the same as the dielectric constant (4.2.24) in the absence

of B0 . The other components are characteristic of a lossless gyrotropic medium, with

eij ¼ e�ji .
Given the collisionless electron dielectric tensor components (4.4.5), it is rather

simple to include the effect of collisions, or the contribution of mobile ions.
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To include collisions, we recognize that each v originating from the force equation

is transformed as v ! v� jnm. The vs arising fromMaxwell’s equations, however,

remain unchanged. Performing this operation, we obtain

k? ¼ 1� v� jnm
v

v2
pe

(v� jnm)
2 � v2

ce

(4:4:6a)

k� ¼ vce

v

v2
pe

(v� jnm)
2 � v2

ce

(4:4:6b)

kk ¼ 1� v2
pe

v(v� jnm)
(4:4:6c)

The dielectric tensor, including ion dynamics, is also easily obtained by general-

izing (4.4.3). To do this, we recognize that the electron and ion currents add. Then

each term in the dielectric tensor consists of a sum of electron and ion components of

the same form, but with the parameters appropriate to that species. Thus, again

ignoring collisions,

k? ¼ 1� v2
pe

v2 � v2
ce

� v2
pi

v2 � v2
ci

(4:4:7a)

k� ¼ vce

v

v2
pe

v2 � v2
ce

� vci

v

v2
pi

v2 � v2
ci

(4:4:7b)

kk ¼ 1� v2
p

v2
(4:4:7c)

where vci ¼ eBz0=M is defined to be explicitly positive, and we have combined the

electron and ion plasma frequencies in (4.4.7c) using (4.2.7). Examining the size of

the terms in (4.4.7a), we are often considering situations in which vpe � vce . In that

case we see that vpi � (M=m)1=2vci such that, depending on the range of frequencies

being considered, the ion motion can dominate the transverse dielectric components.

We have already seen an example of this for low frequencies, v � vci , where

(4.4.7a) reduces to (4.3.26). We shall return to this point in considering the wave

spectrum.

The Wave Dispersion

Returning to consideration of waves of the form exp j(vt � k � r), Maxwell’s

curl equations become

k� ~E ¼ vm0
~H (4:4:8)
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and

k� ~H ¼ �ve0 ��kp � ~E (4:4:9)

where ��kp is given by one of the forms in the previous subsection. Taking the cross

product of k with (4.4.8) and substituting for k� ~H from (4.4.9), we obtain the

equation describing electromagnetic waves in a magnetized plasma:

k� (k� ~E)þ k20
��kp � ~E ¼ 0 (4:4:10)

where k0 ¼ v=c is the propagation constant of a plane wave of frequency v in free

space, with c the velocity of light.

The vector equation (4.4.10) is very complicated because all of the components

of ~E couple together. In deriving the dielectric tensor we used rectangular

coordinates with B0 taken along the z direction for concreteness. We have one

more direction to define, that of the wave vector, which we can take to lie in the

x–z plane, without loss of generality. Doing this, (4.4.10) can be written as

k2z 0 �kxkz
0 k2x þ k2z 0

�kxkz 0 k2x

2

4

3

5

~Ex

~Ey

~Ez

2

4

3

5 ¼ k20

k? �jk� 0

jk� k? 0

0 0 kk

2

4

3

5

~Ex

~Ey

~Ez

2

4

3

5 (4:4:11)

If the angle between k and B is defined as u, then kz ¼ k cos u and kx ¼ k sin u, where
here k ¼ jkj. Furthermore, it is usual to normalize the magnitude of k as N ¼ k=k0 ,
where N here is the index of refraction of the wave. Using this notation, and requir-

ing that the determinant of the coefficients of the equation for ~E vanishes for a non-

trivial solution, we obtain

det

N2 cos2 u� k? jk� �N2 cos u sin u

�jk� N2 � k? 0

�N2 cos u sin u 0 N2 sin2 u� kk

2

6

4

3

7

5

¼ 0 (4:4:12)

Equation (4.4.12) is the dispersion equation, which relates k ; k0N, v, and u.

4.5 WAVES IN MAGNETIZED PLASMAS

In this section, we first describe some general properties of waves in magnetized

plasmas and then consider in some detail the principal waves, that is, those traveling

parallel to and perpendicular to B0 . We then give a qualitative description of pro-

pagation at an arbitrary angle in the various regimes of frequency, density, and

magnetic field.
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Evaluating the determinant in (4.4.12), we find that the cubic terms in N2 cancel,

reducing the equation to a biquadratic form:

aN4 � bN2 þ c ¼ 0 (4:5:1)

where

a ¼ k? sin2 uþ kk cos2 u (4:5:2a)

b ¼ (k2? � k2�) sin
2 uþ kkk?(1þ cos2 u) (4:5:2b)

c ¼ (k2? � k2�)kk (4:5:2c)

Hence there are in general two different solutions for N2 for each angle u. These sol-
utions correspond to the two allowed polarizations for the electric field of the wave.

Because the discriminant b2 � 4ac of (4.5.1) is always positive, N2 is real, and N is

either real and the wave propagates, or imaginary and the wave is cut off. In the latter

case, which may occur for one or both solutions, depending on the parameters, the

wave of that polarization does not propagate but decays exponentially. The two

wave polarizations are determined by the relative magnitudes of the components

of the electric field. These are given by the ratios of the cofactors of any row in

the matrix (4.4.12). Taking the first row, we obtain

~Ex : ~Ey : ~Ez :: (k? � N2)(kk � N2 sin2 u) : jk�(N2 sin2 u� kk)

: (N2 � k?)N2 sin u cos u (4:5:3)

which gives two different ratios of the field components for the two values ofN2. Since

the two waves generally have different propagation constants, their electric fields do

not have the same spatial variation and their polarizations cannot be summed to

determine a resultant polarization that remains fixed as the waves propagate.

Although (4.5.1) can be solved for N2 as a function of u, the results are not

particularly illuminating. It is more useful to solve for u as a function of N2.

Before doing this, it is convenient to introduce two combinations of the dielectric

components,

kr ¼ k? � k� (4:5:4a)

and

kl ¼ k? þ k� (4:5:4b)

such that k2? � k2� ¼ krkl in (4.5.2b) and (4.5.2c). For the simplest case of no

collisions and infinite mass ions, we use (4.4.5a) and (4.4.5b) to obtain

kr ¼ 1� v2
pe

v(v� vce)
(4:5:5a)
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and

kl ¼ 1� v2
pe

v(vþ vce)
(4:5:5b)

with the obvious extensions v+ vce ! v+ vce � jnm in (4.5.5) for adding

collisions and

kr ¼ 1� v2
pe

v(v� vce)
� v2

pi

v(vþ vci)
(4:5:6a)

and

kl ¼ 1� v2
pe

v(vþ vce)
� v2

pi

v(v� vci)
(4:5:6b)

for a collisionless plasma with mobile ions. Substituting sin2 uþ cos2 u for 1 in

(4.5.2b) and (4.5.2c), substituting a, b, and c into (4.5.1), and dividing (4.5.1) by

cos2 u, we can solve to obtain

tan2 u ¼ � kk(N2 � kr)(N
2 � kl)

(N2 � kk)(k?N2 � krkl)
(4:5:7)

Principal Electron Waves

(a) k k B0 For this case (u ¼ 0), the numerator of (4.5.7) vanishes, yielding

kk(N2 � kr)(N
2 � kl) ¼ 0 (4:5:8)

The first solution kk ¼ 0 gives the plasma oscillations for E k B0 discussed in

Section 4.2. The second and third solutions give the principal waves. Using

(4.5.5), these are

N2
r ¼ 1� v2

pe

v(v� vce)
(4:5:9a)

and

N2
l ¼ 1� v2

pe

v(vþ vce)
(4:5:9b)

where vce is explicitly positive. The first wave has a resonant denominator for

v ¼ vce , which gives the dispersion for the right-hand polarized (RHP) wave.
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At v ¼ vce , the wave rotates in synchronism with the gyrating electrons, which

then see a constant field leading to resonant energy absorption, as we will see

in Chapter 13. The second wave is the left-hand polarized (LHP) wave, which is

nonresonant.

To see that (4.5.9a) represents a right circularly polarized wave, we let N2 ¼ kr in
(4.5.3) to obtain

Ex :Ey :: k? � kr :�jk�

and using (4.5.4a),

Ex :Ey :: k� :� jk�

Hence the field is given by

E ¼ Re ½ ~Er(x̂� jŷ) exp j(vt � kr � r)� (4:5:10a)

which at fixed r has a constant amplitude and rotates in the right-hand sense around

B0 at frequency v. Similarly, the LHP wave has

E ¼ Re ½ ~El(x̂þ jŷ) exp j(vt � kl � r)� (4:5:10b)

and rotates in the left-hand sense around B0 . The most general solution propagating

along z is a sum of the RHP and LHP waves given above.

The wave dispersion is easily described by first computing the resonances,

N ! 1, and cutoffs, N ! 0. Besides the resonance of the RHP wave at v ¼ vce ,

there is a cutoff at

1� v2
pe

v(v� vce)
¼ 0

or, solving for v,

vR ¼
vce þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
ce þ 4v2

pe

q

2
(4:5:11)

Only theþ solution corresponds to positive v, leading to an upper cutoff frequency

above both vpe and vce . For the LHP wave, a similar calculation gives a cutoff at

vL ¼
�vce þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
ce þ 4v2

pe

q

2
(4:5:12)
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Again theþ solution has been taken, which leads to a lower cutoff frequency below

vpe. We should, however, have some doubts about this part of the solution, because

it can occur at low frequencies where ion dynamics may be important. It is now

possible to sketch an v–k or dispersion diagram for the waves. We first obtain

the other principal waves, so that we can sketch the results on a single diagram.

(b) k ? B0 For this case (u ¼ p/2), the denominator of (4.5.7) vanishes, yielding

(N2 � kk)(k?N2 � krkl) ¼ 0 (4:5:13)

The first solution is just the wave (4.2.35) for propagation in an unmagnetized

plasma. It corresponds to a linearly polarized wave electric field lying along the

dc magnetic field direction ẑ, so that the motion is unaffected by B0 , and is called

the ordinary (o) wave. The second solution gives a wave having electric fields

that are perpendicular to B0 , but with components both perpendicular (ŷ) and

parallel (x̂) to k. Solving for N, we have the extraordinary (x) wave dispersion:

N2
x ¼

1� v2
pe

v(v� vce)

" #

1� v2
pe

v(vþ vce)

" #

1� v2
pe

v2 � v2
ce

(4:5:14)

We see that the numerator has the same two cutoff solutions that we found for the

RHP and LHP waves. The resonance at v ¼ vce disappears, because of cancellation

of the factor v� vce. However, a new resonance appears at the upper hybrid

frequency vUH given by

v2
UH ¼ v2

pe þ v2
ce (4:5:15)

when the numerator of k? is zero.

The dispersion (v–k) diagrams for the principal waves in an electron plasma are

sketched in Figure 4.9. All the results above the lower cutoff frequencies are reason-

ably representative of the dispersion when ions are also present. However, at lower

frequencies, particularly near vpi and below, we expect the ion dynamics to be

important. We discuss these additional wave solutions below.

First, however, we point out some important characteristics of the less cluttered

dispersion of Figure 4.9. Considering the RHP wave with vce . v the wave is pro-

pagating. Now let B0 decrease slowly in the direction of propagation until

vce(z) ¼ v. At this value there is a resonance at which kr ¼ 1, and both the

phase and group velocity go to zero. A careful analysis reveals that the wave

energy is strongly absorbed at this field strength provided certain conditions on

the scale length of the field variation and the density are satisfied. This phenomenon

of absorption on a “magnetic beach” is an important mechanism for plasma heating

and is a major subject of Chapter 13. A similar phenomenon occurs at the upper
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hybrid resonance for the x wave. However, this wave may not be accessible from

outside the plasma, particularly at high density for which vpe . vce (not shown

in Fig. 4.9), if the decreasing magnetic field requires the wave to pass through the

upper hybrid cutoff frequency vR. Similarly, the left-hand wave can also be cut

off at high densities if v , vL.

Principal Waves Including Ion Dynamics

(a) k k B0 Adding the ion dynamics into the dispersion equation using (4.5.6),

we obtain, for the two polarizations, corresponding to (4.5.9),

N2
r ¼ 1� v2

pe

v(v� vce)
� v2

pi

v(vþ vci)
(4:5:16a)

and

N2
l ¼ 1� v2

pe

v(vþ vce)
� v2

pi

v(v� vci)
(4:5:16b)

where again vce and vci are positive. Considering first the RHP wave, we put the

plasma terms under a common denominator and take ni ¼ ne to get

N2
r ¼ 1� v2

p

(v� vce)(vþ vci)
(4:5:17)

c

k

FIGURE 4.9. Dispersion v versus k for the principal waves in a magnetized plasma with

immobile ions for vce . vpe .
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Similarly, for the LHP wave, we have

N2
l ¼ 1� v2

p

(vþ vce)(v� vci)
(4:5:18)

(b) k ? B0 In a similar manner, using the dispersion for the extraordinary (x)

wave from (4.5.13), with (4.4.7a) and (4.5.6), we have

N2
x ¼

1� v2
pe

v(v� vce)
� v2

pi

v(vþ vci)

" #

1� v2
pe

v(vþ vce)
� v2

pi

v(v� vci)

" #

1� v2
pe

v2 � v2
ce

� v2
pi

v2 � v2
ci

(4:5:19)

The important properties of the waves are distinguished by their cutoffs and reson-

ances. Comparing the numerator factors of (4.5.19) with (4.5.16), it is easy to see

that the two cutoffs of the x wave correspond to the cutoffs of the RHP and LHP

waves. In addition to the upper hybrid resonance vUH , a second resonance at the

lower hybrid frequency vLH appears. For v2
pi � v2

ci , (usual for materials processing

discharges), we find

1

v2
LH

� 1

v2
pi

þ 1

vcevce

(4:5:20)

Low-frequency wave energy can be strongly absorbed by the plasma at this

resonance.

We list all of the cutoffs and resonances of these waves in Table 4.2. With these

values, and noting where the propagation constant changes from real to imaginary,

the dispersion diagram for the principal waves can be qualitatively sketched, as in

Figure 4.10. The high-frequency range is, of course, similar to Figure 4.9. Near

vpi and below, the waves are strongly modified by the ion dynamics. Of particular

note is that for very low frequencies v � vci , the wave dispersions for RHP, LHP,

and x waves all reduce to

k2 ¼ k20 1þ v2
pi

v2
ci

 !

(4:5:21)

which propagate down to zero frequency. The term in parentheses is just the low-

frequency perpendicular dielectric constant defined in (4.3.26). For reasonably

high density with vpi � vci, the 1 can be discarded. The phase velocity of this

wave is then

vph ¼ v

k
¼ vci

vpi

c ; vA; (4:5:22)
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TABLE 4.2. Summary of Cutoffs and Resonances for the Principal Waves

Wave Cutoffs (k ¼ 0) Resonances (k ¼ 1)

r wave ðv� vceÞðvþ vciÞ ¼ v2
p

or

v ¼ vce

v �
vce þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
ce þ 4v2

p

q

2
l wave ðvþ vceÞðv� vciÞ ¼ v2

p

or

v ¼ vci

v �
�vce þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
ce þ 4v2

p

q

2
x wave Both as above v2

UH � v2
p þ v2

ce

and
1

v2
LH

� 1

v2
pi

þ 1

vcevci

for vpi � vci

o wave v ¼ vp None

c

FIGURE 4.10. Dispersion v versus k for the principal waves in a magnetized plasma with

mobile ions.
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where vA is known as the Alfven velocity. Alfven waves were first described in

connection with wave propagation in the earth’s magnetosphere, and play important

roles in low-frequency phenomena in magnetized plasmas.

The CMA Diagram

The preceding gives a far from complete picture of the waves that can propagate

at an arbitrary angle to the magnetic field. The complete dispersion equation

(4.5.1) can be solved numerically to obtain the propagation constant for each

of the waves at an arbitrary angle to the magnetic field. A convenient presen-

tation of the results can be described in the Clemmow–Mullaly–Allis (CMA)

diagram given in Figure 4.11. The relative phase velocities vph=c ¼ v=kc of

the two waves are plotted in polar coordinates versus u for various magnetic

fields (vcevci=v
2) and densities (v2

p=v
2) on the ordinate and abscissa, with the

B-field direction for the polar [vph(u)=c] phase velocity surfaces being vertical.

The principal propagating waves are indicated using the notation r, l, o, and x

for the RHP, LHP, ordinary, and extraordinary waves, respectively. The velocity

of light circle is shown dashed to give the radial scale of the surfaces. The

cutoffs (labeled u ¼ 1) and resonances (labeled u ¼ 0) of the principal waves

divide the diagram into various regions, each having its own topology for the

two phase velocity surfaces. The topologies are either ellipsoids, dumbbells, or

toroids, with the latter two indicating resonance (k ! 1 or vph ! 0) at a

nonzero propagation angle.

In this presentation, the high-frequency region where the propagation is like that

of free space is in the lower left-hand corner, while the three Alfven waves are in the

upper right. Most of the information can be understood by continuation of the prin-

cipal wave solutions to arbitrary angles, as the reader is invited to confirm. Since the

distance from the origin to the encircling surface represents the phase velocity in that

direction with respect to the velocity of light, the CMA diagram has been described

as a “plasma pond” in which the shape of each surface corresponds to the outward

ripple for a disturbance at its center.

Although the CMA diagram gives a reasonable picture of the electromagnetic

waves in an unbounded plasma, it neither gives a complete catalog of the waves

that can propagate nor accounts for boundary conditions on the wave fields or

spatial variations of the plasma and magnetic field. We have already discussed elec-

trostatic electron and ion plasma waves that can propagate in the absence of or along

a magnetic field. There is also a large class of electrostatic cyclotron waves that can

propagate across the B field. These latter waves are not of great interest in the

context of our applications. Analysis can be found in advanced books on plasma

wave theory such as Stix (1992, Chapter 9).

Variations in the plasma and B field play essential roles in plasma heated by ECR

interaction, as considered in Chapter 13. The boundary conditions on the electro-

magnetic fields can also play an important role, as discussed in that chapter.

Plasma boundaries can also support additional waves. These bounded plasma

waves can be of importance in various contexts, as will be described in
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FIGURE 4.11. The CMA diagram for waves in a magnetized plasma. The cutoffs and

resonances are indicated by the lines labeled u ¼ 1 and u ¼ 0, respectively, where u

denotes the phase velocity and the subscripts label the principal waves (after Allis et al.,

1963).
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Chapter 13. The interested reader can find a description of some of them in Krall and

Trivelpiece (1973, Chapter 4), and more briefly in Chen (1984, Chapter 4).

4.6 WAVE DIAGNOSTICS

Because the propagation constant of a wave is dependent on the plasma frequency

v2
pe ¼ e2ne=e0m, propagation measurements have been used to measure plasma

density. In principle, the wave attenuation can also be used to measure the collision

frequency, but this method has not been generally employed. Because the plasma

frequency is often in the microwave (or submicrowave) range of frequencies, the

waves used tend to have frequencies in that range, and the diagnostics are often

referred to as microwave diagnostics. The methods of using the waves for electron

density measurements vary with the plasma configuration. A few such methods are

described below. A particular advantage of wave methods is that they are, in prin-

ciple, noninvasive, and therefore can be used in situations where probe diagnostics

(described in Section 6.6) would not be appropriate. A comprehensive account of

plasma diagnostics, including wave diagnostics, can be found in Huddlestone and

Leonard (1965).

Interferometer

The most commonly used wave diagnostic is the microwave interferometer. The

principle of its use is that the change in phase shift across a region with and

without a plasma can be measured. This in turn can be related to the change in propa-

gation constant and hence to the plasma frequency. Starting from a wave propagat-

ing in a uniform plasma without an applied dc magnetic field, or with a linear

polarization such that the electric field is directed along the dc magnetic field, the

propagation constant is given by (4.2.35) as

k ¼ 1� v2
p

v2

 !1=2

k0 (4:6:1)

where k0 ¼ v=c is the free space propagation constant. We ignore collisions in

this approximation. Now consider that the wave propagates across a region of

length l in which the density may be changing slowly compared to a wave-

length. The Wentzel–Kramers–Brillouin (WKB) solution (see Section 13.1) is

that k also changes slowly such that the phase shift can be written in the form

f ¼
ðl

0

k(x) dx (4:6:2)
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Substituting (4.6.1) in (4.6.2), and subtracting the free space phase shift k0l,

the change in phase shift is

Df ¼ k0

ðl

0

1� v2
p(x)

v2

" #1=2

dx� l

8

<

:

9

=

;

(4:6:3)

It is often possible to choose the diagnostic frequency sufficiently high com-

pared to the plasma frequency that the square root can be expanded. The

free space part of the phase shift then conveniently cancels from (4.6.3) leaving

Df � k0

ðl

0

v2
p(x)

2v2
dx ¼ k0e

2

2e0mv2

ðl

0

n(x) dx (4:6:4)

In this approximation, we see that the line integral of the density can be

directly measured in terms of a phase shift. In many configurations the

density can be measured quite accurately by this method, serving as a check

on the less accurate but local probe method, described in Section 6.6. If the

approximation in (4.6.4) cannot be made, it is still possible to determine the

same information from (4.6.3), but the calculation is not straightforward.

The actual measurement technique uses an interferometer that compares signals

going through the plasma region and around it. A schematic of such an interferom-

eter is shown in Figure 4.12. In the absence of the plasma, the reference leg is

adjusted to have a 1808 phase shift at the same amplitude as the plasma leg,

giving a null output. With the plasma present, the phase shift across the plasma

leg changes and a signal is observed. The most convenient way of using the inter-

ferometer is to have l � l, such that Df can change through more than 3608
(a fringe shift) for v2

p=v
2 � 1 [see (4.6.4)]. For Df ¼ 1808, the signals through

the two legs are in phase and the signal is a maximum, returning to a near null

signal at Df ¼ 3608. Very accurate measurements can be made in this regime in

Microwave
source

Reference leg

Waveguide

Plasma

Plasma leg

Horn Detector

Attenuator

Phase
shifter

FIGURE 4.12. A microwave interferometer for plasma density measurement.
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which the plasma is turned on sufficiently slowly that the number of fringe shifts and

fractions thereof can be measured. Often, however, the plasma size and available

detection frequencies make l . l, and fractional fringe shifts must be measured.

This can be relatively straightforward if (4.6.4) holds such that Df/ n. However,

the signal amplitude must be known, and this is complicated by reflection and refrac-

tion of the wave at the plasma–dielectric interfaces.

The finite size of the plasma, compared to the wavelength of the interferometer,

has other consequences that can be more serious than the limited phase shift. If the

transverse dimension of the plasma is also comparable to a wavelength, then dif-

fraction around the plasma becomes a serious problem. This is often significant

when diagnosing plasma cylinders. Small transverse plasma dimensions have

tended to push the interferometer frequency up, such that v2
p=v

2 � 1. In this

case the phase shift, which is proportional to this ratio, becomes small. This has

led to more complicated methods of detection. For dense plasmas, laser interfe-

rometers have been used to obtain small but measurable phase shifts. The micro-

wave interferometer has been a mainstay of fusion plasma diagnostics from their

inception, since noninvasive measurement techniques are required on such

plasmas. An early monograph (Heald and Wharton, 1965) recounted these tech-

niques in detail.

An example of a 35-GHz microwave interferometer measurement of density and

its comparison to density measurements using Langmuir probes (see Section 6.6) is

shown in Figure 4.13 for a planar coil, rf-driven inductive discharge. The transmit-

ting and receiving horn antennae were placed externally to the chamber, with the

n

FIGURE 4.13. Mean electron density versus incident power at the midplane of an rf

inductive discharge as measured by a microwave interferometer, compared with ion

density as measured by a Langmuir probe (Hopwood et al., 1993b).
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microwaves transmitted through the rectangular chamber parallel to the surface

of the planar coil (see Section 12.3 for further description of the discharge

configuration).

The ordinary wave is not suitable for an interferometer if vp . v, because the

wave will not propagate. In time-varying plasmas, the cutoff itself can be used as

a benchmark of qualitative plasma behavior. In a magnetic field, it is still possible

to have a propagating wave along the field, provided vce . v, as given by

(4.5.17). Although this wave is very important for plasma heating, as described in

Section 13.1, it has only occasionally been used for plasma diagnostics. With

vp . v, methods described in the following subsections have sometimes been

employed.

Cavity Perturbation

Another relatively straightforward technique for diagnosing a plasma is by the shift

in frequency of a microwave cavity when a plasma fills part of the cavity. Slater’s

perturbation formula (Harrington, 1961, Chapter 7) can be applied to an

unmagnetized plasma in the frequency range where the plasma frequency

vp � v0 , the resonant frequency, (and nm � v0) giving the relative shift in reson-

ance frequency:

Dv

v0

¼ 1

2v2
0

Ð

v2
pjEj2 dV

Ð jEj2 dV (4:6:5)

where E is the unperturbed resonance electric field, and the integrals are over

the total cavity volume. The formula can also be modified to include higher-

density plasmas, provided the plasma dimensions are small compared to l.
For evaluating the integrals, most measurements have used cylindrical cavity

modes such as the TM010 mode (see Ramo et al., 1984, Chapter 10), for

which E ¼ ẑ ~Ez , where

~Ez ¼ E0J0
x01r

R

� �

(4:6:6)

where x01 � 2:405 and R is the cavity radius. Processing chambers usually have

more complicated geometry. In this case one can experimentally determine the

electric field profiles of several modes. The spatial density profile can also be

measured to evaluate the integral in the numerator of (4.6.5), although different

estimates of the profile only slightly modify the results. Reasonable consistency

in density measurements can be obtained by using more than one mode. An

example of results and their comparison to Langmuir probe measurements is

shown in Figure 4.14 for a particular process chamber. Interferometer and

cavity perturbation methods are often used in conjunction with probe measure-

ments to improve the reliability of the results.
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Another easily measured quantity in a cavity is the Q defined by

Q ; v
Energy stored

Power dissipated
¼ v0

Dv
(4:6:7)

where Dv is the frequency shift between the half-power points on each side of the

resonance. The second equality, given in all circuit texts, follows directly from the

definition. The cavity Q with plasma is lower than that without plasma due to dis-

sipation within the plasma. Provided nm � v0 the microwave cavity measurement

of density is not significantly modified. However, the change in Q can be used to

directly determine the collision frequency of the plasma electrons if ohmic

heating is the main source of energy absorption. Experiments of this nature have

been successfully performed, but have not come into general use as a plasma

diagnostic.

Wave Propagation

An interesting type of diagnostic is one that uses intrinsic properties of wave propa-

gation in bounded plasmas. For example, one method of plasma heating, described

in Section 13.3, is by surface waves. The propagation properties of these waves can

be measured and related to the average plasma density over which the fields are

important. For waves whose fields are confined close to the plasma–dielectric

interface, the propagation can give information about the edge density, in contrast

to the average density obtained from the methods described above. The equations

FIGURE 4.14. Electron density versus absorbed power in a 10-mTorr argon discharge. Data

from 443-MHz cavity resonance (circles), 506-MHz cavity resonance (squares), and

Langmuir probe (triangles) (Moroney et al., 1989).
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governing surface-wave propagation are given in Section 13.3, and should be

consulted if the method is to be applied.

Although more difficult to measure, it is also possible to obtain information

on the electron collisionality from the wave decay. This is also considered in

Section 13.3. We note, however, that the decay constant involves collisionless

(Landau) damping as well as collisional damping, so that the results must be

interpreted with care.

A particularly simple situation for obtaining the plasma frequency is that for

which the plasma is transversely resonant. A simple calculation then yields the

plasma frequency. For example, for a parallel plane geometry, let d be the

length of the plasma and 2sm be the total length of both sheaths. The discharge

can be modeled as two capacitors in series, where the capacitances per unit

area are

Cs � e0
2sm

(4:6:8)

and

Cp � ep
d
� e0(1� v2

p=v
2)

d
(4:6:9)

Note that Cp is inductive (Cp , 0) for v , vp . The total capacitance is then

CT ¼ 1

Cp

þ 1

Cs

� ��1

(4:6:10)

Substituting the expressions for Cs and Cp into (4.6.10), we obtain

CT ¼ e0(v
2 � v2

p )

2sm(v2 � v2
p )þ dv2

(4:6:11)

This expression will have a resonance when the denominator vanishes, or

v ¼ vp

2sm

2sm þ d

� �1=2

(4:6:12)

The resonance has been observed in both capacitive and inductive discharges.

The densities obtained from (4.6.12) agree reasonably well with other density

measurements made on the same discharge. The method can also be applied to

cylindrical plasmas, and configurations in which there are dielectrics, giving

somewhat more complicated expressions replacing (4.6.12). Indeed, the first

application of the method was to a plasma cylinder, surrounded by a dielectric
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tube with split cylinder exciting electrodes. [See Parker et al. (1964) for details,

including thermal effects.] The lowest-order “dipole” resonance can be approxi-

mated by the simple form

v ¼ vp

(1þ keff)
1=2

(4:6:13)

where keff is the effective relative dielectric constant of the region between the

plasma and the electrode.

Finally, we wish to point out that the distinction between perturbation of a cavity

resonance and propagation of a plasma wave is not decisive, but only convenient.

For a plasma within a cavity, a field solution for the cavity resonance predicts the

shift in resonance frequency. Similarly, if an inductor is connected across the

plates of a discharge, it must be included within the resonance calculation leading

to (4.6.12). A device that illustrates this duality is the helical resonator, which we

treat in Section 12.4. It is seen there that a plasma inside of a slow wave helical struc-

ture changes the propagation constant in a known way, such that the plasma density

can be inferred. As the helix structure is operated resonantly, this manifests itself as

a change in the resonant frequency. It is also possible to measure power absorption

from the change in the Q of a helical resonator.

PROBLEMS

4.1. Plasma Oscillations With Mobile Ions Show in a slab geometry that the

plasma oscillation frequency is given by (4.2.7) if the ions are permitted to

be mobile.

4.2. Plasma Oscillations for a Perturbed Charge Density For a plasma with

immobile uniform density ions, show that an arbitrary displacement ze(r; t)
of the electron fluid with respect to the ions leads to a perturbed charge

density r ¼ en0r � ze . Using the divergence equation for the electric field

and the equation of motion for the electron fluid, show that the charge

density oscillates sinusoidally at the electron plasma frequency vpe .

4.3. Damped Electron Plasma Oscillations Consider electron plasma oscil-

lations in a slab geometry with a uniform electron density n0 as shown in

Figure 4.3 of the text, with infinite mass ions but in the presence of a back-

ground density of neutral gas. The gas atoms exert a frictional force on the

moving electrons, such that the equation of motion (4.2.2) is modified to

m
d2ze
dt2

¼ �eEx � mnm
dze
dt

where nm is a constant electron–neutral momentum transfer frequency.

Assume that the slab of electrons is displaced to the right with respect to
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the ions by a small distance z0 and that the slab velocity is zero at time t ¼ 0.

Show that for nm , 2vpe , the motion consists of a damped plasma oscillation.

Find the damping rate and the oscillation frequency for this case. Find the

motion of the slab ze(t) for these initial conditions.

4.4. A Particle-in-Cell Simulation With One Electron Sheet A plasma having

uniform density n0 is confined between two parallel perfectly conducting

planes separated by a distance l. For computer simulation, the plasma is

modeled as follows: The ions are assumed to be fixed and have a uniform

density n0. The electrons are all gathered into a single sheet of charge of

surface charge density rS ¼ �en0l C=m
2, which is allowed to move in

response to the electric fields seen by the sheet.

(a) Show that the equilibrium position of the electron sheet is in the center of

the plasma.

(b) If the sheet is given a small displacement about its equilibrium position

and then released, what happens? Find the subsequent motion of the sheet.

(c) Suppose the two parallel planes are connected together (grounded).

Repeat part (b) to determine the motion.

4.5. Time-Average Power in the Sinusoidal Steady State Show that (4.2.26)

holds; that is, if JT(t) and E(t) are sinusoids having complex vector amplitudes
~JT and ~E, then the time-average absorbed power per unit volume can be

written as

pabs ¼ 1

2
Re ~JT � ~E�� �

¼ 1

2
Re ~J

�
T � ~E

� �

4.6. Ohmic Heating Power in a Nonuniform rf Discharge An rf discharge

with a nonuniform density n(x) is ignited between two plane parallel electro-

des located at x ¼ +l=2. The total rf current density (conduction + displace-

ment) is JT(x; t) ¼ x̂ J0 cosvt. The rf electric field in the discharge is similarly

given by E(x; t) ¼ x̂E0(x) cos(vt þ f0).

(a) Prove from Maxwell’s equations that J0 is a constant, independent of x.

(b) Writing JT ¼ x̂Re(~Jejvt) and E ¼ x̂Re½ ~E(x)ejvt�, find expressions for the

complex amplitudes ~J and ~E.

(c) For a high-pressure (collisional) discharge such that v � nm � vpe , with

a plasma density n(x) ¼ n0 cos(px=l), find an expression for E0(x) and
~E(x) in terms of J0 , n0 , nm , l, and other constants. Use the expression

(4.2.22) for the dc plasma conductivity sdc(x) with n0 ! n(x).

(d) In the limit of (c), integrate pohm over x to find the ohmic power per unit

area within a discharge volume jxj . d=2, where d , l.

(e) Note that your result in (d) tends to infinity as d ! l. Comment on the

correctness of this result.

4.7. Series Resonance Discharge A one-dimensional slab model of an rf dis-

charge between two parallel perfectly conducting electrodes of area A consists
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of a uniform plasma slab (ne ¼ ni ¼ n0) of thickness d with two sheaths, each

of thickness s, one near each electrode. An rf voltage source is connected

across the electrodes, such that an rf current I(t) ¼ I0 cosvt flows across

the plates. Neglect ion motions and assume that vp � v, nm , where vp is

the plasma frequency and nm is the electron–neutral momentum transfer

frequency. Writing the voltage across the plates in the form

V(t) ¼ Re(V0e
jvt), then one can introduce

V0 ¼ I0Z ¼ I0(Rþ jX)

where Z, R, and X are the impedance, resistance, and reactance of the dis-

charge, respectively. (V0 and Z are complex numbers; I0 , R, and X are real

numbers.)

(a) Find R and X for this discharge model. Sketch R and X versus v for

0 	 v 	 vp.

(b) Find the real power Pabs ¼ 1
2
Re(V�

0 I0) flowing into the discharge, and find

the frequency vres for which X ¼ 0 (the series resonance frequency).

4.8. Electrostatic Ion PlasmaWaves Derive the dispersion relation for electro-

static ion plasma waves in a uniform collisionless plasma containing mobile

ions with Te � Ti , and show that for long wavelengths (low frequencies), the

waves propagate at the ion sound speed (eTe=M)1=2. Use the Boltzmann

relation to relate ne to F.

4.9. Guiding Center Motion Consider a cylindrically symmetric, time-varying

magnetic field that varies parabolically with axial distance z as

B ¼ ẑB(t)(1þ z2=l2). Assume that B(t) increases slowly from the value B0

at time t ¼ 0 to B1 at t ¼ t1. A charged particle of mass m located at z ¼ 0

has perpendicular energy W?0 and parallel energy Wz0 at t ¼ 0. Assume

that the guiding center equations of motion are valid and that mmag ¼ const.

(a) Give the final perpendicular energy W?1 at z ¼ 0 (after a time t1).

(b) Write the equation for the motion along z, assuming that the motion is fast

compared to the time variation of B(t). Show that the motion is a sinusoi-

dal oscillation along z, and calculate the oscillation frequency vb. This

shows that the particle is confined axially in the magnetic field.

(c) Assume now that Wz0 ¼ 0 and R(t) � l, where R(t) is the radial distance

of the guiding center of the particle from the z axis. By using Faraday’s

law (2.2.1) to find the induced electric field Ef(t) and calculating the

resulting E� B drift, show that B(t)R2(t) ¼ const during the slow

change from B0 to B1.

4.10. Magnetic Moment The magnetic moment of a charged particle gyrating in

a magnetic field is defined as the product of the current generated by the rotat-

ing particle times the area enclosed by the rotation. Show that this is equal to

mmag defined in (4.3.11).
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4.11. Magnetic Drifts

(a) Cross multiplying (4.3.6) by B/qB2, obtain the three general guiding

center drifts (force, curvature, and grad-B drifts in Table 4.1). This calcu-

lation is not straightforward; see Chen (1984).

(b) Show that an expansion of the LHS of (4.3.6) gives rise to (4.3.18).

4.12. Calculating the Gradient Drift For the geometry in Figure 4.8b, derive

(4.3.19), starting from first principles, with the magnetic field Bz ¼
B0 þ rc(@B=@x) sinvct and v as given in (4.1.6) (f0 ¼ 0). To do this, first

find the time average Lorentz force and then use (4.1.19).

4.13. Waves in Magnetized Plasmas Sketch the wave dispersion v versus k for

the principal waves in an electron plasma (immobile ions) for high densities

vpe . vce , and compare to Figure 4.9.

4.14. Whistler Waves The RHP wave is known as the whistler wave in the

frequency range for which vci � v � vce. Using these approximations in

the dispersion relation, find the dependence of the phase velocity of the

wave on the frequency.

4.15. Microwave Diagnostic Consider a 3-cm diameter uniform plasma column.

It is desired to measure the plasma density either by measuring the pertur-

bation of the resonant frequency of a 6-cm diameter TM010 mode cavity or

by measuring the phase shift of the ordinary wave using a l ¼ 1:5-cm
interferometer.

(a) What is the approximate unperturbed resonant frequency of the cavity?

(b) Using the perturbation formula, calculate the frequency shift due to the

plasma column for n ¼ 1010 cm�3 and n ¼ 1011 cm�3.

(c) Sketch the cross section of the electric field magnitude for each case.

(d) Find the phase shift for the 1.5-cm interferometer for each case.

(e) Explain which method you would use to find the density if it was expected

to lie in the range of each of the two cases.
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CHAPTER 5

DIFFUSION AND TRANSPORT

5.1 BASIC RELATIONS

Diffusion and Mobility

We have already seen in Section 4.2 that adding a friction term to the force equation,

in a cold uniform plasma with an applied electric field, gives rise to a conductivity.

The friction term, arising from collisions with a background species, also leads to

diffusion in a nonuniform warm plasma. To see this we start with the steady-state

macroscopic force equation (2.3.15), neglecting the acceleration and inertial force

terms

qnE� rp� mnnmu ¼ 0 (5:1:1)

where we assume that the background species is at rest and that the momentum

transfer frequency nm is a constant, independent of the drift velocity u. Taking an

isothermal plasma, such that rp ¼ kTrn, and solving (5.1.1) for u, we obtain

u ¼ qE

mnm
� kT

mnm

rn
n

(5:1:2)

Equation (5.1.2) can be written

G ¼ +mnE� Drn (5:1:3)
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where G ¼ nu is the particle flux, and

m ¼ jqj
mnm

m2=(Vs) (5:1:4)

and

D ¼ kT

mnm
m2=s (5:1:5)

are the macroscopicmobility and diffusion constants. These are calculated separately

for each species. In (5.1.3), the positive sign is for q positive and the negative sign is

for q negative. Using the definition of the mean speed �v ¼ (8kT=pm)1=2 and a mean

free path (for hard-sphere scattering) l ¼ �v=nm we can write D as

D ¼ p

8
l2nm (5:1:6)

Notice that D in (5.1.6) is in the form (Dx)2=t, where Dx is the step length and t is
the time between steps of a random walk. This is the basic structure of a diffusion

process.

Free Diffusion

From (5.1.3), in the absence of an electric field, we can directly obtain the diffusion

law, relating the flux G ¼ nu to the density gradient,

G ¼ �Drn (5:1:7)

which is called Fick’s law. Substituting (5.1.7) into the continuity equation (2.3.7),

@n

@t
þ r � G ¼ G� L

with G and L the volume source and sink and with D independent of position, we

obtain the diffusion equation for a single species:

@n

@t
� Dr2n ¼ G� L (5:1:8)

Finally, we note that the transport coefficients m and D are related by the Einstein

relation:

D ¼ m
kT

jqj ¼ mT (5:1:9)
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Ambipolar Diffusion

Returning to the more general relation (5.1.3) we consider this to hold separately for

electrons and ions. Furthermore, in the steady state we make the congruence

assumption that the flux of electrons and ions out of any region must be equal,

Ge ¼ Gi, such that charge does not build up (see Problem 5.1). This is still true in

the presence of ionizing collisions, which create equal numbers of both species.

Since the electrons are lighter, and would tend to flow out faster (in an unmagnetized

plasma), an electric field must spring up to maintain the local flux balance. That is, a

few more electrons than ions initially leave the plasma region to set up a charge

imbalance and consequently an electric field. Using (5.1.3) for both species, with

Ge ¼ Gi ¼ G and ne � ni ¼ n, we have

minE� Dirn ¼ �menE� Dern

from which we can solve for E in terms of rn:

E ¼ Di � De

mi þ me

rn
n

(5:1:10)

Substituting this value of E into the common flux relation we have (in the ion

equation)

G ¼ mi

Di � De

mi þ me

rn� Dirn

¼ �miDe þ meDi

mi þ me

rn (5:1:11)

which is symmetric in the coefficients and (of course) holds for both ions and

electrons. Introducing the ambipolar diffusion coefficient

Da ¼ miDe þ meDi

mi þ me

(5:1:12)

we see that (5.1.11) again has the form of Fick’s law G ¼ �Darn. Substituting
(5.1.11) in the continuity equation, and assuming that all coefficients are indepen-

dent of position, we obtain

@n

@t
� Dar2n ¼ G� L (5:1:13)

the ambipolar diffusion equation.

The ambipolar diffusion coefficient can usually be simplified by noting that

me � mi in a weakly ionized discharge. Dropping mi in the denominator of
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(5.1.12) we have

Da � Di þ mi

me

De

and using the Einstein relation (5.1.9), we obtain

Da � Di 1þ Te

Ti

� �

(5:1:14)

For Te � Ti, we find that Da � miTe. From (5.1.14) we see that the ambipolar

diffusion is tied to the slower species, in this case the ions, but that it is increased

by a term proportional to the ratio of temperatures. Thus, in the usual case in

weakly ionized plasmas, in which Te � Ti, the ions and electrons both diffuse at

a rate that greatly exceeds the ion free diffusion rate.

Let us note that in the regime where me � mi and Te � Ti, the pressure gradient

term in (5.1.3) is small compared to the flux and field terms for ions, such that

Gi ¼ G � minE (5:1:15)

On the other hand, for electrons the flux term is small compared to the field and

pressure gradient terms, such that

Ge ¼ G ¼ �menE� Dern � 0 (5:1:16)

Hence ion motion is mobility dominated and electron motion is determined by a

Boltzmann equilibrium. Substituting (5.1.16) into (5.1.15) to eliminate E and using

(5.1.9), we obtain G ¼ �Darn with Da ¼ miTe (Problem 5.2).

In the above calculations we have considered only unmagnetized plasmas. In a

magnetic field the motion of electrons is strongly confined perpendicular to the

field, as we have already seen in Chapter 4, which can lead to quite different diffu-

sion rates parallel to and perpendicular to the applied magnetic field. We shall

discuss this situation in Section 5.4.

5.2 DIFFUSION SOLUTIONS

Boundary Conditions

With the appropriate boundary conditions, equations (5.1.8) or (5.1.13) for free or

ambipolar diffusion can be solved to determine the transport of various species,

including positive ions and neutral atoms. In the following, we let n be the appro-

priate diffusing species density and D be the (constant) diffusion coefficient.
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A common choice for the boundary condition at a perfectly absorbing wall is

n � 0 (5:2:1)

However, this condition is not self-consistent because a finite particle flux G ¼ nu

flowing to the wall would imply an infinite flow velocity u at the wall. The velocity

into the wall is generally limited to some finite value uw0. The boundary condition is

then

�D(rn)w ¼ nwuw0 (5:2:2)

where (rn)w is the normal component of rn at the wall. For positive ion diffusion,

(5.2.2) is still not correct because the diffusion equation is generally not valid in the

sheath regions of low-pressure discharges, due to the neglect of the inertial term

Mnu � ru in the ion force equation (2.3.9). As will be shown in Section 6.2, a bound-

ary condition of the form (5.2.2) can be applied at the plasma–sheath edge,

�D(rn)s ¼ nsuB (5:2:3)

where uB ¼ (eTe=M)1=2 is called the Bohm velocity, with M the ion mass. We give

an example in a following subsection. Let us note that D/ p�1; hence at high press-

ures the LHS of (5.2.2) and (5.2.3) are small, and the simpler boundary condition

(5.2.1) can often be used.

In some cases the boundary is not wholly absorbing or can even be a source

of diffusing particles. As we discuss in Section 9.4, this is commonly the case

for diffusion of neutrals. The boundary condition (5.2.2) is then modified to

(Chantry, 1987)

�D(rn)w ¼ g

2(2� g)
nw �v (5:2:4)

or

�D(rn)w ¼ Gw0 (5:2:5)

In (5.2.5), Gw0 is a specified flux. In (5.2.4), �v is the mean speed given by (2.4.9), and

g is the probability that a molecule incident on the wall is lost to the wall. The coef-

ficient g is called a sticking, recombination or reaction coefficient depending on the

loss mechanism at the wall. The factor 2� g in the denominator of (5.2.4) accounts

approximately for the change in the density at the wall for a given random thermal

flux, as g varies from zero, corresponding to a full Maxwellian distribution at the

wall, to unity, corresponding to a half-Maxwellian distribution at the wall. For

g � 1, (5.2.4) reduces to a zero gradient condition and for Gw0 , 0, the wall is a

source of diffusing particles. We will see examples of this in Section 9.4.
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Time-Dependent Solution

Solutions to the diffusion equation (5.1.8) or (5.1.13) with no sources or sinks are

easily obtained for spatial variation in one dimension. Because there are no

sources, the solution must decay in time. For simplicity, taking a plane-parallel geo-

metry of width l, we introduce a separation of variables,

n(x; t) ¼ X(x)T(t)

which when substituted in (5.1.8) gives

X
dT

dt
¼ DT

d2X

dx2
(5:2:6)

Dividing by XT, we obtain on the LHS a function of time alone, and on the RHS a

function of space alone. Consequently, both must equal a constant which we call

�1=t. The function of T then is determined from

dT

dt
¼ � T

t
(5:2:7)

which integrates to

T ¼ T0 e�t=t (5:2:8)

Similarly, the spatial part is determined by

d2X

dx2
¼ � X

Dt
(5:2:9)

which has a solution of the form

X ¼ A cos
x

L
þ B sin

x

L
(5:2:10)

where L ¼ (Dt)1=2 is the diffusion length, and A and B are constants. Taking bound-

ary conditions of X ¼ 0 at x ¼ +l=2, then the lowest-order solution is symmetric

(B ¼ 0) and

L0 ¼ (Dt0)
1=2 ¼ l

p
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Solving for t ¼ t0, we have the decay constant

t0 ¼ l

p

� �2
1

D
(5:2:11)

Combining the solutions for T and X, the complete solution is

n ¼ n0e
�t=t0 cos

px

l
(5:2:12)

with t0 given from (5.2.11). This gives the decay of the lowest-order mode. For an

arbitrary initial value of the density within�l=2 , x , l=2, the initial density can be
written as a Fourier series, which, with n(x) ¼ 0 at x ¼ +l=2, is

n ¼ n0
X

1

i¼0

Ai cos
(2iþ 1)px

l
þ
X

1

i¼1

Bi sin
2ipx

l

" #

(5:2:13)

Then assuming that each mode decays at its own characteristic rate, the symmetric

ith mode has a product solution:

ni ¼ n0Ai e
�t=ti cos

(2iþ 1)px

l
(5:2:14)

where from the diffusion equation, as above, we find

ti ¼ l

(2iþ 1)p

� �2
1

D
(5:2:15)

From (5.2.15) we see that the higher modes, i . 0, decay more rapidly than the

lowest mode, which becomes the dominant decay mode after sufficient time.

Steady-State Plane-Parallel Solutions

The diffusion solutions used for analyzing steady discharges are ones without time

dependence. In these cases it is necessary to either have flow into the region or a

source within the region, to balance the diffusion out of the region. A simple case

relevant to diffusion of neutrals or to a discharge containing negative ions (see

Chapter 10) is with a specified flux entering on one side and leaving on the other

and with no volume source or sink. Taking a plane-parallel geometry, we have

�D
d2n

dx2
¼ 0 (5:2:16)
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The solution is just a linear decay across the region of interest:

n ¼ Axþ B (5:2:17)

If we specify that the flux is G ¼ G0 at x ¼ 0 and the density is n ¼ 0 at x ¼ l=2,
then

n ¼ G0

D

l

2
� x

� �

(5:2:18)

The flux G ¼ �Drn is independent of x.

Another interesting case is with a uniform specified source of diffusing particles.

The steady-state diffusion equation has the form of Poisson’s equation

�Dr2n ¼ G0 (5:2:19)

The solution in a plane-parallel system is a parabola, and taking a symmetric sol-

ution with n ¼ 0 at x ¼ +l=2, we have

n ¼ G0l
2

8D
1� 2x

l

� �2
" #

(5:2:20)

with the center density G0l
2=8D.

The most common case is for a plasma consisting of positive ions and an equal

number of electrons which are the source of ionization. Then with ne ¼ ni ; n, the

diffusion equation has the form of the Helmholtz equation

r2nþ niz
D

n ¼ 0 (5:2:21)

with D ¼ Da and with niz the ionization frequency. Equation (5.2.21) has a homo-

geneous source (proportional to n). With the appropriate boundary conditions, the

solution of (5.2.21) that is everywhere positive is the lowest order eigenfunction,

with the corresponding eigenvalue b2 ¼ niz=D.
For a plane-parallel geometry over the region �l=2 � x � l=2, (5.2.21) becomes

d2n

dx2
þ niz

D
n ¼ 0

Taking the lowest-order symmetric eigenfunction, we obtain

n ¼ n0 cosbx (5:2:22)
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where

b ¼ niz
D

� �1=2

(5:2:23)

The flux is

G ¼ �D
dn

dx
¼ Dn0b sinbx (5:2:24)

and the diffusion velocity is

u ¼ G

n
¼ Db tanbx (5:2:25)

The ambipolar electric field, given by (5.1.10), points toward the walls, thus confining

the more mobile electrons. With boundary conditions (5.2.1) that n(+l=2) ¼ 0,

(5.2.22) gives the spatial dependence

n ¼ n0 cos
px

l
(5:2:26)

with the eigenvalue

b ¼ niz
D

� �1=2
¼ p

l
(5:2:27)

as shown in Figure 5.1. The readermaywell ask how it is possible to have a relation of

the type (5.2.27) when niz andD are both given functions of the medium. The answer

is that they are both temperature dependent, with niz an exponentially sensitive

function of Te, as we have seen in Chapter 3. Thus, (5.2.27) is an equation for the

FIGURE 5.1. High-pressure diffusion solution for density n versus position x.
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electron temperature. We shall make this quite explicit in our discharge models in

Chapters 10–14.

As we noted in the discussion following (5.2.1), the boundary conditions

n(+l=2) ¼ 0 that we have specified for the diffusion solutions are not self-

consistent because the finite flux combined with the zero edge density leads to an

infinite macroscopic edge velocity. Applying instead the boundary condition

(5.2.3) at the plasma–sheath edge x ¼ l0=2, where l0=2 ¼ l=2� s, with s the

sheath thickness,

D
dn

dx

�

�

�

�

l0=2
¼ �n(l0=2)uB (5:2:28)

we obtain

uB ¼ Db tan
bl0

2
(5:2:29)

where from (5.2.23), b ¼ (niz=D)
1=2. For a thin sheath, s � l, we have l0 � l. Since

uB, niz, and D are all functions of the electron temperature alone (with the neutral

density specified), (5.2.29) again is an equation for Te.

Steady-State Cylindrical Solutions

The preceding analysis is easily performed in cylindrical or spherical geometries.

The cylindrical geometry is typical for the analysis of the positive column of a dc

glow discharge, which we analyze in Section 14.2. The spherical geometry is a

useful approximation to a small driving electrode in an rf-excited plasma, which

we discuss in Section 11.4. Both cylindrical and spherical geometries are useful

in analyzing electrostatic probes, which are considered in Section 6.6.

For an infinite cylinder with a specified uniform source term, the diffusion

equation (5.2.19) in azimuthally symmetric coordinates is

d2n

dr2
þ 1

r

dn

dr
þ G0

D
¼ 0 (5:2:30)

The homogeneous solution has the form

nh ¼ c1 ln r þ c2 (5:2:31)

and a particular solution is

np ¼ � G0

4D
r2 (5:2:32)
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The complete solution n ¼ nh þ np is then easily obtained. For the boundary con-

ditions that n is finite on-axis and n ¼ 0 at r ¼ R, we find that c1 ¼ 0 and

c2 ¼ G0R
2=4D. The complete solution is parabolic

n ¼ G0R
2

4D
1� r2

R2

� �

(5:2:33)

as in the plane-parallel case.

In the more usual electropositive plasma the electron and positive ion densities

are equal and the ionization source is nizn. The diffusion equation (5.2.21) in cylind-
rical coordinates with azimuthal symmetry is then

d2n

dr2
þ 1

r

dn

dr
þ d2n

dz2
þ niz

D
n ¼ 0 (5:2:34)

With no axial variation (d2n=dz2 ¼ 0), (5.2.34) is Bessel’s equation, with solution

n ¼ n0J0(br) (5:2:35)

where J0 is the zero-order Bessel function. For the boundary condition n(R) ¼ 0,

we find

b ¼ niz
D

� �1=2

¼ x01
R

(5:2:36)

where x01 � 2:405 is the first zero of the J0 Bessel function. Equation (5.2.36)

determines Te. If there is also variation in z then the variables can be separated

in the usual way by assuming a product solution, which, with zero density on all

boundaries, gives

n(r; z) ¼ n0J0(x01r=R) cos (pz=l) (5:2:37)

with

b2 ;
1

L2
0

¼ n2iz
D2

¼ x201
R2

þ p2

l2
(5:2:38)

L0 is the characteristic scale length for diffusion. The ion flux is

Giz(r) ¼ �D
@n

@z
¼ pD

l
n0J0(x01r=R) (5:2:39)
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at the endwall z ¼ l=2 and is

Gir(z) ¼ �D
@n

@r
¼ x01D

R
n0J1(x01) cos (pz=l) (5:2:40)

at the radial wall r ¼ R.

One should note a fundamental difference between (5.2.19) for ambipolar diffu-

sion with a specified source G0, and (5.2.21) for diffusion with a source nizn
proportional to n. In the former case, the density profile and the peak density n0
are determined, but Te is not determined. In the latter case, the density profile and

Te are determined, but n0 is not determined. We will make this more explicit in

our models in Chapter 10, where we will see the role of energy balance in specifying

the remaining undetermined quantity.

If li � l and nm is independent of the ion flow velocity u, the diffusion equations
(5.2.19) or (5.2.21) are usually adequate. The condition that nm be independent of u,

however usually limits the applicability of these diffusion models to quite high

pressures, such that li=l . Ti=Te. If, on the other hand, we have li=l & Ti=Te,

then the assumptions of the constant D macroscopic diffusion theory begin to

break down, and other approximations must be employed. The resulting equations

are generally nonlinear and difficult to solve. In addition, the nonlinearity prevents

a product solution in more than one spatial dimension. We treat some of the more

important of these situations in Section 5.3.

5.3 LOW-PRESSURE SOLUTIONS

Variable Mobility Model

Many discharges are run at low pressure where the assumptions used to obtain the

solutions in Section 5.2 break down. In particular, at low pressure the effective ion

velocity for collision of ions with neutrals is the ion drift velocity juj rather than the
ion thermal velocity vthi; that is, for the pressure regime of interest juj � vthi over

most of the discharge region. In this case, the ion neutral collision rate can be

written as nm � juij=li, where li is the ion mean free path. Hence, we can

replace the mobility from (5.1.4) by the relation (Smirnov, 1981, Problem 4.5)

mi ¼
2eli

pMjuij (5:3:1)

Experimentally, over usual velocity ranges, li is found to be reasonably approxi-

mated by a constant, and we assume this to be the case for the following analysis

(see Fig. 3.15 for some typical data). For the regime of interest here, me � mi and

Te � Ti, the basic equations can be simplified in a manner similar to that used to

to obtain (5.1.15) and (5.1.16). We make the assumption that the ion drift velocity

due to the electric field dominates over the velocity due to the pressure gradient,
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such that

ui ¼ miE (5:3:2)

For the electrons we make the opposite assumption, namely that the drift velocity is

negligible, to obtain

E ¼ �Te

rn
n

(5:3:3)

This is equivalent to assuming that the electrons are governed by a Boltzmann dis-

tribution, as we have already described in Section 2.4.

With the above assumptions and the steady-state ion continuity equation,

r � (nui) ¼ nizn (5:3:4)

we can derive a differential equation for the density profile. Taking a parallel plane

geometry, as in Section 5.2 and solving for ui in terms of rn=n from (5.3.2) and

(5.3.3) we have, for ui . 0,

u2i ¼ �u2B
2

p

li
n

dn

dx
(5:3:5)

where uB ¼ (eTe=M)1=2 is the Bohm velocity. Taking the square root of (5.3.5) and

substituting in (5.3.4) we obtain

uB
2li
p

� �1=2
d

dx
�n

dn

dx

� �1=2

¼ nizn (5:3:6)

Equation (5.3.6), which is nonlinear, has been solved by Godyak and Maximov (see

Godyak, 1986) for the boundary conditions that ui ¼ 0 at the plasma center and ui ¼
uB at the sheath edge. The solution is given in Appendix C. The density profile found

from inserting (C.11) into (C.8) is implicitly given by

a2=3j ¼ 1

2
ln (1� y3)1=3 þ y
� 	

þ 1
ffiffiffi

3
p tan�1 2(y�3 � 1)1=3 � 1

ffiffiffi

3
p

� �

þ p

6
ffiffiffi

3
p (5:3:7)

where j ¼ 2x=l, y ¼ n=n(0), and

a ¼ nizl

2uB

pl

4li

� �1=2

� 1:25 (5:3:8)
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To a very good approximation, (5.3.7) with a ¼ 1:25 is the equation of a circle

n

n(0)

� �2

þ 2x

l

� �2

� 1

Actually, a varies slightly with niz as shown in Figure 5.2a. We see from (5.3.7)

that n=n(0) is a function of a single parameter 2a2=3x=l where niz and therefore a
is determined from (5.3.8), which expresses the balance of ionization and loss at

the boundary. The result for y is shown in Figure 5.2b. The density profile is

roughly similar to the cosine profile (5.2.22) of the constant diffusion coefficient

process discussed in Section 5.2, but is flatter in the middle and steeper at the edge.

The solution (5.3.7) has been generalized by Kouznetsov et al. (1996) to include a

specified input flux at x ¼ 0 in addition to the volume ionization. An important

application is to diffusion in a discharge containing negative ions. This low pressure

solution is also presented in Appendix C.

Langmuir Solution

At very low pressures, (li . l), there is a limiting regime in which ions created at

some location x0 within the discharge half-space 0 , x0 , l=2 flow collisionlessly

to the wall. Consequently, all ions born within a region 0 , x0 , x contribute to

the density at position x. In this situation we replace the ion drift equation (5.3.2)

by an ion velocity governed by energy conservation:

1

2
Mu2i (x

0; x) ¼ e½F(x0)�F(x)� (5:3:9)

This is equivalent to keeping the inertial and field terms and neglecting the accel-

eration and collision terms in the force equation (2.3.15). In (5.3.9) we have

FIGURE 5.2. Low-pressure diffusion solutions for variable mobility model: (a) normalized

ionization rate a ¼ (nizl=2uB)(pl=4li)
1=2 versus 2li=l; (b) normalized density n=n(0) versus

normalized position (2x=l)(a=a0)
2=3 (after Godyak, 1986).
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dropped the negligible thermal energy of created ions. The potentialF is taken to be

zero in the plasma center, with F , 0 for x . 0. For the electrons, we keep the

Boltzmann relation (5.3.3)

n(x) ¼ n0e
F(x)=Te

To determine the plasma profile, we let dGi ¼ nizn(x
0) dx0 be the flux of ions

created within a layer of thickness dx0 at x0. This flux flows collisionlessly to

position x, where it appears with a velocity ui determined from the particle

balance relation

nizn(x
0) dx0 ¼ dn ui(x

0; x) (5:3:10)

with dn the density produced at x by the flux created at x0. Inserting ui from (5.3.9)

into (5.3.10), solving for dn, and integrating dn over all positions 0 , x0 , x contri-

buting to the density at x, we obtain

n(x) ¼ M

2e

� �1=2ðx

0

nizn(x
0) dx0

½F(x0)�F(x)�1=2

Eliminating n in the preceding equation using the Boltzmann relation for electrons

yields a nonlinear integral equation for F

exp
F(j )

Te

� �

¼ Te

2

� �1=2ðj

0

exp F(j 0)=Teð Þ
½F(j 0)�F(j )�1=2 dj 0 (5:3:11)

where j ¼ xniz=uB. This equation was first obtained for various geometries in a

seminal paper by Tonks and Langmuir (1929), which included matching to the

sheath region. The equation has a closed-form solution in terms of Dawson func-

tions, but the solution was originally obtained by Tonks and Langmuir in the

form of a power series, and is shown in Figure 5.3. We note that the variable j is

a function of the ionization, but j=js is not, where js is the value of j at the

plasma edge x ¼ l0=2, and so the solution is valid as niz ! 0. The endpoint,

where there is a singularity (infinite derivative) of n, occurs at js ¼ 0:572,
ns=n0 ¼ 0:425, F=Te ¼ 0:854. The solution yields the velocity us � 1:3 uB at the

sheath edge; see also Section 6.2.

Heuristic Solutions

The solution in (5.3.23) for li=l . 1 does not join smoothly with the collisionless

solution shown in Figure 5.3. It is possible to construct a heuristic solution that

closely approximates the low-pressure constant li solution for li=l . 1, but has a

transition to the approximate collisionless solution as li=l ! 1.
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Godyak (1986) has done this, obtaining an approximate result useful for calculations:

niz � 2uB

l
3þ l

2li

� ��1=2

(5:3:12)

and

hl ¼ n(l=2)

n(0)
� 0:86 3þ l

2li

� ��1=2

(5:3:13)

A similar result for diffusion in a infinitely long cylinder of radius Rwas obtained (see

Godyak, 1986):

niz � 2:2
uB

R
4þ R

li

� ��1=2

(5:3:14)

and

hR ¼ n(R)

n(0)
� 0:8 4þ R

li

� ��1=2

(5:3:15)

For intermediate pressures, Ti=Te . li=l . 1, (5.3.13) reduces to the result

hl � 0:86 (2li=l)
1=2, which scales with pressure as hl / p�1=2. We give a derivation

in Appendix C.

The preceding heuristic solutions joining the variable mobility diffusion model to

the collisionless flow Langmuir result are not valid in the high pressure regime

li=l . Ti=Te, where a constant diffusion coefficient model is more appropriate.

n
n(0)

0.2

0.6

0.4

0.6

0.8

1.0

0.8 1.00.40.2
x iz /uBν1.75

FIGURE 5.3. Free-fall solution: variation of the normalized density n=n(0) versus

normalized position 1:75 xniz=uB.
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The three regimes can also be joined heuristically, giving the result (Lee and

Lieberman, 1995)

hl � 0:86

½3þ l=2li þ (0:86luB=pDa)
2�1=2 (5:3:16)

for parallel-plane geometry and

hR � 0:8

½4þ R=li þ (0:8RuB=x01J1(x01)Da)
2�1=2 (5:3:17)

for cylindrical geometry. In the high-pressure regime, hl � pDa=luB (Problem 5.7),

which scales with pressure as hl / p�1. The way the collisionless, variable mobility,

and constant diffusion solutions fit together to determine the edge-to-center density

ratio hl is illustrated in Figure 5.4. The heuristic scaling (5.3.16) is shown as the solid

line, and the scalings of the collisionless flow, variable mobility diffusion, and con-

stant diffusion coefficient models are indicated as dashed lines.

5.4 DIFFUSION ACROSS A MAGNETIC FIELD

We consider diffusion in the presence of magnetic fields, electric fields, and gradi-

ents. Generally the species for which the magnetic field is important, in weakly

ionized plasmas, is the electrons that have small gyration orbits. To focus our atten-

tion we consider a long cylinder, with the magnetic field B ¼ ẑB0 taken along the

cylinder. The density gradient points radially inward, and the ambipolar electric

FIGURE 5.4. Edge-to-center density ratio hl versus l=li, illustrating the three regimes of

collisionless flow, variable mobility diffusion, and constant diffusion coefficient models.
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field, to contain the weakly magnetized ions, also points inward. When an electron

gyrating around a line of force suffers a collision, it changes its direction, which

would tend to move its center of gyration, on the average, by a gyration radius

rce. This process is random, and therefore diffusive, with rce replacing le as the dif-
fusion mean free path when rce � le.

To derive the perpendicular diffusion coefficient, we write the perpendicular

component of the force equation for either species from (2.3.15):

0 ¼ qn(Eþ u? � B0)� kTrn� mnnmu?

where we have again assumed an isothermal plasma and taken nm sufficiently large

that the acceleration and inertial terms are negligible. It is convenient to express the

vector equation in terms of the rectangular components (taken to be x and y):

mnnmux ¼ qnEx � kT
@n

@x
þ qnuyB0 (5:4:1a)

and

mnnmuy ¼ qnEy � kT
@n

@y
� qnuxB0 (5:4:1b)

Using the definitions of m and D from (5.1.4) and (5.1.5), (5.4.1) can be rewritten:

ux ¼ +mEx � D

n

@n

@x
þ vc

nm
uy (5:4:2a)

and

uy ¼ +mEy � D

n

@n

@y
� vc

nm
ux (5:4:2b)

where we have also used the definition of the gyration frequency vc ¼ qB0=m.
Equations (5.4.2) may be solved simultaneously for ux and uy to obtain

½1þ (vctm)
2�ux ¼ +mEx � D

n

@n

@x
þ (vctm)

2 Ey

B0

� (vctm)
2 kT

qB0

1

n

@n

@y
(5:4:3a)

½1þ (vctm)
2�uy ¼ +mEy � D

n

@n

@y
þ (vctm)

2 Ex

B0

þ (vctm)
2 kT

qB0

1

n

@n

@x
(5:4:3b)

where we have defined tm ; 1=nm. Dividing by 1þ (vctm)
2, we define perpendicu-

lar mobility and diffusion coefficients,

m? ¼ m

1þ (vctm)
2

(5:4:4)
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D? ¼ D

1þ (vctm)
2

(5:4:5)

and combining (5.4.3a) and (5.4.3b) in vector form, we find

u? ¼ +m?E� D?
rn
n

þ uE þ uD

1þ (vctm)
�2

(5:4:6)

Here uE and uD are the E� B drift and the diamagnetic drift velocities which are

perpendicular to the field and the gradients:

uE ¼ E� B0

B2
0

(5:4:7)

uD ¼ � kT

qB2
0

rn� B0

n
(5:4:8)

The drifts perpendicular to the field and gradients are slowed by the collisions, while

the mobility and diffusion fluxes parallel to the gradients and perpendicular to the

field exist only in the presence of collisions, and are slowed by the presence of

the magnetic field. For some plasma discharges the drifts can be important,

because they can lead to instabilities with a resulting anomalous transport and

they can also lead to large current flows.

The factor vctm is an important quantity in magnetic confinement, with

vctm � 1 indicating strong retardation of diffusion. In this limit, dropping the 1,

we have

D? ¼ kT

mnm

1

(vctm)
2
¼ kTnm

mv2
c

(5:4:9)

Comparing (5.4.9) with the diffusion coefficient without a magnetic field (orD ¼ Dk
parallel to B0), from (5.1.5) we see that the position of the collision frequency is

reversed, with D? / nm while Dk / n�1
m . Since nm / m�1=2 at fixed energy and

cross section, we also find D? / m1=2 and Dk / m�1=2. This is easily understood

in that the lighter electrons move faster without a magnetic field, but are strongly

inhibited across the field. We can also understand these relations in terms of

random walk distances. As in Section 5.1 we use �v2 ¼ 8kT=pm, and with the

mean gyroradius �rc ¼ �v=vc substituted into (5.4.9), we have

D? ¼ p

8
�r2cnm (5:4:10)

Comparing (5.4.10) with (5.1.6), we see that the mean gyration radius has taken the

place of the mean free path as the characteristic random walk step.
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Ambipolar Diffusion

If plasma can be lost only across the magnetic field, then equating the electron and

ion fluxes, as in Section 5.1, leads to a cross-field ambipolar diffusion coefficient

as in (5.1.12), except that the quantities refer to the perpendicular mobility and

diffusion

D?a ¼ m?iD?e þ m?eD?i

m?i þ m?e

(5:4:11)

If the magnetic field is sufficiently strong that m?i � m?e, reversing the inequality

used in Section 5.1, then the simpler form, analogous to (5.1.14), is

D?a ¼ D?e 1þ Ti

Te

� �

(5:4:12)

where D?e is given by (5.4.9). Again the slower diffusion controls the behavior, but

in the usual weakly ionized plasma with Ti � Te, the ambipolar and electron diffu-

sion coefficients perpendicular to B0 are not significantly different.

The assumption that the diffusion takes place only across the magnetic field is almost

never satisfied. Even for finite length systems in which l (along B0) � d (across B0),

the more rapid diffusion along B0 is usually important. We therefore consider the

regime in which l � d, as shown in Figure 5.5. For simplicity, rectangular coordi-

nates are used and the y direction is taken to be uniform and of infinite extent.

Since the walls are conducting, it is clear that the fluxes across and along B0 are

coupled, and ambipolarity requires only that the total electron and ion fluxes

integrated over the wall surfaces to be equal.

zB

FIGURE 5.5. A plasma-filled conducting box in a dc magnetic field, illustrating the

calculation of ambipolar diffusion in a magnetized plasma.
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The diffusion is obtained from the continuity equations for electrons and ions:

@n

@t
¼ De

@2n

@z2
þ me

@

@z
(nEz)þ D?e

@2n

@x2
þ m?e

@

@x
(nEx) (5:4:13)

@n

@t
¼ Di

@2n

@z2
� mi

@

@z
(nEz)þ D?i

@2n

@x2
� m?i

@

@x
(nEx) (5:4:14)

Exact two-dimensional solutions to these two coupled nonlinear diffusion

equations have not been obtained. Letting Vs? and Vsk be the potential drops

across the perpendicular and parallel sheaths, then because the plasma is surrounded

by a conducting wall, the potential in the center can be estimated as

F � Vsk þ 1

2
Ezl � Vs? þ 1

2
Exd

Two limiting cases can be considered depending on the size of Ex. For Exd . Ti,

the perpendicular mobility terms in (5.4.13) and (5.4.14) are small compared to

the perpendicular diffusion terms. Dropping the mobility terms, as done by Simon

(1959), multiplying (5.4.13) by mi and (5.4.14) by me and adding the two equations,

we obtain

@n

@t
¼ miDe þ meDi

mi þ me

@2n

@z2
þ miD?e þ meD?i

mi þ me

@2n

@x2
(5:4:15)

Thus, the ambipolar diffusion coefficients are

Dka ¼ miDe þ meDi

mi þ me

(5:4:16)

parallel to the field, and

D?a ¼ miD?e þ meD?i

mi þ me

(5:4:17)

perpendicular to the field. We see that the parallel diffusion is the same as the case

without an applied magnetic field. However, (5.4.17) and (5.4.11) are not the same.

Since me � mi and normally D?i 	 D?e, (5.4.17) simplifies to

D?a � D?i (5:4:18)

With this approximation the diffusion equation (5.4.15) becomes

@n

@t
¼ Da

@2n

@z2
þ D?i

@2n

@x2
(5:4:19)
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such that the perpendicular loss of ions is by free (not ambipolar) diffusion alone.

Physically this corresponds to a situation in which the electrons, flowing along

field lines, almost completely remove the negative charge that produces Ex. Since

electrons preferentially flow out along the field and ions flow out perpendicular to

the field, Gi = Ge and currents must flow in the wall.

If electron flow along field lines is impeded by inertial or collisional effects or if

the axial sheath voltage Vsk varies with x, then there can be a substantial ion accel-

eration potential Exd & Ti. In this case the perpendicular ion diffusion term in

(5.4.14) is smaller than the mobility term and the preceding derivation of D?a is

invalid. There is experimental evidence (see Lieberman and Gottscho, 1994,

Section VIII.D.2) and also computer simulations (Porteous et al., 1994) that indicate

the existence of these radial potentials in magnetized processing discharges such as

ECRs (see Section 13.1). Measurements and simulations both show that ions are

lost radially from the bulk plasma with a characteristic loss velocity of order the

Bohm velocity uB ¼ (eTe=M)1=2. However, radial expansion of field lines might

affect the results. If an electric field exists across field lines with magnitude

Ex � Te=d, then we can estimate G?i � m?inTe=d. Then defining D?a through

G?i ; �D?adn=dx � D?an=d, we obtain

D?a � m?iTe � D?i

Te

Ti

(5:4:20)

in place of (5.4.18). For d � l, this can lead to substantial perpendicular ion losses in

magnetized discharges. An experiment and model testing the use of various perpen-

dicular diffusion coefficients in a high-frequency magnetized discharge (Vidal et al.,

1999) finds the best agreement with (5.4.20).

It is well known that plasmas not in thermal equilibrium are subject to instabil-

ities. This is a major subject of fully ionized, near collisionless plasmas, and is

treated in detail in most texts on plasma physics (see, e.g., Chen, 1984). Magnetic

field confinement is one source of such disequilibrium that leads to various instabil-

ities which tend to destroy the confinement. Large-amplitude disturbances can lead

to turbulent diffusion, which has the upper limit of the Bohm diffusion coefficient,

DB ¼ 1

16

Te

B
(5:4:21)

The scaling with B makes Bohm diffusion increasingly important as a source of

cross-field diffusion at high magnetic fields, since from (5.4.10), we see that classi-

cal cross-field diffusion scales as D? / 1=B2. Bohm diffusion tends to be less

important at high collisionality (low temperature and high pressure) both due to

the comparative scaling of DB to D? and also due to the fact that high collisionality

tends to inhibit some of the instabilities. We have not considered nonclassical diffu-

sion in this text. The reader wishing to explore the subject further can turn to Chen or

other texts on high-temperature plasmas.
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5.5 MAGNETIC MULTIPOLE CONFINEMENT

In magnetic multipole confinement, a set of alternating rows of north and south pole

permanentmagnets is placed around the surface of a discharge chamber. A typical con-

figuration, with the rows arranged around the circumference of a cylindrical chamber,

is shown in Figure 5.6. In some cases, one or both cylindrical endwalls are also covered

with rows of magnets. Commonly, each row is composed of a set of many permanent

magnets (diameter � length � 2.5 cm, B0 � 1 kG). The alternating rows of magnets

generate a line cusp magnetic configuration in which the magnetic field strength B is

a maximum near the magnets and decays with distance into the chamber, as shown

in Figure 5.6. Hence most of the plasma volume can be virtually magnetic field free,

while a strong field can exist near the discharge chamber wall, inhibiting plasma

loss and leading to an increase in plasma density and uniformity.

Magnetic Fields

The structure of the magnetic field can be understood by unwrapping the circumfer-

ence to obtain the alternating periodic arrangement of magnet rows in rectangular

geometry shown in Figure 5.7. Assuming that each row of magnets has a width

D � d, the separation of the rows, then By at y ¼ 0 can be approximated as

By(x; 0) ¼ B0D
X

1

i¼�1
(�1)i d x� id � d

2

� �

(5:5:1)

N S

Field
lines

Ion
trajectories

Mod-B

FIGURE 5.6. Magnetic multipole confinement in cylindrical geometry, illustrating the

magnetic field lines and the jBj surfaces near the circumferential walls.
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where d is the Dirac delta function. Introducing the Fourier transform,

By(x; 0) ¼
X

1

m¼1

Am sin
mp

d
x (5:5:2)

and equating (5.5.1) and (5.5.2), then if we multiply by sin (px=d) and integrate from
0 to d, we obtain the fundamental (m ¼ 1) Fourier mode amplitude A1, such that

By1(x; 0) ¼ 2B0D

d
sin

px

d
(5:5:3)

Because r � B ¼ 0 and r � B ¼ 0 for y . 0, By1 satisfies Laplace’s equation:

@2By1

@x2
þ @2By1

@y2
¼ 0 (5:5:4)

The solution to (5.5.4) with boundary conditions that By1(x; 0) is given by (5.5.3) and
that By1(x; y ! 1) is not infinite is

By1(x; y) ¼ 2B0D

d
sin

px

d
e�py=d (5:5:5)

From the z component of r � B ¼ 0, we have

@Bx1

@y
¼ @By1

@x
(5:5:6)

Using (5.5.5) in (5.5.6) and integrating with respect to y, we obtain

Bx1(x; y) ¼ � 2B0D

d
cos

px

d
e�py=d (5:5:7)

x

y

FIGURE 5.7. Schematic for determining multipole fields in rectangular geometry.
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The field amplitude is B1 ¼ (B2
x1 þ B2

y1)
1=2. Using (5.5.5) and (5.5.7), we obtain

B1(x; y) ¼ 2B0D

d
e�py=d (5:5:8)

showing an exponential decay that is independent of x into the discharge column

with decay length d=p. The smooth B1 surfaces, as well as the alternating By1 and

Bx1 components can be clearly seen in Figure 5.6. The higher-order Fourier modes

with nonzero coefficients (m ¼ 3; 5; . . .) have even shorter decay lengths (d=3p,
d=5p; . . .), and their effect is negligible a short distance from the chamber wall.

Thus, we expect this picture to hold at distances significantly greater than d=p
within the plasma chamber. Midway between the magnets (at x ¼ 0;+d; . . .), the
magnetic field is zero at y ¼ 0 and rises to a maximum value

Bmax ¼ p2

8

D2

d2
B0

at y � 0:28 d, after which it decays exponentially with y. The diffusion across this

region is important in determining the confinement properties of the multipoles.

Plasma Confinement

Experimentally (Leung et al., 1975, 1976), multipole fields have been found to have

three important effects on low-pressure plasma confinement:

1. Hot electrons, having energies & dc sheath potential, can be efficiently con-

fined, provided there is end confinement either with magnetic mirrors,

multipoles, or negative electrostatic potentials. These electrons, if created

and trapped at low pressures (large mean free path compared to the discharge

size) can be the main ionization source for a discharge.

2. Significant (but not large) improvements can be obtained in the confinement

of the bulk (low-temperature) plasma in a discharge.

3. Significant improvements in radial plasma uniformity can be obtained.

The effects can, at least partly, be understood in terms of magnetic mirroring in the

cusps as governed by (4.3.15). The energetic electrons that are not lost by moving

parallel to field lines are mirrored as they move into the higher field near the cusp.

Their velocity vectors with respect to the magnetic field at the wall are randomized

within the central plasma chamber, where (4.3.15) does not hold. The number of

reflections from the cusp then depends on the size of the “loss cone” angle in velocity

space compared to the possible solid angle of 4pwithin which the velocity vector can

be found. At lower velocities (or higher pressures), the scattering can take place col-

lisionally on the outward flight, greatly increasing the loss rate. Ambipolar fields also

play a part, but in a complicated manner. The improvement in plasma uniformity
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follows because the diffusion is inhibited in the region of strong magnetic field, as

described in Section 5.4. Thus, most of the density gradient occurs at the plasma

edge, where the diffusion coefficient is small, leading to a relatively uniform

central region.

As an example (Leung et al, 1975), a low-pressure dc argon discharge was

created in a 30-cm diameter, 33-cm long chamber by primary energetic electrons

emitted from a hot filament placed inside the chamber and biased at 260 V. With

multipoles and at p ¼ 0:8mTorr, the energetic electrons were confined for up to

70 bounces within the chamber, and the plasma density was increased by approxi-

mately a factor of 100. Of this increase, roughly a factor of 30 was measured to

be due to the increased confinement of the energetic electrons, and an additional

factor of 3 increase was due to the improvement in confinement for the bulk

plasma. However, in most processing discharges the ionization is not produced by

a class of very energetic electrons, and the second and third effects listed above

are most significant.

A useful concept to discuss confinement is the effective leak width w of a line

cusp. If there are N cusps of width w, then the effective circumferential loss

width is Nw and the fraction floss of diffusing electron–ion pairs that will be lost

to the wall is

floss ¼ Nw

2pR
; Nw , 2pR (5:5:9)

The boundary condition at the wall (y � 0) for the ambipolar diffusion of plasma

within the field-free discharge volume is then

Gw ¼ flossnsuB (5:5:10)

We return to the example in Section 5.2 of steady-state diffusion in a plasma slab of

length l with an ionization source proportional to the density. The density profile is

given by (5.2.22). Equating G(l=2) in (5.2.24) to Gw in (5.5.10), we obtain, for a thin

sheath,

flossuB

Dab
¼ tan

bl

2
(5:5:11)

This transcendental equation for bmust in general be solved numerically. However, if

floss is not too small, such that the left-hand side of (5.5.11) still remains much greater

than unity, then we can approximate b � p=l on the LHS to obtain

tan
bl

2
¼ flossuBl

pDa

(5:5:12)

This is the usual regime for most processing discharges. Taking the ratio of

ns ; n(l=2) to n0 ; n(0), and using (5.2.22) to substitute for tan(bl=2) in terms of
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ns, we find

ns

n0
¼ 1þ flossuBl

pDa

� �2
" #�1=2

(5:5:13)

We see that the uniformity of the plasma improves as floss is reduced below unity by the

presence of the multipoles. Since uniformity is often a critical issue in plasma proces-

sing, multipole confinement may offer a means to control this parameter. A measured

density profilewith andwithoutmultipole confinement is shown in Fig. 12.10, where rf

inductive discharges are discussed. As will be shown in Chapter 10 [see (10.2.2)

and accompanying discussion], for a fixed absorbed power the plasma density is

inversely proportional to the loss area. Hence we would expect n0 / f�1
loss , when

flossuBl=pDa � 1.

Leak Width w

The size of the leak width w is not fully understood. At very low pressures,

theoretical calculations, confirmed by measurements (see Hershkowitz et al.,

1975), indicate that

w � 4(�rce �rci)
1=2 (5:5:14)

where �rce and �rci are the mean electron and ion gyroradii, respectively, at the

location where the magnetic field lines enter the wall. However, the leak width is

observed to increase with pressure and is much larger than indicated by (5.5.14)

at typical process pressures (&1mTorr). The mechanism for this increase in w is

that ions and electrons collisionally diffuse across magnetic field lines, and

diffuse or flow along the field lines to the wall. An estimate of the leak width for

intermediate pressures is (Matthieussent and Pelletier, 1992)

w � 2

p
(�rce �rci)

1=2 d

(lmelmi)
1=2

(5:5:15)

where lme and lmi are the electron and ion mean free paths. By comparing (5.5.14)

and (5.5.15), a heuristic formula valid for low and intermediate pressures can be

constructed. The general scalings have been observed experimentally. At some

pressure where w � 2pR=N , floss given by (5.5.9) rises to unity and the multipoles

have little effect on the bulk plasma confinement. Other mechanisms, such as Bohm

diffusion across magnetic fields due to fluctuating electric fields in the plasma, can

also be present and are known to be important for particle losses, for example, from

weakly collisional cusp magnetic fields.
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PROBLEMS

5.1. The Congruence Assumption The congruence assumption Ge ¼ Gi is used

to derive the ambipolar relation (5.1.11).

(a) Show from particle conservation that r � Ge ¼ r � Gi.

(b) Show that

r � Ge ¼ �merF�rn
r � Gi ¼ mirF� rn

Hence for rF�rn ¼ 0, we find r � Ge ¼ r� Gi ¼ 0.

(c) For rF� rn ¼ 0, from parts (a) and (b), show that Ge ¼ Gi þ const. The

boundary conditions generally set the condition that the constant is zero,

and hence Ge ¼ Gi.

(d) Show that if n(r) ¼ n½F(r)�, that is if n is given by the Boltzmann relation

(2.4.16), with Te a constant, then rF�rn ¼ 0.

5.2. Ambipolar Diffusion Coefficient Making the assumptions of electric field

driven flux for ions and Boltzmann equilibrium for electrons, as in (5.1.15)

and (5.1.16), solve to obtain the ambipolar diffusion coefficient Da, and

compare with (5.1.14).

5.3. High-Pressure Diffusion with Specified Ionization Source A high-

pressure, steady-state argon plasma discharge confined between two parallel

plates located at x ¼ +l=2 is created in argon gas at density ng by uniformly

illuminating the region within the plates with ultraviolet radiation. The radi-

ation creates a uniform number G0 of electron–ion pairs per unit volume per

unit time everywhere within the plates. Assume that the electron and ion

temperatures are uniform, with Te � Ti. Electrons and ions are lost to

the walls by ambipolar diffusion, with ambipolar diffusion coefficient Da �
miTe (Te is in volts). Choose boundary conditions such that n(x) � 0 at

the walls.

(a) Find the plasma density n(x) and the peak density n0 within the plates.

Find the steady state particle flux G(x), ambipolar electric field E(x),

potential F(x), and total charge density r(x). Sketch G, E and F for

jxj � l=2.

(b) Plot r(x)=e and n(x) on the same graph for jxj � l=2. Are the ambipolar

solutions valid for r(x)=e . n(x)? Explain your answer.

5.4. Ambipolar Diffusion with a Delta Function Source Consider ambipolar

diffusion between two absorbing parallel plates separated by a distance l,

with one plate located at x ¼ �l=4 and the other plate located at x ¼ 3l=4.
Assume that G ¼ G0 electron–ion pairs per unit time per unit volume are

created within a thin layer �w , x , w within the plates, and that G ¼ 0

everywhere else within the plates. You may assume that w � l. The

ambipolar diffusion coefficient is Da ¼ Di(1þ Te=Ti), where Di is the ion
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diffusion coefficient, Te is the electron temperature, and Ti is the ion tempera-

ture. Assume that Di, Te and Ti are constants, with Ti � Te.

(a) Find and sketch the electron density ne(x) everywhere between the plates.

You may assume that ne � 0 at the surfaces of the two plates.

(b) Give an expression for the ion flux Gi(x) in terms of ne(x), and sketch Gi(x)

everywhere between the plates.

(c) Give an expression for the electric potential F(x) in terms of ne(x), and

sketch F(x) everywhere between the plates.

5.5. Ambipolar Diffusion with an Ionization Source Near OneWall Consider

ambipolar diffusion between two absorbing parallel plates separated by a dis-

tance l, with one plate located at x ¼ �l=2 and the other plate located at

x ¼ l=2. Assume that G ¼ G0 electron–ion pairs per unit time per unit

volume are created within the region to the left of the origin, �l=2 , x , 0,

within the plates, and that G ¼ 0 everywhere else within the plates. The ambi-

polar diffusion coefficient isDa ¼ Di(1þ Te=Ti), whereDi is the ion diffusion

coefficient, Te is the electron temperature, and Ti is the ion temperature.

Assume that Di, Te and Ti are constants, with Ti � Te.

(a) Find and sketch the electron density ne(x) everywhere between the plates.

You may assume that ne � 0 at the surfaces of the two plates.

(b) Give an expression for the ion flux Gi(x) in terms of ne(x), and sketch Gi(x)

everywhere between the plates. What fraction of the created electron–ion

pairs are lost to the right hand wall x ¼ l=2?

(c) Give an expression for the electric potential F(x) in terms of ne(x), and

sketch F(x) everywhere between the plates.

5.6. Ambipolar Diffusion in Parallel Plate Geometry A highly collisional rf

discharge is ignited between two parallel electrodes located at x ¼ +l=2.
Assume a constant ion–neutral collision frequency nmi. The steady-state dif-

fusion equation

d2n

dx2
þ b2n ¼ 0

with the boundary condition that n(+l=2) ¼ 0, has the solution n(x) ¼ n0
cos(px=l), where b2 ¼ niz=Da ¼ (p=l)2, niz is the electron–neutral ionization
rate, and Da � miTe is the ambipolar diffusion coefficient (Te is in volts).

(a) Find the steady-state (dc) particle flux G(x), ambipolar electric field E(x),

potential F(x), and total charge density r(x). Sketch G, E, and F for

jxj � l=2.

(b) Plot r(x)=e and n(x) on the same graph for jxj � l=2. Are the ambipolar

solutions valid for r(x)=e . n(x)? Explain your answer.

(c) Taking the condition r(x)=e ¼ n(x) for the breakdown of quasi-neutrality

and the onset of a sheath, with x ¼ l=2� s and sheath width s � l, show

that s � (l2Del=p)
1=3, where lDe is the central Debye length.
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(d) Show that s � lDs, the Debye length at the sheath edge.

(e) Letting the ion mobility at the sheath edge be mis ¼ elis=Mus, with lis the
ion–neutral mean free path and us the ion speed at the sheath edge, show

that us ¼ uB(lis=lDs)
1=2.

5.7. Density at a Sheath Edge For a constant ambipolar diffusion coefficient Da

and for a diffusion velocity equal to the Bohm velocity uB at the sheath edge

x ¼ l0=2, show that the ratio of the density nsl at the sheath edge to the density

n0 in the center of a plane parallel discharge of length l0 is

nsl

n0
¼ 1þ 1

b

uB

Da

� �2
" #�1=2

where b is given by (5.2.22).

5.8. Diffusion in a Rectangular Box Consider a high-pressure steady-state dis-

charge confined inside of a rectangular box having edges of length a meters

along x, b meters along y, and c meters along z. The center of the box is

located at x ¼ 0, y ¼ 0, z ¼ 0. The plasma is created by a volume ionization

G ¼ nizne and is lost to the walls by ambipolar diffusion with a constant ambi-

polar diffusion coefficient Da. Here niz is the electron–neutral ionization fre-

quency. Assume that the electron density ne is n0 in the center of the box and

is zero on the walls.

(a) Find an expression for the density ne(x; y; z) inside the box.

(b) Find the relation between Da, niz and the dimensions of the box for your

solution in (a) to be valid.

(c) Find the particle fluxes G flowing to each of the six walls.

(d) Find the total number of particles per second lost to the walls by integrat-

ing the particle fluxes G over the areas of the walls.

(e) Find the total number of particles per second created by ionization by

integrating the volume generation rate G over the volume of the box.

Your answer to part (d) and (e) should be the same.

5.9. Particle Balance for Diffusion in a Cylinder Consider a high-pressure

steady-state discharge confined inside of a cylindrical chamber of radius R

and length l. The center of the chamber is located at r ¼ 0, z ¼ 0. The

plasma is created by a volume ionization G ¼ nizne and is lost to the walls

by ambipolar diffusion with a constant ambipolar diffusion coefficient Da.

Assume that the electron density is n0 in the center of the chamber and is

zero on the walls. Then the diffusion equation is given by (5.2.34), with the

density n(r; z) given by (5.2.37) and the fluxes Giz and Gir to the walls

given by (5.2.39) and (5.2.40).

(a) Find the total number of particles per second created by ionization by

integrating the volume generation rate G over the volume of the chamber.
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(b) Find the total number of particles per second lost to the walls by integrat-

ing the particle fluxes G over the areas of the walls. Your answers to parts

(a) and (b) should be the same.

5.10. Diffusive Decay in a Plasma Cylinder Consider the diffusive decay of the

plasma density in an infinite cylinder of radius R with a constant diffusion

coefficient D. The density at time t ¼ 0 is given by (5.2.33).

(a) Show that the time-dependent radial distribution can be expressed as a

sum of Bessel functions and indicate how the amplitudes of the terms

are determined.

(b) Show that late in time the decay is exponential in time, and find the time

constant t for the decay in terms of R and D.

5.11. Diffusion in a Magnetic Field A plasma is generated in a cylindrical tube

of radius R and length l in argon (MAr=MH ¼ 40) at p ¼ 3mTorr with a strong

magnetic field B0 ¼ 1 kG along the axis of the tube.

(a) Assuming that the ambipolar diffusion coefficient along B0 has been

measured to be Da ¼ C=p(Torr), with C ¼ 104 cm2 Torr=s, and that the

ambipolar ion drift velocity corresponds to an energy Ek ¼ 10V, calcu-

late the mean free path of argon ions along B0.

(b) Considering that the transverse ion velocity corresponds to a temperature

T? ¼ 1V, calculate the ion gyration radius and determine if the radial dif-

fusion will be significant for L ¼ 30 cm and R ¼ 10 cm.

5.12. Random Walk Diffusion In a multiple-mirror device, which has been pro-

posed for confining fusion plasmas, ions are injected into the central magnetic

mirror and diffuse through a series of mirrors to the device ends. In the steady

state, a flux G0 flows out through each half of the machine. The density is a

maximum in the center of the machine and falls linearly to nmin at each

end. The axial diffusion mechanism is that an ion travels an axial distance

lz ¼ li=Rm, where li is the ion mean free path and Rm ¼ Bmax=Bmin is the

“mirror ratio.” The ion remains trapped in the mirror for a time ti before
again escaping axially in either direction. Assume lz � l, the length

between mirrors, and that ti � lz=�vi, the flight time between mirrors, and

that the total device length 2L � lz.

(a) Derive an approximate one-dimensional diffusion equation for the ion

transport in terms of the above parameters (electron effects are neglected),

and find the axial diffusion coefficient Dz.

(b) The density falls to nmin at z ¼ +L. Solve the diffusion equation for the

central density n0 as a function of G0, nmin, Dz, and L.

5.13. Diffusion in a Magnetized Plasma Solve (5.4.19) in the steady state with a

source term nizn and boundary conditions that n ¼ 0 at the rectangular walls

x ¼ +d=2 and z ¼ +l=2. Find niz as a function of Da, D?i, d, and l.
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CHAPTER 6

DIRECT CURRENT (DC) SHEATHS

6.1 BASIC CONCEPTS AND EQUATIONS

At the edge of a bounded plasma, a potential exists to contain the more mobile

charged species. This allows the flow of positive and negative carriers to the wall

to be balanced. In the usual situation of an electropositive plasma, consisting of

equal numbers of positive ions and electrons, the electrons are far more mobile

than the ions. The plasma will therefore charge positively with respect to a grounded

wall. The non-neutral potential region between the plasma and the wall is called a

sheath.

In a weakly ionized plasma, the energy to sustain the plasma is generally heating

of the electrons by the source, while the ions are at near equilibrium with the back-

ground gas. The electron temperature is then typically of few volts, while the ions

are cold. In this situation we may think of monoenergetic ions being accelerated

through the sheath potential, while the electron density decreases according to a

Boltzmann factor, as described in Section 2.4. The electron density would then

decay on the order of a Debye length lDe, to shield the electrons from the wall.

However, we cannot linearize the Poisson equation, as we did in deriving lDe in

Section 2.4, if we wish to obtain the exact flux balance. Furthermore, we will

show that a transition layer or presheath must exist between the neutral plasma

and the nonneutral sheath in order to maintain the continuity of ion flux, giving

rise to an ion velocity at the plasma–sheath edge known as the Bohm velocity uB.

The need for this presheath will arise naturally in our derivation in Section 6.2.
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If a potential is placed between bounding electrodes, then, while the overall flux

balance is maintained, each electrode may separately draw current. The most straight-

forward analysis is of a boundary with a large negative potential with respect to the

plasma. The simplest example is a uniform ion charge density, or matrix sheath.

This occurs in the cathode sheath of a dc discharge, for example, considered in

Section 14.3. A matrix sheath is also created transiently with a pulsed negative elec-

trode voltage in which the electrons are expelled from a plasma region, leaving a

uniform ion density behind. This occurs naturally in plasma immersion ion implan-

tation, discussed in Chapter 16. We consider the matrix sheath in Section 6.3.

For a high-voltage sheath, the current to the electrode is almost all ion current.

Provided the ion motion in the sheath is collisionless, then the steady self-consistent

ion density is not uniform, but rather is described by the Child–Langmuir law of

space-charge-limited current in a planar diode. We also discuss this situation in

Section 6.3.

The idealized conditions described in Sections 6.2 and 6.3 are not always met.

The temperature of the ions cannot always be ignored with respect to the electron

temperature. This situation arises, for example, in highly ionized plasmas. In this

case more complicated kinetic treatments are required. In a similar vein, the electron

distribution may not be Maxwellian. This may arise due to particular heating or loss

mechanisms, which occur, for example, in low-pressure capacitive rf plasmas, dis-

cussed in Chapter 11. In this situation, the decrease in electron density in the sheath

is not given by a Boltzmann factor but must be obtained kinetically. If the neutral gas

is electronegative, such that electron attachment is significant, then the negative

charges divide between electrons and negative ions. If the fraction of negative

ions present becomes large, the mobility of the negative charges can be greatly

reduced, changing the conditions at the sheath edge. We consider these various

topics, which, in fact, have some unity of analysis, in Section 6.4. Electronegative

plasmas are of considerable importance in processing applications, and their analy-

sis is described in Chapter 10.

Other situations that differ from the basic theory arise due to collisional effects in

the sheath region. In this case the ion flow is impeded by collisional processes with

neutrals, and the transport is mobility rather than inertia limited, similar to that

already described in Chapter 5. We discuss two simple limiting collisional cases

in Section 6.5. A full treatment, including both inertial and collisional effects, is

very complicated, requiring numerical solution of the kinetic equations.

This chapter deals with sheaths that are constant in time. Two other interesting

cases are sheaths formed in oscillating rf potentials and sheaths formed transiently

by pulsed potentials. In both situations approximate solutions can be obtained if

there is a separation of timescales such that electrons respond rapidly to the

time variation while ions respond slowly. This separation is characterized by the

inequalities

fpe � 1

t
� fpi (6:1:1)
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where t is the timescale of field variation (t ¼ 2p=v for an oscillatory variation) and

fpe and fpi are the electron and ion plasma frequencies, respectively. An oscillatory

potential applied to an electrode is characteristic of a capacitively excited rf

discharge, and we consider this sheath in Chapter 11. The pulsed potential sheath

is analyzed in Chapter 16.

The Collisionless Sheath

We use the assumptions (1) Maxwellian electrons at temperature Te, (2) cold ions

(Ti ¼ 0), and (3) ne(0) ¼ ni(0) at the plasma–sheath interface (interface between

essentially neutral and non-neutral regions) at x ¼ 0. As shown in Figure 6.1, we

define the zero of the potential F at x ¼ 0 and take the ions to have a velocity us
there. Ion energy conservation (no collisions) then gives

1

2
Mu2(x) ¼ 1

2
Mu2s � eF(x) (6:1:2)

The continuity of ion flux (no ionization in the sheath) is

ni(x)u(x) ¼ nisus (6:1:3)

FIGURE 6.1. Qualitative behavior of sheath and presheath in contact with a wall.
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where nis is the ion density at the sheath edge. Solving for u from (6.1.2) and sub-

stituting in (6.1.3) we have

ni ¼ nis 1� 2eF

Mu2s

� ��1=2

(6:1:4)

The electron density is given by the Boltzmann relation

ne(x) ¼ nes e
F(x)=Te (6:1:5)

Setting nes ¼ nis ; ns at the sheath edge and substituting ni and ne into Poisson’s

equation

d2F

dx2
¼ e

e0
(ne � ni)

we obtain

d2F

dx2
¼ ens

e0
exp

F

Te

� 1� F

Es

� ��1=2
" #

(6:1:6)

where eEs ¼ 1
2
Mu2s is the initial ion energy. Equation (6.1.6) is the basic nonlinear

equation governing the sheath potential and ion and electron densities. However,

as we shall see in the next section, it has stable solutions only for sufficiently

large us, created in an essentially neutral presheath region.

6.2 THE BOHM SHEATH CRITERION

A first integral of (6.1.6) can be obtained by multiplying (6.1.6) by dF=dx and inte-

grating over x:

ðF

0

dF

dx

d

dx

dF

dx

� �

dx ¼ ens

e0

ðF

0

dF

dx
exp

F

Te

� 1� F

Es

� ��1=2
" #

dx (6:2:1)

Canceling the dx’s and integrating with respect to F, we obtain

1

2

dF

dx

� �2

¼ ens

e0
Te exp

F

Te

� Te þ 2Es 1� F

Es

� �1=2

�2Es

" #

(6:2:2)

where we have set F ¼ 0 and dF=dx ¼ 0 at x ¼ 0 corresponding to a field free

plasma. Equation (6.2.2) can be integrated numerically to obtain F(x). However,
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it is apparent that the RHS of (6.2.2) should be positive for a solution to exist. Phys-

ically, this means that the electron density must always be less than the ion density in

the sheath region. Since we expect this to be a problem only for small F, we expand

the RHS of (6.2.2) to second order in a Taylor series to obtain the inequality

1

2

F2

Te

� 1

4

F2

Es

� 0 (6:2:3)

We see that (6.2.3) is satisfied for Es � Te=2 or, substituting for Es,

us � uB ¼ eTe

M

� �1=2

(6:2:4)

This result is known as the Bohm sheath criterion.

Plasma Requirements

The condition (6.2.4) that us � uB for a collisionless sheath to form is complemented

by an opposing condition that u , uB in the quasi-neutral bulk plasma. To see this,

we examine the quasi-neutral equilibrium

ne ¼ ni ; n (6:2:5)

in a plane-parallel discharge. We use ion conservation (2.3.7)

n
dui

dx
þ ui

dn

dx
¼ G (6:2:6)

ion momentum conservation (2.3.9)

Mnui
dui

dx
¼ enE þ fc (6:2:7)

and the Boltzmann relation (2.4.13) for electrons

enE þ kTe
dn

dx
¼ 0 (6:2:8)

Here G is the rate of production of electron–ion pairs per unit volume and fc is the

collisional force per unit volume acting on the ions.

Solving (6.2.8) for E and substituting into (6.2.7), we obtain

nui
dui

dx
þ u2B

dn

dx
¼ fc

M
(6:2:9)
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Solving (6.2.6) and (6.2.9) for the derivatives dn=dx and dui=dx, we find

dn

dx
¼ fc=M � Gui

u2B � u2i
(6:2:10)

and

dui

dx
¼ Gu2B � ui fc=M

u2B � u2i
(6:2:11)

Because fc is always negative, we see that both derivatives become singular as

ui ! uB. Since ui ¼ 0 in the center of the discharge (by symmetry) and increases

as we move toward the walls, we see that the quasi-neutral bulk solution can

break down near the walls where ui ! uB. For the limiting case of a collisionless

sheath (and bulk plasma), the quasi-neutral plasma (having ui , uB) joins the colli-

sionless sheath (having ui � uB) exactly at us ¼ uB.

The Presheath

Although derived above for a plane-parallel equilibrium, the Bohm condition has a

more general validity. To give the ions the directed velocity uB, there must be a finite

electric field in the plasma over some region, typically much wider than the sheath,

called the presheath (see Fig. 6.1). Hence the presheath region is not strictly field

free, although E is very small there. At the sheath–presheath interface there is a tran-

sition from subsonic (ui , uB) to supersonic (ui . uB) ion flow, where the condition

of charge neutrality must break down. The transition can arise from geometric con-

traction of the plasma, from ion friction forces in the presheath, or from ionization in

the bulk plasma (Riemann, 1991). Putting in specific values of momentummean free

path, ionization, or geometric contraction, the presheath equations can be solved

analytically. This has been done, for example, for (a) a geometric presheath with

current contraction onto a spherical probe, (b) a plane-parallel collisional presheath,

and (c) an ionizing presheath with the ionization proportional to ne. These solutions

are plotted in Figure 6.2. They show quite different behavior in the plasma region:

The geometric presheath (a) relaxes to the undisturbed (field free) plasma, the

collisional presheath (b) tends to a logarithmic potential shape (see below), indi-

cating that the ion transport requires a residual plasma field, and the ionizing pre-

sheath (c) ends with zero field at a finite point representing the midplane of a

symmetric plasma. For (b) or (c) the presheath width is of order the mean free

path for ion–neutral collisions or for electron–neutral ionization, respectively.

Despite the differences, all solutions run quite similarly into the singularity

ui ¼ uB at the sheath edge. The growing field inhomogeneity approaching this

singularity indicates the formation of space charge and the breakdown of the

quasi-neutral approximation.
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The potential drop across a collisionless presheath, which accelerates the ions to

the Bohm velocity, is given by

1

2
Mu2B ¼ eFp

where Fp is the plasma potential with respect to the potential at the sheath–

presheath edge. Substituting for the Bohm velocity from (6.2.4), we find

Fp ¼ Te

2
(6:2:12)

This is shown as the dashed line in Fig. 6.2. The spatial variation of the potential

Fp(x) in a collisional presheath has been estimated by Riemann (1991) to be deter-

mined from

1

2
� 1

2
exp

2Fp

Te

� �

�Fp

Te

¼ x

li

where x is the distance from the Bohm point at the presheath–sheath edge and li is
the ion–neutral mean free path. The ratio of the density at the sheath edge to that in

FIGURE 6.2. F=Tc versus position within the presheath, showing (a) the geometric

presheath, (b) a planar collisional presheath, and (c) a planar ionization presheath. The

sheath–presheath edge is at the right (after Riemann, 1991).
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the plasma is then found from the Boltzmann relation

ns ¼ nb e
�Fp=Te � 0:61nb (6:2:13)

where nb is the density where the presheath and bulk plasma join.

Sheath Potential at a Floating Wall

It is quite straightforward to determine the potential drop within the sheath between

a plasma and a floating wall. We equate the ion flux (assumed constant through the

sheath),

Gi ¼ nsuB (6:2:14)

to the electron flux at the wall,

Ge ¼ 1

4
ns �vee

Fw=Te (6:2:15)

where �ve ¼ (8eTe=pm)
1=2 is the mean electron speed and Fw is the potential of the

wall with respect to the sheath–presheath edge. We have, after substituting for the

Bohm velocity from (6.2.4),

ns
eTe

M

� �1=2

¼ 1

4
ns

8eTe

pm

� �1=2

eFw=Te (6:2:16)

Solving for Fw, we obtain

Fw ¼ �Te ln
M

2pm

� �1=2

(6:2:17)

The wall potential Fw is negative and is related linearly to Te with a factor pro-

portional to the logarithm of the square root of the mass ratio. For hydrogen, for

example, ln (M=2pm)1=2 � 2:8, while for argon (M ¼ 40 amu) the factor is 4.7.

Thus, argon ions with initial energy Es ¼ Te=2 at the sheath–presheath edge that

fall through a collisionless dc sheath to a floating wall would bombard the wall

with an energy of Ei � 5:2Te. Of course, electrodes that have potentials on them,

either dc or rf, can be bombarded with much higher energy, but these electrodes

must draw a substantial net current, as we will show in Section 6.3.

The sheath width s is found by integrating (6.2.2) to obtain F(x) and setting

F(s) ¼ Fw, with Fw given by (6.2.17). The integral must be done numerically.

Typical sheath widths are a few electron Debye lengths lDs, where lDs is the elec-
tron Debye length at the plasma–sheath edge.
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Collisional Sheaths

As we have seen, for the collisionless case, a unique Bohm velocity can be defined at

the position where the quasi-neutral presheath solution becomes singular. For

weakly collisional plasmas a unique edge position is not exactly defined, and

approximate methods of separating the plasma and sheath regions become more

subtle. The true behavior is quite complicated at this interface. For more details,

including a kinetic treatment, the reader is referred to a review paper by Riemann

(1991). Numerical solutions, including Poisson’s equation in both the plasma and

the sheath have also been performed, for example, Su and Lam (1963), Franklin

and Ockendon (1970), Godyak and Sternberg (1990a), and Riemann (1997), but

are not easy to apply to complete discharge calculations. For weakly collisional

plasmas, the presheath scale length is the ion–neutral mean free path li, and the

sheath thickness is, as for the collisionless case, a few Debye lengths lDs, with
li � lDs. In this case, the presheath and sheath scale lengths are well separated,

and both theory and numerical calculations indicate that there is an intermediate

length scale l1=5i l4=5De over which the transition occurs from the presheath to the

sheath. The ion drift speed in this region lies somewhat below the Bohm speed.

For highly collisional plasmas with li . lDs, the ion motion is mobility limited,

ui � miE, the intermediate presheath region disappears, and the analysis of Problem

5.6 applies. As shown there, the bulk plasma quasi-neutrality breaks down at a

sheath width

s � K(l2Del)
1=3 � (pK3)1=2lDs (6:2:18)

with lDe and lDs the central and edge Debye lengths, l the plate separation, and K a

coefficient of order unity (Blank, 1968). Franklin and Snell (2000c) give K � 2:2 þ
0:125 log10(niz=nmi), with niz the ionization frequency and nmi the ion–neutral

momentum transfer frequency. As shown in Problem 5.6, the ion speed at the

sheath edge lies below the Bohm speed (see also Franklin, 2002)

us � uB(Cli=lDs)
1=2 (6:2:19)

with C a coefficient of order unity. Godyak and Sternberg (1990a) give a heuristic

expression over the range of mean free paths

us � uB

(1þ plDs=2li)
1=2

(6:2:20)

Since the bulk plasma and sheath regions merge, the exact position of the sheath

is a matter of definition (Franklin, 2004). However, for the situations of most interest

in this book, the exact position and ion drift speed for the plasma–sheath transition

is not that important. For equilibrium calculations, the ion flux Gi is the main

quantity of physical interest, and its decomposition into Gi ¼ nsuB, the product of

a density and a flow velocity at a “sheath edge,” is not of great importance in
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determining the behavior in the “sheath” or the “bulk plasma”. For the sheath, it is

the ion flux entering the sheath that mainly determines the sheath properties. For the

bulk plasma, as we saw in (5.2.3), the Bohm velocity is also used as part of the

boundary conditions to determine the diffusion solution. However, for collisional

plasmas, with li � l, the plasma size, the diffusion solutions become quite insensi-

tive to the edge ion drift speed, and the simpler boundary condition (5.2.1) can be

used.

Simulation Results

Particle-in-cell simulations can illustrate some of the phenomena we have described,

as well as introduce some new features. Figure 6.3 shows a simulation of sheath for-

mation during the decay of a warm, initially uniform density electron–proton

plasma between short-circuited parallel plates (no source). The initial plasma par-

ameters are Te ¼ Ti ¼ 1V and n0 ¼ 108 cm�3, with p ¼ 50mTorr; l ¼ 1 cm, and

an ion–neutral momentum transfer cross section smi ¼ 5� 10�15 cm2. For these

parameters, lDe � 0:074 cm; f�1
pe � 1:11� 10�8 s, Da � 1:5� 105 cm2=s, and the

fundamental diffusion mode timescale is t0 � 0:68� 10�6 s. The density, field,

and potential profiles are shown in (a), (b), and (c) at t ¼ 5� 10�8 s, after the

sheaths have partially formed, but before the decay of the higher-order (i . 1) dif-

fusion modes. Hence the ion density in (a) is relatively uniform in the bulk plasma

FIGURE 6.3. Particle-in-cell simulation showing sheath formation from warm, initially

uniform electron–proton plasma between short-circuited parallel plates: (a) density profiles

at time t ¼ 4� 10�8 s; (b) electric field profile; (c) potential profile; (d) midpotential

versus time.

174 DIRECT CURRENT (DC) SHEATHS



rather than the cosine variation given in (5.2.7), and the steady-state sheaths have not

fully formed due to ion transit timescale effects. However, we clearly see the sheath

formation. The midpotential variation with time is shown on a short timescale in (d),

illustrating its formation with Fmax � Te as the sheaths form on the very fast elec-

tron timescale f�1
pe , along with accompanying electron plasma oscillations, as noted

previously for Figure 2.2.

6.3 THE HIGH-VOLTAGE SHEATH

Matrix Sheath

Sheath voltages are often driven to be very large compared to Te. The potential F in

these sheaths is highly negative with respect to the plasma–sheath edge; hence ne �
ns e

F=Te ! 0 and only ions are present in the sheath. The simplest high-voltage

sheath, with a uniform ion density, is known as a matrix sheath. Letting ni ¼ ns ¼
const within the sheath of thickness s and choosing x ¼ 0 at the plasma–sheath

edge, then from (2.2.3),

dE

dx
¼ ens

e0
(6:3:1)

which yields a linear variation of E with x:

E ¼ ens

e0
x (6:3:2)

Integrating dF=dx ¼ �E, we obtain a parabolic profile

F ¼ � ens

e0

x2

2
(6:3:3)

Setting F ¼ �V0 at x ¼ s, we obtain the matrix sheath thickness

s ¼ 2e0V0

ens

� �1=2

(6:3:4)

In terms of the electron Debye length lDs ¼ (e0Te=ens)
1=2 at the sheath edge, we

see that

s ¼ lDs
2V0

Te

� �1=2

(6:3:5)

Hence the sheath thickness can be tens of Debye lengths.
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Child Law Sheath

In the steady state, the matrix sheath is not self-consistent since it does not account

for the decrease in ion density as the ions accelerate across the sheath. In the limit

that the initial ion energy Es is small compared to the potential, the ion energy and

flux conservation equations (6.1.2) and (6.1.3) reduce to

1

2
Mu2(x) ¼ �eF(x) (6:3:6)

en(x)u(x) ¼ J0 (6:3:7)

where J0 is the constant ion current. Solving for n(x), we obtain

n(x) ¼ J0

e
� 2eF

M

� ��1=2

(6:3:8)

Using this in Poisson’s equation, we have

d2F

dx2
¼ � J0

e0
� 2eF

M

� ��1=2

(6:3:9)

Multiplying (6.3.9) by dF=dx and integrating from 0 to x, we have

1

2

dF

dx

� �2

¼ 2
J0

e0

2e

M

� ��1=2

(�F)1=2 (6:3:10)

where we have chosen dF=dx ¼ �E ¼ 0 at F ¼ 0 (x ¼ 0). Taking the (negative)

square root (since dF=dx is negative) and integrating again, we obtain

�F3=4 ¼ 3

2

J0

e0

� �1=2
2e

M

� ��1=4

x (6:3:11)

Letting F ¼ �V0 at x ¼ s and solving for J0, we obtain

J0 ¼ 4

9
e0

2e

M

� �1=2
V
3=2
0

s2
(6:3:12)

Equation (6.3.12) is the well-known Child law of space-charge-limited current in a

plane diode. With fixed spacing s it gives the current between two electrodes as a

function of the potential difference between them, and has been traditionally used

for electron diodes. However, with J0 given explicitly as

J0 ¼ ensuB (6:3:13)
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in (6.3.12), we have a relation between the sheath potential, the sheath thickness,

and the plasma parameters, which can be used to determine the sheath thickness s.

Substituting (6.3.13) in (6.3.12) and introducing the electron Debye length at the

sheath edge, we obtain

s ¼
ffiffiffi

2
p

3
lDs

2V0

Te

� �3=4

(6:3:14)

Comparing this to the matrix sheath width, we see that the Child law sheath is larger

by a factor of order (V0=Te)
1=4. The Child law sheath can be of order of 100 Debye

lengths (�1 cm) in a typical processing discharge. Since there are no electrons

within the sheath to excite the gas, the sheath region appears dark when observed

visually.

Inserting (6.3.12) into (6.3.11) yields the potential within the sheath as a function

of position

F ¼ �V0

x

s

� �4=3

(6:3:15)

The electric field E ¼ dF=dx is

E ¼ 4

3

V0

s

x

s

� �1=3

(6:3:16)

and the ion density n ¼ (e0=e) dE=dx is

n ¼ 4

9

e0
e

V0

s2
x

s

� ��2=3

(6:3:17)

We see that n is singular as x ! 0, a consequence of the simplifying assumption in

(6.3.6) that the initial ion energy Es ¼ 0. The analysis can be carried through for a

finite eEs ¼ 1
2
Mu2B, using (6.1.2), resolving the singularity and yielding n ! ns as

x ! 0 (Problem 6.1).

The ion motion within the sheath can be determined using conservation of energy

(6.3.6). Assuming that an ion enters the sheath with initial velocity u(0) ¼ 0, we

insert (6.3.15) into (6.3.6) and solve for u ¼ dx=dt to obtain

dx

dt
¼ v0

x

s

� �2=3

(6:3:18)

with

v0 ¼ 2eV0

M

� �1=2

(6:3:19)

6.3 THE HIGH-VOLTAGE SHEATH 177



the characteristic ion velocity in the sheath. Integrating (6.3.18) yields

x(t)

s
¼ v0t

3s

� �3

(6:3:20)

Setting x ¼ s in (6.3.20), we obtain the ion transit time across the sheath:

ti ¼ 3s

v0
(6:3:21)

The Child law solution is valid if the sheath potentials are large compared to the

electron temperature. It is therefore not appropriate for use where the sheath poten-

tial is the potential between a plasma and a floating electrode. However, with some

modification, we shall see in Chapter 12 that it is useful in determining the sheath

width of an rf-driven discharge. Because the ion motion was assumed collisionless,

it is also not appropriate for higher-pressure discharges. We shall treat collisional

formulations of the sheath region in Section 6.5.

6.4 GENERALIZED CRITERIA FOR SHEATH FORMATION

Using a kinetic treatment without ion collisions, the Bohm criterion for a stable

sheath can be generalized to arbitrary ion and electron distributions. First formulated

by Boyd and Thompson (1959), a more rigorous and complete treatment in the limit

lDe ! 0 can be found in Riemann (1991). The result is

eTe

M

ð1

0

1

v2
f (v) dv � Te

d(ne þ n�)
dF

�

�

�

�

F¼0

(6:4:1)

where f (v) is the one-dimensional speed distribution of the positive ions, ne þ n� is

the sum of the densities of the negatively charged species, and F is the potential,

with F ¼ 0 at the sheath–presheath edge. For our previous case of cold ions and

Maxwellian electrons, (6.4.1) becomes

eTe

M

ð1

0

1

v2
d(v� us) dv � Te

d

dF
eF=Te
� �

�

�

�

F¼0
(6:4:2)

where d(v� us) is the Dirac d function. Evaluating the integral on the left and taking
the derivative on the right, we have

eTe

M

1

u2s
� 1
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or

us � eTe

M

� �1=2

¼ uB

which is the Bohm criterion from (6.2.4).

The more general form can be calculated for finite temperature ion distributions,

but can lead to mathematical difficulties at low energies due to the average over

1=v2. Non-Maxwellian electron distributions, such as power-law distributions that

can arise from stochastic rf heating (Chapter 11), can also lead to mathematical

singularities. In physical devices, however, collisional processes at low energies

generally allow nonsingular solutions to exist.

Electronegative Gases

A physical situation in which (6.4.1) is particularly useful is for electronegative

gases in which electron attachment allows a significant number of negative ions

to be present. This situation was treated by Boyd and Thompson (1959) and we

follow their approach here. The Poisson equation for the potential is

r2F ¼ � e

e0
(nþ � ne � n�) (6:4:3)

where nþ, ne, and n� are the positive ion, electron, and negative ion densities,

respectively. At the sheath edge we use quasi-neutrality, nsþ ¼ nse þ ns� , and

define the ratio of negative ions to electrons as as ; ns�=nse . Then the quasi-

neutral condition becomes

nsþ ¼ (1þ as)nse (6:4:4)

If we further consider that the electron and negative ion distributions are

Maxwellian, with a temperature ratio Te=Ti ; g, then for cold positive ions we

can directly repeat the calculation in Section 6.2 to obtain a new Bohm criterion

(Problem 6.2). Here we use the more general expression (6.4.1). The Boltzmann

relation for electrons and negative ions gives

ne þ n� ¼ nse e
F=Te þ asnse e

gF=Te (6:4:5a)

which combined with (6.4.4) gives

ne þ n� ¼ nsþ
1þ as

(eF=Te þ as e
gF=Te ) (6:4:5b)
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Taking a derivative of (6.4.5b) with respect to F, and evaluating at F ¼ 0, on the

RHS of (6.4.1), that equation becomes

eTe

M

ð1

0

1

v2
f (v) dv � nsþ

1þ asg

1þ as

� �

(6:4:6)

For cold positive ions, evaluating the integral as in (6.4.2) and taking the reciprocal

we have

us � eTe(1þ as)

M(1þ asg)

	 
1=2

(6:4:7)

which is the generalization of the Bohm criterion (6.2.4) for an electronegative

plasma. It is immediately apparent that, if g is large and as not too small, the nega-

tive ions strongly reduce the velocity required at the sheath edge. However, in this

situation the positive ion temperature cannot be ignored and the LHS of (6.4.6) must

be integrated over the ion distribution.

This is not the end of the story, because the potentials in the bulk plasma and pre-

sheath regions will repel the colder negative ions, thus reducing as at the sheath edge

as compared to ab ; nb�=nbe where the presheath and bulk plasma join, thus

increasing the importance of the electrons in the sheath region. If Fp is the potential

at this position with respect to the sheath–presheath edge, then using the Boltzmann

relation for both electrons and negative ions, nse ¼ nbe exp(�Fp=Te), ns� ¼ nb�
exp (�gFp=Te), we combine these expressions with the definition of a to obtain

as ¼ ab exp
Fp(1� g)

Te

	 


(6:4:8)

We have previously found that for as ¼ 0 (electrons only) that Fp=Te ¼ 1=2. Using
the same argument of conservation of ion energy we obtain (Problem 6.3)

Fp

Te

¼ 1þ as

2(1þ gas)
(6:4:9)

Substituting (6.4.9) in (6.4.8) we can solve explicitly for ab:

ab ¼ as exp
(1þ as)(g� 1)

2(1þ gas)

	 


(6:4:10)

Considering ab as the known quantity for an electronegative gas, then as must be

determined numerically from (6.4.10), and Fp from (6.4.9). This was done by Boyd

and Thompson with the result shown in Figure 6.4. The ratio Fp=Te is seen to be

very nearly 1/2 for electronegative discharges if ab , 2 and g . 30, which hold

in weakly electronegative gases under typical discharge operating conditions. As
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will be seen in Chapter 10, ab is, in turn, determined from a diffusion solution within

the bulk plasma, in terms of a0 ¼ n0�=n0e, the value at the center of the plasma.

The preceding calculation is not complete, because it ignores the possibility of

double layers, where the quasi-neutrality condition breaks down. A calculation by

Braithwaite and Allen (1988) indicates that the solutions Fp(ab) are triple-valued

over a certain range of ab for g . 5þ ffiffiffiffiffi

24
p

. However, the proper physical solution

is essentially as given in Figure 6.4. If the plasma is also collisional, then there are

additional effects, which have been examined by Sheridan (1999). We explore some

of these in Chapter 10, in the context of electronegative discharge equilibrium.
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FIGURE 6.4. Negative ion sheath solutions; (a) as=ab and (b) Fp=Te versus ab, with g as a

parameter (after Boyd and Thompson, 1959).

6.4 GENERALIZED CRITERIA FOR SHEATH FORMATION 181



In this context the work of Kouznetsov et al. (1999) is also relevant. However, as

also discussed in Chapter 10, the assumption of Boltzmann negative ions may not

be valid in the bulk plasma.

The expression (6.4.5a), and all the following arguments, can be extended to mul-

tiple negative ion species, and also to more than one class of electrons (e.g., hot and

cold), provided that all negatively charged species are individually Maxwellian.

Restricting our attention to multiple negative ion species, (6.4.5a) generalizes to

ne þ
X

j

n�j ¼ nse e
F=Te þ nse

X

j

asj e
g jF=Te (6:4:11)

where j runs over the negative ion species. The rest of the calculation is straight-

forward, provided that the LHS of (6.4.6) can be evaluated.

Multiple Positive Ion Species

If there are more than one positive ion species in the plasma, a condition often

encountered with feedstock gases used in processing, then analysis of the sheath

region becomes much more difficult. For simplicity, considering electrons as the

only negative species, then the charge in Poisson’s equation can be written

r ¼ e
X

j

n j � ene (6:4:12)

where the summation is over the positive ion species with densities nj per species.

For cold ions, combining the continuity equation (2.3.7) in the steady state

without sources or sinks,

nj
duj

dx
þ uj

dn j

dx
¼ 0 (6:4:13)

and the force equation (2.3.9) in the steady state without magnetic field, pressure, or

collision terms,

mju j

du j

dx
¼ �e

dF

dx
(6:4:14)

we have for each species

dn j

dF
¼ en j

mju
2
j

(6:4:15)

Using the Boltzmann relation (2.4.16) for Maxwellian electrons, we have at the

sheath edge

1

ne

dne

dF

�

�

�

�

s

¼ 1

Te

(6:4:16)
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Using the Bohm criterion, as in Section 6.2, that

dr

dF

�

�

�

�

s

� 0 (6:4:17)

taking the equality, and using (6.4.17) with (6.4.12), we have

X

j

dnj

dF

�

�

�

�

s

¼ dne

dF

�

�

�

�

s

(6:4:18)

Substituting (6.4.15) and (6.4.16) into (6.4.18) we obtain the multispecies Bohm

criterion

X

j

en js

mju
2
js

¼ nse

Te

(6:4:19)

The work can be generalized to include finite temperature ions in both a fluid and

a kinetic description, as has been done by Riemann (1995). However, (6.4.19) does

not uniquely define a Bohm velocity for each species. For example, for two species,

(6.4.19) becomes

en1s

m1u
2
1s

þ en2s

m2u
2
2s

¼ nse

Te

(6:4:20)

Normalizing u1s and u2s to their individual Bohm velocities

u1n ¼ m1

eTe

� �1=2

u1s u2n ¼ m2

eTe

� �1=2

u2s (6:4:21)

then (6.4.20) becomes

n1s

u21n
þ n2s

u22n
¼ n1s þ n2s (6:4:22)

It is easy to see from (6.4.22) that either both ion species reach the sheath edge with

their individual Bohm velocities (u1n ¼ u2n ¼ 1) or that one will be subsonic and the

other supersonic. If the ion flow across the presheath were purely collisionless, then

each ion would indeed fall through the same potential (Te=2) and acquire its individ-
ual Bohm velocity at the sheath edge. However, for a collisional presheath each ion

species can experience a different collisional force, depending on its mobility, which

restricts the energy gain. One can then expect the most collisional ion species to

have un , 1 and the less collisional one to have un . 1, as has been observed in

particle-in-cell simulations by Gozadinos (2001).
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6.5 HIGH-VOLTAGE COLLISIONAL SHEATHS

If the mean free path for ion momentum transfer li , s, the sheath width, then the

assumption (6.3.6) of energy conservation, used to derive the Child law, fails. This

modifies both the dynamics in the high potential sheath region and the ion velocity at

the sheath edge. Consider first the high-voltage sheath region. If the ionization

within the sheath is negligible, current continuity still holds, which is expressed as

niui ¼ nsus (6:5:1)

where ns and us are the values at the sheath edge. Considering the collisional case,

we take

ui ¼ miE � 2eli
pMjuijE (6:5:2)

where mi is the mobility as defined in (5.3.1). Generally both mi and li are functions
of the velocity. However, as we have discussed in Section 5.3, depending on the gas

pressure and ion velocity, one or the other of these quantities may be relatively inde-

pendent of velocity. For argon, for example, li is relatively independent of velocity

at intermediate pressures and with sheath voltages commonly used for plasma

processing. With the assumption of constant li, solving for ui . 0 from (6.5.2)

and substituting the result in (6.5.1) we have

ni ¼ nsus

(2eliE=pM)1=2
(6:5:3)

Substituting this in Gauss’ law (2.2.3), we have

dE

dx
¼ ensus

e0(2eliE=pM)1=2
(6:5:4)

Separating variables, we can integrate and solve for E to obtain

E ¼ 3ensus

2e0(2eli=pM)1=2

	 
2=3

x2=3 (6:5:5)

wherewe have setE(0) � 0 at the sheath edge. A second integration gives the potential

F ¼ � 3

5

3

2e0

� �2=3
(ensus)

2=3

(2eli=pM)1=3
x5=3 (6:5:6)

where we have set F(0) ¼ 0. Noting that ensus ¼ J0, the constant current, we can

take the 3/2 power of (6.5.6), rearrange, and taking F ¼ �V0 at the electrode
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position x ¼ s, we obtain

J0 ¼ 2

3

� �

5

3

� �3=2

e0
2eli
pM

� �1=2
V
3=2
0

s5=2
(6:5:7)

Equation (6.5.7) gives a collisional form of the Child law for the regime in which li
is independent of ion velocity. We note that the current scales the same with voltage,

but differently with sheath spacing, than for the collisionless case. For a fixed J0 and

V0, the sheath width scales as s/ l1=5i and therefore weakly decreases as the gas

pressure is increased.

Alternatively to our relation (6.5.7), we could equally well have chosen the higher

pressure regime to make the calculation, taking nmi and hence mi independent of vel-

ocity. In this case, a similar integration procedure leads to the result (Problem 6.4)

J0 ¼ 9

8
e0mi

V2
0

s3
(6:5:8)

We note here that the scalings of J0 with both V0 and s in (6.5.8) are different from

(6.5.7). More detailed use of these various relations will be given in Chapter 11,

where we use sheath physics in a complete description of capacitive discharges.

6.6 ELECTROSTATIC PROBE DIAGNOSTICS

A metal probe, inserted in a discharge and biased positively or negatively to draw

electron or ion current, is one of the earliest and still one of the most useful tools

for diagnosing a plasma. These probes, introduced by Langmuir and analyzed in

considerable detail by Mott-Smith and Langmuir (1926) are usually called Langmuir

probes. As with any other electrode, the probe is surrounded by a sheath, such that its

analysis naturally fits into the present chapter. However, unlike large electrode sur-

faces that are used to control a plasma, probes are usually quite small and under suit-

able conditions, produce only minor local perturbations of the plasma.

The voltage and current of a probe defined in Figure 6.5 lead to a typical probe

voltage–current characteristic as shown in Figure 6.6. The probe is biased to a

V

I

FIGURE 6.5. Definition of voltage and current for a Langmuir probe.
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voltage VB with respect to ground, and the plasma is at a potentialFp with respect to

ground. At the probe voltage VB ¼ Fp, the probe is at the same potential as the

plasma and draws mainly current from the more mobile electrons, which is desig-

nated as positive current flowing from the probe into the plasma. For increasing VB

above this value, the current tends to saturate at the electron saturation current,

but, depending on the probe geometry, can increase due to increasing effective col-

lection area. For VB , Fp, electrons are repelled according to the Boltzmann

relation, until at Ff the probe is sufficiently negative with respect to the plasma

that the electron and ion currents are equal such that I ¼ 0.Ff is known as the floating

potential, because it is the potential at which an insulated probe, which cannot draw

current, will float. For VB , Ff , the current is increasingly ion current (negative into

the plasma), tending to an ion saturation current that may also vary with voltage due

to a change of the effective collection area. The magnitude of the ion saturation

current is, of course, much smaller than the electron saturation current due to the

much greater ion mass.

The basic theory for a plane collecting area, based on the sheath calculations of

the previous sections, is quite simple. However, to minimally disturb the plasma and

also for ease of construction, Langmuir probes are often thin wires with the wire

radius a , lDe. The trajectories of charged particles in the sheath then become

important in determining the collected current, and the analysis becomes quite com-

plicated. As the voltage is raised, either to large positive or large negative values

with respect to the plasma, the sheath thickness s increases according to Child’s

law, and consequently the effective collecting area also increases. If Ti � Te, then

additional complications arise to make calculations very involved. There are also

difficulties if the momentum transfer mean free paths li, le . s, which can occur

in high-pressure discharges. A review of the analysis, including many of these com-

plications, is given by Chen (1965). The extension to Ti � Te, which is not usually

of great interest in processing discharges, is given in a report by Laframboise (1966).

I

V

FIGURE 6.6. Typical I–VB characteristic for a Langmuir probe.
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The story does not end here. More complicated probe configurations, such as

double probes and emissive probes, have proven quite useful in various situations.

These are also reviewed in Chen, and we consider them below. In an rf-driven

plasma an additional complication arises in that the potential of the plasma oscillates

with respect to ground. Since we generally wish to use probes in a quasi-electrostatic

manner, the probe is usually made to oscillate with the plasma to eliminate the effect

of the oscillating potential. Detailed consideration of oscillating plasma potentials

and methods of using probes in their presence is found in reviews by Godyak

(1990a) and Hershkowitz (1989). We summarize some of these considerations

below.

Probe theory has generally been developed for plasmas in which the electron dis-

tribution is approximated by a Maxwellian. Various deviations from Maxwellian

electrons exist in discharges. As described in Chapter 11, sheath heating in a capaci-

tive discharge can result in a high-energy tail to the electron distribution, leaving the

bulk electrons considerably colder than they would be in an equilibrium discharge

with a Maxwellian distribution. These “two-temperature” distributions modify the

results of Langmuir probes. Godyak et al. (1993) have critically examined this

phenomenon and argue that the use of standard electron and ion saturation current

techniques for analyzing probe data can lead to considerable error in the resulting

plasma parameters. They present an alternative technique in which the electron

energy distribution function (EEDF) is measured and used directly in calculating

the plasma density. We review their arguments and technique below.

Plasma densities obtained from the ion saturation current to probes have been

compared with other measurement techniques such as microwaves (see Section

4.6). Generally, the comparisons have indicated that probe-predicted densities,

using ion saturation current, are somewhat high when compared under conditions

for which the microwave predictions are expected to be highly accurate. This

result would generally agree with the arguments presented by Godyak and associ-

ates. However, in many situations, the densities obtained by probe and microwave

techniques are quite close (e.g., see Fig. 4.13). The accuracy of using the ion satur-

ation current to measure the plasma density depends on the closeness of the electron

distribution to an assumed Maxwellian at the probe sheath edge, and therefore to the

type of plasma being diagnosed.

Finally, we shall briefly discuss practical probes and circuits for their use. Details

of probes and probe circuitry are usually to be found in original articles, references

to which can be found in the review articles cited here. Basic information on probes

and circuits, beyond that given here, can also be found in the review articles by Chen

(1965), Hershkowitz (1989), Godyak (1990a), and Godyak et al. (1992).

Planar Probe With Collisionless Sheath

Consider a flat plate probe with the (two-sided) physical probe area A � s2, where s

is the sheath thickness, such that the collecting area A is essentially independent of s.

As we saw in Section 6.3, if a large voltage is applied to the probe, then s � lDe, and
we find that A is quite large to satisfy the above condition. For this reason we expect
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that biasing the probe strongly positive to collect only electron current would

strongly perturb the plasma. Consider therefore that the probe is biased sufficiently

negatively to collect only ion current. From (6.3.13) the current “collected” (see

direction in Fig. 6.5) by the probe is

I ¼ �Ii ¼ �ensuBA (6:6:1)

where, as in (6.2.4) with Ti � Te, the Bohm velocity uB is given by

uB ¼ eTe

M

� �1=2

(6:6:2)

If we know Te, then the density at the sheath edge ns is determined from the

measurement of Ii. As in (6.2.13), the plasma density in the probe neighborhood

is then obtained as

n0 � ns

0:61
(6:6:3)

Since the electron temperature in most discharges is clamped in the range of

2–5 V by particle balance (see Section 10.1), a reasonable estimate of density can

be obtained without knowing Te. However, by varying the probe voltage, it is

also straightforward to measure Te. Considering that the probe potential is retarding

with respect to the plasma potential, then, using Boltzmann’s relation as in Section

6.2, the electron component of the probe current is

I þ Ii ¼ Ie ¼ 1

4
en0 �ve A exp

VB �Fp

Te

� �

(6:6:4)

where �ve ¼ (8eTe=pm)
1=2, and VB �Fp , 0 is the potential between the probe and

the plasma. There is an exponential increase in Ie with increasing VB in this range.

Defining an electron saturation current

Iesat ¼ 1

4
en0 �ve A (6:6:5)

and taking the logarithm of (6.6.4), we have

ln
Ie

Iesat

� �

¼ VB �Fp

Te

(6:6:6)

From (6.6.6) we see that the inverse slope of the logarithmic electron probe current

with respect to VB (in volts) gives Te directly in volts.
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The above simple interpretation is limited by the dynamic range over which

(6.6.4) holds. For Ie too small, adding the measured Ii to I can introduce errors in

the determination of Ie. For VB too large, the Boltzmann exponential no longer is

accurate, as electron saturation is approached. The nominal useful range of voltages

over which the slope can be measured is then

jDVBj
Te

� ln
�ve

4uB

� �

¼ ln
M

2pm

� �1=2

(6:6:7)

which is approximately 4.7 for argon. This range is sufficient, provided there are no

geometric complications.

The floating potential Ff and the plasma potential Fp are often of interest in dis-

charge operation. The floating potential is the potential at which the probe draws

equal electron and ion currents. If the plasma is mainly surrounded by a grounded

conducting surface, then we would expect the floating potential to lie near this

ground, as shown in Figure 6.6. This follows because the ground is usually not,

itself, drawing significant net current, and thus at VB ¼ Ff the probe behaves as

part of the ground. The plasma (space) potential, given by (6.6.7) with

Fp �Ff ¼ DVB, can be approximately determined from the knee (point of

maximum first derivative) of the electron saturation portion of the I –VB character-

istic of Figure 6.6. For planar probes the knee is easily recognizable, but the

current drawn may be too large, either modifying the plasma or destroying the

probe. For cylindrical probes, considered below, the measurement is usually poss-

ible, but its accuracy is reduced due to the variation of current with voltage in the

electron saturation region.

Non-Maxwellian Electrons

A low-pressure discharge often has an electron energy distribution that departs

significantly from a Maxwellian. For example, in Figure 11.10a, the electron

distribution of a low-pressure rf discharge is given, which can be approximated

by a two-temperature Maxwellian. At higher pressures, for which a two-temperature

distribution is not evident, high accelerating fields may also result in a non-

Maxwellian distribution. For an arbitrary distribution function, the electron current

to a planar probe in the retarding potential region Fp � VB . 0 can be written as

Ie ¼ eA

ð1

�1
dvx

ð1

�1
dvy

ð1

vmin

dvz vz fe(v) (6:6:8)

where

vmin ¼ 2e(Fp � VB)

m

	 
1=2

(6:6:9)

is the minimum velocity along z for an electron at the plasma–sheath edge to reach

the probe. For an isotropic distribution we can introduce spherical polar coordinates
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in velocity to obtain

Ie ¼ eA

ð1

vmin

dv

ðumin

0

du

ð2p

0

df v cos u v2 sin u fe(v) (6:6:10)

where A is the physical collecting area of the probe and where

umin ¼ cos�1 vmin

v
(6:6:11)

The f and u integrations are easily done, yielding

Ie ¼ peA

ð1

vmin

dv v3 1� v2min

v2

� �

fe(v) (6:6:12)

A transformation of (6.6.12) allows fe to be obtained directly in terms of the second

derivative of Ie with respect to V ¼ Fp � VB. Introducing the change of variable

E ¼ 1
2
mv2=e, then (6.6.12) becomes

Ie ¼ 2pe3

m2
A

ð1

V

dE E 1� V

E
� �

fe½v(E)�
� �

(6:6:13)

where v(E) ¼ (2eE=m)1=2. Differentiating Ie we obtain
	

dIe

dV
¼ � 2pe3

m2
A

ð1

V

dE fe½v(E)�

and a second differentiation yields

d2Ie

dV2
¼ 2pe3

m2
Afe½v(V)� (6:6:14)

It is usual to introduce the electron energy distribution function (EEDF) ge(E) by

ge(E) dE ¼ 4pv2fe(v) dv (6:6:15)

Using the relation between E and v, we find

ge(E) ¼ 2p
2e

m

� �3=2

E1=2fe½v(E)� (6:6:16)

	Note that if G ¼ Ð x2
x1

g(x1; x) dx then @G=@x1 ¼
Ð x2
x1

(@g=@x1) dx� g(x1; x1).
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Using this to eliminate fe from (6.6.14), we obtain

ge(V) ¼ 2m

e2A

2eV

m

� �1=2
d2Ie

dV2
(6:6:17)

which gives ge(V) directly in terms of the measured value of d2Ie=dV
2. The electron

energy probability function (EEPF) gp(E) ¼ E�1=2ge(E) is sometimes introduced

instead. For a Maxwellian distribution,

gp(E) ¼ 2
ffiffiffiffi

p
p neT

�3=2
e e�E=Te (6:6:18)

such that ln gp is linear with E. The electron density ne and the average energy kEel
can then be determined as

ne ¼
ð1

0

ge(E) dE (6:6:19)

and

kEl ¼ 1

ne

ð1

0

Ege(E) dE (6:6:20)

The effective temperature is defined as Teff ¼ 2
3
kEl. The maximum in the first deriva-

tive dIe=dVB of the electron current is also a good indicator for the location of the

plasma potential Fp. The use of (6.6.17), along with (6.6.19) and (6.6.20) to deter-

mine ne and Teff from the probe characteristic has a number of virtues. First, (6.6.19)

can be shown to be valid for any isotropic electron velocity distribution. Second,

(6.6.17) is valid for any convex probe geometry, planar, cylindrical or spherical

(Kagan and Perel, 1964); for example, A ¼ 2pad for a cylindrical probe of radius

a and length d. Third, non-Maxwellian distributions can be measured. Fourth, the

result (6.6.17) does not depend on the ratio of probe dimension to Debye length

or the ratio Ti=Te (Godyak, 1990a).

Cylindrical Probe With a Collisionless Sheath

As we have seen in Section 6.3, the sheath thickness s can be quite significant, s �
lDe such that one cannot routinely satisfy A � s2. This recognition led to analysis of

cylindrical and spherical probes (Mott-Smith and Langmuir, 1926). Because the

cylindrical probe, consisting of a simple wire, is much more convenient and conse-

quently almost exclusively used, we concentrate our attention on that geometry. The

initial analysis and most subsequent improvements in analysis have concentrated on

the pressure range for which the sheath is collisionless, li � s, and we consider that

pressure range here.
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We consider first the case of a thin wire probe for which s � a, the probe radius,

but take the probe tip length d (collecting part of the wire) to be sufficiently long,

s � d, that an infinite cylinder approximation applies. In the saturation condition,

where only a single species is collected, if all the electrons or ions entering the

sheath were collected, then the collisionless Child law would predict that

I / s/ jFp � VBj3=4. However, the collisionless trajectories preclude this happen-

ing, giving a weaker scaling which we now determine. The geometry is shown in

Figure 6.7. A given incoming particle in the attractive central force of the probe

has initial velocity components �vr and vf in the radial and azimuthal directions

at the edge of the sheath r ¼ s. At the probe radius r ¼ a, the corresponding

components are �v0r and v0f. For a collisionless sheath we require conservation of

energy,

1

2
m(v2r þ v2f)þ ejFp � VBj ¼ 1

2
m(v02r þ v02f ) (6:6:21)

and conservation of angular momentum,

svf ¼ av0f (6:6:22)

s

a

r

FIGURE 6.7. Ion orbital motion within the sheath of a cylindrical Langmuir probe.
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wherem is the mass of the attracted species, either electrons or ions. Solving, we obtain

v0f ¼ s

a
vf (6:6:23)

v0r
2 ¼ v2r þ v2f þ 2ejFp � VBj

m
� s2

a2
v2f (6:6:24)

For an ion to reach the probe, vr , 0 and v0r
2 . 0. Setting v02r ¼ 0 in (6.6.24), we

obtain

vf0 ¼ v2r þ 2ejFp � VBj=m
s2=a2 � 1

� �1=2

(6:6:25)

such that particles only reach the probe if jvfj � vf0.

The saturation current collected by the probe is found by integrating the radial

flux �nsvr over the distribution function at the plasma–sheath edge, for those par-

ticles that reach the probe:

I ¼ �2psdnse

ð0

�1
vr dvr

ðvf0

�vf0

dvf f (vr; vf) (6:6:26)

where f is the normalized distribution function of electrons or ions. Making the

rather strong assumption that the distribution is an isotropic Maxwellian, averaged

over the third velocity coordinate, we have

f ¼ m

2peTs

exp �m(v2r þ v2f)

2eTs

" #

(6:6:27)

where Ts is the temperature of the collected species at the sheath edge. The inte-

grations can be performed in terms of error functions, but the results, which can

be found in the literature quoted above, are not particularly illuminating.

However, for large probe voltages we can simplify the evaluation of (6.6.26) by

assuming that

a

s
� 1 (6:6:28a)

v2r �
ejFp � VBj

m
(6:6:28b)

and

v2f0 �
eTs

m
(6:6:28c)
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Then using (6.6.28a) and (6.6.28b) to evaluate (6.6.25), we obtain

vf0 ¼ a

s

2ejFp � VBj
m

� �1=2

We note that since s/ jFp � VBj3=4 for Child’s law, (6.6.28c) is well satisfied at

high voltages. Using vf0 in (6.6.26), with (6.6.27) and the condition (6.6.28c), we

integrate to find that

I ¼ 2ensad
2ejFp � VBj

m

� �1=2

(6:6:29)

where I represents either electron or ion (m ! M) saturation current. We see that I is

independent of Ts in this limit. Hence a plot of I2 versus �VB should be linear, with

n2s determined by the slope of this line, independent of Te and Ti. Expression (6.6.29)

is widely used to determine ns in low-pressure discharges. However, the orbital ion

motion is sensitive to ion collisions in the sheath, and orbital motion is destroyed at

quite low pressures. In addition, the result (6.6.29) is sensitive to the isotropy of the

distribution function at the sheath edge. From Figure 6.7 it is apparent that significant

radial anisotropy will enhance the fraction of particles that are collected. For electrons

wemight reasonably expect to find an isotropic distribution at the sheath edge, even if it

is not Maxwellian. We have seen in Section 6.2 that ions, on the other hand, gain an

energy Te=2 in a presheath, which may lead to significant anisotropy. Although we

have assumed a collisionless sheath, the presheath is not necessarily so, and presheath

collisions will tend to isotropize the distribution of ion velocities. For an alternative dis-

tribution at the sheath edge of monoenergetic ions on a cylindrical (isotropic) shell in

velocity space, Hershkowitz finds that the coefficient 2, in (6.6.29) is replaced by

p=
ffiffiffi

2
p

, which is quite similar. A more extreme assumption of anisotropy of fi,

which might be approached at very low pressures, is that the radial ion velocity com-

ponent is given by the Bohm velocity uB ¼ (eTe=M)1=2, while the azimuthal com-

ponent remains Maxwellian at temperature Ti,

fi ¼ d(vr þ uB)
M

2peTi

� �1=2

exp �Mv2f

2eTi

 !

Using this in (6.6.26) along with the conditions (6.6.28), we integrate to obtain

Ii ¼ 2e
2pTe

Ti

� �1=2

nsad
2e(Fp � VB)

M

	 
1=2

(6:6:30)

Comparing (6.6.30) to (6.6.29), we see that ns is smaller by a factor of (Ti=2pTe)
1=2

for the same current. We do not expect to find such extreme overestimations of

density from the measured orbital ion saturation current, but the sensitivity to the
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ion velocity distribution suggests that (6.6.29) provides only a semiquantitative esti-

mate of the ion density. Similarly, in low-pressure discharges, the ion drift velocity

tends to exceed the ion thermal velocity (see Section 5.3), leading to further modi-

fications in the collected ion current. For a capacitive rf discharge at a pressure p ¼
30 mTorr argon, Godyak et al. (1993) found, by using the measured Ie(V) in the

expression (6.6.17) for the energy distribution, a two-temperature distribution, as

in Figure 11.10a, with Tec ¼ 0:50V and Teh � 3:4V. Using the energy distribution

(6.6.17) in (6.6.19) and (6.6.20), they found ne � 4:4� 109 cm�3 and Teff � 0:67
V. From the standard Langmuir procedure (6.6.6) applied to the electron current Ie
collected by the cylindrical probe, and using the measured electron saturation

current (6.6.5) at the plasma potential to find the density, they found Tec � 0:73
V, Teh � 4:2V, and ne � 3:3� 109 cm�3, close to the values determined from the

measured energy distribution, as expected for an isotropic distribution. The

density determined from the orbital ion current Ii using (6.6.29) was ne � 1:1�
1010 cm�3, a factor of 2.5 larger than found from the measurement of the electron

distribution, as might be expected if the ion distribution had significant anisotropy

at the sheath edge.

