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Preface to volume II

In the second volume of this book (chapters 3 and 4) we proceed to discuss path-integral applications
for the study of systems with an infinite number of degrees of freedom. An appropriate description of
such systems requires the use of second quantization, and hence, field theoretical methods. The starting
point will be the quantum-mechanical phase-space path integrals studied in volume I, which we suitably
generalize for the quantization of field theories.

One of the central topics of chapter 3 is the formulation of the celebrated Feynman diagram technique
for the perturbation expansion in the case of field theories with constraints (gauge-field theories),
which describe all the fundamental interactions in elementary particle physics. However, the important
applications of path integrals in quantum field theory go far beyond just a convenient derivation of the
perturbation theory rules. We shall consider, in this volume, various modern non-perturbative methods for
calculations in field theory, such as variational methods, the description of topologically non-trivial field
configurations, the quantization of extended objects (solitons and instantons), the 1/N-expansion and the
calculation of quantum anomalies. In addition, the last section of chapter 3 contains elements of some
advanced and currently developing applications of the path-integral technique in the theory of quantum
gravity, cosmology, black holes and in string theory.

For a successful reading of the main part of chapter 3, it is helpful to have some acquaintance with
a standard course of quantum field theory, at least at a very elementary level. However, some parts
(e.g., quantization of extended objects, applications in gravitation and string theories) are necessarily
more fragmentary and presented without much detail. Therefore, their complete understanding can be
achieved only by rather experienced readers or by further consultation of the literature to which we
refer. At the same time, we have tried to present the material in such a form that even those readers
not fully prepared for this part could get an idea about these modern and fascinating applications of path
integration.

As we stressed in volume I, one of the most attractive features of the path-integral approach is its
universality. This means it can be applied without crucial modifications to statistical (both classical
and quantum) systems. We discuss how to incorporate the statistical properties into the path-integral
formalism for the study of many-particle systems in chapter 4. Besides the basic principles of path-
integral calculations for systems of indistinguishable particles, chapter 4 contains a discussion of various
problems in modern statistical physics (such as the analysis of critical phenomena, calculations in field
theory at non-zero temperature or at fixed energy, as well as the study of non-equilibrium systems and
the phenomena of superfluidity and superconductivity). Therefore, to be tractable in a single book,
these examples contain some simplifications and the material is presented in a more fragmentary style
in comparison with chapters 1 and 2 (volume I). Nevertheless, we have again tried to make the text as

ix



x Preface to volume II

self-contained as possible, so that all the crucial points are covered. The reader will find references to the
appropriate literature for further details.

Masud Chaichian, Andrei Demichev
Helsinki, Moscow

December 2000



Chapter 3

Quantum field theory: the path-integral approach

So far, we have been discussing systems containing only one or, at most, a few particles. However,
the method of path integrals readily generalizes to systems with many and even an arbitrary number of
degrees of freedom. Thus in this chapter we shall consider one more infinite limit related to path integrals
and discuss applications of the latter to systems with an infinite number of degrees of freedom. In other
words, we shall derive path-integral representations for different objects in quantum field theory (QFT).
Of course, this is nothing other than quantum mechanics for systems with an arbitrary or non-conserved
number of excitations (particles or quasiparticles). Therefore, the starting point for us is the quantum-
mechanical phase-space path integrals studied in chapter 2. In most practical applications in QFT, these
path integrals can be reduced to the Feynman path integrals over the corresponding configuration spaces
by integrating over momenta. This is especially important for relativistic theories where this transition
allows us to keep relativistic invariance of all expressions explicitly.

Apparently, the most important result of path-integral applications in QFT is the formulation of the
celebrated Feynman rules for perturbation expansion in QFT with constraints, i.e. in gauge-field theories
which describe all the fundamental interactions of elementary particles. In fact, Feynman derived his
important rules (Feynman 1948, 1950) (in quantum electrodynamics (QED)) just using the path-integral
approach! Later, these rules (graphically expressed in terms of Feynman diagrams) were rederived in
terms of the standard operator approach. But the appearance of more complicated non-Abelian gauge-field
theories (which describe weak, strong and gravitational interactions) again brought much attention to the
path-integral method which had proved to be much more suitable in this case than the operator approach,
because the latter faces considerable combinatorial and other technical problems in the derivation of the
Feynman rules. In fact, it is this success that attracted wide attention to the path-integral formalism in
QFT and in quantum mechanics in general.

Further development of the path-integral formalism in QFT has led to results far beyond the
convenient derivation of perturbation theory rules. In particular, it has resulted in various non-perturbative
approximations for calculations in field theoretical models, variational methods, the description of
topologically non-trivial field configurations, the discovery of the so-called BRST (Becchi–Rouet–Stora–
Tyutin) symmetry in gauge QFT, clarification of the relation between quantization and the theory of
stochastic processes, the most natural formulation of string theory which is believed to be the most realistic
candidate for a ‘theory of everything’, etc.

In the first section of this chapter, we consider path-integral quantization of the simplest field theories,
including scalar and spinor fields. We derive the path-integral expression for the generating functional
of the Green functions and develop the perturbation theory for their calculation. In section 3.2, after
an introduction to the quantization of quantum-mechanical systems with constraints, we proceed to the
path-integral description of gauge theories. We derive the covariant generating functional and covariant
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2 Quantum field theory: the path-integral approach

perturbation expansion for Yang–Mills theories with exact and spontaneously broken gauge symmetry,
including the realistic standard model of electroweak interactions and quantum chromodynamics (QCD),
which is the gauge theory of strong interactions.

In section 3.3, we present non-perturbative methods and results in QFT based on the path-
integral approach. They include 1/N-expansion, separate integration over different Fourier modes
(with appropriate approximations for different frequency ranges), semiclassical, in particular instanton,
calculations and the quantization of extended objects (solitons), the analysis and calculation of quantum
anomalies in the framework of the path integral and the Feynman variational method in non-relativistic
field theory (on the example of the so-called polaron problem).

Section 3.4 contains some advanced applications of path-integral techniques in the theory of quantum
gravity, cosmology, black holes and string theory. Reading this section requires knowledge of the basic
facts and notions from Einstein’s general relativity and the differential geometry of Riemann manifolds
(some of these are collected in supplement V).

We must stress that, although we intended to make the text as self-contained as possible, this chapter
by no means can be considered as a comprehensive introduction to such a versatile subject as QFT. We
mostly consider those aspects of the theory which have their natural and simple description in terms of
path integrals. Other important topics can be found in the extensive literature on the subject (see e.g.,
Wentzel (1949), Bogoliubov and Shirkov (1959), Schweber (1961), Bjorken and Drell (1965), Itzykson
and Zuber (1980), Chaichian and Nelipa (1984), Greiner and Reinhardt (1989), Peskin and Schroeder
(1995) and Weinberg (1995, 1996, 2000)).

3.1 Path-integral formulation of the simplest quantum field theories

After a short exposition of the postulates and main facts from conventional field theory, we present the
path-integral formulation of the simplest models: a single scalar field and a fermionic field. The latter
requires path integration over the Grassmann variables considered at the end of chapter 2. Then we
consider the perturbation expansion and generating functional for these simple theories which serve as
introductory examples for the study of the realistic models presented in the next section.

3.1.1 Systems with an infinite number of degrees of freedom and quantum field theory

There are various formulations of quantum field theory, differing in the form of presentation
of the basic quantities, namely transition amplitudes. In the operator approach, the transition
amplitudes are expressed as the vacuum expectation value of an appropriate product of particle
creation and annihilation operators. These operators obey certain commutation relations
(generalization of the standard canonical commutation relations to a system with an infinite
number of degrees of freedom). Another formulation is based on expressing the transition
amplitudes in terms of path integrals over the fields. In studying the gauge fields, the path-
integral formalism has proven to be the most convenient. However, for an easier understanding
of the subject we shall start by considering unconstrained fields and then proceed to gauge-field
theories (i.e. field theories with constraints).

Let us consider, as a starting example, a single scalar field. From the viewpoint of
Hamiltonian dynamics, a field is a system with an infinitely large number of degrees of freedom,
for the field is characterized by a generalized coordinate ϕ(x) and a generalized momentum π(x)
at each space point x ∈ R

d .
It is worth making the following remark. If we were intending to provide an introduction to

the very subject of quantum field theory, it would be pedagogically more reasonable to start
from non-relativistic many-body problems and the corresponding non-relativistic quantum field
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Figure 3.1. Vibrating chain of coupled oscillators; the distances between the equilibrium positions of the particles
are equal to some fixed value a, the displacements of the particles from the equilibrium positions are the dynamical
variables and are denoted by qk (k = 1, . . . , K ).

theories, as they are the closest generalization of one (or at most a few) particle problems in
quantum mechanics. However, the area of the most fruitful applications of non-relativistic field
theories is the physics of quantum statistical systems, in general with non-zero temperature.
Path integrals for statistical systems have some peculiarities (in particular, the corresponding
trajectories may have a rather specific meaning, one which is quite different from that in quantum
mechanics). Therefore, we postpone discussion of such systems until the next chapter and
now proceed to consider path-integral formulation of quantum field theories at zero temperature
which finds its main application in the description of the relativistic quantum mechanics of
elementary particles. In this chapter, we shall encounter only one example of a non-relativistic
field theoretical model which describes the behaviour of an electron inside a crystal (the so-
called polaron problem).

♦ Quantum fields as an infinite number of degrees of freedom limit of systems of coupled oscillators

In order to approach the consideration of systems with an infinite number of degrees of
freedom (quantum fields) we start from a chain of K coupled oscillators with equal masses
and frequencies, in the framework of ordinary quantum mechanics (see figure 3.1).

The Hamiltonian of such a system has the form

H =
K∑

k=1

1
2 [p2

k +�2(qk − qk+1)
2 +�2

0q2
k ] (3.1.1)

where pk , qk (k = 1, . . . , K ) are the canonical variables (momentum and position) of the kth
oscillator and the equations of motion read:

q̇k = pk

ṗk = �2(qk+1 + qk−1 − 2qk)−�2
0qk

(3.1.2)

or, written only in terms of coordinates,

q̈k = �2(qk+1 + qk−1 − 2qk)−�2
0qk . (3.1.3)

The frequency �0 defines the potential energy of an oscillator due to a shift from its equilibrium
position and the frequency � defines the interaction of an oscillator with its neighbours. Since
we shall use this model as a starting point for the introduction of quantum fields, a concrete
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value of the particle masses in (3.1.1) is not important and for convenience we have put it equal
to unity (cf (2.1.42)). Besides, as is usual in relativistic quantum field theory, we use units such
that ~ = 1.

The equations of motion must be accompanied by some boundary conditions. Since we
are going to pass later to systems in infinite volumes (of infinite sizes), the actual form of
the boundary conditions should not have a crucial influence on the behaviour of the systems.
Therefore, we can choose them freely and the most convenient one is the periodic condition:

qk+K = qk . (3.1.4)

After the quantization, the canonical variables become operators with the following
canonical commutation relations:

[̂qk, p̂l ] = iδkl

[̂qk, q̂l ] = [ p̂k, p̂l ] = 0 κ, l = 1, . . . , K .
(3.1.5)

In order to find the eigenvalues of the corresponding quantum Hamiltonian

Ĥ =
K∑

k=1

1
2 [ p̂2

k +�2(̂qk − q̂k+1)
2 +�2

0q̂2
k ] (3.1.6)

it is helpful to introduce new variables (the so-called normal coordinates) Q̂r , P̂r via the discrete
Fourier transform:

q̂k = 1√
K

K/2∑
r=−K/2+1

Q̂r ei2πrk/K

p̂k = 1√
K

K/2∑
r=−K/2+1

P̂r e−i2πrk/K

(3.1.7)

with the analogous commutation relations

[Q̂r , P̂s ] = iδrs

[Q̂r , Q̂s ] = [P̂r , P̂s ] = 0
(3.1.8)

where r and s are integers from the interval [−K/2 + 1, K/2]. It is easy to verify that the normal
coordinates also satisfy the periodic conditions: Q̂−K/2 = Q̂K/2 and P̂−K/2 = P̂K/2, so that we
again have 2N independent variables (as in the case of q̂k , p̂k). This restriction, as well as the
range of the summations in (3.1.7), follows from the periodic boundary conditions (3.1.5). Since
qk , pk are Hermitian operators, the new operators satisfy the conditions

Q̂†
k = Q̂−k P̂†

k = P̂−k . (3.1.9)

The Kronecker symbol δln can be represented as the sum

K∑
k=1

ei2πk(l−n)/K = K δln. (3.1.10)
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This is an analog of the integral representation (1.1.22) for the δ-function, adapted to the
discrete finite lattice with a periodic boundary condition. Using this formula, we can invert the
transformation (3.1.7) of the dynamical variables:

Q̂r = 1√
K

K∑
k=1

q̂ke−i2πrk/K

P̂r = 1√
K

K∑
k=1

p̂kei2πrk/K .

(3.1.11)

In the normal coordinates Qr , Pr the Hamiltonian (3.1.6) takes the simpler form

Ĥ = 1
2

K/2∑
r=−K/2+1

[P̂r P̂†
r + ω2

r Q̂r Q̂†
r ] (3.1.12)

ω2
r ≡ �2

(
2 sin

2πr

K

)
+�2

0. (3.1.13)

Thus, in the normal coordinates we have K non-interacting oscillators and it is natural to
introduce the creation and annihilation operators (cf (2.1.47), taking into account that Qr , Pr

now are not Hermitian operators):

âr = 1√
ωr
(ωr Q̂r + iP̂†

r )

â†
r = 1√

ωr
(ωr Q̂†

r − iP̂r )

(3.1.14)

(note that â−r = â†
r ). The commutation relations for âr , â†

r are derived from (3.1.8) with the
expected result:

[̂ar , â
†
s ] = δrs

[̂ar , âs ] = [̂a†
r , â

†
s ] = 0.

(3.1.15)

In terms of these operators, the Hamiltonian (3.1.12) reads as

Ĥ =
K/2∑

r=−K/2+1

ωr (̂a
†
r âr + 1

2 ). (3.1.16)

Eigenstates of the Hamiltonian written in the latter form can be constructed in the standard way:
the state

|n−K/2+1, n−K/2+2, . . . , nK/2〉 =
K/2∏

r=−K/2+1

1√
nr !
(̂a†

r )
nr |0〉 (3.1.17)

is the Hamiltonian eigenstate with energy (eigenvalue)

E = E0 +
∑

r

nrωr . (3.1.18)
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The state |0〉 in (3.1.17) has the lowest energy:

E0 =
∑

r

ωr

2
(3.1.19)

and is defined by the conditions

âr |0〉 = 0 r = −K/2 + 1, . . . , K/2. (3.1.20)

Let us consider the continuous limit for a chain of coupled oscillators K → ∞, a → 0, with
a finite value of the product aK ≡ L. Technically, this corresponds to the following substitutions:

qk −→ q(x)√
a

∑
k

−→ 1

a

∫ L

0
dx � −→ v

a
(3.1.21)

and Hamiltonian (3.1.1) takes the following form in the limit

H =
∫ L

0
dx

1

2

[
p2(x, t)+ v2

(
∂q

∂x

)2

+�2
0q2(x, t)

]
. (3.1.22)

Now the degrees of freedom of the system are ‘numbered’ by the continuous variable x .
However, for a finite length L, the normal coordinates Qr , Pr are still countable:

q(x) = 1√
L

∞∑
r=−∞

ei2πr/L Qr

p(x) = 1√
L

∞∑
r=−∞

ei2πr/L Pr

(3.1.23)

though the index r is now an arbitrary unbounded integer. The quantum Hamiltonian can be
cast again into the form (3.1.12) or (3.1.16):

Ĥ = 1
2

∞∑
r=−∞

(P̂r P̂†
r + ω2

r Q̂r Q̂†
r )

=
∞∑

r=−∞
ωr (̂a

†
r âr + 1

2 ) (3.1.24)

ω2
r = v2k2 +�2

0 k ≡ 2πr

L
(3.1.25)

with the only difference begin that the sums run over all integers. The eigenstates and
eigenvalues of this Hamiltonian are given by (3.1.17)–(3.1.20). The essentially new feature
of this system with an infinite number of degrees of freedom (i.e. after the transition K → ∞) is
that the energy (3.1.19) of the lowest eigenstate |0〉 becomes infinite. We can circumvent this
difficulty by redefining the Hamiltonian as follows:

Ĥ −→ Ĥ − E0 = 1
2

∞∑
r=−∞

ωr â†
r âr (3.1.26)
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i.e. counting the energy with respect to the lowest state |0〉. This is the simplest example of the
so-called renormalizations in quantum field theory.

All the considerations outlined here can easily be generalized to higher-dimensional lattices
and corresponding higher-dimensional spaces in the continuous limit. In the latter case, the
dynamical variables depend on (are labeled by) d-dimensional vectors:

q̂(x, t) −→ ϕ̂(x, t) p̂(x, t) −→ π̂(x, t) x ∈ R
d (3.1.27)

so that we have arrived in this way at the notion of the quantum field in the (d + 1)-dimensional
spacetime. Note that the straightforward generalization of the coupled oscillator model
previously considered in the one-dimensional space leads to the vector fields ϕ̂(x, t), π̂(x, t)
because the displacements and momenta of oscillators in d-dimensional spaces are described
by vectors. However, if we assume that for some reason the displacements are confined to one
direction, we obtain the physically important case of scalar quantum fields ϕ̂(x, t), π̂(x, t).

Hamiltonians for quantum fields in higher-dimensional spaces are the direct generalizations
of those for the one-dimensional case (cf (3.1.22)). In particular, for the most realistic three-
dimensional space, we have

Ĥ = 1
2

∫
d3r [π̂2(r, t)+ v2(∇ϕ̂(r, t))2 +�2

0ϕ̂
2(r, t)]. (3.1.28)

The operators of the quantum field ϕ̂(r, t) and the corresponding momentum π̂(r, t) satisfy the
canonical commutation relations at equal times:

[ϕ̂(r, t), π̂ (r ′, t)] = iδ3(r − r ′)

[ϕ̂(r, t), ϕ̂(r ′, t)] = [π̂(r, t), π̂ (r ′, t)] = 0.
(3.1.29)

The three-dimensional periodic boundary conditions require the following equalities:

ϕ(x + L, y, z, t) = ϕ(x, y + L, z, t) = ϕ(x, y, z + L, t) = ϕ(x, y, z, t) (3.1.30)

and the corresponding Fourier transform,

ϕ̂(r, t) = 1

L3/2

∞∑
kx ,ky ,kz=−∞

(2ωk)
−1/2[ei(k·r−ωk t)âk + e−i(k·r−ωk t)â†

k] (3.1.31)

kx,y,z = 2πlx,y,z

L
(3.1.32)

ω2
k = v2k2 +�2

0 (3.1.33)

allows us once again to convert (3.1.28) into the Hamiltonian for an infinite set of independent
oscillators:

Ĥ =
∞∑

lx,y,z=−∞
ωk (̂a

†
kâk + 1

2 ) (3.1.34)

with â†
k, âk being the creation and annihilation operators subjected to the following commutation

relations:
[̂ak, â

†
k′ ] = δkk′

[̂ak, âk′ ] = [̂a†
k, â

†
k′ ] = 0.

(3.1.35)
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The eigenstates and eigenvalues of this Hamiltonian again have the form (3.1.17)–(3.1.20),
so that the energy of a state |nk, nk2, . . .〉 is completely defined by the set {nk1} of occupation
numbers {nk} = nk1, nk2, . . . (i.e. by powers of the creation operators on the right-hand side of
(3.1.17)):

E{nk} − E0 =
∑

i

nkiωki . (3.1.36)

Note that, if we put
v = c �0 = mc2 (3.1.37)

where c is the speed of light and m is the mass of a particle, equation (3.1.33) exactly coincides
with the relativistic relation between energy, mass and momentum k of a particle. Hence,
expression (3.1.36) for the energy of the quantum field ϕ(x, t) can be interpreted as the sum
of energies of the set (defined by the occupation numbers {nki }) of free relativistic particles. To
simplify the formulae, we shall, in what follows, put the speed of light equal to unity, c = 1; the
latter can be achieved by an appropriate choice of units of measurement.

• Thus, we have obtained a remarkable result: a quantum field with the Hamiltonian (3.1.28)
(or (3.1.22)) and the choice of parameters as in (3.1.37) is equivalent to a system of
an arbitrary number of free relativistic particles. According to the commutation relations
(3.1.35), these particles obey Bose–Einstein statistics.

We have already mentioned the specific problems of quantum systems with an infinite
number of degrees of freedom, that is, the appearance of divergent expressions. One example
is the energy of ‘zero oscillations’ (3.1.19), which diverges for an infinite number of oscillators.
Another example is the expression for ‘zero fluctuations’ of the field ϕ(t, r), in other words for the
dispersion of the field in the lowest energy state:

(D |0〉 ϕ̂)2 ≡ 〈0|ϕ̂2|0〉
= 1

(2π)3

∫
d3k

1

2ωk
= 1

(2π)3

∫
d3k

1

2
√

k2 + m2
→ ∞. (3.1.38)

The reason for the infinite value of the fluctuation is related to the fact that ϕ̂, acting on an
arbitrary state with finite energy, gives a state with an infinite norm. Thus ϕ̂ does not belong
to well-defined operators in the Hilbert space of states of the Hamiltonian under consideration.
Another way to express this fact is to say that ϕ̂ is an operator-valued distribution (generalized
function). To construct a well-defined operator, we have to smear ϕ̂ with an appropriate test
function, e.g., to consider the quantity

ϕ̄λ
def≡ 1

(2πλ2)3/2

∫
d3r e−r2/(2λ2)ϕ̂(t, r) (3.1.39)

which can be interpreted as an average value of the field in the volume λ3 around the point r.
The reader may check that the dispersion of ϕ̄λ is finite:

〈0|ϕ̄2
λ|0〉 ≈

1

λ3
√
λ−2 + m2

(3.1.40)

(problem 3.1.1, page 38). The last expression shows that the smaller the volume λ3 is, the
stronger the fluctuations of the field are. This fact, of course, is in full correspondence with the
quantum-mechanical uncertainty principle.
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♦ Relativistic invariance of field theories and Minkowski space

To reveal explicitly the relativistic symmetry of the system described by the Hamiltonian (3.1.28)
with the parameters (3.1.37), we should pass to the Lagrangian formalism:

H [π(r, t), ϕ(r, t)] −→ L[ϕ̇(r, t), ϕ(r, t)]
where L is the classical Lagrangian defined by the classical Hamiltonian H via the Legendre
transformation:

L[ϕ̇(r, t), ϕ(r, t)] =
∫

d3r π(r, t)ϕ̇(r, t)− H [π(r, t), ϕ(r, t)]. (3.1.41)

The momentum π on the right-hand side of (3.1.41) is assumed to be expressed through ϕ̇, ϕ
with the help of the Hamiltonian equation of motion. In our case,

ϕ̇ = {ϕ, H } = π (3.1.42)

(recall that {·, ·} is the Poisson bracket). Thus, the Lagrangian for the scalar field reads as

L(t) =
∫

d3r 1
2 [ϕ̇2(r, t)− (∇ϕ(r, t))2 − m2ϕ2(r, t)]. (3.1.43)

To demonstrate the invariance of the Lagrangian (3.1.43) with respect to transformations forming
relativistic kinematic groups, i.e. the Lorentz or Poincaré groups, it is helpful to pass to
four-dimensional notation. Let us introduce the four-dimensional Minkowski space with the
coordinates:

xµ
def≡ {t, r} µ = 0, 1, 2, 3 (3.1.44)

i.e.
x0 = t x i = ri i = 1, 2, 3,

and the metric tensor
gµν = diag{1,−1,−1,−1} (3.1.45)

which defines the scalar product of vectors in the Minkowski space:

xy ≡ xµyµ
def≡ xµgµν yν

(repeating indices are assumed to be summed over). In particular, the squared vector in the
Minkowski space reads as

x2 ≡ (xµ)2 = xµgµνxν = (x0)2 − (x1)2 − (x2)2 − (x3)2

= t2 − r2 = t2 − r2
1 − r2

2 − r2
3 (3.1.46)

or, for the infinitesimally small vector dxµ,

(dxµ)2 = dxµ gµν dxν = (dt)2 − (d r)2. (3.1.47)

In the literature on relativistic field theory, it is common to drop boldface type for four-dimensional
vectors and we shall follow this custom. If the vector indices µ, ν, . . . take, in some expressions,
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only spacelike values 1, 2, 3, we shall denote them by Latin letters l, k, . . . and use the following
shorthand notation:

Al Bl =
3∑

l=1

Al Bl

where Al, Bl are the spacelike components of some four-dimensional vectors Aµ = {A0, Al},
Bν = {B0, Bl}.

The Minkowski metric tensor gµν is invariant with respect to the transformations defined by
the pseudo-orthogonal 4× 4 matrices �µν from the Lie group SO(1, 3), called the Lorentz group:

�ρµgρσ�
σ
ν = gµν. (3.1.48)

This means that any scalar product in the Minkowski space is invariant with respect to the
Lorentz transformations. Moreover, the scalar products of vectors (recall that the latter are
expressed through the differences in the coordinates of two points) are also invariant with
respect to the four-dimensional translations forming the Abelian (commutative) group T4. In
particular, the reader can easily verify that dxµ gµν dxν and (∂/∂xµ)gµν(∂/∂xν), where gµν

denotes the inverse matrix
gµρgρν = δµν

are invariant with respect to both Lorentz ‘rotations’ as well as translations and, hence, with
respect to the complete Poincaré group SO(1, 3)×⊃ T4.

We shall not go further into the details of relativistic kinematics, referring the reader to, e.g.,
Novozhilov (1975), Chaichian and Hagedorn (1998) or any textbook on quantum field theory (in
particular, those mentioned at the very beginning of this chapter).

To restore full equivalence between the time and space coordinates, it is useful to introduce
the Lagrangian density. This is nothing other than the integrand of (3.1.43), which, in four-
dimensional notation, takes the form

L0(ϕ̇, ϕ) = 1
2 [gµν∂µϕ(x)∂νϕ(x)− m2ϕ2(x)]. (3.1.49)

The action for a scalar relativistic field and for the entire time line −∞ < x0 < ∞ can now be
written as follows:

S0[ϕ] =
∫
R4

d4x L0(ϕ̇, ϕ). (3.1.50)

Taking into account the fact that the integration measure d4x = dx0 dx1 dx2 dx3 is invariant with
respect to the pseudo-orthogonal Lorentz transformations as well as with respect to translations,
we can readily check that action (3.1.50) is indeed Poincaré invariant.

For a finite-time interval, t0 < t ≡ x0 < t f , the action reads as

S[ϕ] =
∫ t f

t0
dx0 L ≡

∫ t f

t0
dx0

∫
R3

dx1 dx2 dx3 L(ϕ̇, ϕ). (3.1.51)

The equation of motion can now be derived from the extremality of action (3.1.51): δS = 0,
together with the boundary conditions that variations of the field at times t0 and t f vanish:
δϕ(t0) = δϕ(t f ) = 0, which result in the Euler–Lagrange equation

∂

∂ t

δL

δϕ̇
= δL

δϕ
(3.1.52)
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or
∂

∂ t

∂L

∂ϕ̇
= ∂L

∂ϕ
− ∇ ∂L

∂∇ϕ . (3.1.53)

For a free scalar field with the Lagrangian density (3.1.49), the Euler–Lagrange equation is
equivalent to the so-called Klein–Gordon equation:

(�+ m2)ϕ(x) = 0 (3.1.54)

where

�
def≡ gµν∂µ∂ν ≡ ∂2

∂ t2 − ∇2. (3.1.55)

In order to describe interacting particles, we have to add, to the Lagrangian density (3.1.49),
higher powers of the field ϕ(x):

L(∂µϕ, ϕ) = 1
2 [gµν∂µϕ(x)∂µϕ(x)− m2ψ2(x)] − V (ϕ(x)). (3.1.56)

Here the function V (ϕ(x)) describes a field self-interaction. The equation of motion for ϕ now
becomes

(�+ m2)ϕ(x) = −∂V (ϕ)

∂ϕ
. (3.1.57)

Most often, we shall consider a self-interaction of the form

V (ϕ(x)) = g

4!ϕ
4(x) (3.1.58)

where g ∈ R is called the coupling constant. In systems described by the Lagrangian (3.1.57)
and expressions similar to it (i.e. with interaction terms), particles (field excitations) can arise
and disappear, so that the total number of particles is not a conserved quantity. This is a
characteristic property of relativistic particle theory. Vice versa, it is clear that a system with an
arbitrary number of particles definitely requires, for its description, a formalism with an infinite
number of degrees of freedom, i.e. the quantum field theory.

♦ Lagrangian for spin- 1
2 field, Dirac equation and operator quantization

Many well-established types of particle in nature (for example, electrons, positrons, quarks,
neutrinos) have half-integer spin J = 1

2 and obey Fermi statistics. Systems of such particles
are described by spinor (fermion) quantum fields satisfying canonical anticommutation relations
(see any textbook on quantum field theory, e.g., Bogoliubov and Shirkov (1959), Bjorken and
Drell (1965) and Itzykson and Zuber (1980)).

A system of free relativistic spin- 1
2 fermions is described by a four-component complex field

ψα(x), α = 1, . . . , 4 and has the Lagrangian density

L(x) = ψ̄(x)(i  ∂ − m)ψ(x) ≡
4∑

α,β=1

ψ̄α(x)(i  ∂αβ − mδαβ)ψβ(x) (3.1.59)

where we have introduced the standard notation: for any four-dimensional vector Aµ, the
quantity A/ means

A/
def≡ γ µAµ = gµνγ

µAν = γ 0 A0 − γ · A (3.1.60)
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and γ µ, µ = 0, 1, 2, 3 are the Dirac matrices satisfying the defining relations

γ µγ ν + γ νγ µ = 2gµν1I4 (3.1.61)

(1I4 is the 4×4 unit matrix). In particular,  ∂ ≡ γ µ∂µ. One possible representation of the γ -matrices
has the form

γ 0 =
(

1I2 0
0 −1I2

)
γ i =

(
0 σ i

−σ i 0

)
i = 1, 2, 3. (3.1.62)

Here σ i are the Pauli matrices and 1I2 is the 2 × 2 unit matrix. The Dirac conjugate spinor ψ̄(x)
in (3.1.59) is defined as follows:

ψ̄(x)
def≡ ψ†(x)γ 0 or ψ̄α(x)

def≡
4∑
β=1

ψ
†
β(x)γ

0
βα. (3.1.63)

Note that, as is usual in the literature on quantum field theory, we do not use special print for
either the γ -matrices or the Pauli matrices (similarly to four-dimensional vectors).

The extremality condition for the action with the density (3.1.59) (Euler equation) gives the
Dirac equation for a spin- 1

2 field
(i  ∂ − m)ψ(x) = 0. (3.1.64)

The general form for the expansion of a solution of the Dirac equation (3.1.64) over plane waves
is the following:

ψ(t, r) = 1

(2π)3/2

2∑
i=1

∫
d3k [b∗i (k)ui (k)eikx + ci (k)vi (k)e−ikx ]

ψ†(t, r) = 1

(2π)3/2

2∑
i=1

∫
d3k [bi(k)u

†
i (k)e

−ikx + c∗i (k)v
†
i (k)e

ikx ]
(3.1.65)

where k0 = ωk ≡ √
k2 + m2 and ui (k), vi (k), i = 1, 2 comprise the complete set of orthonormal

solutions of the Dirac equation (in the momentum representation):

(k/ − m)ui (k)|k0=
√

k2+m2 = 0

(k/ + m)vi (k)|k0=−
√

k2+m2 = 0

so that, in fact, ui and vi are only functions of three-dimensional momentum k.
The orthogonality relations read as

v̄i (k)v j (k) ≡
n∑
α=1

(v̄i (k))α(v j (k))α

= − ūi (k)u j (k) = m

ωk
δi j

v
†
i (k)v j (k) = u†

i (k)u j (k) = δi j (3.1.66)

ūi (k)v j (k) = u†
i (k)v j (−k) = 0
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and the completeness relations are∑
i

[(vi (k))α(v̄i (k))β − (ui (k))α(ūi (k))β ] = m

ωk
δαβ

∑
i

(vi (k))α(v̄i (k))β = 1

2ωk
(k/ αβ + mδαβ) (3.1.67)

∑
i

(ui (k))α(ūi (k))β = 1

2ωk
(k/ αβ − mδαβ).

The quantization procedure converts the amplitudes bi , b∗, ci , c∗i into creation and annihilation
operators for fermionic particles. To take into account the Pauli principle, we have to impose
anticommutation relations:

{̂bi (k), b̂
†
j (k

′)} = δi j δ
3(k − k′)

{̂ci (k), ĉ
†
j (k

′)} = δi j δ
3(k − k′)

{̂bi (k), b̂ j (k ′)} = {̂ci (k), ĉ j (k ′)} = 0

{̂b†
i (k), b̂

†
j (k

′)} = {̂c†
i (k), ĉ

†
j (k

′)} = 0

{̂bi (k), ĉ j (k ′)} = {̂bi(k), ĉ
†
j (k

′)} = 0

{̂ci (k), b̂
†
j (k

′)} = {̂c†
i (k), b̂

†
j (k

′)} = 0.

(3.1.68)

From these relations, it is easy to derive the equal-time anticommutation relations for the fields
ψ̂ , ψ̂†:

{ψ̂α(t, r), ψ̂†
β(t, r ′)} = δαβδ3(r − r ′)

{ψ̂α(t, r), ψ̂β(t, r ′)} = 0 {ψ̂†
α(t, r), ψ̂†

β(t, r ′)} = 0.
(3.1.69)

Note that the canonical momentum πα conjugated to the field ψα with respect to the Lagrangian
(3.1.59) is equal to iψ†

α :

πα ≡ ∂L

∂ψ̇α
= iψ†

α. (3.1.70)

Thus the commutation relations (3.1.69) are nothing other than the fermionic generalization of
the canonical commutation relations for (generalized) coordinates and conjugate momenta. The
corresponding Hamiltonian

H =
∫

d3r (πψ̇ − L)

(L is the Lagrangian density (3.1.59)) in the quantum case can be written in terms of the
fermionic creation and annihilation operators:

Ĥ =
2∑

i=1

∫
d3k ωk [̂b†

i (k)̂bi (k)− ĉi (k)̂c
†
i (k)]. (3.1.71)

In order to make this Hamiltonian operator positive definite, we can use the anticommutation
relations (3.1.68) together with an infinite shift of the vacuum energy similarly to the bosonic
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case (cf (3.1.26)):

Ĥ → Ĥ − E0 =
2∑

i=1

∫
d3k ωk [̂b†

i (k)̂bi (k) + ĉ†
i (k)̂ci (k)].

Sometimes this procedure of energy subtraction in the fermionic case is carried out by
invoking the qualitative concept of a Dirac ‘sea’, i.e. we assume that all negative-energy states
are occupied and real experimentally observable particles correspond to excitations of this
background state of the whole fermion system (see e.g., Bjorken and Drell (1965)).

3.1.2 Path-integral representation for transition amplitudes in quantum field theories

In the operator approach, there exist different representations for the canonical field operators ϕ̂(r) and
π̂(r) satisfying the commutation relations (3.1.29) or (3.1.69). For example, in the case of the scalar field
theory and in the coordinate representation, the vectors of the corresponding Hilbert space of states are
functionals�[ϕ(r)] of the field ϕ(t, r) and the operator ϕ̂ is diagonal:

ϕ̂(r)�[ϕ(r)] = ϕ(r)�[ϕ(r)]
π̂ (r)�[ϕ(r)] = − i

δ

δϕ(r)
�[ϕ(r)].

Thus, when quantizing a field theory (in other words, a system with an infinite number of degrees of
freedom), even in the operator approach, we have to deal anyway with functionals, so that an application
of path (functional) integrals in this area is highly natural.