It should be pointed out, however, that the more accurate calculational procedure,

using ge determined from (6.6.17), is considerably more difficult, experimentally. In

particular, taking derivatives of measured quantities results in the introduction of

system noise, much of which is intrinsic to the plasma. While averaging procedures

can be employed to increase the signal-to-noise ratio, it is all to easy to substitute

experimental uncertainty for the uncertainties of the ion orbital theory. Measuring

electron saturation current, which does not suffer particularly from the above uncer-

tainties, may be excluded by consideration of the power limits to the probe, unless

the measurement system is pulsed, which introduces additional complexities. The

experimenter must navigate carefully among these alternatives.

Double Probes and Emissive Probes

Other probe configurations have also been used to measure plasma parameters, with

various claims as to accuracy, convenience, etc. Two of the most frequently used

alternatives are double probes and emissive probes. Double probes are generally

used if there is no well-defined ground electrode in the plasma. A schematic of a

double probe is shown in Figure 6.8a, with a typical probe characteristic in

Figure 6.8b. Since the two probes draw no net current they will both be negative

with respect to the plasma. Current flows between the probes if the differential

potential V = 0. As V becomes large, the more negative probe (in this case, probe

2) essentially draws ion saturation current, which is just balanced by the net electron

current to probe 1. The probe system has the advantage that the net current never

exceeds the ion saturation current, minimizing the disturbance to the discharge,

but has a consequent disadvantage that only the high-energy tail of the electron

distribution is collected by either probe. The distribution of these electrons may

not be representative of the distribution of bulk electrons in the discharge.
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Defining the ion and electron currents to probes 1 and 2 as I1i, I1e, I2i, I2e, then

the condition that the system float (no net current from the probe system to the

plasma) is

I1i þ I2i � I1e � I2e ¼ 0 (6:6:31a)

The loop current is

I ¼ I1e � I1i ¼ I2i � I2e (6:6:31b)

For the electron current we have

I1e ¼ A1Jesat e
V1=Te ; I2e ¼ A2Jesat e

V2=Te (6:6:32)

V

V

I I

I

I

I

I I

I I

I

A A

a

b

FIGURE 6.8. Schematic of double probe measurement: (a) definition of voltage and

currents; (b) typical current–voltage characteristic (Chen, 1965).
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where Jesat is the electron random current density and V1 and V2 are the probe poten-

tials with respect to the plasma potential. Using V ¼ V1 � V2 and substituting

(6.6.32) into (6.6.31b) we obtain

I þ I1i

I2i � I
¼ A1

A2

eV=Te (6:6:33)

which generally plots as shown in Fig. 6.8b. For A1 ¼ A2, then I1i ¼ I2i ; Ii, such

that (6.6.33) simplifies to

I ¼ Ii tanh
V

2Te

� �

(6:6:34)

It is straightforward to fit (6.6.34) to the experimental curve, obtaining both Te

and Ii (and thus n). A simpler procedure can be used to determine Te. Again

taking A1 ¼ A2 the slope of the I–V plot at the origin (V ¼ 0) can be calculated

to be

dI

dV

�

�

�

�

V¼0

¼ Ii

2Te

(6:6:35)

The details are left to a problem. Note that for cylindrical probes the Ii in either

(6.6.34) or (6.6.35) is that obtained by extrapolation, as shown by the dashed

lines in Figure 6.8b.

A hot wire electron-emitting (emissive) probe can be used for a simple measure-

ment of the plasma space potential. Since it works with electron emission, it has the

disadvantage of requiring a separate filament circuit carrying high currents, but

because it is hot it is less subject to contamination, which can be a serious problem

with other probe measurements. The basic idea is very simple. Since the temperature

Tw of the electrons emitted from the hot probe wire is related to the wire temperature,

we have Tw � Te. This results in a sharp change in probe current as the probe poten-

tial passes through the plasma potential. This is easily seen from the equations for the

electron current. The plasma electron current is approximately (Hershkowitz, 1989)

Ipe ¼
Ip0 e

�(Fp�VB)=Te VB , Fp

Ip0 1þ (VB �Fp)
1=2

Te

	 


VB . Fp

8

>

<

>

:

(6:6:36)

and the emission current is approximately

Iwe ¼
Iw0 e

�(VB�Fp)=Twgw(VB �Fp) VB . Fp

Iw0 VB , Fp

(

(6:6:37)
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It can be shown that gw � ½1þ (VB �Fp)=Tw�1=2, but this result is not necessary for
the argument. Neglecting the small ion current, the total probe current is given by

I ¼ Ipe � Iwe (6:6:38)

Without detailed calculation, if we choose Iw0 � Ip0, then for the case considered

with Tw � Te, there is a sharp change in I due to the exponential term in Iwe at

(VB �Fp) � Tw, which thus gives the plasma potential. The result for a typical

case with Te ¼ 3V and Tw ¼ 0:3V is shown in Figure 6.9. We note that measuring

VB �Fp also gives an estimate of Te as obtained from (6.2.17) withFw ¼ VB �Fp.

Effect of Collisions and DC Magnetic Fields

Collisions can significantly affect probe diagnostics when the mean free path li
becomes of the order of the sheath width. For planar probes with li � s we can

directly use the collisional sheath theory in Section 6.4, just as we used collisionless

sheath theory to describe collisionless planar probes. However, in the transition

region, even the planar theory is complicated and difficult to use. For other geome-

tries the analysis becomes still more complicated and difficult to interpret. A good

account of collisional effects can be found in Chen (1965). A fairly complete

theory has been developed for large spherical probes by Su and Lam (1963).

FIGURE 6.9. Typical collecting and emitting current voltage characteristics for an emissive

wire probe in a plasma; the electron and wire temperatures are Te ¼ 3V and Tw ¼ 0:3V
(Hershkowitz, 1989).
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One reason for studying collisional effects is that they also bear on the use of

probes in the presence of an applied dc magnetic field. As we have seen in

Section 5.4, the electron diffusion across a magnetic field is severely inhibited.

For each species (without considering ambipolar effects) the diffusion across the

field is related to the diffusion along the field by

D? ¼ Dk
1þ v2

ct
2
c

where vc ¼ eB=m is the gyration frequency, and tc is the mean collision time. For

electrons in a gas with p ¼ 10mTorr and B ¼ 100G, we find vctc � 102. For ions,

since vc is decreased by m=M and tc increased by (M=m)1=2, vctc / (m=M)1=2 and

therefore the ion diffusion is not severely limited. The result is that the probe,

drawing electron current, behaves similarly to a plane probe without B but with

an effective probe area equal to the probe cross section along the field lines. The

ion orbital collection regime (6.6.29) may be used as previously, if the ions have

gyroradii large compared to the sheath width. The above simple interpretation of

a probe in a B field is limited by a phenomenon called shadowing. Because the

probe collects electrons from a thin layer of plasma corresponding to the probe

cross section, it acts similarly to a plane probe, as discussed in the first subsection.

We indicated there that a large probe can deplete the nearby plasma, thus modifying

the plasma it is supposed to measure. This probe shadowing can occur even for

small-diameter probes with a magnetic field present. However, the depleted

region can be refilled by diffusion across the magnetic field from the neighboring

plasma. As one might expect, the calculations can become quite complicated, and

the reader is again referred to the review by Chen (1965) for a summary and

further references.

As mentioned above, shadowing can also occur for flowing plasma or when

electron beams are present. If the plasma is flowing with a velocity of order of

the Bohm velocity, then the ion collection can be distorted such that operation in

the ion orbital motion region is modified. This is a common situation in low-

pressure discharges in which the ion drift velocity typically exceeds the ion

thermal velocity. Similarly, if the electrons are streaming through ions with

beam velocities comparable to the electron thermal velocity, the electron collection

will be distorted.

Probe Construction and Circuits

A basic cylindrical Langmuir probe consists of a thin wire surrounded by a thin insu-

lator that, for dc discharges, may itself be encased in a thin grounded shield. The

probe tip usually extends many wire diameters from the insulator. A typical

probe, shown in Figure 6.10, has a tungsten wire probe tip 6.3 mm in length and

38 mm in radius, with a quartz or ceramic capillary sleeve preventing electrical

contact between the probe and any conductive material on the probe holder. The
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insulating holder surrounding the capillary sleeve should have a radius smaller than

an electron mean free path to prevent perturbation of the plasma by the probe. To

construct other geometries a small plate (plane probe geometry) or sphere (spherical

probe geometry) may be attached to the probe tip. Complications include vacuum

sealing the probe, allowing the probe tip to be replaceable (tip burnout can be a

serious problem), and allowing the probe body to slide through a vacuum seal in

order to scan the plasma. Details of various probe designs can be found in the litera-

ture; a typical design is shown in Figure 6.10.

For other types of probes obvious constructional changes are made. The sim-

plest emissive probe construction uses a high-resistivity refractory wire loop tip

with the two sides of the loop returning with low resistivity insulated wire

through the probe body, where they can be connected to a power source for

heating. The heating current is switched off during the measurement. For dense

plasmas a single probe can be made emissive by heating from electron current

alone, but such probes are more subject to burnout. The simple Langmuir probe

may also incorporate some means of heating to drive off impurities which can

severely affect current measurements. Double probes are also often constructed

FIGURE 6.10. Construction of a cylindrical probe for rf discharge measurements (Godyak

et al., 1992).
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with the two probe tips emanating from a single probe body. In this case the wires

must be sufficiently far apart that the sheaths surrounding the wires do not interact.

For expected plasma parameters, estimates of the sheath widths should be made

before designing the probe separation.

A simple probe biasing circuit is shown in Figure 6.11, with the probe voltage VB

given by

VB ¼ V0 � RLI (6:6:39)

where RX � RL and the current through RX is neglected. The current I is

measured directly from the voltage across RL, and VB is measured either directly,

as shown, or by measuring V0 and subtracting RLI. Clearly RL � @I=@VB for the

measurement technique to work; that is, VB must be able to be varied by varying

V0. The points labeled y input, measuring I, and x input, measuring VB, may be

the vertical and horizontal inputs on an oscilloscope, x, y recorder, or simply volt-

meters. The circuit is usually a little more complicated, since V0 is not only vari-

able, but must be able to change signs. The voltage can also be swept at a slow

rate. For a floating potential measurement V0 ¼ 0, and it then also improves accu-

racy to make RL large. Amplifiers may also be used to adjust impedance levels in

practical circuits.

Probes in Time-Varying Fields

A capacitive discharge driven between an rf excited electrode and a grounded elec-

trode is widely used for plasma processing. We discuss this discharge in Chapter 11.

The rf voltage capacitively divides across the system, and therefore part of the rf

voltage appears between the plasma and the grounded electrode. The space potential

Fp of the plasma with respect to the grounded electrode therefore oscillates in time.

V

V

I

R

R

FIGURE 6.11. Simple Langmuir probe biasing circuit.
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In this situation the time-average current drawn to a probe biased to a constant

voltage VB through a low impedance is quite different than described in the preced-

ing subsections.

The reason for this is illustrated in Figure 6.12, which shows the instantaneous

I–VB probe curves for various values of Fp(t). The “knee” of the probe curve,

marked with a vertical dashed line, gives the value of VB where Fp(t) ¼ VB. As

Fp oscillates in time as shown, the probe curve oscillates horizontally back and

forth. The time average of this motion, indicated as the heavy line, gives the appar-

ent “probe curve” �I versus VB. It is clear from the figure that the electron temperature

determined from this curve will be much higher than the actual Te.

Although it is possible to interpret the time-average current measurements (see

Hershkowitz, 1989), it is also possible to modify the probe circuits so that the

probe characteristic can be interpreted in the normal way. One common technique

is to place an inductor L near the probe tip in series with the probe such that

the probe reactance to ground vL � 1=vCs, the reactance between the probe and

the plasma, where v is the radian rf driving frequency. This may be somewhat

hard to achieve if v is not too high, but can reasonably be obtained at v=2p ¼
13:56 MHz, a commonly used frequency.

The probe circuit elements, the additional series inductive “choke” element L,

and a large bypass capacitor Cbypass are shown in Figure 6.13. Here Cs is the effective

capacitance of the probe sheath. The amplitude ~Fp � ~V rf of the rf voltage across the

probe sheath must satisfy ( ~Fp � ~V rf )=Te � 1. In fact, fractional measurement errors

appear to be .0:2 if ( ~Fp � ~V rf )=Te . 1. Using the voltage divider formula with the

impedances Zs ¼ ( jvCs)
�1 and ZL ¼ jvL,

~Fp � ~V rf ¼ ~Fp

Zs

ZL þ Zs

I

V

t

FIGURE 6.12. Probe characteristics I versus VB in a plasma with an oscillating space

potential Fp(t), showing (heavy solid line) a time-averaged probe characteristic having an

apparent electron temperature much higher than the actual Te.
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we obtain the criterion

~Fp � ~V rf

Te

¼ Zs

ZL þ Zs

~Fp

Te

. 1 (6:6:40)

A particular measurement of a probe with a 5-mH inductive choke, at 13.56 MHz

gave jZLj ¼ 450 kV and jZsj ¼ 12 kV (Cs � 1 pF), limiting ~Fp=Te to less than

jZL=Zsj � 37. We shall see in Chapter 11 that this may limit the use of a simple

blocking inductance in practical discharges. To overcome this limitation, one can

include a capacitance C in parallel with L, such that the parallel LC circuit is in

resonance at the desired frequency. If harmonics of the driving frequency are

present, additional series resonant LC circuits can be used tuned to the second

and third harmonic of the driving frequency.

For measurement of rf plasmas, the inductance required to allow the probe to

follow the oscillating plasma space potential is usually incorporated into the

probe body to minimize stray capacitance. The probe labeled P1 in Figure 6.10

can be used in this way. In this design, a large circular wire loop P2 is used to estab-

lish a ground reference for P1. Note that the probe does not have a grounded shield,

which, if present, would greatly increase the stray capacitance of the probe tip to

ground.

The above discussion, and that of the previous subsections, does not include all of

the complications that can be encountered in probe diagnostics. The experimenter

wishing to use probes as a diagnostic tool can proceed from the information given

here, but may also wish to look further into the reviews referenced in this section,

and also into the original literature referenced in those reviews.

PROBLEMS

6.1. Finite Density for Collisionless Child Law The Child law density (6.3.17)

is singular at the sheath edge x ¼ 0, while the potential (6.3.15) is not.

Assuming that (6.3.15) still holds and that all ions enter the sheath with the

Bohm velocity uB, find a nonsingular expression for n(x) as a function of J0,

L V C

C

FIGURE 6.13. Probe circuit elements and blocking inductor used to measure the current–

voltage characteristics in an rf discharge.
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uB, F(x), and other constants. Plot n=ns versus x=s for V0=Te ¼ 100. Plot n=ns
given from (6.3.17) on the same graph to compare with your result.

6.2. Bohm Criterion for an Electronegative Plasma Derive the Bohm criterion

(6.4.7) for an electronegative plasma with cold positive ions along with elec-

trons and negative ions in Boltzmann equilibrium at temperatures Te and Ti,

respectively, by repeating the calculation leading to (6.2.4) with three

species rather than two.

6.3. Potential Across an Electronegative Presheath Show that the potential Fp

across the presheath in an electronegative plasma is given by (6.4.9).

6.4. Collisional Sheath Law For a high-pressure, high-voltage, collisional

sheath, the ion drift velocity can be written as vi ¼ miE, where mi ¼ e=Mnmi

is the constant ion mobility, with nmi a constant ion–neutral momentum trans-

fer frequency.

(a) Using particle conservation and Poisson’s equation, derive the high-

pressure, collisional Child law for ions (6.5.8).

(b) For an argon discharge with li ¼ (330p)�1 cm, with the pressure p in Torr

and p ¼ 10 Torr, calculate the sheath thickness s for ns ¼ 109 cm23 at the

sheath edge, Te ¼ 2V, Ti ¼ 0:026V, and V0 ¼ 100V across the sheath.

Assume a constant nmi ¼ uB=li. Compare this s to that obtained for the

same discharge parameters from the collisionless Child law.

6.5. Langmuir Probe Calculation A probe whose collecting surface is a square

tantalum foil 2� 2mm is found to give a saturation ion current of 100 mA in an

argon plasma (atomic mass ¼ 40). If Te ¼ 2V, what is the approximate plasma

density? (Assume that the probe can be considered as a plane collector with

both sides collecting.) If a bias voltage of 220 V is applied between the

probe and ground, calculate the sheath thickness, using the collisionless

Child law, to determine if the plane collector assumption is justified.

6.6. Langmuir Probe Theory

(a) Referring to Figure 6.7, starting from (6.6.21) and (6.6.22), and using

(6.6.26) and (6.6.27), fill in the steps to obtain (6.6.29).

(b) Starting from (6.6.31) and using (6.6.32), derive (6.6.33) and (6.6.34).

(c) Verify (6.6.35).

6.7. Analysis of Cylindrical Langmuir Probe Data A cylindrical Langmuir

probe with radius a ¼ 50 mm and length d ¼ 6.3 mm is used to determine

the plasma density ns and electron temperature Te in an argon discharge.

The plasma potential Fp (with respect to ground) is measured to be 30 V.

The Langmuir probe I versus VB characteristic is measured to be (VB is the

probe voltage with respect to ground):

I (mA) �25 �22 �19:3 �14:8 �8:7 15 50:5 131 313 733

VB (V) �20 �10 0 10 15 20 22:5 25 27:5 30
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(a) According to (6.6.29), a plot of I2 versusFp � VB should be a straight line

in the ion saturation regime Fp � VB � Te. Plot I
2 versus Fp � VB on

linear scales for Fp � VB � Te. Extrapolate the linear part of this

curve to determine the ion saturation current Ii over the entire voltage

range 0 , Fp � VB , 50V. Then apply (6.6.29) to Ii (where m in

(6.6.29) is the ion mass M) to determine ns.

(b) Subtract Ii from I to determine the electron current Ie, and plot Ie (log

scale) versus Fp � VB (linear scale). You should obtain a straight line

as in (6.6.6). Find Te and ns from your data. Compare the ns value with

the value you found in part (a), and comment briefly on any discrepancy.

6.8. Spherical Probe Theory Consider ion collection for a spherical probe of

radius a. Use the collisionless analysis for sheath thickness s � a, as described

in (6.6.21)–(6.6.25).

(a) Show that (6.6.26) is replaced by

I ¼ �4ps2ens 
 2p
ð0

�1
v3 dv

ðu0

0

sin u du f (v)

where v is the spherical velocity coordinate, v sin u0 ¼ vf0, with vf0 given

by (6.6.25), and

f ¼ m

2peTs

� �3=2

e�mv2=2eTs

is the normalized Maxwellian distribution.

(b) Making the assumption of u0 � 1 as in (6.6.28), show that

I ¼ �4pa2 
 1
4
ns �v 
Fp � VB

Ts

where �v ¼ (8eTs=pm)
1=2. A more accurate expression, valid for

Fp � VB . 0, is (Laframboise, 1966; Laframboise and Parker, 1973)

I ¼ �4pa2 
 1
4
ns �v 
 1þFp � VB

Ts

� �

6.9. Emissive Probes The relation between the floating potential and the probe

potential for an emissive probe is found accurately by equating the emission

current Iwe to the plasma electron current Ipe to the probe. Taking gw ¼
1þ (Ff �Fp)=Tw

 �1=2
and assuming that Te � (Ff �Fp) in the emission
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current Iwe ¼ Iw0 exp �(Ff �Fp)=Tw

 �

gw(Ff �Fp), show that

Ff �Fp

Tw

� 1

2
ln 1þFf �Fp

Tw

� �

¼ ln
Iw0

Ipe

� �

Plot (Ff �Fp)=Tw versus ln (Iw0=Ip0) for 1 , Iw0=Ip0 , 10.
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CHAPTER 7

CHEMICAL REACTIONS AND
EQUILIBRIUM

7.1 INTRODUCTION

Gas- and surface-phase chemical reactions play a critical role in plasma-assisted

materials processing. To see why, consider the typical reactor, shown in

Figure 7.1, that is used to etch an SiO2 film. A CF4/O2 gas mixture is fed into the

reactor and rf or microwave energy is applied to form a plasma. Electron impact-

ionization and dissociation create ions such as CF3
þ, CF2

þ, O2
þ, O2, F2, and free

radicals such as CF3, CF2, O, and F. Chemical reactions in the gas phase and on

FIGURE 7.1. Typical materials-processing reactor.
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the SiO2 surface create additional molecules such as CO, CO2, SiF2, and SiF4. The

etch rates, anisotropies, and selectivities depend on the concentrations and energy

distributions of all these species.

The concentrations are determined by general chemical reactions such as

eþ AB �! ABþ þ 2e ðelectron–ion pair productionÞ
eþ AB �! eþ Aþ B (radical production)

eþ AB �! A� þ B (negative ion production)

Aþ B �! Cþ D (gas-phase chemical reactions)

Gi ¼ �Darni (ion transport to surfaces)

GA ¼ �DArnA (radical transport to surfaces)

A(g)þ B(s) �! C(g) (surface-phase reactions)

The net energy absorbed by these and other reactionsmust be supplied by the discharge

power source. For example, electron energy is lost due to ionization, excitation, elastic

scattering, and dissociation (the second reaction listed above). Hence, the discharge

model must account for these energy losses. Further, the rates of these reactions

depend critically on the energy distributions or temperatures of the reactants. Although

thermodynamics determines the energy of reaction and can constrain the extent of

reaction,most reactions occurring in typical reactors are far from thermodynamic equi-

librium. Then collisions between pairs of species determine the reaction kinetics,

including the reaction rates and the steady-state distribution of reactor species.

Another aspect seen in Figure 7.1 is the dual importance of homogeneous reac-

tions in the gas-phase and heterogeneous reactions of gas-phase species with surfaces

(the last reaction listed above). Hence, one must describe not only the properties of a

given species, but also possible changes in the phase of that species, for example,

from solid to gas, as well as changes in composition due to chemical reactions.

This and the following two chapters deal with the fundamentals of chemical

dynamics. In this chapter we describe the energetics of gas-phase and surface chemical

reactions and chemical equilibrium. In Chapter 8, building on the study of atomic col-

lisions in Chapter 3, we describe the fundamentals of molecular collisions, including

such processes as dissociation, attachment, and recombination, and introduce appro-

priate rate constants. In Chapter 9, we introduce the principles of gas-phase and

surface chemical kinetics, using the rate constants obtained in the previous chapter.

We also describe the principles of surface interactions, including physical and chemi-

cal surface processes, the transport of species to surfaces, and surface reactions.

7.2 ENERGY AND ENTHALPY

The state of a system ofM chemical species is uniquely determined by the temperature

T , the total volume V, and the number Nj of moles of each species (1 mole ¼
6.022 � 1023 molecules). This is illustrated for M ¼ 3 in Figure 7.2, for two states

labeled 1 and 2, where the five axes shown in the figure are considered to be mutually
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perpendicular. State variables, such as the internal energy U, pressure p, entropy S,

enthalpy H, and Gibbs free energy G, are then uniquely determined. For example,

U ¼ 3
2
NRT , and the equation of state determines p ¼ NRT=V for a perfect gas.

Often the equations for U, p, S, and so on can be inverted. Hence other combinations

of M + 2 variables, such as (U, p, Nj), uniquely specify the state and thus determine

T , V, S, etc.
If a chemical system can exchange heat and work, but not matter with its sur-

roundings, and undergo changes in chemical composition, then the first law of

thermodynamics states that the increase dU in internal energy is equal to the sum

of the heat flow dQ into the system and the work done dW on the system

dU ¼ �dQþ �dW ð7:2:1Þ
If neither heat nor work is exchanged with the surroundings then U does not change.

Equation (7.2.1) is the law of conservation of energy. Physically, U accounts for the

random translational, vibrational, and rotational kinetic energy of the molecules in

the system, the potential energies stored in the molecular chemical bonds, and the

interaction energies between molecules.

The notation �d is used for small changes of heat and work because �dQ and �dW are

not, in general, exact differentials. Consider a process leading to a change froman initial

state 1 to a final state 2 along two different paths (a) and (b), as shown in Figure 7.2. For

exact differentials, such as dU, the total change is independent of the path:

DUa ¼
ð

path a

dU ¼ DUb ¼
ð

path b

dU ¼ U2 � U1

The differentials of all state variables are exact; for example, Dp ¼ p22 p1, DV =

V22 V1, and so on. However, heat and work are not state variables. Hence,

DQa ¼
ð

path a
�dQ = DQb ¼

ð

path b
�dQ

and, similarly, DWa = DWb.

N

N

N

T

FIGURE 7.2. State space for a chemically reactive system.
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Different kinds of work (mechanical, electrical, etc.) can be done on a system. We

are considering here only p dV work due to a change of volume V. The work done on
a system by its surroundings is found, from Newton’s laws, to be

�dW ¼ �pext dV ð7:2:2Þ

where pext is the pressure of the surroundings. In general, pext is not equal to the

system pressure p. However, if the system is in near equilibrium with its surround-

ings, then pext � p and Text � T. In this case,

�dW ¼ �p dV ð7:2:3Þ

If, during a process of change from state 1 to state 2, the system remains in near equi-

librium with its surroundings, then the process is called reversible. Examples of

reversible processes are the slow heating of a gas in a closed container ðV ¼ constÞ
or in an open container capped by a piston exerting a constant pressure on the gas.

The reversible work done on the system is found by integrating (7.2.3). Substituting

(7.2.3) into (7.2.1), we see that

dU ¼ �dQ� p dV ð7:2:4Þ

at every point along the path of a reversible process.

The work done is zero for a constant-volume reversible process. Integrating

(7.2.4) shows that the increase in internal energy is equal to the total heat flow

into the system:

U2 � U1 ¼ DQ ð7:2:5Þ

However, in plasma reactors, most processes occur at constant pressures, not

constant volumes. It is useful to introduce a new state variable, the enthalpy

H ¼ U þ pV ð7:2:6Þ

for constant-pressure processes. For example, for a perfect gas, U ¼ 3
2
NRT and

pV ¼ NRT , so H ¼ 5
2
NRT . Differentiating H and using (7.2.4), we obtain

dH ¼ �dQþ V dp ð7:2:7Þ

Hence, the increase in enthalpy is equal to the total heat flow for constant-pressure

processes:

H2 � H1 ¼ DQ ð7:2:8Þ

In general, there is a change of volume for a constant-pressure process. Integrating

(7.2.3) yields the total work done on the system:

DW ¼ �pðV2 � V1Þ ð7:2:9Þ
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Differentiating (7.2.6) at constant pressure, we obtain

DH ¼ DU þ pDV ð7:2:10Þ

Hence, the enthalpy change is equal to the sum of the internal energy change and the

p dV work done by the system on its surroundings. Generally, jDW j � jDUj for
chemical reactions at the low pressures characteristic of plasma processing

discharges; hence DH � DU.
If a system containing Nj moles of each species undergoes a chemical reaction at

constant temperature and pressure, then the Nj’s change, and the total enthalpy H2

(T, p, Nj
0) after the reaction is not the same as the enthalpy H1 (T, p, Nj) before

the reaction. By (7.2.8), the excess enthalpy appears as heat. For DH . 0, the reac-

tion is called endothermic and heat enters the system. For DH , 0, the reaction is

called exothermic and heat exits. Although the enthalpy Hf for formation of a

particular product species is a function of T, p, and the Njs, a standard molar

formation enthalpy H�
f ðT0Þ is tabulated in the thermodynamic literature for a stan-

dard temperature and pressure (STP) and for one mole (1 mol) of the product

created by the reaction of the most stable natural forms of the elements. The standard

pressure, denoted with a superscript �, is usually taken to be either 1 bar = 105 Pa in

the newer tables or 1 atm = 760 Torr = 1.013 bar in the older tables; the difference is

not significant for our purposes. The standard temperature, denoted T0, is taken to be

298.15 K ¼ 258C. An example is the reaction for formation of SiO2 : Si(s)þ
O2 ! SiO2ðs;aÞ; H�

f ðT0Þ ¼ �910:9 kJ=mol, where s, l, and g denote solid, liquid,

and gas, respectively, and a denotes the most stable (a) phase of SiO2. In older

tables, enthalpies are often specified in kcal/mol, where 1 kcal ¼ 4.184 kJ. We

also note that an energy equivalent voltage of 1 V/molecule corresponds to

96.49 kJ/mol. When considering chemical reactions, only changes in enthalpies

are significant. Hence the standard enthalpies of formation of the elements in

their most stable state are taken to be zero at all temperatures. Some standard enthal-

pies of formation are given in Tables 7.1 and 7.2.

The standard enthalpy H�
r ðT0Þ for any chemical reaction can be calculated by

subtracting the enthalpies of formation of the reactants from those of the products.

For example, consider the etching of one mole of SiO2 (s) by fluorine gas:

SiO2ðsÞ þ 2F2ðgÞ �! SiF4ðgÞ þ O2ðgÞ ð7:2:11Þ

From Table 7.1, H�
f ðT0Þ ¼ 2910.9 kJ/mol for 1 mol SiO2(s) and H�

f ðT0Þ ¼
�1614:9 kJ=mol for 1 mol SiF4. Hence

H�
r ðT0Þ ¼ ð1Þð�1614:9Þ � ð1Þð�910:9Þ ¼ �704:0 kJ=mol

and the reaction is exothermic.

For SiO2(s) etching by chlorine gas,

SiO2 þ 2Cl2ðgÞ �! SiCl4ðgÞ þ O2ðgÞ ð7:2:12Þ
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TABLE 7.1. Thermodynamic Properties

Substances

H�
f ðT0Þ

(kJ/mol)

G�
f ðT0Þ

(kJ/mol)

O 249.2 231.7

O3 142.7 163.2

H 218.0 203.2

OH 39.0 34.2

H2O (l) 2285.8 2237.1

H2O 2241.8 2228.6

F 78.99 61.91

HF 2271.1 2273.2

Cl 121.7 105.7

HCl 292.3 295.3

Br 111.9 82.4

Br2 30.9 3.11

S 278.8 238.3

SF4 2774.9 2731.6

SF6 21209 21105

N 472.7 455.6

C (graphite cr) 0 0

C (diamond cr) 1.90 2.90

CO 2110.5 2137.2

CO2 2393.5 2394.4

CH2 390.4 372.9

CH3 145.7 147.9

CH4 274.8 250.7

CF3 2477 2464

CF4 2925 2879

COF2 2634.7 2619.2

CH2F2 2446.9 2419.2

CHF3 688.3 2653.9

CCl4 2102.9 260.59

COCl2 2218.8 2204.6

CH3Cl 280.8 257.4

CH2Cl2 292.5 265.9

CHCl3 2103.1 270.3

C2H2 226.7 209.2

C2H4 52.3 68.2

C2H6 284.7 232.8

C2F4 2650.6 2615.9

C2F6 21297 21213

Si (cr) 0 0

Si 455.6 411.3

SiO 299.6 2126.4

SiO2 (a quartz, cr) 2910.9 2856.6

(continued )
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we obtain

H�
r ðT0Þ ¼ ð1Þð�657Þ � ð1Þð�910:9Þ ¼ 253:9 kJ=mol

and the reaction is endothermic.

TABLE 7.1. Continued

Substances

H�
f ðT0Þ

(kJ/mol)

G�
f ðT0Þ

(kJ/mol)

SiO2 (amorphous) 2903.5 2850.7

SiH4 34.3 56.9

SiF 7.1 224.3

SiF2 2619 2628

SiF4 21614.9 21572.7

SiCl2 2165.6 2177.2

SiCl4 (l) 2687.0 2619.8

SiCl4 2657 2617

Si3N4 (a, cr) 2743.5 2642.6

SiC (b, cubic) 265.3 262.8

Al2O3 (a) 21675.7 21582.3

AlF3 (cr) 21510.4 21431.1

AlF3 21204.6 21188.2

AlCl3 (cr) 2704.2 2628.8

WF6 21721.7 21632.1

Note: Substances are in gas phase unless otherwise specified.

TABLE 7.2. Enthalpies of Formation

Substances H�
f ðT0Þ (kJ/mol)

CH 595.8

CCl3 59

CF2 2194.1

CF3 2467.4

SiH 377

SiH2 269.0

SiH3 194.1

SiF 219.3

SiF2 2587.9

SiF3 21025

SiCl 195.8

SiCl2 2163.6

SiCl3 2318

AlCl3 2583.2

Note: All substances are in gas phase.
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The reactions in plasma processing do not necessarily take place at the standard

temperature. To determine the temperature dependence of the enthalpy, we note that

at constant pressure and composition, a small heat flow �dQ into the system produces

a proportionate temperature rise,

�dQ ¼ Cp dT ð7:2:13Þ

where the constant of proportionality Cp is called the specific heat at constant pressure.

Since dH ¼ �dQ under these conditions, we find that

Cp ¼ @H

@T

� �

p;Nj

ð7:2:14Þ

For a perfect gas, H ¼ 5
2
NRT and Cp ¼ 5

2
RN. The specific heat for one mole of

perfect gas is Cpm � 20:8 J/(K mol). Most substances, including real gases, have

Cpm � 30� 100 J/(K mol). The enthalpy at temperature T can be written as

HðTÞ ¼ HðT0Þ þ
ðT

T0

CpðT 0Þ dT 0 ð7:2:15Þ

Since reaction enthalpies are typically hundreds of kilojoules per mole, the integral

in (7.2.15) is not too important for temperatures within a few hundred degrees of T0,

as is common in processing discharges.

Similarly, the enthalpy depends only weakly on the pressure. In fact, for a perfect

gas,H ¼ 5
2
NRT and therefore is independent of p. At the low pressures of processing

discharges, the pressure dependence is negligible.

The enthalpies associated with breaking chemical bonds to form neutral products

are also of interest. The dissociation reaction for the molecule AB,

AB(g) �! A(g)þ B(g)

where both A and B may be groups of atoms, has a dissociation enthalpy H�
dissðT0Þ

for breaking the AB bond. Some bond dissociation enthalpies are given in Table 7.3.

A mean bond dissociation enthalpy, which is an average of H�
dissðT0Þ over many

different types of molecules containing the bond, can also be defined. For

example, H�
dissðT0Þ ¼ 492 kJ/mol for the HO–H bond and 428 kJ/mol for the

O–H radical bond; the mean enthalpy of O–H bonds in many different molecules

is 463 kJ/mol. The enthalpy of phase transition is also of interest, including subli-

mation s ! g, vaporization l ! g, and melting s ! l; for example, H2O (l) !
H2O(g) has H�

vap(1008C) ¼ 40.66 kJ/mol. Some enthalpies of formation of

gaseous atoms are given in Table 7.4. The data in Tables 7.3 and 7.4 can be used

to estimate the enthalpy of formation of various substances (see Problem 7.2).
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Other enthalpies include ionization,

A(g) �! Aþ(g)þ e

and electron affinity,

A(g)þ e �! A�ðgÞ

For example, the enthalpy for ionization of Cl is 1251 kJ/mol, corresponding

to 12.96 V/atom. The electron affinity enthalpy for Cl2 is 2348.6 kJ/mol,

corresponding to 23.61 V/atom. The affinity reaction is exothermic for Cl2

production.

TABLE 7.3. Bond Dissociation Enthalpies

Bond H�
dissðT0Þ (kJ/mol)

F–F 158.75

F–Ni 435

F–O 222

F–S 342.7

F–Si 552.7

F–W 548

F–Zn 368

F–C 552

C–C 607

C–H 338.3

C–O 1076.5

C–Si 451.5

Si–O 799.6

Si–Si 326.8

Al–Al 186.2

Al–Cu 216.7

Al–F 663.6

Al–Cl 511.3

Al–O 512.1

O–H 427.5

Si–H 299.2

F–SF5 381.2

F–SF4 222.2

F–SF3 351.9

F–SF2 264.0

F–SF 383.7

S–F 342.7

CF255CF2 319.2

CF3–CF3 413.0
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7.3 ENTROPY AND GIBBS FREE ENERGY

We have seen in the previous section that for a reversible change the system moves

slowly through a succession of equilibrium states. There is no spontaneous tendency

to move in one direction or the other. An example is the expansion of a gas as the

volume of its container is slowly increased. But some things do happen spon-

taneously. Gas from a burst balloon expands to fill an available volume; it does

not spontaneously contract to a smaller volume. A cold body absorbs heat from

hotter surroundings; it does not supply heat to the surroundings and get colder.

The second law of thermodynamics asserts that there is a state variable S, the

entropy, that determines the direction of spontaneous change, which is defined by

dS ¼ �dQ=T ð7:3:1Þ

where �dQ is the heat injected into a system by a reversible process. The second law

also asserts that, for a spontaneous process,

dS . �dQ=T ð7:3:2Þ

The entropy is a measure of the disorder in the system.

Consider a thermally isolated system of chemical species that irreversibly

(spontaneously) undergoes a chemical reaction, leading to a change in temperature,

pressure, and species concentrations. Since �dQ ¼ 0 for a thermally isolated system,

(7.3.2) shows that the system entropy must increase; that is, the direction of spon-

taneous change in a thermally isolated system is to increase the system disorder.

TABLE 7.4. Enthalpies of Formation of Gaseous Atoms

Element H�
f ðT0Þ(kJ/mol)

Si 455.6

C 716.7

Br 111.9

Cl 121.7

F 79.4

H 218.0

Al 329.7

Mo 658.1

O 249.2

S 278.8

W 849.8

Zn 130.42

N 472.7

Cu 341

Ge 328

Ni 425

216 CHEMICAL REACTIONS AND EQUILIBRIUM



Inserting (7.3.1) into the internal energy change (7.2.4), we find

dU ¼ T dS� p dV ð7:3:3Þ
Although (7.3.3) was derived for a reversible process, it applies for any process,

reversible or irreversible. This is because the internal energy U depends only on

the state of the system, so we may as well determine the change in energy from

one state to another by using a reversible process. Although �dQ ¼ T dS and �dW ¼
�p dV for a reversible process, and �dQ , T dS and �dW . �p dV for an irreversible

process, the sum �dQþ �dW is always equal to T dS� p dV. Similarly, inserting

(7.3.1) into the enthalpy change (7.2.7), we find

dH ¼ T dSþ V dp ð7:3:4Þ
for any process, reversible or irreversible.

Equation (7.3.1) can be used to determine the variation of S with temperature and

pressure. Consider a constant pressure process for which the surroundings are heated

slowly fromT0 toT1. Then from the definition of specific heat (7.2.13), a reversible heat

�dQ ¼ dHð p; TÞ ¼ Cpð p; TÞ dT ð7:3:5Þ
flows into the system. Inserting (7.3.5) into (7.3.1) and integrating, we obtain

Sðp0; TÞ � Sðp0; T0Þ ¼
ðT

T0

Cpðp0; T 0Þ
T 0 dT 0 ð7:3:6Þ

For a perfect gas, Cp ¼ 5
2
RN and

Sðp0; TÞ � Sðp0; T0Þ ¼ 5

2
RN ln

T

T0

� �

ð7:3:7Þ

which gives the temperature variation of the entropy.

Similarly, the change in internal energy for a constant-volume reversible process

is, from the internal energy change (7.2.4),

�dQ ¼ dUðV; TÞ ¼ CVðV; TÞ dT ð7:3:8Þ

where

CV ¼ @U

@T

� �

V
ð7:3:9Þ

is the specific heat at constant volume. Inserting (7.3.8) into (7.3.1) and integrating,

we find

SðV; TÞ � SðV; T0Þ ¼
ðT

T0

CVðV; T 0Þ
T 0 dT 0 ð7:3:10Þ
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For a perfect gas, CV ¼ 3
2
RN and

SðV; TÞ � SðV; T0Þ ¼ 3

2
RN ln

T

T0

� �

ð7:3:11Þ

Equations (7.3.6) and (7.3.10) can be used to determine the variation of entropy with

pressure by considering the two-step reversible process

ðp0; T0Þ �!
p const

ðp0; TÞ �!
V const

ðp; T0Þ

For a perfect gas, using (7.3.7) and (7.3.11), and noting that V ¼ NRT=p0 ¼
NRT0=p, we obtain

Sðp; T0Þ � Sðp0; T0Þ ¼ �RN ln
p

p0

� �

ð7:3:12Þ

which gives the pressure variation of the entropy.

In general, the specific heats are continuous functions of temperature except at

isolated values of T where the system undergoes a change of phase (first-order

phase transition). At these temperatures the specific heats are singular. An

example is shown in Figure 7.3 for a change of phase of a pure substance from a

solid to a liquid to a gas. The third law of thermodynamics states that the entropy

of all perfect crystalline compounds may be taken to be zero at T ¼ 0. Hence, inte-

grating Cp from 0 to T, including the appropriate d functions at Tmelt and Tvap, yields

the entropy. The standard molar entropies S�
mðT0Þ J/(K mol) of various pure

substances and compounds are tabulated in the thermodynamic literature. The stan-

dard reaction entropies S�
r ðT0Þ for any reaction are found by subtracting the standard

entropies of the reactants from those of the products.

FIGURE 7.3. Specfic heat Cp at constant pressure and entropy S versus temperature T.
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Gibbs Free Energy

For a constant-pressure process �dQ ¼ dH and the second law, (7.3.1) and (7.3.2) can

be written

dH � T dS � 0 ð7:3:13Þ

where the equality applies for a reversible process. Introducing a new state variable,

the Gibbs free energy

G ¼ H � TS ð7:3:14Þ

such that

dG ¼ dH � T dS� S dT ð7:3:15Þ

and comparing (7.3.13) and (7.3.15) at constant temperature, we see that

dG ¼ dH � T dS � 0 ð7:3:16Þ

Hence, for a chemical reaction to proceed spontaneously at constant temperature and

pressure, the Gibbs free energy must decrease. Inserting (7.3.4) into (7.3.15), we

obtain

dG ¼ V dp� S dT ð7:3:17Þ

If we let G ¼ G(p, T, Nj), where (p, T, Nj), j ¼ 1, . . . , M, specifies the state of the

system, then the differential of G is

dG ¼ @G

@p

� �

T;fNig
dpþ @G

@T

� �

p;fNig
dT þ

X

M

j¼1

@G

@Nj

� �

p;T;fNi=Njg
dNj ð7:3:18Þ

Comparing (7.3.18) with (7.3.17), we see that

V ¼ @G

@p

� �

T;fNig
ð7:3:19Þ

S ¼ � @G

@T

� �

p;fNig
ð7:3:20Þ

and, introducing the chemical potential

mj ¼
@G

@Nj

� �

p;T;fNi=Njg
ð7:3:21Þ
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we see that

X

M

j¼1

mj dNj ¼ 0 ð7:3:22Þ

The chemical potential specifies how G changes as various substances j are added to

the system. For a closed system for which heat and work, but not matter, can be

exchanged with the surroundings, (7.3.22) must hold; that is, dG is independent

of changes in composition. However, for an open system, for which matter can be

exchanged with the surroundings, we must write

dG ¼ V dp� S dT þ
X

M

j¼1

mj dNj ð7:3:23Þ

in place of (7.3.17). We note that V, S, and mj in (7.3.23) are all functions of the state

(p, T, Nj), j ¼ 1, . . . , M. However, for a single substance

m ¼ @G

@N

� �

p;T

ð7:3:24Þ

is independent of N. Hence m is equal to the molar Gibbs free energy Gm(p, T) for

that substance.

From (7.3.14), the standard molar Gibbs free energy of formation of any

substance from the elements in their most stable natural states is

m�ðT0Þ ; G�
f ðT0Þ ¼ H�

f ðT0Þ � T0S
�
mðT0Þ ð7:3:25Þ

These data are tabulated in the thermodynamic literature, and some selected values

are given in Table 7.1. The standard Gibbs free energyG�
r ðT0Þ for any chemical reac-

tion is found by subtracting the standard Gibbs free energies for formation of the

reactants from those of the products. Again, G�
f ðT0Þ for the elements in their most

stable natural state is taken to be zero.

As an example, consider reaction (7.2.12) for etching one mole of SiO2(s) by

chlorine gas. From Table 7.1, we find

G �
r ðT0Þ ¼ ð1Þð�617:0Þ � ð1Þð�856:6Þ ¼ 239:6 kJ=mol ð7:3:26Þ

The pressure and temperature variation of m are found by integrating (7.3.19) and

(7.3.20) for one mole of substance from STP at ðp�; T0Þ to ðp; TÞ. First integrating
(7.3.20) from ðp�; T0Þ to ðp�; TÞ and assuming a perfect gas, such that Sðp�; TÞ is
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found from (7.3.7), we obtain

m�ðTÞ ¼ m�ðT0Þ þ T � T0ð Þ 5

2
R� S�mðT0Þ

� �

� 5

2
RT ln

T

T0

� �

ð7:3:27Þ

To obtain the pressure variation we integrate (7.3.19) from ð p�; TÞ to ð p; TÞ, using
V ¼ RT=p for one mole of a perfect gas,to obtain

mðp; TÞ ¼ m�ðTÞ þ RT ln
p

p�

� �

ð7:3:28Þ

For a mixture of perfect gases, p is replaced by the partial pressure pj in (7.3.28):

mjðgÞ ¼ m�
j ðTÞ þ RT ln

pj

p�

� �

ð7:3:29Þ

Introducing the mole fractions xj ¼ pj/p ¼ Nj/
PMg

i¼1 Ni for the Mg gas-phase

species, we have

mjðgÞ ¼ m�
j ðTÞ þ RT ln

xjp

p�

� �

ð7:3:30Þ

The xjs give the composition dependence. For typical processing discharges, most

gases can be considered ideal. For solids or liquids, (7.3.28) is replaced by

mj ¼ m�
j ðTÞ þ RT ln aj ð7:3:31Þ

where aj ¼ gjxj, aj is the activity, gj is the activity coefficient, and xj is the mole frac-

tion in the solid or liquid phase. For a pure solid or liquid, xj ¼ 1 and gj is chosen to
be unity at standard pressure p�. Hence aj ¼ 1 and m�

j ¼ mj for the pure substance at

p�. Integrating (7.3.19) and (7.3.20) for one mole of solid or liquid substance shows

that mj depends only weakly on p and T for typical values of the molar volume Vm

and molar entropy Sm. Assuming that the mutual solubilities of the constituents in

the solid or liquid phases are small, then these phases are pure, and the ajs can be

taken to be unity for the solid or liquid reactants and products at the pressures

and temperatures in typical processing discharges:

mjðs ; lÞ ¼ m�
j ðTÞ ð7:3:32Þ

7.4 CHEMICAL EQUILIBRIUM

Consider a chemical reaction in a closed system, such as

3Aþ B ¼ 2Cþ 4D ð7:4:1Þ
Letting J 1 ¼ A, J 2 ¼ B, J 3 ¼ C, J 4 ¼ D, etc. denote the species and introducing

the stoichiometric coefficients a1 ¼ �3;a2 ¼ �1;a3 ¼ 2;a4 ¼ 4, etc. (the as are
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negative for reactants and positive for products), the reaction can be written as

X

j

ajJ j ¼ 0 ð7:4:2Þ

Let the number of moles of J j change by dNj ¼ aj dN, where dN is the extent of the

reaction. For reaction at constant pressure and temperature, (7.3.18) shows that

dG ¼
X

j

ajmj dN ð7:4:3Þ

If the reaction (7.4.1) proceeds spontaneously, either to the right (C and D are

formed) or to the left (A and B are formed), then the second law (7.3.16) shows

that dG , 0 and hence G must decrease. Eventually, the system attains a state of

equilibrium in which the concentrations of the various species no longer change

spontaneously; at this equilibrium state dG ¼ 0. Hence, as shown in Figure 7.4,

the equilibrium state is a minimum of G with respect to composition changes.

Using (7.4.3), we see that

X

M

j¼1

ajmj ¼ 0 ð7:4:4Þ

at equilibrium. Inserting the chemical potentials (7.3.29) for the gas-phase

constituents and (7.3.32) for the liquid- and solid-phase constituents into (7.4.4),

dG = 0

Equilibrium
composition

Composition

A + B C + D

G

A + B + C + D

FIGURE 7.4. Gibbs free energy G versus composition.

222 CHEMICAL REACTIONS AND EQUILIBRIUM



we obtain

�RT
X

Mg

j¼1

aj ln
�pj

p�

� �

¼
X

M

j¼1

ajm
�
j ðTÞ ð7:4:5Þ

where �pj is the equilibrium partial pressure of the jth species, and the sum on the left

is over the Mg gas-phase constituents only. The term on the right-hand side of

(7.4.5) is the Gibbs free energy G�
r ðTÞ of the reaction. Using this and introducing

the equilibrium constant

K ¼
Y

Mg

j¼1

�pj

p�

� �aj

ð7:4:6Þ

into (7.4.5), we obtain

KðTÞ ¼ exp �G�
r ðTÞ
RT

� �

ð7:4:7Þ

Equations (7.4.6) and (7.4.7) are the fundamental equations of chemical equilibrium.

K can be written in terms of the equilibrium mole fractions �xj ¼ �pj=p as

K ¼ Kx

p

p�

� �ag

ð7:4:8Þ

where

Kx ¼
Y

Mg

j¼1

�x
aj

j ð7:4:9Þ

and

ag ¼
X

Mg

j¼1

aj ð7:4:10Þ

is the sum of the gas-phase stoichiometric coefficients.

As an example, consider the reaction (7.2.12) for the etching of one mole of SiO2

by Cl2 gas at STP. The reaction Gibbs free energy is, from (7.3.26), G�
r ðT0Þ ¼

239:6 kJ/mol. Using (7.4.7) with RT ¼ 2:479 kJ/mol, we find KðT0Þ ¼ 1:02�
10�42. Let xCl2 , xO2

, and xSiCl4 be the gas-phase mole fractions and N0 be the total

number of gas-phase moles in the initial state. Let N be the extent of the reaction
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to attain the equilibrium state. Then we obtain the following table based on conser-

vation of Cl2 and O2 for the reaction (7.2.12):

Species Initial Moles Equilibrium Moles

Cl2 xCl2N0 xCl2N0 2 2N

O2 xO2
N0 xO2

N0 þ N

SiCl4 xSiCl4N0 xSiCl4N0 þ N

Using aCl2 ¼ �2;aO2
¼ 1, aSiCl4 ¼ 1, we obtain ag ¼ 0 from (7.4.9) and hence

K ¼ Kx from (7.4.10). Dividing each element in the third column of the table by

the initial number of gas-phase moles, we obtain from (7.4.9) that

K ¼ ðxO2
þ N=N0ÞðxSiCl4 þ N=N0Þ
ðxCl2 � 2N=N0Þ2

¼ 1:02� 10�42 ð7:4:11Þ

If the initial state contains only SiO2 and Cl2, then xO2
¼ xSiCl4 ¼ 0 and xCl2 ¼ 1.

Then (7.4.11) becomes

N=N0

1� 2N=N0

� �2

¼ 1:02� 10�42

from which we obtain N=N0 ¼ 1:01� 10�21 � 1. Hence, only a negligible etching

of SiO2 occurs before equilibrium is obtained.

In contrast, consider reaction (7.2.11) for SiO2 etching by fluorine gas, for which,

using the data from Table 7.1, G�
r ðT0Þ ¼ �716:1 kJ/mol. Using (7.4.7), we obtain

K ¼ 3:2� 10125 � 1. Hence, almost the entire F2 gas charge reacts to attain the

equilibrium state.

It is necessary to emphasize at this point that thermodynamics has nothing to say

about the rate of the reaction to attain the equilibrium state. The reaction timescale

might be microseconds or centuries. Rates are typically fast for gas- or liquid-phase

reactions due to the high mobilities of the reactants and products, but they can be

very slow if one of the reactants or products is a solid. Catalysts can be used to

increase the reaction rates without altering the thermodynamic equilibrium.

Reaction rates are the provenance of chemical kinetics, which we consider in

Chapter 9.

Pressure and Temperature Variations

Changing the reaction pressure and temperature can have a strong effect on the

equilibrium. First considering pressure variations, we note from (7.4.7) that K is

independent of pressure. However, the mole fractions �x will generally change as p
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changes. Inserting (7.4.9) into (7.4.8), we obtain

Y

Mg

j¼1

�x
aj

j ¼ p

p�

� ��ag

K ð7:4:12Þ

Recall that ag, given by (7.4.10), is the difference between the number of gas-phase

product and reactant molecules for the stoichiometric reaction. For ag . 0, there are

more gas-phase product molecules than reactant molecules. If the pressure is

decreased, then the RHS of (7.4.12) is increased, driving the reaction to the right;

that is, the �xjs for the products increase and the �xjs for the reactants decrease.

Hence, at low pressures, it is desirable to seek reactions having ag . 0. For

ag , 0, a decrease in pressure drives the reaction to the left (fewer products,

more reactants). For ag ¼ 0, the �xjs are independent of pressure. These variations

are summarized in the following table:

p change ag . 0 ag ¼ 0 ag , 0

p # Products " No change Products #
p " Products # No change Products "

Equation (7.4.7) shows that the temperature variation of K is specified by the

variation of G�
r ðTÞ=T , which we can derive as follows: Inserting the entropy

(7.3.20) into the definition of G in (7.3.14) we obtain, at constant pressure,

G ¼ H þ T
@G

@T
ð7:4:13Þ

Dividing (7.4.13) by T2 and rearranging, we obtain the Gibbs–Helmholtz equation

� H

T2
¼ � G

T2
þ 1

T

@G

@T
¼ @

@T

G

T

� �

ð7:4:14Þ

Using (7.4.14) for each reaction species, we find

@

@T

G�
r ðTÞ
T

� �

¼ �H �
r ðTÞ
T2

ð7:4:15Þ

Substituting (7.4.15) into the derivative of (7.4.7) and then dividing by (7.4.7), we

obtain

d

dT
ln KðTÞ ¼ H�

r ðTÞ
RT2

ð7:4:16Þ

7.4 CHEMICAL EQUILIBRIUM 225



We see from (7.4.16) that increasing the temperature for an exothermic reaction

ðHr , 0Þ drives the reaction toward the left (fewer products, more reactants).

Increasing the temperature drives an endothermic reaction toward the right (more

products, fewer reactants). Integrating (7.4.16) over a temperature change from T0
to T1 and assuming that H�

r � const, independent of temperature, we obtain

KðT1Þ ¼ KðT0Þ exp H�
r

R

1

T0
� 1

T1

� �� �

ð7:4:17Þ

The following table summarizes the temperature variation:

T change Hr , 0 Hr . 0

T " Products # Products "
T # Products " Products #

7.5 HETEROGENEOUS EQUILIBRIUM

Equilibrium Between Phases

We consider equilibrium between gas and liquid phases of a pure substance, for

example, H2O, at constant temperature and pressure. Suppose that Ng moles of

gas are in equilibrium with Nl moles of liquid. Let mg and ml be the chemical poten-

tials of the gas and liquid. If dN moles are transferred from the gas to the liquid, then

the Gibbs free energy changes by

dG ¼ �mg dN þ ml dN

If mg = ml, then dN can be chosen to make dG , 0; hence the system is not in equi-

librium. Therefore, in equilibrium,

mg ¼ ml ¼ ms ; m ð7:5:1Þ

independent of phase.

Now suppose that T and p are changed slightly so as to remain in equilibrium with

Ng and Nl constant. Using the Gibbs free energy change (7.3.17), we obtain

dmg ¼ �Sgm dT þ Vgm dp ð7:5:2Þ
dml ¼ �Slm dT þ V lm dp ð7:5:3Þ

where Sgm and Slm are the entropy per mole and Vgm and V lm are the volume per

mole of the gas and liquid phases. Using (7.5.1), we can equate the RHSs of

226 CHEMICAL REACTIONS AND EQUILIBRIUM



(7.5.2) and (7.5.3) to obtain

dp

dT
¼ DSm

DVm

ð7:5:4Þ

where

DSm ¼ Sgm � Slm ð7:5:5Þ
DVm ¼ Vgm � V lm ð7:5:6Þ

From the entropy change (7.3.1) with �dQ ¼ dH (see also Fig. 7.3), the change in the

molar entropy is

DSm ¼ Hvap

T
ð7:5:7Þ

Assuming that V lm � Vgm and using the perfect gas law to determine Vgm, we have

DVm � Vgm ¼ RT

p
ð7:5:8Þ

Inserting (7.5.7) and (7.5.8) into (7.5.4) yields

dp

dT
¼ Hvap

RT2
p ð7:5:9Þ

which is known as the Clausius–Clapeyron equation. Assuming that Hvap varies

only weakly with T, we can integrate this to find

pj ¼ p0j exp �Hvap

RT

� �

ð7:5:10Þ

where the subscript j denotes a pure substance. Equation (7.5.10) specifies the vapor

pressure pj of the gas in equilibrium with the liquid at temperature T. For the two

phases to coexist, pj and T cannot be independently chosen. Conversely, if pj and

T do not satisfy (7.5.10), then one of the phases does not exist.

The preceding analysis can be applied similarly to equilibrium between the gas

and solid phases, yielding

pj ¼ p00j exp �Hsubl

RT

� �

ð7:5:11Þ

where Hsubl is the sublimation enthalpy per mole. For most substances H � RT , and

thus p is a strong function of T. Plotting ln pj versus 1=RT yields a straight line with
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slope �H. In the usual case, the curves (7.5.10) and (7.5.11) intersect at the triple

point (p3, T3), leading to the phase diagram shown in Figure 7.5. All three phases

can coexist only at the triple point.

As an example, for H2O, Hvap � 40.66 kJ/mol and pj ¼ 1 atm at 1008C. This
determines p0j in (7.5.10). Table 7.5 gives some vapor pressure data for various

substances.

T3

ln p
3

T

ln p

Vaporization

GasSolid

Sublimation

Liquid

Melting

FIGURE 7.5. Phase diagram p versus T for a pure substance.

TABLE 7.5. Vapor Pressures

Substance

Temperature (8C)

1 Torr 10 Torr 100 Torr

AlBr3 81.3 (s) 118.0 176.1

AlCl3 100.0 (s) 123.8 (s) 152.0 (s)

AlF3 1238 1324 1422

NH3 2109.1 (s) 291.9 (s) 268.4

Br2 248.7 (s) 225.0 (s) 9.3

Cl2 2118.0 (s) 2101.6 (s) 271.7

Cu2Cl2 546 702 960

NiCl2 671 (s) 759 (s) 866 (s)

SiCl4 263.4 234.4 5.4

SiF4 2144.0 (s) 2130.4 (s) 2113.3 (s)

H2O 217.3 (s) 11.3 51.6

WF6 271.4 (s) 249.2 (s) 220.3 (s)

Note: s, solid phase.
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For a mixture of substances, (7.5.10) and (7.5.11) hold for the partial pressures pj ,

where the total pressure is the sum of the partial pressures:

p ¼
X

j

pj ð7:5:12Þ

Referring to Figure 7.5, we see that if T . T3 and p . pjðTÞ for vaporization,
then the liquid and gas phases of substance j can coexist; if T , T3 and p . pjðTÞ
for sublimation, then the solid and gas phases can coexist.

As an application of these ideas, consider an etching process in which the etch

product forms on the substrate in liquid form and in equilibrium with the gas

phase. Then the product gas equilibrium density is �n ¼ p=kT , where p, the vapor

pressure, is given by (7.5.10). Now the flux of product molecules to and from the

surface must balance in equilibrium. Using (2.4.10), the flux to the surface is

Gin ¼ 1
4
�n�v, where �v ¼ ð8kT=pMÞ1=2 is the mean speed of the product molecules.

Hence the flux from the surface is

Gout ¼ 1

4
�n�v ð7:5:13Þ

Now consider the nonequilibrium situation in which the product gas is efficiently

pumped away, such that the gas density n � �n. In this case, Gin � Gout. However, if

the surface remains completely covered with the liquid etch product, then Gout is still

given by (7.5.13). Hence (7.5.13) determines a maximum etch product removal rate

due to vapor pressure limitations. The removal rate can be less if the surface cover-

age is less than 100 percent, but it can never exceed this rate.

In this example, equilibrium thermodynamics (the vapor pressure p versus T ) has

been applied to determine an unknown kinetic rate (Gout) in terms of another known

rate (Gin) for a system that is not in equilibrium. This important application of ther-

modynamics will be elaborated in Chapter 9.

Equilibrium at a Surface

We now consider thermal equilibrium for adsorption and desorption of gas

molecules at a surface:

A(gÞ þ S ¼ A:S ð7:5:14Þ

where the notation A:S denotes an adsorbed molecule A on the surface S. In almost

all cases, adsorption (the forward reaction) proceeds only if it is exothermic,

Hads , 0, because the entropy change Sads is almost always negative, due to the

binding of the gas molecule to the surface. Consequently, Gads ¼ Hads � TSads ,
0 only if Hads , 0. Adsorption must be balanced by desorption (the reverse reaction,

with Gdesor ¼ �Gads) in thermal equilibrium. Let �nAðm�3Þ be the equilibrium gas-

phase volume density, n00ðm�2Þ be the area density of surface sites, and �uA be the

7.5 HETEROGENEOUS EQUILIBRIUM 229



equilibrium fraction of sites on which molecules have adsorbed, such that the area

densities covered and not covered with A molecules are �n0S:A ¼ n00 �uA and

�n0S ¼ n00ð1� �uAÞ, respectively. Then as was done for pure gas-phase reactions,

leading to an equilibrium constant K given by (7.4.6) and (7.4.7), we can write

for reaction (7.5.14),

n00 �uA
�nAn

0
0ð1� �uAÞ

¼
�uA

�nAð1� �uAÞ
¼ K adsðTÞ ð7:5:15Þ

where

K adsðTÞ ¼ 1

n�
exp �G�

ads

RT

� �

ð7:5:16Þ

and n� � 2:69� 1019 cm�3 is the gas-phase density at standard temperature and

pressure (Loschmidt’s number).

Solving (7.5.15) for �uA, we obtain

�uA ¼ K ads �nA

1þK ads �nA
ð7:5:17Þ

which is known as the Langmuir isotherm because it specifies the equilibrium surface

coverage as a function of pressure at fixed temperature. Plotting �uA versus �nA in

Figure 7.6, we see that �uA /K ads �nA for K ads �nA � 1, �uA ! 1 for K ads �nA � 1,

FIGURE 7.6. The Langmuir isotherm.
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and �uA ¼ 1=2 at K ads �nA ¼ 1. At fixed gas density and for Gads , 0, increasing T

decreases K ads and hence reduces �uA. This behavior can be important in determining

processing rates due to chemical reactions at surfaces. Although the rate of reaction for

an adsorbed molecule A:S generally increases with temperature, the surface coverage

decreases. Hence the overall reaction rate can first increase with T up to some

maximum value, due to an increase in the surface reaction rate, and then decrease

as T is further increased, due to a decrease in the adsorbed reactant density on the

surface. Such behavior has been observed, for example, for silicon etching using

XeF2 gas.

Now let us consider the desorption and adsorption of two kinds of gas molecules

on a surface:

A:S ¼ A(gÞ þ S

B:S ¼ B(gÞ þ S

Let �uA and �uB be the surface fractions covered with A and B molecules in thermal

equilibrium; hence 1� �uA � �uB is the surface fraction not covered. In thermal

equilibrium, we must have

�uA

�nAð1� �uA � �uBÞ
¼ KA ð7:5:18aÞ

�uB

�nBð1� �uA � �uBÞ
¼ KB ð7:5:18bÞ

Solving for �uA and �uB, we obtain

�uA ¼ KA �nA

1þKA �nA þKB �nB
ð7:5:19aÞ

�uB ¼ KB �nB

1þKA �nA þKB �nB
ð7:5:19bÞ

Comparing (7.5.19a) with (7.5.17), we see that the adsorption of B reduces the

surface coverage of A. If A reacts at the surface and B does not, then B is an inhibitor

for the reaction. Sidewalls in etching of silicon trenches are often protected by the

use of inhibitors, which are cleared by ion bombardment at the bottom of the

trench, thus yielding a low horizontal etch rate at the sidewall and a high vertical

etch rate at the bottom.

PROBLEMS

7.1. High Temperature Equilibrium A professor has suggested that hydrogen

gas at a high temperature T ¼ 11008C and pressure p can be used to convert
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a thin layer of a SiO2 (quartz) wafer to silicon. The reaction is

2H2ðgÞ þ SiO2ðsÞ �! Si(s)þ 2H2O(gÞ

At STP, Gf ¼ 2228.6 kJ/mol for H2O(g) and2856.6 kJ/mol for SiO2(s). Also,

Hf ¼ 2241.8 kJ/mol for H2O(g) and 2910.9 kJ/mol for SiO2(s). You may

assume that Hf is independent of temperature.

(a) Show that the equilibrium constant for the reaction at 11008C is approxi-

mately 4.3 � 10212.

(b) Find the pressure p of H2 gas necessary to convert a 1-nm thick layer of

SiO2 to silicon. The SiO2 wafer has an exposed area of 78.5 cm2 and is

placed in a reaction vessel having a volume of 10 L. Note that the

density of SiO2 is 2.65 g/cm3.

7.2. Estimating Enthalpies of Formation The enthalpy of formation of H�
f ðABÞ

of the substance AB can be written in terms of the bond dissociation enthalpy

H�
dissðABÞ and the enthalpies of formation H�

f ðAÞ and H�
f ðBÞ of the gaseous

atoms A and B as

H�
f ðABÞ ¼ H�

f ðAÞ þ H�
f ðBÞ � H�

dissðABÞ

This relation can be generalized to substances containing more than one bond

(a) Using the data in Tables 7.3 and 7.4, estimate H�
f ðT0Þ for CF4, CF3, CF2,

and CF. Compare your estimates with data given in Tables 7.1 and 7.2.

(b) Using the data in Tables 7.3 and 7.4, estimate H�
f ðT0Þ for SiH4, SiH3, SiH2,

and SiH. Compare your estimates with data given in Tables 7.1 and 7.2.

(c) Using the data in Tables 3 and 7.4, estimate H�
f ðT0Þ for TEOS ½SiðOC2H5Þ4�

and compare your estimate to the measured value of 21397 kJ/mol.

(d) The enthalpies of formation at STP of BF3(g), BF2(g), and BF(g), B(g), and

F(g) are21136,2590,2122.2, 560, and 79.4 kJ/mol, respectively. Using

these data, find the bond dissociation energy (in equivalent voltage units)

for dissociation of one molecule of BF3(g), BF2(g), and BF(g):

BF3ðgÞ �! BF2(g)þ F(g)

BF2ðgÞ �! BFðgÞ þ F(gÞ
BF(gÞ �! B(gÞ þ F(gÞ

7.3. The Triple Point Find p3 and T3 for H2O by using the partial pressures for

vaporization and sublimation (7.5.10) and (7.5.11), and compare to tabulated

experimental data. Note that at standard pressure, the enthalpies of melting

(at 273 K) and vaporization (at 373 K) are 6.01 and 40.66 kJ/mol, respectively.

Assume that the heat capacity of liquid water is 1 cal/(K cm3) and that the heat

capacity of water vapor is given by the ideal gas formula.
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7.4. Phase Equilibrium for a Mixture of Pure Substances Amixture of Cl2 and

SiCl4 is in equilibrium at room temperature T ¼ 258C and p ¼ 760 Torr. Find

all the phases that exist, and find the vapor pressures of the gas phases of the

two substances.

7.5. Thermodynamics and Vapor Pressures Aluminum at T ¼ 298 K (standard

temperature) is etched reasonably fast in Cl2 gas but not in F2 gas, because the

vapor pressure of AlF3 is very low while that of AlCl3 is reasonably high. The

reactions are

Al(s)þ 3

2
Cl2ðgÞ �! AlCl3ðsÞ

Al(sÞ þ 3

2
F2ðgÞ �! AlF3ðsÞ

(a) Show that both reactions are thermodynamically strongly downhill

(proceed far to the right) by finding the fraction xCl2 or xF2 of unreacted

Cl2 or F2 in equilibrium, given that the initial gas pressure of Cl2 or F2
is p0. (Assume that there is a very large initial supply of aluminum to be

etched.) Note that Gf ¼ 2628.8 kJ/mol for AlCl3(s) and 21431 kJ/mol

for AlF3(s) at STP.

(b) Estimate the maximum etch rate (Å/min) at 298 K that can be achieved for

Cl2 and F2 etching of aluminum due to vapor pressure limitations. Note that

Hvap ¼ 116 kJ/mol for AlCl3 and 531 kJ/mol for AlF3 at STP; the vapor

pressure is 760 Torr at T ¼ 453.2 K for AlCl3 and 1810 K for AlF3. The

density of solid aluminum is 2.70 g/cm3. (Industrial processes generally

require etch rates exceeding 2000 Å/min.)

7.6. Vapor Pressure Data The vapor pressure data for NiCl2ðsÞ ! NiCl2ðgÞ is
given below:

pðTorrÞ 1 10 100 760

Tð8CÞ 671 759 866 987

Plot log p versus 1000=T (T in kelvins, not degrees centigrade!) and use this

plot to show that the sublimation enthalpy per mole at STP is � 210 kJ/mol.

7.7. Equilibrium for Dissociation on a Surface For dissociative adsorption in

thermal equilibrium with associative desorption,

A:Sþ A:S ¼ A2ðgÞ þ 2S

show that the equilibrium surface coverage is

�uA ¼ ðK�nA2
Þ1=2

1þ ðK�nA2
Þ1=2

where �nA2
is the equilibrium gas-phase density and K is the equilibrium

constant for the reaction.
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CHAPTER 8

MOLECULAR COLLISIONS

8.1 INTRODUCTION

Basic concepts of gas-phase collisions were introduced in Chapter 3, where we

described only those processes needed to model the simplest noble gas discharges:

electron–atom ionization, excitation, and elastic scattering; and ion–atom elastic

scattering and resonant charge transfer. In this chapter we introduce other collisional

processes that are central to the description of chemically reactive discharges. These

include the dissociation of molecules, the generation and destruction of negative

ions, and gas-phase chemical reactions.

Whereas the cross sections have been measured reasonably well for the noble

gases, with measurements in reasonable agreement with theory, this is not the

case for collisions in molecular gases. Hundreds of potentially significant

collisional reactions must be examined in simple diatomic gas discharges such

as oxygen. For feedstocks such as CF4/O2, SiH4/O2, etc., the complexity can be

overwhelming. Furthermore, even when the significant processes have been

identified, most of the cross sections have been neither measured nor calculated.

Hence, one must often rely on estimates based on semiempirical or semiclassical

methods, or on measurements made on molecules analogous to those of interest.

As might be expected, data are most readily available for simple diatomic and

polyatomic gases.
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8.2 MOLECULAR STRUCTURE

The energy levels for the electronic states of a single atom were described in

Chapter 3. The energy levels of molecules are more complicated for two reasons.

First, molecules have additional vibrational and rotational degrees of freedom due

to the motions of their nuclei, with corresponding quantized energies Ev and EJ .

Second, the energy Ee of each electronic state depends on the instantaneous con-

figuration of the nuclei. For a diatomic molecule, Ee depends on a single coordinate

R, the spacing between the two nuclei. Since the nuclear motions are slow compared

to the electronic motions, the electronic state can be determined for any fixed

spacing. We can therefore represent each quantized electronic level for a frozen

set of nuclear positions as a graph of Ee versus R, as shown in Figure 8.1. For a mole-

cule to be stable, the ground (minimum energy) electronic state must have a

minimum at some value �R1 corresponding to the mean intermolecular separation

(curve 1). In this case, energy must be supplied in order to separate the atoms

(R ! 1). An excited electronic state can either have a minimum ( �R2 for curve 2)

or not (curve 3). Note that �R2 and �R1 do not generally coincide. As for atoms,

excited states may be short lived (unstable to electric dipole radiation) or may be

metastable. Various electronic levels may tend to the same energy in the unbound

(R ! 1) limit.

R
R R

R

FIGURE 8.1. Potential energy curves for the electronic states of a diatomic molecule.
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For diatomic molecules, the electronic states are specified first by the component

(in units of h� ) L of the total orbital angular momentum along the internuclear axis,

with the symbols S, P, D, and F corresponding to L ¼ 0, +1, +2, and +3, in

analogy with atomic nomenclature. All but the S states are doubly degenerate in

L. For S states, þ and � superscripts are often used to denote whether the wave

function is symmetric or antisymmetric with respect to reflection at any plane

through the internuclear axis. The total electron spin angular momentum S

(in units of h� ) is also specified, with the multiplicity 2Sþ 1 written as a prefixed

superscript, as for atomic states. Finally, for homonuclear molecules (H2, N2, O2,

etc.) the subscripts g or u are written to denote whether the wave function is sym-

metric or antisymmetric with respect to interchange of the nuclei. In this notation,

the ground states of H2 and N2 are both singlets, 1S
þ
g , and that of O2 is a triplet,

3S
�
g . For polyatomic molecules, the electronic energy levels depend on more than

one nuclear coordinate, so Figure 8.1 must be generalized. Furthermore, since

there is generally no axis of symmetry, the states cannot be characterized by the

quantum number L, and other naming conventions are used. Such states are often

specified empirically through characterization of measured optical emission

spectra. Typical spacings of low-lying electronic energy levels range from a few

to tens of volts, as for atoms.

Vibrational and Rotational Motions

Unfreezing the nuclear vibrational and rotational motions leads to additional quan-

tized structure on smaller energy scales, as illustrated in Figure 8.2. The simplest

(harmonic oscillator) model for the vibration of diatomic molecules leads to

equally spaced quantized, nondegenerate energy levels

eEv ¼ h� vvib vþ 1

2

� �

(8:2:1)

where v ¼ 0, 1, 2, . . . is the vibrational quantum number and vvib is the linearized

vibration frequency. Fitting a quadratic function

eEv ¼ 1

2
kvib(R� �R)2 (8:2:2)

near the minimum of a stable energy level curve such as those shown in Figure 8.1,

we can estimate

vvib � kvib

mRmol

� �1=2

(8:2:3)

where kvib is the “spring constant” and mRmol is the reduced mass of the AB

molecule. The spacing h� vvib between vibrational energy levels for a low-lying
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stable electronic state is typically a few tenths of a volt. Hence for molecules in equi-

librium at room temperature (0.026 V), only the v ¼ 0 level is significantly popula-

ted. However, collisional processes can excite strongly nonequilibrium vibrational

energy levels.

We indicate by the short horizontal line segments in Figure 8.1 a few of the

vibrational energy levels for the stable electronic states. The length of each

segment gives the range of classically allowed vibrational motions. Note that

even the ground state (v ¼ 0) has a finite width DR1 as shown, because from

(8.2.1), the v ¼ 0 state has a nonzero vibrational energy 1
2
h� vvib. The actual separ-

ation DR about �R for the ground state has a Gaussian distribution, and tends

toward a distribution peaked at the classical turning points for the vibrational

motion as v ! 1. The vibrational motion becomes anharmonic and the level spa-

cings tend to zero as the unbound vibrational energy is approached (Ev ! DE1).

FIGURE 8.2. Vibrational and rotational levels of two electronic states A and B of amolecule;

the three double arrows indicate examples of transitions in the pure rotation spectrum, the

rotation–vibration spectrum, and the electronic spectrum (after Herzberg, 1971).
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For Ev . DE1, the vibrational states form a continuum, corresponding to unbound

classical motion of the nuclei (breakup of the molecule). For a polyatomic molecule

there are many degrees of freedom for vibrational motion, leading to a very compli-

cated structure for the vibrational levels.

The simplest (dumbbell) model for the rotation of diatomic molecules leads to the

nonuniform quantized energy levels

eEJ ¼ h� 2

2Imol

J(J þ 1) (8:2:4)

where Imol ¼ mRmol
�R
2
is the moment of inertia and J ¼ 0, 1, 2, . . . is the rotational

quantum number. The levels are degenerate, with 2J þ 1 states for the Jth level.

The spacing between rotational levels increases with J (see Figure 8.2). The

spacing between the lowest (J ¼ 0 to J ¼ 1) levels typically corresponds to an

energy of 0.001–0.01 V; hence, many low-lying levels are populated in thermal

equilibrium at room temperature.

Optical Emission

An excited molecular state can decay to a lower energy state by emission of a photon

or by breakup of the molecule. As shown in Figure 8.2, the radiation can be emitted

by a transition between electronic levels, between vibrational levels of the same

electronic state, or between rotational levels of the same electronic and vibrational

state; the radiation typically lies within the optical, infrared, or microwave

frequency range, respectively. Electric dipole radiation is the strongest mechanism

for photon emission, having typical transition times of trad � 10�9 s, as obtained in

(3.4.13). The selection rules for electric dipole radiation are

DL ¼ 0, +1 (8:2:5a)

DS ¼ 0 (8:2:5b)

In addition, for transitions between S states the only allowed transitions are

Sþ �! S
þ

and S
� �! S

�
(8:2:6)

and for homonuclear molecules, the only allowed transitions are

g �! u and u �! g (8:2:7)

Hence homonuclear diatomic molecules do not have a pure vibrational or rotational

spectrum. Radiative transitions between electronic levels having many different

vibrational and rotational initial and final states give rise to a structure of emission

and absorption bands within which a set of closely spaced frequencies appear. These

give rise to characteristic molecular emission and absorption bands when observed
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using low-resolution optical spectrometers. As for atoms, metastable molecular

states having no electric dipole transitions to lower levels also exist. These have life-

times much exceeding 10�6 s; they can give rise to weak optical band structures due

to magnetic dipole or electric quadrupole radiation.

Electric dipole radiation between vibrational levels of the same electronic state is

permitted for molecules having permanent dipole moments. In the harmonic

oscillator approximation, the selection rule is Dv ¼ +1; weaker transitions Dv ¼
+2,+3, . . . are permitted for anharmonic vibrational motion.

The preceding description of molecular structure applies to molecules having arbi-

trary electronic charge. This includes neutral molecules AB, positive molecular ions

ABþ, AB2þ, etc. and negative molecular ions AB�. The potential energy curves for

the various electronic states, regardless of molecular charge, are commonly plotted on

the same diagram. Figures 8.3 and 8.4 give these for some important electronic states

of H�
2 , H2, and H

þ
2 , and of O

�
2 , O2, and O

þ
2 , respectively. Examples of both attractive

(having a potential energy minimum) and repulsive (having no minimum) states can

be seen. The vibrational levels are labeled with the quantum number v for the attrac-

tive levels. The ground states of both Hþ
2 and Oþ

2 are attractive; hence these molecular

ions are stable against autodissociation (ABþ ! Aþ Bþ or Aþ þ B). Similarly, the

ground states of H2 and O2 are attractive and lie below those of Hþ
2 and Oþ

2 ; hence

they are stable against autodissociation and autoionization (AB ! ABþ þ e). For

some molecules, for example, diatomic argon, the ABþ ion is stable but the AB

neutral is not stable. For all molecules, the AB ground state lies below the ABþ

ground state and is stable against autoionization. Excited states can be attractive or

repulsive. A few of the attractive states may be metastable; some examples are the
3Pu state of H2 and the 1Dg,

1S
þ
g and 3Du states of O2.

Negative Ions

Recall from Section 7.2 that many neutral atoms have a positive electron affinity

Eaff ; that is, the reaction

Aþ e �! A�

is exothermic with energy Eaff (in volts). If Eaff is negative, then A� is unstable to

autodetachment, A� ! Aþ e. A similar phenomenon is found for negative

molecular ions. A stable AB� ion exists if its ground (lowest energy) state has a

potential minimum that lies below the ground state of AB. This is generally true

only for strongly electronegative gases having large electron affinities, such as O2

(Eaff � 1:463V for O atoms) and the halogens (Eaff . 3V for the atoms). For

example, Figure 8.4 shows that the 2Pg ground state of O�
2 is stable, with Eaff �

0:43V for O2. For weakly electronegative or for electropositive gases, the

minimum of the ground state of AB� generally lies above the ground state of

AB, and AB� is unstable to autodetachment. An example is hydrogen, which is

weakly electronegative (Eaff � 0:754V for H atoms). Figure 8.3 shows that the
2S

þ
u ground state of H�

2 is unstable, although the H� ion itself is stable. In an elec-

tropositive gas such as N2 (Eaff . 0), both N�
2 and N� are unstable.
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8.3 ELECTRON COLLISIONS WITH MOLECULES

The interaction time for the collision of a typical (1–10 V) electron with a molecule

is short, tc � 2a0=ve � 10�16–10�15 s, compared to the typical time for a molecule

to vibrate, tvib � 10�14–10�13 s. Hence for electron collisional excitation of a mole-

cule to an excited electronic state, the new vibrational (and rotational) state can be

FIGURE 8.3. Potential energy curves for H�
2 , H2, and Hþ

2 . (From Jeffery I. Steinfeld,

Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy, 2d ed. #
MIT Press, 1985.)
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FIGURE 8.4. Potential energy curves for O�
2 , O2, and Oþ

2 . (From Jeffery I. Steinfeld,

Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy, 2d ed.

# MIT Press, 1985.)
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determined by freezing the nuclear motions during the collision. This is known as

the Franck–Condon principle and is illustrated in Figure 8.1 by the vertical line

a, showing the collisional excitation at fixed R to a high quantum number bound

vibrational state and by the vertical line b, showing excitation at fixed R to a vibra-

tionally unbound state, in which breakup of the molecule is energetically permitted.

Since the typical transition time for electric dipole radiation (trad � 10�9–10�8 s) is

long compared to the dissociation (� vibrational) time tdiss, excitation to an excited

state will generally lead to dissociation when it is energetically permitted. Finally,

we note that the time between collisions tc � trad in typical low-pressure processing
discharges. Summarizing the ordering of timescales for electron–molecule

collisions, we have

tat � tc � tvib � tdiss � trad � tc

Dissociation

Electron impact dissociation,

eþ AB �! Aþ Bþ e

of feedstock gases plays a central role in the chemistry of low-pressure reactive

discharges. The variety of possible dissociation processes is illustrated in

Figure 8.5. In collisions a or a0, the v ¼ 0 ground state of AB is excited to a repulsive

state of AB. The required threshold energy Ethr is Ea for collision a and Ea0 for

FIGURE 8.5. Illustrating the variety of dissociation processes for electron collisions with

molecules.
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collision a0, and it leads to an energy after dissociation lying between Ea � Ediss and

Ea0 � Ediss that is shared among the dissociation products (here, A and B).

Typically, Ea � Ediss � few volts; consequently, hot neutral fragments are typically

generated by dissociation processes. If these hot fragments hit the substrate surface,

they can profoundly affect the process chemistry. In collision b, the ground state

AB is excited to an attractive state of AB at an energy Eb that exceeds the

binding energy Ediss of the AB molecule, resulting in dissociation of AB with frag-

ment energy Eb � Ediss. In collision b0, the excitation energy Eb0 ¼ Ediss, and the

fragments have low energies; hence this process creates fragments having energies

ranging from essentially thermal energies up to Eb � Ediss � few volts. In collision

c, the AB atom is excited to the bound excited state AB� (labeled 5), which sub-

sequently radiates to the unbound AB state (labeled 3), which then dissociates. The

threshold energy required is large, and the fragments are hot. Collision c can also

lead to dissociation of an excited state by a radiationless transfer from state 5 to

state 4 near the point where the two states cross:

AB�ðboundÞ �! AB�ðunboundÞ �! Aþ B�

The fragments can be both hot and in excited states. We discuss such radiationless

electronic transitions in the next section. This phenomenon is known as predisso-

ciation. Finally, a collision (not labeled in the figure) to state 4 can lead to dis-

sociation of AB�, again resulting in hot excited fragments.

The process of electron impact excitation of a molecule is similar to that of an

atom, and, consequently, the cross sections have a similar form. A simple classical

estimate of the dissociation cross section for a level having excitation energy U1 can

be found by requiring that an incident electron having energy W transfer an energy

WL lying betweenU1 and U2 to a valence electron. Here, U2 is the energy of the next

higher level. Then integrating the differential cross section ds [given in (3.4.20) and

repeated here],

ds ¼ p
e2

4pe0

� �2
1

W

dWL

W2
L

(3:4:20)

over WL, we obtain

sdiss ¼

0 W , U1

p
e2

4pe0

� �2
1

W

1

U1

� 1

W

� �

U1 , W , U2

p
e2

4pe0

� �2
1

W

1

U1

� 1

U2

� �

W . U2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(8:3:1)
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Letting U2 � U1 � U1 and introducing voltage units W ¼ eE, U1 ¼ eE1 and

U2 ¼ eE2, we have

sdiss ¼

0 E , E1

s0

E � E1

E1

E1 , E , E2

s0

E2 � E1

E E . E2

8

>

>

>

>

<

>

>

>

>

:

(8:3:2)

where

s0 ¼ p
e

4pe0E1

� �2

(8:3:3)

We see that the dissociation cross section rises linearly from the threshold energy

Ethr � E1 to a maximum value s0(E2 � E1)=Ethr at E2 and then falls off as 1=E.
Actually, E1 and E2 can depend on the nuclear separation R. In this case, (8.3.2)

should be averaged over the range of Rs corresponding to the ground-state

vibrational energy, leading to a broadened dependence of the average cross

section on energy E. The maximum cross section is typically of order 10�15 cm2.

Typical rate constants for a single dissociation process with Ethr & Te have an

Arrhenius form

Kdiss / Kdiss0 exp �Ethr

Te

� �

(8:3:4)

where Kdiss0 � 10�7 cm3=s. However, in some cases Ethr . Te. For excitation to an

attractive state, an appropriate average over the fraction of the ground-state vibration

that leads to dissociation must be taken.

Dissociative Ionization

In addition to normal ionization,

eþ AB �! ABþ þ 2e

electron–molecule collisions can lead to dissociative ionization

eþ AB �! Aþ Bþ þ 2e

These processes, common for polyatomic molecules, are illustrated in Figure 8.6. In

collision a having threshold energy Eiz, the molecular ion ABþ is formed. Collisions

b and c occur at higher threshold energies Ediz and result in dissociative ionization,
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leading to the formation of fast, positively charged ions and neutrals. These cross

sections have a similar form to the Thompson ionization cross section for atoms.

Dissociative Recombination

The electron collision,

eþ ABþ �! Aþ B�

illustrated as d and d0 in Figure 8.6, destroys an electron–ion pair and leads to the

production of fast excited neutral fragments. Since the electron is captured, it is

not available to carry away a part of the reaction energy. Consequently, the collision

cross section has a resonant character, falling to very low values for E , Ed and

E . Ed0 . However, a large number of excited states A� and B� having increasing

principal quantum numbers n and energies can be among the reaction products.

Consequently, the rate constants can be large, of order 10�7–10�6 cm3=s. Dissocia-
tive recombination to the ground states of A and B cannot occur because the

potential energy curve for ABþ is always greater than the potential energy curve

FIGURE 8.6. Illustration of dissociative ionization and dissociative recombination for

electron collisions with molecules.
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for the repulsive state of AB. Two-body recombination for atomic ions or for mol-

ecular ions that do not subsequently dissociate can only occur with emission of a

photon:

eþ Aþ �! Aþ hn:

As shown in Section 9.2, the rate constants are typically three to five orders of

magnitude lower than for dissociative recombination.

Example of Hydrogen

The example of H2 illustrates some of the inelastic electron collision phenomena we

have discussed. In order of increasing electron impact energy, at a threshold energy of

�8:8V, there is excitation to the repulsive 3S
þ
u state followed by dissociation into

two fast H fragments carrying �2:2V/atom. At 11.5 V, the 1S
þ
u bound state is

excited, with subsequent electric dipole radiation in the ultraviolet region to the
1S

þ
g ground state. At 11.8 V, there is excitation to the 3S

þ
g bound state, followed

by electric dipole radiation to the 3S
þ
u repulsive state, followed by dissociation

with �2:2V/atom. At 12.6 V, the 1Pu bound state is excited, with UV emission to

the ground state. At 15.4 V, the 2S
þ
g ground state of Hþ

2 is excited, leading to the pro-

duction of Hþ
2 ions. At 28 V, excitation of the repulsive 2S

þ
u state of Hþ

2 leads to the

dissociative ionization of H2, with �5V each for the H and Hþ fragments.

Dissociative Electron Attachment

The processes,

eþ AB �! Aþ B�

produce negative ion fragments as well as neutrals. They are important in discharges

containing atoms having positive electron affinities, not only because of the pro-

duction of negative ions, but because the threshold energy for production of negative

ion fragments is usually lower than for pure dissociation processes. A variety of pro-

cesses are possible, as shown in Figure 8.7. Since the impacting electron is captured

and is not available to carry excess collision energy away, dissociative attachment is

a resonant process that is important only within a narrow energy range. The

maximum cross sections are generally much smaller than the hard-sphere cross

section of the molecule. Attachment generally proceeds by collisional excitation

from the ground AB state to a repulsive AB� state, which subsequently either auto-

detaches or dissociates. The attachment cross section is determined by the balance

between these processes. For most molecules, the dissociation energy Ediss of AB is

greater than the electron affinity EaffB of B, leading to the potential energy curves

shown in Figure 8.7a. In this case, the cross section is large only for impact energies

lying between a minimum value Ethr, for collision a, and a maximum value E0
thr for
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FIGURE 8.7. Illustration of a variety of electron attachment processes for electron collisions

with molecules: (a) capture into a repulsive state; (b) capture into an attractive state;

(c) capture of slow electrons into a repulsive state; (d ) polar dissociation.
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collision a0. The fragments are hot, having energies lying between minimum and

maximum values Emin ¼ Ethr þ EaffB � Ediss and Emax ¼ E0
thr þ EaffB � Ediss. Since the

AB� state lies above the AB state for R , Rx, autodetachment can occur as the mol-

ecules begin to separate: AB� ! ABþ e. Hence the cross section for production of

negative ions can be much smaller than that for excitation of the AB� repulsive

state. As a crude estimate, for the same energy, the autodetachment rate is
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MR=m
p �

100 times the dissociation rate of the repulsiveAB� molecule, whereMR is the reduced

mass. Hence only one out of 100 excitations lead to dissociative attachment.

Excitation to the AB� bound state can also lead to dissociative attachment, as

shown in Figure 8.7b. Here the cross section is significant only for Ethr , E ,
E0
thr, but the fragments can have low energies, with a minimum energy of zero

and a maximum energy of E0
thr þ EaffB � Ediss. Collision b,

eþ AB �! AB��

does not lead to production of AB� ions because energy and momentum are not gen-

erally conserved when two bodies collide elastically to form one body (see Problem

3.12). Hence the excited AB�� ion separates,

AB�� �! eþ AB

unless vibrational radiation or collision with a third body carries off the excess

energy. These processes are both slow in low-pressure discharges (see Section 9.2).

At high pressures (say, atmospheric), three-body attachment to form AB� can be

very important.

For a few molecules, such as some halogens, the electron affinity of the atom

exceeds the dissociation energy of the neutral molecule, leading to the potential

energy curves shown in Figure 8.7c. In this case the range of electron impact ener-

gies E for excitation of the AB� repulsive state includes E ¼ 0. Consequently, there

is no threshold energy, and very slow electrons can produce dissociative attachment,

resulting in hot neutral and negative ion fragments. The range of Rs over which auto-

detachment can occur is small; hence the maximum cross sections for dissociative

attachment can be as high as 10�16 cm2.

A simple classical estimate of electron capture can be made using the differential

scattering cross section for energy loss (3.4.20), in a manner similar to that done for

dissociation. For electron capture to an energy level E1 that is unstable to autode-

tachment, and with the additional constraint for capture that the incident electron

energy lie within E1 and E2 ¼ E1 þ DE, where DE is a small energy difference

characteristic of the dissociative attachment timescale, we obtain, in place of (8.3.2),

satt ¼
0 E , E1

s0

E � E1

E1

E1 , E , E2

0 E . E2

8

>

>

<

>

>

:

(8:3:5)
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where

s0 � p
m

MR

� �1=2
e

4pe0E1

� �2

(8:3:6)

The factor of (m=MR)
1=2 roughly gives the fraction of excited states that do not auto-

detach. We see that the dissociative attachment cross section rises linearly at E1 to a

maximum value s0DE=E1 and then falls abruptly to zero.

As for dissociation, E1 can depend strongly on the nuclear separation R, and

(8.3.5) must be averaged over the range of E1s corresponding to the ground state

vibrational motion; e.g., from � Ethr to � E0
thr in Figure 8.7a. Because generally

DE � E0
thr � Ethr, we can write (8.3.5) in the form

satt � p
m

MR

� �1=2
e

4pe0

� �2
(DE)2
2E3

1

d(E � E1) (8:3:7)

where d is the Dirac delta function. Using (8.3.7), the average over the vibrational

motion can be performed, leading to a cross section that is strongly peaked lying

between Ethr and E0
thr. We leave the details of the calculation to a problem.

Polar Dissociation

The process,

eþ AB �! Aþ þ B� þ e

produces negative ions without electron capture. As shown in Figure 8.7d, the

process proceeds by excitation of a polar state Aþ and B� of AB� that has a separ-
ated atom limit of Aþ and B�. Hence at large R, this state lies above the Aþ B

ground state by the difference between the ionization potential of A and the electron

affinity of B. The polar state is weakly bound at large R by the Coulomb attraction

force, but is repulsive at small R. The maximum cross section and the dependence of

the cross section on electron impact energy are similar to that of pure dissociation.

The threshold energy Ethr for polar dissociation is generally large.

The measured cross section for negative ion production by electron impact in O2

is shown in Figure 8.8. The sharp peak at 6.5 V is due to dissociative attachment.

The variation of the cross section with energy is typical of a resonant capture

process. The maximum cross section of �10�18 cm2 is quite low because autode-

tachment from the repulsive O�
2 state is strong, inhibiting dissociative attachment.

The second gradual maximum near 35 V is due to polar dissociation; the variation

of the cross section with energy is typical of a nonresonant process.
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Metastable Negative Ions

In some complex molecules, a negative ion state lies at an energy very close to but

just above the ground state. In this case, pure attachment of electrons having nearly

zero energy can occur at low pressures. A good example is SF6 where the SF
�
6 state

lies about 0.1 V above the SF6 state, leading to the process

eþ SF6 �! SF�6

The negative ion is unstable to autodetachment and may also be unstable to autodis-

sociation, but in some complex molecules, such as SF6, these processes are weak,

leading to lifetimes for the SF�6 metastable ion in excess of 10�6 s. The cross

section is sharply resonant with a maximum value of order 10�15 cm2. For very low

electron energies, this process might be important in low-pressure SF6 discharges.

Electron Impact Detachment

The processes

eþ A� �! Aþ 2e

eþ AB� �! ABþ 2e

can be important in destroying atomic or molecular negative ions. The process is

similar to electron–neutral ionization, with the electron affinity Eaff of A or AB

a

FIGURE 8.8. Cross section for production of negative ions by electron impact in O2

(Rapp and Briglia, 1965).
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playing the role of the ionization potential. However, the peak in the cross section is

shifted to energies of order 10–20 Eaff due to the repulsive Coulomb force between

the incident electron and the negative ion. The maximum cross section per valence

electron is smaller than the Thomson result (3.4.21), with Eaff replacing Eiz, due to

the same effect.

Vibrational and Rotational Excitations

Vibrational and rotational energy levels are separated by energies of order Ev � 0:2V
and EJ � 0:01V, respectively. Classically, slow electrons are unlikely to excite ground

state molecules to higher vibrational or rotational levels because an electron having

energy E transfers an energy � (2m=M)E � Ev, EJ in an elastic collision with a

heavy particle. However, it is found experimentally that there can be significant exci-

tations when E � Ev or EJ , respectively. For vibrational excitations, the cross sections

are generally sharply peaked, indicating that a resonant (electron capture) process is

involved. A common mechanism is a two step process in which the electron is first

captured by the v ¼ 0 AB ground state to form an unstable negative molecular ion:

eþ AB(v ¼ 0) �! AB�

The AB� ion is unstable, but its lifetime for decay (typically 10�15–10�10 s) can be

comparable to or larger than its vibrational (or autodissociation) timescale (10�14 s).

Eventually, the unstable negative ion undergoes autodetachment to an excited

vibrational state of AB:

AB� �! AB(v . 0)þ e

For N2, the N
�
2 ground state is attractive (has a potential energy minimum), lies about

2.3 V above the ground state, and has a lifetime of about 10�14 s. Hence the cross

section for vibrational excitation of N2 is strongly peaked about 2.3 V. The

maximum cross section is large, about 5� 10�16 cm2. For O2, the v0 ¼ 0 to v0 ¼ 3

states of the 2Pg ground state of O�
2 lie below the v ¼ 0 ground state of O2 and do

not autodetach. The set of O�
2 states with v0 . 3 lie above the O2 ground state and

can autodetach. The lifetimes of these states are long; for example, 10�10 s for

v0 ¼ 4. Excitation of these states by electron impact leads to a series of 8–10 peaks

for the total vibrational cross section lying between 0.3 and 2.5 V, with the energy-

integrated cross section associated with each peak in the range 10�19–10�18 cm2.

Direct excitation of vibrational levels due to electron interaction with the dipole

moment of the vibrating molecule is also possible. The excitation cross section gen-

erally increases sharply for energies approaching the vibrational excitation

threshold. A notable example is vibrational excitation of the asymmetric stretch

mode of CF4 (Christophorou et al., 1996), which is the dominant electron energy

loss process for all energies below the threshold for electronic excitations.

Pure rotational excitation by electron impact can be a resonant process as for

vibrational excitation, or can be a nonresonant process in which the electron interacts
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with the permanent dipole moment of the molecule (or with the quadrupole moment

for a homonuclear diatomic molecule). Angular momentum is transferred to the

molecule; hence the angular momentum of the electron must change. The cross

sections for J ! J 0 are of order 10�18–10�16 cm2 at energies a few times the

rotational energy level difference.

Neither vibrational nor rotational cross sections have been especially well

measured or calculated for most molecules. This is unfortunate because electron

impact excitations to higher vibrational (and, to a lesser extent, rotational) levels

can be an important source of electron energy loss in low-pressure discharges,

particularly for the lower range of electron temperatures (.2V) in these discharges.

We consider these energy losses further in Section 8.5.

Elastic Scattering

Elastic scattering of electrons by atoms was described in Section 3.3. For slow elec-

trons, polarization scattering dominates, and the cross sections typically vary as 1/v,
with v the incident electron velocity, as described by the Langevin cross section

(3.3.13). In some cases, however, a relatively constant cross section is found at

low energies (see Fig. 3.9). For molecules having a permanent dipole moment, scat-

tering by the resulting 1/r3 potential can also be significant, and the Langevin cross

section is increased (Su and Bowers, 1973). We consider this process in Section 8.4.

8.4 HEAVY-PARTICLE COLLISIONS

Heavy particle energies in a discharge range from room temperature (�0:026V)
for most ions and neutrals in the bulk plasma, to a few volts for ion and neutral

x

x

FIGURE 8.9. Illustration of nonresonant charge transfer processes for heavyparticle collisions.

8.4 HEAVY-PARTICLE COLLISIONS 253



fragments newly created by dissociation processes, to hundreds of volts for ions in rf

discharge sheaths. In all cases, however, the heavy particle velocities are much

smaller than the characteristic velocities of orbital electron motion in an atom or

molecule. The time tc � 2a0=vi for a collision between two slowly moving heavy

particles is �10�13 s for room-temperature energies and is 10�15–10�14 s for fast

moving particles. These times are comparable to the molecular vibration timescale

and are much longer than the timescale tat � 10�16–10�15 s for electron motion in

the molecule. Hence we have the ordering for heavy-particle collisions,

tat � tc � tvib � trad � tc

where, as previously, trad is the timescale for electric dipole radiation and tc is the
mean free time between collisions. Because tat � tc, we expect that as two heavy

particles approach each other, the electronic states and their corresponding energy

levels will adiabatically vary, in a manner described by the variation of the potential

energy with nuclear separation R shown in Figure 8.1 and in succeeding figures.

During a collision, two heavy particles move toward smaller separations along the

potential energy curve, reflect at some minimum radius Rmin corresponding to

their center-of-mass energy, and retrace the incoming trajectory along the same

curve to larger separations. This corresponds to an elastic scattering between

heavy particles without a change of electronic state.

If two potential energy curves cross or nearly touch at some separation Rx, then a

change of electronic state can occur with a very small energy transfer as the collision

passes through Rx. A small energy transfer is required classically because the energy

transferred by a heavy particle of energy E to an orbital electron is �(2m=M)E,
which is much less than the typical energy (1–10 V) required for electronic exci-

tations of the molecule. The condition for a change of state between two electronic

energy levels separated by an energy DE during a heavy-particle collision can be

estimated by requiring that the collision time �Rx=vi be shorter than the character-

istic time �h� =eDE for the orbital electron to change its state:

Rx

vi
. h�

eDE (8:4:1)

which yields

DE . h� vi

eRx

(8:4:2)

This is known as the adiabatic Massey criterion. In practical units, we find

DE . 1

6R0
x

E
AR

� �1=2

(8:4:3)
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whereDE is in volts,E is the center-of-mass energy in volts,R0
x is the nuclear separation

in units of the Bohr radius, and AR is the reduced mass in atomic mass units (amu). For

example, letting E ¼ 1V,AR ¼ 8, and R0
x ¼ 2, we find that DE . 0:03V for a non-

adiabatic transition to occur. Hence the states must cross or nearly touch.

Resonant and Nonresonant Charge Transfer

For some processes, such as resonant charge transfer,

Aþ þ A �! Aþ Aþ

which was described in Section 3.4, the two states have exactly the same energy,

such that DE ; 0 for all separations. From the present point of view, the transition

is very likely even at large separations, leading to a large cross section of the high- or

low-energy form (3.4.33) or (3.4.37).

Nonresonant charge transfer between atoms,

Aþ þ B �! Aþ Bþ

is illustrated in Figure 8.9 for the reactions between Nþ and O and between Oþ and

N. Since the ionization potentials of N and O are 14.53 and 13.61 V, respectively,

the separated Nþ þ O level is 0.92 V higher than the Nþ Oþ level. At the crossing

separation Rx between the attractive Nþ þ O and the repulsive Oþ þ N level, a

change of state corresponding to a transfer of charge can occur. Collision a–x–b

in Figure 8.9 for the exothermic reaction

Nþ þ O �! Nþ Oþ

does not have a threshold energy, and the N and Oþ products share an increase in

kinetic energies of 0.92 V; hence for slow (thermal) collisions of Nþ and O, the

charge transfer products are fast. The cross section is of order the resonant cross

section (3.4.33) or (3.4.37). The inverse reaction,

Oþ þ N �! Oþ Nþ

is endothermic with a threshold energy of 0.92 V; hence the rate constant for charge

transfer collisions of Oþ and N at thermal energies is very small. However, if either

the Oþ ion or the N atom is in an excited atomic state, then the reaction a0–x0 –a, for
example,

Oþ þ N� �! Oþ Nþ

has no threshold, and the cross section can be large at thermal energies. Conse-

quently, excited atoms and molecules (particularly metastables) can be important

in charge transfer processes.
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Similar collisions can occur between atoms and molecules. The ionization poten-

tial of O2 is 12.2 V, so the cross section for the reaction

Oþ þ O2 �! Oþ Oþ
2

does not have a threshold and can be expected to be large, while the cross section for

the endothermic reverse reaction,

Oþ
2 þ O �! O2 þ Oþ

has a threshold energy of 1.4 V; hence it is very unlikely for collisions between

thermal particles. As for collisions between atoms, excited Oþ
2 and/or O atom

charge transfer collisions can have no threshold. In fact, a proper combination

of excited electronic and vibrational states can have DE � 0, leading to a large

(resonant) cross section.

The charge transfer cross section between O2 molecules,

Oþ
2 þ O2 �! O2 þ Oþ

2

is resonant if the molecules have the same vibrational and rotational states after the

collision, but this is not very likely. However, we may expect any energy change due

to the change in vibrational and rotational quantum numbers to be small, leading to a

near-resonant cross section.

Charge transfer processes between negative ions and neutrals can be important in

electronegative discharges. For example, in oxygen discharges, we have

O�
2 þ O �! O2 þ O�

O� þ O2 �! Oþ O�
2

O� þ O �! Oþ O�

O�
2 þ O2 �! O2 þ O�

2

Since the electron affinities of O2 and O are 0.43 and 1.463 V, respectively, the first

reaction has no threshold energy, while the second reaction has a threshold energy of

1.03 V. Hence we expect a large cross section for the first reaction, but the second

reaction is very unlikely for thermal particles. The last two processes are resonant or

near resonant and have large cross sections.

Positive–Negative Ion Recombination

This process,

A� þ Bþ �! Aþ B�
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is a type of charge transfer and can be the dominant mechanism for the loss of

negative ions in a low-pressure discharge. The potential energy diagram is shown

in Figure 8.10. The separated A� þ Bþ state lies below the separated Aþ Bþ

state by the electron affinity EaffA of A and lies above the separated Aþ B� state.

The A� þ Bþ potential energy falls as the nuclear separation decreases because

of the attractive Coulomb force between the A� and the Bþ ions. The energy

level difference between the separated A� þ Bþ and Aþ B� states is of order

DE � EizB

n2
� EaffA (8:4:4)

where EizB is the ionization potential of B and n is the principal quantum number of

the excited state B�. For EaffA � 1V and EizB � 14V, we find that DE is small for

n � 3–4. Since DE can be quite small, the separation Rx at the crossing can be

large, and positive–negative ion recombination can have a large near-resonant

cross section. A crude classical estimate of srec can be found by putting n � 3–4

in (3.4.28), to obtain

srec � 3000–10,000pa20 (8:4:5)

However, this does not expose the energy dependence. To estimate this for attractive

Coulomb collisions with E � EaffA, we write conservation of angular momentum

and energy during a collision as

vib ¼ vmaxb0 (8:4:6)

1

2
mRv

2
max �

e2

4pe0b0
(8:4:7)

FIGURE 8.10. Illustration of positive–negative ion recombination for heavy particle

collisions.
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where vi and b are the initial velocity and impact parameter in the center-of-mass

system, vmax is the velocity at the distance of closest approach b0, and mR is the

reduced mass. Solving (8.4.6) and (8.4.7) for b, we obtain an estimate for the

cross section

srec � pb2 ¼ p
e

4pe0E b0 (8:4:8)

where eE ¼ 1
2
mRv

2
i . We can crudely estimate the value of b0 for a significant prob-

ability of transition to be b0 � Rx, where for DE � EaffA,

b0 � Rx � e

4pe0EaffA

(8:4:9)

Substituting (8.4.9) in (8.4.8), we obtain

srec � p
e

4pe0

� �2
1

EEaffA

(8:4:10)

We see that srec / 1=E, where E is the collision energy in the center-of-mass system.

Hence for collisions between heavy particles at thermal energies, the cross sections

are very large. If we put E � 0:026V and EaffA � 1V, then (8.4.10) yields a value of

srec in the range given by (8.4.5).

Actually, b0 is more properly determined from a consideration of quantum mech-

anical electron tunneling. This was done in Section 3.4, to obtain the result (3.4.36)

for b0, which scales as b0 / E�1=2
affA ; hence srec / E�1=2

affA , not / E�1
affA, as in (8.4.10).

The reader should consult Smirnov (1982) for further details.

Associative Detachment

This process,

A� þ B �! ABþ e

proceeds by formation of an unstable AB� state that autodetaches. Figure 8.11a

gives a potential energy diagram illustrating this process. At low energies, the

collision partners move along path a–b–c of the attractive AB� state 2, which auto-

detaches at c to the AB ground state 1, often falling into a highly excited vibrational

state. If the collision partners follow path a–b0 –a along the repulsive AB� state 2,

then there is mainly elastic scattering with little detachment. If the two AB� states

have equal statistical weight, then roughly half the collisions will lead to associative

detachment. At higher energies, the path a–b0–c0 can result in autodetachment from

the repulsive state 3, instead of elastic scattering.

At thermal energies, the interaction between the negative ion and neutral is domi-

nated by the polarization force, and the cross section for associative detachment will
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tend toward half the Langevin value (for a statistical weight of 1
2
):

sadet � 1

2
sL (8:4:11)

where sL is given in (3.3.13). At higher energies, where the trajectories are practi-

cally straight lines, the cross section will be of order 1
2
pR2

x . Finally, at energies

higher than the electron affinity EaffA of A, the process

A� þ B �! Aþ Bþ e

x

x

+

+

FIGURE 8.11. Illustration of associative detachment processes for heavy particle collisions;

(a) the AB� ground state lies above the AB ground state; (b) the AB� ground state lies below

the AB ground state.
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can occur, as shown by the path a–b0 –x0 –d, leading to detachment of the electron

from A� by collision with B.

If the AB� attractive ground state lies below the AB ground state, as shown in

Figure 8.11b, then associative detachment from the ground state of AB� cannot

occur. However, at high energies, E . Ethr, associative detachment from the repul-

sive AB� state is possible, and at still higher energies, detachment from A� due to

collision with B can occur.

Associative detachment reactions in an oxygen discharge include

O� þ O �! O2 þ e

O� þ O2 �! O3 þ e

O�
2 þ O �! O3 þ e

O�
2 þ O2 �! O4 þ e ! 2O2 þ e

For oxygen, the O�
2 ground state lies below the O2 ground state and is stable against

autodetachment. However, there are a large number of shallow attractive O�
2

electronic states that lie above the O2 ground state, and hence are subject to

autodetachment. Consequently, there is a large rate constant for associative detach-

ment of O� on O (the first reaction listed above); at thermal energies, Kadet � 3�
10�10 cm3=s. The importance of the second and third reactions listed above can

be understood by noting that ozone (O3) has a dissociation energy of only 1.04 V.

Because the electron affinity of O is 1.463 V, the potential energy diagram for the

second reaction is similar to that shown in Figure 8.11b, and the reaction has a

very small rate constant at thermal energies, of order 5� 10�15 cm3=s. Since

Eaff � 0:43V for O2, the third reaction has a potential energy diagram similar to

that shown in Figure 8.11a, and the rate constant is large at thermal energies, of

order 1:5� 10�10 cm3=s. The fourth reaction requires a threshold energy equal

to the electron affinity of O2, Eaff � 0:43V, and is not very likely at thermal

energies.

Transfer of Excitation

Ionization or excitation by impact of ground state atoms or molecules,

Aþ B �! Aþ þ Bþ e

Aþ B �! A� þ B

is improbable because, as we have already seen, the potential energy curve for the

Aþ B state is widely separated from the potential energy curves of the Aþ þ B and

A� þ B states. Classically, as noted earlier, only a very small fraction, �2m=M, of

the initial kinetic energy can be transferred to an orbital electron. However, transfer

of energy from an excited electronic state to another excited (or ionized) state can be

accomplished if the potential energy curves cross or nearly touch at some nuclear
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separation Rx. Examples of processes of this type include

Aþ B� �! Aþ þ Bþ e

Aþ B� �! ABþ þ e

Aþ B� �! A� þ B

Some examples of potential energy curves for these processes are given in

Figure 8.12.

The first process is illustrated in Figure 8.12a. For the reaction to proceed at

thermal energies, the excitation energy of B should equal or exceed the ionization

potential of A, as shown for the path a–x–d in the figure. When the excited atom

is metastable, then this process is known as Penning ionization. This is the most

important case because the metastable atom density can be significant in many

discharges. The most effective metastable atom is helium with 19.82 V for the

23S state and 20.6 V for the 21S state. Because the valence electrons in excited

x

x

x

FIGURE 8.12. Illustration of transfer of excitation for heavy-particle collisions: (a) Penning

ionization; (b) associative ionization.
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(n . 1) states have large radii, a � a0n
2 from (3.4.3), the maximum cross sections

can be very large. For example, smax � 10�15 cm2 for He(23S) ionization of

Ar, and �1:4� 10�14 cm2 for Hg.

For the second process, called associative ionization, to proceed at thermal ener-

gies, the sum of the excitation energy of B and the dissociation energy of the ABþ

ion should exceed the ionization potential of A, as illustrated in Figure 8.12b. If the

bound ABþ ground state is lower than the AB� bound state, then the path a–x–b has
no threshold energy and leads to formation of an unstable AB� molecule that can

decay to the ground state at c by electron emission. This leads to associative ioniz-

ation, which can have a large maximum cross section �10�15 cm2. This path is also

possible for the potential energy diagram of Figure 8.12a. The path a–x0–b0 along
the repulsive AB� curve, with subsequent decay to the ABþ ground state, can also

lead to associative ionization above a fairly high threshold energy. If the bound mol-

ecular complex AB� has a very short lifetime, then the electron can be emitted near

the points x and x0 along the a–x–c and a–x0 –c paths, again resulting in associative
ionization. Finally, the path a–x0 –d leads to production of Aþ at a threshold energy

equal to the difference between the ionization potential of A and the excitation

energy of B.

The third process listed above, transfer of excitation, proceeds along the path

a–x–d shown in Figure 8.12a, with replacement of the ABþ ground state by an

AB� excited state and replacement of the separated Aþ þ B state by the separated

state A� þ B. Because there is no emitted electron to carry away the excess energy,

the process is highly resonant. The energy uncertainty of the A þ B� and A� þ B

levels is of order h� =trad, where trad is the lifetime of the excited states, and the exci-

tation energies of the A� and B� states must coincide to within this uncertainty. An

important example of transfer occurs in the He–Ne gas laser, where the transfers

He(1S)þ Ne �! Heþ Ne(5s)

He(3S)þ Ne �! Heþ Ne(4s)

are near resonant, resulting in a population inversion for the 4s and 5s levels of neon

and subsequent laser action.

Rearrangement of Chemical Bonds

Exothermic chemical reactions between ions and neutrals of the form

ABþ þ CD �! ACþ þ BD

�! ABCþ þ D

�! etc.

result in rearrangements of chemical bonds. For thermal collisions, the collision is

dominated by the polarization force, and the maximum rate constant for reactions
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of this type might be expected to be the Langevin value (3.3.17). However, the

thermal rate constants are often considerably smaller than this, indicating that the

collision complex does not live long enough to allow for efficient bond rearrange-

ment. An exception occurs for exothermic proton abstraction processes,

AHþ þ B �! BHþ þ A

which have rate constants close to the Langevin value for thermal collisions. An

example of bond rearrangement in oxygen discharges is the exothermic reaction

Oþ þ O3 �! Oþ
2 þ O2

which has a rate constant of � 10�10 cm3=s.
Exothermic neutral–neutral bond rearrangements,

ABþ CD �! ACþ BD

�! ABC þ D

�! etc.

generally have rate constants�10�11 cm3=s, one or two orders of magnitude smaller

than the Langevin value. The maximum cross sections are of order the gas kinetic

value p(a1 þ a2)
2, where a1 and a2 are the mean radii of the reactants. Generally,

even exothermic reactions are impeded by energy barriers, such that many such

reactions have an Arrhenius form

K(T) ¼ K0 exp �Ea

T

� �

(8:4:12)

with the preexponential factor K0 and the activation energy Ea roughly independent

of temperature T. An example in oxygen discharges is

Oþ O3 �! 2O2

with K � 2� 10�11 exp(�0:2=T) cm3=s.

Ion–Neutral Elastic Scattering

If the molecular ion has a permanent dipole moment pd, then the polarization scat-

tering and the Langevin capture cross section are increased due to the additional

interaction potential U / pd=r
2. The increase in the Langevin rate constant has

been calculated by Su and Bowers (1973) for thermal collisions of ions and neutrals,

with the result

K ¼ pq2

e0mR

� �1=2

a1=2
p þ Cpd

2

pkT

� �1=2
" #

(8:4:13)
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where the first term in square brackets gives the Langevin rate constant (3.3.15) and

the second term gives the increase due to the permanent dipole moment. The quan-

tity C is a parameter between 0 and 1 that describes the effectiveness of the charge

“locking’” in the dipole, and is a function of T and pd=a
1=2
p alone. At T ¼ 300K, C is

plotted against pd=a
1=2
d in Figure 8.13.

Three-Body Processes

We have said little in this and the previous section about three-body reactions such

as electron–ion recombination

eþ Aþ (þe) �! A (þe)

attachment

eþ A (þM) �! A� (þM)

association

Aþ þ B (þM) �! ABþ (þM)

and positive–negative ion recombination

A� þ Bþ (þM) �! AB (þM)

C

p

FIGURE 8.13. A plot of the dipole locking constant C; 1 debye� 3:34� 10�30 C m (Su and

Bowers, 1973).
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Here, A or B can be any atom or molecule, and M can be any atom or molecule

including A or B. In most cases, for the densities of interest in low pressure materials

processing discharges, these processes proceed by a series of two body reactions in

which the third body (shown in parentheses for the reactions listed above) absorbs

the excess reaction energy. For low densities of the third body, the equivalent two-

body rate constants (cm3/s) for three-body processes are proportional to the density

of the third body, and are generally smaller than the rate constants for two-body pro-

cesses. We will show this and consider other aspects of three-body processes in

Chapter 9.

8.5 REACTION RATES AND DETAILED BALANCING

As described in Section 3.5, the cross sections must be averaged over the energy dis-

tributions of the colliding particles in order to determine the reaction rates. For a

general reaction of A and B particles,

Aþ B �! products

the number of A and B particles reacting per unit volume per unit time is

dnA

dt
¼ dnB

dt
¼ �KABnAnB (8:5:1)

where the two-body rate constant KAB is a function of the particle energy distri-

butions but is independent of their densities.

We described the averaging required for electron collisions with heavy particles

in Section 3.5. Here we consider the case of heavy-particle collisions. If A and B are

unlike particles (of different species) that each have a Maxwellian distribution with a

common temperature T, then the averaging yields

KAB(T) ¼ ksABvRl ¼
ð1

0

fmvRsAB(vR) 4pv
2
R dvR (8:5:2)

where

fm ¼ mR

2pkT

� �3=2

exp �mRv
2
R

2kT

� �

(8:5:3)

and mR is the reduced mass. If A and B are like particles, for example, for the

collision of two ground-state oxygen atoms, then

KAA(T) ¼ 1

2
ksAAvRl ¼ 1

2

ð1

0

fmvRsAA(vR) 4pv
2
R dvR (8:5:4)
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The reason for the factor of 1
2
in (8.5.4) can be understood by numbering the A and B

particles within a unit volume. For unlike particles, the collisions of A1 with B2 and

A2 with B1 are different collisions, whereas for like particles, the collisions of A1

with A2 and A2 with A1 are the same collision and must not be counted twice.

Temperature Dependence

For thermal collisions (T � 300K) with a constant cross section s0 near zero

velocity, as for hard-sphere collisions, the averages in (8.5.2) and (8.5.4) are

easily done, yielding

KAB ¼ s0 �vR (8:5:5)

KAA ¼ 1

2
s0 �vR (8:5:6)

where vR ¼ (8kT=pmR)
1=2. Hence KAB and KAA vary weakly as

ffiffiffiffi

T
p

. For the

polarization interaction, with s/ 1=vR, we have already seen for the Langevin

rate constant (3.3.15) that K is independent of T.

Consider now a process that has a threshold energy Ethr. The variation of the cross

section with energy near the threshold can be estimated from conservation of

angular momentum and energy,

vRb ¼ vub0 (8:5:7)

eE ¼ 1

2
mRv

2
R � 1

2
mRv

2
u þ eEthr (8:5:8)

where b0 is the effective radius for the reaction and vu is the angular component of

the velocity. The influence of the interaction potential has been neglected in (8.5.8).

Solving (8.5.7) for vu, substituting this into (8.5.8), and solving for s � pb2, we
obtain

s ¼ 0 E , Ethr

s0 1� Ethr=Eð Þ E . Ethr

�

(8:5:9)

where s0 ¼ pb20. We see that the cross section rises linearly just above the threshold

energy and tends to a maximum value s0 for large E. The rise is linear rather than
abrupt because the centrifugal energy 1

2
mRv

2
u is not available to excite the reaction.

Many cross sections display this linear rise.

Inserting (8.5.9) into either (8.5.2) or (8.5.4) and integrating, we obtain

KAB ¼ s0 �vR e
�Ethr=T (8:5:10)

KAA ¼ 1

2
s0 �vR e

�Ethr=T (8:5:11)
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respectively, which have an Arrhenius form, with the preexponential factor varying

weakly as
ffiffiffiffi

T
p

.

The Principle of Detailed Balancing

The cross sections and rate constants for forward and reverse reactions are related by

the principle of detailed balancing, which expresses the time reversibility of the

equations of motion for a collision. Hence, knowledge of the cross section for a

two-body reaction allows one to determine the properties of the reverse reaction.

The cross section s(vR) for the inelastic reaction (endothermic with threshold

energy Ea),

Aþ B �! Cþ D

is related to the cross section s 0(v0R) for the reverse reaction,

Cþ D �! Aþ B

by (Smirnov, 1981, Appendix A2)

m2
RgAgBv

2
Rs (vR) ¼ m0

R
2
gCgDv

0
R
2
s0(v0R) (8:5:12)

where

1

2
mRv

2
R ¼ 1

2
m0

Rv
0
R
2 þ eEa (8:5:13)

mR and m0
R are the reduced masses for particles A and B, and C and D, respectively,

and the gs are the degeneracies of the energy levels of the particles; for example,

ge ¼ 2 for a free electron (the two spin states have the same energy), and gO ¼ 5

for the O(3P2) ground state (the five mJ values 2, 1, 0,�1, �2, have the same

energy). We can integrate (8.5.12) over a Maxwellian distribution of vR to obtain

(Problem 8.9)

K(T)

K 0(T)
¼ m0

R

mR

� �3=2
�gC �gD
�gA �gB

e�Ea=T (8:5:14)

which expresses the ratio of the rate constants for the forward and reverse reactions

in terms of a ratio of reduced masses and energy level degeneracies times a

Boltzmann factor. We have written �g rather than g in (8.5.14) because we are

generally more interested in the rate constants for a group of closely spaced energy

levels for each particle, rather than for a single level. For example, we specify the

ground state of an oxygen atom as O(3P), which comprises three closely spaced

levels: the 3P1 and
3P0 levels lie 0.020 and 0.028 V above the 3P2 level, respectively.
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We can apply (8.5.14) to this case if we interpret the gs as �gs, the statistical weights,
or mean number of occupied states, for the group of levels.

The ratio of statistical weights can be evaluated by assuming that the A, B, C, and

D particles are all in thermal equilibrium at temperature T. Generally, for an atom or

atomic ion somewhat above room temperature, the electronic states within the fine

structure of a group of energy levels are all occupied; consequently, �gat is equal to
the total degeneracy gat of the group of levels. For example, the O(3P) ground-state

triplet has five states for 3P2, three states for 3P1, and one state for 3P0, for a total

degeneracy �gO ¼ 9. At room temperature and below, �gO , gO because the upper

levels do not have a high probability of being occupied (Problem 8.11). Typically,

�gat � 1–10 for ground-state atoms or atomic ions.

Formolecules at thermal energies (0.026 V) and above, in addition to the electronic

degeneracy �gat of the molecular level, many rotational states and some vibrational

states can be occupied. The energy of a molecule in a vibrational–rotational state

(v, J) above the (0, 0) ground state is, summing the vibrational and rotational energies

in (8.2.1) and (8.2.4),

eE ¼ h� vvib vþ 1

2

� �

þ eBrotJ(J þ 1)

where vvib is the vibrational frequency and Brot ¼ h� 2=2eImol is the rotational energy

constant of the molecule. In thermal equilibrium, the mean number of levels occupied

for a heteronuclear diatomic molecule can be shown to be (Problem 8.12)

�grot �gvib ¼
T

Brot

1

1� e�h�vvib=eT
(8:5:15)

For a homonuclear diatomic molecule, �grot must be divided by two because the two

states with the molecule rotated by 1808 are identical. For polyatomic molecules,

�gvib consists of a product of factors, one for each vibrational degree of freedom.

The statistical weight of the molecule is then �gmol ¼ �gat �gvib �grot. For typical diatomic

molecules at room temperature, �gmol � 102–103.

Although the statistical weights in (8.5.14) are determined for thermal equili-

brium, the ratio of statistical weights is the same for a system that is not in thermal

equilibrium. The only assumption required is that the distribution of vR (and, conse-

quently, v0R) be Maxwellian. This is because each rate constant in (8.5.14) depends

only on the collision dynamics (the cross section) and the assumed velocity distri-

bution (a Maxwellian). Consequently, the ratio of rate constants must be the same

whether or not the particles are in thermal equilibrium.

As will be shown in Section 9.1, [see (9.1.13)], the RHS of (8.5.14) is the equili-

brium constant K(T), as given in (7.4.7), for the reaction of Aþ B to form Cþ D.

Writing the Gibbs free energy of reaction, G�
r , in terms of the enthalpy and entropy

of reaction using the definition of G (7.3.14) and substituting this into the expression
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for K (7.4.7), we obtain

K(T)

K(T)0
¼ K(T) ¼ e�G�

r =RT ¼ eS
�
r =R e�H�

r =RT (8:5:16)

The terms exponential in S�r andH
�
r on the RHS of (8.5.16) are equal, in (8.5.14), to the

product of mass and statistical weight factors, and to the exponential energy factor,

respectively. If G�
r is known, then K 0 can be determined if K is known, and vice

versa. This relationship will be elaborated in Chapter 9. Let us note some examples

where (8.5.14) can be applied. The rate constant for de-excitation of an excited state

Aþ B� �! Aþ B

can be determined from the rate constant for collisional excitation of that state:

Aþ B �! Aþ B�

Here A can be an electron, atom, or molecule, and B can be an atom or molecule.

The rate constant for associative ionization

Aþ B� �! AB� þ e

can be determined from the rate constant for dissociative recombination

eþ AB� �! Aþ B�

Relations similar to (8.5.14) can be found for reactions that change the number of

particles, such as

eþ A �! eþ eþ Aþ

ABþM �! Aþ BþM

These relations connect the two-body rate constants to the three-body rate constants

for the reverse reactions.

Finally, let us note that detailed balancing is not as useful to determine rate con-

stants as might first be imagined, because the “forward” and “reverse” reactions of

interest may not actually be inverses. For example, electron excitation to B�

eþ B �! B� þ e

often proceeds by a compound process of excitation to a higher level or set of levels,

followed by radiative decay:

eþ B �! B�2 þ e

B�2 �! B� þ h� v
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The reverse reaction of interest might be direct de-excitation of B� to the ground

state:

eþ B� �! Bþ e

These two processes are not inverses, and are not connected by detailed balancing.

Similarly, excitation of a molecule

eþ AB �! AB� þ e

may be to a high vibrational state v0 � 0, while de-excitation

eþ AB� �! ABþ e

is from the ground vibrational state v0 ¼ 0. The reader should consult other sources

(e.g., Smirnov, 1981) for further discussion of these methods for the determination

of rate constants.

A Data Set for Oxygen

To illustrate the complexity of molecular processes, we give some data for oxygen,

which is a simple diatomic gas that has been particularly well studied. This data set

will be used throughout this book to illustrate various features of chemically reactive

discharges. In an oxygen discharge, there can be significant ground-state concen-

trations of O, O2 , O3 , O
þ, Oþ

2 , O
þ
4 , O

�
3 , O

�
2 , O

�, and electrons, as well as metastable

states such as the 1D and 1S states of O and the 1Dg and
1S

þ
g states of O2. Some basic

constants for some of these species are given in Table 8.1. The cross sections for

binary processes among these species have mostly not been carefully measured or

calculated. To give an example of some of the best data, some cross sections for

electron impact excitation of O2, useful for determining the energy losses, are

TABLE 8.1. Basic Constants for Oxygen Discharges

State Ediss (V) Eiz (V) Lifetime (s) aP (a0
3)

O(3P) — 13.61 — 5.4

O2(2P) — 1.463 — —

O�(1D) — 11.64 147.1 —

O2(
3Sg

2) 5.12 12.14 — 10.6

O2
þ(2Pg) 6.59 — —

O2
2(2Pg) 4.06 0.44 — —

O2
*(1Dg) 4.14 11.16 4400a —

O3 1.05 12.67 —

O3
2 1.69 2.10 —

aNewman et al. (2000).
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given in Figure 8.14. These include momentum transfer, rotational and vibrational

excitation, two- and three-body attachment, 1Dg and 1S
þ
g metastable excitation,

excitations to states involving energy losses of approximately 4.5, 6.0, 8.4, 10.0,

and 14.7 V, and ionization with an energy loss of 12.06 V. The momentum transfer

cross section is also given. The identification of the energy losses with specific pro-

cesses such as dissociation, attachment, etc. is uncertain. Using these data, the

energy loss Ec per e–O
þ
2 pair created in oxygen has been determined and plotted

in Fig. 3.17. Similar cross-section sets have been compiled for electron collisions

in many reactive gases of interest for materials processing by Hayashi (1987).

FIGURE 8.14. Cross sections for electron excitation of O2 (Lawton and Phelps, 1978;

Phelps, 1985; compiled by Vahedi, 1993).
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Table 8.2 gives some rate constants for a restricted set of two-body reactions of

interest in modeling low-pressure oxygen discharges. These include reactions

among ground states O, O2 , O3 , O
þ, Oþ

2 , O
�, O�

2 , O
�
3 , and electrons, and metastable

states O�(1D) and O�
2(

1Dg). Electrons are assumed to have a Maxwellian distribution

in the range 1 , Te , 7V, and the heavy particles are assumed to be Maxwellian at

a common temperature T near room temperature 0.026 V. A first set of reactions is

given involving just the species O, O2, O
þ
2 , O

�, and electrons, because these often

suffice for the simplest discharge models. Additional sets of reactions give added

complexity as additional species are added to the model. A key task of the

modeler is to choose the set of reactions appropriate to the parameter range of

interest.

FIGURE 8.14. (Continued).
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TABLE 8.2. Selected Second-Order Reaction Rate Constants for Oxygen Discharges

Number Reaction Rate Constant (cm3/s) Source

Reactions among e, O2, O2
þ, O, and O2

1 eþO2 momentum transfer 4.7E–8Te
0.5 a

2 eþO2 ! O2þO 1.07E–9Te
21.391 exp(26.26/Te) j

3 eþO2 ! 2Oþ e 6.86E–9exp(26.29/Te) g2

4 eþO2 ! O2
þ þ 2e 2.34E–9Te

1.03exp(212.29/Te) kr

5 eþO2 ! Oþ 2e 5.47E–8Te
0.324exp(22.98/Te) vc

6 eþO2
þ ! 2O 2.2E–8/Te

1/2 g3

7 O2þO2
þ ! OþO2 2.6E–8(300/T)0.44 g3

8 O2þO ! O2þ e (1.9, 3, 5)E–10 h,m,k

9 O2þO2
þ ! 3O 2.6E–8(300/T)0.44 g3

Addition of Oþ

10 eþO2 ! O2þOþ þ e 7.1E–11Te
0.5exp(217/Te) r

11 eþO2 ! OþOþ þ 2e 1.88E–10Te
1.699exp(216.81/Te) kr

12 eþO ! Oþ þ 2e 9.0E–9Te
0.7exp(213.6/Te) d

13 O2þOþ ! 2O 4.0E–8(300/T)0.44 g3

14 Oþ þO2 ! OþO2
þ 2.0E–11(300/T)0.5 e

Addition of metastable O2
*(1Dg); see note f below

15 eþO2 ! O2
*þ e 1.37E–9 exp(22.14/Te) g2

16 eþO2
* ! eþO2 2.06E–9 exp(21.163/Te) b

17 eþO2
* ! OþO2 4.19E–9Te

21.376 exp(25.19/Te) j

18 O2
*þO2 ! 2O2 2.2E–18(T/300)0.8 e,k

19 O2
*þO ! O2þO (1.0, 7)E–16 e,k

20 O2þO2
* ! O3þ e 2.2E–11 g0

21 O2þO2
* ! O2

2þO 1.1E–11 g0

Addition of metastable O(1D)

22 eþO2 ! OþO� þ e 3.49E–8 exp(25.92/Te) g2

23 eþO ! O� þ e 4.54E–9 exp(22.36/Te) g2

24 eþO� ! eþO 8.17E–9 exp(20.4/Te) b

25 eþO� ! Oþ þ 2e 9.0E–9Te
0.7 exp(211.6/Te) d

26 O� þO ! 2O 8.0E–12 e

27 O� þO2 ! OþO2 (6.4, 7.0)E–12 exp(67/T) k,e

28 O� þO2 ! OþO2
* 1.0E–12 e

Addition of selected reactions for O2
2 and O3

29 O2þO2 ! O3þ e 5E–15 k

30 eþO3 ! O2
2þO 1E–9 k

31 eþO3 ! O2þO2 2.12E–9Te
21.058 exp(20.93/Te) s

32 O2
2þO2

þ ! 2O2 2E–7(300/T)0.5 k

33 O2
2þOþ ! O2þO (1, 2)E–7(300/T)0.5 e,k

34 O3þO2 ! O2þOþO2 7.3E–10exp(211400/T) e

35 O3þO ! 2O2 1.8E–11exp(22300/T) e

Note: Te in volts and T in kelvins. Two values from different sources are sometimes given in parentheses.

The notation E–8 means 1028.
aBased on Phelps (1985); bBased on detailed balance; cBased on Rangwala et al. (1999).
dBased on Lee et al. (1994); eEliasson and Kogelschatz (1986).
fReactions 1, 3, 4, 10, 11 for O2

* have activation energies reduced by �1 V.
g0Gudmundsson et al. (2000); g1Gudmundsson et al. (2001); g2Gudmundsson (2002).
g3Gudmundsson (2004); hFehsenfeld (1967).
jBased on Jaffke et al (1992); kKossyi et al. (1992); mSommerer and Kushner (1992).
krBased on Krishnakumar and Srivastava (1992); rBased on Rapp and Briglia (1965).
vcBased on Vejby-Christensen et al. (1996); sBased on Senn et al. (1999).
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Finally, Table 8.3 gives some rate constants for three-body reactions. These

processes are described in Section 9.2.

8.6 OPTICAL EMISSION AND ACTINOMETRY

Optical diagnostics are powerful tools for the noninvasive measurement of the

properties of chemically complex discharges. A wide variety of optical diagnostic

techniques are currently in use. A relatively simple technique is that in which the

wavelength-resolved optical emission is measured. More complex and expensive

TABLE 8.3. Selected Third-Order Reaction Rate Constants for Oxygen Discharges

Number Reaction Rate Constant (cm6/s) Source

Reactions among e, O2, O2
þ, and O2

1 eþ eþO2
þ ! eþ O2 1E–19(0.026/Te)

4.5 ke

2 eþO2
þ þO2 ! O2þO2 6E–27(0.026/Te)

1.5, 1E–26 k,e

3 eþOþO2 ! O2þO2 1E–31 ke

4 O2þO2
þ þO2 ! OþO2þO2 2E–25(300/T)2.5 k

5 OþOþO2 ! O2þO2 2.45E–31T20.63 k

1.3E–32(300/T)exp(2170/T) e

6 OþOþO ! O2þO 6.2E–32exp(2750/T) e

Addition of Oþ

7 eþ eþOþ ! eþ O 1E–19(0.026/Te)
4.5 ke

8 eþOþ þO2 ! OþO2 6E–27(0.026/Te)
1.5, 1E–26 k,e

9 O2þOþ þO2 ! O2þO2 2E–25(300/T)2.5, 2E–25 k,e

10 O2þOþ þM ! OþOþM 2E–25(300/T)2.5 k

11 Oþ þOþO2 ! O2
þ þO2 1E–29 ke

Addition of metastable O(1D)

12 OþO� þO2 ! O2þO2 9.9E–33 e

Addition of selected reactions for metastable O2
*(1Dg), O2

2, and O3

13 eþO2þO2 ! O2
2þO2 1.4E–29(0.026/Te)

� exp(100/T2 0.061/Te)

k

14 eþO2þO ! O2
2þO 1E–31 k

15 O2þO2
þ þO2 ! O3þO2 2E–25(300/T)2.5 k,e

16 OþO2þO2 ! O3þO2 6.9E–34(300/T)1.25,

6.4E–35 exp(663/T)

k,e

17 OþO2þO ! O3þO 2.15E–34 exp(345/T) e

18 eþO2
*þO2 ! O2

2þO2 1.9E–30 e

19 eþO2
*þO ! O2

2þO 1E–31 e

20 O2
2þOþ þM ! O3þM 2E–25(300/T)2.5 e

21 O2
2þO2

þ þO2 ! O22O2þO2 2E–25(300/T)2.5 e

Note: Te in volts and T in kelvins; M denotes either O2 or O. Two values from different sources are

sometimes given. The notation E–19 means 10–19.
eEliasson and Kogelschatz (1986).
kKossyi et al. (1992).

274 MOLECULAR COLLISIONS



schemes, such as laser-induced fluorescence (LIF) and optogalvanic techniques, in

which laser beam probes are used to excite specific optical transitions whose

subsequent emission or other response is measured, have also been widely used.

Infrared emission and absorption techniques are also receiving increasing attention.

We refer the reader to review articles by Donnelly (1989), Manos and Dylla (1989),

and Selwyn (1993), and research articles referenced therein, for a detailed exposition

of the subject.

In this section we discuss the simplest technique of optical emission and actino-

metry (defined below) to illustrate the usefulness of optical diagnostics. Small

variations in discharge operation due to contamination, aging, vacuum leaks, etc.,

can produce large changes in emission. Hence process reproducibility is often mon-

itored, and even actively controlled, by measurement of emission. Detection of the

endpoint for a materials process, particularly an etch, is also conveniently accom-

plished using optical emission. In this case, an emission line associated with an

etch product can be monitored; a sharp decrease in the emission intensity versus

time generally signals the completion of the etch process. Optical emission can be

spatially resolved perpendicular to the line of sight, but generally is a spatial

average along the line of sight. As will be shown below, the emission intensity is

a convolution of the species density for the optical wavelength being monitored,

the electron distribution function, and the cross section for electron impact exci-

tation of the optical level. For example, a qualitative measure of the importance

of F atoms can be obtained by monitoring the 7037-Å F-atom emission line as

the discharge power and pressure are varied. A quantitative measure of relative

F-atom density can be found by using a tracer gas, such as argon, and measuring

the intensity of both an F-atom and an Ar-atom emission line. This widely used com-

parison technique is called optical actinometry. More sophisticated measurements,

at finer wavelength resolution, can be used to determine ion and neutral energies.

Time-resolved emission measurements can be used to determine both volume and

surface rate constants.

Optical Emission

Figure 8.15 illustrates the electron impact excitation of the ground state of atom A to

an excited state A�, followed by subsequent emission at frequency v to some lower

h

FIGURE 8.15. Energy level diagram for emission of radiation from an excited state.
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energy state Af. The emission wavelength is

l ¼ 2pc

v
(8:6:1)

where h� v ¼ e(EA� � Ef ). The usual wavelengths are in the optical band,

l � 2000–8000 Å. The emission is sharply peaked about l, with a small intrinsic

linewidth due to the spontaneous emission rate from level A�,Dl� � 10�3 Å. The

Doppler-broadened linewidth due to a velocity distribution of ions or neutrals is

wider,

Dl

l
¼ vthi

c
(8:6:2)

For 1-V argon atoms, Dl � 0:025 Å.

Let nA be the concentration of the free radical A and let Il (in watts) be the optical

emission intensity, integrated over the linewidth. The emission due to excitation

from the ground state A can be written as

Il ¼ alAnA (8:6:3)

where

alA ¼ kD(l)

ð1

0

4pv2dvQA�(p, ne)slA(v)vfe(v) (8:6:4)

Here fe is the electron distribution function, slA is the cross section for emission of a

photon of wavelength l due to electron impact excitation of A, QA� is the quantum

yield for photon emission from the excited state (0 � QA� � 1), and kD is the

detector response constant. For low-pressure discharges and excited states having

short lifetimes, QA� � 1. QA� is generally less than unity for metastable states,

due to collisional or electric field de-excitation, ionization, or other processes that

depopulate the state without emission of a photon. We note that the cross section

slA differs from the cross section sA� for excitation of A to level A�, because
spontaneous emission to more than one lower lying level can occur. The two

cross sections are related by

slA ¼ blsA� (8:6:5)

where bl is the branching ratio for emission of a photon of wavelength l from the

excited state A�.
Typically slA is known but fe is not; that is, fe is not generally a single-

temperature Maxwellian. As discharge parameters (pressure, power, driving fre-

quency, length) are varied, fe changes shape as shown in Chapter 11, Figure 11.10.

In particular, the high-energy tail of the distribution, near the excitation energy
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EA� , can vary strongly as discharge parameters are changed. Consequently slA

changes and Il given by (8.6.3) is not proportional to nA. This limits the usefulness

of a measurement of Il, which provides only qualitative information on the radical

density nA.

Optical Actinometry

An inert tracer gas of known concentration nT can be added to the feedstock to

provide quantitative information on the radical density nA (Coburn and Chen,

1980). We choose an excited state T� of the tracer T that has nearly the same exci-

tation threshold energy, ET� � EA� � E�. The cross sections slA(v) and sl0 T(v) for

photon emission of l (from A) and l0 (from T) are sketched in Figure 8.16. A typical

form for the multiplicative factor v3fe(v) in the integrand of (8.6.4) is also shown,

with the overlap shown as the shaded area. For the tracer gas,

Il0 ¼ al0 TnT (8:6:6)

with

al0 T ¼ kD(l
0)
ð1

0

4pv2dvQT�(p, ne)sl0T(v)vfe(v) (8:6:7)

Since, from Figure 8.16 there is only a small range of overlap of fe with s, we can
replace the cross sections with values near the threshold: sl0T � Cl0 T(v� vthr) and

slA � ClA(v� vthr), where the Cs are proportionality constants. We then take the

ratio of (8.6.3) and (8.6.6) to obtain

nA ¼ CAT nT
Il

Il0
(8:6:8)

f

FIGURE 8.16. Overlap of excitation cross sections and electron velocity distribution.
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where

CAT ¼ kD(l
0)

kD(l)

QT�

QA�

Cl0 T

ClA
(8:6:9)

It is often possible to choose l0 � l such that kD(l) � kD(l
0), and also to choose

QA� � QT� . Hence the constant of proportionality CAT � ClA=Cl0 T is related to the

threshold behavior of the two cross sections. If nT is known and Il and Il0 are

measured, an absolute value of nA can be determined. Even if CAT is not known,

the relative variation of nA with variation of discharge parameters can be found.

For F-atom actinometry, a common choice for the tracer gas is argon with

l0 ¼ 7504 Å; the cross section has a threshold energy of 13.5 V. For F atoms,

l ¼ 7037 Å is commonly chosen, with a threshold energy of 14.5 V. Typically,

nT is chosen to be 1–5 percent of the feedstock gas density.

O Atom Actinometry

To illustrate both the utility and the pitfalls of optical actinometry, we consider

O atoms with argon as the tracer gas. Figure 8.17 shows data (Walkup et al.,

1986) for nO for an O2=CF4 feedstock mix with 2–3% argon added as a tracer

gas. The data were taken in a 13.56-MHz capacitive rf discharge. The oxygen

radical density nO was determined actinometrically using O atom emission at two

different wavelengths, l ¼ 7774 Å (3p5P ! 3s5S transition) and l ¼ 8446 Å

FIGURE 8.17. Comparison of actinometric measurements with a two-photon laser-induced

fluorescence (LIF) measurement of oxygen atom density in an O2=CF4 discharge (Walkup

et al., 1986).
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(3p3P ! 3s3S transition), each ratioed to the argon emission at wavelength

l0 ¼ 7504 Å. The actinometric measurements were compared with a more accurate

(and much more expensive) determination of nO using two-photon LIF (see Walkup

et al., 1986). It can be seen that the 8446/7504-Å actinometric measurement tracks

the two-photon LIF measurement fairly well as the percentage of CF4 is varied.

However, the 7774/7504-Å measurement yields a saturation of nO rather than a

decrease as the CF4 concentration is lowered below 20 percent, contrary to the

LIF measurement. Similar results have been obtained by Katsch et al. (2000).

To understand this behavior, we first note that emission of a photon of wave-

length l can occur due to processes other than excitation from the ground state

A. For example, the dissociative excitation process

eþ O2 �! Oþ O� þ e �! 2Oþ eþ h�v (8:6:10)

can compete with the direct excitation process

eþ O �! O� þ e �! Oþ eþ h�v (8:6:11)

such that the measured emission intensity

Il ¼ alOnO þ alO2
nO2

(8:6:12)

has a component proportional to the feedstock density nO2
as well as the radical

density nO. The actinometric measurement of nO will fail if alOnO . alO2
nO2

,

which is the case for the 7774 Å measurement.

Using a high-resolution monochromator or spectrometer, the radiation due to

direct and dissociative excitation can be distinguished. Because dissociative exci-

tation generally results in excited neutral fragments having many volts of energy,

the radiation is Doppler broadened according to (8.6.2) and can therefore be distin-

guished from the much sharper linewidth for radiation produced by direct excitation

of a room temperature atom. Subtracting the emission intensity in the broadened tail

from the total intensity allows the intensity due to direct excitation alone to be deter-

mined. However, other processes can also increase or decrease Il. These include

radiative transitions from higher-energy excited states to A�, electron impact exci-

tation of metastable states to A�, and collisional and electric field quenching of A�.
These can invalidate an actinometric measurement unless the optical transition and

discharge operating regime have been selected to minimize their effects.

PROBLEMS

8.1. Vibration and Dissociation of H2

(a) By fitting Ee for the H2(
1S

þ
g ) ground state in Figure 8.3 to a parabolic

function of R� �R and using (8.2.2) and (8.2.3), estimate the spring

constant kvib and the vibration period tvib ¼ 2p=vvib.
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(b) From the potential energy curve for the H2(
3S

þ
u ) repulsive state in

Figure 8.3, estimate the timescale tdiss for dissociation of the molecule

after electron impact excitation to this excited state.

(c) For excitation of H2(
3S

þ
u ) from the ground vibrational state of H2(

1S
þ
g ),

estimate the threshold energy for dissociation and the minimum and

maximum energies of the dissociated H atoms.

8.2. Metastable Molecular States In order of increasing energy, the five lowest

attractive states of O2 are
3S

�
g ,

1Dg,
1S

þ
g ,

3Du, and
3S

þ
u (see Fig. 8.4). Which of

these states are metastable? (give the reasons). Give the total (orbitalþ spin)

electronic degeneracy of these states.

8.3. Dissociation Cross Section for O2

(a) Using (8.3.2) and the potential energy curves in Figure 8.4, estimate the

cross section sdiss(E) for electron impact dissociation of O2 at the equili-

brium nuclear separation �R to form ground state O atoms. Assume that the

dissociation results from direct excitation of the repulsive 1P and 3P
energy level curves, and do not average over the vibrational motion.

Plot sdiss(E) versus E using linear scales.

(b) Approximating sdiss(E) by

sdiss ¼ 0 E , Ethr

smaxEthr=E E > Ethr

�

then integrate sdiss(E) over a Maxwellian electron distribution (Te in the

range 2–7 V) to determine the rate constant Kdiss(Te). Compare your

result to that given in Table 8.2.

8.4. Dissociative Attachment of O2

(a) For dissociative attachment to a single molecular level having Eatt � 4V,

estimate the rate constant Katt(Te) for Tes in the range of 2–7 V by

integrating (8.3.7) over a Maxwellian electron distribution.

(b) Suppose Eatt varies linearly with nuclear separation R over the range of

ground-state vibrational motions

Eatt(R) ¼ �Eatt þ DEthrx

where x ¼ (R� �R)=DR has a Gaussian distribution

f (x) ¼ e�x2

ffiffiffiffi

p
p

Average (8.3.7) over the vibrational motion and plot your result for �satt

versus E for �Eatt ¼ 4V,DEthr ¼ 1V, and DEatt ¼ 0:2V. On the same

graph, plot satt from (8.3.5) with Eatt ¼ 4V.
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(c) Using detailed balancing (8.5.14), estimate the rate constant for

associative detachment

O� þ O �! O2 þ e

using your result in (a). You will need to use (8.5.15) to estimate the

statistical weight of O2; h
� vvib=e � 0:192V and Brot � 1:79� 10�4 V

for O2.

8.5. Polar Ionization of O2 Interpreting the second (higher energy) peak in

Figure 8.8 as the cross section for polar ionization of O2, estimate the rate con-

stant for this process for Tes in the range 2–7 V by fitting the cross section in

the energy region above threshold to the form (8.5.9) and then using (8.5.10).

Compare your result to that given in Table 8.2.

8.6. Positive Charge Transfer in O2 Discharges For thermal (T � room

temperature) ground-state particles:

(a) Estimate the reaction rate constant for the resonant reaction

Oþ þ O �! Oþ Oþ

using (3.4.37) and the data in Table 3.2.

(b) Estimate the reaction rate constant for the near-resonant reaction

Oþ
2 þ O2 �! O2 þ Oþ

2

using (3.4.37) and the data in Table 3.2.

(c) Estimate the reaction rate constant for the exothermic (1.4 V) reaction

Oþ þ O2 �! Oþ Oþ
2

using (3.4.37) and the data in Table 3.2.

(d) The reaction

Oþ
2 þ O �! O2 þ Oþ

has a threshold energy of 1.4 V. Estimate the reaction rate constant using

detailed balancing (8.5.14) and your result in (c). To simplify the calcu-

lations, you may assume that vvib and Brot are the same for both molecules

and that the fine structure of the atoms is equally occupied. Note that the

ground state of Oþ is 4S.

8.7. Negative Charge Transfer in O2 Discharges For thermal (T � room

temperature) ground-state particles:

(a) Estimate the reaction rate constant for the resonant reaction

O� þ O �! Oþ O�

using (3.4.37) and the data in Table 3.2.
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(b) Estimate the reaction rate constant for the near-resonant reaction

O�
2 þ O2 �! O2 þ O�

2

using (3.4.37) and the data in Table 3.2.

(c) Estimate the reaction rate constant for the exothermic (1.0 V) reaction

O�
2 þ O �! O2 þ O�

using (3.4.37) and the data in Table 3.2.

(d) The reaction

O� þ O2 �! Oþ O�
2

has a threshold energy of 1.0 V. Estimate the reaction rate constant using

detailed balancing (8.5.14) and your result in (c). To simplify the calcu-

lations, you may assume that vvib and Brot are the same for both molecules

and that the fine structure of the atoms is equally occupied.

8.8. Positive–Negative Ion Recombination For thermal particles at tempera-

ture T (near room temperature), estimate the rate constant for the reaction

Oþ
2 þ O� �! O�

2 þ O

by integrating the classical cross section (8.4.10) over a Maxwellian distri-

bution of relative velocities. Compare your answer (both magnitude and

scaling with T) with that given in Table 8.2.

8.9. Detailed Balancing For a Maxwellian distribution of relative velocities vR,

integrate the relation (8.5.12) for detailed balancing of the cross sections for

forward and reverse reactions using the energy conservation relation (8.5.13),

to obtain the relation (8.5.14) for detailed balancing between the rate

constants.

8.10. Application of Detailed Balancing

(a) For a Maxwellian electron distribution at temperature Te, the direct elec-

tron collisional excitation of an atom B having statistical weight �gB to an

excited state having energy E and statistical weight �g� is measured to have

an Arrhenius form Kex ¼ K0 exp (� Ea=Te), where Ea = E is the acti-

vation energy. Using detailed balancing, find the rate constant Kq for

quenching (electron collisional de-excitation) of B� to the ground state B.
(b) Apply your formula to determine the rate constant for

eþ O(1D) �! O(3P)þ e

using the data in Tables 8.1 and 8.2. Compare your result to that given in

Table 8.2.
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(c) If Ea is markedly different from E, then is your result in (a) correct?

Explain your answer.

8.11. Statistical Weights

(a) The 3P1 and
3P0 levels of an oxygen atom lie at energies 0.020 and 0.028 V

above the 3P2 ground-state level. Assuming that the probability that a level

is occupied is given by a Boltzmann factor e�E=Te , find the statistical weight

of O(3P) at room temperature (0.026 V) and at twice room temperature.

(b) The ground-state of N and Oþ is 4S. Find the statistical weight if all levels

in the fine structure are equally occupied.

(c) The ground-state level of fluorine and chlorine atoms is 2P3=2; the
2P1=2

levels lie 0.050 and 0.109 V above the ground state, respectively. Find

the statistical weights of F(2P) and Cl(2P) at room temperature.

(d) The ground-state level of an argon atom is 1S0. Find its statistical weight.

(e) The vibrational and rotational energy constants for O2(
3S

�
g ), O

þ
2 (

2Pg), and

O�
2 (

2Pg) are h
� vvib=e ¼ 0:196, 0.236, and 0.136 V andBrot ¼ 1:79� 10�4,

2:09� 10�4, and 1:45� 10�4 V, respectively. Find the statistical weights

of these molecules at room temperature (0.026 V).

8.12. Statistical Weight for Molecules

(a) Show that

�gvib ¼
1

1� exp (�h� vvib=eT)

by summing the probability exp (�h� vvibv=eT) over the v ¼ 0 to v ¼ 1
vibrational levels.

(b) Show that at temperatures T � Brot, the mean number of rotational states

occupied is �grot ¼ T=Brot by summing the probability exp½�BrotJ

(J þ 1)=T	 over the J ¼ 0 to J ¼ 1 levels. Hint: Convert the sum over

J to an integral over dJ, and recall that the degeneracy of level J is 2J þ 1.

8.13. Negative Ions in an O2 Discharge Negative ions in a discharge are gener-

ally created and lost only through processes in the plasma volume because the

plasma potential is positive with respect to all wall surfaces; hence, the nega-

tive ions are electrostatically trapped. Use the rate constants given in Table 8.2

to perform the following:

(a) For an oxygen discharge containing room temperature O2, O
þ
2 and O� and

electrons at temperature Te, obtain the condition on Te for dissociative

attachment (reaction 2) to dominate over polar ionization (reaction 10)

for production of O� by electron impact on O2.

(b) Obtain a condition on Te such that O
þ
2 � O� recombination (sum of reac-

tions 7 and 9) dominates over electron detachment (reaction 5) for

destruction of O�.
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CHAPTER 9

CHEMICAL KINETICS AND
SURFACE PROCESSES

9.1 ELEMENTARY REACTIONS

In this chapter, we describe aspects of gas-phase and surface chemical kinetics that

are important to materials processing. We first introduce the concept of elementary

reactions, give the definition of the appropriate rate constants, and show their

connection to the equilibrium constants for the reactions. Section 9.2 deals with

gas-phase kinetics. We introduce first-, second-, and third-order kinetics, and the

concept of a rate-limiting step. Although some examples of time-varying kinetics

are given, the main applications are to the steady state. Third-order kinetics are

described with emphasis on three-body recombination and three-body chemical

reactions which, at the low pressures of interest, can often be considered to be a

series of two or more one- or two-body reactions. In Sections 9.3 and 9.4 we turn

to surface processes and reaction kinetics. The various physical and chemical pro-

cesses of interest for processing are described in Section 9.3. Section 9.4 deals

with heterogeneous reactions on the surface and between the surface and the gas

phase. The surface reaction mechanisms for most plasma processes are not well

understood or characterized experimentally. Some simple models of surface reac-

tions are introduced, but these, for the most part, should not be regarded as correctly

representing the actual plasma induced reactions at substrate surfaces. Rather, they

are intended to provide some insight into the more complicated processes that go on

in actual surface processing.
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Consider stoichiometric reactions such as

3Aþ 2B �! Cþ 2D (9:1:1)

Aþ B �! Cþ D (9:1:2)

A �! Bþ C (9:1:3)

etc., where A, B, C, and D are molecules. A reaction is called elementary if it pro-

ceeds in one step directly as written, that is, in a simultaneous “collision” of all the

reactant molecules for (9.1.1) and (9.1.2), or by a single “decomposition” for (9.1.3).

The first reaction is not elementary because it is very unlikely for five particles to

simultaneously collide. The second and third reactions might or might not be

elementary. If two reactant molecules A and B collide to immediately (Dt � tc)

form two product molecules C and D, then the reaction is elementary. An

example from Chapter 8 is

Oþ þ O2 �! Oþ Oþ2

Similarly, if an A molecule suddenly decomposes, then the reaction is elementary.

An example is

A� �! Aþ h�v

On the other hand, the reaction

Cl2 þ H2 �! 2HCl

having the form (9.1.2), is known not to be elementary. There is no way of knowing

from the stoichiometric equations (9.1.2) or (9.1.3) whether a reaction is elementary;

additional information is needed. A significant effort in chemical kinetics has been

to determine the set of elementary reactions into which a given stoichiometric

reaction can be decomposed.

The most important elementary reactions are unimolecular

A �! products

and bimolecular

Aþ B �! products

At high pressures, some termolecular gas-phase reactions

Aþ Bþ C �! products
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are elementary; however, in low-pressure discharges, almost all gas-phase termole-

cular reactions with significant reaction rates are complex.

The reaction rate R for a gas-phase reaction is defined in terms of the stoichio-

metric coefficients aj for the reaction introduced in Section 7.4. Recall that these

are negative for reactants and positive for products. We define R as

R ¼ 1

aj

dnj

dt
; for all j (9:1:4)

where nj is the volume density (m�3) of molecules of the jth substance. For (9.1.1),

for example, this yields

R ¼ � 1

3

dnA

dt
¼ � 1

2

dnB

dt
¼ dnC

dt
¼ 1

2

dnD

dt

For surface reactions, nj is replaced by the area density n0j (m
�2) on the surface.

In general, R is a complicated function of the njs of the reactants. However, for

elementary reactions, R has the following simple forms:

A �! products

R ¼ � dnA

dt
¼ K1nA (9:1:5)

Aþ A �! products

R ¼ � 1

2

dnA

dt
¼ K2n

2
A (9:1:6)

Aþ B �! products

R ¼ � dnA

dt
¼ � dnB

dt
¼ K2nAnB (9:1:7)

Aþ Aþ A �! products

R ¼ � 1

3

dnA

dt
¼ K3n

3
A (9:1:8)

Aþ Aþ B �! products

R ¼ � 1

2

dnA

dt
¼ � dnB

dt
¼ K3n

2
AnB (9:1:9)

Aþ Bþ C �! products

R ¼ � dnA

dt
¼ � dnB

dt
¼ � dnC

dt

¼ K3nAnBnC (9:1:10)
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The quantities K1 (s
�1), K2 (m

3/s), and K3 (m
6/s) are the first-, second-, and third-

order rate constants. They are functions of temperature but are independent of the

densities.

Relation to Equilibrium Constant

Let us consider the two opposing elementary reactions

Aþ B ��! ��
K2

K�2
Cþ D

The rate at which C is created by the forward reaction is K2nAnB, and the rate at

which C is destroyed by the reverse reaction is K�2nCnD . In thermal equilibrium

(reactants and products at temperature T ), the rates must balance:

K2 �nA �nB ¼ K�2 �nC �nD

or

K2(T)

K�2(T)
¼ �nC �nD

�nA �nB
(9:1:11)

But from the condition for thermal equilibrium (7.4.6), we find

�nC �nD

�nA �nB
¼ K(T) (9:1:12)

Substituting this into (9.1.11), we obtain

K2(T)

K�2(T)
¼ K(T) (9:1:13)

Although (9.1.13) was derived for thermal equilibrium between A, B, C, and D, it is

also true for a system that is not in thermal equilibrium. The only requirement is that

the distribution of relative velocities of the colliding particles be Maxwellian at

temperature T. As was noted in Section 8.5, this is because the rate constants K2

and K�2 depend only on the reactant particle collision dynamics and the relative vel-

ocity distribution. Therefore, (9.1.13) gives an important relation between the rate

constants for the forward and reverse reactions. If the equilibrium constant is

known, then K�2 can be determined if K2 is known, and vice versa.

The relation (9.1.13) is just another form of detailed balancing (8.5.14), which

was described in Section 8.5 from the point of view of microscopic two-body col-

lision dynamics. However, detailed balancing holds for all opposing pairs of

elementary reactions, as is obvious from the derivation presented here. Thus, for
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the opposing reactions

A ��! ��
K1

K�2
Bþ C

we find

K1(T)

K�2(T)
¼ �nB �nC

�nA
¼ K(T) (9:1:14)

and for

Aþ B ��! ��
K2

K�3
Cþ Dþ E

we find

K2(T)

K�3(T)
¼ �nC �nD �nE

�nA �nB
¼ K(T) (9:1:15)

and so on.

9.2 GAS-PHASE KINETICS

Materials processing reactions in the gas phase are almost never elementary, but

consist of a complex set of opposing, consecutive, and parallel reactions. For

example, for F-atom etching of silicon in a CF4 discharge, F atoms are created

and destroyed by consecutive opposing reactions of the form

eþ CFx ��! �� CFx�1 þ Fþ e; x ¼ 1; 2; 3; 4

Most processing is done in steady state; that is, the processing time is long com-

pared to the reaction or transport times for the gas-phase species of interest. In steady

state, there is a constant flow of feedstock gas and a constant discharge power, and

the gas-phase species are continuously pumped away or deposited on surfaces. In

steady state, all gas-phase densities are constant, independent of time. However,

these densities cannot be determined from equilibrium thermodynamics because

the system is not in thermal equilibrium. If the reaction rate constants (Ks) are

known, then the densities can be found by solving the rate equations for particle

conservation for each species. Since the reaction set is often very complex, the

set of rate equations must generally be solved numerically. However, insight can

be developed by considering simplified reaction sets under both time-varying and

steady-state conditions, which we do here.
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A complete self-consistent discharge model cannot be developed without

considering the full set of particle and energy conservation equations. As will be

shown inChapter 10, the full set of equations determines not only the particle densities,

but also the electron temperature, and hence the self-consistent rate constants for the

discharge equilibrium, which are, inmany cases, functions of the electron temperature.

First-Order Consecutive Reactions

Consider the consecutive time-varying first-order reactions

A �!KA
B �!KB

C (9:2:1)

with no sources or sinks. The rate equations are

dnA

dt
¼ �KAnA (9:2:2)

dnB

dt
¼ KAnA � KBnB (9:2:3)

dnC

dt
¼ KBnB (9:2:4)

We let nA ¼ nA0 and nB ¼ nC ¼ 0 at t ¼ 0. Then (9.2.2) can be integrated to obtain

nA ¼ nA0 e
�KAt (9:2:5)

Substituting this into (9.2.3) and integrating, we obtain

nB ¼ nA0
KA

KB � KA

(e�KAt � e�KBt) (9:2:6)

This procedure can be repeated to find nC(t) by substituting (9.2.6) into (9.2.4) and

integrating. However, summing (9.2.2)–(9.2.4) yields

nA(t)þ nB(t)þ nC(t) ¼ const ¼ nA0: (9:2:7)

Substituting (9.2.5) and (9.2.6) into (9.2.7), we obtain

nC ¼ nA0 1þ 1

KA � KB

(KB e
�KAt � KA e�KBt)

� �

(9:2:8)

The time variation of the densities is sketched in Figure 9.1 for the two cases of (a)

KA � KB and (b) KB � KA. For (a), we obtain the approximate variation

nC ¼ nA0(1� e�KAt) (9:2:9)
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For case (b), after a short initial transient time t � K�1A , we obtain the approximate

variation

nC ¼ nA0(1� e�KBt) (9:2:10)

In both cases, the rate of formation of the product species C is governed by the smal-

lest rate constant. In general, for a series of many consecutive elementary reactions,

the reaction with the smallest rate constant limits the overall rate of product

formation. The consecutive reaction with the smallest rate constant is called the

rate-limiting step.

In case (a) (KB � KA), species B is created from A at a slow rate KA and is

immediately converted into C. Hence we should expect that after a short transient

time nB decays with t at a rate KA, such that nB � nA and that dnB=dt � KAnB �
KAnA at all times. Therefore, dnB=dt can be set to zero in (9.2.3) to obtain the

approximate solution

nA ¼ nA0 e
�KAt

nB � KA

KB

nA0 e
�KAt (9:2:11)

nC � nA0(1� e�KAt)

Species B is known as a reactive intermediate, and setting dnB=dt � 0 is known as

the steady-state approximation for reactive intermediates.

FIGURE 9.1. Transient kinetics for gas phase reaction A! B! C; (a) KA ¼ 1, KB ¼ 5;

(b) KA ¼ 5, KB ¼ 1.
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In case (b) (KA � KB), A creates B before B creates C. Hence there are, approxi-

mately, two uncoupled first-order reactions having solutions

nA ¼ nA0 e
�KAt

nB � nA0 1� e�KAt
� �

(9:2:12)

nC � 0

for 0 , t , �t, and

nA � 0

nB � nA0 e
�KBt (9:2:13)

nC � nA0 1� e�KBt
� �

for t . �t, where �t ¼ (KAKB)
�1=2 is the characteristic time that divides the fast and

slow timescales. The fast reaction in which A is first converted to B is known as

a preequilibrium reaction for the formation of the product C.

For reaction (9.2.1) in the steady state with a source G (m�3 s�1) for A, and
adding a loss term �KCnC for C, the rate equations become

dnA

dt
¼ G� KAnA ¼ 0

dnB

dt
¼ KAnA � KBnB ¼ 0 (9:2:14)

dnC

dt
¼ KBnB � KCnC ¼ 0

Here, KC could represent a first order rate constant for loss of C to the surfaces or to

the vacuum pump. Solving these equations yields nA ¼ G=KA, nB ¼ G=KB, and

nC ¼ G=KC.

Opposing Reactions

Consider the two opposing steady-state reactions

A ��! ��
KA

K�A
B ��! ��

KB

K�B
C (9:2:15)
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with nA ¼ nA0 and no sources or sinks. Then

dnA

dt
¼ �KAnA þ K�AnB ¼ 0 (9:2:16)

dnB

dt
¼ KAnA � K�AnB � KBnB þ K�BnC ¼ 0 (9:2:17)

dnC

dt
¼ KBnB � K�BnC ¼ 0 (9:2:18)

with the solution

nB ¼ KA

K�A
nA0 ¼ �nB

and

nC ¼ KB

K�B
nB ¼ �nC

which are the solutions in thermal equilibrium. For opposing elementary reactions

with no sources or sinks, the thermal equilibrium solutions must be obtained.

However, now consider (9.2.15) with a source G for A and an added first-order

loss �KCnC for C. Solving (9.2.16)–(9.2.18) under these conditions, we find

nB

nA
¼ KA

K�A þ KBKC

K�B þ KC

nC

nB
¼ KB

K�B þ KC

(9:2:19)

with nC ¼ G=KC. We see that nB=nA and nC=nB are both depressed below their

thermal equilibrium values (KA=K�A and KB=K�B , respectively) by the presence

of the source and sink. This situation holds for most low-pressure processing

discharges; that is, the species densities are not in thermal equilibrium.

Bimolecular Association with Photon Emission

Consider the association reaction

Aþ B �! AB (9:2:20)

On a molecular level, this reaction cannot occur because energy and momentum

cannot be simultaneously conserved in the collision (see Problem 3.15). However,

there are many examples known of such stoichiometric reactions; for example,
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the associative attachment

eþ SF6 �! SF�6

mentioned in Section 8.3.

To understand how a reaction like (9.2.20) can arise, let us note that the molecular

reaction

Aþ B �!K2
AB� (9:2:21)

can occur, leading to an unstable molecular state. If energy is not taken from AB�,
then it immediately dissociates:

AB� �!K�1 Aþ B (9:2:22)

One possible mechanism for loss of energy from AB� is photon emission. This

suggests the complex reaction

Aþ B ��! ��
K2

K�1
AB� �!K1

ABþ h�v (9:2:23)

for production of AB. The steady-state rate equations are

dnA

dt
¼ dnB

dt
¼ �K2nAnB þ K�1nAB� þ G ¼ 0

dnAB�

dt
¼ K2nAnB � K�1nAB� � K1nAB� ¼ 0 (9:2:24)

dnAB

dt
¼ K1nAB� � K1wnAB ¼ 0

where, to obtain a steady state, a net input source G and a first-order loss term for

AB having rate constant K1w have been added, with G ¼ K1wnAB ¼ K1nAB� . The

solution of (9.2.24) is

nAB� ¼ K2

K�1 þ K1

nAnB (9:2:25)

Hence the rate of production of nAB has the form

R ¼ K1nAB� ¼ K1K2

K�1 þ K1

nAnB (9:2:26)
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of a second-order elementary reaction (9.1.7) with rate constant

K 02 ¼
K1K2

K�1 þ K1

(9:2:27)

However, this reaction is not elementary.

We can estimate K 02 from the rate constants in (9.2.24). The characteristic time for

dissociation of an unstable AB� molecular state was found in Chapter 8 to be

10�13–10�12 s, so that K�1 � 1012–1013 s�1. The radiative lifetime for electric

dipole radiation was found to be 10�9–10�8 s, so that K1 � 108–109 s�1. Using
these estimates in (9.2.27), we find K 02 � 10�5–10�3 K2 . Therefore, the rate con-

stant for the association reaction (9.2.20) due to photon emission is small;

consequently, such reactions are usually not important in low-pressure discharges.

Three-Body Association

A second mechanism for the association reaction (9.2.20) is collision with a third

body,

Aþ BþM �! ABþM (9:2:28)

Here M can be A or B or any other molecule in the system. However, simultaneous

collisions of three bodies are very rare at low pressures. This suggests the complex

reaction

Aþ B ��! ��
K2

K�1
AB� (9:2:29)

AB� þM �!K2M
ABþM (9:2:30)

The rate equations are

dnA

dt
¼ �K2nAnB þ K�1nAB� þ G ¼ 0

dnAB�

dt
¼ K2nAnB � K�1nAB� � K2MnAB�nM ¼ 0 (9:2:31)

dnAB

dt
¼ K2MnAB�nM � K1wnAB ¼ 0

with the solution

G ¼ K1wnAB ¼ K2MnAB�nM

nAB� ¼ K2

K�1 þ K2MnM
nAnB

(9:2:32)
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Hence the rate of production of nAB has the form

R ¼ K2MnAB�nM ¼ K2K2MnM

K�1 þ K2MnM
nAnB (9:2:33)

This rate depends in a complicated way on the third-body density. In the low- and

high-pressure limits we find

R ¼
K2K2M

K�1
nAnBnM K2MnM � K�1

K2nAnB K2MnM � K�1

8

<

:

ð9:2:34aÞ
ð9:2:34bÞ

Therefore, at low pressure, reaction (9.2.28) looks like an elementary three-body

reaction:

Aþ BþM �!K
0
3

ABþM (9:2:35)

with rate constant

K 03 ¼
K2K2M

K�1
(9:2:36)

The equivalent second-order rate constant K 02 for the reaction

Aþ B�!K
0
2
AB (9:2:37)

at low pressures is then

K 02 ¼ K2

K2MnM

K�1
(9:2:38)

Consider the ratio K 02=K2 for neutral particle collisions at thermal energies (300 K).

From Section 8.4 we have the estimate K2M � sel �v � 10�11–10�10 cm3=s, and
K�1 � 1012–1013 s�1 for dissociation of the unstable AB� molecule. Hence from

(9.2.38), we have

K 02 � (10�24 –10�22)nMK2

where nM is in cm�3. At p ¼ 1Torr, K 02 � (10�7 –10�6)K2; consequently, three-

body processes involving neutrals are weak in low-pressure discharges. However,

let us note that three-body processes can be important for other applications. For

example, the three-body reaction

Oþ O2 þ O2 �! O3 þ O2
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can be the most significant source of ozone in high-pressure discharges ( p & 1 atm),

and is known to be the most important source in the earth’s ionosphere. Some three-

body rate constants in oxygen discharges are given in Table 8.3.

Three-Body Positive–Negative Ion Recombination

Three-body processes involving charged particles can have rate constants that are

much higher than three-body processes involving only neutrals. Consider posi-

tive–negative ion recombination at thermal energies as an example:

Aþ þ B� þM �! ABþM

The basic theory of this process was first developed by Thomson (1924), and can be

understood as follows. Let the positive and negative ions approach each other to

within a critical radius b0 such that the Coulomb interaction energy is equal to

the mean kinetic energy

e2

4pe0b0
¼ 3

2
kT (9:2:39)

If during the time the ions are within the critical radius one of them collides with a

neutral molecule M, then with high probability energy is transferred from the ion to

the neutral, and the ions become bound to each other. From this description, esti-

mates of the rate constants for the elementary reactions in (9.2.29) and (9.2.30) are

K2 � pb20 �vi (9:2:40)

K�1 � �vi

b0
(9:2:41)

K2M � (sMþ �vMþ þ sM� �vM�) (9:2:42)

where �vi and �v � �vi are the mean speeds of relative motion of the ion pair and the ion–

neutral pairs, respectively, and sMþ and sM� are the cross sections for energy transfer
from ions to neutrals. Then, from (9.2.38), the equivalent two-body rate constant is

K 02 ¼ K 03nM � pb30K2MnM (9:2:43)

where b0 is found from (9.2.39):

b0 ¼ 2

3

e2

4pe0kT
(9:2:44)

We note from (9.2.42) and (9.2.43) that K 02 / T�5=2. At room temperature (300 K),

we find b0 � 550 Å, a very large critical radius. Consider the example of an estimate
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of K 02 for the reaction

Oþ2 þ O� þ O2 �! O3 þ O2

In this case, near-resonant charge transfer of Oþ2 on O2 dominates in (9.2.42), and we

estimate from the polarization rate constant (3.3.17) with aR � 10:6 and AR ¼ 16

that K2M � 7� 10�10 cm3/s. Then (9.2.43) yields K 02 � 3:7� 10�25nM. At 1 Torr,
nM � 3:3� 1016 cm�3, such that K 02 � 1:2� 10�8 cm3/s, a very respectable rate

constant. Consequently, three-body positive–negative ion recombination can be

quite important for processing discharges at pressures p & 1Torr. Some rate con-

stants for this process in oxygen discharges are given in Table 8.3.

At very high pressures, the ion–neutral mean free path becomes smaller than the

critical radius, leading to multiple ion–neutral collisions within the critical sphere,

and the preceding analysis of the mechanism is not correct. This regime is not of

interest for low-pressure processing. The reader is referred to Smirnov (1982) for

further information.

Three-Body Electron–Ion Recombination

For this process,

eþ Aþ þ e �! Aþ e (9:2:45)

with Te � T , we have, in place of (9.2.40)–(9.2.42), the rate constants

K2 � pb20 �ve (9:2:46)

K�1 � �ve

b0
(9:2:47)

K2M � s1 �ve (9:2:48)

where

b0 ¼ 2

3

e2

4pe0kTe
(9:2:49)

and

s1 � pb20 (9:2:50)

is the cross section for a single electron–electron Coulomb collision (see Section

3.3) that transfers an energy � 3
2
Te . Substituting (9.2.46)–(9.2.48) into (9.2.38),
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we obtain

K 02 � p2b50 �vene (9:2:51)

which scales as K 02 / T�9=2e ne . A calculation shows that this process is not important

in processing discharges with Te & 1V and ne . 1013 cm�3.

9.3 SURFACE PROCESSES

Physical and chemical surface processes are central to plasma processing. For

example, in F-atom etching of silicon in a CF4 discharge, the F atoms created in

the gas phase are transported to and successively fluorinate the surface through reac-

tions such as

F(g)þ Si:Fx(s) ��! �� SiFxþ1(s); x ¼ 0; 1; 2; 3

with production of etch products,

Si:Fx(s) ��! �� SiFx(g); x ¼ 2; 4

which are transported back into the gas phase. In addition, adsorption–desorption

reactions such as

F(g)þ S ��! �� F:S

play a critical role in determining gas-phase species concentrations. Finally, the

discharge equilibrium itself is affected by surface processes such as positive ion

neutralization and secondary electron emission at surfaces. For these reasons, the

gas-phase and surface reaction sets are coupled, with the coupling being strong at

low gas pressures. In this section, we describe some important physical processes,

primarily involving positive ions, and some important physical and chemical

processes involving neutrals.

Positive Ion Neutralization and Secondary Electron Emission

The strongly exothermic neutralization reaction

eþ Aþ �! A

is forbidden in the gas phase because energy and momentum cannot be conserved

for the formation of one body from two. However, at the surface, the three-body
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neutralization reaction

eþ Aþ þ S �! Aþ S

is fast. For positive ion energies at the surface in the range 10–1000 V, typical of

processing discharges, essentially all positive ions are immediately neutralized at

the surface.

To understand the neutralization mechanism, the confinement of electrons in a

solid must be briefly described. Figure 9.2a shows the energy versus position near

a metal surface. The electrons in the metal fill a set of closely spaced energy

levels (conduction band) up to a maximum energy (from the bottom of the conduc-

tion band) called the Fermi energy EF . The Fermi energy lies below the F ¼ 0

potential energy level for a free electron by an energy equal to the work function

a

FIGURE 9.2. Illustrating ion neutralization and secondary emission at a metal surface: (a)

the work function Ef and the Fermi energy EF; (b) Auger emission due to electron tunneling.
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Ef . Hence electrons at EF are confined within the solid by a potential barrier of

height Ef.
A simple classical estimate of Ef for a metal is that it is the work done in moving

an electron initially located at a distance x ¼ aeff from a perfectly conducting surface

to x ¼ 1, where aeff is a distance of order an atomic radius. As shown in Figure 9.3a,

the force Fx acting on an electron 2e located at x can be found using the method

of images (Ramo et al., 1984), with the image charge þe located at 2x. From

Coulomb’s law, we have

Fx ¼ � e2

4pe0(2x)
2

(9:3:1)

The work done in moving the electron from aeff to 1 is then

eEf ¼ �
ð1

aeff

Fx dx

which yields, upon integration,

Ef ¼ e

16pe0aeff
(9:3:2)

Letting aeff ¼ a0 , the Bohr radius, we obtain Ef � 6:8V. Work functions for most

materials are in the range 4–6 V, although the alkalis and alkali earths are lower.

There is a rough correlation Ef / E1=2iz , where Eiz is the ionization potential of the

metal atoms. This can be understood from (9.3.2) because the atomic radius

aeff / E�1=2iz , as given in (3.4.9).

Now consider the approach of a positive ion to within an atomic radius aeff of

the surface. As shown in Figure 9.2b, this creates a deep potential well very near

the surface that is separated from the surface by a narrow potential barrier of

width �aeff . An electron with energy Ee from within the conduction band can

FIGURE 9.3. Illustration of the method of images for a metal surface to determine (a) the

work function and (b) the van der Waals force.

9.3 SURFACE PROCESSES 301



tunnel through the barrier into the positive ion to neutralize it. There are two

possibilities:

1. The electron enters an excited state

eþ Aþ þ S �! A� þ S

where E� � Eiz � Ee. If the excited state in not metastable, it radiates a photon

in a transition to the ground state or to a metastable state. Hence positive ion

neutralization at the surface can create metastables as well as recombination

radiation.

2. The electron enters the ground state of the atom, and a second electron from

within the conduction band absorbs the excess energy of neutralization. This

mechanism, called Auger neutralization, is a nonradiative transition involving

two electrons. The electron that enters the ground state of the atom loses an

energy DE ¼ Eiz � Ee1, which the second electron gains. If DE , Ee2 for

the second electron, then it remains trapped within the solid. However, if

DE . Ee2 , then the second electron is released from the solid and is free to

move away from the surface. This process is called Auger emission, or,

more commonly, secondary emission.

From Figure 9.2b, the condition for release of the second electron is most easily

met if both electrons come from the top of the conduction band: Ee1 ¼ Ee2 ¼ Ef .
The condition for emission is then

Eiz � 2Ef (9:3:3)

The released electron has kinetic energy Emax ¼ Eiz � 2Ef . The minimum kinetic

energy is Emin ¼ Eiz � 2Ef � 2EF (both electrons come from the bottom of the con-

duction band), or zero if this is negative. Equation (9.3.3) shows that secondary

emission is favored for noble gas ions (Eiz is high) and for alkali or alkali earth

solids (Ef is low). Because the electron tunneling time (see Section 3.4) is short

compared to the ion collision time with the surface, the secondary emission

process is practically independent of ion kinetic energy, and depends only on the

atomic ion species and the near-surface composition of the solid.

Although neutralization and secondary emission have been described for metals,

essentially the same processes occur for ions incident on semiconducting and

insulating surfaces. As mentioned in Section 3.5, secondary emission is usually

characterized by the secondary emission coefficient gse , which is the number of

secondary electrons created per incident ion. An empirical expression is (Raizer,

1991)

gse � 0:016(Eiz � 2Ef) (9:3:4)
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provided Eiz . 2Ef . Metastables produce Auger electron emission very efficiently;

the condition for emission is E� . Ef . In addition to Auger emission, secondary

electrons can be created by kinetic ejection for ion (or neutral) impact energies

&1 kV. These heavy particle energies are not common in processing discharges

except for ion implantation applications (see Chapter 16).

Although (9.3.4) provides a rough estimate, the actual value of gse depends

sensitively on surface conditions, morphology, impurities, and contamination.

Some measured values of Ef and gse for ions incident on atomically clean surfaces

are given in Table 9.1. However, surfaces are never atomically clean in processing

applications. Secondary emission is an important process in dc discharges, which are

described in Chapter 14.

Apart from neutralization and Auger emission, heavy particles (ions and neutrals)

have much the same behavior when they impact surfaces. At low (thermal) energies,

physisorption, chemisorption, and desorption can occur. At higher energies (tens of

volts), molecules can fragment into atoms. At still higher energies (hundreds of

volts), atoms can be sputtered from the surface, and at still higher energies

(thousands of volts), implantation is important.

Adsorption and Desorption

Adsorption and desorption are very important for plasma processing because, in

many cases, one or the other of these reactions is the rate limiting step for a

TABLE 9.1. Work Functions and Secondary Emission Coefficients

Solid Work Function (V) Ion Energy (V) gse

Si(100) 4.90 Heþ 100 0.168

Arþ 10 0.024

100 0.027

Ni(111) 4.5 Heþ 100 0.170

Arþ 10 0.034

100 0.036

Mo 4.3 Heþ 100 0.274

Arþ 100 0.115

Nþ2 100 0.032

Oþ2 100 0.026

W 4.54 Heþ 100 0.263

Arþ 10 0.096

100 0.095

Hþ2 100 0.029

Nþ2 100 0.025

Oþ2 100 0.015

Source: After Konuma (1992).
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surface process. Adsorption,

Aþ S �! A:S

is the reaction of a molecule with a surface. Desorption is the reverse reaction.

Adsorption is due to the attractive force between an incoming molecule and a

surface. There are two kinds of adsorption. Physisorption is due to the weak attrac-

tive van der Waals force between a molecule and a surface. We can understand how

this force arises by considering the example of a Bohr atom near a metal surface. As

shown in Figure 9.3b, the Bohr model gives rise to an oscillating dipole moment

pdx(t) � a0e cosvatt normal to the surface as the electron orbits the nucleus.

The force Fx acting on the dipole can be found using the method of images.

For a dipole þpdx(t) at x, there is an image dipole þpdx(t) at �x, and the force is

attractive (Problem 9.6),

Fx ¼ � 6k p2dx(t)l
4pe0(2x)

4
� � 3a20e

2

4pe0(2x)
4

The van der Waals interaction potential is found from Fx ¼ �e dV=dx to be

V(x) ¼ � a20e

64pe0x3
(9:3:5)

When the atom comes to within a distance of order d � 1–3 Å from the surface,

then the Coulomb clouds of the atom and surface interact, leading to a repulsive force.

Hence, a shallow potential well is formed near the surface. Letting d � 1–3 Å at

equilibrium, the well depth is estimated from (9.3.5) to be Ephysi � 0:01–0.25 V.
Hence physisorption is exothermic with jDHj � 1–25 kJ/mol. The vibration fre-

quency vvib for a molecule trapped in the well can be estimated assuming a harmonic

oscillator potential,

1

2
Mv2

vibd
2 � eEphysi (9:3:6)

which yieldsvvib � 1012 –1013 s�1. Physisorbed molecules are often so weakly bound

to the surface that they can diffuse rapidly along the surface.

Chemisorption is due to the formation of a chemical bond between the atom

or molecule and the surface. The reaction is strongly exothermic with jDHj �
40–400 kJ/mol, corresponding to a potential well depth Echemi � 0:4–4 V. The

minimum of the well is typically located a distance d � 1–1.5 Å from the

surface. Chemisorption of a molecule having multiple (double, triple, etc.) bonds

can occur with the breaking of one bond as the molecule bonds to the surface,

A¼Bþ S �! AB:S
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Molecules that are single bonded are often torn apart as they bond to the surface,

ABþ 2S �! A:Sþ B:S

This process is called dissociative chemisorption and requires two adsorption sites.

Physi- and chemisorption are often found in the same system, with different regimes

favored depending on the surface temperature and the form of the potential energy

curves. Figure 9.4 gives three examples. In (a), the Aþ B dissociated chemisorbed

state combines with the AB physisorbed state to give a minimum potential energy

curve (solid line) that is everywhere negative. ABmolecules at low energies incident

on the surface can easily pass through the physisorbed region and enter the disso-

ciated chemisorbed state. In (b), there is a potential barrier Eads to chemisorption,

but incident AB molecules can be trapped in the physisorbed state. If the barrier

is low, then thermal molecules can be first physisorbed and later pass into the

FIGURE 9.4. Schematic diagrams of the potential energy near a surface for adsorption:

(a) dissociative chemisorption; (b) physisorption; and (c) molecular chemisorption.
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lower energy, dissociated chemisorbed state. In (c), there is molecular chemisorp-

tion but not dissociative adsorption because the Aþ B chemisorbed state lies every-

where above the AB state.

Molecules that impinge on a surface cannot be adsorbed unless they lose energy

in the collision with the surface. The normal component of the energy loss must be

sufficient to trap the molecule in the adsorption well. Let GA ¼ 1
4
�vAnAS be the flux of

molecules incident on the surface, where �vA is mean speed of the molecule and

nAS is the gas phase volume density of molecules at the surface. Then the flux of

molecules that are chemisorbed can be written as

Gads ¼ sGA ¼ 1

4
s�vAnAS (9:3:7)

which defines the sticking coefficient s. In general, s is a function of the surface

coverage u (fraction of sites covered with adsorbate) and the gas and surface

temperatures. If the gas and surface are in thermal equilibrium at temperature T,

then the surface coverage �u(T) is determined and s ¼ �s(T), the equilibrium

thermal sticking coefficient. A common assumption for s for nondissociative

adsorption for systems not in thermal equilibrium is Langmuir kinetics,

s(u;T) ¼ s0(T)(1� u) (9:3:8)

where s0 is the initial or zero coverage sticking coefficient, and 1� u is the fraction

of the surface not covered with adsorbate. Langmuir kinetics is often found to under-

estimate the sticking coefficient for chemisorption at intermediate values of u,
because molecules that impact sites already filled with adsorbate can be trapped

by physisorption and diffuse along the surface to vacant sites, where they chemisorb.

Generally, chemisorption ceases after all active sites have been filled; this roughly

corresponds to a monolayer of coverage. Continued adsorption is only by the much

less tightly bonded physisorption mechanism. Many monolayers can be physisorbed

and, in fact, continuous condensation of adsorbate can occur. Usually, however,

nonactive surfaces, for example, reactor walls, come to an equilibrium where phy-

sisorption and desorption balance; hence the net flux of molecules to these surfaces

is zero. The kinetics of physi- and chemisorption are treated in Section 9.4.

The temperature variation of s0 depends on whether there is an energy barrier to

chemisorption (Fig. 9.4b) or not (Fig. 9.4a). If there is no barrier, then s0 can be near

unity at low temperatures and decreases with increasing T because the fraction of

incident molecules that lose sufficient energy to trap decreases as T increases. If

there is an activation barrier of height Eads , then very little sticking can occur

until T � Eads . Then s0 has an Arrhenius form,

s0 ¼ s00(T) e
�Eads=T (9:3:9)

where the preexponential factor s00 decreases as T increases, as for the case with no

barrier. Measured sticking coefficients at T ¼ 0:026 V (300 K) vary over a wide
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range 10�6 –1 and strongly depend on crystal orientation and surface roughness,

with s0 increasing as the roughness increases (Morris et al., 1984). For many

surfaces, the active sites for sticking are at surface imperfections such as steps,

kinks, vacancies, and dislocations. Chemically reactive gases, and especially

radicals, usually stick with high probability s0 � 0:1–1 on transition metals (Fe,

Ni, etc.). Sticking probabilities can be lower for other surfaces. For example,

s0 � 1 for H on Si, but s0 is a few percent for H2 on Si, and s0 � 10�4 –10�3 for

O2 on Si (Joyce and Foxon, 1984).

Desorption,

A:S �! Aþ S

is the reverse reaction to adsorption. In thermal equilibrium, the two reactions

must balance. The (first-order) desorption rate constant can be shown to have an

Arrhenius form (Zangwill, 1988)

Kdesor ¼ K0 e
�Edesor=T (9:3:10)

where Edesor is the depth (Echemi or Ephysi) of the potential well from the zero of poten-

tial energy. A crude classical estimate is that K0 is the number of attempted escapes

per second from the adsorption well; hence

K0 � vvib=2p (9:3:11)

where vvib is the vibration frequency of the adsorbed molecule, as estimated in

(9.3.6). A more precise estimate from transition rate theory (Zangwill, 1988) is that

K0 � �s(T)
eT

h

�gesc
�gads

� 6� 1012 �s(T)
�gesc
�gads

s�1 (9:3:12)

where �gesc=�gads is a ratio of statistical weights for escaping and trapped molecules.

For physisorption K0 � 1012–1014 s�1. For chemisorption K0 � 1013–1015 s�1. For
activated adsorption, �s also has an Arrhenius dependence [see (9.3.9)]; therefore,

Kdesor / e�(EadsþEdesor)=T

Associative desorption,

2A:S �! A2 þ 2S

the reverse of dissociative adsorption, also has a (second order) rate constant on the

surface with the Arrhenius form (9.3.10). The classical estimate of the preexponential
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factor is that it is the number of collisions per second per unit area on the surface

between two adsorbed atoms:

K0 � �d
peT

MR

� �1=2

(9:3:13)

where �d is the mean diameter for a collision, and (peT=MR)
1=2 is the characteristic

collision velocity. Typically, K0 � 10�3–1 cm2/s.

Fragmentation

Ionic and neutral molecules that have sufficient impact energy can fragment into

atoms that are reflected or adsorbed when they hit a surface. The threshold energy

for fragmentation is of order of the energy of the molecular bond. At energies

four or five times the threshold energy, over half of the molecules typically frag-

ment. Since molecular bond energies are in the range 1–10 V, and ion-bombarding

energies at surfaces are often considerably higher (particularly at capacitively driven

electrodes), molecular ions often fragment when they hit surfaces.

Sputtering

At energies above a threshold of Ethr ¼ 20–50 V, heavy particles can sputter atoms

from a surface. Usually ions are the impacting species. The sputtering yield gsput
(atoms sputtered per incident ion) increases rapidly with energy up to a few

hundred volts, where the yield becomes significant for processing applications,

with 200–1000 V argon ions the usual projectile for physical sputtering. For

these energies, the bombarding ion transfers energy to many target atoms, which

in turn collide with other atoms in the solid. The final distribution of atom energies

is isotropic with mean energy Et , the surface binding energy (roughly, the enthalpy

of vaporization in units of volts; see Table 7.4). Most of the atoms in this collision

cascade are trapped in the solid, but one or several can escape from the surface

(Sigmund, 1981; Smith, 1995, Chapter 8; Mahan, 2000, Chapter 7). When the

atomic numbers of the target and incident ion are both large and not too different

(0:2 . Zt=Zi . 5 with Zt ; Zi � 1), then a reasonable estimate for the sputtering

yield is (Zalm, 1984)

gsput �
0:06

Et
ffiffiffiffiffi

�Z t

q

ffiffiffiffi

Ei
p

�
ffiffiffiffiffiffiffi

Ethr
p

� 	

(9:3:14)

where

�Z t ¼ 2Zt

(Zi=Zt)
2=3 þ (Zt=Zi)

2=3
(9:3:15)
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For mass ratios Mi=Mt & 0:3, a reasonable estimate of the threshold energy is

(Bohdansky et al., 1980)

Ethr � 8Et(Mi=Mt)
2=5 (9:3:16)

These semi-empirical formulas encompass the main ions, targets, and energy

regimes of interest in plasma processing.

We can understand the
ffiffiffiffiEi
p

energy dependence in (9.3.14) as follows: The

incoming ion and the cascade of energetic atoms partially penetrate the electronic

cores of the target atoms during their collisions. The collision dynamics in this

energy regime is reasonably well described by a Thomas–Fermi interaction poten-

tial (Wilson et al., 1977), which scales asU(r)/ 1=r4 for large r, yielding a collision
cross section s(E)/ 1=

ffiffiffiEp (see Table 3.1). The range of ion penetration into the

target can be estimated as l(Ei) � (nts)
�1, where nt is the target atom density in

the solid. From energy conservation, the number of atoms in the collision cascade

having average energy Et is N � Ei=Et . Of this number, only those atoms within

a distance l(Et) of the surface can escape. The sputtering yield then scales as

gsput � N l(Et)=l(Ei)/
ffiffiffiffi

Ei
p

(9:3:17)

as in (9.3.14). The threshold energy in (9.3.16) is about an order of magnitude greater

than Et because multiple (at least three) energy-transferring collisions are necessary to

finally eject one backward-traveling atom having energy �Et from the surface.

For Ei � Ethr , the sputtered atoms are emitted with a cascade-type energy distri-

bution and with a cosine law in the emission angle x (Sigmund, 1981; Winters and

Coburn, 1992)

f (E; x)/ E
(Et þ E)3

cos x (9:3:18)

The maximum of this distribution occurs for E ¼ Et=2. Since Et � 3–6 V, the charac-

teristic sputtered atom energies are 1.5–3 V, much hotter than room temperature.

The sputtering yield depends on the angle of incidence of the ion. Figure 9.5 shows

typical angular dependences for argon ions incident on aluminum and photoresist. In

both cases the yield rises from its normal (08) incidence value to some maximum

value gmax at umax , and then falls to zero at grazing incidence (908). The increase in
gsput with increasing u is due to the shortening of the range of ion penetration

normal to the surface. The range can be estimated as l(Ei) cos u. Using this rather

than l(Ei) in (9.3.17) yields gsput / sec u, as roughly seen in the figure. However, as

u! 908, the incoming ion is increasingly deflected by its first few collisions and

emerges from the surface without transfering most of its energy, thus reducing the

number of atoms in the collision cascade. Hence gsput! 0 as u! 908.
In addition to the dependence (9.3.14), measured high-fluence sputtering yields

have a periodic variation of peaks and valleys versus projectile atomic number,

which are not seen in low-fluence measurements. These are due to changes in the

surface layer due to implantation or deposition of the projectile ion. The peaks
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are for sputtering by the noble gases and are believed to be due to gas agglomeration

and bubble formation in the target material. The valleys are due to buildup of a

surface layer which blocks sputtering of the target, for example, for carbon or

calcium projectiles. Some measured sputtering yields for argon ion bombardment

at 600 V are given in Table 9.2 (Konuma, 1992). The role of sputtering in dc

FIGURE 9.5. Relative sputtering yields for photoresist and aluminum versus angle of

incidence u (after Flamm and Herb, 1989).

TABLE 9.2. Measured SputteringYields for Ar1 at 600 V

Target gsput

Al 0.83

Si 0.54

Fe 0.97

Co 0.99

Ni 1.34

Cu 2.00

Ge 0.82

W 0.32

Au 1.18

Al2O3 0.18

SiO2 1.34

GaAs 0.9

SiC 1.8

SnO2 0.96

Source: After Konuma (1992).
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discharges is described in Sections 14.4–14.6. The application of (9.3.14) to plasma-

assisted etch processes is considered in Sections 15.1 and 15.2. We examine the

sputtering deposition and reactive sputtering deposition of thin films in Section 16.3.

Above a few hundred volts, there is a significant chance that ions will be implanted

in the solid (Feldman and Mayer, 1986). This process becomes increasingly import-

ant above 1 kV. These energies are not common in processing discharges, but can be

accessed by applying extremely high dc or pulsed voltages to an electrode immersed

in a plasma. This application, plasma-immersion ion implantation, is described in

Section 16.4.

9.4 SURFACE KINETICS

A general reaction set for a surface process is illustrated in Figure 9.6. This might

apply to the etching of a carbon substrate in an oxygen discharge, with O the

etchant and CO the etch product. The etchant atoms diffuse or flow to the surface

(rate constant Ka), where they are adsorbed (Kb) and react (Kc) to form the

product, which then desorbs (Kd) and diffuses or flows into the gas phase (Ke). In

addition, etchants can desorb without reaction (Kf and Kg for normal or associative

desorption), and etch products in the gas phase can adsorb back onto the surface

(Kh). More complicated reactions can also occur, for example, to form CO2 product.

Diffusion of Neutral Species

Charged particle diffusion was the subject of Chapter 5. Neutral species also diffuse.

The diffusion coefficient for A molecules due to collisions with B molecules is

DAB ¼ eT

MRnAB
(9:4:1)

FIGURE 9.6. Illustrating the processes that can occur for reaction of an etchant with a surface.
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where MR is the reduced mass and

nAB ¼ nBsAB �vAB

is the collision frequency for a constant cross-section (hard-sphere) process, with

�vAB ¼ (8eT=pMR)
1=2 the mean speed of relative motion. Inserting nAB into DAB

yields�

DAB ¼ p

8
lAB �vAB (9:4:2)

where lAB ¼ 1=nBsAB is the mean free path. The cross section can be estimated

from

sAB � p (rA þ rB)
2 (9:4:3)

where rA and rB are the mean radii of the molecules. Some gas kinetic cross sections

are given in Table 9.3 (Smirnov, 1977). Cross sections are typically in the range

2–6� 10�15 cm2. For self-diffusion of A molecules due to collisions with A

molecules, MR ¼ MA=2 in (9.4.2).

Loss Rate for Diffusion

Let us consider the transport and loss of gas-phase molecules to surfaces by diffu-

sion. We consider a simple steady-state plane-parallel discharge model in which

molecules (e.g., etchant atoms, density nA) are created by electron-impact dis-

sociation of the parent neutral gas (density ng ; nB), and molecules incident on

the walls are lost with some probability g. We assume a uniform profile ne ¼ ne0
for the electron density, appropriate for a low pressure discharge (see Section

10.2), and leave the higher pressure case of a cosine density profile to

TABLE 9.3. Gas Kinetic Cross Sections in Units of 10215 cm2

He Ar H2 N2 O2 CO CO2

He 1.6 2.9 2.2 3.1 2.9 3.0 3.6

Ar 5.0 3.7 5.4 5.2 5.3 5.7

H2 2.7 3.8 3.7 3.9 4.5

N2 5.2 4.1 5.1 6.8

O2 4.9 4.8 5.9

CO 5.0 6.3

CO2 7.8

Source: Smirnov (1977, Appendix 1).

�The result from kinetic theory is 3/4 of this value (McDaniel, 1964, p. 50).
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Problem 9.7. Then, the diffusion equation (5.1.8) becomes

�DAB

d2nA

dx2
¼ Kdissne0nB (9:4:4)

with Kdiss the dissociation rate coefficient. Integrating (9.4.4) yields the symmetric

solution

nA ¼ G0l
2

8DAB

1� 4x2

l2

� �

þ nAS (9:4:5)

where G0 ¼ Kdissne0nB and the constant of integration nAS is the gas phase density at

the surface. To evaluate this, we use the boundary condition (5.2.4) at x ¼ l=2 that

GA(l=2) ¼ �DAB

dnA

dx













l=2

¼ g

2(2� g)
nAS �vAB (9:4:6)

The incident flux is obtained by differentiating (9.4.5)

GA ¼ �DAB

dnA

dx
¼ G0

l

2
(9:4:7)

Applying the boundary condition (9.4.6) by evaluating (9.4.7) at x ¼ l=2, we

obtain

nAS ¼ (2� g)

g

G0l

�vAB
(9:4:8)

Substituting (9.4.8) into (9.4.5) yields the central density

nA(0) ¼ G0

l2

8DAB

þ (2� g)l

g �vAB

� �

(9:4:9)

Integrating (9.4.5) over l and dividing the result by l yields the average density

�nA ¼ G0

l2

12DAB

þ (2� g)l

g �vAB

� �

(9:4:10)

To determine the first-order rate coefficient Kloss for loss of particles to the walls,

we note from (9.4.7) that the total particle flux lost to both walls is 2GA(l=2) ¼ G0l.
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Hence we can write

Kloss ¼ 2GA(l=2)

�nAl
¼ l2

12DAB

þ (2� g)l

g �vAB

� ��1
(9:4:11)

If we substitute for l2=12 the square of the diffusion length, L2
0 given by (5.2.10),

into the first term in (9.4.11), and substitute l ¼ 2V=S into the second term, with

V the discharge volume and S ¼ 2A the surface area for loss, then Kloss can be

written in the form

Kloss ¼ L2
0

DAB

þ (2� g)

g �vAB

V
S

� ��1
(9:4:12)

Chantry (1987) has shown that the generalization (9.4.12) gives a good heuristic

approximation of Kloss for all (nonreentrant) discharge wall shapes (e.g., cylinders

and rectangular boxes). The loss rate in (9.4.12) can be written in the form

1

Kloss

¼ 1

KD

þ 1

Kw

(9:4:13)

where

KD ¼ DAB

L2
0

; t�10 (9:4:14)

and

Kw ¼ g

2(2� g)

�vABS

V (9:4:15)

with t0 the fundamental diffusion loss time given by (5.2.11). KD gives the diffusion

rate for transport of molecules to the walls, and Kw gives the loss rate at the walls.

Since DAB varies inversely with the neutral gas pressure p, for high pressures and g
not too small the diffusion is the rate limiting step for loss, such that nA has a

diffusion profile (cosine profile for a plane-parallel system) and Kloss � KD . At

low pressures or for g near unity, the surface loss term dominates, such that nA is

nearly uniform and Kloss � Kw. Chantry (1987) has also shown that (9.4.12) gives

a reasonable estimate for Kloss even in the low pressure regime lAB & L0 . In this

limit the volume loss to the walls is no longer diffusive; the molecules flow freely

to the walls. Their characteristic rate of loss is determined by their mean speed,

the distance they travel, and their probability of loss to the surfaces.

Let us estimate Kloss for O atoms diffusing through O2 molecules in a plane-parallel

reactor with l ¼ 10 cm, g ¼ 10�2, and TB ¼ 300K. Let sAB � 3� 10�15 cm2 and

314 CHEMICAL KINETICS AND SURFACE PROCESSES



p ¼ 10mTorr (nB � 3:3� 1014 cm�3). Then lAB � 1 cm and �vAB � 7:7�
104 cm=s. This yields DAB � 3:0� 104 cm2/s from (9.4.2). Substituting these

values into (9.4.14) and (9.4.15), we find that KD � 3600 s�1 and Kw � 77 s�1.
Because the diffusion is fast compared to the wall loss, the rate limiting step is the

wall loss: Kloss � Kw. This is typical for low-pressure plasma-processing systems.

The loss probability g may be known from measurements, but it can also be

inferred from the kinetics of adsorption, desorption, and reaction on the surface.

We discuss the relation between g and these fundamental surface processes at the

end of this section.

Adsorption and Desorption

Consider the opposing reactions for nondissociative adsorption and desorption of A

molecules on a surface,

A(g)þ S ��! ��
Ka

Kd

A:S

Let n00 be the area density of adsorption sites and n0A:S ¼ n00u be the density of sites

covered with adsorbed molecules. Assuming Langmuir kinetics, such that the flux of

A adsorbing on the surface is proportional to 1� u, the fraction of sites not covered

with adsorbate, we can write

Gads ¼ KanASn
0
0(1� u) (9:4:16)

where nAS is the gas-phase density at the surface. The adsorption rate coefficient is

given in terms of fundamental quantities by equating (9.4.16) to (9.3.7) and elimi-

nating u by using (9.3.8), yielding

Ka ¼ 1

4
s0

�vAB

n00
(9:4:17)

with s0 the zero-coverage (u ¼ 0) sticking coefficient. The flux of desorbing mol-

ecules is

Gdesor ¼ Kdn
0
0u (9:4:18)

Equating the adsorption and desorption fluxes, we can solve for u to obtain

u ¼ KadsnAS

1þKadsnAS
(9:4:19)

where

Kads ¼ Ka

Kd

(9:4:20)

This is the Langmuir isotherm for thermal equilibrium (7.5.17). In addition to these

direct surface processes, adsorption and desorption can proceed via an intermediate
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precursor state. For example, chemical adsorption can be from a physisorbed

precursor state, leading to an isotherm different from the simple Langmuir isotherm

(see Problem 9.10).

Dissociative Adsorption and Associative Desorption

Consider now the opposing reactions

A2(g)þ 2S ��! ��
Ka

Kd

2A:S

Because two sites are required for adsorption, the molecular flux adsorbed is

Gads ¼ KanA2Sn
0
0
2
(1� u)2 (9:4:21)

and the molecular flux desorbed is

Gdesor ¼ Kdn
0
0
2
u 2 (9:4:22)

Equating fluxes and solving for u, we obtain the isotherm

u ¼ (KnA2S)
1=2

1þ (KnA2S)
1=2

(9:4:23)

where K ¼ Ka=Kd . For u small, we see that u/ n
1=2
A2S

for dissociative adsorption, a

slower variation than for normal adsorption.

Physical Adsorption

While the density of available sites is usually fixed at some n00 for chemisorption,

many monolayers can be physisorbed. Let n0i be the area density of sites having a

thickness of i physisorbed atoms. Then equating the adsorption to desorption flux

for these sites,

Kan
0
inAS ¼ Kdn

0
iþ1 (9:4:24)

we obtain

n0iþ1 ¼ bn0i (9:4:25)

where b ¼ KanAS=Kd ¼ KnAS . Hence, by induction,

n0i ¼ n00b
i (9:4:26)

316 CHEMICAL KINETICS AND SURFACE PROCESSES



The total number of physisorbed molecules per unit area is given by

n0T ¼
X

1

i¼1
in0i ¼ n00

X

1

i¼1
ibi

¼ n00
b

(1� b)2
(9:4:27)

and the number of sites covered per unit area is

n0C ¼
X

1

i¼1
n0i ¼ n00

1

1� b
(9:4:28)

For b . 1, many monolayers can be adsorbed. The condition b ¼ 1 signals the

onset of continuous condensation. The combination of physi- and chemisorption

can also be analyzed, leading to the so-called BET isotherm (see Atkins, 1986,

p. 779).

Reaction with a Surface

Consider the reaction set where A is adsorbed on the surface S (;B) and reacts

directly with the surface to form the gas-phase product AS (;AB):

A(g)þ S ��! ��
Ka

Kd

A:S

A:S �!Kd
AS(g)

The surface coverage u is found from the conservation of adsorbed sites,

dn0A:S
dt
¼ KanASn

0
0(1� u)� Kdn

0
0u� Krn

0
0u ¼ 0 (9:4:29)

Solving for u, we obtain

u ¼ 1

1þ (Kd þ Kr)=KanAS
(9:4:30)

The reaction rate (m�2 s�1) for production of AB is then

RAB ¼ Krn
0
0u (9:4:31)
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Reactions on a Surface

A common reaction mechanism on the surface, called Langmuir–Hinshelwood

kinetics, involves the reaction of two adsorbed species:

A(g)þ S ��! ��
Ka1

Kd1

A:S

B(g)þ S ��! ��
Ka2

Kd2

B:S

A:Sþ B:S �!Kr
AB(g)þ 2S

For ease of analysis let the reaction itself be the rate-limiting step. Then the surface

concentrations of A and B are the thermal equilibrium values, from (7.5.19),

uA ¼ KAnAS

1þKAnAS þKBnBS
(9.4.32a)

uB ¼ KBnBS

1þKAnAS þKBnBS
(9.4.32b)

where KA ¼ Ka1=Kd1 and KB ¼ Ka2=Kd2. The rate of production of AB(g) is then

RAB ¼ Krn
0 2
0 uAuB (9:4:33)

At low pressures, KAnAS � 1 and KBnBS � 1, the kinetics is second order,

RAB ¼ Kr

Ka1Ka2

Kd1Kd2

n0 20 nASnBS (9:4:34)

As previously, nAS and nBS are related to GA0 and GB0 by using (9.4.8).

A second reaction mechanism, called Eley–Rideal kinetics, involves the reaction

of adsorbed A directly with an impinging gas-phase molecule B:

A(g)þ S ��! ��
Ka1

Kd1

A:S

B(g)þ S ��! ��
Ka2

Kd2

B:S

A:Sþ B(g) �!Kr
AB(g)þ S

Again assuming that the reaction itself is the rate-limiting step, then

RAB ¼ Krn
0
0uAnBS (9:4:35)
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which, at low pressures, reduces again to second-order kinetics,

RAB ¼ Kr

Ka1

Kd1

n00nASnBS (9:4:36)

Surface Kinetics and Loss Probability

Let us consider the coupling of the surface kinetics to the transport and loss of a diffus-

ing species A. From (9.4.6) the loss flux is given in terms of the loss probability g as

GA(l=2) ¼ g

2(2� g)
nAS �vAB (9:4:37)

We consider the simplest kinetics of adsorption and desorption of A on the surface and

reaction of A with the surface. Inserting (9.4.30) into (9.4.31), the loss flux is given in

terms of the surface rate coefficients as

GA(l=2) ¼ Krn
0
0KanAS

KanAS þ Kd þ Kr

(9:4:38)

Equating (9.4.37) and (9.4.38), we obtain

g �vAB
2(2� g)

¼ Krn
0
0Ka

KanAS þ Kd þ Kr

(9:4:39)

For a small surface coverage u� 1 in (9.4.30), we have KanAS � Kd þ Kr . Then

(9.4.39) can be solved to obtain g as a function of the surface rate coefficients, indepen-
dent of nAS. For the usual case of a small loss probability, g� 1, the result is

g ¼ 4n00
�vAB

KrKa

Kd þ Kr

(9:4:40)

Substituting Ka from (9.4.17) into (9.4.40), we obtain

g ¼ s0Kr

Kd þ Kr

(9:4:41)

which gives g in terms of the fundamental surface quantities. With (9.4.41) for g, the
loss flux given by (9.4.6) depends linearly on nAS , a first-order loss kinetics. First-order

kinetics are typical for surface reactions at low pressures, such as are found in proces-

sing discharges.

In the opposite limit KanAS � Kd þ Kr , (9.4.39) reduces to

g �vAB
2(2� g)

¼ Krn
0
0

nAS
(9:4:42)
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With (9.4.42), the loss flux (9.4.6) is then independent of nAS , a zeroth-order surface

kinetics, which is not uncommon at high pressures. This regime is generally not of

interest for low-pressure processes.

As one application of these kinetics, Kota et al. (1998, 1999) measured g for

halogen atom recombination to form halogen molecules on various surfaces and

compared their measurements to surface kinetic models. They found that the

measured g was independent of the incident halogen flux and that the surface reac-

tion rate was first order in the incident flux. As the simplest model, they considered

the reaction of physisorbed chlorine atoms with a surface saturated with chemi-

sorbed chlorine atoms, using (9.4.41) to describe the recombination kinetics.

More elaborate models including the kinetics of chemical adsorption and reactions

on the surface are given in Kota et al. (1999).

PROBLEMS

9.1. Complex Reaction for Ozone Consider the loss of ozone in a dilute, low-

pressure O3=O2 gas mixture in the steady state at standard (room) temperature

due to the reactions

O3 þ O2
��! ��
K 0
2

K3

Oþ O2 þ O2

Oþ O3 �!K2
O2 þ O2

(a) Find the reaction rate R (cm�3 s�1) for destruction of ozone based on the

above reaction set. Estimate R using the data in Tables 8.2 and 8.3 for

nO2
¼ 3:3� 1016 cm�3 and nO3

¼ 3:3� 1014 cm�3.
(b) The reverse reaction,

O2 þ O2 �!K�2 O3 þ O

is not listed in Table 8.2. Find the rate constant K�2 for this reaction using
(9.1.13) and the data in Table 8.2. The standard Gibbs free energies for

formation of O and O3 are 231.75 and 163.16 kJ/mol respectively, and

the standard enthalpies of formation of O and O3 are 249.17 and

142.7 kJ/mol, respectively.

9.2. Reaction Rate Calculations

(a) Consider the kinetics of a stable molecule A that “spontaneously” decom-

poses into molecules B and C,

A �!K1
Bþ C
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Determine the conditions for this to happen and obtain the first-order rate

constant K1 by considering the elementary reactions

Aþ A ��! ��
K2

K�2
A� þ A

A� �!K1�
Bþ C

Assume that the last reaction is rate limiting.

(b) Consider the first-order reaction chain

A �!KAB
B �!KBC

C �!KCD

D �!KDE
E

Assuming that the concentration nA ¼ nA0 and that all other ns are zero at

time t ¼ 0, and that C! D is the rate-limiting reaction, then find an

approximate expression for nE(t). Sketch on the same graph the time-

varying behavior of nA , nB , nC , nD , and nE .

9.3. Stepwise Ionization Ionization can occur as a two-step process involving

excited atoms:

eþ A �!Kex
eþ A�

eþ A� �!Kiz�
2eþ Aþ

Competing reactions for loss of A� are collisional de-excitation

eþ A� �!Kdex
eþ A

and first-order losses

A� �!K1
A

where K1 is the total first-order rate constant for loss of A� due to radiative

emission and to de-excitation at the reactor walls. Let Eiz and Eiz� be the ion-
ization potentials of A and A�, respectively, and let the statistical weights of A
and A� be the same. Assume that Te � Eiz� , Eiz and that Kiz� � Kdex.

(a) From detailed balance (8.5.14), show that

Kex ¼ Kdex exp �Eiz � Eiz�
Te

� �

(b) Find nA� as a function of ne , nA , and the rate constants.
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(c) Using the Thomson ionization rate constants (3.5.4) show that the ratio of

two-step to single-step ionization rates is

Riz�
Riz

¼ neKdex

neKdex þ K1

E2iz
E2iz�

Hence, two-step ionization is always more important than single-step

ionization for thermal equilibrium K1 � neKdex.

(d) Estimate the ratio Riz�=Riz for a typical low-pressure processing discharge

with K1 ¼ Kloss given by (9.4.12) with g ¼ 1. Is two-step ionization

important or not?

9.4. Ionization Rate Due to Argon Metastables The rate coefficient K4 for

electron impact excitation of the 3p (1S0) ground state of argon to the 4s meta-

stable levels is given in Table 3.3.

(a) By applying (8.5.14), find the rate coefficient K5 for the inverse process of

electron impact de-excitation (“quenching”) of the 4s metastable levels to

the 3p ground state. (There are actually two 4s metastable levels, 3P0 and
3P2, which are separated by a small energy gap DE ¼ 0:17V. You may

assume that Te � DE; that is, you may assume that the two metastable

levels have essentially the same energy and can be treated as a single

metastable level having a total of six states.) Compare your result to K5

in Table 3.3.

(b) Assuming that argon metastables are created only by electron impact

excitation with rate coefficient K4 and are lost only by electron impact

de-excitation to the ground state with rate coefficient K5, find the ratio

of argon metastables to ground state atoms at an electron temperature

Te ¼ 3V.

(c) The rate coefficients for ionization of ground-state and metastable argon

atoms are given as K2 and K10 , respectively, in Table 3.3. Accounting

only for these two processes and the two processes in part (b), find the

fraction of the total ionizations per second that are due to metastable

argon. Are metastable argon atoms important in this discharge?

9.5. Three-Body Recombination

(a) Estimate the rate constant (9.2.38) for K 02 at low pressures for the three-

body recombination reaction

eþ Aþ þM �! AþM

by modifying the analysis done for positive–negative ion recombination

leading to (9.2.40)–(9.2.42). You should obtain the scaling K 02 ¼ nMK
0
3/

T�3=2e .

(b) Compare your result in (a) with the tabulated data in Table 8.3.
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9.6. Dipole–Dipole Force Consider two electric dipoles pd1 and pd2 oriented

along x and separated by a distance r. Each dipole can be regarded as a pair

of point charges þq and �q separated by a small distance d � r:

pd1 ¼ pd2 ¼ qd. Using Coulomb’s law for the electrostatic force on a point

charge due to another point charge, show that the net force on dipole pd1
due to dipole pd2 is attractive and has a magnitude

Fx ¼ 6pd1pd2

4pe0r 4

9.7. Diffusion Loss with a Nonuniform Source Consider a steady-state plane-

parallel discharge model in which a neutral species A is created within the dis-

charge region �l=2 , x , l=2 at a rate G0 cospx=l (m
�3 s�1) and is lost to

the walls with a loss probability g. Show that the rate coefficient Kloss for

loss of particles to the walls is given by (9.4.11) with 12 replaced by p 2.

[Recall that (9.4.11) was obtained for a uniform creation rate.]

9.8. Diffusion Loss in an Asymmetric Discharge Consider the creation, diffu-

sion and loss of a species A in an asymmetric one-dimensional slab geometry,

with a uniform rate of production G0 (m
�3 s�1) within the slab. Assume that

one of the two electrode surfaces is inactive, such that the net flux of A to

this surface is zero. The other electrode is active, such that a fraction g of

the flux incident on the surface is lost to the surface.

(a) Find nA(x) within the slab in terms of G0 and g.

(b) Find Kloss , the first-order rate coefficient for loss of A to the walls, and

compare your expression with (9.4.11).

9.9. Diffusion and Recombination in the Volume Consider a steady-state

plane-parallel discharge model in which a neutral species A is created uni-

formly within the discharge region �l=2 , x , l=2 at a constant rate

G0 (m
�3 s�1). A fraction g of the flux of A incident on the walls is lost to

the walls. Species A is also lost inside the discharge region by recombination

with the background neutral gas (density nB) at a rate �KrecnAnB (m�3 s�1).
(a) Give the diffusion equation that determines nA(x).

(b) Give the boundary conditions necessary to solve the diffusion equation of

part (a) and then solve the diffusion equation to determine nA(x).

(c) Evaluate the rate coefficient Kloss(surface) for loss of A to the surfaces,

and evaluate the overall rate coefficient Kloss(total) for loss of A both to

the surfaces and by recombination with the background neutral gas.

9.10. Chemical Adsorption Via a Physical Adsorption State Consider chemi-

cal adsorption and desorption kinetics in which the adsorption is via a physi-

sorbed precursor state, but the desorption is directly from the chemisorbed

state into the gas phase. The kinetics is described by the reaction chain

A(g)þ S ��! ��
K�a

K�
d

A:S( physi) �!K
0
a

A:S(chemi) �!Kd
A(g)þ S
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where K�a (m3=s) is the second-order rate coefficient for adsorption of a gas

phase atom into the physisorbed surface state, K�d (s�1) is the first order

rate coefficient for desorption of a physisorbed atom into the gas phase,

K 0a (m
2=s) is the second-order rate coefficient for adsorption of a physisorbed

atom into the chemisorbed surface state, and Kd (s�1) is the first-order rate

coefficient for desorption of a chemisorbed atom directly into the gas

phase. Assume a surface density of n00 (m�2) for both physisorption and che-

misorption sites, and let u� be the surface coverage for physisorption and u be
the surface coverage for chemisorption. You may assume that because the

physisorption sites lie above the chemisorption sites on the surface, a

physisorption site can be located over either an empty or an occupied chemi-

sorption site.

(a) Write the site balance equation for physisorbed atoms in the steady state.

From this show that the rate of chemisorption is

Gads ¼ K 0aK
�
a nASn

0 2
0 (1� u)

K�a nAS þ K�d þ K 0an
0
0(1� u)

(b) Write the site balance equation for chemisorbed atoms in the steady state.

Using this and your result in (a), find the equation to determine u.

9.11. Normal and Dissociative Adsorption

(a) Consider the steady-state chemisorption and desorption reactions at a

reactor wall at room temperature (300 K):

A(g)þ S ��! ��
Ka

Kd

A:S

A:Sþ A:S �!Kd2
A2(g)þ 2S

Make the following assumptions: s0 � 1, the chemisorption well depth

for atoms is Edesor ¼ 3V, and the molecular dissociation energy is

Ediss ¼ 5V. Note that the activation energies for desorption of atoms

and molecules are Edesor and 2Edesor � Ediss , respectively (see Fig. 9.4).

Also use as typical parameters: �vA � 8� 104 cm=s, n00 � 1015 cm�2,
nAS � 1013 cm�3, and use the preexponential factors for normal and

associative desorption of 1014 s�1 and 0:1 cm2/s, respectively. For these
parameters, show that the reactor walls are completely passivated; that

is, u � 1.

(b) Show that for chemisorption with these parameters, virtually all atoms

desorb as molecules rather than as atoms.

(c) Find the ratio GA2
=GA of the desorbing molecular flux GA2

to the flux GA

of atoms incident on the surface, and show that this ratio is very small.
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(d) Now consider physisorption of A along with desorption of A and A2 on

a completely passivated wall (no chemisorption). Make the same

assumptions as in (a), except let the physisorption well depth be

Edesor � 0:2V; hence the activation energy for desorption of atoms is

Edesor, but the activation energy for desorption of molecules is zero

(this reaction is now exothermic). Use a preexponential factor for

normal desorption of 1013 s�1 and an associative desorption rate constant

of 0:1 cm2/s. For these parameters, show that the surface coverage for

physisorption is very small; u� 1.

(e) Show that for physisorption with these parameters virtually all atoms

desorb as atoms rather than as molecules.

(f) Find the ratio GA2
=GA of the desorbing molecular flux GA2

to the flux GA

of atoms incident on the surface, and show that this ratio is very small.

Note that in view of your results in (c) and (f), the surface recycles most reactive

atoms back into the discharge as atoms. This is typical for fluorine atoms.
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CHAPTER 10

PARTICLE AND ENERGY BALANCE
IN DISCHARGES

10.1 INTRODUCTION

For low-pressure discharges, the plasma is not in thermal equilibrium and the elec-

trical power is coupled most efficiently to plasma electrons. In the bulk plasma,

energy is transferred inefficiently from electrons to ions and neutrals by weak colli-

sional processes; for ions, energy can also be transferred by weak ambipolar electric

fields. The fraction of energy transferred by elastic collision of an electron with a

heavy ion or neutral is of order 2m=M � 10�4, where m and M are the electron

and heavy particle masses. Hence the electron temperature Te greatly exceeds the

ion and neutral temperatures, Ti and Tg, respectively, in the bulk; typically Te �
2–5 V whereas Ti and Tg are at most a few times room temperature (0.026 V).

However, dissociation and excitation processes (see Section 8.3) can create a sub-

group of relatively high energy heavy particles. Also, the ambipolar electric fields

accelerate positive ions toward the sheath edge, and typically, the ions in the bulk

acquire a directed energy at the sheath edge of order Te=2.
At low pressures, the mean free path for ionizing electrons, with energies of

10–15 V, can be comparable to the discharge dimensions. Hence, even if the elec-

trical power is deposited in a small volume, within an unmagnetized discharge, the

electron–neutral ionization rate niz can be relatively uniform, since the ionization

occurs on the distance scale of this mean free path. In magnetized plasmas, on the

other hand, the ionization may be highly nonuniform as the magnetized electrons
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have trouble crossing field lines, so ionization along a magnetic flux tube might be

uniform but significant radial nonuniformities may persist. In addition, the propa-

gation and absorption of exciting electromagnetic fields can depend on the electron

density distribution. In some instances, the density profile can steer power into

regions of higher or lower density and make the plasma more or less uniform,

respectively (see Chapter 13). At higher pressures, the mean free path for ionizing

electrons is often smaller than the discharge dimensions. Hence for a nonuniform

electron power deposition, the ionization frequency within the discharge can be

nonuniform.

The electron distribution function fe need not be Maxwellian. However, insight-

ful estimates of source operation can be obtained by approximating fe to be

Maxwellian, with uniform temperature Te, and with the various electron rate con-

stants assumed to be uniform within the bulk plasma. Alternatively, it is sometimes

useful to approximate fe with either a bi-Maxwellian distribution, in which the more

energetic electrons are characterized by a higher temperature, or with a Druyvesteyn

distribution for which the most energetic electrons fall more rapidly with energy.

The detailed distribution depends on the collisional processes, the gas pressure,

and the heating mechanism (see Chapter 18). Electron–neutral collisional processes

are important not only for particle production (ionization, dissociation) but also for

other collisional energy losses (excitation, elastic scattering). Ion–neutral collisions

(charge transfer, elastic scattering) are also important in determining particle

production, plasma transport, and ion energy distributions at a substrate surface.

The myriad of collisional processes that can occur in molecular feedstock gas

mixtures can obscure the fundamental principles of particle and energy balance.

Consequently, a noble gas, such as argon, is often used as a reference for describing

discharge operation. Although this provides some understanding of plasma proper-

ties, it provides little understanding of gas and surface chemistry, which are critical

to most processing applications. Furthermore, most process gases are molecular and

electronegative (containing negative ions), leading to significant differences in

plasma properties compared to argon. To obtain insight into the more complicated

plasma and chemical phenomena that occur in typical materials processing dis-

charges, we also examine properties of electronegative discharges.

In electropositive discharges, there are only two species that are normally con-

sidered, electrons and one positive ion species. The diffusion analysis of Sections

5.2 and 5.3, or some relatively straightforward modification, is usually adequate

to treat the particle transport. If magnetic fields are present, then the methods of Sec-

tions 5.4 and 5.5 can be used. Similarly, sheath dynamics is treated as in Sections 6.2

and 6.3. In Section 6.4, we also included a negative ion species, in preparation for a

treatment of particle transport in electronegative plasma. In electronegative plasma

at least one additional ion species with negative charge is present. Although charge

neutrality still holds within the bulk plasma, the low-mobility, low-temperature,

negative ions may constitute most of the negative charge, thus profoundly influen-

cing the dynamics. In addition, where for low-pressure electropositive plasmas we

usually neglect volume electron–ion recombination, it is generally not possible to

neglect recombination of negative and positive ions because this process has a
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very large rate constant (see Section 8.4). This latter effect makes the diffusion

equation fundamentally nonlinear, and therefore much more difficult to solve.

In Section 10.2, we treat electropositive plasmas, where the equations for particle

balance and energy balance decouple, the former giving the electron temperature,

and the latter giving the electron and ion densities. In Section 10.3, we extend the

treatment to electronegative plasmas, which are considerably more complicated.

Simplifying assumptions must be made to specify an ambipolar diffusion coefficient

for the positive ions, and the resulting equations are fundamentally nonlinear. The

particle and energy balance equations are also coupled, further complicating the

analysis. As we shall see, rather strong simplifying assumptions are required to

obtain analytic solutions. In Section 10.4 we present approximate analytic solutions

for electronegative plasmas, which may include an electropositive edge region. Cal-

culations are performed for oxygen and chlorine. Numerical solutions, obtained

from particle-in-cell (PIC) simulations, are also given and the results compared

with the analytically obtained equilibria.

There are some advantages to operating a discharge repetitively pulsed, rather than

steady state. In this mode of operation there is no true equilibrium, but rather a repeated

transient build-up and decay, similar to the charging and discharging of a capacitor.

However, nonlinearities make the time evolution more complicated than exponential

build-ups and decays. In Section 10.5, we treat some simple models of this operation.

In all cases, the models for the plasma equilibrium that we discuss in this chapter

are not complete. The voltage across a plasma sheath cannot be specified indepen-

dently of the heating mechanism and the power absorbed by the plasma. To obtain a

complete heating model we must specify the method of sustaining the plasma from

an external energy source, and determine how that source transfers energy to the

electrons and (indirectly) to the ions. We consider various ways of transferring

energy from fields to plasma discharges in Chapters 11–14. The resulting electron

heating mechanisms are of the following types:

. Ohmic heating

. Stochastic heating

. Resonant wave–particle interaction heating

. Secondary electron emission heating.

Ohmic heating is present in all discharges due to the transfer of energy gained

from the acceleration of electrons in electric fields to thermal electron energy

through local collisional processes. Ohmic heating is particularly important at

high pressures at which the collision frequency is high, where it can be the dominant

heating mechanism.

Stochastic electron heating (sometimes called collisionless heating) has been

found to be a powerful mechanism in capacitive rf discharges. Here electrons

impinging on the oscillating sheath edge suffer a change of velocity upon reflection

back into the bulk plasma. As the sheath moves into the bulk, the reflected electrons

gain energy; as the sheath moves away, the electrons lose energy. However,

averaging over an oscillation period, there is a net energy gain. Since the electric
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fields in the sheath are much larger than the fields inside the plasma, stochastic

heating is often the dominant heating mechanism in low-pressure capacitive dis-

charges. Sheath heating can also preferentially heat the higher-energy electrons,

leading to bi-Maxwellian distributions at low pressure. We shall treat this heating

mechanism in detail in Chapter 11. Collisionless heating can also be important in

low pressure inductive discharges, which we treat in Chapter 12.

Wave–particle interactions are a fundamental method of transferring energy

from fields to electrons and are an important mechanism of electron heating in

high density discharges such as ECR, helicon, and surface wave sources. The

heating can involve both collisional (ohmic) and collisionless energy transfer. We

consider these processes in Chapter 13.

Secondary emission heating does not play a central role in most low-pressure dis-

charges. At high pressures, especially in dc and capacitive rf discharges, secondary

emission can play a crucial role in plasma production and can also contribute sub-

stantially to electron heating. It is fundamental to the operation of dc glow dis-

charges. We consider some of these effects in Chapters 11 and 14. The plasma

heating mechanism often defines the type of plasma that is generated, as will be

seen in the following chapters.

10.2 ELECTROPOSITIVE PLASMA EQUILIBRIUM

Basic Properties

We consider the example of argon discharges. The most important rate constants for

electron collisions in argon are Kiz;Kex, and Kel for electron–neutral ionization,

excitation, and momentum transfer. These are given in Fig. 3.16 as a function of

Te. The most important cross sections for ion–neutral collisions in argon are for res-

onant charge transfer and elastic scattering. As shown in Figure 3.15, the cross

section for resonant charge transfer of Arþ on Ar somewhat exceeds that for

elastic scattering. The combined ionic momentum transfer cross section si for

these two processes is large (si � 10�14 cm2) and relatively constant for the

(thermal) ion energies of interest. The corresponding ion–neutral mean free path

is given in (3.5.7): li ¼ 1=ngsi, where ng is the neutral argon density.

The overall discharge particle losses for a cylindrical plasma having radius R and

length l depend on the particle fluxes to the walls. These fluxes can be written as a

product nsuB, where ns is the ion density at the plasma–sheath edge and uB is the

Bohm (ion loss) velocity. The relation between the density ns at the sheath edge

and the density n0 at the plasma center is complicated because the ambipolar trans-

port of ions and electrons spans the regime li � R, l, depending on the pressure and

the values for R and l. As discussed in Chapter 5, there are three regimes.

Low Pressure: li & (R; l) This Langmuir regime was described in Section

5.3. The ion transport is collisionless and well described by an ion free-fall profile

(Fig. 5.3 in plane-parallel geometry) within the bulk plasma. This profile is relatively
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flat near the plasma center and dips near the sheath edge, with ns=n0 � 0:5 for R � l

(planar geometry) and ns=n0 � 0:4 for l � R (infinite cylinder geometry).

Intermediate Pressures: (R; l) & li & (Ti=Te)(R; l) In this regime, also des-

cribed in Section 5.3, the transport is diffusive and ambipolar. However, the ion drift

velocity ui much exceeds the ion thermal velocity within most of the bulk plasma,

leading to a nonlinear diffusion equation with the solution (5.3.7) for the density

profile in plane parallel geometry shown in Figure 5.2b. Again the profile is

relatively flat in the center and steep near the sheath edge. As discussed in

Section 5.3, joining the collisionless (low pressure) and collisional (intermediate

pressure) results leads to the estimates (5.3.13) and (5.3.15), repeated here:

hl ;
nsl

n0
� 0:86 3þ l

2li

� ��1=2

(10:2:1)

at the axial sheath edge, and

hR ;
nsR

n0
� 0:80 4þ R

li

� ��1=2

(10:2:2)

at the radial sheath edge.

High Pressures: li . (Ti=Te)(R; l) In this regime, described in Section 5.2,

the transport is diffusive and ambipolar, and the density profile is well described

by a J0 Bessel function variation along r and a cosine variation along z. For this

highly collisional regime the assumption of a relatively uniform density within

the plasma bulk, falling sharply near the sheath edge, is not good. This regime is

relevant, for example, to the higher pressure planar rf capacitive discharge analysis

of Chapter 11. As shown in Problem 5.7,

hl ¼ nsl

n0
¼ 1þ l

p

uB

Da

� �2
" #�1=2

(10:2:3)

where uB is the Bohm velocity and Da is the ambipolar diffusion coefficient.

However, for these higher pressures it is often adequate to use a solution in which

the edge density nsl ’ 0 and the wall flux is found from the density gradient at

the wall, Gi ¼ �Dadni=dx (in parallel plane geometry).

The overall discharge energy losses depend on the collisional energy losses, Ec,

as well as on the kinetic energy carried by electrons and ions to the walls. Using the

rate constants in Figure 3.16, the collisional energy Ec lost per electron–ion

pair created was defined in (3.5.8) and is plotted versus Te in Figure 3.17. For

Maxwellian electrons, the mean kinetic energy lost per electron lost was shown in
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(2.4.11) to be Ee ¼ 2Te. The mean kinetic energy lost per ion lost, Ei, is the sum of

the ion energy entering the sheath and the energy gained by the ion as it traverses

the sheath. The ion velocity entering the sheath is uB, corresponding to a directed

energy of Te=2. The sheath voltage Vs takes various forms depending on whether

significant rf or dc currents are drawn to the surface, as described in Sections 6.2

and 6.3. If there are no significant voltages applied across the sheath, then for an

insulating wall, the ion and electron fluxes must balance in the steady state,

leading to (6.2.17), and setting Vs ; �Fw we have

Vs ¼ Te ln
M

2pm

� �1=2

(10:2:4)

or Vs � 4:7Te for argon. Accounting for the initial ion energy, we obtain

Ei � 5:2Te. At an undriven conducting wall, the fluxes need not balance, although

the integrated fluxes (particle currents) must balance. However, if the fluxes are not

too dissimilar, then (10.2.4) remains a good estimate due to the logarithmic depen-

dence of Vs on the ratio of fluxes.

Let us note that the separation of kinetic energies lost into ion and electron com-

ponents depends on position within the sheath. Ions and electrons crossing the

sheath to the wall gain and lose an energy Vs, respectively. Hence Ee ¼ 2Te þ Vs

and Ei ¼ 1
2
Te at the plasma–sheath edge, but Ee ¼ 2Te and Ei ¼ 1

2
Te þ Vs at the

wall. The sum Ee þ Ei is independent of position.

A high-voltage sheath exists at the negatively driven electrode (cathode) surface

of a dc discharge, as described in Section 6.3, with the sheath voltage

Vs � Vdc (10:2:5)

where Vdc is the anode–cathode voltage. Similar high-voltage sheaths exist near

capacitively driven electrode surfaces. For a symmetrically driven capacitive rf

discharge, with Vrf � Te such that temperature effects can be ignored, a Fourier

expansion of the field gives (see Section 11.2)

Vs � 0:4Vrf (10:2:6)

where Vrf is the driving voltage across the electrodes. For a strongly asymmetrically

driven discharge, all the field appears across a single sheath, such that

Vs � 0:8Vrf (10:2:7)

at the driven (powered) electrode. More precise calculations of the coefficients in

(10.2.5)–(10.2.7) are given in Chapter 14 for dc discharges and in Chapter 11 for

capacitive rf discharges. The ion kinetic energy lost at a surface is then

Ei ¼ Vs þ 1

2
Te (10:2:8)
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where Vs is given by one of (10.2.4)–(10.2.7). We see from the above discussion that

estimating ion energy is not so simple as it depends not only on electron temperature

but also on source geometry and the application of bias voltages. Summing the three

contributions yields the total energy lost per electron–ion pair lost from the system:

ET ¼ Ec þ Ee þ Ei (10:2:9)

The discharge equilibrium generally depends only weakly on the sheath thickness.

Undriven sheath thicknesses s rarely exceed a few Debye lengths lDe; hence such

sheaths are less than a millimeter thick in typical discharges. The thickness of a

high voltage sheath follows that of a Child law, with s given by (6.3.14) with

V0 � Vs. For typical dc or capacitive rf discharges, s is of the order of 0.5 cm.

Uniform Density Discharge Model

We consider a simple cylindrical discharge model in the low-to-intermediate ion

mean free path regime to estimate the plasma parameters and their variation with

power, pressure and source geometry. The electron temperature Te, the ion bom-

barding energy Ei, the plasma density n0, and the ion current density Ji are the

most significant quantities for plasma processing applications. We approximate

the density to be nearly uniform in the bulk cylindrical plasma, with the density

falling sharply near the sheath edges, with (10.2.1) and (10.2.2) giving the ratios

of sheath to bulk density. This approximation is one form of a global model, in

which the profile is assumed. We assume Maxwellian electrons absorbing an elec-

trical power Pabs.

We determine the electron temperature Te from particle balance by equating the

total surface particle loss to the total volume ionization,

n0uBAeff ¼ Kizngn0pR
2l (10:2:10)

where

Aeff ¼ 2pR2hl þ 2pRlhR (10:2:11)

is the effective area for particle loss. Since the ionization and loss terms are both

proportional to the plasma density, n0 cancels and (10.2.10) can be rewritten as

Kiz(Te)

uB(Te)
¼ 1

ngdeff
(10:2:12)

where

deff ¼ pR2l

Aeff

¼ 1

2

Rl

Rhl þ lhR
(10:2:13)

10.2 ELECTROPOSITIVE PLASMA EQUILIBRIUM 333



is an effective plasma size for particle loss, and the explicit Te dependences of Kiz

and uB are assumed known. Given ngdeff , we can solve (10.2.12) for Te. For

argon with K iz from Table 3.3, and for typical plasma pressures and sizes, we

obtain values of Te shown in Figure 10.1.

We see that Te varies over a narrow range between 2 and 5 V, because the expo-

nential variation of Kiz with Te allows wide variations of Kiz for small variations of

Te. We note that Te is determined by particle conservation alone, and is independent

of the plasma density and therefore the input power.

We determine the central plasma density n0 from energy balance by equating the

total power absorbed, Pabs, to the total power lost

Pabs ¼ en0uBAeffET (10:2:14)

Solving for n0, we obtain

n0 ¼ Pabs

euBAeffET

(10:2:15)

which yields n0 for a specified Pabs and Te determined from (10.2.12) or

Figure 10.1. Note that n0 is determined by the total power balance in the discharge

and is a function of pressure only through the dependence of hl and hR on p and

through the dependence of Te on p.

We have assumed in (10.2.14) and (10.2.15) that the same energy loss ET occurs

at all surfaces. If this is not the case, then these equations must be modified; for

1018 1019 1020 1021
1

2

3

4

5

6

Te (V)

ng deff (m–2)

FIGURE 10.1. Te versus ngdeff for Maxwellian electrons in argon.
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example, for effective areas Aeff1 and Aeff2 with energy losses ET1 and ET2, (10.2.14)

becomes

Pabs ¼ en0uB(Aeff1ET1 þ Aeff2ET2)

Example 1 Consider a cylindrical discharge having low voltage sheaths at all sur-

faces, with Vs given by (10.2.4). Let R ¼ 0:15m; l ¼ 0:3m; ng ¼ 3:3� 1019 m�3

( p ¼ 1mTorr at 298 K), and Pabs ¼ 800W. At 1 mTorr, li � 0:03m from (3.5.7).

Then from (10.2.1) and (10.2.2), hl � 0:31; hR � 0:27, and from (10.2.13),

deff � 0:18m. From Figure 10.1, Te � 3:8V, and from Figure 3.17, Ec � 47V.

Using (10.2.9) with Ei � 5:2Te � 20V and Ee ¼ 2 Te � 7:6V, we find

ET � 74V. The Bohm velocity is uB � 3:0� 103 m=s, and Aeff � 0:12m2 from

(10.2.11). Substituting these values into the energy balance (10.2.15) yields

n0 � 1:9� 1017 m�3, corresponding to a flux at the axial boundary Gil ¼ n0hluB �
1:7� 1020 m�2 s�1 or an ion current density of Jil � 2:8mA=cm2.

Example 2 If a strong dc magnetic field is applied along the cylinder axis, then

particle loss to the circumferential wall is inhibited. For the parameters of

Example 1, in the limit of no radial loss, a calculation similar to that in Example

1 yields n0 � 5:2� 1017 m�3, and Jil � 7:0mA=cm2. There is a significant increase

in charge density and ion flux due to the magnetic field confinement. The details of

the calculation for this example and for Example 3 are left to Problem 10.1.

Example 3 Consider the parameters of Example 2 for a symmetrically driven rf

discharge with high voltage sheaths, for example, Vs � 500V at each of the cylinder

endwalls. There is a large increase in Ei � 520V and therefore in ET � 570V at the

endwalls, which leads to a significant reduction in n0 and Jil; n0 � 7:5� 1016 m�3

and Jil � 1:0mA=cm2.

A comparison of Examples 2 and 3 illustrates an important difference between

discharges having high-voltage sheaths over a significant fraction of the surface

area and discharges having low-voltage sheaths at all surfaces. The densities are sig-

nificantly lower and the ion bombarding energies are significantly higher for the

same input power and geometry for the high-voltage case than for the low-

voltage case. Consequently, in practical applications, low pressure discharges

tend to divide into two types:

Low-density discharges These discharges have high-voltage sheaths over a

significant surface area. We treat the important cases of capacitive rf discharges

in Chapter 11 and dc discharges in Chapter 14.

High-density discharges These discharges have low-voltage sheaths near

almost all surfaces. We treat the cases of rf driven inductive and helical resonator

discharges in Chapter 12; and helicon, ECR, and surface wave discharges in

Chapter 13. The ion bombarding energy Ei in high density discharges is often too
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low for the materials process of interest. In this case, the substrate surface is often

capacitively driven by an additional rf power supply to increase Ei. In this way,

the desired ion bombarding energy at an rf powered substrate holder can be

obtained. The additional ion energy flux ensuBEi striking the wafer holder is sup-

plied by the rf power source driving the holder. The independent control of the

ion energy and the ion flux hitting the substrate is a highly desirable feature of

high density (low sheath voltage) discharges.

It should be noted that Vs was arbitrarily chosen to be 500 V in Example 3. In

general, as mentioned in Section 10.1, it is not possible to choose the power

absorbed Pabs and the discharge voltage Vrf (or Vdc) independently, as was

done in Example 3. Therefore, for capacitive rf and dc discharges, the preceding

analysis is not complete. We elaborate this in Chapter 11, where we determine

the I–V characteristic for capacitive rf discharges and complete the analysis

presented here.

Nonuniform Discharge Model

At relatively high pressures, li . (Ti=Te)l, the uniform global model cannot be

used. The ambipolar diffusion profile in one dimensional slab geometry was

obtained, in Section 5.2, by solving the ion conservation equation,

dGi

dx
¼ Kizngne (10:2:16)

where ne ¼ ni and

Gi ¼ �Da

dni

dx
(10:2:17)

to obtain the density ni and particle flux Gi. The results (5.2.22) and (5.2.24),

repeated here, are

ni(x) ¼ n0 cosbx (10:2:18)

Gi(x) ¼ Dabn0 sinbx (10:2:19)

with Da the constant ambipolar diffusion coefficient. The simplest assumption made

to obtain a solution is that ni � 0 at x ¼ +l=2 which gives b ¼ p=l. This is reason-
able because li � l [See discussion following (5.2.25)]. Integrating (10.2.16) from

x ¼ 0 to x ¼ l=2, we obtain

Gi(l=2) ¼ Kizng

ðl=2

0

ni(x) dx (10:2:20)
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Equation (10.2.20) expresses the overall particle conservation in a nonuniform

plasma slab, in analogy to (10.2.10), which expresses this same conservation for a

finite cylinder of plasma with uniform bulk density except near the edges. Sub-

stituting (10.2.18) and (10.2.19) with x ¼ l=2 into (10.2.20) and performing the

integration, we obtain

p

l
Da ¼ l

p
Kizng (10:2:21)

Since

Da ¼ eTe

MngKmi

(10:2:22)

where Kmi(Ti) is the ion–neutral momentum transfer rate constant, and substituting

uB ¼ (eTe=M)1=2, (10.2.21) can be rewritten

½KmiKiz(Te)�1=2
uB(Te)

¼ p

ngl
(10:2:23)

Equation (10.2.23) is analogous to (10.2.12) in that it determines Te for a given ngl.

Similarly, equating the total power absorbed by a unit area of the discharge, Sabs,

to the total power lost, we have

Sabs ¼ 2Gi(l=2) e(Ee þ Ei)þ 2eEc

ðl=2

0

Kizngne(x) dx (10:2:24)

Using (10.2.20) to eliminate the integral in (10.2.24). We find

Sabs ¼ 2Gi(l=2) eET (10:2:25)

Substituting (10.2.19) with sinbl=2 ¼ 1 into (10.2.25), and solving for n0, we obtain

n0 ¼ Sabsl

2pDaeET

(10:2:26)

which is analogous to (10.2.15).

This procedure can be generalized to a finite cylinder nonuniform discharge with

a constant Da, which can be solved, as done in Section 5.2. Using the solution found

there, for example, with the approximations of zero densities at the plasma edge with

a thin sheath, then the particle conservation equation is

2pR

ð

GiR(R; z) dzþ 4p

ð

Gil(r; l=2) r dr ¼ Kizng

ð

ni(r; z)2pr dr dz (10:2:27)
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where GiR;Gil, and ni are evaluated using the product solution (5.2.37). Equation

(10.2.27), analogous to (10.2.20), determines Te for a given ng, R, and l. In like

manner an energy balance relation analogous to (10.2.24) can be obtained, which

can be solved for n0 (see Problem 10.2).

As discussed in Section 5.2, for some plasmas the edge density may not be small

compared to the central density. In such cases the boundary conditions can be

modified, as in (5.2.28), to specify that Gi ¼ nsuB at the plasma boundaries. The

calculation is straightforward, but the algebra becomes considerably more compli-

cated. In all cases, the plasma parameters can be determined analogously to the

procedure used for a plasma cylinder with n � 0 on the boundaries. The particle

and power balance relations in this section can also be extended to describe mag-

netized plasmas. This has been done by Margot et al. (2001) for a finite length

cylindrical high-density argon plasma at low pressures, using the cross-field ambi-

polar diffusion coefficient for D?a given in (5.4.20), showing a good fit to experi-

mental data.

Neutral Radical Generation and Loss

For the feedstock gases used in processing applications, dissociation into neutral

products occurs in addition to ionization, considered above, and attachment which

creates negative ions, considered in the following sections. Although all these pro-

cesses, including ionization of the detached neutral fragments, occur together in

most processing discharges, in the simplest cases only the dissociated neutrals

and the ions of the primary neutral species are important. Oxygen, which we con-

sider as an example in the following sections, has this property in some ranges of

pressure and power. To illustrate the dissociation process and its scaling with dis-

charge parameters, we consider the simplest discharge model, that of a one-

dimensional, uniform plasma slab in the low-pressure regime. The scaling in the

high pressure regime is left to Problem 10.12. For electrode separation l and area

A, the particle balance yields, from (10.2.12) and (10.2.13) in slab geometry (with

R � l)

Kiz(Te)

uB(Te)
¼ 2hl

ngl
(10:2:28)

which determines Te. The overall discharge power balance yields the ion density,

from (10.2.15)

nis ¼ hlni ¼ Pabs

2eETuBA
(10:2:29)

with the corresponding ion flux

Gis ¼ nisuB (10:2:30)
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Consider now the production of oxygen atoms by dissociation of the feedstock

oxygen molecules

eþ O2 �!Kdiss
2Oþ e

where Kdiss has an Arrhenius form:

Kdiss ¼ Kdiss0 e
�Ediss=Te (10:2:31)

The ionization rate constant can also be fitted to a similar form:

Kiz ¼ Kiz0 e
�Eiz=Te (10:2:32)

Raising (10.2.32) to the power Ediss=Eiz, we obtain

e�Ediss=Te ¼ Kiz

Kiz0

� �Ediss=Eiz

(10:2:33)

Substituting this into (10.2.31), we obtain

Kdiss ¼ C0K
Ediss=Eiz
iz (10:2:34)

where C0 ¼ Kdiss0=K
Ediss=Eiz
iz0 . Substituting (10.2.28) into (10.2.34) to eliminate the

temperature sensitive Kiz, we obtain

Kdiss ¼ C0

2hluB

ngl

� �Ediss=Eiz

(10:2:35)

In this form, it can be seen that Kdiss depends only weakly on the temperature Te.

Assume now that the net flux of O atoms to the electrodes is zero (passivated

electrodes) such that the only loss of O atoms is due to the vacuum pump. We

will discuss loading effects due to etching and nonpassivated walls in Section

15.2. We also assume low pressures for which the O-atom diffusion rate is fast com-

pared to the pumping rate. In this regime, the O-atom density is nearly uniform,

nOS � nO as described in Section 9.4 [see discussion following (9.4.15)]. Assuming

no other significant sources or sinks of O atoms, then the steady-state rate equation is

Al
dnO

dt
¼ 2AlKdissngni � SpnOS ¼ 0 (10:2:36)

where Sp ðm3=sÞ is the pumping speed, and we take ni � ne (negligible

negative ion density) as a simplifying approximation. Solving (10.2.36) for nOS,
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we obtain

nOS ¼ 2Alng

Sp
Kdissni (10:2:37)

Substituting for ni given by (10.2.29) and Kdiss given by (10.2.35) into (10.2.37), we

obtain

nOS ¼ 2Pabs

eETSp
C0

ngl

2hluB

� �1�Ediss=Eiz
(10:2:38)

Typically, Ediss=Eiz � 0:3–0.5. The flux of O atoms incident on an electrode is then

GOS ¼ 1

4
nOS �vO (10:2:39)

where �vO ¼ (8kTO=pMO)
1=2. Equations (10.2.30) and (10.2.39) give the ion flux at

the plasma-sheath edge and the neutral atom flux at the surface, respectively. We see

from (10.2.30) that Gi increases linearly with power and is almost independent of

pressure. (There is a weak pressure dependence given by the variation of ETuB
with pressure.) The neutral atom flux, from (10.2.39), also increases linearly with

power, and increases with the pressure (GO / p0:5–0:7). These scalings are important

in determining etch and deposition rates, as discussed in Chapters 15 and 16.

10.3 ELECTRONEGATIVE PLASMA EQUILIBRIUM

The addition of a negative ion species greatly complicates the equilibrium plasma

structure in a discharge. As shown in Figure 10.2, the plasma tends to stratify into

an electronegative core and an electropositive edge (Tsendin, 1989). The stratifica-

tion occurs because the ambipolar field required to confine the more energetic

mobile electrons pushes the negative ions into the discharge center. Since the nega-

tive ions generally have a low temperature compared to the electrons, only a very

small field is required to confine them to the core. The higher temperature electrons,

in Boltzmann equilibrium with this field, have a nearly uniform density in the pre-

sence of the negative ions, but then form a more usual electropositive plasma in the

edge regions, as shown in the figure.

The analysis of particle and energy balance in low-pressure electronegative

discharges is difficult for the following reasons:

. An additional particle conservation equation is required for the negative ions.

. Negative ions are confined by the ambipolar potentials and are not lost to the

walls, so various volume loss processes must be considered. These processes

result in fundamentally nonlinear equations for the particle balance.
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. The Bohm velocity, which signals the end of the plasma and the beginning of

the sheath, is modified by the presence of negative ions [see (6.4.7)].

. At low pressures, different diffusion models may be required in the electro-

negative core and the electropositive edge.

. In general, a set of nonlinear diffusion equations for the various species must be

solved simultaneously.

In spite of these complications, the near-constancy of ne in the electronegative

core over large parameter ranges allows simple approximate solutions to be obtained

for the equilibria. These are described in Section 10.4. There is a trade-off between

the more approximate analytic solutions, which expose the scaling of the plasma

parameters with external parameters, and the more accurate numerical solutions.

In this and the following section we follow the treatment of a series of papers by

the Authors (Lichtenberg et al., 1994, 1997; Kouznetsov et al., 1996, 1999) and

by Kaganovich and Tsendin (1993), Berezhnoj et al. (2000), Franklin and Snell

(1994, 2000a,b), and Franklin (2001).

We will mainly consider the simplest case in which there is one positive and one

negative ion species in addition to electrons, and one excited neutral detaching

species for negative ions. Much of the physics can be understood from this case.

However, we must bear in mind that the plasma chemistry can be quite complicated,

FIGURE 10.2. Positive ion, negative ion, and electron densities versus position for a plane

parallel electronegative discharge, showing the electronegative, electropositive, and sheath

regions.
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and other species can play significant roles. We will return to this point, briefly, after

treating the three charged species global model.

Differential Equations

As in electropositive plasmas, for each charged species we can write a particle

balance equation (2.3.7) and a drift–diffusion equation (5.1.3) for the flux G. A sim-

plified set of particle balance equations is

r � Gþ ¼ Kizngne � Krecnþn� (10:3:1a)

r � G� ¼ Kattngne � Krecnþn� � Kdetn�n� (10:3:1b)

r � Ge ¼ (Kiz � Katt)ngne þ Kdetn�n� (10:3:1c)

r � G� ¼ Kex�neng � Kdetn�n� � Kdex�nen� (10:3:1d)

The subscripts þ, 2, e denote positive ions, negative ions, and electrons, respect-

ively, ng is the neutral gas density, Kiz is the ionization rate constant, Krec is the

recombination rate constant, Katt is the dissociative attachment rate constant, n� is

the density of an excited neutral species, Kdet is the rate constant for detachment

of negative ions by collision with the excited neutrals, and Kdex� is the rate constant
for electron impact de-excitation of the excited neutral species. We neglect the elec-

tron detachment term�Kedetnen� in (10.3.1b), although it can be important for some

gases, for example, O2. Dissociative attachment is usually mainly from the ground

vibrational molecular state, but it can be mainly from vibrationally excited states, as

has been measured for H2; we assume the former here. The dominant excited species

for detachment can be a dissociation product of the feedstock gas, such as O atoms

for O2 feedstock, but is commonly a metastable molecule or atom; for example, O�
2

(1Dg) (see Table 8.1). The relative importance of negative ion recombination versus

detachment losses depends on the gas pressure and ratio of n�=ne. At low pressures

and/or high n�=ne ratios, recombination losses exceed detachment losses, and

(10.3.1 a–c) forms an essentially complete set of particle balance relations (with

n� � 0). At high pressures and/or low n�=ne ratios, detachment losses exceed

recombination losses. In this case the particle balance relation (10.3.1d) for n�
must be solved.

The drift–diffusion equations for the charged particles and Fick’s law for the

excited neutral species are

Gþ ¼ �Dþrnþ þ nþmþE (10:3:2a)

G� ¼ �D�rn� � n�m�E (10:3:2b)

Ge ¼ �Derne � nemeE (10:3:2c)

G� ¼ �D�rn� (10:3:2d)

where the Ds and ms are taken to be constants. As will be shown below, the

negative ions in the core reduce the ambipolar electric fields there to low values.
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Consequently, except at very low pressures, ion drift velocities are small compared

to ion thermal velocities, such that a constant diffusion coefficient model of the ion

transport can be used. We also make the ambipolar assumption that the sum of the

fluxes must balance

Gþ ¼ G� þ Ge (10:3:3)

and we have the quasi-neutrality condition

nþ ¼ n� þ ne (10:3:4)

Depending on plasma conditions we can determine n� from a simple model. In

particular, if the wall losses dominate detachment and electron impact de-excitation

losses for the excited species, then, inserting (10.3.2d) into (10.3.1d), we obtain the

simple diffusion equation

�D�r2n� ¼ Kex�neng (10:3:5)

For a uniform ne ¼ �ne, (10.3.5) can be easily solved (see Section 5.2). The boundary
condition for loss of n� at the walls is

�D�rn� ¼ 1

4
g�n�s �v� (10:3:6)

where g� is a loss probability for the excited species on the wall [see (9.4.37)], and �v�
is the mean speed of the excited species. For a typical value of g�, for example, 10�3

for metastable oxygen molecules, the solution for the density n� is practically

uniform [see the discussion following (9.4.15)]. Assuming this and integrating

(10.3.5) over the volume and using the boundary condition (10.3.6), we find

n� � 4Kex�V
g� �v�A

ng �ne (10:3:7)

where V is the discharge volume, A is the surface area for loss, and �ne � ne0 is the

mean electron density (Problem 10.4). The effects of the volume loss terms in

(10.3.1d) are explored in Problems 10.5 and 10.6; see also Franklin (2001).

Assuming that wall losses dominate, we substitute (10.3.7) into the negative ion

balance (10.3.1b) to obtain

r � G� ¼ Kattngne � Krecnþn� � K�ng �nen� (10:3:8)
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with K� a third-order rate coefficient

K� ¼ 4KdetKex�V
g� �v�A

(10:3:9)

Equation (10.3.8) then replaces (10.3.1b) in determining the discharge equilibrium.

The equilibrium naturally divides into two regimes depending on whether recom-

bination or detachment dominates the negative ion loss. From (10.3.8), we see that

recombination dominates detachment for

nþ .
K�ng
Krec

�ne (10:3:10)

Introducing the electronegativity a ¼ n�=ne, then for large a we will find that ne �
ne0 ¼ const and nþ � n�, as will be shown in the following subsection. Then

(10.3.10) yields the condition for recombination-dominated negative ion loss

a .
K�ng
Krec

(10:3:11)

Hence highly electronegative discharges at low pressures are recombination

dominated, while moderately electronegative discharges at higher pressures are

detachment-dominated. The transition between these regimes depends on the gener-

ation rate of excited species and their surface loss probability.

For both regimes, since the electrons are very mobile, we can eliminate the elec-

tric field by use of a Boltzmann assumption for the electrons. Setting Ge � 0 in

(10.3.2c) and using De ¼ meTe from the Einstein relation (5.1.9), we obtain

Te rne þ neE ¼ 0 (10:3:12a)

yielding

ne ¼ ne0 e
F=Te (10:3:12b)

with ne0 the central electron density andF the potential. On the other hand, the nega-

tive ions are not necessarily in Boltzmann equilibrium with the potential [see

(10.3.36)]. To treat this general case, we combine the particle balance and drift–

diffusion equations for positive and negative ions to obtain a pair of differential

equations which in plane parallel geometry are

d

dx
�Dþ

dnþ
dx

þ nþmþE
� �

¼ Kizngne � Krecnþn� (10:3:13)
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and

d

dx
�D�

dn�
dx

� n�m�E
� �

¼ Kattngne � Krecnþn� � K�ng �nen� (10:3:14)

The electric field and the positive ion density may be eliminated from (10.3.13) and

(10.3.14) using the Boltzmann relation (10.3.12a) for electrons and the quasineutral-

ity condition (10.3.4). Making these substitutions, and taking m� ¼ mþ and D� ¼
Dþ (T� ¼ Tþ ; Ti, a common ion temperature) for simplicity, we obtain

� d

dx
Dþ

d

dx
(n� þ ne)þ mþTe

n� þ ne

ne

dne

dx

� �

¼ Kizngne � Krec(n� þ ne)n�

(10:3:15)

and

d

dx
�Dþ

dn�
dx

þ mþTe

n�
ne

dne

dx

� �

¼ Kattngne � Krec(n� þ ne)n� � K�ng �nen�

(10:3:16)

Equations (10.3.15) and (10.3.16) can be solved simultaneously, together with the

appropriate boundary conditions, to obtain the density profiles. We will do this,

numerically, for oxygen and chlorine feedstock gases, in Section 10.4.

Boltzmann Equilibrium for Negative Ions

If we make the more restrictive assumption that the negative ion species is also in

Boltzmann equilibrium, then setting G� � 0 in (10.3.2b) and using D� ¼ m�Ti

from (5.1.9), we obtain

Tirn� þ n�E ¼ 0 (10:3:17a)

yielding

n� ¼ n�0 e
F=Ti (10:3:17b)

Eliminating E from (10.3.12a) and (10.3.17a), we obtain

rn�
n�

¼ g
rne
ne

(10:3:18)

where g ¼ Te=Ti. Using (10.3.18) together with

rnþ ¼ rn� þ rne
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obtained from quasineutrality (10.3.4), we find

rne ¼ 1

1þ ga
rnþ; rn� ¼ ga

1þ ga
rnþ (10:3:19)

We now show that the positive ion flux can be written in the form of Fick’s law

Gþ ¼ �Daþrnþ (10:3:20)

where Daþ depends on the electronegativity a. Substituting nþ ¼ n� þ ne and mþ ¼
Dþ=Ti into the second term in (10.3.2a), we obtain

Gþ ¼ �Dþ(rnþ þ TineE þ Tin�E)

Substituting neE from (10.3.12a) and n�E from (10.3.17a) into the preceding

equation, and using the gradients (10.3.19), we obtain, analogous to electropositive

plasmas, (10.3.20) with an ambipolar diffusion coefficient (see Problem 10.7)

Daþ ¼ Dþ
1þ gþ 2ga

1þ ga
(10:3:21)

Thompson (1959) gives a form similar to (10.3.14), but including corrections of

order amþ=me, which are much less than unity except at very high a. The variation
of Daþ with a is easily seen from (10.3.21). For a � 1; g cancels out such that

Daþ � 2Dþ. When a decreases below unity but ga � 1, then Daþ � Dþ=a such

that Daþ decreases with increasing a. For ga , 1, we find Daþ � gDþ ; Da, the

usual ambipolar diffusion coefficient without negative ions. For plasmas in which

a � 1 in the center of the discharge, the entire transition region takes place over

a small range of 1=g , a , 1 near the edge of the electronegative region, such

that the simpler value of

Daþ ¼ 2Dþ (10:3:22)

holds over most of the electronegative core.

Since 2Dþ � gDþ, the presence of negative ions greatly increases the plasma

confinement. The discontinuous slope of dnþ=dx near the boundary between electro-
negative and electropositive regions shown in Figure 10.2 is due to the sharp change

in Daþ from 2Dþ to gDþ. Because the ion flux near the boundary is the product of

the diffusion coefficient and density gradient, a sharp change in diffusion coefficient

for the same flux results in a sharp change in density gradient.

Although Daþ given by (10.3.21) is a function of a;a is implicitly given as a

function of nþ through the Boltzmann relations. Eliminating F from (10.3.12b)
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and (10.3.17b) yields

ne ¼ ne0
n�
n�0

� �1=g

(10:3:23)

Inserting this into quasi-neutrality (10.3.4) yields

nþ ¼ n� þ ne0
n�
n�0

� �1=g

(10:3:24)

which implicitly gives n� as a function of nþ (and the central densities ne0 and n�0).

Similarly, solving (10.3.23) for n� and inserting this into (10.3.4) yields

nþ ¼ n�0

ne

ne0

� �g

þ ne (10:3:25)

which implicitly gives ne as a function of nþ. The electronegativity a ¼ n�=ne
therefore also implicitly depends on nþ. Inserting (10.3.20) into (10.3.1a) and

using (10.3.24) for n� and (10.3.25) for ne, we obtain a single nonlinear diffusion

equation for nþ

� d

dx
Daþ

dnþ
dx

� �

¼ Kizngne � Krecnþn� (10:3:26)

where Daþ; ne, and n� are known functions of nþ that depend on ne0 and n�0.

Although (10.3.26) does not appear to depend on the detachment process, ne0 and

n�0 depend on the detachment, as will be seen below.

Equation (10.3.26) has as a boundary condition at the sheath edge x ¼ d=2 that

the ion flow cannot exceed the Bohm velocity. Stating this condition as an equality,

it becomes the Bohm flux condition

�Daþ
dnþ
dx

�

�

�

�

x¼d=2

¼ nþ(d=2) uBa (10:3:27)

Since negative ions may be present when (10.3.27) is satisfied, the Bohm velocity

has the general form from (6.4.7)

us ; uBa ¼ eTe(1þ as)

Mþ(1þ gas)

� �1=2

(10:3:28)

where as ¼ a(d=2) ¼ n�(d=2)=ne(d=2). The generalized Bohm velocity uBa
reduces to the usual expression uB ¼ (eTe=Mþ)1=2 when as ¼ 0. For as . 1=g,
the negative ion density at the sheath edge significantly reduces the Bohm velocity.
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In the electropositive edge regions of a low pressure stratified discharge, the dif-

fusion equation (10.3.26) may not be valid. This is because the constant diffusion

coefficient model applies only at high pressures. At low pressures, a variable mobi-

lity model must be used (see Section 5.3 and Appendix C). Such a model is

described in Section 10.4. In the electronegative core of the discharge, where a sig-

nificant negative ion density exists, (10.3.26) can be simplified. Since g � 1,

(10.3.23) implies that ne � ne0 in the core, as shown in Figure 10.2. Hence we

can write ne ¼ ne0 and n� ¼ nþ � ne0. Therefore the diffusion equation in the

core can be written as

� d

dx
Daþ

dnþ
dx

� �

¼ Kizngne0 � Krecnþ(nþ � ne0) (10:3:29)

We also haveDaþ � 2Dþ ¼ const for a � 1. Then except in the transition layer, for

a highly electronegative core (10.3.29) reduces to a relatively simple diffusion

equation with a constant diffusion coefficient.

Conservation Equations

Equation (10.3.26) can be characterized by three parameters: a0 ¼ n�0=ne0 (the

ratio of n� to ne at the plasma center), ne0, and Te. We can determine these three

quantities by solving (10.3.26) together with two particle conservation equations,

which are the integrated forms of (10.3.26) and (10.3.14), and an energy conserva-

tion equation. These are positive ion particle balance,

�Daþ
dnþ
dx

�

�

�

�

x¼d=2

¼
ðd=2

0

Kizngne dx�
ðd=2

0

Krecnþn� dx (10:3:30)

negative ion particle balance (negligible negative ion wall flux),

ðd=2

0

Kattngne dx�
ðd=2

0

Krecnþn� dx�
ðd=2

0

K�ng �nen� dx ¼ 0 (10:3:31)

and energy balance for the discharge,

Sabs ¼ 2eEc

ðd=2

0

Kizngne dxþ 2e(Ee þ Ei)nþ(d=2) uBa (10:3:32)

Here Ec(Te) is the collisional energy lost per electron–positive ion pair created, and

Ee þ Ei is the kinetic energy lost to the wall per electron–ion pair lost to the wall.

Given the neutral density ng and the power per unit area deposited in the discharge,

Sabs, the three equations can be simultaneously solved for the three unknowns Te;a0,

and ne0, provided d/2, is known. The plasma half width d/2 differs from the half

length of the device by a sheath width s. In a complete model we must determine
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s self-consistently with d/2, given the discharge heating mechanism. A common

assumption (sometimes not satisfied in capacitive rf discharges) is that s � d=2.
The set of equations can only be solved numerically. In addition, particularly at rela-

tively low pressure and low a, there may be a significant electropositive edge region

in which the positive ion mobility is not constant, such that the basic equations

(10.3.13) and (10.3.14) have nonconstant coefficients. There is also a new phenom-

enon in the regions where the negative ion density has fallen to very small values,

where larger electric fields tend to sweep the negative ions, created by attachment,

into the electronegative core (Deutsch and Räuchle, 1992; Vitello, 1999). This can

result in a significant additional friction force (see Section 17.3). As we shall see in

the next section, various reasonable approximations allow analytic solutions to be

obtained by separating the plasma into a core electronegative region with constant

parameters, and an edge electropositive region. Before doing this we explore the

range of validity of the various approximations that we have made in this section.

Validity of Reduced Equations

We examine the condition for validity of the Boltzmann equilibrium for negative

ions, from which we have derived a single ambipolar diffusion equation (10.3.26)

for the positive ions. From (10.3.2b), we have

G� ¼ �D�
dn�
dx

� n�m�E (10:3:33)

with the condition for Boltzmann equilibrium being that

hB ¼ G�

�

D�
dn�
dx

�

�

�

�

�

�

�

�

� 1 (10:3:34)

everywhere. Integrating the negative ion balance equation (10.3.8) from 0 to x, G�
can be written as

G� ¼
ðx

0

Kattngne dx
0 �

ðx

0

Krecnþn� dx0 �
ðx

0

K�ng �nen� dx0 (10:3:35)

If we have profiles for ne; n�, and nþ, (10.3.34) can be explicitly evaluated. We have

obtained the profiles in Section 10.4, finding ne � ne0, a parabolic solution for n�(x),
and nþ ¼ ne0 þ n�(x), with parabolic scale length l1=2 (see Fig. 10.2). For these

profiles (10.3.34) has its maximum value at x ¼ 0, giving the condition for Boltz-

mann equilibrium of negative ions,

hB ;
ne0l

2
1

8D�

7

15
Kreca0 þ 1

3
K�ng

� �

, 1 (10:3:36)

where we use a simple inequality since we have taken the maximum value of

the ratio.
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If (10.3.36) is not satisfied, the negative ions are not in Boltzmann equilibrium

and (10.3.26) is not valid, but the electron profile may still be quite flat, which

also allows the reduction to a single differential equation for the profile. Adding

(10.3.15) and (10.3.16) and dropping small terms, we obtain

� d

dx
2Dþ

dnþ
dx

þ gDþ
dne

dx

� �

¼ (Kiz þ Katt)ngne

� 2Krecnþ(nþ � ne)� K�ng �ne(nþ � ne) (10:3:37)

where we have used the Einstein relation to write mþTe ¼ gDþ. Equation (10.3.37)

is still a function of two variables ne and nþ, so that a known form of ne is required to

obtain a general solution. However, because Te � Ti, there is a large parameter

range in which (10.3.26) is not satisfied but ne is still essentially flat, as determined

by the Boltzmann relation. Assuming such a flat solution with gdne=dx � dnþ=dx in
(10.3.37), we obtain

2Dþ
d2nþ
dx2

þ (Kiz þ Katt)ngne0 � 2Krecnþ(nþ � ne0)� K�ngne0(nþ � ne0) ¼ 0

(10:3:38)

We would expect that, with increasing hB, at sufficiently high pressure and a0,

the ionization and attachment are increasingly balanced locally by the recombina-

tion and detachment, leading to a relatively flat positive ion profile. In this

regime, the LHS of (10.3.37) is a perturbation to the RHS. The RHS by itself

gives, for large a,

ne(x) ¼
2Krecn

2
þ(x)þ K�ng �nenþ(x)
(Kiz þ Katt)ng

(10:3:39)

and dropping the detachment term for clarity, we find ne / n2þ. This is quite different
from the parameters for which ne � ne0, a constant, with nþ varying with position.

However, because the LHS of (10.3.37) is small, both ne and nþ are nearly constant

over the central part of the discharge, such that other approximations can be made, as

we do in Section 10.4.

10.4 APPROXIMATE ELECTRONEGATIVE EQUILIBRIA

The stratification of the discharge into a parabolic electronegative core and an elec-

tropositive edge at moderate electronegativity a0 allows simple approximate sol-

utions to be obtained for a variety of equilibria. However, other factors arise that

divide the discharge into a number of parameter regimes in which different approxi-

mate solutions hold. At higher a0, the positive ion drift velocity near the edge of the

core can become equal to the local ion sound velocity. If this occurs, local field

build-up will rather abruptly cut off the negative ions, initiating an electropositive
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edge. A further increase in a0 leads to the disappearance of the electropositive edge

altogether.

At higher gas densities, the integrated loss of positive ions by recombination

becomes large compared to the diffusion loss. One consequence is that the negative

ions are no longer in Boltzmann equilibrium, which leads to a flattening of the ion

profile in the electronegative core region. A qualitative criterion for the transition to

a flattened core is that (10.3.36) is not satisfied (see Lichtenberg et al., 1997, for a

detailed treatment). As a0 is increased at a fixed higher pressure (by decreasing

ne0), the flattened profile goes through the same sequence of variations as for the

parabolic profile at lower pressure. First there is a transition to an internal sound

velocity limitation, and then, with a further increase in a0, the electropositive

edge region disappears. These transitions can be found using various approximate

profiles, as described in the following subsections. For a given feedstock gas at an

assumed relatively constant Te, the behavior in the various regimes is mainly deter-

mined by two parameters, ne0d and ngd, with d the bulk plasma length.

Global Models

The complexity of electronegative equilibria motivates us to consider global models

in which the plasma spatial variations are assumed, rather than calculated. The sim-

plest model of this type, also called a zero-dimensional model because all spatial

variations are ignored, is useful to provide a first estimate of the plasma parameters

and their scaling in complicated discharges, and to study the effects of a large

number of reactions and the effects of more than one positive ion species, which

occur in real gases, (e.g., Lee et al., 1994; Lee and Lieberman, 1995; Meeks and

Shon, 1995; Stoffels et al., 1995; Kimura and Ohe, 1999). Although global

models are usually employed to treat multi-species systems, for the present discus-

sion we confine ourselves to the principal reactions and a single positive ion species,

as in the general analysis of Section 10.3.

To put our equations in the form used in Section 10.2 to model an approximately

uniform density electropositive plasma, but allow for known profiles more charac-

teristic of electronegative plasmas, we take volume averaged quantities, and using

(10.3.30)–(10.3.32), the equations for conservation of positive ions, negative ions

and energy within the volume are written in the form

Kizne0ngV � Krec �nþ �n�Vrec � GþsA ¼ 0 (10:4:1)

Kattne0ngV � Krec �nþ �n�Vrec � K�ngne0 �n�V ¼ 0 (10:4:2)

Pabs ¼ eEcKizne0ngV þ GþsAe(Ee þ Ei) (10:4:3)

Here V and A are the volume and surface area of the plasma (sheath thicknesses are

assumed to be small), ne0 is the assumed uniform electron density, and �nþ and �n� are

volume averaged positive and negative ion densities.

The quantities Vrec and Gþs are the effective volume for recombination and the

average positive ion flux normal to the surface, respectively, which must be
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defined for a given problem. The ability to approximate Vrec and Gþs (or deff ) from

the plasma parameters and dimensions is the essence of a global model. Equations

(10.4.1)–(10.4.3), along with the quasineutrality condition �nþ ¼ �n� þ ne0 are four

equations that must be simultaneously solved to determine �nþ; �n�; ne0, and Te, for

the specified neutral density ng, total absorbed power Pabs and geometry (V, A,
Vrec, and deff). The general solution must be found numerically. The electron temp-

erature is determined from positive ion balance, as for the electropositive case.

However, (10.4.1) depends on both ne0 and �nþ. Therefore, Te is not a function of

ngdeff alone, independent of plasma density, as it is for the electropositive case.

Now Te depends as well on the density, or, equivalently, on the discharge power

per unit area, Pabs=A. We illustrate the use of these equations with two examples.

Example 1 For a0 & 3, we estimate Gþs using the simplest form of the diffusion

equation (10.3.20) with Daþ ¼ 2Dþ from (10.3.22),

Gþs � �2Dþrnþs � 2Dþ �nþ
deff

(10:4:4)

where deff is an effective diffusion length in the bulk plasma. For a slab geometry, we

shall see in the following subsection that when surface (diffusive) losses dominate

volume losses, there is an approximate parabolic solution (Lee et al., 1997)

nþ(x) � n�(x) ¼ nþ0 1� 4x2

d2

� �

(10:4:5)

In this case �nþ ¼ 2
3
nþ0 and, from (10.4.4), deff ¼ d=6. Furthermore, averaging nþn�

over the profile, we find Vrec ¼ 6
5
V.

Example 2 For a0 � 1 and when volume losses dominate surface losses, we shall

see that the profile becomes nearly uniform, such that Vrec ¼ V. Even though the

edge gradient steepens, the recombination loss dominates the diffusion loss, such

that an approximate solution can be obtained by setting Gþs � 0.

An important scaling follows from the negative ion balance. Using quasi-

neutrality (10.3.4) to eliminate �nþ from (10.4.2) and introducing the average electro-

negativity �a ¼ �n�=ne0, we can solve for �a to obtain

�a ¼ KattngV
Krec �n�Vrec

� K�ngV
KrecVrec

� 1 (10:4:6)

Taking �a � 1, there are two limiting regimes. (i) For recombination-dominated

negative ion loss with K�ngV � �aKrecVrec, (10.4.6) can be solved to obtain

�a ¼ KattngV
Krec �nþVrec

(10:4:7a)
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Substituting �nþ � �ane0 into (10.4.7a), we obtain

�a ¼ KattngV
Krecne0Vrec

� �1=2

(10:4:7b)

(ii) For detachment-dominated loss with �aKrecVrec � K�ngV, (10.4.6) yields the

simple result

�n� ¼ Katt

K�
(10:4:8)

which is independent of ng (gas pressure). For a given gas, (10.4.8) sets an upper

limit on �n� as ne0 increases.

To get a further feeling for the behavior of the plasma we examine two limiting

cases for recombination-dominated negative ion loss with �a � 1.

(a) Volume Loss Dominates For Example 2 when the ratio of volume to

surface loss for the positive ions is large, dropping GþsA in (10.4.1) and subtracting

(10.4.2), we obtain

Kiz ¼ Katt (10:4:9)

which determines Te. Setting Vrec ¼ V and eliminating the ionization term from the

power balance (10.4.3) and the positive ion balance (10.4.1) gives

Pabs � VEcKrec �n
2
þ (10:4:10)

which determines �nþ � �n�. Since (10.4.10) determines nþ, we substitute this into

(10.4.7a) to determine

ne0 �
Krec �n

2
þ

Kattng
(10:4:11)

Summarizing the conditions for (10.4.7) and (10.4.9)–(10.4.11), this solution holds

for K�ng � �aKrec; ne0 � �nþ, and GþsA � Krec �n
2
þV.

(b) Surface Loss Dominates For the case of Example 1 when the ratio of

surface to volume loss for the positive ions is large, (10.4.1) gives

Kizne0ngV ¼ GþsS (10:4:12)

Inserting (10.4.12) into the power balance (10.4.3) to eliminate Kiz and using

(10.4.4) for Gþs, we obtain �nþ as a function of ng and Pabs. Then (10.4.7) determines

�a, with ne0 ¼ �nþ=(1þ �a) and �n� ¼ �ane0. Solving (10.4.12) then yields Te.
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Global models can be criticized because the profiles and fluxes of the charged

particles are assumed rather than calculated from first principles. For example, the

approximation of (10.4.4) is good only for a � 1, as seen from (10.3.21). For

a0 . 1, the negative ions are localized in the center of the discharge, such that Daþ �
Da over most of the discharge region, and a parabolic model clearly cannot be used to

determine n�, as in (10.4.5). A nonuniform description based on a solution to the

appropriate diffusion equation is required, which we describe in the following subsec-

tions. It is clearly desirable to either calculate the profiles and fluxes from the basic

equations or to determine them from measurements. However, the calculations can

be burdensome for multiple ion species and realistic processing gas mixtures and

(two- and three-dimensional) discharge geometries. In such cases, global models

can be a good first step in understanding the discharge equilibrium. They have also

been used at higher powers where the effect of negative ions is small (Lee et al., 1994).

Parabolic Approximation for Low Pressures

We now consider a spatially varying model for low pressures when the positive ion

wall loss is larger than or comparable to the volume recombination loss. We assume

a slab geometry in which a is sufficiently large that ne � ne0 andDaþ � 2Dþ, but the
effect of recombination can be neglected in determining the spatial distribution (but

not necessarily the plasma parameters). The diffusion equation (10.3.26) then takes

the simple form

�2Dþ
d2nþ
dx2

¼ Kizngne0 (10:4:13)

In this approximation, nþ(x) has a parabolic solution of the form [see (5.2.20)]

nþ
ne0

¼ a0 1� 4x2

l21

� �

þ 1; �l1=2 , x , l1=2 (10:4:14)

where l1=2 is the position where a ¼ 0.

Regime 1. Electropositive Edge We would not necessarily expect the Bohm

flux condition to be met within the validity of this solution, so the a � 1 solution

must be matched to an a ¼ 0 electropositive solution which extends from x ¼
l1=2 to x ¼ d=2. This in turn determines the position of the plasma–sheath boundary

satisfying the Bohm flux condition (10.3.27), which for as ¼ 0 reduces to

�Da

dnþ
dx

�

�

�

�

x¼d=2

¼ nþ(d=2)uB (10:4:15)

The complete structure is illustrated in Figure 10.2. We further simplify our analysis

by assuming that ne0 is known. The absorbed power per unit area, Sabs, is then

obtained a posteriori from (10.3.32).
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Substituting (10.4.14) into positive ion balance (10.3.26) and integrating only

over the electronegative core 0 , x , l1=2, we obtain

Kizngne0
l1

2
¼ Krecn

2
e0

8

15
a2
0 þ

2

3
a0

� �

l1

2
þ 8Dþa0ne0

l1
(10:4:16)

Substituting (10.4.14) into negative ion balance (10.3.31) and integrating over the

entire bulk plasma 0 , x , d=2, we obtain

Kattngne0
d

2
¼ n2e0a0

8

15
Kreca0 þ 2

3
(Krec þ K�ng)

� �

l1

2
(10:4:17)

Note in (10.4.17) that attachment occurs over the entire volume while recombination

and detachment occur only in the electronegative core.

At x ¼ l1=2 this electronegative solution must be matched to an electropositive

solution. Various electropositive solutions can be used. For pressures not too

high, the variable mobility solution of Section 5.3 and Appendix C is appropriate.

To determine the total positive ion balance, we equate the sum of the flux leaving

the electronegative core and the ionization in the electropositive edge region to

the Bohm flux at x ¼ d=2. This is approximately given by

8Dþa0ne0

l1
þ Kizne0(d � l1)

2
¼ hleuBne0 (10:4:18)

For simplicity, we have taken ne ¼ ne0 for calculating the attachment and ionization

in the electropositive edge region. The factor hle ¼ ns=ne0 gives the ratio of the

density at the sheath edge x ¼ d=2 to the density at x ¼ l1=2. The variable mobility

model gives the result, from (C.16)

hle ¼ 2nizli=puB þ (u1=uB)
3

1þ 2nizli=puB

� �1=3

(10:4:19)

where niz ¼ Kizng; li is the ion mean free path, and u1 is the positive ion flow vel-

ocity at x ¼ l1=2, u1 ¼ Gþ(l1=2)=ne0, where Gþ(l1=2) is given by the last term in

(10.4.16). For a given feedstock gas and input variables ng, ne0, and d, the

unknown quantities a0, l1, hle, and Te can be determined from (10.4.16)–(10.4.19).

The above equations are readily solved by noting that Kiz is a strong (exponential)

function of Te, such that the temperature is essentially clamped by the particle

balance for positive ions. Substituting Kiz from (10.4.16) into (10.4.18) and

(10.4.19), we obtain a set of three equations (10.4.17)–(10.4.19) to determine a0,

l1, and hle that depend only weakly on Te. We can therefore take the temperature

as given (say Te ¼ 2.5 V) and solve for a0, l1, and hle. Te can then be obtained

from (10.4.16) and, if necessary, all parameters improved by iteration.
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Solving (10.4.17) for a0, we obtain

a0 ¼ � 5

8
1þ K�ng

Krec

� �

þ 5

8
1þ K�ng

Krec

� �2

þ 24

5

Kattngd

Krecne0l1

" #1=2

(10:4:20)

For large a0 and recombination-dominated negative ion loss, (10.4.20) reduces to

a0 � 15

8

Katt

Krec

ng

ne0

d

l1

� �1=2

(10:4:21)

In the regime where the electropositive edge is thin, setting d=l1;� 1, substituting

ne0 � nþ0=a0 into (10.4.21), and solving for a0, we obtain

a0 ¼ 15

8

Katt

Krec

ng

nþ0

(10:4:22)

which agrees with the result (10.4.7) for the global model with Vrec ¼ 6
5
V and �nþ ¼

2
3
nþ0 as given below (10.4.5). From (10.4.21) or (10.4.22) we see the scaling of a0

with ng for fixed ne0 or nþ0, respectively.

For large a0 and detachment-dominated loss, (10.4.20) reduces to

a0 ¼ 3

2

Katt

K�ne0

d

l1
(10:4:23)

which agrees with (10.4.8) for d=l1 � 1.

To determine l1, we eliminate Kiz from (10.4.16) and (10.4.18) to obtain

8Dþa0

d

l21
þ Krecne0

8

15
a0 þ 2

3
a0

� �

d � l1

2

� �

¼ hleuB (10:4:24)

Solving (10.4.17) for ne0 and inserting this into (10.4.24), we can obtain l1=d in terms

of a0. The result is complicated and not particularly illuminating. In the limit that dif-

fusion loss dominates recombination loss in (10.4.24), it reduces to the simple result

l1

d
¼ 8Dþa0

hleuBd

� �1=2

(10:4:25)

Equations (10.4.21) or (10.4.23) and (10.4.25) can be solved simultaneously for a0

and l1=d within various approximations (Problem 10.8) for recombination- or

detachment-dominated discharges.

The condition that the negative ions are in Boltzmann equilibrium can be verified,

as described in Section 10.3, by comparing the total negative ion flux G� to the nega-

tive ion diffusion flux�D�dn�=dx. Using the model profile n� ¼ ne0a0(1� 4x2=l21)
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from (10.4.14) and performing the integration in (10.3.14), we obtain for a0 � 1

and x � l1 � d that

jG�j � 7

15
Kreca0 þ 1

3
K�ng

� �

n2e0a0x (10:4:26)

Similarly evaluating the diffusion flux yields

�D�
dn�
dx

¼ 8D�ne0a0

l21
(10:4:27)

The ratio of (10.4.26) and (10.4.27) yields hB in (10.3.34), and the condition for

Boltzmann equilibrium of negative ions is therefore

hB ¼ ne0l
2
1

8D�

7

15
Kreca0 þ 1

3
K�ng

� �

, 1 (10:4:28)

which gives (10.3.36).

Regime 2. Ion Sound Speed Limitation Depending on plasma parameters, it

is possible to reach the local ion sound speed in the electronegative core. In this case,

a nonlinear potential structure forms which confines negative ions (essentially an

ion-acoustic shock, as described at the end of Section 4.2). We would therefore

expect the core to terminate rather abruptly at a position l�=2 , l1=2 where the

internal nonneutral transition region forms. (Kolobov and Economou, 1998; Kouz-

netsov et al., 1999). The transition from an electronegative core to an electropositive

edge region takes place over a few electron Debye lengths, which is the basis for the

assumption of an abrupt transition. The positive ion flux is continuous, but the posi-

tive and negative ion densities and the positive ion flow velocity change abruptly

within this approximation. The electric fields that build up inside this nonneutral

region are small, sufficient to confine the negative ions, but not the electrons.

Hence the electron density changes only slowly within this region. Assuming an

abrupt transition at l�=2, analysis (Problem 10.9) yields a cubic equation for l2�=l
2
1,

8li
l1

� �2

a3
0

l2�
l21

1� l2�
l21

� �

¼ 1þ a0 1� l2�
l21

� �� �3

(10:4:29)

For small a0 one finds numerically that (10.4.29) has no real solutions, while for

larger a0 there are two positive real solutions. The solution with the smaller value

of l�=l1 gives the position separating the electronegative and electropositive

regions. The transition between no and two real solutions signals the appearance

of an ion sound barrier. Substituting as ¼ a0(1� l2�=l
2
1) into (10.4.29) at this

transition, with l� very close to l1, yields a value of as � 0:5. There is a weak depen-
dence on a0 and pressure (Problem 10.10).
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Regime 3. Electropositive Edge Disappears The transition from regime 2

to regime 3, for which there is no electropositive edge, is obtained by setting the

flux leaving the electronegative core equal to the Bohm flux out of the electroposi-

tive region

ne0(1þ as)uBa ¼ ne0uB (10:4:30)

where we put a ¼ as since the electropositive edge disappears. Approximating uBa
from (10.3.28) by

uBa ¼ vthþ
1þ as

as

� �1=2

(10:4:31)

where vthþ ¼ (eTi=Mþ)1=2 we obtain

(1þ as)
1þ as

as

� �1=2

¼ g1=2 (10:4:32)

For a nominal value of g ¼ Te=Ti ¼ 100, we obtain a transition at as ¼ 8:5.

Flat-Topped Model For Higher Pressures

If (10.3.36) is not satisfied, the central region flattens and the edge steepens, so that a

parabolic approximation is not adequate (Lichtenberg et al., 1997). The increased

flattening of the central density at increasing a suggests a model in which all of

the variation of the ion density occurs in a transition edge region. A heuristic

model that captures this profile in the electronegative core (thickness l2=2) of a
high a discharge is

nþ � n� ¼
a0ne0; 0 , x , (l2 � l1)=2

a0ne0 1� (2xþ l1 � l2)
2

l21

� �

; (l2 � l1)=2 , x , l2=2

8

<

:

(10:4:33)

where l1=2 is the parabolic scale length at the edge of the electronegative region. The
integrations from x ¼ 0 to x ¼ l2=2 from (10.3.26) and (10.3.31) then yield

Kizngne0 � Krecn
2
e0a

2
0

� � l2

2
þ 7

15
Krecn

2
e0a

2
0

l1

2
¼ 8Dþne0a0

l1
(10:4:34)

and

Kattngne0 � Krecn
2
e0a

2
0 � K�ngn2e0a0

� � l2

2

þ 7

15
Krecn

2
e0a

2
0 þ

1

3
K�ngn2e0a0

� �

l1

2
¼ 0 (10:4:35)
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We need to obtain equations for the parameters l1 and l2. If there is an electropositive

edge region we have an approximate edge equation analogous to (10.4.18),

8Dþa0ne0

l1
þ Kizne0

d � l2

2

� �

¼ hlene0uB (10:4:36)

where hle is obtained from (10.4.19) or a higher pressure equivalent (see Sections 5.2

and 5.3). To obtain a relation for l1 we return to our fundamental equation (10.3.8)

for G�. Noting that the negative ion flux entering the central core due to the electric

field is given approximately by the first term in (10.4.35), then this must be balanced

by the negative ion diffusion flux in the strong gradient region at the electronegative

edge in order to bring G�(l2=2) to zero. Thus, the second term in (10.4.35) must

equal the negative ion diffusion flux, which gives

4D�a0ne0

l1
¼ 7

30
Krecn

2
e0a

2
0 þ

1

6
K�ngn2e0a0

� �

l1 (10:4:37)

Solving (10.4.37) for the parabolic scale length of the transition, we find

l1

2
¼ 30D�

7Krecne0a0 þ 5K�ngne0

� �1=2

(10:4:38)

An estimate of the transition layer thickness can also be obtained directly from

(10.3.38) (see Berezhnoj et al., 2000).

Equations (10.4.34)–(10.4.37) can be solved simultaneously for Te, a0, l1 and l2.

As the pressure is decreased the equations of the flat-topped model join smoothly

onto the parabolic model when l2 � l1 ! 0.

With decreasing ne0, an ion sound limitation to the positive ion flow appears

within the electronegative plasma, requiring an additional modification as

obtained for regime 2 at lower pressure. At low ne0 (high a0) the electropositive

edge disappears and l2 ¼ d. As for regime 3 at lower pressure, the transition

occurs when (10.4.32) is satisfied. The equations for this regime are left to

Problem 10.15.

10.5 ELECTRONEGATIVE DISCHARGE EXPERIMENTS
AND SIMULATIONS

The usefulness of models must be validated with more complete models, simu-

lations, and experiments. Various gases have differing characteristics that must be

treated separately. Two commonly used gases that illustrate this variety are

oxygen and chlorine, with chlorine being considerably more electronegative than

oxygen. We consider some examples for these gases, below.
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Oxygen Discharges

Oxygen is a widely used feedstock for thin film processing. It is the primary gas for

photoresist ashing and is a common additive in halogen gas mixes for metal and

polysilicon etching (see Sections 15.3 and 15.4). It is also the primary feedstock

(with silicon-containing gases) for plasma-assisted silicon dioxide and oxynitride

depositions (see Section 16.2).

Oxygen is weakly electronegative with a dissociative attachment rate constant

Katt (reaction 2 in Table 8.2) having a threshold energy of about 4.7 volts. There

are several low-lying easily excited metastable molecular states. The most important

is the O2
�(1Dg) metastable which has a high rate constant Kex� for excitation (reac-

tion 15 in Table 8.2) and a low recombination loss probability grec on most wall sur-

faces. A nominal value for a room temperature aluminum wall is 10�3 (see

Gudmundsson et al., 2001; Franklin, 2001, for further details). Because grec is so

small, the pumping speed Sp (m
3/s) can contribute to metastable surface loss. There-

fore (neglecting electron impact de-excitation processes) the metastable loss rate

(10.3.6) can be written more generally as

�D�rn� ¼ 1

4
grecn�s �v� þ

Sp

A
n�s

which yields

g� ¼ grec þ
4Sp

�v�A
(10:5:1)

hence varying the pumping speed (or, equivalently, the gas flow rate at a fixed press-

ure) varies g�, as seen experimentally below.

Because g� is small and the metastable is easy to excite, the metastable density n�
can be high and the detachment loss of negative ions can exceed the positive–negative

ion recombination loss (reaction 7 in Table 8.2) at quite modest pressures. The tran-

sition pressure depends also on the associative detachment rate constant Kdet (processes

20 and 21 in Table 8.2). The measured values of Kdet are quite uncertain. The early

measurements yielded values about a factor of ten higher than the more recent measure-

ment given in Table 8.2 (Gudmundsson et al., 2000). The best fit of a global discharge

model to one set of oxygen discharge data gives Kdet � 10�10 cm3/s, a factor of three
higher than that given in Table 8.2 (Stoffels et al., 1995).

A number of measurements of negative ion densities have been reported in low-

to-moderate pressure (below 100 mTorr) oxygen discharges, and comparisons have

been made to global and spatially varying models. The dominant negative and posi-

tive ions have been measured to be O� and Oþ
2 . Stoffels et al. (1995) measured the

O� and electron densities in an asymmetrically driven rf capacitive discharge and

developed a global model to describe their experimental results. They found that

O� is mainly produced by dissociative attachment of O2 and is mainly lost by

positive–negative ion recombination at pressures below 20–30 mTorr and by
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detachment against O�
2(

1Dg) metastables at higher pressures. At fixed input power,

the measured negative ion density was found to increase with pressure for low press-

ures and then to decrease with pressure at higher pressures, with the maximum nega-

tive ion density at the recombination–detachment transition. The negative ion

density was found to increase with oxygen feedstock flow rate at both 25 and

100 mTorr. This result is expected from (10.5.1) if detachment is important

because higher flow rates (higher chamber pumping speeds) at fixed pressure lead

to a reduced metastable density.

Vender et al. (1995) measured the negative ion density profile in the system of

Stoffels et al. (1995) at 10-W rf power and three different pressures, with the

results shown in Figure 10.3. In Figure 10.3a at 10 mTorr, ne0 � 5� 108 cm�3

and a classic parabolic negative ion profile was measured, which is well described

by (10.4.14). The recombination loss was found to be small compared to the diffu-

sion loss, and recombination loss exceeded detachment loss. Similar parabolic pro-

files were measured in a CCl2F2 discharge. In Figures 10.3b and c, at 40 and

100 mTorr, detachment by O� collisions with O�
2(

1Dg) was found to exceed recom-

bination, leading to roughly constant (but somewhat decreasing) negative ion

density with increasing pressure, expected from (10.4.8). The scaling of n� with

pressure seen experimentally by both Vender et al. (1995) and Stoffels et al.