♦ Path integrals in scalar field theory

In fact, the introduction of quantum fields, presented in this section, as the limit of systems with a finite
number of degrees of freedom (coupled oscillators), allows us to write immediately an expression for
the corresponding transition amplitude (the quantum-mechanical propagator). Indeed, in the case of a
field theory, the space coordinates r = {x1, x2, x3} label the different degrees of freedom. For the lattice
approximation (with spacing a) in a finite volume L3, from which we started in this section, we have
simply a finite number K 3 of oscillators qk = ϕ(rk) (cf (3.1.21) and (3.1.27); generally speaking, we
have anharmonic oscillators because of the self-interaction term V (ϕ) in (3.1.56)). Therefore, we can
write the transition amplitude for the quantum fields as a direct generalization (infinite limit) of the path-
integral representation for propagators of quantum-mechanical systems with a finite number of degrees of
freedom obtained in chapter 2 (cf (2.2.9) and (2.2.21)):

〈ϕ(t, r), t|ϕ0(t0, r), t0〉 = 〈ϕ(r)|e−i(t−t0)Ĥ |ϕ0(r)〉

= lim
L→∞ lim

K→∞
a→0

lim
N→∞
ε→0

K∏
k=1

{ N∏
j=1

[ ∫ ∞

−∞
dϕ j (rk)

] N+1∏
j=1

[ ∫ ∞

−∞
dπ j (rk)

2π

]}
× exp{iSN (πi (rl), ; ϕs(rl), )} (3.1.72)

where the discrete-time and discrete-space approximated action SN depends on all πi (rl), i = 1, . . . , N +
1; l = 1, . . . , K and ϕs(rl), s = 0, . . . , N + 1; l = 1, . . . , K variables (N is the number of time slices
and ε is the ‘distance’ between the time slices). In the case of Hamiltonian (3.1.28), the continuous limits
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in (3.1.72) correspond to the following path integral:

〈ϕ(t, r), t|ϕ0(t0, r), t0〉 =
∫
C{ϕ0(r),t0;ϕ(r),t}

Dϕ(τ, r)
Dπ(τ, r)

2π
exp

{
i
∫ t

t0
dτ
∫
R3

d3r

[
π(τ, r)∂τ ϕ(τ, r)

− 1

2

3∑
i=1

(∂iϕ(τ, r))2 − 1

2
m2ϕ2(τ, r)− V (ϕ(τ, r))

]}
. (3.1.73)

Gaussian integration over the momenta π(τ, r) yields the Feynman path integral in the coordinate space:

〈ϕ(t, r), t|ϕ0(t0, r), t0〉 = N−1
∫
C{ϕ0(r),t0;ϕ(r),t}

Ddτϕ(τ, r) exp

{
i
∫ t

t0
dx0

∫
R3

dx1 dx2 dx3 L(ϕ)

}
(3.1.74)

where the Lagrangian density L(ϕ) is defined in (3.1.56) and

N−1 def≡
∫
Dπ(x) exp

{
− i

2

∫
dx π2(x)

}
(3.1.75)

is the normalization constant for expressing the transition amplitude via the Feynman (configuration) path
integral.

Expression (3.1.74) is almost invariant with respect to relativistic Poincaré transformations. The
only source of non-invariance is the restriction of the time integral in the exponent to the finite interval
[t0, t]. However, it is necessary to point out that elementary particle experimentalists do not measure
probabilities directly related to amplitudes for transitions between eigenstates |ϕ(t0, r), t0〉 and |ϕ(t, r), t〉
of the quantum field ϕ̂(τ, r), but rather probabilities related to S-matrix elements, i.e. to probability
amplitudes for transitions between states which, at t → ±∞, contain definite numbers of particles of
various types. These are called ‘in’ and ‘out’, |α, in〉 and |β, out〉, where α and β denote sets of quantum
numbers characterizing momenta, spin z-components and types of particle (e.g., photons, leptons, etc).
The S-matrix operator is defined as follows (cf (2.3.136)):

Ŝ = lim
t→+∞
t ′→−∞

eit Ĥ0e−i(t−t ′)Ĥ e−it ′ Ĥ0 (3.1.76)

where Ĥ0 is the free Hamiltonian (without the self-interaction term V (ϕ)). Physically, this operator
describes the scattering of elementary particles, i.e. we assume that

• initially, the particles under consideration are far from each other and can be described by the free
Hamiltonian (because the distance between particles is much larger than the radius of the action of
the interaction forces);

• then the particles become closer and interact; and
• finally, the particles which have appeared as a result of the interaction again move far away from

each other and behave like free particles.

The advantage of operator (3.1.76) is that its matrix elements prove to be explicitly relativistically invariant
(see later).

♦ The path integral in holomorphic representation

The path-integral representation for transition amplitudes (3.1.74) is not particularly convenient for
deriving the matrix elements of the scattering operator (3.1.76). Even the path-integral expression for
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the free evolution operator eit Ĥ0 is rather cumbersome in this representation. The operator formulation
of the field theory briefly presented earlier prompts a formalism based on the creation and annihilation
operators and the corresponding path integration variables may appear to be much more suitable. Indeed,
as we have learned, determining the eigenstates and eigenvalues of the free Hamiltonian is much simpler
in terms of these operators. Similar reasons make path integrals constructed on the basis of creation and
annihilation operators, i.e. for normal symbols, more convenient. Fortunately, we are quite ready for this
construction due to our considerations in sections 2.3.1 and 2.3.3. In quantum field theory, such path
integrals are called path integrals in a holomorphic representation.

We start from the continuous analog of the Fourier transform (3.1.31):

ϕ(r) = 1

(2π)3/2

∫
d3r

1√
2ωk

(a∗(k)e−ik·r + a(k)eik·r)

π(r) = i

(2π)3/2

∫
d3r i

√
ωk

2
(a∗(k)e−ik·r − a(k)eik·r)

(3.1.77)

ωk =
√

k2 + m2. (3.1.78)

The free-particle Hamiltonian (3.1.34) in the continuous limit has the form

H0 =
∫

d3k ωka∗(k)a(k) (3.1.79)

and is the continuous sum of an infinite number of oscillators. Here the variable k ‘numbers’ the oscillators
and ωk are their frequencies. The total Hamiltonian H for a field with self-interaction also contains the
term

V [a∗, a] =
∫
R3

d3r V (ϕ(r)). (3.1.80)

The evolution operator is defined by its normal symbol U(a∗(k), a(k); t, t0), which is expressed
through the path integral via the straightforward generalization of expression (2.3.103) for one oscillator:

U(a∗(k), a(k); t, t0) =
∫
Da∗(k, τ )Da(k, τ )

× exp

{∫
d3k [a∗(k, t)a(k, t) − a∗(k, t)a(k, t0)]

}
× exp

{∫ t

t0
dτ
∫

d3k [−a∗(k, τ )ȧ(k, τ )− iωka∗(k, τ )a(k, τ )]

−
∫ t

t0
dτ V [a∗, a]

}
(3.1.81)

where the boundary conditions are ‘asymmetrical’, as usual for normal symbols: we fix a∗(k, t) at time t
and a(k, t0) at t0:

a∗(k, t) = a∗(k) a(k, t0) = a(k). (3.1.82)

The corresponding integral kernel can be immediately written down, using relation (2.3.57):

KU (a
∗(k), a(k); t, t0) =

∫
Da∗(k, τ )Da(k, τ ) exp

{∫
d3k a∗(k, t)a(k, t)

}
× exp

{∫ t

t0
dτ
∫

d3k [−a∗(k, τ )ȧ(k, τ )− iωka∗(k, τ )a(k, τ )]

− i
∫ t

t0
dτ V [a∗, a]

}
. (3.1.83)
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Representation (3.1.83) allows us to derive very easily the path-integral representation for the S-matrix.
To this aim, we can use a nice property of kernels obtained from normal symbols. Namely, if some
operator Â has a kernel K A(a∗(k), a(k)), the operator

eiĤ0t Âe−iĤ0t0

has the kernel (cf (2.3.153))
K A(a

∗(k)eiωt , a(k)e−iωt0). (3.1.84)

The latter substitution only has influence on the boundary conditions (3.1.82). Hence, the kernel of the
S-matrix is obtained from (3.1.83) with the help of the infinite time limit:

KS(a
∗(k), a(k)) = lim

t→∞
t0→−∞

KU (a
∗(k), a(k); t, t0)

= lim
t→∞

t0→−∞

∫
Da∗(k, τ )Da(k, τ ) exp

{∫
d3k a∗(k, t)a(k, t)

}

× exp

{ ∫ t

t0
dτ
∫

d3k [−a∗(k, τ )ȧ(k, τ )− iωka∗(k, τ )a(k, τ )]

− i
∫ t

t0
dτ V [a∗, a]

}
= lim

t→∞
t0→−∞

∫
Da∗(k, τ )Da(k, τ ) exp

{∫
d3k

1

2
[a∗(k, t)a(k, t) + a∗(k, t0)a(k, t0)]

}

× exp

{
i
∫ t

t0
dτ
∫

d3k

[
1

2i
(ȧ∗(k, τ )a(k, τ ) − a∗(k, τ )ȧ(k, τ ))

− ωka∗(k, τ )a(k, τ )
]
− i
∫ t

t0
dτ V [a∗, a]

}
(3.1.85)

with the conditions

a∗(k, t) = a∗(k) exp{iωk t} a(k, t0) = a(k) exp{−iωk t0}. (3.1.86)

The last expression in (3.1.85), which has a more symmetrical form, has been derived using integration
by parts in the exponent.

♦ S-matrix for a scalar field in the presence of an external source and generating functional for
Green functions in quantum field theory

Let us calculate expression (3.1.85) for an infinite collection of oscillators in a field of external forces. In
other words, we shall calculate the S-matrix for a scalar field ϕ in the presence of an external source, i.e.
with a potential term of the form

VJ (ϕ) = −J (x)ϕ(x). (3.1.87)

In terms of the variables a∗, a, the functional V [a∗(k), a(k)] reads as

VJ [a∗(k), a(k)] =
∫

d3k ( J̃ (t, k)a∗(k)+ J̃ ∗(t, k)a(k)) (3.1.88)

where

J̃(t, k) = − 1√
2k0

(
1

2π

)3/2 ∫
d3r e−ikr J (t, r). (3.1.89)
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The direct physical meaning of (3.1.85) with potential term (3.1.88) is the S-matrix for scattering of
particles on the external classical source J (x). However, as we have learned in chapter 1 (section 1.2.8),
explicit calculation of such path integrals allows us to find (via functional differentiation) any correlation
functions easily. In quantum field theory, a path integral with a linear potential term also plays the role of
a generating functional and of a basic tool for the perturbation expansion.

Since path integral (3.1.85), (3.1.88) is quadratic the stationary-phase method gives an exact result
for it (cf section 2.2.3). The extremality equations are as follows:

ȧ(τ, k)+ iω(k)a(τ, k) + i J̃ (τ, k) = 0

ȧ∗(τ, k) − iω(k)a∗(τ, k) − i J̃ ∗(τ, k) = 0 (3.1.90)

a∗(k, t) = a∗(k) exp{iωk t} a(k, t0) = a(k) exp{−iωk t0}
and the solution is found to be

a∗(τ, k) = a∗(k)eiωkτ − ieiωkτ

∫ t

τ

ds e−iωks J̃ ∗(s, k)

a(τ, k) = a(k)e−iωkτ − ie−iωkτ
∫ τ

t0
ds eiωks J̃ (s, k).

(3.1.91)

Substituting this solution into the exponent of (3.1.85), we obtain in the limit of the infinite-time interval
an expression for the kernel of the S-matrix:

KS[a∗, a; J ∗, J ] = exp

{∫
d3k

[
a∗(k)a(k)

+ 1

(2π)3/2
√

2ωk

∫ ∞

−∞
dτ
∫
R3

d3r J (t, r)(a∗(k)eiωkτ e−ikr + a(k)e−iωkτ eikr)

− 1

4ωk

1

(2π)3

∫ ∞

−∞
dτ ds

∫
R3

d3r d3r ′ J (τ, r)eik(r−r ′)e−iω|τ−s| J (s, r ′)
]}
.

(3.1.92)

This formula is a generalization of the corresponding expression for a single oscillator in an external field
(recall that in problem 2.2.14, page 198, volume I, we calculated the transition amplitude (2.2.200) for
one oscillator in an external field with fixed initial and final positions in contrast with (3.1.92), where the
boundary conditions are imposed on the oscillator variables).

Note that we have put the fluctuation factor in (3.1.92) equal to unity. The reason for this is the
definition of the phase-space integral as the ratio (2.3.77) and the fact that the first term in the exponent
of (3.1.92) gives the correct kernel for the unit operator. On the other hand, let us rescale the frequencies
and external source by a factor λ: ωk → λωk , J → λJ . Then, in the limit λ → 0, the Hamiltonian
(3.1.79), (3.1.87) vanishes, turning the S-matrix into the unit operator. Simultaneously, the second and
third terms in the exponent of (3.1.92) become zero too, leaving the correct expression for the kernel of
the unit operator. This proves that the fluctuation factor indeed equals unity (cf also the calculation of the
scattering operator in non-relativistic quantum mechanics in chapter 2, equations (2.3.150) and (2.3.151)).

The first term in the exponent of (3.1.92) suggests that it is reasonable to pass to the normal symbol
for the S-matrix. The relation (2.3.57) between a kernel and the normal symbol shows that the transition
to the normal symbol for (3.1.92) just reduces to dropping the first term in the exponent. The essential
advantage of writing the S-matrix as the normal symbol is that the remaining terms in (3.1.92) can be
presented in an explicitly relativistically invariant form. Indeed, the term bilinear with respect to the
source function can be rewritten with the help of the relativistic causal Green function Dc(x) which plays
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Figure 3.2. The contour C of integration in the complex plane k0, in the representation (3.1.93) for the causal Green
function Dc.

a crucial role in any formulation of quantum field theory (see e.g., Bogoliubov and Shirkov (1959) and
Itzykson and Zuber (1980)):

Dc(x)
def≡ − 1

(2π)4

∫
d4k e−ikx 1

k2 − m2 + iε
(3.1.93)

= − 1

(2π)4

∫
dk1 dk2 dk3

2iωk
e−ikre−iωk |x0|. (3.1.94)

The rule of bypassing the singular points in the explicitly relativistic invariant expression (3.1.93) for Dc
is defined by the infinitesimal addition +iε in the denominator of the integrand, as illustrated in figure 3.2.
Recall that Dc(x) is one of the Green functions of the Klein–Gordon equation

(�+ m2)Dc(x) = δ2(x). (3.1.95)

The term which is linear in the source J (x) in (3.1.92) can be rewritten via the solution ϕ0 of the
homogeneous (with zero right-hand side) Klein–Gordon equation:

ϕ0(x)
def≡ 1

(2π)3/2

∫
d4k δ(k2 − m2)[a∗(k)eikx + a(k)e−ikx ]

= 1

(2π)3/2

∫
d3k√
2k0

[a∗(k)ei(k0x0−kr) + a(k)e−i(k0x0−kr)]. (3.1.96)

The first line in (3.1.96) is explicitly Lorentz invariant. In the second line, it is implied that k0 = ωk =√
k2 + m2 and thus

(�+ m2)ϕ0 = 0. (3.1.97)

In terms of ϕ0(x) and Dc(x), the normal symbol for the S-matrix takes the relativistically invariant form

S0[ϕ0; J ] = exp

{
i
∫

d4x J (x)ϕ0(x)+
∫

d4x d4x ′ J (x)Dc(x − x ′)J (x ′)
}
. (3.1.98)

In this formula, we have substituted the pair of oscillator variables a∗, a by the single field ϕ0 because, due
to definition (3.1.96), they are in one-to-one correspondence. The subscript ‘0’ of the S-matrix functional
indicates that there is no self-interaction in the model under consideration (it exists only in interactions
with an external source).
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♦ Generating functional for Green functions in scalar field theory

If we put ϕ0 = 0 or, equivalently, a∗(t, k) = a(t0, k) = 0, the normal symbol for the S-matrix turns into
the generating functional for Green functionsZ[J (x)]:

Z[J (x)] def≡ S[ϕ0; J ]|ϕ0=0 (3.1.99)

(this definition is valid for a field Hamiltonian with an arbitrary interaction term). In particular,

Z0[J (x)] def≡ S0[ϕ0; J ]|ϕ0=0 =
∫
Dϕ(x) exp

{
i
∫

d4x [L0(ϕ(x))+ J (x)ϕ(x)]
}

= exp

{ ∫
d4x d4x ′ J (x)Dc(x − x ′)J (x ′)

}
. (3.1.100)

The direct physical meaning ofZ[J (x)] is the transition amplitude from the vacuum state |0〉 to the same
vacuum state in the presence of an external source J (x). This is clear from the following arguments. Let
us consider a normally ordered operator

Â(̂a†(k), â(k′)) =
∞∑

m,n=0

∫
d3k d3k ′ Cmn(k, k′)(̂a†(k))m (̂a(k′))n

and the corresponding normal symbol

A(a∗(k), a(k′)) =
∞∑

m,n=0

∫
d3k d3k ′ Cmn(k, k′)(a∗(k))m (̂a(k′))n.

Then, using the definition of the vacuum state, i.e.

â(k)|0〉 = 0 for all k

we obtain

〈0| Â(a∗(k), a(k′))|0〉 =
∫

d3k d3k ′ C00(k, k′)

= A(a∗(k), a(k′))|a∗(k)=a(k′)=0. (3.1.101)

Thus any normal symbol with a zero value for its arguments, and henceZ[J (x)], is equal to the vacuum
expectation value of the corresponding operator.

The functional derivatives of the generating functional give the Green functions. In particular,

δ

δ J (x)

δ

δ J (x ′)
Z0[J ]

∣∣∣∣
J=0

= Dc(x − x ′) = 〈0|T(ϕ̂(x)ϕ̂(x ′))〉 .

Therefore, Z0[J ] generates the causal Green function, in other words, the vacuum expectations of
the time-ordered products of the field operators. This observation can be expanded to the generating
functionalZ[J ] for an action with an arbitrary interaction term and to an arbitrary Green function: Z[J ]
generates vacuum expectations

δ

δ J (x1)

δ

δ J (x2)
· · · δ

δ J (xn)
Z[J ]

∣∣∣∣
J=0

= 〈0|T(ϕ̂(x1)ϕ̂(x2) · · · ϕ̂(xn))|0〉 (3.1.102)
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of time-ordered products of field operators. The general reason for this fact is that such a product provides
an appropriate order for the field operators along the trajectories in the path integral. We suggest the reader
verifies the correspondence between path integrals and vacuum expectations of time-ordered operator
products explicitly (problem 3.1.2).

We shall return to the physical meaning of the generating functionalZ[J (x)] and the technical merit
of its use in section 3.1.5. However, before then, we should introduce the path-integral construction for
fermionic fields which describe systems of an arbitrary number of spin- 1

2 particles.

3.1.3 Spinor fields: quantization via path integrals over Grassmann variables

In the preceding subsection we presented the path-integral formalism for the quantization of scalar field
theory. The latter describes systems of an arbitrary number of scalar, i.e. spin-0, particles obeying Bose–
Einstein statistics. In this subsection, we present the path-integral approach to the quantization of spinor
fields. The consideration of fermionic systems with a finite number of degrees of freedom in section 2.6
and the scalar field theory in the preceding subsection provide a good basis for generalization to systems
with an arbitrary number of fermions.

♦ Path-integral quantization of spinor fields

As we have learned in section 2.6, the path-integral quantization of fermionic systems uses anticommuting
(Grassmann) variables. For spinor fields these variables are the anticommuting counterparts bi , b∗i , ci , c∗i
of the operators b̂, b̂†, ĉ, ĉ† satisfying the commutation relations (3.1.68). The anticommutation relations
for the former are obtained from those for the latter by putting all right-hand sides in (3.1.68) equal to
zero.

Let us consider again, as in the bosonic case, the basic example of a spinor field interacting with the
external sources η(x), η̄(x). Note that for fermionic systems, the external sources are also chosen to be
Grassmann variables. The Hamiltonian of this system reads as

H [b∗, b; c∗, c] =
∫

d3
[

iψ̄(r)
3∑

j=1

γ j∂ jψ(r)+ mψ̄(r)ψ(r)+ ψ̄(r)η(x)+ η̄(x)ψ(r)
]

=
2∑

i=1

∫
d3k [ωk(b

∗
i (k)bi (k)+ c∗i (k)ci (k))

+ ξ∗i (t, k)bi (k)+ b∗i (k)ξi (t, k)+ ζ ∗i (t, k)ci (k)+ c∗i (k)ζ(t, k)]. (3.1.103)

In the latter expression, we have introduced the new sources

ξi (t, k) = u∗
i η̃(t, k) ζ(t, k) = v∗i η̃(t, k)

where η̃(t, k) is the Fourier transform of η(x):

η̃(t, k) = 1

(2π)3/2

∫
d3r eikrη(t, r)

(we have used the orthonormality of the spinors ui and vi , i = 1, 2, cf (3.1.66)). Combining the results
and methods of sections 3.1.1 and 2.6, we obtain the kernel of the S-matrix operator for the Hamiltonian
(3.1.71):

KS(b
∗, c∗; b, c) = lim

t→∞
t0→−∞

∫
Db∗1(τ, k)Db1(τ, k)Db∗2(τ, k)Db2(τ, k)Dc∗1 (τ, k)Dc1(τ, k)
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×Dc∗2(τ, k)Dc2(τ, k) exp

{ 2∑
i=1

[
1

2

∫
d3k (b∗i (t, k)bi (t, k)+ b∗i (t0, k)bi (t0, k)

+ c∗i (t, k)ci (t, k) + c∗i (t0, k)ci (t0, k))

+ i
∫ t

t0
dτ

[ ∫
d3k

1

2i
(ḃ∗i (τ, k)bi (τ, k) − b∗i (τ, k)ḃi (τ, k)

+ ċ∗i (τ, k)ci (τ, k) − c∗i (τ, k)ċi (τ, k)) − H [b∗, b; c∗, c]
]]}

(3.1.104)

where we keep bi , ci fixed at the initial time t0 and b∗i , c∗i at the time t :

bi (t0, k) = bi ci (t0, k) = ci

b∗i (t, k) = b∗i c∗i (t, k) = c∗i .

Calculating integral (3.1.104) by the stationary-phase method is quite similar to the case of the scalar field.
To obtain an explicitly Lorentz-invariant expression, we have to pass again to the normal symbol for the
S-matrix which reads as

S0[b∗, c∗; b, c; η̄, η] = exp

{
i
∫

dx dy η̄(x)Sc(x − y)η(y)+ i
∫

dx (η̄(x)ψ0(x)+ ψ̄0(x)η(x))

}
(3.1.105)

where Sc(x − y) is the causal Green function of the Dirac equation

(Sc)αβ(x − y) = − i
1

(2π)3/2

2∑
i=1

∫
d3k exp{i[k·(x − y)− k0|x0 − y0|]}

× (viα(k)v∗iβ (k)+ uiα(k)u∗
iβ (k)).

Using the completeness (3.1.67) of the spinors ui , vi , we can write the spinor Green function in matrix
form:

Sc(x − y) = − 1

(2π)4

∫
d4k

exp{−ik(x − y)}
γµkµ − m + iε

. (3.1.106)

The field ψ0 in (3.1.105) is expressed in terms of the variables bi , b∗, ci , c∗i via the Fourier transform
(3.1.65) (and, hence, ψ0(x) in expression (3.1.105) for the normal symbol of the S-matrix is the solution
of the free Dirac equation).

Again, similarly to the case of a scalar field, the symbol (3.1.105) with zero field ψ (or, equivalently,
with bi = b∗ = ci = c∗i = 0) turns into the generating functional for the Green functions of free spinor
fields, that is for vacuum expectation values of time-ordered products of spinor field operators:

Z0[η̄, η] = S0[b∗, c∗; b, c; η̄, η]|b∗=c∗=b=c=0. (3.1.107)

We shall consider this topic from a general point of view and in more detail in the next subsection.

3.1.4 Perturbation expansion in quantum field theory in the path-integral approach

Let us now consider the S-matrix kernel and the generating functional for Green functions in the case
of an arbitrary potential V (x). As we know, e.g., from consideration of the non-relativistic scattering
operator (section 2.3.3), we may hope to calculate the path integrals for rather exceptional cases of non-
trivial potentials (using some special methods, e.g., transformations analogous to those in section 2.5). In
the general case, we are confined to using approximation methods and one of the most important among
these is perturbation theory.
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♦ Formal calculation of the path integral for the S-matrix in scalar field theory with an arbitrary
self-interaction and perturbation expansion

In fact, the construction of the S-matrix (or the generating functionals) for linear potentials in the
preceding subsection supplies us with all the necessary ingredients for developing the perturbation theory.
The basic observation is based on the following obvious formula:

ϕ(x1)ϕ(x2) · · ·ϕ(xn) = 1

i

δ

δ J (x1)

1

i

δ

δ J (x2)
· · · 1

i

δ

δ J (xn)
exp

{
i
∫

d4x ϕ(x)J (x)

}∣∣∣∣
J=0
. (3.1.108)

This formula allows us to write any functional�[ϕ(x)] in the form

�[ϕ(x)] = �
[

1

i

δ

δ J (x)

]
exp

{
i
∫

d4x ϕ(x)J (x)

}∣∣∣∣
J=0
. (3.1.109)

In particular,

exp

{
− i
∫

d4x V (ϕ(x))

}
= exp

{
− i
∫

d4x V

(
1

i

δ

δ J (x)

)}
exp

{
i
∫

d4x ϕ(x)J (x)

}∣∣∣∣
J=0
. (3.1.110)

The first exponential on the right-hand side of (3.1.110) is understood in the sense of the Taylor expansion,
so that, in fact, we have an infinite series of variational operators with the raising power of the functional
derivative. If the potential term V (ϕ(x)) contains a small parameter, we can restrict the expansion to the
first few terms and calculate the functional with the desired accuracy.

Thus, to calculate the functional integral (3.1.85), defining the S-matrix kernel for an arbitrary
potential, we first introduce an auxiliary additional potential term (3.1.87). Now we can substitute the
functional exp{−i

∫
d4x V (ϕ(x))} by the right-hand side of (3.1.110) and move the variational derivatives

out of the path-integral sign. The rest of the path integral coincides with that for the linear potential
which we have already calculated. Thus, using result (3.1.98), we can immediately write the formal
expression for the normal symbol of the S-matrix describing the scattering of scalar particles with an
arbitrary interaction:

S[a∗, a] ≡ S[ϕ0] = exp

{
− i
∫

d4x V

(
1

i

δ

δ J (x)

)}
× exp

{
i
∫

d4x ϕ(x)J (x)+ i

2

∫
dx dy J (x)Dc(x − y)J (y)

}∣∣∣∣
J=0

(3.1.111)

(recall that ϕ0 and a∗, a are in one-to-one correspondence, cf (3.1.96)). Expanding this functional as a
power series in ϕ0:

S[ϕ0] =
∞∑

n=0

1

n!
∫

d4x1 d4x2 · · · d4xn Sn(x1, x2, . . . , xn)ϕ0(x1)ϕ0(x2) · · ·ϕ0(xn) (3.1.112)

we obtain the so-called coefficient functions Sn(x1, x2, . . . , xn) of the S-matrix. In the operator approach,
these appear in the process of expanding the S-matrix in a series over normal products of free
fields. Convolution of these coefficient functions with the initial ψ1(x1), ψ2(x2), . . . , ψl (xl) and final
ψl+1(xl+1), ψl+2(xl+2), . . . , ψn(xn) wavefunctions of the particles participating in the scattering gives
the corresponding probability amplitude:

〈ψl+1, ψl+2, . . . , ψn; out|ψ1, ψ2, . . . , ψl ; in〉 =
∫

d4x1 d4x2 · · · d4xn

× ψ1(x1)ψ2(x2) · · ·ψl(xl)Sn(x1, x2, . . . , xn)ψl+1(xl+1)ψl+2(xl+2) · · ·ψn(xn) (3.1.113)
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(the labels ‘in’ and ‘out’ denote the states at t → −∞ and t → ∞, respectively). From expansion
(3.1.112) it is clear that the coefficient functions Sn can be obtained by formal differentiation of the
functional S[ϕ0] over ϕ0 (though we remember that ϕ0 is the solution of the free Klein–Gordon equation,
in other words, it belongs to the mass surface):

Sn(x1, x2, . . . , xn) = δ

δϕ0(x1)

δ

δϕ0(x2)
· · · δ

δϕ0(xn)
S[ϕ0(x)]

∣∣∣∣
ϕ0=0

. (3.1.114)

Therefore, the functional S[ϕ0(x)] is called the generating functional for S-matrix coefficient functions.
We have called expression (3.1.111) ‘formal’ because we cannot calculate the action of the complete

variational operator on the right-hand side explicitly and we have to use its Taylor expansion up to some
power of the functional derivative, i.e. to use the perturbation theory approximation.

Example 3.1. Let us consider, as an example, a field theory defined by the Lagrangian density

L = 1

2
[(∂µϕ)2 − m2ϕ2] − g

4!ϕ
4 (3.1.115)

so that the self-interaction term has the form

V (ϕ) = g

4!ϕ
4. (3.1.116)

The constant g defines the strength of the scalar field self-interaction and is called the coupling constant.
The factor 1/4! is introduced for further technical convenience. Because of the form of the potential term,
the theory with Lagrangian (3.1.115) is called the ϕ4-interaction model (or simply ϕ4-model).

If the coupling constant is small enough, we can expand the first exponential on the right-hand side
of (3.1.111) in a Taylor series and calculate the generating S-matrix functional up to the desired accuracy
(the power of the coupling constant g). For example, up to second order, the S-matrix functional for the
ϕ4-model becomes

S[ϕ0] =
[

1 − i
g

4!
∫

dx

(
δ

δ J (x)

)4

+ 1

2

(
i

g

4!
)2 ∫

dx dy

(
δ

δ J (x)

)4 (
δ

δ J (y)

)4

+ · · ·
]

× exp

{
i
∫

d4x ϕ0(x)J (x)+ i

2

∫
dx dy J (x)Dc(x − y)J (y)

}∣∣∣∣
J=0

(3.1.117)

so that in this approximation we have the following expression for S[ϕ0]:
(i) In the zeroth-order perturbation theory, i.e. if we use only the first term (unit) in the square brackets

on the right-hand side of (3.1.117), the S-matrix is trivial:

S(0)[ϕ0] = 1. (3.1.118)

This result is physically obvious: this zeroth-order approximation corresponds to a total neglect of
the potential term and in the absence of any interaction, the S-matrix operator is equal to unity (cf
(3.1.76)).

(ii) In the first order, differentiation gives

S(1)[ϕ0] = g

4!
[
− i
∫

d4x ϕ4
0(x)+ 6Dc(0)

∫
d4x ϕ2

0(x)+ 3iD2
c (0)

∫
d4x

]
. (3.1.119)
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(iii) The second-order term has the form:

S(2)[ϕ0] = − 1

2

( g

4!
)2 ∫

d4x d4 y [ϕ4
0(x)ϕ

4
0(y)+ 16iϕ3

0(x)ϕ
3
0(y)Dc(x − y)

− 72ϕ2
0(x)ϕ

2
0(y)D

2
c (x − y)− i96ϕ0(x)ϕ0(y)D

3
c (x − y)+ 24D4

c (x − y)

+ 12iϕ2
0(x)ϕ

4
0(y)Dc(0)− 6ϕ4

0(y)D
2
c (0)− 96ϕ0(x)ϕ

3
0(y)Dc(x − y)Dc(0)

− 36ϕ2
0(x)ϕ

2
0(y)D

2
c (0)− 144iϕ2

0(y)D
2
c (x − y)Dc(0)− 36iϕ2

0(y)D
3
c (0)

− 144iϕ0(x)ϕ0(y)Dc(x − y)D2
c (0)+ 72D2

c (x − y)D2
c (0)]. (3.1.120)

◦

♦ Remark on the renormalization of field theories

As can be seen from (3.1.119) and (3.1.120), the perturbation expansion terms contain the causal Green
function at the zero value of the argument, Dc(0). This is an undefined (infinite) quantity:

Dc(0) = − 1

(2π)4

∫
d4k

1

k2 − m2 + iε
= ∞. (3.1.121)

Thus, the perturbation expansion (3.1.117)–(3.1.120) requires a more thorough treatment and some
improvement. We have already mentioned the problem of divergence in quantum field theory (cf
(3.1.19) and (3.1.38)). In the case of the simple divergence of the ‘zero-oscillation’ energy E0, the
solution of this problem was quite obvious: we just redefined the background energy or, equivalently,
the Hamiltonian: Ĥ → Ĥ − E0, counting only the difference which is physically observable and finite.
Essentially, the same idea allows us to overcome the problem of divergence in the so-called renormalizable
field theories, in general. The point is that divergent terms in quantum-mechanical amplitudes for a
system described by some renormalizable field theory can be combined with the initial parameters of
the corresponding Lagrangian (such as the masses and coupling constants). Sometimes, these initial
parameters are called bare masses and coupling constants, while their combinations with divergent terms
are called renormalized parameters of the theory. Since all physically measurable quantities only contain
these combinations and not solely the bare parameters, we can claim that only the renormalized parameters
correspond to the physical masses of the known particles and to their coupling constants. In other words,
we substitute combinations of the bare parameters and corresponding divergent terms by finite values
known from physical measurements. This procedure is called the renormalization of a quantum field
theory. In order for this procedure to be mathematically meaningful, at intermediate steps we have to
work with a regularized theory. This means that we have to consider the actual model as a limit of some
other theory which does not contain the divergences. Then we carry out, at first, all the renormalization
procedure for the regularized model and only at the final step do we take the limit corresponding to the
initial field theoretical model. In fact, we have already dealt with an example of regularization: field
theoretical systems in this chapter were introduced as the limit of systems with a finite number of degrees
of freedom defined on a lattice (which, of course, have no divergence problems). Clearly, this is the
most physically transparent regularization of field theories. Its obvious shortcoming is that it violates
the essential symmetries of a field theory on continuous spacetime: rotational, Lorentz and translational.
There exist many other regularization schemes preserving spacetime symmetries and adjusted to other
specific invariance properties of field theoretical models, which we shall meet later in this book.

All the realistic field theoretical models possess the so-called multiplicative renormalizability.
Roughly speaking, this property means that all the ultraviolet divergences can be absorbed into certain
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factors, related to the renormalization of the bare masses and coupling constants. For example, in the case
of scalar ϕ4-field theory we define:

ϕ = Z−1/2
ϕ ϕB

g = Z−1
g Z2

ϕgB (3.1.122)

m2 = m2
B + δm2

where ϕB, gB, mB are the bare field, coupling constant and mass, respectively and Zϕ , Zg are the
renormalization constants (depending on the regularization parameters). Then, after substituting the bare
quantities with the renormalized ones according to (3.1.122), all coefficient functions of the S-matrix and
all Green functions can be made finite (renormalized) by multiplying them by the appropriate power of
the Zϕ-constant.

Since path-integral techniques do not bring anything essentially new to the regularization and
renormalization procedure, we shall not describe it in detail, referring the reader to textbooks on quantum
field theory (e.g., Bogoliubov and Shirkov (1959) and Itzykson and Zuber (1980)).

♦ Scattering amplitudes for scalar particles and first encounter with Feynman diagrams

Combining formulae (3.1.113) and (3.1.114), together with the perturbation expansion of the type
(3.1.117), allows us to calculate scattering amplitudes. For example, for the scattering of two scalar
particles (2 → 2-scattering), we obtain in the second order of the perturbation expansion:

〈ψ(p3)ψ(p4); out|ψ(p1)ψ(p2); in〉 =
[
− igψ(p3)ψ(p4)ψ(p1)ψ(p2)

− (ig)2ψ(p3)ψ(p4)

(∫
d4k D̃c(k)D̃c(k − p1 − p2)

)
ψ(p1)ψ(p2)

]
δ(p1 + p2 − p3 − p4).