(1995) was fitted reasonably well with a global model incorporating both the recom-

bination and detachment losses along with the particle balance equation for the O�
2

metastable and several other less important species. As in the modeling presented in

Sections 10.3 and 10.4, the electron density was taken as the input, so that sheath

physics and power absorption were not considered. The assumed Maxwellian temp-

erature of 3 eV also required a rescaling of the peak ion density.

The asymmetry in the profiles at the higher pressures in Figure 10.3 is due to the

nonuniform ionization rate in the discharge gap. The electrode area ratio in this

capacitive discharge was about 3, so most of the applied rf voltage appeared

across the (smaller) powered electrode sheath (on the left), leading to a large sto-

chastic sheath and local electron heating there. At the higher pressures, the mean

free path for ionizing electrons becomes sufficiently short that an enhanced ioniz-

ation occurs near the powered sheath, producing the observed density asymmetry.

These phenomena will be discussed in Chapter 11.

Berezhnoj et al. (2000) studied the spatially varying charged particle densities in

a symmetrically driven capacitively coupled rf discharge in oxygen over a range of

pressures from 21.5 to 215 mTorr and for interelectrode gaps of 2–10 cm. At low

powers for a 3 cm gap they obtained the results shown in Figure 10.4. The solid

squares and hollow circles denote two different types of negative ion density

measurements, and the triangles denote the positive ion density measurements.

The solid and dashed lines represent calculated positive and negative ion densities

determined from a fluid model [essentially integrating (10.3.1a) and (10.3.8)]

with a metastable loss probability g� ¼ 10�3. In Figure 10.4a at 43 mTorr, they

measured nþ0 � 4:0� 109 cm�3 and ne0 � 1:1� 108 cm�3, with a parabolic

profile corresponding to (10.4.14). In Figures 10.4b and c at 150 and 215 mTorr,

respectively, nþ0 � 3:5� 109 cm�3 and ne0 � 1:6� 108 cm�3. At the higher
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pressures, we see a flat-topped profile corresponding to non-Boltzmann negative

ions, as modeled in (10.4.33). They also found that n�0 varied very little with pres-

sure, which is consistent with the prediction of (10.4.8), as the negative ion recom-

bination losses were calculated to be small compared with the detachment losses.

A similar transition from parabolic to flat-topped profiles was measured at

75 mTorr as the gap length was increased from 2 to 4 cm. As described above, at

the higher pressures the nonuniform electron temperature leads to increased edge

ionization. Together with radial loss, not incorporated in the model, this resulted

in the higher ion densities near the plasma edge.

FIGURE 10.3. Negative ion density profiles (dots) measured at 10-W input power in

oxygen: (a) 10 mTorr, with the electron density shown by the dashed line; (b) 40 mTorr;

(c) 100 mTorr (Vender et al., 1995).
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At higher powers than for the results shown in Figures 10.3 and 10.4, the electro-

negativity a decreases; for the data of Stoffels et al. (1995), a � 10 at 10-W rf power

and a � 1 at 40 W. A number of global model studies have been done in the higher

power range, which is more characteristic of high density plasmas used in proces-

sing (see Lee et al., 1994; Lee and Lieberman, 1995; Kimura and Ohe, 1999;

Kimura et al., 2001; Gudmundsson et al., 2001). For these higher power discharges,

if the O-atom wall recombination is not too high, the O-atom density, which is

important for processing applications, may be dominant, and must be included in

a calculation. The main generation is by electron impact dissociation of O2 (pro-

cesses 3 and 22 in Table 8.2) and the main loss is by O-atom recombination on

the walls. The loss probability grec has been measured to be 0.2–0.5 on stainless

FIGURE 10.4. Experimentally and numerically obtained profiles of charge particles for a 3-

cm gap at 13.56 MHz for (a) 45 mTorr, (b) 150 mTorr, and (c) 215 mTorr; solid and dashed

lines represent calculate positive and negative ion densities; solid squares and open circles are

measured negative ion densities by two different methods; triangles are measured positive ion

densities (Berezhnoj et al., 2000).
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steel walls, leading to a low fractional dissociation (, 5%) at low pressures, even in

high power discharges, as seen experimentally (Fuller et al., 2000) and in reasonable

agreement with global model predictions (Gudmundsson et al., 2001). To obtain

higher O-atom dissociation fractions, wall materials such as quartz or anodized

aluminum can be used, which have a lower grec for O-atoms (Problem 10.13).

Figure 10.5 shows one example of predictions from a global model at high

powers for a cylindrical stainless steel plasma chamber with l ¼ 7:6 cm and

R ¼ 15:2 cm, in which the electronegativity �a is plotted versus pressure for a

50 sccm flow rate. We see that the electronegativity is low except at the highest

pressures; �a , 1 for p , 40 mTorr at 500-W discharge power for this system.

Such global model results are consistent with measurements; for example, see

Tuszewski (1996).

In addition to the global and fluid simulations described above, particle-in-cell

(PIC) computer simulations have been compared with basic space-varying

models, such as described in Section 10.4. Such simulations allow for tests of

some of the basic idealizations incorporated into analytical, fluid, and global

models; for example, the assumption of a Maxwellian electron distribution. On

the other hand, the number of species that can be handled in a PIC simulation is

limited, and species with slow timescales for production and loss are not easily

incorporated into the simulation; for example, metastable O�
2. For the PIC simu-

lation (Lichtenberg et al., 1994) a 13.56-MHz plane-parallel capacitive discharge

with a plate separation of 4.5 cm at p ¼ 50 mTorr and low power (ne0 ¼ 2:4�
109 cm�3) was employed, with the following dynamics: Oþ

2 and electrons are

created by electron impact ionization of O2, and O
� is created by dissociative attach-

ment of electrons on O2. Negative ions are trapped within the discharge by the

0.001

0.01

0.1

1

10

1 10 100

α

p  (m Torr)

100 W

500 W

1500 W

FIGURE 10.5. Electronegativity a versus discharge pressure p in oxygen at 50 sccm flow

rate at 100, 500, and 1500 W discharge power, in a cylindrical stainless steel chamber with l ¼
7:6 cm and R ¼ 15:2 cm (Gudmundsson et al., 2001).
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positive potential of the plasma with respect to all wall surfaces and are lost only by

recombination with positive ions in the volume; detachment loss is not included in

the model. Positive ions are lost to the walls by diffusion and in the volume by

recombination with negative ions. For the density and pressure used for the compari-

son, the atomic oxygen density that is generated by dissociation is negligible com-

pared to that of O2 and is omitted from the calculations. The simplified set of volume

reactions is:

eþ O2 �! Oþ
2 þ 2e (ionization)

eþ O2 �! O� þ O (dissociative attachment)

Oþ
2 þ O� �! O2 þ O (recombination)

Oþ
2 þ O2 �! Oþ

2 þ O2 (elastic scattering)

Oþ
2 þ O2 �! O2 þ Oþ

2 (charge transfer)

O� þ O2 �! O� þ O2 (elastic scattering)

The latter three reactions lead to ion–neutral momentum transfers that result in

effective diffusion coefficients for positive and negative ion species. For the PIC

simulation results shown in Figure 10.6, Monte Carlo methods are used for the colli-

sional dynamics based on a cross section set such as that shown in Figure 8.14. There

is no assumption of a Maxwellian electron distribution. We see the general features

of an electronegative core plasma surrounded by an electropositive halo. There is a

large sheath at these parameters with uB reached at x � 1:2 cm from the discharge

center (see Section 11.2). The approximate parabolic variation of n� and nþ and the

flat profile for ne within the electronegative core are seen for this relatively low a0

case (a0 � 8).

FIGURE 10.6. Simulation results and approximate analytical solutions for a 13.56-MHz

plane-parallel electronegative discharge in oxygen; p ¼ 50mTorr (ng ¼ 1:6� 1021 m�3),

l ¼ 4:5 cm, at low power (ne0 ¼ 2:4� 1015 m�3).
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The reaction rate constants used to compare the analytic model with these oxygen

simulation results were (m3/s)

Kiz ¼ 2:13� 10�14 exp(�14:5=Te)

Katt ¼ 7:89� 10�17 exp(�3:07=Te)

Krec ¼ 1:4� 10�13

Kmi ¼ 3:95� 10�16

(10:5:2)

which were obtained by integrating the cross sections shown in Figure 8.14 over a

Maxwellian electron distribution and fitting to an Arrhenius form. These values were

based on earlier data and are not as accurate as those in Table 8.2. Substituting these

values into inequality (10.4.28) to see if the basic assumption of Boltzmann equili-

brium for negative ions is satisfied, we find hB ¼ 0:47, which reasonably satisfies

the inequality and justifies the use of the parabolic approximation over most of

the electronegative region. Performing the analytic calculations as developed in

Section 10.4 and matching to an electropositive edge, the dashed curves in

Figure 10.6 are obtained. The profiles in the electronegative region are seen to

match quite well. However, in order to compare the profiles, the a0 for the analytic

result was scaled down by approximately a factor of 1.5. The electron temperatures

for the PIC simulation and analytic model are Te � 2 V and Te ¼ 2:6 V, respect-

ively. These differences can be explained from a kinetic treatment of the discharge

(Wang et al., 1999 and Section 18.6) which indicates that the strong stochastic

heating at the plasma edge forms a bi-Maxwellian electron distribution rather

than the Maxwellian distribution used in computing the reaction rates of (10.5.2).

The Maxwellian approximations used in Sections 10.3 and 10.4 tend to under-

estimate Kiz and overestimate Katt at a given average electron energy. The result

is that Te calculated from analysis (10.4.16) is found to be somewhat too large,

making Katt too large, and consequently, a0 from (10.4.21) is also somewhat

large. On the other hand, at higher pressure, the tail of the Maxwellian above the

lowest excitation energy can be depressed, resulting in a value of Te calculated

from a Maxwellian model to be too small, and therefore underestimating the

value of Katt. We return to these questions in the kinetic analysis of Section 18.6.

Chlorine Discharges

Chlorine is a strongly electronegative gas that is widely used for thin film etching;

for example, polysilicon. Cl2 has a low dissociation energy (2.5 V) and a high

electron affinity (2.45 V), with a near-zero threshold energy for dissociative attach-

ment (see Fig. 8.7c). Consequently, it has high dissociation and dissociative attach-

ment rate constants. All electronic excitations appear to be dissociative; hence, there

appear to be no metastable molecular states. Therefore detachment losses of nega-

tive ions are mainly via associative attachment of Cl� on Cl-atoms. Data on electron

interactions with Cl2 have been reviewed by Christophorou and Olthoff (1999a).
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A fairly complete set of measurements of charged and neutral particle densities,

electron temperature, and gas temperature have been reported by Malyshev,

Donnelly and co-workers for an inductively coupled chlorine plasma. Their dis-

charge was excited at 13.56 MHz by a planar coil through a quartz vacuum

window at one end of a stainless steel chamber having a radius R ¼ 18:5 cm and

a length l ¼ 20 cm (see Section 12.3 for a description of this type of discharge).

Below a discharge power of about 150 W, the discharge operates in a low density

capacitively coupled mode, while above 150 W, the discharge makes a transition

to a high density inductively coupled mode (see Section 12.2). The measurements

were made over a pressure range of 1–20 mTorr for various discharge powers.

Figure 10.7 shows the on-axis positive ion and electron densities 9.5 cm below

the quartz window and 3 cm above the substrate, determined from Langmuir

probe measurements at 20 mTorr. The capacitive and inductive modes are apparent.

In the low-power capacitive mode, the electronegativity a is about 60 at the lowest

power (ne � 3� 107 cm�3), decreasing to about 20 at a higher power

(ne � 2� 108 cm�3). This variation is consistent with the predicted scaling of a/
n�1=2
e given from (10.4.21) [or, equivalently, from (10.4.7)]. The a also was

observed to increase somewhat with increasing pressure (gas density ng);

however, the measured variation of a with ng is weaker than the scaling a/ n1=2g

of (10.4.21). The scaling nþ / P
1=2
abs , roughly independent of pressure, is also seen

in the data. This type of scaling is typical for low density capacitive discharges,

as given by (11.2.48), and it is also consistent with (10.4.10) for a high-a discharge

dominated by positive ion volume recombination loss. Even at the highest power in

FIGURE 10.7. Positive ion and electron density versus discharge power in chlorine at

20 mTorr, in a cylindrical stainless steel chamber with l ¼ 20 cm and R ¼ 18:5 cm
(Malyshev and Donnelly, 2001).
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capacitive mode, the dissociation fraction was measured to be low (Malyshev and

Donnelly, 2000); the neutral density consists mainly of Cl2.

In contrast, the measurements in the high-density inductive mode showed com-

pletely different scalings. As seen in Figure 10.7, the maximum a was about 2.5

just above the transition to inductive mode. The transition from the low density

capacitive mode to the high density inductive mode is considered in detail in

Section 12.2. At lower pressures, a was typically less than unity. Furthermore,

the density in the higher power regime scales roughly as nþ / Pabs, typical of the

scaling (10.2.15) expected for high density electropositive discharges. This

scaling is also seen at lower pressures. Hence a low pressure high power chlorine

discharge is mainly electropositive. We can understand this result from the measure-

ments of the Cl2 and Cl densities. In inductive mode the chlorine feedstock is

strongly dissociated; the Cl density exceeds the Cl2 density. The low Cl2 density

implies that the dissociative attachment rate (/nCl2 ) for production of Cl� is low.

Furthermore, the recombination and associative detachment losses for Cl� are

high because nþ and nCl are high. This results in a low negative ion density. We

should expect the dominant positive ion in the high density inductive mode to be

Clþ, not Clþ2 , and this was indeed measured to be the case.

In addition to experiments, direct numerical solution of the fundamental diffusion

equations (10.3.13) and (10.3.14) can be used to examine some assumptions of the

approximate analytic models given in Section 10.4. Lee et al. (1997) consider a

chlorine feedstock gas with a bulk plasma width (excluding sheath widths)

d ¼ 0:9 cm, ne0 ¼ 1016 m�3 and p ¼ 300 mTorr. This corresponds to parameters

of a capacitive discharge operating at reasonably high power but at a pressure for

which a is relatively high and negative ion loss is dominated by recombination,

which is typical of the use of chlorine in some processing applications. A similar

set of reactions to those for oxygen in (10.5.2) is used for chlorine, with reaction

rate constants (m3/s)

Kiz ¼ 9:2� 10�14 exp (�12:9=Te)

Katt ¼ 3:69� 10�16 exp (�1:68=Te þ 1:457=T2
e � 0:44=T3

e)

Krec ¼ 5:10� 10�14

Kmi ¼ 1:3� 10�15 T
1=2
i

(10:5:3)

Setting the detachment term in (10.3.14) equal to zero and with

T� ¼ Tþ ¼ Ti ¼ 300 K, the coupled equations (10.3.13) and (10.3.14) are solved

subject to the boundary conditions that the density gradients are zero at the

center, the negative ion current is zero at the plasma edge, and the positive ion

current is limited to the Bohm flux at the plasma edge, Gþs ¼ nþuBa, with uBa
given by (10.3.28). The numerically determined profile (solid line) is shown in

Figure 10.8. We note the flattened central density of positive ions. We find from

(10.3.36) that hB ¼ 5, which does not satisfy the condition of Boltzmann negative

ions. The numerical result is compared with the result (dashed curve) obtained
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from the heuristic flat-topped high-a model (10.4.33). The heuristic model works

quite well in the range of a0 for which (10.3.36) is not satisfied, where the simple

parabolic model is not a good approximation.

To understand the scaling in (10.3.36) more physically in this recombination-

dominated loss regime, we substitute for a0 from (10.4.21). Again setting d=l1 �
1 and using D� ¼ eTi=M�ngsi �vi, (10.3.36) becomes

hB ¼ 7

8

si

(15p)1=2vth�
(KattKrec)

1=2n
1=2
e0 n3=2g d2 (10:5:4)

with vth� ¼ (eTi=M�)1=2 the negative ion thermal velocity. We see that hB increases

moderately with Katt, Krec, and ne, and strongly with pressure and plasma size.

Because of the strong size dependence, large devices, even at low pressure, can

be in the recombination dominated regime.

10.6 PULSED DISCHARGES

Discharges operated using modulated power are of considerable interest for

materials processing. They can have higher average charged particle densities at

the same average power and significantly lower wafer damage. Both effects can

be attributed to a lower electron temperature during the off-time, as described

below. In addition, the negative ions in electronegative plasmas may be able to

escape during the off-time, which can be useful in processing.

Ashida et al. (1995) and Lieberman and Ashida (1996) investigated the behavior

of argon plasmas driven by time modulated power in high density plasma reactors

using a spatially averaged (global) model. The time evolution of the electron temp-

erature and the plasma density was calculated by solving the particle and energy

balance equations. In their calculation, the species included ground state Ar,

FIGURE 10.8. Comparison of coupled equation and heuristic flat-topped solutions for a

chlorine discharge with p ¼ 300mTorr; l ¼ 0:9 cm, and ne0 ¼ 1010 cm�3.
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4s (resonance and metastable) excited Ar, 4p excited Ar, and Arþ ions. However, for

typical pressures and absorbed powers, the excited Ar states affect the calculated

plasma density by at most 25 percent and have practically no effect on the electron

temperature. We therefore describe a simplified global model (without excited

states) to emphasize the physical ideas.

Although pulsed power argon discharges are useful benchmarks, electronegative

discharges are used for most materials processing. A simplified model for pulsed

power electronegative discharges such as O2 or Cl2 is also presented, and the

model predictions are compared with experiments. More complete global models

of high-density pulsed Cl2 discharges are given by Meyyappan (1996) and Ashida

and Lieberman (1997). Low-density capacitively coupled pulsed discharges can

be described in a similar manner; see Overzet and Leong-Rousey (1995) and the

references cited therein. For electronegative plasmas the spatial variation of

the negative ions during the turn-on and turn-off times can significantly change

the dynamics from the results of a global model. These phenomena are described

by Kaganovich and Tsendin (1993) and more completely by Kaganovich (2001).

We shall introduce these ideas, briefly.

Controlling the power flow to the substrate can be a major concern for plasma

etching and deposition processes. In many applications, the process is driven

mainly by the density (or flux) of a neutral etchant or deposition precursor. To con-

clude this section, we show using a simple model that pulsed discharges can have

much lower average power flows than continuous wave (cw) discharges for the

same neutral etchant or precursor density. This is a widely used application of

pulsed discharges.

Pulsed Electropositive Discharges

We consider a cylindrical argon discharge of radius R and length l, with uniform

spatial distributions of plasma parameters over the bulk plasma volume, with the

plasma density ne in the bulk dropping sharply to edge values nsl and nsR at thin

sheaths close to the axial and circumferential walls. Electron–ion pairs are

assumed to be created by electron-impact ionization of the background gas and to

be lost by diffusive flow to the walls. Including the time derivative in the particle

balance equation (10.2.10), we have

V dne

dt
¼ KiznengV � neuBAeff (10:6:1)

where V ¼ pR2l is the plasma volume, ng is the argon gas density, and Aeff given by

(10.2.11) is the effective area for particle loss given by low-pressure diffusion theory.

As in (3.5.8), the rate of collisional energy loss within the discharge volume can

be expressed as

Pc ¼ enengV
X

KiEi ¼ enengV(KizEiz þ KexEex þ KelEel) (10:6:2)
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where Kiz;Kex, and Kel are the rate constants, and Eiz; Eex, and Eel (in volts) are the

energies lost per ionization, excitation, and elastic collision, respectively. Similarly,

the part of the input power lost as kinetic energy of particles to the walls has the

components, for ions,

Pi ¼ e Vs þ 1
2
Te

� �

neuBAeff (10:6:3)

and for electrons,

Pe ¼ 2eTeneuBAeff (10:6:4)

where Vs given by (10.2.4) is the sheath voltage drop. Therefore, including the time

derivative term, the entire power balance equation (10.2.14) is written as

Pabs(t) ¼ d

dt
3
2
eneTe

� �þ eneng
X

KiEi

� �

V þ e Vs þ 5
2
Te

� �

neuBAeff (10:6:5)

where Pabs is the total power absorbed, assumed known. By numerically solving

ordinary differential equations (10.6.1) and (10.6.5) simultaneously, we obtain

ne(t) and Te(t).

We assume that the power in (10.6.5) is modulated by an ideal rectangular

waveform

Pabs ¼ Pmax; 0 	 t , ht
0; ht 	 t , t

	

where h is the duty ratio and t is the period. We can then solve the global equations to

find the approximate transient behavior. Equation (10.6.1) can be written as

1

ne

dne

dt
¼ niz � nloss (10:6:6)

where niz ¼ Kizng is the ionization rate and nloss ¼ uB=deff is a characteristic low

pressure particle loss rate, with deff ¼ V=Aeff given by (10.2.13); niz depends strongly
(exponentially) on Te, while nloss depends only weakly on Te (nloss / T1=2

e ). Using

(10.6.6) to eliminate dne=dt in (10.6.5) yields

1

Te

dTe

dt
¼ Pabs(t)

We

� 2

3

Ec

Te

þ 1

� �

niz � 2

3

Vs þ ð5=2ÞTe

Te

� 1

� �

nloss (10:6:7)

where We ¼ 3
2
eneTeV is the plasma energy, and we have used the usual definition

(3.5.8) that the sum of the collisional energy losses can be combined into a single

term with energy loss Ec.
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Consider times just after the pulse turns on. Initially ne and Te must build up, so

we approximate (10.6.6) and (10.6.7) by

1

ne

dne

dt
� niz (10:6:8)

1

Te

dTe

dt
� Pmax

We

� 2

3

Ec

Te

þ 1

� �

niz (10:6:9)

Since Te is low initially, the second term on the RHS of (10.6.9) is small (niz is small),

leading to a very sharp rise in Te at a rate Pmax=We, up to some maximum value Temax.

We can estimate Temax by setting dTe=dt ¼ 0 in (10.6.9). From Figure 3.17 we recog-

nize that Ec=Te � 1. Using this and substituting for We we have

niz ¼ ngKiz(Te) � Pmax

neeEcV (10:6:10)

Since (10.6.8) and (10.6.9) imply that Te increases much faster than ne, we can set ne
equal to the initial density ne ¼ nemin in (10.6.10), yielding Temax. Beyond this time,

(10.6.9) remains in quasi-steady state with d=dt � 0, and Te falls toward its equili-

brium steady-state value Te1 as ne increases. Since nloss varies slowly with Te, we

assume a constant value n1 ¼ uB1=deff for nloss, where uB1 ¼ (eTe1=M)1=2. Substi-

tuting (10.6.10) into (10.6.6) and multiplying by ne, we obtain

dne

dt
� (ne1 � ne)n1 (10:6:11)

where

ne1 ¼ Pmax

eEcVn1 (10:6:12)

the equilibrium value for an infinitely long pulse. The solution to (10.6.11) is

ne(t) � ne1(1� e�n1t)þ nemine
�n1t ; 0 , t , ht (10:6:13)

Substituting (10.6.13) into (10.6.10) yields niz(t), fromwhich Te(t) can be determined.

Consider now times after the pulse is turned off (the “afterglow”). Then Te falls

such that niz � nloss in (10.6.6) and (10.6.7), yielding

1

ne

dne

dt
� �nloss(t) (10:6:14)
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and

1

Te

dTe

dt
� � 2

3

Vs þ (5=2)Te

Te

� 1

� �

nloss(t) (10:6:15)

Assuming (10.2.4) to hold, we find that the term in parentheses in (10.6.15) has the

numerical value of 3.8 � 4 for argon. We see that both Te and ne decay with time,

but that the decay rate for Te is faster than the decay rate of ne by a factor of approxi-

mately four. Using nloss(t) ¼ uB(Te)=deff / T1=2
e , we can solve (10.6.15) to obtain the

temperature decay

Te(t) ¼ Te1½1þ 2n1(t � ht)��2; ht , t , t (10:6:16)

where we have assumed that the pulse is sufficiently long that Te � Te1 at the end of

the on-time. The density decay follows immediately by eliminating nloss(t) from
(10.6.14) and (10.6.15):

ne(t) � nemax½1þ 2n1(t � ht)��1=2; ht , t , t (10:6:17)

The character of the solutions for different pulse lengths can be seen from the

results in Figures 10.9a–c (Ashida et al., 1995) for the complete argon model

(with excited states). They show the time evolution of ne, the excited atom densities,

and Te for a discharge with p ¼ 5mTorr (600 K gas temperature), R ¼ 15:25 cm,

and l ¼ 7:5 cm, with three different periods t for Pabs(t). The time average power

was fixed at 500 W. Each of these graphs shows one cycle of the power on–off dur-

ation. During the on-time, 2000-W power is applied and during the off-time the

power is 0 W; the duty ratio is 25 percent. Results representing the 500-W cw

case are also shown.

For a modulation period much less than 10 ms, the electron temperature responds

weakly to the modulated power, while the plasma density hardly changes. Therefore

both the electron density and the electron temperature are very close to those for the

continuous 500-W case. For periods much greater than 10 ms, both the electron

temperature and the plasma density respond to the applied modulated power. For

all cases, the electron temperatures first rise sharply to peak values larger than

those for the cw case, while the densities hardly change. After this, the temperatures

fall and the densities rise, approaching quasi-steady values during the pulse on-

times. After the pulse is turned off, the temperatures and densities decay toward

zero; the temperature decays at a considerably faster rate than the density.

From the numerical results we see that the analytic model best applies in the long

pulse-length regime, where near-asymptotic values are obtained both during the

on-time and the off-time. Comparing the analytic results to Figure 10.9c, and

taking values of Te1 ¼ 3:2V and deff ¼ 8:5 cm, we obtain n1 � 3:3� 104 s�1, in

reasonable agreement with the numerical result from Figure 10.9c. Using this value

in (10.6.16) and (10.6.17), the decay times from the analytic model of 16 and 61 ms
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for Te and ne are in good agreement with the decay times of 10 and 50 ms, respect-
ively, from the more complete numerical model of Figure 10.9c.

It is worth noting that, for the same time-average power, the average plasma

density for pulsed operation can be higher than the density for cw operation.

In fact, in Figures 10.9a and b, the time-varying densities are higher than the cw

density for all times. These results have been confirmed experimentally (Ashida

et al., 1996; Tang and Manos, 1999). Physically, average pulsed densities are

higher than steady-state densities because the electron temperature decreases

rapidly after the power is turned off. This leads to a decrease of the loss rate of

charged particles because the Bohm velocity, which accounts for the particle loss

process, is proportional to the square root of the electron temperature. If the

period is long compared to the time constants, as in Figure 10.9c, the electron

FIGURE 10.9. Time evolution of the plasma density ne, the electron temperature Te and the

excited atom (4s and 4p) densities for different periods t, for a time-average power of 500 W

and a duty ratio of 0.25: (a) t ¼ 10 ms; (b) t ¼ 100 ms; (c) t ¼ 1 ms (from Ashida et al.,

1995).
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temperature drops rapidly in the afterglow while the electron density drops

more slowly. Consequently, there is a time during the afterglow when the plasma

has a low Te, which is particularly favored for some wafer etching processes, to

reduce charging damage and distortions in pattern transfer during etching (see

Section 15.5).

Processes that have threshold energies, e.g., ionization, excitation and chemical

reactions, often have rate constants of Arrhenius form that are approximately pro-

portional to exp (�Ea=Te), with Ea the activation energy. The time-average pro-

duction rates are then kne(t) exp (�Ea=Te(t))l. Higher Eas represent reactions such

as ionization and high energy electronic excitation. Lower Eas represents processes

such as attachment and dissociation in molecular gases. The average production rate

depends sensitively on the time variation of Te(t) and on ne(t), and hence on the

pulse period and duty ratio. For example, if these parameters are chosen to yield

a large initial Te “spike” as shown in Figure 10.9c, then processes such as ionization

and electronic excitation with high Eas can have higher production rates, compared

to a steady state discharge with the same time average power. Because knel for a
pulsed discharge can be greater than ne for a steady state discharge, processes

with very low activation energies (Ea . Te) can also have higher production rates.

In contrast, for intermediate Eas, the time average production rates of processes,

such as low energy dissociation, can be reduced.

We have used low-pressure diffusion theory to write nloss ¼ uB=deff / T1=2
e . At

higher pressures the particle losses are given from high pressure diffusion theory

(10.2.19) to be proportional to the ambipolar diffusion coefficient Da, where

Da / Te; i.e., nloss ¼ n1Te=Te1, with n1 the appropriate loss rate at the end of

the on-time given from high pressure diffusion theory. Using this nloss in

(10.6.14) and (10.6.15) yields (Problem 10.16)

Te(t) � Te1½1þ 4n1(t � ht)��1;
ne(t) � nemax½1þ 4n1(t � ht)��1=4 ;

ht , t , t (10:6:18)

These decays have been found to be in reasonable agreement with particle-in-cell

simulations (Smith, 1998).

The approximation of an ideal rectangular power waveform Pabs(t) is quite sim-

plified from a real discharge for which Pabs may vary as the electron density builds

up, and may not be exactly zero during the off period if there is a continuous bias

voltage in addition to the pulsed power. It also does not account for the time

response of the matching network (see Sections 11.6 and 12.1) used to couple the

source power to the plasma. Furthermore, for long off-times, a pulsed discharge

can extinguish or can enter a different operating mode during the initial phase of

the on-time; for example, a capacitively coupled mode for an inductive or helicon

discharge, or a “low mode” (Carl et al., 1991) for an electron cyclotron discharge.

In such cases new physical phenomena can arise, such as weak power absorption

(Carl et al., 1991) or multipacting (Boswell and Vender, 1995), which are not

described well by a rectangular power absorption waveform.
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Pulsed Electronegative Discharges

The use of an electronegative molecular gas greatly complicates the analysis of

particle and energy balance in high-density, low-pressure discharges, as seen in

Sections 10.3 and 10.4. Even for steady-state power, the high fractional dis-

sociation of the molecular gas implies that neutral particle balance equations

for the dissociation fragments are important. These, in turn, may depend on

poorly known rate constants at the chamber walls for recombination, reaction,

etc. Furthermore, there can be multiple positive and negative ions, such that

the usual assumption of ambipolar diffusion for the charged particle fluxes may

not be valid. It is also seen that the discharge can stratify into an electronegative

core region, surrounded by an electropositive halo region. Hence the assumption

of relatively uniform particle density profiles in volume-averaged models may not

be adequate.

In typical high-density, low-pressure, cw processing discharges, the ratio

n�=ne of negative ion to electron density can be less than or of order unity,

even with highly electronegative feedstocks such as Cl2 (see Section 10.5).

Hence, the major issue may not be the negative ion dynamics, but the dis-

sociation of the gas into multiple neutral and positive ion species. This can

also be the situation during the on-time of a pulsed discharge. However, for

low pulsing frequencies the situation changes markedly when the power is

turned off. During the off-time, Te rapidly decreases due to energy loss processes

such as ionization, electronic and vibrational excitation, dissociation, and elastic

scattering, and ne decreases due to dissociative attachment to the molecular gas

and diffusive losses to the walls. Because negative ions are confined within the

discharge by the positive space charge potential there, they are not initially

lost, and their density can initially increase for some attaching gases (those

having an attachment rate constant that increases with decreasing Te). At some

point in time, when ne has dropped to a low enough value compared to n�,
the potential collapses to near-zero, resulting in a diffusive flux of negative

ions to the wall. This flux can have important effects on materials processing

at surfaces. For example, it has been studied as a way to prevent notching in

narrow trenches (Hwang and Giapis, 1998).

The condition for potential collapse can be estimated from charge conservation at

the walls:

Ge þ G� ¼ Gþ (10:6:19)

or, setting edge densities approximately equal to center densities for a strongly elec-

tronegative plasma,

1

4
ne �ve e

�F=Te þ 1

4
n� �v�e�F=Ti ¼ nþuB (10:6:20)
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For F � Te � Ti, the flux of negative ions in (10.6.20) is essentially zero. Neglect-

ing this term and solving for F yields

F � Te ln
ne

nþ

Mþ
2pm

� �1=2
" #

(10:6:21)

Hence F collapses to near-zero at a time t ¼ t0 when

nþ(t0) � n�(t0) � Mþ
2pm

� �1=2

ne(t0) (10:6:22)

After this time, a significant flux of negative ions can escape to the walls.

Let us examine the negative ion dynamics in the afterglow of a recombination-

dominated discharge. Although the initial negative ion density may be small com-

pared to the electron density, we consider that a(t) ; n�(t)=ne(t) . 1 during most

of the decay. Furthermore, because of the strong energy loss processes that

operate at higher electron energy we assume that the electron temperature falls to

some relatively small value Tefin, which holds during most of the decay. For nota-

tional simplicity taking t ¼ 0 to be the time when the power pulse is turned off,

from (10.6.6) with niz ¼ 0, we have

nþ(t) ¼ nþ(0) e�nlosst (10:6:23)

At sufficiently low pressures, as the recombination loss is small compared to the wall

flux, we have nloss ¼ uB(Tefin)Aeff=V. Aeff is taken appropriately for a highly electro-

negative plasma, where we can often use the simple approximation that

Aeff � A ¼ 2pR2 þ 2pRl (hl ¼ hR ¼ 1). The evolution of the negative ion density

is described by

dn�
dt

¼ Kattne(t)ng � Krecnþ(t)n�(t) (10:6:24)

where Katt and Krec are, as in previous sections, the dissociative attachment and

positive–negative ion recombination rate constants, and ng is the molecular

(e.g., O2 or Cl2) gas density. Since the temperature dependence of Katt is not

usually strong, we can assume it to be constant, and using quasi-neutrality

(ne ¼ nþ � n�) and (10.6.23), (10.6.24) can be integrated to obtain n�(t). The
general behavior of the result can be seen by making the quasistatic assumption

dn�=dt � 0 in (10.6.24). This is justified because ne in (10.6.24) varies on a

fast timescale compared to n�. Substituting ne ¼ nþ � n� into (10.6.24) with
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dn�=dt ¼ 0, we obtain

n�(t) ¼ Kattngnþ(t)
Krecnþ(t)þ Kattng

(10:6:25)

and substituting from (10.6.23), we find

n�(t) ¼ Kattngnþ(0) e�nlosst

Krecnþ(0) e�nlosst þ Kattng
(10:6:26)

Calculating ne(t) ¼ nþ(t)� n�(t) using (10.6.23) for nþ and (10.6.26) for n�, we
then form the ratio a(t) ; n�(t)=ne(t) to obtain

a(t) ¼ a0 e
nlosst (10:6:27)

where a0 ; n�(0)=ne(0) ¼ Kattng=Krecnþ(0) is the initial electronegativity. Setting

a(t) � (Mþ=2pm)1=2 according to (10.6.22) and substituting for nloss gives an esti-

mate for the time to potential collapse,

t0 � V
2uBAeff

ln
Mþ

2pma2
0

� �

(10:6:28)

Since uB depends only weakly on Tefin (as T
1=2
efin), its value need not be known very

accurately, but may be estimated either from the lowest-lying important excitation

energy, or taken as the ion temperature itself.

The preceding description of positive and negative ion dynamics must be modi-

fied in detachment-dominated plasmas (Kaganovich et al., 2000) or in higher-

pressure regimes. For low initial electronegativities, the global model obscures

the physics of the expansion of the negative ion core as the electron density

decays. In addition, when the space charge potential Vs no longer confines the nega-

tive ions, there is a significant negative ion flux to the walls, and the resulting loss

term must be included. The subsequent decay of this positive–negative ion plasma

is not governed by the low-pressure diffusion solutions (10.2.1) and (10.2.2) for an

electropositive plasma.

Some of these effects have been incorporated into a one-dimensional model

(Kaganovich, 2001). The time- and space-dependent equations for negative ions

and electrons are solved, assuming Boltzmann electrons and quasi-neutrality,

together with the energy balance equation. The time and space dependence are

given both for power pulsed on and power pulsed off. Starting from a low electron

density, but with most ions still in the device, characteristic of the early stages of an

afterglow plasma, the power is pulsed on. As expected with the electron build-up,

the negative ions start from a diffusive profile of the positive ions and are driven

into the central part of the discharge by an ambipolar electric field. The example

given is for relatively low power where �a � 1. After a steady-state power-on
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condition is reached, the power is turned off, resulting in a rapid loss of electrons and

a spreading of the negative ions at their characteristic drift rate, and �a becomes large.

The dynamics is qualitatively consistent with the steady-state analysis for the spatial

variation, and with the global model for the time variation.

Ahn et al. (1995) studied the afterglow in an inductively excited pulsed chlorine

discharge (t ¼ 100 ms, h ¼ 0.5). They measured nþ and Te using a planar Langmuir

probe, ne using an electron-beam excited plasma oscillation detection method, and

nCl� using a laser photodetachment method, in which the electrons were detached

from the negative ions by an 0.3 ms ultraviolet XeCl excimer laser pulse and the

sudden increase in ne was measured. Figure 10.10 shows ne and Te in chlorine

[p ¼ 8 mTorr, Pin(on) ¼ 400 W], and, for comparison, in argon [p ¼ 6 mTorr,

Pin(on) ¼ 200 W]. We see the characteristic feature in the afterglow that Te falls

more rapidly than ne for both chlorine and argon, as predicted for argon by

(10.6.16) and (10.6.17). The decay of ne for chlorine is faster than the decay for

argon for two reasons: (1) Te falls faster for chlorine due to the higher collisional

energy losses in the molecular component of the neutral gas, and (2) ne falls

faster than nClþ because nCl� increases or remains relatively constant during the

decay of ne. The crosses in Figure 10.10a give ne after photodetachment (sum of

ne þ nCl� ¼ nClþ before photodetachment) and the solid dots give ne. By subtraction

one obtains the negative ion density variation. In fact, these data show that nCl�

increases from approximately 1� 1010 cm�3 at t ¼ 0 to a maximum of approxi-

mately 2� 1010 cm�3 at t ¼ 25 ms, after which nCl� again decreases. This type of

behavior is predicted by (10.6.25) if the attachment rate natt increases from

its initial value to a larger value within the afterglow. This is indeed the case for

FIGURE 10.10. Time variation of (a) electron density ne and (b) electron temperature Te for

100 ms period and 0.50 duty ratio in chlorine (8 mTorr, 400 W) and in argon (6 mTorr,

200 W); the open and closed circles indicate the data for Ar and Cl2, respectively; the

crosses in (a) indicate the data obtained after photodetachment (from Ahn et al., 1995).
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chlorine; natt increases by about a factor of 6 as Te varies from 3 to 0.05 V in the

afterglow (Ashida and Lieberman, 1996).

Malyshev et al. (1999b) measured the time dependences of electron, positive ion,

and negative ion densities and electron temperature in a 13.56-MHz inductively

coupled chlorine plasma for pressures between 3 and 20 mTorr. An on-time of

50 ms and off-times from 30 to 100 ms were used. They found good agreement to

the global model results, with the Te time variation during the off-time well

described by (10.6.16).

Neutral Radical Dynamics

The generation of neutral etchant or deposition precursors at greatly reduced power

levels has been an important application of pulsed discharges. To understand this,

we consider a simple model of the neutral dynamics

dn

dt
¼ 2Kdissneng � nlossn (10:6:29)

where Kdiss is the rate constant for electron impact dissociation of a diatomic gas

(density ng) to produce the radicals or precursors (density n), and nloss is the

radical loss frequency to the walls. Because n varies with time, ng does also.

These variations are generally fast compared to the loss frequency Sp=Vp for the

vacuum pump, where Sp is the pumping speed and Vp is the chamber volume.

Hence we can write

2ng(t)þ n(t) ¼ na0 � const (10:6:30)

where na0 is the total density of atoms in both atomic and molecular form.

Eliminating ng from (10.6.29) using (10.6.30), we obtain

dn

dt
¼ Kdissnena0 � (Kdissnena0 þ nloss)n (10:6:31)

For a given ne, setting dn=dt ¼ 0, we obtain the corresponding steady-state density

n1 ¼ Kdissnena0

Kdissne þ nloss
(10:6:32)

which is also the on-time density for a long pulse. Let us consider now a time-

varying density ne(t). Assuming that n is initially small and that ne turns on, then

from (10.6.31) and (10.6.32), we find that n rises to its steady-state value on a

timescale

trise � 1

Kdissne þ nloss
(10:6:33)
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Also from (10.6.31), when ne suddenly turns off, we obtain a characteristic decay

time tloss � 1=nloss for n. A typical case given by Lieberman and Ashida (1996)

for a chlorine discharge has trise � 0:4ms and tloss � 1:7ms, which are both long

compared to the characteristic electron density and temperature rise and decay times.

Equation (10.6.31) can be solved to determine n(t) for a given ne(t) and Te(t). We

can assume rectangular waveforms for ne(t) and Te(t), because their rise and decay

times are much shorter than those of n. The solution (Problem 10.17) has various

regimes depending on whether the radical rise time trise is greater than or less

than the on-time ton of the pulse, and on whether the radical decay time tloss is
greater than or less than the off-time toff of the pulse. The interesting regime is

for ton . trise and tloss . toff . In this regime, the radical density n builds up to

and remains nearly at its steady-state value and varies only weakly with time:

n(t) � const. Since n is determined by the on-time value of ne, it depends on the

on-time power Pmax. Therefore, the time-average radical density �n depends only

on the peak power Pmax, and not on the average power Pabs. Holding Pmax fixed,

we can then decrease the on-time to of order trise and increase the off-time to of

order tloss. This reduces the average power to the walls (and substrate) from Pmax

(for cw operation) to approximately Pmaxtrise=tloss, without much affecting the

neutral radical flux. In the example above with trise ¼ 0:4ms and tloss ¼ 1:7ms,

this corresponds to roughly 25 percent of Pmax.

Charles et al. (1995) and Charles and Boswell (1998) studied silicon dioxide

deposition from a 1–2 mTorr oxygen/silane feedstock in a pulsed helicon discharge
with Pmax ¼ 800–900W. In one set of experiments they fixed the duty ratio at

50 percent (ton ¼ toff) and measured the average deposition rate from low pulse

frequencies up to 1 kHz. They observed that deposition continues long after the

plasma is extinguished, obtaining a time constant for the process of about 200 ms.

The corresponding plasma decay time constant was about 1 ms. In another set of

experiments in a different reactor, they fixed the pulse length at 500 ms and

varied the duty ratio. The deposition rate increased by a factor of 2.5 as the duty

ratio was varied from 10 to 100 percent. They found that deposition continued in

the postdischarge with a time constant of 1 ms. The corresponding plasma decay

time was 130 ms. These experiments imply that by properly pulsing the discharge,

the power flux to the substrate can be significantly reduced, without reducing signifi-

cantly the deposition rate.

PROBLEMS

10.1. Low-Pressure Equilibrium

(a) Using the method outlined in Example 1, calculate deff , Aeff , Te, Ec, Ei,

ET, and uB, for Example 2. Confirm that n0 � 5:2� 1017 m�3 and

Jil � 7:0mA=cm2.

(b) Repeat for Example 3, confirming that n0 � 7:5� 1016 m�3 and

Jil � 1:0mA=cm2.
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10.2. High-Pressure Argon Discharge Consider a cylindrical argon plasma of

radius R ¼ 5 cm, length l ¼ 30 cm, pressure p ¼ 20mTorr, and absorbed

power Pabs ¼ 500W. Assume that the ionization rate is nizn(r; z), with

niz ¼ const, and that there is diffusive loss to the cylinder side and end walls

with a constant axial and radial (ambipolar) diffusion coefficient Da.

(a) Assuming that the ion neutral mean free path li � R; l such that the

plasma density n � 0 at the cylinder side and end walls, show that

n(r; z) � n0J0(x01r=R) cos (pz=l);

where x01 � 2:405 is the first zero of the zero order Bessel function

J0(x).

(b) Determine Te (V) by equating the total (axialþ radial) particle loss rate

to the total particle creation rate. (Integrate the particle flux�Darn over
the wall area to obtain the former, and integrate nizn(r; z) over the cylin-
der volume to obtain the latter.)

(c) At high pressures, the ion bombarding energy is due to the sheath

voltage Vs, given by (10.2.9), that develops at the walls. Assuming

that the sheath thickness s � li, equate ion and electron fluxes at the

walls to show that Ei � 5:2Te.

(d) From energy balance, estimate the central density n0 (cm23) and the

total current Iz (amperes) incident on one end wall. Assume low

voltage sheaths at all surfaces.

10.3. High-Pressure Argon Discharge With Local Ionization Consider a one-

dimensional slab model 0 , x , l of a high pressure argon discharge in

which the ionization rate is localized near the left-hand plate: G(x) ¼
nizne(x) for 0 , x , l , l and G ¼ 0 otherwise. Here niz is a constant ioniz-
ation frequency and l/ p�1 is an energy diffusion mean free path for ioniz-

ing electrons heated locally near the left hand plate. Let Da be the ambipolar

diffusion coefficient and assume boundary conditions that n � 0 at both walls.

(a) Show that the solution for n(x) can be written as

n ¼
n0 sinbx; 0 , x , l

n0
l� x

l� l
sinbl; l , x , l

8

<

:

where b2 ¼ niz=Da.

(b) Find the equation that determines b (and hence niz). The equation can

only be solved numerically.

(c) Find b (numerically) for l ¼ 1 cm and l ¼ 5 cm. Sketch the correspond-

ing solution for n(x). Comment on the similarity to Figure 10.3c.

(d) For l ¼ 1 cm, l ¼ 5 cm, plate diameter ¼ 20 cm, and an input power

absorbed of 50 W, find the peak density n0. Assume low voltage

sheaths at both plates with Te ¼ 3V and Ti ¼ 0:026V.
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10.4. Detaching Neutral Species Density Derive expression (10.3.7) for the

detaching neutral species density n� using (10.3.5) and (10.3.6).

10.5. Detaching Neutral Species Wall and Volume Losses For an oxygen dis-

charge with a given n�; ne;V=A, and �v�, and with Kdex� and Kdet for reactions

16, and the sum of 20 and 21, respectively, in Table 8.2, find the condition on

the recombination coefficient g� for surface losses of n� to be larger than

volume losses.

10.6. De-excitation Losses for Detaching Neutral Species Consider the effect

of de-excitation losses on the density n� of an excited neutral detaching

species in a one-dimensional slab model. Then (10.3.5) is modified to

�D�r2n� ¼ Kex�neng � Kdex�nen�

Assume a uniform density distribution for n� and ne.

(a) Find an expression for n� analogous to (10.3.7), but including both

de-excitation and wall losses.

(b) For nominal values in oxygen of Te ¼ 3V;T� ¼ 0:026V; g� ¼ 10�3;
l ¼ 5 cm, and Kdex� given by reaction 16 in Table 8.2, find the condition
on �ne for wall losses to dominate de-excitation losses.

10.7. Ambipolar Diffusion Coefficient in Electronegative Plasmas Assuming

that both electrons and negative ions are in Boltzmann equilibrium, derive

the ambipolar diffusion coefficient (10.3.21).

10.8. Electronegative Discharge at Low Pressure and High ne0 Assume that

a0 is in the range where the parabolic solution (10.4.14) without an ion

sound limitation holds, l1=d can be approximated by (10.4.25), and hle in

(10.4.19) is given approximately by hle � (2nizli=puB)
1=3.

(a) For a plasma with negative ion loss dominated by recombination, such

that a0 can be approximated by (10.4.21), find the scaling of a0 and

l1=d, separately, as functions of the input parameters ngd and ne0d.

(b) For a plasma with negative ion loss dominated by detachment, such that

a0 can be approximated by (10.4.23), find the scaling of a0 and l1=d,
separately, as functions of the input parameters ngd and ne0d.

10.9. Ion Sound Speed in the Electronegative Core For a parabolic profile

with scale length l1=2 ending abruptly at l�=2, derive the particle flux con-

servation formula for the electronegative region,

Kizngne0l� ¼ Krecn
2
e0

(

a2
0l� 1� 2

3

l2�
l21

þ 1

5

l4�
l41

� �

þ a0l� 1� 1

3

l2�
l21

� �

)

þ 2ne0 a0 1� l2�
l21

� �

þ 1

� �

uBa
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where uBa is given by (10.3.28), with

as ¼ a0(1� l2�=l
2
1)

To do this, find the negative ion particle balance and the electropositive edge

positive ion balance, analogously to (10.4.17) and (10.4.18). Assume that

recombination dominates detachment for negative ion loss. The additional

equation that is required to solve for the new variable l� is the condition at

which local sound speed is attained within the electronegative region. Show

that this occurs when the condition (10.4.29) is met.

10.10. Transition Between Electronegative Regimes 1 and 2 For negative ion

loss dominated by recombination, using the forms given in Problem 10.9,

write the equations for negative ion particle balance in the electronegative

region and positive ion balance in the electropositive edge region, analogous

to (10.4.17) and (10.4.18). Dropping the term in the recombination flux linear

in a0, obtain a relation for a0, analogous to (10.4.21). Setting as ¼ 0:5, obtain
a relation between l� and l1 for a given a0. Taking l�=d � 1 in your

expression for a0, find the scaling ne0d versus ngd of the border between

regimes 1 and 2.

10.11. Parabolic Solution for Electronegative Equilibrium For an oxygen dis-

charge with negative ion loss dominated by recombination, with

p ¼ 50mTorr; ne0 ¼ 2:4� 1015 m�3, and d ¼ 4:5 cm, use the equations

for the approximate parabolic solution in the electronegative core and

equations (10.4.18) and (10.4.19) in the electropositive region to find a0

and l1. Assume an initial value of Te ¼ 3V and iterate your solution once.

Compare your results with Figure 10.6 and comment.

10.12. Ion and Neutral Radical Densities in a High-Pressure Discharge Repeat

the analysis leading to the scalings (10.2.29) and (10.2.38) of nis and nOS with

discharge parameters for a high-pressure slab model of a high-density dis-

charge. Assume that the discharge is electropositive and that the ion flux to

the wall is determined by an ambipolar diffusion coefficient Da / n�1
g .

10.13. High-Density Oxygen Discharge Model The recombination probability

for O atoms on quartz walls is very low. Consider a high-density oxygen dis-

charge slab model (thickness l ¼ 10 cm) in a quartz chamber at low pres-

sures. Assume that the only volume reactions are 3, 4, 11, 12, and 22 in

Table 8.2 for generation of O, Oþ
2 , and Oþ due to electron impact.

Assume further that KO;KOþ
2
, and KOþ are the first order rate constants for

loss of O, Oþ
2 and Oþ to the vacuum pump and/or to the walls. Let

KO ¼ Sp=V ¼ 30 s�1, where Sp is the pumping speed and V is the discharge

volume. Let KOþ
2
¼ 2uBOþ

2
=l and KOþ ¼ 2uBOþ=l. Assume that all heavy par-

ticles are at 300 K, that there are no other sources for generation or loss of O,

Oþ
2 , and Oþ, and that O� generation is negligible.
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(a) Estimate the first order rate constant for loss of O atoms to the walls

due to recombination for a recombination probability on quartz of

10�4, and compare this with the value of KO given above due to the

vacuum pump.

(b) Write the steady-state rate equations for nO; nOþ
2
, and nOþ .

(c) Find an expression for nO=nO2
as a function of ne and the rate constants

K3;K4;K11;K12, and KO. For K12ne � KO, show that

nO

nO2

¼ 2K3 þ K11

K12

;

independent of ne. Evaluate nO=nO2
and the condition on ne to achieve

this high density limit for an electron temperature Te ¼ 3V. Show that

nO � nO2
.

(d) Find an expression for nOþ=nOþ
2
in terms of ne and the rate constants. In

the high density limit, show that

nOþ

nOþ
2

¼
2KOþ

2

KOþ

K3 þ K11

K4

:

Evaluate this in the high density limit for Te ¼ 3V, and show that

nOþ � nOþ
2
.

(e) Consider now the volume reactions 2, 8, and 13 in Table 8.2 for O�

generation and loss. Find nO� in the high density limit and show that

nO� � ne.

10.14. High-Pressure High a Electronegative Regime Derive a set of

equations for positive and negative ion balance for a flat-topped model

(10.4.33), but without an electropositive edge (l2 ¼ d). For a chlorine

discharge with d ¼ 0:009m; ne0 ¼ 1016 m�3 and p ¼ 300mTorr, assuming

Te ¼ 2:25V, calculate a0 and l1=d. Compare your result to the values

obtained from Figure 10.8.

10.15. Electronegative Equilibrium in Cylindrical Coordinates Using the

form of the solution (5.2.33) for high-pressure diffusion in an infinite cylin-

der with a uniform source of ionization, obtain algebraic equations for the

electronegative core plasma, analogous to (10.4.16) and (10.4.17) for the

plane-parallel case. Comment on the difference between these equations

and those of the plane-parallel case.

10.16. Afterglow of a High-Pressure, Pulsed Power Discharge Using

nloss ¼ Da=l
2
eff , as in (5.2.11), where Da � eTe=Mþnmi is the ambipolar diffu-

sion coefficient and leff � l=p, then find the time dependence (10.6.18) for the

decay of ne(t) and Te(t) for a high-pressure argon discharge model after the

power has been turned off. Assume that nmi is a constant.
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10.17. Neutral Radical Dynamics in a Pulsed Power Discharge Assume a rec-

tangular waveform model for electron density and temperature in a pulsed

electropositive discharge. During the on-time, ne ¼ ne1 and Te ¼ Te1;
during the off-time, ne and Te are approximately zero.

(a) Show that the solution of (10.6.31) for the neutral radical dynamics n(t)

during the on-time is

n(t) ¼ n1 � (n1 � nmin) e
�nriset

(b) Show that the solution of (10.6.31) during the off-time is

n(t) ¼ nmax e
�nloss(t�ht)

where h is the duty ratio.

(c) Setting n(t) ¼ nmax at t ¼ ht in (a) and n(t) ¼ nmin at t ¼ t in (b), solve
the resulting two equations to obtain nmin and nmax in terms of n1.
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CHAPTER 11

CAPACITIVE DISCHARGES

As discussed in the previous chapter, a complete description of a plasma discharge

requires a choice of heating mechanisms to sustain them. These mechanisms in turn

play essential roles in determining the plasma density, the voltages between the

plasma and the surfaces, and the bombarding ion energies. In this and the next

two chapters we discuss the main types of processing discharges. One of the most

widely used low-pressure discharges is sustained by rf currents and voltages

applied directly to an electrode immersed in the plasma. This creates a high-

voltage capacitive sheath between the electrode and the bulk plasma. The rf currents

flowing across the sheath and through the bulk plasma lead to stochastic or collision-

less heating in the sheath (see Section 18.4 for a kinetic description) and ohmic

heating in the bulk. The complete self-consistent model is quite complicated,

even in the simplest plane-parallel geometry. This leads to various simplifying

assumptions in order to obtain analytic solutions in which the various scalings of

plasma parameters with control parameters are explicit. The heating mechanisms

and resulting plasma parameters are the subject of this chapter.

In the 1970s, Godyak and collaborators, finding clear experimental evidence for

collisionless heating (see Fig. 11.7), developed a simple model, by approximating

the plasma and the sheath as having homogenous densities and the electron distri-

bution as Maxwellian (see Godyak, 1986). Considerable insight into the behavior

of capacitive discharges can be obtained from the homogeneous model, which we

describe in Section 11.1. However, because simplifying assumptions are made,

the model only partially predicts the quantitative behavior of “real” discharges. In

Section 11.2, we consider sheath and plasma nonuniformities in symmetric
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discharges and develop formulae from which more realistic calculations can be

made. We also describe various model limitations and alternate explanations. In

Section 11.3, we give comparisons to symmetric experiments and computer

simulations. Most discharges are asymmetric because more electrode surfaces are

naturally grounded than driven. This leads to a dc bias voltage on the driven elec-

trode with respect to ground. We describe asymmetric discharges in Section 11.4.

In Sections 11.1–11.4, we assume that the applied frequency is sufficiently high

and the plasma density is sufficiently low so that the ion transit time across the

sheath is long compared to the rf period. This is not the case for all capacitive dis-

charges; lower frequencies are often used, both for practical considerations and

desirability in some applications. Further, in the high density discharges that we

describe in Chapters 12 and 13, the substrate holder is often capacitively driven

at a lower frequency. We treat these lower-frequency and/or higher-density rf

sheaths in Section 11.5. The ion energy distribution is strongly affected by the

transit time effects. We examine these distributions for long and short transit time

regimes in Section 11.6.

One approach to improve the performance of capacitive discharges involves

application of a dc magnetic field lying in the plane of the driven electrode.

These discharges, known as magnetically enhanced reactive ion etchers (MERIEs)

or rf magnetrons, are described in Section 11.7. Capacitive discharges are com-

monly driven by 50-V rf power sources, usually at 13.56 MHz, although lower

(and sometimes higher) frequencies are also used. For efficient power transfer, the

power source must drive the discharge through a matching network. We describe

matching network operation and rf power measurement techniques in Section 11.8.

11.1 HOMOGENEOUS MODEL

Figure 11.1a shows the basic model. A sinusoidal current Irf (t), having complex rep-

resentation Irf ¼ Re ~Irf e
jvt, flows across discharge plates a and b. Here we take

~Irf ¼ I1, a real number. The plates are separated by a distance l and each has a

cross sectional area A. A gas having neutral density ng is present between the

plates. In response to the current flow, a discharge plasma forms between the

plates, accompanied by a voltage V(t) across the plates and a power flow P(t)

into the plasma. The plasma has an ion density ni(r; t) and an electron temperature

Te(r; t). Because of quasineutrality, ne � ni almost everywhere except within the

oscillating sheaths near the plates, where ne , ni. The instantaneous sheath thick-

ness is s(t) and its time-averaged value is �s. Typically, �s � l.

The state of the discharge is specified once a complete set of control parameters is

given. The remaining plasma and circuit parameters are then specified as functions

of the control parameters. A convenient choice for the control parameters is

Irf;v; ng , and l. Given these, we develop the basic model to determine ne ;Te ;
s; �s;V , and P. The choice of control parameters is not unique. We choose I rather

than V or P, in this section, for ease of analysis.

388 CAPACITIVE DISCHARGES



In general, the discharge parameters ne , ni , and Te are complicated functions of

position and time. We assume the following to simplify the analysis:

(a) The ions respond only to the time-averaged potentials. This is a good

approximation provided

v2
pi � v2

where vpi is the ion plasma frequency.

(b) The electrons respond to the instantaneous potentials and carry the rf dis-

charge current. This is a good approximation provided

v2
pe � v2 1þ n2m

v2

� �1=2

where vpe is the electron plasma frequency and nm is the electron–neutral

collision frequency for momentum transfer.

(c) The electron density is zero within the sheath regions. This is a good approxi-

mation provided lDe � �s, where lDe is the electron Debye length. This holds
if Te � �V , where �V is the dc voltage across the sheath.

(d) There is no transverse variation (along the plates). This is a good

approximation provided l � ffiffiffi

A
p

and provided that electromagnetic propa-

gation and skin effects can be neglected. The conditions for this are

FIGURE 11.1. The basic rf discharge model: (a) sheath and plasma thicknesses; (b) electron

and ion densities.
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(Raizer et al., 1995; Lieberman et al., 2002) lp �
ffiffiffi

A
p

and dp � l, where lp
is the wavelength for transverse wave propagation in the discharge and dp is
the plasma skin depth (see Section 12.1). With these assumptions, a one-

dimensional (along x) electrostatic solution of Maxwell’s equations can be

used to determine the fields. Since the divergence of Maxwell’s equation

r �H ¼ Jþ e0@E=@t is zero, we see that, at any instant of time, the sum

of the conduction current J and the displacement current e0@E=@t within
the discharge is then independent of x.

These assumptions hold both for the uniform model of this section, and

for the inhomogeneous model of Section 11.2. For the simplified model in

this section we also assume the following:

(e) The ion density is uniform and constant in time everywhere in the plasma

and sheath regions: ni(r; t) ¼ n ¼ const. The electron and ion density pro-

files for the simplified model are shown in Figure 11.1b, corresponding to

the position of the plasma as shown in Figure 11.1a.

As we shall see in Section 11.2, the variation of the ion density in the sheath,

which we obtain from a Child law calculation as in Section 6.3, considerably mod-

ifies the results obtained here using the approximation (e).

Plasma Admittance

The admittance of a bulk plasma slab of thickness d and cross-sectional area A is

Yp ¼ jvep A=d, where

ep ¼ e0 1� v2
pe

v(v� jnm)

" #

(11:1:1)

is the plasma dielectric constant given by (4.2.18). We show below that, within the

uniform ion density approximation

d ¼ l� 2�s ¼ const (11:1:2)

independent of time. We then find that (see Problem 11.1)

Yp ¼ jvC0 þ 1

jvLp þ Rp

(11:1:3)

where C0 ¼ e0A=d is the vacuum capacitance, Lp ¼ v�2
pe C

�1
0 is the plasma induc-

tance, and Rp ¼ nmLp is the plasma resistance. This form for Yp represents the

series combination of Lp and Rp in parallel with C0. By assumption (b), the displa-

cement current that flows through C0 is much smaller than the conduction current

that flows through Lp and Rp. The sinusoidal current

Irf (t) ¼ Re ~Irf e
jvt (11:1:4)
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that flows through the plasma bulk produces a voltage across the plasma

Vp(t) ¼ Re ~Vp e
jvt (11:1:5)

where ~Vp ¼ ~Irf=Yp is the complex voltage amplitude. We see that the plasma voltage

is linear in the applied current and that there is no harmonic generation (multiples of

v) or dc component of Vp.

Sheath Admittance

In contrast to the plasma, the current that flows through the two sheaths is almost

entirely displacement current; that is, it is due to a time-varying electric field.

This is true because the conduction current in a discharge is carried mainly by elec-

trons, and the electron density is approximately zero within the time-varying sheath.

We will see that the conduction current carried by the steady flow of ions across the

sheath to the plates is much smaller than the displacement current.

(a) Displacement Current The electric field E ¼ x̂E within sheath a (see

Fig. 11.1) is given by Poisson’s equation

dE

dx
¼ en

e0
; x � sa(t) (11:1:6)

which on integration yields

E(x; t) ¼ en

e0
½x� sa(t)� (11:1:7)

The boundary condition is E � 0 at x ¼ sa because E is continuous across the

plasma–sheath interface (no surface charge) and the electric field is small in the

plasma. The displacement current flowing through sheath a into the plasma is

Iap(t) ¼ e0 A
@E

@t
(11:1:8)

Substituting (11.1.7) in (11.1.8), we obtain

Iap(t) ¼ �en A
dsa

dt
(11:1:9)

From (11.1.9), the sheath boundary sa oscillates linearly with the applied current.

Setting Iap(t) ¼ Irf (t), where Irf ¼ I1 cosvt, we integrate (11.1.9) to obtain

sa ¼ �s� s0 sin vt (11:1:10)

where

s0 ¼ I1

envA
(11:1:11)
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is the sinusoidal oscillation amplitude about the dc value �s. The voltage across the

sheath is given by

Vap(t) ¼
ðsa

0

E dx ¼ � en

e0

s2a
2

(11:1:12)

From (11.1.12), the sheath voltage is a nonlinear function of sa and therefore of the

applied current. Substituting (11.1.10) in (11.1.12), we obtain

Vap ¼ � en

2e0
�s2 þ 1

2
s20 � 2�ss0 sin vt � 1

2
s20 cos 2vt

� �

(11:1:13)

We see that the nonlinearity leads to second-harmonic voltage generation and a con-

stant average value.

Similarly for sheath b we obtain

Ibp ¼ �en A
dsb

dt
(11:1:14)

and the voltage across this sheath is

Vbp ¼ � en

e0

s2b
2

(11:1:15)

By continuity of current, Ibp ¼ �Iap , so that adding (11.1.9) and (11.1.14) we find

d

dt
(sa þ sb) ¼ 0

Integrating, we obtain

sa þ sb ¼ 2�s; a constant (11:1:16)

so that d ¼ l� 2�s ¼ const, as previously stated. For sheath b,

sb ¼ �sþ s0 sin vt (11:1:17)

with the nonlinear voltage response, using (11.1.15),

Vbp ¼ � en

2e0
�s2 þ 1

2
s20 þ 2�ss0 sin vt � 1

2
s20 cos 2vt

� �

(11:1:18)

Although Vap and Vbp are nonlinear, the combined voltage Vab ¼ Vap � Vbp

across both sheaths, obtained by subtracting (11.1.18) from (11.1.13), is

Vab ¼ en�s

e0
(sb � sa)
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Substituting for sb and sa from (11.1.10) and (11.1.17) we find

Vab ¼ 2en�ss0

e0
sin vt (11:1:19)

which is a linear voltage response. We obtain the surprising result that although each

sheath is nonlinear, the combined effect of both sheaths is linear. This is true only for

the simplified model assumptions of a symmetric, homogeneous (constant ion

density) discharge. The total voltage ~V rf across the discharge is the sum of ~Vab

and ~Vp. However, for typical discharge conditions, we usually have j ~Vpj � j ~Vabj,
and we often approximate ~V rf � ~Vab.

(b) Conduction Current Although the conduction current in each sheath is

small, the average sheath thickness �s is determined by the balance between ion

and electron conduction currents. By assumption (a), there is a steady flow of

ions from the plasma through sheath a, carrying a steady current

�Ii ¼ enuBA (11:1:20)

where the loss velocity is taken to be the Bohm velocity uB.

By symmetry, the time-average conduction current flowing to plate a is zero.

There is a steady flow of ions to the plate. For the basic model, the electron

density is assumed zero in the sheath. The sheath thickness sa(t) must therefore col-

lapse to zero at some time during the rf cycle in order to transfer electrons from the

plasma to the plate. It follows from (11.1.10) and (11.1.11) that

�s ¼ s0 ¼ I1

envA
(11:1:21)

and from (11.1.13) that

Vpa ¼ en

2e0
s20(1� sin vt)2 (11:1:22)

Since the sheath voltage collapses to zero at the time that the electrons are

transferred to the plate, this acts like an ideal diode across the sheath whose

preferred direction of current flow is into the plasma. A similar result holds for

sheath b.

We can define a linear sheath capacitance Cs because the voltage (11.1.19) across

both sheaths is sinusoidal. Differentiating (11.1.19) and substituting for Irf using

(11.1.21) we obtain the simple result

Irf ¼ Cs

dVab

dt

11.1 HOMOGENEOUS MODEL 393



where

Cs ¼ e0 A

2s0
(11:1:23)

is a linear capacitance. Physically, this capacitance is the series combination of the

two nonlinear capacitances Ca ¼ e0 A=sa(t) and Cb ¼ e0 A=sb(t).
The voltages Vap(t), Vpb(t), and their sum Vab(t) are plotted versus t in Figure 11.2.

The manner in which the sum of the two nonsinusoidal voltages yields the Vab sinus-

oid is clearly seen. The time-averaged value �V for Vpb is also shown as the horizontal

dashed line.

The spatial variation of the total potential at various times within the rf cycle is

shown (solid lines) in Figure 11.3. It is assumed that the right-hand electrode is

grounded (held at V ¼ 0 at all times). The dashed curve shows the spatial variation

of the time average potential.

FIGURE 11.2. Sheath voltages Vap , Vpb , and their sum Vab versus time; the time-average

value �V of Vpb is also shown.
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Particle and Energy Balance

To complete the analysis we need to evaluate expressions for particle and energy

balance as developed in Chapter 10. Particle balance per unit area, for a uniform

plasma, is straightforwardly given by

nKizngd ¼ 2nuB (11:1:24)

FIGURE 11.3. Spatial variation of the total potential F (solid curves) for the homogeneous

model of Section 11.1, at four different times during the rf cycle. The dashed curve shows the

spatial variation of the time-average potential �F.
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as in (10.2.7), with deff ¼ d=2. If the sheaths are thin, such that d � l, we can evalu-

ate the temperature from (11.1.24) alone.

To calculate the plasma density, we must evaluate the time-average power per

unit area absorbed by the electrons, Se , which involves the rf currents and voltages,

and the sheath oscillations.

(a) Ohmic Heating The time-average power per unit area deposited by ohmic

heating in the bulk plasma, �Sohm , is due to collisional momentum transfer

between the oscillating electrons and the neutrals. Integrating (4.2.30) over the

bulk plasma length d, we obtain

�Sohm ¼ 1

2
J21

d

sdc

(11:1:25)

where J1 ¼ I1=A and sdc is the dc plasma conductivity. Substituting (4.2.22) for sdc

into (11.1.25), we find

�Sohm ¼ 1

2
J21

mnmd

e2n
(11:1:26)

(b) Stochastic Heating Electrons reflecting from the large decelerating fields of

a moving high-voltage sheath can be approximated by assuming the reflected vel-

ocity is that which occurs in an elastic collision of a ball with a moving wall

ur ¼ �uþ 2ues (11:1:27)

where u and ur are the incident and reflected electron velocities parallel to the time-

varying electron sheath velocity ues. If the parallel electron velocity distribution at

the sheath edge is fes(u; t), then in a time interval dt and for a speed interval du,

the number of electrons per unit area that collide with the sheath is given by

(u� ues) fes(u; t) du dt. This results in a power transfer per unit area.

dSstoc ¼ 1

2
m(u2r � u2)(u� ues) fes(u; t) du (11:1:28)

Using ur ¼ �uþ 2ues and integrating over all incident velocities, we obtain

Sstoc ¼ �2m

ð1

ues

ues(u� ues)
2 fes(u; t) du (11:1:29)

In the physical problem fes varies with time, as the sheath oscillates, and the problem

becomes quite complicated. For our uniform density model, we note that

ð1

�1
fes(u; t) du ¼ nes(t) ¼ n; a constant (11:1:30)

Furthermore, for the purpose of understanding the heating mechanism we make the

simplifying approximation that fes(u; t) can be approximated by a Maxwellian,
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ignoring the bulk plasma rf oscillation velocity ues . Then we can set the lower limit

in (11.1.29) to zero. If the oscillation of the bulk plasma is self-consistently included

in the above calculation, then the homogeneous model does not predict collisionless

(stochastic) heating. Nevertheless, the above simple picture allows us to better

understand the more self-consistent results of the inhomogeneous model, described

in the next section, for which the calculation is considerably more complicated. The

inhomogeneous model is also not fully self-consistent, and we return to this more

subtle question at the end of Section 11.2. Before performing the average over

the distribution function, we substitute

ues ¼ u0 cosvt (11:1:31)

in (11.1.29) and average over time. Only the term in sin2 vt survives giving

�Sstoc ¼ 2mu20

ð1

0

ufes(u) du (11:1:32)

Now, consistent with our approximation that fes is Maxwellian, we note that the inte-

gral gives the usual random flux Ge ¼ 1
4
n�ve , and (11.1.32) becomes

�Sstoc ¼ 1

2
mu20n�ve (11:1:33)

Inside the plasma the rf current is almost entirely conduction current, such that

I1 ¼ J1A ¼ �enu0 A (11:1:34)

Substituting (11.1.34) into (11.1.33) yields the stochastic electron power in terms of

the (assumed) known current. Since we are calculating the power per unit area, we

use the current density, to obtain, for a single sheath,

�Sstoc ¼ 1

2

m�ve

e2n
J21 (11:1:35)

Discharge Parameters

Adding (11.1.35) (for two sheaths) and (11.1.26), the total time-average electron

power per unit area is

Se ¼ 1

2

m

e2n
(nmd þ 2�ve)J

2
1 (11:1:36)

Assuming Jrf ;v; ng ;A, and l are the specified control parameters, we equate the

electron energy deposited in the plasma to the electron energy lost from the plasma:

Se ¼ 2enuB(Ec þ E0
e) (11:1:37)
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In (11.1.37), the kinetic energy E0
e lost per electron lost from the plasma is not the

same as the kinetic energy Ee ¼ 2Te lost per electron hitting the wall. This is

because [see discussion following (10.2.4)] an electron crossing the presheath and

sheath fields loses an energy Vs þ 1
2
Te , with Vs given by (10.2.4). Hence we have

E0
e ¼ Ee þ Vs þ 1

2
Te � 7:2Te for argon. Setting (11.1.36) equal to (11.1.37) and

solving for n, we obtain

n ¼ 1

2

m(nmd þ 2�ve)

e3uB(Ec þ E0
e)

� �1=2

J1 (11:1:38)

With the temperature assumed known from (11.1.24) and if we again let d � l, the

density can be calculated. With n known the sheath thickness is calculated from

(11.1.21). If 2�s is a significant fraction of l, then we determine d � l� 2�s, and
the equations can be iterated to determine more accurate values for Te ; n, and
d ¼ l� 2�s. However, this iteration compromises the simplicity of the model.

Finally, to obtain the total power dissipated, we must calculate the power lost by

the ions. To do this we need the average voltage across each sheath, which is found

by time averaging (11.1.13):

�V ; �Vpa ¼ 3

4

en

e0
s20 ¼

3

4

J21
ee0nv2

(11:1:39)

where the second equality comes from substituting for s0 from (11.1.21). Using

(10.2.14), the power per unit area lost by the ions is

Si ¼ 2enuB �V ¼ 3

2
uB

J21
e0v2

(11:1:40)

where the factor of two is for two sheaths. The total power absorbed per unit area,

Sabs, is found by adding (11.1.36) and (11.1.40).

The stochastic heating �Sstoc leads to equivalent sheath resistances Ra and Rb

defined by �Sstoc ¼ (1=2)J21ARa;b. These resistances are in series with the sheath capa-

citances, as shown in Figure 11.4. The ion heating Si can be modeled as equivalent

dc current sources �Ii ¼ �JiA, as shown in the figure. Because this dc current flows

across a dc sheath voltage �V , it represents a power dissipation within the sheath.

Note that Ra and �Ii are not constants, but are functions of the rf voltage. For

typical discharges, the inductive impedance of the bulk plasma is small compared

to the capacitive impedance of the sheaths, such that almost all of the applied rf

voltage appears across the two sheath capacitors. This situation was described in

Chapter 4 (see Fig. 4.4, along with accompanying discussion in the text). Although

the voltage drops across the resistors are generally small for an electropositive

plasma, the power dissipation due to the flow of current through these resistors is

important, as we have described. At very high frequencies (typically much exceed-

ing 13.56 MHz), the bulk plasma inductance and the sheath capacitance can
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resonate, leading to a resonant discharge regime in which the overall rf voltage

across the discharge drops to a very low value, of order a few volts (see Problems

4.7 and 11.3). In an electronegative plasma with ne � ni , the voltage drops across

the resistors can be comparable to, or even exceed, the voltage drops across the

sheath capacitors, and the discharge can enter a resistive regime.

In real devices, the control parameter is usually Vrf or Sabs , rather than Jrf . This

would make the above calculations more cumbersome. We address this in the next

section, where we make more quantitatively correct calculations and give examples

of calculating the parameters in real discharges.

11.2 INHOMOGENEOUS MODEL

In this section, we describe a realistic inhomogeneous model for a capacitive dis-

charge and give the set of equations that are required for a quantitative calculation

of the discharge parameters. For the inhomogeneous model we retain approxi-

mations (a)–(d) in Section 11.1, but allow the plasma and the sheath to be inhomo-

geneous. The inhomogeneity in the plasma is not critical, taking different forms

depending on the pressure, as discussed in detail in Chapters 5 and 10. The inhomo-

geneous sheath, however, strongly modifies the results, and the consequences of this

FIGURE 11.4. Nonlinear circuit model of the homogeneous rf plasma discharge. The

dashed lines indicate that the series connection of the nonlinear elements Ca and Cb, and

Ra and Rb, yield the corresponding linear elements Cs and Rs, respectively.
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are the main subject of this section. The basic processes are the following. The

decreasing ion density within the sheath between the plasma–sheath edge and the

collecting boundary leads to a Child law variation of the density and an increased

sheath width compared to the matrix sheath width in Section 11.1. It also leads to

an increase of the sheath velocity in the regions of decreasing ion density. This

follows because the rf current must be continuous, while the electron density is

decreasing to preserve charge neutrality. The result is a substantial increase in the

stochastic sheath heating. Due to the partial shielding of the ion space charge by

the oscillating electrons, the Child law (6.3.12) for the ions is also modified. The

increase in sheath width decreases the total sheath capacitance. A self-consistent

analysis must consider all of these effects together. The analysis for a collisionless

sheath is given somewhat briefly in the first part of this section; a more detailed

calculation can be found in Lieberman (1988). The results required to make a

quantitative calculation of the discharge parameters are summarized in (11.2.32)–

(11.2.38), and their use is illustrated in several following examples. The reader

who wishes to calculate parameters for a given discharge can skip to these equations

without following the preceding analysis.

At higher pressures where the ion mean free path li , sm , the sheath width,

collisional models similar to those described in Section 6.5 must be used to describe

the self-consistent sheath dynamics. We summarize the results for these models in

this section. We also briefly describe nonideal effects for the self-consistent

sheath, including low to moderate rf driving voltages, ohmic heating in the

sheaths, and self-consistency conditions for collisionless heating.

Collisionless Sheath Dynamics

The structure of the rf sheath is shown in Figure 11.5. Ions crossing the ion sheath

boundary at x ¼ 0 accelerate within the sheath and strike the electrode at x ¼ sm
with high energies. Since the ion flux niui is conserved and ui increases as ions

transit the sheath, ni drops. This is sketched as the heavy solid line in Figure 11.5.

The ion particle and energy conservation equations are respectively

niui ¼ nsuB (11:2:1)

1

2
Mu2i ¼

1

2
Mu2B � e �F (11:2:2)

where ns is the plasma density at the plasma sheath edge at x ¼ 0 and �F is the time-

average potential within the sheath; �F; ni , and ui are functions of x. The Poisson

equation for the instantaneous electric field E(x; t) within the sheath is

@E

@x
¼

e

e0
ni(x) s(t) , x

0 s(t) . x

8

<

:

(11:2:3)
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Here, s(t) is the distance from the ion sheath boundary at x ¼ 0 to the electron sheath

edge. Time averaging (11.2.3) over an rf cycle, we obtain the equations for the time-

average electric field �E(x):

d �E

dx
¼ e

e0
ni(x)� �ne(x)ð Þ (11:2:4)

d �F

dx
¼ � �E (11:2:5)

where �ne(x) is the time-average electron density within the sheath. We determine �E
and �ne from s(t) as follows. We note that ne(x; t) ¼ 0 during the part of the rf cycle

where s(t) , x; otherwise, ne(x; t) ¼ ni(x). We therefore have

�ne(x) ¼ 1� 2f

2p

� �

ni(x) (11:2:6)

where 2f(x) ¼ 2vt is the phase interval during which s(t) , x. Qualitatively, we

sketch �ne as the dashed line in Figure 11.5. For x near zero, s(t) , x during only a

small part of the rf cycle; therefore, 2f � 0 and �ne � ni(x). For x near sm; s(t) , x

during most of the rf cycle; therefore, 2f � 2p and �ne � 0. To determine the time

averages quantitatively, we assume that a sinusoidal rf current density passes

through the sheath, which, equated to the conduction current at the electron

sheath boundary, gives the equation for the electron sheath motion:

�eni(s)
ds

dt
¼ �J1 sin vt (11:2:7)

The solutions to these equations are rather involved, and we present only a few

results. Combining (11.2.1)–(11.2.7), we obtain (see Lieberman, 1988, for details)

x

s0
¼ (1� cos f)þ H

8

3

2
sin fþ 11

18
sin 3f� 3f cos f� 1

3
f cos 3f

� �

(11:2:8)

FIGURE 11.5. Schematic plot of the densities in a high-voltage, capacitive rf sheath.
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for 0 � f � p, as sketched in Figure 11.6; and at the electron sheath edge the ion

density is determined to be

ni(x)

ns
¼ 1� H

3

8
sin 2f� 1

4
f cos 2f� 1

2
f

� �� ��1

(11:2:9)

Here

s0 ¼ J1

evns
(11:2:10)

is an effective oscillation amplitude, and

H ¼ J21
pee0Tev2ns

¼ 1

p

s20
l2Ds

(11:2:11)

with lDs ¼ (e0Te=ens)
1=2 the electron Debye length at the ion sheath edge

(x ¼ 0; ni ¼ ns). The ion density and average electron density are as sketched in

Figure 11.5 in the usual regime of a high-voltage sheath with Vrf � Te.

Child Law

The Child law for the self-consistent ion sheath is obtained by integrating (11.2.4)

with ni(x) and �ne(x) given by (11.2.9) and (11.2.6). Performing the integrations,

we find

�F

Te

¼ 1

2
� 1

2
1� H

3

8
sin 2f� 1

4
f cos 2f� 1

2
f

� �� �2

(11:2:12)

The ion sheath voltage �V is then found by putting f ¼ p at �F ¼ � �V in (11.2.12) to

obtain, for H � 1,

�V

Te

¼ 9p2H2

32
(11:2:13)

FIGURE 11.6. Sketch of the electron sheath thickness s versus vt, showing the definition of
the phase f(x).
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Similarly putting f ¼ p at x ¼ sm in (11.2.8), we obtain for H � 1 that

sm

s0
¼ 5pH

12
(11:2:14)

The ion current is obtained from the Bohm flux at the plasma edge where ni ¼ ns.

Substituting for H from (11.2.11), we use (11.2.13) and (11.2.14) to construct the

Bohm flux, finding

�Ji ¼ ensuB ¼ Kie0
2e

M

� �1=2 �V
3=2

s2m
(11:2:15)

where Ki ¼ 200=243 � 0:82. This has the same scaling with �V and sm as the normal

Child law (6.3.12) without electron shielding, which has Ki ¼ 4=9 � 0:44. For a
fixed current density and sheath voltage, the self-consistent rf ion sheath thickness

sm is larger than the Child law sheath thickness by the factor
ffiffiffiffiffiffiffiffiffiffiffiffi

50=27
p � 1:36.

This increase is produced by the reduction in space charge within the sheath due

to the nonzero, time-average electron density.

Sheath Capacitance

To obtain a complete self-consistent model we need a relationship between the rf

voltage and rf current, which involves the total capacitance of both sheaths.

Unlike the uniform model in Section 11.1, the sum of the two sheath capacitances

is no longer a constant, producing harmonics at the rf driving frequency. In the

model the current has been taken to be sinusoidal; hence the Fourier decompose

the voltage to obtain a capacitance associated with the fundamental component of

the voltage

Iab(t) ; Cab

d

dt
Vab1(t) (11:2:16)

Using (11.2.8) and integrating Poisson’s equation twice, to obtain the time-varying

total voltage, we find

Vab ¼ �p

4
HTe 8 cos vt þ H

10

3
p cos vt � 5

9
sin 2vt

��

� 25

288
sin 4vt þ (2vt � p)

3

8
þ 1

3
cos 2vt þ 1

48
cos 4vt

� ���

(11:2:17)

for 0 � vt � p. The peak-to-peak value of Vab is 2V(0), with V(0) given by

V(0) ¼ p

4
H Te 8þ H

125p

48

� �� �

(11:2:18)
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The amplitude of the fundamental voltage harmonic is

Vab1 ¼ �p

4
H Te 8þ H

10p

3
� 4096

675p

� �� �

(11:2:19)

Evaluating (11.2.19) and substituting in (11.2.16) we find

Cab � 0:613 e0 A

sm
(11:2:20)

There is no second harmonic, and the third harmonic of the voltage is only 4.2

percent of the fundamental. Hence, to a good approximation, a sinusoidal sheath

current produces a sinusoidal voltage across the sum of the two sheaths in a sym-

metric rf discharge.

From (11.2.16) and (11.2.20), we obtain

J1 � 1:23
ve0
sm

V1 (11:2:21)

where V1 ¼ Vab1=2 is the fundamental rf voltage amplitude across a single sheath.

From (11.2.13) and (11.2.19) with H � 1, we also find

�V � 0:83V1 (11:2:22)

The relation between V1; J1, and ns is found by eliminating �V and sm from (11.2.15),

(11.2.21), and (11.2.22) to obtain

J21
ns

� 1:73 ee0v
2T1=2

e V
1=2
1 (11:2:23)

Ohmic Heating

The ohmic heating is obtained straightforwardly as in Section 11.1, except that the

density and therefore the resistivity is a function of position. The time-average

ohmic power per unit area can therefore be written

�Sohm � 1

2
J21

ðl=2�sm

�l=2þsm

mnm
e2n(x)

dx (11:2:24)

where n(x) is the only function of position, depending on the equilibrium solution as

calculated in Section 10.2, and the approximate equality is due to the approximation

of the integration limits. At low pressures, li=d . Ti=Te , for which the density

profile is rather flat, the central density can be substituted for n(x), without signifi-

cant error. At low pressures the ohmic heating is small compared to the stochastic
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heating, such that the errors are negligible. At higher pressures, li=d , Ti=Te , most

of the ohmic heating occurs at the plasma edge and the mean free path of the

energetic (ionizing) electrons is generally less than the discharge length. This can

lead to a flattening of the cosine solution n ¼ n0 cosbx of (10.2.18). However,

we ignore this effect here and use (10.2.18) to integrate 1=n(x) to incorporate the

density variation. Thus we have

�Sohm ¼
1

2
J21

mnm
e2n0

d; li .
Ti

Te

� �

d

1

2
J21

mnm
e2n0

2

b
ln tan

p

4
þ bd

4

� �

; li ,
Ti

Te

� �

d

8

>

>

>

<

>

>

>

:

(11:2:25a)

(11:2:25b)

where d � l� 2sm is the plasma length and cos(bd=2) ¼ ns=n0.

Stochastic Heating

The power transferred to the electrons by the sheath is found from (11.1.29) as in

Section 11.1, but now fes is not a fixed Maxwellian, but is a time-varying function

with a time-varying density nes(t) at the electron sheath edge s(t). To determine

fes , we first note that the sheath is oscillating because the electrons in the bulk

plasma are oscillating in response to a time-varying electric field. If the velocity dis-

tribution function within the plasma at the ion sheath edge x ¼ 0 in the absence of

the electric field is a Maxwellian fm(u) having density ns , then the distribution within

the plasma at the ion sheath edge is fs(u; t) ¼ fm(u� us), where us(t) ¼ �u0 sinvt
is the time-varying oscillation velocity of the plasma electrons. At the moving elec-

tron sheath edge, because nes , ns , not all electrons having u . 0 at x ¼ 0 collide

with the sheath at s. Many electrons are reflected within the region 0 , x , s

where the ion density drops from ns to nes. This reflection is produced by an ambi-

polar electric field whose value maintains quasi-neutrality ne � ni at all times. The

transformation of fs across this region to obtain fes is complicated. However, the

essential features to determine the stochastic heating are seen if we approximate

fes ¼ nes

ns
fm(u� us) (11:2:26)

As with the homogeneous model, this expression for fes is not fully self-consistent

with the flow of rf current across the moving sheath; we discuss this issue further

at the end of this section. Inserting (11.2.26) into (11.1.29) and transforming to a

new variable u0 ¼ u� us , we obtain

Sstoc(t) ¼ � 2m

ns

ð1

ues�us

uesnes u
02 � 2u0(ues � us)þ (ues � us)

2
� 	

fm(u
0) du0 (11:2:27)
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From (11.2.7) we note that

nesues ¼ u0ns sin f (11:2:28)

and differentiating (11.2.8), we obtain

vR(f) ; ues � us ¼ +
u0H

8
� 3

2
cos fþ 3f sin fþ 3

2
cos 3fþ f sin 3f

� �

(11:2:29)

where the plus sign is used for the integration from 0 to p and the minus sign for

the integration from �p to 0. Substituting (11.2.28) and (11.2.29) into (11.2.27),

we find the average stochastic power for a single sheath to be

�Sstoc ¼ �mu0

p

ðp

�p

sin f df

ð1

vR(f)

u02fm(u0) du0

þ 2mu0

p

ðp

�p

vR(f) sinf df

ð1

vR(f)

u0fm(u0) du0

� mu0

p

ðp

�p

v2R(f) sinf df

ð1

vR(f)

fm(u
0) du0

(11:2:30)

or, for notational convenience, �Sstoc ¼ �S1 þ �S2 þ �S3.
If the assumption is made that the sheath motion is much slower than the electron

thermal velocity, as in Section 11.1, then vR(f) is small, and we can make the lower

limit of the u0 integrals equal to zero. Since vR(f) is an odd function, the �S1 and �S3
integrands integrate to zero, with the �S2 integral yielding

�Sstoc ¼ 3p

32
Hmns �veu

2
0 (11:2:31)

For ues & �ve in (11.2.30), the stochastic heating result (11.2.31) is not correct. An
analytic calculation in the limit ues � �ve, and a numerical calculation using the com-

plete expression for the stochastic heating from (11.2.30) have been made by Wood

et al. (1995). The calculations give a somewhat larger power dissipation at the higher

voltages, than that obtained using the slow sheath approximation. However, we

should note that a fast sheath strongly perturbs the distribution of electrons within

the sheath (Surendra and Vender, 1994), such that the sheath calculation is no

longer self-consistent.

Self-Consistent Model Equations

We summarize the complete set of equations which can be used to calculate the

parameters for an electropositive plasma, given a set of control parameters for a
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symmetric plane parallel geometry. In addition to f ¼ v=2p; l;A, and p, we have

assumed that Jrf is known in deriving the self-consistent set. However, usually Vrf

or the total absorbed power Pabs is the specified control parameter. The model

includes assumptions that are only approximately satisfied, so we should not

expect very close quantitative agreement with more detailed numerical simulations,

or with actual experiments. In addition, for experiments it is very difficult to control

the transverse uniformity of the plasma, as implied in the plane-parallel assumption.

However, reasonably accurate scaling of plasma parameters with control parameters

can still be determined. In this subsection, we use the basic set of equations for

sample calculations of plasma parameters. We then indicate the scaling that can

be employed to estimate a wider set of plasma parameters, keeping in mind that

the various regimes have different coefficients in the scaling, and sometimes differ-

ent scalings. In Section 11.3, we shall compare analytic results to simulations and

experiments, with the symmetric plane parallel assumption. Then, in Section 11.4,

we model asymmetric discharges.

The approximate self-consistent model equations are summarized here. We

assume d � l� 2sm , with an initial estimate sm � 1 cm for numerical computations,

which is a nominal value for low-pressure capacitive discharges. We can iterate on

this value if we believe it will improve overall accuracy. From particle conservation

(10.2.12) at intermediate and low pressures, we have

Kiz

uB
¼ 1

ngdeff
¼ 2

ngd

ns

n0
; li &

Ti

Te

� �

d (11:2:32a)

where ns=n0 is given by (10.2.1). At higher pressures, from (10.2.23), we have

(KmiKiz)
1=2

uB
¼ p

ngd
; li .

Ti

Te

� �

d (11:2:32b)

These equations determine Te given ng and d. Substituting (11.2.23) into (11.2.25),

we obtain the electron ohmic heating power per unit area,

�Sohm �

1:73
m

2e

ns

n0
e0v

2nmT
1=2
e V

1=2
1 d; li &

Ti

Te

� �

d

(11:2:33a)

1:73
m

2e

ns

n0
e0v

2nmT
1=2
e V

1=2
1

2

b
ln tan

p

4
þ bd

4

� �

; li .
Ti

Te

� �

d

(11:2:33b)
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>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

where cos(bd=2) ¼ ns=n0. Substituting (11.2.23) into (11.2.31) with u0 ¼ J1=ens
and using (11.2.10) and (11.2.11) for a single sheath in the slow sheath limit,
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we obtain

�Sstoc � 0:45
m

e


 �1=2

e0v
2T1=2

e V1; vsm . �ve (11:2:34)

We also have, from (11.2.22), that the ion kinetic energy per ion hitting the

electrode is

Ei ¼ �V � 0:83V1 (11:2:35)

The electron power balance equation is

Se ¼ �Sohm þ 2�Sstoc ¼ 2ensuB(Ec þ E0
e) (11:2:36)

where, as in (11.1.37), E0
e ¼ Ee þ Vs þ 1

2
Te � 7:2Te for argon. Since �Sohm and �Sstoc

are both functions of V1 alone, independent of ns and J1, (11.2.36) explicitly deter-

mines ns if V1 is the specified electrical control parameter. The total power absorbed

per unit area is then found as

Sabs ¼ 2ensuB( �V þ Ec þ E0
e) (11:2:37)

Eliminating ns from these two equations and using (11.2.35) for �V , we obtain

Sabs � (�Sohm þ 2�Sstoc) 1þ 0:83V1

Ec þ E0
e

� �

(11:2:38)

If Sabs is the specified control parameter, then (11.2.38) implicitly determines V1 by

substituting for �Sohm and �Sstoc from (11.2.33) and (11.2.34). In this case, (11.2.36) or

(11.2.37) can then be used to find ns. The center density n0 is then found using

(10.2.3) or (10.2.5), and �V is found from (11.2.38). To complete the summary,

sm and J1 are found from (11.2.15) and (11.2.21), respectively.

Example 1 We take the following parameters:

. p ¼ 3mTorr argon at 300 K

. l ¼ 10 cm

. A ¼ 1000 cm2

. f ¼ 13:56MHz (v ¼ 8:52� 107 s�1)

. Vrf ¼ 500V

Starting with an estimate sm � 1 cm, and using li ¼ 1=ngsi we find from (3.5.7)

with ng ¼ 1:0� 1020 m�3 at 300 K, that li ¼ 1:0 cm ¼ 0:01m. Thus, with

d ¼ l� 2sm ¼ 0:08m, li=d � 0:125, which is in the intermediate mean free path
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regime, in which the plasma is relatively flat in the center. The ratio between the

edge density and center density is given in (10.2.1), with d replacing l, as ns=n0 ¼
0:326. Then ngdeff � 1:21� 1019 m�2 from (11.2.32a). Solving the particle balance

using Figure 10.1, or numerically, using the rate coefficient of reaction 2 in

Table 3.3, we find Te � 3:3V. This gives uB ¼ (eTe=M)1=2 � 2:8� 103 m=s.
From Figure 3.17, Ec � 55V and Ec þ E0

e � 79V. Estimating nm � Kelng
with Kel given by the rate coefficient of reaction 1 in Table 3.3, we obtain

nm � 8:9� 106 s�1. Then (11.2.33a) can be evaluated to obtain

�Sohm � 0:132V1=2
1 W=m2 (11:2:39)

Similarly evaluating (11.2.34) yields

�Sstoc � 0:125V1 W=m2 (11:2:40)

Neglecting the voltage drop across the bulk plasma, and letting V1 � Vrf=2 ¼ 250V

in (11.2.39) and (11.2.40),wefind �Sohm � 2:09W=m2 and �Sstoc � 31:2W=m2.We see

for this example that �Sstoc considerably exceeds �Sohm. Using these values in the

electron power balance (11.2.36), we obtain ns � 9:1� 1014 m�3. Since ns=n0 �
0:326, we have n0 � 2:8� 1015 m�3. From (11.2.35), we find �V ¼ Ei � 208V;

from the two equations in (11.2.15), �Ji � 0:41A=m2 and sm � 1:1� 10�2 m, and

from (11.2.21), J1 � 23:2A=m2. The total power absorbed per unit area is then

obtained from (11.2.37) to be Sabs � 235W=m2. For A ¼ 0:1m2, the discharge

power is 23.5 W. Since sm is close to our initial estimate, the plasma parameters

are probably calculated within the accuracy of the calculation, and therefore an

iteration is not useful.

Example 2 We take the following parameters, with the absorbed power as the

specified electrical parameter:

. p ¼ 3mTorr argon at 300 K

. l ¼ 10 cm

. A ¼ 1000 cm2

. f ¼ 13:56MHz (v ¼ 8:52� 107 s�1)

. Pabs ¼ 200W

As in Example 1, ns=n0 � 0:326, Te � 3:3V, uB � 2:8� 103 m=s, and

Ec þ E0
e � 79V. Because ng and Te are the same as in Example 1, �Sohm is given

by (11.2.39) and �Sstoc is given by (11.2.40). Substituting these into (11.2.38) with

Sabs ¼ Pabs=A ¼ 2000W=m2, we obtain

2000 ¼ 0:132V1=2
1 þ 0:25V1


 �

1þ 0:83V1

79

� �

(11:2:41)
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Dropping the first (small) terms in each parenthesis yields an approximate solution

V1 � 873V. A numerical solution of (11.2.41) gives a more exact result

V1 ¼ 817V. Then Vab1 ¼ 2V1 � Vrf � 1634V, and (11.2.35) yields Ei � 678V.

Using this in (11.2.37), we obtain ns � 2:9� 1015 m�3 and, with ns=n0 � 0:326,
we find n0 � 9:0� 1015 m�3. The ion current density and the sheath width are

found from (11.2.15) to be �Ji � 1:32A=m2 and sm � 1:46� 10�2 m, and the rf

current density is found from (11.2.21) to be J1 � 75:8A=m2. Since the new sm is

about 50 percent larger than the old, an iteration with a new d � 7 cm would give

somewhat more accurate estimates of the plasma parameters.

Scaling

We can use the basic equations to obtain the most important scalings of the plasma

parameters with control parameters. These scalings can also be compared to the scal-

ings obtained from simulations and experiments to investigate the validity of the

various approximations. We assume that d � l� 2sm is essentially constant as

the voltage and pressure are varied over reasonable ranges. We can then combine

the model equations to obtain the scalings in various limiting cases. We assume

that the pressure is sufficiently low that ohmic heating can be neglected. We

leave the ohmic heating scalings to Problem 11.7. From (11.2.34), we have

�Sstoc / v2T1=2
e Vrf (11:2:42)

Dropping the ohmic term in (11.2.36), such that Se ¼ 2�Sstoc , assuming Ec � Te , and

substituting for �Sstoc from (11.2.34), we obtain

ns / v2Vrf

Ec

(11:2:43)

For low sheath voltages, taking Ei � Ec in (11.2.37), we obtain

Sabs / v2T1=2
e Vrf (11:2:44)

For the more common situation of high sheath voltages, Ei � Ec , with �V / Vrf , we

obtain

Sabs / v2T1=2
e V2

rf

Ec

(11:2:45)

The weak dependence of sm is found by substituting ns from (11.2.43) into (11.2.15)

to obtain

sm / V
1=4
rf E1=2

c

vT1=4
e

(11:2:46)
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and, using this scaling in (11.2.21), we find

Jrf / v2V
3=4
rf T1=4

e

E1=2
c

(11:2:47)

If Jrf is the control parameter, we can invert (11.2.47) and substitute for Vrf , in the

other proportionalities, in terms of Jrf . Note that in the low-pressure regime, where

stochastic heating dominates, variations in the temperature only enter logarithmi-

cally through the change in pressure. The generally strong frequency dependences

should be noted. We can equally well consider the total absorbed power as the inde-

pendent variable and solve for Vrf , ns, sm, and Jrf . Using the same approximations as

above, we find, for high voltages, Ei � Ec, that

Vrf / S
1=2
absE1=2

c =vT1=4
e (11:2:48)

ns / S
1=2
absv=E1=2

c T1=4
e (11:2:49)

sm / S
1=8
absE5=8

c =v5=4T5=16
e (11:2:50)

Jrf / S
3=8
absv

5=4T1=16
e =E1=8

c (11:2:51)

The above scalings are independent of pressure, except implicitly through the

weak dependence of Te on pressure. These scalings can be easily compared to exper-

imental results. Since Te only varies logarithmically with change in pressure, it can

usually be held constant in comparing scalings. However, Ec can vary significantly

with pressure, especially at high pressures where Te is low.

Collisional Sheaths

If li . sm, then the ions suffer one or more collisions as they cross the sheath and the

collisionless analysis is not valid. For argon with li given by (3.5.7) and with

sm � 1 cm, we find p . 3mTorr for a collisionless sheath, at the low end of

typical processing discharges. At higher pressures a self-consistent analysis of the

collisional sheath is required, which has been given by Lieberman (1989a) and,

over a wider range of collisionality, by Godyak and Sternberg (1990b). These

authors assume li ¼ const, independent of velocity. The basic ion dynamical

equations (11.2.1) and (11.2.2) are then modified, as in (6.5.1) and (6.5.2), to

niui ¼ nsuB (11:2:52)

and

ui ¼ 2eli
pMui

�E (11:2:53)
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Carrying out the analysis as in the first part of this section, the dc ion current density

is found to be

�Ji ¼ ensuB � 1:68 e0
2e

M

� �1=2 �V
3=2

l1=2i

s
5=2
m

(11:2:54)

where the coefficient is 1.68 for the self-consistent calculation rather than 1.43 as

given in (6.5.7). Note that (11.2.54) differs from the collisionless Child law

(11.2.15) because �Ji now scales with li and scales differently with sm. For a fixed

ns and �V (and Te), the sheath thickness sm decreases weakly with increasing ng.

The collisional sheath capacitance is found to be 0:76 e0 A=sm , leading to

J1 � 1:52
ve0
sm

V1 (11:2:55)

in place of (11.2.21). We also find

�V � 0:78V1 (11:2:56)

in place of (11.2.22).

The average ion-bombarding energy Eic is reduced below �V ; Vs because ion

energy is lost during charge transfer and elastic collisions in the sheath, creating

fast neutrals there. The ion-bombarding energy is found to be

Eic ¼ 1

2
Mu2i (sm) � 0:62

li
sm

�V (11:2:57)

Note, however, that the total kinetic energy lost per ion transiting the sheath is

still �V , as for the collisionless sheath, and as used in (11.2.37). Thus, the effect of

collisions in the sheath is to reduce the ion bombarding energy but to proportionally

increase the total energetic particle flux (ions þ fast neutrals) to the electrode.

The stochastic heating is found to be

�Sstoc � 0:59
2lis0

p2l2De

� �1=2

mns �veu
2
0 (11:2:58)

in place of (11.2.31). Substituting (11.2.54)–(11.2.56) into (11.2.58) with u0 given

by (11.2.28), we obtain (Problem 11.2)

�Sstoc � 0:61
m

e


 �1=2

e0v
2T1=2

e V1 (11:2:59)

in place of (11.2.34). We see that, except for the numerical coefficients, (11.2.59)

and (11.2.34) for the collisional and collisionless sheaths have the same form.
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However, �Ji has somewhat different scaling between (11.2.54) and (11.2.15). The

procedure for calculating the discharge parameters for the collisionless sheath can

therefore be applied to the collisional sheath, with minor modifications.

Consider, for example, the scaling of discharge parameters with absorbed power

for a plasma with collisional (constant mean-free path) sheaths in the regime where

ohmic heating dominates stochastic heating and where ion energy losses dominate

electron energy losses. Using (11.2.33a), (11.2.36), (11.2.37), (11.2.54), and

(11.2.56), we find the scalings

Vrf / S
2=3
abs

ns / S
1=3
abs

sm / S
4=15
abs

�Sohm / S
1=3
abs

(11:2:60)

We leave the details to Problem 11.7.

Low and Moderate Voltages

Godyak and Sternberg (1990b) have treated the regimes from Vrf � Te to Vrf � Te

in a unified manner. For Vrf � Te , their results reduce to that of an undriven dc

sheath, as in (6.2.17). At high voltages, V1=Te & 200, their numerical results asymp-

totically approach the analytic results �V / V1, but these voltages are at the upper end

of typical processing discharge regimes. At more moderate voltages,

50 . V1=Te . 200, �V is seen to have a weaker scaling with V1, such that
�V / V

b
1 , with b � 2=3–3=4. With the weaker scaling, sm in (11.2.46) is found to

be nearly independent of Vrf , and from (11.2.21), the Jrf versus Vrf discharge charac-

teristics are nearly linear, as observed in many experiments (see Godyak and

Sternberg, 1990b, for further discussion).

Ohmic Heating in the Sheath

Ohmic heating due to collisions of the oscillating electrons with the neutral gas can

be an important additional electron heating mechanism. For a Child law scaling, the

density within the sheath is, from (6.3.8), of order

nsh � ns
Te

Vrf

� �1=2

(11:2:61)

Because the ohmic power density pohm scales as J2rf=nsh and Jrf is not spatially

varying, we see that pohm is a factor of (Vrf=Te)
1=2 larger within the sheath than at

the sheath edge. Hence, for a uniform bulk plasma, the ohmic heating within the
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sheath exceeds the bulk heating when

sm
Vrf

Te

� �1=2

& d: (11:2:62)

This condition can be met in a high-voltage discharge. For a collisionless sheath,

Misium et al. (1989) give the expression

�Sohm;sh � 1:73
m

2e
e0v

2nmsm(TeV1)
1=2 0:235

V1

Te

� �1=2

þ 1:16þ 4:39
Te

V1

� �1=2
" #

(11:2:63a)

and for high-voltage collisional sheaths, Chabert et al. (2004) give

�Sohm;sh � 0:236
m

2e
e0v

2nmsmV1 (11:2:63b)

This should be added to (11.2.33) for each sheath. Although �Sohm;sh depends on sm,

explicitly, a nominal value sm ¼ 1 cm can be assumed initially, and the equations

can be iterated if greater accuracy is required.

Self-Consistent Collisionless Heating Models

Although the Fermi model is physically appealing, the heating rates (11.1.35) and

(11.2.31) for the homogeneous and inhomogeneous sheaths have not been obtained

self-consistently. For the homogeneous model the electron distribution fes(u; t) was
approximated to be a Maxwellian without a superimposed rf oscillation velocity. For

the inhomogeneous model, fes was approximated by (11.2.26), with us the oscillation

velocity in the bulk plasma. However, the form chosen for fes should be consistent

with conservation of rf current at the moving sheath edge

ns(t)ues(t) ¼
ð1

�1
du ufes(u; t) (11:2:64)

Consider for example, the physically appealing choice of a distribution function

with a time-varying density ns(t) and drift velocity ued(t)

fes ¼ ns(t) f0(u� ued(t)) (11:2:65)

Inserting (11.2.65) into (11.2.64) and changing variables to u0 ¼ u� ued , we obtain

ued ¼ ues � ue0, where ue0 ¼
Ð1
�1 du0 u0f0(u0) is a time-independent velocity. Substi-

tuting (11.2.65) with ued ¼ ues � ue0 into the fundamental expression (11.1.29) for
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stochastic heating, we have

Sstoc ¼ �2mns(t)ues(t)

ð1

ue0

du0(u0 � ue0)
2 f0(u

0) (11:2:66)

The time-average of (11.2.66) is zero because the rf current Jrf ¼ �ens(t)ues(t) has a

time average of zero, producing no heating. The actual motion of the electrons,

however, gives a more complicated distribution than that postulated in (11.2.65).

For the homogeneous model [ns(t) ¼ const], it can be shown that there is no

heating in the self-consistent model (Lieberman, 1988; Kaganovich and Tsendin,

1992a), independent of the form of fes. This can be seen physically by transforming

to the inertial frame of the bulk plasma oscillations. In this frame, which oscillates

with a sinusoidal velocity us(t), the net (electric field þ inertial) force acting on an

electron is zero everywhere in the plasma; hence there is no heating.

Collisionless heating for the inhomogeneous rf sheath is an active area of

research. Kaganovich (2002) has developed a kinetic model consistent with rf

current conservation at the sheath to determine fes analytically for a two-step ion

density profile with ni ¼ nsh ¼ const in the sheath and ni ¼ ns ¼ const in the bulk

plasma, with nsh � ns. This profile is meant to model the Child law sheath which

has a lower density in the sheath region than in the bulk plasma, as given in

(11.2.61). For the homogeneous model with nsh ¼ ns , there is no heating. For

nsh , ns , the heating consistent with rf current conservation was found to be

approximately 0:7(1� nsh=ns) of the heating found by neglecting the rf current con-
servation through the sheath. Kaganovich also finds a transition layer (thickness

��ve=v) beyond the sheath that modifies the electron distribution by cooling the

hotter electrons and heating the colder electrons; however, the overall effect is to

redistribute energy between the hot and cold parts of the distribution, with little

change in the overall heating rate.

Gozadinos et al. (2001a), following earlier work (Surendra and Dalvie, 1993;

Turner, 1995), give an alternate model of collisionless heating that associates the

heating with acoustic disturbances in the electron fluid. They develop an analytic

model based on moments of the Vlasov equation (2.3.2) in which the electron dis-

tribution at the sheath edge is characterized by separate densities and temperatures

for electrons entering and leaving the sheath. Their model gives results in good

agreement with their particle-in-cell (PIC) simulations. In terms of single particle

trajectories, the model can be understood as a transit time heating produced by

the change of electric field as the particle passes through the sheath. For the inhomo-

geneous model of Section 11.2 with H given by (11.2.11), they obtain an overall

heating, for H not too large, that scales in the same way with parameters as the

Fermi result (11.2.31), but with a coefficient about 40 percent of the Fermi result.

Another approach that has been developed (Aliev et al., 1997) is a kinetic treat-

ment in which the collisionless heating is considered to arise from a resonant wave–

particle interaction. We introduce the method in Section 18.4.

Other significant issues are heating due to electron inertia effects during sheath

contraction (Vender and Boswell, 1992; Turner and Hopkins, 1992) and energy
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losses of electrons escaping to the electrode (Wendt and Hitchon, 1992; Gozadinos

et al., 2001ab). We will see an example of heating during sheath contraction in the

PIC calculations shown in Figure 11.14. Energy losses occur preferentially when

the sheath edge is near the electrode (see Fig. 11.15). While electrons are lost, the

motion of the sheath edge is not symmetrical around the time when the sheath

edge lies closest to the electrode. This gives an additional heating effect (Gozadinos

et al., 2001a). For this reason, comparisons of the analytically determined collision-

less heating rates (11.2.31) or (11.2.34) with PIC simulations including the electron

energy losses give good agreement for macroscopic quantities, although details of

microscopic predictions agree significantly less well with simulations (Gozadinos

et al., 2001b). At low pressures where collisionless heating is dominant, experi-

ments and simulations indicate that the electron distribution is approximately

bi-Maxwellian; the assumption of Maxwellian electrons used in these fluid models

can be considerably in error. Stochastic sheath heating with a self-consistent

bi-Maxwellian distribution gives results more in agreement with PIC simulations

(see Wang et al., 1999, and Section 18.6).

In summary, it appears that collisionless heating of electrons occurs around the

plasma-sheath interface, but the detailed mechanisms and exact value are not accu-

rately known. The calculations of collisionless heating given in this section appear to

give reasonable estimates that can be used to determine discharge equilibrium par-

ameters. For low pressure plasmas the dominant heating is clearly in the sheath

region, as we see in the following section.

Dual-Frequency and High-Frequency Discharges

Large-area discharges driven at frequencies higher than 13.56 MHz, and dual-

frequency discharges with one high and one low frequency source

Vrf ¼ Re(Vh e
jvht þ Vl e

jvlt) (11:2:67)

are of increasing interest for materials processing. From (11.2.43), higher frequency

produces a reduced ion bombarding energy and thinner sheaths for a given ion flux

to the substrate. It also permits the addition of a second low-frequency driving

voltage, for additional flexibility. With both high- and low-frequency drives, inde-

pendent control of the ion flux and energy can be achieved (Lieberman et al.,

2003; Kim et al., 2003; Boyle et al., 2004). Although the sheath motion for dual fre-

quency excitation is complicated (Robiche et al., 2003; Franklin, 2003), it suffices to

examine the conditions for independent control from the single frequency scaling.

We see from (11.2.43) that for

v2
hjVhj � v2

l jVlj (11:2:68)

the high frequency source produces a much higher density than the low frequency

source. On the other hand, the ion bombarding energy is controlled by the total
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voltage (high þ low) across the sheath. Hence for

jVlj � jVhj (11:2:69)

the low-frequency voltage controls the ion energy. For a wide separation of

frequencies, it is possible to meet both conditions simultaneously. Combinations

of frequencies commonly used are 27.1/2, 60/13.56, and 160/13.56 MHz.

At high frequencies, electromagnetic effects such as standing waves and skin

effects can arise, which cannot be described using conventional electrostatic

analysis (Lieberman et al., 2002; Chabert et al., 2004). For a discharge with circular

plates (radius R), the standing waves are due to a surface wave (see Section 13.3)

that propagates radially into the discharge. Standing wave effects are small provided

l � R, where

l � l0

(1þ D=2sm)
1=2

(11:2:70)

is the radial wavelength in the discharge plasma, l0 is the free space wavelength, sm
is the sheath thickness, and D is either half the bulk plasma thickness, d=2, or the
plasma skin depth dp � c=vp (see Section 12.1), whichever is smaller. One can

understand the slowing of the wave velocity (reduction in wavelength compared

to the free space wavelength) from a simple transmission line model (Ramo et al.,

1984) as follows: Considering by symmetry a half-thickness l=2 of the system, a

strong wave electric field E exists only in the sheath region. Hence the capacitance

per unit length of the transmission line scales as C0 / e0=sm. On the other hand, the

wave magnetic field penetrates through the sheath thickness sm into the plasma a dis-

tance D. Hence the inductance per unit length can be estimated as L0 / m0(sm þ D).
The wave velocity, which scales as (L0C0)�1=2 / (1þ D=sm)

�1=2, is thus reduced

over the free space velocity c. Skin effects are found at high densities where the

plasma interior shields itself from the applied fields, and are small if dp �
ffiffiffiffiffiffi

dR
p

.

For high frequencies (and concomitant high densities), one or both of the conditions

for negligible standing wave or skin effects may be difficult to meet.

Electronegative Plasmas

Although the discussion in this and the preceding sections has been for electro-

positive plasmas, much of it can also be applied to electronegative plasmas.

However, some care must be taken to understand the assumptions to see of they

hold without change, or must be modified. As we saw in Sections 10.3–10.5,

there are various regions in parameter space, each requiring some modifications

of the analysis. Here we discuss some of the general considerations, without specific

calculations.

Most of the detailed calculations for the inhomogeneous sheath in Section 11.2

can be carried over to an electronegative plasma. The calculation of the stochastic
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and ohmic heating powers, given by (11.2.34) and (11.2.33), are of prime import-

ance. If the plasma–sheath transition density is such that the electron and positive

ion densities can both be taken to be ns, then provided there is an electropositive

edge, (11.2.34) is unchanged, and (11.2.33a) is modified only by taking n0 ¼ ns
in the bulk plasma. The electron power balance (11.2.36) must be changed to take

into account the electronegative equilibria, which we have analyzed in Sections

10.3 and 10.4. This can be done by estimating the general range of the expected

ne0 for a given pressure and power. For example, if we take parameters with a mod-

erate central value of electronegativity (e.g., 5 , a0 , 20) and at not too high a

pressure (e.g., 5 mTorr , p , 20 mTorr), then a reasonable approximation is a

flat electron profile and a parabolic negative ion profile which goes to zero at the

plasma–sheath interface. For these conditions, we replace (11.2.36) by

�Sohm þ 2�Sstoc ¼ 8

15
Krecn

2
þ0deEc þ 2Dþ

4nþ0

d
e(Ec þ E0

e) (11:2:71)

where nþ0 is the central ion density nþ0 ¼ n�0 þ ne0, Dþ is the ion diffusion coeffi-

cient with Tþ ¼ T�, and Krec is the recombination rate of positive and negative ions.

We obtain nþ0 using a0 in (10.4.20) with d=l1 ¼ 1.

Because nþ0 appears with different powers in the two terms on the right hand side

of (11.2.71), we no longer have simple scalings in electronegative plasmas. This

is also true for electropositive plasmas if the ohmic and stochastic heating are

comparable. At higher pressures there is increasing flattening of the center of the

electronegative core with accompanying steepening of the profile near the edge.

A calculation can still be performed by use of a somewhat more complicated flat-

topped model, as described in Section 10.4.

As shown in Section 10.5, much of the understanding of experiments can be

obtained without a complete model of the heating. As examples, in both

Figures 10.3 and 10.4 the parabolic structure of the electronegative region at low

pressure is evident. The deviation from the theoretical equilibrium structures at

higher pressures in both experiments is due in part to the nonuniform electron temp-

erature. This effect, related to the short electron mean-free path at the higher press-

ures, combined with the primary heating at the plasma edge, has not been treated in

our modeling calculations.

11.3 EXPERIMENTS AND SIMULATIONS

Models are based on a particular set of assumptions that must be tested by exper-

imentally determining if the observable consequences of those assumptions are in

agreement with the experiment that the model is designed to represent. In recent

years, the tool of computer simulation, added to analytic modeling and experiments,

has improved our understanding. The particular simulations described here for

modeling low-pressure discharges, called PIC simulations, follow large numbers

of representative particles acted upon by the basic forces. Many of the assumptions
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of the analytic models need not be used. It is also possible to determine various

microscopic quantities that are not observable experimentally. In these ways the

simulations serve as an intermediary between the models and the experiments.

In this section, we shall first give some experimental observations and relate the

results to the model of Section 11.2. We then present the results of simulations to

obtain further understanding of the plasma behavior. Finally, we will comment

on some of the modeling improvements that might increase the accuracy of the

predictions of plasma source operation. Throughout this section we restrict our

attention to symmetric plane parallel geometry. Simulations can be performed in

more complicated geometries, but the calculations become more involved and

lengthy.

Experimental Results

An early experiment to investigate stochastic sheath heating is described in

Godyak’s (1986) review. In an apparatus designed to approximate a plane parallel

discharge, an effective collision frequency neff was measured versus pressure,

using the relationship for the power absorbed per unit area,

Sabs ¼ 1

2

j~Jrf j2
e2n

mneffd (11:3:1)

Sabs , ~Jrf , and n being simultaneously measured. The measurements were done at

relatively low voltages, such that �V . Ec; consequently, Sabs � Se , the power per

unit area absorbed by the electrons. The result is shown in Figure 11.7. Both the

asymptotic leveling off of neff at low pressure p, characteristic of stochastic

heating which is independent of p, and the linear increase of neff with p at high p,

characteristic of ohmic heating, are clearly visible. The good agreement of the

measurements with neff calculated from the stochastic heating formula is somewhat

fortuitous, however, as a uniform sheath rather than a self-consistent sheath was

used in the calculation, and the ion power loss Si was neglected in determining

neff from the measurements.

An experimental study of symmetric rf discharge characteristics in argon at

13.56 MHz has been performed by Godyak et al. (1991). The discharge length

and diameter were 6.7 and 14.3 cm, respectively, approximating a uniform plane-

parallel configuration. Measurements were made of rf voltage, rf current, total

power absorbed, dc bias voltage, the central plasma density n0, mean electron

energy kEel, and electron distribution function fe. The time-average power was

determined by averaging Vrf (t)Irf (t) over an rf cycle (see Section 11.6), and n0,

kEel , and fe were determined using Langmuir probes (see Section 6.6). Measure-

ments were performed over a wide range of pressures from 3 mTorr to 3 Torr and

for powers up to 100 W. The corresponding rf voltage amplitudes were up to

1500 V, and the rf current amplitudes were up to 2 A. Figures 11.8 and 11.9 show

Vrf , Pabs, n0, and kEel versus Irf at relatively low (10 mTorr) and relatively high
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(100 mTorr) pressures. At 10 mTorr, where ohmic heating is small, and at low to

moderate voltages, the voltage scales roughly linearly with the current, with a tran-

sition to the scaling Vrf / I
4=3
rf predicted from (11.2.46) at the higher voltages. The

power scales as Pabs / Irf / Vrf at low voltages, with a transition to Pabs / V2
rf at

higher voltages, in agreement with (11.2.44). The density, however, scales more

strongly with the voltage than the linear scaling predicted by (11.2.42), and the

mean electron energy kEel, which corresponds to 3
2
Te for a Maxwellian distribution,

falls significantly at the higher voltages, contrary to the analytic model in which Te

depends only on the pressure and is independent of the voltage.

Generally, the experimental density is higher than the model predictions, indicat-

ing somewhat more efficient electron power absorption at a given applied voltage,

which may be due to the effect of bi-Maxwellian distributions and to secondary

electron emission. The discrepancy can be partly understood by examining the

measured electron energy probability function gp [see (6.6.18)], which is plotted

versus E ¼ mv2=2e in Figure 11.10. We see a transition from a single Maxwellian

for Vrf . 100V to a two-temperature distribution at higher voltages, with most of

the electrons in the lower energy class, which therefore determines kEel. The

high-temperature tail maintains the ionization balance required by (11.2.32a),

allowing kEel to drop to low values. As we will see from simulations, a two-

temperature distribution is characteristic of stochastic heating. A similar behavior

is seen at 3 and 30 mTorr. At 100 mTorr, ohmic heating dominates the electron

FIGURE 11.7. Effective collision frequency neff versus pressure p, for a mercury discharge

driven at 40.8 MHz. The solid line shows the collision frequency due to ohmic dissipation

alone (after Popov and Godyak, 1985).
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power absorption below approximately 300 V, leading to a single temperature

Maxwellian, as seen in Figure 11.10b with kEel � 4–5 V. From Figure 11.8b, we

see a near-linear scaling of Pabs with Vrf at low voltages, with a transition to a

steeper scaling of power with voltage at higher voltages. At higher Vrf there is a tran-

sition to a two temperature distribution, as seen in Figure 11.10b, with kEel falling to
1.5–2 V. These results indicate a transition from ohmic heating at low voltage to

stochastic heating at high voltage.

FIGURE 11.8. Discharge power absorbed Pabs, and rf voltage Vrf versus discharge current Irf
at (a) p ¼ 0:01Torr and (b) p ¼ 0:1 Torr in argon (Godyak et al., 1991).
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In Figure 11.11, the experimental results of Godyak et al. (1991) and Godyak and

Piejak (1990b) for the total power are given as a function of the applied rf voltage

and compared with the nonuniform density model results for a 3-mTorr argon dis-

charge. At this low pressure, stochastic heating is the principal heating mechanism.

For the modeling results, �Sstoc was computed numerically from (11.2.30), and other

quantities were computed using these numerical results. The self-consistent single

Maxwellian temperature was 3.2 V. The total power in the experiments was then

normalized to the electrode area. As can be seen from the figure, the model

results are in qualitative agreement with the experiments. However, there are also

some significant disagreements. Generally, the experimental density is more

steeply varying with rf voltage than the model predictions, which is at least in

part related to the changing electron distribution function, which allows uB,

related to the lower temperature component, to decrease. As expected, this effect

would not be prominent in the variation of power with rf voltage.

FIGURE 11.9. Central plasma density n0 and mean electron energy kEel versus discharge
current density Jrf at (a) p ¼ 10mTorr and (b) p ¼ 100mTorr in argon gas (Godyak, 1990b).

FIGURE 11.10. Electron energy probability function gp versus Ee for various discharge

currents for argon gas with f ¼ 13:56MHz and l ¼ 6:7 cm: (a) p ¼ 10mTorr and (b) p ¼
100mTorr (Godyak, 1990b).
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Experimentally, the dc voltage �V across a single sheath is found to track the rf

voltage Vab across both sheaths, with �V � 0:4Vab ¼ 0:8V1 at high voltages, as pre-

dicted. For lower voltages, we find a weaker variation �V / V
b
ab, with b � 2=3–3/4,

as described in Section 11.2. At 10 mTorr, we find that Vab � Vrf over the entire

voltage range. However, at 100 mTorr, Vab falls below Vrf at low Vrf , due to the

additional rf voltage Vp dropped across the bulk plasma.

Some discrepancy exists for the sheath width, with the experimental widths being

somewhat larger, but scaling more weakly with Vrf , than the high-voltage model.

This may be a consequence of the somewhat weaker-than-linear scaling of �V with

Vrf at moderate discharge voltages. Despite these differences, the model can be con-

sidered to have reasonable predictive power. We shall discuss the discrepancies

further after giving simulation results.

Particle-in-Cell Simulations

The symmetric measurements of Godyak and Piejak (1990a) have been compared to

PIC simulations by Vahedi et al. (1994).

The comparisons are in argon for a electrode diameter of 14.3 cm, a discharge

length of 2 cm, and an external current source of 2.56 mA/cm2 at 13.56 MHz.

The gas pressure was varied between 70 and 500 mTorr to observe the transition

from stochastically to ohmically dominated electron heating. Except for the normal-

ization, the fes obtained from the simulations agree well with the measured fes,

showing the transition from a two-temperature distribution at 70 mTorr to a

single-temperature distribution at 500 mTorr. The simulation temperatures are in

good agreement with the measured temperatures over the entire range of pressures.

Two sets of simulation results were examined, with and without secondary emission

FIGURE 11.11. Power absorbed, Pabs, versus rf voltage, Vrf , from the model (solid line),

compared to the data (squares) of Godyak et al. (1991), for a 3-mTorr argon discharge.

11.3 EXPERIMENTS AND SIMULATIONS 423



due to ion impact on the electrodes (see discussion of secondaries below). The

plasma density showed a better agreement with measurements when secondaries

were included, but the density was lower than the measurements by roughly a

factor of 1.5 at low gas pressures. Possible explanations include incomplete model-

ing of the atomic collision processes; for example, neglect of energetic ion–neutral

ionization processes within the sheaths, and neglect of metastable atom production,

electron impact ionization, and quenching.

Another simulation of discharge behavior (Wood, 1991), was performed at

p ¼ 3mTorr (argon) with a spacing of 10 cm between parallel plates, and over a

range of rf voltages between 100 and 1000 V. A two-temperature distribution was

found, as in the experiments, and the distribution varied in both space and time. It

is clear that a deeper understanding of the discharge behavior involves the space

and time variations of fe. Figure 11.12 shows the one-dimensional electron distri-

bution function fe(x; vx; t) versus vx at 15 positions near the sheath region

(x ¼ 0–3 cm) and at eight different times during the rf cycle. Each plot covers 1
32

FIGURE 11.12. One-dimensional electron velocity distribution function fe(x, vx, t) for a

10-cm electrode spacing; each plot covers a time window of 1
32

of an rf cycle. Each line on

a plot represents a spatial window of 2 mm (Wood, 1991).
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of a cycle temporally, and each line in a plot covers a 2-mm thick region spatially.

The units on the vertical axis are proportional to fe. At time 0
32
, the sheath is fully

expanded, and the two-temperature nature of the discharge near the sheath can be

seen as the wide “base” and narrow “peak” of the distribution. As the rf cycle pro-

gresses to time 8
32
, the distributions in the sheath region at each position display a

drift toward the electrode (negative velocity) that is approximately equal to the

sheath velocity. By time 12
32
, fast electrons have arrived from the opposite electrode,

moving at a velocity of about 4� 106 m=s (small peak at extreme left of figure). At

time 16
32
, the sheath is fully collapsed, the drift in the sheath has disappeared, and the

fast electron group moving toward the electrode shows a lower velocity as slower

electrons arrive from the opposite electrode. As the sheath begins to expand, as

shown here at times 18
32

and 20
32
, the electrons in the sheath region are strongly

heated, and the beginning of an electron beam produced by this expansion can be

seen moving away at a positive velocity. As the sheath continues to expand, the

drift of the distribution in the sheath away from the electrode can be seen to initially

match the sheath velocity (time 22
32
) but then decays (time 24

32
) to a velocity much

slower than when the sheath was collapsing. One consequence of the complicated

FIGURE 11.12. (Continued)

11.3 EXPERIMENTS AND SIMULATIONS 425



fe near the sheath edge is that the average electron velocity at the moving sheath

edge does not correspond to the sheath velocity during the entire rf cycle, as

predicted from the model equations. This is shown in Figure 11.13 where we see

that the observed average electron drift velocity deviates from the predicted value

at the sheath edge as the sheath edge oscillates.

The existence of more energetic electrons near the plasma edge due to stochastic

heating increases the ionization there, tending to flatten the plasma profile. Further-

more, the ionization is not constant, but follows the density variations in space and

time of the more energetic electrons.

This is shown for a PIC simulation by Vender and Boswell (1990) in the plot of

Figure 11.14, in which the darkness of each square is proportional to the number of

ionizing collisions within that square of position and time intervals. Most of the ion-

ization is seen to occur along a path of fastest electrons that are reflected off of the

sheath at the phase at which it is most rapidly expanding. There is also somewhat

more ionization near the sheaths, an effect that becomes more pronounced at

higher pressures where the ionization mean-free path is shorter, which has been

observed in various experiments.

In Figure 11.15, the time-dependent ion and electron conduction currents are

given as a function of time, with Vrf and Vpb also indicated. We see that Ji(t) is

nearly constant, as assumed, but also contains some ripple which is not important

for the modeling. Je(t), on the other hand, is spread over a significant fraction of

the rf cycle, when significant voltages exist between the plasma and the electrode.

This is possible because of the distribution of electron energies. Because the

time-average electron and ion fluxes must balance, the average potential of the

plasma with respect to the electrode must decrease slightly, as will be seen in

(11.5.6). From this equation, we see that the zero-order value of �V ¼ V1 is increased

FIGURE 11.13. Drift of the electron velocity distribution versus time at the electron

sheath edge s(t) (triangles, simulation; solid curve, theory) and at sm (squares, simulation)

(Wood, 1991).
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by the usual thermal term but is decreased because the electrons reach the electrode

over a finite time interval. For example, with Vrf ¼ 500V (V1 ¼ 250V) and Te ¼
3:4V in argon gas, we find that the thermal enhancement to the voltage is the

usual 4:8Te while the finite electron loss effect reduces �V by 3.2Te , leading to a

net increase in �V over V1 of 1.6Te ¼ 5:4V. Recall, however, for our model in

Sections 11.1 and 11.2 with sinusoidal current and nonsinusoidal single-sheath

voltage, that the zero-order result is �V ¼ 0:83V1. In this case, for V1 � Te , the cor-

rection is not significant compared to other approximations in the model. The

relation between �V and V1 for sinusoidal current drive has been obtained over the

entire range of V1=Te by Godyak and Sternberg (1990b).

The effect of a group of fast beamlike particles, traversing the plasma from one

sheath to the other, indicates that the discharge length may enter into the dynamics

of stochastic heating in a more sensitive manner than in the model equations. This

has been demonstrated by following a class of representative electrons, with energy

greater than the ionization energy, over several rf cycles, for l ¼ 13, 10, and 7.5 cm.

FIGURE 11.14. Spatiotemporal distribution of ionizing collisions collected over 20 rf

cycles, for a 10-MHz, 1-kV, 20-mTorr hydrogen discharge (Vender and Boswell, 1990, #
1990 IEEE).
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One finds a tendency to have a resonant increase of energy near l ¼ 10 cm, produ-

cing a higher-energy tail on the distribution, because, for this length, electrons

heated at one sheath arrive at the opposite sheath at a phase resulting in further

heating. The average electron energy lost from the discharge also varies but in all

cases is increased by a factor of 2–3 over the value of 2Te for a single Maxwellian.

Other interesting effects have been observed in simulations and sometimes

confirmed in experiments. For example, high-harmonic components of the driving

frequency have been observed, both in simulations and in experiments, that can

be much larger than predicted from the sheath nonlinearity. This has been shown

to result from a series resonance of the bulk plasma inductance Lp with the sheath

capacitance Cs , occurring below the electron plasma frequency (Problems 4.7 and

11.3). The consequences on macroscopic plasma properties and on processing

have not been explored.

Role of Secondaries

The steady flux Gi of ions striking the electrodes generates a flux Ge ¼ gseGi of sec-

ondary electrons that are accelerated back into the plasma. Typically, gse � 0:1–0:2
for metal electrodes. Depending on the phase of the rf voltage the secondaries gain

various energies up to �2V1. The effect of secondaries is generally not important

for argon at pressures below 100 mTorr at the usual operating frequency of

V

V

V

J

J

J

t

FIGURE 11.15. Central plasma potential Vpb (dashed), driving voltage Vrf (dotted), and

electron (positive) and ion (negative) currents to the electrode. The ion current is plotted

ten times enlarged to show modulation within the rf cycle (Vender and Boswell, 1990,

# 1990 IEEE).
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13.56 MHz. Unlike dc discharges, in which continuity of current requires second-

aries, the rf current at 13.56 MHz can be sustained by the sheath capacitance.

High-energy secondaries do produce some ionization. However, Ge � (0:1–0:2)Gi

is small, and at low pressures most of the secondary electrons are lost from

the discharge before significant ionization occurs (Problem 11.9). Therefore, the

effect is generally small compared to the beamlike electrons generated by stochastic

heating.

Another effect of secondaries is to increase the power dissipation. Some of this

additional energy loss goes into ionization and other collisional processes. Part of

the energy is lost directly to surfaces at a lower potential than the emitting

surface, and this acts as a power drain. Both effects of increased ionization and

increased power loss can be included in a self-consistent model (Misium et al.,

1989). With gse ¼ 0:1 at p ¼ 10 mTorr, there was little effect on most plasma

parameters, except for an increase of up to 30 percent in the total power absorbed.

At higher pressures, the effect of secondaries becomes greater, as more of their

energy is captured by the plasma. In a still higher pressure regime, a transition

can take place with increasing voltage to a different mode in which the plasma is

sustained by ionization from secondaries. For example, if we take gse ¼ 0:1 and

assume that all secondary energy is absorbed in the plasma with Ec ¼ 60V

(energy per electron–ion pair created), then when the average secondary energy

is �Ese ¼ 600V, the ionization just balances the escaping ion flux, Giz=Gi ¼
(600=60) gse ¼ 1. The bulk electron temperature falls to prevent additional ioniz-

ation, and the plasma is sustained by secondaries alone. This transition to the

g-mode has been observed experimentally and predicted theoretically by Godyak

and associates (see Godyak, 1986). The experiments were performed primarily at

p ¼ 3Torr, where the secondaries are mostly absorbed. At these and higher press-

ures, secondary multiplication within the sheath can occur, leading to a mechanism

that sustains the discharge similar to that which sustains a dc glow discharge (see

Chapter 14).

As the rf frequency is reduced, Irf decreases with v at fixed Vrf , and secondaries

again play a more important role in sustaining the plasma. We do not discuss this

low-frequency regime in this chapter. In Chapter 14 we consider dc discharges in

which the entire current in the sheath is sustained by secondaries and electrons

that are created by ionization in the sheath. We have ignored this electron multi-

plication factor in our simple discussion here, but it is of essential importance in

sustaining a dc discharge.

Implications for Modeling

What are the consequences of the comparison of model results with those obtained

from simulations and experiments? Clearly, the model assumptions are only a crude

approximation on a detailed microscopic level. For example, the existence of a

“two-temperature” electron distribution with a high-density cool population and a

low-density warm population implies that the Bohm velocity is more characteristic

of the cool temperature, and thus the density might be expected to be somewhat
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higher for a given absorbed power. The higher-energy electrons also interact more

strongly and with relatively higher incident flux at the oscillating sheath, increasing

the heating rate, and this also tends to increase the density. However, increased

energy loss from the high-energy escaping electrons tends to decrease the plasma

density. It is clear that a self-consistent model with a two-temperature distribution

significantly improves the model. However, models employing additional assump-

tions lose their simplicity (see Section 18.6) and may introduce internal inconsisten-

cies of unknown consequence.

11.4 ASYMMETRIC DISCHARGES

Capacitive Voltage Divider

Most capacitive discharges are asymmetric, because more electrode surfaces are

naturally grounded than driven. The dc voltage between the plasma and the driven

electrode is then larger than the dc voltage between the plasma and the grounded elec-

trode. This is easily seen from a model of the rf voltage drops across the two sheaths

connecting the driven electrode to ground, as shown in Figure 11.16, along with the

linear relation (11.2.22) between the rf and dc voltages, which lead to

Vab1 ¼ Va1 þ Vb1 ¼ 1

0:83
( �Va þ �Vb) (11:4:1)

where the dc voltages are taken between the plasma and the electrodes. An easily

measurable dc bias voltage is set up at the driven electrode with respect to ground,

Vbias ¼ �( �Va � �Vb) (11:4:2)

C

V

V

V

V

FIGURE 11.16. Capacitive voltage divider model of bias voltage formation in an

asymmetric discharge.
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which is negative in the usual case that �Va . �Vb. Since the voltage drops across the

sheaths are inversely proportional to the sheath capacitances, the sheath with the

smaller area has a smaller capacitance and therefore a larger voltage drop. The situ-

ation is more complicated, because the sheath thickness also depends on the voltage

across it, through Child’s law, which must be solved self-consistently to obtain the

voltage. This is relatively easy to do within various simplifying assumptions.

Consider arbitrary electrodes a and b having areas Aa and Ab and voltage drops �Va

and �Vb, independent of the vector position x along the sheath. We then have the pro-

portionalities

Ja1(x)/
�Va

sa(x)
(11:4:3)

for the capacitive sheath, and

na(x)/
�V
3=2

a

s2a(x)
(11:4:4)

for the collisionless Child law. In terms of the total rf current

Ia1 ¼
ð

Aa

Ja1(x) d
2x (11:4:5)

we can eliminate sa in favor of na by substituting (11.4.4) in (11.4.3) to get

Ia1 / �V
1=4

a

ð

Aa

n1=2a (x) d2x

and similarly

Ib1 / �V
1=4

b

ð

Ab

n
1=2
b (x) d2x

For rf current continuity we can equate Ia1 ¼ Ib1 to obtain

�Va

�Vb

¼
Ð

Ab
n
1=2
b d2x

Ð

Aa
n
1=2
a d2x

 !4

(11:4:6)

In the simplest plasma model we set na ¼ nb, independent of x, to find the scaling

�Va

�Vb

¼ Ab

Aa

� �4

(11:4:7)
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This very strong scaling with area is not in accordance with most experimental

observations, which have typically found

�Va

�Vb

� Ab

Aa

� �q

(11:4:8)

with q . 2:5. The experiments were mainly done at higher pressure, where the

sheath dynamics do not follow the collisionless Child–Langmuir law. If, for

example, we consider a collisional, constant li sheath, as described in Section 6.4,

the proportionality

na(x)/
�V
3=2

a

s
5=2
a (x)

(11:4:9)

leads to

�Va

�Vb

¼
Ð

Ab
n
2=5
b d2x

Ð

Aa
n
2=5
a d2x

" #5=2

(11:4:10)

For the simple assumption of na ¼ nb ¼ const, we obtain

�Va

�Vb

¼ Ab

Aa

� �5=2

(11:4:11)

which is much closer to the experimental range. However, some experiments had

sheaths that were more collisionless than collisional, so the sheath dynamics is

not the only factor involved.

Spherical Shell Model

It is clear that geometric factors alone, even at low density, will make na = nb.

Additionally, for higher pressure, factors such as local ionization can further

increase the density at the higher-voltage electrode. We now consider these

effects using the one-dimensional spherical shell model shown in Figure 11.17

(Lieberman, 1989b). The powered electrode is the inner sphere a having radius ra,

and the grounded electrode is the outer sphere b having radius rb. The electrode

separation l, plasma thickness d, and sheath thicknesses sa and sb are defined in

the figure. The discharge is driven by an rf current source through a blocking capaci-

tor CB having negligible impedance at the driving frequency. Since the system is

spherically symmetric, the model is purely one-dimensional (along r). The

freedom to choose not only the discharge length l ¼ rb � ra but also the powered-

to-grounded electrode area ratio Aa=Ab ¼ r2a=r
2
b , 1 allows us to model an asym-

metric discharge. We consider the intermediate mean free path regime, where the

432 CAPACITIVE DISCHARGES



ion drift velocity is much greater than the ion thermal velocity, ui � vthi, and assume

that the dominant ion collisional process is charge exchange of the ion with the

parent neutral gas atom, such that the mean free path li ¼ (ngsi)
�1 is nearly

constant.

For this intermediate pressure regime, we found the drift velocity in (5.3.5) to be

u2i ¼
eTe

M

2

p

li
n

dn

dr

�

�

�

�

�

�

�

�

(11:4:12)

Substituting this into the continuity equation (5.3.4), in spherical coordinates, we

obtain an equation for the density,

1

r2
d

dr
r2n

eTe

M

2

p

li
n

dn

dr

�

�

�

�

�

�

�

�

1=2
" #

¼ nizn (11:4:13)

Using various transformations to simplify (11.4.13), Lieberman (1989b) numeri-

cally solved this differential equation to obtain a simple expression for the ratio

of densities at the grounded and powered electrodes. In the usual regime for

processing discharges for which (2liniz=puB)(Aa=Ab)
3=4 � 1, this gives

nb

na
� Aa

Ab

� �0:29

(11:4:14)

With this geometric scaling of density we can recompute the voltage ratios from

(11.4.6) and (11.4.9) to obtain, for a collisionless Child law sheath,

�Va

�Vb

¼ Ab

Aa

� �3:42

(11:4:15)

FIGURE 11.17. Spherical shell model of an asymmetric rf discharge (Lieberman, 1989b).
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and, for a collisional (li ¼ const) sheath,

�Va

�Vb

¼ Ab

Aa

� �2:21

(11:4:16)

The above results do not exhaust the assumptions that can be made to describe the

plasma glow region and the sheath region. Spatially uniform ionization by second-

aries, and edge ionization by stochastically heated electrons can also be introduced

as important ionization processes. For the sheath dynamics, a collisional constant

mobility sheath law (6.5.8) or a homogeneous sheath can be introduced. The

scaling results for all these cases (except the homogeneous sheath) are shown in

Table 11.1. We note that considerably lower values of q can be found with the appro-

priate combination of glow and sheath dynamics, but we hasten to add that many of

these combinations are mutually incompatible. Generally, the higher-pressure

assumptions, to the right and down in the table, produce the lower values of q.

The results in the table do not give the whole story. For large area ratios, the

voltage at the large-area electrode saturates at its dc value given by (6.2.17) for

an undriven sheath, and the scaling laws in the table must be modified. Geometries

that would more closely resemble physical reactors, on which experimental

measurements have been made, have also been investigated using more complicated

models. One such study investigated various cylindrical and coaxial systems and

compared the results with similar experimental configurations, obtaining reasonable

agreement (Lieberman and Savas, 1990). For two-dimensional geometries, such as a

cylinder, the voltage ratio does not simply scale as a power of the area ratio, but

depends in a complicated way on the cylinder length and radius. For details, the

reader should consult the original paper.

11.5 LOW-FREQUENCY RF SHEATHS

At low frequencies v . vi , where ti ¼ 2p=vi is the ion transit time across the

sheath, the ions respond to the time-varying fields within the sheath, rather than

to their average value. In this case, the sheath analysis of Sections 11.1–11.4 is

TABLE 11.1. Scaling Exponent q for the Equation �Va= �Vb = (Ab=Aa)
q

Sheath Physics Child’s Law Constant li Law Constant mi Law

Glow Physics Scaling Law J / V3=2=s2 J / V3=2=s5=2 J / V2=s3

Homogeneous n ¼ const 4.0 2.5 3.0

Thermal electron n/ A�7=24 3.42 2.21 2.71

Secondary electron n/ A�1=2 3.0 2.0 2.5

Local ionization n/ V 1.33 1.25 1.5

Source: After Lieberman (1989b).
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invalid. The ion transit time for a collisionless Child law sheath is given by (6.3.21)

ti ¼ 3s

v0
(11:5:1)

where v0 ¼ (2eV0=M)1=2 is the characteristic ion velocity in the sheath and V0 is the

dc component of the voltage across the sheath. Substituting (6.3.12) for s into

(11.5.1) with J0 ¼ ensuB from (6.3.13), we obtain

vi ¼ pvpi

2Te

V0

� �1=4

(11:5:2)

wherevpi ¼ (e2ns=e0M)1=2 is the ion plasma frequency at the sheath edge. For typical

operating conditions V0 � 100V, Te � 3V, we find that vi � vpi . However, strictly

speaking, it is v=vi that determines the ion behavior in the sheath, and not v=vpi .

At both high and low frequencies, the current density everywhere within the

sheath is the sum of the ion and electron conduction currents Ji and Je and the dis-

placement current Jd . To examine the importance of Jd , we use an estimate based on

a parallel-plate vacuum model,

Jd � ve0V1

s
(11:5:3)

where V1 is the rf voltage amplitude. Using the Child law (6.3.12) for Ji , we form

the ratio

Jd

Ji
¼ 3p

2

V1

V0

v

vi

(11:5:4)

For a high-voltage sheath with V1 � V0 , we see that in the low-frequency or thin

sheath (high-density) limit, Jd � Ji . In this limit the displacement current is small

and the sheath is resistive. This is in contrast to the high frequency sheaths that

are capacitive. In contrast to capacitive sheaths, the time-varying voltages across

resistive sheaths have a rectifying character and can be strongly nonsinusoidal.

In addition, for asymmetric discharges, resistive sheaths give a quite different

scaling with electrode size than capacitive sheaths give. We examine these issues

below.

To determine the sheath characteristics and also the effects of two resistive sheaths

at the powered and grounded electrodes of an asymmetric capacitive discharge, we

consider a low-pressure voltage-driven system with sheath areas Aa and Ab and cor-

responding edge densities nsa and nsb, as shown in Figure 11.18 (Song et al., 1990;

Kawamura et al., 1999). The bulk plasma resistance are assumed to be negligible.

The current flowing from the bulk plasma to electrode a is the sum of a steady ion
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current (characteristic of the bulk plasma) and a time-varying electron current:

Ia(t) ¼ ensauBAa � 1

4
ensa �veAae

Va(t)=Te (11:5:5)

with Va the plasma voltage with respect to electrode a. Similarly,

Ib(t) ¼ ensbuBAb � 1

4
ensb �veAb e

Vb(t)=Te (11:5:6)

with Vb the plasma voltage with respect to electrode b. We have ignored the displa-

cement current at low frequencies. By current continuity, we have Ib(t) ¼ �Ia(t). A

circuit model of the discharge is shown in Figure 11.19. Because we are assuming

that Vrf � Te , we can model each sheath to be an ideal diode, corresponding to

the time-varying electron current, in parallel with an ideal current source, corre-

sponding to the steady ion current. The currents carried by the sheath capacitances,

FIGURE 11.18. Asymmetric low frequency capacitive discharge.
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FIGURE 11.19. Model of low-frequency asymmetric capacitive discharge.
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shown as dashed lines in the figure, are assumed to be small. Typical variations of

Va(t) and Vb(t) are shown in Figure 11.20. Because one or the other sheath alternately

limits the current to that of the ions alone, the total current has the square wave shape

shown in Figure 11.20, with Ib0 ¼ ensbuBAb and Ia0 ¼ ensauBAa. Because neither Va

nor Vb can ever be significantly negative, Va and Vb are alternately positive and

clamped near zero volts; that is, the sheaths are rectifying. The electron currents

are nonzero only when the sheath voltages are clamped near zero.

The circuit in Figure 11.19 gives a quite different voltage divider action than

that of the high-frequency capacitive voltage divider in Figure 11.16. Although

the diodes (representing electron conduction current) still appear at high frequen-

cies, as seen in the general circuit model for a high-frequency discharge of

Figure 11.4, the capacitive displacement current is the dominant current at high

frequencies, so the effect of the diodes was neglected in Figure 11.16. At low fre-

quencies, in contrast, we neglect the displacement currents through the sheath

capacitors.