(3.1.123)

Here we assume that the particles have definite momenta in the initial and final states (this is a standard
situation in scattering experiments) and that the terms in expansion (3.1.120) containing the divergent
quantity Dc(0) are removed by the renormalization procedure. Dc(p) is the Fourier transform of the
causal Green function; from (3.1.93), it is clear that

Dc(p) = 1

p2 − m2 + iε
. (3.1.124)

We see that the integral in (3.1.123) is also logarithmically divergent and hence requires regularization.
The different terms in the perturbation theory expansion of the S-matrix or any other quantity can be

graphically represented by the well-known Feynman diagrams. In these diagrams, each graphical element
is in one-to-one correspondence with the building blocks of the perturbation expansion. In particular, for
the ϕ4-model, this correspondence is summarized in table 3.1. Using these graphical elements, the first-
and second-order terms in the expansion (3.1.123) are depicted in figures 3.3(a) and (b), respectively.

We shall not carefully derive the Feynman rules for the construction of amplitudes from the
diagrams (see the textbooks on quantum field theory). A short practical collection of these rules is
presented in supplement III. Note that, while in the standard operator approach the graphical method of
Feynman diagrams is extremely important because it considerably simplifies complicated combinatorial
calculations, in the functional path-integral approach all calculations in perturbation theory are reduced
to simple manipulations with derivatives. Therefore, generally speaking, we can quite comfortably work
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Table 3.1. Correspondence rules for the ϕ4-model.

Physical quantity Mathematical expression Diagram element

Wavefunction ψ(p) •
Causal Green function (propagator) Dc = − 1

p2 − m2 + iε
• •

Interaction vertex −ig •

r
p3 p1

p2p4
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Figure 3.3. Feynman diagrams for the ϕ4-model in second-order perturbation theory.

directly with expressions of the type (3.1.117). However, the Feynman diagrams still prove to be very
illustrative and a convenient accompanying tool.

All the formalism of perturbation theory, together with the graphical Feynman techniques, can be
straightforwardly generalized to fields with higher spins, in particular to anticommuting spinor fields.
A more convenient approach to field theoretical calculations, however, uses Green functions (vacuum
expectations of chronologically ordered products of quantum fields). We shall proceed to discuss this
technique in the next subsection.

3.1.5 Generating functionals for Green functions and an introduction to functional methods in
quantum field theory

Green functions G(n) in quantum field theory, defined as vacuum expectations of chronological products
of quantum fields

G(n)(x1, x2, . . . , xn)
def≡ 〈0|T(ϕ(x1)ϕ(x2) · · ·ϕ(xn))|0〉 (3.1.125)

play an outstanding role in the field theoretical formalism. Their exceptional significance is explained
by the fact that they are convenient for practical calculations and, at the same time, contain complete
information about quantum systems. In particular, the spectrum of a system (including bound states) and
corresponding wavefunctions can be extracted from the Green functions by studying their singularities.
The relation of the Green functions to the scattering amplitudes is established by the so-called reduction
formula within the Lehmann–Symanzik–Zimmermann formalism (Lehmann et al 1955) (see also, e.g.,
Bjorken and Drell (1965) and Weinberg (1995)). For a scalar field, the reduction formula reads as

〈ψp1 , . . . , ψpn ; out|ψk1 , . . . , ψkn ; in〉 =
(

i√
Zϕ

)m+n m∏
i=1

∫
d4xi

m∏
j=1

∫
d4y j

× ψ∗
k j
(y j )ψki (xi )(�xi + m2)(�y j + m2)〈0|T(ϕ(y1) · · ·ϕ(yn)ϕ(x1) · · ·ϕ(xm))|0〉 (3.1.126)
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where Zϕ is the field renormalization constant and we assumed for simplicity that all pi = k j (in the
general case, additional terms corresponding to zero scattering angle appear). Analogous formulae exist
for any other fields (with higher spin).

Thus, we can concentrate our efforts on the study of different Green functions or their generating
functionalZ[J (x)] introduced in section 3.1.1. For an arbitrary interaction term, the generating functional
is defined as in the free theory (cf (3.1.99)):

Z[J (x)] def≡ S[ϕ0; J ]|ϕ0=0

=
∫
Dϕ(x) exp

{
i
∫

d4x [L(ϕ(x))+ J (x)ϕ(x)]
}
. (3.1.127)

This functional produces the Green functions (vacuum expectations) (3.1.125) for the field theory with
arbitrary (self-) interaction terms defined by the Lagrangian density L(ϕ(x)). We suggest to the reader, as
a useful exercise, to derive the expression (3.1.127) directly from the path integral (3.1.74), without using
the S-matrix functional (see problem 3.1.2, page 39).

♦ Perturbation series for the Green functions

Similarly to the case of the S-matrix symbol, we can represent the generating functional for field theories
with an arbitrary interaction as an infinite series of variational operators acting on the explicit form of the
generating functional for the free theory, in the presence of an external source:

Z[J ] = exp

{
− i
∫

d4x V

(
1

i

δ

δ J (x)

)}
Z0[J (x)]. (3.1.128)

Recall thatZ0[J ] is the generating functional for the free theory (i.e. for the Lagrangian with V (ϕ(x)) =
0) in the presence of an external source J (x) and path integration of it gives the following explicit
expression:

Z0[J ] = exp

{
i

2

∫
d4x d4y J (x)Dc(x − y)J (y)

}
. (3.1.129)

In problem 3.1.4, page 40 we suggest deriving the expression (3.1.129) for the free-field generating
functional by another, perhaps the simplest, method of square completion.

Let us consider again the ϕ4-model. Expanding the exponential in (3.1.128), we obtain a perturbation
series for the Green function generating functional:

Z[J ] = Z0[J ](1 + gZ(1)[J ] + g2
Z
(2)[J ] + · · ·). (3.1.130)

HereZ(1),Z(2) are obtained by functional differentiation and have the form

Z
(1)[J ] = − i

4!
[ ∫

d4x d4y1 · · · d4y4 Dc(x − y1)Dc(x − y2)

× Dc(x − y3)Dc(x − y4)J (y1)J (y2)J (y3)J (y4)

− i3!
∫

d4x d4y1 d4y2 Dc(x − y1)Dc(x − y2)Dc(x − x)J (y1)J (y2)

+ 3!
∫

d4x D2
c (x − x)

]
(3.1.131)

Z
(2)[J ] = 1

2
(Z(1)[J ])2 + i

2(3!)2
∫

d4x1 d4x2 d4 y1 · · · d4 y6
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Figure 3.4. Graphical representation of the first-order contributions to the Green function generating functional in
the ϕ4-model.

× Dc(x1 − y1)Dc(x1 − y2)Dc(x1 − y3)Dc(x1 − x2)Dc(x2 − y1)

× Dc(x2 − y2)Dc(x2 − y3)J (y1)J (y2)J (y3)J (y4)J (y5)J (y6)

+ 3

2(4!)2
∫

d4x1 d4x2 d4y1 · · · d4y4 Dc(x1 − y1)Dc(x1 − y2)D
2
c (x1 − x2)

× Dc(x2 − y3)Dc(x2 − y4)J (y1)J (y2)J (y3)J (y4)

+ 2

24!
∫

d4x1 d4x2 d4 y1 · · · d4 y4 Dc(x1 − y1)Dc(x1 − x1)Dc(x1 − x2)Dc(x2 − y2)

× Dc(x2 − y3)Dc(x2 − y4)J (y1)J (y2)J (y3)J (y4)

− i

8

∫
d4x1 d4x2 d4y1 d4 y2 Dc(x1 − y1)Dc(x1 − x1)Dc(x1 − x2)

× Dc(x2 − x2)Dc(x2 − y2)J (y1)J (y2)

− i

8

∫
d4x1 d4x2 d4y1 d4 y2 Dc(x1 − y1)D

2
c (x1 − x2)Dc(x2 − x2)Dc(x1 − y2)J (y1)J (y2)

− i

12

∫
d4x1 d4x2 d4 y1 d4y2 Dc(x1 − y1)D

3
c (x1 − x2)Dc(x2 − y2)J (y1)J (y2)

+ (J -independent terms). (3.1.132)

Note that the most convenient way for field theory renormalization uses Green functions, i.e. we first
renormalize the Green functions and then all the other physical quantities are expressed through them.
Therefore we keep in (3.1.131) and (3.1.132) the divergent terms, assuming that they are suitably
regularized. We also keep formal arguments of the type (x − x) in the causal functions, though, of
course, we should just write Dc(0). We do this for easier comparison with the corresponding graphical
representation in terms of Feynman diagrams. To construct these diagrams, we have to add a graphical
element corresponding to the source J (x); this shall be represented as follows: J (x) = •∼. The first-
order contribution (3.1.131) is depicted in figure 3.4. The first term of the second-order contribution
(3.1.132), being the power of the first-order contribution Z(1), is represented by a disconnected graph
(diagram). Since such terms are powers or products of terms which correspond to connected diagrams,
we can reduce the study to the latter only. The second-order J -dependent terms represented by connected
diagrams are depicted in figure 3.5 (we have dropped all J -independent terms because they vanish under
the action of the functional derivatives and hence do not contribute to the Green functions).

For systematization and further use, let us recall some nomenclature from graph (diagram) theory:

• Diagrams containing pieces not connected by lines are called disconnected diagrams.
• If any vertex of a diagram can be reached from any other vertex by moving along the lines of the

graph, the diagram is said to be connected.
• One-particle irreducible (OPI in abbreviation) diagrams cannot be converted into disconnected
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Figure 3.5. Connected diagrams contributing to the second-order contributions to the Green-function generating
functional in the ϕ4-model.

graphs by cutting just one internal line.

A similar terminology is applied to the actual Green functions:

• Parts of Green functions represented by connected and OPI diagrams are called connected Green
functions Wn and OPI Green functions �n , respectively.

• Truncated (amputated) connected Green functions W (tr) are defined by the relation:

Wn(x1, . . . , xn) =
∫

d4 y1 · · · d4 yn W2(x1, y1) · · ·W2(xn, yn)W
(tr)
n (y1, . . . , yn). (3.1.133)

Here W2(xi , yi ) are two-point connected Green functions (total propagator).

Some lower-point Green functions have special names:

• The zero-point connected Green functions W0, which do not have external lines, are said to be
connected vacuum loops.

• A connected one-point Green function (with one external line) is called a ‘tadpole’.



Path-integral formulation of the simplest quantum field theories 31

• The Green function D(tot)
c

def≡ W2 is called the total propagator to distinguish it from the bare
propagator Dc (causal Green function of the free Klein–Gordon equation).

Different Green functions are obtained by differentiation of the expansion (3.1.131), (3.1.132). For
example, the terms with four source factors contribute to the four-point Green function in first- and second-
order perturbation theory.

♦ Generating functional for connected Green functions

It is helpful to construct the modified generating functional which only directly produces connected
Feynman diagrams. It appears that the logarithm

W [J (x)] def≡ lnZ[J (x)] (3.1.134)

of the functionalZ[J (x)] satisfies this requirement: the functional derivatives of W [J (x)],

Wn(x1, . . . , xn)
def≡ δn W [J ]

δ J (x1) · · · δ J (xn)

∣∣∣∣
J=0

(3.1.135)

correspond to connected Feynman diagrams and, according to the previous definition, are called connected
n-point Green functions Wn(x1, . . . , xn). The heuristic proof of this fact goes as follows. Consider the
obvious identity:

lnZ[J ] = ln{Z0[J ](1 +Z−1
0 [J ](Z[J ] −Z0[J ]))}

= lnZ0[J ] + ln{1 + (Z[J ]Z−1
0 [J ] − 1)}. (3.1.136)

Expansion (3.1.130) allows us to rewrite identity (3.1.136) as a series in the coupling constant g
(perturbation expansion):

W [J ] = lnZ0[J ] + (gZ(1) + g2
Z
(2) + · · ·)− 1

2 (gZ
(1) + g2

Z
(2) + · · ·)2 + · · ·

= lnZ0[J ] + gZ(1) + g2(Z(2) − 1
2 (Z

(1))2)+ · · · . (3.1.137)

Thus, the contribution of the disconnected diagrams 1/2(Z(1))2 to the Z(2) (the first term in (3.1.132))
is indeed canceled out (by the second term in the parentheses) in the logarithm of the generating
functional. This result can be generalized to all disconnected contributions (see e.g., Itzykson and Zuber
(1980)). Note that the functional W [J ] is insensitive to normalization factors multiplying the functional
Z[J ] (an additive constant is absolutely inessential for generating functionals). This feature of W [J ]
is convenient for heuristic simple methods of calculation of the corresponding path integrals (see, for
example, problem 3.1.4, page 40).

♦ Variational equations for Green functions from path integrals

The so-called Dyson–Schwinger equations (Dyson 1949, Schwinger 1951) are exact relations between
different Green functions. All these relations can be presented as one equation with variational
derivatives for the generating functionalZ[J ]. The simplest way of deriving it is to use the path-integral
representation forZ[J ] (Feynman and Hibbs 1965).

The key observation for this derivation is that the functional integration measure Dϕ(x) is invariant
with respect to the translation

ϕ(x)→ ϕ(x)+ f (x) (3.1.138)
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where f (x) is an arbitrary function well decreasing at infinity (so that it belongs to the class of functions to
be integrated over in the path integral). This invariance of the measure (including the functional measure
for fermion fields, i.e. for Grassmann variables) can be easily verified with the help of the time-sliced
approximation for the path integrals. The translational invariance implies that∫

cDϕ(x) exp {i(S[ϕ] + Jϕ)} =
∫
Dϕ(x) exp {i(S[ϕ + f ] + J (ϕ + f ))} (3.1.139)

where S[ϕ] is an action for the field ϕ(x) and we have adopted here the shorthand notations

Jϕ ≡
∫

d4x J (x)ϕ(x). (3.1.140)

In the infinitesimal form, equality (3.1.139) reads:∫
Dϕ(x)

δ

δϕ(x)
exp{i(S[ϕ] + Jϕ)} = 0 (3.1.141)

or, after differentiation of the exponential,∫
Dϕ(x)

[
δS[ϕ]
δϕ(x)

+ J (x)

]
exp{i(S[ϕ] + Jϕ)} = 0. (3.1.142)

Using relation (3.1.108), we can rewrite (3.1.142) as the Schwinger variational equation for the Green-
function generating functional: [

δS[ϕ]
δϕ(x)

∣∣∣∣
ϕ=−iδ/δ J

+ J (x)

]
Z[J ] = 0. (3.1.143)

The Schwinger equation is homogeneous and, hence, defines Z[J ] up to a factor. Therefore, it is
convenient to substitute Z[J ] with a functional W [J ] = lnZ[J ] for connected Green functions. Then,
expanding W [J ] in powers of J (x) and equating, in equation (3.1.143), the coefficients with different
powers of J (x), we obtain the infinite chain (system) of the differential Dyson–Schwinger equations for
n-point Green functions with increasing n.

Example 3.2. Let us consider as an example the simplest scalar ϕ3-model with the action

S[ϕ] =
∫

d4x

(
1

2
ϕ(x)(�+ m2)ϕ(x)+ g

3!ϕ
3(x)

)
. (3.1.144)

The renormalization of this model requires the addition of a ϕ4-vertex and hence, rigorously speaking, it
is not self-consistent. However, this fact is not important for our formal functional manipulations and we
choose this example as the simplest one to illustrate the general functional techniques.

The Schwinger equation for this model takes the form[ ∫
d4x ′ KKG(x, x ′)1

i

δ

δ J (x ′)
− g

2

δ2

δ J (x)2
+ J (x)

]
Z[J ] = 0 (3.1.145)

where we have denoted by KKG(x, x ′) the integral kernel of the Klein–Gordon operator, i.e. for any
function f (x) from the domain of definition of the latter, KKG(x, x ′) satisfies the equality

(�+ m2) f (x) ≡
∫

d4x KKG(x, x ′) f (x ′).
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Figure 3.6. Graphical notation for the elements of the Schwinger equation (3.1.148), after the expansion (3.1.149).

In particular,∫
d4x ′ KKG(x, x ′)Dc(x

′ − y) =
∫

d4x ′ Dc(x − x ′)KKG(x
′, y) = δ(x − y). (3.1.146)

Substituting in (3.1.145)Z[J ] = exp{W [J ]}, we obtain the equation for the generating functional W [J ]
of connected Green functions:∫

d4x ′ KKG(x, x ′)1
i

δW

δ J (x ′)
− g

2

[
δ2W

δ J (x)2
+
(
δW

δ J (x)

)2
]
+ J (x) = 0. (3.1.147)

For an iterative solution of this equation, it is convenient, at first, to convolute it with the function∫
d4x ′ J (x ′)Dc(x ′ − x):∫

d4x ′ J (x ′) δW
δ J (x ′)

= ig

2

[ ∫
d4x ′ d4x J (x ′)Dc(x

′ − x)
δ2W

δ J (x)2

+
∫

d4x ′ d4x J (x ′)Dc(x
′ − x)

(
δW

δ J (x)

)2 ]
−
∫

d4x ′ d4x J (x ′)Dc(x
′ − x)J (x). (3.1.148)

Expansion of the functional W [J ] in powers of the sources:

W [J ] =
∞∑

n=0

∫
d4x1 · · · d4xn

in

n!Wn(x1, . . . , xn)J (x1) · · · J (xn) (3.1.149)

converts the functional equation (3.1.148) into an infinite chain of differential equations, called the Dyson–
Schwinger equations, for the connected Green functions Wn(x1, . . . , xn) (by equating the factors with
equal powers of the source function J (x)). It is illustrative to represent this chain of equations graphically,
using the Feynman-like notation depicted in figure 3.6. In this notation, the chain of equations for
connected Green functions is presented in figure 3.7. To illustrate the general formalism, the first two
equations from the chain are explicitly depicted in figure 3.8. Multiplying the second equation in figure 3.8
by KKG from the right and by W−1

2 from the left, we obtain the equality for the so-called mass operator
(or proper energy)  of a particle. The resulting equality for  has the graphical image as in figure 3.9.
In the latter figure, the element

��

��r
r r3 = truncated Green function W (tr)

3

denotes the three-point truncated Green function (cf definition (3.1.133)).
In the same way we can derive the Schwinger equation for any field theoretical model with a

polynomial Lagrangian. The starting point is the translational invariance of the path-integral measure
and hence a relation of the type (3.1.141) for all fields enters the model.
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Figure 3.7. Graphical representation of the Dyson–Schwinger chain of equations for connected Green functions.
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Figure 3.8. Graphical representation of the first two equations from the Dyson–Schwinger chain of equations for
connected Green functions.

♦ Ward–Takahashi identities as the result of a special change of variables in the path integrals

We may consider more general transformations

ϕ −→ F(x, {a}; ϕ) (3.1.150)

of integration variables in path integrals which produce the generating functional for Green functions.
Any type of transformation forms a group and we assume that transformations (3.1.150) form a Lie
group with the set of parameters {a} (for some basic notions from group theory, see supplement IV).
If transformations (3.1.150) have a unit Jacobian, then by changing the integration variables, we again
obtain the infinitesimal condition for measure invariance (cf (3.1.141)):∫

Dϕ(x)

(∫
d4 y δaϕ(y)

δS[ϕ]
δϕ(y)

)
exp{S[ϕ]} = 0 (3.1.151)
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Figure 3.9. Equation for the mass operator  .

where

δaϕ
def≡
∑

i

∂F(x, {a}; ϕ)
∂ai

∣∣∣∣
ai=0

dai .

In the general situation, the equations obtained from (3.1.151) follow from the Schwinger equations and
hence do not provide new information about the Green functions. Indeed, after the substitution of δaϕ

and δS[ϕ]/δϕ by variational operators as in (3.1.143), we obtain an equation for the generating functional
Z[J ] in the form

La LSchwZ[J ] = 0 (3.1.152)

where La and LSchw are variational operators, the latter being the ordinary Schwinger equation operator
(the variational operator on the left-hand side of (3.1.143)). Thus, (3.1.152) follows from the Schwinger
equation. However, in special cases, the combination La LSchw may prove to be a lower-order variational
operator than just the Schwinger operator LSchw. This happens if terms with higher powers of the field
variable in the action functional S[ϕ] are invariant with respect to the group of transformations (3.1.150).
The resulting relations are called Ward–Takahashi identities. These identities are extremely important
for the proof of the renormalizability of quantum gauge theories, including electrodynamics (Abelian
gauge theory) and the Yang–Mills theory (non-Abelian gauge theory). In the latter case, the identities are
called generalized Ward–Takahashi or Slavnov–Taylor–Ward–Takahashi identities. We shall discuss the
(generalized) Ward–Takahashi identities in some detail in section 3.2.7 devoted to quantum gauge theories
(where path integrals find one of their most important applications).

♦ Generating functional for one-particle irreducible Green functions

One-particle irreducible (OPI) Green functions play an important role in the renormalization of quantum
field theories (especially those theories with gauge invariance) as well as in non-perturbative calculations
(the so-called effective action method). Therefore, it is desirable to construct for them a generating
functional. This aim is achieved via a Legendre transformation of the functional W [J ] generating
connected Green functions:

W [J ] −→ �[φ] : �[φ] = W [J (φ)] −
∫

d4x φ(x)J (x) (3.1.153)

where the source J (x) on the right-hand side is expressed through φ with the help of the equation

φ(x)
def≡ W1(x) = δW [J ]

δ J (x)
. (3.1.154)

Recall that the Legendre transformation relates Lagrangians and the corresponding Hamiltonians of
physical systems, thus (3.1.153) is a formal analog of the transition from the Lagrangian to the
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Hamiltonian formalism in classical mechanics. Note also that the direct physical meaning of the quantity
φ(x) is the vacuum expectation of the quantum field ϕ̂ in the presence of the external source J (x):

φ(x) = 〈0|ϕ̂(x)|0〉J (3.1.155)

and thus it is the classical counterpart of the field operator. In the literature, W1 is usually denoted by the
same letter as the corresponding field operator. We have denoted it by the slightly modified character φ
to avoid confusion with the path integration variable ϕ. The generating functional �[φ] for OPI Green
functions is often called the effective action for the corresponding quantum field theory. The reason for
this name is that in the lowest approximation, �[φ] exactly coincides with the classical action of the
theory.

Differentiation of the equality (3.1.153) taking into account (3.1.154) yields the relation

δ�

δφ(x)
=
∫

d4y
δW

δ J (y)

δ J (y)

δφ(x)
− δ

δφ(x)

∫
d4x φ(x)J (x)

= − J (x) (3.1.156)

which explicitly defines J (for known �) as a functional of φ.
The following simple chain of equalities shows that the second derivatives of �[φ] and −W [J ] are

the kernels of the inverse operators:

δ(x − y) = δ J (x)

δ J (y)
=
∫

d4x ′ δ J (x)

δφ(x ′)
δφ(x ′)
δ J (y)

= −
∫

d4x ′ δ2�

δφ(x)δφ(x ′)
δ2W

δ J (x ′)δ J (y)
. (3.1.157)

Thus the two-point connected Green function is easily expressed through the corresponding two-point OPI
Green function. Similarly, any higher connected Green functions can be expressed through OPI functions,
the diagrams of the connected Green functions being constructed from OPI parts linked by lines in such a
way that cutting any of these lines converts the diagrams to disconnected ones. Substituting the Legendre
transformation into the Schwinger equation (3.1.143) allows us to present the functional equation directly
in terms of OPI functions and to develop the corresponding iterative (approximate, perturbative) method
of its solution.

As seen from our short discussion, once the Dyson–Schwinger equation (or Ward–Takahashi
identity) is derived from the path integral for generating functionals, further functional manipulations
(transitions to connected, OPI Green functions etc) have no direct relationship with the main object of this
book, the path integral. Thus we shall not go further into a general consideration of functional methods
in quantum field theory, referring the reader to the special literature (see, e.g., Itzykson and Zuber (1980)
and Vasiliev (1998)). However, we shall meet important concrete applications of these methods combined
with the path-integral formalism in the subsequent sections.

♦ Generating functional and Feynman diagrams for the Yukawa model

All the consideration in the present subsection can be straightforwardly generalized to the case of several
fields and fields with higher spins including fermion fields. In the latter case, the only peculiarity is that
after introduction of anticommuting integration variables and sources, as explained in section 3.1.3, we
must care about the order of all factors and Grassmann derivatives. Instead of a general consideration of
these generalizations, we shall discuss here an example illustrating the functional methods for a model
with spinor fields, namely for the Yukawa-interaction model, while in the subsequent sections we shall
consider concrete practically most important examples (types) of field theoretical models.
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The Yukawa model contains a spin- 1
2 fieldψ(x) and a scalar field ϕ(x), with the following Lagrangian

density:
LYu = L0(ϕ)+ L0(ψ̄, ψ) + Lint(ψ̄, ψ, ϕ) (3.1.158)

where L0(ϕ) and L0(ψ̄, ψ) are the free Lagrangian densities (3.1.49) and (3.1.59) for scalar and spinor
fields, respectively; Lint(ψ̄, ψ, ϕ) defines an interaction of these fields, the so-called Yukawa coupling:

Lint(ψ̄, ψ, ϕ) = gψ̄(x)ψ(x)ϕ(x). (3.1.159)

The path-integral representation for the generating functional reads as

Z[η̄, η, J ] =
∫
DϕDψ̄ Dψ exp

{
i
∫

d4x [L0(ϕ(x))+ L0(ψ̄(x), ψ(x))+ Lint(ψ̄(x), ψ(x), ϕ(x))

+ J (x)ϕ(x)+ ψ̄(x)η(x)+ η̄(x)ψ(x)]
}
. (3.1.160)

Similarly to the case of the purely scalar theory, the starting point for developing the perturbation
expansion is the representation of the generating functional (3.1.160) in the form

Z[η̄, η, J ] = exp

{
Lint

(
1

i

δ

δη
,

1

i

δ

δη̄
,

1

i

δ

δ J

)}
Z0[η̄, η, J ]. (3.1.161)

The generating functionalZ0[η̄, η, J ] is simply given by the product of the generating functionals for the
free scalar and free spinor theories:

Z0[η̄, η, J ] = exp

{
−i
∫

d4x d4y η̄(x)Sc(x − y)η(y)

}
exp

{
− i

2

∫
d4x d4y J (x)Dc(x − y)J (y)

}
.

(3.1.162)
The expansion of (3.1.161) up to second order in the coupling constant g leads to

Z[η̄, η, J ] =
[

1 − gi
∫

d4x
δ3

δη̄(x)δη(x)δ J (x)

− g2

2

∫
d4x

δ3

δη̄(x)δη(x)δ J (x)

∫
d4 y

δ3

δη̄(y)δη(y)δ J (y)
+ · · ·

]
Z0[η̄, η, J ].

(3.1.163)

Since the differentiation refers to different fields, the calculation for the Yukawa model is even simpler
than for a scalar field with self-interaction. Nevertheless, the derivation of the terms in the second and
higher orders is still quite laborious and it is reasonable to exploit again the Feynman graphical techniques.

The generating functional Z[η̄, η, J ] contains several fields and sources and therefore we need
different graphical elements for them. The correspondence rules for the Yukawa model are summarized
in table 3.2.

The differentiation in formula (3.1.163) gives a generating functional in the first Z(1)[η̄, η, J ] and
second Z(2)[η̄, η, J ] order of perturbation theory. In the diagram representation, they are represented as
follows:

Z
(1)[η̄, η, J ] =

 r ��
���

−∼ r � �

r
r

$

=⇐ =⇐

Z0[η̄, η, J ] (3.1.164)
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Table 3.2. Correspondence rules for the Yukawa model.

Physical quantity Mathematical expression Diagram element

Propagators Dc(x − y) r r
Sc(x − y)

�r r

Interaction vertex g � �
External sources J (x) •∼

η̄(x) •=⇐
η(x) •⇒=

Z
(2)[η̄, η, J ] =

 −��
���
-

+��
���
��
���

− r ��
���
-
r∼ ∼

− r � � r=⇐ =⇐r � � r=⇐ =⇐+ 2

���
2

��
���

+ r � � r=⇐ =⇐2 �

r r$ $

+

 r ��
���

−∼ r � �

r
r

$

=⇐ =⇐



2
Z0[η̄, η, J ]. (3.1.165)

Using table 3.2, we can easily translate this result back to the algebraic form. The last term in
(3.1.165) corresponds to the disconnected part of the Green functions. A noticeable feature of theories
which include fermions is that any fermion loop produces the factor (−1). In functional formalism, this is
a consequence of the anticommutativity of the Grassmann variables corresponding to fermion fields and
sources.

3.1.6 Problems

Problem 3.1.1. Derive expression (3.1.40) for the dispersion of the smeared field ϕ̂λ.

Hint. Using expression (3.1.31) for the quantum field in terms of independent oscillators we readily obtain

〈0|ϕ̄2
λ|0〉 =

1

(2πλ)6

∫
d3k d3r d3r ′ 1

2ωk
exp{ik · (r − r ′)} − (r2 + r ′2)/(2λ2)
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= 1

2(2π)3

∫
d3k

2ωk
e−k2λ2 ≈ 1

λ3
√
λ−2 + m2

.

Problem 3.1.2. Prove that the path integral∫
Dϕ(x)ϕ(x1)ϕ(x2)eiS

gives the vacuum expectation
〈0|T(ϕ(x1)ϕ(x2))|0〉

of the time-ordered product of the field operators.

Hint. As a hint, we shall consider the simplified case of a quantum-mechanical system with one degree
of freedom. The field theoretical path integral is considered via a straightforward generalization: at first,
we consider a system with N degrees of freedom on a lattice and then pass to the continuum limit (cf
section 3.1.2).

We start from the matrix element

〈a, t|T( Â(H)(̂a†(t1), â(t1)) Â
(H)(̂a†(t2), â(t2)))|a0, t0〉

where |a〉 ≡ |ϒa〉 represents the (non-normalized) coherent state (cf (2.3.44)) for the creation–annihilation
operators â†, â; |a, t〉 = exp{it Ĥ }|a〉 and Â(H)(̂a†(t), â(t)) is some operator made of â†(t), â(t), the
latter being in the Heisenberg representation (this is indicated by the superscript ‘(H)’). We assume that
Â(H)(̂a†, â) is written in the normal form. Then, we obtain:

〈a, t|T( Â(H)(̂a†(t1), â(t1)) Â
(H)(̂a†(t2), â(t2)))|a0, t0〉

= 〈a|e−i(t−t1)Ĥ Â(S)(̂a†, â)ei(t−t1)Ĥ e−i(t−t2)Ĥ Â(S)(̂a†, â)ei(t−t2)Ĥ e−i(t−t0)Ĥ |a0〉
= 〈a|e−i(t−t1)Ĥ Â(S)(̂a†, â)e−i(t1−t2)Ĥ Â(S)(̂a†, â)e−i(t2−t0)Ĥ |a0〉
=
∫

da∗
1 da1 db∗1 db1 da∗

2 da2 db∗2 da2 〈a|e−i(t−t1)Ĥ |a1〉e−a∗1a1

× 〈a1| Â(S)(̂a†, â)|b1〉e−b∗1b1〈b1|e−i(t1−t2)Ĥ |a2〉e−a∗2a2

× 〈a2| Â(S)(̂a†, â)|b2〉e−b∗2b2〈b2|e−i(t2−t0)Ĥ |a0〉.
Here Â(S)(̂a†, â) denotes the operator in the Schrödinger representation. Since Â(S)(̂a†, â) is written in
the normal form, we have

〈ai | Â(S)(̂a†, â)|a′
i〉 = A(S)(a∗

i , a
′
i )e

a∗i a′i

and using the path integral for the evolution amplitudes in the holomorphic representation (cf (2.3.103)),
we arrive at the required result

〈a, t|T( Â(H)(̂a†(t1), â(t1)) Â
(H)(̂a†(t2), â(t2)))|a0, t0〉

=
∫
Da∗(τ )Da(τ ) A(a∗(t1), a(t1))A(a∗(t2), a(t2))

× exp{[a∗(t)a(t)− a∗(t)a(t0)]}
× exp

{∫ t

t0
dτ [−a∗(τ )ȧ(τ )− iωka∗(τ )a(τ )] −

∫ t

t0
dτ V [a∗, a]

}
.

The case t2 > t1 gives essentially the same result. Finally, we use the fact that |a = 0〉 = |0〉, where
|0〉 is the ground state (‘vacuum vector’), see (2.3.42), (2.3.44) or (2.3.108) (cf also (3.1.99)): choosing
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a = a0 = 0, we convert the considered matrix element into the vacuum expectation value. This proves
the required statement for a system with one degree of freedom. The generalization to an arbitrary
number of degrees of freedom and to an arbitrary number of field operators in the time-ordered product is
straightforward and gives the proof of formula (3.1.102).

Problem 3.1.3. Derive a relation between the vacuum expectation

G(x1, x2) ≡ 〈0|T(ϕ̂(x1)ϕ̂(x1))|0〉

of the time-ordered product of field operators (the field theoretical Green function) and the amplitude
〈ϕ′(r), t|T(ϕ̂(x1)ϕ̂(x1))|ϕ(r), t0〉 (here xi = (ri , ti )) in the coordinate representation.

Hint. Again, we present, as a hint, the main points of the derivation for a quantum-mechanical system
with one degree of freedom. We have

〈x, t |T(̂x (H)(t1)̂x (H)(t2))|x0, t0〉 =
∑
m,n

〈x, t|n〉〈n|T(̂x (H)(t1)̂x (H)(t2))|m〉〈m|x0, t0〉

where |n〉 are the eigenvectors of the Hamiltonian under consideration: Ĥ |n〉 = En|n〉, x̂ (H)(t) is
the position operator in the Heisenberg representation and |x, t〉 = exp{it Ĥ}|x〉. To understand the
last relation, note that without the time-ordered product, the matrix element under consideration would
coincide with the usual transition amplitude

〈x, t|x0, t0〉 = 〈x |e−i(t−t0)Ĥ |x0〉.
Since we assume that E0 is the lowest eigenvalue of Ĥ , the following limit gives the required relation:

lim
t→i∞

t0→−i∞
〈x, t |T(̂x (H)(t1)̂x (H)(t2))|x0, t0〉 = 〈x |0〉e−E0|t |〈0|x0〉e−E0|t0|〈0|T(̂x (H)(t1)̂x (H)(t2))|0〉

which can be rewritten in a more compact form:

〈0|T(̂x (H)(t1)̂x (H)(t2))|0〉 = lim
t→i∞

t0→−i∞

〈x, t |T(̂x (H)(t1)̂x (H)(t2))|x0, t0〉
〈x, t|x0, t0〉 . (3.1.166)

As in the solution of the preceding problem, we can show that

〈x, t |T(̂x (H)(t1)̂x (H)(t2))|x0, t0〉 =
∫
C{x,t;x0,t0}

Dx(τ )
Dp(τ )

2π
x(t1)x(t2)eiS.

Of course, the transition amplitude in the denominator is also represented in terms of path integrals and
this gives the path-integral expression for the vacuum expectation value.

Formula (3.1.99) and the solution of the preceding problem show that path integrals in the
holomorphic representation are much more convenient for this aim.

Problem 3.1.4. Calculate path integral (3.1.127) (see also (3.1.100) and (3.1.129)) using the translational
invariance ϕ → ϕ + ϕc of the functional measure and carrying out a square completion in the exponent
of the integrand.
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Hint. We want to calculate the integral

Z0[J ] =
∫
Dϕ(x) exp

{
i
∫

d4x [ 1
2 (∂µϕ)

2 + 1
2 m2ϕ2 + J (x)ϕ(x)]

}
=
∫
Dϕ(x) exp

{
i
∫

d4x [ 1
2ϕ(x)(−∂2

µ + m2 − iε)ϕ + J (x)ϕ(x)]
}
.