Due to the blocking capacitor (CB in Fig. 11.19), a dc self-bias voltage builds up

such that the voltage V(t) ¼ Vb(t)� Va(t) across the discharge can be written as

V(t) ¼ Vrf sin vt � Vbias (11:5:7)

To determine Vbias , we note first that the total electron charge Qea collected by

electrode a over one rf period must equal the total ion charge collected:

Qea ¼ ensauBAa(ta þ tb) (11:5:8)
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FIGURE 11.20. Time-varying sheath voltages and currents.
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Here ta and tb, as shown in Figure 11.20, are the time intervals for electron collection

by electrodes a and b respectively, with

v(ta þ tb) ¼ 2p (11:5:9)

Because the plasma must remain quasi-neutral during ta, the total electron charge

lost to electrode a must equal the total ion charge lost to both electrodes:

Qea ¼ euB(nsaAa þ nsbAb)ta (11:5:10)

Substituting Qea from (11.5.8) into (11.5.10), we obtain

ta

tb
¼ nsaAa

nsbAb

(11:5:11)

Using (11.5.9) to eliminate tb from (11.5.11), we obtain

vta ¼ 2p
nsaAa

nsaAa þ nsbAb

(11:5:12)

Referring to Figure 11.20 with V(t) given as a shifted sinusoid by (11.5.7), we see

that vt1 ¼ sin�1(Vbias=Vrf ), vt2 ¼ p� vt1 , and hence that

vta ¼ v(t2 � t1) ¼ p� 2 sin�1(Vbias=Vrf ) (11:5:13)

Equating (11.5.12) to (11.5.13) and solving for Vbias , we obtain

Vbias ¼ Vrf sin
p

2

nsbAb � nsaAa

nsbAb þ nsaAa

� �

(11:5:14)

The maximum accelerating potentials at the electrodes are (see Fig. 11.20) Va0 ¼
Vrf þ Vbias and Vb0 ¼ Vrf � Vbias. A reasonable fit to (11.5.14) for nsbAb . 5 nsaAa is

Va0

Vb0

� nsbAb

nsaAa

� �p=2

(11:5:15)

Setting nsa ¼ nsb , we contrast the low-frequency scaling exponent of p=2 to the

high-frequency exponent of 4 in (11.4.7) for the same conditions of collisionless

Child law sheaths with equal sheath edge densities.

For a highly asymmetric discharge, nsaAa � nsbAb in (11.5.14), we find that

Vbias ! Vrf , Va0 ! 2Vrf , and Vb0 ! 0. The latter limit is not correct because the

preceding analysis does not account for the effect of a finite dc floating potential

in the absence of an rf voltage across the sheath. For this highly asymmetric case,
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when the rf voltage across the grounded sheath b is zero, Vb0 should tend to the usual

low voltage dc floating potential (10.2.8).

In addition, for any rf sheath having a sinusoidal voltage Vrf across it, there is a

correction to Vbias. To the next order in Te=Vrf , the time-average potential Vbias

across the powered sheath is found by equating the time-average electron and ion

fluxes there. The average electron flux �Ge can be expressed as

�Ge ¼ 1

4
kne(t)l�ve (11:5:16)

where, from Boltzmann’s law, assuming a sinusoidal voltage,

ne(t) ¼ ns exp
�Vbias þ Vrf sin vt

Te

� �

(11:5:17)

Substituting (11.5.17) in (11.5.16) we have

�Ge ¼ 1

4
ns �ve e

�Vbias=Te
1

2p

ð2p

0

exp
Vrf sinvt

Te

� �

d(vt) (11:5:18)

The averaged integral yields the modified Bessel function

I0(Vrf=Te) � Te

2pVrf

� �1=2

eVrf=Te ;

where the approximate equality holds for Vrf � Te. Using this and equating �Ge to the

Bohm ion flux, we have

e(�VbiasþVrf )=Te ¼ 2pVrf

Te

2pm

M

� �1=2

(11:5:19)

Taking the logarithm of both sides and solving for Vbias , we obtain

Vbias ¼ Vrf þ Te

2
ln

M

2pm
� ln

2pVrf

Te

� �

(11:5:20)

We see that the zero-order value of Vbias ¼ Vrf is increased by the usual thermal term

but is decreased because the electrons reach the electrode over a finite time interval.

This result applies to the powered (lower area) sheath for a low-frequency highly

asymmetric discharge, and, approximately, to both sheaths of a high-frequency

capacitive discharge. For high-frequency discharges, in Sections 11.1 and 11.2,

we used a sinusoidal current drive for ease of analysis, which resulted in a nonsinu-

soidal voltage with some harmonic content. For the calculation of (11.5.20) in this
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section and for some calculations in the following section, it is more convenient to

consider the sheath voltage as sinusoidal. This introduces some changes in the

relationship between the rf voltage and the dc bias from those determined in

Sections 11.1 and 11.2.

The effect of displacement currents on these solutions for various discharge

asymmetries and with a finite blocking capacitor CB has been examined by Metze

et al. (1986) by numerically integrating the equations for the circuit model of

Figure 11.19, including the effects of the nonlinear sheath capacitances, shown as

dashed lines in the figure. To illustrate this effect, we consider the special case of

a symmetric model (Aa ¼ Ab) with a large (low impedance) capacitor CB. As

shown in Figure 11.19, each sheath consists of the parallel combination of an

ideal diode D, representing the resistive flow of electron current through the

sheath to the wall, an ideal current source I0 , representing the steady flow of ions,

and a nonlinear capacitance C, representing the flow of displacement current.

The low-frequency sheath capacitance can be written as

C ¼ dQ

dV
¼ e0A

dE

dV
(11:5:21)

where Q is the charge on the wall, V is the sheath voltage, A is the sheath area, and E

is the electric field at the wall. For a high-voltage (Child law) sheath Vrf � Te ,

the electric field is obtained from (6.3.10) as

E ¼ 2
J0

e0

� �1=2
MV

2e

� �1=4

(11:5:22)

where J0 is the ion current density in the sheath. Inserting J0 from (6.3.13) into

(11.5.22) and differentiating this with respect to V to evaluate (11.5.21), we obtain

C ¼ K

V3=4
(11:5:23)

where

K � 0:327(ense0)
1=2T1=4

e A (11:5:24)

Because CB is large, the discharge is essentially voltage driven and one or the

other diode alternately conducts. Because the discharge is symmetric, Vbias ; 0

and the voltage across each sheath is a half-wave rectified sinusoid (vta ¼ vtb ¼ p
in Fig. 11.20). For the ground sheath b, we have

Idb ¼ dQb

dt
¼ C

dVb

dt
(11:5:25)
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which yields

Idb ¼
vKV1=4

0

cosvt

(sinvt)3=4
; 0 , vt (mod 2p) , p

0; otherwise

8

<

:

(11:5:26)

A similar expression shifted in time by p=v is found for Ida for the powered sheath a.

The singularity in (11.5.26) at vt ¼ 0;p (mod 2p) is due to the high-voltage

approximation (11.5.23) for the sheath capacitance. The singularity is integrable,

which leads to nonsingular behavior for the chargeQb(t). This singularity is resolved

in the more accurate model (Metze et al., 1986). Summing the displacement and

conduction currents for the simple model yields the total current, as sketched in

Figure 11.21. More accurate models of the transition from low frequency/high
density to high frequency/low density sheath dynamics must incorporate the ion

inertial effects (finite dui=dt). This has been done by Miller and Riley (1997)

using a heuristic ion relaxation time model and by Sobolewski (2000) using the

full ion dynamics described by the fluid equations. The latter model spans the

entire range of frequencies and densities and is in excellent agreement with

experimental measurements.

11.6 ION BOMBARDING ENERGY AT ELECTRODES

The energy distribution gi(E) of ions bombarding substrate surfaces is critical to the

plasma processing of materials. At low pressures for which the ion transport across

the sheath is collisionless, gi depends on the time-varying flux Gi of ions entering the

sheath (assumed constant in previous sections) and on the time-varying sheath

potential Vs. At higher pressures ion–neutral collisions within the sheath strongly

affect the energy distribution. Considering first the collisionless case, then cold

ions that enter the sheath at time t0 will strike the surface at time tf with energy E.

I

I

t

t

t

FIGURE 11.21. Symmetric low-frequency capacitive discharge showing total current Irf
and displacement current Idispl versus time.

11.6 ION BOMBARDING ENERGY AT ELECTRODES 441



The fraction of ions per unit area that enter the sheath during a fractional time

interval v dt0=2p must equal the fraction of ions per unit area within an energy

interval dE:

v

2p
Gi(vt0) dt0 ¼ gi(E) dE (11:6:1)

Summing over all times t0j during one rf cycle that give energy E, we obtain

gi(E) ¼ 1

2p

X

j

Gi(vt0j)
dE

d(vt0j)

�

�

�

�

�

�

�

�

�1

(11:6:2)

For low frequencies v . vi(Te=V0)
1=2, the sheath velocity is small compared to

the Bohm velocity, and Gi(vt0) � nsuB ¼ const. The ion flight time across the

sheath is also small compared to the rf period, and hence E(vtf ) � E(vt0) �
Vs(vt0). This yields the low-frequency energy distribution

gi(E) ¼ 1

2p

X

j

nsuB
dVs

d(vt0j)

�

�

�

�

�

�

�

�

�1

Vs¼E
(11:6:3)

Let us determine gi at the powered electrode a in Figure 11.18. There are two

parts to the distribution depending on the voltage variation during the two time inter-

vals ta and tb (see Fig. 11.20). During the time interval tb, using (11.5.14) in (11.5.7),

we have (see Fig. 11.20) that

Vs ¼ �Vrf sinvt0 þ Vbias (11:6:4)

Differentiating Vs yields

dVs

d(vt0)
¼ �Vrf cosvt0 ¼ �Vrf (1� sin2 vt0)

1=2 (11:6:5)

Substituting sinvt0 from (11.6.4) with Vs ; E into (11.6.5), inserting this into

(11.6.3), and noting that there are two values of t0 during one rf cycle for each

value of E, we obtain

gi(E) ¼ nsauB

p
V2
rf � (Vbias � E)2� 	�1=2

; 0 , E , Vrf þ Vbias (11:6:6)

The distribution at the maximum value E ¼ Vrf þ Vbias is singular but integrable.

The preceding analysis does not account for the finite dc floating potential
�Vs across the sheath. Taking this into account, the lowest value of E is �V s rather

than zero.
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During the time interval ta (see Fig. 11.20), the voltage collapses to �Vs across sheath

a and (11.6.3) yields a monoenergetic (d-function) contribution to the distribution

gi(E) ¼ nsauB
vta
2p

d(E � �V s) (11:6:7)

The total distribution is the sum of (11.6.6) and (11.6.7). This is sketched in

Figure 11.22 for a low-frequency and/or high-density sheath in a symmetrically

driven capacitive discharge (Vbias ¼ 0 and Va0 ¼ Vrf ). The spectrum is broad and

independent of ion mass because ions of any mass respond to the full range of the

slowly varying sheath voltage. The ions have maximum energy Vrf þ Vbias , and

there is a considerable population of low-energy ions.

Let us now consider the opposite limit of high frequencies, v & vi , for which the

ion transit time ti is long compared to the rf period trf ¼ 2p=v. This regime was

described analytically for a Child law sheath by Benoit-Cattin and Bernard (1968)

for a sinusoidal sheath voltage (11.6.4) and a constant (ion) sheath width s. To

zero order in the ratio trf=ti , the ion motion within the sheath is determined by

the dc fields alone, independent of the rf modulation. For an ion entering the

sheath at time t0 with an initial velocity u(t0) ¼ 0, the unperturbed motion is

given by (6.3.20) as

x(t)

s
¼ v0(t � t0)

3s

� �3

(11:6:8)

where v0 ¼ (2eVbias=M)1=2 with Vbias the dc voltage across sheath a.

To first order, the ion motion is found from the force equation

M
d2x

dt2
¼ eE ¼ e(�Vrf sinvt þ Vbias)

4

3s

x

s


 �1=3

(11:6:9)

g

FIGURE 11.22. Ion energy distribution gi(E) for a symmetrically driven capacitive

discharge with a low-frequency and/or high-density sheath; Vrf ¼ 200V.
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where we have used (6.3.16) for the electric field E. We have assumed a sinusoidal

voltage Vrf across sheath a, with Vbias and Vrf related by (11.5.20). Substituting the

zero-order solution (11.6.8) into the RHS of (11.6.9) and integrating once, we obtain

M
dx

dt
¼ 4

9

v0

s2
eVbias

2
(t � t0)

2 � eVrf

sinvt � sinvt0
v2

� (t � t0)
cosvt

v

� �� �

(11:6:10)

Evaluating (11.6.10) at t ¼ tf yields the ion bombarding velocity uf ¼ (dx=dt)tf . To
first order, we can use the unperturbed value of tf � t0 ¼ ti ¼ 3s=v0 in (11.6.10) and
retain only the two largest terms to obtain

Mu(tf ) � 4

3s

eVbias

2

3s

v0
þ eVrf

v
cosv t0 þ 3s

v0

� �� �

(11:6:11)

Assuming that the second term in (11.6.11) is small compared to the first term, we

form the energy, again retaining the two largest terms:

E(vt0) ¼ M

2e
u2f �

1

2eM

16

9s2
e2V2

bias

4

9s2

v20
þ e2VbiasVrf

3s

vv0
cosv t0 þ 3s

v0

� �� �

(11:6:12)

Using v0 ¼ (2eVbias=M)1=2 in (11.6.12), we obtain the final result

E(vt0) � Vbias þ 4

3

v0

vs
Vrf cosv t0 þ 3s

v0

� �

(11:6:12)

The width DE of the modulation in energy is

DE ¼ 8

3

v0

vs
Vrf ¼ 4

p

trf
ti

Vrf (11:6:13)

Assuming that the ion flux entering a high-frequency sheath at x ¼ s is constant, the

energy distribution is, from (11.6.2),

gi(E) ¼ nsuB

2p

X

j

dE
d(vt0j)

�

�

�

�

�

�

�

�

�1

(11:6:14)

Using (11.6.12) to evaluate the derivative and noting that there are two values of t0
during one rf cycle for a given energy, we obtain

gi(E) ¼ 2 nsuB

pDE 1� 4
E � Vbias

DE
� �2

" #�1=2

(11:6:15)

which yields a characteristic bimodal distribution with two peaks symmetric about

Vbias. The two peaks are singular because of the assumed monoenergetic initial ion

velocity, but the peaks are integrable.
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The intermediate-frequency regime vi(Te=V0)
1=2 . v . vi , discussed in the

introduction to Section 11.5, is difficult to treat analytically. The low frequency

limit corresponds to vs � uB , such that the flux of ions entering the moving

sheath, which is needed to evaluate (11.6.2), is not necessarily constant in time.

Figure 11.23 shows the energy distribution obtained from a one-dimensional PIC

simulation of a single collisionless sheath in a helium discharge driven by a sinusoi-

dal current source (Kawamura et al., 1999). A current-driven sheath was used in

order to avoid arbitrarily setting the dc bias voltage. The plasma parameters were

chosen to fix the ion transit time at ti � 77 ns, and the rf frequency was varied

from 1 to 100 MHz. As expected, we see bimodal distributions that become nar-

rower as the frequency increases.

In the high-frequency regime v & vi , (11.6.13) yields the result that the energy

width DE scales as the inverse square root of the ion mass. For a plasma containing

ions of various masses, we expect the total energy distribution gi to have a series of

peaks due to density-weighted sums of bimodal distributions of the form (11.6.15),

with peaks for lighter mass ions showing a larger width than heavier mass ions. An

extreme example of this energy separation is shown in the experimental data of

Figure 11.24, taken in a 75 mTorr capacitive discharge driven at 13.56 MHz. The

Eu ions (mass ¼ 152 amu) display a single unresolved energy peak; the H2O
þ

ions (mass ¼ 18 amu) show the characteristic bimodal shape of the high-frequency

regime, and the Hþ
3 ions show the wide separation and unsymmetrical shape that

characterizes the low frequency regime. The preciseness with which ions of different

masses can be distinguished in the measured energy distribution in the frequency

regime v & vi is shown in Figure 11.25, taken in a CF4 capacitive discharge at

3 mTorr.

g

FIGURE 11.23. Simulation results showing ion energy distributions gi(E) for a single sheath
in a current-driven helium discharge at frequencies from 1 to 100 MHz; the maximum sheath

voltage drop was about 200 V in every case.
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Ion–neutral collisions within the sheath can strongly modify the bombarding

energy distribution and can lead to an additional structure of peaks within the

energy distribution. These features have been described by Wild and Koidl (1991)

as a consequence of the rf modulation of the sheath in combination with the creation

of “secondary” cold ions by charge exchange processes within the sheath.

Cold ions created at some position x0 within the sheath during a finite time inter-

val t2 � t1, when the electron sheath edge oscillates from position x0 at time t1 to the

FIGURE 11.24. Measured ion energy distributions gi(E) for Hþ
3 , H2O

þ, and Euþ ions at the

grounded electrode of a 75-mTorr argon rf discharge driven at 13.56 MHz (Coburn and Kay,

1972).

FIGURE 11.25. Measured ion energy distributions gi(E) at the powered electrode of a CF4
discharge driven at 13.56 MHz (Kuypers and Hopman, 1990).
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electrode surface and back to position x0 at time t2 , all see a quasi-neutral plasma

(ne � ni) with a local electric field E � 0. All of these ions start their journey to

the surface at the same time t2 , just after ne falls to zero at x0 , yielding the additional

peaks in the distribution.

Figure 11.26 shows a quantitative comparison of theory and experiment in a

capacitively coupled argon discharge with 500 V across the sheath. At 3 mbar, the
high-frequency bimodal distribution of the primary ions is clearly seen centered

FIGURE 11.26. Comparison of experimental and theoretical ion energy distributions gi(E)
in an argon discharge driven at 13.56 MHz at various pressures (1 mbar ¼ 0.76 mTorr)

(Wild and Koidl, 1991).
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around this voltage, but the lower-energy peaks due to the secondary ions created by

primary ion charge exchange in the sheath are also prominent. At higher pressures,

the bimodal distribution of the primary ions is much diminished.

11.7 MAGNETICALLY ENHANCED DISCHARGES

Capacitive discharges have been the most widely used source for low-pressure

materials processing. However, they suffer from the disadvantages of high sheath

voltages with consequent low ion density (ion flux) and high ion-bombarding

energy at a given power level. The ion-bombarding energy also cannot be varied

independently of the ion flux in these devices. To circumvent these disadvantages,

other sources have been employed and various attempts have been made to improve

the performance of the capacitive discharge. In the following two chapters, we con-

sider alternative methods of producing and heating plasmas, particularly to achieve

lower sheath voltages, higher densities, and independent control of both. In this

section we consider one modification of the capacitive discharge that can also

achieve these goals, the magnetically enhanced reactive ion etcher (MERIE) or rf

magnetron. In this discharge, a controllable, relatively weak (50–200 G) dc mag-

netic field is imposed parallel to the surface of the rf-powered electrode.

The magnetic field introduces a number of effects that act to increase the density

and reduce the sheath voltage at a fixed absorbed power. (1) As described in Section

5.4, the electron motion can be strongly inhibited across the field, leading to a

reduced nonambipolar flux in the cross-field directions. If most of the collecting

surface is across field lines then the power loss can be significantly reduced, result-

ing in higher density at a given power. (2) The magnetic field can confine the

energetic (ionizing) electrons to a small volume near the electrode. This both

reduces the overall effective loss area of the discharge and directs a greater fraction

of the escaping plasma to the powered electrode, increasing the ion flux there. (3) A

transverse field can increase the efficiency of stochastic heating due to multiple cor-

related collisions of electrons with the oscillating sheaths, increasing the density.

(4) There is an increase in the efficiency of ohmic heating due to higher electric

fields in the plasma. In a simple model presented below, we examine effects (3)

and (4), the increased efficiency of stochastic heating and ohmic heating.

Although application of the magnetic field results in a reduced sheath voltage and

increased plasma density, the plasma generated is strongly nonuniform both radially

and azimuthally due to E� B drifts, where E and B are the local dc electric and

magnetic fields, respectively. To increase process uniformity (at least azimuthally),

the magnetic field can be rotated in the plane of the wafer at a low frequency

(�0:5Hz). While this is an improvement, MERIE systems may not have good uni-

formity, which may limit their performance. A strongly nonuniform plasma over the

wafer can give rise to lateral dc currents within a film on the wafer that can damage

the film (see Section 15.5).

In the following analysis we return to the homogeneous model of Section 11.1 for

the plasma and the sheath in order to calculate the heating. This is necessitated by
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the complexity of the dynamics due to the steady magnetic field. The approximation

does not introduce significant error in the bulk plasma at low pressures, but, as

described in Section 11.2, the sheath dynamics is not correctly treated. Effect 1, non-

ambipolar ion losses, could be included in the model if desired, but the effect may

not be significant at the typical 50–200-G fields. Effect 2 may be quite important but

cannot be treated in a homogeneous model.

The model is the same as given in Figure 11.1, except that a uniform magnetic

field B0 is oriented parallel to the electrode surfaces in the z direction. As in

Section 11.1, a uniform sinusoidal current density Jx(t) ¼ Re J1e
jvt flows between

the plates. In the plasma, the current density is related to the electric field vector

through the dielectric tensor. Letting Ja(t) ¼ Re ~Ja e
jvt and Ea(t) ¼ Re ~Ea e

jvt,

where a ¼ x; y, or z, we have

~Jx
~Jy
~Jz

0

@

1

A ¼ jve0

k? �k� 0

k� k? 0

0 0 kk

0

@

1

A

~Ex

~Ey

~Ez

0

@

1

A (11:7:1)

where the tensor elements are given in Section 4.4. Since ~Jx ¼ J1, and ~Jy ¼ ~Jz ¼ 0,

we can solve (11.7.1) to obtain ~Ez ¼ 0,

~Ey ¼ �
~Exk�
k?

(11:7:2)

and

~Ex ¼ jve0 k? þ k2�
k?

� �� ��1

J1 (11:7:3)

In the sheath region a (see Fig. 11.1), the x component of the electric field is found

by integrating Poisson’s equation to obtain

Exa(x; t) ¼ en
x� sa(t)

e0
þ Ex(t) (11:7:4)

where Ex(t) is the field in the plasma, and we have chosen Exa ¼ Ex at the instan-

taneous position of the sheath edge x ¼ sa. Although the usual assumption is

that jExj � jExaj, the field in the plasma can be significant for sufficiently large

magnetic fields. The effect of finite Ex(t) is discussed in Lieberman et al. (1991).

For 50–200-G fields, it suffices to set Ex(t) ; 0 in (11.7.4), as in (11.1.7). The analy-

sis of the sheath then proceeds as in Section 11.1, with the total rf voltage drop

across both sheaths Vab(t) in this symmetric discharge given by (11.1.19) with

�s ¼ s0. The complex amplitude of Vab(t) is

~Vab ¼ � 2jens20
e0

(11:7:5)
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where s0 is given by (11.1.11). Adding to this the voltage drop ~Exd across the

plasma, where d ¼ l� 2s0 is the bulk plasma thickness, we obtain the complex

amplitude of the discharge voltage

~V rf ¼ � 2jens20
e0

þ ~Exd (11:7:6)

The dc voltage across a single sheath is given by (11.1.39).

The dynamics of the sheath heating can be profoundly changed by the addition of

magnetic fields. For weak magnetic fields, we assume that the sheath motion

remains unchanged, but that the particle interaction is modified due to multiple cor-

related collisions of electrons with the moving sheath. A gyrating electron that col-

lides once with the moving sheath collides again in a time interval of approximately

half a gyroperiod. The electron trajectory can be coherent over many such sheath

collisions, leading to large energy gains. The mechanism is illustrated in

Figure 11.27. The coherent motion is destroyed on the timescale for electron col-

lisions with neutral gas atoms.

To determine the heating, we start with the basic sheath heating equation

(11.2.27). For the homogeneous model this simplifies to

�Sstoc ¼ 2mGekDu(Du� ues)lf (11:7:7)

where Du is the change in electron velocity for a set of multiple collisions. To deter-

mine Du for the multiple sheath collisions, we let 2ues(vt) be the change in electron
velocity for a single collision with the sheath at time t. For a slowly moving sheath,

as illustrated in Figure 11.27, successive collisions take place at time intervals of

FIGURE 11.27. Electron trajectory and energy gain due to collisions with the moving sheath

and with applied transverse B0 (Lieberman et al., 1991).
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Dt ¼ p=vce , where vce ¼ eB0=m is the electron gyration frequency. These

collisions result in coherent energy gain. However, the coherent energy gain is

terminated by electron collisions with neutral gas atoms. Hence we write

Du ¼
X

1

i¼0

ues(vt þ ivDt)e�inelDt (11:7:8)

where nel is the electron–neutral elastic scattering frequency. The exponential factor
in (11.7.8) gives the fraction of electrons that have not collided with neutral gas

atoms after a time iDt. We are interested in the regime for which v, nel � vce , so

we can convert the sum to an integral,

Du ¼ vce

pv

ð1

0

ues(fþ f0)e�nelf
0=v df0 (11:7:9)

where f ¼ vt and f0 ¼ ivDt ¼ ipv=vce. Substituting ues ¼ Re ~ues e
jvt into (11.7.9)

and integrating, we find

Du(f) ¼ Re ~ues
vce

p(nel � jv)

� �

e jf (11:7:10)

Substituting this into (11.7.7) and averaging, we obtain the time-average power per

unit area delivered to the electrons by the oscillating sheath,

�Sstoc ¼ 1

4
mn�vej~uesj2 vce

p (n2el þ v2)
nel þ vce

p


 �

(11:7:11)

We note again that the derivation of (11.7.11) only holds if vce � v, nel . To com-

plete the model we add the usual equilibrium conditions of flux balance from

(11.2.32ab) and electron and total power balance from (11.2.36) and (11.2.37).

The modification of the heating due to the magnetic field has two main effects on

the discharge equilibrium. (1) The stochastic heating increases with increasing B0,

provided most of the rf voltage appears across the sheaths; and (2) a significant frac-

tion of the total rf discharge voltage can be dropped across the bulk plasma at high

magnetic fields. If the bulk plasma voltage is small, then we can estimate the scaling

of the discharge equilibrium with Sabs and B0 , in various regimes, as follows. We

first note by current continuity that Jrf / ns0. Since the sheaths are capacitive,

Jrf / Vrf=s0. Hence it follows that n/ Vrf=s
2
0. Using this result in (11.7.11), we

obtain the scaling of the stochastic heating power �Sstoc / B2
0Vrf , for vce � v, nel.

Similarly, scaling the ohmic power yields �Sohm / V
1=2
rf . The power balance

equations can then be evaluated in various limiting cases, depending on whether sto-

chastic heating or ohmic heating is the dominant heating mechanism and on whether

ion energy losses or electron energy losses are the dominant loss mechanism.

Considering the high-voltage case for which ion losses are dominant, then at low
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pressures where stochastic heating dominates, we obtain the scaling

Vrf / S
1=2
abs

B0

n/ S
1=2
absB0

s0 / B�1
0

�Sstoc / S
1=2
absB0

(11:7:12)

We leave the details to Problem 11.13. At very high B0 the bulk plasma voltage drop

can dominate the sheath drop, in which case the scaling can become very different,

but this is not the usual regime for rf magnetrons. We caution the reader that the

analysis leading to (11.7.11) and the scaling in (11.7.12) is illustrative rather than

a rigorous analysis.

Measurements have been made in a commercial, strongly asymmetric etch

chamber in argon at 13.56 MHz to compare with the model (Lieberman et al.,

1991). The plasma density n was measured with a Langmuir probe approximately

3 cm in front of the 200 cm2 powered electrode. The experiment and model results

for the density were compared for three magnetic fields of 10, 30, and 100 G, and

three power densities of 0.25, 0.5, and 1.0 W/cm2, with p ¼ 10 mTorr. The exper-

imental magnetic field dependence was somewhat weaker than predicted, and the

experimental values were about 30 percent lower than the theory. Park and Kang

(1997a) also compared experiments with a model incorporating multiple bounce

stochastic heating and a Child law sheath, obtaining reasonable agreement. PIC simu-

lations by Hutchinson et al. (1995) also showed some of the effects described above.

The similar trends of theory and experiment indicate that the basic modeling

approach includes much of the essential physics.

11.8 MATCHING NETWORKS AND POWER MEASUREMENTS

Although this text is mainly concerned with the internal dynamics of the plasma,

some knowledge of the external circuit is necessary. If the discharge is driven

directly by an rf power source, then generally power is not transferred efficiently

from the source to the discharge. To understand this, consider a discharge

modeled as a load having impedance ZD ¼ RD þ jXD , where RD is the discharge

resistance and XD is the discharge reactance. The power source connected to ZD
is modeled by its Thevenin-equivalent circuit, consisting of a voltage source with

complex amplitude ~VT in series with a source resistance RT. The time average

power flowing into the discharge is

�P ¼ 1

2
Re( ~V rf

~I
�
rf ) (11:8:1)
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where ~V rf is the complex voltage across ZD. Solving for ~Irf and ~V rf for these series

elements, we obtain

~Irf ¼
~VT

RT þ RD þ jXD

(11:8:2)

~V rf ¼ ~Irf (RD þ jXD) (11:8:3)

Substituting (11.8.2) and (11.8.3) into (11.8.1), we obtain

�P ¼ 1

2
j ~VTj2 RD

(RT þ RD)
2 þ X2

D

(11:8:4)

For fixed source parameters ~VT and RT, maximum power transfer is obtained by

setting @ �P=@XD ¼ 0 and @ �P=@RD ¼ 0, which gives XD ¼ 0 and RD ¼ RT. The

maximum power supplied by the source to the load is then

�Pmax ¼ 1

8

j ~VTj2
RT

(11:8:5)

If maximum power transfer is obtained, then we say that the source and load are

matched.

Since XD is not zero, and, typically, RD � RT, the power �P is generally much less

than �Pmax. To increase �P to �Pmax, thus matching the source to the load, a lossless

matching network can be placed between them. Because RD and XD are two indepen-

dent components of ZD , the simplest matching network consists of two independent

components. The most common configuration, called an “L-network,” is shown

inserted between the source and the load in Figure 11.28. It consists of a shunt

capacitor having susceptance BM ¼ vCM and a series inductor having a reactance

XM ¼ vLM.

FIGURE 11.28. Equivalent circuit for matching the rf power source to the discharge using

an L-network.
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To determine XM and BM, we write the admittance looking toward the right at

location 2 in Figure 11.28 as the inverse of the impedance:

Y2 ; G2 þ jB2 ; Z�1
2 ¼ (RD þ jX2)

�1 (11:8:6)

where X2 ¼ XM þ XD. Separating real and imaginary parts and solving for G2 and

B2, we obtain

G2 ¼ RD

R2
D þ X2

2

(11:8:7)

B2 ¼ � X2

R2
D þ X2

2

(11:8:8)

Next, we note from Figure 11.28 that Y3 ¼ G3 þ jB3, with G3 ¼ G2 and

B3 ¼ B2 þ BM. The matched condition of maximum power transfer is G3 ¼ 1=RT

and B3 ¼ 0. Setting G3 ¼ 1=RT in (11.8.7), we solve for X2 to obtain

X2 ¼ (RDRT � R2
D)

1=2 (11:8:9)

Since X2 ¼ XM þ XD, the required XM is

XM ¼ (RDRT � R2
D)

1=2 � XD (11:8:10)

Since XD is negative, XM must be positive; that is, a matching inductor LM ¼ XM=v
must be used. Using (11.8.9) in (11.8.8) and setting B3 ¼ 0 (BM ¼ �B2), we obtain

BM ¼ 1

RTRD

� 1

R2
T

� �1=2

(11:8:11)

Since BM is positive, a matching capacitor CM ¼ BM=v is required. Because there

must be real solutions for BM and XM , we see from (11.8.10) or (11.8.11) that RD

must be less than RT for a match to be achieved with an L-network. This is the

usual regime at the higher power levels used for typical processing discharges.

For low powers, RD . RT and a different form of matching network must be used

(Problem 11.15). A three-element (T or P) network can be used to match any dis-

charge; hence such networks are commonly used to provide added flexibility. The

three elements are not uniquely determined by the maximum power condition,

but the inductive element is usually a fixed value, and the two capacitors can be

varied to achieve the match.

Because RD and XD are actually functions of the discharge voltage or the

absorbed power, we must specify these to determine the matched condition. For a

specified voltage or absorbed power, we can determine ~I ; I1 and sm as in
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Example 1 or 2 of Section 11.2. Then RD and XD are determined from

Pabs ¼ 1

2
I21RD (11:8:12)

and

XD ¼ � 1

vCab

(11:8:13)

where Cab is given by (11.2.20).

Because typically XD � RD , the voltage and current across the discharge are

nearly 908 out of phase. Setting the current and voltage across the discharge to be

Irf (t) ¼ I1 cosvt (11:8:14)

Vrf (t) ¼ Vrf cos vt þ p

2
þ c


 �

(11:8:15)

we find that

Vrf ¼ (R2
D þ X2

D)
1=2I1 � XDI1 (11:8:16)

c ¼ tan�1 RD

XD

� RD

XD

(11:8:17)

The time-average power absorbed by the discharge is

Pabs ¼ 1

t

ðt

0

Vrf (t)Irf (t) dt (11:8:18)

¼ 1

2
I1Vrf sinc (11:8:19)

where t ¼ 2p=v. Under matched conditions, the voltage and current at the source

are in phase with each other, ~VT ¼ RT
~IT , with the power supplied by the source,

PT ¼ 1

2

j ~VTj2
RT

(11:8:20)

For a lossless matching network, Pabs ¼ PT. Equating (11.8.19) and (11.8.20) and

solving for j ~VTj, we obtain

j ~VTj ¼ (RDRT)
1=2

XD

Vrf (11:8:21)

For the usual discharge conditions, j ~VTj � Vrf .

11.8 MATCHING NETWORKS AND POWER MEASUREMENTS 455



Power Measurements

An rf wattmeter placed between the source and the matching network is convention-

ally used to measure the time-average power PT supplied by the source. This instru-

ment is often an integral part of the rf power supply. For sinusoidal voltages and

currents, the time-average powers Pf and Pb flowing in the forward and backward

directions are then measured, with

PT ¼ Pf � Pb (11:8:22)

For the voltage and current nearly in phase at the measurement location, we have

Pb � Pf , and the measurements accurately determine PT. Under strongly out-

of-phase conditions, Pb � Pf � PT , such that subtracting Pb from Pf does not deter-

mine PT accurately. Hence rf wattmeters cannot be placed between the matching

network and the discharge to determine the power Pabs absorbed by the discharge.

For a lossless matching network, Pabs ¼ PT, but the nonideal matching networks

used in typical processing systems often absorb a considerable fraction of the

source power, such that Pabs , PT. The usual source of loss is the finite resistance

of the wire with which the matching inductor is wound. This nonideal inductor

can be modeled as an ideal inductor LM in series with a resistor RM.

Equation (11.8.19) can be used to determine Pabs if I1 , Vrf , and c can be accu-

rately measured. The discharge current is conventionally measured with a miniature

current transformer. If the time-varying current and voltage are displayed on an

oscilloscope or measured using to a dual channel vector voltmeter, than Vrf , I1 ,

and c can be determined. However, because c can be as small as 2–38, phase
shifts between the measured voltage and current signals due to nonideal instrumental

and cabling effects can render the measurement meaningless. Accurate calibration

of the phase shift for known calibration loads is essential. This can be a difficult

measurement to make at 13.56 MHz in a practical processing discharge, where,

for example, a 4-cm length of coaxial cable has a phase shift of approximately 18.
If the measured voltage and current waveforms are not approximately sinusoidal,

than the power must be determined by direct averaging of the IrfVrf product using

(11.8.18).

In most discharges there is generally a large stray capacitance Cstray in parallel

with the discharge impedance RD þ jXD. Cstray represents the capacitance to

ground of the powered electrode and center conductor of its coaxial cable feed; typi-

cally Cstray � 100–200 pF in processing discharges. Then an effective procedure to

determine the power absorbed by the discharge alone if the voltage and current

waveforms are reasonably sinusoidal in shape is as follows:

1. Measure the voltage Vrf across the discharge and the source power PT. This is

the power absorbed by the lossy matching inductor and by the discharge.

2. Extinguish the discharge by raising the pressure in the chamber to 1 atm or by

reducing the pressure to a very low value. The voltage measured will in

general change.

456 CAPACITIVE DISCHARGES



3. Readjust the source voltage VT so that Vrf is the same as that measured in (1),

and measure the source power P(0)
T . The matching capacitor can be retuned if

desired, but a perfect match is not necessary. This measurement yields the

power absorbed by the lossy inductor only.

Because Vrf is the same with and without the plasma present, and the impedance

is approximately the same, determined by Cstray , the same current passes through

the inductor and stray capacitor to ground. Hence the same power is lost in the

inductor with and without the plasma present. Therefore, the power absorbed by

the plasma is

Pabs ¼ PT � P(0)
T (11:8:23)

For further discussion of power measurements in rf discharges, the reader is referred

to Godyak and Piejak (1990b).

PROBLEMS

11.1. Plasma Admittance Derive expression (11.1.3) for the bulk plasma

admittance Yp and show, using assumption (b), that the displacement

current that flows through C0 is much smaller than the conduction current

that flows through Lp and Rp.

11.2. Stochastic Heating Derive the stochastic heating result (11.2.59),

showing that �Sstoc is proportional to the rf voltage, independent of the rf dis-
charge current and plasma density.

11.3. Resonant Discharge Consider a uniform density bulk plasma of thickness

dwith two vacuum sheaths, each of thickness sm, such that l ¼ d þ 2sm. Find

the frequencyvres of the series resonance between the bulk plasma inductance

Lp [see (11.1.3)] and the overall sheath capacitance Cs, in terms of vpe ,

sm , and d. Evaluate vres for d ¼ 8 cm, sm ¼ 1 cm, and n0 ¼ 2� 1010 cm�3,

and compare vres to the driving frequency v for a 13.56-MHz discharge.

11.4. Low-Pressure rfDischargeEquilibriumwithVoltage Specified Consider

a symmetric, capacitively coupled rf discharge in argon gas having a total

applied rf voltage of amplitude 800 V at a frequency f ¼ v=2p ¼
13:56MHz. The plate separation is l ¼ 0:1m, and the gas pressure is

5 mTorr. Use a low pressure dischargemodel, as in Example 1 of Section 11.2.

(a) Determine the electron temperature Te in the discharge.

(b) Determine the plasma density n0 and the ion flux.

(c) Determine the dc potential of the plasma with respect to the plates and

the ion-bombarding energy (in volts).

(d) Determine the sheath thickness sm .
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(e) Determine the total rf power per unit area required to sustain the

discharge.

(f) Determine the rf current amplitude drawn by the discharge.

(g) Use the scaling formulas to check your answers against Example 1.

11.5. Low-Pressure rf Discharge Equilibrium with Power Specified Verify

the results of Example 2.

11.6. Intermediate Pressure rf Discharge Equilibrium with Voltage

Specified Consider a symmetric, capacitively coupled rf discharge in

argon gas having a total applied rf voltage of amplitude 800 V at a frequency

f ¼ v=2p ¼ 13:56MHz. The plate separation is l ¼ 0:1m, and the gas

pressure is 30 mTorr. Use a low-pressure discharge model, as in Example 1

of Section 11.2, but use the collisional sheath results (11.2.54)–(11.2.59)

instead of the collisionless sheath results.

(a) Determine the electron temperature Te in the discharge.

(b) Determine the plasma density n0 and the ion flux.

(c) Determine the dc potential of the plasma with respect to the plates and

the ion bombarding energy (in volts).

(d) Determine the sheath thickness sm.

(e) Determine the total rf power per unit area required to sustain the

discharge.

(f) Determine the rf current amplitude drawn by the discharge.

(g) For each plate of the discharge having a cross-sectional area of

1000 cm2, find, using your results above, the effective resistance RD

(in ohms) and capacitance CD (in farads) for a series RC model of the

discharge.

(h) Design a matching network to match the discharge to a 50-V rf

generator.

11.7. Scaling with Power For an Ohmically Heated Discharge Derive the

scalings (11.2.60) for a low-pressure symmetric capacitive discharge with

collisional (constant mean free path) sheaths in the regime where ohmic

heating dominates stochastic heating and where ion energy losses dominate

electron energy losses. Ignore ohmic heating in the sheaths.

11.8. Ion and Neutral Radical Densities in a Capacitive rf Discharge Repeat

the analysis leading to the scalings (10.2.29) and (10.2.38) of nis and nOS
with Pabs; ng; l;Te;v, and A for a low-pressure slab model of a symmetric

capacitive rf discharge. Assume that the discharge is electropositive, that

stochastic heating dominates ohmic heating, and that ion energy losses dom-

inate electron collisional losses.

11.9. Secondary Electrons in a Low-Pressure Discharge Consider a sym-

metric, capacitively coupled rf discharge in argon gas having a total applied

rf voltage of amplitude 800 V at a frequency f ¼ v=2p ¼ 13:56MHz.
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The plate separation is l ¼ 0:1m, and the gas pressure is 5 mTorr. Use a

low-pressure discharge model, as in Example 1 of Section 11.2.

(a) Sketch the total (rfþ dc) potential F(x; t) inside the discharge versus

the distance x between the plates, at four times vt ¼ 0, p=2, p, and
3p=2.

(b) Because energetic ions bombard the plates, secondary electrons are

released which can accelerate to high energies through the sheaths

back into the discharge, where they may become electrostatically

trapped. Assume that these “hot electrons” have a temperature

Th � 100V and are weakly collisional (le � l). Estimate the range

of times within an rf cycle vt ¼ 2p over which secondary electrons

will be accelerated to high energies (Th � Te) and become trapped.

Estimate the timescale for these hot electrons to be lost from the dis-

charge. To do this, consider the time-varying behavior of the trapping

potential F(x; t), as shown by your sketches in (a).

(c) From your answers in (b), and the hot-electron particle conservation

law, show that the steady-state hot-electron density can be estimated

as nh � gsen0uB=(vl), where uB is the Bohm velocity and gse is the

secondary emission coefficient.

(d) These hot electrons will ionize argon atoms, producing electron–ion

pairs. For gse ¼ 0:1, over what range of discharge frequencies v will

this mechanism be important compared to ionization by the thermal

(Te � 3V) electrons in the discharge? (You will need to use the data

shown in Fig. 3.16.)

11.10. Electronegative Discharge A voltage of Vrf ¼ 500V is applied across

a plane-parallel device, with plates separated by 6 cm, with an oxygen

feedstock gas at p ¼ 5mTorr. Assuming Te ¼ 3V, stochastic heating

dominates ohmic heating, and using (11.2.71) and a value of Krec from

Table 8.2, with d ¼ 4 cm, calculate ne0 , nþ0 , Pabs , and sm for a discharge

with recombination-dominated negative ion loss. Using the value of sm ,

obtain a new value of d and recalculate all quantities.

11.11. Asymmetric High-Frequency Capacitive Discharge Voltage Scaling

Derive the scaling (11.4.11) for an asymmetric high frequency capacitive

discharge with two collisional (constant mean free path) sheaths.

11.12. Asymmetric Low-Frequency Capacitive Discharge Consider a low

frequency capacitive discharge as in Section 11.5.

(a) Find Va0 and Vb0 (see Fig. 11.20) for a low frequency capacitive dis-

charge with Vrf ¼ 200V, Ab ¼ 2Aa , and nsb ¼ nsa. Use the model of

Figure 11.19 and neglect displacement currents.

(b) Determine and plot the ion energy distribution gi(E) for a collisionless
sheath at the powered electrode a.

(c) Determine and plot the ion energy distribution gi(E) for a collisionless
sheath at the grounded electrode b.
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11.13. Magnetically Enhanced rf Discharge Derive the scaling results quoted

in (11.7.12) for an rf magnetron discharge.

11.14. Design of a Matching Network

(a) For the discharge of Example 1, find the effective resistance RD (in

ohms) and capacitance CD (in farads) for a series RC model of the

discharge.

(b) Design an L-type matching network to match the discharge to a 50-V rf

generator.

11.15. Low-Power Matching Networks Design an L-type matching network to

match a discharge impedance ZD ¼ RD þ jXD to an rf generator having

characteristic impedance RT , for the low-power case RD . RT.
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CHAPTER 12

INDUCTIVE DISCHARGES

The limitations of capacitive rf discharges and their magnetically enhanced variants

have led to the development of various low-pressure, high-density plasma discharges.

The distinction between low- and high-density discharges is described in Sections

10.1 and 10.2. A few examples are shown schematically in Figure 1.14, and typical

parameters are given in Table 1.1. In addition to high density and low pressure, a

common feature is that the rf or microwave power is coupled to the plasma across

a dielectric window or wall, rather than by direct connection to an electrode in the

plasma, as for a capacitive discharge. This noncapacitive power transfer is the key

to achieving low voltages across all plasma sheaths at electrode and wall surfaces.

The dc plasma potential, and hence the ion acceleration energy, is then typically

20–40 V at all surfaces. To control the ion energy, the electrode on which the sub-

strate is placed can be independently driven by a capacitively coupled rf source.

Hence independent control of the ion/radical fluxes (through the source power) and

the ion-bombarding energy (through the substrate electrode power) is possible. The

relation between substrate electrode power and ion-bombarding energy at the sub-

strate is described in Chapter 11. High-density inductive rf discharges are described

in this chapter, and high-density wave heated discharges are described in Chapter

13. Nonresonant inductive discharges operated at high densities and low pressures,

which are driven at frequencies below the self-resonant frequency of the exciting

coil, are described in Section 12.1. Other operating regimes and power transfer con-

siderations are described in Section 12.2. The planar coil configuration, which is com-

monly used for materials processing, is described in Section 12.3, with emphasis on
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experimental measurements. Excitation at the self-resonant frequency leads to the

helical resonator configuration, described in Section 12.4. Some other aspects of

high-density discharges, including issues of plasma transport and substrate damage,

are described in a review article by Lieberman and Gottscho (1994), from which

some of the material in Chapters 12 and 13 is drawn.

12.1 HIGH-DENSITY, LOW-PRESSURE DISCHARGES

Inductive discharges are nearly as old as the invention of electric power, with the first

report of an “electrodeless ring discharge” by Hittorf in 1884. He wrapped a coil

around an evacuated tube and observed a discharge when the coil was excited with

a Leyden jar. A subsequent 50-year controversy developed as to whether these dis-

charges were capacitively driven by plasma coupling to the low- and high-voltage

ends of the cylindrical coil, as in a capacitive discharge (see Chapter 11), or were

driven by the induced electric field inside the coil. This issue was resolved with

the recognition that the discharge was capacitively driven at low plasma densities,

with a transition to an inductive mode of operation at high densities. Succeeding

developments, which focused on pressures exceeding 20 mTorr in a cylindrical coil

geometry, are described in a review article by Eckert (1986). The high-pressure

regime was intensively developed in the 1970s with the invention of the open air

induction torch and its use for spectroscopy. In the late 1980s, the planar coil configur-

ation was developed, renewing interest in the use of high-density inductive discharges

for materials processing at low pressures (,50 mTorr) and in low aspect ratio geome-

tries (l/R . 1 for a cylindrical discharge). Such discharges can be driven with either

planar or cylindrical coils. It is this regime that is the primary focus here.

Plasma in an inductive discharge is created by application of rf power to a non-

resonant inductive coil. Inductive sources have potential advantages over high-

density wave-heated sources, including simplicity of concept, no requirement for

dc magnetic fields (as required for ECRs and helicons, discussed in Chapter 13),

and rf rather than microwave source power. The nonresonant operation may be

either an advantage or a disadvantage, depending on use; a resonant version, the

helical resonator, is considered in Section 12.4.

In contrast to ECRs and helicons, which can be configured to achieve densities

n0 & 1013 cm�3, as we will see in Chapter 13, inductive discharges may have

natural density limits, n0 . 1013 cm�3, for efficient power transfer to the plasma.

However, the density regime 1011 . n0 . 1012 cm�3 for efficient inductive discharge

operation, typically a factor of 10 times higher than for capacitive discharges, is of

considerable interest for low-pressure processing. Inductive discharges for materials

processing are sometimes referred to as TCPs (transformer-coupled plasmas), ICPs

(inductively coupled plasmas), or RFI plasmas (rf inductive plasmas).

Inductive Source Configurations

The two coil configurations, cylindrical and planar, are shown in Figure 12.1 for a

low aspect ratio discharge. The planar coil is a flat helix wound from near the axis to
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near the outer radius of the discharge chamber (“electric stove-top” coil shape).

Multipole permanent magnets (see Section 5.6) can be used around the process

chamber circumference, as shown in Figure 12.1b, to increase radial plasma uniform-

ity. The planar coil can also be moved close to the wafer surface, resulting in a close-

coupled or near-planar source geometry (l , R) having good uniformity properties

even in the absence of multipole confinement. In the close-coupled configuration,

the coil can be wound nonuniformly to control the radial plasma uniformity.

Inductive coils are commonly driven at 13.56 MHz or below, using a 50-V rf

supply through a capacitive matching network, which we describe later in this

section. The coil can also be driven push–pull using a balanced transformer,

which places a virtual ground in the middle of the coil and reduces the maximum

coil-to-plasma voltage by a factor of 2. This reduces the undesired capacitively

coupled rf current flowing from coil to plasma by a factor of 2. An electrostatic

shield placed between the coil and the plasma further reduces the capacitive

Figure 12.1. Schematic of inductively driven sources in (a) cylindrical and (b) planar

geometries.
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coupling if desired, while allowing the inductive field to couple unhindered to the

plasma. For the dc plasma potential to be clamped to a low value, 20–40 V, in

the presence of stray capacitive coupling from the exciting coil and from the capa-

citively driven substrate holder, it is essential that the plasma be in contact with a

grounded metal surface of substantial area (see Fig. 12.1 and Section 11.4).

Power Absorption and Operating Regimes

In an inductively coupled plasma, power is transferred from the electric fields to the

plasma electrons within a skin depth layer of thickness d near the plasma surface by

collisional (ohmic) dissipation and by a collisionless heating process in which bulk

plasma electrons “collide” with the oscillating inductive electric fields within the

layer. In the latter situation, electrons are accelerated and subsequently thermalized

much like stochastic heating in capacitive rf sheaths, which we discussed in Section

11.1. We first consider the ohmic heating process.

The spatial decay constant a within a plasma for an electromagnetic wave

normally incident on the boundary of a uniform density plasma can be calculated

as discussed in Section 4.2, and is (Problem 12.1)

a ¼ �v

c
Im k1=2p ; d�1 (12:1:1)

From (4.2.18), the relative plasma dielectric constant is

kp ¼ 1� v2
pe

v(v� jnm)
� � v2

pe

v2(1� jnm=v)
(12:1:2)

with vpe the plasma frequency near the boundary, and nm the electron–neutral

momentum transfer frequency. There are two collisionality regimes.

(a) For nm � v, we drop nm=v in (12.1.2) to obtain

a ¼ vpe

c
;

1

dp
(12:1:3)

where dp is the collisionless skin depth. Substituting for vpe in (12.1.3), we find

dp ¼ m

e2m0ns

� �1=2

(12:1:4)

(b) For nm � v, we drop the 1 in the parentheses of (12.1.2), expanding for

nm � v, and substituting the imaginary part of k1=2p into (12.1.1), we obtain

a ¼ 1
ffiffiffi

2
p vpe

c

v

nm

� �1=2

;
1

dc
(12:1:5)
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where dc is the collisional skin depth. Substituting for the dc conductivity sdc ¼
e2ns=mnm from (4.2.22), dc can be written in the forms

dc ¼ dp
2nm
v

� �1=2

¼ 2

vm0sdc

� �1=2

(12:1:6)

(c) There is a third situation (Weibel, 1967; Turner, 1993) for which electrons

incident on a skin layer of thickness de satisfy the condition

�ve

2de
� v,nm (12:1:7)

where de is determined below. In this case, the interaction time of the electrons with

the skin layer is short compared to the rf period or the collision time. In analogy to

collisionless heating at a capacitive sheath, a stochastic collision frequency (18.5.2)

can be defined

nstoc ¼ Ce �ve

4de
(12:1:8)

where Ce is a quantity of order unity that depends weakly on �ve,de, and v, provided
the ordering (12.1.7) is satisfied (see Section 18.5). We then substitute nstoc for nm in

(12.1.2) and expand for nstoc � v as in (b), to obtain

de ¼ c

vpe

Ce �ve

2vde

� �1=2

Solving for de, we find

de ¼ Cec
2 �ve

2vv2
pe

 !1=3

¼ Ce �ve

2vdp

� �1=3

dp (12:1:9)

where de is the anomalous skin depth (see Alexandrov et al., 1984).

At 13.56 MHz in argon, we find nm ¼ v for p� � 25 mTorr. We are interested

primarily in the low-pressure regimes with p � p�, which we consider first. For

each pressure regime, we also distinguish two density regimes:

(a) High density, d � R, l

(b) Low density, d & R, l

For typical low-pressure processing discharges, we are generally in the regime for

which the frequency ordering is v � �ve=2d & nm and such that the skin depth is

approximately dp. For typical plasma dimensions R, l � 10 cm, we are in the high
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density regime. We shall discuss the high-pressure (nm � v) and low-density

(d � R, l) regimes later when we consider the minimum current and power necess-

ary to generate an ICP.

Discharge Operation and Coupling

Although many systems are operated with planar coils (see Fig. 12.1b), finite

geometry effects make these configurations difficult to analyze. To illustrate the

general principles of inductive source operation, we examine a uniform density

cylindrical discharge (Fig. 12.1a) in the geometry l & R. We take the coil to have

N turns at radius b . R. Integrating the power flow into the plasma, with

dp � R, we have (Problem 12.2)

Pabs ¼ 1

2

J2u
seff

pRldp (12:1:10)

where Ju is the amplitude of the induced rf azimuthal current density at the plasma

edge near r ¼ R (opposite in direction to the applied azimuthal current in the coil).

In analogy to the conductivity in (4.2.22),

seff ¼ e2ns

mneff
(12:1:11)

with neff ¼ nm þ nstoc as in (18.5.15), a sum of collisional and stochastic heating. An

estimate for nstoc is given in (18.5.14) or Figure 18.5. Equation (12.1.10) is equiva-

lently half the power loss of a uniform sinusoidal current density flowing within a

skin thickness dp. Letting Ip ¼ Juldp be the total induced rf current amplitude in

the plasma skin and defining the plasma resistance through Pabs ¼ 1
2
I2pRp, we obtain

Rp ¼ pR

seff ldp
(12:1:12)

As in (11.1.3) (see also Fig. 11.4), there is also a plasma inductance Lp, which

accounts for the phase lag between the rf electric field and the rf conduction

current due to the finite electron inertia. To determine this inductance, we integrate

the electric field Eu around the plasma loop to obtain the voltage V ¼ 2pREu. Sub-

stituting Ju in terms of Ip and Eu in terms of V into ohm’s law Ju ¼ spEu, with sp

given by (4.2.20) (with neff in place of nm), we obtain the voltage-current relation

V ¼ Ip(Rp þ jvLp), with Rp given by (12.1.12) and with

Lp ¼ Rp

neff
(12:1:13)

In addition to Lp, there is the usual magnetic energy storage inductance L22,

because the rf plasma current creates a magnetic flux Fp ¼ L22Ip linked by the
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current. Using Fp ¼ m0pR
2Hz, where Hz ¼ Judp is the magnetic field produced by

the skin current, we obtain

L22 ¼ m0pR
2

l
(12:1:14)

Letting the coil haveN turns at a radius b & R, where b� R is the “thickness” of the

dielectric interface separating coil and plasma, then we can model the source as the

transformer shown in Figure 12.2. Evaluating the inductance matrix for this trans-

former, defined through (Schwarz and Oldham, 1984)

~V rf ¼ jvL11~Irf þ jvL12~Ip (12:1:15)

~Vp ¼ jvL21~Irf þ jvL22~Ip (12:1:16)

where the tildes denote the complex amplitudes, for example, Vrf (t) ¼ Re ~V rf e
jvt,

we obtain (Problem 12.3)

L11 ¼ m0pb
2N 2

l
(12:1:17)

L12 ¼ L21 ¼ m0pR
2N

l
(12:1:18)

Using ~Vp ¼ �~Ip(Rp þ jvLp) (see Fig. 12.2) in (12.1.16) and inserting into (12.1.15),
we can solve for the impedance seen at the coil terminals:

Zs ¼
~V rf

~Irf
¼ jvL11 þ v2L212

Rp þ jv(L22 þ Lp)
(12:1:19)

We will assume the usual high density ordering dp � dc � R for the validity of

(12.1.12)–(12.1.14). With this ordering, it can easily be seen from (12.1.12)–

(12.1.14) that R2
p þ v2L2p � v2L222. Hence expanding the denominator in

Figure 12.2. Equivalent transformer coupled circuit model of an inductive discharge.
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(12.1.19), we obtain

Ls � m0pR
2N 2

l

b2

R2
� 1

� �

(12:1:20)

Rs � N 2 pR

seff ldp
(12:1:21)

where Zs ¼ Rs þ jvLs. The power balance,

Pabs ¼ 1

2
j~Irf j2Rs (12:1:22)

then yields the required rf source current, and the rf voltage is determined from

~V rf ¼ ~Irf jZsj (12:1:23)

Example We let R ¼ 10 cm, b ¼ 15 cm, l ¼ 20 cm, N ¼ 3 turns, ng ¼
1:7� 1014 cm�3 (5 mTorr argon at 298 K), v ¼ 8:5� 107 s�1 (13.56 MHz), and

Pabs ¼ 600 W. At 5 mTorr, li � 0:6 cm. Then from (10.2.1) and (10.2.2) hl � 0:20,
hR � 0:18, and from (10.2.13), deff � 18:2 cm. For argon we then obtain from

Figure 10.1 that Te � 2:8 V, and from Figure 3.17, that Ec � 68 V. From (10.2.4)

we obtain Ei þ 2Te � 20 V, and using (10.2.9), we find ET � 88 V. The Bohm vel-

ocity is uB � 2:6� 105 cm=s, and from (10.2.11), Aeff � 340 cm2. Then from

(10.2.15), we obtain n0 � 4:8� 1011 cm�3 and ns ¼ hRn0 � 9:3� 1010 cm�3. Esti-

mating nm for argon from Figure 3.16, we find nm � 1:2� 107 s�1. Using (12.1.4),

we find dp � 1:7 cm. Evaluating nstoc, we first find a � 2:2 from (18.5.7). Then

with �ve � 1:1� 108 cm=s and d ¼ dp, we obtain nstoc � 2:8� 107 s�1 from

Figure 18.5 or (18.5.14), such that neff � 4:0� 107 s�1. Using this in (12.1.11), we

find seff � 66 mho=m. Evaluating (12.1.21) and (12.1.20), we find Rs � 25 V and

Ls � 2:2 mH, such that vLs � 190 V. Equations (12.1.22) and (12.1.23) then yield

Irf � 9:9 A and Vrf � 1870 V.

We note that v . neff for this example, such that d � dp, the collisionless skin

depth, verifying our assumed ordering. We also note that stochastic heating some-

what dominates at this pressure: nstoc � 2nm. Godyak et al. (1993) have measured

neff in an inductive discharge, finding that neff is independent of pressure at low

pressures, indicating the dominance of stochastic over collisional heating. The

measured neff was � 2�ve=de. For this experiment, de � dp � dc, so the scale

length dependence could not be distinguished.

Because stochastically heated electrons are “kicked” in the skin layer and flow

back into the bulk plasma with a characteristic thermal speed vth, which is generally

small compared to the phase velocity vph of the wave, the electron current (carried by

vth) can become out-of-phase with the electric field (carried by vph) downstream

from the skin layer, giving rise to regions of negative ~J � ~E. For a phase

change an odd multiple of p, vt � kz ¼ (2i� 1)p, we would expect a series of
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negative ~J � ~E regions centered about positions

zi ¼ p(2i� 1)
v

vth
� v

vph

, i ¼ 1,2, . . .

as has been observed experimentally (Godyak and Kolobov, 1997).

The rf magnetic field scales as ~B � ~E=vd from (2.2.1), and the rf electron vel-

ocity scales as ~ue � e ~E=mv from (2.3.9). At low frequencies, ~B and ~ue become

large, leading to significant nonlinear inertial and Lorentz forces ( ~ue � r ~ue and ~ue �
~B terms in (2.3.9)). These give rise to second harmonic (2v) rf currents and to pon-

deromotive forces (Smolyakov et al., 2003); the latter can expel low-energy elec-

trons from the skin layer.

Under some conditions, the electron drift velocity associated with the induced rf

plasma current within the skin depth layer can be larger than the electron thermal

velocity. This drifting Maxwellian distribution with large mean energy can

produce an increased ionization, leading to a lowering of Te and significant

changes in the density profile over that found for the global (constant Te) ionization

model (10.2.12) (see Problem 12.4(b)).

Matching Network

The high inductive voltage required for a three-turn coil can be supplied from a 50-V
rf power source through a capacitive matching network, as shown in Figure 12.3.

The admittance looking to the right at the terminals A–A0 is

YA ; GA þ jBA ¼ 1

Rs þ j(X1 þ Xs)
(12:1:24)

where the conductance is

GA ¼ Rs

R2
s þ (X1 þ Xs)

2
(12:1:25)

and the susceptance is

BA ¼ � X1 þ Xs

R2
s þ (X1 þ Xs)

2
(12:1:26)

RT
C1 Ls

RsC2VT

+

-
A¢

A

Figure 12.3. Equivalent circuit for matching an inductive discharge to a power source.
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and where X1 ¼ �(vC1)
�1. As described in Section 11.8, we must choose GA to be

equal to 1=RT, for maximum power transfer, where RT ¼ 50 V is the Thevenin-

equivalent source resistance. For Rs � 12:3 V and Xs � 190 V, we obtain from

(12.1.25) that X1 � �168 V. Hence C1 � 70 pF. Evaluating BA for this value of

X1, we obtain BA � �0:035 V�1. We must choose C2 to cancel this susceptance,

that is, B2 ¼ vC2 ¼ �BA, which determines C2 ¼ 410 pF to achieve the matched

condition. In practice, C1 and C2 are variable capacitors that are tuned to achieve

the match. The power absorption, Pabs ¼ 1
2
I2TRT, then determines IT � 4:9 A and

VT ¼ 2ITRT � 490 V.

12.2 OTHER OPERATING REGIMES

Low-Density Operation

Since the effective conductivity seff / n0 and dp / n
�1=2
0 , it follows from (12.1.21)

and (12.1.22) that at high densities:

Pabs / n
�1=2
0 I2rf (12:2:1)

Hence at fixed Irf , we have that Pabs / n
�1=2
0 . However, at low densities, such that

dp � R, the conductivity is low and the fields fully penetrate the plasma. In this

case expressions (12.1.12)–(12.1.14) are no longer correct. To find the absorbed

power for this case, we apply Faraday’s law to determine the induced electric

field Eu within the coil

Eu(r) ¼
1
2
jvrm0N Irf

l
(12:2:2)

and, writing Ju ¼ jve0kpEu for nm � v, we have Ju / n0rIrf . Evaluating the power

absorbed, we have

Pabs ¼ 1

2

ðR

0

J2u (r)

seff

2prl dr

¼ 1

2
I2rf

pe2n0neffm
2
0N 2

R4

8ml
(12:2:3)

such that

Pabs / n0I
2
rf (12:2:4)

In this low-density regime where the fields fully penetrate the plasma, the power

absorbed is simply proportional to the number (density) of electrons in the dis-

charge. Comparing (12.2.1) with (12.2.4) and holding Irf fixed, we see that Pabs

470 INDUCTIVE DISCHARGES



versus n0 has a maximum near dp � R. This corresponds to a variation with density

as sketched as the solid curves in Figure 12.4 for two different values of Irf . Now

consider the power balance requirement (10.2.14), which is plotted as a straight

line in the figure. The intersection of this line with each of the solid curves

defines the equilibrium point for inductive discharge operation for that particular

value of Irf . The intersection shown at Irf . Imin gives an inductive mode equili-

brium. We see that inductive source operation is impossible if the source current

Irf lies below some minimum value Imin. However, a weak capacitive discharge

can exist for Irf , Imin, as we describe in the following subsection.

Capacitive Coupling

At this point the reader might ask: since a high voltage Vrf � 1870 V exists at the

high-voltage end of the coil, what is the effect of capacitive coupling on the dis-

charge? We will see below that for high densities only a small fraction of Vrf

appears across the sheath, such that the additional ion (and electron) energy loss

is small. However, at low densities, the capacitive coupling can be the major

source of power deposition.

To estimate the rf voltage across the sheath, ~Vsh, at the high-voltage end of the

coil, we note that the sheath capacitance per unit area is� e0=sm and the capacitance

per unit area of the dielectric cylinder is � e0=(b� R). Assuming that the plasma is

at ground potential, then the voltage across the sheath is found from the capacitive

voltage divider formula,

~V sh ¼ Vrf

sm

b� Rþ sm
(12:2:5)

n0

Ploss

Pabs

I rf > Imin

Irf < Imin

Capacitive
Mode

Inductive
Mode

Figure 12.4. Absorbed power versus density from the inductive source characteristics

(curves) for two different values of the driving current Irf , and power lost versus density

(straight line); the dotted curve includes the additional capacitive power at low density for

Irf , Imin.
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Using the modified Child law (11.2.15), we calculate the sheath thickness from

ensuB ¼ 0:82 e0
2e

M

� �1=2

V
3=2
rf

sm

b� Rþ sm

� �3=2
1

s2m
(12:2:6)

which is a cubic equation in sm. However, for high densities for which sm � b� R,

(12.2.6) simplifies to

sm � 0:82 e0
ensuB

� �2
2e

M

� �

V3
rf

(b� R)3
(12:2:7)

The RHS is generally small for the usual voltages of inductive discharges, so that sm
is much smaller than in a capacitive discharge. In our example, we find

sm � 6:4� 10�4 cm, so that, from (12.2.5), ~V sh � 0:22 V. Actually, for a sheath

this thin, the high-voltage sheath relation (12.2.6) is not valid. From (2.4.23), the

Debye length is lDe � 3:8� 10�3 cm. The sheath is a few Debye lengths thick.

Using calculations for capacitive discharges (see Godyak and Sternberg, 1990b),

we estimate sm � 2� 10�2 cm, such that (12.2.5) yields ~V sh � 9 V, which contri-

butes only a small correction to the dc sheath voltage.

From the relations (12.1.20)–(12.1.23), we can see one reason why the designer

wants to keep the number of turns of the exciting coil small in a high density dis-

charge. From (12.1.20) and (12.1.21), we see that Zs /N 2
, and at fixed Pabs,

from (12.1.22), we find ~Irf / 1=N . Then (12.1.23) gives ~V rf /N . From (12.2.7),

we see that sm /N 3
at a fixed density, such that doubling N would increase sm

by almost an order of magnitude. The increased ion energy loss across this larger

sheath (increased ET) leads to lower density and generally less favorable discharge

parameters.

In contrast to the high-density case, at low densities the sheath width sm becomes

comparable to or larger than the vacuum (or dielectric) window gap width b� R,

and from (12.2.6) most of Vrf can be dropped across the sheath. From (11.2.33)

or (11.2.34), the capacitive power increases with increasing ~V sh, and from

(12.2.5), ~Vsh increases with decreasing density n0 (increasing sheath thickness

sm). Therefore, the capacitive power absorbed increases with decreasing n0. In

this regime, any discharge must be capacitively driven. Including the additional

capacitively coupled power due to the sheath voltage (12.1.24) gives the dotted

curve in Figure 12.4 at low densities instead of the solid curve for Irf , Imin.

There is an intersection with the Ploss line and, therefore, a capacitive mode equili-

brium at low densities. Increasing Irf from below Imin, this low-density capacitive

plasma makes a relatively abrupt transition to a high density inductive mode

when Irf exceeds Imin. Decreasing Irf in inductive mode results in a similar

inductive-to-capacitive transition when Irf falls below Imin. The capacitive coupling

is very convenient for start-up of an inductive discharge, as the ignition relies on a

high voltage in the discharge chamber, before the high-density inductive plasma is

formed.
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Hysteresis and Instabilities

Various additional plasma and circuit effects can produce a hysteresis in the dis-

charge characteristics, in which the capacitive-to-inductive transition occurs at a

higher rf coil current Imin2 than the inductive-to-capacitive transition at Imin1. For

the range of currents between Imin1 and Imin2, the mode actually present depends

on the history of the system. Hysteresis of discharge characteristics is often seen

experimentally, and an explanation in terms of power balance arguments has been

given by Turner and Lieberman (1999). For example, considering again the

power balance curves shown in Figure 12.4, with capacitive coupling present, it

can be seen (Problem 12.5) that there is only a single intersection of the Pabs and

Ploss curves as the current is varied, yielding a discharge characteristic without hys-

teresis. However, if the Ploss versus ne curve is not linear but has a convex curvature,

or if the curve is linear but is displaced upward from the origin (Ploss . 0 for

ne ¼ 0), then there is a range of currents where there are three intersections, such

that the discharge characteristic has hysteresis. The low-density intersection in a

stable capacitive equilibrium, the high-density intersection is a stable inductive

equilibrium, and the intermediate density intersection is an unstable equilibrium.

Mechanisms that can produce a convex curvature (nonlinearity) for the Ploss

curve include multistep ionization, electron distribution function changes due

to electron–electron collisions, and a reduction in inductive coupling due to a

capacitive rf sheath (Turner and Lieberman, 1999).

A modified Ploss curve can also be produced by the presence of negative ions in

the discharge. In this latter case, the additional dynamics of negative ion gener-

ation and destruction can result in an instability, in which there is no stable dis-

charge equilibrium. Experimentally, it is found that if the plasma contains

negative ions; for example, from feedstock gases such as O2, SF6, Cl2, and

CF4, that over a significant power range around the transition between lower

power capacitive operation and higher power inductive operation, there is a relax-

ation oscillation between high and low density modes. For example, an exper-

iment to investigate these instabilities was performed in an Ar/SF6 (1:1) gas

mixture in a device 30 cm in diameter and 19 cm long, with a three-turn planar

coil driven at 13.56 MHz (see Section 12.3). At a pressure of 5 mTorr, with an

average absorbed power of 550 W, the relaxation oscillation shown in

Figure 12.5 was found (Chabert et al., 2001). Varying the power at this pressure,

a range of oscillatory (unstable) behavior was found between Pabs ¼ 400 W and

Pabs ¼ 700 W. Above 700 W the plasma was stable in the inductive mode with

ion and electron densities in the higher density range, and below 400 W the ion

and electron densities were more than a factor of 10 lower, characteristic of

capacitively driven operation.

To analyze the process, the three time-varying equations of an electronegative

plasma for positive ion, negative ion, and electron energy balance were solved,

using a global model (see Chapter 10), together with the conditions of quasi-

neutrality and Boltzmann electrons. However, we can understand the instability

mechanism in a rather straightforward way from the electron energy balance
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alone. As for pulsed power discharges in (10.6.5), we have

V d

dt

3

2
eneTe

� �

¼ Pabs � Ploss (12:2:8)

For the losses, in keeping with a global approximation, we use the volume and

surface losses, and consider a0 ¼ n�=ne � 1, such that n� � nþ, to obtain

Ploss ¼ KizeEcdAngne þ hluBaeð4:8Te þ 2TeÞAn� (12:2:9)

where hl is an edge-to-center density ratio for an electronegative plasma and uBa ¼
ðeT�=MÞ1=2:

For the absorbed power (solid curve in Fig. 12.4) we take a sum of inductive and

capacitive powers

Pabs ¼ 1

2
I2rfRabs

nindne

n2ind þ n2e
þ ncap

ncap þ ne

� �

(12:2:10)

where the first and second terms approximate the inductive and capacitive powers,

with parameters Rabs a resistance chosen to give the correct power, at the power

maximum, nind chosen to give the correct maximum of the inductive power

versus ne, as in Figure 12.4, and ncap chosen to give the correct ratio of capacitive-

to-inductive power at some low density, falling off with ne at higher densities.

0 1
109

1010

1011

t (ms)

n (cm–3)
ne

n+
n-

Figure 12.5. Positive ion, negative ion and electron densities as a function of time for 1:1

Ar/SF6 mixture; the total pressure is 5 mTorr, the average power absorbed is 550 W.
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With the further observation that the electron density can build up and decay much

more rapidly than the negative ion density, particularly for high a0, we obtain the

physical instability mechanism illustrated in Figure 12.6. From (12.2.9), with Te
nearly constant, the power loss has the form Ploss ¼ Kene þ K�n�, with constants

Ke and K�. This gives a linear variation of Ploss with ne whose intercept at ne ¼ 0

is proportional to the slowly varying negative ion density n�. The two loss curves,

Ploss1 and Ploss3, have been chosen at the two tangencies with the Pabs curve. At the

end of phase 4, the loss curve decreases below the Ploss1 curve, the quasi-capacitive

equilibrium is lost, and the discharge enters phase 1, with ne increasing rapidly due

to ionization. Similarly, at the end of phase 2, during which the negative ion

density builds up, the loss curve increases above Ploss3. The quasi-inductive equili-

brium is lost, and the discharge enters phase 3, with the loss of positive ions in the

escaping flux being matched by a rapid loss of the lower density electrons, The

decay of the negative ions toward a lower density equilibrium, in phase 4, then

repeats the relaxation oscillation cycle.

The rapid rise and fall of the electron density, seen in Figure 12.5, are

consistent with this physical mechanism. The time scale of the relaxation oscillation

is set by the build-up and decay of the negative ions, with the scaling determined

from

1

n�

dn�
dt

� �

decay

� Krecn� � (KattKrecngne)
1=2 (12:2:11)

where the second equality follows by use of (10.4.24). The ng and ne scalings have

been qualitatively seen experimentally.

P

PP

n

Figure 12.6. Absorbed electron power Pabs versus electron density ne and two different

curves of electron power lost versus ne (Ploss1 at a low negative ion density n� and Ploss3 at

a high n�).
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Power Transfer Efficiency

Let us note that the driving coil (primary of the transformer shown in Fig. 12.2) has

some resistance Rcoil. Hence, even if the discharge is extinguished (n0 ¼ 0), there is

a minimum power PTmin ¼ 1
2
I2minRcoil supplied by the source. Because Pabs / n

�1=2
0

at high densities, we see from Fig. 12.4 that the power transfer efficiency Pabs=PT

falls continually as n0 is increased, hence limiting source operation at high densities

because of power supply limitations. Although dp � R is the preferred operating

regime for maximum power efficiency, other considerations often indicate operation

at lower or higher densities. The poor power transfer to the plasma at very low and at

very high densities is analogous to the well-known property of an ordinary transfor-

mer with an open and a shorted secondary winding. In both cases no power is dis-

sipated in the load (here the plasma), but in both cases there is power dissipated in

the primary winding (here the coil) due to its inherent resistance. Piejak et al. (1992)

have given a complete analysis of an inductive discharge in terms of measurable

source voltages and currents, based on this analogy.

For completeness, we note that at very high densities, the electron–ion collision

frequency may be larger than the electron–neutral collision frequency. In this colli-

sional regime, n90 from (3.3.7) replaces nm in determining sdc. Since n90 / n0 (the

Spitzer conductivity is independent of n0), the scaling (12.2.1) is replaced by

Pabs / I2rf

independent of n0 in this regime. However, low-pressure inductive discharges for

materials processing are rarely operated at such high densities.

Exact Solutions

One-dimensional solutions over the entire range of densities can be given for the

case where a uniform density plasma fills a long cylindrical coil (b ¼ R and

l � R). These were first obtained by Thomson (1927) in the collisional (high press-

ure) regime nm � v, where the penetration of the rf fields into the discharge is

governed by the collisional skin depth (12.1.6). Here we extend Thomson’s treat-

ment to the entire range of collisionalities from nm � v to nm � v. Maxwell’s

equations (2.2.1) and (2.2.2) for the ~Eu and ~Hz field components are

d

dr
(r ~Eu) ¼ �jvm0r ~Hz (12:2:12)

�r
d ~Hz

dr
¼ jve0kp(r ~Eu) (12:2:13)

with kp given by (12.1.2). Eliminating r ~Eu from these equations, we obtain

d2 ~Hz

dr2
þ 1

r

d ~Hz

dr
þ k20kp ~Hz ¼ 0 (12:2:14)
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which is Bessel’s equation with k0 ¼ v=c. With the boundary condition that
~Hz(R) ¼ Hz0, the solution is

~Hz ¼ Hz0

J0(kr)

J0(kR)
(12:2:15)

where

k ¼ k0
ffiffiffiffiffi

kp
p

(12:2:16)

is the complex propagation constant. We see that the Bessel functions have complex

argument. Using (12.2.15) to evaluate the LHS of (12.2.13), and solving for ~Eu, we

obtain

~Eu ¼ Hz0

k

jve0kp

J1(kr)

J0(kR)
(12:2:17)

The time-average power flowing into the discharge is found in terms of the field

amplitudes at the plasma surface r ¼ R using the complex Poynting theorem

(Ramo et al., 1984),

Pabs ¼ 2pRlSabs ¼ 2pRlRe � 1

2
~Eu0Hz0

� �

(12:2:18)

As the plasma density n is increased from zero at fixed v, R, and Hz0 (equivalent to

holding the coil current fixed), then one finds from (12.2.18) that Pabs rises from zero

to a maximum and then falls to zero. The variation is similar to that shown in the

solid curves of Figure 12.4. For a nearly collisionless plasma nm � v, one finds a

maximum power at a density such that dp � 0:37 R. For a collisional plasma

nm � v, one finds a maximum power at dc � 0:57 R. Hence in both cases the

maximum power efficiency (for a coil having a finite resistance) occurs when the

appropriate skin depth is of order of the plasma radius.

Other issues of inductive discharge operation include finite geometry effects

(l � R), planar coil source operation, startup, and self-resonant coil effects due to

stray coil capacitances. We address some of these issues in the following sections,

and refer the reader to the literature (Piejak et al., 1992; Eckert, 1986; Hopwood

et al., 1993a,b) for further information.

12.3 PLANAR COIL CONFIGURATION

The planar coil discharge shown in Figure 12.1b, with or without multipole magnets,

is a commonly used configuration for materials processing, typically generating rela-

tively uniform low aspect ratio plasmas with densities between 1011 and 1012 cm�3
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over substrate diameters of 20 cm or more. In axisymmetric geometry, the coil gen-

erates an inductive field having magnetic components ~Hr(r, z) and ~Hz(r, z), and an

electric component ~Eu(r, z). As shown in Figure 12.7a, the rf magnetic field lines in

the absence of a plasma encircle the coil and are symmetric with respect to the

plane of the coil. If a plasma is formed below the coil, as shown in Figure 12.7b,

then from Faraday’s law (2.2.1), an azimuthal electric field ~Eu and an associated

current density ~Ju are induced within the plasma. The plasma current, opposite in

direction to the coil current, is confined to a layer near the surface having a thickness

of order the skin depth d. The total magnetic field, which is the sum of the fields due to

the N turn exciting coil current and the “single-turn” induced plasma current, is

shown in Figure 12.7b. The dominant magnetic field components within the plasma

are ~Hz near the axis and ~Hr away from the axis, as shown. Near the axis, Faraday’s

law implies that both ~Eu and ~Ju vanish as ~Eu, ~Ju / r. This implies that the absorbed

power density,

pabs ¼ 1
2
Re ~Ju ~E

�
u (12:3:1)

Figure 12.7. Schematic of the rf magnetic field lines near a planar inductive coil (a) without

nearby plasma and (b) with nearby plasma (after Wendt, 1993).
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vanishes on axis, leading to a ring shaped profile for the absorbed power. The trans-

former model of the previous section can be applied to the planar configuration, but

the inductance matrix elements are difficult to determine from simple electromagnetic

models (Gudmundsson and Lieberman, 1998).

The rf magnetic fields within the plasma have been measured by Hopwood et al.

(1993a) for an inductive discharge excited by a planar square coil, which was sep-

arated from a rectangular aluminum plasma chamber 27 cm on a side and 13 cm

high by a 2.54-cm thick quartz window. Although this system is not axisymmetric,

the general structure of the fields and the absorbed power profile are similar to those

in an axisymmetric system. We use Hopwood’s results to illustrate the general

features observed in planar inductive discharges.

Figure 12.8 shows the measured variation of Br ; j ~Brj with z at r ¼ 6.3 cm in a

5-mTorr oxygen discharge. The field decreases exponentially with distance from the

window, with a maximum of 2.7–5.1 G, depending on the incident power Pinc, and

with a skin depth d (characteristic length for the exponential decay) varying from 2.1

to 2.7 cm, and scaling roughly as P
�1=2
inc , in agreement with (12.1.4) or (12.1.6) with

n0 / Pinc. In general, the skin depth lies between the values dp and dc given by

(12.1.4) and (12.1.6), and is fairly close to both. Figure 12.9 shows the measured

variation of Br with r (along the diagonal of the chamber) at three different positions

below the window in a 5-mTorr, 500-W, argon discharge. We see that Br falls to zero

on the axis and has a maximum at approximately 9.5 cm off the axis.

The rf electric field ~Eu can be related to ~Br ; m0
~Hr by using the r component of

Faraday’s law (2.2.1),

@ ~Eu

@z
¼ jvm0

~Hr (12:3:2)

Figure 12.8. Radio frequency magnetic induction amplitude j ~Brj versus z in a 5-mTorr

oxygen discharge. The solid lines are a least-squares fit to the data (Hopwood et al., 1993a).
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Assuming that ~Eu ¼ ~Eu0 e
�z=d and inserting this into (12.3.2), we obtain

~Eu ¼ �jvm0d ~Hr (12:3:3)

Hence ~Eu has the same axial and radial variation as ~Br given in Figures 12.8

and 12.9.

In addition to the field measurements, Langmuir probes (see Section 6.6) were

used to determine the ion density ni, electron temperature Te, and plasma potential

Vs (Hopwood et al., 1993b). The ion density measurement was confirmed by com-

parison to a 35-GHz microwave interferometer measurement (see Section 4.6).

Figure 12.10 shows ni versus incident power Pinc at a location on-axis and 5.7 cm

(�3 skin depths) below the window, for pressures between 0.5 and 15 mTorr in

argon. We see that ni varies linearly with Pinc, but that ni � 0 (on a 1011-cm23

scale) at approximately 100 W. Below this incident power, an inductive discharge

cannot be sustained (see Section 12.2), and a low-density plasma is sustained by

capacitive coupling between the coil and the plasma.

Figure 12.11 shows the measured variation of ni,Te, and Vs with argon pressure

for Pinc ¼ 500 W. We see that Te falls slowly as p increases, as determined from an

ion particle balance relation; for example, (10.2.12) plotted in Fig. 10.1. The ion

density is seen to increase with increasing pressure. This is consistent with the

power balance relation, which indicates that the density varies inversely with the

effective plasma area, as follows. For this discharge, with l ¼ 13 cm and R � l,

Figure 12.9. Radio frequency magnetic induction amplitude j ~Brj versus diagonal radius r at
three different distances below the window as measured in a 5-mTorr, 500-W argon discharge

(Hopwood et al., 1993a).
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we can estimate that Aeff in (10.2.11) scales as

Aeff / hl / 3þ l

2li

� ��1=2

(12:3:4)

Using (3.5.7) to determine the ion–neutral mean free path li in argon, we find

li � 3 cm at 1 mTorr and li � 0.15 cm at 20 mTorr. Hence from (10.2.15), the

Figure 12.10. Ion density versus rf power and argon pressure (Hopwood et al., 1993b).

Figure 12.11. Ion density, electron temperature, and plasma potential versus argon pressure

in a 500-W discharge with magnetic multipole confinement (Hopwood et al., 1993b).
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predicted density ratio is

ni(20 mTorr)

ni(1 mTorr)
� Aeff (1 mTorr)

Aeff (20 mTorr)
� 0:44

0:15
� 3:0

which is in reasonable agreement with the measured ratio of �3.3 obtained from

Figure 12.11. The plasma potential Vs is seen to lie between 12 and 30 V, roughly

consistent with (10.2.4). The potential increases as the pressure decreases, in quali-

tative agreement with the scaling predicted from (10.2.4).

All preceding measurements were performed with multipole magnets placed

along the four 27-cm � 13-cm sidewall areas (see Section 5.4). In Figure 12.12,

the normalized ion saturation current (proportional to the density) is plotted along

a diagonal within the chamber with and without the multipole magnets in place,

for a 5-mTorr oxygen discharge. We see that the multipole magnets greatly increase

the uniformity of the density. The ratio of the standard deviation to the average

density across the central 20 cm of the discharge with multipole magnets was

measured to be 2.5 percent. This result is qualitatively consistent with the dominant

losses being axial, when quadrupoles are present.

A relatively complete set of characterization measurements of a planar inductive

argon discharge has been given by Godyak and collaborators (Godyak et al., 1994,

1999, 2002; Godyak and Piejak, 1997). External electrical characteristics such as

voltage, current phase angle, resistance, reactance, and coupling efficiency were

measured over a wide range of discharge powers, driving frequencies, and gas press-

ures. Magnetic probes were used to determine the internal rf electric and magnetic

fields and currents, and Langmuir probes were used to determine the electron energy

distribution function and plasma parameters such as density, average energy, and

effective collision frequency. The transition from collisional to stochastic heating

was observed as the pressure was lowered. In the stochastic (nonlocal) regime,

Figure 12.12. Normalized ion saturation current measured across the diagonal of the plasma

chamber with and without magnetic multipole confinement (Hopwood et al., 1993b).
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the expected nonexponential decays of the field profiles were observed. At low

frequencies, strong nonlinear effects were measured, including second-harmonic

currents and ponderomotive forces.

12.4 HELICAL RESONATOR DISCHARGES

Helices have long been used to propagate electromagnetic waves with phase velo-

city vph � c, the velocity of light. This property allows a helix to resonate in the

MHz range such that it can be used for efficient plasma generation at low pressures.

Low-pressure operation makes it particularly useful for etching, and it has also been

useful for deposition of silicon dioxide and silicon nitride films (Cook et al., 1990).

Helical resonator plasmas operate conveniently at radio frequencies (3–30 MHz)

with simple hardware, do not require a dc magnetic field (as do ECRs and helicons;

see Chapter 13), exhibit high Q (600–1500 typically without the plasma present),

high characteristic impedance (Z0), and can be operated without a matching

network. As shown in Figure 12.13, the source consists of a coil surrounded by a

grounded coaxial cylinder. The composite structure becomes resonant when an inte-

gral number of quarter waves of the rf field fit between the two ends. When this

condition is satisfied, the electromagnetic fields within the helix can sustain a

plasma with low matching loss at low gas pressure.

Figure 12.13. Schematic of a helical resonator plasma source.
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We have seen for inductive discharges at low density that the ohmic heating is not

sufficient to sustain the discharge, which then operates similarly to a capacitive dis-

charge at much lower density and higher sheath voltage (larger sheaths). We expect

the same general behavior to occur in the resonant helical discharge, because of the

voltage divider action between the rf voltage across the sheath and that which

appears across the fixed spacing between the helix and the vacuum chamber.

Because the helix is a resonant device, large voltages necessarily appear somewhere

between the helix and the plasma, such that it is more difficult to operate in a purely

inductive regime. To force operation in this regime, an electrostatic shield can be

added between the helix and the plasma column to reduce the capacitive coupling

to a negligible value. The shield is typically a metal cylinder slotted along z that

allows the inductive field ~Eu to penetrate into the plasma, while shorting out the

capacitive ~Er and ~Ez fields. Using this configuration, discharges as large as 25 cm

in diameter have been produced experimentally, driven by up to 5 kW of rf

power at 13.56 MHz and producing plasmas with densities (in argon) exceeding

2 � 1012 cm23.

An analysis, with comparison to experiments, has been performed on an

unshielded helical discharge at lower powers, where both stochastic heating and

ohmic heating are important (Niazi et al., 1994). We describe some features of

this discharge here. Some, but not all, of the results are relevant to shielded

discharges at higher powers. The basic design parameters for a helical resonator

discharge consist of pressure, rf power, source length, plasma radius, helix radius,

outer cylinder radius, winding pitch angle, and excitation frequency. For an

unshielded plasma column, the wave dispersion, kz versus v, and the relation

among the field quantities, have been determined in the approximation of a

uniform, collisionless (v � nm) plasma having relative dielectric constant kp ¼ 1�
v2
pe=v

2 [see (4.2.24)] by using a sheath helix model, in which the rf current in the

helical wires is replaced by a continuous current sheet (“sheath”) (Niazi et al.,

1995). With an outer conductor, there are generally two modes, a helix mode,

whose axial wavenumber is associated with the helix pitch angle C,

kzh � v

c tanC
(12:4:1)

and a coax mode, associated with a transverse electromagnetic wave propagating

near the speed of light, kz0 � v=c. The useful mode is the helix mode. The mode

has a resonance kz ! 1 at relatively low density, such that vpe ¼ v, and exists

above that density. At large density, the plasma and outer cylinder are at nearly

the same voltage, and the helix is at a high voltage with respect to them both. In

this high-density limit the plasma acts like a conducting cylinder. During typical

source operation, only the helix mode is resonant, and it dominates the source opera-

tion. A simple estimate of the resonant frequency from (12.4.1) gives f � 25 MHz at

l ¼ 30 cm (kz ¼ 5.2 m21). Greater accuracy can be obtained by analyzing the

helix–plasma configuration in cylindrical geometry. End effects can change the

resonant frequency due to additional capacitive coupling.
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Once the resonant frequency for quarter wavelength operation is determined,

then the fields within all regions inside the helical resonator can be found. From

the fields in the plasma, the absorbed power can be found. This has been done for

a quasistatic field approximation in the capacitively coupled regime where both

ohmic and stochastic heating (see Sections 11.1 and 11.2) contribute to the power

absorbed by the electrons. The calculation has not been performed for the induc-

tive configuration (with an electrostatic shield), where only ~Eu contributes to the

absorbed power, but should be similar to that used for conventional inductive

sources (see Section 12.1 and below).

For quarter-wavelength operation of a cylindrical sheath-current helix, the helix

voltage ~Vmax at the high-voltage end of the coil is determined in terms of the

azimuthal component of sheath current per unit length Ku at the low-voltage end

of the coil to be

~Vmax ¼ z
m0

e0

� �1=2

bKu (12:4:2)

where z is a geometric constant of order unity. For a helix with N turns the helix

current ~Imax at the low-voltage end of the coil is obtained from N ~Imax ¼ lKu.

Combining this with (12.4.2), we obtain the helix impedance

Z0 ¼
~Vmax

~Imax

¼ z
m0

e0

� �1=2N b

l
: (12:4:3)

For an example with a ¼ 3 cm, b ¼ 5 cm, d ¼ 10 cm, l ¼ 30 cm, and C ¼ 0:1 rad,

where the parameters are defined in Figure 12.13, we find N ¼ 48. Using the com-

puted value z ¼ 0:33 gives Z0 ¼ 995 V. For a constant l and a constant pitch angle

of the helix, N b=l remains essentially constant with varying helix diameter, and

since z changes relatively slowly, the impedance Z0 � 1 kV over a range of

aspect ratios. This high helix impedance allows matching to a 50 V transmission

line near a shorted end of the helix.

From (12.4.3), we see that the impedance, and also the voltage ~Vmax, increases as

the number of helix turns N increases. We also found that to be true for inductive

discharges in Section 12.1. For the geometry considered here, with N large, the

result is to also have large sheath fields and accompanying large ion energy

losses. The discharge is then operating in a mainly capacitive regime. The geometry

of the helical resonator can also be changed to have a larger diameter with fewer

turns. The approximate resonance condition, kzhl ¼ mp=4, with m an integer, can

also be written, using (12.4.1) with tanC ¼ l=2pbN , as

2pbN ¼ m
l

4
(12:4:4)
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where l is the free space wavelength. A much larger radius b with only five turns

has, in fact, been experimentally investigated as a prototype reactor. In this configur-

ation, the main difference between a five-turn inductive discharge of the type

considered in Section 12.1 and the five-turn helical resonator considered here is

that the latter is resonant, thus allowing a simple coupling, described in the following

paragraph. However, a variable frequency (expensive) power supply may be

required to maintain the resonance condition. Hence helical resonators have

usually been driven using a fixed frequency supply in conjunction with a matching

network.

To determine the power coupled from an external generator to the resonator, and

the condition for a match (maximum power transfer), we consider the system shown

schematically in Figure 12.13. The rf generator and its transmission line have

characteristic impedances ZT, with one side of the transmission line connected to

the helix at the tap position ztap and the other side connected to the outer shield.

Since the helix characteristic impedance Z0 given in (12.4.3) is typically large com-

pared to ZT, we expect a match to occur with the tap made near the shorted end of the

helical resonator, where the voltage is small and the current is large. This is, in fact

what is found from a transmission line calculation and also in the experiments (Niazi

et al., 1995; Park and Kang, 1997b). The shorted end of the helix acts as part of the

matching system, allowing a good match over a wide range of parameters, without a

matching network, provided the operating frequency is varied only over a modest

range.

The analysis described above can be improved. In addition to the stochastic

heating at the sheath edge and ohmic heating in the bulk plasma, ohmic heating

in the sheath region and ionization in the sheath can also be included. Including

these effects, a comparison has been made between theory and experiment, for

the device shown schematically in Figure 12.13, for argon and nitrogen at 2- and

20-mTorr pressures. The results for the density versus absorbed power in argon at

20 mTorr shown in Figure 12.14 indicate, approximately, a n/ P
1=2
abs scaling,

which is found in capacitive discharges when stochastic heating is the primary

heating and when most of the energy loss is due to ions accelerated through a

high-potential sheath. The dashed curve includes the additional power required to

account for sheath losses.

The helical resonator propagation and matching characteristics are conveniently

obtained from a circuit model (Park and Kang, 1997b). By measuring the input

impedance characteristics as the tap position is varied, they determined the propa-

gation constant. By matching the input resistance of the experiment to the model

results they also determined the power absorption in the plasma, and the slight

decay of the propagating signal away from the source.

A somewhat different resonator configuration was used by Vinogradov et al.

(1998). They made the helical resonator a full wavelength long, which they called

the lambda-resonator. The resonator had shorted ends and the power was injected

in what they called a phase-balanced mode or capacitively compensated mode.

The basic idea is that the voltages on the two halves of the resonator are out

of phase, such that the plasma remains near rf ground potential. This minimizes
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capacitive current to the grounded surfaces, reducing various undesirable effects.

They applied this concept to a relatively large practical device with an oxygen feed-

stock gas in the Torr pressure range, used for ashing (see Section 15.3). A typical

high power operation with a 2 kW, 27.12 MHz matched source, produced a ne �
2� 1011 cm�3 plasma inside a 235-mm diameter quartz chamber. Operation in

the 10–50 mTorr range gave more intense heating in the regions of stronger helix

current, indicating that the operation was primarily in the inductive mode at low

pressures. The authors reported that the ashing rate exceeded that in conventional

devices for a given power input due to the elimination of the dissipation associated

with a conventional matching network.

PROBLEMS

12.1. Skin Depth Consider a uniform electric field,

Ez(x, t) ¼ Re ~Ez(x) e
jvt

at the surface of a half-space x . 0 of plasma having dielectric constant ep ¼
e0kp given by (12.1.2).

Figure 12.14. Measurements and model results for density versus absorbed power in a

helical resonator. The symbols give the measured values for various runs; the solid and

dashed lines give the analytic model results without and with the additional power required

to account for sheath losses, respectively (Niazi et al., 1994).
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(a) Using Maxwell’s equations (2.2.1) and (2.2.2) with JT ¼ Jþ jve0E ¼
jvepE and with E ¼ ẑEz in the form given above, show that

d2 ~Ez

dx2
¼ �v2

c2
kp ~Ez:

(b) Obtain the solution for ~Ez(x) with the boundary conditions that ~Ez ¼ E0 at

x ¼ 0 and that ~Ez is noninfinite as x ! 1, and show that the electric field

magnitude j ~Ez(x)j decays exponentially into the plasma with a decay

constant

a ¼ �v

c
Im k1=2p

(c) Evaluate a in the two limits nm � v and nm � v, thus verifying (12.1.3)
and (12.1.5).

12.2. Power Dissipation Starting from the basic expression for power dissipation,

Pabs ¼ 1

2

ð

J � E� dV

and with jEj decaying exponentially into the plasma with a decay constant a
given by (12.1.3), with skin depth dp � R, and with an effective collision

frequency neff , obtain expression (12.1.10) for the absorbed power Pabs.

12.3. Self- and Mutual Inductance of Concentric Solenoids Consider two con-

centric solenoids of length l. The outer solenoid has N 1 turns at radius b, and

the inner solenoid has N 2 turns at radius R. The elements of the inductance

matrix are defined as

F1 ¼ L11I1 þ L12I2

F2 ¼ L21I1 þ L22I2

where Fi is the total magnetic flux linking the N i turns of solenoid i and Ii is

the feed current. The magnetic induction inside a solenoid having N i turns

each carrying a current Ii is uniform and given by Bzi ¼ m0N iIi=l. Using
this and the above definition, for N 1 ¼ N and N 2 ¼ 1, obtain (12.1.14),

(12.1.17), and (12.1.18) for the elements of the inductance matrix.

12.4. Inductive Discharge Equilibrium

(a) Verify all calculations for the example of inductive discharge equilibrium

given in Section 12.1.

(b) Estimate the electron drift velocity ve within the skin depth layer,

compare Ee ¼ 1
2
mv2e=e to Te, and comment on the validity of the global

ionization model (10.2.12) for these discharge parameters.
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12.5. Hysteresis and Stability in an Inductive Discharge Consider a low press-

ure, electropositive inductive discharge (no negative ions). The electron

power absorption Pabs is given by (12.2.10), which includes both inductive

and capacitive power deposition.

(a) Assume a linear electron power loss Ploss ¼ Kene. Show that there is one

and only one intersection of the Pabs(ne) and Ploss(ne) curves for any given

value of Irf . Hence show that there is no hysteresis in the capacitive-to-

inductive transition.

(b) Consider now a nonlinear electron loss curve of the form Ploss ¼ Ke(ne �
an2e) with ane , 1 over the density range of interest. Sketch the Pabs(ne)

and Ploss(ne) curves for the cases of (i) one intersection and low ne
(capacitive mode); (ii) one intersection and high ne (inductive mode);

and (iii) three intersections (region of hysteresis).

(c) The stability of the intersections can be examined from the time-varying

electron particle and energy conservation equations (10.6.1) and (12.2.8)

as follows: Consider a small displacement Dne . 0 from the equilibrium

value ne0 at an intersection. If Ploss(ne0 þ Dne) . Pabs(ne0 þ Dne), then
from (12.2.8) we find that Te decreases. Hence Kiz decreases and

(10.6.1) shows that ne decreases; that is, ne will be restored to its equilibrium

value ne0. On the other hand, if Ploss(ne0 þ Dne) , Pabs(ne0 þ Dne), then
from (12.2.8) we find that Te increases. Hence Kiz increases and (10.6.1)

shows that ne increases, a runaway situation that yields an unstable

equilibrium. Using this simple picture of stability of an equilibrium,

investigate the stability of the intersections in (a) and (b).

12.6. Discharge Equilibrium at High Pressure For the same R, b, l, N , f, Pabs,

as in the example, but with a higher pressure p ¼ 50mTorr, find all the equi-

librium discharge parameters.

12.7. Discharge EquilibriumWith Anomalous Skin Depth For the same R, b, l,

N , p, and Pabs as in the example, but with a lower frequency f ¼ 2MHz, find

all the equilibrium discharge parameters. Assume that �ve=2de � v,nm.

12.8. Discharge Equilibrium and Matching Network

(a) Verify all calculations for the values of the matching network capacitors

C1 and C2 given at the end of Section 12.1.

(b) Suppose Pabs is increased from 600 to 1200 W in the example given in

Section 12.1, with R, b, l, N , p, and f remaining the same. Find all the

equilibrium discharge parameters.

(c) For part (b), determine values of C1 and C2 to match the discharge

to a 50-V rf power source, using the procedure given at the end of

Section 12.1.

12.9. Minimum Current for an Inductive Discharge For the same R, b, l,N , p,

and f as given in the example of Section 12.1, use (12.2.3) to determine the

minimum rf current amplitude Imin to sustain an inductive discharge.
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CHAPTER 13

WAVE-HEATED DISCHARGES

Waves generated near a plasma surface can propagate into the plasma or along the

surface where they can be subsequently absorbed, leading to heating of plasma elec-

trons and excitation of a discharge. For electron cyclotron resonance (ECR) dis-

charges, described in Section 13.1, a right circularly polarized wave propagates

along the dc magnetic field lines to a resonance zone, where the wave energy is

absorbed by a collisionless heating mechanism. ECR discharges are generally

excited at microwave frequencies (e.g., 2450 MHz), and the wave absorption

requires application of a strong dc magnetic field (875 G at resonance). The

aspect ratio of these discharges, l=R for a plasma cylinder, can range from l=R �
1 to l=R � 1. For helicon discharges, described in Section 13.2, a whistler wave

launched by an antenna propagates along a plasma column and is subsequently

absorbed by a collisional or collisionless mechanism, resulting in heating of the

bulk plasma electrons. Helicon discharges are usually excited at rf frequencies

(e.g., 13.56 MHz), and a magnetic field of order 100 G or greater is required for

wave propagation and absorption. The aspect ratio ranges from l=R � 1 to

l=R � 1. For surface wave discharges, described in Section 13.3, a wave launched

along the surface of the plasma propagates and is absorbed by collisional heating of

the plasma electrons near the surface. The heated electrons subsequently diffuse into

the bulk plasma. Surface wave discharges can be excited by either rf or microwave

sources and do not require dc magnetic fields, but generally a long propagation

distance is needed for efficient wave absorption, leading to discharges with high

aspect ratios, l=R � 1. In contrast to capacitive rf discharges (see Chapter 11),
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wave-heated discharges share with inductive discharges (see Chapter 12) the charac-

teristic that the potential of the plasma with respect to all wall surfaces is low, of

order 5Te. As was shown in Section 10.1, this leads to high-density plasmas at

reasonable absorbed power levels. A brief description of some of the characteristics

of wave-heated discharges was given in Chapter 1.

13.1 ELECTRON CYCLOTRON RESONANCE DISCHARGES

Characteristics and Configurations

Microwave generation of plasmas has been employed since the invention of high-

power microwave sources in World War II. At low plasma densities, the high elec-

tric fields obtainable in a resonant microwave cavity can break down a low-pressure

gas and sustain a discharge. For good field penetration in the absence of a magnetic

field, vpe . v, which sets a critical density limit nc . v2e0m=e
2, or, in practical

units, nc(m
�3) . 0:012f 2, with f in Hz. More restrictively, for the high fields

required, the cavity Q must be high, further limiting the range of operation.

The introduction of a steady magnetic field B, in which there is a resonance

between the applied frequency v and the electron cyclotron frequency vce ¼ eB=m
somewhere within the discharge, allows operation at high density and without a

cavity resonance. Because of the cyclotron resonance, the gyrating electrons rotate

in phase with the right-hand circularly polarized (RHP) wave, seeing a steady electric

field over many gyro-orbits. Thus, the high field of the cavity resonance, acting over a

short time, is replaced by a much lower field, but acting over a much longer time. The

net result is to produce sufficient energy gain of the electrons to allow ionization of the

background gas. Furthermore, the injection of the microwaves along the magnetic

field, with vce . v at the entry into the discharge region, allows wave propagation

to the absorption zone vce � v, even in a dense plasma with vpe . v (n0 . nc).

Various aspects of ECR discharge heating, equilibrium, and applications to materials

processing have been reviewed by Popov (1994) and Asmussen et al. (1997).

Figure 13.1a shows a typical high aspect ratio, that is, l . R, ECR system, with the

microwave power injected along the magnetic field lines. The power at frequency f ¼
v=2p is coupled through a vacuum end window into a cylindrical metal source

chamber, which is often lined with a dielectric to minimize metal contamination

resulting fromwall sputtering. One or several magnetic field coils are used to generate

a nonuniform, axial magnetic field B(z) within the chamber. The magnetic field

strength is chosen to achieve the ECR condition, vce(zres) � v, where zres is the

axial resonance position. When a low-pressure gas is introduced, the gas breaks

down and a discharge forms inside the chamber. The plasma streams or diffuses

along the magnetic field lines into a process chamber toward a wafer holder. Energetic

ions and free radicals generated within the entire discharge region (source and process

chambers) impinge on the wafer. A magnetic field coil at the wafer holder is often

used to modify the uniformity of the etch or deposition process.

Typical parameters for ECR discharges used for semiconductor materials proces-

sing are shown in the last column of Table 1.1. The electron cyclotron frequency
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fce(MHz) � 2:8B, with B in gauss. For fce ¼ f ¼ 2450MHz, we obtain a resonant

magnetic field Bres � 875G. A typical source diameter is 15 cm.

In some cases, there are multiple resonance positions, as shown by the heavy

dashed line in Figure 13.1b. A uniform profile can be used only for a low aspect

ratio system (l . R), where the substrate is located near the point of microwave

power injection, because of the difficulty of maintaining exact resonance and the

possibility of overheating the electrons. The monotonically decreasing profile

dB=dz , 0 shown as the solid line in Figure 13.1b, with one resonant zone near

the window, is often used. The mirror profile shown as the heavy dashed line in

Figure 13.1b has one resonant zone near the window and two additional zones

under the second magnet. This profile can yield higher ionization efficiencies, due

to enhanced confinement of hot (superthermal) electrons that are magnetically

trapped between the two mirror (high-field) positions. However, the longer length

of a two-mirror system leads to enhanced radial diffusion at high pressures and

consequently may reduce the plasma density at the substrate.

A typical microwave power system is shown in Figure 13.2. A dc power supply

drives a magnetron or klystron source coupled to the discharge by means of a TE10

(a)

(b)

FIGURE 13.1. A typical high-profile ECR system: (a) geometric configuration; (b) axial

magnetic field variation, showing one or more resonance zones (after Lieberman and

Gottscho, 1994).
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waveguide transmission system. This consists of a circulator, to divert reflected

power to a water-cooled, matched load; a directional coupler, to monitor the trans-

mitted and reflected power; a multiscrew tuner, to match the source to the load

through the dielectric window, achieving a condition of low reflected power; and,

often, a mode converter, to convert the TE10 linear polarized, rectangular waveguide

mode to an appropriate mode in the cylindrical source chamber.

The simplest mode converter (Fig. 13.3a) is from TE10 rectangular to TE11 cir-

cular mode. At 2450 MHz, the minimum source chamber diameter for TE11 mode

propagation (in vacuum) is 7.18 cm. However, the electric field profile and corre-

sponding power flux are peaked on axis and are not azimuthally symmetric for

this mode, leading to possible nonaxisymmetric processing profiles on the wafer.

A common converter to an axisymmetric mode configuration (Fig. 13.3b) is from

TE10 rectangular to TM01 circular mode, having a minimum diameter for mode

propagation of 9.38 cm at 2450 MHz. The profile is ringlike, with a vanishing

on-axis power flux. The electric field for both modes is linearly polarized, consisting

of equal admixtures of RHP and LHP waves. The basic power-absorption mechan-

ism is the absorption of the RHP wave on a magnetic beach, where the wave propa-

gates from higher to lower magnetic field to the resonance vce(B) � v. The fate of
the LHP wave is unclear, but it is probably inefficiently converted to a RHP wave

due to multiple reflections from waveguide feed or source surfaces, or, more effi-

ciently, from a critical density layer in the source (Musil and Zacek, 1970, 1971).

An efficient scheme uses a microwave polarizer to convert from TE10 rectangular to

a TE11 circular mode structure that rotates in the right-hand sense at frequency v.
This yields a time-averaged azimuthally symmetric power profile peaked on axis

and having an on-axis electric field that is right-hand polarized. Hence, most of

the power can be delivered to the plasma in the form of the RHP wave alone.

There are a variety of ECR processing discharges, with somewhat different coup-

ling of the microwave power to the resonance zone. Three categories are (1) travel-

ing wave propagation mainly along B (wave vector kkB), (2) propagation mainly

FIGURE 13.2. Typical ECR microwave system (after Lieberman and Gottscho 1994).
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across B (k ? B), and (3) standing wave excitation (mainly cavity coupled). While

these distinctions are significant, most of these ECR sources rely on the magnetic

beach absorption of the RHP wave. Additionally, the sources are not neatly

broken into these categories; for example, wave propagation is at an angle to B,

and absorption can involve standing waves. In addition to 2450 MHz, lower fre-

quencies are used in materials processing applications; for example, 915 and

450 MHz, with corresponding resonance fields of 330 and 160 G, respectively.

Various ECR configurations are shown in Figure 13.4. A high aspect ratio system

with the source plasma far from the wafer and with microwave injection along B is

shown in Figure 13.4a. The resonance (heating) zone can be ring- or disk-shaped

(the latter is shown) and may be as much as 50 cm from the wafer. Expansion of

the plasma from the resonance zone to the wafer reduces the ion flux and increases

the ion impact energy at the wafer. Hence high aspect ratio systems have given way

to low aspect ratio systems, as shown in Figure 13.4b, where only a single high-field

magnet is used and where the resonance zone is placed within the process chamber

and may be only 10–20 cm from the wafer. Uniformity is controlled at least in part

by shaping the axial magnetic field.

Uniformity can be further improved and density increased by adding 6–12 linear

multipole permanent magnets around the circumference of the process chamber, as

shown in Figure 13.4c. Multipole magnetic confinement is described in Section 5.6.

FIGURE 13.3. Microwave field patterns for ECR excitation (after Lieberman and Gottscho,

1994).
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As another variation, a strong (rare earth) permanent magnet that generates a diver-

ging axial magnetic field can also replace the source coil. Another approach to

achieving adequate uniformity and density is to combine the source and process

chambers and place the resonance zone close to the wafer, leading to a low

aspect ratio close-coupled configuration, shown in Figure 13.4d. Uniformity require-

ments can be met by using a relatively flat, radially uniform resonance zone.

FIGURE 13.4. Common ECR configurations: (a) high aspect ratio; (b) low aspect ratio;

(c) low aspect ratio with multipoles; (d) close-coupled; (e) distributed (DECR); ( f ) microwave

cavity excited (after Lieberman and Gottscho, 1994).
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The multipole, distributed ECR (DECR) system shown in Figure 13.4e is powered

by microwave injection perpendicular to the strong, permanent magnet, multipole

magnetic fields. Typically, four or more microwave applicators are arranged around

the circumference to achieve adequate uniformity. Each applicator creates an approxi-

mately linear resonance zone near the process chamber wall, as shown.

A microwave cavity source is shown in Figure 13.4f. The coaxial feed is

tuned using a sliding short on top and a stub tuner from the side. In earlier,

lower-density versions, a grid was used below the plasma generation region provid-

ing microwave containment while allowing the plasma to diffuse out. The linear res-

onance zones, similar to those in the DECR (Figure 13.4e), are generated by a set of

8–12 strong permanent magnets arranged around the circumference of the source

chamber as shown. More details of the configurations in Figure 13.4 are given in

review articles by Popov (1994) and Asmussen et al. (1997).

Electron Heating

The basic principle of ECR heating is illustrated in Figure 13.5. A linearly polarized

microwave field launched into the source chamber can be decomposed into the sum

of two counter-rotating circularly polarized waves. Assuming a sinusoidal steady

state with the incident wave polarized along x̂,

E(r, t) ¼ Re x̂Ex(r)e
jvt (13:1:1)

where the complex amplitude Ex is here taken to be pure real, we have

x̂Ex ¼ (x̂� jŷ)Er þ (x̂þ jŷ)El (13:1:2)

FIGURE 13.5. Basic principle of ECR heating: (a) continuous energy gain for right-

hand polarization; (b) oscillating energy for left-hand polarization (after Lieberman and

Gottscho, 1994).

13.1 ELECTRON CYCLOTRON RESONANCE DISCHARGES 497



where x̂ and ŷ are unit vectors along x and y and where Er and El are the amplitudes

of the RHP and LHP waves, with Er ¼ El ¼ Ex=2. The electric field vector of the

RHP wave rotates in the right-hand sense around the magnetic field at frequency

v while an electron in a uniform magnetic field B0 also gyrates in a right-hand

sense at frequency vce. Consequently, as shown in Figure 13.5a, for vce ¼ v, the
force �eE accelerates the electron along its circular orbit, resulting in a continuous

transverse energy gain. In contrast, as shown in Figure 13.5b, the LHP wave field

produces an oscillating force whose time average is zero, resulting in no energy gain.

(a) Collisionless Heating Calculation To determine the overall heating

power, the nonuniformity in the magnetic field profile B(z) must be considered.

For vce = v, an electron does not continuously gain energy, but rather its energy

oscillates at the difference frequency vce � v. As an electron moving along z

passes through resonance, its energy oscillates as shown in Figure 13.6, leading to

a transverse energy gained (or lost) in one pass. For low power absorption, where

the electric field at the resonance zone is known, the heating can be estimated as

follows. We expand the magnetic field near resonance as

vce(z
0) ¼ v(1þ az0) (13:1:3)

where z0 ¼ z� zres is the distance from exact resonance, a ¼ ð1=vceÞð@vce=@z
0Þres is

proportional to the gradient in B(z) near the resonant zone, and we approximate

z0(t) � vrest, where vres is the parallel speed at resonance.

The complex force equation for the right-hand component of the transverse

velocity, vr ¼ vx þ jvy, can be written in the form

dvr

dt
� jvce(z)vr ¼ � e

m
Er e

jvt (13:1:4)

where Er is the amplitude of the RHP wave with

E ¼ Re½(x̂� jŷ)Er e
jvt� (13:1:5)

FIGURE 13.6. Energy change in one pass through a resonance zone (after Lieberman and

Gottscho, 1994).
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Using (13.1.3) and substituting vr ¼ ~vr exp ( jvt) into (13.1.4), we obtain

d~vr

dt
� jvavrest~vr ¼ � e

m
Er (13:1:6)

Multiplying by the integrating factor e�ju(t) and integrating (13.1.6) from t ¼ �T to

t ¼ T , we obtain

~vr(T) e
�ju(T) ¼ ~vr(�T) e�ju(�T) � eEr

m

ðT

�T

dt0 e�ju(t0) (13:1:7)

where

u(t) ¼ vavrest
2=2 (13:1:8)

In the limit T � (2p=vjajvres)1=2, the integral in (13.1.7) is the integral of a

Gaussian of complex argument, which has the standard form

ðT

�T

dt0 e�ju(t0) ¼ (1� j)
p

vjajvres

� �1=2

(13:1:9)

Substituting (13.1.9) into (13.1.7), multiplying (13.1.7) by its complex conjugate,

and averaging over the initial “random” phase u(�T), we obtain

j~vr(T)j2 ¼ j~vr(�T)j2 þ eEr

m

� �2
2p

vjajvres

� �

(13:1:10)

The average energy gain per pass is thus

Wecr ¼ pe2E2
r

mvjajvres (13:1:11)

This can also be written as

Wecr ¼ 1

2
m(Dv)2 (13:1:12)

where Dv ¼ (eEr=m)Dtres, and

Dtres ¼ 2p

vjajvres

� �1=2

(13:1:13)
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is the effective time in resonance. The effective resonance zone width (see

Fig. 13.6) is

Dzres ; vresDtres ¼ 2pvres
vjaj

� �1=2

(13:1:14)

which, for typical ECR parameters, gives Dzres � 0:5 cm.

The absorbed power per unit area, or energy flux, is found by integrating

(13.1.11) over the flux nvres of electrons incident on the zone, yielding

Secr ¼ pne2E2
r

mvjaj (13:1:15)

We can understand the form of Dtres as follows. An electron passing through the

zone coherently gains energy for a time Dtres such that

v� vce(vresDtres)½ �Dtres � 2p (13:1:16)

Inserting (13.1.3) into (13.1.16) and solving for Dtres, we obtain (13.1.13). The rf mag-

netic force was neglected in calculating (13.1.15) from (13.1.4). Because a

magnetic force does no work on a moving charged particle, it does not contribute

to the total power absorbed (see Section 18.5). A more careful derivation of the

absorbed power (13.1.15), including the effect of nonconstant vres during passage

through resonance, is presented by Jaeger et al. (1972), giving similar results. For

both calculations, Secr is proportional to the density and the square of the RHP electric

field amplitude at the resonance. The calculation here also gives Secr proportional

to a�1 and independent of the axial electron velocity, which are not true for non-

constant vres.

(b) Collisional Heating Calculation The fact that (13.1.15) is independent of

vres suggests that we can examine the vres ! 0 limit in considering the effects of

electron collisions. Adding collisional (friction) terms �nm ~vx and �nm ~vy to the

force equations (4.4.1a) and (4.4.1b), respectively, and solving for the transverse

velocity amplitudes, we obtain

~vx þ j~vy ¼ � 2eEr

m

1

nm þ j(v� vce)
(13:1:17)

where nm is the electron momentum transfer frequency. The time-average power

absorbed per electron is

�pecr ¼
1

2
Re (�e ~Ex ~v

�
x � e ~Ey ~v

�
y ) (13:1:18)
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Substituting (13.1.17) into (13.1.18) with ~Ex ¼ Er, ~Ey ¼ �jEr, we find

�pecr ¼ m
eEr

m

� �2
nm

n2m þ (v� vce)
2

(13:1:19)

For vce ! v, we see that

�pecr �! e2E2
r

mnm

This implies a singular behavior �pecr ! 1 as nm ! 0. However, this behavior is

found only at exact resonance. To obtain the total heating power, we average

(13.1.19) over the distribution of electrons near the resonance zone. Substituting

the linear expansion (13.1.3) in (13.1.19), we obtain

�pecr ¼
e2E2

r

m

nm

n2m þ v2a2z02
(13:1:20)

Multiplying (13.1.20) by n dz and integrating from z ¼ �z0 to z ¼ z0, we obtain

�Secr ¼ 2e2E2
r n

mvjaj tan�1 vjajz0
nm

� �

(13:1:21)

The total power absorbed is obtained by letting z0 ! 1 such that tan�1 ! p=2 and
(13.1.21) reduces to (13.1.15). We see that the power absorbed is independent of nm
for constant electric field, and the nonlinear collisionless and the collisional power

absorption calculations correspond. If we insert z0 ; Dzres, from (13.1.14) into

(13.1.21), we find that, since nm � vjajDzres, almost all of the power is absorbed

by collisionless heating within the resonance zone. This is the usual regime for

ECR processing discharges.

Resonant Wave Absorption

A serious limitation on the result (13.1.15) is that it assumes that the electric field

within the resonance zone is constant and known from the input power. That this

cannot be true in the case of strong absorption is clear, since the absorbed power

cannot exceed the incident power. The resolution of this difficulty lies in the attenu-

ation of the wave in the resonance zone, so that the resonant value of Er is in fact

much smaller than the value of the incident Er.

The propagation and absorption of microwave power in ECR sources is an active

area of research and is not fully understood. For excitation at an end window (Figs.

13.4a–d), the waves in a cylindrical magnetized plasma are neither exactly RHP nor

propagating exactly along B. The waves are not simple plane waves and the

mode structure in a magnetized plasma of finite dimension must be considered.
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Nevertheless, the essence of the wave coupling, and transformation and absorption

at the resonance zone, can be understood by considering the one-dimensional

problem of an RHP plane wave propagating strictly along B in a plasma that

varies spatially only along z. For right-hand polarization (13.1.5), where now

Er(z) is the spatially varying electric field amplitude, the wave equation for plane

waves propagating along B parallel to z can be written as (Problem 13.1)

d2Er

dz2
þ k20krEr ¼ 0 (13:1:22)

Far from resonance such that v� vce � nm, we have the relative dielectric constant
(4.5.5a),

kr ¼ 1� v2
pe(z)

v½v� vce(z)� (13:1:23)

with k0 ¼ v=c and c the velocity of light. kr varies with z due to the dependence of

v2
pe on the density n(z) and of vce on the magnetic field B(z). If the variation of kr

with z is weak,

dl

dz
� 1 (13:1:24)

with l ¼ 2p=k, and

k(z) ¼ k0k
1=2
r (z) (13:1:25)

then a Wentzel–Kramers–Brillouin (WKB) wave expansion can be made (Stix,

1992):

Er(z) ¼ Er1(z) exp �j

ðz

k(z0) dz0
� �

(13:1:26)

where Er1(z) ¼ Er0k
1=2
0 =k1=2(z) is the spatially varying amplitude of the wave. The

WKB wave propagates without absorption for kr . 0, where k is real, and the

wave is evanescent for kr , 0, where k is imaginary. The WKB result can be under-

stood from a calculation of the time averaged power per unit area carried by the wave,

�Sr ¼ 1

2
Z�1
0 k1=2r E2

r1 ¼ const (13:1:27)

where Z0 ¼ (m0=e0)
1=2 � 377V is the impedance of free space. This indicates that the

propagation is without reflection. The result is characteristic of slowly varying sol-

utions called adiabatic. We note that for propagation close to cyclotron resonance,
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from (13.1.23), kr becomes large, as does k, and from (13.1.26), Er1 becomes small.

However, as resonance is approached from the propagating side (vce . v), the con-
dition of slow spatial variation (13.1.24) is no longer satisfied, and the WKB approxi-

mation breaks down.

What happens as a wave propagates through the resonance into an evanescent

region where vce , v? The answer was obtained analytically by Budden (1966),

for the approximation of constant density and linear magnetic field. Reintroducing

collisions into the plasma dielectric constant, (13.1.22) becomes

d2Er

dz2
þ k20 1� v2

pe(z)

v½v� vce(z)� jnm(z)�

( )

Er ¼ 0 (13:1:28)

Taking vpe and nm to be constants independent of z, and linearizing vce about the

resonance point, (13.1.28) reduces to

d2Er

ds2
þ 1þ h

sþ jg

� �

Er ¼ 0 (13:1:29)

where we have normalized z by s ¼ k0(z� zres), v
2
pe by h ¼ v2

pe=(vcjaj), and nm by

g ¼ nm=(cjaj). The dielectric function has both a pole and a zero, with the pole, in

the absence of collisions, occurring at s ¼ 0 (z ¼ zres) and the zero at s ¼ �h. In this
approximation, Budden has obtained a solution to (13.1.29) in the limit of g ! 0.

For a wave traveling into a decreasing magnetic field (the magnetic beach), he

obtained

Sabs

Sinc
¼ 1� e�ph (13:1:30)

Strans

Sinc
¼ e�ph (13:1:31)

Srefl

Sinc
¼ 0 (13:1:32)

Hence some of the wave power is absorbed at the resonance while some tunnels

through to the other side, but no power is reflected. Taking a typical case for

which a ¼ 0:1 cm�1 and k0 ¼ 0:5 cm�1, we find that h . 1 corresponds to

v2
pe=v

2 . 0:2. Thus, at 2450 MHz we expect that most of the incident power will

be absorbed for a density n0 & 1:5� 1010 cm�3.

The Budden result can be qualitatively understood in terms of the dispersion dia-

grams of k versus vce=v, as shown in Figure 13.7, with v
2
pe ¼ const. In Figure 13.7a,

for low density (vpe , v), the wave is evanescent downstream of the resonance in
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the region

1� v2
pe

v2
,

vce

v
, 1

and is propagating otherwise. For vpe � v, the region of evanescence is thin (in z),

and the wave can tunnel through this region to propagate again further downstream.

In Figure 13.7b, for high density (vpe . v), the wave is always evanescent down-

stream such that the tunneling fields fall off exponentially. Within Budden’s

approximation, we have the nonintuitive result that there is no reflected power for

a wave incident on the resonance zone from the high-field side.

Since from (10.2.14) and (10.2.15), with the pressure dependence of hl and hR
determined from (10.2.3) and (10.2.4), the bulk density scales as n0 / Sabs at low

pressures and as n0 / p1=2Sabs at high pressures, we obtain from (13.1.30) the

region of good power absorption h � 1, as sketched in Figure 13.8. For parameters

well within this region, the incident microwave power is efficiently absorbed over

the entire cross section of the resonance zone. For operation outside this region,

considerable microwave power can impinge on the substrate.

The minimum Sinc to sustain an ECR discharge can similarly be found. Expand-

ing (13.1.30) for small h (n0 small) yields Sabs ¼ phSinc. Substituting this into

FIGURE 13.7. k=k0 versus vce=v for (a) low density vpe=v � 1 and (b) high density

vpe=v � 1. The heavy dashed curves denote imaginary values for k.
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(10.2.14), we obtain the minimum value of Sinc to sustain the discharge. At a given

pressure, this minimum is found to be a factor of 2 below the h ¼ 1 condition for

good power absorption, as illustrated in Figure 13.8. The situation is analogous to

the case for an inductive discharge (see Fig. 12.4 and accompanying discussion),

in which there is a tangency between power absorbed and power lost versus

density, at low density. As in the inductive discharge, the plasma does not turn

off, but has a transition to a considerably lower density state (sometimes referred

to as a “low mode”). This can be qualitatively understood in terms of cavity reson-

ance effects (Williamson et al., 1992). We should also note that the discharge cannot

be sustained if the pressure drops below some minimum value pmin, because the

particle balance equation (10.2.7) has no solution for Te. This limit is also illustrated

in Figure 13.8.

In a number of respects, the Budden theory is rather idealized for direct appli-

cation to a physical system. The reflections in a plasma chamber generate interfer-

ence of waves that can significantly affect the absorption. The variation of axial

density causes initial upstream power reflection. The collisionality is locally

enhanced by nonlinear absorption of power in the resonance zone. These effects

can be taken into account in a one-dimensional model by numerical integration of

the fundamental equation (13.1.28) with boundary conditions imposed at each end

of the region of interest (Williamson et al., 1992). The results indicate that the

Budden theory holds reasonably well for strong absorption.

The size, shape, and location of the resonant zone are set by the magnet coil con-

figuration and the magnet currents. The zone shape and location are also modified by

the Doppler effect for electrons incident on the zone. The actual resonance position

is determined by the Doppler-shifted frequency,

vþ kvres ¼ vce(zres) (13:1:33)

FIGURE 13.8. Parameters for good ECR source operation: pressure p versus incident power

Pinc (after Lieberman and Gottscho, 1994).
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At high densities, from (13.1.25), k can be large near the zone, leading to a large

Doppler shift. For example, for k ¼ 6:3 cm�1 (l ¼ 1 cm), a typical value at the edge

of the resonance zone, and vres ¼ 108 cm=s (a 3-V electron), we obtain

kvres=v � 0:094. Hence the resonant magnetic field is 910 G for this electron and

not 875 G. For a ¼ 0:1 cm�1, this leads to a broadening of the zone of +0:4 cm.

By using a coaxial electrostatic probe to sample the microwave field in an ECR dis-

charge and beating that signal against a reference signal from the incident micro-

waves, Stevens et al. (1992) have measured the microwave field amplitude as a

function of position and verified that the resonant zone is Doppler broadened,

with the absorption beginning at �975G for their case.

Radial density and magnetic field variations can lead to wave refraction effects

that are significant. The radial gradients are generally much larger than the axial gra-

dients in high aspect ratio (l=R � 1) sources. A radial density profile that is peaked

on axis leads to a dielectric constant kr that is peaked on axis. This, in turn, can lead
to a self-focusing effect that can increase the sharpness of the microwave power

profile as the wave propagates to the zone, adversely affecting uniformity. The

mechanism is analogous to the use of a graded dielectric constant optical fiber to

guide an optical wave. However, the ECR refraction problem is much more compli-

cated because the density profile is not known a priori and the magnetized plasma

medium cannot be represented as an isotropic dielectric. A simplified picture of

the refraction is obtained in the geometrical optics limit by examining the

trajectories of optical rays as they propagate. The ray dynamics are derivable

from the dispersion equation and have a Hamiltonian form (Born and Wolf, 1980,

Appendix II), with (k?, r) and (kz, z) canonically conjugate variable pairs and with

v(k?, kz, r, z) the Hamiltonian. For high densities and magnetic fields

(vpe,vce � v) and propagation at an angle to the magnetic field, the dispersion

equation reduces to that of whistler waves (see Problem 4.12), with

v ¼ k20v
2
pe

kkzvce

(13:1:34)

where k ¼ (k2? þ k2z )
1=2 is the wave-vector magnitude and k? and kz are the radial

and axial components. Choosing v2
pe=vce to have radial variation only, independent

of z, Hamilton’s equations are

dk?
dt

¼ � @v

@r

dr

dt
¼ @v

@k?
dkz

dt
¼ � @v

@z
; 0

dz

dt
¼ @v

@kz
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They show that kz is conserved along the path of a ray. If v
2
pe=vce is a decreasing func-

tion of r, then (13.1.34) shows that k? decreases with increasing r, implying that the ray

bends toward the axis, a focusing action. On the other hand, for some parameter

choices, for example, vpe � v � vce, a refraction of the wave away from the axis

has been found by numerical integration of the ray equations, leading, for this particular

case, to an increased uniformity of the power flux profile (Stevens et al., 1992).

For some source concepts (e.g., DECR in Fig. 13.4e), the microwave power is

injected perpendicular to the magnetic field, and not parallel to the field. In this

case, the feed structure excites the extraordinary (x) wave (see Section 4.5),

which in the WKB limit has a resonance at the upper hybrid frequency (4.5.15),

vUH ¼ (v2
pe þ v2

ce)
1=2, where the wave power is absorbed. Since vUH depends on

both vpe and vce, we see that the shape and location of the resonance zone

depends on the density as well as the magnetic configuration. Furthermore, the x

wave is evanescent for frequencies such that vUH , v , vR, where vR is given

by (4.5.11). For a fixed driving frequency v . vce, the x wave must tunnel

through this evanescent layer on its journey from the feed structure to the zone.

For vpe . v, the tunneling becomes rapidly small with increasing density and the

wave cannot propagate to the zone. This can limit the density obtainable in these

sources to the order of 2� 1012 cm�3 at 2450 MHz. However, the limitation is not

severe for typical processing applications. Microwave cavity sources (Fig. 13.4f)

can suffer from similar limitations. On the other hand, densities as high as

3� 1013 cm�3 have been generated using 2450-MHz RHP wave injection along B.

A number of other power absorption issues and mechanisms can play a role in

ECR sources. The electron oscillation velocity under the application of the micro-

wave field at resonance may become large compared to the electron thermal

speed. Higher harmonic resonances (v ¼ 2vce, 3vce), the upper hybrid resonance

(4.5.15) and the LHP wave can give rise to significant power absorption. These

and other heating issues have been reviewed in the context of materials processing

discharges by Popov (1994).

Model and Simulations

The spatially averaged model of the discharge equilibrium described in Section 10.2

can be applied to determine the plasma parameters for a given geometry, magnetic

field, pressure, and absorbed power. For a cylindrical plasma of radius R and length l

with a strong axial magnetic field, particle balance (10.2.10) can be used to deter-

mine Te, and power balance (10.2.14) then determines n0. The procedure was

described in Example 2 of Section 10.2 for the case appropriate to ECR discharges

where particle loss to the walls is inhibited by the strong field. In this case, deff in

(10.2.13) is l=2hl, Aeff in (10.2.11) is 2pR2hl, and the ion-bombarding energy is

Ei � Vs þ 1
2
Te, with Vs given by (10.2.4).

Porteous et al. (1994) have compared results from a two-dimensional simulation of

plasma transport in a low aspect ratio (l=R . 1) ECR source with predictions from the

spatially averagedmodel. A two-dimensional hybrid simulation was used. The electrons

were treated as a fluid, with the particle, momentum, and energy conservation
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equations (2.3.7), (2.3.9), and (2.3.21) coupled by the electric field in two dimen-

sions (r, z) to the motion of the ions. These were treated as a collection of particles

acted on by the Lorentz force (2.2.12), along with Monte Carlo collisions against the

background neutral gas. Argon gas with a simplified set of cross sections, similar to

that described in Chapter 3, was used. The source geometry and magnetic field lines

are shown in Figure 13.9. At Pabs ¼ 850W, the spatially averaged electron tempera-

ture, ion-bombarding energy at the endwall z ¼ 21:5 cm, and density are shown

versus the pressure p for the simulation and the model in Figures 13.10a–c, respec-

tively. The model and simulation agree to within about 10 percent over the pressure

range 0.5–10 mTorr and power range 850–1500 W. The model provides insight

into the discharge behavior and scaling with control parameters, while the simulation

provides spatial profile information of the plasma density and the ion-bombarding

energy and flux at the substrate surface. Comparisons of measured plasma densities

and electron temperatures with a global model have been given by Vidal et al.

(1999) (see discussion in Section 5.4).

FIGURE 13.9. Schematic of ECR configuration used to compare model with hybrid

simulation.
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Plasma Expansion

In a high aspect ratio system, l � R, where the plasma flows from a small-diameter

source chamber into a larger-diameter process chamber along the diverging mag-

netic field lines, the plasma density n0 in the source chamber can considerably

exceed the density ns in the process chamber where the substrate is located. In

this case, illustrated in Figure 13.11, a distributed potential Vd exists between the

source and process chambers, with Vd related to n0 and ns by the Boltzmann factor,

ns ¼ n0 e
�Vd=Te (13:1:35)

This dc potential acts to accelerate ions from the source exit to the plasma–

sheath edge near the substrate. As the ions cross the sheath, they are further

FIGURE 13.10. Comparison between spatially averaged model and hybrid simulation

predictions of (a) electron temperature; (b) ion impact energy; and (c) plasma density

versus neutral gas pressure, for Pabs ¼ 850W (Porteous et al., 1994).

13.1 ELECTRON CYCLOTRON RESONANCE DISCHARGES 509



accelerated by the wall sheath potential Vs. The drop in density in a high aspect ratio

system is due to the expansion in the area of the plasma as it flows along field lines,

to the increase in ion velocity at a fixed flux, and to particle loss by radial diffusion to

the walls.

An estimate of the potentials can be made in the collisionless (very low pressure)

limit, ignoring radial diffusion, using the model in Figure 13.11. The assumptions

are that ions are generated only within the source chamber and flow out of the

source with a characteristic velocity ui � Te ln (nmax=n0) � uB, the Bohm velocity,

where the magnetic field is B0 and the cross-sectional area is A0. The ions flow along

the magnetic field lines as the magnetic field decreases, such that the cross-sectional

area expands. By conservation of magnetic flux, we have

As ¼ A0

B0

Bs

(13:1:36)

The ion particle and energy balance equations are

nsus As ¼ n0uBA0 (13:1:37)

1

2
Mu2s ¼

1

2
Mu2B þ eVd (13:1:38)

Equations (13.1.35)–(13.1.38) can be solved numerically to determine Vd=Te,

us=uB, and ns=n0 as functions of the area expansion ratio As=A0. The results for

Vd=Te are shown in Figure 13.12. The further potential drop across the wall

FIGURE 13.11. Model used to calculate the distributed potential Vd and the sheath potential

Vs in a diverging field ECR system.
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sheath can then be found by equating ion and electron fluxes at the wall. With

Gi ¼ nsus (13:1:39)

Ge ¼ 1

4
ns �ve e

�Vs=Te (13:1:40)

and setting Gi ¼ Ge, we obtain Vs=Te as shown in Figure 13.12. The total potential

drop VT ¼ Vd þ Vs from the source to the wall is also shown in the figure.

The ion-bombarding energy for a collisionless ion flow from the source to the

wall is

Ei ¼ Vd þ Vs þ 1

2
Te (13:1:41)

where the last term is the initial ion energy at the source exit. Figure 13.12 shows that

Ei � 5–8 Te over a wide range of area expansion ratios. However, the ion flow across

the distributed potential is collisionless only at very low pressures, such that li & ld,

where ld is the length of the distributed potential region (see Fig. 13.11). For li , ld,

the more usual pressure regime, the ion energy is modified to

Ei � li
ld
Vd þ Vs þ 1

2
Te (13:1:42)

The first term in (13.1.42) is reduced below Vd because ion energy is lost during

charge transfer and elastic collisions in the expansion region. The situation is

V

V

V

A A

FIGURE 13.12. Potential drops VT, Vs, and Vd versus As=A0 for a diverging field ECR system.
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similar to that described in Section 11.2 for the ion-bombarding energy of the colli-

sionless and collisional sheaths in a capacitive rf discharge. For li � ld, Vs reduces

to the usual sheath voltage (10.2.9), and the first term in (13.1.42) is negligible.

Hussein and Emmert (1990) have given a more complete description of the potential

drops and ion-bombarding energies in a diverging magnetic field ECR system.

Measurements

Most measurements of ion energy distributions in high-density sources have been

done for diverging field systems. The work of Matsuoka and Ono (1988) is

typical. Microwaves are launched from a cavity into a high magnetic field region

so that the RHP wave propagates and then is absorbed, heating electrons in the

process. Because the magnetic field continues to decrease, the plasma expands,

the plasma density decreases, and an ambipolar field is created that accelerates

ions along the magnetic field gradient. At some point downstream, ions are

sampled through a 50-mm pinhole and energy analyzed using two grids and a col-

lector. Although the relatively large orifice diameter and the use of arbitrary units

for spatial distance makes the work of mostly qualitative value, the trends are

notable and are borne out in many other experiments.

Matsuoka and Ono focused primarily on the effects of magnetic field configur-

ation and pressure. By varying the dc current im in an electromagnet located near

the sampling plane, they modified the divergence of the magnetic field, varying

the field from a mirror at high current to a cusp at negative current (ic ¼ �im).

Figure 13.13 shows their ion energy distributions for different currents im. As the

field is made uniform (large im), the parallel ion temperature Ti [spread in N(Ei)]

FIGURE 13.13. Change in the bombarding ion energy distribution as the wafer-level coil

current im is varied (Matsuoka and Ono, 1988).
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decreases and the average energy �Ei shifts to lower values. At the same time, the ion

current density increases, the plasma potential (deduced from Langmuir probe

current–voltage characteristics) decreases, and the plasma potential gradient or

electric field decreases. These effects are all consistent with reduced plasma expan-

sion. By contrast, the largest �Ei and Ti are obtained when the subcoil magnet is used

to produce a cusp (highly diverging field) before the sampling orifice. Under these

conditions, the plasma expansion is largest as the magnetic field decreases to zero

and then reverses on the other side of the cusp. Note that ions and electrons do

not follow field lines through a cusp since the field decreases to zero. Regardless

of the magnetic field configuration, both �Ei and Ti decrease as the pressure is

increased and charge exchange cools the ions. Many other experimental studies

have been made and compared to various model results to determine heating mech-

anisms and global plasma parameters such as density and electron temperature and

their scaling with discharge parameters, as well as radial and axial profiles. The

reader is referred to the reviews of Popov (1994) and Asmussen et al. (1997) for

further information.

13.2 HELICON DISCHARGES

Helicon generation of plasmas was first employed by Boswell (1970), following a

10-year history of helicon propagation studies, first in solid state and then in

gaseous plasmas. The early history is described in a review article by Boswell

and Chen (1997). A detailed theory of helicon propagation and absorption is

given by Chen (1991), and the current status of helicon discharge physics is

reviewed by Chen and Boswell (1997). Helicons are propagating whistler wave

modes in a finite diameter, axially magnetized plasma column, with dispersion as

given in (13.1.34) (see also Problem 4.12). The electric and magnetic fields of the

modes have radial, axial, and, usually, azimuthal variation, and they propagate in

a low-frequency, low magnetic field, high-density regime characterized by

vLH � v � vce (13:2:1)

v2
pe � vvce (13:2:2)

where vLH is the lower hybrid frequency given by (4.5.20), with vpi and vci the ion

plasma frequency and ion gyrofrequency, respectively. The driving frequency is

typically 1–50 MHz, with 13.56 MHz commonly used for processing discharges.

The magnetic fields vary from 100 G for typical processing discharges up to

1000 G for some fundamental plasma studies. Plasma densities range from 1011

to 1014 cm�3, with 1011 –1012 cm�3 typical for processing.

Helicons are excited by an rf-driven antenna that couples to the transverse mode

structure across an insulating chamber wall. The mode then propagates along the

column, and the mode energy is absorbed by plasma electrons due to collisional

or collisionless damping. All helicon applications to materials processing to date
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have utilized a process chamber downstream from the source. A typical helicon

system was shown in Figure 1.14b. The plasma potential in helicon discharges is

typically low, of order 15–20 V, as in ECRs. However, the magnetic field is

much lower than the 875 G required for ECRs, and the helicon power is supplied

by rf rather than microwave sources. The smaller magnetic field, in particular,

may lead to lower cost for helicon sources when compared to the ECR sources.

However, as we will see, the resonant coupling of the helicon mode to the

antenna can lead to nonsmooth variation of density with source parameters,

known as “mode jumps,” restricting the operating regime for a given source design.

The rf power system driving the helicon antenna can be of conventional design

(as for rf capacitive discharges; see Section 11.6). A 500–5000-W, 50-V, 13.56-

MHz supply can be used to drive the antenna through a matching network to mini-

mize the reflected power seen by the supply. The matching network can be an

L-design with two variable capacitors, as for inductive discharges. The antenna

can also be driven through a balanced transformer so that the antenna coil is isolated

from ground. This reduces the maximum antenna–plasma voltage by a factor of 2,

thus also reducing the undesired capacitive current coupled to the plasma by a factor

of 2. Since low aspect ratio geometries have not been developed for helicons, as they

have for ECRs (see Fig. 13.4d), the transport and diffusion of the source plasma into

the process chamber may be a significant limitation. The process chamber can have

multipole confinement magnets to increase uniformity (see Section 5.5) or can have

a wafer-level magnet coil (e.g., as in Fig. 13.1a) to keep the source plasma more

tightly focused, thus increasing the etch rate but with some reduction in uniformity.

Helicon Modes

Helicon modes are a superposition of low-frequency whistler waves propagating at a

common (fixed) angle to B0. Hence, although helicons have a complex transverse

mode structure, they have the same dispersion equation as whistler waves, which

is, from (13.1.34),

kkz

k20
¼ v2

pe

vvce

(13:2:3)

where

k ¼ (k2? þ k2z )
1=2 (13:2:4)

is the wave-vector magnitude, k? and kz are the radial and axial components,

and k0 ¼ v=c. The helicon modes are mixtures of electromagnetic (r 	 E � 0)

and quasistatic (r � E � 0) fields having the form

E,H � exp j(vt � kzz� mu)
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where the integer m specifies the azimuthal mode. For an insulating (or conducting)

wall at r ¼ R and assuming a uniform plasma density, the boundary condition on the

total radial current density amplitude ~Jr ¼ 0 (or ~Eu ¼ 0) leads to (Chen, 1991)

mkJm(k?R)þ kzJ
0
m(k?R) ¼ 0 (13:2:5)

where the prime denotes a derivative of the Bessel function, Jm, with respect to its

argument. For a given frequency v, density n0, and magnetic field B0, (13.2.3)–

(13.2.5) can be solved to obtain k?, kz, and k.

Helicon sources based on excitation of them ¼ 0 mode and the m ¼ 1 mode have

been developed. Since the m ¼ 0 mode is axisymmetric and the m ¼ 1 mode has a

helical variation, both modes generate time-averaged, axisymmetric field intensities.

The transverse electric field patterns and the way these propagate along z are shown

in Figure 13.14a for the m ¼ 0 mode and in Figure 13.14b for the m ¼ 1 mode.

Undamped helicon modes have ~Ez ¼ 0 (i.e., the quasistatic and electromagnetic

components of ~Ez exactly cancel). The antenna couples to the transverse electric

or magnetic fields to excite the modes.

Equation (13.2.5) can be solved for k?R as a function of kz=k. There are an infi-

nite number of solutions corresponding to different radial field variations, and in any

real system a mixture of modes is very likely excited. For simplicity, let us consider

the first radial mode, shown in Figure 13.14. For m ¼ 0, from (13.2.5), J00(k?R) ¼ 0,

which gives

k?R ¼ 3:83

FIGURE 13.14. Transverse electric fields of helicon modes at five different axial positions:

(a) m ¼ 0; (b) m ¼ 1 (Chen, 1991).
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for any kz=k. For m ¼ 1, we solve (13.2.5) numerically to obtain the graph shown in

Figure 13.15, with the limiting values

k?R ¼ 3:83 (kz � k?)
k?R ¼ 2:41 (kz � k?)

To design an antenna for efficient power coupling, we must solve (13.2.3)–

(13.2.5) and determine k? and kz. Rewriting (13.2.3) in more physical terms,

kkz ¼ em0n0v

B0

(13:2:6)

we see that the kz � k? limit corresponds to low density, and the kz � k? limit cor-

responds to high density. These two limits can be treated analytically. We dis-

tinguish them by setting the condition n ¼ n�0 for which kz ¼ k? for the m ¼ 1

mode. We have k ¼ ffiffiffi

2
p

kz and, from Figure 13.15, kz ¼ k? � 2:5=R. Choosing
typical source parameters of R ¼ 5 cm, f ¼ 13:56MHz, and B0 ¼ 200G, we obtain

n�0 � 4:0� 1012 cm�3. Hence for this source with n0 � n�0, we have k? � kz and,

from (13.2.4), k � k?. For this case, (13.2.6) yields the axial wavelength of the

helicon mode for low-density operation:

lz ¼ 2p

kz
¼ 3:83

R

B0

em0n0 f
(13:2:7)

FIGURE 13.15. k?R versus kz=k for helicon modes (after Lieberman and Gottscho, 1994).
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This regime is of limited interest for materials processing because, setting the

antenna length la � lz (see the next subsection), the condition on k?R requires R �
la , l for a cylindrical discharge of radius R and length l. Hence, the source would

be long and thin, and uniformity over a large area would be compromised. However,

(13.2.7) is useful in understanding source operation, as described below.

For n0 � n�0, we have kz � k? and k � kz. In this high-density regime, we find

lz ¼ 2pB0

em0n0f

� �1=2

(13:2:8)

This regime is also of limited interest because it requires the antenna length

la � lz � R, which leads to inefficient coupling of power from the antenna to the

plasma. For a given current, only a small axial voltage is induced, leading to a

small axial charge separation to drive the helicon mode. The regime of most interest

for materials processing sources is n0 � n�0, for which kz � k?; hence we have

R � la � l, yielding an aspect ratio of order unity. This regime is not easy to

analyze. For m ¼ 1, the solution must be found numerically. One usually chooses

k? somewhat larger than kz; hence we can use (13.2.7) for simple estimates of

source operation. Komori et al. (1991) have measured the helicon wave magnetic

field using a magnetic pick-up coil. The dependence of lz on B0=n0 was found to

roughly follow (13.2.7) at densities below n�0.
Recall from power balance (10.2.14) that the bulk density n0 is determined by the

absorbed power Pabs and the pressure p. Once B0, f, and R (for low density) are chosen,

then (13.2.7) or (13.2.8) determine lz. Ideally, the antenna must be designed to excite

modes having that particular lz. At first sight, this seems to limit source operation to

one particular density unless B0 or f can be conveniently varied. Fortunately, antennas

excite a range of lzs, thus allowing source operation over a range of n0s.

Antenna Coupling

A typical antenna used to excite the m ¼ 1 mode is shown in Figure 13.16. Other

antennas are described by Chen (1992). Looking at the x–y transverse coordinates

shown in the figure, we see that this antenna generates a ~Bx field over an axial

antenna length la, which can couple to the transverse magnetic field of the helicon

mode. The antenna also induces a current within the plasma column just beneath

each horizontal wire, in a direction opposite to the currents shown. This current pro-

duces charge of opposite signs at the two ends of the antenna, which in turn gener-

ates a transverse quasistatic field ~Ey, which can couple to the transverse quasistatic

fields of the helicon mode (see Fig. 13.14b). The conditions for which each form of

coupling dominates are not well understood.

To illustrate the wavelength matching condition for helicon excitation, we

consider an ideal antenna field for quasistatic coupling:

~Ey(z) � ~Ey1Dz d zþ la

2

� �

� d z� la

2

� �� �

(13:2:9)
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where d is the Dirac delta function. This ideal field is sharply peaked in Dz near the
two antenna ends, as shown schematically in Figure 13.17a. Taking the Fourier

transform,

Ey(kz) ¼
ð1

�1
dz ~Ey(z) exp (�jkzz)

and squaring this to obtain the spatial power spectrum of the antenna, we obtain

E2
y (kz) ¼ 4 ~E

2

y1(Dz)
2 sin2

kzla

2
(13:2:10)

which is plotted in Figure 13.17b. We see from (13.2.10) that the antenna couples

well to the helicon mode [E2
y (kz) is a maximum] for kz � p=la, 3p=la, etc., corres-

ponding to lz � 2la, 2la=3, etc. The coupling is poor [E2
y (kz) � 0] for kz � 0,

2p=la, 4p=la, etc., corresponding to lz ! 1, lz � la, lz � la=2, etc.
Figure 13.18 shows the effect of the antenna coupling on the density n0 as the

power Pinc supplied to the antenna is increased, using a 36-GHz microwave interfe-

rometer to measure n0 (see Section 4.6 for details of the measurement technique).