Here we have introduced, in the exponent, the regularization term −ε ∫ d4x ϕ2/2 which provides the
convergence of the integral. Let ϕc be the solution of the classical equation of motion:

(−∂2
µ + m2 − iε)ϕc(x) = −J (x)

that is,

ϕc(x) = −
∫

d4y Dc(x − y)J (y)

where Dc(x) is the causal Green function (3.1.93). Let us change the integration variables:

ϕ(x)→ ϕ′(x) = ϕ(x)− ϕc(x).

Then, we obtain

Z0 = N−1 exp

{
− i
∫

d4x d4 y [ 1
2 J (x)Dc(x − y)J (y)]

}
i.e. the required expression up to the factorN−1 which does not depend on the external source

N−1 =
∫
Dϕ′ exp

{
i
∫

d4x ϕ′(−∂2
µ + m2 − iε)ϕ′

}
.

By the simple method of square completion, this factor cannot be calculated directly. Our more rigorous
consideration in sections 3.1.2 and 3.1.3 shows that it must be put equal to unity. Note that the connected
Green functions introduced in section 3.1.5 are insensitive to such a factor, so that for them this method
is well suited. It is also worth mentioning that, while in this problem we have introduced the ε-term by
hand (to improve convergence of the path integral), in section 3.1.2 we obtained the ε-prescription for the
Green functions (see (3.1.93)) from the correctly chosen boundary conditions.

Problem 3.1.5. Using the path-integral representation for the generating functional Z[J ] prove that
δZ[J ]/δ J (x), for a field theory with the Lagrangian density L(ϕ) = L0(ϕ) + Lint(ϕ), where L0 is
the free particle part and Lint is the self-interaction Lagrangian, satisfies the equation

1

i
(�+ m2)

δZ[J ]
δ J (x)

− L′
int

(
1

i

δ

δ J (x)

)
Z[J ] = J (x)Z[J ]. (3.1.167)

Here

L
′
int

(
1

i

δ

δ J (x)

)
≡ ∂Lint(ϕ)

∂ϕ

∣∣∣∣
ϕ=δ/δ J

.

This differential equation is obviously the quantum counterpart of the classical equation for a field ϕ
with the Lagrangian L(ϕ). By direct substitution, show that a solution of equation (3.1.167) in free-field
theory has the form (3.1.100) for the generating functional and that the general solution of (3.1.167) can
be written as in (3.1.128), i.e.

Z[J (x)] = exp

{
− i
∫

d4x V

(
1

i

δ

δ J (x)

)}
Z0[J (x)]. (3.1.168)
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Hint. From the definition ofZ[J ], we have

1

i

δZ[J ]
δ J (x)

=
∫
Dϕ ϕ(x)eiS[ϕ,J ]. (3.1.169)

Now we use the simple identity

1

i

δ

δϕ(x)
eiS[ϕ,J ] = δS[ϕ, J ]

δϕ(x)
eiS[ϕ,J ]

= (−(�+ m2)ϕ(x)+ L′
int(ϕ(x))+ J (x))eiS[ϕ,J ] (3.1.170)

so that acting by the Klein–Gordon operator (�+ m2) on both sides of (3.1.169), we obtain

(�+ m2)
1

i

δZ[J ]
δ J (x)

=
∫
Dϕ

(
−1

i

δ

δϕ(x)
L′

int(ϕ(x))+ J (x)

)
eiS[ϕ,J ].

The first term in the integrand on the right-hand side is a total derivative and can only produce boundary
terms which vanish (for a rigorous proof of this fact for the Feynman path integral we need, as usual, some
regularization, e.g., a transition to imaginary time and, hence, to the Wiener path integral). The rest of the
equality is equivalent to (3.1.167).

For the free-field theory, equation (3.1.167) can be rewritten as follows:

δZ0[J ]
δ J (x)

= i(�+ m2)−1 J (x)Z0[J ]

= − i
∫

d4y Dc(x − y)J (y)Z0[J ]

with the obvious solution (3.1.100).
The fact that (3.1.168) is the solution of (3.1.167) is proved by direct substitution. To compare

the left- and right-hand sides of equation (3.1.167) after the substitution (3.1.168), we should move the
operator

exp

{
− i
∫

d4x V

(
1

i

δ

δ J (x)

)}
in front of J (x). This is achieved with the help of the operator identity

e−B̂ ÂeB̂ = Â + [ Â, B̂] + 1
2 [[ Â, B̂], B̂] + · · · (3.1.171)

and the commutator [ ∫
d4 y V

(
1

i

δ

δ J (y)

)
, J (x)

]
= −iL′

int

(
1

i

δ

δ J (x)

)
.

Problem 3.1.6. Derive the graphical representation (a complete collection of Feynman diagrams together
with the symmetry factors, i.e. the numerical factors with which a given diagram enters the expression
for the Green function) for the two- and four-point Green functions in the first-order approximation of the
perturbation theory for the scalar field theory with ϕ4 self-interaction.

Hint. The expressions are obtained by using the genuine formula (3.1.128) or by the differentiation of
(3.1.131). The result is:

r r
x y

+ 1

2
g r rrÆ
��

x y
=G2(x − y)
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G4(x1, x2, x3, x4) =
( r rr r
r rr r + r
r
r
r
+ @

@�
�
r r
rr
)

+ 1

2
g

( r r
r r
rj r r
r r+ rj + r
r
r
rrj + r
r
r
rr j+
jXXXXXXX���
���

�r + j
XXXXXXX���

���
�r
)

+ g @
@�
�
r r
rr r

r r
r r r

r r
r

Thus, G4 contains in addition to the free four-point function all possible propagators with a self-energy
insertion and a single ‘true’ interaction graph.

Problem 3.1.7. Prove the following relations between the ordinary Gn and connected Wn Green functions
in scalar field theory:

G2(x − y) = W2(x − y) (3.1.172)

G4(x1, x2, x3, x4) = W4(x1, x2, x3, x4)+ W2(x1 − x2)W2(x3 − x4)

+ W2(x1 − x3)W2(x2 − x4)+ W2(x1 − x4)W2(x2 − x3) (3.1.173)

provided that

G1 = δZ[J ]
δ J (x)

∣∣∣∣
J=0

= 0. (3.1.174)

The latter condition physically means that the vacuum expectation of the quantum field vanishes. If the
quantum field can be expressed via creation and annihilation operators with the condition (3.1.20), the
validity of condition (3.1.174) is obvious. Note, however, that in an important class of models with so-
called spontaneous symmetry-breaking this condition is not fulfilled (see section 3.2.8).

Hint. Recalling that connected functions are generated by the logarithm of the generating functional for
ordinary Green functions, we have

W2(x − y) = δ2 ln Z[J ]
δ J (x)δ J (y)

∣∣∣∣
J=0

=
(
− 1

Z[J ]2
δZ[J ]
δ J (x)

δZ[J ]
δ J (y)

+ 1

Z[J ]
δ2
Z[J ]

δ J (x)δ J (y)

) ∣∣∣∣
J=0

= G2(x − y). (3.1.175)

Here we have used (3.1.174) and the normalizationZ[0] = 1. Derivation of (3.1.173) is quite analogous.

Problem 3.1.8. Find the relation between connected and OPI three- and four-point Green functions.

Hint. Differentiation of the equality (3.1.157) with the help of the relation

δ

δ J (x)
=
∫

d4 y
δφ(y)

δ J (x)

δ

δφ(y)
(3.1.176)
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yields

0 =
∫

d4x
δ3W

δ J (x3)δ J (x1)δ J (x)

δ2�

δφ(x)δφ(x2)

+
∫

d4x ′
1 d4x ′

3
δ2W

δ J (x1)δ J (x ′
1)

δ3�

δφ(x ′
1)δφ(x

′
2)δφ(x

′
3)

δφ(x ′
3)

δ J (x3)
.

Again using (3.1.157), we obtain

δ3W

δ J (x1)δ J (x2)δ J (x3)
=
∫

d4x ′
1 d4x ′

2 d4x ′
3

δ2W

δ J (x1)δ J (x ′
1)

δ2W

δ J (x2)δ J (x ′
2)

× δ2W

δ J (x3)δ J (x ′
3)

δ3�

δφ(x ′
1)δφ(x

′
2)δφ(x

′
3)
. (3.1.177)

Graphically this relation is depicted as follows:

Æ
��
W = Æ

��
�

e
e e.

Here the lines with the circles denote the two-point Green function (recall that connected and ordinary
two-point Green functions coincide, see (3.1.172)).

One more differentiation of (3.1.177) over J (x) gives the relation for connected and OPI four-point
Green functions. The calculation is rather cumbersome but straightforward. As a hint, we present this
relation only in the graphical form:
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Problem 3.1.9. Consider the anharmonic oscillator with the action

S =
∫

dτ

[
mẋ2

2
− mω2x2

2
+ αx3 + βx4

]
.

Of course, the corresponding non-Gaussian quantum-mechanical path integral cannot be written exactly.
Using the relation between vacuum expectation values and the transition amplitudes as well as the explicit
expression for the transition amplitudes of a harmonic oscillator in the presence of a time-dependent
external force (driven oscillator), see (2.2.200), develop the perturbation theory expansion and Feynman
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diagram technique for this quantum-mechanical system. Calculate in the two-loop order the shift in the
ground-state energy of the harmonic oscillator due to the presence of αx3- and βx4-terms and corrections
to the two-point Green function G0(t1, t2) = 〈0|x(t1)x(t2)|0〉 of the harmonic oscillator (|0〉 is the ground
state of the harmonic oscillator).

Do the same calculation also for the Euclidean version (i.e. after the analytic continuation to an
imaginary (Euclidean) time τE = it .

Hint. Calculations in the real-time formalism and with the Euclidean imaginary time are essentially the
same. Since later (in section 3.3.3) we shall consider tunneling phenomena for the anharmonic oscillator
in the Euclidean-time formalism (the Euclidean time is much more convenient for the study of tunneling
phenomena), we give the hint for the imaginary-time version of the calculation.

The Euclidean action reads (we put, for brevity, m = 1):

SE =
∫

dτ

[
ẋ2

2
+ ω2x2

2
+ αx3 + βx4

]
. (3.1.178)

Expanding the path integral in powers of α and β, we can derive the Feynman rules for an anharmonic
oscillator. Using the explicit form (1.2.262) of the generating functional for the harmonic oscillator with
an external force (in the Euclidean time), and calculating

lim
τ0→−∞
τ→∞

δ

δη(τ )

δ

δη(τ0)
Z[η; (xτ , τ |x0, τ0)]

(cf (3.1.166)), we obtain the free propagator (vacuum expectation for the time-ordered product of two
coordinate operators in the Heisenberg representation):

G0(τ1, τ2) = 〈0|̂x (H)(τ1)̂x
(H)(τ2)|0〉 = 1

2ω
exp{−ω|τ1 − τ2|}. (3.1.179)

In addition to this, there are three- and four-point vertices with coupling constants α and β. To calculate
an n-point Green function we have to sum over all diagrams with n external legs and integrate over the
time variables corresponding to internal vertices.

The vacuum energy is given by the sum of all closed diagrams. At one-loop order, there is only one
diagram, the free-particle loop diagram. At two-loop order, there are twoO(α2) and oneO(β) diagram:
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��
rr

. (3.1.180)

Calculating the diagrams is not difficult. Since the propagator is exponentially suppressed for large times,
everything is finite (in contrast to the field theory case, see sections 3.1.4 and 3.2.7). Summing all the
diagrams, we get

〈0| exp(−H τ )|0〉 =
√
ω

π
exp

(
−ωτ

2

) [
1 −

(
3β

4ω2
− 11α2

8ω4

)
τ + · · ·

]
. (3.1.181)

For small α2 and β and τ not too large, we can exponentiate the result and read off the correction to the
ground-state energy:

E0 = ω

2
+ 3β

4ω2
− 11α2

8ω4
+ · · · . (3.1.182)
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Of course, we could obtain the result using the ordinary Rayleigh–Schrödinger perturbation theory, but
the method discussed here proves to be much more powerful when we come to non-perturbative effects
(see section 3.3) and to the field theory.

Evaluating the first perturbative correction to the Green function corresponds to the diagrams:
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��

��

r ��

��
r
��

��
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��

r
r

. (3.1.183)

Calculation gives

$G0(0, τ ) = 9α2

4ω6
+ α2

2ω6
e−2ωτ + 15α2

4ω5
τe−ωτ − 3β

2ω3
τe−ωτ . (3.1.184)

Comparing this result with the decomposition in terms of stationary states:

G(0, τ ) =
∞∑

n=0

e−(En−E0)τ |〈0|̂x (H)|n〉|2 (3.1.185)

we can identify the first (time-independent) term with the square of the ground-state expectation value
〈0|̂x (H)|0〉 (which is non-zero due to the tadpole diagram). The second term comes from the excitation
of two quanta, and the last two (with extra factors of τ ) are the lowest-order ‘mass renormalizations’, or
corrections to the zeroth-order gap between the ground and first excited states, E1 − E0 = ω.

Problem 3.1.10. If we agreed to work only in the framework of the perturbation theory, we could use a
formula of the type (3.1.111) or (3.1.128) as the starting definition of the corresponding path integral.
More precisely, we could define (Faddeev and Slavnov 1980)∫

Dϕ(x) ϕ(x1) · · ·ϕ(xn) exp

{
i

2

∫
d4x d4y ϕ(x)K (x − y)ϕ(y)+ i

∫
d4x ϕ(x)J (x)

}
def≡ (−i)n

δ

δ J (x1)
· · · δ

δ J (xn)
exp

{
− i

2

∫
d4x d4y J (x)K−1(x − y)J (y)

}
. (3.1.186)

Here K (x − y) and K−1(x − y) are integral kernels of mutually inverse operators:∫
dx ′ K (x − x ′)K−1(x ′ − y) =

∫
dx ′ K−1(x − x ′)K (x ′ − y) = δ(x − y). (3.1.187)

Note that it is assumed that on the set of fields ϕ(x) which are integrated over in (3.1.186) K−1(x − y) is
uniquely defined. Recall that in (3.1.111) and (3.1.128) we have distinguished the causal Green function
Dc(x) as the inverse of the Klein–Gordon operator (�+ m2) by imposing suitable asymptotic conditions
for fields ϕ.

Show that the perturbative definition (3.1.186) of the path integral fulfils the main properties of any
integral. In particular, prove that definition (3.1.186) is compatible with the rule of integration by parts:∫

Dϕ(x)

[
δ

δϕ(x ′)
exp

{
i

2

∫
d4x d4y ϕ(x)K (x − y)ϕ(y)

}]
exp

{
i
∫

d4x ϕ(x)J (x)

}
=
∫
Dϕ(x) exp

{
i

2

∫
d4x d4y ϕ(x)K (x − y)ϕ(y)

}
δ

δϕ(x ′)
exp

{
i
∫

d4x ϕ(x)J (x)

}
.

(3.1.188)



Path-integral formulation of the simplest quantum field theories 47

Three subsequent problems concern other properties of the path integrals defined by (3.1.186).

Hint. The left-hand side of (3.1.188) can be easily calculated:∫
Dϕ(x)

[
δ

δϕ(x ′)
exp

{
i

2

∫
d4x d4 y ϕ(x)K (x − y)ϕ(y)

}]
exp

{
i
∫

d4x ϕ(x)J (x)

}
= i
∫
Dϕ(x)

[∫
d4x ′′ K (x ′ − x ′′)ϕ(x ′′)

]
× exp

{
i

2

∫
d4x d4y ϕ(x)K (x − y)ϕ(y)+ i

∫
d4x ϕ(x)J (x)

}
= i
∫

d4x ′′ K (x ′ − x ′′)
∫
Dϕ(x) ϕ(x ′′)

× exp

{
i

2

∫
d4x d4y ϕ(x)K (x − y)ϕ(y)+ i

∫
d4x ϕ(x)J (x)

}
= −iJ (x ′) exp

{
− i

2

∫
d4x d4 y J (x)K−1(x − y)J (y)

}
. (3.1.189)

The last equality follows from definition (3.1.186). The right-hand side of (3.1.188) gives, clearly, the
same result and this proves the required equality.

Problem 3.1.11. Show that a path integral over several fields in perturbation theory can be defined by
formula (3.1.186) as an iterated integral; in other words, starting from (3.1.186), prove that∫

Dϕ1(x) · · ·Dϕn(x) exp

{
i

2

n∑
i, j=1

∫
d4x d4y ϕi (x)Kij (x − y)ϕ j (y)+ i

n∑
i=1

∫
d4x ϕi (x)Ji (x)

}

= exp

{
− i

2

n∑
i, j=1

∫
d4x d4y Ji (x)K

−1
i j (x − y)Jj (y)

}
. (3.1.190)

Hint. Assume that (3.1.190) is correct for some integer n and directly show (using (3.1.186)) that it is then
correct for n + 1. This induction proves the statement.

Problem 3.1.12. Prove that definition (3.1.186) implies the relation∫
Dϕ(x) F[ϕ]

[∫
Dλ(x) det

(
δ f (ϕ)

δϕ

)
exp

{
i
∫

d4x λ(x)( f (ϕ(x))− g(x))

}]
= F[ϕ̃] (3.1.191)

where F[ϕ] is an arbitrary functional, g is some new field variable and ϕ̃ is a solution of the equation

f (ϕ̃(x))− g(x) = 0. (3.1.192)

This means that the integral on the left-hand side of (3.1.191) contains the δ-functional∫
Dλ(x) exp

{
i
∫

d4x λ(x)( f (ϕ(x))− g(x))

}
= δ( f (ϕ(x))− g(x)). (3.1.193)

Hint. The function f (ϕ(x)) can be presented in the form

f (ϕ(x)) = c0(x)+ ϕ(x)+ f̃ (ϕ(x)) (3.1.194)
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where

f̃ (ϕ(x)) =
∫

d4 y c1(x, y)ϕ(y)+
∫

d4y d4 y ′ c2(x, y, y ′)ϕ(y)ϕ(y ′)+ · · · .
For simplicity, we put the coefficient at ϕ(x) in (3.1.194) equal to unity; the consideration is trivially
generalized for an arbitrary value of the coefficient.

The determinant in the path integral can now be understood as the power expansion

det

(
δ f (ϕ)

δϕ

)
= det

(
1 + δ f̃

δϕ

)
= exp

{
Tr ln

(
1 + δ f̃

δϕ

)}
= exp

{∫
d4x

δ f̃ (x)

δϕ(y)

∣∣∣∣
x=y

+ 1

2

∫
d4x d4y

δ f̃ (x)

δϕ(y)

δ f̃ (y)

δϕ(x)
+ · · ·

}
. (3.1.195)

Here we have used the well-known formula for the determinant of a matrix K:

det K = eTr ln K.

Using definition (3.1.186) and integration by parts (cf problem 3.1.10, page 46) the left-hand side of
(3.1.191) with the basic functional

F[ϕ] = exp

{
i

2

∫
d4x d4 y ϕ(x)K (x − y)ϕ(y)

}
can be cast into the form∫

Dλ(x) exp

{
− i

2

∫
d4x d4y λ(x)K−1(x − y)λ(y)

}
B[g, λ] (3.1.196)

where

B[g, λ] def≡ det

[
1 + δ f̃

δϕ

(
1

i

δ

δλ

)]
←

exp

{
i
∫

dx f̃

(
−1

i

δ

δλ

)
λ(x)

}
× exp

{
−i
∫

dx [g(x)− c0(x)]λ(x)
}
. (3.1.197)

Here the symbol
←

exp means that in the expansion of the exponential we should place all the operators
δ/δλ to the left of λ(x). It is readily seen that this functional satisfies the equation

δB

δλ(x)
= i

[
c0(x)− g(x)+ f̃

(
1

i

δ

δλ

)]
B (3.1.198)

with the initial condition B[g, 0]. It is natural to seek the solution of (3.1.198) in the form

B[g, λ] = B[g, 0] exp

{
−i
∫

d4x λ(x)ϕ(g)

}
. (3.1.199)

Substitution of (3.1.199) into (3.1.198) gives the condition

ϕ(x) = g(x)− c0 − f̃ (ϕ). (3.1.200)

Thus, integral (3.1.196) takes the form

B[g, 0] exp

{
i

2

∫
d4x d4 y ϕ̃(x)K (x − y)ϕ̃(y)

}
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so that the required statement is proved if B[g, 0] = 1. To show the latter equality, we rewrite functional
(3.1.197) as follows:

B[g, λ] = ←
exp

{
− i
∫

d4x
δ

δg(x)
f̃ (g − c0)

}
× det

(
1 + δ f̃

δϕ
(g − c0)

)
exp

{
−i
∫

d4x λ(x)[g(x)− c0(x)]
}

and therefore

B[g, 0] = det

[
←

exp

{
− i
∫

d4x
δ

δg(x)
f̃ (g − c0)

}(
1 + δ f̃

δϕ
(g − c0)

)]
· 1

= det

[∑
n

(−1)n

n!
δn

δgn(x)
f̃ n(g − c0)

(
1 + δ f̃

δg
(g − c0)

)]
· 1. (3.1.201)

The last step of the proof is a verification that the second term of the nth binomial in the sum (3.1.201)
cancels the first term of the (n + 1)th binomial.

Problem 3.1.13. With the help of the perturbative definition of path integral (3.1.186) prove the formula
for changing the integration variables:

ϕ = f (ϕ′) f (ϕ′) = c0(x)+ ϕ′(x)+ f̃ (ϕ′)

( f̃ is defined as in (3.1.194); ϕ′ here is a new field variable, not a derivative of the field ϕ). Namely, show
the validity of the relation∫

Dϕ(x) exp

{
i

2

∫
d4x d4y ϕ(x)K (x − y)ϕ(y)+ i

∫
d4x ϕ(x)J (x)

}
=
∫
Dϕ′(x) det

(
1 + δ f̃

δϕ′

)
× exp

{
i

2

∫
d4x d4y f (ϕ(x))K (x − y) f (ϕ(y))+ i

∫
d4x f (ϕ(x))J (x)

}
. (3.1.202)

Hint. A possible way to prove the required equality is to integrate both parts of (3.1.202) over J (x) with
the functional

exp

{
−i
∫

d4x J (x)σ (x)

}
where σ(x) is a new field from the same class of functions (this is the functional analog of the Fourier
transform). Using the result of the preceding problem 3.1.12, it is easy to show that the results of such an
integration of the left- and right-hand sides of (3.1.202) indeed coincide.

3.2 Path-integral quantization of gauge-field theories

So far, we have dealt only with spacetime (in particular, relativistic) transformations of physical systems.
However, transformations which leave the spacetime coordinates unchanged but changing only the
wavefunctions, %(x)→ % ′(x), and/or fields, ϕ(x)→ ϕ′(x) exist. Such transformations, called internal
transformations, are related to the internal properties of fields and elementary particles and are described
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by internal symmetry groups. If the group is given, the infinitesimal transformations of a collection of (for
simplicity, scalar) fields ϕi forming a representation of the group read as

ϕi (x)→ ϕ′i (x) = ϕi + δϕi (x) (3.2.1)

δϕi (x) = T a
i j εaϕ j . (3.2.2)

Here T a
i j (a = 1, . . . , N, i, j = 1, . . . , r) are N generators (more precisely, matrices of the representation

of the generators), εa are the infinitesimal parameters of the group, N is the group dimension and r is the
dimension of the representation (for basic notions on group theory, see supplement IV).

The condition δS = 0 of invariance of the action S of some field theoretical model under a group of
internal transformations defined by generators T a

i j has the form (see, e.g., Itzykson and Zuber (1980) and
Chaichian and Nelipa (1984))

∂L

∂ϕi
T a

i jϕ j + ∂L

∂(∂µϕi )
T a

i j ∂µϕ j = 0 a = 1, . . . , N (3.2.3)

where L is the Lagrangian density of the system. These identities express the necessary and sufficient
conditions for the Lagrangian and action to be invariant under the transformations of an arbitrary global
groupG of internal symmetry.

A globally invariant Lagrangian can be non-invariant under a certain generalization of the notion of
Lie groups, called group of local transformations or gauge group. To obtain a locally invariant Lagrangian,
new fields have to be introduced. These are called gauge fields. In modern elementary particle theory,
in high-energy (small-distance) physics, as well as in condensed matter physics, gauge invariance is the
basic guiding principle for theoretical model building.

After a very short introduction to the structure of gauge-invariant Lagrangians and the geometry of
gauge fields, we shall describe their quantization via path integrals which proves to be very convenient
for this purpose since the standard operator canonical quantization meets serious combinatorial technical
difficulties and is, in general, very cumbersome (in particular, it is rather difficult to control relativistic
invariance at each step of the quantization in this case). Without exaggeration, we can say that the
‘second birth’ of path integrals in quantum mechanics and their recognition as a very powerful method
for quantization of systems with complicated symmetries started in the 1970s with the construction of
realistic gauge models.

As we shall discuss, gauge invariance leads to constraints in the theory. As a preliminary step, we
shall describe the path-integral quantization of quantum-mechanical systems with constraints in the case
of a finite number of degrees of freedom. Then we generalize this consideration to quantum gauge-field
theory, i.e. to a quantized field theory invariant with respect to a gauge (local) group.

3.2.1 Gauge-invariant Lagrangians

In the case of a group of global transformations the parameters εa in (3.2.2) are independent of the
coordinates. Suppose now that the parameters of the group are coordinate dependent. The functions
of the field then transform according to

δϕi (x) = T a
i j εa(x)ϕ j (x). (3.2.4)

The group of such transformations is called the local or gauge group. Even if a Lagrangian satisfies
the condition of global invariance (3.2.3), it is not invariant under the local transformations (3.2.4), the
variation being proportional to the derivatives of the parameters:

δL = ∂L

∂(∂µϕi )
T a

i jϕ j∂µεa = 0. (3.2.5)
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♦ Gauge fields and gauge-field tensors

To achieve the invariance of the Lagrangian under the transformations (3.2.4), new vector fields Aa
µ must

be introduced in addition to the initial fields ϕi , to compensate the right-hand side of (3.2.5). This results
in a new Lagrangian, invariant under the transformations (3.2.4). The fields Aa

µ thus introduced are called
gauge fields.

To construct a locally invariant Lagrangian from a globally invariant Lagrangian Lm(ϕi , ∂µϕi ) we
should substitute in the latter all the partial derivatives ∂µϕi with the so-called covariant derivatives Dµϕi :

Lm(ϕi , ∂µϕi ) −→ Lm(ϕi , Dµϕi ) (3.2.6)

where

Dµϕi
def≡ ∂µ − T a

i j Aa
µϕ j . (3.2.7)

We have added here the subscript ‘m’ to stress that this is a matter-field Lagrangian. Now if we postulate
that under the local infinitesimal gauge transformations the gauge fields Aa

µ acquire the addition

δAa
µ = f c

ba Ab
µεc(x)+ ∂µεa(x) (3.2.8)

( f c
ba are the structure constants of the global Lie group under consideration; we shall assume in this

section that it is a semisimple Lie group; cf supplement IV), the Lagrangian on the right-hand side of
(3.2.6) proves to be gauge invariant. The point is that (3.2.8) provides that

δ(Dµϕi ) = T a
i j εa(x)Dµϕ j . (3.2.9)

The latter equality justifies the name covariant derivative (Dµϕi transforms under the gauge group in the
same way as ϕi , i.e. Dµϕi is a covariant quantity). Now the matter Lagrangian Lm(ϕi , Dµϕi ) is not a
free one since the covariant derivative introduces an interaction with the gauge fields Aa

µ. If we want to
consider the latter as dynamical fields, we should add the kinematical part for them.

The gauge-invariant Lagrangian for the gauge fields is made of a specific combination Fa
µν , called

the gauge-field tensor:

Fa
µν

def≡ ∂µAa
ν − ∂ν Aa

µ − 1
2 f a

bc(A
b
µAc

ν − Ab
ν Ac

µ). (3.2.10)

This tensor is obviously antisymmetric in the indices µ and ν. In contrast to the field Aa
µ, the combination

Fa
µν is transformed homogeneously under the gauge group:

δFa
µν = f c

baεc(x)F
b
µν. (3.2.11)

There are many possibilities to construct a gauge-invariant quantity from Fa
µν . The additional condition

of renormalizability of the complete gauge-field theory (see later) distinguishes the only appropriate
Lagrangian. This is a Lagrangian quadratic in Fa

µν , which was proposed in the pioneering work by Yang
and Mills (1954):

LYM = − 1

4g2
Fa
µνFaµν. (3.2.12)

Recall that we adopt here and in what follows the standard convention for summation over group and
relativistic indices:

Fa
µνFaµν def≡

N∑
a=1

3∑
µ,ν,ρ,σ=0

Fa
µνgµρgνσ Fa

ρσ .

Note that it is customary to name the gauge fields and the corresponding field theory Yang–Mills fields
and Yang–Mills theory, respectively. From (3.2.10) and (3.2.12) it is seen that for non-zero structure
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constants f a
bc (non-Abelian group) the LagrangianLYM contains the interaction (non-quadratic) terms for

the gauge fields Aa
µ. Hence, even a pure Yang–Mills Lagrangian (without matter fields) for non-Abelian

Lie groups corresponds to a non-trivial (non-free) field system. The constant g is the coupling constant
for the gauge fields (it may occupy a more familiar place as a factor in higher-than-quadratic terms after
the field rescaling: Aa

µ → g Aa
µ).

The full Lagrangian L of the system of the matter fields ϕi and gauge fields Aa
µ is given by the sum

of the Lagrangian LYM(Aa
µ) and Lm(ϕi , Dµϕi ) (the latter contains the Lagrangian of the matter fields as

well as the interaction Lagrangian between the matter and gauge fields):

L(Aa
µ, ϕi ) = LYM(A

a
µ)+ Lm(ϕi , Dµϕi ). (3.2.13)

♦ Simplest examples of Yang–Mills theories

Example 3.3 (Yang–Mills theory with Abelian group U(1): quantum electrodynamics). Let us start from
the free Lagrangian for a single spinor field ψ(x) with mass m:

L0,m(ψ) = i

2
(ψ̄γ µ∂µψ − ∂µψ̄γ µψ) − mψ̄ψ. (3.2.14)

This Lagrangian is invariant under the global one-parameter Abelian group U(1) of phase transformations

ψ → ψ ′ = e−igεψ ψ̄ → ψ̄ ′ = eigεψ̄ (3.2.15)

where ε is the (constant) parameter of the group and g is the coupling constant (as will be seen later). The
infinitesimal version of (3.2.15) reads

δψ = −iεgψ δψ̄ = iεgψ̄. (3.2.16)

By comparing (3.2.16) with (3.2.4), we find that the matrix of the transformation generators is diagonal:

T11 = −ig T22 = ig T12 = T21 = 0. (3.2.17)

Here the indices 1 and 2 refer to ψ and ψ̄ , respectively. Of course, the structure constants of this group
vanish (as for any one-parameter group).

Consider the corresponding local gauge group with the coordinate-dependent parameter ε(x). As
we have discussed previously, the gauge-invariant Lagrangian for the matter fields is constructed via
substitution of ordinary derivative by the covariant derivative:

∂µψ −→ Dµψ = ∂µψ + ig Aµψ

∂µψ̄ −→ Dµψ̄ = ∂µψ̄ − ig Aµψ̄.

The Lagrangian part, Le, for the gauge field Aµ is expressed, according to (3.2.10) and (3.2.12), as
follows:

Le = − 1
4 Fµν Fµν (3.2.18)

where
Fµν = ∂µAν − ∂ν Aµ. (3.2.19)

Of course, the Lagrangian for the pure Yang–Mills field in the case of an Abelian group does not contain
interaction terms. An infinitesimal transformation of the field Aµ is defined by (3.2.8):

δAµ = ∂µε(x). (3.2.20)
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Thus, the complete gauge-invariant Lagrangian takes the form

L(Aµ,ψ) = Le(Aµ)+ Lm(ψ, ψ̄, Dµψ, Dµψ̄)

= − 1

4
Fµν Fµν + i

2
(ψ̄γ µ∂µψ − ∂µψ̄γ µψ)− mψ̄ψ − gψ̄γ µψAµ (3.2.21)

and coincides with the Lagrangian of quantum electrodynamics (QED) if we put g = e, where e is the
electrical charge of an electron.

Example 3.4 (Yang–Mills theory for the non-Abelian SU(2) group). Let us consider the fundamental
SU(2) representation

ψi =
(
ψ1
ψ2

)
(3.2.22)

where ψ1 and ψ2 is a doublet of spinor fields. The free Lagrangian for them is given by

L0,m(ψ) = i

2
(ψ̄iγ

µ∂µψi − ∂µψ̄iγ
µψi )− mψ̄iψi . (3.2.23)

This is invariant under the global non-Abelian group of SU(2) transformations

ψi −→ ψ ′
i =

[
exp

{
− i

2
gεaσa

}]
i j
ψ j (3.2.24)

ψ̄i −→ ψ̄ ′
i = ψ̄ j

[
exp

{
i

2
gεaσa

}]
j i

(3.2.25)

where εa , a = 1, 2, 3, denote the (constant) parameters of the group and σa denote the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (3.2.26)

The matrices

T a
i j = − ig

2
(σa)i j (3.2.27)

are the generators of the group in the doublet (fundamental) representation and satisfy the commutation
relations:

[T a, T b] = gεabcTc (3.2.28)

with the group structure constants having the form f a
bc = gεabc. Here εabc is the totally antisymmetric

tensor with ε123 = 1.

Let us turn to the group of local gauge transformations. The Lagrangian (3.2.23) becomes invariant,
provided that the substitution

∂µψi −→ Dµψi = ∂µψi + ig

2
(σa)i jψ j Aa

µ (3.2.29)

has been made, according to (3.2.6). As can be seen, in this case we have a triplet of vector gauge fields
Aa
µ.

The Lagrangian for the gauge fields has, according to (3.2.12) and (3.2.10), the form

LYM = − 1

4g2
Fa
µν Faµν (3.2.30)
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where

Fa
µν

def≡ ∂µAa
ν − ∂ν Aa

µ − 1
2εabc(A

b
µAc

ν − Ab
ν Ac

µ) (3.2.31)

is the tensor of the Yang–Mills fields. Equation (3.2.31) contains, besides the quadratic terms, cubic and
quartic terms in the fields Aa

µ, i.e. the self-interaction of the Yang–Mills fields.
For the complete locally invariant Lagrangian we obtain

L(Aa
µ,ψ) = LYM(A

a
µ)+ Lm(ψi , ψ̄i , Dµψi , Dµψ̄i )

= − 1

4g2
Fa
µνFa µν + i

2
(ψ̄iγ

µ∂µψi − ∂µψ̄iγ
µψi )− mψ̄iψi − 1

2
ψ̄iγ

µ(σa)i jψ j Aa
µ.

(3.2.32)

The constant g plays the role of a coupling constant for the gauge field interacting with the spinor field
and with itself. This is clearly seen after the field rescaling Aa

µ → g Aa
µ, which casts the Lagrangian into

the form:

L(Aa
µ,ψ) = −1

4
Fa
µνFa µν + i

2
(ψ̄iγ

µ∂µψi − ∂µψ̄iγ
µψi )− mψ̄iψi − g

2
ψ̄iγ

µ(σa)i jψ j Aa
µ (3.2.33)

with
Fa
µν = ∂µAa

ν − ∂ν Aa
µ − g

2
εabc(A

b
µAc

ν − Ab
ν Ac

µ).

◦

♦ The Gauss law in electrodynamics as an example of constraints in Yang–Mills theories

The Lagrangian (3.2.18) for the purely electromagnetic field can be rewritten equivalently as follows

Le = − 1
2 [Ek∂0 Ak − 1

2 (E
2
k + B2

k )+ A0(∂k Ek)] (3.2.34)

where Ek = Fk0 is the electric field and Bk = 1
2εi j k Fi j is the magnetic field (here i, j, k = 1, 2, 3 are

the space part of the spacetime indices µ, ν of the tensor Fµν ). It is seen that the time component of the
electromagnetic field A0 plays the role of a Lagrange multiplier. Variation of the corresponding action
with respect to the latter gives the constraint

∂k Ek = 0 (3.2.35)

which expresses the Gauss law for a pure electromagnetic field (i.e. in the absence of any charged
particles). This is a constraint equation but not an equation of motion because it does not contain any
time derivatives and hence does not define a time evolution.

The existence of constraints is a general feature of any Yang–Mills gauge theory. We shall discuss
this fact in somewhat more detail a bit later, but before, we shall consider systems with constraints and
their path-integral quantization in the case of a finite number of degrees of freedom.

3.2.2 Constrained Hamiltonian systems and their path-integral quantization

Constraints are well known from classical mechanics where they are usually realized by surfaces which
restrict the motion of some particles. In the simple case of holonomic constraints, i.e. constraints of the
type

φa(qi ) = 0. (3.2.36)
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they can easily be used to reduce the number of coordinates to the number of physical degrees of freedom.
Then the remaining coordinates are independent of each other and in the subsequent Lagrangian or
Hamiltonian formulation, we no longer have to consider the constraints. In field theory, the concept
of constraints proves to be more complicated. Non-physical degrees of freedom are introduced and kept
in order to obtain a manifestly Lorentz and gauge-invariant formulation of a theory. The presence of these
non-physical degrees of freedom leads to constraints. In most cases, these are not holonomic constraints
of the type (3.2.36), but they have the more general form

φa(qi , pi) = 0. (3.2.37)

Even in this case it is possible to eliminate the constraints by reducing the number of variables to the
number of physical degrees of freedom. However, in general, such a procedure is not desired because
it leads to the loss of a manifestly Lorentz or gauge-invariant formulation of the theory. Instead, we
consider the constraints within generalized Hamiltonian dynamics which was studied for the first time by
Dirac (1950, 1958) (see also Dirac (1964), Faddeev and Slavnov (1980), Gitman and Tyutin (1990) and
references therein).

♦ Constrained systems with a finite number of degrees of freedom

Consider a physical system given by the Lagrangian L which is a function of the coordinates qi

(i = 1, . . . , d) and their first time derivatives. This Lagrangian is said to be singular if

det

(
∂2L

∂ q̇i∂ q̇ j

)
= 0. (3.2.38)

In this case, not all of the equations that define the momenta

pi = ∂L

∂ q̇i
(3.2.39)

can be solved for the velocities q̇i . Instead, some of these relations yield the primary constraints

φ(1)a (qi , pi ) = 0. (3.2.40)

Now we can construct the Hamiltonian
H = q̇i pi − L (3.2.41)

where the q̇i have to be expressed in terms of the qi and pi by applying (3.2.39). Although (3.2.39)
cannot be solved for all q̇i , we can show (see, e.g., Gitman and Tyutin (1990)) that, due to the presence of
constraints (3.2.40), all the q̇i can be eliminated from H , i.e. H only depends on qi and pi .

As in the unconstrained case, the Hamiltonian equations of motion follow from the least action
principle

δ

∫
[q̇i pi − H ] dt = 0 (3.2.42)

however, the variations δqi and δpi are not independent of each other but they are restricted by the
constraints (3.2.40). This case can be treated by the method of Lagrange multipliers, which yields the
equations of motions for any observable, i.e. for a function f (qi , pi) of qi and pi , of the form

ḟ = {H (1), f }|
φ
(1)
a =0

(3.2.43)
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with
H (1) ≡ H + λaφ

(1)
a (3.2.44)

where the λa are the (a priori undetermined) Lagrange multipliers.
The primary constraints have to be consistent with the equations of motions, i.e. the time derivative

of (3.2.40) also has to vanish:

φ̇(1)a = {H (1), φ(1)a }|
φ
(1)
a =0

= {H, φ(1)a }|
φ
(1)
a =0

+ λb{φ(1)b , φ(1)a }|
φ
(1)
a =0

= 0. (3.2.45)

If these relations are not fulfilled automatically, they can be written in the form

φ(2)a (qi , pi ) = 0. (3.2.46)

In this case, constraints (3.2.46) also have to be satisfied in order to ensure consistency with the equations
of motions and these are called secondary constraints.

This procedure has to be iterated, i.e. the demand that the time derivatives of the secondary constraints
have to vanish may imply further constraints until finally a set of constraints which is consistent with the
equations of motions is obtained. Although the various constraints are obtained at different stages of the
procedure, there is no essential difference between them. In fact, they can be treated on the same level:
we obtain an equivalent physical formulation of a constrained theory if we rewrite (3.2.43) and (3.2.44)
as

ḟ = {HT, f }|φa=0 (3.2.47)

with the total Hamiltonian
HT ≡ H + λaφa (3.2.48)

where φa denotes all the constraints (Gitman and Tyutin 1990).
Another classification of the constraints is related to a determination of the Lagrange multipliers in

(3.2.48). If the matrix
{φa, φb}|φa=0 (3.2.49)

is non-singular, the constraints are called second class. In this case, relations of the type (3.2.45), i.e.

φ̇a = {HT, φa}|φa=0 = {H, φa}|φa=0 + λb{φb, φa}|φa=0 = 0 (3.2.50)

can be solved for the λa :
λa = −{φa, φb}−1{H, φb}|φa=0. (3.2.51)

Inserting this into (3.2.47) with (3.2.48), the equations of motion can be written in the simple form

ḟ = {H, f }DB (3.2.52)

where the Dirac bracket {·, ·}DB is defined as (Dirac 1964)

{ f, g}DB ≡ { f, g}|φa=0 − { f, φa}{φa, φb}−1{φb, g}|φa=0. (3.2.53)

Substitution of the Poisson brackets by the Dirac brackets allows us to formulate the dynamics of a second-
class constrained system analogously to the dynamics of an unconstrained system.

A different situation arises if the matrix (3.2.49) is singular. Assuming that (3.2.49) has the rank
r , we can order the constraints such that the upper left r × r submatrix of (3.2.49) has a non-vanishing
determinant. Then only the first r constraints are second class and the remaining ones are first-class
constraints. The Lagrange multipliers corresponding to the first-class constraints cannot be determined
from (3.2.50). Thus, the equations of motion (3.2.47) with (3.2.48) contain undetermined Lagrange
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multipliers and therefore their solution (for given initial conditions) is not unique: two solutions f and
f ′ of the equations of motion (3.2.47) with (3.2.48), with the same initial condition at t = 0 (but with
distinct choices of the Lagrange multipliers corresponding to the first-class constraints), differ after an
infinitesimal time interval dt by

$ f (dt) = dt (λa − λ′a){φa
f.c., f }. (3.2.54)

Here φa
f.c. denotes the first-class constraints. A transformation of the canonical variables, which relates

different solutions of the equations of motion, is called a gauge transformation. This is the genuine
and general definition of the gauge transformations, examples of which we encountered in the preceding
section in the case of field theoretical models. Equation (3.2.54) shows that the first-class constraints are
the generators of the (infinitesimal) gauge transformations. All solutions of the equations of motion with
the same initial conditions describe the same physical process; in other words, all points in the phase
space, which are related by gauge transformations, describe the same physical state of the system. Thus,
a first-class constrained theory has a gauge freedom and is called degenerate.

The choice of a unique solution for the equations of motion for given initial conditions in a degenerate
theory is achieved by imposing a gauge on the original theory, i.e. by introducing additional gauge-fixing
conditions

χa(qi , pi ) = 0. (3.2.55)

The number of gauge-fixing conditions is equal to the number of first-class constraints and together with
the latter, the gauge-fixing conditions must form a set of second-class constraints, that is

det |{φa, χb}p| = 0. (3.2.56)

Now the relations analogous to (3.2.50), but including both φa and χa , determine the Lagrange multipliers
corresponding to the first-class constraints and the ambiguity in the solution of the equations of motions
is removed.

The standard examples of a first- and a second-class constrained system are the massless and the
massive vector fields, respectively. It turns out that a massive vector field is subject to two second-class
constraints. This means that among the four field components in the four-dimensional spacetime and
the four conjugate momenta, there are only six independent degrees of freedom (three fields and three
generalized momenta). In the Hamiltonian treatment of a massless vector field, two first-class constraints
arise and therefore two gauge-fixing conditions have to be introduced. Thus, there are only two physical
field components and two physical momenta. We shall consider this system in the next subsection.

♦ Transition to physical variables for systems with first-class constraints and for a specific choice of
gauge conditions

Let us consider in more detail the case of a constrained system with only first-class constraints φa (a =
1, . . . , r). This case is important because many gauge-field models belong to this type. The first-class
constraints satisfy the condition of involution:

{φa, φb} =
∑

d

cabd(p, q)φd (3.2.57)

where the coefficients cabd may depend, in general, on pi , qi . This involution condition follows from the
fact that if all the constraints are first class, there are no submatrices of {φa, φb} with non-zero determinant
(on the surface defined by the constraints φa = 0 (a = 1, . . . , r)). We assume that the φa (a = 1, . . . , r)
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include all the constraint generations (i.e. primary, secondary, etc). Thus, they satisfy the consistency
condition (cf (3.2.45))

{H, φa} = cab(p, q)φb (3.2.58)

with some coefficients cab(p, q). In order to separate out the physical variables, we have to impose r
gauge conditions

χa(p, q) = 0 (3.2.59)

satisfying (3.2.56). Let us choose them in such a way that their mutual Poisson brackets vanish:

{χa, χb} = 0. (3.2.60)

Then, the physical canonical variables q̃i , p̃i parametrize the surface (subspace)

χa(p, q) = 0 φa(p, q) = 0 a = 1, . . . , r (3.2.61)

and the complete set of canonical (both physical and non-physical) variables can be chosen as follows:

q = (χa, q̃i ) p = (pa, p̃i ) a = 1, . . . , r; i = 1, . . . , n − r (3.2.62)

where pa are the momenta canonically conjugated to χa . Condition (3.2.56) now takes the form

det

∣∣∣∣∂φa

∂pb

∣∣∣∣ = 0 (3.2.63)

so that the constraints φa = 0 allow us to express the variables pa (a = 1, . . . , r) in terms of other
variables. Thus the physical subspace �2(n−r) of the total canonical phase space R2n is defined by the
equations

qa ≡ χa = 0 pa = pa( p̃i , q̃i ) a = 1, . . . , r; i = 1, . . . , n − r (3.2.64)

and the variables p̃i , q̃i are the physical canonical variables. The physical Hamiltonian Hph reads

Hph( p̃i , q̃i ) = H (p, q)|φ=χ=0. (3.2.65)

The initially constrained system with Hamiltonian H and the reduced system with Hph are totally
equivalent (problem 3.2.1, page 98). Different choices of gauge conditions lead only to canonical
transformations in the physical subspace �2(n−r) and do not affect the physical results.

♦ The Hamiltonian path integral for constrained systems

Now we are ready to quantize a constrained system with the help of path integrals. As just explained,
a constrained system is equivalent to an unconstrained one with a reduced phase space consisting of the
variables q̃i and p̃i . The Hamiltonian path integral for this unconstrained system has the well-known
simple form ∫

Dq̃i D p̃i exp

{
i
∫

dt [ ˙̃qi p̃i − Hph]
}
. (3.2.66)

However, as we have already mentioned, we do not normally use this choice of unconstrained parameters
because in the primordial constrained parametrization it is easier to find a manifestly Lorentz or gauge-
invariant formulation of the theory. Thus, it is practically important to rewrite path integral (3.2.66) in
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terms of the original variables pA, qA (A = 1, . . . , n). It is not difficult to verify that the integral∫ ∏
A

DpADqA

∏
a

Dλa

∏
τ,a

δ(χa)
∏
τ

det |{φa, χb}|

× exp

{
i
∫

dτ [pAq̇A − H (p, q)− λaφa(p, q)]
}

(3.2.67)

A = 1, . . . , n; a = 1, . . . , r

fits the requirement. Indeed, integrating over the Lagrange multipliers λa , we obtain, from (3.2.67),

K (q, t; q0, t0) =
∫ ∏

A

DpA DqA

[∏
τ,a

δ(χa)δ(φa)

]∏
τ

det |{φa, χb}|

× exp

{
i
∫

dτ [pAq̇A − H (p, q)]
}
. (3.2.68)

In terms of the variables p̃i , q̃i , pa, qa (cf (3.2.64)) the pre-exponential factor in the integrand can be cast
into the form ∏

τ,a

δ(χa)δ(φa)
∏
τ

det |{φa, χb}| =
∏
τ,a

δ(χa)δ(φa)
∏
τ

det

∣∣∣∣∂φa

∂pb

∣∣∣∣
=
∏
τ,a

δ(qa)δ(pa − pa( p̃, q̃)). (3.2.69)

Thus, after an integration over pa, qa , the path integral (3.2.67) is reduced to (3.2.66).
This is the general form of the Hamiltonian path integral for a first-class constrained system. This

result can be extended to a system with both first- and second-class constraints. This generalization is
not difficult because after introducing the gauge-fixing conditions, even a first-class constrained system
formally becomes a second-class one. If the set of constraints {φa} consists of first-class constraints
φa

1st and second-class constraints φa
2nd, we find (Gitman and Tyutin 1990) that the evolution operator or

generating functional for an arbitrary system with constraints is given by the path integral

K (q, t; q0, t0) =
∫ ∏

A

DqA DpA

[∏
τ,a

δ(φa
2nd)δ(φ

a
1st)δ(χ

a)

]
×
[∏
τ

det
1
2 ({φa

2nd, φ
b
2nd}) det({φa

1st, χ
b})
]

exp

{
i
∫

dt [q̇A pA − HT]
}

(3.2.70)

(HT is the total Hamiltonian, cf (3.2.48)). This is the Hamiltonian path integral for an arbitrary constrained
system. It has the following properties:

• it is invariant under canonical transformations;
• it is invariant with respect to the choice of an equivalent set of constraints and
• it is independent of the choice of the gauge-fixing conditions.

We shall not discuss systems with second-class constraints and therefore we drop a detailed derivation
of (3.2.70). The consideration in the subsequent subsections will be based on a field theoretical
generalization of path integral (3.2.68).
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3.2.3 Yang–Mills fields: constrained systems with an infinite number of degrees of freedom

Let us now turn to constrained systems with an infinite number of degrees of freedom. The examples
we have in mind are the gauge fields: the Abelian gauge theory corresponding to the electromagnetic
field and the non-Abelian Yang–Mills fields. The transition amplitudes for the quantum versions of these
theories can be obtained as for unconstrained field systems: we start from a constrained system with a
finite number of degrees of freedom considered in the preceding subsection and then generalize the result
to the corresponding field models (with an infinite number of degrees of freedom). But first of all, we
should clarify the structure of constraints in the gauge-field models.

♦ Electrodynamics as a system with constraints

We have already mentioned that electrodynamics is an example of a field system with constraints (cf
(3.2.34) and (3.2.35)). Here, we shall consider the Hamiltonian structure of this important theory in more
detail with the further aim of quantizing it and constructing transition amplitudes in terms of path integrals.

As initial variables we can choose the fields Aµ(x) with the Lagrangian

Le = − 1
4 (∂µAν − ∂ν Aµ)

2 (3.2.71)

or the fields Aµ(x) together with the tensor Fµν(x) considered as independent variables and with the
Lagrangian

Le = − 1
2 (∂µAν − ∂ν Aµ − 1

2 Fµν)F
µν. (3.2.72)

These alternatives are said to be the second- and first-order formalisms in the case of Lagrangians (3.2.71)
and (3.2.72), respectively. Of course, they both lead to the same physical result: the variation with
respect to Fµν in (3.2.72) gives the constraint which is nothing other than expression (3.2.19) for the
electromagnetic tensor and its substitution into (3.2.72) gives Lagrangian (3.2.71). We shall use the first-
order formalism, i.e. Lagrangian (3.2.72).

Let us rewrite (3.2.72) in three-dimensional notation, i.e. separate the four-dimensional indices µ, ν
into time- (µ, ν = 0) and spacelike (µ, ν = k, l = 1, 2, 3) parts. Then, omitting the total divergence,
(3.2.72) can be presented in the form

Le = Ek Ȧk − H (Ek, Ak)+ A0C(Ek) (3.2.73)

where

Ȧk = ∂0 Ak Ek = Fk0 Bk = 1
2εi j k Fj i (3.2.74)

H (E, A) = 1
2 (E

2
k + B2

k ) C(E) = ∂k Ek . (3.2.75)

The magnetic field Fkl is supposed to be expressed in terms of Ak :

Fkl = ∂l Ak − ∂k Al . (3.2.76)

It is clear that H (Ek, Ak) is the Hamiltonian of the system, while Ek and Ak (k = 1, 2, 3) are pairs
of canonically conjugate momenta and generalized coordinates, respectively, and thus we can postulate
Poisson brackets for them in the form

{Ek(x), Al(y)} = δklδ(x − y). (3.2.77)

As we have already pointed out, the timelike potential A0(x) plays the role of a Lagrange multiplier and
its variation in the action corresponding to (3.2.73) produces the constraint (cf (3.2.35))

∂k Ek = 0. (3.2.78)
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χ(Aµ(x), x) = 0
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Figure 3.10. Graphical representation of the orbits generated by a gauge group and of the surface defined by a gauge
condition.

This constraint satisfies the self-consistency conditions (cf (3.2.57) and (3.2.58)):

{∂k Ek(t, x), ∂l El(t, y)} = 0 (3.2.79){(∫
d3x H (Ek(t, x), Ak(t, x))

)
, ∂k Ek(t, y)

}
= 0 (3.2.80)

so that there are no additional higher-order (secondary, etc) constraints in this case.
The next step is to fix the subsidiary gauge condition or simply gauge χ = 0 (cf (3.2.55)). For

electrodynamics, the following gauges are most commonly used:

∂k Ak = 0 the Coulomb gauge (3.2.81)

∂µAµ = 0 the Lorentz gauge (3.2.82)

(recall that index k in (3.2.81) runs over 1, 2, 3, while the index µ in (3.2.82) runs over 0, 1, 2, 3). Both
conditions ((3.2.81) and (3.2.82)) obviously satisfy the necessary condition det{C(Ek), χ} = 0, where χ
stands for a gauge condition (cf (3.2.56)). For example, for the Coulomb gauge, we have

{∂k Ak(t, x), ∂l Al(t, y)} = 0 (3.2.83)

{∂k Ek(t, x), ∂l Al(t, y)} = ∂i∂iδ
(3)(x − y). (3.2.84)

The three-dimensional Laplacian in the right-hand side of (3.2.84) is reversible and has non-zero
determinant.

Thus the gauge conditions lead to an equation which defines the parameter ε(x) of the gauge
transformations (cf (3.2.20))

Aµ(x) −→ Aµ(x)+ ∂µε(x). (3.2.85)

A class of fields related by these transformations for all ε(x) is called an orbit of the gauge group. Gauge
invariance means that the fields Aµ and Aµ+ ∂µε describe the same physical state for any α(x). A gauge
condition chooses a representative from each class of physically (gauge) equivalent fields. An orbit can be
depicted schematically as a line with points which are all physically equivalent and can be converted into
each other by means of the gauge transformations. The gauge condition can be represented as a surface
which crosses each orbit once (see figure 3.10).

Note that we have presented a simplified version of the analysis of electrodynamics as a system with
constraints. This is quite sufficient for our purpose. A more rigorous and complete approach (Gitman



62 Quantum field theory: the path-integral approach

and Tyutin 1990) considers the Lagrange multiplier A0 on equal footing with Ak and inputs the primary
constraint

E0 = 0 (3.2.86)

as a consequence of the equality
∂Le

∂(∂t A0)
= 0 (3.2.87)

(E0 is considered as a momentum which is canonically conjugate to A0). Then we should consider the
total Hamiltonian

HT
def≡ H (Ek, Ak)− A0C(Ek) (3.2.88)

and its Poisson bracket with the primary constraint (3.2.86) gives the secondary constraint{∫
d3x HC(Ek, E0, Ak, A0), E0

}
= ∂k Ek = 0 (3.2.89)

which coincides with (3.2.78). Thus, in this approach we have two constraints and, therefore, have to
input two subsidiary gauge conditions: e.g., in addition to the Coulomb gauge (3.2.81) we can input the
condition ∂k Ak − ∂l∂l A0 = 0 (Gitman and Tyutin 1990). We shall not follow this way of analysing gauge
systems. For the relatively simple gauge models which we shall encounter in this book, this simplified
formalism outlined here is quite enough.

♦ Constrained Hamiltonian mechanics of non-Abelian Yang–Mills fields

First, we shall introduce some convenient notation which will simplify the formula-writing for
Hamiltonians, constraints, gauge conditions, gauge transformations, etc. It is convenient to consider the
gauge field for some compact Lie groupG as a field Aµ(x) taking values in the corresponding Lie algebra
g. Of course, Aµ(x) is defined by its coefficients Aa

µ(x):

Aµ(x) = Aa
µ(x)T

a (3.2.90)

where T a , a = 1, . . . , dim g, form the basis of the Lie algebra g (the basis of generators of the group
G). We shall assume that T a are anti-Hermitian operators. Then, if g(x) is a gauge group element in the
adjoint representation (see supplement IV), the gauge transformations can be written as follows:

• infinitesimal transformations (3.2.8) corresponding to elements g(x) close to unity,

g(x) = 1I + ε(x) ≡ 1I + εa(x)Ta (3.2.91)

take the form
δAµ = ∂µε − [Aµ, ε] = Dµε (3.2.92)

where [· · · , · · ·] is the Lie algebra commutator (recall also that Dµ is the covariant derivative, see
(3.2.9)); and

• transformations with an arbitrary g(x) read as

Aµ(x) −→ Ag
µ(x) = g(x)Aµ(x)g−1(x)+ (∂µg(x))g−1(x). (3.2.93)

The gauge-field tensor Fµν in this notation is expressed through the gauge field via the matrix relation

Fµν = ∂νAµ − ∂µAν + g[Aµ,Aν]. (3.2.94)
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This notation allows us to avoid writing a lot of indices and to present expressions for the Yang–Mills
theory with an arbitrary group in compact form which is rather similar to the one for electrodynamics
(Abelian U(1) gauge theory).

In the first-order formalism (cf (3.2.72)), the Lagrangian for a non-Abelian theory reads as

LYM = 1
4 Tr{(∂νAµ − ∂µAν + g[Aµ,Aν] − 1

2Fµν)Fµν} (3.2.95)

where Fµν and Aµ are considered to be canonical variables. Passing to the three-dimensional notation as
in the case of electrodynamics, we can write (cf (3.2.74)–(3.2.76))

LYM = − 1
2 Tr[EkȦk − 1

2 H (Ek,Ak)+ A0C] (3.2.96)

where

Ek = Fk0 Bk = 1
2εi j kF j i H (Ek,Ak) = 1

2 (E
2
k + B2

k) (3.2.97)

C(x) = ∂kEk(x)− g[Ak(x),Ek(x)] (3.2.98)

Fkl = ∂lAk − ∂kAl + g[Aκ ,Al ]. (3.2.99)

The same Lagrangian can be presented in component form:

LYM = − 1
2 [Ea

k Ȧa
k − 1

2 H (Eb
k , Ac

k)+ Aa
0Ca]. (3.2.100)

Introducing the Poisson brackets

{Ea
k (x), Ab

l (y)} = δklδ
abδ(x − y) (3.2.101)

we can easily verify that

{Ca(x),Cb(y)} = g f abcCc(x)δ(x − y) (3.2.102){∫
d3x H (Eb

k , Ac
k),C

a(y)

}
= 0 (3.2.103)

where f abc are the structure constants of the gauge Lie algebra g. Thus Ca is the set of the first-class
constraints and they produce no new higher-order (secondary, etc) constraints.

According to the general method for quantizing systems with non-holonomic first-class constraints,
we have to add a subsidiary gauge condition. For the Yang–Mills fields, quite a number of gauges have
been invented; the most common are:

∂k Aa
k = 0 the Coulomb gauge (3.2.104)

∂µAa
µ = 0 the Lorentz gauge (3.2.105)

nµAa
µ = 0 the axial gauge (3.2.106)

where nµ is a unit four-vector.
Let us consider Coulomb gauge condition (3.2.104). Conditions (3.2.60) and (3.2.56) for this

concrete case read as follows:

{∂k Aa
k (x), ∂ j Aa

j (y)} = 0 (3.2.107)

det{Ca(x), ∂k Ab
k(y)} = det[∂k(∂k − g f abc Ac

k(x))δ(x − y)] = 0. (3.2.108)
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The correctness of (3.2.107) is obvious. For (3.2.108), in the Coulomb gauge the operator

M̂C
def≡ ∂k∂kδ

ab − g f abc Ac
k(x)∂k (3.2.109)

(C standing for Coulomb) is invertible in the framework of perturbation theory in the coupling constant
g. Indeed, the inverse operator can be determined from the integral equation for its kernel:

(M−1
C )ab(x, y) = 1

4π

δab

|x − y| +
g

4π

∫
dx ′ f acd Ac

k(x
′)

|x − x ′|∂k(M
−1
C )db(x ′, y) (3.2.110)

which can be solved by iterations in g. Note that for large fields Aa
k (so that a perturbative solution is

not valid) the operator M̂C acquires zero eigenvalues so that condition (3.2.108) proves to be violated. In
fact, this is a general situation for any gauge condition and it is called the Gribov multi-valuedness or the
Gribov ambiguity (Gribov 1978). Since this multi-valuedness appears at large values of fields, it does not
influence the perturbation theory for gauge models. We shall not discuss this problem any further in this
book (for more details about this problem see, e.g., in Halpern and Koplik (1978) and Dell’ Antonio and
Zwanziger (1989)).

3.2.4 Path-integral quantization of Yang–Mills theories

We continue the study of Yang–Mills theory in the Coulomb gauge. The very form of this gauge (cf
(3.2.104)) prompts the orthogonal separation into longitudinal and transversal parts:

Ak = AL
k + AT

k (3.2.111)

where

AL
k (x)

def≡ ∂ka(x) for an appropriate a(x) (3.2.112)

∂kAT
k = 0. (3.2.113)

It is seen that the transversal part AT
k plays the role of the unconstrained physical coordinates q̃ (see

section 3.2.2). The momenta conjugate to them are the transversal components of the gauge tensor ET
k

and the constraint condition is imposed on the longitudinal part EL(x): if we introduce L(x) by the relation

EL
k (x) = ∂kL(x)

constraint (3.2.98) proves to be

∂k∂kL − g[Ak, ∂kL] − g[Ak,E
T
k ] = M̂CL − g[Ak,E

T
k ] = 0, (3.2.114)

where we meet again the operator M̂C defined in (3.2.109). This equation allows us to express the
longitudinal component EL

k through ET
k and AT

k . After substituting this solution into the Hamiltonian
H (A,E), we obtain the Hamiltonian Hph(AT

k ,E
T
k ) in terms of the unconstrained variables AT

k and ET
k .

Thus the true physical variables for a Yang–Mills field are the components AT
k of the three-vector Ak

subjected to the constraint (3.2.113). This means that the Yang–Mills field has only two possible states of
polarization.

Now we are ready to write down the path integral for the corresponding S-matrix. In terms of the
unconstrained physical variables, it is a direct generalization of that for a scalar field (cf (3.1.85))

KS(a
∗(k), a(k); t, t0) = lim

t→∞
t0→−∞

∫ ∏
j,b

Da∗b
j (k, τ )Dab

j (k, τ )
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× exp

{
i
∫

d3k
1

2

[ dimG∑
b=1

2∑
j=1

a∗b
j (k, t)a

b
j (k, t) + a∗b

j (k, t0)a
b
j (k, t0)

}

× exp

{
i
∫ t

t0
dτ
∫

d3x

[
1

4
Tr(Ė

T
l (x, τ )A

T
l (x, τ )− ET

l (x, τ )Ȧ
T
l (x, τ ))

− Hph(E
T
l ,A

T
l )

]}
(3.2.115)

where (cf (3.1.77))

(AT)bl (r, τ ) =
1

(2π)3/2

2∑
j=1

∫
d3k

1√
2ω
(a∗b

j (k, τ )u
j
l (−k)e−ik·r + ab

j (k, τ )u
j
l (k)e

ik·r)

(ET )bl (r, τ ) =
i

(2π)3/2

2∑
j=1

∫
d3k

√
ω

2
(a∗b

j (k, τ )u
j
l (−k)e−ik·r − ab

j (k, τ )u
j
l (k)e

ik·r)
(3.2.116)

ω =
√

k2 + m2 (3.2.117)

with the two polarization vectors u j
l , j = 1, 2 (any two orthonormal vectors orthogonal to k). The

asymptotic conditions have the form (cf (3.1.86))

a∗b
j (k, t)−−−−→t→∞ a∗b

j (k) exp{iωk t} ab
j (k, t0)−−−−→t→−∞ ab

j (k) exp{−iωk t0}. (3.2.118)

Generally speaking, this formula solves the problem of constructing the S-matrix for the Yang–
Mills theories. However, it is not practically convenient. The main obstruction to its direct application
is the necessity of knowing the Hamiltonian Hph. An explicit derivation of this Hamiltonian requires the
solution of equation (3.2.114), in other words, the inversion of operator M̂C. In fact, we can only do this
perturbatively, i.e. we can present M̂−1

C as an infinite series in the coupling constant g. Although this is just
a technical difficulty, it prevents actual practical calculations in gauge theories as well as troubling their
general analysis (e.g., proof of their renormalizability). To overcome this difficulty, we can use formulae
(3.2.67)–(3.2.69) (more precisely, their generalization to an infinite number of degrees of freedom) and
present the S-matrix as the path integral over all fields Ak , Ek (k = 1, 2, 3):

KS(a
∗(k), a(k); t, t0) = lim

t→∞
t0→−∞

∫ dimG∏
a=1

[
DAa

0(x)
3∏

k=1

(DAa
k (x)DEa

k (x))

]

× exp

{
i
∫

d3k
1

2

[ dimG∑
b=1

2∑
j=1

a∗b
j (k, t)a

b
j (k, t) + a∗b

j (k, t0)a
b
j (k, t0)

}

× exp

{
i

4

∫ t

t0
dτ
∫

d3x Tr[Ėl(x, τ )Al(x, τ )− El(x, τ )Ȧl(x, τ )

+ E2
l (x, τ )+ B2

l (x, τ )− 2A0(x, τ )(∂lEl(x, τ )− g[Al(x, τ ),El(x, τ )])]
}

×
∏
r,τ

δ(∂lAl) det M̂C[A]. (3.2.119)

Here the boundary terms a∗b
j (k, t), ab

j (k, t0) are defined by the preceding formula (3.2.118) (i.e. they are

constructed only via the transversal components AT
l of the Yang–Mills field).
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The momenta El enter the exponent of (3.2.119) quadratically and we can integrate over them. For
the normal symbol of the S-matrix, this yields:

S = N−1
∫ dimG∏

a=1

3∏
µ=0

DAa
µ(x)

∏
x

δ(∂lAl) det M̂C[A] exp

{
i
∫

dx
1

8
Tr(FµνF

µν)

}
(3.2.120)

where the integration goes over all the fields Aµ, with a fixed asymptotic behaviour for their transversal
(in the three-dimensional sense) components:

AT
l (x)−−−−→t→±∞ AT

l (x, in
out ) (3.2.121)

(AT)bl (x; in
out ) =

1

(2π)3/2

2∑
j=1

∫
d3k

1√
2ω
(a∗b

j (k; in
out )u

j
l (k)e

−ik·r+iωt + ab
j (k; in

out )u
j
l (k)e

ik·r−iωt )

(3.2.122)

ab
j (k; in) = ab

j (k) a∗b
j (k; out) = a∗b

j (k) j = 1, 2.

The normalization factorN−1 has appeared due to the integration over the momenta El .
In path integral (3.2.120), the δ-functional together with the determinant select one representative

from each class (orbit) of gauge-equivalent fields. Note that the asymptotic conditions (3.2.121) are also
adjusted to the Coulomb gauge condition.

♦ Diagram technique for the Yang–Mills theory in Coulomb gauge

Separating out terms higher than second order in the exponent of the integrand in (3.2.120) and expanding
the exponential in the perturbation series generate the Feynman diagram techniques for Yang–Mills theory.
The propagator is defined by the Gaussian integral (i.e. the integral (3.2.120) with all higher-order terms
being dropped out)

Z0[J] ≡ Z[J a]|g=0 = N−1
∫ dimG∏

a=1

3∏
µ=0

DAa
µ(x)

∏
x

δ(∂lAl) det M̂C[A]

× exp

{
i
∫

dx Tr

[
1

8
(∂νAµ − ∂µAν)2 − 1

2
JµAµ

]}
(3.2.123)

where the class of functions to be integrated over is defined by the boundary conditions (3.2.121) and
(3.2.122) imposed on AT

k .
The new feature of this free generating functional in comparison with that for a field theory without

constraints (cf (3.1.100)) is the presence of the δ-function in the integrand of (3.2.123). This integral
reminds us of the problem of a Brownian particle with inertia (see section 1.2.4, equation (1.2.70)). As
we learned there, in order to solve integral (3.2.123), we have to find the extremum of the exponent under
the condition defined by the δ-functional with the help of the Lagrange multiplier method or, equivalently,
we just use the path-integral representation (3.1.193) for the δ-functional. The latter method gives

Z0[J b] = N−1
∫ dimG∏

a=1

3∏
µ=0

DAa
µ(x)Dλ(x) exp

{
i
∫

dx

[
− 1

4
(∂ν Aa

µ− ∂µAa
ν)

2 + J aµAa
µ + λa∂k Aa

k

]}
.

(3.2.124)
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Solution of the extremality equation yields (problem 3.2.2, page 98)

Z0[J b] = exp

{
i

2

∫
dx dy J aµ(x)DµνC (x − y)J aν(y)

}
(3.2.125)

where DµνC (x − y) is the propagator of the Yang–Mills field in the Coulomb gauge:

Dml
C (x) = − 1

(2π)4

∫
dk e−ikx 1

k2 + iε

(
δml − kmkl

|k|2
)

(m, l = 1, 2, 3)

D00
C (x) = − 1

(2π)4

∫
dk e−ikx 1

|k|2 (3.2.126)

Dm0
C (x) = D0m

C (x) = 0.

This expression clearly shows that only the transversal components AT
k really propagate in time.

Using the usual methods of the path-integral formalism, i.e. representing the higher-order
(interaction) terms via functional derivatives, we could now develop the complete perturbation theory
technique, including the diagram representation. However, the essential shortcoming of the Coulomb
gauge and the corresponding perturbation theory expansion is the absence of an explicit relativistic
invariance. Therefore, instead of dealing with the physically transparent but technically inconvenient
(because of the absence of an explicit Lorentz covariance) Coulomb gauge, we shall learn, in the next
subsection, a method for a transition to any gauge condition in the path integral and then develop the
perturbation theory rules for the relativistically invariant Lorentz gauge (3.2.82) and its generalizations.

3.2.5 Covariant generating functional in the Yang–Mills theory

In order to construct an explicitly relativistic invariant S-matrix in each order of the perturbation theory, all
the ingredients of the perturbation expansion should have simple transformation properties with respect
to the Poincaré group. Such an expansion is called covariant perturbation theory. In particular, for
Yang–Mills theories, such a technique must be based on some relativistically invariant gauge condition.
In the case of pure Yang–Mills theory (i.e. without matter fields) the simplest condition is the Lorentz
gauge (3.2.82). In this subsection we shall show that, using the known path-integral representation for
the generating functional (for the S-matrix or Green functions) in the Coulomb gauge, we can pass to
the Lorentz (or any other suitable) gauge condition (Faddeev and Popov 1967, De Witt 1967). From a
geometrical point of view, we have to transfer the path-integral measure defined on the surface specified
by the Coulomb gauge ∂kAk = 0 to the surface specified by the Lorentz gauge ∂µAµ = 0.