For Pinc , 350W, n0 determined from the power balance (10.2.14) is low, leading

to kz � p=la and, from (13.2.10), poor coupling to the helicon mode. The discharge

in this regime is probably capacitively driven, with a relatively high antenna voltage

(�2 kV) and plasma potential (.30 V). The transition to helicon mode operation with

kz � p=la � 0:4k? for Pinc � 400W and n0 � 1:4� 1011 cm�3 is clearly seen. A

FIGURE 13.16. The antenna for m ¼ 1 helicon mode excitation (after Lieberman and

Gottscho, 1994).
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further increase in power is not reflected in a proportional density increase, as the

antenna coupling becomes increasingly inefficient. A second transition is seen to kz �
3p=la � k? with n0 � 2:7� 1011 cm�3. Standing helicon wave effects may also play

a role in this transition, as described in the next subsection. Figure 13.19 shows the

roughly linear scaling of n0 with B0 predicted from (13.2.7) or (13.2.8), for a different

source than that of Figure 13.18. Again we see the density steps imposed by the

FIGURE 13.18. Measured density as a function of input power for B0 ¼ 80G at 5 mTorr in

argon (Perry et al., 1991).

FIGURE 13.17. The quasistatic antenna coupling field ~Ey: (a) ideal and actual field;

(b) spatial power spectrum of a typical field (after Lieberman and Gottscho, 1994).
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antenna coupling condition. Depending on the specific experimental configuration, for

example, the distance between the antenna and the outer surface of the source dielec-

tric cylinder, the density steps are not always as evident as shown in these data. They

may also be produced by large relaxation oscillations as the discharge “hunts”

between helicon and inductive excitation modes. The antenna can also be designed

to couple efficiently to a wide range of kzs, reducing the importance of mode jumps

in the density range of interest. Similar effects are seen for m ¼ 0 mode helicons.

This mode is excited by an antenna consisting of two circular coils of radius R, sep-

arated by a length la, carrying oppositely directed currents.

Helicon Mode Absorption

The helicon mode energy is believed to be transferred to the plasma electrons as the

mode propagates along the column by collisional or collisionless (Landau) damping.

The former mechanism transfers the energy to the thermal (bulk) electron popu-

lation, while the latter mechanism can act to preferentially heat a nonthermal elec-

tron population to energies greatly exceeding the bulk electron temperature. There is

considerable evidence that collisional absorption is too weak to account for energy

deposition at low pressures (,10mTorr argon), although this mechanism may dom-

inate at higher pressures. Landau damping is a process by which a wave transfers

energy to electrons having velocities near the phase velocity vph ¼ v=kz of the

wave. [See, for example, Chen (1984) for an exposition of the phenomenon.]

Chen (1991) has estimated the effective collision frequency nLD for Landau

damping of the helicon mode as

nLD � 2
ffiffiffiffi

p
p

vz3 exp (�z2), z � 1 (13:2:11)

nLD(max ) � 1:45v, z � 1:2 (13:2:12)

FIGURE 13.19. Measured density as a function of magnetic field at a fixed input power. The

dashed line represents the resonance condition imposed by the antenna (Perry et al., 1991).
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where z ¼ v=(kz
ffiffiffi

2
p

vth), with vth ¼ (eTe=m)
1=2 (here m is the electron mass). From

(13.2.7) or (13.2.8) we see that z decreases with increasing density. Thus for z � 1,

nLD increases with increasing electron density at constant magnetic field. However,

in typical helicon sources where z may be less than or of order unity, nLD can

decrease with increasing n. The total effective collision frequency can be written as

nT ¼ nc þ nLD

where here nc is the sum of the electron–neutral and electron–ion collision rates.

The axial decay length a�1
z for helicon mode damping is (see Problem 13.2)

a�1
z � vce

k?nT
(13:2:13)

for low density (kz � k?); and

a�1
z � 2vce

kznT
(13:2:14)

for high density (kz � k?). For efficient power transfer to the plasma electrons, we

require that a�1
z . l, where l is the helicon chamber source length.

By choosing the antenna length la such that kz � p=la, it is possible to heat elec-

trons, by Landau damping, whose energies are near that corresponding to the wave

phase velocity

eE ¼ 1

2
m

v

kz

� �2

(13:2:15)

If E is chosen near the peak of the ionization cross section (�50V in argon), then the

collisional energy Ec lost per electron–ion pair created can be reduced to a low

value, of order of twice the ionization energy Eiz. It follows from (10.2.14) that

this can lead to a significant increase in density for the same absorbed power.

However, the effective collision frequency nLD falls precipitously for v=kz � vth,

leading to a low spatial decay rate, which is not compatible with materials proces-

sing sources having l � R.

Example As an example of helicon design, let R ¼ 5 cm, l ¼ 20 cm, B0 ¼ 200G,

ng ¼ 6:6� 1013 cm�3 (2 mTorr),v ¼ 85� 106 s�1 (13.56 MHz), and Pabs ¼ 400W.

Due to the magnetic confinement (see Section 5.4), we assume that radial losses

are small compared to axial losses. At 2 mTorr, li � 1:5 cm. Then from (10.2.1)

we find hl � 0:28, we choose hR ¼ 0, and from (10.2.8), deff � 36 cm. For argon

we then obtain from Figure 10.1 that Te � 2:9V, and from Figure 3.17,

that Ec � 64V. Using (10.2.1), we find ET � 85V. The Bohm velocity is uB �
2:6 � 105 cm=s, and from (10.2.15), Aeff � 43 cm2. Then from (10.2.14), we obtain

13.2 HELICON DISCHARGES 521



n0 � 2:5� 1012 cm�3. Using the value of n�0 � 4:0� 1012 cm�3 at B0 ¼ 200G from

our previous discussion, we see that n0 , n�0. From (13.2.7), we find lz ¼ 22 cm, and

hence we choose an antenna length la ¼ lz=2 ¼ 11 cm to optimize power coupling.

We note that v=kz ¼ 3:0� 108 m=s, compared with the electron thermal velocity

vth ¼ 7:2� 107 cm=s. Hence, z � 2:9, not too far from the peak of the Landau

damping rate for thermal electrons.

Experimental evidence of Landau damping has been reported, but other absorp-

tion mechanisms, such as electron trapping and heating in a large amplitude helicon

wave, or electron heating due to excitation of Trivelpiece–Gould (TG) modes, may

also play a role in energy transfer (Chen and Boswell, 1997). The equation of motion

of an electron in a wave having an electric field E ¼ ẑE0 sin (kzz� vt) is

m
d2z

dt2
¼ �eE0 sin (kzz� vt) (13:2:16)

Transforming to the frame moving with the phase velocity vph ¼ v=kz of the wave,
z0 ¼ z� vpht and v0z ¼ vz � vph, yields the equation of motion of a pendulum

m
d2z0

dt2
¼ �eE0 sin kzz

0 (13:2:17)

which has a first integral

v0z
2 ¼ v2tr

2
(cos kzz

0 � 1)þ v0z0
2

(13:2:18)

Here vtr ¼ 2(eE0=kzm)
1=2 is the trapping width and v0z0 is the initial velocity at time

t ¼ 0. The electron motion is plotted in the phase space of vz versus kzz� vt in
Figure 13.20, with the separatrix shown dashed. Electrons outside the separatrix are

not trapped in the wave field and suffer only small energy oscillations as they move

through the field (a ! b). Electrons within the separatrix are trapped in the wave

and are periodically accelerated to large energies in the lab frame (c ! d), oscillating

in velocity from vz0 at c to 2vph � vz0 at d. The maximum energy gain is for electrons

with initial velocity vph � vtr injected at kzz� vt ¼ 0 (for example, around times t ¼
0 for a site of injection located near the helicon antenna position z ¼ 0). These elec-

trons move from e to f, where their new velocity is vph þ vtr. The energy gain is then

eDE ¼ 1
2
m(vph þ vtr)

2 � 1
2
m(vph � vtr)

2 ¼ 2mvphvtr. For a large amplitude wave with

vtr � vph � 1–3� 106 m=s, this represents a significant transient energy gain. We

note that vz0 is typically of order of the characteristic thermal velocity of the electrons,

with some electrons in the distribution lying both inside and outside the separatrix.

Also, since the maximum gain occurs only for injection times near t ¼ 0, pulses of

high energy electrons appear downstream of the source, leading to the pulses of

ionization seen downstream in some experiments (Degeling and Boswell, 1997).

An estimate of the downstream location of these pulses is found by linearizing the
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equation of motion (13.2.17),

m
d2z

dt2
¼ �eE0kzz

0 (13:2:19)

yielding the oscillation frequency v0 ¼ (eE0kz=m)
1=2. The oscillation from c to d

takes approximately a half-period, Dt ¼ p=v0, so the ionization pulse appears down-

stream near z ¼ vphDt. Nonlinearity of the oscillation frequency smooths out the

pulses, but the average energy increases remain. In practice, there are also spatial vari-

ations of the fields in the neighborhood of the antenna that can assist in the trapping.

Another mechanism that has been postulated for energy transfer is collisional

absorption of the TG mode. This mode can be excited along with the helicon

mode by an antenna that excites waves with a characteristic axial wavenumber

kz ¼ Nzv=c, where Nz is the axial index of refraction. The helicon and TG modes

are two branches of the same electromagnetic wave, labeled as the dumbbell-

shaped phase velocity surface “r” lying between the u� ¼ 0 and uR ¼ 0 lines on

the right hand edge of the CMA diagram in Figure 4.11. To exhibit the two branches,

we first note using (4.4.5), (4.5.4), and (4.5.5) the identity

K2
? � K2

� ¼ KrKl ¼ KjjK? þ K? � Kjj (13:2:20)

In the low-frequency, high-density helicon discharge regime, we have the ordering

v . vce � vpe (13:2:21)

Using this in (4.4.5a) and (4.4.5c), (13.2.20) reduces to K2
? � K2

� ¼ KjjK?. Using
this expression in (4.5.2b,c), we obtain b ¼ 2K?Kjj and c ¼ K?K2

jj. Then the wave

FIGURE 13.20. Trapping of electrons in a large-amplitude helicon wave.
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dispersion equation (4.5.1) that determines the index of refraction N ¼ kc=v becomes

N4½K?(1� cos2 u)þ Kjj cos2 u� � 2K?KjjN2 þ K?K2
jj ¼ 0 (13:2:22)

Letting Nz ¼ N cos u, we can rewrite this in the form

K?(N2 � Kjj)2 þ N2N2
z (Kjj � K?) ¼ 0 (13:2:23)

with the positive solution for N2,

N2 � Kjj ¼ NNz

K? � Kjj
K?

� �1=2

(13:2:24)

In the frequency regime (13.2.21), we use (4.4.5a) and (4.4.5c) to evaluate

K? � Kjj
K?

� �1=2

¼ v2
ce

v2
(13:2:25)

in (13.2.24).

For v , vce=2, there are two propagating mode solutions to the quadratic

equation (13.2.24) at a fixed Nz:

N ¼ Nz

vce

2v
1+ 1� 4v2

pe

N2
zv

2
ce

 !1=2
2

4

3

5 (13:2:26)

A plot of Nz versus N? ¼ (N2 � N2
z )

1=2 is given in Figure 13.21, with the two modes

at a fixed Nz (horizontal dashed line) indicated on the figure. For large Nz, the nega-

tive sign gives the helicon mode (13.2.6), and the positive sign gives the TG mode

k � vce

v
kz (13:2:27)

We note from the figure that N?(TG mode)� N?(helicon mode), indicating that the

TG mode has a short radial wavelength compared to the helicon mode. In addition,

the TG mode is heavily damped compared to the helicon mode at a given collision-

ality nm. The radially varying plasma density profile couples the two modes together.

Because the coupling is mainly near the edge, the highly damped TG mode prefer-

entially deposits its energy in the edge region. The coupling of the two modes leads

to enhanced energy deposition, as has been seen in some experiments (Chen and

Boswell, 1997).
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Neutral Gas Depletion

The high plasma densities at low pressures achievable in helicon (and ECR) dis-

charges can give rise to significantly reduced gas densities within the discharge

volume compared to the gas density within the chamber in the region surrounding

the discharge volume, due to removal of neutrals from the plasma by ionization.

This ionization pumping has been found to play a significant role in helicon dis-

charges (Boswell, 1984; Sudit and Chen, 1996). Consider a simple model for a

long uniform plasma column with density ne, electron temperature Te, radius

R, and length l, inside a discharge tube of radius a . R. Let n0g and ng be the gas

densities inside (r , R) and outside (R , r , a) the plasma, averaged over the

respective cross sectional areas. Then at a given axial position the conservation of

neutrals inside and outside the plasma can be approximated by

� pR2 d

dz
D0

g

dn0g
dz

� �

¼ 1

4
(ng � n0g)�vg2pR� Kiznen

0
gpR

2 (13:2:28)

� (pa2 � pR2)
d

dz
Dg

dng

dz

� �

¼ � 1

4
(ng � n0g)�vg2pR (13:2:29)

where �vg ¼ (8kTe=pMg)
1=2 is the mean neutral speed, and D0

g and Dg are the neutral

diffusion coefficients inside and outside the plasma. We assume constant coefficients

appropriate to the low-pressure molecular flow regime in typical helicon discharges,

D0
g � Dg � 2a�vg=3, which holds if the neutral mean free path due to neutral–neutral

and neutral–ion collisions is larger than the tube radius a. In (13.2.28), the LHS

gives the axial neutral flow, the first term on the RHS gives the net neutral radial

N

N

FIGURE 13.21. Nz versus N? for the helicon-TG mode system with f ¼ 13:56MHz,

B0 ¼ 100G, and ne ¼ 1012 cm�3.
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flow into the plasma, and the second term gives the neutral removal from the plasma

by ionization. In (13.2.29), the LHS gives the axial neutral flow and the RHS gives

the loss of neutrals due to radial flow out of the volume surrounding the plasma.

The ionization rate coefficient in (13.2.28) is found from the conservation of

electron–ion pairs inside the plasma. For a typical magnetized plasma column

with radial electron and ion losses small compared to axial losses (see Problem

13.6), equating the production of pairs due to ionization to their loss to the

plasma endwalls, we obtain

pR2

ðl=2

�l=2

Kiznen
0
g dz ¼ 2pR2hlneuB (13:2:30)

where as usual hl gives the characteristic edge-to-center density ratio. For simplicity

we assume a symmetric loss of plasma about the midplane z ¼ 0, that ne is essen-

tially constant in z, and that all electron–ion pairs lost from the ends hit wall surfaces

and recombine to re-form neutrals.

In a typical helicon materials processing configuration, neutral gas enters the dis-

charge tube at one end (z ¼ �l=2), and the other end (z ¼ l=2) is connected to a pro-
cessing chamber having a much larger volume than the discharge tube, which is

evacuated by a pump to a known gas density ng0. Since the flow rate is fixed, the

gas density ng0 is fixed, independent of whether the plasma is present or not. We

will assume a small flow rate, so that the density of the gas inside the source and

process chambers is everywhere the same in the absence of the plasma. If the

plasma end losses are large, then a large circulating mass flow is set up within the

discharge tube. Neutral gas flows axially into the tube from the ends and radially

into the plasma volume, where it is ionized and flows axially to the end walls

where the electron–ion pairs recombine to form neutrals.

The coupled diffusion equations (13.2.28) and (13.2.29) can be solved by the

substitutions

ng(z) ¼ ng0
cosh(gz)

cosh(gl=2)
, n0g(z) ¼ n0g0

cosh(gz)

cosh(gl=2)
(13:2:31)

Substituting (13.2.31) into (13.2.28) and (13.2.29) yields two equations for the

ratio n0g0=ng0 and the inverse decay length g. However, the result is algebraically

complicated and therefore not particularly illuminating. We will consider two

limiting cases. First, consider the case where the plasma fills the entire dis-

charge tube (R ¼ a). Then we can take n0g ¼ ng in (13.2.29) and solve to obtain

ng ¼ ng0cosh(gz)=cosh(gl=2), with g2 ¼ Kizne=D
0
g. The gas density decays from

the ends to the midplane, with a decay length g�1. The average gas density is

found to be �ng ¼ ng0(2=gl) tanh(gl=2). Introducing

liz ¼ �vg

Kizne
(13:2:32)
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which is the mean free path for ionization of a neutral that enters the plasma with an

average speed �vg, then using (13.2.32) and D0
g ¼ 2�vga=3, we find a decay length

g�1 ¼ (2liza=3)
1=2.

A second case is for a plasma radius small compared to the tube radius. Then the

diffusion term on the LHS of (13.2.28) can be neglected compared to the two terms

on the RHS. Solving (13.2.28) in this case yields

n0g ¼
ng

1þ 2R=liz
(13:2:33)

The axial variation of the density is then found by solving (13.2.29) along with

(13.2.33). The solution is ng ¼ ng0 cosh(gz)=cosh(gl=2), with

g2 ¼ R�vg

2Dga2
1

1þ liz=2R
(13:2:34)

Physically, the gas diffuses axially from the discharge tube ends toward the mid-

plane while flowing radially into the plasma column, where it is ionized and expelled

from the plasma ends.

The preceding calculation does not account for radial plasma losses with sub-

sequent recombination on the discharge tube wall. These have been considered by

Gilland et al. (1998). Real helicon processing systems have finite flow of gas

through the discharge tube, leading to an additional neutral density gradient along

the tube. This has been considered within the context of a global discharge gas

flow model by Cho (1999). Instabilities leading to relaxation oscillations have

been observed in some helicon discharges, and gas depletion effects are thought

to play a critical role in modeling these oscillations (Degeling et al., 1999).

13.3 SURFACE WAVE DISCHARGES

Electromagnetic surface waves that propagate along a cylindrical plasma column can

be efficiently absorbed by the plasma, hence sustaining a discharge. Surface waves,

which are propagating modes having strong fields only near the plasma surface,

were described by Smullin and Chorney (1958) and Trivelpiece and Gould (1959).

Moisan and his group at the Université de Montréal have extensively analyzed the

concept and developed high-power wave-launching systems over a wide frequency

range (1 MHz–10 GHz). Cylindrical surface wave sources have been reviewed by

Moisan and Zakrzewski (1991). Discharges having diameters as large as 15 cm

have been operated, although diameters of 3–10 cm are more commonly used. The

simplest sources operate without an imposed axial magnetic field. At the high den-

sities of interest here, the sources must be driven at microwave frequencies in the

range of 1–10 GHz. Although there have been some applications to materials proces-

sing, the absorption length a�1
z for the surface modes tends to be long, such that l � R

for these discharges. Hence, the cylindrical configuration cannot be operated as a low
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aspect ratio source. However, planar (rectangular) configurations have been developed

(Komachi, 1993) that may be suitable for large-area processing applications.

Planar Surface Waves

Two types of configurations can support electromagnetic surface waves at an inter-

face between a dielectric and a plasma.

(1) At an interface between a semi-infinite plasma and a dielectric, a solution can

be found for which the wave amplitude decays in both directions away from the

plasma–dielectric interface. Maxwell’s equations admit solutions of the form

(x . 0 in the plasma)

~Hyd ¼ Hy0 e
adx�jkzz (13:3:1)

~Hyp ¼ Hy0 e
�apx�jkzz (13:3:2)

where we have assumed that Hy is continuous across the interface at x ¼ 0. From

the wave equation, the transverse decay constants are related to the propagation

constant kz by

�a2
d þ k2z ¼ kd

v2

c2
(13:3:3)

and

�a2
p þ k2z ¼ kp

v2

c2
(13:3:4)

where kp, given by (4.2.24), is the lossless plasma relative dielectric constant. From

Maxwell’s equations (2.2.1), we obtain the electric field components (e.g., see Ramo

et al., 1984, Chapter 8)

~Ezd ¼ Hy0

ad

jve0kd
eadx�jkzz (13:3:5)

and

~Ezp ¼ �Hy0

ap

jve0kp
e�apx�jkzz (13:3:6)

Using continuity of ~Ez at the interface x ¼ 0, we can eliminate the arbitrary constant

Hy0 by equating (13.3.5) to (13.3.6) to obtain

ap

kp
¼ �ad

kd
(13:3:7)
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Substituting (13.3.3) and (13.3.4) into (13.3.7), we obtain

k2d k2z � kp
v2

c2

� �

¼ k2p k2z � kd
v2

c2

� �

(13:3:8)

which can be solved for kz to determine the wave dispersion,

kz ¼ k1=2d

v

c

v2
pe � v2

v2
pe � (1þ kd)v2

" #1=2

(13:3:9)

Figure 13.22 shows kz versus v for the lossless case. We see that kz is real for

v 
 vres, where vres ¼ vpe=(1þ kd)
1=2 gives the resonance kz ! 1 of the surface

wave. For v � vres, we see that kz � k1=2d v=c. The region of interest for surface

wave sources is v near but just below vres. Hence for high-density sources, the fre-

quencies of interest are above 1 GHz; that is, microwave frequencies. Fixing v for

the source, we introduce the resonance value of the density nres ¼ e0mv
2(1þ kd)=e

2

(here, m is the electron mass). Then the surface wave propagates for densities

n0 � nres.

(2) A configuration, in which the plasma is separated from a conducting plane by

a dielectric slab of thickness d, also admits a wave that decays into the plasma

region. However, this wave does not decay into the dielectric, but is confined

within the dielectric by the conducting plane. This type of surface wave, similar

FIGURE 13.22. Surface wave dispersion kz versus v (after Lieberman and Gottscho, 1994).
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to that used for optical wave guiding, has also been used for surface wave discharges

(Komachi, 1993). We will not consider this configuration here.

Cylindrical Surface Waves

A surface wave also propagates on a nonmagnetized plasma column of radius R

confined by a thick dielectric tube of outer radius b. In analogy to the wave in

slab geometry, assuming b � R, so that interaction with external surfaces can be

neglected, the azimuthally symmetric mode has ~Hz ¼ 0 and

~Ezp ¼ ~Ez1

I0(apr)

I0(apR)
exp j(vt � kzz) r , R (13:3:10)

~Ezd ¼ ~Ez1

K0(adr)

K0(adR)
exp j(vt � kzz) r . R (13:3:11)

where ad and ap are related to kz by (13.3.3) and (13.3.4), and I0 and K0 are the

modified Bessel functions of the first and second kind. We note from the form of

the Bessel functions that the fields decay away from the surface of the plasma in

both directions. The transverse fields are obtained from ~Ez using Maxwell’s

equations. In particular, we find

~Hu ¼ � jve0k

a2

@ ~Ez

@r

in the two regions. The continuity of the tangential magnetic field ~Hu then yields the

dispersion equation

kp
apR

I00(apR)

I0(apR)
¼ kd

adR

K0
0(adR)

K0(adR)
(13:3:12)

From (13.3.10) and (13.3.11), if aR � 1, then the surface modes decay rapidly, which

greatly simplifies the analysis. Using the asymptotic expansions of the Bessel func-

tions I00=I0 ¼ 1 and K0
0=K0 ¼ �1, we then obtain the result (13.3.7), that is, the cylin-

der looks like a plane in this approximation. The dispersion is the same as in (13.3.9)

and as illustrated in Figure 13.22. However, in the cylinder, at low frequencies, the

ordering aR � 1 is not valid, and the complete dispersion equation (13.3.12) must

be solved numerically. The result is similar to that shown in Figure 13.22.

Power Balance

We treat the power balance in the geometrically simple case of a long, thin source,

l � R, using the general principles described in Section 10.2. In particular, the local

power balance along z determines the density n0 for a given absorbed power P
0
abs per

unit length along the column, as in the derivation leading to (10.2.14). Letting Pw be

the power carried by the wave along the column at the position z, at which the
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density is n0, then

P0
abs(n0) ¼ 2az(n0)Pw (13:3:13)

where az is the axial attenuation constant of the wave fields at the density n0. Equat-

ing P0
abs to the power loss per unit length,

P0
loss(n0) ¼ en0uBA

0
effET (13:3:14)

where A0
eff ¼ 2pRhR is the effective (radial) loss area per unit length, we obtain n0(z)

for a given wave power Pw(z).

The mode attenuates as it propagates along z due to a nonzero electron–neutral

momentum transfer frequency nm. Letting nm � v in (4.2.18), substituting this into

(13.3.9), solving for the complex propagation constant kz, and taking the imagi-

nary part, we obtain the attenuation constant az(n0) ¼ �Im kz at a fixed v. The
expression is complicated and we give only the scaling for n0 greater than, but

not too near, resonance:

az / n0nm

(n0 � nres)
3=2

(13:3:15)

At resonance, there is a finite az, while for n0 , nres, the wave does not propagate.

For the variation of az in (13.3.15), P0
abs given by (13.3.13) is plotted versus n0 for

several different values of Pw in Figure 13.23. The linear variation of P0
loss given by

FIGURE 13.23. Determination of the equilibrium density in a surface wave discharge. The

high-density intersection of P0
abs and P0

loss gives the equilibrium density (after Moisan and

Zakrzewski, 1991).
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(13.3.14) is also plotted on the figure. The intersection of P0
abs with P0

loss determines

the equilibrium density along the column. It can be seen that there is a minimum

value Pwmin(z), below which a discharge at that value of z cannot be sustained. A

discharge forms near the position of surface wave excitation z ¼ 0 for

Pwmax . Pwmin. As the wave propagates, Pw attenuates along z due to wave absorp-

tion. A discharge cannot be sustained when Pw falls below Pwmin at z ¼ zmax. Hence

the discharge exists as a finite length plasma column over 0 , z , zmax. Typical

plasma column variations of n0 and Pw are shown in Figure 13.24. We note in

Figure 13.23 that there are generally two intersections of P0
abs(n0) with P0

loss(n0).

The lower-density intersection is an unstable equilibrium because a fluctuation

that decreases n0 leads to P0
abs , P0

loss, thus further decreasing n0. The higher-

density intersection is stable by similar reasoning.

PROBLEMS

13.1 Wave Equation for Right Circularly Polarized Wave Starting from

Maxwell’s equations (2.2.1)–(2.2.4), with variation in z only, with J given

by (4.4.3) and following, derive the wave equation (13.1.22), with kr given
by (13.1.23).

FIGURE 13.24. Comparison of theory (dashed) and experiment (solid) of density n0 and

wave power Pw versus z for a typical surface wave source (after Moisan and Zakrzewski,

1991).
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13.2 HeliconMode Decay Constants Starting from (13.2.3), perform the following:

(a) Re-derive the RHS to include collisions.

(b) Introducing kz ¼ bz � jaz on the RHS, expand in the two limits kz � k?
and kz � k? to obtain (13.2.13) and (13.2.14), respectively.

13.3 Helicon Discharge Equilibrium

(a) Taking the example in Section 13.2, obtain all of the values given there by

making the appropriate calculations.

(b) Repeat for p ¼ 10mTorr and Pabs ¼ 600W. Discuss the modification of

the results.

13.4 ECR Discharge Equilibrium An ECR discharge is excited in argon gas at a

pressure of 1 mTorr by a 2.45 GHz, right circularly polarized wave carrying

Pinc ¼ 1000W of incident microwave power through a quartz window at

one end of a cylindrical discharge chamber of radius R ¼ 10 cm and length

l ¼ 50 cm. The magnetic field monotonically decreases from the window

into the chamber, and the logarithmic field gradient at the resonance zone is

a ¼ 4m�1.

(a) Assuming that all of the incident power is uniformly absorbed over the

cross sectional area of the plasma and that there is axial loss, but no

radial loss of plasma, find the electron temperature Te and the central

plasma density n0.

(b) Using (13.1.30), verify that essentially all of the incident power is

absorbed by the plasma.

(c) Find the minimum incident power that will sustain the discharge.

(d) Using your results in (a), (b), and (c), sketch n0 versus Pinc (linear scales)

for 0 , Pinc , 1000W.

13.5 ECR Wave at Angle to Magnetic Field in Overdense Plasma

(a) Show from the general wave dispersion equation (4.5.1) in a magnetized

plasma that a wave propagating at an angle u to a uniform magnetic

field B0 in a uniform high density plasma, v . vce � vpe, has an index

of refraction

N2 ¼ v2
pe

v(vce cos u� v)

Hint: This is the same wave as the helicon-TG wave found in (13.2.26),

but it is written in a different form.

(b) For waves launched through a window into a plasma at z ¼ 0 at a larger

magnetic field than for ECR resonance (see Fig. 13.1b), find the range

of angles and the range of wavelengths l(u) ¼ 2p=k(u), with

k(u) ¼ N(u)v=c, for a propagating wave to exist. Take fce ¼ 1:1f and

ne ¼ 1012 cm�3, with f ¼ 2:45GHz. Plot l(u) (u in degrees) and

compare l to the free space wavelength l0 ¼ c=f .
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13.6 Neutral Gas Depletion With Radial Plasma Losses Consider the neutral

gas depletion effect in a long plasma column (radius R and length l), including

radial plasma losses in addition to axial plasma losses. Assume for (13.2.28)–

(13.2.30) that pR2ne=t pairs per second per unit length (of the column) are lost

to the radial wall r ¼ a, where they recombine to form neutrals. Assume a con-

stant ne in the column, dropping sharply to the usual edge density hlne near the

ends, and assume a constant radial loss time t.

(a) Give the modified equations (13.2.28)–(13.2.30) including the radial loss

term.

(b) Assuming R � a, show that (13.2.32) remains valid and show that the

equation to determine ng can be written in the form

d2ng

dz2
¼ g2ng � C

where g2 and C are constants.

(c) Obtain the solution of the preceding equation for symmetric boundary

conditions ng ¼ ng0 at z ¼ +l=2. Sketch the solution for the case of no

radial loss (t ! 1) and for a finite radial loss.
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CHAPTER 14

DIRECT CURRENT (DC) DISCHARGES

14.1 QUALITATIVE CHARACTERISTICS OF
GLOW DISCHARGES

The dc glow discharge has been historically important, both in applications of

weakly ionized plasmas and in studying the properties of the plasma medium. A

dc discharge has one obvious feature, its macroscopic time independence, that is

simpler than rf discharges. However, the need for the current, which provides the

power for the discharge, to be continuous through the dc sheath provides an

additional complication to the operation. This complication is not present in rf or

microwave discharges where displacement current provides current continuity

through the sheath. To understand the glow discharge, we consider the usual con-

figuration of a long glass cylinder with the positive anode at one end and a negative

cathode at the other. Although not necessarily the configuration used in processing

applications, it has the advantage of symmetry and has been well studied. The usual

pressure range of operation is between 10 mTorr and 10 Torr. Typically, a few

hundred volts between cathode and anode is required to maintain the discharge.

The approximate characteristics of the discharge are shown in Figure 14.1. It is

clear from the many light and dark regions identified in Figure 14.1a that the beha-

vior is quite complicated. The length of the positive column region can be varied by

changing the distance between electrodes at a constant pressure and approximately

constant voltage drop, while the other regions maintain their lengths. It is therefore
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apparent that the positive column can be analyzed per unit length, while the other

features must be analyzed in their entirety. All of the regions are gas, pressure,

and voltage dependent in their size and intensity, with some of the smaller features

being essentially absent over various parameter ranges.

We now describe qualitatively the essential operation of the various regions in

maintaining the discharge. The treatment follows most closely that in Cobine

(1958) where additional material and references can be found.

Positive Column

The axially uniform plasma is maintained by the J � E power integrated over the

cross section, which balances the loss of energy per electron–ion pair created,

which, in the axially uniform model, is assumed to be radial. The dynamics are

very similar to that of the bulk rf discharge, with the power lost per electron–ion

pair created going to excitation (the glow), ionization, electron–neutral elastic scat-

tering energy losses, and kinetic energy of the electrons and ions striking the walls.

The normal glow discharge tends to have a negative voltage–current characteristic

(negative differential resistance (dV=dI) which is stabilized by an external resistor,

which is varied to adjust the current to the desired value. The power balance deter-

mines the (weak) axial E field required to maintain the positive column. Once E is

known, the drift velocity of the electrons along the column can be found using the dc

FIGURE 14.1. Qualitative characteristics of a dc glow discharge (after Brown, 1959).

536 DIRECT CURRENT (DC) DISCHARGES



electron mobility and then, from J, the density can be determined. We use this

prescription in Section 14.2 to calculate the characteristics of the positive column.

Cathode Sheath

This region, known also as the cathode fall or Crookes dark space, is the region over

which most of the voltage drop occurs. The electrons, which carry most of the

current in the positive column, are, of course, prevented from reaching the

cathode. The massive ions, however, are incapable of carrying the full current.

The discharge is maintained by secondary electrons produced at the cathode by

the impact of the energetic ions. This process, which is incidental (although often

important) in rf discharges, is essential for the operation of the dc discharge. The

current is built up by ionization within the sheath, which is generated by the second-

ary electrons accelerating in the large electric fields of this region. The electron

density and flux grow exponentially from the cathode, with the exponent known

as the first Townsend coefficient. This mechanism is important, not only for the

steady-state discharge, but also for understanding the breakdown that initiates the

discharge. In breakdown the entire region between the cathode and the anode par-

ticipates in the process, which requires a much higher voltage and therefore leads

to hysteresis in the voltage–current characteristic. We analyze this dynamics in

Section 14.3.

Negative Glow and Faraday Dark Space

The exponentially increasing density of high-velocity electrons near the cathode

leads rapidly to a bright cathode glow in which intense ionization and excitation

occurs. The electric field must decrease rapidly at the end of this region, where

the transition to the positive column occurs. However, the high electron velocities

must be dissipated by elastic and inelastic collisions before the equilibrium

conditions of the positive column can be established. This is done in a rather com-

plicated process in which the electrons first lose almost all of their energy and then

are reaccelerated in a weak field over approximately a mean free path (the Faraday

dark space). We give a simple approximate analysis of this behavior at the end of

Section 14.3.

Anode Fall

The drift velocity of the electrons in the weak electric field of the positive column is

typically less than their thermal velocity. This requires a retarding electric field in

the neighborhood of the anode to prevent the full thermal electron current from

reaching the anode. However, the anode itself must clearly be positive with

respect to the positive column to maintain the current. The result is a double

layer, which is also seen in various other types of discharges, for essentially the

same reason. Since the total voltage drop in this region is small and plays little

role in the overall dynamics, we will not analyze it quantitatively.
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Other Effects

The various other regions indicated in Figure 14.1 are not of particular significance

for an overall understanding of the discharge behavior. In addition to the axial

variations there are, of course, radial variations. In a long cylindrical discharge,

we shall obtain the usual Bessel function radial variation as part of our solution

for the positive column given in Section 14.2. We may assume qualitatively

similar radial variations of density in other regions, but quantitative calculations

are very difficult. Additional radial features exist, such as an incomplete coverage

of the cathode surface by the discharge, as we discuss in Section 14.3.

In the previous discussion we have considered the typical characteristics in the

normal glow, which occurs over a range of current densities, typically between

10�5 and 10�3 A=cm2. Considering current density as the controlling variable, the

voltage–current characteristic of a dc discharge is shown in Figure 14.2. The flat

region with slightly negative slope dV=dI is that of the normal glow. From low

currents, the region below IA is called a dark or Townsend discharge. The glow

gradually builds up until a transition is reached, with hysteresis, entering the

normal glow at a voltage VS . The voltage remains constant as the current increases

until IB, at which point there is an increasing voltage–current characteristic called

the abnormal glow. A further increase in current results in a rather abrupt transition

at IC , again characterized by hysteresis, to a considerably lower voltage discharge

known as an arc discharge. The voltage continues to decrease with increasing

current, approaching an asymptote. For a typical pressure (say 1 Torr) and a

typical discharge tube of a few centimeters cross section, the transitions might

occur at IA � 10�6 A, IB � 10�2 A, and IC � 10�1 A, but these currents depend

on various other factors such as gas and electrode surfaces. There are applications

FIGURE 14.2. Typical voltage–current characteristic of a dc glow discharge.
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of these various regions, particularly for high current arc discharges, which we

do not consider. The reader can find further descriptions of the behavior and the

applications in various monographs, for example, in Cobine (1958) and in Roth

(1994).

In some pressure and voltage ranges there are also interesting time-varying

phenomena, such as moving transverse striations and longitudinal filaments. At

high pressures, arc spots can form at the cathode, which correspond to an entirely

different range of operation, not considered here, in which the secondary emission

process is thermionic. For further study, the interested reader is referred to the litera-

ture (Cobine, 1958; Franklin, 1976; Raizer, 1991; Roth, 1994).

Sputtering and Other Configurations

A phenomenon that is not part of the discharge dynamics, but is important both

for applications and in limiting the use of glow discharges, is cathode sputtering.

The potential drop across a cathode sheath is typically several hundred volts.

These ion-bombarding voltages lead to severe sputtering of the cathode surface

and consequently deposit material on other surfaces. We describe physical sput-

tering in Section 9.3 and its application to the deposition of thin films in Section

16.3. Since there is little control over the large voltage drop in the cathode

sheath, the existence of sputtering is important in defining appropriate appli-

cations. Low aspect ratio dc discharges have been used for sputtering. To

enhance sputtering efficiency, other configurations of dc discharges have been

employed. One configuration that has proved to be important for optical radiation

sources and for metal-ion lasers is hollow cathode discharges. We treat this con-

figuration in Section 14.4. Another method of enhancing sputtering, used primar-

ily for depositing metallic films on substrates, employs a nonuniform dc magnetic

field. This configuration is called a dc planar magnetron discharge and is ana-

lyzed in Section 14.5.

14.2 ANALYSIS OF THE POSITIVE COLUMN

As in the analysis of rf and microwave discharges, there are various pressure

regimes for which different dynamics apply. We will assume the following: (1)

The pressure is sufficiently high, li � (Ti=Te)R, that a diffusion equation with

a constant diffusion coefficient Da applies. The low-pressure (collisionless)

limit with freely falling ions, li & R, was described very early by Tonks and

Langmuir (1929); and the intermediate pressure regime, R � li � (Ti=Te)R, is

discussed in Godyak (1986). In fact, as described in Section 5.3, the radial dis-

tributions in the low and intermediate regimes tend to look quite similar. Franklin

(1976) describes these various solutions and relations between them. (2) As dis-

cussed in Section 14.1 it is often adequate to assume only radial variation, which

we do here.
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Calculation of Te

The calculation of Te follows from the particle balance as described in Section 10.2.

Ion particle balance is obtained from the diffusion equation (5.2.21)

�r � Darn ¼ nizn (14:2:1)

where n ¼ ne ¼ ni is the plasma density, Da is the ambipolar diffusion coefficient,

and niz ¼ Kizng is the ionization rate as defined in (3.5.1). In cylindrical coordinates

(14.2.1) becomes

d2n

dr2
þ 1

r

dn

dr
þ niz
Da

n ¼ 0 (14:2:2)

Equation (14.2.2) is Bessel’s equation with solution given by (5.2.35)

n ¼ n0 J0(br) (14:2:3)

where b ¼ (niz=Da)
1=2 and J0 is the usual zero-order Bessel function. If the ion mean

free path li and the sheath thickness s (s � few lDe) are both small compared to

the column radius R, then the boundary condition n(R) � 0 can be used, with the

solution approximately given by (5.2.36)

b ¼ niz
Da

� �1=2

¼ x01
R

(14:2:4)

where x01 � 2:405 is the first zero of the zero-order Bessel function. Although

(14.2.4) does not give a completely self-consistent solution, since the finite ion

flux at the wall implies infinite velocity at zero density (see Section 5.2), it can

give a reasonably accurate value of Te . The reason is that niz is a very sensitive func-
tion of Te of the form (see Chapter 3)

niz / p exp �Eiz

Te

� �

(14:2:5)

with p the pressure and with the ionization voltage Eiz � Te . Thus, Te depends only

weakly on all parameters except for Eiz. A more accurate solution is obtained by

setting the radial particle flux Gr equal to nsuB, where, as previously, ns is the

density at the sheath edge and uB ¼ (eTe=M)1=2 is the Bohm velocity. For this

case, since Gr ¼ �Dadn=dr, we can take a derivative of (14.2.3) to obtain a

transcendental equation for the electron and ion flux to the wall (see also

Section 10.2):

�(Daniz)
1=2 J1(bR) ¼ J0(bR)uB (14:2:6)
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Because li � R for this constant Da solution, (14.2.6) essentially reduces

to (14.2.4).

In the intermediate- and low-pressure regimes, li & (Ti=Te)R, the radial profile

becomes relatively uniform, and the estimate for niz (5.3.14) applies,

niz � 2:2
uB

R
4þ R

li

� ��1=2

(14:2:7)

An additional issue at low pressures is the deviation of the electron distribution from

a Maxwellian. In using (14.2.5) we have assumed a Maxwellian, thus ignoring the

electron drift motion ue. This motion can readily be included (see Franklin, 1976);

with ue � (eTe=m)
1=2 this does not appreciably change the results. More important,

particularly at low densities, there are various kinetic effects and particle losses, that

can affect the distribution at high velocities. We discuss these qualitatively at the end

of this section.

Calculation of E and n0

The electric field E along the z axis (anode-to-cathode) of the discharge is calculated

by equating the input power absorbed to the power lost. In the rf discharge this was

used to determine the density. Here the density cancels, leaving an expression for the

electric field. However, once the field is known, a subsidiary condition immediately

gives the density. Equating the ohmic power absorbed

Pabs ¼ 2p

ðR

0

J � E r dr (14:2:8)

to the power lost

Ploss ¼ 2pRGreET (14:2:9)

where eET is the total energy lost per electron–ion pair created, and substituting our

radial density solution (14.2.3), we have

en0meE
22p

ðR

0

J0(br)r dr ¼ 2pR(Daniz)
1=2n0J1(bR)eET (14:2:10)

where we have assumed a constant mobility me , substituted for the current density

J along z using

J ¼ enmeE (14:2:11)

and have taken E out of the integral by assuming that it is a constant in the long thin

approximation. We see that n0 cancels from (14.2.10) giving an equation for E
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alone. Performing the integration we find that J1 cancels, and we can solve for E to

obtain

E ¼ nizET

me

� �1=2

(14:2:12)

Substituting me ¼ e=mnm , from (5.1.4), then (14.2.12) can also be written in

the form

E ¼ m

e
niznmET

� �1=2

(14:2:13)

We note that niz and nm are both linearly dependent on pressure, and that the only

other dependence on the RHS is Te . Although (14.2.12) gives E as a function of

p and as an exponentially sensitive function of Te through its dependence on niz ,
we can eliminate niz using (14.2.4) to obtain

E ¼ x01
R

DaET

me

� �1=2

¼ x01
R

mKm

MKmi

TeET

� �1=2

(14:2:14)

which shows that E depends only on Te , independent of p. Integrating (14.2.11) over

the discharge cross section yields

I ¼ 2pen0
R2

x01

� �

J1(x01)meE (14:2:15)

which can be solved to determine n0 for a given discharge current I, with E given by

(14.2.14).

Kinetic Effects

Although the preceding subsections give a qualitative description of the positive

column, various quantitative discrepancies, particularly at lower pressures, have

led to more sophisticated treatments. Particular phenomena to be explained are

significantly higher average temperatures than predicted from (14.2.7) (with niz cal-
culated for a Maxwellian distribution), higher average energies near the column

edge, an excess of local ohmic heating near the column edge compared to the

local power dissipated in collisional processes, and a somewhat higher axial electric

field.

A full kinetic theory including the radial density variation is very complicated,

so that various approximate kinetic methods have been employed. One important

method is the nonlocal approximation, which we describe in Chapter 18. The

basic idea is that, if the pressure is sufficiently low that lE=R . 1, where lE is

the electron energy relaxation length, then the total energy eE ¼ 1
2
mv2 þ eF(r)
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can be taken to be a constant. For a Maxwellian electron distribution the conserva-

tion of total energy is equivalent to the Boltzmann assumption that the temperature

is constant and the potential and density are related in the usual logarithmic manner

F(r) ¼ Te ln n(r)=n(0)ð Þ, with F(0) ¼ 0 at the plasma center. In this case a local

macroscopic theory applies, as it does at high pressure for any distribution.

However, we will see in Chapter 18 that the electron distribution in the positive

column tends to be Druyvesteyn-like, falling more rapidly at high energies than a

Maxwellian, with the high-energy electrons further truncated by the inelastic

processes.

Because of the non-Maxwellian distribution the average energy is significantly

higher near the plasma edge than in the discharge center, since the lower energy

electrons are confined by the potential, while the higher energy electrons can over-

come the potential hill. The average energy is significantly higher than predicted by

a Maxwellian because overall there are fewer high energy (ionizing) electrons.

These effects have been confirmed by comparison with a more complete kinetic

theory by Busch and Kortshagen (1995). Because the nonlocal method is limited

to low pressures, other methods valid at higher pressure have been proposed (see

Ingold, 1997 for another method of analysis and comparison among various

methods).

14.3 ANALYSIS OF THE CATHODE REGION

Considering the analysis of the previous section, we take as an example an argon

glow discharge at p ¼ 100mTorr and Te ¼ 4V. The current density carried by

the electrons in the glow is calculated from (14.2.11)

J(r) ¼ en(r)meE

with me � 103 m2=(V s) and E ¼ 60V=m. Continuity of current requires the same

current at the edge of the cathode sheath region, where the current is carried only

by the ions. This can be approximated by

Ji(r) ¼ ens(r)uB

where for argon at Te ¼ 4V we calculate uB ¼ (eTe=M)1=2 � 3� 103 m=s. This is
considerably less than the electron drift velocity juej ¼ meE ¼ 6� 104 m=s, and
thus, even ignoring the difference between ns and n, it is not possible for the ions

to carry the current in the cathode sheath. The resolution of this contradiction is

that secondary electrons, created by ion impact at the cathode, are required to

sustain the discharge. The process is similar to that involved in vacuum breakdown,

and was first analyzed in that context. We first consider the more straightforward

case of vacuum breakdown and then discuss the modifications required to treat

the cathode sheath.
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Vacuum Breakdown

Consider electrons emitted from a cathode at z ¼ 0 being accelerated by an electric

field and ionizing a neutral background. For a flux Ge in the z direction (the direction

of the field) a differential equation for the increase in flux can be written

dGe ¼ a(z)Ge dz (14:3:1)

with the solution

Ge(z) ¼ Ge(0) exp

ðz

0

a(z0) dz0
� �

(14:3:2)

where a(z) ; 1=liz(z) is the inverse of an “ionization” mean free path, analogous to

the collisional mean free path defined in a similar way in Section 3.1. By continuity

of total charge (creation of equal numbers of electron–ion pairs) the electron flux

leaving the sheath edge at z ¼ d, minus the electron flux emitted at z ¼ 0, must

be equal to the ion flux striking the cathode at z ¼ 0, minus the ion flux that

enters at z ¼ d:

Gi(0)� Gi(d) ¼ Ge(0) exp

ðd

0

a(z0) dz0
� �

� 1

� �

(14:3:3)

where we have substituted for Ge(d) from (14.3.2). For breakdown, the discharge

must be self-sustaining. That is, setting Ge(0) ¼ gseGi(0) where gse is the secondary
electron emission coefficient at the cathode z ¼ 0, then (14.3.3) must be satisfied

with Gi(d) ¼ 0. Solving for the exponential, we obtain

exp

ðd

0

a(z0) dz0
� �

¼ 1þ 1

gse
(14:3:4)

as the self-sustaining condition. For a vacuum region, E is a constant and the

electron drift velocity jue(z)j ¼ meE ¼ const. Hence the electron energy is a

constant, allowing us to set a ¼ const in (14.3.4). Taking the logarithm of both

sides, we have

ad ¼ ln 1þ 1

gse

� �

(14:3:5)

the usual form for the breakdown condition of a dc discharge. The quantity a is

known as the first Townsend coefficient. As might be expected from our knowledge

of cross sections, a is a complicated function of the pressure and the accelerating

field, which is very difficult to calculate. However, we might expect a to be
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expressed in the form

a ¼ const

le
exp � Eiz

Ele

� �

(14:3:6)

where le is the mean free path for inelastic (mainly ionization) electron–neutral

collisions, Ele is a typical electron energy gain in the field between collisions,

and Eiz is an energy for ionization. Here Ele plays the role that Te plays in

(14.2.5). Recognizing that le / p�1, then (14.3.6) can be written in the form

a

p
¼ A exp �Bp

E

� �

(14:3:7)

where A and B are determined experimentally and found to be roughly constant

over a restricted range of E=p for any given gas. Some experimental values of

a=ng versus E=ng are shown in Figure 14.3. Here the gas density ng (m�3) ¼ 3:25�
1022 p (Torr) at room temperature from (2.3.18). The quantity a=ng is a field-

intensified ionization cross section. The reduced field E=ng is often specified in

units of townsends (1 Td ; 10�21 Vm2). Fitting the form (14.3.7) to data such as

shown in Figure 14.3, the coefficients in Table 14.1 are constructed.

Combining (14.3.7) with (14.3.5), and setting the breakdown voltage Vb ¼ Ed,

we have the relation

Apd exp �Bpd

Vb

� �

¼ ln 1þ 1

gse

� �

(14:3:8)

E n

n

FIGURE 14.3. Field-intensified ionization cross section a=ng versus reduced field E=ng
(1 Td ; 10�21 Vm2) (data provided by Petrović and Marić, 2004).
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Solving (14.3.8) for Vb , we obtain

Vb ¼ Bpd

lnApd � ln ln 1þ 1=gse
	 
� � (14:3:9)

We see that the breakdown voltage is a function of the product pd. For large values of

pd, Vb increases essentially linearly with pd. For small pd there is a limiting value of

pd ¼ A�1 ln (1þ 1=gse) below which breakdown cannot occur. The breakdown

voltage is a minimum Vmin at some intermediate value pd ¼ ( pd )min. The curve

Vb( pd ) is called the Paschen curve, and is a function of the gas and weakly a function

of the electrode material. Typical breakdown curves for plane-parallel electrodes are

shown in Figure 14.4. As we shall see, the values of Vmin and ( pd )min play an import-

ant role in the more complicated problem of the cathode sheath.

Cathode Sheath

We now consider the cathode sheath region of a discharge for which the electric

field, and consequently a, is not a constant with position. For a large sheath

multiplication, we can still take Gi(d) ¼ 0 in (14.3.3). Taking the logarithm of

(14.3.4) we have

ðd

0

a(z) dz ¼ ln 1þ 1

gse

� �

(14:3:10)

An exact solution for a(z) would involve an integral equation for the field and be

very difficult to solve. A simpler alternative is to measure the electric field distri-

bution, which then becomes a known variation in determining a(z). Somewhat

surprisingly (Cobine, 1958), it is found that the matrix sheath (constant ion space

charge density, see Section 6.3) well approximates the region, giving a linear

TABLE 14.1. Constants of the Equation a/p 5 A exp(2Bp/E)

A B Range of E/p
Gas (cm21 Torr21) (V cm21 Torr21) (V cm21 Torr21)

He 2.8 77 30–250

Ne 4.4 111 100–400

Ar 11.5 176 100–600

Kr 15.6 220 100–1000

Xe 24 330 200–800

H2 4.8 136 15–600

N2 11.8 325 100–600

O2 6.5 190 50–130

CH4 17 300 150–1000

CF4 11 213 25–200

Source: Fits to data supplied by Petrović and Marić (2004).
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field variation

E � E0 1� z

d

� �

(14:3:11)

with z ¼ 0 at the cathode and z ¼ d at the sheath edge. Substituting (14.3.11) in

(14.3.7) we have

a

p
¼ A exp � Bp

E0(1� z=d)

� �

(14:3:12)

and substituting (14.3.12) in (14.3.10) we obtain

ðd

0

Ap exp � Bp

E0(1� z=d)

� �

dz ¼ ln 1þ 1

gse

� �

(14:3:13)

V
V

pd

pd

FIGURE 14.4. Breakdown voltage for plane-parallel electrodes at 208C: (a) noble gases;

(b) molecular gases (data supplied by Petrović and Marić, 2004).
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which can be evaluated to give E0 as a function of d. Integrating E in (14.3.11) from

0 to d, we can express E0 in terms of the cathode sheath (cathode fall) voltage Vc as

E0 ¼ 2Vc=d, which when substituted in (14.3.13) gives

AB( pd )2

2Vc

S
2Vc

Bpd

� �

¼ ln 1þ 1

gse

� �

(14:3:14)

where

S(z ) ¼
ðz

0

e�1=y dy (14:3:15)

is a known tabulated integral. If one plots Vc( pd) for a given gas (given A and B) and

given electrode material (given gse) we find, as expected, curves that have a

minimum Vc ¼ Vcmin at some ( pd)min. We might expect the discharge to adjust

itself to this stable value of d, and this is indeed the case in the normal glow

region (see Fig. 14.2). Some values of the cathode fall voltage are given in

Table 14.2a, and some corresponding normal glow cathode fall thicknesses are

given in Table 14.2b. These values are similar to the values for breakdown.

We have not quite reached the end of the story. It is also possible to eliminate d in

favor of the current density and gain both new insight into the operation of the

normal glow region and also understand the abnormal glow operation. The total

current density at the cathode is given by

J(0) ¼ eni(0)vi(0)(1þ gse) (14:3:16)

TABLE 14.2a. Normal Cathode Fall in Volts

Cathode Air Ar H2 He Hg N2 Ne O2

Al 229 100 170 140 245 180 120 311

Ag 280 130 216 162 318 233 150

C 240 475

Cu 370 130 214 177 447 208 220

Fe 269 165 250 150 298 215 150 290

Hg 142 340 226

K 180 64 94 59 170 68

Mg 224 119 153 125 188 94 310

Na 200 185 80 178 75

Ni 226 131 211 158 275 197 140

Pb 207 124 223 177 210 172

Pt 277 131 276 165 340 216 152 364

Zn 277 119 184 143 216 354

Source: After Cobine (1958).
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where ni is the ion density, vi is the ion velocity, and gse gives the fraction of the

current due to secondary electrons. Using Poisson’s equation with the assumption

of constant charge density, we can write eni in terms of the cathode fall potential

eni(0) ¼ e02Vc=d
2. Similarly, assuming a collisional sheath, we have vi(0) ¼

mi2Vc=d, where mi is the ion mobility. Substituting these values in (14.3.16)

we obtain

J(0) ¼ 4e0miV
2
c (1þ gse)

d3
(14:3:17)

from which we can eliminate d in favor of J(0). Hence we can determine a Paschen-

type curve of Vc versus J(0). This is shown in Figure 14.5 in terms of normalized

parameters.

It is clear that with a fixed external voltage source VT and resistance RT , the

dashed curve is unstable, such that if J ¼ I=A , Jmin, where A is the effective

cathode area; that is, if

VT � Vcmin

RTA
, Jmin (14:3:18)

then the cathode fall area will constrict to a smaller value. This is the normal glow

region. On the other hand, for

VT � Vcmin

RTA
. Jmin (14:3:19)

the solution is stable, and Vc will increase with increasing current density. It is this

region that is called the abnormal glow, but as we can see, it is just as normal as the

normal glow.

TABLE 14.2b. Normal Cathode Fall Thickness pd in Torr cm

Cathode Air Ar H2 He Hg N2 Ne O2

Al 0.25 0.29 0.72 1.32 0.33 0.31 0.64 0.24

C 0.9 0.69

Cu 0.23 0.8 0.6

Fe 0.52 0.33 0.9 1.30 0.34 0.42 0.72 0.31

Hg 0.9

Mg 0.61 1.45 0.35 0.25

Ni 0.9 0.4

Pb 0.84

Pt 1.0

Source: After Cobine (1958).
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The Negative Glow and Faraday Dark Space

As discussed qualitatively in Section 14.1, when the electrons have multiplied suffi-

ciently that they can carry the current in the cathode sheath, the high electric field

must decrease to create plasma-like, rather than sheath-like conditions. However,

the majority of electrons have been accelerated by a high field and are thus far

from equilibrium. A local region of high ionization and excitation must therefore

exist while the electrons are slowing down. This is characterized by a mean free

path for the combination of scattering and energy loss processes, sometimes referred

to as the range of the energetic electrons. In fact, the electric field can actually reverse

in this region to keep the electron current in balance, contributing to the slowing down

process. Overall, the visual region of the negative glow has been correlated with the

measured range of fast electrons in various gases, obtaining good agreement.

The reversal of the field tends to exclude ions from a region of the column, as

shown in Figure 14.1. This region of low ion density prevents the negative glow

from joining directly onto the essentially neutral positive column, requiring one

more transition region. Although an exact analysis is difficult, a simple calculation

produces the correct scaling and surprisingly good quantitative agreement with

experiment. If electrons are assumed to start from rest and accelerate through a

mean free path, the kinetic energy gained is

1

2
mv2res ¼ eEle ¼ eVres (14:3:20)

where Vres is known as the resonance voltage. Setting the current density as

J ¼ envres ¼ en
2eEle
m

� �1=2

(14:3:21)

J J

CV

FIGURE 14.5. Cathode voltage drop versus discharge current, illustrating the normal and

abnormal glow; C ¼ 2A=B ln½1þ (1=gse)	 (Cobine, 1958).
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where we have substituted for vres from (14.3.20), then n can be used in Poisson’s

equation to obtain

dE

dz
¼ J

e0

m

2eEle

� �1=2

(14:3:22)

Integrating (14.3.22) and substituting E ¼ Vres=le from (14.3.20), we obtain

Vres ¼ 2e

m

� ��1=3
3

2

Jle
e0

z

� �2=3

(14:3:23)

Assuming that Vres is a constant then we find that the length of the Faraday dark

space scales as

z/ 1

leJ
/ p

J
(14:3:24)

which is found to hold experimentally provided the pressure is sufficiently high that

the Faraday dark space is collisional.

14.4 HOLLOW CATHODE DISCHARGES

Hollow cathodes were first used as thermionic emitters to produce electron beams.

The large area of the hollow cathode emitter prolonged the life of the delicate

emitting surface at a given beam current. These early hollow cathode devices

were operated in high vacuum. Plasma discharges employing hollow cathodes are

operated in a quite different manner, akin to the glow discharges described in the

previous sections. Nevertheless, the large interior surface area of the cathode

surface for a given discharge current plays a similar role.

The basic configuration of the hollow cathode is shown in Figure 14.6 in cylind-

rical coordinates with an internal cathode length l and a diameter 2R. The backside

of the cylinder can either be a cathode or another anode, depending on the

application, but, providing l � 2R, the operation is much the same. This follows

because the cathode sheath is confined to a narrow layer between the cathode

l

FIGURE 14.6. Cylindrical configuration of a hollow cathode discharge.
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cylinder and the slightly smaller plasma cylinder. The anode can also have a central

hole or be remote, depending on the application. Hollow cathode discharges have

been operated at pressures of 0.1–10 Torr and current densities in the range of

0.01–1 A/cm2 in tubes with 2R . 1 cm for use in atom and ion lasers (see, e.g.,

Warner et al., 1979; van Veldhuisen and de Hoog, 1984). More recently, they

have been operated at lower pressures for plasma processing, particularly ionized

physical vapor deposition (I-PVD) (see Section 14.6).

There is also a higher current range of 1–10 A/cm2 that is being investigated for

plasma propulsion. In this range the intense ion bombardment of the cathode leads to

very hot cathode surfaces and consequent thermionic emission. This mode of oper-

ation is similar to the operation of original electron beam hollow cathodes and quite

different from the types of plasma discharges treated in this book. We do not con-

sider them further, but refer the interested reader to the literature (see, e.g., Siegfried

and Wilbur, 1984).

Although the basic hollow cathode configuration is efficient and works well in

many high current applications, various other configurations have been investigated,

that have advantages for particular applications. A particular variation that has been

analyzed in some detail by Arslanbekov et al. (1997) is the segmented hollow

cathode discharge. In the quadrupole configuration, for example, the cylinder is

broken into two facing cathodes and two facing anodes. In this configuration the

basic trapping mechanism of secondary electrons between sheaths is still preserved,

but operating voltages are larger at a given current, due to the large internal anodes,

leading to more efficient excitation of metal-ion laser lines and also improved stab-

ility. The interested reader is referred to the literature for details; for example,

Arslanbekov et al. (1997) and references therein.

Simple Discharge Model

To model the basic cylindrical equilibrium of Figure 14.6, we consider a discharge

containing hot electrons, cold electrons, and positive ions with a cylindrical cathode

having length l and radius R carrying a (radial) current Idc . The population of hot elec-

trons is created by secondary emission due to ion bombardment of the two plates. The

electrons accelerate across the sheath potential Vdc and are trapped within the dis-

charge by the confining space potential. It is this population that creates the ionization

required to sustain the discharge.We assume that the pressure is low, such that the hot

electron energy relaxation length lEh . 2R. Hence the hot electrons traverse the

plasma before losing their energy through inelastic collisions with the background

gas. If we consider a single positive ion species, then the plasma diffusion equation

is of the form (5.2.30), which for our system be written in the form

�Da

1

r

d

dr
r
dni

dr

� �

¼ Kizngnh0 (14:4:1)

where nh0 is the density, assumed uniform, of hot electrons generated by second-

ary emission from the cathode, Kiz is the ionization rate coefficient for hot
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electrons with average energy �Vdc=2, and Da is the ambipolar diffusion coeffi-

cient. Da depends on the cold electron temperature, which is determined by a

power balance relation for cold electrons. We do not consider this relation here

but instead take reasonable values Te � 0:25–1V to determine Da. Integrating

(14.4.1) once yields

dni

dr
¼ Kizhngnh0

r

2
(14:4:2)

A second integration yields, as in (5.2.33), the parabolic ion density profile

ni ¼ nh0 þ ne0 � Kizhngnh0

4Da

r2 (14:4:3)

where the constant of integration ne0 is the density of low-temperature electrons

in the discharge center. Using the boundary condition in (14.4.3) that ni ¼ nh0 at

r ¼ R sets the relation between ne0 and nh0

ne0 ¼ KizhngR
2

4Da

nh0 (14:4:4)

such that ni ¼ ne0(1� r2=R2)þ nh0. The hot electron fraction is generally small

in these discharges, nh0 � ne0. We note that this parabolic equilibrium profile

has also been found in an electronegative core plasma in Section 10.4.

Using (14.4.2) and (14.4.4) to evaluate the flux�Dadni=dr at the cathode surface,
we find

Gi(R) ¼ 2Dane0=R (14:4:5)

The current Idc ¼ 2pRleGi , assumed fixed externally by a voltage source and resis-

tor, sets the plasma density ne0 by (14.4.5)

Idc ¼ 2ple � 2Dane0 (14:4:6)

For the hot electrons, the current balance in the sheath requires that

Gi(R) ¼ Gh(R)=gse (14:4:7)

where gse is the secondary emission coefficient creating the hot electron return flux

Gh(R). Unlike the simple glow discharge (see Section 14.3), because here the hot

electrons are confined by the space potential for a number of bounces, no sheath

multiplication is required. The model is completed by assuming that all hot electrons

lose energy in the discharge by inelastic collisions, including ionization. For a given

dc sheath voltage Vdc and collisional energy lost per electron–ion pair created, Ec ,

then each hot electron creates N ¼ Vdc=Ec electron–ion pairs. In steady state, for
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ion balance, we require

gseVdc

Ec

¼ 1 (14:4:8)

which sets the voltage Vdc.

For a hot electron mean free path lmh . 2R, the hot electrons bounce between

thin sheaths, giving an approximately uniform density, as assumed in (14.4.2).

Even if lmh , 2R, the electrons can diffusively traverse the plasma, again leading

to a uniform density. A condition for this can be estimated from the hot electron

diffusion equation, using rectangular coordinates (r ! x) for simplicity

�Dh

d2nh

dx2
� �Kinel

Ec

Vdc

nhng (14:4:9)

where Dh is the hot electron diffusion coefficient, Kinel is the hot electron inelastic

rate coefficient, and the factor Ec=Vdc gives the inverse number of inelastic collisions

for a hot electron to lose its energy. Substituting Dh � lmh �vh from (5.1.5) and

Kinelng � �vh=linel into (14.4.9), we solve to obtain an exponential decay of nh
from the sheath edge, with a decay length

lEh � lmhlinel
Vdc

Ec

� �1=2

(14:4:10)

The condition for a relatively uniform hot electron density is therefore lEh . 2R.

This is considerably less stringent than the condition lmh . 2R for collisionless

bouncing of the hot electrons.

The current density Ja(x) flowing from the anode into the exit plane of the source

has a parabolic profile in r. The total anode current must equal the total cathode

current

Idc ¼ pR2Ja0=2 (14:4:11)

where Ja0 is the on-axis anode current density at the source exit. The axial electric

field E0 at this point is given by

Ja0 ¼ ene0meE0 (14:4:12)

where me is the cold electron mobility.

Example Let R ¼ 0:25 cm, l ¼ 5 cm, p ¼ 0:1 Torr in argon, and Idc ¼ 0:1A.
Then li � 3� 10�2 cm from (3.5.7). We assume an ion temperature Ti ¼ 0:05V
and a cold electron temperature Te ¼ 0:5V. Then Da � miTe � (eli=M�vi)Te �
6600 cm2=s from (5.1.14) and me � e=mngKel � 9:3� 107 cm2=(V s) from (5.1.5),
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where Kel is taken from Figure 3.16. From Figure 3.17 for Vdc . 100V we estimate

Ec � 20V, and we assume a secondary emission coefficient gse ¼ 0:1. Using Ec and

gse in (14.4.8) yields Vdc � 200V. This value of the cathode sheath potential is in a

typical range for these discharges. We can then estimate Kiz � 3� 10�13 m3=s from
Figure 3.16. Solving for ne0 from (14.4.6) yields ne0 � 1:5� 1012 cm�3. Then

(14.4.5) yields nh0 � 6:5� 108 cm�3. We find that lEh � 1:6 cm from (14.4.10),

which is large compared to R. From (14.4.11) we find Ja0 � 1:0A=cm2, and from

(14.4.12), we obtain E0 � 4:5V=m.

The above analysis occurs in the simplest case in which the plasma density is suf-

ficiently high, that is, sheaths sufficiently thin, that there is no significant electron

multiplication in the sheaths. At low current density (low plasma density) this

would not be the case and electron multiplication takes place. This leads to an

enhanced g, that is, a higher fraction of electrons are created for each ion striking

the cathode, and consequently a lower voltage at a fixed current. This phenomenon

has been called the hollow cathode effect (HCE) and has been treated in various

approximations, for example, see Kolobov and Tsendin (1995).

The above treatment is considerably simplified, giving no hint of the electron dis-

tribution, which has both a hot secondary electron component and a cold bulk elec-

tron component resulting from the ionization. These distributions can significantly

modify the overall plasma behavior, particularly if there are reactions that are sen-

sitive to lower energy electrons. These kinetic effects have been treated by various

groups over a number of years, with increasing sophistication; see, for example,

Kagan et al. (1975), Arslanbekov et al. (1992), and Kolobov and Tsendin (1995).

At very high or very low pressures, the hot electron density may not be radially

uniform. If, for the hot electrons, the mean free path for momentum transfer

lmh , R, but the energy loss mean free path lEh . R, we might expect a reasonably

uniform density. The simultaneous satisfaction of these inequalities depends on the

gas density as well as the hot electron energy. At high values of pR the second

inequality is not satisfied, and the density decays exponentially into the plasma.

At lower pR, if the first inequality is not satisfied, then the fast electron distribution

is anisotropic, with a density that geometrically peaks on the axis. These effects have

been experimentally observed and calculated, approximately, for a helium discharge

by observation of helium atom and helium ion emission lines in the pressure range of

1–10 Torr (Arslanbekov et al., 1992).

Metal Vapor Production in a Hollow Cathode Discharge

The important application of metal-ion lasers, pumped by charge transfer from noble

gas ions to sputtered metal vapor atoms (see, e.g., McNeil et al., 1976), introduces a

second ion species and also the metal vapor atoms. It is consequently considerably

more complicated than the simple hollow cathode discharge. The basic process is

that the ions of a noble gas (usually called the buffer gas) and the metal ions, striking

the cathode, produce both secondary electrons and sputtered metal atoms. The second-

ary electrons, accelerated across the sheath, produce buffer gas ions, which in turn are

the dominant species for producingmetal ions by charge exchange frommetal atoms in
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the volume. Other metal ion production processes, such as direct ionization by the hot

electrons, are less important at the high densities in this application (see Problem 14.4).

Charge exchange between the thermal buffer gas ions and atoms is very rapid but

without consequence in the bulk plasma. However, in the sheath, the very short mean

free path for this process reduces the energy of the buffer gas ions at the cathode

surface, such that a smaller number of metal ions can produce most of secondary emis-

sion and sputtering. Typical discharge parameters at high current in a Ne/Cu ion laser
are buffer gas density nb ¼ 1017 cm�3 (Ne) and metal vapor density nm � 1014 cm�3

(Cu) with corresponding ion densities nbþ � 1014 cm�3 and comparable nmþ .
The basic volume equations governing the equilibrium are written for simplicity

in one-dimensional rectangular coordinates for two cathode plates of area w� l

separated by a distance of 2R � w, l:

�Dm

d2nm

dx2
¼ �Kcxnbþnm , (14:4:13)

�Dbþ
d2nbþ
dx2

¼ Sbþ � Kcxnbþnm (14:4:14)

and

�Dmþ
d2nmþ
dx2

¼ Kcxnbþnm (14:4:15)

where Kcx is the rate coefficient for charge exchange. Sbþ is the volume source of

buffer gas ions

Sbþ ¼ Vdc

Ec

Gh

R
(14:4:16)

with Gh the secondary electron flux emitted at the cathode, and Vdc=Ec as in (14.4.8)

the number of electron–ion pairs produced by a secondary electron. These equations

are subject to boundary conditions at the cathode surface

Gh ¼ gbþGbþ þ gmþGmþ (14:4:17)

and

Gs ¼ zbþGbþ þ zmþGmþ (14:4:18)

where the gs and zs are secondary electron and sputtering coefficients, respect-

ively, and Gs is the total metal atom flux leaving the cathode. (In this subsection

we use z to denote sputtering coefficients.) The fluxes are related to the current

density by

J ¼ e(Gbþ þ Gmþ þ Gh) (14:4:19)
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If we integrate (14.4.13)–(14.4.15) once, and evaluate at the sheath edge, the

volume integrals can be eliminated to obtain

Gs ¼ Gm þ Gmþ (14:4:20)

and

Vdc

Ec

Gh ¼ Gbþ þ Gmþ (14:4:21)

where Gm ¼ �(Dmdnm=dx)x¼R , etc.

The Eqs. (14.4.10)–(14.4.21) can be solved within various approximations to

obtain the equilibrium, using the methods developed in Chapter 10. Warner et al.

(1979) did a global analysis, and we follow their treatment here. The globally aver-

aged densities �n are related to the fluxes by

Gbþ ¼ R�nbþ=tbþ (14:4:22)

Gm ¼ R�nm=tm (14:4:23)

where the time constants are obtained from assumed sinusoidal diffusion solutions

as in Section 5.2, giving

tbþ ¼ 1

Dbþ

R

p

� �2

, tm ¼ 1

Dm

R

p

� �2

(14:4:24)

Note that tm is a rough estimate in a global model and is not consistent with the

assumption that the metal flux Gs enters from the wall sputtering and decays into

the discharge (see Lichtenberg and Lieberman, 2000).

From the first integral of (14.4.15) we have the globally averaged equation

Gmþ ¼ RKcx �nbþ �nm (14:4:25)

Eliminating the densities in (14.4.25) using (14.4.22) and (14.4.23), we can solve for

b ; Gmþ=Gbþ , using (14.4.17)–(14.4.21) to obtain (Problem 14.5)

zbþtbþtmKcx

eR
J ¼ b 1þ gbþ þ b(1þ gmþ)

� �

1þ b(zmþ � 1)=zbþ
(14:4:26)

where the terms in gmþ and gbþ are small compared to one and can be dropped.

Warner et al., plot b versus the normalized current Jnorm [LHS of (14.4.26)] with

e ¼ (zmþ � 1)=zbþ as a parameter, with the result shown in Figure 14.7.

For e ¼ 1, the net sputtering yield zmþ � 1 of a metal ion is equal to the sputter-

ing yield zbþ of a gas ion, so the nonlinear interchange of buffer with metal ions does
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not affect the production rate, resulting in the linear increase in b with current. Since

charge exchange in the sheath strongly limits the buffer ion energy and therefore

limits zbþ to small values, normally jej � 1. Typically, zmþ . 1 leading to e
values in the range 10 , e , 100. In a particular neon/copper system, for

example Warner et al. found e � 50 when compared to experimental measure-

ments. In this experiment at a current density J ¼ 5mA=cm2, they found

�nm � 1011 cm�3, while at J ¼ 50mA=cm2, they found nm � 1013 cm�3, a transition

region for which b increases nonlinearly with J. However, in the high-current opera-

ting regime with b � 1, from (14.4.26) we see that b again increases linearly with J,

but with a slope db=dJnorm increased from the low b parameter regime by the factor

of e.
As already noted, the decay of the metal atoms into the plasma, by charge

exchange with the buffer gas ions, affects the loss time. This violates the global

assumptions in (14.4.24), such that the results using (14.4.26) are only qualitatively

correct. The global model can be improved by explicitly solving for the metal atom

spatial decay profile (Lichtenberg and Lieberman, 2000). Using approximately the

same parameters as in Warner et al., with e ¼ 50, they compared the global

model to the spatially varying model. At low values of b, the dominant mechanism

for generating metal atoms is sputtering by buffer gas ions. The charge exchange is

also low, such that the metal atoms penetrate the discharge, giving similar results for

both the global and spatially varying models. At higher b, the increased sputtering is
partially compensated in the spatially-varying model by the increase in the loss rate

of metal atoms due to their rapid spatial decay by charge exchange and diffusion.

The result is a smaller change of b in the transition from low- to high-current

regimes than is seen in Figure 14.7.

FIGURE 14.7. The ratio of metal ion flux to buffer ion flux b ¼ Gmþ=Gbþ plotted versus

normalized current density Jnorm , with the net sputtering ratio e ¼ (zmþ � 1)=zbþ as a

parameter (after Warner et al., 1979).
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14.5 PLANAR MAGNETRON DISCHARGES

Dc planar magnetron discharges are widely used for sputter deposition of metallic

thin films such as aluminum, copper, tungsten, gold, and various alloys; for

example, Al–2%Cu and Ti/W. When powered by an rf source, these discharges

are also used for sputter deposition of insulating films such as oxides, nitrides,

and ceramics. Physical sputtering is described in Section 9.3, and its application

to thin-film deposition is described in Section 16.3. In this section we first discuss

the limitations of glow discharges as sputtering sources. We then describe the

planar magnetron configuration and present a simple equilibrium model that can

be used to estimate discharge parameters and sputtering efficiency. For a more

thorough understanding, the review articles by Thornton and Penfold (1978) and

Waits (1978) and more recent studies by Wendt and Lieberman (1990) and Sheridan

et al. (1991) should be consulted.

Limitations of Glow Discharge Sputtering Source

Low aspect ratio (l=R , 1 for a cylindrical plasma) dc glow discharges have long

been used as sputtering sources for metallic materials and are still used in some

specialized applications. These are illustrated in Figure 14.8a for a planar discharge

in argon gas driven by a constant current dc source. The upper aluminum electrode is

the cathode, which serves as the target for ion impact sputtering of aluminum atoms.

The substrates, on which the sputtered atoms are deposited, are placed on the lower

electrode, which is the anode. The cathode–anode gap is typically l � 5 cm. Almost

all of the anode–cathode voltage appears across the cathode sheath (dark space or

cathode fall). The negative glow extends almost to the anode, and the positive

column is absent in these short discharges. High ion current densities, Jdc &
1mA=cm2, are required in order to achieve, at best, commercially viable deposition

rates of �350 �A=min. Hence the discharge is operated in the abnormal glow regime

with a high discharge voltage, Vdc � 2–5 kV. The sputtering power efficiency (sput-

tered atoms/ion-volt) is relatively low at these high energies and decreases with

increasing energy (see Section 9.3).

As described in Section 14.3, the discharge is maintained in the usual manner

by secondary electron emission from the cathode, with the energetic secondary

electrons providing the ionization required to maintain the discharge. However,

operating pressures must be high enough,

p & 30mTorr (14:5:1)

so that secondary electrons are not lost to the anode or side walls. These pressures

are higher than optimum for deposition of sputtered atoms onto the substrates due

to scattering of sputtered atoms by argon atoms. This results in sputtered atom

redeposition on the cathode, deposition on the side walls, and, in some cases,

poor adhesion of the sputtered film (see Section 16.3). For a neutral–neutral scatter-

ing cross section s � 2� 10�16 cm2, setting the mean free path l ¼ (ngsel)
�1 . l,
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we obtain

p . 30mTorr (14:5:2)

for acceptably low sputtered atom scattering. Equations (14.5.1) and (14.5.2) indi-

cate that there is a narrow pressure range around 30 mTorr for dc glow discharge

sputtering. As we saw in Section 14.4, the sputtering efficiency of a dc discharge

can be improved by operation with a hollow cathode. However the geometry also

becomes a limiting factor for deposition, leading to the addition of a magnetic

field, as described below.

Magnetron Configuration

It is clearly desirable to operate a sputtering discharge at higher current densities,

lower voltages, and lower pressures than can be obtained in a conventional glow

discharge. This has led to the use of a dc magnetic field at the cathode to confine

the secondary electrons. An axisymmetric dc magnetron configuration is shown in

Figure 14.8b. The permanent magnet placed at the back of the cathode target gen-

erates magnetic field lines that enter and leave through the cathode plate as

shown. A discharge is formed when a negative voltage of 200 V or more is

FIGURE 14.8. Direct current discharges used for sputtering: (a) low aspect ratio dc glow

discharge; (b) planar magnetron discharge.
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applied to the cathode. The discharge appears in the form of a high-density brightly

glowing circular plasma ring of width w and mean radius R that hovers below the

cathode, as illustrated in the figure, with sputtering occurring in a corresponding

track on the cathode. The ring is embedded in a lower-density bulk plasma. The

plasma shields the electric field through most of the chamber, and a cathode

sheath of thickness s � 1 mm develops, which sustains most of the externally

applied voltage. Argon ions in the plasma, unconfined by the magnetic field, are

accelerated toward the cathode and strike it at high energy. In addition to sputtering

target material, the ion impact produces secondary electron emission. These elec-

trons are accelerated back into the plasma and are confined near the cathode by

the magnetic field. The electrons undergo a sufficient number of ionizing collisions

to maintain the discharge before being lost to a surface. Typical planar magnetron

characteristics are

. B0 � 200G

. p � 2–5 mTorr argon

. �Ji � 20mA=cm2

. Vdc � 800V

. Deposition rate �2000 Å/min

Here B0 is the magnetic field strength at the radius R where the magnetic field line is

tangential to the cathode surface, and �Ji is the average ion current density over the

ring area.

Discharge Model

Because the magnetic field and discharge structure are highly nonuniform, a com-

plete quantitative model of the discharge has not been developed. We present a

qualitative model to indicate some issues that arise when determining the equili-

brium properties of the discharge. The given discharge control parameters are

Idc, p,B0, and R.

(a) Voltage Vdc Almost all of the applied voltage is dropped across the cathode

sheath. The secondary emission coefficient for argon ions on aluminum is gse � 0:1
for 200–1000-V argon ions. If N is the number of electron–ion pairs created

by each secondary electron that is trapped within the ring, then an estimate for N is

N � Vdc

Ec

(14:5:3)

where Ec is the energy lost per electron–ion pair created by secondary electrons. For

200–1000-V secondaries, we take Ec � 30 V (see Fig. 3.17). Because of the tangen-

tial magnetic field, not all secondary electrons emitted at the cathode are trapped in

the ring. Some electrons execute one or more gyro orbits and are reabsorbed at the

cathode. This leads to an effective secondary emission coefficient geff that is less
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than gse. Thornton and Penfold (1978) have estimated

geff �
1

2
gse (14:5:4)

In steady state, for ion particle balance, we require

geffN ¼ 1 (14:5:5)

Inserting (14.5.3) and (14.5.4) into (14.5.5), we obtain

Vdc � 2Ec

gse
(14:5:6)

For Ec ¼ 30 V and gse ¼ 0:1, we find Vdc � 600V.

The energetic electron gyroradius is found from (4.1.8) to be

rce ¼ ve

vce

¼ 1

B0

2mVdc

e

� �1=2

(14:5:7)

where ve ¼ (2eVdc=m)
1=2. For B0 ¼ 200G and Vdc ¼ 600V, we obtain rce � 0:5 cm.

The energetic ion gyroradius is similarly found from

rci ¼ 1

B0

2MVdc

e

� �1=2

(14:5:8)

to give rci � 1:3m for argon ions. Therefore, the energetic ions are not magnetized

by the weak magnetic field in this discharge.

(b) Ring Width w Referring to Figure 14.9, we estimate that the ring has mean

height (from the cathode) equal to the gyration radius rce. We assume that the sheath

width s � rce , and will show this below. Hence energetic secondary electrons are

trapped on a magnetic field line and can oscillate back and forth between radii r1
and r2 . The main force that reflects the electrons at r1 and r2 is the electrostatic

sheath potential; there can also be some mirroring, due to the nonuniform magnetic

field, which results in a parallel force as given by (4.3.9). For the field line having a

radius of curvature Rc and height rce from the cathode, given w � r2 � r1, then, as

shown in Figure 14.9,

w=2

Rc

¼ sin u (14:5:9)

R

R

wr r

r

FIGURE 14.9. Calculation of planar magnetron ring width.
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and

rce þ Rc cos u ¼ Rc (14:5:10)

Eliminating u from these two equations yields w as a function of rce and Rc . For sim-

plicity, assuming that w=2 � Rc, then (14.5.9) and (14.5.10) become

w

2Rc

� u

2rce

Rc

� u 2

Eliminating u, we obtain an estimate of the ring width:

w � 2(2rceRc)
1=2 (14:5:11)

For rce � 0:5 cm and choosing Rc ¼ 4 cm, we obtain w � 4 cm. This is not fully

consistent with the simplifying assumption w=2 � Rc , but a more accurate result

can be found by solving (14.5.9) and (14.5.10) (see Problem 14.7).

(c) Ion Current Density J̄ i and Sheath Thickness s The ions are unmag-

netized and the gas pressure is low; therefore the collisionless Child law (6.3.12)

can be used to describe the flow of ions from the surface of the ring to the

cathode:

�Ji ¼ 4

9
e0

2e

M

� �1=2
V
3=2
dc

s2
(14:5:12)

Assuming for simplicity that the ring is thin, w � R, then we find

�Ji ¼ Idc

2pRw
(14:5:13)

Taking the typical parameters Idc ¼ 5A,R ¼ 5 cm, w ¼ 4 cm, and Vdc ¼ 600V,

then we obtain �Ji � 40mA=cm2 from (14.5.13) and s � 0:56mm from (14.5.12).

(d) Plasma Density ni We use the Bohm flux at the edge of a collisionless

plasma to estimate ni in the ring from

0:61 eniuB ¼ �Ji (14:5:14)

where the electron temperature Te enters only weakly. Using a typical value for low-

pressure discharges of Te � 3V, then from (14.5.14) with �Ji � 40mA=cm2 we

obtain ni � 1:5� 1012 cm�3. We note that the density nes of energetic electrons

within the ring is generally much smaller than ni (see Problem 14.6).
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(e) Sputtering Rate Rsput Letting gsput be the yield of sputtered atoms per

incident ion, we have the sputtering rate

Rsput ¼ gsput
�Ji

e

1

nAl
cm=s (14:5:15)

Taking nAl � 6� 1022 cm�3 to be the atomic density of the aluminum target and

evaluating (14.5.15) for gsput � 1 and �Ji � 40mA=cm2, we obtain Rsput � 4:1�
10�6 cm=s. After 24 h of operation, a target thickness of 3.6 mm has been sputtered.

Thus the discharge digs an erosion track into the cathode material beneath the ring.

The cathode must be replaced when the erosion track becomes comparable to the

cathode thickness, which is usually an expensive proposition for the ultrapure

materials commonly used as targets.

The discharge power is Pabs ¼ VdcIdc. For our example with Idc ¼ 5A and

Vdc ¼ 600V, Pabs ¼ 3 kW. Almost all of this power is absorbed at the cathode;

hence the cathode must be cooled. Uniformity of the sputtered film deposited on

the substrate is an important issue. For a ring-shaped source of sputtered atoms,

the aspect ratio l=R controls the radial uniformity. As expected, for l � R, the

radial distribution of deposited atoms has a maximum off-axis, while for l � R,

the radial distribution is (mildly) peaked on-axis. Hence an optimum ratio of l=R
exists that maximizes the deposition uniformity. Measurements and analysis show

that l=R � 4=3 (Thornton and Penfold, 1978).

The confining magnetic field of a planar magnetron produces a dense plasma near

the cathode and a much weaker plasma near the substrate, thus minimizing ion

bombardment flux to the substrate. This is desirable for some applications, but for

others, an increased ion flux is desirable. This can be accomplished by using an

unbalanced magnetic configuration where some of the field lines from the outer

radius of the cathode flow to the substrate surface rather than to the inner radius

of the cathode.

14.6 IONIZED PHYSICAL VAPOR DEPOSITION

For the planar magnetron discharge in Section 14.5, physical vapor deposition

(PVD) directly deposits metals on the target. Low pressure operation is desirable

to minimize scattering in the intervening plasma region. However, even with

minimal scattering the angular spread at the target is large, preventing uniform depo-

sition in deep trenches, as required for many processing applications. This situation

can be greatly improved by ionizing the metal atoms in the discharge. The ions are

then naturally accelerated across the plasma-to-substrate sheath, giving good colli-

mation. The process is known as ionized physical vapor deposition (I-PVD). The

same basic dc magnetron discharge, or some variant, is typically used, but operating

in a somewhat different parameter regime. In particular, the gas pressure is larger by

about a factor of ten, p � 10–50 mTorr, and the plasma region is also larger, so that

564 DIRECT CURRENT (DC) DISCHARGES



the mean free path for scattering of the metal atoms is small compared to the

cathode–substrate length. The multiple scattering, together with a high density

plasma generated in the background gas, results in a high degree of ionization of

the metal atoms. This is facilitated by using a noble gas such as argon, with a

higher ionization energy (Eiz ¼ 15:76V) than the metal atoms (e.g., Eiz ¼ 7:23V
for aluminum and 8.77 V for copper). The latter are then efficiently ionized by

the energetic electrons required to maintain the argon plasma. The efficiency of

ionizing the argon background gas is often enhanced by using a supplementary

source, such as an electron cyclotron resonance, inductive, or hollow cathode

discharge, to produce a high density of electrons everywhere in the chamber

(see Hopwood, 2000, for detailed description of sources and their operation).

As with most complicated processing devices, complete analysis is not possible. For

some specific I-PVD plasmas there has been numerical modeling (Li et al., 2000).

Simple global models can often be used to describe the basic physical principles and

understand the parameter scaling, but assume certain given quantities. For a global

analysis, we assume a low pressure cylindrical argon discharge (radius R, length l)

with metal atoms (density nm � nAr) created by sputtering at one end wall (the mag-

netron cathode) due to energetic (mainly argon) ions having energy Vdc � 600V. The

central electron density is the sum of the average density ne0 produced by the magne-

tron and the density produced by the supplementary discharge power Prf

ne ¼ ne0 þ Prf

eAeffuBET

(14:6:1)

where Aeff ¼ 2pR2hl þ 2pRlhR from (10.2.11) is the effective area for particle loss, hl
and hR given by (10.2.1) and (10.2.2) are the edge-to-center density ratios, uB ¼
(eTe=M)1=2 is the Bohm velocity, and ET given by (10.2.9) is the total energy lost

per electron–ion pair created. The low-pressure approximation that the electron

density is nearly uniform, except near the sheaths, is used. The total ion current to

the substrate is then

IT ¼ eneuBhlpR
2 (14:6:2)

and the metal atom current entering the plasma is Im ¼ gsputIT. We assume a loss time

tm for fully collisional metal atoms given by

1

tm
¼ Dm

p2

l2
þ x201

R2

� �

(14:6:3)

with Dm the metal atom diffusion coefficient (see Section 5.2) and x01 � 2:405. Then
the particle balance for metal atoms is

gsputhluBnepR
2 � nm

tm
pR2l (14:6:4)
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which yields an average metal atom density

nm ¼ gsputhluBtm

l
ne (14:6:5)

Let us assume that the dominant process producing metal ions is direct ionization of

metal atoms. Then the particle balance of metal ions is

KizmnenmpR
2l � nmþuBmAeff (14:6:6)

with uBm the Bohm speed for metal ions. Solving for the ratio nmþ=nm , we obtain

nmþ
nm

¼ KizmpR
2l

AeffuBm
ne (14:6:7)

Substituting (14.6.5) into (14.6.7) to determine the metal ion density yields

nmþ ¼ KizmgsputtmpR
2

Aeff

uB

uBm
n2e (14:6:8)

We see that nmþ=nm scales as ne and nmþ scales as n2e , with ne / Prf=ET þ Idc0 from

(14.6.1) and (14.6.2).

The electron temperature (needed to evaluate Kizm and uB) is found from the

overall particle balance for ions. Assuming that most of the ionization is due to

the supplementary source and that nm � nAr , then the balance is for argon ions only

KiznenArpR
2l ¼ neuBAeff (14:6:9)

which yields Te as given in Figure 10.1. If the ionization due to the supplementary

source becomes small compared to the ionization produced by the hot electrons of

the magnetron, then the bulk electron temperature drops, leading to reduced ioniz-

ation of the metal atoms. Also, since many metals have a low ionization energy

compared to argon, (14.6.9) must be modified to include metal ion production

and loss when nm is greater than a few percent of nAr (Problem 14.8).

To convert to the physically most significant quantities of surface fluxes, we note

that the ion flux is

Gmþ ¼ hl nmþuB (4:6:10)

and a thermalized neutral metal flux is

Gm ¼ 1

4
nm �vm (14:6:11)
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with �vm ¼ (8eTm=pMm)
1=2. The ratio of ionized-to-neutral flux Gmþ=Gm is enhanced

over the ionized density fraction in (14.6.7) because typically hluB=�vm . 1.

For the low pressures used in I-PVD, charge transfer from argon ions to metal

atoms does not contribute significantly to the production of metal ions, as it does

in the high-pressure hollow cathode discharge modeled by (14.4.13)–(14.4.15).

Hopwood (2000) has examined the additional production of metal ions due to

Penning ionization by metastable argon atoms

Ar
 þM �! Mþ þ Ar (14:6:12)

with the result for the ionized flux fraction Gmþ=(Gm þ Gmþ) for aluminum

plotted versus electron density in Figure 14.10. Penning ionization dominates

at low electron densities but becomes relatively unimportant at the higher elec-

tron densities that would normally be employed. Hopwood also compared the

results to an experiment, with good agreement, considering the many simplifying

assumptions.

The global model does not capture important information concerning spatial vari-

ations, and can lead to quantitative errors. Various ad hoc methods can be employed

to introduce spatial variations. The spatial variations may be rather insensitive to the

exact global plasma parameters, so that useful information on these variations can be

obtained. The reader is referred to the original article for discussion of various

higher-order effects, and for discussion of including spatial variation, independently

from the basic global model (Hopwood, 2000).

FIGURE 14.10. Electron impact ionization is the primary path for metal ion production in a

high electron density plasma; Penning ionization dominates under conditions of low electron

density (after Hopwood, 2000).
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PROBLEMS

14.1. Positive Column of a dc Glow Discharge

(a) A glow discharge in argon with R ¼ 2 cm, l ¼ 25 cm is operated at

p ¼ 100mTorr. This gives Te � 4V, ET � 40V, le � 0:4 cm, and

Da p � 104 cm2 Torr=s. Assuming the solution in Section 14.2, and using

(14.2.14), find the electric field strength E. Assuming that most of the dis-

charge is positive column, what is the voltage drop in the positive column?

(b) If the discharge current in part (a) is 10 mA, what is the plasma density?

14.2. Breakdown of a dc Discharge For the previous discharge, but at p ¼ 1 Torr

and a cathode secondary emission constant gse ¼ 0:12, using values from

Table 14.1, calculate the vacuum breakdown voltage Vb for the discharge.

14.3. Operation of a dc Discharge For the parameters of Problem 14.2, take

Te � 3V and ET � 50V, and Dap � 104 cm2 Torr=s.

(a) Recompute the results for the positive column of Problem 14.1.

(b) Using Figure 14.5, calculate the voltage drop across the cathode sheath.

(c) For an applied voltage VB ¼ 1500V (VB . Vb in Problem 14.2) what

resistance should be put in series with the applied voltage to supply the

10 mA required.

14.4. High-Pressure Hollow Cathode Discharge Equilibrium

(a) Redo the example in Section 14.4 with a new (higher) pressure of 1 Torr.

(b) Compare the rate of metal ion production Kcxni0nm due to charge transfer

of argon ions on metal atoms with the rate Kizhnh0nm due to hot electron

ionization of metal atoms. Use nominal values Kcx ¼ 2� 10�11 cm3=s
and Kizh ¼ 3� 10�7 cm3=s. Hence show that at this high pressure,

charge transfer dominates hot electron ionization for metal ion pro-

duction, as assumed in (14.4.13)–(14.4.15).

14.5. Metal Ion Flux in a Hollow Cathode Discharge Derive (14.4.26) using

(14.4.17)–(14.4.25).

14.6. Planar Magnetron Discharge An axially symmetric planar magnetron

discharge in argon with an aluminum cathode has a magnetic field strength

B0 ¼ 200G at a radius R ¼ 10 cm, where the field line is tangent to the

cathode surface. The field line radius of curvature is Rc ¼ 3 cm. The discharge

current is Idc ¼ 2A and the pressure is p ¼ 2mTorr.

(a) Assuming that the effective secondary emission coefficient geff � 0:05 for
Arþ ions on Al and that 20 percent of the secondary electrons are lost by

diffusive transport to the anode before creating electron–ion pairs in the

plasma ring, estimate the dc voltage Vdc across the discharge.

(b) Estimate the mean width w (in the r direction) of the ring (erosion track)

and the ion current density �Ji (mA/cm2) incident on the aluminum

cathode over the erosion track area 2pRw.
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(c) Assuming that the sputtering coefficient at the erosion track is unity (one

sputtered Al atom per incident Ar ion) and that sputtered atoms are

deposited uniformly on the anode surface over an area of pR2
a , where

Ra � 15 cm, estimate the deposition rate (Å/min) for the aluminum

film deposited on wafers located at the anode surface.

(d) Estimate the (low-temperature) plasma density ni (cm
23) within the ring

and the secondary electron density nse within the ring. [Use the data given

in Fig. 3.13 for the argon ionization cross section siz (m
2) for secondary

electrons having energy eVdc , and note that secondary electrons lose

about 30 V per ionization. From this information, the secondary electron

lifetime can be determined.] Note that you should find nse � ni.

14.7. Planar Magnetron Ring Width Use the exact Eqs. (14.5.9) and (14.5.10)

to determine w for rce � 0:5 cm and Rc ¼ 4 cm, and compare to the result

w � 4 cm obtained in (14.5.11) for the simplified analysis.

14.8. Electron Temperature for Ionized Physical Vapor Deposition Consider

the generation and loss of electron–ion pairs in a two-species plasma

KizArnArnepR
2l ¼ nArþuBArþAeff

KizAlnAlnepR
2l ¼ nAlþuBAlþAeff

Let ng be the total gas density (argon + aluminum atoms) and f ¼ nAl=ng be
the fraction of the gas that is aluminum.

(a) Find the equation that determines the electron temperature Te .

(b) For R ¼ l ¼ 15 cm and 50 mTorr total (room temperature) gas pressure,

solve the equation in (a) numerically to find Te for f ¼ 0:0, 0.005, 0.1,
and 0.2. You may use the same edge-to-center density ratio factors hl
and hR to determine Aeff as for a pure argon discharge. Use the argon

ionization rate coefficient given in Table 3.3 and use KizAl � 1:23 �
10�8 e�7:23=Te cm3=s for aluminum.
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CHAPTER 15

ETCHING

15.1 ETCH REQUIREMENTS AND PROCESSES

Plasma etching is a key process for removing material from surfaces. The process

can be chemically selective, removing one type of material while leaving other

materials unaffected, and can be anisotropic, removing material at the bottom of a

trench while leaving the same material on the sidewalls unaffected. Plasma

etching is the only commercially viable technology for anisotropic removal of

material from surfaces. As such, it is an indispensable part of modern integrated

circuit fabrication technology, as was described in Chapter 1. For a more complete

description of this area, the reader should consult other sources; for example, Manos

and Flamm (1989, Chapters 1 and 2).

Although there are many other areas of application, nearly all modern develop-

ments in plasma etching have been driven by their potential for integrated circuit

fabrication. In this chapter, we focus almost exclusively on this area, placing empha-

sis on the key concepts that determine etch rate, selectivity, and anisotropy in plasma

etch processes. In this section, we introduce typical etch requirements and possible

tradeoffs among them and describe the four types of plasma etch processes. In

Section 15.2, some simple models of surface etching and discharge kinetics are

described and a general chemical framework for plasma etching is introduced. In

Section 15.3, the use of halogens to etch silicon is discussed. In particular, fluorine

atom etching of silicon has been the most well-studied etch system, providing

insight into other less well characterized systems. In Section 15.4, some descriptions

of silicon oxide and nitride etching, metal etching, and photoresist etching are given.
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Plasma Etch Requirements

It is important to consider the entire set of processing requirements for a particular

application. For pattern transfer by etching on a silicon wafer, these might include

requirements on etch rate, anisotropy, selectivity, uniformity across the wafer,

surface quality, and process reproducibility. Consider first the etch rate requirements

for the typical set of films, shown in Figure 15.1a, consisting of 500 nm of resist,

over 100 nm of polysilicon, and over 2 nm of “gate oxide” (e.g., oxynitride) on

an epitaxial silicon wafer. For a single wafer process of commercial interest, the

resist must be stripped and the polysilicon must be etched in a few minutes. This

leads to minimum etch rate requirements Epr ¼ 250 nm=min for the photoresist

and Epoly ¼ 50 nm=min for the polysilicon.

Next, consider the selectivity requirements for the polysilicon etch. For etch of

the 100 nm polysilicon with the resist as a mask, a selectivity of

s ¼ Epoly

Epr

� 100 nm

300 nm
¼ 0:2

is required in order to complete the polysilicon etch while not significantly eroding

the resist. For this application, a selectivity of 2–3 might be acceptable. However,

w

w

w

w

E

E
EE

d

FIGURE 15.1. Calculation of plasma etch requirements: (a) a typical set of films; (b)

anisotropy requirement for polysilicon etch; (c) uniformity requirement, including the

effect of photoresist erosion.
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there is a second selectivity requirement. Due to a lack of uniformity across the

wafer, it is necessary to overetch the polysilicon at some locations on the wafer

in order to clear it from all unmasked regions. During overetch, the thin oxide is

exposed to the etchant at some wafer locations. For an overetch of 20 percent

(1.2 times the etch time required to clear a perfectly uniform polysilicon film

using a perfectly uniform process), a polysilicon to gate oxide selectivity of

s ¼ Epoly

Eox

� 0:2� 100 nm

2 nm
¼ 10

is required. Depending on the use, selectivities of 100–200 might be needed. Hence

selectivity to the underlying layer can be a significant issue in film removal.

Consider now, as shown in Figure 15.1b, the anisotropy required to etch a trench

of width w into a film of thickness d, and let wm be the minimum mask feature size

that can be used (e.g., due to lithography limitations). The anisotropy for the film

etch is defined as

ah ¼ Ev

Eh

(15:1:1)

where Ev and Eh are the vertical and horizontal etch rates, respectively. Assuming

that the mask is not eroded, then after the etch, as shown in the figure, we find

the relation

ah ¼ d

d
(15:1:2)

The maximum width of the trench is

w ¼ wm þ 2d (15:1:3)

Solving for d and substituting this into (15.1.2), we obtain the anisotropy

requirement

ah � 2d

w� wm

(15:1:4)

As an example, for w ¼ 50 nm; d ¼ 100 nm; and wm ¼ 25 nm, we obtain ah � 8.

Even for wm ; 0 (physically unreasonable), an anisotropy of ah � 4 is required.

Evidently, the smallest feature size that can be made has a width

w � 2d

ah
(15:1:5)

For etching of deep trenches (d=w� 1), the etch anisotropy requirements can be

severe.
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Consider now the impact of process uniformity on selectivity and anisotropy

requirements. Referring to Figure 15.1c, we now also consider erosion of the

mask sidewalls due to a horizontal etch rate Eprh and erosion of the underlying

gate oxide sublayer due to a vertical etch rate Eoxv. Introducing the selectivities

spr ¼ Ev

Eprh

(15:1:6a)

sox ¼ Ev

Eoxv

(15:1:6b)

where Ev is the polysilicon vertical etch rate, we let tmax be the time required to

completely etch the polysilicon layer at all unmasked locations on the wafer. Then

tmax ¼ f
d

Ev

(15:1:7)

where f is an overetch nonuniformity factor due to film thickness variations,

d ¼ d0(1+ a) (15:1:8)

and etch rate variations across the wafer,

Ev ¼ Ev0(1+ b) (15:1:9)

Hence tmax is determined by the maximum thickness and minimum etch rate

f ¼ 1þ a

1� b
� 1þ aþ b (15:1:10)

where we have assumed that a;b� 1. Assuming also that Ev � Eh in the poly-

silicon, the horizontal etch width d can be estimated as the sum of two terms,

d � (Eh þ Eprh)tmax (15:1:11)

where the horizontal etch rate in the resist mask leads to a horizontal etch of the

polysilicon because the vertical etch in the polysilicon is fast compared to the hori-

zontal erosion of the mask. Substituting (15.1.7) into (15.1.11), we find

d � fd
Eh þ Eprh

Ev

(15:1:12)

Substituting (15.1.12) in (15.1.3), we obtain

w � wm0 þ 2fd
Eh þ Eprh

Ev
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or

Eh þ Eprh

Ev

� w� wm0

2fd
(15:1:13)

For example, letting w ¼ 50 nm, wm0 ¼ 25 nm, d ¼ 100 nm, and a ¼ b ¼ 0:1, we
find (Eh þ Eprh)=Ev � 0:1. Hence, as shown in Figure 15.2a, one can trade resist

selectivity (Eprh) against etch anisotropy (Eh) within a triangular window in

parameter space near the origin. For a deeper trench, the requirements on resist

selectivity and etch anisotropy (dashed curve) become even more severe.

Consider now the undesired etch of the gate oxide sublayer. In a worst-case

analysis, the etch begins at a time

tmin ¼ d

Ev

1� a

1þ b
(15:1:14)

The maximum sublayer thickness etched is then

dox ¼ (tmax � tmin)Eoxv

¼ d

Ev

2(aþ b)Eoxv (15:1:15)

This can be rewritten as

(aþ b)
Eoxv

Ev

¼ dox
2d

(15:1:16)

E

E

E

E
E

E

FIGURE 15.2. Acceptable trade-offs for plasma etching: (a) anisotropy versus photoresist

selectivity; (b) uniformity versus oxide selectivity.
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which shows that uniformity (aþ b) can be traded against sublayer selectivity

(Eoxv=Ev), within the hyperbolic region near the origin, as shown in Figure 15.2b.

As an example, for d ¼ 100 nm and a ¼ b ¼ 0:1, a selectivity to achieve dox �
0:2 nm of sox ¼ Ev=Eoxv � 200 is required. For a more detailed estimation of the

trade-offs among anisotropy, selectivity, and uniformity, the review by Flamm

and Herb (1989) should be consulted.

Etch Processes

There are four basic low-pressure plasma processes commonly used to remove

material from surfaces: sputtering, pure chemical etching, ion energy driven

etching, and ion inhibitor etching. Sputtering is the ejection of atoms from surfaces

due to energetic ion bombardment. This process was described in Section 9.3 and is

illustrated in Figure 15.3a. The discharge supplies energetic ions to the surface, with

the ions typically having energies above a few hundred volts. Sputtering is an unse-

lective process since, from (9.3.14), the sputtering yield gsput at a given ion energy

depends on the surface binding energy Et and (weakly) on the masses of the targets

and projectiles. Typically, these do not vary by more than a factor of 2–3 among

different materials. Hence the sputtering rates of different materials are roughly

the same (see Table 9.2). Sputtering rates are generally low because the yield is

typically of order one atom per incident ion, and ion fluxes incident on surfaces

in discharges are often small compared to commercially significant rates for

materials removal. Sputtering is, however, an anisotropic process, strongly sensitive

to the angle of incidence of the ion (see Figure 9.5). The yield typically rises from its

normal (0�) incidence value to some maximum value gmax at umax and then falls to

zero at grazing incidence (90�). Therefore, there is essentially no sidewall removal

of material for ions normally incident on a substrate. However, because the sputter-

ing yield peaks at umax = 0, topographical patterns might not be faithfully trans-

ferred during sputter etching. Figure 15.4 shows ions at normal incidence on a

step (a) before and (b) after sputtering. A facet has developed after sputtering due

to the peaking of the yield at umax. Sputtering is the only one of the four etch

FIGURE 15.3. Four basic plasma etching processes: (a) sputtering; (b) pure chemical etching;

(c) ion energy-driven etching; (d) ion-enhanced inhibitor etching (Flamm and Herb, 1989).
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processes that can remove involatile products from a surface. This is important for

removing low fraction involatile components during film etching using other pro-

cesses, for example, the sputter removal of copper during etching of Al–2%Cu

films. It is also important for sputter deposition processes, which are described

in Section 16.3. For these applications, the mean free path of the sputtered atoms

must be large enough to prevent redeposition on the substrate or target. Conse-

quently, these processes are generally carried out at low pressure.

A second etch process is pure chemical etching, in which the discharge supplies

gas-phase etchant atoms or molecules that chemically react with the surface to

form gas-phase products. This process can be highly chemically selective. Some

examples are

Si(s)þ 4F �! SiF4(g)

photoresistþ O(g) �! CO2(g)þ H2O(g)

Pure chemical etching, illustrated in Figure 15.3b, is almost invariably isotropic,

since the gas-phase etchants arrive at the substrate with a near uniform angular

distribution. Therefore, unless the reaction is with a crystal having a rate depending

on crystallographic orientation, one may expect a relatively isotropic etch rate. As

described in Section 1.1, the etch products must be volatile. The etch rate can be

quite large because the flux of etchants to the substrate can be high in processing

discharges. However, etch rates are generally not limited by the rate of arrival of

etchant atoms, but by one of a complex set of reactions at the surface leading to

formation of etch products. For example, for F-atom etching of silicon, there is

considerable evidence that the rate-limiting step involves the reaction of an F�

ion generated at the surface with the fluorinated surface layer. We consider some

of these issues in Section 15.3.

A third etch process, illustrated in Figure 15.3c, is ion-enhanced energy-driven

etching, in which the discharge supplies both etchants (e.g., F atoms) and energetic

ions to the surface. The combined effect of both etchant atoms and energetic ions in

producing etch products can be much larger than that produced by either pure chemi-

cal etching or by sputtering alone, as is shown in Figure 1.4. For etching of silicon

Photoresist
Photoresist

Ions(a) (b)

FIGURE 15.4. The development of facets due to sputtering of photoresist: (a) before

sputtering; (b) after sputtering.
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with a high incident flux of F atoms, for example, a single 1-kV argon ion can cause

the removal of as many as 25 silicon atoms (and 100 fluorine atoms) from the

surface. Experiments suggest that the etching is chemical in nature, but with a reac-

tion rate determined by the energetic ion bombardment. The etch rate generally

increases with increasing ion energy above a threshold energy of a few volts. The

etch product must be volatile, as for pure chemical etching. Because the energetic

ions have a highly directional angular distribution when they strike the substrate,

the etching can be highly anisotropic. However, ion energy-driven etching may

have poor selectivity compared to pure chemical etching. The trade-off between

anisotropy and selectivity is important in designing etch processes, as was shown

earlier. The detailed mechanism for etch product formation and the rate of formation

are not well understood. An empirical model is given in Section 15.2, and some

proposed mechanisms are described in Section 15.3.

A fourth type of etch process, ion-enhanced inhibitor etching, illustrated in

Figure 15.3d, involves the use of an inhibitor species (see Section 7.5). The discharge

supplies etchants, energetic ions, and inhibitor precursor molecules that adsorb or

deposit on the substrate to form a protective layer or polymer film. The etchant is

chosen to produce a high chemical etch rate of the substrate in the absence of

either ion bombardment or the inhibitor. The ion-bombarding flux prevents the

inhibitor layer from forming or clears it as it forms, exposing the surface to the chemi-

cal etchant.Where the ion flux does not fall, the inhibitor protects the surface from the

etchant. Inhibitor precursor molecules include CF2, CF3, CCl2, and CCl3 molecules,

which can deposit on the substrate to form fluoro- or chloro-carbon polymer films. A

classic example of an ion inhibitor plasma etch, described in more detail in Section

15.5, is the anisotropic etching of aluminum trenches or holes using CCl4=Cl2 or

CHCl3=Cl2 discharges. Both Cl and Cl2 rapidly etch aluminum, but the resulting

etch is isotropic. The addition of carbon to the feedgas mix results in formation of

a protective chlorocarbon film on the surface. Ion bombardment clears the film

from the trench bottom, allowing the etch process to proceed there. The same film

on the sidewalls protects these from the etchant. With proper optimization, a

highly anisotropic etch with vertical sidewalls can be formed. Ion inhibitor etching

shares most other features of ion energy-driven etching. The process may not be as

selective as pure chemical etching, and a volatile etch product must be formed.

Contamination of the substrate and final removal of the protective inhibitor film

are other issues that must be addressed for this etch process.

Except for sputtering, the etch chemistry must be chosen to yield a volatile

product. Data such as that given in Table 7.5 can be used to determine etch

product volatility. Table 15.1 gives a list of materials, along with possible etchant

atom chemistries based on product volatility. In some cases, there is no satisfactory

low temperature chemistry available; for example, copper has been etched in chlor-

ine only at elevated temperatures (see Section 15.4). In the following sections, we

will explore a number of etch chemistries for various materials.

Although four etch processes have been distinguished, their use for a particular

film etch often involves parallel or serial combinations of the processes, as has

already been noted for Al–2%Cu etching. Consider, for example, the cutting of a
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vertical trench in a thick polysilicon layer that must stop with high selectivity at a

silicon dioxide layer, as shown in Figure 15.1. This might be accomplished by a

two-step process. The first step might be a fast, highly anisotropic ion energy-

driven etch. Pure chemical etching in parallel at the sidewalls might determine

the anisotropy of this process. After almost all of the polysilicon has been

removed, the final step might be a slow, highly selective, but relatively isotropic

etch to remove the remaining polysilicon with minimum etching of the underlying

oxide. The small undercut produced by this step might be acceptable if the polysi-

licon that remains after the first step is thin enough.

15.2 ETCHING KINETICS

With the exception of the physical sputtering of elemental materials, the detailed

mechanisms for plasma etch processes are not well understood. Simple empirical

models that incorporate some of the key observations can provide insight into the

use of various processes. In this section, kinetic models for surface etch processes

are introduced in which known neutral and ion fluxes at the surface are used to

determine the etch rate and anisotropy. These fluxes, in turn, must be found using

a discharge model that accounts for the generation of both etchant atoms and bom-

barding ions. Finally, a general framework for the chemistry of etch processes is

introduced; this will be elaborated in subsequent sections.

Surface Kinetics

Consider first the example of an ion energy-driven process for O atom etching of a

carbon substrate. We assume that the only reactions that occur are

O(g)þ C(s) �!Ka
C:O (15:2:1)

TABLE 15.1. Etch Chemistries Based on Product

Volatility

Material Etchant Atoms

Si, Ge F, Cl, Br

SiO2 F, Fþ C

Si3N4, silicides F

Al Cl, Br

Cu Cl (T . 2108C)
C, organics O

W, Ta, Ti, Mo, Nb F, Cl

Au Cl

Cr Cl, ClþO

GaAs Cl, Br

InP Cl, CþH
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C:O �!Kd
CO(g) (15:2:2)

ionþ C:O �!Y iK i
CO(g) (15:2:3)

Let u be the fraction of surface sites (area density n00) covered with C:O bonds. We

assume Langmuir kinetics, as shown in Figure 15.5. All O atoms from the gas phase

incident on the surface not covered with C:O are assumed to react immediately to

form C:O. The rate-limiting etch step is assumed to be desorption of CO(g). The

steady-state surface coverage is then found from

du

dt
¼ KanOS(1� u)� Kdu� YiKinisu ¼ 0 (15:2:4)

where nOS and nis are the neutral and ion densities at the surface and the plasma–

sheath edge, respectively,

Ka ¼ 1

4

�vO

n00
¼ 1

4

8kTO

pMO

� �1=2
1

n00

is the O-atom adsorption rate coefficient, Kd is the rate coefficient for thermal des-

orption of CO, Yi is the yield of CO molecules desorbed per ion incident on a fully

covered surface in the absence of other desorption mechanisms, and Ki ¼ uB=n
0
0 ¼

(eTe=Mi)
1=2=n00 is the rate coefficient for ions incident on the surface. For high ion

energies, measurements (e.g., Steinbr̈uchel, 1989; Chang and Sawin, 1997; Wang

and Wendt, 2001; and references therein) indicate that the yield is typically much

greater than unity and scales as Yi /
ffiffiffiffiEi
p � ffiffiffiffiffiffiffiEthr

p
, the same as for the sputtering

yield (9.3.14). Solving (15.2.4) for u, we obtain

u ¼ KanOS

KanOS þ Kd þ YiKinis
(15:2:5)

The flux of CO molecules leaving the surface is

GCO ¼ (Kd þ YiKinis) un
0
0 (15:2:6)

FIGURE 15.5. Surface etch model assuming Langmuir kinetics and rate-limiting desorption.
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The vertical etch rate is

Ev ¼ GCO

nC
(m=s) (15:2:7)

where nC is the carbon atom density of the substrate. Inserting (15.2.5) and (15.2.6)

into (15.2.7), we obtain

Ev ¼ n00
nC

1

1

Kd þ YiKinis
þ 1

KanOS

(15:2:8)

Assuming that the ions strike the substrate surface at normal incidence, then the ion

flux incident on a vertical trench sidewall is zero. In this limit, we obtain a purely

chemical horizontal etch rate:

Eh ¼ n00
nC

1

1

Kd

þ 1

KanOS

(15:2:9)

The normalized etch rates (nC=n
0
0)Ev=Kd and (nC=n

0
0)Eh=Kd are plotted versus the

normalized neutral atom density KanOS=Kd in Figure 15.6 in the regime

YiKinis � Kd, which is the usual regime for ion energy driven etching. For

KanOS � Kd, the surface is starved for etchant atoms and both Eh and Ev are deter-

mined by the rate of arrival of O atoms to the surface, with u� 1. As KanOS is

increased beyond Kd, the normalized horizontal (sidewall) etch rate saturates at 1

E E

E

n
n

n

K

K
K

FIGURE 15.6. Normalized vertical (Ev) and horizontal (Eh) etch rates versus normalized

gas-phase density nOS, for KiYinis=Kd ¼ 5.
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and u! 1, while the vertical etch rate continues to increase linearly with nOS, with

u� 1. This is the neutral flux limited regime of ion energy-driven etching. In turn,

the normalized vertical etch rate saturates as KanOS is increased beyond YiKinis. In

this ion flux limited regime, both vertical and horizontal surfaces are flooded with O

atoms (u! 1 for both surfaces), and the vertical etch rate is determined by the rate

of arrival of energetic ions to the surface. The etch anisotropy in the regime

KanOS; YiKinis � Kd is

ah ¼ Ev

Eh

¼ YiKinis

Kd

1

1þ YiKinis

KanOS

(15:2:10)

and has its maximum value YiKinis=Kd when u! 1 for both horizontal and vertical

surfaces; that is, KanOS � YiKinis � Kd. In this ion flux limited regime, high aniso-

tropies can be achieved for high ion energies and fluxes (Yi and nis large) and low

substrate temperatures (Kd small) provided nOS is large enough. In the neutral

flux limited regime Kd � KanOS � YiKinis, the anisotropy is

ah ¼ KanOS

Kd

(15:2:11)

independent of ion energy and flux.

In the usual ion-enhanced regime YiKinis � Kd, the etch rate can be written in

terms of the ion and neutral fluxes. Using Ki ¼ uB=n
0
0 and Ka ¼ 1

4
�v0=n

0
0 in

(15.2.8), we obtain

1

Ev

¼ nC
1

YiGis

þ 1

GOS

� �

(15:2:12)

Equation (15.2.12) shows that the ion and neutral fluxes and the yield (a function of

ion energy) determine the ion-assisted etch rate.

Additional chemistry and physics can be incorporated into such etch models,

including sputtering of carbon,

GC ¼ gsputKinisn
0
0

associative and normal desorption of O atoms,

C:O �! Cþ O(g)

2C:O �! 2Cþ O2(g)

ion energy driven desorption of O atoms

ionsþ C:O �! Cþ O(g)
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formation and desorption of CO2 as an etch product; and the effect of nonzero ion

angular bombardment of sidewall surfaces.

In some etch models, gas-phase etchants are first physisorbed. The physisorbed

etchants subsequently react with the surface to form the etch product. The rate-

limiting step is still chemisorption of the physisorbed etchants followed by deso-

rption of the etch product. As an example, suppose that the initial step for F-atom

etching of some material is physisorption of an F atom on the surface. For Langmuir

kinetics, the adsorption–desorption steady state for physisorbed F atoms is

described by

dup
dt
¼ KapnFS(1� up)� Kdpup ¼ 0 (15:2:13)

which yields the F-atom coverage

up ¼ KapnFS

KapnFS þ Kdp

(15:2:14)

For physisorption, the activation energy for desorption is low; hence Kdp � KapnFS
for the usual discharge conditions so that

up � KapnFS

Kdp

� 1 (15:2:15)

Because up / nFS, the subsequent chemisorption and rate-limiting desorption steps

for the etch product then yield the same dependence on nFS as found in (15.2.8) and

(15.2.9).

In some etch models, physisorbed (or gas phase) etchant atoms react directlywith

the surface to form the etch product, which is immediately desorbed. A possible

example is the (non ion assisted) F-atom etching of a fluorinated silicon layer

(SiFx; x � 3) (Winters and Coburn, 1992). Then as in (9.4.29)–(9.4.31), the etch

rate E/ Krup, with Kr the reaction rate coefficient. Since for physisorption the

coverage up / nFS up to very high densities, there is no saturation of the etch rate

with increasing nFS in this model.

Although such ad hoc etch models can provide insight, they may not be faithful to

the actual chemical physics for the etch process. Some of these issues will be

addressed in Section 15.3, using the example of F atom etching of silicon, and a

more complete model will be described.

Discharge Kinetics and Loading Effect

A general framework for electropositive and electronegative discharge modeling

was given in Chapter 10 and applied to various discharges in succeeding chapters.

Given the feed gas, gas pressure, power absorbed, and discharge geometry, the
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self-consistent ion-bombarding fluxes and energies and the neutral etchant densities

and fluxes can be estimated using these methods. The complicated nature of the

entire problem was illustrated at the end of Section 10.2 for the simplest discharge

model of a uniform, electropositive plasma slab in the low-pressure regime. For

electrode separation l and area A, we found the ion density (10.2.29) at the

plasma–sheath edge and the neutral etchant density (10.2.38) at the surface, as

required to determine the etch rates Ev and Eh using, for example, (15.2.8) and

(15.2.9). The ion-bombarding energy depends on the type of discharge, as discussed

in Chapters 11 and 12 (see also (10.2.4) and following discussion), and the yield

scales with energy as in (9.3.14).

Consider, for example, the scaling behavior of the vertical etch rate Ev from

(15.2.8) for a high-density source with Ei � 5Te. If Pabs is increased then both nis
and nOS increase linearly with Pabs, and Ei is unchanged. In the usual ion-driven

etch regime YiKinis � Kd, we see that Ev increases linearly with Pabs. Since both

nOS and nis increase, the etch regime (ion flux or neutral flux limited) is not

altered. Now consider increasing ng. From (10.2.28) Te and therefore Ei fall slightly;
nis remains unchanged, and nOS increases as nOS / n1�Ediss=Eizg / n0:5–0:7g . From

Figure 15.6, we see that as nOS increases, the system can enter the high etchant

density regime where the etch rate is ion flux limited. Similar scaling laws can be

determined for low-pressure capacitive rf discharges (see Problem 11.8) and for

high-pressure discharges in which the ion transport is diffusion limited (see

Problem 10.12). Systems containing substrate holders that are independently rf

biased can be treated similarly.

Consider now the effect on O-atom density of additional O-atom loss at the elec-

trodes due to recombination (with probability grec) and due to etch reactions (with

probability gr) on wafers having a total area Aw, in addition to pumping losses.

As in Section 10.2, we assume a symmetric system with nOS � nO, ne � ni (small

negative ion density), and we also take grec; gr � 1. Then the O-atom rate equation

(10.2.36) becomes

Al
dnO

dt
¼ 2AlKdissngni � SpnOS

� (2A� Aw)grec
1

4
�vOnOS � Awgr

1

4
�vOnOS ¼ 0

(15:2:16)

which can be solved to obtain

nOS ¼ 2AlngniKdiss

Sp þ Agrec �vO=2þ Aw(gr � grec)�vO=4
(15:2:17)

This can also be written in the form

1

nOS
¼ 1

n(0)OS

þ Aw(gr � grec)�vO
8AlngniKdiss

(15:2:18)
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where n(0)OS is the etchant density in the absence of wafers (Aw ; 0). In the neutral

flux limited regime where the etch rate is proportional to nOS and for the usual

case that the reaction probability is large compared to the recombination probability,

we see that (15.2.18) leads to a reduction in the etch rate. This is called the loading

effect. We see from (10.2.35) and (15.2.18) that to minimize the loading effect, ngnil

should be large. Depending on the etchant (O, F, Cl, etc.) and the wall and substrate

materials, there can be considerable recombination on walls. For F atoms and most

wall–substrate systems, it is generally the case that gr � grec and considerable

loading effects are seen. For other etchants (e.g., Cl, Br, O), grec can be of the

order of or can exceed gr. For this case very weak or even negative loading

effects are seen.

The etchant atoms may not be created by a single dissociation reaction having an

Arrhenius form, as assumed in (10.2.31). An example is the creation of F atoms in a

CF4 discharge (see Section 15.3).

Chemical Framework

Feedgas mixes for plasma etching are usually complex because of the conflicting

requirements on etch rate, selectivity to mask and underlayer, and anisotropy.

This is especially true for ion inhibitor processes where a balance must be struck

among etchant, inhibitor, and ion fluxes to the substrate. Furthermore, the plasma

itself dissociates the feedgas into other, usually more reactive, species. The

feedgas and its dissociated products may include chemical constituents such as

(Flamm, 1989, Chapter 2):

. Saturates: CF4, CCl4, CF3Cl, COF2, SF6, etc;

. Unsaturates: CF, CF2, CF3, CCl3, etc;

. Etchants: F, Cl, Br, O (for resist), F2, Cl2, Br2, etc;

. Oxidants: O, O2, etc;

. Reductants: H, H2, etc;

. Nonreactive Gases: N2, Ar, He, etc.

These species react with each other in the gas phase and on the surface in reactions

such as:

eþ saturate �! unsaturateþ etchantþ e;

etchantþ substrate �! volatile products;

unsaturateþ substrate �! films:

For some substrates (e.g., SiO2), unsaturates can themselves be etchants:

unsaturateþ substrate �! volatile products:

15.2 ETCHING KINETICS 585



At low pressures, three-body reactions such as

etchant þ unsaturate (þM) �! saturate (þM)

are not important in the gas phase, but may be important at surfaces or at high gas

pressures. If oxidants or reductants are added to the feedgas, commonly O2 or H2

respectively, or gases that contain these atoms, then additional reactions can occur:

oxidantþ unsaturate �! etchantþ volatile product;

reductantþ etchant �! volatile products:

The ratio of etchant to unsaturate flux at the substrate is an important process

parameter. As will be seen in the next section, a high ratio can lead to isotropic

etching, while a low ratio can lead to film deposition. There can be an intermediate

ratio in which inhibitor film can be deposited on sidewalls but cleared from trench

bottoms by ion bombardment; this is the regime of anisotropic ion enhanced inhibi-

tor etching. Etchants (Cl2, Br2) can be added to the feedgas to increase the etchant/
unsaturate ratio, and oxidants (O2) can also be added to increase the ratio by burning

unsaturates to produce etchants; for example,

CF3 þ O �! COF2 þ F

Conversely, feedgases with low F/C ratios compared to CF4 (c-C4F8, C3F8, C2F4)

and H2 can be added to reduce the etchant/unsaturate ratio, pushing the system

toward increased sidewall protection if that is desired. Inert gas additives are some-

times used to control discharge electrical and substrate thermal properties, to dilute

etchants, and to alter gas-phase chemistry through mechanisms such as Penning ion-

ization and excitation (see Section 8.4). Other additives are sometimes used in etch

processes to break through protective oxide layers (e.g., Al2O3 for aluminum

etching) and to scavenge contaminants (e.g., H2O) (Flamm, 1989, Chapter 2).

15.3 HALOGEN ATOM ETCHING OF SILICON

One of the most important applications of plasma etching is the selective, anisotro-

pic removal of patterned silicon or polysilicon films. Halogen atom etchants (F, Cl,

Br) are almost always used for this purpose. In fact, F-atom etching of silicon is

experimentally the most well-characterized surface etch process and is often used

as a paradigm for describing plasma etch processes, as we do here. In this

section, we first give a summary of pure chemical and ion-enhanced surface etch

processes for F-atom etching. We then describe the discharge chemistry, concentrat-

ing on the well-studied CF4 feedstock system. Finally, we describe silicon etching

using other halogen atoms. For more detailed descriptions of silicon etching, the
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reader should consult the reviews by Flamm (1989; 1990) and Winters and Coburn

(1992).

Pure Chemical F-Atom Etching

F atoms are known to spontaneously attack silicon and silicon dioxide in the absence

of ion bombardment. The etch rates at high pressures were measured by Flamm et al.

(1981) to have roughly an Arrhenius form over a wide range of temperatures and to

depend linearly on the gas-phase F-atom density near the surface up to densities as

high as 5� 1015 cm�3. For undoped silicon and for thermally grown silicon dioxide,

the etch rates were fit to the relations

ESi ( �A=min) ¼ 2:86� 10�12nFST1=2 e�1248=T (15:3:1)

ESiO2
( �A=min) ¼ 0:61� 10�12nFST1=2 e�1892=T (15:3:2)

where nFS (cm�3) is the F-atom density near the surface and T (K) is the surface

temperature. The silicon-to-silicon dioxide selectivity is then

s ¼ 4:66 e644=T : (15:3:3)

At room temperature (300 K), and for a typical F-atom density of 3� 1014 cm�3,
ESi � 230 Å/min, ESiO2

� 5:9 Å/min, and s � 40. There is also good selectivity

over Si3N4 and reasonable selectivities over resists.

The activation energy of 1248 K in (15.3.1) is also seen in more recent molecular

beam experiments (Winters and Coburn, 1992). However, the etch rate in (15.3.1)

corresponds to a room temperature F-atom reaction probability gr ; 4GSiF4=GF �
0:0017, where GSi(cm

�2 s�1) ¼ ESi nSi=(60� 108), GF ¼ 1
4
nFS �vF, nSi ¼ 5:0�

1022 cm�3, and �vF ¼ (8kT=pMF)
1=2. At lower pressures with nFS ¼ 1012 –

1014 cm�3, Ninomiya et al. (1985) measured gr � 0:1, about 50 times larger.

These large values are in reasonable agreement with molecular dynamics

simulations (Humbird and Graves, 2004). On the other hand, molecular beam exper-

iments suggest intermediate values gr � 0:01–0.08. Discrepancies in the various

measurements of gr could be affected by carbon and oxygen surface contamination,

residual ion bombardment from the F-atom (plasma) source, the existence of super-

thermal F-atoms, and the unknown distribution of etch products (Ninomiya et al.,

1985; Herrick et al., 2003).

The mechanism for pure chemical F-atom etching of silicon has been studied for

over 15 years and is still not thoroughly understood. In the steady state, it is known

that a fluorinated silicon SiFx layer 2–5 monolayers thick forms at the surface. The

fluorine to silicon ratio at the top of this layer is typically 3:1 (mostly SiF3), and the

ratio falls smoothly to zero at the SiFx-Si interface. The layer thickness varies with

etch conditions; typically the film is thin when the etch rate is high, and vice versa.

The layer is stable at room temperature; that is, if the incident flux of F atoms is
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terminated after the layer forms, then etching ceases. If the layer is then heated, it

does not begin to decompose until temperatures of 300–400�C have been

reached. The decomposition products are SiF2(g) and SiF4(g), with the former

being the most important. During etching, etch product measurements indicate

that roughly 65 percent of the etch product at room temperature is SiF4(g), with

Si2F6(g) and Si3F8(g) comprising the remaining product. As the temperature is

raised, the SiF4(g) percentage slowly increases to 80–90 percent of the total at

300�C, with a corresponding reduction in Si2F6 and Si3F8. SiF4 then begins to

decrease and becomes a minor product above 6008C. At high temperatures, the

dominant etch product is SiF2 (g), which increases from 5 to 10 percent of the

total at 3008C up to 40–50 percent at 6008C.
The formation of a steady-state SiFx layer whose thickness varies inversely with

the etch rate is suggested by a model in which diffusion of F atoms (or, as will be

seen below, F� ions) into the surface is balanced by an erosion of the surface due

to the etching. Letting nF be the volume density of diffusing F atoms in the solid

and ESi (m/s) be the etch rate, then in the frame x0 ¼ x� ESit moving with the

etched surface at x0 ¼ 0, the flux vanishes:

G0F ¼ �D
dnF

dx0
� nFESi ¼ 0 (15:3:4)

For a crude model in which the diffusion coefficient D is a constant, independent of

nF, this can be solved to obtain

nF ¼ nF0 exp �ESix
0

D

� �

(15:3:5)

yielding a layer having characteristic thickness D=ESi. This type of model is sugges-

tive of the more complicated kinetics, including both diffusion and reactions within

the solid, that lead to the formation of the SiFx layer.

The measured linear dependence of the etch rate on nFS up to densities as high as

5� 1015 cm�3 is suggestive of weakly bound adsorbed F atoms as precursors to sub-

sequent etch reactions. As pointed out in Section 15.2, the adsorption–desorption

kinetics leads to a surface coverage for weakly adsorbed F atoms that is linear in

the gas-phase F-atom density nFS near the surface, as given by (15.2.15). The

Arrhenius form of (15.3.1) at first sight suggests a single activated process for the

etch reaction, but the belief is that this is probably fortuitous. The etch product dis-

tributions and the decomposition properties of the SiFx layer differ greatly at low and

at high temperatures, implying that the etch mechanisms differ also. In addition,

weakly and strongly non-Arrhenius etch rates are seen for etching of silicon with

F2 and with XeF2, respectively. The existence of an activation energy of 1248 K

(;0:108V) for F-atom etching of silicon is not understood.

A significant feature of pure chemical etching using halogen atoms, known as the

doping effect, is that the etch rate depends on the silicon doping levels, with n-type
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silicon etching faster than p-type. The dopants must be thermally activated in order

to restore the crystalline structure. The effect is weak for F atoms, with a factor of

two difference in etch rates, but is very strong for Cl atoms, where the etch rates can

differ by several orders of magnitude.

The existence of a doping effect suggests that negative ion centers on the silicon

surface play an important role in etch reactions. The electron affinity of an F atom in

free space is Eaff � 3:45V, but near the surface, the affinity is increased by the

energy	 of the electrostatic image force [see (9.3.2)]. For an F atom a distance aeff ¼
1 Å from the SiFx surface, (9.3.2) yields a large affinity Eaff � 3:45þ 3:60 � 7:05V.
SiF3 similarly has a large affinity. Hence, negative ion formation at the surface is

favored. Winters and Haarer (1987) suggest that the rate-limiting etching step

involves reaction of adsorbed F atoms at negative charge centers (areal density

n0�) on the SiFx surface. The negative charge is supplied by electrons tunneling

from the silicon substrate through the SiFx layer. The variation of the charge

density on the surface with doping level accounts for the etch rate variation in

this model, with the room-temperature etch rate proportional to n0�, to nFS
through (15.2.15), and to the surface density of SiF3:

ESi ¼ Krn
0
�n
0
SiF3

nFS (15:3:6)

where Kr is the rate constant. The linear dependence on n0SiF3 arises because some

fraction (roughly 1
2
� 1

3
for a fully fluorinated surface) of the adsorbed F atoms acti-

vated at the negative charge centers are presumed to attack the Si–SiF3 bond

holding an SiF3 group to the surface, thus forming the SiF4 etch product. Smaller

concentrations of Si–SiF2SiF3 and Si–SiF2SiF2SiF3 bonds are also attacked,

yielding the observed Si2F6 and Si3F8 etch products in lesser concentrations. The

remaining fraction 1
2
� 2

3
of the activated F atoms break Si–Si bonds within the

layer, leading to growth of the layer. The activation mechanism is likely to be

the formation of negative ions,

eþ F:S �! F�:S

Such a negative ion sees a strong image force directed into the surface, promoting

lattice penetration. Once inside the lattice, any F atom produced by neutralization

of F� is likely to attack an Si–Si bond. Winters and Coburn (1992) claim that the

rate expression (15.3.6) is consistent with all experimental data on F-atom chemical

etching of silicon, and is also consistent with data on F2 and XeF2 etching.

Ion Energy-Driven F-Atom Etching

Etch rates for a given F-atom flux can be increased by a factor of 5–10 for suffi-

ciently high fluxes (and energies) of bombarding ions. A single 1-kV Arþ ion can

	The energy for a surface having dielectric constant e� 1 is the same as that for a perfectly conducting

surface (Ramo et al., 1984).

15.3 HALOGEN ATOM ETCHING OF SILICON 589



cause the removal of as many as 25 silicon atoms and 100 F atoms from the surface.

The total surface concentration of fluorine in the SiFx layer is reduced by up to a

factor of two in the presence of ion bombardment. Furthermore, the etch product

distribution changes, and, notably, a significant fraction of SiF2(g) etch product

is formed. Although the etch anisotropy can be as high as 5–10, this still implies

a reasonably large pure chemical etch rate on trench sidewalls. Consequently,

fluorine-based anisotropic silicon etches are not commonly used. Although inhibitor

chemistries can be employed for sidewall protection and increased anisotropy, as

we subsequently show, the contamination produced by the protective films is

undesirable, and other halogen etch chemistries are generally used for strongly

anisotropic etches.

Many mechanisms have been proposed to explain the enhanced etch rate due to

ion energy driven F atom etching of silicon, including the following:

1. Formation of a damaged region that is more reactive to subsequently arriving

fluorine. However, experiments show that the energetic ion bombardment

influences the fluorine that is present within the SiFx layer at the moment of

impact. Hence, this is probably not the mechanism for F-atom etching of

silicon. However, it is known that lattice damage is an important mechanism

for some systems; for example, ion-enhanced XeF2 etching of tungsten.

2. Temperature increase due to etch reactions or ion bombardment. The temp-

erature rise is not large enough.

3. Chemically enhanced physical sputtering. For this proposed mechanism, the

binding energies Et of Si–SiF2 and Si–SiF4 bonds at some locations on the

SiFx surface are supposed to be much smaller than those of a pure silicon

surface, yielding significant physical sputtering rates for SiFx in the presence

of ion bombardment. However, the binding energies would have to be of order

0.3–0.5 V, much smaller than the usual Si–Si or Si–F bond energies, in order

that the species remain on the surface without thermally desorbing and yet be

easily sputtered [e.g., see (9.3.14)]. In addition, time-resolved etch rate

measurements using modulated beams of ions show that ion-enhanced

etching is much slower than predicted by a physical sputtering model.

Hence, the evidence suggests that chemically enhanced physical sputtering

is not the major contributor to ion-enhanced etching at the neutral–ion flux

ratios typically found in etching discharges. This conclusion is supported by

molecular dynamics simulations (Barone and Graves, 1995).

4. Chemical reaction and desorption due to ion bombardment. In this mechan-

ism, sometimes called chemical sputtering, the ion bombardment causes a

chemical reaction to occur that produces an easily desorbed etch product.

When an energetic ion collides with and penetrates the SiFx layer, producing

a collision cascade as for physical sputtering (see Section 9.3), then a large

number of Si–Si and Si–F bonds can be broken and reformed, leading to

molecules such as SiF4 and SiF2 that are weakly bound to the surface.

These molecules can thermally desorb during or after the collision cascade.
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This mechanism on the surface is similar to a reaction in the gas phase such as

ionþ Si2F6 �! SiF4 þ SiF2 þ ion (15:3:7)

It is likely to be an important mechanism for ion energy-driven F-atom etching

of silicon and is seen to be important in molecular dynamics simulations

(Barone and Graves, 1995).

5. Enhanced chemical etching. In this mechanism, ion bombardment reduces the

layer thickness, thus increasing the pure chemical etch rate given by (15.3.7),

because n0� increases. It is known experimentally that the pure chemical etch

rate varies inversely with the layer thickness and that ion bombardment

reduces this thickness. Hence, this mechanism can contribute to ion enhanced

etching. However, the etch rate enhancement is unlikely to exceed a factor of

two for typical plasma etch conditions.

For the simple phenomenological models for ion-assisted etching described in

Section 15.2, the increased etch rate is due to ion-enhanced desorption of etch

products or ion-enhanced reaction of etchants with the surface. Gray et. al. (1993)

have developed a more complete model for Arþ-enhanced F-atom etching of

silicon (and silicon dioxide) that is consistent with high flux ion and atomic beam

studies and with other data. The kinetics includes the following processes for

silicon etching:

1. Physisorption and thermal desorption of F atoms

F(g)þ S ��! ��
Ka1

Kd1

F:S

2. Chemisorption of physisorbed F atoms at silicon dangling bond (Si	) sites

2F:Sþ Si	 ��!Ka2
SiF2:S

3. Ion-induced desorption of SiF2

SiF2:S ���!YdKi
SiF2(g)þ 2Si	

4. Creation of SiF4 by ion beam mixing followed by ion induced desorption

2F:Sþ SiF2:S ����!YmixKi
SiF4(g)þ 2Si	

5. Physical sputtering of silicon

Si	 ����!YsputKi

Si(g)þ Si	
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6. Chemical etching of silicon

2F:Sþ SiF2:S ��!Kr
SiF4(g)

In this model, the ion bombardment increases the etch rate due to increases in the

chemisorption site density n0Si	 (mechanism 1), the rate of chemically enhanced

physical sputtering of etch products (mechanism 3), and the rate of chemical

reaction and thermal desorption of etch products (mechanism 4).

CF4 Discharges

Because F2 itself etches silicon, generally leaving a rough and pitted surface, it is not

used as a feedstock. Common feedstock gases include CF4, SF6, and NF3, along with

low F/C feedstock additions such as C2F6. The most well-studied system is CF4,

which we use to illustrate the effects of gas- and surface-phase chemistry in

discharges used for F-atom etching of silicon. The overall etch reaction in a CF4
discharge is

4CF4 þ Si �! 2C2F6 þ SiF4

Hence, the major effluent gases observed are CF4, SiF4, and C2F6.

CF4 is a very stable tetrahedral molecule (symmetry group Td with the carbon

atom in the center) with an enthalpy of formation of 2925 kJ/mol and a C–F

bond distance of 1.3 Å. Its vibration frequencies (h� vvib=e in voltage units) are

0.054 V (doubly degenerate), 0.078 V (triply degenerate), 0.113 V (singly degener-

ate), and 0.159 V (triply degenerate), and its rotation constant is Brot ¼ 2:4� 10�5 V
(triply degenerate) for each of the three degrees of rotational freedom. The CF3–F

bond energy is 5.6 V. All excited states of CF4 are repulsive; consequently, all

electronic excitations of CF4 are dissociative. In particular, the positive ion CFþ4
is not stable.

The CF3 radical is weakly bound and large, having pyramidal symmetry C3v; the

carbon atom is at the top of a flat pyramid with an equilateral triangular base of F

atoms. The F–F bond distance is 4.1 Å and the C atom is 0.75 Å above the base.

The CF2 –F bond energy is 3.8 V. CF3 is electronegative with an electron affinity

of 1.9 V, lower than the affinity 3.45 V of F atoms. The CF�3 ion also has symmetry

C3v, with F–F bond distance and C atom height of 4.1 and 1.3 Å, respectively. The

linear radical CF2 has a CF–F bond energy of 5.8 V. The bond energy of the CF

radical is 5.1 V. Some threshold energies and rate constants for important

electron-CFx reactions are given in Table 15.2. Reviews of electron collisions

with CF4 are given by Christophorou et al. (1996) and Christophorou and Olthoff

(1999b).

Three-body neutral–neutral gas-phase recombination reactions among F atoms

and CFx radicals, as in (9.2.28), can be important because of the large size of the

CFx radicals and the large enthalpies of formation, in particular for C2F6 and
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C2F4 products. At the pressures of interest for etching, these reactions can be in the

intermediate regime between low and high pressures. The effective two-body rate

constant KAB in the intermediate regime is, from (9.2.33),

KAB ¼ K 03nM
1þ K 03nM=K2

(15:3:8)

where K 03 is defined by (9.2.36). Some values of K2 and K
0
3 for important three-body

association reactions are given in Table 15.3 (Plumb and Ryan, 1986).

Important electron collision reactions in CF4 discharges are reaction 1 in

Table 15.2 for F� and CF�3 creation, reaction 4 for CFþ3 creation, and reactions 2

and 3 for CF3, CF2, and F creation. The recombination reactions 1 and 4 in

Table 15.3 can be strong at moderate gas pressures. In view of these and the

1 : 2.5 branching ratio between CF3=CF2 production from electron collisions with

CF4, the CF2 radical density can much exceed the CF3 radical density. The pro-

duction of C2F6 and C2F5 by recombination reactions 4 and 5 is balanced by electron

dissociation of these molecules into CF3 and CF2 products, by F-atom abstraction

reactions, and by the flow of these multicarbon radicals to the walls. The latter

can bring substantial carbon fluxes to the walls. As for O2 discharges, negative

ions are lost by positive–negative ion recombination, and, possibly, by electron

TABLE 15.2. Selected Second-Order Reaction Rate Constants for Electron Impact

Collisions in CF4 Discharges

Number Reaction Rate Constant (cm3/s) Source

1 eþ CF4
! CF3þ F2

! CF3
2þ F

4.6E2 9 Te
23/2 exp(27/Te) a

2 eþ CF4! CF3þ Fþ e 2E29 exp(213/Te) b

3 eþ CF4! CF2þ 2Fþ e 5E29 exp(213/Te) b

4 eþ CF4! CF3
2þ Fþ 2e 1.5E28 exp(216/Te) a

Notes: Te between 3 and 6 V. The notation E29 means 1029.
aBased on cross sections of Hayashi (1987).
bBased on data of Plumb and Ryan (1986).

TABLE 15.3. Selected Values of Rate Constants K2 and K03 for Association
Reactions in CF4 Discharges

Number Reaction K2 (cm
3/s) K 03 (cm

6/s)

1 Fþ CF3þM! CF4þM 2E2 11 7.7E2 27

2 Fþ CF2þM! CF3þM 1.3E2 11 3.0E2 29

3 CFþ FþM! CF2þM 1E2 11 3.2E2 31

4 CF3þ CF3þM! C2F6þM 8.3E2 12 2.8E2 23

5 CF2þ CF3þM! C2F5þM 1E2 12 2.3E2 26

Notes: Here M represents CF4. The notation E2 11 means 10211.

Source: After Plumb and Ryan (1986).
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impact detachment or associative detachment in the volume, and positive ions are

lost by this same recombination in the volume and by flow or diffusion to the walls.

Etchant atoms can be lost to a surface by adsorption followed by recombination,

for example,

F:Sþ F:S �! F2(g)þ 2S

or by reaction with the surface, for example,

F:Sþ SiFx �! SiF4(g)

Atoms that are not lost are desorbed back into the discharge. For fluorine atoms, as

shown in Problem 9.11, the probability grec that atoms adsorb and recombine on

most surfaces is generally small at the substrate temperatures and atom densities

characteristic of etching discharges. For example, F atoms incident on Al2O3,

SiO2, Pyrex, Teflon, stainless steel, Mo, Ni, and Al–0.1%Cu have recombination

probabilities grec � 10�4 –10�3 at 300 K (Flamm, 1989). However, there are

some exceptions: grec & 0:01, 0.05, and 0.2 for F atoms on Cu, brass, and Zn,

respectively. For chlorine and oxygen atoms, recombination probabilities can be

larger than those for fluorine atoms, up to � 0:1 for many surfaces. The reaction

probability gr for F atoms is negligible on most surfaces, but can be significant

for some surfaces, for example, gr � 0:0017 and 1 for Si and BN, respectively.

In many cases, except by design (i.e., substrates to be etched), etchant atoms

incident on surfaces in processing discharges are recycled back into the discharge

as atoms.

The behavior of free radical molecules incident on surfaces is more complicated

due to their possible dissociation. On nonactive surfaces, free radicals can be

adsorbed without dissociation. Their subsequent probabilities for recombination

or reaction with the surface are generally small, as for etchant atoms. An example

is the adsorption of CF3 on SiO2, which is nondissociative. The recombination

and reaction probabilities are small, so most CF3 radicals incident on SiO2 desorb

as CF3 radicals.

However, on active surfaces such as pure silicon, CF3 and CF2 radicals generally

dissociatively adsorb, producing a C atom and three (or two) F atoms that each bond

to the silicon. Although these radicals deliver etchant atoms to the surface, they also

deliver C atoms, which can form a protective film on the surface that inhibits the etch

reaction. Similarly, CF3 and CF2 can dissociatively or nondissociatively adsorb on

an SiFx layer, leading to a buildup of carbon or polymer film. It is unlikely that the

film will be removed from the surface in the absence of ion bombardment except as

CF4(g). Hence, the flux of CFx radicals (x , 4) reduces the silicon etch rate. If GCFx

is the net flux of CFx adsorbed, GF is the net flux of F atoms adsorbed, GSiF4 is the flux

of SiF4 desorbed, and GCF4 is the flux of CF4 desorbed, then conservation of C atoms

on the surface requires GCF4 ¼ GCFx , and conservation of F atoms on the surface

requires

xGCFx þ GF ¼ 4GCFx þ 4GSiF4 (15:3:9)
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Solving for the etch rate, we obtain

ESi ¼ GSiF4

nSi
¼ GF � (4� x)GCFx

4nSi
(15:3:10)

For GF , (4� x)GCFx , there is net deposition of carbon and the etch rate is zero

(Problem 15.3). For x � 3, we see that the condition for etching is GF . GCFx .

Ion bombardment can shift the balance in (15.3.10) in one of two ways: (1) It can

increase the ratio GF=GCFx of net fluxes adsorbed. (2) It can lead to desorption of

CFy; y , 4, due to physical sputtering of CFy polymer (and also of C) and due to

ion energy driven etching of CFy polymer, in the same manner that ion energy

driven F atom etching of silicon leads to SiF2 etch product release from the SiFx
surface. For desorption of CFy, (15.3.10) is replaced by

ESi ¼ GSiF4

nSi
¼ GF � (y� x)GCFx

4nSi
(15:3:11)

For y � x, there is always etching.

Under fluorine-poor discharge conditions or energetic ion bombardment,

spatially hollow profiles of CF and CF2 radicals have been measured (Booth

et al., 1999; Cunge and Booth, 1999). This suggests that the surfaces in CF4
discharges are net sources of these radicals. The data and models (Zhang and

Kushner, 2000) suggest that the mechanism involves the reaction of incoming

CFþ3 ions, multicarbon (C2Fx etc) radicals, and, possibly, CF3 radicals with the

fluorinated surface, producing the CF and CF2 products.

Evidently, the ratio F/C of fluorine atoms to CFx radicals in the discharge is an

important process parameter in determining whether etching or film deposition

occurs. Figure 15.7 gives an illustrative picture (not quantitative) of the boundary

between etching and deposition as the F/C feedstock gas ratio and the bias

voltage (ion bombarding energy) are varied in typical fluorocarbon discharges.

We describe methods for varying the F/C ratio below. The general trends indicated

in this picture follow from (15.3.11). For F/C . 3, there is etching independent of

bias voltage, and so both trench sidewalls and bottoms are etched. Although the hori-

zontal (sidewall) rate is not ion assisted and can be small compared to the vertical

rate, the sidewall is not protected by inhibitor film, and the etch anisotropy is not

large. For 2 , F=C , 3, the sidewalls are protected by inhibitor film, but the ion

bombardment exposes the trench bottoms to the etchants; this is the regime of

highly anisotropic etching using fluorocarbon feedstocks. For F/C , 2, there is

film deposition on both sidewall and bottom and etching ceases.

The loading effect was described in Section 15.2. For a fixed feedstock flow rate,

the F-atom density in the discharge is depressed as the area of silicon being etched

increases, due to the formation of SiF4 etch product. Hence the F/C ratio decreases

and the equilibrium for the system shifts toward the left, as indicated in Figure 15.7.

This can lead to polymer formation under heavy loading conditions.
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O2 and H2 Feedstock Additions

Oxygen gas is often added to the feedstock. Figure 15.8 gives the variation of the

silicon etch rate ESi and the F atom concentration nF versus percent O2 for a

CF4=O2 feedstock mix in a capacitive rf discharge reactor (Mogab et al., 1979).

FIGURE 15.7. The influence of fluorine to carbon (F/C) ratio and electrode bias voltage on

etching and polymerization processes in a fluorocarbon discharge (Coburn and Winters,

1979).

FIGURE 15.8. Locus of silicon etch rate ESi and F-atom concentration nF as the %O2 is

varied in a CF4/O2 feedstock mix (Mogab et al., 1979).
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O2, CO2, CO, and COF2 are now seen in addition to CF4, SiF4, and C2F6 effluents.

Three different regimes are observed:

1. Up to roughly 16% O2, ESi and nF increase with %O2.

2. Between 16 and 30% O2, ESi decreases with %O2, although nF continues to

increase.

3. Above roughly 30% O2, both ESi and nF decrease.

It is generally agreed that the first regime of increasing ESi and nF with percent O2 is

due to O atom (and, possibly, O2 molecule) “burning” of CFx unsaturates either in

the gas phase or on the surface:

Oþ CF3 �! COF2 þ F

Oþ CF2 �! COþ 2F

�! COFþ F

�! COF2

Oþ COF �! CO2 þ F

Oþ C �! CO

etc:

(15:3:12)

In addition to destroying CFx radicals, many of these reactions produce F atoms, thus

increasing nF. Furthermore, the net flux GO of O atoms (or O2 molecules) adsorbed

on the surface modifies the etch rate by removing adsorbed carbon from the surface:

ESi ¼ GF þ GO � (y� x)GCFx

nSi
; GO , (y� x)GCFx (15:3:13)

Hence ESi increases with percent O2 because both GF and GO increase and because

GCFx decreases. This shift in equilibrium to the right with O2 addition is indicated in

Figure 15.7.

The second regime of increasing nF and decreasing ESi is believed to be due to the

competition of O atoms for chemisorption sites on the SiFx lattice. Hence in this

regime, the surface layer becomes more “oxidelike”, reducing the etch rate. In

this regime, there is no C on the surface, and a crude model for the etch rate gives

ESi ¼ GF

nSi(1þ hOGO=GF)
(15:3:14)

where hO gives the competitive efficiency for O atoms over F atoms to be adsorbed.

The third regime in which both nF and ESi decrease is believed to be due to oxygen

dilution effects; that is, the flow of F atoms into the discharge is reduced by the

percent O2 in the feedstock.
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The chemistry of CF4=O2 discharges is extremely complicated. In addition to the

CF4 reactions listed in Tables 15.1 and 15.2, and the neutral chemistry (15.3.12) in

the gas phase and on the surface, electron dissociation of O2, COF2, and CO2 is

important, and some three-body gas-phase reactions, for example,

COFþ FþM �! COF2 þM

might also be significant at high pressures. A fairly complete model of the gas-phase

chemistry has been developed (Plumb and Ryan, 1986).

Hydrogen gas is sometimes added to the feedstock mix. The key additional

reaction on the surface or in the gas phase is

Hþ F �! HF

which reduces the F-atom concentration, thus shifting the equilibrium to the left in

Figure 15.7, toward increasing polymer formation.

Cl-Atom Etching

Chlorine atoms differ from fluorine atoms in two major respects for pure chemical

silicon etching: (1) There are pronounced crystallographic effects, and (2) there is a

large doping effect. Figure 15.9 shows the pure chemical etch rate ESi at 400 K for

doped silicon as a function of doping concentration nD for various crystallographic

FIGURE 15.9. Etch rate ESi versus doping level nD and crystallographic orientation for

Cl-atom etching of n-type silicon at 400 K; pCl is the partial pressure of Cl atoms (after

Ogryzlo et al., 1990).
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conditions. The etch rates fit a generalized Arrhenius form (Ogryzlo et al., 1990):

ESi( �A=min ) ¼ An
g
DnClST

1=2 e�B=T (15:3:15)

where the parameters A, B, and g are given in Table 15.4. The activation energy

Ea ¼ kB=e � 0:19V is roughly independent of doping level and crystallographic

orientation. The very strong dependence on nD indicates that Cl� ions formed on

the surface must play a critical role in Cl-atom etching, as was found for F� ions.

The dependence of the etch rate on crystallographic orientation can be ascribed to

the different area densities of silicon atoms (or Si–Si bonds) at the surface. The

111 orientation has a higher density than the 100 orientation, which reduces Cl or

Cl� penetration into the lattice for 111, leading to a lower etch rate.

Exposure of a pure silicon surface to Cl2 leads to dissociative chemisorption

which saturates at about one monolayer. Continued exposure can lead to a slow

growing silicon chloride corrosion phase, but this regime is not of interest in

typical etch applications. Etching rates are not significant for Cl2 at room tempera-

ture. Hence, Cl2 can and often does serve as a feedstock for Cl atom etching.

Exposure of a silicon surface to Cl atoms leads to formation of an SiClx layer

several monolayers thick, thinner than that formed using F atoms. Using

(15.3.15), pure chemical etch rates are found to be very small for Cl atoms on

undoped silicon, but can be substantial for heavily n-doped silicon. The etch

products at room temperature are SiCl4 and possibly Si2Cl6 and SiCl2.

Many surface studies of ion-assisted etching have been with Cl2 molecules, not

Cl atoms. Etch products such as SiCl and SiCl2 have been seen, in addition to SiCl4
and Si2Cl6. There is general agreement that ion beam-induced mixing and recoil

implantation of dissociated Cl2 molecules on the surface lead to formation of an

SiClx layer more than one monolayer thick, similar to that formed for pure Cl-

atom etching. The ion-assisted etch yields (silicon atoms removed per incident

ion) with Cl2 are comparable to those seen using F2, but are a factor of 5–10

lower than those seen for ion-assisted F atom etching. For example, yields of 3–5

have been observed for 1-kV Arþ ions with an adequate flux of Cl2 molecules.

For ion-assisted Cl-atom etching, molecular beam studies (Chang and Sawin,

1997) suggest that the etch yields for Cl atoms are two to three times higher than

for Cl2 molecules at the high neutral-to-ion flux ratios. Hence both Cl atoms and

TABLE 15.4. Coefficients of the Modified Arrhenius Form

for Cl Atom Etching of n-type Silicon

Crystallographic

Orientation

A

(Å cm3þ3g/min K1/2)

B

(K) g

Polysilicon 4 � 10218 2365 0.39

k100l 1.1 � 10217 2139 0.29

k111l 1.6 � 10231 2084 1.03

Source: Flamm (1990).
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Cl2 molecules can be important etchants for ion energy-driven etching. Br atoms are

even less reactive than Cl atoms. No room-temperature pure chemical etching is

observed, even for heavily n-doped silicon. At higher temperatures, etching is

observed and a very large doping effect is seen.

15.4 OTHER ETCH SYSTEMS

In this section, we describe briefly some common etch systems. For a more thorough

description, the review of Flamm (1989) should be consulted.

F and CFx Etching of SiO2

F atoms are known to etch SiO2, although the pure chemical etch rate (15.3.2) is

small and almost never significant in real etch systems. No more than a monolayer

of fluorine is adsorbed on an SiO2 surface. It is also known that CFx radicals do not

spontaneously etch SiO2 and, furthermore, that these radicals do not dissociatively

adsorb on SiO2. Hence, there is essentially no pure chemical etching of SiO2 in

fluorocarbon plasmas, and all observed etching is ion energy driven.

Large ion-induced etch rates for SiO2, &2000 Å/min, are seen for high ion-

bombarding energies, & 500V, with both F atoms and CFx radicals as the etchant

species. The etching is anisotropic, and the etch rate correlates with the ion-

bombarding energy and is independent of the substrate temperature. The loading

effects are much smaller than those seen for F-atom etching of silicon. For F

atoms, there is no selectivity for SiO2 over silicon. Consequently, discharges rich

in F atoms are generally not used to etch SiO2 in the presence of silicon. High selec-

tivity can be achieved for CFx radical etchants that are produced using low F/C ratio

fluorocarbon feedstocks, for example, c-C4F8, or by adding hydrogen to saturated

feedstocks, for example, CF4=H2 mix. In both cases, the F-atom density is sup-

pressed and a high density of CFx unsaturates is created, as described in Section

15.3. Under these conditions, the etch products that are seen include SiF4, SiF2,

SiOF2, CO, CO2, and COF2. Figure 15.10 shows the variation of the gas phase den-

sities nF and nCF2 and the SiO2 etch rate ESiO2
versus percent H2 and percent O2

added to a CF4 parallel plate discharge (Flamm, 1989). For O2 addition, nF
increases, nCF2 is suppressed, and ESiO2

, due to F atom etchants, increases with

percent O2 up to 30 percent O2 addition. However, the etching is not selective

over silicon. In contrast, with addition of H2, nF is suppressed and nCF2 increases,

leading to a mild increase in ESiO2
and a strong decrease in ESi (not shown), with

SiO2=Si selectivity as high as 15:1. This is the regime of anisotropic selective

etching of SiO2 over silicon. The SiO2 etch rate is observed to abruptly fall to

zero above roughly 20 percent H2 addition. As will be seen below, this is due to

polymer film formation on the SiO2 surface.

Under the action of ion bombardment and high-incident CFx radical flux, an

SiCxFyOz layer as thick as 10–20 Å forms on the SiO2 surface. For lower radical

fluxes, the layer is thinner. Ion beam mixing of adsorbed CFx radicals is believed
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to play an important role in formation of this layer. Under these conditions, the etch

mechanisms are believed to be similar to those seen for F atom etching of silicon

(Butterbaugh et al., 1991). The most important mechanism is probably the breaking

and reforming of bonds within and on the surface of the SiCxFyOz layer due to the

collision cascade produced when an energetic ion hits and penetrates the surface.

This produces easily desorbable etch products that are weakly bound to the

surface, such as SiF4, SiF2, CO, CO2, COF2, SiOF2, and, possibly, O2. A crucial

point is that adsorbed C atoms can here act as etchants, removing oxygen from

the surface by reactions such as

ionþ C(s)þ SiO2(s) �! CO(g)þ SiO(s)þ ion

�! CO2(g)þ Si(s)þ ion

FIGURE 15.10. SiO2 etch rate (top) and plasma-induced emission for CF2 and F/Ar
actinometric emission ratio (bottom) versus percent H2 and percent O2 addition to a CF4
parallel plate discharge (Flamm, 1989).
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Hence the presence of oxygen in the lattice impedes carbon buildup, allowing the

surface to be etched. For the same conditions, carbon-containing polymer films as

thick as 100–200 Å are observed to form on silicon as well as on nonactive surfaces.

The film on silicon inhibits the etch reaction there, leading to the high observed

selectivities for SiO2=Si under unsaturate rich conditions (see also Figure 15.7).

Even for discharge conditions that do not lead to carbon-containing film deposition

on silicon, (15.3.10) shows that the silicon etch rate can be small in CFx-rich dis-

charges, thus leading to high selectivities in the absence of polymer buildup on

silicon surfaces. On the other hand, for very high unsaturate concentrations (.20

percent H2 in CF4=H2 mix), SiO2 etching ceases due to formation of thick

polymer films on SiO2 surfaces also, as seen in Figure 15.10.

Si3N4 Etching

Silicon nitride is commonly used as a mask material for patterned oxidation of

silicon, as a dielectric, and as a final passivation layer. There are two kinds of

material: Si3N4 produced by chemical vapor deposition (CVD) at high temperatures,

and that grown under plasma-enhanced conditions (PECVD) at temperatures less

than 4008C. The latter material does not necessarily have 3:4 Si/N stoichiometry

and generally has a significant fraction of H atoms in the lattice. Etch rates for

PECVD material are generally high compared to CVD Si3N4.

Pure chemical F-atom etching of Si3N4 can have selectivities of 5–10 over SiO2,

but is not selective over silicon. The etching is isotropic with an activation energy of

order 0.17 V. Anisotropic ion energy driven etching of Si3N4 is performed using low

F/C ratio fluorocarbon feedstocks. There is little selectivity over SiO2, but fairly

high selectivities over silicon and resist can be attained.

Aluminum Etching

Aluminum is commonly used as an interconnect material in integrated circuits

because of its high electrical conductivity, excellent bondability and adherence to

silicon and SiO2, compatibility with CVD oxide and nitride, and ability to form

both ohmic and Schottky contacts with silicon. Since AlF3 is involatile, F atoms

cannot be used to etch aluminum, and Cl2 or Br2 feedstocks are used instead.

These vigorously and isotropically etch aluminum in the absence of ion bombard-

ment. Molecular chlorine etches pure clean aluminum without a plasma; in fact,

Cl2 rather than Cl appears to be the primary etchant species for aluminum in

etching discharges. The main etch products are Al2Cl6(g) at low temperatures

(.2008C) and AlCl3(g) at higher temperatures.

An ion-enhanced etch with inhibitor chemistry is needed to anisotropically etch

aluminum. For Cl2 feedstock, additives such as CCl4, CHCl3, SiCl4, and BCl3 are

used. Cl2 and Cl do not etch Al2O3, even in the presence of ion bombardment.

Processes used to break through the native oxide (�30 Å thick) and initiate the

aluminum etch include physical sputtering due to the ion bombardment and
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additives such as CCl4, SiCl4, and BCl3. Unsaturated radicals produced from these

feedstock additives etch Al2O3 at slow rates.

Water vapor interferes with aluminum etching and must be excluded from the

system or scavenged using water-seeking additives such as BCl3 and SiCl4.

Copper is often added to aluminum to harden the material and increase its resistance

to electromigration and hillock formation. A material such as Al–5%Cu is hard to

etch because copper chloride (CuCl3) is nearly involatile at room temperature; its

heat of vaporization is 15.4 kJ/mol and its vapor pressure is 1 Torr at 5728C.
This material can be etched at temperatures considerably exceeding room tempera-

ture or in systems having high ion-bombarding fluxes, with consequent high phys-

ical sputtering rates for the copper. Aluminum chloride products can react with

photoresist mask materials during etching. To reduce the deterioration of mask

materials, the substrate temperature must be kept below 100–1508C. Post etch cor-

rosion due to AlCl3 or Al2Cl6 deposits on the wafer can be a problem. These react

with water vapor to generate HCl, which can corrode the aluminum and other struc-

tures on the wafer. Hence a wet (HNO3) or dry chemistry (fluorocarbon plasma) is

used to remove any remaining aluminum chloride etch product from the surface. The

dry process converts aluminum chlorides to unreactive aluminum fluorides.

Copper Etching

Copper is finding increasing use as an interconnect material, replacing aluminum in

high performance integrated circuits, because its electrical conductivity is almost 60

percent higher and it has a significantly larger electromigration resistance. However,

unlike aluminum, a commercially successful etching process has not been devel-

oped, due to the low vapor pressures of the copper halides. The copper fluorides

are involatile and the copper chlorides have reasonable vapor pressures only at

temperatures exceeding 2008C (Kulkarni and DeHoff, 2002; see also Table 7.5),

limiting practical etching with organic photoresist masks.

Cl2 etching has been the most well-studied process. Continuous exposure of

copper to Cl2 leads to a film of CuClx, x � 1, whose thickness grows linearly

with time. This indicates that the film growth is limited by the sticking probability

of Cl2, or possibly by CuCl growth at the film–copper interface, rather than by dif-

fusion of Cl2 through the film (Winters, 1985). The dominant etch product below

�5808C is found to be the ring-shaped molecule Cu3Cl3, having an activation

energy for desorption of 138 kJ/mol, roughly the sublimation enthalpy of

Cu3Cl3(g) from CuCl(s). The evaporation rate of Cu3Cl3 from the CuCl surface is

about that expected from vapor pressure considerations, in the absence of a

steady Cl2 flux incident on the surface. However, in the presence of a steady Cl2
flux, the measured flux of Cu3Cl3 etch product is several orders of magnitude

smaller than this evaporation rate. Various schemes have been investigated to

increase this etch rate, such as the addition of infrared or ultraviolet radiation to

the substrate during Cl2 exposure. Various two-step processes have also been

studied, in which Cl2 is used to form a patterned CuCl film at low temperatures,
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and the CuCl film is subsequently removed by an additional gas phase or wet

chemical process.

Copper etching in chlorine-containing plasmas has also been investigated. For

example, Lee et al. (1997) studied the copper etch mechanism in low pressure

CCl4=N2 plasmas. They found that chlorine atoms were the main etching species

and that CuCl2 was the main etch product formed on the surface. For a grounded

substrate, the etch rate was found to rise abruptly with substrate temperature, with

no etching below 1908C, and roughly 600 nm/min above 2108C.
Because a viable low-temperature copper etch process has not been developed,

copper interconnects are usually patterned using a damascene process, in which a

dielectric layer is first deposited on the substrate. The copper interconnect pattern

is plasma-etched into the dielectric, and copper is then deposited over the entire

surface using physical or chemical vapor deposition or electroplating. Finally, the

excess copper on the surface is removed by chemical–mechanical polishing

(CMP). Hence in this process dielectric etching replaces metal etching in forming

the interconnects.

Resist Etching

Photoresist mask materials are primarily long-chain organic polymers consisting

mostly of carbon and hydrogen. Oxygen plasmas are used to isotropically etch

(“strip”) resist mask materials from wafers and are also used for anisotropic pattern

transfer into these materials in so-called surface imaged dry development schemes

for photoresists. An active etchant for both applications is O atoms. Pure chemical

etching of resists using O atoms is isotropic and highly selective over silicon and

SiO2. It is generally characterized by an activation energy of 0.2–0.6 V. In some

cases, the etch rate does not have a simple Arrhenius form, with two activation

energies depending on whether the substrate temperature is above or below the

“glass transition temperature” Tg of the resist. For example, polymethyl methacrylate

(PMMA) has Tg � 60–908C, with Ea � 0:2V for T , Tg and Ea � 0:4V for

T . Tg.

Pure chemical etch rates for many resists are low but can be enhanced by addition

of a few percent C2F6 or CF4 to the feedstock mix. This may be due to F atom reac-

tions with the resist to produce HF etch product, leaving unsaturated or radical sites

on the polymer for subsequent O-atom attack. In some cases, the measured

activation energy is lowered by a factor of as much as three with F-atom addition.

Alternatively, it is known that small additions of fluorine atoms can increase the

O-atom concentration in the discharge, thus increasing the etch rate. This may be

due to a reduction in the O-atom recombination rate on the reactor walls because

of F-atom chemisorption.

Ion-enhanced anisotropic etching in O2 plasmas is used for dry development of

surface-imaged photoresists, in which only a small fraction of the volume at the

top of the photoresist layer is exposed to the light. There are a number of motivations

for use of surface-imaged resists. As lateral feature sizes continue to decrease,

optical wavelengths to expose the patterns must also decrease. For decreased
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wavelengths, the depth of focus in the resist is also reduced. Hence the pattern is not

in accurate focus throughout the entire thickness of the resist. A second motivation is

that optical reflections from the layer underlying the resist can be eliminated. These

reflections can lead to photoresist exposure in regions not directly illuminated, with

consequent pattern transfer that is not faithful to the original image. A final motiv-

ation is that resists become naturally opaque to light as the wavelength is reduced

into the deep UV region below 2000–2200 Å; for wavelengths below these,

surface imaging technology may be required.

A typical process flow is shown in Figure 15.11. First, the top 0.2 mm of a 1.5-mm
thick layer of photoresist is optically exposed to a pattern. Second, the resist is

silylated by exposure to a silicon-containing gas. The silicon is selectively absorbed

into the exposed photoresist, but is not absorbed into the unexposed photoresist.

Finally, the photoresist is anisotropically etched in an O2 plasma. The O atoms

initially react with the exposed, silicon containing surface layer to create an SiOx

FIGURE 15.11. A typical process flow for a silylated surface imaged resist dry development

scheme.
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mask that is impervious to subsequent ion-assisted O-atom etching. The unexposed,

nonsilicon-containing photoresist is anisotropically etched. The original surface

image is therefore transferred into the entire thickness of the resist film. Clearly

the unsilylated/silylated etch selectivity is a critical process parameter. Minimum

selectivities of 10–20 are required.

The balance between ion bombardment and O-atom flux is delicate in this appli-

cation. On the silylated areas, the O-atom flux must be large enough to oxidize the

silylated layer to form the SiOx mask, and the ion bombardment must be weak

enough so that the mask is not physically sputtered away during the etch of the unsi-

lylated areas. For the unsilylated areas, the ion energy and flux must be large enough

to transfer the pattern with near vertical sidewalls into the resist. Any SiOx sputtered

onto the unsilylated areas may serve as a micro mask during the etch, leaving resi-

dues, often called “grass,” on the unsilylated regions after the etch is completed. The

requirement of anisotropic etching with low physical sputtering is severe and

demands careful control of both ion energy and flux. Hence high-density discharges,

rather than rf diode discharges, which lack this control, are generally used. Fluoro-

carbon feedstock additions cannot be used to enhance the etch rate of unsilylated

resist, or to prevent formation of residues or remove them during etch, because

such additions lead to greatly enhanced etch rates for the SiOx mask, and consequent

reductions in unsilylated/silylated selectivity below the required minimum. In fact,

trace fluorine contaminants have been found to have adverse effects on the

selectivity.

15.5 SUBSTRATE CHARGING

The flow of ions and electrons to patterned wafers during etching can charge features

on the surface. This, in turn, can cause damage to underlying insulating films or can

produce undesired distortions of ideal etch profiles. For example, consider the MOS

transistor shown in Figure 15.12. The conducting gate electrode (usually poly-

silicon) is separated from the underlying (conducting) silicon substrate by a thin

FIGURE 15.12. An antenna structure for an MOS transistor on a grounded silicon substrate.
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(2–20 nm) gate oxide. Charge collected on this gate generates an oxide electric field

that can exceed the breakdown value, thus causing failure. Even if the breakdown

field is not exceeded, the voltage produces a current flow through the oxide,

which can generate defects, leading to oxide failure.

Gate Oxide Damage

For thin (2–20 nm) gate oxides, damage due to oxide breakdown is a concern for

fields Eox & 10MV=cm. In addition, thin oxides are not perfect insulators because

electrons can tunnel through the oxide. The resulting flow of current weakens the

oxide by causing charge trapping in the oxide and interface trap generation at

the SiO2=Si interface. There are various tunneling mechanisms, and we consider

here only Fowler–Nordheim tunneling with

JFN ¼ KE2
ox exp (� B=Eox) (15:5:1)

with K � 20mA=V2 and B � 250MV=cm. For thin oxides (Tox , 12 nm), a hole-

induced breakdown model has been found to reproduce oxide failure data quite

well (Schuegraf and Hu, 1994). This model predicts the mean time tBD for 50

percent of the devices to fail

tBD ¼ t0 exp (G=Eox) (15:5:2)

where t0 � 10�11 s and G � 350MV=cm. This is often expressed as a mean flow of

charge QBD ¼ JFNAoxtBD through the oxide for 50 percent failure of the devices.

Experimentally, it is found that a flow of as much as 1 percent of QBD through

the device has deleterious effects, for example producing a 5 percent reduction in

transistor gain. Hence it is desirable to limit the time integrated flow of current

through the oxide to below 1 percent of QBD.

Grounded Substrate

Let us consider the oxide voltage and current for the structure shown in Figure 15.12,

with a gate oxide area Aox and a field oxide area Af ; the total gate conductor area is

Ag ¼ Aox þ Af . We assume that the silicon substrate is grounded. Let Vp and Vg be

the plasma and gate conductor potentials with respect to ground. From (6.6.4), the

plasma current flowing to the gate is

Ip ¼ Ii � Ie0 exp½�(Vp � Vg)=Te
 (15:5:3)

where Ii ¼ JiAg � 0:61 enuBAg, Ie0 ¼ Je0Ag ¼ 1
4
en�veAg, uB ¼ (eTe=M)1=2, and

�ve ¼ (8eTe=pm)
1=2. For a perfectly insulating gate oxide, Ip ¼ 0 and from

(15.5.3), Vg ¼ Vp � Vf , where

Vf ¼ Te

2
1þ ln

M

2pm

� �

(15:5:4)
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is the floating potential. Note that Vf is independent of plasma density. For a gate

oxide thickness Tox, the electric field is Vg=Tox. For example, if Vg ¼ 5V and

Tox ¼ 10 nm, we find Eox ¼ 5 MV=cm, not sufficient for breakdown. It is usually

the case that Vg is not large enough for breakdown.

From (15.5.1), the tunneling current can be written in terms of Vg as

IFN ¼
KAoxV

2
g

T2
ox

exp �BTox

Vg

� �

(15:5:5)

Plotting Ip versus Vg and IFN versus Vg on the same graph yields the equilibrium sol-

ution for the oxide current Ip ¼ IFN. This has been done by Shin and Hu (1996) and

is shown in Figure 15.13 for typical plasma and gate parameters and various values

of oxide thickness. The oxide I–V characteristic is similar to that of a diode, and can

approximated as a near-vertical line at the turn-on voltage, as seen in the figure. The

plasma characteristic is also that of a diode, that is, the ion saturation and transition

regime of a Langmuir probe (see Figure 6.6). For thick oxides, the current flow is

impeded; hence the current is seen to decrease and the oxide voltage increase. For

thin oxides which have a low impedance, the maximum current density that can

flow through the oxide can be written as (AR þ 1)Ji, where AR ¼ Af=Aox is called

the antenna ratio; usually AR � 1. Hence the current is proportional to the

antenna ratio in this regime. An important design consideration is to minimize the

antenna ratio during processing.

Nonuniform Plasmas

The substrate is rarely grounded in plasma etch systems. For an isolated floating

substrate, the oxide current vanishes, and Eox ¼ 0 from (15.5.1). Hence there is

FIGURE 15.13. Plasma current Ip and oxide current IFN versus antenna voltage Vg for

various gate oxide thicknesses (after Shin and Hu, 1996).
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apparently no damage. However, let us consider, following Cheung and Chang

(1994), the more usual case of an entire wafer in a nonuniform plasma. The

Boltzmann relation (2.4.16) requires that a radially decreasing density profile

produces a radially decreasing plasma potential

Vp(r) ¼ Te ln
n(r)

n(0)
(15:5:6)

We assume first, as shown in Figure 15.14a, that the conducting substrate is

surrounded by insulator, such that no plasma currents can flow to its surface.

There are two MOS transistors, at the wafer center and off-center, with thick gate

oxides that are nearly insulating. The conducting gate potentials Vg2 and Vg1 at

FIGURE 15.14. Gate oxide damage mechanisms in a nonuniform plasma: (a) thick oxide

with insulated substrate, showing formation of an open circuit voltage Voc; (b) thin oxide

with insulated substrate, showing formation of a short circuit current Isc; (after Cheung and

Chang, 1994).
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the wafer center and off-center are then

Vg2 ¼ Vp2 � Vf;

Vg1 ¼ Vp1 � Vf;
(15:5:7)

where Vp2 and Vp1 are the center and off-center plasma potentials. We see that an

open circuit voltage Voc ¼ Vp2 � Vp1 appears across the series combination of the

two gate oxides. This voltage capacitively divides across the oxides depending on

their thicknesses and areas (Problem 15.5). The resulting voltages across the

oxides may break down one or both of them.

Consider next thin gate oxides that are nearly perfectly conducting (Fig. 15.14b).

Since the gate potentials are equal, we have

Vg ¼ Vp2 � V2 ¼ Vp1 � V1 (15:5:8)

where V2 and V1 are the plasma-to-gate electrode voltages at the center and off-

center, respectively. A short circuit current flows from the center to the off-center

transistor:

Isc ¼ Ii2 � Ie2 e
�V2=Te ¼ �(Ii1 � Ie1 e

�V1=Te ) (15:5:9)

Solving (15.5.8) and (15.5.9), we obtain

V2 ¼ Te ln
Ie2 þ Ie1 e

(Vp2�Vp1)=Te

Ii2 þ Ii1
(15:5:10)

V1 ¼ Te ln
Ie2 e

�(Vp2�Vp1)=Te þ Ie1

Ii2 þ Ii1
(15:5:11)

Isc ¼
Ii2 e(Vp2�Vp1)=Te � 1
� �

Ie2=Ie1 þ e(Vp2�Vp1)=Te
(15:5:12)

Note that Isc � Ii2. For the limiting case of a large difference in plasma potentials,

Vp2 � Vp1 � Te, we find V1 � Te ln½Ie1=(Ii2 þ Ii1)
 � Vf , V2 � Vp2 � Vp1 þ V1,

and Isc � Ii2. Hence the current flow is limited by the “back biased” plasma diode

at the center to Ii2, and almost all the potential difference Vp2 � Vp1 across the

circuit is dropped across the plasma sheath at the center. This illustrates a general

principle that can be used to analyze more complicated configurations, namely,

that the sheaths at regions of more positive plasma potential are back biased and

drop most of the potential difference, limiting the current there to the ion saturation

value. The sheaths at regions of smaller plasma potential act as forward biased

diodes, with a potential drop near, but somewhat smaller than, the floating potential

Vf given in (15.5.4).

The substrate may not be completely surrounded by insulator. For a wafer whose

substrate edge is exposed to the plasma, the substrate potential with respect to
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ground is Vs � Vp0 � Vf , where Vp0 is the plasma potential at the substrate edge. For

thin (low impedance) oxides, Vg � Vs, and current flows from the plasma through

both center and off-center gate oxides into the substrate and returns to the plasma

at the substrate edge. If essentially the entire substrate area is exposed to the

plasma, then Vs � Vp0 � Vf . Plasma current flows into the wafer near its center

and out near its edge (Problem 15.6).

Transient Damage During Etching

Consider the etching of a deposited polysilicon film to form gate electrodes. The

gates (areas Aox) are covered with a protective layer of photoresist; the uncovered

areas are to be removed. As shown in Figure 15.15a, during most of the etch

time, the film is continuous and plasma currents flow into the film near its center

and out near its edge. Since these currents do not flow through the gate oxides,

they are not damaged. Near the end of the etch time, the film generally clears first

in the middle of the unpatterned areas. Then we obtain the situation shown in

Figure 15.17b, with isolated gates having large antenna ratios. Large currents can

flow through the gate oxides, causing damage. Finally, after a sufficient overetch

FIGURE 15.15. Transient damage of gate oxide during polysilicon etching in a nonuniform

plasma: (a) during most of the etch time the film is continuous and currents do not flow in the

gate oxide; (b) near the end of the etch time there are isolated gates with large antenna ratios,

and large currents flow in the gate oxide.
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time, the polysilicon has been entirely cleared from the unprotected areas, greatly

reducing the plasma current collected at the gates, and therefore, the damage.

Electron Shading Effect

The wafer topography itself can induce dc current flows through gate oxides on

ungrounded substrates even in uniform plasmas (Hashimoto, 1994), causing

damage. Figure 15.16 shows a moment near the endpoint for etching a pattern of

conducting lines connected to a gate oxide. The lines are protected by a patterned

photoresist layer. The plasma is uniform and the substrate edge is exposed to the

plasma. It is found experimentally that a dc current can flow from the plasma into

the pattern of lines, through the gate oxide, and return to the plasma at the

exposed substrate surface. This effect can be understood as a result of the different

fractions of incident ions and electrons that are absorbed by the insulating resist

surface. The bombarding ions have strongly anisotropic velocities directed toward

the wafer surface. Hence the fraction of ions absorbed by the resist is roughly pro-

portional to its top surface area. Electrons are also absorbed at the top surface.

However, because they have an isotropic velocity distribution, electrons entering

the trenches are additionally absorbed on the resist sidewalls.

Let us model the flow of ions and electrons to the resist surface using absorption

fractions ai and ae for incident ions and electrons. We assume that ae � ai. The

current flowing to the resist surface must vanish:

Ir ¼ aiIi � aeIe0 e
�Vr=Te ¼ 0 (15:5:13)

which yields the plasma-to-resist potential

Vr ¼ Vf þ Te ln
ae

ai

(15:5:14)

FIGURE 15.16. Gate oxide damage in a uniform plasma due to the electron shading effect

(after Hashimoto, 1994).
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Since ae=ai . 1, we find that Vr . Vf . The current collected by the conducting gate

is that not collected by the resist:

Ig ¼ (1� ai)Ii � (1� ae)Ie0 e
�Vr=Te (15:5:15)

Substituting (15.5.14) into (15.5.15) to eliminate Vr, we obtain

Ig ¼ Ii(1� ai=ae) (15:5:16)

The factors ai and ae are difficult to determine theoretically. They depend not

only on the geometrical factors of the resist (width w, height h) and the line

spacing d (see Fig. 15.16), but also on the gate-to-resist potential drop Vgr, and

the ion and electron energy and angular distributions. A purely geometrical estimate

for ions would give ai � w=d. For electrons, there is the same estimate from the

resist lines and an additional contribution from the resist spaces with a solid angle

factor u=p, with tan u � (d � w)=2h. This yields ae � ai þ u(d � w)=pd. However,
Vgr will be positive, attracting electrons and repelling slowly moving ions, thus mod-

ifying these estimates. That this must be true is seen clearly for a thick (essentially

insulating) gate oxide. Since no current can flow through this, Ig ¼ 0 in (15.5.16),

which implies that ae ¼ ai; that is, the net electron shading effect vanishes. For

this case, Vgr charges positive enough to attract sufficient electrons (and repel suffi-

cient low-energy ions), to just cancel any geometrical shading effects. For a high

aspect ratio trench (d � w� h), Vgr can be many time Te, and can even be a signifi-

cant fraction of the ion bombarding energy. On the other hand, for a thin (low impe-

dance) gate oxide, the gate electrode voltage is equal to the substrate potential,

Vg ¼ Vp � Vf . Subtracting this from Vr given by (15.5.14), we find that

Vgr ¼ Te ln (ae=ai). This is generally a small enough voltage to not much modify

the geometrical factors. In this case, a current given by (15.5.16) flows through

and can damage the gate oxide.

Radiofrequency Biasing

We consider now an rf-biased substrate with an MOS transistor having a gate oxide

area Aox and thickness Tox, and a field oxide area Af and thickness Tf . The substrate

is connected to the rf bias supply through a large blocking capacitor and is exposed

to an assumed uniform plasma. We assume that the bias electrode area is small com-

pared to the grounded area of the processing chamber. In this case, as described in

Section 11.4, almost all of the applied rf bias voltage appears across the substrate-to-

plasma interface, producing an rf current flow (A/m2) from the substrate into the

plasma. The current flows through the gate capacitance, resulting in an rf voltage

Vsg across the gate oxide. To determine this voltage, we consider the example of

a low frequency bias (Section 11.5), for which the ion and electron conduction

currents are large compared to the displacement current. The ion current Ji is

almost constant during an rf cycle, while the electron current flows only during
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short periods when the time-varying voltage across the substrate sheath is near its

minimum value. Since the electron pulse is short in duration, it suffices to assume

that at the end of the pulse, the net negative charge on the gate is half of the total

electron flow per rf period. By the same reasoning, just before the electron pulse,

the net positive charge on the gate is also half of the magnitude of the total electron

flow per rf period. Since the total electron and ion flows are equal, the total charge

collected by the gate oscillates in time as a nearly sawtooth waveform with an

amplitude

Qg0 ¼ 1

2
JiAg � 2p

v
(15:5:17)

The current oscillation follows by differentiating the charge oscillation. This current

is capacitive and does not directly damage the oxide. However, a voltage Vgs(t) ¼
Qg(t)=Cg appears across the oxide. The amplitude of the voltage oscillation can

be large enough to break down the gate oxide, and it can also produce an rf tunneling

current through the oxide, which can cause damage.

To determine the voltage amplitude, we first write the gate capacitance as the sum

of the field oxide and gate oxide capacitances:

Cg ¼ Cf þ Cox ¼ eAf

Tf
þ eAox

Tox
¼ Cox 1þ AR

TR

� �

(15:5:18)

Here e is the oxide dielectric constant and TR ¼ Tf=Tox is the field/gate oxide thick-
ness ratio. The maximum voltage across the oxide is then found from (15.5.17) and

(15.5.18) to be

Vgs0 ¼ Qg0

Cg

¼ pJiTox
ve

AR þ 1

AR=TR þ 1
(15:5:19)

For TR � AR � 1, we find Vgs0 / AR; for AR � TR � 1, we find that Vgs0 ¼
pJiTg=ve, independent of AR. The peak-to-peak voltage 2Vgs0 is shown versus the

antenna ratio in Figure 15.17 for a number of plasma densities with Te ¼ 5 V and

TR ¼ 50 at 1 MHz, typical of gate oxide etching. We see the saturation effect at

large area ratios, and also a strong density dependence. From (15.5.19), the

voltage is inversely proportional to the frequency. The higher the density and

the longer the rf period, the more ions are collected per period, and the larger is

the peak charging voltage. Hence, it is undesirable to have too high a plasma

density or too low a bias frequency.

Etch Profile Distortions

Distortions of ideal etch profiles such as undercut, tapered or bowed sidewalls and

microtrenches (“notches”) at the bases of sidewalls are often observed after etching
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masked features; for example, for etching of a pattern of polysilicon lines and spaces

using chlorine plasmas. Deflection and subsequent scattering of incoming ions

within trenches due to localized buildup of charge on insulating surfaces is believed

to be a possible cause of these distortions (Kinoshita et al., 1996; Hwang and Giapis,

1997). Figure 15.18 illustrates the formation of a notch in polysilicon at the interface

with the underlying SiO2 insulating film. The notch is perpendicular to the unper-

turbed ion bombarding direction and appears during the overetching step. It

typically forms at the inner sidewall foot of the outermost trench when etching a

series of trenches adjacent to an open area. The degree of notching depends on

the plasma parameters such as the ion energy distribution, plasma density, and

electron temperature, as well as the geometry and materials compositions. Most

explanations ascribe the notching as being driven by a potential difference

FIGURE 15.17. Peak-to-peak 1 MHz rf charging voltage versus antenna ratio AR for various

plasma densities (in cm23), with electron temperature Te ¼ 5V and a field/gate oxide

thickness ratio T R ¼ 50 (after Cheung and Chang, 1994).

FIGURE 15.18. Location of the notch and the mechanisms proposed to contribute to the

notching effect: (a) ion trajectory bending due to open area charging and direct

bombardment of the polysilicon; (b) forward ion deflection due to SiO2 charging under the

etched area; (c) near grazing ion–SiO2 surface collision, followed by forward scattering

and bombardment of the notch apex (after Hwang and Giapis, 1997).
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between the last polysilicon line, which attracts excess electrons at the side facing

the open area, and the insulating trench bottom, which charges positively because

the trench topography inhibits the collection of electron charge on the trench

bottoms, compared to the collection on the open area. This leads to an electric

field pointing from the trench bottom to the open area. This field can deflect incom-

ing positive ions within the last trench into the trench corner nearest the open area,

producing an enhanced etch rate there, leading to the formation of a notch. For a

broad incoming ion energy distribution (see Fig. 11.23), some low energy ions

can be deflected by of order 90�, as seen in the inset in Figure 15.18.

PROBLEMS

15.1. Sputter Etching Estimate the maximum etch rate (Å/min) for physical

sputtering of silicon using 600-V Arþ ions for an Arþ density nArþ at the

sheath edge of 1011 cm�3. Use the data given in Table 9.2.

15.2. Free Radical Production in a CF4 Discharge Consider a simplified mech-

anism for F-atom production in a CF4 discharge, consisting of reactions 2 and 3

in Table 15.2 and reactions 1 and 2 in Table 15.3. Assume that the electron

density is specified to be ne ¼ 1010 cm�3 and that there is no other generation

or loss of CF4, CF3, CF2, and F than given by these reactions; that is, no surface

losses, etc. Assume that the rate constants for reactions 1 and 2 in Table 15.3

are second order; that is, for the high-pressure limit in which the reactions

are independent of the concentration of the third molecule M (here CF4).

(a) Write the differential equations for the densities of the four species; for

example, dnCF4=dt ¼ . . . ;

(b) In the steady state, show that nFnCF3=nCF4 ¼ A(T) and that

nCF2=nCF3 ¼ B(T). Obtain A and B in terms of K4, K5, K1, K2, and ne.

(c) If the initial concentration of CF4 is n0 and all other initial concentrations

are zero at time t ¼ 0, then find the equilibrium concentration (t! 1) of

F atoms in terms of n0, A, and B.

(d) For a CF4 pressure of 10 Torr at 300 K, and silicon etching due to a flux of

F atoms only, use (15.3.1) to estimate the initial etch rate (Å/min) when a

piece of silicon is inserted into the equilibrium gas mixture.

15.3. Surface Model for Silicon Etch in a CF4 Discharge Consider the follow-

ing surface model for pure chemical silicon etch (no ion bombardment) in a

CF4 discharge. Let n1 and n2 be the gas-phase densities of CFx radicals and

F atoms near the surface, respectively, and let u1 and u2 be the fractions of

the SiF3 surface covered with CF4 and SiF4, respectively. Let Ka1 and Ka2

(cm3/s) be the adsorption rate constants for CFx radicals and F atoms, respect-

ively, and let Kd1 and Kd2 be the desorption rate constants (s
21) for CF4(g) and

SiF4(g), respectively. Assume Langmuir kinetics with adsorption of CFx and F

on the SiF3 surface only.
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(a) In the steady state, give the two conservation equations for carbon and

fluorine on the surface.

(b) Solve these to obtain the surfaces coverages u1 and u2.

(c) Find the silicon etch rate ESi and plot the normalized etch rate per incident

F atom, ESi=n2 (Å cm3/min) versus n2=n1 for x ¼ 3, Ka1 ¼ Ka2 ¼
4� 10�14 cm3=s, n00 ¼ 7� 1014 cm�2, Kd1 ¼ Kd2 ¼ 1012 s�1, and

nSiF3 ¼ 5� 1022 cm�3. Assume that n1; n2 � Kd2=Ka1.

15.4. Comparison of Silicon and SiO2 Loading Effects For the same reactor

(volume Al, pumping speed Sp) and discharge conditions (gas density nCF4 ,

plasma density ni, and electron temperature Te), SiO2 etching in CF4
discharges exhibits a smaller loading effect than silicon etching. Assume

that the fractional dissociation (n(0)F =nCF4) is small in the absence of etching

reactions. Assume that the overall reactions for silicon and SiO2 etching are

4Cþ 16Fþ Si �! SiF4 þ 2C2F6

Cþ 4Fþ SiO2 �! SiF4 þ CO2

In both cases assume that grec ¼ 0 on the walls and that gr ¼ 1 on the

substrates.

(a) Using (15.2.17) and (15.2.18), find n(0)F =nF in terms of �vF, Sp, and the

wafer area Aw.

(b) Find expressions for the etch rates (fluxes) GSiO2
and GSi as functions of

nF.

(c) For equal etch rates of SiO2 and Si and for a silicon etch area Aw(Si), find

the SiO2 etch area. Show that Aw(SiO2) � 4Aw(Si).

15.5. Substrate Potential for a Thick Gate Oxide Show that the substrate poten-

tial with respect to ground for the system of Figure 15.14a with thick gate

oxides is

Vs ¼ Vp1 � Vf þ Aox2=Tox2
Aox2=Tox2 þ Aox1=Tox1

(Vp2 � Vp1)

15.6. Potential for a Wafer Exposed to a Nonuniform Plasma For a parabolic

plasma potential Vp(r) ¼ Vp0 þ DVp(1� r2=R2), where R is the wafer radius,

show that the (conducting) substrate potential with respect to ground is

Vs � Vp0 � Vf � Te ln½Te(1� e�DVp=Te )=DVp
, and find the plasma current

density Jp(r) flowing into the wafer.
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CHAPTER 16

DEPOSITION AND IMPLANTATION

16.1 INTRODUCTION

Plasma-assisted deposition, implantation, and surface modification are important

materials processes for producing films on surfaces and modifying their properties.

For example, as described in Chapter 1, the cycle of film and mask deposition, mask

patterning, implantation or other modification, etching, and mask stripping is

repeated many times during the manufacture of modern integrated circuit devices.

Because device structures are sensitive to temperature, high-temperature deposition

processes cannot be used in many cases. Fortunately, due to the nonequilibrium

nature of low-pressure processing discharges, high-temperature films can be

deposited at low temperatures. Furthermore, films can be deposited with improved

properties, nonequilibrium chemical compositions, and crystal morphologies that

are unattainable under equilibrium deposition conditions at any temperature.

Unique films not found in nature can be deposited, for example, diamond.

Consider two examples for integrated circuit fabrication. Most aluminum thin

films (i.e., actually Al/Cu or Al/Si) used for interconnection are deposited on the

wafer by physical sputtering from an aluminum or alloy target; this is essentially

a room-temperature process. Although thermal evaporation sources can be used, it

is more difficult to control film uniformity and composition with these sources.

Another example is the final insulating “capping” layer on many devices, silicon

nitride, which is deposited by plasma-enhanced chemical vapor deposition

(PECVD) at temperatures near 3008C. An equivalent nonplasma chemical vapor

deposition (CVD) would require temperatures near 9008C, and therefore cannot
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be used because it would melt the aluminum, destroying the device. Furthermore, by

varying the ion bombardment and other plasma parameters in PECVD of silicon

nitride, the film composition, stress, and integrity can be controlled, greatly increas-

ing its reliability as a capping layer. Let us note, however, that PECVD cannot

replace CVD in some applications; for example, most low-temperature PECVD

films are amorphous and not crystalline, which can more easily be achieved with

CVD. Where high temperatures are allowed, CVD can be the method of choice

for deposition of metals, dielectrics, and semiconducting films.

Ion implantation is another important process for semiconductor doping, and has

other uses, such as for surface hardening of materials. For silicon doping, ions such

as boron, phosphorous, and arsenic are implanted. For surface hardening of metals,

nitrogen or carbon are implanted. Conventional ion beam implanters are used for

low-flux, high-energy implants. At high fluxes, particularly for low ion energies,

and where mass–energy selection is not critical, plasma-immersion ion implantation

(PIII) can be used to meet process requirements that are not attainable using con-

ventional ion beam implanters. PIII processes have been developed for hardening

medically implantable hip joints, for hardening tools and dies, and for doping semi-

conducting materials. Materials modifications through a combination of ion implan-

tation and ion beam mixing of near surface layers are also under development. As

was described in Chapter 15, ion beam mixing can also play a critical role in etch

processes.

In this chapter, as in the previous, we focus on the area of integrated circuit

processing to describe deposition, implantation, and other surface-modification

processes. For a thorough review of plasma-assisted deposition, implantation, and

surface modification processes, the monographs of Konuma (1992), Smith (1995),

Mahan (2000), Anders (2000), the collections of review articles edited by Vossen

and Kern (1978, 1991), and references cited therein should be consulted.

The range of plasma-deposition processes is broadly divided into two areas:

PECVD and sputter deposition. PECVD is described in Section 16.2, using the

well-known example of amorphous silicon (a-Si) deposition to introduce the dis-

charge regime, gas-phase chemistry, and surface-reaction model. While specific

to a-Si deposition, the discussion is relevant to PECVD for many other materials.

PECVD of SiO2 is also described to introduce a more complicated surface chemistry

and to treat the issues of anisotropic deposition and conformality of deposition over

topography, for example, deposition in trenches. Almost all the discharges described

in previous chapters are widely used for PECVD, with the exception of dc dis-

charges, although the bulk of the deposition is done commercially with some

form of multi- or single-wafer capacitive rf discharge reactor.

Sputter deposition, which is discussed in Section 16.3, includes both physical

sputtering and reactive sputtering. In the former, atoms are sputtered from a target

material and are transported to and deposited on a substrate. The mechanism of phys-

ical sputtering is described in Section 9.3, and some data are given in Table 9.2. Some

issues related to sputtering uniformity are also considered in Section 14.5. In Section

16.3 we describe the influence of sputtered atom energy distributions on film proper-

ties. In reactive sputtering, a feedstock gas whose dissociation products chemically
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react with the target material is present in addition to the bombarding ions. Hence the

deposited film is a compound formed from the sputtered materials and the reactive

gases. In contrast to physical sputtering, where a model for the generation and trans-

port of sputtered atoms from target to substrate is relatively straightforward, a reac-

tive sputtering model involves surface reactions at both target and substrate in

addition to sputtering at the target and deposition at the substrate. A simple model

for this process is given to conclude Section 16.3. Sputtering discharges for conduct-

ing films are generally dc discharges, usually dc planar magnetrons (see Section

14.5); for sputtering insulating films, capacitive rf discharges or rf driven planar mag-

netrons are commonly used.

Ion implantation using PIII is described in Section 16.4. The basic principles for

the process are given, a simple model for the dynamic high-voltage sheath formation

is developed, and some applications to integrated circuit and other processing are

described. PIII must generally be done in low-pressure ( p . 1 mTorr) processing

discharges in which the ion mean free path is comparable to or larger than the

high-voltage sheath width, but there are some applications where higher pressures

are desirable.

Other plasma-enhanced surface modification processes, not treated in this text,

include low-temperature oxidation of silicon, plasma polymerization, and additional

(non-PIII) nitriding and carbiding techniques. For example, good quality thin SiO2

films have been grown on single-crystal silicon in oxygen discharges at substrate

temperatures of 250–4008C (Carl et al., 1991). The process is called plasma anodi-

zation because the substrate is generally biased positive with respect to the plasma,

drawing a net dc current through the film as it grows. Oxidation kinetics can be

explained by O� transport-limited growth at the Si–SiO2 interface. Sputtering con-

tamination during film growth is an issue, so microwave and other high-density

discharges having low sheath voltages are generally used.

16.2 PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION

Chemical vapor deposition consists of a thermally activated set of gas-phase and

surface reactions that produce a solid product at a surface. In PECVD, the gas-

phase and often the surface reactions are controlled or strongly modified by the

plasma properties. In place of thermal activation in CVD, the critical initial step

in PECVD is electron impact dissociation of the feedstock gas. Since Te � 2–5 V

in a low-pressure discharge easily suffices for feedstock dissociation and since Te

is much greater than the substrate (and heavy particle) temperature, the deposition

can be carried out at temperatures much lower than for CVD. Because chemical

reactions between neutral gas-phase precursor components are often required for

PECVD, the discharge pressures used are in the range 0.1–10 Torr, considerably

higher than those used for plasma-assisted etching. The neutral mean free paths

are therefore small, of order 0.003–0.3 mm. The plasma densities are in the range

109–1011 cm23, and the fractional ionizations are low, of order 10�7 –10�4.

As for etching, the deposition is limited by either the feedstock gas flow rate and
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pressure or by the discharge power, depending on which is rate limiting. Surface

activation energies for PECVD are often small, occasionally negative. Hence depo-

sition rates are usually not very sensitive to the substrate temperature T. However,

film properties such as composition, stress, and morphology are generally strong

functions of T. Consequently, T is usually optimized to achieve a desired set of

film properties.

Deposited film uniformity is a critical issue for PECVD because of the high press-

ures, high flow rates, short mean free paths, high gas-phase reaction rates, and high

surface sticking probabilities for some gas-phase deposition precursors (often,

neutral radicals). This combination of factors makes it very difficult to achieve

uniform precursor and ion fluxes across the substrate area. Hence, great care is

required in design of the neutral transport system for flow of gases into and out of

the reaction zone. Similarly, the variation of the power deposition per unit area in

the discharge must be carefully controlled. For these reasons, rf-driven parallel-

plate discharge geometries have been favored, although some depositions have

been performed using high-density cylindrical discharges, such as ECRs, helicons,

and rf inductive discharges (TCPs).

Amorphous Silicon

Amorphous silicon thin films are used in solar cells, for thin-film transistors for flat

panel displays, and for exposure drums for xerography. Whereas epitaxial (crystal-

line) silicon has a density of 2.33 g/cm3, PECVD amorphous silicon grown using

silane (SiH4) discharges has a lower density, �2.2 g/cm3, due to incorporation of

5–20% H atoms in the lattice. Hence this material is usually denoted as a-Si:H.

The hydrogen is required for this material to be semiconducting; the H-atoms

terminate the dangling bonds in the amorphous material that would otherwise trap

charge carriers. The material is inexpensive to make and easily deposited over

large areas on a wide variety of substrates including glasses, metals, polymers,

and ceramics. The feedstock gas in a capacitive rf discharge is typically SiH4 at

pressures of order 0.2–1 Torr, although SiH4=H2=Ar mixes are sometimes used at

somewhat higher pressures. Gas-phase additions such as B2H6 and PH3 are used

to grow p- or n-type material, respectively. The rf power fluxes are typically

10–100 mW/cm2, yielding deposition rates of 50–500 Å/min. The substrate

temperatures are typically 25–4008C, depending on the application. The activation

energy for the deposition is low, 0.025–0.1 V, compared to 1.5 V for high-

temperature CVD silicon deposition using SiH4.

SiH4 is a hazardous gas that reacts explosively with air or water vapor. The

molecule is tetrahedral (symmetry group Td, with the silicon atom in the center),

having a heat of formation of 34.3 kJ/mol and a Si–H bond distance of 1.5 Å.

The SiH3 –H bond energy is 3.9 V. The positive ion SiHþ
4 is unstable or weakly

stable, and has not been observed under typical discharge conditions; SiHþ
3 is nor-

mally observed. Both SiH3 and SiH2 radicals have a positive electron affinity; hence,

silane discharges can be electronegative. The SiH2 –H, SiH–H, and Si–H bond

energies are 3.0, 3.4, and 3.0 V, respectively. Some rate constants for significant
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(mostly two-body) gas-phase reactions are given in Table 16.1. A relatively

complete SiH4=H2=Ar gas-phase discharge model was introduced by Kushner

(1988). This model includes over 35 electron impact reactions, 90 neutral–neutral

reactions, 80 positive ion–neutral reactions, and a complete set of electron–ion

and positive–negative ion recombination reactions. Updated cross sections and

rate coefficients can be found in Perrin et al. (1996, 1998).

There is considerable evidence (McCaughey and Kushner, 1989; Smith, 1995,

Section 9.4.6) that SiH3 and SiH2 radicals are important precursors for film

growth, that SiH4 also participates in surface reactions, and that ion (SiHþ
3 ) bom-

bardment plays a critical role in film growth. A simple model of the surface,

shown in Figure 16.1, is that it consists of active sites, containing at least one dan-

gling bond, and passive sites, containing either silicon or hydrogen atoms at all four

bonds. The dangling bonds are created by ion bombardment, which also removes

hydrogen from the surface. SiH2 can insert itself into the lattice upon impact with

the surface at either active or passive sites, leading to film growth in a manner

similar to that of physical vapor deposition [i.e., as in (9.4.28)]. Such films are gen-

erally of poor quality, having voids, undesired surface roughness, and other surface

defects. Adsorbed SiH3 radicals can diffuse along the surface but can insert into the

lattice only at active sites, filling in the surface roughness and contributing to growth

of a smooth, high-quality film. SiH4 adsorbed upon impact at active sites can lose an

H atom, thus passivating the site. Based on these ideas, elaborated by McCaughey

and Kushner, we let ua and up be the fraction of the surface covered by active

TABLE 16.1. Selected Reaction Rate Constants for SiH4 Discharges

Number Reaction Rate Constant (cm3/s) Source

1 eþ SiH4 ! SiH3 þ Hþ e 1.5E–8 exp(�10=Te) a

2 eþ SiH4 ! SiH2 þ 2Hþ e 1.8E–9 exp(�10=Te) a

3 eþ SiH4 ! SiH�
3 þ H 1.5E–11 exp(�9=Te) a

4 eþ SiH4 ! SiH�
2 þ H2 9E–12 exp(�9=Te) a

5 eþ SiH4 ! SiHþ
3 þ Hþ 2e 3.3E–9 exp(�12=Te) a

6 eþ SiH4 ! SiHþ
2 þ H2 þ 2e 4.7E–9 exp(�12=Te) a

7 SiH4 þ H ! SiH3 þ H2 4E–13 b

8 SiH4 þ SiH2 ! Si2H
�
6 1E–11 k

9 Si2H
�
6 ! Si2H4 þ H2 5E6/s k

10 Si2H
�
6 þ SiH4 ! Si2H6 þ SiH4 1E–10 k

11 SiH4 þ SiH3 ! Si2H5 þ H2 1.8E–15 k

12 SiH3 þ H ! SiH2 þ H2 1E–10 k

13 SiH3 þ SiH3 ! SiH2 þ SiH4 7E–12 k

14 eþ SiHþ
n ! SiHn�1 þ H 2.5E–7 T�1=2

e a

15 SiH�
m þ SiHþ

n ! SiHm þ SiHn 5E–7 k

Note: Te in volts and T � 500–700 K for ions and neutrals. The notation E–8 means 10�8.
aBased on data in Kushner (1988).
bBecerra and Walsh (1987).
kKushner (1988).
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and passive sites, respectively, with ua þ up ¼ 1. Then the surface reactions can be

represented as

SiHþ
3 þ up �!Ki

ua þ YiH(g) (16:2:1)

SiH2 þ ua �!K2
ua (16:2:2)

SiH2 þ up �!K2p

up (16:2:3)

SiH3 þ ua �!K3

up (16:2:4)

SiH4 þ ua �!K4
up þ SiH3(g) (16:2:5)

where Yi is the yield of H atoms removed per incident ion, Ki � uB=n
0
0,

K2 � 1
4
s2 �v2=n

0
0, K3 � 1

4
�Ms3 �v3=n

0
0, K4 � 1

4
s4 �v4=n

0
0, and K2p � 1

4
s2p �v2=n

0
0 are the rate

constants, with s2; s3, and s4 the sticking coefficients on the activated surface for

SiH2; SiH3, and SiH4, respectively, s2p is the sticking coefficient for SiH2 on the

passivated surface, n00 is the area density of sites, and �M is the mean number of

sites visited by a surface-diffusing SiH3 radical before desorption. In the steady

state, the rate of creation of active sites is

dua
dt

¼ YiKinis(1� ua)� K3n3Sua � K4n4Sua ¼ 0 (16:2:6)

Solving for ua , we obtain

ua ¼ YiKinis

YiKinis þ K3n3S þ K4n4S
(16:2:7)

Note that SiH2 adsorption and reaction do not affect ua in this model. The deposition

rate follows from reactions (16.2.2), (16.2.3), and (16.2.4), which each deposit one

FIGURE 16.1. Surface coverage model for amorphous silicon deposition; ua and up are the
fractions of the surface that are active and passive, respectively.
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silicon atom:

DSi ¼ (K3n3Sua þ K2n2S)
n00
nSi

(16:2:8)

For typical deposition processes, Yi � 5–10, all s are of order unity, �M � 10, and

K4n4S � YiKinis þ K3n3S. Under these conditions, (16.2.7) yields

ua � YiKinis

K4n4S
(16:2:9)

For typical discharge parameters, nis=n4S � 10�4 and, therefore, ua � 10�2. The

overall sticking coefficient for SiH3 to react with the entire surface (active and

passive) is then s3 �Mua � 0:1. Under typical conditions for film deposition,

n2S � 10�2n3S, such that the first term in (16.2.8), responsible for the “good” film

deposition, is roughly ten times larger than the second term, responsible for the

“bad” film deposition. Clearly, from (16.2.8) and (16.2.9), good films are associated

with high ion fluxes and energies, high SiH3=SiH2 ratios, and high SiH3 surface

diffusivities.

The preceding picture is oversimplified. For example, the reactions of H atoms at

the surface,

Hþ ua �! up

Hþ up �! ua þ H2(g)

can modify the overall surface dynamics. A more complete model of this type is

presented by McCaughey and Kushner (1989). Other models have focused on the

surface diffusion of SiH3 and its reaction with the hydrogenated surface to

remove dangling bonds, and on the role of subsurface processes, such as H-atom

diffusion, in bond formation (see Robertson, 2000 and references therein).

Silicon Dioxide

SiO2 can be grown by oxidation of bare silicon at 850–11008C using O2 or H2O gas.

CVD oxide can also be deposited on substrates at 600–8008C using SiH4=O2

or TEOS/O2 feedstock gases, and can be grown at still lower temperatures,

100–3008C, using PECVD with the same feedstocks. TEOS (tetraethoxysilane),

Si(OC2H5)4, has the chemical structure shown in Figure 16.2, with C–O and Si–O

bond energies of 3.7 and 4.7 V, respectively. In contrast to silane, which is an

explosive gas at room temperature, TEOS is a relatively inert liquid. Gases such

as N2 or Ar are often used as carriers of the vapor. Highly dilute TEOS/O2 feedstock

mixtures are usually used; a 1%TEOS/99%O2 mixture is typical. Under these con-

ditions, much of the gas-phase kinetics is dominated by O2, and the discharge can be

modeled as if it were a pure O2 discharge. Highly oxygen-rich mixtures are required
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for good-quality films because TEOS contains carbon and hydrogen, which the O2

burns to form CO2(g) and H2O(g) effluents. If this is not done efficiently, then the

films can have a substantial carbon and/or hydrogen content.

Oxide deposition using SiH4=Ar=N2O, SiH4=Ar/NO, or SiH4=Ar=O2 gas

mixtures can yield deposition rates of up to 2000 Å/min. The usual oxygen

source is N2O, as this produces copious oxygen atoms on dissociation and the

best quality films. The deposition precursors are believed to be SiH3; SiH2, and O

radicals created by electron impact dissociation of SiH4 and the oxidant (N2O,

NO, or O2). Initial steps in film formation consist of surface reactions such as

2SiH3 þ O(s) �! (SiH3)2O

�! SiH3OHþ H2 (16:2:10)

Further oxygenation of the surface burns off most of the excess H atoms as H2O(g).

The final film typically has 2–9% H atoms. A relatively complete model of the gas

phase and surface chemistry for SiO2 film formation in SiH4=O2/Ar discharges has
been given by Meeks et al. (1998).

The sticking probabilities of the precursors SiH3 and SiH2 in silane discharges

tend to be high, for example, s � 0:35. This tends to lead to nonconformal depo-

sition on topographical features such as in trenches; that is, the deposition rates at

various points on the trench surface are different. To understand this, consider a

simple model of deposition on the sidewalls and bottom of a trench of initial

width w and depth d, due to a uniform isotropic source of precursors at the top of

the trench, as shown in Figure 16.3a. Assume a unity sticking coefficient and ballis-

tic transport of precursors within the trench; that is, the mean free path for precursor

collisions is much greater than w or d. Then it can be shown (Problem 16.2) that the

deposition flux GSiO2
on the sidewall is

GSiO2
/ 1� cos us (16:2:11)

where us is the angle subtended by the trench opening as seen at a position along the
sidewall. Note that us is 908 near the top of the trench and falls monotonically with
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FIGURE 16.2. Chemical structure of TEOS.
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depth along the sidewall. Hence the maximum deposition rate is on the sidewall near

the top of the trench. As deposition proceeds, as shown in Figure 16.3b and c, this

can lead to formation of a void or “keyhole” within the trench. This is undesirable

for many applications. If the deposition is conformal, that is, equal growth rates at all

points within the trench, the keyhole is avoided and the trench completely fills with

the insulating dielectric. To achieve conformal deposition, either the sticking prob-

ability should be small, leading to many precursor reflections within the feature, or

precursors that stick with high probability should have high diffusion rates along the

surface.

w
x

y

d

FIGURE 16.3. Nonconformal deposition within a trench, illustrating formation of a void as

deposition proceeds: (a) before deposition, with the dashed lines giving the deposition flux

incident on the sidewall and bottom; (b) midway during deposition; (c) just after the

keyhole-shaped void has formed.
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For SiO2 deposition using silane-containing feedstocks, the sticking probabilities

are high and the surface diffusion is not significant; consequently, the conformality of

deposition is poor. Oxide deposition using highly dilute TEOS/O2 feedstock at

temperatures of 200–3008C and pressures of 0.2–0.5 Torr leads to relatively low

deposition rates, .500 Å/min, compared to silane-based deposition. However,

the sticking coefficients for TEOS deposition precursors seem to be almost an

order of magnitude smaller than for the silane precursors; for example, s � 0:045
for TEOS, leading to good deposition conformality. TEOS precursors are believed

to be species such as Si(OC2H5)n(OH)4�n or Si(OC2H5)nO4�n, n ¼ 0–3. These

can be formed by electron impact dissociation, for example, for n ¼ 1–4

eþ Si(OC2H5)n(OH)4�n �! Si(OC2H5)n�1(OH)4�nþ1 þ C2H4 þ e (16:2:12)

or by O-atom reactions with TEOS and its precursors, for example,

Oþ Si(OC2H5)n(OH)4�n �! Si(OC2H5)n�1(OH)4�nþ1 þ C2H4O (16:2:13)

In highly dilute TEOS/O2 mixtures, the latter reactions predominate. It is not known

which precursors are present in the highest concentrations. The precursors adsorb on

the growing film surface where reactions with adsorbed O atoms further fragment the

precursor and further oxidize the carbon and hydrogen. This oxidation process on the

surface may be the rate-limiting step in the deposition. It is also known that there can

be significant directionality in the deposition process. Presumably this is due to ion

bombardment which enhances the vertical deposition rate. The measured TEOS

deposition rates at moderate to high temperatures show a negative activation

energy, Ea � �(0.1–0.2) V; that is, the deposition rate increases as the substrate

temperature is lowered. This can be interpreted in one of two ways: Either the deso-

rption rate for TEOS precursors increases with increasing temperature, thus reducing

the precursor coverage on the surface (Stout and Kushner, 1993), or there is increased

surface recombination of O atoms as the temperature is increased, decreasing the

gas-phase O-atom density (Cale et al., 1992).

The deposition chemistry and surface reactions for the former hypothesis can be

described in a manner similar to that done previously for amorphous silicon depo-

sition. The chemistry with the latter hypothesis can be described by the following

three reactions:

1. O atoms oxidize TEOS precursors on the surface, leading to deposition. It is

assumed that the TEOS fragments completely saturate the surface. Hence the

reaction rate is independent of the precursor surface coverage. The deposition

rate by this reaction is given as

D
(1)
SiO2

� 0:9nOS
nSiO2

cm=s (16:2:14)
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where the deposition rate constant 0.9 is determined by a fit to experimental

data.

2. Oxygen ions also oxidize TEOS precursors, leading to a deposition rate

D(2)
SiO2

�
nOþ

2
uB

nSiO2

cm=s (16:2:15)

3. Surface recombination of O atoms on wall (and deposition) surfaces to form

nonreactive O2 molecules reduces the available gas-phase O-atom concen-

tration nOS for reaction (16.2.14). The recombination probability srec(T ) on

SiO2 surfaces is activated but has a non-Arrhenius form (Greaves and

Linnett, 1959), with 104srec � 1:8, 2.7, 6.5, and 50 at T ¼ 20, 127, 200, and

3948C, respectively. The flux of O atoms lost from the volume due to this

process is

Grec � 2srec(T )
1

4
nOS �vO (16:2:16)

As T increases, Grec increases, leading to a decrease in nOS for a fixed gener-

ation rate, and hence a reduction in the deposition rate (16.2.14).

Silicon Nitride

Amorphous silicon nitride films were the first deposited on a large commercial scale

using PECVD. They are used as a final encapsulating layer for integrated circuits

because of their resistance to water vapor, salts, and other chemical contaminants.

The usual feedstock mix is SiH4=NH3 (Smith, 1995, Section 9.6.4). The film precur-

sors are probably SiH3; SiH2, and NH radicals, created by electron impact dis-

sociation. Other possible precursors, such as Si2H6; Si(NH2)4, and Si(NH2)3, have

been observed in SiH4=NH3 discharges by mass spectroscopy. The deposition is

normally carried out at 0.25–3 Torr at 250–5008C, yielding deposition rates of

200–500 Å/min. The activation energy for the deposition rate is small and can

even be negative, depending on discharge conditions. The stoichiometry of the

films is SiNxHy (sometimes called p-Sinh), with x � 1–1.2 and y � 0:2–0.6. The
hydrogen atoms are bonded in the lattice, and low hydrogen content is associated

with high temperatures and high rf power fluxes. Below 3008C, the hydrogen

content is relatively constant. A key step in film formation is thermal- or ion-

induced desorption of H or H2 from the growing film. The film characteristics

depend strongly on the hydrogen content, with high hydrogen content yielding unde-

sired films. The mechanical stress can be controlled by varying electrical properties

of the discharge, such as the rf driving frequency. This variation is associated with

the ion-bombarding energy, which decreases (at fixed rf power) with increasing

frequency, as described in Chapter 11.

The source of most of the hydrogen in the films has been identified as NH3, not

SiH4. This has motivated the use of other nitrogen sources such as N2. Although
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SiH4=N2 can be used as a feedstock, the films are of poorer quality, the conformality

is not as good, and the deposition rate is lower than with use of NH3 as the source of

nitrogen. On the other hand, the films have much less hydrogen and are richer in

nitrogen than those grown using NH3.

16.3 SPUTTER DEPOSITION

Physical Sputtering

In physical sputter deposition, ions incident on a target physically sputter target

atoms, which ballistically flow to and are deposited on a substrate. Argon ions at

500–1000 V are usually used. Because sputter yields are of order unity for almost

all target materials, a very wide variety of pure metals, alloys, and insulators

can be deposited. Physical sputtering, especially of elemental targets, is a well-

understood process (see Section 9.3), enabling sputtering systems for various

applications to be relatively easily designed. Reasonable deposition rates with excel-

lent film uniformity, good surface smoothness, and adhesion can be achieved over

large areas. Refractory materials can also be easily sputtered. Sputter deposition

is highly nonconformal, although redeposition techniques by ion bombardment of

the deposited film can improve the conformality.

At first sight, it might seem that when a multicomponent target is sputtered, the

deposited film will have a different composition than the target due to the difference

in sputtering yields of the components. However, when multicomponent targets

are sputtered, because of the difference in sputtering yields, an altered layer forms

at the target surface having a different composition than the target. In the steady

state, in the absence of diffusion of components between the layer and the bulk

target, the flux of atoms sputtered from the layer has the stoichiometry of the original

target material. If the sticking coefficients of the components on the substrate are all

the same, then the deposited film will have the composition of the bulk target

material. Thus, alloy targets can be sputter deposited on substrates. However,

targets such as ceramics or oxides having high vapor pressure constituents, for

example, O atoms, usually cannot be physically sputter-deposited.

In the area of metal film deposition, sputtering is commonly used to deposit elec-

trode and interconnection material. For example, various films have been deposited

such as aluminum in integrated circuit devices, transition metals films such as iron,

cobalt, and nickel for magnetic coatings, superconducting films such as niobium,

reflective optical films such as aluminum, silver, and gold, corrosion-resistant

films such as chromium, and films such as chromium for decorative purposes.

Assuming that all the sputtered material is deposited on the substrate, the

deposition rate for physical sputtering is

Dsput ¼
gsputGi

nf

At

As

cm=s (16:3:1)
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where Gi is the incident ion flux (cm�2 s�1), nf is the density of the deposited film

(cm�3), At (cm
2) is the target area sputtered, As (cm

2) is the substrate area on

which the film is deposited, and gsput is the sputtering yield. An estimate for the

sputtering yield in the linear cascade regime is given in (9.3.14), and some sputtering

yields are tabulated in Table 9.2. For 1-kV argon ions with At=As ¼ 1, nf ¼ 5�
1022 cm�3, gsput ¼ 1, and an ion current density of 1 mA/cm2, (Gi � 6:3�
1015 cm�2 s�1), the deposition rate is 750 Å/min. Radio frequency- or dc-driven

planar magnetron discharges are usually used for sputtering; the operating pressure

is generally 10�3 –10�2 Torr, which is low enough that the mean free path for sput-

tered atoms is larger than the separation between target and substrate.

Sputtered atoms are emitted with a cascade-type energy distribution (9.3.18). The

maximum of this distribution occurs at E ¼ Et=2, where Et is the surface binding

energy of the target material. Since Et � 3–6 V, the characteristic sputtered atom

energies are 1.5–3 V. Atoms striking the substrate with these energies can produce

some mixing and diffusion between incoming atoms and substrate materials,

leading to enhanced bonding and adhesion.

The morphology of sputtered films is primarily influenced by the substrate temp-

erature, which is usually independently controlled, and secondarily, by the depo-

sition pressure. The film morphology has been described by Thornton (1986) and

is shown in Figure 16.4. Letting Tm be the melting temperature of a sputter deposited

metal film, then at low pressures and at very low temperatures, T=Tm . 0:3 (zone 1),
the film consists of tapered columns with domed heads and significant voids between

columns. These structures are formed by shadowing of atoms as they impinge on the

growing film. The void fraction can be as high as 30 percent. For 0:3 . T=Tm . 0:5
(zone T), the films have a fibrous structure in which crystallites grow perpendicular

to the substrate plane without significant voids (.5% by volume). The film surface

is relatively smooth and the film is almost as dense as that of the bulk material. These

properties are a result of ion-bombardment-induced surface mobility of deposited

FIGURE 16.4. Morphology of sputtered films (Thornton, 1986).
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atoms on the substrate. This film morphology is desirable for many applications. For

0:5 . T=Tm . 0:8 (zone 2), thermally activated surface diffusion of deposited

atoms leads to the appearance of columnar grains, which increase in diameter as

T=Tm increases. For 0:8 . T=Tm . 1 (zone 3), volume diffusion of atoms within

the film leads to a smooth, randomly oriented polycrystalline film. All of these

zones are used in various sputtering applications.

Ion and fast neutral bombardment of the substrate can strongly influence film

properties and is responsible for the desirable properties in zone T. Positive ions

with energies of 20–30 V arise from acceleration across the plasma–substrate

sheath potential. The energy can be increased by applying a bias voltage (rf or,

for conducting films, dc driven) to the substrate, and this is done in many commer-

cial applications. Deposition pressure and ion bombardment also affect intrinsic film

stress. High bombardment energies produce high compressive stresses due to recoil

implantation. Generally, there is a transition from compressive to a generally more

desirable tensile stress as the pressure is increased, with the transition pressure typi-

cally increasing with the atomic mass of the sputtered material (Konuma, 1992).

This is believed to be due to a reduction in ion-bombarding energy as pressure is

increased.

Reactive Sputtering

For reactive sputtering, a feedstock gas whose dissociation products chemically

react with the target is present in addition to the bombarding ions. The deposited film

is a compound formed from the sputtered target materials and the reactive gas.

A common application is the sputter deposition of films whose components have

strongly different vapor pressures, and hence, sticking probabilities on the substrate.

For example, physical sputtering of a SiO2 target in argon can lead to deposition of

a silicon rich oxide film on the substrate. If O2 gas is added to the system, then

O atoms can be incorporated into the growing film to restore the 1:2 Si/O stoi-

chiometry. A pure silicon target can also be used with O2 gas to deposit SiO2 films

by reactive sputtering.

Reactive sputtering is widely used to deposit dielectrics such as oxides and

nitrides, as well as carbides and silicides. Ceramics such as YBaCuO superconduct-

ing films can be sputter deposited from YBaCuO targets using O2 as the reactive gas.

Common reactive gases used for a wide variety of applications are O2 and H2O for O

atoms, N2 and NH3 for N atoms, CH4 and C2H2 for C atoms, and SiH4 for Si atoms.

Although ceramic or oxide targets can be used, they are not machinable and cannot

handle high-power fluxes without cracking; hence metal targets are most commonly

used where high deposition rates and controllable film stoichiometry are desired.

In reactive sputtering, chemical reactions occur at both target and substrate, in

addition to sputtering at the target and deposition at the substrate. There are two

“modes” of operation for reactive sputtering of a metal target to deposit a compound

film. For low ion flux and high gas flux, the target is covered by the compound. For

high ion flux and low gas flux, the target remains metallic. Higher deposition rates

are achieved in the “metallic mode” than in the “covered mode.” For fixed ion flux,
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as the reactive gas flux is varied, there is a transition between the covered and

metallic modes exhibiting hysteresis; that is, the transition flux for increasing the

flux to pass from the metallic to the covered mode is higher than the transition

flux for decreasing the flux to pass from the covered to the metallic mode.

A simple model of reactive sputtering described by Berg et al. (1989) makes it

possible to understand the hysteresis and other properties of reactive sputter depo-

sition. Let At and As be the target and substrate areas, ut and us be the fractions

of the target and substrate areas covered by the compound film, and gm and gc be
the yields for sputtering the metal and the compound from the target. To simplify

the calculation, we assume that the compound molecule is sputtered and is not

split into its constituent atoms. In the steady state, the compound formation rate

on the target must be equal to the sputtering rate of the compound from the

target. Letting Gi and Gr be the incident ion and reactive gas molecule fluxes, and

letting sr be the sticking coefficient of a reactive molecule on the metal part of the

target, then

n0t
dut
dt

¼ iGrsr(1� ut)� Gigcut ¼ 0 (16:3:3)

where i is the number of atoms per molecule of reactive gas (e.g., i ¼ 2 for O2 gas).

Sputtered compound molecules and metal atoms are assumed to be evenly deposited

over the substrate surface. The coverage us of compound on the substrate increases

because reactive gas molecules are incident on the metallic part (1� us), and
because a fraction (1� us) of the compound flux sputtered from the target is depos-

ited on the metallic part of the substrate. Similarly, us decreases because a fraction us
of the metal-atom flux sputtered from the target is deposited on the compound part of

the substrate. Hence, accounting for the ratio of target and substrate areas, we obtain

n0s
dus
dt

¼ iGrsr(1� us)þ Gigcut
At

As

� �

(1� us)

� Gigm(1� ut)
At

As

� �

us ¼ 0 (16:3:4)

The total number of reactive gas molecules per second that are consumed to form the

compound deposited on the substrate is

dNr

dt
¼ Grsr½(1� ut)At þ (1� us)As� (16:3:5)

and the target sputtering flux is

Gsput ¼ Gi½gm(1� ut)þ gcut� (16:3:6)

Equations (16.3.3) and (16.3.4) can be simultaneously solved to determine the

compound coverages ut and us on the target and substrate as a function of the

fluxes, rate constants, and areas. Then dNr=dt and Gsput can be evaluated, exhibiting

the hysteresis (Problem 16.3).
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For reactive sputter deposition of TiN films at 10 mTorr using a titanium target

and an Ar=N2 gas mixture, the optical intensity of a titanium emission line (pro-

portional to Gsput) is plotted in Figure 16.5 versus the input gas flow rate (equivalent

to dNr=dt þ const, where the constant is the number of reactive molecules per

second removed by the pump). By controlling the input gas flow rate with a feedback

system, the complete hysteresis curve could be traced out, as shown in Figure 16.5a.

In the absence of feedback control, which is more usual in reactive sputtering

systems, the hysteresis yields jumps between the high and low deposition rate

modes, as shown in Figure 16.5b. These types of models have also been applied

to multicomponent reactive sputtering (Moradi et al., 1991).

16.4 PLASMA-IMMERSION ION IMPLANTATION (PIII)

Ion implantation is a process in which an energetic ion beam is injected into the

surface of a solid material with the result that the atomic composition and structure

FIGURE 16.5. Reactive sputter deposition of TiN films, showing the optical emission signal

for titanium versus the reactive gas flow rate (a) with and (b) without feedback control (Berg

et al., 1989).
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of the near-surface region of the target material is changed, and thereby also the

properties of the material surface are changed. The process is routine in semicon-

ductor device fabrication. Metallurgical implantation is an emerging technology;

in this application, new surface alloys are created with improved resistance to

wear, corrosion, and fatigue.

Conventional ion implantation is carried out in a vacuum environment in which

an ion source is used to create an intense beam of ions of the species to be implanted.

The ion beam is steered and accelerated through a potential of from tens to hundreds

of kilovolts and transported to the target. Since the beam spot size is smaller than the

wafer size, mechanical and electrostatic scanning are used to achieve dose uniform-

ity. For some state-of-the-art semiconductor device structures, high angle tilting and

rotation of the wafers are required to homogenize the dose uniformity on the side-

wall area. This mechanical complexity significantly increases the physical size and

cost of the implanter. The relatively low beam currents, limited by the source optics,

lead to high costs for high-dose applications such as buried dielectric layers formed

by implantation of oxygen (SIMOX), doping of thin-film transistors for active

matrix flat panel displays, surface smoothing for optical coatings, ion beam

mixing of thin films, and ion-assisted deposition. Lower-energy implantation (ener-

gies less than 5 kV) can also be limited by ion beam optics if high doses are required.

In PIII, the intermediate stages of ion source, beam extraction, focusing, and

scanning are omitted. The target is immersed in a plasma environment, and ions

are extracted directly from the plasma and accelerated into the target by means of

a series of negative high-voltage pulses applied to the target. Both metallurgical

(Conrad et al., 1990) and semiconductor (Cheung, 1991) implantation processes

have been demonstrated using PIII. A review of the area is given in Anders (2000).

When a sudden negative voltage �V0 is applied to the target, then, on the time-

scale of the inverse electron plasma frequency v�1
pe , electrons near the surface are

driven away, leaving behind a uniform-density ion matrix sheath. The sheath thick-

ness is a function of the applied voltage and the plasma density, as given in (6.3.4).

Subsequently, on the timescale of the inverse ion plasma frequency, ions within the

sheath are accelerated into the target. This, in turn, drives the sheath–plasma edge

farther away, exposing new ions that are extracted. On a longer timescale, the

system evolves toward a steady-state Child law sheath, with the sheath thickness

given by (6.3.14). The Child law sheath is larger than the matrix sheath by a

factor of order (V0=Te)
1=4, where Te is the electron temperature. This steady state

can be of interest in PIII for high-throughput implantations into conducting targets.

The matrix sheath and its time evolution determine the implantation current J(t)

and the energy distribution of implanted ions. The structures of the initial matrix

sheath in one-dimensional planar, cylindrical, and spherical targets (Conrad,

1987) and two-dimensional wedge-shaped targets (Donnelly and Watterson,

1989) have been determined. In addition, analytical estimates of the sheath

dynamics have been obtained (Lieberman, 1989c; Scheuer et al., 1990), and the

self-consistent equations have been solved numerically to find the time evolution

of the matrix sheath in planar geometry (Vahedi et al., 1991; Stewart and Lieberman,

1991; Wood, 1993; and references therein). In this section we first present some
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simple dynamical models for PIII sheath formation in the collisionless and

collisional regimes, and then briefly describe some experimentally investigated

applications of PIII for integrated circuit fabrication and metallurgical surface

modification.

Collisionless Sheath Model

Figure 16.6 shows the PIII geometry. The planar target is immersed in a uniform

plasma of density n0. At time t ¼ 0, a voltage pulse of amplitude �V0 and time

width tp is applied to the target, and the plasma electrons are driven away to form

the matrix sheath, with sheath edge at x ¼ s0. As time evolves (Fig. 16.6b), ions

are implanted, the sheath edge recedes, and a nonuniform, time-varying sheath

forms near the target. The model assumptions are as follows:

1. The ion flow is collisionless. This is valid for sufficiently low gas pressures.

2. The electron motion is inertialess. This follows because the characteristic

implantation timescale much exceeds v�1
pe .

3. The applied voltage V0 is much greater than the electron temperature Te;

hence the Debye length lDe � s0, and the sheath edge at s is abrupt.

4. During and after matrix sheath implantation, a quasistatic Child law sheath

forms. The current demanded by this sheath is supplied by the uncovering

of ions at the moving sheath edge and by the drift of ions toward the target

at the Bohm (ion sound) speed uB ¼ (eTe=M)1=2. The assumption of Bohm

flow will probably not be valid during the initial sheath expansion before

the Bohm presheath has formed. The sheath dynamics using an alternative

assumption, that the drift velocity of ions toward the target is zero, has

been explored by Scheuer et al. (1990).

FIGURE 16.6. Planar PIII geometry (a) just after formation of the matrix sheath and

(b) after evolution of the quasistatic Child law sheath.
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5. During the motion of an ion across the sheath, the electric field is frozen at its

initial value, independent of time, except for the change in field due to the

velocity of the moving sheath.

Assumptions 4 and 5 are approximations that permit an analytical solution to

the sheath motion. These assumptions are justified post hoc by comparison with

numerical results.

(a) Sheath Motion We assume that after a short transient, the ion matrix sheath

evolves into a Child law sheath with time-varying current density and sheath thick-

ness. The Child law current density Jc for a voltage V0 across a sheath of thickness s

is given by (6.3.12):

Jc ¼ 4

9
e0

2e

M

� �1=2
V
3=2
0

s2
(16:4:1)

where e0 is the free space permittivity and e and M are the ion charge and mass.

Equating Jc to the charge per unit time crossing the sheath boundary,

en0
ds

dt
þ uB

� �

¼ Jc (16:4:2)

we find the sheath velocity

ds

dt
¼ 2

9

s20u0

s2
� uB (16:4:3)

where

s0 ¼ 2e0V0

en0

� �1=2

(16:4:4)

is the matrix sheath thickness and

u0 ¼ 2eV0

M

� �1=2

(16:4:5)

is the characteristic ion velocity. Integrating (16.4.3), we obtain

tanh�1 s

sc

� �

� s

sc
¼ uBt

sc
þ tanh�1 s0

sc

� �

� s0

sc
(16:4:6)

where

sc ¼ s0
2

9

u0

uB

� �1=2

(16:4:7)
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is the steady-state Child law sheath thickness. Since sc � s0 and assuming sc � s,

we find by expanding (16.4.6), or by integrating (16.4.3) with uB ; 0, that

s3

s30
¼ 2

3
vpit þ 1 (16:4:8)

where vpi ¼ (e2n0=e0M)1=2 ¼ u0=s0 is the ion plasma frequency in the matrix

sheath. The simplest implantation model assumes that (16.4.8) and (16.4.1) are

valid for all times (Scheuer et al., 1990). Substituting (16.4.8) into (16.4.1) yields

the implanting current density

J ; Jc ¼ 2

9

en0u0

(1þ 2
3
vpit)

2=3

However, the Child law is not valid early in time, where a matrix sheath exists.

Substituting (16.4.7) into (16.4.8), we note that the timescale tc for establishing

the steady-state Child law sheath (s ¼ sc) is tc � (
ffiffiffi

2
p

=9)v�1
pi (2V0=Te)

3=4. In the

development that follows, we assume a rectangular voltage pulse, and we divide

the implantation into two periods corresponding to matrix and Child law sheath

implantations.

(b) Matrix Sheath Implantation Because the initial charge density in the

matrix sheath is uniform, the initial electric field varies linearly with x:

E ¼ (M=e)v2
pi(x� s). Hence, the ion motion is

d2x

dt2
¼ v2

pi(x� s) (16:4:9)

where x is the particle position. Approximating s ¼ s0 þ (ds=dt)0t in (16.4.9) and

using (16.4.3) with s ¼ s0 and uB � u0, we obtain

d2x

dt2
¼ v2

pi(x� s0)� 2

9
u0v

2
pit (16:4:10)

Integrating (16.4.10), we find

x� s0 ¼ (x0 � s0) coshvpit � 2

9
s0 sinhvpit þ 2

9
u0t (16:4:11)

where we have let x ¼ x0 and _x ¼ 0 at t ¼ 0. (Choosing _x � �uB, consistent with

the sheath motion (16.4.3), yields a negligible correction to (16.4.11) because

uB � u0.) Letting x ¼ 0 in (16.4.11), we can obtain the ion flight time t from

s0 ¼ (s0 � x0) coshvpit þ 2

9
s0 sinhvpit � 2

9
u0t (16:4:12)
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In a time interval between t and t þ dt, ions from the interval between x0 and x0 þ
dx0 are implanted. Differentiating x0 in (16.4.12) with respect to time, we find

dx0

dt
¼ vpi(s0 � x0) sinhvpit þ 2

9
u0( coshvpit � 1)

coshvpit
(16:4:13)

Using (16.4.12) to eliminate s0 � x0 in (16.4.13), we obtain the implantation current

density J ¼ en0dx0=dt as

�J ¼ sinh �t

cosh2 �t
þ 2

9

1þ �t sinh �t � cosh �t

cosh2 �t
(16:4:14)

where �J ¼ J=(en0u0) is the normalized current density and �t ¼ vpit is the normal-

ized time. Equation (16.4.14) gives the implantation current density versus time

for those ions in the initial matrix sheath 0 � x0 � s0. Setting x0 ¼ s0 in

(16.4.12), we obtain �t � 2:7. At this time, all matrix sheath ions are implanted;

hence we take (16.4.14) to reasonably approximate the current for 0 � �t � 2:7.
The left dashed curve in Figure 16.7 plots �J versus �t. The maximum current

density �Jmax � 0:55 occurs at �tmax � 0:95, and �J(2:7) � 0:19.

(c) Child Law Sheath Implantation Consider now the implanted ions having

initial positions at x0 . s0. The time ts for the initial sheath edge at s0 to reach x0 is

found from (16.4.8):

vpits ¼ 3

2

x30
s30

� 3

2
(16:4:15)

FIGURE 16.7. Normalized implantation current density �J ¼ J=(en0u0) versus normalized

time �t ¼ vpit. The dashed lines show the analytical solution for �t , 2:7 and �t . 3:0, and
the solid line is the numerical solution of the fluid equations.
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We expect this to be valid for �t & 2:7. At time ts, an ion at x0 begins its flight across

the sheath. The ion flight time is given by (6.3.21)

vpit
0 ¼ 3x0

s0
(16:4:16)

Hence, an ion at x0 reaches the target at a time t ¼ ts þ t0 given by

�t ¼ vpit ¼ 3

2

x30
s30

� 3

2
þ 3

x0

s0
(16:4:17)

Differentiating (16.4.17), we obtain

dx0

dt
¼ u0

9
2
(x20=s

2
0)þ 3

(16:4:18)

The normalized implantation current density is thus

�J ¼ 1
9
2
(x20=s

2
0)þ 3

(16:4:19)

Equations (16.4.17) and (16.4.19) give �J(�t) as a parametric function of x0=s0. If
we set x0=s0 ¼ 1, we find �t ¼ 3 and �J(3) ¼ 2=15 � 0:133. As �t ! 1,

x0 ! sc � s0; hence �J(1) ! (2=9)s20=s
2
c . Unnormalizing, we find J(1) ! en0uB,

which correctly gives the steady-state Child law current density. The right dashed

curve in Figure 16.7 shows the analytical results for �J versus �t for �t & 2:7. We

note that (16.4.14) and (16.4.19) do not smoothly join at x0 ¼ s0, a consequence

of the simplifying assumptions 4 and 5 that were used to solve for the sheath and

ion motion.

The preceding analysis has been compared with numerical solutions of the non-

linear partial differential equations for the ion and electron motion (Lieberman,

1989c). The ion motion is collisionless, the electrons are in thermal equilibrium,

and Poisson’s equation relates the densities to the potential. Figure 16.7 shows a

numerical solution for V0=Te ¼ 200. We see that (16.4.14) for �t . 2:7 and

(16.4.19) for �t & 2:7 reasonably approximate the numerical results. The energy dis-

tribution of ions striking the target can be determined from the basic model. The

analysis can also be applied to nonplanar geometries (Scheuer et al., 1990). The

spatial structure and time evolution of the collisionless sheath has been measured

by Cho et al. (1988) for planar targets at low voltages (�100 V) and by Shamim

et al. (1991) for cylindrical and spherical targets at high voltages (�30 kV), obtain-

ing good agreement with the collisionless model.

The effects of finite rise and fall times for the voltage pulse have been examined

by Stewart and Lieberman (1991), based on a quasi-static Child law model. They

obtained expressions for the time-varying sheath width and implantation current
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for a linear voltage rise and fall. The results agree well with particle-in-cell (PIC)

computer simulations for a finite risetime pulse (Anders, 2000, Fig. 4.4). The pre-

ceding models neglect the flow of displacement current (e0@E=@t) during implan-

tation. Displacement currents have been found to be important only for high

voltage implantations at low plasma densities, of the order of 108 –109 cm�3

(Wood, 1993). The issues of sheath evacuation and replenishment during multiple

pulses have been examined by Wood (1993). He found replenishment of the

depleted ion region to occur on the timescale

t � 2pTi

Te

� �1=2
s

uB

where s is the width of the sheath at the end of the voltage pulse. The effects of mul-

tiple ion masses and charge states have been examined by Qin et al. (1996). For

singly charged ions, they found that an effective mass can be used in the models,

ffiffiffiffiffiffiffiffi

Meff

p ¼
X

j

nj

n

ffiffiffiffiffiffi

Mj

p

whereMj and nj are the mass and density of the jth type of ion, and n is the total ion

density. Implantation inside of pipes and holes gives rise to several additional con-

cerns, including replenishment of ions between pulses, expulsion of sheath electrons,

and possible overlap of the expanding sheaths (see Sheridan, 1996 and Zeng et al.,

1997, for details and models of these effects). Implantation of a dielectric film on

a conduction substrate gives rise to a time-varying voltage across the dielectric and

to surface charging. Both effects lower the sheath voltage drop, and therefore the

ion energy, during an implantation pulse (Emmert, 1994; Linder and Chang, 1996).

An important feature of PIII is secondary emission during ion implantation. The

energetic ions striking the substrate release secondary electrons that accelerate

across the sheath, gaining an energy eV0 per electron. Since the secondary emission

coefficients are large at the typical voltages used (e.g., gse � 4:8 for 20 kV Nþ ions

on stainless steel), a large electron current and power must be supplied by the source.

Furthermore, the high-energy electrons striking the vacuum chamber produce heat

and x rays, which lead to undesirable cooling and shielding requirements. Some

techniques to suppress secondary emission effects have been investigated

(Anders, 2000, Section 4.3).

Collisional Sheath Model

Ion collisions within the sheath at high gas pressures lead to reduced implantation

energies and finite width energy and angular distributions for ions that greatly

affect their implantation over topography, that is, within trenches. The energy and

angular distributions have been determined analytically and compared with PIC,

Monte Carlo collision (PIC-MCC) simulations (Vahedi et al., 1991, 1993). The col-

lisionless model assumptions 2, 3, and 5 are retained, but 1 is replaced by the

assumption that the ion motion within the sheath is highly collisional, with charge

16.4 PLASMA-IMMERSION ION IMPLANTATION (PIII) 641



transfer the dominant source of ion–neutral collisions. It is also assumed that the ion

charge density ns in the sheath is uniform in space but slowly varying in time, with

ns(t) , n0, the bulk plasma density. A uniform distribution is seen experimentally

for similar sheaths, such as the cathode sheaths in dc glow discharges (see

Chapter 14), and is also seen in PIC-MCC simulations of collisional PIII.

To determine the energy distribution of the bombarding ions, the Maxwell

equation,

dE

dx
¼ ens

e0
(16:4:20)

is integrated from the electrode surface at x ¼ 0 to a position x within the sheath to

obtain

E ¼ ens

e0
(s� x) (16:4:21)

where the boundary condition E ¼ 0 at x ¼ s has been used. Integrating again to

determine the potential using dF=dx ¼ �E, we obtain

F ¼ � ens

2e0
(s� x)2 (16:4:22)

where F ¼ 0 at x ¼ s. LettingF ¼ �V0 at x ¼ 0, we obtain the matrix sheath result

ns ¼ 2e0V0

es2
(16:4:23)

The equation of motion of an ion starting from rest at x ¼ x0, after a charge

transfer collision in the sheath, is

d2x

dt2
¼ eE

M
¼ 2eV0

Ms2
(x� s) (16:4:24)

Assuming that s varies slowly in time, this can be integrated to obtain the ion

velocity u(x),

u2 ¼ u20½(x2 � x20)� 2s(x� x0)�
s2

(16:4:25)

where u0 is given by (16.4.5). The ion velocity at the target is then

u2t ¼
u20(2sx0 � x20)

s2
(16:4:26)
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The distribution of ion flux f (ut) is determined by applying conservation of

particles to obtain

f (ut) dut ¼ ncxns e
�x0=li dx0 (16:4:27)

where ncx ¼ �ut=li is the ion–neutral charge-transfer collision frequency, �ut is the
mean ion velocity near the target, and the exponential factor gives the probability

that an ion created by charge transfer at x0 will hit the target before a subsequent

ion–neutral collision. Differentiating (16.4.26) to determine dx0=dut and substitut-

ing this into (16.4.27), we obtain, for li � s,

f (ut)/ ut

(1� u2t =u
2
0)

1=2
exp

s

li
1� u2t

u20

� �1=2

�1

" #( )

; ut , u0 (16:4:28)

Figure 16.8 compares the analytical theory (16.4.28) and the computer simulation

over a range of pressures (mean free path regimes). The mean ion velocity near

FIGURE 16.8. Ion velocity distribution at the target for a collisional sheath; the maximum

velocity for collisionless acceleration to the target is roughly 5� 104 m/s.
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the target is found from (16.4.28) to be

�ut ¼ eV0pli
Ms

� �1=2

(16:4:29)

and the implantation current density is

Jt ¼ ens �ut ¼ e0
4peli
M

� �1=2
V
3=2
0

s5=2
(16:4:30)

where the second equality follows by using (16.4.23) and (16.4.29). The scaling of

the current density (16.4.30) is the same as found for the collisional rf sheath

(11.2.54), showing the essential correspondence between the two sheaths. The energy

distribution of fast neutrals generated by charge transfer processes has been modeled

by Wang (1999).

Ion–neutral elastic scattering tends to isotropize the angular distribution of the

impinging ions, leading to energetic ion bombardment of trench sidewalls for

implantation over topography. Vahedi et al. (1993) have modeled this process to

obtain the ratio of trench sidewall to bottom fluxes,

Gh

Gv

� 0:34

0:93þ scx=ssc

(16:4:31)

which is valid in the limits li � s and ssc � scx, where ssc and scx are the ion–

neutral elastic scattering and charge-transfer cross sections, respectively.

Applications of PIII to Materials Processing

(a) Semiconductor Processes Figure 16.9 illustrates two PIII system con-

figurations compatible with semiconductor thin-film processing requirements. To

permit operation at pressures as low as 0.2 mTorr, ECR sources operating at

2.45 GHz provide the high ion density, ni � 1010 –1011 cm�3, to supply the required

high implantation current. Hot filament sources, which are used for metallurgical

implantation (see below), cannot be used because of contamination. The substrate

is biased with a pulsed (2–30 kV, 1–3 ms), or, possibly, dc negative voltage to

accelerate the ions toward the substrate surface.

With a diode configuration, shown in Figure 16.9a, gaseous sources such as Ar,

N2, BF3, H2O, and O2 can be used to provide the ionization medium and the implant-

ing ions. The diode configuration is most convenient for doping applications such as

shallow junction formation and conformal doping of nonplanar device structures

because many dopant gaseous sources are available. When metal-containing gases

are used, for example, WF6, the diode configuration can operate as an ion-assisted

chemical vapor deposition system. By adding another negatively biased target con-

trolled by a separate power supply to form a triode configuration, as shown in
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Figure 16.9b, atoms from this target are sputtered into the plasma by the carrier gas

plasma ions. Some of the emitted target atoms are ionized in the plasma and sub-

sequently implanted into the substrate. Secondary electron emission from the

target has significant negative consequences at the high ion fluxes and energies of

PIII. The secondary electron current can be 5–10 times as large as the ion implan-

tation current at high voltages (30–100 kV) (Szapiro and Rocca, 1989). The second-

ary electrons from the target are accelerated across the sheath and subsequently

impinge on the chamber surfaces, which can be a serious x-ray hazard. Also, the

PIII power source must supply the power and current, which leads to poor power

efficiencies.

PIII has been applied, experimentally, to a number of semiconductor processes.

For sub-100-nm pþ/n junction formation where boron implantation is used, prea-

morphization of the crystalline silicon together with large doses of boron minimizes

the source/drain resistance. The final junction depth of these ultra-shallow junctions

is dominated by diffusion of dopants during thermal activation, which greatly

modifies the implanted depth profile. Because of the high-flux capability of PIII

at low implantation energies, it is well suited for ultra shallow junction formation.

The silicon is preamorphized with a 4-kV SiF4 PIII implantation prior to a 2-kV

BF3 PIII implantation. After annealing at 10608C for 1 s, an extremely shallow junc-

tion depth of 80 nm is obtained with a sheet resistance of 447V per square. Junctions

with a total leakage current density at a reverse bias of25 V lower than 30 nA/cm2

have been fabricated (Pico et al., 1992), which compares to the state of the art using

other technologies.

Another application has been to selective metal plating. Since copper has a

very low electrical resistivity and good electromigration properties, it is an ideal

conductor to replace aluminum for integrated circuit interconnects. However,

plasma-assisted etching of copper has not been successful due to the lack of suitable

volatile etch products. PIII has been used for selective and planarized plating of

copper interconnects using palladium seeding, thus avoiding the need to etch the

FIGURE 16.9. Schematic showing diode and triode configurations of PIII for semiconductor

implantation.
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copper. A palladium sputtering target is immersed in the plasma and has an indepen-

dently controlled negative bias to regulate the sputtering rate. The sputtered neutral

palladium forms a continuous flux for deposition, while the Arþ and Pdþ ions assist

the penetration of deposited palladium into the substrate via ion beam mixing.

PIII has also been used to conformally dope silicon trenches. High packing

densities of devices on silicon substrates are achievable by making use of vertical

sidewalls for active transistor channels and as charge storage elements such as

trench capacitors. Conventional implantation techniques have focused on multistep

implants with collimated beams at controlled beam incidence angles. Taking advan-

tage of the angular divergence of implanting ions in PIII at high gas pressures,

conformal doping of high aspect ratio silicon trenches with BF3 doping has been

achieved. In these experiments, silicon trenches about 1 mm wide and 5 mm deep

were implanted at 210 kV and a gas pressure of 5 mTorr, yielding a relatively

uniform pþ/n junction depth on the top, bottom, and sidewalls of the trench.

(b) Metallurgical Processes PIII can also be used for metallurgical surface

modification to improve wear, hardness, and corrosion resistance. In this context,

the process has been called plasma source ion implantation (PSII). PSII can easily

be used to implant nonplanar targets, for example, tools and dies, with minimum

shadowing and sputtering of the target. The latter can limit the retained dose of

the implanted ion species. Ions have been implanted under batch processing con-

ditions, with acceptable dose uniformities to the depths and concentrations required

for surface modification, resulting in dramatic improvement in the life of manufac-

turing tools under actual industrial conditions (Conrad et al., 1990; Redsten et al.,

1992). In a typical PSII process, the target is immersed in a nitrogen plasma of

density n0 � 5� 109 cm�3. A series of 50-kV, 10-ms pulses at 100 kHz are applied

to the target for minutes to hours. For these conditions the initial matrix sheath thick-

ness is 3 cm, and the Child law sheath thickness is 24 cm, but the pulse width is short

enough that the Child law sheath does not have time to fully form. In the referenced

work, the plasma is generated by a hot tungsten filament source, which is inserted

into the chamber and biased at 2(100–300) V. The filament emits electrons that

are accelerated across the filament sheath into the plasma, where they subsequently

ionize the background gas, which is typically at a pressure of 10�4 Torr. The

dynamics of hot filament plasma sources is fairly well understood (Leung et al.,

1976). Multipole magnets are required on the surface of the implantation chamber

to confine the primary electrons (see Section 5.6 for a description of multipole

magnetic confinement).

PROBLEMS

16.1. Silane Discharge Model Consider a simplified (uniform electron tempera-

ture) model for a high-pressure capacitive rf discharge in silane. Use the rate

constants in Table 16.1. Assume that the silane density ng is uniform and is

much larger than all other densities, and ignore negative ions and all
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volume loss processes. The discharge parameters are p ¼ 200 mTorr and

l ¼ 3 cm, and the gas is at room temperature.

(a) Assume that SiH3 and SiH2 are created by reactions 1 and 2 in Table 16.1,

respectively, and that both species are lost to the electrode walls with

unity sticking coefficient. Find the fluxes GSiH3
and GSiH2

at the electrodes,

and find their ratio GSiH3
=GSiH2

, in terms of ne, ng, l, and the rate constants.

(b) By equating the volume rate of generation of positive ions (reactions 5

and 6) to the loss of ions to the discharge electrodes, determine Te.

Treat the SiHþ
3 and SiHþ

2 ions as identical, and assume an ion–neutral

momentum transfer rate constant Kmi � 10�9 cm3=s.

(c) Using your results in parts (a) and (b), determine values for GSiH3
, GSiH2

,

GSiH4
, and Gi at the electrode for an ion (and electron) density n0 ¼

3� 1010 cm�3 in the center of the discharge.

(d) Assuming Vrf ¼ 500 V and collisional sheaths [see Section 11.2, and take

us ¼ uB in (11.2.53)], and assuming a reasonable value Ec ¼ 100 V for

the collisional energy lost per electron–ion pair created, find the ion-

bombarding energy Eic, given by (11.2.57), and the absorbed power per

unit area Sabs.

16.2. Deposition Rate Within a Trench Consider deposition within a trench of

width w and depth h, as shown in Figure 16.3a, due to an isotropic flux of pre-

cursors at the top of the trench having a sticking coefficient of unity. Assume

ballistic transport within the trench; i.e., the mean free path for precursor col-

lisions is much greater than w or h.

(a) Let dN be the number of precursor molecules incident on a differential

width dy at a sidewall position y due to an isotropic flux emitted from a

differential width dx at the top of the trench. Using precursor particle con-

servation, show that dN is proportional to dx cos u (emission by the source

width) and to dy cos u 0 (reception by the sidewall width), and is inversely

proportional to the distance r between the source and sidewall:

dN ¼ A
cos u cos u 0dx dy

r

where cos u ¼ x=r, cos u 0 ¼ y=r, and A is a constant.

(b) Integrating the expression in part (a) from x ¼ 0 to x ¼ w, and assuming a

uniform source at the top of the trench, show that dN=dy/ 1� cos us,
where cos us ¼ y=(y2 þ w2)1=2; note that us is the angle subtended by

the trench opening as seen at the position y along the sidewall.

(c) Using a similar procedure to that developed in parts (a) and (b), find an

expression for the nonuniform deposition rate dN/dx versus x at the

bottom of the trench.

16.3. Reactive Sputtering Deposition Consider the reactive sputtering model

of Section 16.3 with equal target and substrate areas. Let a ¼ gm=gc and Y ¼
2Grsr=Gigc be the normalized sputtering coefficient and flux, respectively.
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(a) Show using (16.3.3) and (16.3.4) that the surface coverages of the

compound on the target and the substrate are given respectively by

ut ¼ Y

1þ Y

us ¼ Y2 þ 2Y

Y2 þ 2Y þ a

(b) Show using (16.3.5) and (16.3.6) that the reactive gas flow and the

sputtering flux are given respectively by

dNr

dt
/ Y

1

1þ Y
þ a

Y2 þ 2Y þ a

� �

Gsput / aþ Y

1þ Y

(c) For the limiting case a � 1, graph dNr=dt versus Y and Gsput versus Y.

From these graphs, sketch Gsput versus dNr=dt and show that the curve

exhibits hysteresis similar to that shown in Figure 16.5. Is there hysteresis

for the case a � 1? Prove your answer.

16.4. Collisionless PIII

(a) Derive the sheath motion (16.4.8) when a sudden negative voltage �V0 is

applied to the target by directly solving the differential equation (16.4.3)

for the case uB ; 0.

(b) Suppose a voltage�V0(t) ¼ �at that varies linearly with time for t . 0 is

applied to the target. Assuming a Child law sheath (16.4.1) and using

(16.4.2) for the case uB ; 0, determine the implantation current density

Jc(t) and sketch Jc versus t. Explain why the current density is singular

at t ¼ 0þ and suggest a value for the maximum current density at t ¼ 0þ.

16.5. Collisional PIII Consider the collisional sheath model for high-voltage

implantation given in Section 16.4.

(a) Using (16.4.30) for Jt, along with the basic relation (16.4.2) (with uB ; 0),

show that the collisional uniform density (matrix) sheath expands as

s(t) ¼ s0(1þ v0t)
2=7

and find an expression for v0.

(b) Find an expression for ns(t).
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CHAPTER 17

DUSTY PLASMAS

17.1 QUALITATIVE DESCRIPTION OF PHENOMENA

Particulates or “dust” is an important constituent of space plasmas and has been

extensively analyzed in that context (see Goertz, 1989). More recently these dusty

plasmas have been found to be important in processing discharges. On the one

hand, particulates can contaminate etching and deposition processes; on the other

hand, the growth of particulates in discharges offers unique possibilities for

powder synthesis and surface modification processes. These two aspects have led

to a resurgence of interest in dusty plasmas. The two types of environments, that

of large regions in space and of small laboratory discharges, have many common

features and, of course, some features that are quite different. In this section we

focus our attention on the existence of particulates in processing-type discharges,

keeping in mind the generality of some of the phenomena.

Given the idealization of a single approximately spherical particle of known

radius, orbital motion theory for a spherical probe immersed in a plasma can give

a reasonable account of the equilibrium floating potential of the particle with

respect to the plasma, and the equilibrium charge on the particle. The result is

that the dust particle charges negatively with a potential of a few times the electron

temperature, as required to repel the mobile electrons, such that the positive ion flux

and electron flux to the particle are equal. We have already considered this situation

with respect to cylindrical probes in Section 6.6. Given this potential, the charge is

then determined by the capacitance of the particle with respect to the plasma.
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Even if the sizes of the particles are uniform and known, this picture can change

in a number of ways. (1) If the electrons are very energetic, or if the plasma is in an

intense ultraviolet radiation environment, secondary electrons can be emitted from

the particle surface, leading to a lower potential and charge. In an extreme situation

this can actually result in a reversal of the potential and a positively charged particle.

(2) With a sufficiently large particle size and density, the particle charge density can

be larger than the electron charge density in the plasma, leading to an electronega-

tive equilibrium in which the “negative ions” are the negatively charged dust

particles. This leads to more complicated equilibria and plasma stratification, as

considered in Sections 10.3 and 10.4. However, as we shall see, the particles may

concentrate near the plasma sheaths, leading to quite different electronegative

structures than treated in those sections. (3) If the density of the dust grains is suffi-

ciently high, their Debye spheres will overlap, modifying the equilibrium. Further-

more, this dusty plasma may have more potential than kinetic energy, such that it has

a special character, known as a strongly coupled plasma (Ichimaru, 1982). Such

plasmas can exhibit liquid- and crystal-like behavior, and these states are now

under investigation.

The above properties are local. However, the global properties of the discharge

lead to additional phenomena. The most obvious is the tendency for particulates

to collect near the sheaths of a processing discharge. This results from a force

balance in which the positive ion flow outward leads to an outward frictional

force on the particulates, balancing the electric field force, which is directed

inward on negatively charged particles. In Sections 10.3 and 10.4 we ignored the

friction force between positive and negative ions, which usually is small, but

could, in some instances, be significant (Deutch and Räuchle, 1992). In dusty

plasmas the positive ion friction force tends to be dominant in the bulk plasma,

pushing the particulates into the presheath region where the electric field force is

larger.

The mechanisms of particle formation are not as well understood as particulate

charging and the plasma behavior with assumed particulate size and density. Particle

formation in many systems can occur through successive steps (Boufendi and

Bouchoule, 1994; Perrin and Hollenstein, 1999) of gas phase nucleation by growth

of negative ion or neutral clusters, followed by a more rapid growth by coagulation

of clusters, and then continued growth by surface deposition of neutral dissociation

fragments with associated buildup of negative charge. Particles can also originate

from fracture or sputtering of films deposited on the walls or the substrate. Although

relatively well-posed calculations can be made, given the neutral chemistry and the

seed particulates, many questions remain unanswered. In particular, the initial

formation which apparently leads to a relatively uniform size of seed particles is

not thoroughly understood, and the equilibrium size of the particulates is also not

well understood.

In order to understand the behavior of dusty plasmas, in addition to the theory

which we summarize below, there has been a significant effort to diagnose such dis-

charges. Probe techniques are useful but have the same type of difficulties associated

with other electronegative plasmas, in which the electrons are mobile compared to
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the negatively charged particles. A very useful technique has been laser scattering,

since the laser wavelength can be adjusted to strongly scatter off of the particulates

while the plasma is quite transparent to the laser light. Experiments of this nature

were performed soon after the contamination effect of particulates was recognized,

and before any detailed theory of discharge particulate formation. We will discuss

these techniques briefly after our review of the theory.

Various methods for removing particles from processing discharges have been

explored. The increasing knowledge of their formation and dynamics has led to

new insights into methods of removal. A number of techniques for producing

micro- and nanoparticles in discharges have also been explored. We will consider

some of these techniques, briefly, at the end of this chapter. For a general review

of many of the phenomena discussed in this Chapter, see Bouchoule (1999) and

the articles and references therein.

17.2 PARTICLE CHARGING AND DISCHARGE EQUILIBRIUM

Equilibrium Potential and Charge

Consider a common situation of a dust particle acting like an isolated spherical

probe within a plasma. The usual ordering is that the Debye length lD � a, the par-

ticulate radius. In the usual discharge with Te � Ti , the Debye length for shielding

around an isolated charged sphere with a � lD is lD � lDi ¼ (e0Ti=eni)
1=2 (see

Problem 2.9). Following the methods used in Section 6.6 for ion collection by a

cylindrical probe, the orbital motion limited (OML) theory for a spherical probe

gives the well-known results for the electron and ion currents collected by the

surface (Laframboise, 1966; Laframboise and Parker, 1973; see also Problem 6.8)

Ie ¼ �Ie0 exp(Fd=Te) (17:2:1)

Ii ¼ Ii0 (1�Fd=Ti) (17:2:2)

where Fd is the potential of the probe (here, a particle) with respect to the plasma.

For an assumed isotropic Maxwellian distribution of both electrons and ions enter-

ing the Debye sphere,

Ie0 ¼ 1

4
ene �ve � 4pa2 (17:2:3)

Ii0 ¼ 1

4
eni �vi � 4pa2 (17:2:4)

where �ve ¼ (8eTe=pm)
1=2 and �vi ¼ (8eTi=pM)1=2. If the ion mean free path

li . (1�Fd=Ti)a, that is, in a relatively collisionless plasma with a small collect-

ing sphere, then the OML assumption is reasonably good (Annaratone et al., 1992),

a condition which typically holds for dust particles in low-pressure discharges.
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However, in some cases, the assumption of isotropic Maxwellian ions is a rather

poor approximation, due to presheath acceleration (see Sections 6.2 and 6.6).

For more general distributions, Ie0 and Ii0 can be found in the literature (e.g.,

Laframboise, 1966; Whipple, 1981). In the other limiting case, the ions enter the

Debye sphere radially (no transverse energy) at the Bohm velocity, which greatly

enhances the collection area if lD � a (see Section 6.6 and Allen et al., 1957).

In equilibrium, assuming no secondary or field emission of electrons from the

surface, Fd can be found by setting the total current Ie þ Ii collected by the particle

equal to zero. Doing this, using the approximations in (17.2.1)–(17.2.4), rearranging

and taking the logarithm, we have

Fd ¼ �Te ln
M

m

Te

Ti

n2e
n2i

� �1=2

� ln 1�Fd

Ti

� �

" #

(17:2:5)

Even for the approximate values of Ie0 and Ii0 in (17.2.3) and (17.2.4), the equation is

transcendental, and solutions must be obtained numerically. An approximate ana-

lytic expression is given by Matsoukas and Russell (1995)

Fd � �0:73Te ln
M

m

Ti

Te

n2e
n2i

� �1=2

(17:2:6)

typically Fd � �few Te . Once the potential is known, the charge on the particle is

straightforwardly obtained from

Qd ¼ CdFd (17:2:7)

where the particulate capacitance is (see Problem 2.9)

Cd ¼ 4pe0a e
a=lD (17:2:8)

and for the usual ordering a � lD

Cd ¼ 4pe0a (17:2:9)

The two solutions (17.2.5) and (17.2.6) for Fd and solution (17.2.7) for Zd ¼
�Qd=e are shown in Figure 17.1 in normalized form for various temperature

ratios and ion masses, assuming that ne ¼ ni.

If a dust grain enters a plasma with some nonequilibrium initial conditions, the

charge build-up can be obtained from

dQ

dt
¼ Ie þ Ii (17:2:10)
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Substituting Fd from (17.2.5) into Ie and Ii given by (17.2.1) and (17.2.2) and using

these expressions in (17.2.10), we obtain

dQ

dt
¼ �Ie0 exp

Q

CdTe

� �

þ Ii0 1� Q

CdTi

� �

(17:2:11)

This equation can be solved numerically to obtain the dynamical build-up of charge.

For an initially uncharged particle, the second term on the RHS in (17.2.11) is small

compared to the first term. Dropping this term and expanding the exponential in the

first term, we obtain the initial charge build-up dynamics

Q(t) ¼ �Ie0 t (17:2:12)

Equating this to the equilibrium value Qd ¼ CdFd from (17.2.7), we obtain an

estimate of the charging time t ¼ t

t � CdTe

Ie0
(17:2:13)

M

Z a

FIGURE 17.1. Normalized floating potentialFd=Te versus ion-to-electron temperature ratio

Ti=Te, for different values of the ion mass; the right axis gives the corresponding value

of the number of electrons on the dust particle, normalized to its radius a (in nm) times

the electron temperature Te (in volts); the solid lines correspond to numerical solutions;

the dashed lines correspond to the approximate analytical solution of Matsoukas and

Russell (1995).
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where we have used Fd � �Te from (17.2.5) or Figure 17.1. From (17.2.5)–

(17.2.13) we see the essential scalings with a, ne , and Te . In particular, for

ne � ni , Fd / Te from (17.2.5), Qd / aTe from (17.2.7), and t/ T1=2
e =nea from

(17.2.13). Consider for example an argon discharge with a 115-nm particle, Te ¼
2V and Ti=Te ¼ 0:05. Then Zd ¼ �Qd=e � 477 and net � 1:78� 104 s=cm3. For

a plasma with ne ¼ 1010 cm�3, we find that t � 1:8ms, which is short compared

to the growth time of the dust particles.

There are many physical effects that reduce the collection of negative charge on a

dust grain. Since the charge collected is quantized in units of e, it is subject to shot

noise fluctuations. Letting fd(Z) be the distribution of charge number Z ¼ �Q=e
on a collection of equal-size particles, then Matsoukas et al. (1996) show that fd
follows a Gaussian distribution for Z � 1 and ne � ni

fd(Z) ¼ 1

(2ps 2
z )

1=2
exp � (Z � Zd)

2

2s 2
z

� �

(17:2:14)

where Zd ¼ �Qd=e is given by solving (17.2.5) forFd and substituting into (17.2.7),

and the standard deviation is (Problem 17.1)

sz � 0:5 Z1=2
d (17:2:15)

Equation (17.2.15) gives a reasonable estimate for sz even for Zd � 1. For this case

of small Zd , the charge on a grain can fluctuate to zero or positive, even though the

average charge is negative.

Let us now consider the reduction in negative charge due to the effect of

depleted plasma electrons. For example, in an rf discharge in silane, Boufendi

et al. (1992) found a particle density of nd ¼ 108 cm�3, as measured by laser

light scattering, in a background ion density of ni ¼ 5� 109 cm�3, measured by

ion saturation current on a Langmuir probe. The typical particle radius, determined

from electron microscopy, was 115 nm, which, as calculated above, gives

Zd � 477. For this Zd and nd , the plasma would be strongly depleted of electrons

and most of the negative charge would reside on the particulates. Assuming a

uniform density of dust grains and using quasi-neutrality together with (17.2.7)

and (17.2.9), we have

ne � nd
4pe0a

e
Fd ¼ ni (17:2:16)

Solving for ne and substituting the result in (17.2.5) yields

Fd ¼ �Te ln
M

m

Te

Ti

� �1=2

� ln 1�Fd

Ti

� �

þ ln 1þ nd

ni

4pe0a

e
Fd

� �

" #

(17:2:17)
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Since ne . 0, from (17.2.16) we see that nd(4pe0a=e)jFdj , ni for a sol-

ution to exist. Approximate values in a strongly electronegative situation are given

by the equality which, for the above example, gives Fd � �0:63V and Zd � 50

(Problem 17.2).

One cannot, however, accurately calculate a new equilibrium using (17.2.1)–

(17.2.5), with a self-consistent electron density from (17.2.16), since the basic

assumption of an isolated particle collecting charge may be incorrect for large nd .

To see this, making the assumptions ni ¼ 5� 109 cm�3 and Ti ¼ 0:1V, we find a

Debye length lD ¼ (e0Ti=eni)
1=2 ¼ 3:3� 10�3 cm. However, the average separ-

ation of particles is given by D ¼ (3=4pnd)
1=3 � 1:3� 10�3 cm. With D . lD,

the relation between charge and potential is modified, leading to a decreased

charge on the particles from that which would be calculated using (17.2.9) and

(17.2.17). Whipple et al. (1985) account for this under the assumption of a

regular lattice of particles spaced by D. For example, with D=a ¼ 100 and

lD=D ¼ 10, the equilibrium charge is approximately a tenth that given by

(17.2.16). However, their analysis was performed for a space plasma with

Ti=Te ¼ 1. For the laboratory plasma in the above example, with Ti=Te � 0:05,
the effect is much smaller.

Electrons can be emitted from dust grains due to field emission, electron, ion and

metastable impact, ultraviolet (UV) photon absorption, and thermionic emission.

Very small grains cannot collect negative charge because of field emission from

the surface. The electric field at a smooth spherical surface is E ¼ Qd=4pe0a
2. Sub-

stituting for Qd using (17.2.7) with Cd given from (17.2.9) and estimating jFdj �
2Te ¼ 4V from (17.2.5) or Figure 17.1, we find E � 2Te=a. Assuming a value

for field emission to occur of E & 109 V=m, then the particulate charge will not

build up for particle radii a . 2Te=E ¼ 4 nm. For nonspherical particles or particles

with “bumpy” surfaces, field emission will occur for average radii greater than 4 nm.

Letting the onset of charging be at a ¼ 10 nm, the number of negative charges at the

onset is Zd � 4pe0a � 2Te=e ¼ 28.

Secondary electron yields gse for ion or metastable impact depend on the particle

material and the nature of the ion or metastable, and for electron impact depend on

both the impact energy Ee and the particle material. For low energy ions or

metastables, gse � 0:01–0:1 (see Table 9.1). For electrons, gse � 7:4 gm(Ee=Em)

exp½�2(Ee=Em)
1=2�, with the peak yield gm at energy Em (Whetten, 1992). Typically

gm � 1–5 and Em � 100–500V. The primary electrons can either be part of

the thermal (e.g., Maxwellian) distribution or be energetic electrons generated by

ions impinging on the capacitive discharge electrodes and accelerated by the

high fields of the rf sheath. The yields from small particles can be significantly

enhanced above the values for bulk materials, because scattered electrons escape

more easily from a small particle than from a semi-infinite slab due to geometrical

effects (Chou et al., 1994). Under some circumstances (e.g., high Te), the secondary

emission current due to electron impact can be a significant fraction of the primary

currents. A significant reduction in magnitude of the average negative charge on

the particle is found by including these currents in the particle charge balance. The

particle charge can even become positive under some conditions (Goertz, 1989).
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Absorption of uv photons releases photoelectrons with yield gn; that is, Ge ¼
gvGv with Gv the photon flux. It is known that dust in space can charge positively

due to ultraviolet (UV) exposure, and a laboratory plasma can be a strong source

of UV due to electron impact excitation of neutrals. Many dusty plasma measure-

ments have been conducted in SiH4 discharges highly diluted with argon or

helium. It is well known that up to 50 percent of the plasma power can be transferred

to UV resonance radiation in these rare gas discharges. Since resonance radiation

can be strongly trapped in the plasma, the UV flux internal to the plasma can be

much larger than the emitted flux at the surface. Furthermore, the yield gv can be

higher for small particles than for bulk materials. A simulation model of charging

with and without inclusion of UV and electron, ion and metastable impact emission

of electrons shows a significant difference in particle charge distributions for the

same plasma conditions. For example, for 1 nm particles without these processes

and for the plasma conditions of Boufendi and Bouchoule (1994), the mean and stan-

dard deviation were approximately �2e and e per particle, respectively, implying

few positive particles. Including the additional processes, the mean was zero and

the standard deviation was 1:5e, implying equal numbers of positive and negative

particles (Kortshagen and Bhandarkar, 1999).

Discharge Equilibrium

In the experimental situation described in our example, the electron density was

found to fall by a factor of about ten as the particles built up over time. The exper-

imental results are shown as a function of time in Figure 17.2 for dust particle build-

up in a 100-mTorr Ar/SiH4 capacitive discharge (Boufendi et al., 1996) at a fixed

13.56 MHz driving voltage. In addition to the decrease in electron number density

another important consequence, also shown in the figure, is the increase in the elec-

tron temperature. There can also be a modest increase in the positive ion density.

Qualitatively these changes can be understood in terms of quasineutrality and the

plasma particle and energy balance. During the later stage of dusty discharge

operation, with ne � ni , the quasineutrality condition (17.2.16) yields the scaling

ni / nda (17:2:18)

As described in Section 10.2, the particle balance is that the volume production due

to ionization must equal the loss to the surface

KiznengV ¼ GiA (17:2:19)

where Gi is the particle loss flux, V is the volume, and A is the surface loss area. The

loss area includes the discharge wall area Aw and the total surface area of the dust

particles, A ¼ Aw þ 4pa2ndV. As the dust particles grow in size and number they

can become the main loss area. With Gi / ni , we obtain from (17.2.19) that

Kiz / ni

ne
(Aw þ 4pa2ndV) (17:2:20)
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The electron power balance is that the heating power, taken here to be ohmic,

must equal the electron power losses

1

2

~J
2

rf

sdc

V ¼ GiAe(Ee þ Ec) (17:2:21)

where sdc ¼ e2ne=mnm given by (4.2.22) is the dc plasma conductivity and Ee þ Ec

is the electron energy lost per electron lost from the discharge. Hence the LHS of

FIGURE 17.2. Electron density (a) and electron temperature (b) versus time in an 30 sccm

argon þ 1.2 sccm silane discharge; the plasma reactor is 13-cm diameter and 3 cm in height,

driven at 13.56 MHz with a peak-to-peak voltage of 600 V, with a total pressure of 150 mTorr

(after Boufendi et al., 1996).
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(17.2.21) scales as ~J
2

rf=sdc / ~J
2

rf=ne . For a voltage-driven capacitive discharge

with ni = ne , setting ns � ni and J1 � ~Jrf in (11.2.23) and substituting this into

(17.2.21), we have the scaling

~J
2

rf

sdc

/ ~V
1=2

rf

ni

ne
(17:2:22)

Hence from (17.2.21) and (17.2.22) with ~V rf ¼ const and taking Gi / ni , we obtain

the scaling

ne / 1

Aw þ 4pa2ndV (17:2:23)

From (17.2.23) we see that the electron density falls as the particle surface area

grows. Inserting (17.2.18) and (17.2.23) into (17.2.20), we obtain

Kiz(Te)/ nda(Aw þ 4pa2ndV)2 (17:2:24)

Since Kiz / e�Eiz=Te is an increasing function of Te , we see that Te grows as nd and a

increase. The increase in Te also leads to a resulting increase in the 7504-Å argon

neutral emission during the dust formation, as seen experimentally. As will be

seen in Section 17.4, during the final stage of particle growth nd � const and the par-

ticle radius grows slowly with time, as a/ t1=3. This leads to a modest increase in ni
given by (17.2.18), with a larger decrease in ne . An additional effect as ne decreases

is an increase in the ohmic voltage drop across the bulk plasma. Since the total

voltage across the discharge is fixed, this leads to a decrease in the sheath voltage

drop, which modifies the scalings of Kiz and ne . In the experiment, Boufendi et al.

(1996) found a 40 percent increase in ion density in going through the transition

for particulate formation. There was an accompanying increase in the bulk electric

field ~Erf ¼ ~Jrf=sdc from approximately 1 to 4 V/cm. Scalings similar to (17.2.23)

and (17.2.24) can also be obtained for a capacitive discharge driven by a constant

rf current (Problem 17.3).

17.3 PARTICULATE EQUILIBRIUM

Given an equilibrium of a plane-parallel plasma discharge, with sheaths near both

electrodes, the forces that act on the particulates are: gravity, neutral drag, ion

drag, and electric fields. The ion drag is generally the principal outward force that

balances the inward force of the electric field at the interface between the plasma

and the sheaths. For horizontal electrodes gravity adds to the ion force at the

lower electrode and subtracts from the ion force at the upper electrode. Depending

on the neutral flow, the neutral drag force may add, subtract or be neutral with

respect to the ion force.
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Rather straightforwardly, the gravitational force on a particle is the product of the

particle mass times the gravitational acceleration g

Fg ¼ 4

3
pa3rmdg (17:3:1)

where rmd is the mass density of the dust particle and g ¼ 9.8 m/s2. The neutral drag
force is determined from the first term in (2.3.14), which gives the time rate of

momentum transfer per unit volume lost by neutrals having density ng and flow

velocity ug impinging on particulates having density nd

fn ¼ �Mgngngdug (17:3:2)

The particulate flow velocity is assumed to be negligible and the neutral flow

velocity is assumed to be small compared to the neutral thermal velocity. Approxi-

mating the interaction as hard sphere collisions, we write the collision frequency as

ngd ¼ ndsgd �vg , where sgd ¼ pa2 and �vg ¼ (8eTg=pMg)
1=2. Because the momentum

lost by neutrals is gained by dust particles, we obtain the neutral drag force on a

particle as

Fn ¼ �fn=nd ¼ Mgngpa
2 �vgug (17:3:3)

Similarly, the ion drag force is determined from the momentum transfer lost by

ions impinging on particulates

fi ¼ �Mninidui (17:3:4)

where nid ¼ ndksidvil is the momentum transfer collision frequency for positive ions

impinging on the negatively charged dust particles. The momentum transfer has two

parts, one due to the transfer when an ion is collected and the other due to Coulomb

scattering of ions by the particle. We write the rate constants k�l for each process as

the product of a cross section s times an effective ion velocity

vieff ¼ u2i þ
8eTi

pM

� �1=2

(17:3:5)

which accounts for both the ion drift and thermal velocities. The cross section for

collection can be written

s ¼ pb2c (17:3:6)

where bc is the collection radius. This is found by equating the total ion current

collected (17.2.2) to the product of the random thermal ion current flux times
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a collection area

Ii0 1�Fd

Ti

� �

¼ 1

4
eni �vi � 4pb2c (17:3:7)

Substituting (17.2.4) for Ii0 into (17.3.7), we find

bc ¼ a 1�Fd

Ti

� �1=2

(17:3:8)

The momentum transfer cross section for Coulomb scattering is approximated by

inserting (3.3.3) into (3.1.15), with the lower limit in (3.1.15) taken to be umin

rather than zero, corresponding to a Coulomb potential that is cut off at a radius

r ¼ lD . The result is (Problem 3.5)

s ¼ pb20 lnL (17:3:9)

where from (3.3.2)

b0 ¼ eQd

2pe0Mv2ieff
(17:3:10)

and L ¼ 2=umin is the Coulomb logarithm. For the Coulomb potential, (3.2.26)

reduces to b ¼ b0=Q. Setting b ¼ bmax ¼ lD and Q ¼ umin in this expression

yields umin ¼ b0=lD. Defining aminimum impact parameter bmin through the relation

L ; bmax=bmin , then umin ¼ b0=lD corresponds to bmin ¼ b0=2 ¼ b90 , where b90 is

the impact parameter for a scattering angle of 908. Accounting for both ion collection
and Coulomb scattering, we then obtain the ion drag force

Fi ¼ � fi=nd ¼ Mnivieffui(pb
2
c þ pb20 lnL) (17:3:11)

The direct collection term is often neglected in (17.3.11) but can be comparable to the

Coulomb term for large dust particles.

For an isolated dust grain, the electric field Eext acting on the dust grain is that

produced by all the other charges in the system. Assuming a continuous model

for the charge densities of positive ions, negative ions, electrons, and charged parti-

culates, the electric field Eext can be computed from the dusty plasma equilibrium

alone. The electric field force acting on a particulate is

FE ¼ QdEext (17:3:12)

We now compare the forces acting on the particulate, in an example. There are

various models for determining bmax and bmin for the ion drag force, but since
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these quantities occur within a logarithm, varying their values modifies the numerical

values only moderately. Northrop and Birmingham (1990) take bmax ¼ lDe , the
electron Debye length, and bmin ¼ a. These limits differ from the usual upper

limit of bmax ¼ lDi and the usual lower limit of bmin ¼ b90. The upper limit of

lDe would be appropriate for ions which are accelerated in the presheath to the

Bohm velocity, /T1=2
e , and subsequently collisionally randomized. The choice of

the lower limit in the impact parameter can make a difference in Fi , as seen in a

practical example below. Winske and Jones (1994) discuss various methods

of calculating Fi and compare them. They take an argon plasma with

ne ¼ ni ¼ 3� 109 cm�3, Te ¼ 2 V, Ti ¼ 0:03 V, a ¼ 0:3mm and Zd ¼ 103

(somewhat arbitrarily). With ng ¼ 3� 1015 cm�3 (100 mTorr) they calculate an ion

mobility of mi ¼ 2� 103 cm2/(V s), and taking an electric field E ¼ 50 V/cm
in the presheath region they obtain ui ¼ miE � 105 cm/s. Using these numbers

they obtain lDe ¼ 190mm and b90 ¼ 3:5mm. Taking lnL ¼ ln lDe=a we have

lnL ¼ 6:4, or alternately taking lnL ¼ ln lDe=b90 we have lnL ¼ 4, which is

approximately 2/3 the first value. Other choices give values in the same range.

Continuing the example, from (17.3.11) we have Fi ¼ 8� 10�3 N. This is to be

compared with Fg (rmd ¼ 2:2 g/cm3) giving Fg ¼ 2:4� 10�5 N, which is

negligible. If one takes a (rather arbitrary) neutral flow velocity of ug ¼ 103 cm/s,
then Fn � 10�4 N, which is also small compared to Fi. The basic force balance,

for this case, is between the ion drag force and the electric field force.

Using Qd ¼ �eZd in (17.3.12), we have FE ¼ 8� 10�3 N, which approximately

balances the ion drag force. In the plasma bulk the ion drag force is generally

large compared to the electric field force, while in the plasma sheath the electric

field force is large compared to the ion drag force. The result is typically a potential

well for the dust grains in the interface region between the bulk plasma and the

sheath.

For large dust grains, particularly in plasmas in which artificial particulates are

introduced to obtain crystal structures, the gravity force (17.3.1) can become large

due to the a3 dependence. The particles are then not trapped near the upper electrode

and tend to congregate deep in the high field sheath region of the lower electrode. If

there is a temperature gradient in the gas, there can also be a thermophoresis force.

This arises because the momentum transfer of gas molecules is larger on the hot side

of the particle than on the cold side. At high pressures, the force can be written as

(Boeuf and Punset, 1999) Fth ¼ �(32=15)(a2=vg)kgrTg , where kg is the thermal

conductivity of the gas. This force is generally smaller than the ion force acting

to expel the dust grains.

For higher density plasmas, generated in inductive, ECR, or helicon discharges,

the particulate equilibria can be quite different from the lower density capacitive dis-

charge conditions considered above. For example, Graves et al. (1994) studied an

ECR discharge at a density of ni ¼ 5� 1012 cm�3. In this plasma, with a density

three orders of magnitude larger than the plasma considered above, the ion drag

dominates and the particulates are pushed deeply into the sheath or completely

out of the plasma.
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17.4 FORMATION AND GROWTH OF DUST GRAINS

The formation and growth of dust grains is not completely understood. General

observations of precursors and of the change in number and size of the dust

grains are made using infrared absorption, mass spectrometry, laser light scattering

(LLS) and other techniques. The initial precursors to the formation of micrometer-

sized dust grains in low pressure discharges appear to be high mass, singly charged

negative ion clusters, and in some regimes, neutral clusters. For example,

Hollenstein et al. (1998) have observed negative ion clusters having masses up

through 1300 amu in a 75-mTorr silane discharge. A mass of 1300 amu corresponds

to a 1.2-nm diameter particle with j ¼ 44 silicon atoms.

The basic picture at low pressures or powers is that there is an initial stage of

cluster formation in which feedstock monomers (possibly vibrationally excited)

and/or feedstock dissociation fragments combine successively with singly nega-

tively-charged clusters. This stage has a rapid growth up to a certain critical size j �
200 (� 2 nm diameter). The single negative charges are chemically bound and

therefore are only weakly subject to field emission or other detachment processes.

Since the negative clusters are confined, they may predominate over the buildup

of neutral clusters, which are lost at diffusion rates, except at high power or pressure

as described below. Cluster formation is succeeded by coagulation of the clusters

when the number density of j . 200 clusters is sufficiently large. When the coagu-

lated particulates exceed a diameter of around 10 nanometers, the build-up of

negative charge on the particulates prevents further coagulation, and a slower accre-

tion of mass by collisions with neutral fragments takes place, with accompanying

negative charging.

At higher pressures or powers the growth rate of clusters may be sufficiently fast

that neutral loss times by diffusion may be slower than times for the initial build-up

of the j . 200 clusters. In this case, the first stage may be primarily by neutral

clusters, rather than singly negatively charged clusters. Alternatively, the clusters

may fluctuate between primarily neutral and negatively charged (a small fraction

of the time) during a neutral diffusion time, such that, on the average, there is an

electrostatic potential confining them in the discharge (Fridman et al., 1996).

A simple model for negative ion cluster formation in silane begins with dis-

sociative attachment

eþ SiH4 �!Katt
SiH�

3 þ H (17:4:1)

followed by a series of neutral silicon insertion reactions of the form

SijH
�
x þ SiHy �!Kj

Si jþ1H
�
z þ (H products) (17:4:2)

The neutrals can be SiH4 (perhaps vibrationally excited) or its dissociation fragments.

Various loss processes can compete with this growth; for example, negative cluster

recombination with positive ions, leading to the production of neutral clusters that
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may be lost from the system on a faster (diffusion) timescale. We consider these pro-

cesses to illustrate the formation of high mass, negative ion clusters, assuming that the

neutral molecule inserted is SiH4 (Fridman et al., 1996; Gallagher, 2000).

Letting nj be the density of the jth negative cluster (containing j silicon atoms),

then accounting for production and loss by the insertion reaction (17.4.2) and loss

by recombination, we have the particle balance for the ( jþ 1)st cluster

dn jþ1

dt
¼ Kjngnj � Kjþ1ngn jþ1 � Krecn jþ1ni , j ¼ 1; 2; . . . (17:4:3)

Here ng is the density primarily of the feedstock gas SiH4 . To find the steady state

solution to this reaction chain, we assume an SiH�
3 density n1 determined by (17.4.1)

and the competing recombination and insertion loss processes. Setting d=dt ; 0 in

(17.4.3) gives

n jþ1

nj
¼ Kjng

Kjþ1ng þ Krecni
(17:4:4)

As described in Section 8.4, Krec � 10�7 cm3/s is roughly a constant independent of
size. For small cluster sizes, estimates are that Kj � K0 � 3� 10�12 cm3/s, inde-
pendent of j. However, it is known that SiH4 does not react significantly with

growing film, which suggests that Kj decreases significantly above a certain j.

This effect may be due to changes in electron affinity due to a weakening electric

field at the surface as j increases (Gallagher, 2000) or to an increasing relaxation

of vibrationally excited SiH4 on the surface as j increases (Fridman et al., 1996).

As one example, Gallagher gives the estimate

Kj � K0 1� e�100=j4=3
� �

(17:4:5)

Since K0ng � Krecni , we can pass from the discrete to the continuous limit

1

nj

dnj

d j
¼ n jþ1 � nj

nj

to obtain, using (17.4.4)

1

nj

dnj

d j
¼ � Krecni

Kjng þ Krecni
(17:4:6)

For j , 1003=4 � 32, Kj ¼ K0 from (17.4.5), and (17.4.6) can be integrated to obtain

an exponentially decaying density

nj ¼ n1 e
�j=j0
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with j0 ¼ 1þ K0ng=Krecni . Depending on the discharge conditions, the decay

can be fast or slow; such decays have been observed by Hollenstein et al. (1998).

As j increases beyond 1003=4, Kj in (17.4.5) decreases below K0 and the rate of

decay of the density increases. Setting Kjng ¼ Krecni as the condition for a rapid

drop in nj and using (17.4.5), we obtain jcrit ¼ (100K0ng=Krecni)
3=4.

Evaluating these estimates for typical particle-producing discharge parameters

ng ¼ 3:3� 1016 cm�3 and ni ¼ 2� 1010 cm�3, we find j0 ¼ 50 and jcrit ¼ 590.

Hence there is copious production of clusters with diameters exceeding 2 nm

( j ¼ 200). On the other hand, a lower pressure discharge with ng ¼ 7� 1015 cm�3

yields jcrit . 170. Lower-pressure discharges are less likely to generate significant par-

ticle densities. The reaction chain (17.4.3) can be solved for the time-varying cluster

densities (Problem 17.4) to find the timescale for the jcrit density to approach its

steady-state value: tcrit � Krecni � 0:5 ms in our example above.

More detailed numerical models (Choi and Kushner, 1993; Gallagher, 2000)

allow for many more reactions in the negative-cluster particle balance and also

examine the role of neutral clusters. The SiH3 precursor density for neutral-

cluster production is much larger than the SiH�
3 precursor density for negative

clusters, but the dominant loss for small neutral clusters of diffusion to the walls

is fast compared to the neutral-cluster generation rates. Hence the jth neutral-

cluster density decays rapidly with j, as seen both experimentally and in simulations.

However, for sufficiently large j, the diffusion loss rate decreases and the neutral

clusters can charge negatively by nondissociative electron attachment

eþ SijHx �! SijH
�
x

This process (which is forbidden at small j; see Problem 3.12) along with positive-

ion recombination with negative clusters, tends to couple the neutral and negative

cluster densities together for the larger j’s, as seen in the simulations.

Following precursor formation and nucleation to a large number density, the

coagulation stage results in larger size particulates at densities much below that

of the clusters. Coagulation is typically on a fast timescale compared to the sub-

sequent particle growth. Figure 17.3 shows the typical time development of the par-

ticle radius a and number density nd in a pure silane discharge (Courteille et al.,

1996). Coagulation is seen as the initial sharp drop in nd and increase in a at time

t � 2 s, in which a increases to �10 nm. Coagulation arises because the thermodyn-

amic free energy of a distribution of small grains in a plasma is reduced when grains

coalesce, due to a reduction in the total surface area and its associated free energy.

During coagulation the sum of the masses of the particles is conserved; hence the

average radius increases and the density decreases, with nda
3 � const. The simplest

kinetic description is a Brownian free molecular motion model involving the mutual

collisions of assumed-neutral particulates due to their thermal motions. The

dynamics can be understood qualitatively by considering the particles as equal-

size, with

nd(t)a
3(t) ¼ const (17:4:7)
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The time evolution of nd is due to the mutual collisions of the particles

dnd

dt
¼ �Kddn

2
d (17:4:8)

where Kdd ¼ sdd �vd is the rate constant. Using sdd � p(2a)2 and �vd ¼
(16kTd=pmd)

1=2 (the reduced mass is md=2) with md / a3, we obtain Kdd / a1=2.

Substituting nd for a using (17.4.7), we obtain Kdd / n
�1=6
d . Using this in (17.4.8),

we find

dnd

dt
¼ �Cn

11=6
d (17:4:9)

where C is a constant. The solution to (17.4.9) is

nd(t) ¼ n
�5=6
d0 þ 5

6
Ct

� ��6=5

(17:4:10)

which is the Brownian free molecular motion result for neutral coagulation

dynamics. Substituting this into (17.4.7), we obtain the time variation of the particle

radii,

a(t) ¼ a0 1þ 5

6
n
5=6
d0 Ct

� �2=5

(17:4:11)

These time variations have been fit to the data in Figure 17.3 as the solid lines.

FIGURE 17.3. Time development of the particle radius a (open circles) and the number

density nd (solid circles) for early discharge times, obtained from Rayleigh scattering; solid

lines show the best fit of the Brownian free molecular motion coagulation model (after

Courteille et al., 1996).
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Various mechanisms are invoked to account for a reduced or zero negative charge

on the coagulating clusters. Let us first note from (3.3.2) that the classical distance of

closest approach of two singly negatively charged clusters is b0 ¼ e=4pe0Eclus ,

where Eclus is the relative energy in the center-of-mass system. For two clusters of

radii a to make contact would require 2a � b0 . At room temperature with

Eclus � 3
2
Tg ¼ 0:04 V, this would imply a � 20 nm for coagulation to occur.

However, 20-nm particles are already multiply charged, and experiments show

that coagulation occurs at smaller radii of a few nanometers. Hence during

coagulation either the clusters are hot (either directed or thermal energy), with

Eclus � 0:2 V, or they are mainly neutral. We have described in Section 17.2

various mechanisms for a reduced negative charge on small particulates. For

example, charge fluctuations as in (17.2.15) can reduce the average Coulomb

force. Kortshagen and Bhandarkar (1999) have studied a number of these mechan-

isms and concluded that the onset of coagulation is most likely due to a build-up of

the dust particle density nd to exceed the positive ion density ni. As shown from

(17.2.16), this would lead to an average reduced charge magnitude on the particles,

facilitating coagulation (Problem 17.2b).