♦ Faddeev–Popov trick

Let us introduce the functional$L[A] defined by the equality

$L[A]
∫
Du(x) δ[∂µAu

µ] = 1 (3.2.127)

where Au
µ denotes the gauge transformed field: Au

µ(x)
def≡ u(x)Aµu−1(x) + (∂µu(x))u−1(x) and the

integration is carried out with the measure

Du(x) =
∏

x

dHu(x) (3.2.128)
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where u(x) are elements of the gauge groupG and dHu(x) at each x is the left- and right-invariant measure
(the so-called invariant Haar measure, see supplement IV) on the groupG, i.e.

dH(u0u) = dH(uu0) = dHu u, u0 ∈ G. (3.2.129)

Due to the latter property, the functional$L[A] is gauge invariant:

$L[Au] = $L[A]. (3.2.130)

Since the left-hand side of (3.2.127) is equal to unity, we can harmlessly insert it into the integrand
of (3.2.120), so that the S-matrix symbol now takes the form

S = N−1
∫ 3∏
µ=0

DAa
µ(x)Du(x) δ[∂lAl ] det M̂C[A]

×$L[A]δ[∂µAu
µ] exp

{
i
∫

dx 1
8 Tr(FµνFµν)

}
. (3.2.131)

The next step is to introduce, in analogy with (3.2.127), one more gauge-invariant functional $C[A],
defined by the equality

$C[A]
∫
Du(x) δ[∂kAu

k ] = 1. (3.2.132)

It is readily seen that on the gauge surface ∂kAk = 0, the functional $C[A] coincides with det M̂C[A].
Indeed, if Ak satisfies ∂kAk = 0, the only contribution to the integral in (3.2.132) (at least in the framework
of the perturbation theory) comes from the infinitesimal vicinity of u(x) = 1. Hence, we can put
u(x) ≈ 1 + α(x) and, therefore,

∂kAu
k = ∂k∂kα(x)− g[Ak(x), ∂kα(x)] ≡ M̂Cα(x). (3.2.133)

Taking into account that the substitution u(x) → α(x) = u(x) − 1 has unit Jacobian, Du(x) = Dα(x),
we can calculate integral (3.2.132) explicitly (problem 3.2.3, page 99)

$C[A]|∂kAk=0 =
∏
τ

det M̂C(A). (3.2.134)

After changing the integration variables

Aµ −→ Au−1

µ (3.2.135)

(with unit Jacobian) and using the equality (3.2.134), integral (3.2.131) can be rewritten as follows:

S = N−1
∫ dimG∏

a=1

3∏
µ=0

DAa
µ(x)Du(x) δ[∂µAµ]$L[A]δ[∂lAu−1

l ]$C[A]

× exp

{
i
∫

dx 1
8 Tr(FµνF

µν)

}
. (3.2.136)

The definition (3.2.132) of the functional$C[A] together with the substitution (the change of the variables
u−1 → u in the integral over u),

Au−1 −→ Au (3.2.137)



Path-integral quantization of gauge-field theories 69

show that (3.2.131) is, in fact, the expression for the S-matrix in the Lorentz gauge:

S = N−1
∫ 3∏
µ=0

DAa
µ(x) δ[∂µAµ]$L[A] exp

{
i
∫

dx 1
8 Tr(FµνF

µν)

}
. (3.2.138)

Quite similarly to the case of the functional$C[A] (cf (3.2.134)), we can show that

$L[A]|∂µAµ=0 = det M̂L(A) (3.2.139)

where

M̂Lα(x)
def≡ �α − g∂µ[Aµ, α]. (3.2.140)

This method of transition from the Coulomb gauge condition to any other one (in particular, to the
covariant Lorentz gauge condition) is called the Faddeev–Popov trick (Faddeev and Popov 1967).

♦ Asymptotic boundary conditions in the Lorentz gauge: justification of the Faddeev–Popov trick

When performing the manipulations which have led us to the covariant gauge condition in the path
integral (3.2.138) for the S-matrix, we did not pay any attention to the asymptotic conditions, so that
our consideration looks a little formal. In fact, we need two types of asymptotic condition:

(i) First, we did not clarify the way to calculate det M̂L(A): the complete definition of operator M̂L(A)
requires the determination of asymptotic conditions for τ → ±∞. Indeed, to define the determinant
explicitly, it is convenient to use the formula

det M̂L(A) = exp{Tr ln M̂L(A)}
= exp{Tr ln�+ Tr ln(1 +�−1K (A))} (3.2.141)

where the operator K is the second term in the operator M̂L in (3.2.140): K (A)f
def≡ −g∂µ[Aµ, f].

The trace operation in (3.2.141) also implies integration over the coordinates. The first term in the
exponential (3.2.141) gives a non-essential contribution to the normalization constant (since it is
independent of the gauge fields). The second term gives a contribution to the action which can be
written as the series

Tr ln(1 +�−1K (A)) =
∑

n

(−1)n+1

n
Tr(�−1 K )n

=
∞∑

n=1

(−1)n+1 gn

n

∫
d4x1 · · · d4xn Tr(Aµ1(x1) · · ·Aµn (xn))

× ∂µ1 D(x1 − x2) · · · ∂µn D(xn − x1). (3.2.142)

Here D(x) is the Green function of the d’Alembert operator �, which, of course, is not uniquely
defined unless appropriate boundary conditions are imposed. Any Green function of the d’Alembert
operator can be presented via the Fourier transform

D = − 1

(2π)4

∫
d4k e−ikx 1

k2
(3.2.143)

but without a rule for pole bypassing in the integrand, this expression is formal. Boundary conditions
just determine a way of bypassing the singularity and select one of the possible Green functions.
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(ii) Essentially the same problem appears for the Green function DL
µν(x − y) corresponding to the

quadratic form in the Yang–Mills action with a Lorentz gauge (the superscript ‘L’ is related to
‘Lorentz’, not to ‘longitudinal’). The formal Fourier transform for DL

µν(x − y) reads as

DL
µν(x) = − 1

(2π)4

∫
d4k e−ikx

(
gµν − kµkν

k2

)
1

k2 . (3.2.144)

Again, we have to clarify the rule for bypassing the singularities.

In order to derive the asymptotic conditions correctly, we have to transform a path integral with the
Coulomb gauge condition into a path integral with the Lorentz gauge condition before the transition to the
limit t → ∞, t0 → −∞ in the expression for the S-matrix. Note that the change of variables (3.2.135)

Aµ −→ Au−1

µ = u−1Aµu + (∂µu−1)u (3.2.145)

used in the transformation of the path integral to the Lorentz gauge should not violate the Coulomb
condition ∂kAk = 0, as well as the boundary conditions (3.2.118) for the transversal components AT

k , at
the boundary times t and t0. This implies a restriction for the group elements:

u(r, t) = u(r, t0) = 1 (3.2.146)

or, equivalently, a restriction for the corresponding Lie algebra elements

α(r, t) = α(r, t0) = 0 u(x) = eα(x). (3.2.147)

Thus, the operator M̂L(A) acts in the space of the functions α(x) (with values in the Lie algebra) which
satisfy conditions (3.2.147). Hence, we have to look for the Green function entering the expansion
(3.2.142) subjected to the same conditions (3.2.147). Such a Green function has the form

D1(x, y) = 1

(2π)3

∫
d3k eik(x−y) sin(|k|(x0 − t0)) sin(|k|(y0 − t))

|k| sin(|k|(t − t0))
for x0 < y0 (3.2.148)

D1(x, y) = D1(y, x) for x0 ≥ y0.

With this definition, the operator M̂L(A) proves to be positively defined and this fact justifies the absence
of the absolute value sign on the right-hand side of (3.2.139) (otherwise, we should write | det M̂L(A)|).

We shall return soon (see (3.2.156)) to the question about pole bypassing in (3.2.143), but before
that, let us treat the Green function DL

µν(x) (3.2.144) in the Lorentz gauge in a similar way. First, we have
to solve the equations

�Aµ = Jµ (3.2.149)

∂µAµ = 0 (3.2.150)

where the source Jµ satisfies the consistency condition

∂µJµ = 0 (3.2.151)

with the boundary conditions at finite times t, t0 (cf (3.2.116) and (3.2.118)):

a∗
j (k, t) = a∗

j (k) exp{iωk t}
a j (k, t0) = a j (k) exp{−iωk t0} j = 1, 2

∂kAk(r, t) = ∂kAk(r, t0) = 0

∂0A0(r, t) = ∂0A0(r, t0) = 0

(3.2.152)
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(the last condition follows from the actual system (3.2.149)). The solution of this system has the form

AT
l (x) = (A(0))Tl (x)+

∫
d4 y Dc(x, y)JT

l (y) t0 ≤ x0, y0 ≤ t

(A(0))Tl (x)
def≡ 1

(2π)3/2

2∑
j=1

∫
d3k

1√
2ω
(a∗

j (k)u
j
l (−k)e−ik·r+iωx0 + a j (k)u

j
l (k)e

ik·r−iωx0
) (3.2.153)

A0(x) =
∫

d4 y D2(x, y)J0(y)

AL
l (x) =

∫
d4 y D2(x, y)JL

l (y) (3.2.154)

where D2(x, y) is another Green function of the d’Alembertian, which this time acts in the space of
functions f (x) with the boundary conditions

∂0 f (x)|x0=t = ∂0 f (x)|x0=t0 = 0.

This Green function reads as

D2(x, y) = 1

(2π)3

∫
d3k eik(x−y) cos(|k|(x0 − t)) cos(|k|(y0 − t0))

|k| sin(|k|(t − t0))
for x0 < y0 (3.2.155)

D2(x, y) = D2(y, x) for x0 ≥ y0.

The Green functions D1 and D2 look somewhat disturbing because they obviously do not have well-
defined limits at t → ∞, t0 → −∞, while such limits exist for the transversal components of the
Yang–Mills field (see (3.2.153); this relates to the fact that AT

l corresponds to the physical polarizations
of the Yang–Mills field). On the other hand, the path integral for the S-matrix in the Lorentz gauge
does exist, since it is, by construction, equal to that in the Coulomb gauge for which the infinite time
limit is well defined. Hence, the combined contribution of the functions D1 and D2 to the perturbation
expansion leads to a well-defined limit expression. A straightforward proof of this fact in all orders
of the perturbation theory is not easy. Formally, this limit can be found by the simultaneous identical
regularization of the Green functions D1 and D2 (Faddeev and Slavnov 1980). The most convenient way
is to add an infinitesimal imaginary quantity to the momentum variable:

k2 −→ k2 − iε. (3.2.156)

After this substitution, the oscillating function in (3.2.148) and (3.2.155) will either increase or decrease
and have infinite time limits. Moreover, in this case, the infinite time limits of both D1 and D2 coincide
with the standard causal Green function Dc(x).

This defines the rule of pole bypassing for the function D in (3.2.143) (cf (3.1.93)) and from (3.2.153)
and (3.2.154) we can read off the covariant Green function (3.2.144), together with the bypassing rule:

DL
µν(x) = − 1

(2π)4

∫
d4k e−ikx

(
gµν − kµkν

k2 + iε

)
1

k2 + iε
. (3.2.157)

In the Lorentz gauge, it is this Green function that appears, instead of the Coulomb function DC
µν , in

an expression analogous to (3.2.125) for the generating functional Z0[J ] in the zero coupling constant
approximation.

Thus, we conclude that all singularity bypasses are fixed by the infinitesimal shift of the momentum
variables in the complex plane: (k2 + iε)−1, and the path-integral representation for the S-matrix of the
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Yang–Mills theories in the Lorentz gauge has the form (3.2.138), where the integration goes over fields
with the following asymptotic behaviour:

Aµ(x)−−−−→
x0→−∞

Aµ(x; in) Aµ(x)−−−−→
x0→∞

Aµ(x; out) (3.2.158)

with Aµ(x; in), Aµ(x; out) being the solutions of the equations

�Aµ(x) = 0, ∂µAµ(x) = 0 (3.2.159)

parametrized by the amplitudes a∗
µ(k), aµ(k), such that

a0 = 0 klal = 0

a∗
0 = 0 kla∗

l = 0.

Note that in Aµ(x; in) the amplitude al is fixed, while in Aµ(x; out) it is the amplitude a∗
l that is fixed.

♦ S-matrix for Yang–Mills theory in the α-gauge

Formula (3.2.138) is not the only possible relativistically invariant expression for the S-matrix in Yang–
Mills theory. The point is that we can integrate over gauge-equivalent classes of fields choosing not a
single representative from each class, but some compact subset of representatives. The only requirement
is that the resulting path integral be convergent, in which case this generalized approach may only change
the normalization factor. An explicit transition to the corresponding expression can be produced in much
the same way as that used when passing from the Coulomb to the Lorentz gauge.

Let us insert in the integrand of (3.2.120) unity represented in the form

1 = $B[A]
∫
Du(x) B[Au

µ] (3.2.160)

where B[Au
µ] is some gauge non-invariant functional, such that the integral on the right-hand side of

(3.2.160) is convergent. Acting as in the case of the transition from Coulomb to Lorentz gauges, we
obtain the path-integral representation for the S-matrix or generating functional of the type (3.2.138)
where δ(∂µAµ) det M̂L[A] is substituted by $B[A]

∫
Du(x) B[Au

µ]. The choice of the functional B[A] in
the form

B[Au
µ] = exp

{
− i

4α

∫
d4x Tr(∂µAµ)2

}
(3.2.161)

(α ∈ R is a parameter) leads to the perturbation theory with the following free Green function

Dαµν(x) = − 1

(2π)4

∫
d4k e−ikx

(
gµν − kµkν(1 − α)

k2 + iε

)
1

k2 + iε
. (3.2.162)

Varying the parameter α, we obtain the important particular cases:

(i) at α = 0, we return to the Lorentz gauge (note that in the limit α → 0, the functional αB[A] in
(3.2.161) is converted to the δ-functional);

(ii) at α = 1, we obtain the diagonal (in spacetime indices) Green function which is very convenient for
practical calculations.

The simplest way to derive the corresponding path-integral representation for the S-matrix and to
prove formula (3.2.162) goes as follows. Let us, first, transform the path integral (3.2.138) in the usual
Lorentz gauge into that in the generalized Lorentz gauge

∂µAµ(x) = a(x) (3.2.163)
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where a(x) is an arbitrary matrix function. To do this, we repeat the Faddeev–Popov trick using the
corresponding functional$a[A] defined by the equality

$a[A]
∫
Du(x) δ[∂µAu

µ − a] = 1. (3.2.164)

Note that, on the surface

∂µAµ − a = 0

the functional $a[A] coincides with det M̂L. Thus the generating functional for the S-matrix can be
written as

S = N−1
∫ 3∏
µ=0

DAa
µ(x) δ[∂µAµ − a]$L[A] exp

{
i
∫

dx 1
8 Tr(FµνFµν)

}
. (3.2.165)

Since the initial S-matrix functional does not depend on the function a(x), we can integrate it over a(x)
with the weight

exp

{
− i

4α

∫
d4x Tr a2(x)

}
(3.2.166)

which leads to a simple change in the normalization factor. This integration yields the S-matrix in the
form

S = N−1
∫ 3∏
µ=0

DAa
µ(x) det M̂L[A] exp

{
i
∫

dx Tr

[
1

8
FµνF

µν − 1

4α
(∂µAµ)2

]}
(3.2.167)

and, hence, produces the free Green function (3.2.162).
Extending the concept of gauge conditions, the functional (3.2.167) is called the S-matrix in the

α-gauge.

3.2.6 Covariant perturbation theory for Yang–Mills models

Having at our disposal the covariant generating functionals, obtained in the preceding subsection, we are
almost ready to develop a covariant perturbation expansion and the corresponding diagram techniques.
The only non-standard peculiarity of the functionals (3.2.167) or (3.2.138) is the presence of the non-
local functional det M̂L, so that they do not have the customary form of the Feynman functional exp {iS}
under the sign of the path integral, where S is the action of a system.

• Note, however, that in the case of quantum electrodynamics, the operator M̂L reduces to the
ordinary d’Alembertian (cf (3.2.140); for the Abelian case, the commutator in this formula identically
vanishes), so that det M̂(QED)

L does not depend on the gauge (electromagnetic) fields. Therefore, we
can just remove the determinant from the integral sign and readily develop the standard perturbation
theory expansion for quantum electrodynamics (see, e.g., Itzykson and Zuber (1980); for the standard
operator approach, see any textbook on quantum field theory, e.g., Bogoliubov and Shirkov (1959)).

In the general case of a non-Abelian Yang–Mills theory, the determinant can be expressed as a path
integral over anticommuting scalar fields which are commonly referred to as Faddeev–Popov ghosts.
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♦ Faddeev–Popov ghosts

Using the results of sections 2.6 and 3.1.3, the determinant det M̂L can be expressed via the integral
representation

det M̂L =
∫ dimG∏

d=1

Dc̄d Dcd exp

{
i
∫

d4x c̄a(x)Mabcb(x)

}
(3.2.168)

where c̄a , cb (a, b = 1, . . . , dimG) are anticommuting scalar functions (generators of the Grassmann
algebra). The boundary conditions for the fields c̄a , cb have essentially the same form as for the Yang–
Mills fields:

c(x)−−−−→
t→±∞ c(x; in

out )

c̄(x)−−−−→
t→±∞ c̄(x; in

out )
(3.2.169)

ca
j (x; in

out ) =
1

(2π)3/2

∫
d3k

1√
2ω
(λ∗a

j (k; in
out )e

−ik·r+iωt + βa
j (k; in

out )e
ik·r−iωt )

c̄a
l (x; in

out ) =
1

(2π)3/2

∫
d3k

1√
2ω
(β∗a

j (k; in
out )e

−ik·r+iωt + λa
j (k; in

out )e
ik·r−iωt ).

(3.2.170)

To obtain the chosen determinant, we have to input the zero boundary conditions for the anticommuting
amplitudes:

β∗a(k; out) = 0 λ∗a(k; out) = 0

βa(k; in) = 0 λa(k; in) = 0.

Using this integral representation, the S-matrix generating functional (3.2.167) can be cast into the
form

S = N−1
∫ 3∏
µ=0

DAµ(x)Dc(x)Dc̄(x) exp

{
i
∫

d4x LYM
α

}
(3.2.171)

here

LYM
α = Tr

[
1

8
FµνF

µν − 1

4α
(∂µAµ)2 − 1

2
c̄(�c − g∂µ[Aµ, c])

]
(3.2.172)

Aµ(x)−−−−→
t→±∞ Aµ(x; in

out )

c(x)−−−−→
t→±∞ c(x; in

out )

c̄(x)−−−−→
t→±∞ c̄(x; in

out ).

(3.2.173)

Due to the introduction of the fictitious (‘ghost’) fields c̄, c, called the Faddeev–Popov ghosts
(Faddeev and Popov 1967), we have managed to present the generating functional for the non-Abelian
Yang–Mills theory in the standard form of the path integration of exp{iSeff}, though with the effective
quantum action Seff including the non-physical anticommuting fields. This result allows us to develop the
perturbation theory for an arbitrary Yang–Mills model in much the same way as for any field theory.
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♦ Perturbation theory expansion and diagram techniques for the Yang–Mills theory

Let us pass in the usual way (cf section 3.1.1) to the generating functionalZ[J, η̄, η] for Green functions:

Z[J, η̄, η] = N−1
∫ 3∏
µ=0

DAµ(x)Dc(x)Dc̄(x)

× exp

{
i
∫

d4x LYM
α + J aµAa

µ + η̄aca + c̄aηa
}
. (3.2.174)

Here the sources η̄a and ηa anticommute with each other and with the fields c̄a and ca . The representation
of the higher-order (i.e. higher than quadratic) terms of the exponential in (3.2.174), which read as

Sint[Aµ, c̄, c] ≡ 1
8 Tr

∫
d4x (2g(∂νAµ−∂µAν)[Aµ,Aν]+g2[Aµ,Aν][Aµ,Aν]+gc̄∂µ[Aµ, c]) (3.2.175)

by the variational derivatives and followed by integration of the remaining Gaussian integrand yields

Z[J, η̄, η] = exp

{
iSint

[
1

i

δ

δ Jµ
,

1

i

δ

δη̄
,

1

i

δ

δη

]}
× exp

{
− i

2

∫
d4x d4 y[J a

µ(x)D
αab
µν (x − y)J b

ν + 2η̄a(x)Dab(x − y)ηb]
}
. (3.2.176)

Note that the derivatives with respect to η̄ act from the left, and those with respect to η act from the right.
The expansion of the first exponential in (3.2.176) in the Taylor series produces the Feynman diagram

technique listed in table 3.3.
Each Feynman diagram constructed of the elements from table 3.3 gives a contribution to the

corresponding Green function. The contribution of any diagram is accompanied by the combinatorial
factor (which can be straightforwardly derived from (3.2.176))

(−1)s

r

(
i

(2π)4

)l−V−1

(3.2.177)

where V is the number of vertices in the diagram, l is the number of internal lines, s is the number of
ghost loops and r is the diagram symmetry factor, counting the number of possible transpositions of the
internal lines of a diagram at fixed vertices (see also supplement III).

♦ Yang–Mills fields interacting with matter fields

The Yang–Mills fields and the corresponding particles in realistic physical models (in particular, photons,
gluons, W±, Z0-bosons; see below section 3.2.8 for a short discussion of the physical applications
of gauge theories) serve as interaction mediators between other fields, called matter fields. The latter
correspond to the particles (e.g., electrons, muons, quarks) which are the building blocks of any kind of
matter in nature. In fact, this terminology is rather conditional: for example, we can truly state that such a
basic ‘matter building block’ as the proton (as well as other hadrons) consists both of quarks and gluons.
However, nowadays this terminology is customary and we shall follow it.

The addition of matter fields (i.e. spinor or scalar fields) to a Yang–Mills model does not bring up any
new problems. The gauge group still acts on the gauge fields in the same way as in the absence of matter
fields and the classical initial Lagrangian still remains gauge invariant (see section 3.2.1). Therefore, path-
integral quantization requires a gauge condition which fixes the choice of representatives in the classes of
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Table 3.3. Correspondence rules for the Yang–Mills theory,

Physical quantity Mathematical expression Diagram element

Propagator
of gauge fields Dα ab

µν (k) = − δab

k2 + iε

(
gµν − (1 − α)kµkν

k2 + iε

) r r
µ, a ν, bk

Propagator
of ghost fields

Dab
g = − δab

k2 + iε

r r
a bk

Three-interaction
vertex

VA3 = −ig fabc[(p − k)ρgµν
+ (k − q)µgνρ + (q − p)νgµρ ]

r r
r

r

p, µ, a

k, ν, b

q, ρ, c

Four-interaction
vertex

VA3 = g2[ fabe fcde(gµρgνσ − gµσ gνρ)
+ face fbde(gµνgρσ − gµσ gνρ)
+ fade fcbe(gµρgσν − gµνgσρ)] r

r
r r

r
µ, a

ν, b ρ, c

σ, d

Ghost ↔ Yang–Mills
field vertex

Vc̄cA = −i
g

2
fabc(k − q)µ

r r
r

r

p, µ, a

k, b

q, c

gauge-equivalent Yang–Mills fields and provides the convergence of the path integral for the generating
functionals. Path integration over matter fields (spinor ψ̄ , ψ or scalar ϕ) occurs without any peculiarities.
Of course, a rigorous derivation, which we drop here (the gap is partially filled in problem 3.2.4, page 99),
must be based on the Hamiltonian formalism; essentially, it repeats the consideration previously outlined
for the pure Yang–Mills theory (see Faddeev and Slavnov (1980) and Gitman and Tyutin (1990)).

The matter fields are transformed according to the representations T (u(x)) of the gauge groupG:

ψi (x)→ T (1)i j (u(x))ψ j (x) i, j = 1, . . . , d1

ϕi (x)→ T (2)i j (u(x))ϕ j (x) i, j = 1, . . . , d2

(3.2.178)

where T (1)i j (u(x)) and T (2)i j (u(x)) are some matrix representations of dimensions d1 and d2, respectively,
for the elements u(x) ∈ G of the gauge groupG.

Consider a typical model with non-Abelian fields which contains a multiplet of spinor fields ψ i (x),
a multiplet of charged scalar fields ϕ j (x) and the gauge fields Aµ corresponding to a gauge groupG. The
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Lagrangian of the model has the form

L = − 1

4g2
Fa
µνFaµν + ψ̄ iγ µ(∂µδi j + it(1) a

i j Aa
µ)ψ

j − mψψ̄
iψ i

+
∑

i

|(∂µδi j + it(2)ai j Aa
µ)ϕ

j |2 − m2
ϕϕ

∗iϕi

− hi jk ψ̄
iψ jϕk − h∗

i j k ψ̄
iψ jϕ∗k − 1

4λi j klϕ
∗iϕ∗ jϕkϕl (3.2.179)

where t(1)ai j and t(2)ai j are the generators of the groupG in the representations T (1)i j and T (2)i j (cf (3.2.178)),
respectively. The first term in (3.2.179) is the pure Yang–Mills action for the gauge fields, while the rest
of the terms in the first line describe the spinor fields and their interactions with the gauge fields; the terms
in the second line are responsible for the scalar matter fields and their interaction with the gauge bosons;
finally, the terms in the third line represent the Yukawa interaction between the spinor and scalar fields, as
well as the scalar self-interaction (the very last term).

The starting point for deriving the perturbation theory expansion for the generating functional
Z[J, . . .] (or for the S-matrix symbol) is the path integral (in the Coulomb gauge)

Z[J, ρ, η̄, η] =
∫
DAµDψ̄ Dψ Dϕ δ(∂kAk) det M̂C

× exp

{
i
∫

d4x [L+ J aµAa
µ + η̄ψ + ηψ̄ + ρϕ]

}
. (3.2.180)

The repetition of the steps discussed earlier for the pure Yang–Mills theory leads to the following
expression for the generating functional in the α-gauge:

Z[J, ρ, η̄, η, χ̄ , χ] = exp

{
i
∫

d4x Lint

(
1

i

δ

δ J a
µ

, . . . ,
1

i

δ

δχa

)}
× exp

{ ∫
d4x d4 y [J a

µ(x)D
αab
µν (x − y)J b

ν (y)+ η̄i (x)Si j
c (x − y)η j (y)

+ ρi (x)Dij
c (x − y)ρ j (y)+ χ̄a(x)Dab

g χ
b(y)]

}
. (3.2.181)

Here we have extended the generating functional via inclusion of the sources χ̄ , χ for the Faddeev–Popov
ghost fields (of course, the ghost fields do not appear in the physical amplitudes as in- and out-particles);
Lint is the interaction part of the Lagrangian (3.2.179) (i.e. all the terms higher than second order in the
fields); Dαab

µν , Si j
c , Dij

c , Dab
g are the propagators of the corresponding fields; see (3.2.162), (3.1.106),

(3.1.93) and (3.2.176), respectively. As a result, we have the new diagram elements depicted in table 3.4,
in addition to those presented in table 3.3.

♦ Lagrangian, path-integral representation for the generating functional and the Feynman
diagrams for quantum electrodynamics

If we consider electromagnetic interactions between leptons only (i.e. electrons, positrons, muons etc, see
section 3.2.8), the corresponding Lagrangian has the form (3.2.21), in general, with several spinor fields,
corresponding to the different sorts of charged lepton. (In the case of hadrons, the Lagrangian becomes
more involved; in particular it contains the so-called form-factors (see, e.g., Feynman (1972b).) Let us
consider, for simplicity, the interaction of photons with only one sort of lepton field, e.g., with fields



78 Quantum field theory: the path-integral approach

Table 3.4. Correspondence rules for the Yang–Mills theory with matter fields, in addition to table 3.3.

Physical quantity Mathematical expression Diagram element

Propagator
of spinor fields

Si j
c (k) = − δi j

k/ − mψ + iε
r r

µ, a ν, bk

Propagator
of scalar fields

Dij
c = − δi j

k2 − m2
ϕ + iε

r r
a bk

Spinor ↔
gauge-field
interaction vertex

Vψ̄ Aψ = gγµt (1)ai j
r r
r

r

a

i

j

Scalar ↔
gauge-field
four-interaction vertex

VA2ϕ2 = ig2gµν(t
(2)a
ik t (2)bkj + t (2)bik t (2)akj )

r
r
r r

r
µ, a

ν, b i

j

Scalar ↔
gauge-field
three-interaction vertex

Vϕ2 A = g(t (2)ai j (pµ − qµ))
r r
r

r

(p − q), µ, a

p, j

q, i

Scalar ↔ scalar
four-interaction vertex

Vϕ4 = − i

4
(λi j kl + λ j ikl + λi j lk + λ j ilk )

r
r
r r

r
i

j k

l

Yukawa coupling
(spinor ↔ scalar field
vertex)

Vψ̄ϕψ = hi jk
r r
r

r

i

j

k
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Table 3.5. Correspondence rules for quantum electrodynamics.

Physical quantity Mathematical expression Diagram element

Propagator
of photon fields

Dαµν(k) = − 1

k2 + iε

(
gµν − (1 − α)kµkν

k2 + iε

) r r
µ νk

Spinor ↔
photon
interaction vertex

Vψ̄ Aψ = gγµ
r r
r

r

µ

describing electrons and positrons. The standard calculations (in the α-gauge) discussed earlier cast the
Green function generating functional for QED into the form

Z[Jµ, η̄, η] = exp

{
−i
∫

d4y Lint

(
1

i

δ

δ Jµ(y)
,

1

i

δ

δη̄(y)
,

1

i

δ

δη(y)

)}
×
∫
DAµ(x)Dη̄(x)Dη(x) exp

{
iSQED +

∫
d4x

[
JµAµ + η̄ψ + ψ̄η

]}
= exp

{
−i
∫

d4y

(
1

i

δ

δ Jµ(y)

)(
1

i

δ

δη̄(y)

)
γµ

(
1

i

δ

δη(y)

)}
× exp

{
− i
∫

d4x d4x ′ [ 1
2 JµDαµν(x − x ′)J ν + η̄Sc(x − x ′)η]

}
(3.2.182)

SQED =
∫

d4x [ 1
2 Aµ(g

µν
�− (1 − 1/α)∂µ∂ν)Aν + ψ̄(iγ µ∂µ − m)ψ]. (3.2.183)

We recall that quantizing electrodynamics is easier than that of a non-Abelian Yang–Mills theory because
the Faddeev–Popov determinant det M̂ does not depend on the integration variables and, hence, can
be absorbed into the normalization constant (see the remark on page 73). The standard graphical
representation for the photon propagator and the electromagnetic interaction vertex is depicted in table 3.5.
Note that due to the Abelian nature of the electrodynamics gauge group, i.e. the group U(1), there is no
self-interaction of photons.

♦ Lowest-order (‘tree’) approximation in QED: an example

As an illustration of a practical application of the covariant perturbation techniques in QED, let us
consider, briefly, the calculations for the so-called Compton scattering of photons on electrons:

γ (k)+ e−(p) −→ γ (k ′)+ e−(p′) (3.2.184)

i.e. for the process of (elastic) scattering in which both the initial and final states correspond to a free
electron and photon with different momenta. The Feynman diagrams for this process in the lowest
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Figure 3.11. Diagrams for the Compton scattering on the electrons.

(second-order) approximation are depicted in figure 3.11. Using the Feynman rules, we can immediately
write the expression for the amplitude of the Compton scattering:

〈p′, k ′; out|p, k; in〉 = (−i)2e2
[
v̄
(+)
r ′ ( p′)ε/ λ′

p/ + k/ + m

(p − k)2 − m2 ε/
λv(−)r ( p)

+ v̄(+)r ′ ( p′)ε/ λ
p/ − k/ ′ + m

(p − k ′)2 − m2 ε/
λ′v(−)r ( p)

]
. (3.2.185)

Here v(−)r ( p) and v̄(+)r ( p) are the initial and final electron states (Dirac spinors).
The probability of a transition upon which the momenta of the final particles (photon and electron

in the Compton scattering case) fall within the intervals (k′, k′ + dk′) and ( p′, p′ + d p′) is given by the
expression (see, e.g., Bogoliubov and Shirkov (1959))

w = (2π)4 N2
c |〈p′, k ′|p, k〉|2δ(p + k − p′ − k ′) dk′

(2π)3
d p′

(2π)3
(3.2.186)

where Nc is a normalization constant. The practically measurable quantity is the so-called cross section,
which is equal to the probability (3.2.186) divided by the flux of the initial particles.

3.2.7 Higher-order perturbation theory and a sketch of the renormalization procedure for Yang–
Mills theories

The perturbation theory described in the preceding sections allows us to calculate Green functions,
amplitudes and probabilities with an arbitrary precision in an expansion parameter (usually, a coupling
constant g). However, the direct application of the Feynman rules in higher-order perturbation theory,
which corresponds to Feynman diagrams with loops, leads to meaningless infinite expressions (divergent
integrals). To recover the physical meaning of higher-order terms in the perturbation expansion and
eliminate the divergences, we must apply the so-called renormalization procedure.

We shall not go into all the details of this involved technique which deals mainly with Feynman
diagrams and the corresponding amplitudes rather than directly with path integrals (see, e.g., Bogoliubov
and Shirkov (1959) and Itzykson and Zuber (1980)). However, in gauge theories, the independence
of the renormalized amplitude of a specific choice of gauge condition should be proven. The basis of
such a proof (Faddeev and Slavnov 1980) is provided by the generalized Ward–Takahashi identities (cf
section 3.1.5). The derivation of these identities (called in the case of non-Abelian theories Slavnov–
Taylor–Ward–Takahashi identities), as well as the revelation of some hidden and very helpful symmetry
of the effective gauge action (Becchi–Rouet–Stora–Tyutin (BRST) symmetry), prove to be simplest in the
path-integral formalism. Therefore, we shall only briefly describe the renormalization of gauge theories
stressing mainly the role of the path-integral technique.
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♦ Divergences of matrix elements

Suppose we want to calculate the fermion Green function in QED. Then, in second-order perturbation
theory, we shall encounter the diagram:

r r r rp p.

k

p − k

This diagram corresponds to the following mathematical expression

S(2)c = Sc(p) 
(2)(p)Sc(p) (3.2.187)

where the electron self-energy (2)(p) in second-order perturbation theory is expressed via the integral

 (2)(p) = e2

(2π)3

∫
d4k γν

p/ − k/ + m

(p − k)2 − m2 γν
1

k2 (3.2.188)

(for simplicity, we have used the α-gauge with α = 1 for the photon propagator). Counting the powers
immediately shows that the integral over k in (3.2.188) is divergent. Indeed, an integral of the type∫ ∞

−∞
dnk

Akm + Bkm−1 + · · ·
Ckl + Dkl−1 + · · · m, l ≥ 0

converges only if l > n + m + 1. In contrast to this, the integral in (3.2.188) contains the fifth order of k
(including the integration measure d4k) in the numerator and only fourth order in the denominator. Thus,
we have a linear divergence in this case. Other higher-order Feynman diagrams also contain divergences
of different powers.

Two primary problems arise in connection with the occurrence of divergences in higher-order
contributions to the matrix elements:

(i) to find all possible types of divergent Feynman diagram and
(ii) to elucidate whether the number of these types of divergence depends on the order of the perturbation

theory.

The solution of these problems depends exclusively on the type of interaction term in the corresponding
Lagrangian. A characteristic which conveniently discriminates between the different situations and
different types of quantum field theory is the so-called superficial divergence index ω. This is ascribed to
any diagram according to a definite rule, so that negative values of ω correspond to convergent diagrams
while positive or zero values correspond to divergent expressions. The adjective ‘superficial’ is used
because a Feynman diagram may contain divergent subgraphs, although the overall index ω is negative.
Thus, to be sure that a diagram is convergent, we must check the values of ω for all the subgraphs of the
given Feynman diagram.