Coagulation stops when the particle size becomes sufficiently large that the

equilibrium negative charge Qd on the grains becomes greater than unity. This is

consistent with the experimental data which also show that the particle density

remains roughly constant thereafter, with a slow growth in the grain size. This sub-

sequent growth of the charged particles is through standard deposition processes, at

reasonably constant dust grain number. A simple calculation of this final growth

stage is that the volume grows proportional to the rate of incoming neutral frag-

ments, which is proportional to the area, giving

d

dt
nsol � 4

3
pa3

� �

¼ G	
gs

	
g � 4pa2 (17:4:12)

where nsol is the solid density of the particle, G
	
g ¼ 1

4
n	g �v

	
g is the neutral fragment flux,

and s	g is a neutral fragment sticking coefficient. The density n	g of the precursor frag-
ments is determined by their production in the volume and their loss at the surfaces

KdissnengV ¼ G	
g(Aw þ 4pa2ndV) (17:4:13)

where V is the discharge volume and Aw is the surface area of the discharge. Solving

(17.4.13) for G	
g and substituting into (17.4.12), we obtain

da

dt
¼ Kdissnengs

	
gV

nsol

1

Aw þ 4pa2ndV (17:4:14)

Assuming a fixed ne , for simplicity, (17.4.14) can be integrated to obtain

Aw(a� a0)þ ndV 4p

3
(a3 � a30) ¼

Kdissnengs
	
gV

nsol
t (17:4:15)
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For Aw � 4pa2ndV, (17.4.15) yields a linear growth of particle radius with time

a(t) ¼ Ct þ a0 (17:4:16)

where C ¼ Kdissnengs
	
gV=nsolAw. The growth rates are typically of order 1 nm/s.

In the opposite limit of Aw � 4pa2ndV, we see a slowing of the growth due to a

continual increase in the loss area, which depletes the neutral fragment density,

a(t) ¼ 3Kdissnengs
	
g

4pndnsol
t þ a30

� �1=3

(17:4:17)

The predicted cube root dependence of the radius on time is in agreement with some

measured results. Figure 17.4 shows the particle diameter versus the plasma on-time

for a 75-mTorr silane discharge (Böhme et al., 1994), along with the cube root fit to

the data. For a high particle density, ne and Kdiss may not be fixed but may vary with

a, as in (17.2.23). This leads to different time variations for a(t) than given in

(17.4.16) or (17.4.17). The growth eventually saturates. The saturation is not well

understood but may, in part, be due to a change in the principal accretion species,

and, in part, due to a change in the balance of forces on the growing particles that

can produce losses of particles to the discharge walls. Particulates can also form

in plasmas with more complicated chemistries than silane (see Hollenstein, 2000,

for a discussion and references).

The particulates usually collect in a relatively narrow region at the interface

between the plasma and the sheath as described in the previous section. For

example, in a He/SiH4 (5 percent) parallel plate capacitive discharge with 43-mm

gap length, 600-mTorr pressure, and 30-sccm flow rate, Shiratani et al. (1994)

obtained the particle size variation with space and time shown in Figure 17.5.

FIGURE 17.4. Particle diameter versus discharge on-time (after Böhme et al., 1994).
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The position is measured from the lower grounded electrode. Particularly at the

powered electrode plasma–sheath interface between 38 and 42 mm, we see an

initially linear increase in the particle size, with an essentially saturated size after

two seconds. The particles were also found to be relatively monodispersed (equal-

sized), with a relatively constant, in time, particulate density of 107 –108 cm�3.

The initial linear growth rate was calculated using the accretion of neutral radicals

from the gas phase, as in (17.4.16).

17.5 PHYSICAL PHENOMENA AND DIAGNOSTICS

There are various physical phenomena connected with particulates that are interest-

ing in their own right and may also be useful as diagnostics. We only consider these

briefly and give a few key references for the reader who wishes to pursue a topic in

more detail.

Strongly Coupled Plasmas

Perhaps of most interest is the ability of the particulates to form crystalline structures

at parameters easily accessible in laboratory plasmas. The fundamental coupling

parameter is the ratio of the potential energy to the kinetic energy of the particulates.

For a regular cubic lattice structure of particle separation D the coupling parameter

may be defined as

G ;
2Q2

d

4pe0eTdD
(17:5:1a)

with Td the particle temperature. Here G is for a one component plasma in which the

neutralizing background is uniform and stationary. Thermodynamic arguments

FIGURE 17.5. Time evolution of particulate size d ¼ 2a at 34–42 mm above the grounded

electrode of a capacitive discharge after power turn-on; 43-mm electrode spacing, 40-W rf

power, 4 s on-time inHe/SiH4 (5 percent) at 30 sccmand 600 mTorr (after Shiratani et al., 1994).
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together with numerical computations have led to the determination of the transition

to a crystalline structure at G ¼ 171 (see Ichimaru, 1982, for a review, and Morfill

and Thomas, 1996, for the application to particulates). For a plasma with mobile

background ions and electrons, Morfill and Thomas argue that the potential

energy, and therefore the coupling parameter, should be reduced by a shielding

factor, such that they take

G ;
2Q2

d

4pe0eTdD
e�D=2lD (17:5:1b)

This shielded form for the coupling parameter has not been obtained rigorously. The

large values of the coupling parameter required to obtain crystalline structures

would only be realized in ordinary plasmas at very high densities or very low temp-

eratures. However the high value of Zd ¼ �Qd=e for the particulate grains allows

dusty plasmas to enter this strongly coupled regime at lower densities and higher

temperatures.

The study of the various phenomena associated with crystallization, such as

transition parameters, grain boundaries, dislocations, annealing, and various wave

phenomena, is clearly interesting in itself. The easy visualization of the crystal

structure by laser scattering techniques has facilitated these studies and also led to

ways of measuring basic particulate behavior. Observations of crystal structures

have often been performed with artificial powders, where the size and density can

be carefully controlled. See Zuzic et al. (1996) for an example of the observation

of collective behavior and for other references. The study of crystal structures has

also led to an appreciation of ion flow around the suspended dust grains, which

tends to align the crystals into two-dimensional arrays, and can cause other interest-

ing effects, such as plasma wakes behind the grains and dipole moments on the

grains (e.g., see Melandso, 1997).

Dust Acoustic Waves

An interesting phenomenon that occurs in dusty plasmas is that of dust acoustic

waves, which can be used as a diagnostic. This has been studied at various levels

of complexity, including dispersive effects and collisionless and collisional

damping. Here we present a simplified picture and related experiments following

D’Angelo (1995) and Barkin et al. (1995). We assume a dusty plasma in which

most of the negative charge resides on the dust. The relevant one-dimensional

equations for the electrostatic waves, which are a generalization of the electron

waves considered in Section 4.2, are

@nd
@t

þ @

@x
(ndud) ¼ 0 (17:5:2)

ndmd

@ud
@t

þ ndmdud
@ud
@x

þ eTd

@nd
@x

þ Qdnd
@F

@x
¼ 0 (17:5:3)
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eTi

@ni
@x

þ eni
@F

@x
¼ 0 (17:5:4)

ni ¼ Zdnd (17:5:5)

where nd and ni are the densities of the dust and positive ion species and Td and Ti

are their temperatures.Qd is the negative charge on the dust grains of massmd , taken

to be equal size, and ud is their fluid velocity. Equations (17.5.2) and (17.5.3) are the

continuity and momentum equations for the dust, (17.5.4) expresses the condition of

Boltzmann equilibrium for ions, a good approximation compared to the slow dust

motion, and (17.5.5) is the usual condition of charge neutrality. As in Section 4.2,

we expand to first order around a zero-order steady-state solution, nd ¼ nd0 þ ~nd ,
ud ¼ ~ud, and F ¼ ~F, and eliminate the first order quantities ~nd , ~ud , ~F, assumed

to vary as e j(vt�kx), to obtain the dispersion equation

v2

k2
¼ e

md

(Td þ ZdTi) (17:5:6)

Measuring the wave phase velocity v=k for known Ti , then Zd=md can be deter-

mined. For a given density material, this relates particulate size to charge, which

can be a useful diagnostic. Barkin et al. (1995) observed a dust acoustic wave for

dust grains with 2a ¼ 5mm, md � 10�12 kg, and Zd � 4� 104. They measured a

wave velocity of v=k � 9 cm/s, which was close to the calculated value of approxi-
mately 8 cm/s.

Driven Particulate Motion

Another interesting experiment is to drive a sparse collection of dust grains

(Zdnd � ni) with a slow periodic electric field, which was experimentally done by

Zuzic et al. (1996). In this situation the particle oscillation motion is described by

md €x� F0(x)þ md _x=tdg ¼ F1 cosvt (17:5:7)

where F0(x) is the sum of the position-dependent forces acting on the particle,

including electric field forces, ion and neutral drag forces, and so on, F1 cosvt is
the applied drive, and md _x=tdg is the frictional force of the background neutral

gas. Expanding F0(x) about the equilibrium F0(x0) ¼ 0 for small friction, (17.5.7)

has the resonant frequency

v2
0 ¼ � 1

md

dF0

dx

� �

x0

(17:5:8)

Varying v in (17.5.7) exhibits this resonance, which for known md determines the

confining force gradient at equilibrium. Because the electric field varies rapidly
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compared to all the other forces at the particle equilibrium position just inside the

sheath, most of the force gradient is due to the electric field gradient, which can

be calculated from (17.5.8) by measuring v0 . Furthermore, matching the theoretical

frequency width of the resonance to the experiment determines the frictional drag

time of the gas. This can be related to a standard theory of the friction on a

sphere moving through a background gas, for which

tdg ¼ 2
ffiffiffiffi

p
p

rda=3rgcs (17:5:9)

where rg is the neutral gas mass density and cs is the gas sound speed. For known

particulate grains, rd ¼ 1:5 g/cm3 and 2a ¼ 6:9mm, good agreement between the

measured and calculated tdg was obtained. The measured frequency of v0 ¼
13:6 s�1 (2.17 Hz) was reasonable, but the force gradient was not independently

measured.

Laser Light Scattering

One basic method for the in situ determination of the particulate parameters is by

linearly polarized laser light scattering (LLS). The number density of particulates

can be obtained from the calibrated intensity of the scattered light, or by attenuation

of the transmitted light. The size of the particulates can be obtained from polarized

LLS by comparing the scattering at 90 degrees to the forward scattering, in the plane

perpendicular to the direction of polarization of the electric field. Laser light scatter-

ing has been employed from the earliest measurements, for example, Spears et al.

(1986), Selwyn et al. (1989), and has been a mainstay of observations subsequently,

for example, Boufendi et al. (1992) and Shiratani et al. (1996). If the particulates are

predominantly equal-sized, as is usually the case, then the number and size can be

quite simply determined. We briefly describe the methods here. There are two scat-

tering regimes, depending on the parameter 2pa=l, with l the optical wavelength.

For 2pa=l � 1, the scattering is in the Rayleigh regime in which the scatterers act

as dipoles oriented along the direction of the electric field polarization, producing

isotropic radiation in the plane perpendicular to the polarization direction. For

2pa=l . 1, the scattering is in the more complicated Mie regime (Mie, 1908),

for which the radiation in the plane perpendicular to the E-field polarization is

increasingly forward-scattered. The transition from Rayleigh to Mie scattering

with increasing radius a is rather abrupt, due to an a6=l4 dependence in the scatter-

ing formulae, leading to an easily identifiable particulate radius. An example shown

in Figure 17.6 for an argon laser line of l ¼ 488 nm gives a breakaway from the iso-

tropic (Rayleigh) scattering at a ¼ 50 nm, that is, 2pa=l ¼ 0:64, which can be used
as a standard factor. The number density can be obtained from an attenuation

formula,

I(x) ¼ I0 e
�Cextn

0
d (17:5:10)
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where Cext , known as the extinction parameter, is composed of a sum of absorption

and scattering contributions,

Cext ¼ Cabs þ Cscat (17:5:11)

and the line density n0d ¼
Ð lb
0
nd(x) dx, is the particulate density integrated along

the line of sight (beam length) of the laser beam. For equal-sized particles in the

Rayleigh regime, Cabs and Cscat are given by (see Boufendi et al., 1999)

Cabs ¼ 8p2a3

l
Im

N2 � 1

N2 þ 2

� �

(17:5:12)

Cscat ¼ 128p5a6

3l4
N2 � 1

N2 þ 2

�

�

�

�

�

�

�

�

2

(17:5:13)

where N is the complex index of refraction of the dust material. For 2pa=l � 1, the

absorption term can dominate the extinction, but near the Rayleigh–Mie transition

the scattering term generally dominates. If the dust grains are not equal sized or if the

FIGURE 17.6. Scattered intensities versus plasma on-time at 68 and 908 from the incident

direction, in the plane perpendicular to the direction of polarization of the electric field; the

corresponding measured particle size is indicated at the Rayleigh–Mie transition (after

Boufendi et al., 1999).
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index of refraction is not known, more measurements are needed and the compu-

tations become more complicated. For a review of these techniques and references

to the original literature, the reader is referred to Boufendi et al. (1999).

The size can also be determined from electron microscopy of deposited particu-

lates after the plasma has been turned off. The shapes of the particulates can be

examined, particularly to see if they conform to the usual assumption of spherical

grains, assumed in size calculations from in situ LLS measurements. For small

singly negatively-charged particles the mass can also be determined frommass spec-

trometry of exiting particles, using a power-modulated discharge at a frequency such

that the sheath collapses and negatively charged particles can escape to the analyzer

orifice. By charging exiting neutrals, mass spectrometry can also be used to deter-

mine their mass. It is from measurements such as these that Hollenstein et al.

(1998) have shown that, below a particulate size of about 0.5 nm, the number

density decreases exponentially with mass, as described in Section 17.4.

17.6 REMOVAL OR PRODUCTION OF PARTICULATES

Particulates in processing plasmas are usually (but not always) unwanted. The early

investigation of particulates (e.g., Selwyn et al., 1989) also involved studies of how

to minimize their development, or remove them before they can settle on and

damage substrates that are being processed. There are two distinct situations to be

considered: during the plasma on-time, and just after the plasma has been extin-

guished. During the on-time, as discussed in Section 17.3, electrostatic barriers at

the plasma sheaths act to confine negatively charged particulates. However, the elec-

trostatic forces might not be large enough to confine large-size particles against the

forces of gravity or ion drag. Following Bouchoule (1999, p. 307), let us consider the

balance of electrostatic and gravity forces in the sheath of a capacitive discharge. We

can estimate the sheath electric field as E � V=s, where V is the voltage across

the sheath and s is the sheath thickness. Using the Child law (11.2.15) to substitute

for s, we find E/ n
1=2
i T1=4

e V
1=4
rf . From (17.2.7) and (17.2.9), the mean charge on a

particle of radius a is jQdj/ aFd , with Fd � 2Te . From (17.3.2), the electric

field force scales as FE ¼ jQdEj/ n
1=2
i T5=4

e V1=4a. In practical units, putting in

the constants of proportionality, FE � 3:6� 10�20n
1=2
i T5=4

e V1=4a N, with a in

mm, ni in m�3, and Te in V. The gravity force (17.3.1) is Fg � 1:6� 10�13a3 N.

Equating these two forces determines a maximum confined particle radius

amax � 4:8� 10�4n
1=4
i T5=8

e V1=8. Using typical capacitive discharge parameters

ni � 1016 m�3, Te ¼ 2 V, and V ¼ 100 V, Bouchoule gives the estimate

amax � 11mm. This value is well beyond the typical particle sizes in plasma reac-

tors. Hence we conclude that the gravity force is unable to push the particles

through the electrostatic sheath barrier into the substrate.

When the plasma is extinguished, the charge on the particles relaxes toward a

state of zero charge on the timescale t given by (17.2.13). Generally, this time is

short compared to the characteristic time required for the particle to transit the

sheath. Hence the particle trajectories can be found by assuming an essentially
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zero electric field force. However, there is some evidence that a small charge (posi-

tive or negative) can be left on the particles after the discharge is extinguished

(Collins et al., 1996). This has been ascribed to the increase in the charge equili-

bration time t in the late afterglow due to the decrease in plasma density. If t
exceeds the plasma decay time then complete equilibration does not occur. Also,

a conventional L-type capacitive matching network, as shown in Figure 11.23,

can leave a considerable dc electric field remaining between the electrodes after

the plasma is extinguished. This field can drive incompletely neutralized particles

towards or away from the substrate holder, depending on the sign of their charge.

During the plasma on-time, particles can also be detrapped by the ion drag force

acting at the sheath edge. In practical units, from (17.3.11), we estimate

Fi � 3� 10�13a2(1� 0:03 ln a) N, with a in mm. Balancing this force against the

electric field force with ni � 1016 m�3, Te ¼ 2 V, and V ¼ 100 V, Bouchoule

gives the estimate amax � 20mm, which is also much larger than typical particle

sizes in capacitive discharges. However, for high density plasmas with

ni � 1017 –1018 m�3, amax can be much smaller, and well within the range of particle

sizes formed.

One simple obvious way to minimize substrate contamination is by mounting the

substrate vertically, rather than horizontally. Gravity might then be able to drain

particles away from the active surface, if the parameters are chosen correctly.

More importantly, when the plasma is turned off, the particles might not settle

directly on the substrate.

For existing processing tools, with fixed geometries, other techniques are needed.

One method that has been explored uses pulsed power modulation (see Section 10.5)

at a frequency high enough that large particles cannot form during the on-time, but

with the off-time long enough for the sheaths to collapse and negative ion clusters to

escape to the walls. It was found experimentally (Bouchoule et al., 1991) that par-

ticulate formation could be significantly reduced or completely suppressed with a

one second repetition time with an off-time of 8–10 ms. As discussed in Section

17.4 in connection with particle growth, a 1 s on-time is too short for large grains

to form. The 8-ms off-time is sufficiently long for the sheath potential to collapse,

such that the negatively charged precursor clusters can escape to the walls.

Other techniques include the use of high gas flows to sweep the particles out of

the system, and the cutting of grooves in the substrate holder to guide the particles

out of the system. Another technique that is being explored is to use laser beams to

either break up particulates or to supply a force that pushes them out of the active

region. A considerable effort has gone into destroying the particulates by use of

high powered lasers (see Stoffels et al., 1994). The pulsed heating breaks up the

particulates into sufficiently small pieces that they cannot hold charge, as described

previously. The neutral small particulates can then be removed from the active

region by weaker forces, for example, gas flow. Another technique for particle

removal, involving low power lasers, has been recently explored (see Annaratone,

1997), in which a laser produces a force which pushes the particles out of the

active region. This force was estimated to be due to radiation pressure, but other

explanations such as differential heating are also possible.
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A rapidly growing area of interest is powder synthesis and surface modification

processes using dusty plasmas. Powders of a given size can be produced as raw

materials for industrial applications. Since the formation starts from a relatively

uniform state, as described in Section 17.4, by removing the powder at a given

time in its formation, a rather uniform grain size can be created, and the timing

for precipitating the powder can then be chosen to fix the grain diameters.

Another important potential use that has been studied is the incorporation of

powders into growing thin films, in which the small particles form a matrix for

modifying the film properties; for example, during fabrication of amorphous solar

cells.

The above discussion does not exhaust the possibilities for either removal,

control, or production of particulates in plasma discharges. There is a fast-

growing literature describing procedures and applications. For a more complete

review of the possibilities and many references, the reader is referred to Bouchoule

(1999, Chapter 4).

PROBLEMS

17.1. Charge Fluctuations on Dust Grains Let fd be the distribution of charge

number Z ¼ �Q=e on a collection of equal-size particles. In the steady

state, the rate Rz at which particles having charge numbers Z þ 1 and Z � 1

are converted to particles having charge number Z must be equal to the rate

at which particles having charge number Z are converted to particles having

charge numbers Z þ 1 and Z2 1

Rz ¼ fd(Z þ 1) Ii(Z þ 1)� fd(Z � 1) Ie(Z � 1)

¼ fd(Z) ½Ii(Z)� Ie(Z)�

Here Ie (which is negative) and Ii are given by substituting F from (17.2.5)

into (17.2.1) and (17.2.2), respectively.

(a) Passing from the discrete to the continuous limit for Z � 1 by expanding

fd(Z þ 1)Ii(Z þ 1) and fd(Z � 1)Ie(Z � 1) to second order in a Taylor

series around Z ¼ 0, show that

d

dZ
(Ii þ Ie) fd þ 1

2

d

dZ
½(Ii � Ie) fd�

	 


¼ 0

(b) The equilibrium charge number Zd is determined by the condition

Ii(Zd)þ Ie(Zd) ¼ 0. Assume that the currents are slowly varying functions

of Z near Zd: I
�1(dI=dZ) � f�1

d (d fd=dZ), where I ¼ Ii , jIej. Transforming

from the variable Z to Z1 ¼ Z � Zd , show that the result in (a) reduces to

d

dZ1
(I0i þ I0e)Z1 fd þ

1

2
(Ii � Ie)

d fd

dZ1

� �

¼ 0
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where the currents and their derivatives with respect to Z (denoted 0) are
evaluated at Z ¼ Zd.

(c) Show that the solution to the differential equation in (b) is

fd ¼ C exp � Z2
1

2s2
z

� �

where

s2
z ¼ 1

2

Ii � Ie

I0i þ I0e

� �

:

(d) Using Fd � 2Te , evaluate s2
z and show that the standard deviation is

sz ¼ Z
1=2
d =

ffiffiffi

3
p

.

17.2. Charging of Dust Grains

(a) Using (17.2.16) and (17.2.17) with nd ¼ 108 cm�3, ni ¼ 5� 109 cm�3,

Te ¼ 2 V, Ti ¼ 0:1 V, and a ¼ 115 nm, show that Zd � 50 and

Fd � 0:63 V.

(b) At the onset of coagulation for equal-size particles, an observer measures

that nd ¼ 1010 cm�3, ni ¼ 109 cm�3, Te ¼ 2:5 V, Ti ¼ 0:025 V, and

a ¼ 1 nm. Find approximate values of Zd , Fd , and ne .

17.3. Current Driven Dusty Capacitive Discharge Obtain the scalings for ne
and Kiz with nd and a, analogous to (17.2.23) and (17.2.24), for an ohmically

heated capacitive discharge driven by a constant rf current ~Jrf .

17.4. Transient Nucleation Model Consider the reaction chain (17.4.3) with

Kj ¼ K0 for j . 32, as in (17.4.5). Assume a discharge with generation and

loss of the SiH�
3 density n1 according to

dn1

dt
¼ Kattneng � K0ngn1 � Krecnin1:

(a) Introducing the Laplace transform,

~n jþ1(s) ¼
ð1

0

e�stn jþ1(t) dt,

and assuming that nj(t) ¼ 0 for j � 1, show that

~n1 ¼ Kattneng

s

1

sþ K0ng þ Krecni
,

~n jþ1 ¼ ~nj
K0ng

sþ K0ng þ Krecni
:
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(b) From the results of (a), show that

~n jþ1 ¼ Kattneng

s

(K0ng)
j

(sþ K0ng þ Krecni)
jþ1

:

(c) Using the definite integral

ð1

0

e�st 1

k!
t kes0t

� �

dt ¼ 1

(s� s0)
kþ1

,

and the results of (b), show that the time-varying solutions for the nega-

tive ion clusters are

dn jþ1

dt
¼ Kattneng

j!
(K0ngt)

j e�(K0ngþKrecni)t,

such that

n jþ1(t) ¼
ðt

0

Kattneng

j!
(K0ngt

0)j e�(K0ngþKrecni)t
0
dt0:

(d) Show that njþ1 has a maximum value at time t ¼ j=(K0ng þ Krecni).

17.5. Particle Growth in Capacitive Discharge Assuming a constant dis-

sociation rate coefficient Kdiss and gas density ng , and substituting (17.2.23)

for ne into (17.4.14), obtain the time variation of a(t) in the limit of high

particle densities 4pa2ndV � Aw in a voltage-driven capacitive discharge.
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CHAPTER 18

KINETIC THEORY OF DISCHARGES

18.1 BASIC CONCEPTS

The Boltzmann equation (2.3.3),

@ fe
@t

þ v � rfe þ F

m
� rv fe ¼ @ fe

@t

�

�

�

�

c

(18:1:1)

determines the electron distribution function fe. We have generally assumed the

electrons to be in near-thermal equilibrium, with a Maxwellian distribution

fe(v) ¼ ne
m

2peTe

� �3=2

exp � mv2

2eTe

� �

(18:1:2)

However, some rate constants and other discharge parameters depend sensitively on

deviations from a Maxwellian distribution; for example, for ionization

Kiz ¼ 4p

ne

ð1

viz

siz(v) fe(v)v
3 dv

with only the high energy tail with v � viz ¼ (2eEiz=m)
1=2 contributing significantly

to Kiz. For example, a non-Maxwellian distribution with a reduced high energy tail

can yield a Kiz that is smaller by orders of magnitude than assuming a Maxwellian
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distribution. If a Maxwellian cannot be assumed, then fe must be calculated by

solving the Boltzmann equation. This solution is exceedingly difficult for discharges

because the fields and interparticle collisions, which appear in the Boltzmann

equation for each species, must be determined self-consistently, for example,

using Maxwell’s equations for the fields. The resulting set of coupled nonlinear

integro-differential equations in seven dimensions (x, y, z , vx , vy , vz , t) is intractable.

Hence various approximations are used, such as linearization around an assumed

“zero-order” solution, and so on. Reviews of the various techniques and their appli-

cations to the analysis of various discharges are given in Kolobov and Godyak

(1995), Kortshagen et al. (1996), and Kortshagen et al. (1997).

Two Term Approximation

A common and very useful simplification is the two-term approximation, in which

we expand the electron distribution function to first order in the deviation from iso-

tropy, which we take to be cylindrically symmetric along the direction of anisotropy

fe(r, v, t) � fe0(r, v, t)þ v

v
� fe1(r, v, t) (18:1:3)

Here fe is decomposed into the sum of an isotropic velocity part fe0 , depending on

the speed v ¼ (v2x þ v2y þ v2z )
1=2 only, and a small anisotropic velocity part, where the

vector function fe1 defines the magnitude and direction of the anisotropic part of fe ,

with fe1 � fe0. For nonmagnetized plasmas the direction is usually that of the field.

Choosing the direction to be along z, we obtain

fe(r, v,c, t) � fe0(r, v, t)þ vz

v
fe1(r, v, t) (18:1:4)

where vz=v ¼ cosc, with c the spherical polar angle in velocity space, and where

fe1 ¼ jfe1j is not a function of c.
The condition for this nearly isotropic fe to hold is that the elastic scattering fre-

quency nel(v) must be large compared to the characteristic frequencies for electron

energy gain (e.g., from the field) and loss (e.g., due to inelastic collisions). This is

often a good approximation for electrons in a weakly ionized plasma where

electron–neutral collisions dominate and are mainly elastic over most of the

energy range.

The Krook Collision Operator

Let us consider the collision term for a weakly anisotropic distribution with only

elastic collisions between electrons and neutrals. The collision integral (B.4) in

Appendix B can be written as

@ fe
@t

�

�

�

c
¼
ð

d3vg

ð2p

0

df1

ðp

0

( f 0e fg � fe fg) v I(v, u1) sin u1 du1 (18:1:5)
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where we assume the neutrals are infinitely massive, so that jv� vgj ¼ v ¼ v0, the
electron speed, and f 0g ¼ fg. Because v

0 ¼ v, we have f 0e1 ¼ fe1 and f 0e0 ¼ fe0. Substi-

tuting the expansion (18.1.4) into the factor in parentheses in (18.1.5), we find

( f 0e fg � fe fg)v ¼ ( fe0 fg � fe0 fg)vþ fe1 fgv
0
z � fe1 fgvz ¼ fe1 fg(v

0
z � vz) (18:1:6)

that is, the first term on the RHS is zero. For infinitely massive neutrals, such that the

electron energy is conserved in collisions, the scattering process yields (Holt and

Haskel, 1965, Section 10.13)

v0z ¼ v? sin u1 cosf1 þ vz cos u1

with v? ¼ (v2x þ v2y)
1=2 and u1 and f1 the scattering angles (see Fig. 3.3). Substitut-

ing this and (18.1.6) into (18.1.5), we perform the f1 integration to obtain

@ fe
@t

�

�

�

c
¼ 2p

ð

fg d
3vg

ðp

0

fe1 cosc ( cos u1 � 1) v I(v, u1) sin u1 du1 (18:1:7)

; �nm fe1 cosc

with
Ð

fg d
3vg ¼ ng the neutral gas density and nm(v) the speed-dependent momen-

tum transfer collision frequency.

Two Term Collisional Kinetic Equations

Writing the Boltzmann equation (18.1.1) for an unmagnetized plasma in one spatial

dimension, we have

@ fe
@t

þ vz
@ fe
@z

� e

m
Ez

@ fe
@vz

¼ @ fe
@t

�

�

�

c
(18:1:8)

Using (18.1.4), we expand (18.1.8) in spherical harmonics to obtain in lowest order

@ fe0
@t

þ cosc
@ fe1
@t

þ v cosc
@ fe0
@z

þ v cos2 c
@ fe1
@z

� e

m
Ez cosc

@ fe0
@v

� e

m
Ez

fe1

v
þ v

@

@v

fe1

v

� �

cos2 c

� �

¼ @ fe
@t

�

�

�

c
(18:1:9)

where @ fe=@tjc is given by (18.1.7). Multiplying (18.1.9) by sinc and integrating

over c from 0 to p, we obtain, after collecting terms

@ fe0
@t

þ v

3

@ fe1
@z

� e

m
Ez

1

3v2
@

@v
(v2fe1) ¼ 0 (18:1:10)

Equation (18.1.10) gives the time rate of change of the isotropic part of the distri-

bution, given the anisotropic part, and does not directly depend on the collisions.
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Multiplying (18.1.9) by sinc cosc and integrating, as before, we obtain

@ fe1
@t

þ v
@ fe0
@z

� e

m
Ez

@ fe0
@v

¼ �nm(v) fe1 (18:1:11)

where, as in (18.1.7)

nm(v) ¼ ngv 2p

ðp

0

(1� cos u1) I(v, u1) sin u1 du1 (18:1:12)

is the momentum transfer collision frequency. Equation (18.1.11) gives the time rate

of change of the anisotropic part of the distribution function, given the isotropic part.

We see that nm is defined in the usual way

nm ¼ ngsm(v)v (18:1:13)

where ng is the neutral density and sm is the momentum transfer cross section.

The RHS of (18.1.10) is zero because the elastic collisions of the electrons are

with infinitely massive neutrals. If the neutrals have a Maxwellian distribution

and are not infinitely massive, then a collision term appears on the RHS of

(18.1.10) (Holt and Haskell, 1965, Chapter 10; Smirnov, 1981, p. 66)

@ fe0
@t

þ v

3

@ fe1
@z

� e

m
Ez

1

3v2
@

@v
(v2fe1) ¼ Ce0 (18:1:14)

For electron–neutral elastic collisions

Ce0 ¼ Cel ¼ m

M

1

v2
@

@v
v3nm(v) fe0 þ eTg

mv

@ fe0
@v

� �� �

(18:1:15)

with Tg the neutral gas temperature. The first term in parentheses on the RHS of

(18.1.15) accounts for elastic scattering energy losses, while the second term

accounts for energy diffusion due to the nonzero gas temperature; this latter term

is usually small.

If there are also energy losses due to inelastic collisions, then an additional term

Cex ¼ �nex(v) fe0(r, v, t)þ (v0=v)nex(v0) fe0(r, v0, t) (18:1:16)

can be added to the RHS of (18.1.14), where v0 2 ¼ v2 þ 2eEex=m, nex(v) ¼ ngsex(v)v

is the inelastic collision frequency, and Eex is the electron energy lost in an inelastic

collision. The first term in (18.1.16) accounts for the disappearance of electrons at

speed v within the volume d3v due to collisions which decrease v, and the second

term represents the appearance of electrons within d3v due to collisions which

decrease v0 to v. Electron vibrational (and rotational) collisional excitation of
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molecular gases can also lead to additional significant energy losses. Such losses

have the general form of (18.1.16) for each vibrational (or rotational) level of

interest. For most gases Evib � Te , and (18.1.16) can be expanded to first order in

v0 � v � eEvib=mv to obtain

Cvib � eEvib

mv2
@

@v

�

vnvib(v) fe0
�

(18:1:17)

In general, (18.1.17) must be summed over vibrational (and rotational) levels to

obtain the total energy loss. To account for ionization collisions, with the excess

energy (exceeding Eiz) equally shared among the incident and valence electrons,

one can add the term

Ciz ¼ �niz(v) fe0(r, v, t)þ 4(v0=v)niz(v0) fe0(r, v0, t) (18:1:18)

with v0 2 ¼ 2v2 þ 2eEiz=m. The factor of 4 in (18.1.18) arises due to two electrons

sharing the excess energy. Electron losses due to attachment can be introduced

simply as

Catt ¼ �natt(v) fe0 (18:1:19)

Coulomb collisions between charged particles can also be included. For elec-

tron–ion collisions, Cel in (18.1.15) can be modified by using nei ¼ nisei(v)v and

Ti in place of nm and Tg , with

sei ¼ 4p
e2

4pe0mv2

� �2

ln L (18:1:20)

with L as given in Section 3.3. For electron–electron collisions the situation is more

complicated due to the large energy transfers between electrons per collision. The

collision term can be obtained from Fokker–Planck theory to be (Rosenbluth

et al., 1957)

Cee ¼ seiv
2 @

@v
H(v) fe0 þ v

3
G(v)

@ fe0
@v

� �

(18:1:21)

with

H ¼ 4p

ðv

0

fe0(r, v
0, t)v0 2 dv0 (18:1:22)

and

G ¼ 4p
1

v2

ðv

0

fe0(r, v
0, t)v0 4 dv0 þ v

ð1

v

fe0(r, v
0, t)v0 dv0

� �

(18:1:23)
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Note that Cee depends quadratically on fe0 , such that inclusion of this term makes the

kinetic equations nonlinear, and therefore difficult to solve (see Shkarofsky et al.,

1966, Chapter 7 for some approximate solutions).

Electron–neutral inelastic, ionization, and attachment collisions and electron–

ion and electron–electron scattering also contribute to the momentum transfer

collision frequency in (18.1.11), but these are generally small compared to

electron–neutral elastic scattering in weakly ionized discharges. Including all col-

lision terms, (18.1.11) and (18.1.14) are the fundamental kinetic equations for the

electron distribution function in the limit that the anisotropy is small, j fe1j � j fe0j.
The two term equations can be modified to include the effect of a dc magnetic field

force (Shkarofsky et al., 1966; Holt and Haskell, 1965), but we do not introduce

this complication here. For a steady-state distribution with no spatial gradients or elec-

tric field, the LHS of (18.1.14) vanishes. If electron–neutral elastic scattering domi-

nates, one can then set the right hand side Cel in (18.1.15) equal to zero, to find

that fe0 is a Maxwellian distribution at temperature Tg; that is, the electrons and neu-

trals have equilibrated. However, this is rarely the situation in low-pressure gas

discharges.

Diffusion and Mobility

Consider now a steady-state plasma with nonzero density gradient and dc electric

field. Solving (18.1.11) for fe1 yields

fe1 ¼ � 1

nm
v
@ fe0
@z

� e

m
Ez

@ fe0
@v

� �

(18:1:24)

Introducing the particle flux

Ge ¼
ð

v fe0 þ vz

v
fe1

� 	

d3v (18:1:25)

and using spherical coordinates in velocity space, we see that the isotropic part of fe
does not contribute to the flux. From the anisotropic part, we obtain only a z

component

Gez ¼ 2p

ðp

0

sinc dc cos2 c

ð1

0

v fe1v
2 dv

¼ 4p

3

ð1

0

v3fe1 dv (18:1:26)

Inserting fe1 from (18.1.24) into (18.1.26), we obtain

Gez ¼ �De

dne

dz
� meneEz (18:1:27)
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where

De ¼ 4p

3ne

ð1

0

v4

nm(v)
fe0 dv (18:1:28)

is the diffusion coefficient, and

me ¼ � 4pe

3mne

ð1

0

v3

nm(v)

d fe0

dv
dv (18:1:29)

is the mobility. For a Maxwellian distribution, De and me are related by the Einstein

relation (5.1.9), as can be shown directly from (18.1.28) and (18.1.29)

(Problem 18.4). These equations are important because they give the proper pre-

scription for averaging over nm(v) to determine De and me. However, the symmetric

part of the distribution must be known.

Druyvesteyn Distribution

Consider the steady-state electron distribution function in a uniform plasma with a

uniform steady electric field Ez ¼ E and with elastic collisions between electrons

and neutral gas atoms. From (18.1.11), we have

fe1 ¼ eE

mnm

d fe0

dv
(18:1:30)

For ease of analysis, we take the gas temperature Tg to be negligible (Tg � Te) and

m � M in (18.1.15); then (18.1.14) becomes

� eE

3m

d(v2fe1)

dv
¼ m

M

d(v3nm fe0)

dv
(18:1:31)

Integrating (18.1.31)

fe1 ¼ � 3m2

eEM
vnm fe0 (18:1:32)

and equating (18.1.30) and (18.1.32), we obtain

eE2

mnm

dfe0

dv
¼ � 3m2

eM
vnm fe0 (18:1:33)

Integrating (18.1.33), we find

fe0 ¼ A exp � 3m3

e2E2M

ðv

0

v0n2m(v
0) dv0

� �

(18:1:34)
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where A is a normalization constant determined by
Ð

fe0 d
3v ¼ ne. For a constant col-

lision frequency, nm(v) ¼ const, we obtain a Maxwellian distribution. For constant

cross section (hard sphere) collisions, sm ¼ const (constant mean free path), and

using nm ¼ ngsmv, we find that

fe0 ¼ Ae�Cv4 (18:1:35)

with C a constant, which is known as the Druyvesteyn distribution (Druyvesteyn and

Penning, 1940). Many electron–neutral cross sections behave as hard sphere inter-

actions at low energies (see Fig. 3.9).

Electron Distribution in an RF Field

We consider the electron distribution in a uniform plasma with an rf electric field

Ez(t) ¼ Re ~E ejvt and with elastic collisions of electrons with neutral gas atoms,

in the frequency regime v � (m=M)nm. In this regime, the energy transferred by

electrons to gas atoms over one rf period is small, and fe0 is independent of time.

Introducing fe1(t) ¼ Re ~fe1 e
jvt into (18.1.11), we obtain

~f e1 ¼
e ~E

m(jvþ nm)

d fe0

dv
(18:1:36)

Substituting Ez(t) and fe1(t) into (18.1.14) and time-averaging the resulting equation

over an rf period (see Problem 4.5), we obtain, in analogy to (18.1.31), and with the

same assumptions (Tg � Te , m=M � 1)

� 1

2
Re

e ~E
�

3m

d(v2 ~f e1)

dv

" #

¼ m

M

d(v3nm fe0)

dv
(18:1:37)

where ~E
�
is the complex conjugate of ~E. Integrating (18.1.37), we find

Re ( ~E
� ~f e1) ¼ � 6m2

eM
vnm fe0 (18:1:38)

Substituting (18.1.36) into (18.1.38), we obtain

ej ~Ej2nm
2m(v2 þ n2m)

d fe0

dv
¼ � 3m2

eM
vnm fe0 (18:1:39)

Equation (18.1.39) can be integrated to obtain

fe0 ¼ A exp � 6m3

e2j ~Ej2M

ðv

0

v0 v2 þ n2m(v
0)

� �

dv0
� �

(18:1:40)
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where A is the normalization constant, as in (18.1.34). We note that at high frequen-

cies or low pressures, such that v � nm , fe0 reduces to a Maxwellian distribution.

Substituting (18.1.40) into (18.1.36) determines ~f e1, the oscillating anisotropic

part of fe.

Comparing (18.1.33) and (18.1.39) for the case of nm ¼ const, we see that these

are the same equations, having the same solutions, provided we introduce an

effective dc electric field in (18.1.39)

Eeff ¼ j ~Ej
ffiffiffi

2
p nm

(v2 þ n2m)
1=2

(18:1:41)

Note from the definitions (4.2.22) and (4.2.20) for the dc and rf plasma conduc-

tivities that

sdcE
2
eff ¼

1

2
Respj ~Ej2;

that is, the effective dc field gives the same ohmic power dissipation as the rf field.

Effective Electrical Conductivity

Let us consider a kinetic treatment of the rf conductivity sp for a given electron dis-

tribution function fe0. We assume a plasma with uniform electron density ne driven

by an rf electric field E(t) ¼ Re ~E e jvt. With these assumptions, inserting (18.1.36)

into (18.1.26), we obtain the rf current amplitude

~J ¼ �e ~Ge ¼ � 4p

3

e2 ~E

m

ð1

0

v3dv

jvþ nm(v)

d fe0

dv
(18:1:42)

with nm ¼ ngs (v)v the momentum transfer collision frequency. Hence we find

sp ¼
~J

~E
¼ � 4p

3

e2

m

ð1

0

v3 dv

jvþ nm(v)

d fe0

dv
(18:1:43)

In analogy to the fluid result (4.2.20), sp , is often expressed in the form

sp ¼
e0v

2
pe

jveff þ neff
¼ e2ne

m(jveff þ neff)
(18:1:44)

where veff and neff are effective radian and collision frequencies, respectively. To

determine these quantities, we equate (18.1.43) to (18.1.44) and take the real and

imaginary parts. This yields two equations that can be simultaneously solved for

veff and neff . There are two limiting cases when simple results can be obtained.
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For low frequencies, v � neff , we find

1

neff
¼ � 4p

3ne

ð1

0

v3 dv

nm(v)

d fe0

dv

veff

v
¼ � 4p

3ne
n2eff

ð1

0

v3 dv

n2m(v)

d fe0

dv

(18:1:45)

In the opposite limit of high frequencies, v � neff , we find

neff ¼ � 4p

3ne

ð1

0

v3 dv nm(v)
d fe0

dv
veff

v
¼ 1

(18:1:46)

In the transition regime v � neff , the equations for neff and veff are coupled and must

be solved simultaneously.

In both limiting cases, neff=ng and veff=v are independent of the neutral gas

density ng; they depend only on the distribution function (e.g., Te for a Maxwellian

distribution) and the type of gas. However, in the transition regime neff=ng and

veff=v are both explicit functions of ng. Lister et al. (1996) have determined these

for a Maxwellian distribution in argon, with the results given in Figure 18.1 for a

13.56-MHz driving frequency.

FIGURE 18.1. Variations of neff=ndc (solid lines) and veff=v (dashed lines) as a function of

pressure for different electron temperatures Te; here ndc ¼ neff (v ¼ 0) (after Lister et al.,

1996).
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18.2 LOCAL KINETICS

Although the solutions of the two-term approximation developed in Section 18.1

give some insight into the kinetic behavior, further approximations are necessary

in order to account for the spatial variation. With both dc (ambipolar and/or
heating) and rf (heating) fields spatially varying, the electric field is generalized to

E(r, t) ¼ �E(r)þ Re ~E(r) e jvt (18:2:1)

with �Ea þ Eh the sum of ambipolar and dc heating fields. As in Section 18.1, we

assume a dc discharge or an rf steady-state discharge in a frequency regime

v � (m=M)nm , such that in both cases the isotropic part fe0 of the distribution is

independent of time. For the anisotropic part we write

fe1 ¼ �fe1 þ Re ~fe1 e
jvt (18:2:2)

Inserting (18.2.1) and (18.2.2) along with the two term expansion (18.1.3) into the

Boltzmann equation (18.1.1), multiplying by sinc, integrating over c from 0 to p,
and performing the time averaging as in Section 18.1, we obtain (Problem 18.6)

v

3
r � �fe1 � e

3mv2
@

@v
v2 �E � �fe1 þ Re ( ~E

� � ~fe1)
� 	h i

¼ Ce0( fe0) (18:2:3)

which is a generalization of (18.1.14), but including time variation. Repeating the

procedure, but multiplying by sin c cos c before integrating, we find

�fe1 ¼ � v

nm
rfe0 þ e �E

mnm

@ fe0
@v

(18:2:4)

and

~fe1 ¼ e ~E

m(nm þ jv)

@ fe0
@v

(18:2:5)

Inserting (18.2.4) and (18.2.5) into (18.2.3), we obtain the kinetic equation for fe0

�r � v2

3nm
rfe0

� �

þ ve

3m
r �

�E

nm

@ fe0
@v

� �

� e

3mv2
@

@v
� v3

nm
�E � rfe0

�

þ ev2

mnm
j �Ej2 þ j ~Ej2

2

n2m
n2m þ v2

 !

@ fe0
@v

#

¼ Ce0( fe0) (18:2:6)

The first term describes the spatial diffusion of electrons, the second term describes

the electron flux due the the dc electric field, the third term gives the diffusion
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cooling, and the fourth and fifth terms give the heating due to the dc and rf electric

fields.

It is often convenient for discharge analysis to express (18.2.6) in terms of energy

rather that velocity coordinates. Introducing

E ¼ mv2=(2e) (18:2:7)

such that dE ¼ (m=e)v dv, and introducing the electron energy probability function

(EEPF) gp as in (6.6.18), we obtain

2e

3m

E3=2

nm
�r2gp þ r � �E

@gp
@E

� �� �

� 2e

3m

@

@E �E3=2

nm
( �E � r)gp

�

þE3=2

nm
j �Ej2 þ j ~Ej2

2

n2m
n2m þ v2

 !

@gp
@E

#

¼ 2p
2e

m

� �3=2

E1=2Ce0(gp) (18:2:8)

where Ce0(gp) is the collision term transformed from fe0 to gp and from v to E
coordinates. Note that gp(E ) ¼ 2p (2e=m)3=2fe0(v(E)) such that

Ð

gpE1=2 dE ¼ ne .

In principle, (18.2.8) can be solved to determine the energy distribution function

for all r and E. However, solving this nonlinear integro-differential equation is dif-

ficult. In high pressure discharges, however, where the electron motion is strongly

collisional, the energy diffusion and collisional terms can be much stronger than

the energy variations due to the spatial gradient terms. In this case, we can

neglect all terms arising from the spatial inhomogeneity, including the ambipolar

electric field� (Ea ¼ �rFa ; 0) to obtain the local approximation

� @

@E
2e

3m

E3=2

nm
j �Ehj2 þ j ~Ej2

2

n2m
n2m þ v2

 !

@gp
@E

" #

¼ 2p
2e

m

� �3=2

E1=2Ce0(gp) (18:2:9)

In this equation, gp depends on r only through the dependences of �Eh(r) and ~E(r)
on r. Hence given the values of the field strengths at any point, (18.2.9) can be

solved to determine the energy distribution at that point. Neglecting the ambipolar

contribution to the dc field is equivalent to a model in which the space charge

potential is zero everywhere inside the bulk plasma and falls sharply to a negative

value at the walls (rectangular potential well).

We expect the local approximation to hold when the energy relaxation length lE
is small compared to the spatial inhomogeneity scale L of the discharge

lE � L (18:2:10)

�Even for a spatially varying ambipolar field, then accounting for the ambipolar ion flux, the total ambi-

polar current density Ja vanishes, and there is no Ja .E contribution to (18.2.9).
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where lE depends on both momentum transfer and energy loss collision processes

[see (18.4.38)]

lE � lmlinel
3

� �1=2

(18:2:11)

Here lm is the total mean free path for momentum transfer and linel is the mean free

path accounting for all collisional energy loss processes; that is

l�1
inel ¼ ng½(2m=M)sel þ sex þ siz þ � � �� (18:2:12)

The square root relation appears in (18.2.11) because the electron motion is diffusive

between successive inelastic collisions. The requirement (18.2.10) for local beha-

vior is most difficult to meet for energies below Eex , where the only collisional

energy losses are due to electron–neutral elastic scattering, and (18.2.10) becomes

(M=2m)1=2lm � L (18:2:13)

For argon with an average sm � 10�19 cm2 from Figure 3.13, we obtain the con-

dition pL � 6Torr cm. For a discharge scale length L ¼ 10 cm, we find

p � 600mTorr. (Actually, the condition for local behavior near the Ramsauer

minimum in argon is more severe.) Molecular gases typically have energy losses

per momentum transfer collision a factor of 5–20 higher than atomic gases due to

low energy vibrational and rotational excitations, so we expect local behavior for

p � 60mTorr in these gases.

Example 1 Let us determine the EEPF in the positive column of a dc glow dis-

charge in an atomic gas using local analysis. We neglect the ambipolar field (rec-

tangular potential well approximation in the radial direction) and, as described in

Section 14.2, we assume a long thin column with a constant axial heating field E.

We examine energies only below the excitation threshold energy Eex, such that

the collisional energy losses are only due to electron–neutral elastic scattering,

Ce0 ¼ Cel. Assuming Tg ¼ 0 and m � M in the elastic collision energy loss term

(18.1.15) as previously, transforming from v to E coordinates, and inserting this

into (18.2.9), we obtain

� @

@E E2 E3=2

nm

@gp
@E

� �

¼ 3m2

Me

@

@E E3=2nmgp
� �

(18:2:14)

Integrating this twice with respect to E yields

gp(E) ¼ gp0 exp � 3m2

MeE2

ðE

0

n2m(E0) dE0
� �

(18:2:15)
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Consider hard-sphere collisions, such that nm ¼ ngsmv ¼ (2eE=m)1=2=lm. Inserting
this into (18.2.15) yields the Druyvesteyn EEPF

gp ¼ gp0 exp � 3m

M

E2

E2l2m

� �

(18:2:16)

equivalent to fe0 given in (18.1.35). Plotting gp (log scale) versus E2 yields the

dashed straight line shown in Figure 18.2.

We have thus far considered energies below the first excitation energy Eex in an

atomic gas, such that electron–neutral elastic scattering dominates the energy

losses. In this case nE � nm , and thus the distribution function is almost isotropic.

In the inelastic energy range above Eex (typically for a relatively few electrons

within the tail of the energy distribution), we still find that nE � nm for most

gases, again yielding a nearly isotropic distribution. Hence, excluding high-

energy electrons generated by such processes as secondary emission across high-

voltage sheaths or injected electron beams, the two term approximation (18.1.3) is

valid over the entire range of energies. Provided that the energy relaxation length

lE is much smaller than the discharge scale length L, local theory can be used to

determine the distribution.

Example 2 Consider the EEPF in the positive column for electrons with energies

exceeding the first inelastic energy threshold Eex. In this case, we can neglect

elastic scattering energy losses and hence choose Ce0 ¼ Cex as given in (18.1.16).

Furthermore, if fe0 decays rapidly with energy then the second term in (18.1.16)

is much smaller than the first term, and we can use Cex ¼ �nex fe0. The kinetic

g

r

rr

R

R

FIGURE 18.2. Schematic of electron energy probability function gp(E, r) versus E2
T ¼ (E �

F(r))2 at a fixed heating field E and gas pressure p in the positive column of a glow discharge;

(dashed line) local kinetics; (solid line) nonlocal kinetics.
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equation (18.2.9) is then

d

dE
E3=2

nm

dgp

dE
� �

� 3mnex
2eE2

E1=2gp ¼ 0 (18:2:17)

Expanding the derivative and collecting terms, we obtain

d2gp

dE2
þ nm

E3=2

d

dE
E3=2

nm

� �

dgp

dE � k2gp ¼ 0 (18:2:18)

where

k2(E) ¼ 3mnmnex
2eE2E (18:2:19)

We note that k�1 is the characteristic energy for decay of gp. In general, (18.2.18)

must be integrated numerically. However, let us consider (Smirnov, 1981, p.110)

the weak field regime kEex � 1. Substituting gp ¼ eS(E) into (18.2.18), we obtain

dS

dE
� �2

þ d2S

dE2
þ nm

E3=2

d

dE
E3=2

nm

� �

dS

dE � k2 ¼ 0 (18:2:20)

For kEex � 1, the second and third terms in (18.2.20) are small; neglecting them,

(18.2.20) can be integrated to yield

S(E) ¼ �
ðE

Eex

3mnmnex
2eE2E

� �1=2

dE (18:2:21)

Hence we find

gp(E) ¼ A exp �
ðE

Eex

3mnmnex
2eE2E

� �1=2

dE
" #

, E & Eex (18:2:22)

The constant A is found by joining the distribution functions (18.2.16) and

(18.2.22) at the energy where nex � (2m=M)nm; that is, near the excitation

threshold Eex.

18.3 NONLOCAL KINETICS

For many discharges of interest in materials processing, the pressure is too low for

the local approximation to hold. In these cases a different approximation has been
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employed, called nonlocal kinetics. Originally developed to analyze low-pressure dc

glow discharges, by Bernstein and Holstein (1954) and by Tsendin (1974), the tech-

nique has also been used to analyze capacitive and inductive rf discharges. Reviews

of the methods and applications, including comparisons of the predictions with

various experimental results, have been given by Kolobov and Godyak (1995)

and by Kortshagen et al. (1996). Here, following Kortshagen et al., we introduce

the concept. Its use for determining the electron energy distribution in rf inductive

and capacitive discharges is described in Sections 18.4 and 18.5, respectively.

The basic idea of the nonlocal approximation is that the total energy of electrons

(sum of kinetic energy and potential energy in the ambipolar field) is the proper vari-

able to describe the spatially inhomogeneous problem in a low pressure discharge. In

the absence of energy-loss collisions and without heating electric fields, the total

electron energy is constant as the electrons bounce back and forth within the confin-

ing potential of the ambipolar field. Hence the EEPF is a function of the total energy

only. For weak energy losses and heating, the timescale for the bouncing motion of

electrons can be much shorter than that of the energy losses or heating, such that the

total energy is still approximately conserved over a bounce.

To simplify the derivation, we decompose the dc part of the electric field �E into

the sum of mutually perpendicular ambipolar and heating components

�E ¼ �Ea þ �Eh (18:3:1)

with �Ea � �Eh ¼ 0 and �Ea ¼ �rF(r). We also introduce the transformation to total

electron energy coordinates

ET ¼ E �F(r),

rT ¼ r,
(18:3:2)

such that for any quantity A(E(ET, rT), r(rT)) ¼ AT(ET, rT), we have the trans-

formations

rTAT ¼ rA� �Ea

@A

@E ,
@AT

@ET

¼ @A

@E (18:3:3a)

or

rT ¼ r� �Ea

@

@E ,
@

@ET

¼ @

@E (18:3:3b)

We regroup the terms in the kinetic equation (18.2.8) to write it in the form

r � 2e

3m

E3=2

nm
�rgp þ �E

@gp
@E

� �� �

� �E � @

@E
2e

3m

E3=2

nm
�rgp þ �E

@gp
@E

� �� �

� @

@E
2e

3m

E3=2

nm

j ~Ej2
2

n2m
n2m þ v2

@gp
@E

" #

¼ 2p
2e

m

� �3=2

E1=2Ce0(gp) (18:3:4)
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Substituting (18.3.1) and the transformations from (18.3.3) into (18.3.4), we obtain

�rT � 2e

3m

E3=2

nm
rTgT

� �

� @

@ET

2e

3m

E3=2

nm
j �Ehj2 þ j ~Ej2

2

n2m
n2m þ v2

 !

@gT
@ET

" #

¼ 2p
2e

m

� �3=2

E1=2Ce0(gT) (18:3:5)

where E ¼ ET þF(rT) and gT(rT, ET) ; gp(rT, ET þF(rT)) is the EEPF trans-

formed to the total energy representation, and we have regrouped terms for

compactness.

Since we expect gT to be almost spatially independent, we introduce the

expansion

gT(rT, ET) ¼ gT0(ET)þ gT1(rT, ET) (18:3:6)

where gT1 is a small correction due to the energy-loss collisions and heating. Insert-

ing this into (18.3.5) and neglecting higher-order terms, for example, all terms that

do not contain a spatial derivative, we obtain

�rT � 2e

3m

E3=2

nm
rTgT1

� �

� @

@ET

2e

3m

E3=2

nm
j �Ehj2 þ j ~Ej2

2

n2m
n2m þ v2

 !

@gT0
@ET

" #

¼ 2p
2e

m

� �3=2

E1=2Ce0(gT0) (18:3:7)

To determine the spatially independent part gT0 we spatially average this kinetic

equation over that part of the discharge which is accessible for electrons with a par-

ticular total energy. The spatial average of a space and energy dependent quantity

A(rT, ET) is

A(ET) ¼ 1

V0

ð

Vac

A(rT, ET) dV (18:3:8)

Here V0 is the total discharge volume and Vac(ET) is the accessible volume defined

by ET � �F(rT) for all rT in Vac. This definition of Vac is illustrated in Figure 18.3

for a cylindrical discharge in the one-dimensional radial coordinate.

Integrating (18.3.7) over Vac , the first term vanishes, that is,

ð

Vac

rT � E3=2

nm
rTgT1

� �

dV ¼
ð

Sac

E3=2

nm
rTgT1 � dAac ¼ 0 (18:3:9)

because on the boundary Sac of Vac, we have that E ¼ ET þF(rT) ¼ 0. We thus

obtain an averaged kinetic equation

� d

dET

E1=2DE
dgT0

dET

� �

¼ 2p
2e

m

� �3=2

E1=2Ce0 (18:3:10)

18.3 NONLOCAL KINETICS 695



where

E1=2DE ¼ 1

V0

ð

Vac

2e

3m

E3=2

nm
j �Ehj2 þ j ~Ej2

2

n2m
n2m þ v2

 !

dV (18:3:11)

is the spatial average of E1=2 times an energy diffusion coefficient DE . To understand
this interpretation of DE , we introduce the square of the total heating field EH

E2
H ¼ j �Ehj2 þ j ~Ej2

2

n2m
n2m þ v2

such that DE ¼ 2eEE2
H=3mnm from (18.3.11), which in turn can be written as

DE ¼ (EHlm)
2nm

3
,

with lm ¼ v=nm. We see thatDE has the form of an energy diffusion coefficient, with

DE ¼ EHlm the random kick in energy and n�1
m the time between kicks.

Let us consider energies below the excitation energy Eex. In this case the colli-

sional energy losses are assumed to be due to electron–neutral elastic scattering,

Ce0 ¼ Cel , with Tg � Te and m � M, as previously. Then analogous to (18.2.14)

in Example 1 of Section 18.2, the RHS of (18.3.10) can be written as

2p
2e

m

� �3=2

E1=2Ce0 ¼ d

dET

E1=2FE gT0
� 	

(18:3:12)

FIGURE 18.3. Schematic showing the definition of the accessible volume Vac ¼ pr2ac in an

infinitely long cylindrical discharge.
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where

E1=2FE ¼ 1

V0

ð

Vac

2m

M
E3=2nm dV (18:3:13)

with FE ¼ (2m=M)nmE having the form of an energy friction coefficient. Hence, in

the elastic scattering energy range, the nonlocal kinetic equation (18.3.10) can be

written as

d

dET

E1=2DE
dgT0

dET

þ E1=2FE gT0

� �

¼ 0 (18:3:14)

Example Let us determine the EEPF in the positive column of a cylindrical dc

glow discharge in the energy region below the excitation energy Eex from nonlocal

analysis, using (18.3.14). As in Section 14.2, we assume a long thin column with a

constant axial heating field E. We make the assumption that the ambipolar potential

is parabolic, F(r) ¼ �F0r
2=R2, such that

E(r) ¼ ET �F0r
2=R2 (18:3:15)

with R the discharge radius. The accessible radius rac is determined from

E(r) ¼ 0, which yields rac ¼ (ET=F0)
1=2R. First evaluating E1=2DE , we have from

(18.3.11), assuming hard sphere collisions such that nm ¼ (2eE=m)1=2l�1
m , that

E1=2DE ¼ 1

pR2
2p

ðrac

0

r dr
1

3

2e

m

� �1=2

E2lmE(r) (18:3:16)

Substituting E(r) from (18.3.15) into (18.3.16) and integrating, we obtain

E1=2DE ¼ 1

6

2e

m

� �1=2E2
T

F0

E2lm (18:3:17)

Next evaluating E1=2FE , we have from (18.3.13)

E1=2FE ¼ 1

pR2
2p

ðrac

0

r dr
2m

M

2e

m

� �1=2E2(r)

lm
(18:3:18)

Substituting for E(r) and integrating, we obtain

E1=2FE ¼ 1

3

2m

M

2e

m

� �1=2E3
T

F0

1

lm
(18:3:19)

Inserting (18.3.17) and (18.3.19) into the nonlocal kinetic equation (18.3.14), we

have

d

dET

1

2

E2
T

F0

E2lm
dgT0

dET

þ 2m

M

E3
T

F0

1

lm
gT0

� �

¼ 0 (18:3:20)
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which integrated once with respect to ET yields

dgT0

dET

¼ � 4m

M

ET

E2l2m
gT0 (18:3:21)

Integrating again with respect to ET, we obtain

gT0 ¼ g00 exp � 2m

M

E2
T

E2l2m

� �

(18:3:22)

Transforming back to (r, E) coordinates,
gp(r, E) ¼ gT0(E �F(r)) (18:3:23)

we find the spatially varying EEPF

gp0(r, E ) ¼ g00 exp � 2m

M

1

E2l2m
E þF0

r2

R2

� �2
" #

(18:3:24)

In Figure 18.2, we compare (18.3.24) (solid lines) with the result (18.2.16)

(dashed line) determined by local kinetics. Both distribution functions have a

Druyvesteyn energy distribution, but the coefficient in the nonlocal result is

smaller than the corresponding coefficient in the local result. Hence the nonlocal

on-axis (r ¼ 0) EEPF falls off with energy less steeply than the local EEPF given

in (18.2.16). This relative enhancement of the tail is a characteristic feature of the

effect of the space charge field on the EEPF.

Equation (18.3.23) is a generalized Boltzmann relation. As shown in Figure 18.4,

at position r0 the value of�F(r0) is the minimum total energy needed by electrons to

FIGURE 18.4. Illustrating the transformation of the EEPF gT0 , a function of the total energy

ET , to the EEPF gp , a function of the kinetic energy E.
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reach r0 . Hence only electrons with ET . �F(r0) form the distribution function

gp(r0, E). Therefore, gp is just gT0 with the energies below �F(r0) cut away. For

the special case of a Maxwellian distribution gT0 ¼ A e�ET=Te , (18.3.23) yields

gp ¼ A e�E=Te eF(r)=Te . Integrating this gp over energy yields the Boltzmann relation

(2.4.16).

18.4 QUASI-LINEAR DIFFUSION AND STOCHASTIC HEATING

Electron heating by time-varying fields is fundamental to rf and microwave dis-

charges. In a uniform oscillating field ~E(t) ¼ Re ~E0 e
jvt, a single electron has a

coherent velocity of motion that lags the phase of the electric field force �e ~E by

908. Hence, the time-average power transferred from the field to the electron is

zero. Electron collisions with other particles destroy the phase coherence of the

motion, leading to a net transfer of power. For an ensemble of n electrons per

unit volume, it is usual (see Section 4.2) to introduce the macroscopic current

density ~J ¼ �en ~u, with ~u the macroscopic electron velocity, and to relate the

amplitudes of ~J and ~E through a local conductivity: ~J0 ¼ sp
~E0 , where sp ¼

e2n=m(nm þ jv) given by (4.2.20) is the plasma conductivity and nm is the electron

collision frequency for momentum transfer. In this “fluid” approach, the average

electron velocity ~u still oscillates coherently but lags the electric field by less than

908, leading to an ohmic power transfer per unit volume

pohm ¼ 1

2
Re ~J0 � ~E�

0 ¼
1

2
j ~E0j2 Re (sp) ¼ 1

2
j~J0j2 Re (s�1

p )

Although the average velocity is coherent with the field, the fundamental mechan-

ism that converts electric field energy to thermal energy is the breaking of the phase-

coherent motion of individual electrons by collisions: the total force (electric field

force plus that due to collisions) acting on an individual electron becomes spatially

nonuniform and nonperiodic in time.

These observations suggest that a spatially nonuniform electric field by itself

might lead to electron heating, even in the absence of interparticle collisions, pro-

vided that the electrons have thermal velocities sufficient to sample the field inhom-

ogeneity. This phenomenon has been well-known in plasma physics since Landau

(1946) demonstrated the collisionless damping of an electrostatic wave in a warm

plasma, and is variously referred to in the discharge literature as collisionless,

stochastic, or anomalous heating. Such heating can be a basic feature of warm

plasmas having space dispersion. The electron response (~J) at some point in the

plasma is defined not only by the field ( ~E) at that point, but by an integrated

effect over the neighboring space. Due to the spatial variation, the time-varying

field seen by an individual “thermal” electron is nonperiodic. The electron can

lose phase coherence with the field (which is strictly periodic), resulting in stochastic

interaction with the field and collisionless heating.

In almost all discharges, the spatial variation of the time-varying field is strongly

nonuniform, with a low field in the bulk of the plasma and one or more highly
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localized field regions (rf sheath, skin depth layer, etc.), usually near the plasma

boundaries. An electron, being confined for many bounce times by the dc ambipolar

and boundary sheath potentials in the discharge, interacts repeatedly with the high

field regions, but interacts only weakly during its drift through the plasma bulk.

This suggests the use of a dynamical “kick” model to investigate the energy transfer

in which a ball bounces back and forth between a fixed and an oscillating wall. We

have done this in Sections 11.1 and 11.2 to determine the stochastic heating of elec-

trons in a capacitive discharge, and will apply the result in Section 18.6 to determine

the stochastic heating for a kinetic model of a capacitive discharge. We have also

used the kick approximation to calculate electron cyclotron heating in Section

13.1. Here we introduce the general kinetic approach to treat collisionless heating

in discharges, known as quasi-linear theory. Originally developed to describe

the interaction of electrons with weak wave turbulence in hot plasmas (see, e.g.,

Nicholson, 1983, Chapter 10), the quasi-linear theory has been applied to low pres-

sure rf and microwave discharges, which have sharply localized rf field regions

excited by an external source. In this section we use this theory to determine the

collisionless heating in an inductive discharge.

In bounded discharges at very low pressures, electrons can bounce repeatedly

back and forth as they interact with the heating fields, with collisional processes ran-

domizing the localized interactions. Furthermore, the dynamics itself can cause

phase randomization in the absence of collisions. A classification of the various

regimes of heating and phase randomization, including the effects of collisions,

has been given by Kaganovich et al. (1996). A review of the kick model and its

application to collisionless heating in rf and microwave discharges has been given

by Lieberman and Godyak (1998).

Quasi-linear Diffusion Coefficient

To incorporate stochastic heating into the kinetic theory of discharges we must

determine the energy diffusion coefficient using quasi-linear theory. We follow the

treatment given in Aliev et al. (1997). We assume a low-pressure discharge with

a spatial scale length drf for the rf heating fields, localized around a position z0
within the discharge that is much smaller than the discharge scale length L or the

electron mean free path lm. Under these conditions it is possible to separate the

fields and distribution function into two parts, having small and large spatial

scales. The Boltzmann equation (18.1.1) for electrons, including the magnetic

force, is

@ fe
@t

þ v � rfe � e

m
(Eþ v	 B) � rv fe ¼ Ce( fe) (18:4:1)

where Ce ¼ @ fe=@tjc is the electron collision term. We introduce the separation of

space scales

fe ¼ k felþ ~f e , E ¼ kElþ ~E, B ¼ kBlþ ~B (18:4:2)
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where k l denotes averaging over a scale length large compared to the characteristic

size drf of the heating layer, but small compared to either L or lm (whichever is

smaller). We also make the weak field (quasi-linear) assumption ~f e � k fel. Then
(18.4.1) can be separated into two parts

@ ~f e
@t

þ v � r~f e �
e

m

�

kElþ v	 kBl
� � rv

~f e ¼
e

m
( ~Eþ v	 ~B) � rvk fel (18:4:3)

@ k fel
@t

þ v � rk fel� e

m

�

kElþ v	 kBl
� � rvk fel ¼ CQL þ Ce (18:4:4)

where the quasi-linear diffusion term is

CQL ¼ e

m
k( ~Eþ v	 ~B) � rv

~f el (18:4:5)

In (18.4.3) the collision term Ce (of order v=lm) is omitted since it is small compared

to the second term on the LHS (of order v=drf ). The quasi-linear term CQL describes

the space-averaged interaction of the electrons with the small scale rf fields.

To determine CQL , we consider the simplest case of a homogeneous unbounded

nonmagnetized plasma, with the rf fields concentrated near z ¼ z0. This corresponds

to neglecting the ambipolar electric field, such that kEl, kBl ¼ 0, and ~E, ~B represent

only the rf fields. We assume a sinusoidal steady state

~E(r, t) ¼ Re ~E(r) e jvt, ~B(r, t) ¼ Re ~B(r) e jvt, ~f e(r, t) ¼ Re ~f e(r) e
jvt (18:4:6)

Then (18.4.3) reduces to

jv ~f e þ v � r~f e ¼
e

m
( ~Eþ v	 ~B) � rvk fel (18:4:7)

Without loss of generality, we can assume that the spatial variation lies along the

z-direction. Then to solve (18.4.7), we introduce the spatial Fourier transform

along z for ~E, ~B, and ~f e; for example, for the electric field

Ek ¼ 1

2p

ð

dz ~E(r) e jk�r (18:4:8)

with k ¼ ẑk and the inverse transform

~E(r) ¼
ð

dkEk e
�jk�r (18:4:9)

Substituting (18.4.9) into (18.4.7), we obtain

fek ¼ � je

m

Ek þ v	 Bk

v� k � v � rvk fel (18:4:10)
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Inserting (18.4.10) into (18.4.5), we can evaluate the spatial average k l using the

relation (for scalar functions ~A1 and ~A2)

ð

dz ~A1(r) ~A2(r) ¼ 2p

ð

dk A1k A
�
2k (18:4:11)

The result for CQL is

CQL ¼ d(z� z0)
@

@vi
Dij

@k fel
@vj

� �

(18:4:12)

where subscripts i and j are indices that range over x, y, and z, and the delta function

is a result of the space averaging and reflects the localization of the heating electric

field to the region z � z0. The quasi-linear diffusion tensor is

Dij(v) ¼ � e2p

m2

ð

dk (Ek þ v	 Bk)i (Ek þ v	 Bk)
�
j Im

1

v� kvz � jn

� �

(18:4:13)

where the limit n ! 0 is to be taken. Using the standard relation

lim
n!0

Im
1

v� kvz � jn

� �

¼ �pd(v� kvz) (18:4:14)

corresponding to resonance between the rf field component having phase velocity

v=k and electrons moving with velocity vz , Dij can be written as

Dij(v) ¼ e2p 2

m2

ð

dk (Ek þ v	 Bk)i (Ek þ v	 Bk)
�
j d(v� kvz) (18:4:15)

The rf electric and magnetic fields are related by Maxwell’s equations (2.2.1):

vBk ¼ k	 Ek (18:4:16)

Using this we transform the Lorentz force to obtain

Ek þ v	 Bk ¼ (v � Ek)k=v� Ek(1� k � v)=v (18:4:17)

Substituting this into (18.4.15), we note that the second term in (18.4.17) evaluates

to zero and k=v evaluates to v�1
z when the integration over the delta function is

performed. Integrating

Dzz(v) ¼ e2p 2

m2v2z

ð

dk jv � Ekj2 d(v� kvz) (18:4:18)
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over the d-function yields the final result

Dzz ¼ e2p 2

m2v2z jvzj
jv � Ek(k ¼ v=vz)j2 (18:4:19)

All other components of the diffusion tensor vanish. This implies that the elec-

trons receive a kick from the wave field directed along k ¼ ẑk, independent of the

direction of the electric field, even if the field is perpendicular to k. As shown by

Cohen and Rognlien (1996ab), this is due to the presence of the rf magnetic force

�ev	 ~B. For example, with ~E ¼ ŷ ~Ey and ~B ¼ �x̂ ~Bx , the vzs of electrons entering

the heating zone are rotated into the y-direction by the magnetic force and kicked

by the ~Ey-field. Upon leaving the zone, the vy-kicks are rotated back into the z-direc-

tion. Although the rf magnetic field turns the direction of the kick, it does not change

the energy transfer, because a magnetic field does no work on moving charges.

That the final kick is along the direction of the field variation can be seen from

general dynamical considerations. The canonical momentum Py ¼ mvy � e ~Ay

must be conserved during the electron motion into and out of the heating layer,

because Py is independent of y. Here ~Ay ¼ j ~Ey=v is the vector potential for the rf

fields. Hence, in the region outside the heating layer, where ~Ay � 0, we find that

vy(t ! 1) ¼ vy(t ! �1); that is, there is no velocity kick along the y-direction.

Stochastic Heating

The time average stochastic power flux �Sstoc is found from the kinetic equation

(18.4.4) for k fel. Substituting (18.4.12) into this equation, assuming no spatial

variation for k fel, and dropping the electron collision term, we obtain

@k fel
@t

�

�

�

QL
¼ d(z� z0)

@

@vz
Dzz

@k fel
@vz

� �

(18:4:20)

Multiplying this by 1
2
mv2 and integrating over z and over all velocities with vz � 0,

we obtain

�Sstoc ¼ 1

2
m

ð1

�1
dvx

ð1

�1
dvy

ð1

0

dvz (v
2
x þ v2y þ v2z )

@

@vz
Dzz

@k fel
@vz

� �

(18:4:21)

Integrating by parts with respect to vz , the integrals over v
2
x and v2y vanish, yielding

�Sstoc ¼ �m

ð1

�1
dvx

ð1

�1
dvy

ð1

0

dvz vzDzz

@k fel
@vz

(18:4:22)

We will evaluate this for inductive heating in Section 18.5.
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Relation to Velocity Kick Models

We now show that Dzz has the form of a velocity space diffusion coefficient

/ (Dvz)
2=t, integrated over the discharge length. This is most easily seen for a longi-

tudinal field ReEz(z) e
jvtþjf, where the rf magnetic force is absent. Assuming that

the field is localized at one end of a discharge of length l and that dres � lm � l,

then the kick in velocity for an electron passing through the heating zone is found

by integrating the acceleration �eEz=m over time

Dvz ¼ �Re

ðT1

�T1

dt
eEz(z(t))

m
e jvtþjf (18:4:23)

where the unperturbed motion is z ¼ vzt and we choose T1 such that dres=vz �
T1 � lm=vz . Transforming the variable of integration from t to z and extending

the integration limits to +1, we find

Dvz ¼ �Re
e

mvz

ð1

�1
dz Ez(z) e

j(v=vz)zþjf (18:4:24)

The integral yields the Fourier transform Ek given by (18.4.8)

Dvz ¼ � 2pe

mvz
ReEk(k ¼ v=vz) e

jf (18:4:25)

Squaring Dvz and averaging over f yields

(Dvz)
2 ¼ 2p 2e2

m2v2z
Ek k ¼ v

vz

� ��

�

�

�

�

�

�

�

2

(18:4:26)

For a discharge length l, the time between collisions is t ¼ 2l=jvzj. Substituting
for t and (Dvz)

2 in (18.4.19), we find that Dzz can be expressed as

Dzz ¼ (Dvz)
2

t
� l (18:4:27)

Two-Term Kinetic Equations

If the electron elastic collision frequency nel is large compared to the characteristic

frequencies for heating and collisional energy loss, then the two-term approximation

(18.1.4) can be used. To determine the quasi-linear diffusion coefficient for the

spherically symmetric part fe0 of the distribution, we transform (18.4.12) to spherical

velocity coordinates and average over solid angle. Putting k fel ¼ fe0 in (18.4.12)

and noting that @ fe0=@vz ¼ (vz=v)(d fe0=dv) ¼ cosc (d fe0=dv), the (negative of the)

velocity space flux is

�Gv ¼ ẑDzz

@ fe0
@vz

¼ v̂ cos c� ĉ sin c
� 	 e2p 2

m2v2z

ð

dk jv � Ekj2 d(v� kvz) cos c
d fe0

dv

(18:4:28)

704 KINETIC THEORY OF DISCHARGES



where we have substituted for Dzz from (18.4.18). Taking the divergence of this flux

in spherical velocity coordinates and averaging over solid angle, we obtain

CQL0 ¼ 1

v2
d

dv
v2Dv

d fe0

dv

� �

d(z� z0) (18:4:29)

where

Dv ¼ 1

v2
e2p2

m2

1

4p

ð

dk

ðp

0

sinc dc

ð2p

0

df jv � Ekj2 d(v� kv cos c) (18:4:30)

is the angle-averaged velocity diffusion coefficient.

Let us consider the two term kinetic equations (18.1.11) and (18.1.14) for a

plasma half-space z � 0, with the heating zone centered at z ¼ 0. In the steady

state and with no macroscopic E-field, the equations are

v
@ fe0
@z

¼ �nm fe1 (18:4:31)

v

3

@ fe1
@z

¼ Ce0 þ CQL0 (18:4:32)

Eliminating fe1 from these equations yields

� v2

3nm

@2fe0
@z2

¼ Ce0 þ d(z)
1

v2
@

@v
v2Dv

@ fe0
@v

� �

(18:4:33)

Then for z . 0, fe0 evolves under the action of the electron–neutral collisions alone

� v2

3nm

@2fe0
@z2

¼ Ce0 , z . 0 (18:4:34)

Integrating (18.4.33) over a small region Dz around z ¼ 0, we can drop Ce0Dz to
obtain

� v2

3nm

@ fe0
@z

�

�

�

�

�

z¼0

¼ 1

2v2
@

@v
v2Dv

@ fe0
@v

� �

z¼0

(18:4:35)

Equation (18.4.35) gives the boundary condition at z ¼ 0 for the solution of

(18.4.34) in the half-space z . 0.

Introducing an approximate form for the electron–neutral collision term

Ce0 � �ninel fe0 (18:4:36)

then (18.4.34) can be integrated to obtain the spatial decay of the electron

distribution

fe0 ¼ F(v) e�z=lE (18:4:37)
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where

lE(v) ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3nmninel
p (18:4:38)

is the energy relaxation length. Inserting (18.4.37) into (18.4.35) yields the equation

for F(v).

For a finite length discharge, with l � lE , the spatial decay over the discharge

length is weak and we can bounce average (18.4.33) to obtain a spatially indepen-

dent kinetic equation. Averaging over the discharge length (0 
 z 
 l), we obtain

Ce0 þ 1

v2
d

dv
v2

Dv

l

d fe0

dv

� �

¼ 0 (18:4:39)

The bounce-averaged equation is commonly used to determine the energy distri-

bution; for example, as described in Section 18.6 for modeling capacitive dis-

charges. However, at low pressures, an electron can interact coherently with the

heating zone many times, leading to the phenomena of bounce resonances,

neglected in the preceding analysis (see Aliev et al., 1997). The effects of the dc

ambipolar field have also been neglected. The ambipolar field can trap low

energy electrons, confining them to the discharge center where they do not interact

with the stochastic heating field. This can lead to two-temperature Maxwellian

distributions (see Figs. 11.10 and 18.9 for some examples from experiments and

modeling).

In next section, we determine the stochastic heating and quasi-linear diffusion for

an inductive discharge heating field. Another application in the literature has been to

surface wave discharges (Aliev et al., 1992). Quasi-linear theory has been applied

with some approximations to determine the heating in capacitive discharges

(Aliev et al., 1997; Kaganovich, 2002). However, due to the strong fields in the

sheaths of such discharges, the quasi-linear ordering fe1 � fe0 can break down. At

very low pressures, electrons can be trapped in the rf wave field itself. If

nm . ~nb , the bounce frequency of electrons in the rf wave field, then the quasi-

linear diffusion is reduced (Kaganovich et al., 2004).

18.5 ENERGY DIFFUSION IN A SKIN DEPTH LAYER

Stochastic Heating

The theory of anomalous collisions in a thin transverse electric field layer, originally

developed by Pippard (1949) to describe the high-frequency skin resistance of

metals at low temperatures, can be used to determine the collisionless heating

within the skin depth layer in a low-pressure inductive discharge (Weibel, 1967;

Turner, 1993; Godyak et al., 1993). The heating and energy diffusion can be

found using the quasi-linear analysis of the previous section. For our simplified
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treatment, we first assume that the electron distribution is Maxwellian and that

the transverse electric field decays exponentially with distance z from the edge

into the slab

~Ey(z, t) ¼ ~E0 e
�jzj=d cos(vt þ f) (18:5:1)

with d a constant skin depth. Substituting (18.5.1) into (18.4.8) we obtain the Fourier
spectrum

Ek ¼ E0d

p (1þ k2d2)
(18:5:2)

We use (18.4.18) to evaluate the diffusion tensor

Dzz ¼
e2p 2v2y

m2v2z

ð

dk
E2
0d

2

p2(1þ k2d2)2
d(v� kvz)

¼ e2E2
0d

2

m2

v2y jvzj
(v2z þ v2d2)2

(18:5:3)

with d(v� kvz) the delta function. Substituting (18.5.3) into (18.4.22) and evaluat-

ing for a Maxwellian distribution (18.1.2), the vx and vy integrals can be done easily

to obtain

�Sstoc ¼ e2E2
0d

2

m

ð1

0

dvz vz
v2z

(v2z þ v2d2)2
fez (18:5:4)

with fez ¼ ns(m=2peTe)
1=2 e�mv2z =2eTe . Substituting z ¼ mv2z=2eTe to evaluate the vz

integral, we obtain

�Sstoc ¼ mns

�ve

e ~E0d

m

� �2

I (18:5:5)

where

I (a) ¼ 1

p

ð1

0

dz e�z z

(zþ a)2
(18:5:6)

with

a ¼ 4v2d2

p �v2e
(18:5:7)

proportional to the square of the ratio of sheath transit time to rf period. Letting

z0 ¼ zþ a, then I can be expressed as

I ¼ 1

p
ea(1þ a)E1(a)� 1½ � (18:5:8)
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where the exponential integral

E1(a) ¼
ð1

a

dz
e�z

z
(18:5:9)

is tabulated in the literature and has the limits

I (a) �
� 1

p
lnaþ 1:58ð Þ, a � 1

1

pa2
, a � 1

8

>

<

>

:

(18:5:10)

A graph of I versus a is given as the solid line in Figure 18.5.

The nonlocal analyses (Weibel, 1967; Turner, 1993; Aliev et al., 1997) yield a

nonexponential decay of the electric field and, consequently, corrections to the

basic result (18.5.5), but these have been shown to be small (see Vahedi et al., 1995).

Effective Collision Frequency

Following Vahedi et al. (1995), we introduce an effective collision frequency nstoc
by equating the stochastic heating (18.5.5) to an effective collisional heating

power flux, defined in the following reasonable way

�Sstoc ¼ 1

2

ð1

0

dz ~E0e
�z=d

� �2 e2ns

m

nstoc
n2stoc þ v2

¼ 1

4

e2nsd

m

nstoc
n2stoc þ v2

~E
2

0 (18:5:11)

FIGURE 18.5. I and nstoc (normalized to �ve=4d) versus a, where nstoc is defined in the

following subsection.
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The resulting quadratic equation has two positive roots, one with nstoc . v, and one
with nstoc , v. The choice is made on physical grounds. In the anomalous

(nonlocal) regime a � 1, the larger root is chosen, yielding

nstoc � Ce �ve

4d
(18:5:12)

withCe � 1=I (a). In the collisionless (local) regime a � 1, the smaller root is chosen

nstoc � �ve

da
(18:5:13)

A reasonable ansatz joining these two solutions is

nstoc � �ve

4d

1

I (a)þ a=4

� �

(18:5:14)

which is shown as the dashed line in Figure 18.5.

Electron–neutral collisions have been incorporated by Vahedi et al. (1995) using

a fluid analysis, yielding an effective collision frequency that is approximately the

sum of ohmic and stochastic collision frequencies, as follows from the form used

in (18.5.11)

neff � nm þ nstoc (18:5:15)

Kinetic analyses (Tyshetskiy et al., 2002) yield additional collisional effects, includ-

ing differences at low frequencies between plane and cylindrical geometry solutions,

and possible “collisional cooling” at low frequencies and low collisionalities.

Energy Distribution

When calculating the stochastic heating (18.5.5), a Maxwellian distribution was

assumed. At high densities, electron–electron collisions do tend to drive the distri-

bution towards a Maxwellian, as is observed experimentally (see Section 18.6).

Nevertheless, the actual form of the distribution is determined by a balance of all

energy-dependent collisional processes, including quasi-linear diffusion. To illus-

trate this, we apply the two term kinetic equations (18.4.31) and (18.4.32) for an

inductive heating zone at z ¼ 0 in the plasma half-space z � 0. We first evaluate

the diffusion coefficient (18.4.30). Substituting the inductive field (18.5.2) into

(18.4.30), the f integration and the k integration over the delta function can be

easily done to obtain

Dv ¼ e2E2
0d

2v3

4m2

ðp

0

dc sin c
sin2 c cos2 c jcos cj
(v2 cos2 cþ v2d2)2

(18:5:16)
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The substitution z ¼ cos2 c reduces this integral to elementary form, yielding the

result

Dv ¼ D0

vd

v
1þ 2v2d2

v2

� �

ln 1þ v2

v2d2

� �

� 2

� �

(18:5:17)

with D0 ¼ e2E2
0d=4m

2v. For low and high energies, Dv has the forms

Dv �
D0

6

v

vd

� 	3

, v � vd

2D0

vd

v
ln

v

vd
, v � vd

8

>

>

<

>

>

:

(18:5:18)

We assumed a constantmean free path lm with collision frequencies nm ¼ v=lm and

ninel ¼ (2m=M)nm in solving (18.4.33) to obtain (18.4.37) with lE ¼ (M=6m)1=2lm .
Substituting (18.4.37) into the boundary condition (18.4.35), we obtain

2m

3M

� �1=2

vF ¼ 1

2v2
d

dv
v2Dv

dF

dv

� �

(18:5:19)

which determines the energy dependence of fe0. In general, (18.5.19) must be solved

numerically. An analytic solution can be found (Aliev et al., 1992) for the high-

energy regime v � vd, where we can approximate

Dv � Dv0

vd

v
(18:5:20)

withDv0 ¼ 2 ln (v=vd) � const. Substituting (18.5.20) into (18.5.19) and transforming

from v to the energy variable E ¼ mv2=2e, we obtain

1

E
d

dE E dF
dE

� �

¼ 1

E2
0

F (18:5:21)

with

1

E2
0

¼ 2e2

m2vdDv0

2m

3M

� �1=2

(18:5:22)

Equation (18.5.21) is Bessel’s equation, and taking the solution that vanishes asE ! 1,

we obtain

fe0 ¼ F0 I0(E=E0) e
�z=lE (18:5:23)

where I0 is the modified Bessel function.
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Consider now a finite system with l � lE . Using a constant lm , the bounce-

averaged kinetic equation (18.4.39) becomes

1

E
d

dE E d fe0
dE

� �

¼ 1

E2
0

l

2lE
fe0 (18:5:24)

with the solution, as for (18.5.21)

fe0 ¼ F0 I0
E
E0

l

2lE

� �1=2
 !

(18:5:25)

The bounce-averaged distribution (18.5.25) and the distribution (18.5.23) for the

semi-infinite plasma have the same form for the energy dependence, but the

bounce-averaged distribution is hotter due to the multiple interactions of the elec-

trons with the skin layer field, and is uniform in z.

18.6 KINETIC MODELING OF DISCHARGES

Non-Maxwellian Global Models

As in the previous section, electron distributions are often non-Maxwellian at low

plasma densities, with a Druyvesteyn-like distribution at high pressures, and

bi-Maxwellian distributions at low pressures. At higher densities, electron–electron

collisions tend to drive the distribution towards a Maxwellian shape. Figure 11.10

shows measurements of a Druyvesteyn-like shape in a capacitive discharge for

some pressure and driving voltage conditions.

The global model in Section 10.2 can be modified to treat non-Maxwellian

distributions. For example, this has been done by Gudmundsson (2001) for an

argon discharge with an energy distribution of the form

gp(E) ¼ gx
ne

T
3=2
eff

exp½�Cx(E=Teff)
x� (18:6:1)

for which the cases x ¼ 1 and x ¼ 2 correspond to Maxwellian and Druyvesteyn

distributions. We summarize his calculation for the Druyvesteyn distribution here.

Normalizing the distribution as
Ð

gp(E)E1=2 dE ¼ ne and with an average energy

per electron �Ee ¼ 3
2
Teff , we obtain the coefficients g2 � 0:565 and C2 � 0:243.

The various rate coefficients are evaluated as, for example

Kiz(Teff) ¼ 1

ne

ð1

Eiz
siz(E)(2eE=m)1=2 � E1=2gp(E) dE (18:6:2)

with similar expressions for Kex , Kel , and so on. Using these results, the collisional

energy loss Ec(Teff) defined in (3.5.8) can be evaluated. The generalized Bohm
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criterion (6.4.1) can be written as

e

M

1

u2B
¼ 1

ne

ð1

0

gp

2E1=2
dE (18:6:3)

Evaluating this yields uB2 � 1:17 (eTeff=M)1=2. The average electron speed, as in

(2.4.8), is found by integrating v over the distribution to be �ve2 ¼ 1:03
(8eTeff=pM)1=2, and the average electron energy lost to the wall per electron lost to

the wall, as in (2.4.11), is similarly evaluated to be Ee � 1:80Teff . Finally, equating

the ion and electron fluxes lost to an insulating wall, as in (6.2.14) and (6.2.15)

�ve

4

ð1

Vs

(E � Vs)
1=2gp dE ¼ uBne (18:6:4)

yields Vs2 � 3:43Teff for argon. The ion energy lost per ion lost to the wall is

Ei ¼ Mu2B=2eþ Vs.

With the preceding expressions, the particle and energy balance analysis of

Section 10.2 yields the effective temperature Teff and density ne for a discharge

with specified radius R, length l, pressure p, and absorbed power Pabs. Figure 18.6

shows the global model results for Teff and ne in an argon discharge for a typical

geometry and power R ¼ 15:24 cm, l ¼ 7:62 cm, and Pabs ¼ 500W for versus

pressures p and assumed distributions of the form (18.6.1). As shown in

Figure 18.6a, Teff for a Druyvesteyn distribution (x ¼ 2) is higher than for a

Maxwellian distribution (x ¼ 1) at a given p, since the Druyvesteyn energy tail is

depleted. In spite of the higher Teff , Figure 18.6b shows that ne for the Druyvesteyn

distribution (dotted line) lies considerably below ne for the Maxwellian (solid line),

especially at the higher pressures. This is mainly due to an increased energy loss

factor Ec in (10.2.15) for the Druyvesteyn distribution, which has relatively more

colder electrons that contribute to inelastic energy losses, compared to a Maxwellian

distribution.

Inductive Discharges

Experiments in low pressure inductive discharges in atomic gases give clear evi-

dence that in the elastic energy range below Eex , the electron distribution function

is a function solely of total electron energy (Kolobov et al., 1994; Kortshagen

et al., 1995). Figure 18.7 shows data for the EEPF as a function of total energy

ET at different radial and axial positions in a 100 W, 50 mTorr argon, planar induc-

tive discharge (Kolobov et al., 1994). Note the absence of low energy electrons at

successively higher energies as the measurements are made further from the

plasma center, indicating that these electrons are trapped by the internal ambipolar

potential. Such data suggests that nonlocal theory can be used to model the distri-

bution. This is especially attractive given the two-dimensional (r, z) nature of

most inductive discharges, which would make a direct solution of the Boltzmann

equation difficult. The nonlocal theory of inductive discharges has been developed

by Kortshagen et al. (1995) and by Kolobov and Hitchon (1995); see also Kolobov

and Godyak (1995) for a review.
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For a planar coil configuration (see Section 12.3) in a chamber of radius R and

length l, the rf azimuthal heating field ~Eu(r, z) typically peaks off axis at r � R=2
and decays axially away from the coil with a skin depth length �1 cm. In contrast,

the dc ambipolar potential F(r, z) forms a well with a maximum at r ¼ 0, z � l=2,
which traps electrons with total energy ET less than the negative of the wall

potential, �Fw .

For slow electrons in the elastic energy range, the nonlocal kinetic equation

(18.3.10) can be used to determine the EEPF gT0. From (18.3.11), we have for ohmi-

cally heated electrons

E1=2DE ¼ 1

V0

ð

Vac

2e

3m

j ~Eu(r, z)j2
2

E3=2nm
n2m þ v2

dV (18:6:5)

p

p

x

x

n

FIGURE 18.6. Comparison of global model results including Druyvesteyn (x ¼ 2) and

Maxwellian (x ¼ 1) distributions: (a) Teff versus energy exponent x at various pressures;

(b) ne versus p for various xs (after Gudmundsson, 2001).
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For the high densities typical of inductive discharges, electron–electron Coulomb

collisions can be an important energy transfer mechanism. Hence we write the

energy transfer collision term as the sum of that due to Coulomb collisions and to

electron–neutral elastic scattering: Ce0 � Cee þ Cel. Cee is given by the Fokker–

Planck form (18.1.21), which can be expressed as the sum of a dynamical friction

term Fee proportional to H and a dynamical diffusion term Dee proportional to G,

where H and G are given by (18.1.22) and (18.1.23), respectively. Accounting

also for the production I of low energy electrons by inelastic energy losses of

hotter electrons and by ionization [the second terms on the RHSs of (18.1.16) and

(18.1.18), respectively], the kinetic equation (18.3.10) can be expressed in the form

d

dET

E1=2(DE þ Dee)
dgT0

dET

þ E1=2(Fee þ FE) gT0

� �

¼ E1=2I (18:6:6)

Typically, because the slowest electrons are trapped in the center of the discharge by

the ambipolar potential barrier, they cannot reach the region of high heating fields

near the coil. Hence the average energy diffusion coefficient DE in (18.3.26) is

small at low energies, such that the principal energy diffusion mechanism for the

slowest electrons is from the Dee term by Coulomb collisions. The more energetic

electrons penetrate deeper into the edge rf field, and the average DE is large for

them. For a typical ionization fraction (ne=ng � 10�4) in argon, the energy diffusion

via Coulomb collisions is sufficiently strong that it results in a Maxwellian EEPF,

as shown in Figure 18.7.

For two small groups of electrons the nonlocal analysis is not very accurate:

(1) free electrons with energies ET . �Fw and (2) trapped electrons in the inelastic

energy range ET . Eex. While these electrons give small contributions to the plasma

density and rf current, they determine important discharge parameters such as the

FIGURE 18.7. Experimental EEPF as a function of total energy ET at different radial

positions in a 100 W, 50 mTorr argon planar inductive discharge; curve labels correspond

to radius (in cm) from the center at a fixed axial distance (4.4 cm) from the dielectric

window (after Kolobov et al., 1994).
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ionization rate and the dc current density. One method of treating these electron

groups is to solve the full spatially varying Boltzmann equation for them

(Kolobov and Hitchon, 1995; Kortshagen and Heil, 1999). At high pressures,

such a solution reveals a depletion of the EEPF tail in the region of highest dc poten-

tial where inelastic collisions occur. At low pressures, the EEPF tail is found to

depend on the spatial coordinates for free electrons only. Also at low pressures,

the electron heating is spatially separated from the ionization; the electron heating

occurs near the coil, whereas the maximum ionization occurs near the maximum

ambipolar potential where the rf field is absent.

In addition to solving (18.6.6), we also need to self-consistently solve the

equations that determine the ambipolar potential F(r, z) and the heating field
~Eu(r, z). This has been done using an iterative approach by Kortshagen et al.

(1995), with the results given in Figure 18.8. The experimental results shown at

various pressures are for a four-turn, 13.56 MHz planar coil system in argon with

R ¼ 7:5 cm and l ¼ 6 cm. The theoretical results are those of the self-consistent

nonlocal theory based on the use of (18.6.6). Similar good agreement between

experiments and nonlocal theory is seen for the radially and axially varying

EEPF. Comparisons with computer simulations also show good agreement

(Kolobov et al., 1996).

Capacitive Discharges

In Section 11.3 we saw that the experimental electron energy distributions in

capacitive discharges were generally non-Maxwellian (see Fig. 11.10). Similar

results have been found in PIC simulations. At low pressures (e.g., 10 mTorr) the

FIGURE 18.8. Comparison between measured and calculated EEPF in a planar inductive

discharge; the measurements are performed in argon in the center of the discharge (after

Kortshagen et al., 1995).
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distributions can be approximated by bi-Maxwellians, while at high pressures (e.g.,

100 mTorr) the distribution falls more steeply above the excitation energy. These

effects can be understood from a nonlocal kinetic analysis.

Considering a plane-parallel discharge model of length l (varying in the

x-direction), we assume an applied rf discharge voltage V ¼ Vrf cosvt. The voltage
across one of the sheaths is Vs ¼ Vdc þ V1 cosvt , where V1 ¼ Vrf=2 and Vdc is the

self-bias voltage. The width of this sheath is approximated by s(t) ¼ s0(1� b cosvt),
with b ¼ V1=Vdc , where s0 is related to the Child–Langmuir sheath width sm by

sm � (1þ b)s0 . We note that b � 1, so the important parameter is E0 ¼ Vdc�
V1 ; Vdc(1� b). The sheath oscillation amplitude is generally much larger than

that of the electron oscillations in the bulk of the plasma and is the main heating

mechanism for those electrons that interact with the sheaths.

There are two physical processes that constrain less energetic electrons from

being heated by the sheaths: the internal ambipolar potential F(x) that is a conse-

quence of the plasma density profile, and the bulk oscillation of the plasma electrons

due to the weak internal oscillating electric field. These effects can be captured in a

model by assuming an internal square-well potential of heightF0 , such that all elec-

trons with the x-component of kinetic energy lower than F0 do not interact with the

large oscillating sheath fields.

In Section 18.3, we indicated the general method for nonlocal analysis. To

perform an analytic calculation we considered only ohmic heating balanced by

electron–neutral elastic scattering energy losses. Here, starting from (18.3.5), we

neglect elastic scattering losses, which are generally small, but include electron–

neutral inelastic and ionization processes, Cex and Ciz , and electron–electron

Coulomb collisions, Cee . The second terms on the RHSs of (18.1.16) for Cex and

(18.1.18) for Ciz can be grouped together to form a source term I that feeds the dis-

tribution at energy ET. On the LHS of (18.3.5), we add the important stochastic

heating term and the Fokker–Planck form for Coulomb collisions, which can be

written as the divergence of a flux. The result, from (18.3.5), is

� @

@x

2e

3m

E3=2

nm

@gT
@x

� �

þ 2

3

@

@ET

(Gohm þ Gstoc þ Gee)

¼ E1=2(�nexgT � nizgT þ I) (18:6:7)

where Gj ¼ �E1=2
T DEj @gT=@ET as in (18.3.10), with the ohmic diffusion coefficient

in energy

DEohm ¼ e

m

ET

nm

j ~Ej2
2

n2m
n2m þ v2

(18:6:8)

and a stochastic diffusion coefficient DEstoc given approximately by

DEstoc � m

2eET

� �1=2v2s020 b
2(E2

T �F2
0)

d
h(ET �F0) (18:6:9)
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where d ¼ l� 2sm is the bulk plasma thickness and h(ET �F0) is a step function

indicating that electrons are only heated if their energy is higher than F0 . We

have already considered the stochastic heating for a Maxwellian distribution in

Sections 11.1 and 11.2. It arises from the velocity kick obtained on reflection

from the oscillating sheath

Dvx ¼ 2vs00 sin vt (18:6:10)

which are assumed randomized over the phase vt (Wang et al., 1998). The quantity

s00 is the amplitude of the large sheath oscillations with respect to the small ampli-

tude bulk plasma oscillations due to the internal rf field: s00 � sm=2� eErf=mv
2.

The form of the Coulomb flux is obtained by an expansion of (18.1.21); see

for example, Cohen et al. (1980)

Gee ¼ �3neeT
3=2
c gT þ Tc

@gT
@ET

� �

(18:6:11)

Here nee ¼ 5	 10�6T�3=2
c nave ln L is the electron self-collision frequency, with nave

the average density of electrons in units of cm�3 and L given in Section 3.3. The form

of the collision operator in (18.6.7) is a good approximation appropriate for energies

lower than T�
c , the electron temperature at which electron–electron collisions domi-

nate the kinetic equation and therefore generate a Maxwellian distribution.

Our next concern is the spatial averaging (18.3.8), also known as bounce aver-

aging. This can be formally done with an arbitrary ambipolar potential, but leaves

both an unknown potential function and complicated integrations. Furthermore,

the formal averaging still leaves difficult questions concerning the detailed nature

of the stochastic heating and the loss to the walls of energetic electrons. To solve

these problems, a series of “reasonable” assumptions have been made (Wang

et al., 1998), which we summarize here. Alternative assumptions can also be

made to specify the complete problem, such as those used by Smirnov and

Tsendin (1991) and Kaganovich and Tsendin (1992ab), but make the space-

averaged kinetic equation more difficult to solve. There is often a trade-off

between solvability and exactness of the defining equations. The formal approach

as in (18.3.6) is to expand the distribution as gT ¼ gT0(ET)þ gT1(ET, x) and then

average over the bounce motion. A major simplification for the internal potential

can be made by setting F(x) ¼ F0, a constant. To understand this, we note that

the internal field in the bulk plasma is given by the Boltzmann relation

F(x) ¼ Tc ln ne(x)=ne0 , where Tc is the “temperature” of the low energy part of

the distribution. For low pressure the potential is quite small and is relatively con-

stant over most of the core plasma. The potential rises more steeply in the sheath

region, that is transiently occupied by electrons, due to the more rapid fall-off of

the ion density. At the edge of the electron sheath the potential rises very rapidly

in the space charge region. The electrons escape in small bursts when the electron

sheath has almost completely collapsed, as described in Section 11.1. Also, as
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described earlier, and seen in the figure, the electron oscillation is strongly nonlinear.

This follows from the continuity of rf current (11.2.7), such that the decrease of electron

density in the ion sheath region must be compensated by an increase in electron sheath

velocity. Near the ion sheath–plasma interface, the electrons reflecting from the

oscillating sheath do not gain or lose energy, as the oscillations are just compensated

by the oscillating bulk plasma.

With the above approximations, averaging over the bulk distribution between the

ion sheaths, we have the averaged nonlocal kinetic equation

� ej ~Ej2
3m

d

dET

E3=2
T

nm

n2m
n2m þ v2

dgT0

dET

 !

� m

2e

� 	1=2

h(ET �F0)
v2s020 b

2

d

d

dET

(E2
T �F2

0)
dgT0

dET

(18:6:12)

� 2neeT
3=2
c

d

dET

gT0 þ Tc

dgT0

dET

� �

¼ E1=2
T (�nescgT0 � nizgT0 � nexgT0 þ I)

In the right hand side we have introduced the escape frequency nesc (see Wang et al.,

1998). This represents the particle loss to the walls, which occurs only for those elec-

trons that have sufficient x-directed energy to overcome the potential rise between

the electron sheath edge and the wall.

With given input quantities of pressure p, V1, v , and l, the unknown quantities,

which must be determined along with gT0 , are Tc , F0 , E0 ¼ Vdc � V1, ne0 and s0 .

We need five physical conditions to determine the five unknown parameters in

the equilibrium distribution:

(1) The total electron escape rate is equal to the ionization rate,

(2) The escape rate of ions is equal to that of electrons,

(3) The flux leaving the plasma is equal to the flux crossing the sheath

(4) The total electron distribution cannot be heated by electron–electron collisions

(5) The space-and-time-averaged electron density in the sheath is equal to the

space-averaged ion density in the sheath.

The differential equation (18.6.8) has been solved numerically (Wang et al.,

1998; 1999). gT0(ET) has two constants to be determined, which can be taken as

the value of gT0 and its logarithmic derivative at Emax . gT0(Emax) is determined by

the normalization of gT0 , since the kinetic equation is linear in gT0 . The derivative

is determined by the requirement that there is no flux at ET ¼ 0. The eigenvalue

problem has two independent solutions, one which increases with ET , and one

which decreases with ET . Since the integration is from ET ¼ Emax to ET ¼ 0, the

error caused by an inaccurate choice of logarithmic derivative rapidly becomes

unimportant if the value of Emax is large enough. This allows the “boundary”

values at Emax to be chosen with considerable flexibility. The differential equation

involves s0 , ne0 , Vdc , F0 , and Tc , which are determined recursively.
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In Figure 18.9, we compare the nonlocal results to one-dimensional particle-

in-cell (PIC) simulations, and to the experimental results of Godyak and co-workers,

shown in Figure 11.10 for p ¼ 10 mTorr. The solid line shows the nonlocal distri-

bution from (18.6.8), using the fully self-consistent theory, and the dashed line

shows the theory result using the measured central density ne0. The coarse and

fine dotted lines show the experimental and PIC simulation results. The central

density is higher for the fully self-consistent result than in the experiment, but is

similar to the PIC result. The rather steep profiles of the theory, just below F0 , is

caused by the abrupt turning-on of the stochastic heating due to the step function.

The transition can be smoothed by turning on the stochastic heating more gradually,

as is physically reasonable (Wang et al., 1999).

It is also possible to combine the nonlocal kinetic treatment of the electrons with

the fluid theory for positive and negative ions, to treat electronegative discharges. As

with electropositive discharges, nonlocal kinetics were required to give EEPFs in

agreement with PIC simulations at low pressures (Wang et al., 1999).

PROBLEMS

18.1. Two-Term Expansion Procedure Carry out the c integrations of (18.1.9)

to obtain (18.1.11) and (18.1.14)

18.2. Electron–Neutral Elastic Collision Term

(a) For no z-variation (@=@z ; 0) and Ez ¼ 0, show by substituting (18.1.15)

into (18.1.14) that the collision term Ce0 does not yield a particle loss.

(b) Letting nm(v) ¼ nm0 , a constant independent of v, show that Ce0 yields an

energy loss collision frequency (2m=M)nm .

p V

FIGURE 18.9. Comparison of EEPFs obtained experimentally and theoretically in an argon

capacitive discharge at p ¼ 10 mTorr and Vrf ¼ 425 V (after Wang et al., 1999).
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18.3. Excitation and Ionization Collision Terms

(a) Taking fe1 ¼ 0 in (18.1.14) and nex ¼ const in (18.1.16), show that

@ fe0=@t ¼ Cex yields the results @ne=@t ¼ 0 and @(neEe)=@t ¼ �nexEexne.

(b) Taking fe1 ¼ 0 in (18.1.14) and niz ¼ const in (18.1.16), show that

@ fe0=@t ¼ Ciz yields the results @ne=@t ¼ nizne and @(neEe)=@t ¼
�nizEizne.

18.4. Einstein Relation and Thermal Conductivity

(a) Using (18.1.28) and (18.1.29), show that the Einstein relation De ¼ meTe

holds for a Maxwellian distribution, independent of the dependence of

nm on v.

(b) For an electron distribution with a spatially varying temperature Te(z), the

heat flow vector in (2.3.21) can be written as

q ¼
ð

d3v
1

2
mv2vz fe(v) ¼ �kTrTe

where kT is the thermal conductivity (here Te is in units of volts). For a

Maxwellian distribution with a constant collision frequency nm ¼ const,

evaluate this integral using the two term expansion (18.1.11) for fe1, and

determine kT. Comparing to the dc electrical conductivity sdc ¼ menee,

with me given by (18.1.29), show that kT ¼ 5sdcTe. This is known as

the Wiedemann-Franz law.

18.5. Effective Frequency and Collision Frequency For a Maxwellian distri-

bution in a gas with a constant momentum transfer cross section, sm(v) ¼
const, show from (18.1.45) and (18.1.46) that neff in the high-frequency

limit is 4=p times neff in the low-frequency limit. Also show that veff in the

low-frequency limit is (3p=8)v.

18.6. Local Kinetics with rf Fields Derive (18.2.3)–(18.2.5) by inserting

(18.2.1) and (18.2.2) along with the two-term expansion (18.1.3) into the

Boltzmann equation (18.1.1).

18.7. Two-Term Quasi-linear Diffusion Coefficient Obtain (18.4.30) by taking

the divergence of (18.4.28) in spherical velocity coordinates and averaging

over solid angle.

18.8. Stochastic Heating in an Inductive Discharge Since magnetic forces do

no work on moving charges, they can be neglected in calculating the stochas-

tic heating. Consider an electron with velocity �vz incident on the skin depth

layer in an inductive discharge.

(a) Neglecting the rf magnetic force, show that the transverse velocity

impulse

Dvy ¼ �
ð1

�1
dt
e ~Ey(z(t), t)

m
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calculated by substituting (18.5.1) into the above expression (with z(t) ¼
�vzt for t , 0 and z(t) ¼ vzt for t . 0) is

Dvy ¼ 2e ~E0d

m

vz

v2z þ v2d2
cosf

(b) Averaging over a uniform distribution of initial electron phases f, show
that the energy change is

DW ¼ 1

2
mk(Dvy)2lf ¼ e2 ~E

2

0d
2

m

v2z

(v2z þ v2d2)2

which can be integrated over the particle flux to obtain the stochastic

heating power

�Sstoc ¼
ð1

�1
dvx

ð1

�1
dvy

ð1

0

dvz vzDW(vz) fe

Compare this expression for �Sstoc to (18.5.4) determined from quasi-linear

theory.
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APPENDIX A

COLLISION DYNAMICS

The dynamics of a particle in a central force potential can be directly calculated.

Using the center of mass coordinates, this corresponds to a collision between any

two particles, in which their mutual interaction has a central force, for example,

the Coulomb and polarization potentials. The equation for the trajectory is straight-

forwardly calculated from the conservation of total energy and angular momentum.

Referring to Figure A.1, these equations can be written

1

2
mR _r2 þ r2 _u

2
� �

þ U(r) ¼ 1

2
mRv

2
0 (A:1)

and

�mRr
2 _u ¼ mRbv 0 (A:2)

where v0 is the initial relative velocity,mR is the reduced mass, and here u is defined as
shown in the figure. Substituting _u from (A.2) in (A.1) we obtain an equation for _r alone

1

2
mR _r

2 ¼ 1

2
mRv

2
0 � U(r)þ mRb

2v20
2r2

� �

(A:3)

where the term in brackets is an effective potential including the repulsive centrifugal

potential mRb
2v20=2r

2. For U(r)/ r�i, which includes the Coulomb and polarization

potentials, this is readily solvable (see Goldstein, 1950). We form the trajectory
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equation by solving (A.3) for _r and then dividing by _u from (A.2), to obtain

dr

du
¼

+ v20 �
2

mR

U(r)þ mRb
2v20

2r2

� �� �1=2

bv 0=r2
(A:4)

where the minus sign is for the outward bound trajectory. The angle x is then obtained

by integrating (A.4),

x ¼
ð1

rmin

(bv 0=r
2) dr

v 02 � 2

mR

U(r)þ mRb
2v20

2r2

� �� �1=2
(A:5)

and from Figure A.1

Q ¼ p� 2x (A:6)

We have used symmetry about the closest approach, to integrate (A.5) from the closest

approach rmin to infinity, and then doubled the angle. The lower limit rmin is obtained

from the condition that _r changes sign, which from (A.3) is just

1

2
mRv

2
0 � U(rmin)þ mRb

2v20
2r2min

� �

¼ 0 (A:7)

Although complete solutions of (A.5) are possible, they are not illuminating.

However, for attractive potentials it is often useful to distinguish between two cases:

the case for which the centrifugal force serves as a barrier to deep penetration and

the case for which this repulsive potential is overcome by the attractive potential.

m

b
r

r

FIGURE A.1. Illustrating the exact classical calculation of the differential scattering cross

section.
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From (A.3) the transition occurs when U(r) ¼ �Cr�i, with i ¼ 2. For i , 2 the effec-

tive potential

Ueff(r) ¼ U(r)þ mRb
2v20

2r2
(A:8)

is always repelling at the origin. These two cases are illustrated in Figure A.2, where

Uc(r) is the centrifugal potential. For U(r) . 0 the effective potential is, of course,

always repulsive. An important characteristic of the potential in Figure A.2b, with

i . 2, is that a resonance phenomenon can occur for an energy close to the value for

which the force disappears (W0 in the figure).

COULOMB CROSS SECTION

For Coulomb collisions, there is a straightforward solution to the trajectory equation

(A.5). Substituting in the Coulomb potential for an electron–ion collision

U(r) ¼ � Ze2

4pe0r

and defining a new variable r ¼ b=r, we recast (A.5) with (A.6) into the form

Q ¼ 2

ðrmax

0

dr

1� 2Ze2

4pe0mRv
2
0 b

r� r2
� �1=2

� p (A:9)

where rmax is obtained from the solution of (A.7). Integrating (A.9) we have

Q ¼ �2 cos�1 Ze2=4pe0mRv
2
0b

h

1þ Ze2=4pe0mRv
2
0b

	 
2
i1=2

8

>

<

>

:

9

>

=

>

;

þ p (A:10)

which can be rewritten as

Ze2=4pe0mRv
2
0b

h

1þ Ze2=4pe0mRv
2
0b

	 
2
i1=2

¼ cos
Q

2
� p

2

� �

¼ sin
Q

2
(A:11)

Using a trigonometric identity we have

Ze2

4pe0mRv
2
0b

¼ tan
Q

2
(A:12a)
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or, solving for b,

b ¼ Ze2

4pe0mRv
2
0 tan (Q=2)

(A:12b)

From the definition of the differential cross section in (3.1.13), we have, after taking

a derivative of (A.12b) and performing a few trigonometric manipulations,

I(Q) ¼ b

sinQ

�

�

�

db

dQ

�

�

�
¼ Z2e4

(8pe0)
2m2

Rv
4
0 sin4 Q=2ð Þ (A:13)

which is the well-known Rutherford cross section for Coulomb scattering. Because

of the sin4 Q=2ð Þ term in the denominator, the total scattering cross section is infinite,

unless cut off by long-range shielding, as discussed in Section 3.3.

FIGURE A.2. The potential functions used for the calculation of elastic scattering in: (a) an

attractive inverse first power potential and (b) an attractive inverse third power potential.
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APPENDIX B

THE COLLISION INTEGRAL

BOLTZMANN COLLISION INTEGRAL

We obtain the general form for the term @f =@tjc, which occurs on the RHS of the

Boltzmann equation (2.3.3), known as the Boltzmann collision integral. Consider

an elastic collision between incident and target particles having distributions f1
and f2 and velocities v1 and v2. The number of particles between v1 and v1 þ dv1 is

f1(r, v1, t) d
3v1

and the number between v2 and v2 þ dv2 is

f2(r, v2, t) d
3v2

The flux of incident particles in a coordinate system in which v2 is zero is

jv1 � v2j f1 d3v1

The differential cross section for scattering through angle u1 is I(jv1 � v2j, u1). The
number of particles per unit time scattered out of the differential volume d3v1 d

3v2
and into the solid angle dV is then

f1 f2 jv1 � v2j d3v1 d3v2 I dV
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Dividing by d3v1 and integrating over d3v2 and dV we obtain all particles scattered

out of the incident distribution f1:

@f1
@t

�

�

�

�

out

¼
ð ð

f1 f2 jv1 � v2j d3v2I dV (B:1)

The particles from the distributions f1 and f2 having velocities v1 and v2 are scattered

to primed velocities v01 and v
0
2 in distributions f

0
1 ; f1(r, v

0
1, t) and f

0
2 ; f2(r, v

0
2, t). The

rate of scattering into f1, from the reversibility of the equations of motion, is then

@f1
@t

�

�

�

�

in

¼
ð ð

f 01f
0
2 jv01 � v02j d3v02 I0 dV0 (B:2)

Finally, for elastic collisions, the relative velocity is conserved,

jv01 � v02j ¼ jv1 � v2j (B:3)

and the differential cross sections I dV and I 0 dV0 in the primed and unprimed coor-

dinates can be identified. Substituting (B.3) in (B.2) and subtracting (B.1) from

(B.2), we have

@f1
@t

�

�

�

�

c

¼
ð

d3v2

ð2p

0

df1

ðp

0

(f 01f
0
2 � f1f2) jv1 � v2jI sin u1 du1 (B:4)

where we have written out dV explicitly and noted that the integral over u1 is done
before the integral over v2. The general form of (B.4) constitutes the RHS of (2.3.3).

It is not easy to evaluate (B.4) under the action of arbitrary forces on the LHS of

(2.3.3). For small-angle Coulomb collisions an expansion of (B.4) is possible to

obtain the Fokker–Planck collision integral described in many texts on fully

ionized plasmas (e.g., see Schmidt, 1979). For large-angle collisions with neutrals

a different expansion is usually used, which assumes a distribution close to equili-

brium. We have already employed the resulting Krook collision operator in our for-

mulation of the macroscopic equations in Section 2.3. We outline how this

approximation is obtained in Chapter 18. We show below that the general form

(B.4) is satisfied by a Maxwellian distribution at equilibrium.

MAXWELLIAN DISTRIBUTION

At equilibrium the distribution is stationary, @f =@tjc ¼ 0, which is satisfied if

f 01 f
0
2 � f1 f2 ¼ 0 (B:5)

Taking the logarithm of (B.5) we have

ln f 01 þ ln f 02 ¼ ln f1 þ ln f2 (B:6)
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Guessing a solution of the form

ln f ¼ �j2mv2 þ ln C (B:7)

for f1, f2, f
0
1 and f 02, and substituting into (B.6), we obtain

m1v
0
1
2 þ m2v

0
2
2 ¼ m1v

2
1 þ m2v

2
2 (B:8)

which expresses the conservation of energy in an elastic collision. Hence (B.7) is a

solution of (B.5). Taking the antilog of (B.7), we obtain the equilibrium distribution

f1(v) ¼ f2(v) ¼ C e�j 2mv2 (B:9)

which is the form assumed in (2.4.2). This gives, with the appropriate normalization,

the Maxwellian distribution, with a common temperature for all the species, as in

(2.4.7). We could also have included a function of the momentum in (B.7) and

found a drifting Maxwellian at equilibrium. Equation (B.5) is clearly sufficient to

satisfy @f =@tjc ¼ 0. It is also necessary, which can be shown by use of the Boltzmann

H Theorem, which states that the time derivative of the function

H ¼
ð

f ln f d3v (B:10)

which measures the randomness of the distribution, is zero if and only if (B.5) is

satisfied. A more detailed account of the above material, including a derivation of

the H theorem, can be found in Holt and Haskell (1965, Chapter 5).
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APPENDIX C

DIFFUSION SOLUTIONS FOR
VARIABLE MOBILITY MODEL

We consider the solution of the nonlinear low-pressure diffusion equation (5.3.6) in

a plane-parallel system. The solution (5.3.7) obtained by Godyak and Maximov (see

Godyak, 1986) is for a boundary condition of zero flux at the plasma center x ¼ 0,

corresponding to symmetric diffusion in an electropositive plasma over the region

�l=2 � x � l=2. This solution has been generalized by Kouznetsov et al. (1996)

to include an input flux, for a configuration in which (5.3.6) corresponds to an

electropositive edge region of a discharge which has an additional negative ion

species in an electronegative plasma core. Following Kouznetsov et al., we

outline the solution here.

For the half-region 0 � x � l=2, normalizing the position, density and potential

variables as

j ¼ 2x

l
, y ¼ n

n0
, h ¼ � F

Te

(C:1)

then from (5.3.3) we have

dh

dj
¼ � 1

y

dy

dj
(C:2)
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with the integral of (C.2) yielding the Boltzmann relation

h ¼ � ln y (C:3)

Substituting (C.2) into (5.3.6), we can eliminate n in favor of h to obtain

d2h

dj 2
� 2

dh

dj

� �2

¼ 2a
dh

dj

� �1=2

(C:4)

where

a ¼ 1

2

pl

4li

� �1=2
nizl

uB
(C:5)

with uB ¼ (eTe=M)1=2. With the substitution

dh

d(a2=3j)
¼ x (C:6)

(x is a normalized electric field), (C.4) can be transformed to

dx

2x1=2(1þ x3=2)
¼ d(a2=3j) (C:7)

An integration yields

1

6
ln
(x1=2 þ 1)3

x3=2 þ 1
þ 1

ffiffiffi

3
p tan�1 2x

1=2 � 1
ffiffiffi

3
p ¼ a2=3jþ C1 (C:8)

Eliminating d(a2=3j) from (C.6) and (C.7) and integrating, we find

1

3
ln 1þ x3=2
� � ¼ hþ C2 (C:9)

Equations (C.8) and (C.9) provide a solution to (C.4) in a parametric form (x serves

as the parameter) with the two constants of integration C1 and C2 determined from

boundary conditions.

For symmetric diffusion in a low-pressure electropositive discharge over the

region �l=2 � x � l=2, we have a zero flux boundary condition at the plasma

center x ¼ 0, such that dn=dx ¼ 0, dh=dj ¼ 0 from (C.2), and x ¼ 0 from (C.6).

This yields C2 ¼ 0 from (C.9) and C1 ¼ �p=6
ffiffiffi

3
p

from (C.8). The density profile

is found by substituting (C.3) into (C.9) to eliminate h, which yields

y ¼ 1þ x3=2
� ��1=3

(C:10)
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or solving (C.10) for x, we obtain

x ¼ ( y�3 � 1)2=3 (C:11)

Inserting (C.11) into (C.8) yields the density profile y ¼ n=n0 in (5.3.7), shown in

Figure 5.2b. As described below (5.3.8), the profile is circular to a very good

approximation.

When considering more general boundary conditions, it is convenient to have an

expression for x in terms of the ion drift velocity ui. Using the normalizations (C.1)

and substituting x from (C.6) into (5.3.5), we obtain

x ¼ a�2=3 pl

4li
w2 (C:12)

where w ¼ u(x)=uB is the normalized flow velocity. Substituting a from (C.5) into

the preceding expression gives

x ¼ a�2=3w2 (C:13)

where

a ¼ 2nizli
puB

(C:14)

is a normalized ionization rate. At the plasma sheath edge, the ions reach the Bohm

speed, and their concentration is ns. Using this boundary condition in (C.9) with x
obtained from (C.13) at w ¼ 1 and h given by (C.3), we find

C2 ¼ 1

3
ln (1þ a�1)þ ln ys

where ys ¼ ns=n0. Substituting C2 into (C.9) and using (C.3) and (C.13), we have

ys

y(j)
¼ aþ w3(j)

aþ 1

� �1=3

(C:15)

which gives the ratio of the density y at any position j to the density ys at the sheath

edge in terms of the ratio w(j) of the ion drift velocity to the Bohm speed. In par-

ticular, for an electropositive region with an entering velocity uin and a density n0
at x ¼ 0, the ratio becomes

hl ;
ns

n0
¼ aþ w3

0

aþ 1

� �1=3

(C:16)
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where w0 ¼ uin=uB. If uin and the electron temperature Te, and therefore niz and uB,

are known, then (C.16) gives ns=n0. For the case of zero input flux, then w0 ¼ 0, and

since normally a ,, 1 we have

hl � a1=3 (C:17)

where a, taken from (C.14), involves the temperature. We note that (C.17) gives

n/n(0) at u ¼ uB in Figure 5.2b.

As we noted in Chapter 10, an approximate value of the temperature can be found

from an equilibrium calculation. An accurate, but complex, equation for the temp-

erature can also be obtained from the present formalism. With x obtained from

(C.13) at w ¼ w0, we find from (C.8) that

C1 ¼ 1

6
ln
(a1=3 þ w0)

3

aþ w3
0

þ 1
ffiffiffi

3
p tan�1 2w0 � a1=3

ffiffiffi

3
p

a1=3

Substituting C1 into (C.8) and using (C.12) we obtain a general relation for w(j),
which, evaluated at the sheath edge where w ¼ 1 and j ¼ 1, gives

1

6
ln
(a1=3 þ 1)3

aþ 1
þ 1

ffiffiffi

3
p tan�1 2� a1=3

ffiffiffi

3
p

a1=3
� 1

6
ln
(a1=3 þ w0)

3

aþ w3
0

� 1
ffiffiffi

3
p tan�1 2w0 � a1=3

ffiffiffi

3
p

a1=3
þ pl

4li
a2=3 (C:18)

For symmetric diffusion in an electropositive plasma with w0 ¼ 0, (C.18) can be

solved for Te. Because the density profile is found to be quite flat in the center (and

consequently steeper at the edge), an approximation can be made which consider-

ably simplifies the solution. Employing particle balance by equating the production

of pairs by ionization to their loss to the wall, and approximating the density for pro-

duction by ionization to be n(x) � n0, we have

nizn0l=2 ¼ uBns (C:19)

Using (C.19) in (C.17), we can solve for hl ¼ ns=n0 to obtain

hl � 4li
pl

� �1=2

(C:20)

This expression for the ratio of edge-to-center density is close to that found by

Godyak and Maximov (see Godyak, 1986) from the more exact relation (C.18).
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INDEX

Actinometry, 277–278
Adsorption, 303–308, 315–316

chemisorption, 304, 315–316
dissociative, 305, 316
physical, 316–317
physisorption, 303–304

Affinity, electron, 215, 240,
247–250, 589

Ambipolar diffusion, see Diffusion,
ambipolar; Diffusion, in
electronegative plasmas

Anodization, 621
Argon:

collisional energy loss per electron-ion
pair, 82 (figure)

cross sections, 73 (figure), 77 (figure)
discharge model, 330ff
first Townsend coefficient, 545 (figure)
ion-neutral mean free path, 80
probability of collision, 64 (figure)
rate constants, 80 (figure), 81 (table)

Atom, 63ff
degeneracy, 66
electronic configurations, 66
energy levels, 63–67
fine structure, 67

metastable, 67–70
optical emission from, 67–70, 272–277
valence electrons, 66

Bohr radius, 64–65
Bohm:
criterion, see Sheath, Bohm criterion
velocity, 169

Boltzmann constant, 33
Boltzmann equation, 28–30, 679
Boltzmann relation, 37–38, 344
generalized, 698

Breakdown, see Dc discharge, vacuum
breakdown

Capacitive discharge, 16–19, 387ff,
715–719

asymmetric, 430ff, 434ff
dual frequency, 416
electronegative, 417
experiments, 419–423, 377–378
homogeneous model, 388ff
inhomogeneous model, 399ff
ion bombarding energy, 441–448
kinetic model, 715–719
low frequency sheaths, 434–441
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Capacitive discharge (Continued)
magnetically enhanced (MERIE), 17,

448–452
matching network, 452–456
resonant, 398–399
scaling, 410–411, 431–434
secondary electrons, 428–429
simulations, 423–428

Cathode fall, see Dc discharge,
cathode sheath

Cavity perturbation,
see Diagnostics, wave

CF4 discharge, 592ff
basic data, 592–593
inhibitor film formation, 594–596
O2 and H2 additions, 596–598
rate constants, 593 (tables)
silicon dioxide etching, 600–602
silicon etching, 586ff
surface kinetics, 579–583

Charge:
bound, 28
free, 28

Charging, substrate, 606ff
electron shading effect, 612–613
gate oxide damage, 607
in nonuniform plasmas, 608–611
rf biasing effects, 613–614
transient effects, 611–612

Chemical equilibrium, 221ff. See also
Chemical reaction

between phases, 226–229
constant, 223–225, 268–269,

288–289
heterogeneous, 226ff
surface coverage, 229–231
vapor pressure, 226–229, 228 (table)

Chemical etching, see Etching, chemical
Chemical kinetics, 285ff.

See also Chemical reaction
gas-phase, 289ff
surface, 311ff

Chemical potential, 219–221
Chemical reaction, 207–208, 221ff.

See also Rate constant
consecutive, 290–292
elementary, 285ff
equilibrium, 221ff
opposing, 292
with photon emission, 293–295
rates, 265ff, 287–289
stoichiometric, 221ff
surface, 311ff

three-body, 295–299
three-body recombination,

298–299
Chemical vapor deposition (CVD),

616–617
Chemisorption, see Adsorption
Child law, see Sheath, Child law
Chlorine discharges, 366–369
pulsed discharge, 379–380
etching in, 598–600, 603–604

Clausius-Clapeyron equation, 227
Collision, see also Collision parameter;

Cross section
associative detachment, 258–260
associative ionization, 262, 269
atomic, 43ff
autodetachment, 240
autodissociation, 240
autoionization, 240
charge transfer, 73–78, 255–256
coulomb, 55–58, 723–726
deexcitation, 269
dissociation, 241ff
dissociative electron attachment, 247
dissociative ionization, 245
dissociative recombination,

246–247, 269
elastic, 43–44, 55ff, 253, 263–264
electron detachment, 251
electron-ion, 55–58
electron-neutral, 58–63
excitation, 72
heavy particle, 253ff, 263
inelastic, 43–44, 63ff
ionization, 70–72
molecular, 235ff
mutual neutralization, see Collision,

positive-negative ion
recombination

Penning ionization, 261
polar dissociation, 250
polarization scattering,

58–63, 263
positive-negative ion recombination,

256–258
rearrangement of chemical bonds,

262–263
recombination, 256–258
small angle scattering, 53–55
three-body, 264–265, 269
transfer of excitation, 260–262
vibrational and rotational excitation,

252–253

750 INDEX



Collision dynamics, 49ff, 723ff.
See also Collision parameter

adiabatic Massey criterion, 254
Arrhenius temperature dependence,

266–267
Boltzmann collision integral, 727ff
center-of-mass coordinates, 49–52
differential scattering, 46–49
energy transfer, 52–53
Frank-Condon principle, 241
Krook operator, 32, 680–681
small angle scattering, 53–55

Collision parameters,
see also Cross section

cross section, 44
frequency, 45
impact parameter, 46
mean free path, 45
probability, 63–64
rate constant, 45

Collision terms, 682–684
Conductivity, see also Kinetic theory

plasma, 96
dc plasma, 96
effective electrical, 687–688

Confinement:
magnetic, 89–90, 102–105, 149–159
multipole, see Multipole magnetic

confinement
Conservation:

equations, 28ff
energy, 34–35, 91–93, 330, 348,

406–407
momentum, 31–34
neutral radicals, 338–340
particles, 30, 333, 336–337,

348ff, 395
Continuity equation, 24–25

macroscopic, 30
Cross section 44. See also Collision

argon, 73 (figure), 77 (figure)
capture, see Cross section, Langevin
charge transfer, 73–78
differential, 46–49
excitation, 72–73
gas kinetic, 312 (table)
hard sphere, 48–49
Langevin, 61–62, 263
ionization, 70–72
oxygen, 270–274 (figures)
Rutherford, 726
Thompson ionization, 70–72
total, 48

Current:
conduction, 24–25, 109
continuity, 24–26
displacement, 24–25, 109
magnetization, 24–25, 109
polarization, 24–25
total, 25, 95–97

Cyclotron frequency, 88–90

Dc discharge, 535ff. See also Planar
magnetron discharge

anode sheath, 537
cathode fall thickness, 549 (table)
cathode fall voltage, 548 (table)
cathode sheath, 537, 543ff
diffusion, 539–541
Faraday dark space, 537, 550
Paschen curve, 544–546
positive column, 536, 539ff
Townsend coefficient, 544–545
vacuum breakdown, 544–546

Debye length, 38–40, 42
Density, see Electron density; Neutral

radical density
Deposition:
of amorphous silicon, 622–625
chemical vapor (CVD), 621ff
plasma-enhanced CVD, see

Plasma-enhanced chemical
vapor deposition
(PECVD)

reaction rates, 623 (table)
of silicon dioxide, 625–629
of silicon nitride, 629–630
sputter, see Sputter deposition

Desorption, 303–308, 315–316
associative, 308

Detailed balancing, 267–270
Diagnostics, see also Measurements
microwave, 123ff
optical, 671–673. See also

Actinometry; Optical emission
probe, see Probe diagnostics
wave, 123ff, 669–670

Dielectric constant, 95–97
perpendicular, 108–109
tensor, 110–112

Diffusion, 133ff, 684–685. See also
Kinetic theory

across a magnetic field, 149ff
across multipoles, 155ff
ambipolar, 135–136, 152–155
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Diffusion (Continued)
Bohm, 154
boundary conditions, 136–138
constant, 134, 685
Einstein relation, 134
in electronegative plasmas, 340ff
Fick’s law, 134
Langmuir regime, 146-147
low pressure, 144ff, 731ff
of neutrals, 311–315
random walk, 134, 163
simulation in electronegative plasma,

364, 369
solutions, 136ff, 144ff
steady state, 139–143
variable mobility model, 144–146, 731ff

Discharge, see also Capacitive discharge;
Dc discharge; Electron cyclotron
discharge; Helical resonator
discharge; Helicon discharge;
Hollow cathode discharge; Inductive
discharge; Planar magnetron
discharge; Pulsed discharge;
Surface wave discharge;
Wave-heated discharge

electronegative model, 340ff
electropositive model, 330ff
high density, 18–20, 462ff
high pressure, 9 (figure), 331
hot filament, 158, 646
intermediate pressure, 331
low pressure, 5, 330
neutral radical density model, 338–340
nonuniform density model, 336–338,

340ff, 350ff
typical parameters, 14 (table)
uniform density model, 333–336,

351–354
Distribution function, 28
Druyvesteyn, 685–686, 711–712
electron, 11 (figure)
electron energy (EEDF), 37,

189–191, 690
electron in rf field, 686–687
electron energy probability (EEPF),

189–191
ion bombarding energy, 441ff
Maxwellian, 36, 728–729

Druyvesteyn distribution, 685–686,
711–712

Dusty plasmas, 649ff
diagnostics, 668ff
discharge equilibrium, 656–658

driven particulate motion, 670–671
dust acoustic waves, 669–670
forces on particulates, 658–662
formation and growth, 662–668
particulate charging, 651–656
removal of particulates, 673–675
strongly coupled plasmas, 668–669

ECR, see Electron cyclotron resonance
(ECR)

Electron cyclotron discharge, 19, 492ff
configurations, 492–497
coupling, 492–497
electron heating, 497ff
magnetic beach, 494
measurements, 512–513
plasma expansion, 509–512
simulations, 507–508
wave absorption, 501–507

Electron cyclotron resonance (ECR),
116. See also Electron cyclotron
discharge

Electronegative discharge equilibrium,
340ff

Boltzmann approximation, 345–348
global model, 351–354
nonuniform model, 354–359
pulsed discharges, 376–380
simulations, 359ff
uniform model, 351–354

Electron density:
calculation of, 334
measurement of, see Probe diagnostics;

Diagnostics, wave
Electron distribution function, see

Distribution function, electron
Electron temperature, 35–37
calculation of, 333
measurement of, see Probe diagnostics

Electropositive discharge
equilibrium, 330ff

Electrostatic probes, see Probe diagnostics
Emission:
Auger electron, 314
optical, see Optical emission
secondary, 314–315 (table), 655

Energy, 208ff
average kinetic energy lost per particle

lost, 37
balance, see Conservation, energy
collisional energy loss per electron-ion

pair, 81
density, 31
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Energy (Continued)
distribution, see Distribution function
electron, see Distribution function
Fermi, 300, 588–589
Gibbs free, 192, 212–213 (table),

219–221
ion bombarding, 9, 16 (table),

331–333, 407–410, 412, 511–512
Energy diffusion coefficient, 696, 700–703
Energy relaxation length, 690–691, 706
Enthalpy, 208ff

bond dissociation, 215 (table)
formation of gaseous atoms, 216 (table)
standard molar formation,

212–215 (tables)
Entropy, 216ff

standard molar, 220
Equation of state:

adiabatic, 33
isothermal, 32
perfect gas, 32, 208

Equilibrium, see Chemical equilibrium;
Plasma equilibrium;
Thermal equilibrium

Etching, 571ff
aluminum, 602–603
anisotropy, 2, 572–576, 581–582, 595
in CF4 discharge, 592–596
chemical, 577, 586ff
chemical framework, 585–586
chemistries, 579 (table)
chlorine atom, 598–600, 603–604
copper, 603–604
discharge kinetics, 583–585
doping effect, 588–589, 598
gas feedstocks, 585
inhibitor films, 576, 579, 585–586
ion enhanced, 6, 578–579, 589–592
isotropic, 3, 581–582
loading effect, 583–585, 595–596
for microfabrication, 2–4
O2 and H2 additions, 596–598
other etch systems, 600ff
processes, 576–579
reaction rates, 572, 593, 600
requirements, 572–576
resist, 604–606
selectivity, 3, 572–576
silicon by halogens, 4, 5, 586ff
silicon dioxide, 600–602
silicon nitride, 602
silicon using chlorine, 599 (table)
sputter, 576–577

substrate charging damage, 606ff
surface kinetics, 579–583
trench, 1, 572–576
uniformity, 4, 574–575

Flux:
energy flux crossing a surface, 37
magnetic, 466–467, 510
particle flux crossing a surface, 37

Fragmentation, 308
Frequency:
collision, 45
effective collision, 419–420, 466,

688, 708–709
electron cyclotron, 87–90
electron gyration, 87–90
electron plasma, 94
ion cyclotron, 87–90
ion gyration, 87–90
ion plasma, 93–94
lower cutoff, 115–118
lower hybrid, 118–120
plasma, 93–94
upper cutoff, 115–118
upper hybrid, 115–118

Glow discharge, see Dc discharge
Gas:
chemical kinetics, 289ff
chemical potential, 219–221
depletion effects, 525–527
diffusion in, see Diffusion
discharge, see Discharge
enthalpy of formation of gaseous

atoms, 216 (table)
feedstocks for etching, 585
perfect, 33, 208

Guiding center motion, 102ff, 110 (table)
Gyration frequency, see Cyclotron

frequency

Heat, 208ff
reversible, 216–219

Heating, see Plasma heating
Helical resonator discharge, 483ff
Helicon discharge, 18–19, 513ff
absorption, 520–525
antenna coupling, 517–520
electron trapping effects, 522–523
modes, 514–517
neutral gas depletion, 525–527
Trivelpiece-Gould mode heating,

523–525
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High density source, see Discharge,
high density

Hollow cathode discharge, 551ff
metal vapor in, 555–558

Hydrogen:
atom, 63–65
example of, 247
potential energy curves, 241 (figure)
probability of collision, 63 (figure)

Inductive discharge, 461ff, 712–715
anomalous skin depth, 465–466
capacitive coupling, 471–473
experiments, 479–483, 712
high density, 462ff
high pressure, 476–477
hysteresis in, 473–476
instabilities in, 473–476
kinetic model, 712–715
low density, 470–471
low pressure, 462ff
matching network, 469–470
planar coil, 477ff
power absorption, 464–466,

470–473, 476
source configurations, 462–464

Interferometer, see Diagnostics, wave
Ion bombarding energy, 441ff
Ion implantation, see Plasma-immersion

ion implantation
Ionization, see Collision, ionization
Ionized physical vapor deposition, 564ff

Kinetic theory, 679ff
capacitive discharge, 715–719
diffusion and mobility, 684–685
effective collision frequency, 708–709
effective electrical conductivity,

687–689
inductive discharges, 712–715
Krook collision operator, 670–671
local kinetics, 689ff
nonlocal kinetics, 693ff
non-Maxwellian models, 711–712
quasi-linear diffusion, 699ff
stochastic heating, 703–704, 706–711
two-term approximation, 680

Kirchoff current law, see Current,
continuity

Kirchoff voltage law, 25–26

Langmuir isotherm, 230, 315
Langmuir probe, see Probe diagnostics

Lorentz force law, 27, 87
Laser light scattering, see Dusty plasma

diagnostics
Low pressure discharge, see Discharge,

low pressure

Macroscopic equations, 30–35
Macroscopic motion, 23
Macroscopic quantities, 30–35
Magnetically enhanced reactive ion

etcher (MERIE), 18, 448ff
Magnetized plasma, see also Discharge
dielectric tensor, 110ff
diffusion, see Diffusion, across

magnetic field; Diffusion, across
multipoles; Diffusion, Bohm

magnetic field expansion, 509–512
particle drifts, see Particle motion
resonances, 113ff
waves, 112, 113ff

Matching network:
capacitive discharge, 452–456
electron cyclotron discharge, 493–494
helicon discharge, 514
inductive discharge, 469–470

Materials processing, see Processing
Maxwellian distribution, 36, 728–730
averaging over, 78ff

Maxwell’s equations, 24
Mean free path, see Collision parameter
Measurements:
neutral density, see Optical emission
plasma density, see Probe diagnostics;

Diagnostics, wave
rf power, 456–457
potential, see Probe diagnostics
temperature, see Probe diagnostics

Mobility, 133–134, 684–685
variable, 144–146

Molecule, 236ff
electronic state, 236
example of hydrogen, 247
metastable, 251
negative ion, 240
optical emission, 239–240
potential energy curves, 241 (figure),

242 (figure)
vibrational and rotational motion,

237–239
Momentum conservation, 31–34
Motion, see Particle motion
Multipole magnetic confinement, 155ff,

482–483, 496–497
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Neutral radical density:
calculation of, 338–340
measurement of, see Optical emission
pulsed discharge dynamics, 380–381

Nonuniform plasmas, see also Plasma
equilibrium

damage due to, 608–612

Ohmic heating, 97–98, 396, 404–405, 464
Oxygen:

actinometry, 277–279
basic constants, 270 (table)
collisional energy loss per electron-ion

pair, 82 (figure)
cross sections, 271–272 (figures)
data set, 270–274
discharge model, 350ff, 583–584
electronegative discharge

equilibrium, 350ff
potential energy curves, 242 (figure)
rate constants, 273–274 (tables)
surface recombination of, 629

Optical emission, 67–70,
239–240, 274ff

Particle balance, see Conservation,
particles

Particle-in-cell simulation,
see Simulation, particle-in-cell

Particle motion:
constant fields, 87ff
cyclotron frequency, 88
drifts, 90–93, 102ff, 151
E � B drifts, 90–91, 151
guiding center, 102ff, 110 (table)
magnetic moment, 105–106
plasma oscillations, see Plasma

oscillations
Particulates, see Dusty plasmas
Physisorption, see Adsorption
Planar magnetron discharge, 559ff

model, 561–564
sputtering, 559–560, 564

Planck’s constant, 63
Plasma admittance, 390
Plasma approximation,

see Quasi-neutrality
Plasma-enhanced chemical vapor

deposition (PECVD), 621ff
amorphous silicon, 622–625
conformality, 626–627
silicon dioxide, 625–629
silicon nitride, 629

Plasma equilibrium, see also Thermal
equilibrium

electronegative, 340ff, 350ff
electropositive, 334ff
energy balance, see Conservation,

energy
experiments and simulations, 359ff
global models, 333–336, 351–354
high pressure, 331
intermediate pressure, 331
low pressure, 330
nonuniform density models, 336–338,

350ff
neutral radical density model,

338–340
particle balance, see Conservation,

particles
pulsed, see Pulsed discharges
uniform density model, 333–336,

351–354
Plasma frequency, see Frequency, plasma
Plasma heating, 329
ohmic, see Ohmic heating
secondary electron, 428–429
stochastic, see Stochastic heating
wave, see Wave-heated discharge

Plasma-immersion ion implantation
(PIII), 5, 634ff

applications, 644–646
sheath models, 641–644

Plasma oscillations, 93–95
Plasma potential, see Potential, plasma
Plasma simulation, see Simulation
Poisson’s equation, 26
Polarizability, 58–63, 60 (table)
Positive column, see Dc discharge,

positive column
Potential:
chemical, 219–221
definition of, 26
distributed, 509–512
floating, 172–173, 188, 332
plasma, 172–173, 187–189

Power measurements, 456–457
Pressure, 31–34
vapor, 226–229, 228 (table)

Probe diagnostics, 185ff
collisional effects, 198
cylindrical, 191–195
double, 195–197
emissive, 197–198
Langmuir, 185–187
planar, 187–189
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Probe diagnostics (Continued)
probe circuit, 199–201
spherical, 651
time-varying fields, 201–203

Processing, see also Chemical vapor
deposition (CVD); Deposition;
Etching; Plasma-enhanced chemical
vapor deposition (PECVD);
Plasma-immersion ion implantation;
Sputter deposition

batch, 17
of materials, 1ff

Pulsed discharges, 369ff
electropositive model, 370–375
negative ions, 376–380
neutral radicals, 380–381

Quantum number, 65–66
principal, 63

Quasi-neutrality, 40

Radiation:
dipole, 67–70
optical, 239–240, 274ff

Radical, 10. See also Neutral radical
density

Rate constant, 78ff, 265ff, 285ff, 289ff.
See also Chemical reaction

argon, 80 (figure), 81 (table), 82 (figure)
Arrhenius, 79, 267–269
CF4, 593 (tables)
relation to equilibrium constant,

229–231, 267–270, 288–289
oxygen, 270–274 (tables)
SiH4, 623 (table)
second order, 273
third order, 274

Reaction, see Chemical reaction
Reactive ion etcher, see Capacitive

discharge; Etching, ion enhanced
Rf diode, see Capacitive discharge
Rf magnetron, see Capacitive discharge,

magnetically enhanced (MERIE)

Secondary emission, 299–303,
303 (table), 655

Selectivity, see Etching, selectivity
Sheath, 11–14, 165ff
admittance, 391–395
Bohm criterion, 168ff, 178ff
capacitance, 403–404
Child law, 176–178, 402–403, 636–641
collisional, 173–174, 411–413

collisionless, 167–168, 399ff
distributed, 509–512
in electronegative gases, 179–182
high voltage, 175ff, 332
matrix, 175, 636–637
multiple positive ion species, 182–184
potential at floating wall, 172–173
presheath, 170–172
rf capacitive, 391–395
rf collisional capacitive, 411–413
rf resistive, 434ff
space-charge-limited, see Sheath,

Child law
thickness, 172, 175–177, 185

SiH4 discharge, 622–623
rate constants, 623 (table)

Silicon etching, see Etching, silicon
Silicon deposition, see Plasma-enhanced

chemical vapor deposition
(PECVD), amorphous silicon

Simulation:
hybrid, 507–512
particle-in-cell (PIC), 12–14, 27, 365,

423–428
Skin depth, 464–466, 706ff
Sound speed, 100
Source, see Discharge
Specific heat, 34
at constant pressure, 214
at constant volume, 217

Sputter deposition, 559–560, 564, 630ff
film morphology for, 631–632
reactive, 632–634
uniformity of, 564

Sputtering, 308–310. See also Sputter
deposition; Planar magnetron
discharge

dependence on angle, 309,
310 (table), 577

energy distribution, 309, 631
reactive, 632–634
role in etching, 576–577,

589–592, 595
yields, 310 (table)

Statistical weight, see Detailed balancing
Sticking coefficient, 306
Stochastic heating, 703
in capacitive discharge, 396–397,

405–406, 414–416, 716–718
in inductive discharge, 465, 706ff
in rf magnetron, 450–451

Substrate charging, see Charging,
substrate
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Surface kinetics, 311ff
Surface process, 82, 299ff

adsorption, 315–316, 599
Auger emission, 314
desorption, 307–308, 599
loss probability, 137, 312, 319–320
positive ion neutralization, 299–303
reactions, 317–319
recombination, 319–320,

598–599, 629
sputtering, see Sputtering

Surface wave discharge, 527ff
cylindrical, 530
planar, 528–529
power balance, 530–531

Temperature, see Electron temperature
TEOS discharge, 625–629
Thermal equilibrium, 7–8

distribution, 36
properties, 35ff

Thermodynamics, 207ff
first law, 209–210
properties of substances,

212–216 (tables)
second law, 216–217

Transformer-coupled plasma (TCP),
see Inductive discharge

Transport, see Diffusion; Mobility

Uniformity, etching, see Etching,
uniformity

Velocity:
Alfven, 121
average speed, 37
Bohm, 169

phase, 119, 121–122
sound, 102
thermal, 37

Vlasov equation, 30

Wave:
CMA diagram, 121–123
diagnostics, 123ff
dispersion, 100 (figure), 118 (figure),

120 (figure)
electromagnetic, 99–101
electron cyclotron, 492ff
electrostatic, 101–102
extraordinary (x), 117, 507
helicon, 514–517
Landau damping, 102, 520–525
left hand polarized (LHP),

116, 492ff
in magnetized plasma, 113ff
ordinary (o), 117
principal, 115–118, 120 (table)
ray dynamics, 506
right hand polarized (RHP), 116, 492ff
surface, 528–530
trapping, 522–523
Trivelpiece-Gould (TG), 523–525
tunneling, 504, 507
whistler, 492, 506, 514
WKB approximation, 502

Wave-heated discharge, 492ff.
See also Electron cyclotron
discharge; Helicon discharge;
Surface wave discharge

Work:
function, 300, 303 (table)
pdV, 210–211
reversible, 210–211, 216
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