In electrodynamics, the superficial divergence index for a Feynman diagram of an arbitrary order
has the form

ω = 4 − 3
2 Ne − Nph (3.2.189)

where Ne is the number of external spinor (electron–positron) lines in the diagrams and Nph is the number
of external photon lines. It is immediately seen that only a limited class of diagrams with a restricted
number of external lines (less than five photon lines and four spinor lines) have a non-negative index ω.
This is a characteristic property of renormalizable quantum field theories. In contrast, non-renormalizable
quantum field theories have divergent diagrams with a differing number of external lines depending on
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the order of the perturbation expansion. Non-Abelian Yang–Mills theories also belong to the class of
renormalizable field models: the superficial divergence index ω for them reads as follows:

ω = 4 − 3
2 Nψ − NYM − Ngh (3.2.190)

where Nψ is number of external spinor lines in the diagrams and NYM, Ngh are the numbers of external
lines corresponding to the gauge and ghost fields, respectively.

♦ Renormalization procedure

The divergences of renormalizable theories can be eliminated. More precisely, they can be absorbed
into a finite number of constants which can be associated with physically measurable quantities, such
as the masses and charges of particles. After substituting finite values of the quantities taken from
experimental data instead of a combination of the initial parameters introduced into the field Lagrangian
and the divergent parts of the Feynman diagrams, all other calculations in the theory become meaningful
and we can calculate any other quantities (elements of S-matrix, energy levels etc) and, hence, we can
predict any other measurements theoretically. A special procedure, referred to as renormalization, has
been devised for this purpose.

• The first step of this procedure is the regularization of divergent diagrams. It is awkward to perform
calculations with divergent integrals and therefore it is necessary to temporarily modify the theory
so as to make all the integrals finite. At the final stage, the regularization is removed.

• After regularization, we can proceed to eliminate the divergences. A special technique developed
for this is called the R-operation. This operation enables one to obtain physically meaningful
expressions which remain finite after the regularization is removed. In fact, the R-operation consists
of substituting the divergent parts and the initial parameters with experimentally measured quantities.

• Additional problems arise for gauge theories. As a matter of fact, the renormalization is equivalent
to a redefinition of the initial Lagrangian. Therefore, in the case of gauge fields:

– it is desirable to choose an intermediate regularization which does not violate the invariance
under the gauge transformations;

– the renormalization procedure (R-operation) should not violate the gauge invariance and
– the independence of the renormalized amplitudes on the specific choice of the gauge conditions

should be proven.

In proving the renormalizability of gauge-field models, we use Lagrangians containing non-physical
fields (ghost fields and longitudinal components of gauge fields). This leads to a loss of an explicit
unitarity of the S-matrix, while the unitarity is a necessary condition for the self-consistency of any
field theory. Fortunately, there are also gauges leading to Lagrangians which do not contain non-
physical fields and have explicitly unitary amplitudes (but which are highly inconvenient for the
proof of renormalizability). Thus, the invariance of a renormalized amplitude with respect to the
choice of the gauge means that the theory is both unitary and renormalizable.

♦ Remarks on regularization methods

There are several regularization methods: the Pauli–Villars procedure, the method of higher covariant
derivatives, the dimensional regularization etc. Perhaps the most natural regularization is the lattice one,
i.e. the discretization of space and time and transition to the case of a large but finite number of degrees of
freedom. In fact, in this chapter we introduced field theory itself using this regularization. Unfortunately,
this regularization has the essential disadvantage of losing an explicit relativistic invariance. Nevertheless,
it plays an essential role in field theoretical calculations and we shall consider this in chapter 4.
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In the present section, we shall illustrate the idea of regularization with the example of dimensional
regularization. This is based on the fact that the superficial divergence index of a diagram significantly
depends on the dimension d of the space, e.g., this index for QED (cf (3.2.189)) can be presented in the
form

ω =
L∑

l=1

(rl + n − 2)− d(m − 1) (3.2.191)

where the summation over all internal lines of the diagram is carried out; L is the number of internal
lines, rl is the order of the polynomial corresponding to the internal line and m is the number of vertices.
Therefore, the integrals which are divergent in a four-dimensional space may prove to be convergent in a
space of smaller dimension. The number d can be thought of as being a not necessarily positive integer,
but also of being a non-integer and even complex number.

Before starting actual calculations, it is necessary to formulate the rules for treating tensor quantities
and the γ -matrices in a d-dimensional space with an arbitrary d . This is done by the continuation of the
usual rules for the summation of tensor indices and γ -matrix commutation relations, e.g.,

gµν pν = pµ

γµγν + γνγµ = 2gµν1I
(3.2.192)

where µ, ν are now formal indices corresponding to non-integer or complex-dimensional spaces. The
technical details of the dimensional regularization may be found, e.g., in Itzykson and Zuber (1980) and
Faddeev and Slavnov (1980). We note only that the dimensional regularization, at least in its simple form,
is not applicable to theories in which the matrix γ5 is involved. Indeed, the genuine definition of the γ5
matrix,

γ5
def≡ iγ0γ1γ2γ3 (3.2.193)

is heavily based on the concrete value (four) of the spacetime dimension. It can easily be generalized to
any even integer dimension, but there is no way for a consistent generalization to non-integer dimensions.
This fact may cause the so-called quantum anomalies, i.e. the violation of classical symmetries at quantum
level; we shall consider this phenomenon in the path-integral formalism in section 3.3.4.

To obtain an idea about dimensional regularization, let us consider the integral

I (p2) =
∫

ddk
1

(k2 − m2)[(k − p)2 − m2] (3.2.194)

which comes from the purely scalar field theory (cf diagram (b) in figure 3.3, page 27). This integral is
divergent for d = 4 and convergent for d < 4. Let us calculate it assuming that d < 4.

Using the formula (Feynman parametrization)

1

ab
=
∫ 1

0
dx

1

[ax + b(1 − x)]2 (3.2.195)

we can rewrite (3.2.194) in the form (after the change of variables k − p(1 − x)→ k):

I (p2) =
∫ 1

0
dx
∫

ddk
1

[k2 + p2x(1 − x)− m2]2 . (3.2.196)

Rotating the integration contour by 90◦ (the so-called Wick rotation) and again changing the variable
k0 → ik0, we obtain the integral over the d-dimensional Euclidean space:

I (p2) = i
∫ 1

0
dx
∫

ddk
1

[k2 + p2x(1 − x)+ m2]2 . (3.2.197)
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If d is integer, we can use, for the calculation, the known result for the standard integral∫
ddk

1

(k2 + M2)α
= πd/2M2(d/2−α) �(α − d/2)

�(α)
. (3.2.198)

where �(·) is the gamma-function. For an arbitrary d , we just postulate formula (3.2.198) and, using it,
we obtain the expression for the regularized integral

I (p2) = iπd/2�

(
2 − d

2

)∫ 1

0
dx [m2 − p2x(1 − x)]d/2−2. (3.2.199)

The integral over the x-variable is obviously convergent but the �-factor leads to a divergence at d = 4,
since the function �(2 − d/2) has a pole at this point. More complicated divergent integrals can be
regularized and calculated along the same line.

An important property of dimensional regularization is that it does not violate gauge invariance and
since all properties of Lorentz-covariant tensors (except the γ5-matrix) are straightforwardly generalized
to an arbitrary dimension d , any expression in the dimensional regularization has formally a relativistically
covariant form.

♦ Renormalization (R-operation)

Removing the regularization, i.e. setting d = 4 in (3.2.199), gives rise to a pole. This corresponds to
the divergence of the initial integral over the four-dimensional space. The expansion of the regularized
integral (3.2.199) in the Laurent series with respect to d in the vicinity of the point d/2 = 2 yields

I (p2) = −iπ2

d/2 − 2
− iπ2

∫ 1

0
dx ln[m2 − p2x(1 − x)] + C +O(d/2 − 2) (3.2.200)

where C is a finite constant. Then let us expand (3.2.200) in the Taylor series with respect to p2 at some
point p2 = λ2 (referred to as a renormalization point). Subtracting I (p2)|p2=λ2 from (3.2.200), we arrive
at an expression which does not contain divergences:

IR(p
2) = −iπ2

∫ 1

0
dx ln

m2 − p2x(1 − x)

m2 − λ2x(1 − x)
. (3.2.201)

This is the renormalized expression for the integral (3.2.194). The choice of the renormalization point is
arbitrary. By taking another renormalization point, we obtain an expression which differs from (3.2.201)
by a finite polynomial in p2. In realistic physical models, this arbitrariness is fixed by the requirement
that the particles in the theory possess experimentally known charges and masses.

In a similar way, the renormalization of other integrals can be performed. But for more complicated
integrals, including integrations over many momenta, the simple renormalization method discussed so far
is insufficient. In such cases, the R-operation developed by Bogoliubov, Parasiuk, Hepp and Zimmermann
should be applied (see, e.g., Bogoliubov and Shirkov (1959) and Hepp (1969)).

The renormalization procedure can also be formulated in a different language. The point is that
the replacement of divergent integrals by the renormalized ones is equivalent to the inclusion of some
additional terms in the initial Lagrangian. These are called counter-terms. Therefore, the renormalization
can be carried out by introducing counter-terms into Lagrangians (see, e.g., Bogoliubov and Shirkov
(1959) and Itzykson and Zuber (1980)).
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♦ Generalized Ward–Takahashi identities

As already mentioned, the renormalization of gauge theories brings about additional problems associated
with the requirement that the gauge invariance of the theory should not be violated. In this case, the
renormalization is also carried out by means of the R-operation. To prove that the gauge invariance is
not violated by that procedure, it is convenient to utilize the generalized Ward–Takahashi identities also
called the Slavnov–Taylor–Ward–Takahashi identities. The derivation of these identities in the case of
non-Abelian Yang–Mills theory is heavily based on the path-integral representation for the Green function
generating functional and we shall consider this derivation in some more detail.

Let us discuss as an example the pure Yang–Mills theory (i.e. without matter fields). We start from
the generating functionalZ[J a] in the α-gauge written in the form

Z[J a] =
∫ dimG∏

a=1

DAc
µ(x)Dac(x) δ(∂µAc

µ − ac)$α(A
c
µ)

× exp

{
iSYM − i

∫
d4x

[
1

2α
(Ab)2 + J bµAb

µ

]}
(3.2.202)

where SYM is the gauge-invariant Yang–Mills action (3.2.12).
The general idea of deriving the Ward–Takahashi-type identities was discussed in section 3.1.5.

Practically, we can proceed as follows. Let us perform the gauge transformation Aµ → Au
µ, so that

the Yang–Mills field now satisfies the condition

∂µ(Au)cµ(x)− ac(x)− bc(x) = 0. (3.2.203)

The transition to this new gauge is fulfilled via the standard Faddeev–Popov trick: we introduce the
gauge-invariant functional $̃α(aµ), defined by

$̃α[A]
∫
Du(x) δ[∂µAu

µ − a − b] = 1. (3.2.204)

The substitution of (3.2.204) into (3.2.202) and the change of variables A → Au , u → u−1 yield:

Z[J a] =
∫
DAµ(x)Da(x)Du(x)$α(A

a
µ)$̃α(A

a
µ)δ(∂

µAµ − a)δ(∂µAµ − a − b)

× exp

{
iSYM − i

∫
d4x

1

2
Tr

[
1

2α
a2 + JµAu

µ

]}
. (3.2.205)

At this point, we have essentially used the gauge invariance of the classical Yang–Mills action SYM. To
perform the integration over u(x) and a, we make use of the fact that the term 1

2 Tr JµAu
µ in (3.2.205)

can be represented, due to the presence of the two δ-functionals, as 1
2 Tr JµAu0

µ , where u0(x;Aµ,b) is the
solution of the following set of equations:

∂µ(Au0)cµ(x)− ac(x) = 0

∂µAc
µ(x)− ac(x)− bc(x) = 0.

(3.2.206)

For infinitesimally small functions ba(x), the first equation in (3.2.206) can be written as follows:

∂µAc
µ(x)− ac(x)+ M̂cbεb(x) = 0 (3.2.207)
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where εb(x) denotes the parameters of the infinitesimal gauge transformation u0 and

M̂ab = ∂µDab
µ = ∂µ(δab∂µ + g fabc Ac

µ). (3.2.208)

The obvious solution of (3.2.206) in this case reads as

εa(x) = (M̂−1)acbc. (3.2.209)

Thus, the term 1
2 Tr JµAu

µ takes the form

J aµ(x)(Au0)aµ(x) = J aµ(x)Aa
µ(x)+ J aµ(x)Dab

µ εb(x)

= J aµ(x)Aa
µ(x)+ J aµ(x)Dab

µ

∫
d4y (M−1)bc(x, y)bc(y) (3.2.210)

and the whole generating functional (3.2.205) now becomes

Z[J a] =
∫ ∏

µ

DAµ(x) det M̂ exp

{
iSYM − i

∫
d4x

[
1

2α
(∂µAa

µ − ba)2 + J aµ(x)Aa
µ(x)

+ i
∫

d4x d4y J aµ(x)Dab
µ (M

−1)bc(x, y)bc(y)

]}
(3.2.211)

(recall that on the surface defined by the gauge condition, there exists the equality $̃α(A) = det M̂).
Let us now differentiate both sides of (3.2.211) with respect to ba(x). Since the initial functional

(3.2.202), coinciding with (3.2.211), does not depend on ba(x), we have

δZ[J ]
δba(y)

∣∣∣∣
ba=0

=
∫ ∏

µ

DAµ(x) det M̂

[
1

α
∂µAa

µ(y)+
∫

dy ′ J bµ(y ′)Dbc
µ (M

−1)ca(y ′, y)

]

× exp

{
iSYM − i

∫
d4x

[
1

2α
(∂µAa

µ)
2 + J aµ(x)Aa

µ(x)

]}
= 0. (3.2.212)

This system of identities can be rewritten in terms of functional derivatives of the generating functional
Z[J ] with respect to the currents{

1

α
∂µ
[

1

i

δ

δ J aµ(x)

]
+
∫

d4y J b
µ(y)

[
Dbc
µ

(
y,

1

i

δ

δ J d
µ(y)

)
(M−1)ca

(
y, x; 1

i

δ

δ J d
µ

)]}
Z[J ] = 0.

(3.2.213)
In a similar way, the generalized Ward–Takahashi identities can be found for other cases, e.g., for

gauge fields interacting with (spinor or scalar) fields of matter.
The generalized Ward–Takahashi identities stem from the physical equivalence of various gauges.

As can be seen from (3.2.213), they lead to certain relations between the Green functions.

♦ BRST symmetry of the Yang–Mills effective action and another way of deriving the generalized
Ward–Takahashi identity

We still consider the case of pure Yang–Mills fields (without matter fields). This time we shall use the
generating functional with the Faddeev–Popov ghost fields:

Z[J ] =
∫
DAa

µ(x)Dc̄a(x)Dca(x) exp

{
i
∫

dx [Leff + J aµAa
µ + c̄aη + η̄aca]

}
(3.2.214)
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with

Leff = −1

4
(Fa
µν)

2 − 1

2α
(∂µAa

µ)
2 − ∂µc̄a∂µca − g fabd∂

µc̄a Ab
µcd . (3.2.215)

It can be directly proven that the effective Lagrangian Leff is invariant under the following combined
transformations of the gauge fields Aa

µ(x) and the ghost fields ca(x) which are called Becchi–Rouet–
Stora–Tyutin (BRST) transformations (Becchi et al 1975, 1976, Tyutin 1975):

Aa
µ(x) −→ Aa

µ(x)+ (Dµca(x))ζ

ca(x) −→ ca(x)− 1
2 fabdcb(x)cd(x)ζ (3.2.216)

c̄a(x) −→ c̄a(x)− 1

α
(∂µAa

µ(x))ζ.

The parameter ζ does not depend on the coordinates, i.e. these are global transformations. In addition, the
parameter ζ cannot be an ordinary number because the Yang–Mills fields Aa

µ obey commutation relations
(the variables Aa

µ in the path integral commute), while the ghost fields c̄a, ca are anticommuting variables.
Thus, for consistency, the parameter ζ must be Grassmannian and satisfy the relations:

ζ 2 = 0 [ζ, Aa
µ] = 0 {ζ, ca} = 0 {ζ, c̄a} = 0.

Making the change of variables (3.2.216) in the path integral (3.2.214), we arrive at an expression for the
generating functional which contains the parameter ζ . Since the initial path integral does not contain ζ
and since an integral does not depend on the choice of integration variables (note that the Jacobian of the
substitution (3.2.216) is equal to unity), the differentiation of the resulting path integral over ζ gives the
identity∫

DAa
µ(x)Dc̄a(x)Dca(x)

[∫
d4y J aµ(y)Dµca(y)− 1

α
∂µAa

µ(y)η
a(y)− 1

2
η̄a fabdcb(y)cd(y)

]
× exp

{
i
∫

dx [Leff + J a
µAa

µ + c̄aη + η̄aca]
}
= 0. (3.2.217)

This is just another form of the generalized Ward–Takahashi identity (3.2.213) (problem 3.2.6, page 100).
Likewise, Ward–Takahashi identities of the type (3.2.217) for more general models than pure gauge

fields can be obtained.
Two remarks are in order:

• The role of the Ward–Takahashi identities in the renormalization of Yang–Mills theories can
be briefly described as follows. The general renormalization procedure (R-operation) prescribes
counter-terms (subtractions) which potentially may violate the gauge invariance of the theory.
However, if the gauge model under consideration allows some gauge-invariant regularization, the
generalized Ward–Takahashi identities establish certain relations between the counter-terms leaving
only their gauge-invariant combinations. After this, we can remove the regularization and due to the
explicit gauge invariance at each step of the renormalization procedure, the resulting quantum theory
without divergences also proves to be gauge invariant.

• If a model does not allow gauge-invariant regularizations (e.g., theories containing γ5-matrices),
there is no guarantee that the ‘naive’ Ward–Takahashi identity (without taking into account field
theoretical divergences) is still valid for the regularized theory. Instead, we obtain what is called the
anomalous Ward–Takahashi identity. Correspondingly, the renormalized theory may lose the gauge
invariance of its classical counterpart. In this case the theory is said to have quantum anomalies. We
shall consider this situation in somewhat more detail in section 3.3.4.

Further applications and detailed discussion of the BRST symmetry may be found in Nakanishi and Ojima
(1990).
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3.2.8 Spontaneous symmetry-breaking of gauge invariance and a brief look at the standard model
of particle interactions

In order to illustrate the actual physical application of the quantum gauge-field theory which, in turn, is
heavily based on the path-integral formalism, we shall briefly discuss the so-called standard model of
electroweak and strong interactions.

Recall that, in spite of the apparent diversity of interactions between physical objects in nature
(depending on the interactions of the elementary particles forming these objects), only four types of
fundamental interaction of elementary particles (the interactions are enumerated in the order of their
increasing strength) exist:

(i) gravitational interactions;
(ii) weak interactions (responsible for most decays and many transformations of elementary particles);
(iii) electromagnetic interactions;
(iv) strong interactions (providing, in particular, the bounds of particles in atomic nuclei, so that

sometimes they are also called nuclear interactions).

Up to the beginning of the 1970s, quantum electrodynamics was the only successful example
of a physical application of gauge-field theories. However, by that time experimental study of the
weak interactions had revealed a considerable similarity between weak and electromagnetic interactions.
Among other things, there was strong evidence that weak interactions are mediated by vector particles
(similar to the photon) and are characterized by a single coupling constant (the so-called universality of the
weak interactions). All these features acquire natural explanations if we assume that both electromagnetic
and weak interactions are described by a gauge-invariant theory, the Yang–Mills field being the mediator
of the interactions (Schwinger 1957, Glashow 1961). However, along with the similarity between the two
types of fundamental interaction, there are essential differences. The most obvious one is that, in contrast
to the long-range electromagnetic interaction (which corresponds to massless intermediate particles, i.e.
photons), the weak interaction has a very short interaction radius and, hence, must be based on massive
intermediate particles. For a long time, this and some other differences prevented the construction of
a unified field theoretical model of weak and electromagnetic interactions. Fortunately, this problem
can be overcome with the help of the so-called Higgs mechanism based, in turn, on the very important
phenomenon of spontaneous symmetry-breaking (Weinberg 1967, Salam 1968). The unified model of
weak and electromagnetic interactions based on the non-Abelian Yang–Mills theory with the gauge group
SU(2)×U(1), together with the spontaneous symmetry-breaking and the Higgs mechanism, is called the
Glashow–Salam–Weinberg model or standard model. A nice property of this model is that it proved to be
a renormalizable quantum field theory (’t Hooft 1971).

At first sight, the dynamics of strong interactions looks too complicated to be described by some
Lagrangian field theory. The first attempts to construct such a theory were not even in qualitative
agreement with the experimental facts. However, later (in the early 1970s), experiments on deep inelasting
scattering have shown that at small distances, hadrons (strongly interacting particles) behave as if they
were made of non-interacting pointlike constituents (partons or quarks). This fact has led to the conjecture
that hadrons are composite objects, the constituents being weakly interacting particles at small distances
and strongly interacting at large distances. This phenomenon has acquired the name asymptotic freedom.
It has been shown (Gross and Wilczek 1973, Politzer 1973) that only the non-Abelian Yang–Mills theory
possesses such a property and provides the desired behaviour of quarks. The resulting physical theory,
based on the gauge group SU(3), is called quantum chromodynamics (QCD).

It is necessary to note that nowadays it is customary to ascribe the name ‘standard model’ to a
combination of the Glashow–Salam–Weinberg electroweak theory and chromodynamics, i.e. to the theory
based on the gauge group SU(3)×SU(2)×U(1) (with the appropriate spontaneous symmetry-breaking).
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Another important remark is that the standard model cannot be considered as a truly unified model for
the three fundamental interactions. The point is that it is based on a non-simple gauge group and therefore
contains a few independent coupling constants (actually, it contains several dozen free parameters such
as the masses of particles etc). Many advanced attempts to improve this model, based either on simple
gauge groups like, e.g., SU(5) (grand unified theory), or on supersymmetric generalizations of the main
idea, have been made.

In this subsection, we shall consider only the basic idea of the standard model and other unified
theories, namely, spontaneous symmetry-breaking and its implication for the path-integral representation
of generating functionals in quantum field theories. The reader may find further details about the standard
model, QCD and other unified models in Itzykson and Zuber (1980), Okun (1982), Chaichian and Nelipa
(1984), Cheng and Li (1984), West (1986), Bailin and Love (1993), Peskin and Schroeder (1995) and
Weinberg (1996, 2000).

♦ The concept of spontaneous symmetry-breaking

First, we shall explain what spontaneous symmetry-breaking is and then discuss a concrete model with
local symmetry-breaking.

Consider a quantum-mechanical system with a Hamiltonian Ĥ . The system can be in various energy
states En , determined by the stationary Schrödinger equation

Ĥψn = Enψn .

If there is a single vacuum state corresponding to the minimum eigenvalue E0, this is called a non-
degenerate vacuum state, otherwise it is called degenerate.

Let a certain transformation groupG be given. The vacuum state is invariant under the groupG if it
transforms into itself and non-invariant otherwise. In the framework of the local relativistic quantum
field theory, there exists a connection between the invariance of the vacuum state under a group of
transformations and the invariance of the Lagrangian under the same group. This is given in the Coleman
theorem, that states:

(i) If the vacuum state is invariant, the Lagrangian must necessarily be invariant, too (the case of exact
symmetry).

(ii) If the vacuum state is non-invariant, the Lagrangian may be either non-invariant or invariant; in both
these cases, the symmetry as a whole is broken:

• in the case of non-invariance of both the vacuum state and the Lagrangian we speak of explicit
symmetry-breaking;

• if the vacuum state is non-invariant, whereas the Lagrangian is invariant, the symmetry-breaking
is called spontaneous.

It can be shown that the case of spontaneous symmetry-breaking necessarily leads to the occurrence
of zero-mass particles. This statement is known as the Goldstone theorem. Accordingly, the massless
particles are called goldstones.

♦ A simple model with spontaneous symmetry-breaking of a global symmetry

Consider a model described by the Lagrangian

L = (∂µϕ∗)(∂µϕ)− m2ϕ∗ϕ − 1
4λ(ϕ

∗ϕ)2 (3.2.218)

where ϕ(x) is a complex scalar field, λ is the coupling constant (λ > 0) and m is the mass of the scalar
particle (m2 > 0).
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Figure 3.12. Examples of potentials with non-degenerate (a) and degenerate (b) vacuum states.

This Lagrangian is invariant under the global group U(1) of the phase transformations

ϕ(x) −→ ϕ′(x) = e−iλεϕ(x) ϕ∗(x) −→ ϕ′∗(x) = eiλεϕ∗(x). (3.2.219)

The conserved energy of the field system is given by the expression

E =
∫

d3r [∂0ϕ
∗(t, r)∂0ϕ(t, r)+ ∂iϕ

∗(t, r)∂iϕ(t, r)+ m2ϕ∗(t, r)ϕ(t, r)+ 1
4λ(ϕ

∗(t, r)ϕ(t, r))2].
(3.2.220)

In the class of static and translationally invariant fields (i.e. ϕ(x) = constant; we shall consider more
general solutions later, see section 3.3.3) the energy minimum coincides with the minimum of the function

V (ϕ∗, ϕ) = m2ϕ∗ϕ + 1
4λ(ϕ

∗ϕ)2. (3.2.221)

This minimum is obviously located at the origin of the field space, ϕ∗ = ϕ = 0, see figure 3.12(a). Hence,
the vacuum state of the model is non-degenerate and invariant under the transformations (3.2.219). The
Lagrangian (3.2.218) is also invariant under the transformations of the group U(1). The model thus has
exact U(1)-symmetry. In the quantum theory, the vacuum expectation value of the field ϕ(x) is zero:

〈0|ϕ̂(x)|0〉 = 〈0|ϕ̂∗(x)|0〉 = 0. (3.2.222)

Now consider a model described by almost the same Lagrangian but with the opposite sign for the
quadratic term:

LSSB = (∂µϕ∗)(∂µϕ)+ m2ϕ∗ϕ − 1
4λ(ϕ

∗ϕ)2. (3.2.223)

The energy of the system in this case takes the form

E =
∫

d3r [∂0ϕ
∗(t, r)∂0ϕ(t, r)+ ∂iϕ

∗(t, r)∂iϕ(t, r)− m2ϕ∗(t, r)ϕ(t, r)+ 1
4λ(ϕ

∗(t, r)ϕ(t, r))2]
(3.2.224)
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which, for static and translationally invariant fields, reduces to the function (see figure 3.12(b))

V (ϕ∗, ϕ) = −m2ϕ∗ϕ + 1
4λ(ϕ

∗ϕ)2. (3.2.225)

Thus, the energy has a minimum at ϕ∗ϕ = 2m2/λ, that is

|ϕmin| =
√

2

λ
m. (3.2.226)

The system has an infinite set of vacuum states, each of them corresponding to a point on the circle of
radius R = √

2m/
√
λ on the complex plane ϕ (see figure 3.12(b)). Thus, the vacuum states are infinitely

degenerate. Let us make a few important remarks:

(i) the transformations (3.2.219) convert a certain vacuum state (a point of the circle) into any other
state; this means that an arbitrarily chosen vacuum state is not invariant under the transformations
(3.2.219);

(ii) the Lagrangian LSSB in (3.2.223) is invariant under the transformations (3.2.219) and
(iii) in order to construct a quantum theory, a definite vacuum state, i.e. a definite point on the circle

(3.2.226) has to be chosen; we should bear in mind that different degenerate vacuum states are not
related to each other and no superposition can be formed from them (there is no such physical state).
This fact is sometimes expressed by the words: ‘to different vacuum states there correspond different
worlds’.

Thus, the system described by the Lagrangian LSSB has a spontaneously broken U(1)-symmetry.
For the quantization of a theory with spontaneously broken symmetry it is convenient to shift the

field variables. Choosing the vacuum state corresponding to the intercept of the circumference with the
real axis in the plane ϕ, we introduce the new field variables ϕ1, ϕ2 via the relation

ϕ(x) = 1√
2

(
2m√
λ
+ ϕ1(x)+ iϕ2(x)

)
(3.2.227)

so that the ϕ1,2 describe fluctuations around the chosen vacuum state. It is clear that the vacuum
expectations of the fields ϕ̂1,2(x) are zero, while that of the field Reϕ(x) is non-zero: 〈0|Re ϕ(x)|0〉 =√

2m/
√
λ = 0. Substituting (3.2.227) into (3.2.223) we find

LSSB = 1

2
(∂µϕ1)

2 − m2
1ϕ

2
1 + 1

2
(∂µϕ2)

2 − λ

16
(ϕ4

1 + 2ϕ2
1ϕ

2
2 + ϕ4

2)−
m
√
λ

2
(ϕ2

1 + ϕ2
2)ϕ1 (3.2.228)

where m1 = √
2m is the mass of the particle ϕ1(x). This Lagrangian does not contain a term proportional

to ϕ2
2(x), i.e. the scalar particle described by the quantum field ϕ̂2(x) is massless; it emerged as a result of

the spontaneous symmetry-breaking and is a goldstone.

♦ Spontaneous breaking of local symmetry

Let us now modify the Lagrangian LSSB by introducing the Abelian gauge fields Aµ(x), so that it is
invariant with respect to the local U(1)-transformations:

LY M
SSB = − 1

4 F2
µν + (∂µϕ∗ − ig Aµϕ∗)(∂µϕ + ig Aµϕ)+ m2ϕ∗ϕ − 1

4λ(ϕ
∗ϕ)2. (3.2.229)

This Lagrangian is invariant under the transformations

ϕ(x) −→ ϕ′(x) = e−iλε(x)ϕ(x)

ϕ∗(x) −→ ϕ′∗(x) = eiλε(x)ϕ∗(x) (3.2.230)

Aµ(x) −→ A′
µ(x) = Aµ(x)+ ∂µε(x).
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The circle of radius R, as in figure 3.12(b), again corresponds to the vacuum states (in the vacuum states,
Aµ = 0). Making the shift (3.2.227), we now obtain

LYM
SSB = −1

4
F2
µν +

2g2m2

λ
A2
µ + 1

2
(∂µϕ1)

2 − m2ϕ2
1 + 1

2
(∂µϕ2)

2 + 2mg√
λ

Aµ∂µϕ2 + Lint (3.2.231)

where Lint is the interaction Lagrangian for the fields Aµ, ϕ1, ϕ2:

Lint = g Aµ(ϕ1∂µϕ2 − ϕ2∂µϕ1)+ 2g2m√
λ

A2
µϕ1 + g2

2
A2
µ(ϕ

2
1 + ϕ2)+ m4

λ

− 1
16λ(ϕ

4
1 + ϕ4

2 + 2ϕ2
1ϕ

2
2)− 1

2 m
√
λ(ϕ2

1 + ϕ2
2)ϕ1. (3.2.232)

The free Lagrangian in (3.2.231) is non-diagonal because of the term (2mg/
√
λ)Aµ∂µϕ2. To determine

the mass term, we should diagonalize the free Lagrangian in (3.2.231). This is not difficult to do, but
there is an even easier way: we may use the freedom in choosing the gauge condition to fix the gauge
transformations (3.2.230) and setting

ϕ2(x) = 0. (3.2.233)

This gauge condition is called the unitary gauge. In this gauge, the spectrum of free particles in the model
is clearly exhibited: the model contains one vector massive field Aµ(x) and one scalar massive field ϕ1(x).
Thus, a remarkable feature of Lagrangian (3.2.231) is that it contains a massive vector particle with the
mass 2gm/

√
λ. A direct introduction of a term proportional to AµAµ in the Lagrangian (3.2.229) is

not allowed because of its non-invariance under the local gauge transformations (3.2.230). In contrast
to this, the mass term in (3.2.231) emerges due to the spontaneous breaking of the invariance, while the
Lagrangian remains invariant under the transformations (3.2.230). The massless scalar field (goldstone),
which certainly appears in models with spontaneously broken global symmetry, disappears here. The
corresponding degree of freedom is ‘eaten’ by the massive vector field (recall that a massless vector
field has two possible polarizations, while a massive vector field has three possible polarizations). This
phenomenon of the transition of a degree of freedom initially attributed to the scalar field into that of a
gauge vector field is called the Higgs mechanism and the surviving physical scalar field ϕ1(x) is called
the Higgs boson.

♦ A non-Abelian gauge model with spontaneous symmetry-breaking and its path-integral
quantization

The Lagrangians of models with spontaneous breaking of non-Abelian gauge symmetry are constructed
in essentially the same way as in the case of Abelian groups. As an example, let us consider the SU(2)-
invariant gauge theory with the doublet of scalar fields

ϕ =
(
ϕ1
ϕ2

)
ϕ† = (ϕ∗1 , ϕ∗2 ) (3.2.234)

which are transformed according to the fundamental representation of the group SU(2):

ϕ(x) −→ ϕ′(x) = e−iσ aua(x)/2ϕ(x) (3.2.235)

(σ a are the Pauli matrices). The gauge-invariant Lagrangian reads as

L = LYM + (Dµϕ)† Dµϕ − λ2(ϕ†ϕ − µ2)2 (3.2.236)



Path-integral quantization of gauge-field theories 93

where

Dµϕ = ∂µϕ + i

2
gσ a Aa

µϕ. (3.2.237)

In the same way as in the preceding (Abelian) case, we find that the stable minimum of the potential
energy corresponds to the constant field ϕ satisfying the condition:

ϕ†ϕ = µ2. (3.2.238)

It is easy to see that the variety of the vacuum states forms a three-dimensional sphere S3. The choice of
one vacuum state, e.g.,

ϕ =
(

0
µ

)
(3.2.239)

removes the degeneration and corresponds to the admissible gauge condition

ϕ1(x) = 0 Imϕ2(x) = 0. (3.2.240)

In this gauge, there exists only one scalar field, Re ϕ2. It is convenient to introduce the following shifted
field

σ(x)
def≡ √

2(Re ϕ2 − µ). (3.2.241)

In terms of the field σ(x), the Lagrangian (3.2.236) reads as

L = − 1

4
FaµνFa

µν +
1

2
m2

1 AaµAa
µ + 1

2
∂µσ∂µσ − 1

2
m2

2σ
2

+ 1

2
m1gσ AaµAa

µ + 1

8
g2σ 2 AaµAa

µ − gm2
2

4m1
σ 3 − g2m2

2

32m2
1

σ 4 (3.2.242)

where
m1 = µg√

2
m2 = 2λµ. (3.2.243)

Thus, this model describes three massive vector fields (with the equal masses m1) interacting with one
scalar field σ of mass m2.

Since the Lagrangian (3.2.236) (or (3.2.242)) is locally invariant, the corresponding equations of
motion contain constraints. To derive the latter explicitly, let us rewrite (3.2.236) in the first-order form:

L = Fa
0k∂0 Aa

k + ϕ†
0∂0ϕ + (∂0ϕ

†)ϕ0 − H (Fa
0k, Aa

k , ϕ0, ϕ)

+ Aa
0

[
∂k Fa

0k − gεabc Ab
k Fc

0k + i
g

2
(ϕ

†
0σ

aϕ − ϕ†σ aϕ0)
]

(3.2.244)

where H (Fa
0k, Aa

k , ϕ0, ϕ) is the Hamiltonian of the system the explicit form of which is not important at

the moment (cf problem 3.2.7, page 100) and ϕ0(x)
def≡ D0ϕ(x). It is seen that the pairs (Fa

0k, Aa
k ) and

(ϕ0, ϕ) are canonically conjugate momenta and coordinates, Aa
0 are Lagrange multipliers and

Ca def≡ −∂k Fa
0k − gεabc Ab

k Fc
0k + i

g

2
(ϕ

†
0σ

aϕ − ϕ†σ aϕ0) (3.2.245)

are the sought constraints. The reader is invited to verify that conditions (3.2.57) and (3.2.59) are fulfilled
for this model (problem 3.2.7) and that gauge condition (3.2.240) satisfies (3.2.56). Thus we can use, for
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this model, the standard Faddeev–Popov method for path-integral quantization which, for the kernel of
the S-matrix, gives

KS(a
∗(k), a(k); t, t0) = lim

t→∞
t0→−∞

∫
DFa

0k(x)DAa
k (x)Dσ0(x)Dσ(x)Dυ0(x)Dυ(x)

×
∏

x

δ(υa(x))

(
m1 + 1

2
gσ

)3

× exp

{
i

2

∫
d3k

[ 3∑
j=1

(a∗b
j (k, t)a

b
j (k, t) + a∗b

j (k, t0)a
b
j (k, t0))

+ (a∗
σ (k, t)aσ (k, t) + a∗

σ (k, t0)aσ (k, t0))
]}

× exp

{
i
∫ t

t0
dτ
∫

d3x

[
1

2
(Fa

0k Ȧa
k − Ḟa

0k Aa
k + σ0σ̇ − σ̇0σ)

− H (Fa
0k, Aa

k , υ0, υ, σ0, σ

]}
. (3.2.246)

Here we have used the more convenient field variables va(x), related to ϕa(x) through

ϕ1 = iv1 + v2

√
2

ϕ2 = µ+ σ − iv3

√
2
.

The asymptotic conditions have the form (cf (3.1.86) and (3.2.118)):

a∗b
j (k, t)−−−−→t→∞ a∗b

j (k) exp{iω1t} ab
j (k, t0)−−−−→t→−∞ ab

j (k) exp{−iω1t0}
a∗
σ (k, t)−−−−→t→∞ a∗

σ (k) exp{iω2t} aσ (k, t0)−−−−→
t→−∞ aσ (k) exp{−iω2t0} (3.2.247)

where ω1 =
√

k + m2
1 and ω2 =

√
k + m2

2. The holomorphic variables are introduced in the usual way
(cf (3.2.116)):

Ab
l (r, τ ) =

1

(2π)3/2

3∑
j=1

∫
d3k

1√
2ω1

(a∗b
j (k, τ )u

j
l (−k)e−ik·r + ab

j (k, τ )u
j
l (k)e

ik·r)

Fb
0l(r, τ ) =

1

(2π)3/2

3∑
j=1

∫
d3k

√
ω1

2
(a∗b

j (k, τ )̃u
j
l (−k)e−ik·r − ab

j (k, τ )̃u
j
l (k)e

ik·r)
(3.2.248)

where the polarization vectors are defined as follows: u1
l = ũ1

l and u2
l = ũ2

l are two arbitrary orthonormal
vectors, also orthogonal to k, while

u3
l = klω1

|k|m1
ũ3

l = klm1

|k|ω1
. (3.2.249)

The momenta variables enter the Lagrangian (3.2.244) quadratically and can be integrated out (see
problem 3.2.8, page 100), resulting in the explicitly relativistically invariant expression for the normal
symbol of the S-matrix, for the model with spontaneously broken local symmetry SU(2):

S(A(0)µ , σ
(0)) = N−1

∫
A→Ain ,Aout
σ→σin,σout

DAµ(x)Dσ(x)
∏

x

(m1 + 1
2 gσ)3 exp

{
i
∫

d4x L(x)

}
(3.2.250)
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where

L = − 1

4
(∂ν Aa

µ − ∂µAa
ν + gεabc Ab

µAc
ν)

2 + 1

2
m2

1 A2
µ + 1

2
(∂µσ)

2 − 1

2
m2

2σ
2

+ 1

2
m1gσ A2

µ + 1

8
g2σ 2 A2

µ − gm2

4m1
σ 3 − g2m2

2

32m2
1

σ 4. (3.2.251)

The asymptotic conditions are analogous to those in (3.2.122):

Ab
µ(x; in

out ) =
1

(2π)3/2

2∑
j=1

∫
d3k

1√
2ω
(a∗b

j (k; in
out )u

j
µ(k)e

−ik·r+iωt + ab
j (k; in

out )u
j
µ(k)e

ik·r−iωt )

(3.2.252)

ab
j (k; in) = ab

j (k) a∗b
j (k; out) = a∗b

j (k) u j
µ

def≡ (0, u j
k ) j = 1, 2 u3

µ

def≡
(

i
|k|
m
, u3

k

)
σ(x; in

out ) =
1

(2π)3/2

∫
d3k

1√
2ω2

(a∗
σ (k; in

out )e
−ik·r+iωt + aσ (k; in

out )e
ik·r−iωt ) (3.2.253)

aσ (k; in) = aσ (k) a∗
σ (k; out) = a∗

σ (k).

As usual, the functions ab
j (k, out), a∗b

j (k, in), aσ (k, out), a∗
σ (k, in) are not fixed by boundary conditions.

The quadratic form in (3.2.251) is defined as follows:

1
2

∫
d4x (Aa

µ − A(0)aµ )(gµν�− ∂µ∂ν + gµνm2
1)(A

a
ν − A(0)aν ). (3.2.254)

The Green function of the operator

(gµν�− ∂µ∂ν + gµνm
2
1) (3.2.255)

and, hence, the perturbation expansion (Feynman diagram techniques) are defined by the asymptotic
conditions (3.2.252).

However, the perturbation theory in this unitary gauge (3.2.240) is rather cumbersome for the
following reasons:

• the Green function of the operator (3.2.255) is more singular than the functions we have met so far
(e.g., Dα(x)) and

• the integral (3.2.250) contains in its measure the factor
∏

x(m1 + 1
2 gσ)3 which, when exponentiated,

produces other singularities.

Therefore, for practical calculations, it is better to pass to another gauge, e.g. the α-gauge, with the help
of the standard Faddeev–Popov trick. The result, for the normal symbol of the S-matrix, reads as

S = N−1
∫

A→Ain,Aout
σ→σin,σout

DAµ(x)Dσ(x)Dυ
a(x) det Mα exp

{
i
∫

d4x

(
L(x)+ 1

2α
(∂µAµ)

2
)}
(3.2.256)

where

L = − 1

4
(∂ν Aa

µ − ∂µAa
ν + gεabc Ab

µAc
ν)

2 + 1

2
m2

1 A2
µ + 1

2
∂µσ∂µσ − 1

2
m2

2σ
2

+ 1

2
∂µυa∂µυ

a + m1 Aa
µ∂
µυa
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+ 1

2
g Aa

µ(σ∂
µυa − υa∂µσ − εabcυb∂µυc)+ 1

2
m1gσ A2

µ + 1

8
g2(σ 2 A2

µ + υ2)

− gm2

4m1
σ(σ 2 + υ2)− g2m2

2

32m2
1

(σ 2 + υ2)2 (3.2.257)

and
M̂α f(x) = �f(x)− g∂µ[Aµ(x), f(x)]. (3.2.258)

In this gauge, the spectrum of the system is not explicit (and, hence, the unitarity of the theory is not
obvious), but realization of the renormalization procedure is much easier than in the explicitly unitary
gauge (3.2.240). Thus, due to the equivalence of the S-matrix in all gauges, the model possesses both of
the necessary properties of a physically meaningful theory: unitarity and renormalizability.

♦ Unified theories based on gauge theories: the standard model of electroweak and strong
interactions

As we mentioned at the very beginning of this section, the gauge model with spontaneous symmetry-
breaking describes in a unified way the strong, weak and electromagnetic interactions of elementary
particles. As we shall see later (section 3.4), the gravitational interaction is also described by a gauge
theory, though one which is more involved.

To construct the Lagrangian for a unified model, the following steps are required:

(i) Choose the gauge group which determines the interaction-mediating fields; the number of gauge
fields is equal to the dimension of the adjoint representation of this group.

(ii) Choose primary fermions to underlie the model and the representations of the gauge group in which
the fermions are placed; the lowest representations are usually chosen.

(iii) Introduce an appropriate number of multiplets of scalar fields as well as the interaction terms of
these multiplets with fermions (the Yukawa coupling) to obtain massive particles via spontaneous
symmetry-breaking and the Higgs mechanism.

(iv) Write the corresponding locally gauge-invariant Lagrangian.
(v) Quantize the model in path-integral formalism with the help of the Faddeev–Popov approach; the

spectrum of free particles is exhibited in the unitary gauge after diagonalization of the free (quadratic)
part of the Lagrangian, while renormalization is carried out in a suitable α-gauge (and after the
introduction of the ghost fields).

The standard model is characterized by the following selections:

(i) The total gauge group is SU(3) × SU(2) × U(1). The SU(3) factor and the corresponding gauge
fields are responsible for the strong interactions of particles, while the SU(2) × U(1) part provides
the weak and electromagnetic interactions.

(ii) Matter spinor fields are divided into two parts:

• There are fields describing leptons, i.e. particles which only participate in electroweak
interactions. These are the electrons e−, the µ−-leptons, the τ−-leptons, the neutrinos νe, νµ, ντ
and their antiparticles. In fact, to fit experimental data, the Lagrangian of the standard model is
constructed out of left-handed and right-handed projections of the fields, the projector operators
L and R being made by means of the Dirac γ5-matrix: L = (1 + γ5)/2, R = (1 − γ5)/2. Left-
(right-) handed fields are obtained from an initial spinor field ψ as follows: ψL = 1

2 (1 + γ5)ψ ,
ψR = 1

2 (1 − γ5)ψ . The standard model contains three left-handed lepton SU(2)-doublets(
νe

e−
)

L

(
νµ
µ−
)

L

(
ντ
τ−
)

L
(3.2.259)
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and three right-handed lepton SU(2)-singlets

e−R µ−
R τ−R . (3.2.260)

All the lepton fields are singlets with respect to the SU(3) gauge group; this reflects the fact that
leptons do not participate in strong interactions.

• The quark fields constitute hadrons, i.e. strongly interacting particles. Correspondingly, all
quarks have non-trivial transformation properties with respect to SU(3), namely they are
transformed according to the fundamental three-dimensional representation of SU(3). The index
labelling the fields in the SU(3)-triplets has acquired the name ‘color’. This explains the name
of the SU(3) gauge theory of the quark interactions: quantum chromodynamics (QCD). (In
the currently accepted terminology, QCD is part of the standard model.) Besides the strong
interactions, the quarks also participate in electroweak interactions. Therefore, they have non-
trivial transformation properties with respect to the SU(2) × U(1) part of the standard-model
gauge group. Again, as for the leptons, there are three left-handed SU(2)-doublets and all quark
fields have right-handed parts, giving a total of six right-handed singlets.

(iii) The total gauge group SU(3)× SU(2)×U(1) of the standard model is spontaneously broken down
to SU(3)× U(1). This is achieved via the introduction of a SU(2)-doublet of scalar complex fields
(Higgs fields), similarly to the model we previously considered in this section.

(iv) The gauge-invariant Lagrangian is constructed by the usual rules, with the help of the covariant
derivatives Dµ; the potential energy of the Higgs fields has degenerate minima (as in the previous
model), providing the spontaneous symmetry-breaking. This, in turn, gives masses to three gauge
bosons and to fermions (excluding neutrinos). The fermions acquire masses due to the Yukawa
couplings with the scalar fields.

(v) The path-integral quantization of the standard model and the development of the perturbation
theory are carried out as we have described in this section for general Yang–Mills theories. Note
that the massless photon (electromagnetic) field appears as a linear combination of the gauge
boson corresponding to the factor U(1) in SU(3) × SU(2) × U(1) and one of the gauge bosons
corresponding to SU(2). Another (linearly independent) combination of these bosons becomes
massive and responsible (together with two other massive SU(2) gauge bosons) for the weak
interactions. One more peculiarity of the standard model is that its Lagrangian essentially contains
γ5-matrices, because the spinor fields enter the Lagrangian via their left- and right-handed projection.
This fact might potentially cause quantum anomalies (see section 3.3.4) and the theory may prove
to be non-renormalizable. However, the whole structure of the spinor multiplets (both leptons and
quarks) is such that the anomalies in different sectors of the model cancel each other out and the
complete theory is well defined, non-anomalous and renormalizable.

At present, there is no single experimental result which contradicts the standard model. Moreover,
almost all the ingredients of the standard model have experimental confirmation. In particular, all the
particles, except the Higgs particle, have been successfully detected. The Higgs particle is expected to be
detected in the near future.

Of course, our description of the standard model is very far from being complete. We shall consider
some more aspects of this model (or the non-perturbative properties of the Yang–Mills theory, in general)
in the next section. The reader may find more details about the standard model in, e.g., Itzykson and
Zuber (1980), Okun (1982), Chaichian and Nelipa (1984), Cheng and Li (1984), West (1986), Peskin and
Schroeder (1995) and Weinberg (1996).
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3.2.9 Problems

Problem 3.2.1. Show the equivalence of a classical system with some Hamiltonian H (p, q) plus first-
class constraints (cf (3.2.57) and (3.2.59)), after imposing gauge conditions (cf (3.2.59)) which satisfy
(3.2.60), and the reduced physical subsystem with the Hamiltonian defined as in (3.2.65).

Hint. The equations of motion for the initial system are

ṗA + ∂H

∂qA
+ λa ∂φa

∂qA
= 0,

q̇A − ∂H

∂pA
− λa ∂φa

∂pA
= 0 (3.2.261)

φa = 0 A = 1, . . . , n, a = 1, . . . , r.

A solution of these equations contains the arbitrary functions λa(t) (the Lagrange multipliers). The gauge
conditions χa = 0 allow us to express λa(t) through the canonical variables. Let us choose the canonical
variables according to (3.2.62) and (3.2.64). Then, equations q̇a = 0 together with (3.2.261) give

∂H

∂pa
+ λb ∂φb

∂pa
= 0 a, b = 1, . . . , r. (3.2.262)

The equations of motion for the physical coordinates in (3.2.261) have the form

˙̃qi =
∂H

∂ p̃i
+ λa ∂φa

∂ p̃i
. (3.2.263)

On the other hand, if we start from the physical Hamiltonian defined by (3.2.65), the equation of motion
for the same coordinates is

˙̃qi =
∂Hph

∂ p̃i
= ∂H

∂ p̃i
+ ∂H

∂pa

∂pa

∂ p̃i
. (3.2.264)

The right-hand sides of (3.2.263) and (3.2.264) are equal to each other if

λa
∂φa

∂ p̃i
= ∂H

∂pa

∂pa

∂ p̃i
.

Using (3.2.262), this condition can be rewritten as

λa

(
∂φa

∂ p̃i
+ ∂φa

∂pb

∂pb

∂ p̃i

)
= λa

d

d p̃i
φa = 0.

The latter form shows that this condition holds automatically due to the constraints φa = 0. Thus the
physical coordinates have the same equations of motion both in the initial and in the reduced system. The
momenta are considered quite similarly and with the same result which proves the required statement.

Problem 3.2.2. Calculate path integral (3.2.124) which defines the free propagator of the Yang–Mills field
in the Coulomb gauge and prove that the latter has the form (3.2.125).

Hint. The extremality equations for the Gaussian integral (3.2.124) read as

∂ν(∂ν Aa
k − ∂k Aa

ν)+ J a
k + ∂kλ

a = 0

∂ν(∂ν Aa
0 − ∂0 Aa

ν)+ J a
0 = 0

∂k Aa
k = 0
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or, equivalently,

�Aa
k − (∂kλ

a + ∂0∂k Aa
0)+ J a

k = 0

∂k∂k Aa
0 − J a

0 = 0

∂k Aa
k = 0.

The latter equation shows that the longitudinal component (in the three-dimensional sense) of the Yang–
Mills field vanishes at the extremal field. Thus we can choose the source field also to be transversal:

∂k J a
k = 0.

As a result, this system has a unique solution for fields satisfying the boundary conditions (3.2.121) and
(3.2.122) imposed on AT

k :

Aaµ(x) =
∫

dy DµνC (x − y)J a
ν (y),

where DµνC (x − y) is the Coulomb propagator (3.2.126).

Problem 3.2.3. Calculate the integral (3.2.132) in the vicinity of g(x) = 1 (i.e. verify formula (3.2.134)).

Hint. Use the basis of eigenfunctions αn(x) of the operator M̂C(A)

M̂C(A)αn(x) = λnαn(x)

and the δ-function property: δ(λα) = |λ−1|δ(α).
Problem 3.2.4. Derive the constraints and Hamiltonian equations of motion for the gauge fields interacting
with a matter spinor field according to the Lagrangian

L = 1

8g2 Tr(FµνF
µν)+ iψ̄γ µDµψ − mψ̄ψ (3.2.265)

Dµ ≡ ∂µ + ita Aa
µ

where ta
i j are the generators of the gauge group in the appropriate representation. Show that the constraints

are first class and that they generate the gauge transformations of the fields.

Hint. The constraints have the form

Ca(x) = ∂k Fa
k0 − f abc Ab

k Fc
0k + iψ̄γ0taψ. (3.2.266)

A straightforward calculation of the Poisson brackets gives

{Ca(x),Cb(y)} = f abcδ(x − y)Cb(x)

so that these are indeed first-class constraints and the Poisson bracket relations

{Ca(x), Ab
k(y)} = δab∂kδ(x − y)− f abc Ac

kδ(x − y)

{Ca(x), ψ(y)} = taψ(x)δ(x − y)

{Ca(x), ψ̄(y)} = − taψ̄(x)δ(x − y)

exactly correspond to the infinitesimal gauge transformations of the fields entering the Lagrangian.

Problem 3.2.5. Draw the Feynman diagrams and write the corresponding amplitude for the electron–
electron scattering process: e−(p1)+ e−(p2) −→ e−(p1)+ e−(p2).
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Figure 3.13. Feynman diagrams for the electron–electron scattering process.

Hint. The diagrams are depicted in figure 3.13. The corresponding amplitude has the form

〈p3, p4; out|p1, p2; in〉 = (−i)2e2
[
v̄
(+)
r ′ ( p3)γµv

(−)
r ( p1)

1

(p3 − p1)2
v̄
(+)
r ′ ( p4)γµv

(−)
r ( p2)

− v̄(+)r ′ ( p4)γµv
(−)
r ( p1)

1

(p4 − p1)2
v̄
(+)
r ′ ( p3)γµv

(−)
r ( p2)

]
. (3.2.267)

Here the Dirac spinors v(−)r ( p) and v̄(+)r ( p) represent the initial and final electron states, respectively.

Problem 3.2.6. Show that the generalized Ward–Takahashi identity (3.2.217) with ghost fields and ghost
sources can be reduced to the Ward–Takahashi identity in the form (3.2.213), derived without the use of
the BRST transformations.

Hint. Differentiate (3.2.217) with respect to η̄a and ηa , set η̄a = ηa = 0 and subsequently integrate over
ca and c̄a . The result exactly coincides with (3.2.213).

Problem 3.2.7. Verify that constraints (3.2.245) satisfy conditions (3.2.57) and (3.2.59) so that they are
first-class constraints. Show also that gauge (3.2.240) is admissible.

Hint. Derive the explicit form of the Hamiltonian in (3.2.244) and, using the canonical Poisson brackets
for conjugate variables (Fa

0k, Aa
k ) and (ϕ0, ϕ), verify the required equalities.

To prove the admissibility of the gauge condition (3.2.240), show that the matrix of the Poisson
brackets is non-degenerate (in the framework of perturbation theory). More precisely, show that the
brackets have the form

{Ca(x), υb(y)} = (m1 + 1
2 gσ(x))δabδ(x − y)+ · · · (3.2.268)

where
υ1 = Imϕ1/

√
2 υ2 = Re ϕ1/

√
2 υ3 = − Imϕ2/

√
2

and the dots denote terms vanishing when υa = 0. The right-hand side of (3.2.268) is obviously invertible
if |gσ | ≤ m1.

Problem 3.2.8. With the help of integration over momentum variables convert the phase-space path
integral (3.2.246) for the S-matrix of the model with spontaneous symmetry-breaking into the
configuration path integral (3.2.250), exhibiting explicit relativistic invariance.
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Hint. For the integration over υ0 we should make the shift of variables:

υ0 −→ υ0 − m1 Aa
0

while the integration over Fa
0k is performed after the shift:

Fa
0k −→ Fa

0k + ∂0 Aa
k − ∂k Aa

0.

3.3 Non-perturbative methods for the analysis of quantum field models in the
path-integral approach

Many phenomena in quantum systems, including field theoretical systems, cannot be described in the
framework of the perturbation theory which we have discussed in the preceding sections of this chapter.
This is especially important in the case of the strong coupling regime of the theory when the perturbative
expansion in powers of the coupling constant is absolutely unreliable. For example, this is true for
quantum chromodynamics at relatively large distances. That is why the quantitative description of quark
dynamics, in particular the explanation of quark confinement (absence of free quarks) is an extremely
complicated problem. But even in the weak coupling regime (small coupling constants) there are many
phenomena, e.g. the existence of solitons and instantons, which cannot be described by perturbation theory
(because the appropriate quantities describing these phenomena are non-analytic functions of the coupling
constants). Sometimes, straightforward perturbation theory calculations lead to meaningless results and
some non-trivial rearrangement and partial summation of the perturbation expansion is required (for
instance, in the case of the so-called infrared catastrophe).

Thus, the problem of developing non-perturbative methods of analysis and calculation in quantum
field theory is extremely important. The path-integral formalism has proved to be very useful for this
aim. In this section, we shall consider the most powerful and well-developed non-perturbative path-
integral methods for quantum field theories in continuous spacetime. The discussion of such methods in
discretized space and time (i.e. for quantum field theories on lattices) pertains to chapter 4.

The physical problem which we shall discuss in the last part of this section (section 3.3.5) is somehow
outside the main topic of this chapter. While the main subject of the current chapter is relativistically
invariant quantum field theory (with applications to the theory of elementary particles and fundamental
interactions), section 3.3.5 is devoted to non-perturbative path-integral methods in a non-relativistic field
theory. Physically, this field theory describes an electron moving in a crystal and interacting with the
vibrations of the crystal lattice (the so-called polaron problem). We shall see that, though the physical
situation in this case is quite different from that for elementary particle models, the essence of the field
theoretical and path-integral methods remains the same.

It is worth mentioning that, in fact, we have already dealt with non-perturbative applications of path-
integral methods in quantum field theory: as we learned in section 3.1.5, the path-integral formalism is
very convenient for deriving the Schwinger–Dyson equations, which contain complete information about
the field model under consideration. Then we may try to solve these equations by some non-perturbative
(though, of course, in most cases still approximate) method.

3.3.1 Rearrangements and partial summations of perturbation expansions: the 1/N-expansion
and separate integration over high and low frequency modes

If standard perturbation theory cannot be applied to the calculation of some physical characteristics in a
field theory (for example, because the corresponding coupling constant is not small), we may look for
new and unorthodox parameters which could serve to define a new perturbation expansion. An example
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of such a modification, which consists in employing a series expansion with respect to the parameter 1/N
(N is the number of field components entering the Lagrangian of a model; it is supposed that N ≥ 1),
instead of the usual coupling constant, is referred to as the 1/N-expansion.

♦ The 1/N-expansion

We shall illustrate the basics of the 1/N-expansion technique by considering, as an example, the four-
dimensional ϕ4-interaction model which is invariant under the (global) O(N) group. Let the set of scalar
fields ϕa(x) be transformed according to the fundamental representation of the O(N) group, so that the
scalar field forms a multiplet ϕa with N components: a = 1, 2, . . . , N .

The Lagrangian of such a model can be written as

L′ = 1

2
∂µϕa∂µϕ

a − 1

2
m2ϕaϕa − 1

8

λ

N
(ϕaϕa)2. (3.3.1)

Here we have explicitly introduced the parameter 1/N redefining the usual ϕ4-coupling constant λ as
λ/N . Physically, this is an non-essential redefinition (especially as the coupling constant is subjected to
renormalization). But this trick allows us to separate diagrams of different orders in 1/N in an easier way.
For example, to separate the diagrams of zero order in this parameter among all the diagrams of the usual
perturbation theory, we may just put N → ∞ (i.e. 1/N = 0). If we did not modify the coupling constant,
parts of the diagrams would be proportional to positive powers of N and the N → ∞ limit would be
meaningless.

As will be seen, it is convenient to pass to another Lagrangian for the same system:

L = L′ + 1

2

N

λ

(
σ − 1

2

λ

N
ϕaϕa

)2

(3.3.2)

= 1

2
ϕa K (σ )ϕa + 1

2

N

λ
σ 2 (3.3.3)

where σ(x) is an auxiliary one-component field and

K (σ ) = −(∂µ∂µ + m2 + σ).
The additional term in (3.3.2) does not change the dynamics of the system. In fact, the change of

variables σ → σ(λ/N)ϕaϕa , ϕa → ϕa , in the path integral corresponding to the Lagrangian (3.3.3),
yields∫

Dσ(x)Dϕa(x) exp

{
i
∫

d4x L

}
=
∫
Dσ(x) exp

{
i
∫

d4x σ 2(x)

}
Dϕa(x) exp

{
i
∫

d4x L′
}
.

(3.3.4)
The integration over σ(x) only changes the normalization constant of the generating functional Z[J ]
for the Green functions and, consequently, the Lagrangians L and L′ describe systems with the same
dynamics.

With the use of (3.3.3), the expression for the generating functionalZ[J ] for the Green functions of
the fields ϕa takes the form

Z[J ] = N−1
∫
Dσ(x)Dϕa(x) exp

{
i
∫

d4x

[
1

2
ϕa K (σ )ϕa + 1

2

N

λ
σ 2 + J a(x)ϕa(x)

]}
(3.3.5)

where J a are the auxiliary external currents associated with the fields ϕa . The Gaussian integration over
the fields ϕa gives

Z[J ] =
∫
Dσ(x) exp

{
iN
∫

d4x Leff(σ )

}
(3.3.6)
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where

Leff(σ ) = 1

2

[
i Tr ln K (σ )+ 1

λ

∫
d4x σ 2(x)− 1

N

∫
d4x d4 y J a(x)K−1(x, y)J a(y)

]
. (3.3.7)

It is seen that the integral over the multiplet ϕa is reduced to an integral over a single scalar function σ(x),
which was the actual goal when introducing the field σ(x). The main achievement of such a representation
of the generating functional is that the parameter N proves to be explicitly extracted as the overall factor
in front of the exponent in the path integral (note that the last term in the effective Lagrangian (3.3.7)
contains, together with the factor 1/N , the summation over N terms and, hence, it is also of zero order in
1/N). Since we assume that N is a large quantity (N ≥ 1), we can use for the calculation of (3.3.6) the
stationary-phase method (see section 2.2.3).

First, we have to find the stationary point, i.e. the solution σ0 of the equation

δ

δσ

∫
d4x Leff(σ ) = 0 (3.3.8)

and then we expand the action around this stationary value. Note that the stationary point σ0 depends on
the currents J a : σ0 = σ0(J ). The quadratic approximation gives

Z
(quadr)[J, j ] = exp{iN Sσeff[σ0(J )]}

∫
Dσ(x) exp

{
iN
∫

d4x
1

2
L′′

eff(σ0)σ
2(x)+ 1

N
j (x)σ (x)

}
= [detL′′

eff(σ0)]−1/2 exp{iN Sσeff[σ0(J )]} exp

{
− i

2
N j (x)[L′′

eff(σ0)]−1 j (x)

}
(3.3.9)

where j (x) is the auxiliary current corresponding to the field σ(x) and

L′′
eff(σ0) = ∂2Leff(σ )

∂σ 2

∣∣∣∣
σ=σ0

.

Expression (3.3.9) gives the leading contribution in 1/N to the generating functional. In the standard way,
we can take into account all higher orders in 1/N (i.e. higher orders of the expansion around the stationary
point σ0):

Z[J, j ] = [detL′′
eff(σ0)]−1/2 exp{iN Sσeff[σ0(J )]}

× exp

{
iN

∞∑
n=3

1

n!
[
∂nLeff

∂σ n

∣∣∣∣
σ=σ0

]
1

in
δn

δ j n(x)

}
exp

{
− i

2
N j (x)[L′′

eff(σ0)]−1 j (x)

}
. (3.3.10)

Functional differentiation of Z[J, j ] with respect to the currents J and j gives the corresponding Green
functions. In particular, according to (3.3.10), for the propagator D(x, y) of the field σ(x) in the first
order in 1/N , we have

D(σ )1/N (x, y) = δ2
Z[J, j ]

δ j (x)δ j (y)

∣∣∣∣
J= j=0

= −iN−1[L′′
eff(σ0)]−1. (3.3.11)

However, the effective Lagrangian Leff contains the term i Tr ln K (σ ) with an implicit dependence on the
field σ(x). In order to make this dependence explicit, let us present this term in the following way:

Tr ln K (σ ) = Tr ln[−(∂µ∂µ + m2)− σ ]
= Tr ln[−(∂µ∂µ + m2)] + Tr ln[1I + Dc(x, y)σ (y)]. (3.3.12)
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Here Dc(x, y) is the usual Green function (3.1.93) for a scalar field (i.e. the kernel of the operator
(∂µ∂µ + m2)−1: (∂µ∂µ + m2)Dc(x, y) = δ(x − y)). Note that the field σ(x) entering the operator
K (σ ) is considered to be a diagonal operator σ(x)δ(x − y) and in the form of an integral kernel it acts on
an arbitrary function f (x) as follows

σ̂ f (x) =
∫

dy σ(x)δ(x − y) f (y) = σ(x) f (x).

The operator Dc(x, y)σ (y) is also understood as an integral kernel (infinite-dimensional matrix with its
elements labeled by x and y), so that its trace has the form:

∫
dx Dc(x, x)σ (x). The first term in (3.3.12)

gives an inessential constant. The Taylor expansion of the second term gives the explicit dependence of
Leff on σ :

Tr ln(1I + Dc(x, y)σ (y)) =
∫

dx Dc(x, x)σ (x)

− 1
2

∫
dx dy Dc(x, y)σ (y)Dc(y, x)σ (x)

+ 1
3

∫
dx dy dz Dc(x, y)σ (y)Dc(y, z)σ (z)Dc(z, x)σ (x)+ · · · . (3.3.13)

In general, the stationary point σ0 is not zero (and depends on the external source J (x)) and the
explicit form of the σ -propagator, even in the leading 1/N-approximation, is rather complicated, being
represented by an infinite number of Feynman diagrams of the ordinary perturbation theory. To illustrate
this, let us assume that σ0 = 0, so that (3.3.13) gives

L′′
eff|σ0=0 = λ−1δ(x − y)− i

2
Dc(x, y)Dc(y, x)

and the σ -field propagator in the leading 1/N-approximation becomes

D(σ )1/N (x, y) = − λ
N

[
1 + 1

2
λ (x, y)

]−1

(3.3.14)

where

 (x, y) = Dc(x, y)Dc(y, x)

= 1

(2π)8

∫
dp eip(x−y)

[ ∫
dk

1

k2 − m2

1

(p + k)2 − m2

]
.

The expansion of (3.3.14) as a power series in the coupling constant λ is depicted graphically in
figure 3.14.

Let us consider an arbitrary connected diagram which contains E external lines, I internal lines
and V vertices corresponding to the field σ . According to (3.3.6), each vertex of the diagram involves
the parameter N . Since the propagator is a reciprocal quantity with respect to the quadratic part of
the Lagrangian, to each internal or external line there corresponds a factor 1/N . The diagram is thus
characterized by the quantity N V−I−E . The number of internal lines is equal to the number of momenta
over which the integration is to be carried out. These momenta are, however, not independent, because
the momenta meeting at each of the vertices V are interrelated through a conservation law; besides, one
of the conservation laws (pertaining to the process as a whole) involves the external momenta so that the
number of independent internal momenta is L = I − (V − 1).
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Figure 3.14. Expansion of the diagram for the propagator of the σ -field in the first order in 1/N into an infinite series
corresponding to diagrams of different orders of the usual perturbation theory in the coupling constant λ.
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Figure 3.15. Diagrams for the process ϕaϕa → ϕaϕa in the first order in 1/N .

Taking this into account we find for the power of N :

N V−I−E = N−E−L+1. (3.3.15)

In particular, the diagrams containing two external lines (E = 2) and no loops (L = 0, the tree
approximation) contribute to the leading order in 1/N .

As an example, the typical diagrams for ϕaϕa → ϕaϕa scattering in the leading order in the
parameter 1/N are depicted in figure 3.15. The filled circle denotes the two-point Green function D(σ )1/N
of the σ -field and is presented in figure 3.14. It can be seen that an infinite number of the usual Feynman
diagrams with increasing powers of the coupling constant λn , n = 1, 2, 3, . . . , contribute to the leading-
order contribution in the parameter 1/N (we assume that the Lagrangian is presented in the normal form
so that tadpole diagrams do not appear).

It should be emphasized that the 1/N-expansion technique is based on the possibility of reducing
the integration over the field ϕa(x) in the generating functional to integration over the field σ(x). This
allows us to express the generating functional in the form (3.3.6), which contains N in front of the action
as a common factor. Unfortunately, this possibility can only be realized if the Lagrangian comprises
fields which transform according to the fundamental representation of a symmetry group. The method
of 1/N-expansion, as outlined here, cannot be applied directly to the gauge fields of the O(N) groups,
because these transform according to the adjoint rather than the fundamental representation of the O(N)
group (the number of gauge fields of the group O(N) being equal to N(N − 1)/2 and not to N). Other
(topological) methods have been developed for the classification of diagrams in gauge theories according
to the powers of 1/N . However, at least in the four-dimensional case, these methods have not produced
impressive results on the non-perturbative structure of the gauge theories. The reader may find further
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details on 1/N-expansion (together with analysis of other models containing fields in the fundamental
representations of the symmetry groups) in Zakrzewski (1989).

♦ Separate integration over lower and higher modes and infrared asymptotics of Green functions

Infrared divergences in quantum field theories appear in the perturbation theory calculations of transition
amplitudes, due to the integration over a region of small energies of particles (virtual or real) entering the
process (see Bogoliubov and Shirkov (1959) and Itzykson and Zuber (1980)). An important example of
a theory where such problems exist is quantum electrodynamics (QED). The physical reason for the
infrared divergences in QED is the existence of photons of arbitrarily small energies (since photons
are massless). Some diagrams of the standard perturbation theory, in this case, have (along with the
ultraviolet divergences which we have discussed earlier and which require a renormalization procedure
for their removal), the specific infrared singularity. This means that the expression corresponding to a
given diagram is singular at zero external momenta (i.e. momenta attributed to the external lines of the
diagram). The origin of infrared singularities is quite different from that of ultraviolet ones. The former
are removed not via renormalization but with the help of an appropriate rearrangement of the perturbation
theory. One possible method of such a rearrangement is based on the path-integral approach and consists
in successive integration, at first over the higher and then over lower momentum modes of the quantum
fields.

We shall consider the Green function S(tot)
c (p), that is the total two-point electron Green function in

QED taking into account the interactions (as distinct from the free-spinor Green function Sc; cf (3.1.106)).
In this case, the infrared problem reveals itself as an appearance of a power singularity in S(tot)

c (p) at the
mass shell p2 = m2, instead of a simple pole. As we have already mentioned, this is explained by the
fact that a physical electron is surrounded by a ‘cloud’ of photons of arbitrarily small energy (arbitrarily
large wavelength). The form of this singularity was found for the first time by Landau et al (1954) by the
summation of a special infinite subset of the usual Feynman diagrams. The path-integral approach allows
us to do this in a more natural and technically easier way (see Popov (1983) and references therein).

The words ‘higher’ and ‘lower’ modes mean that we should separate the Fourier modes ψ̃(k) of the
photon field

Aµ(x) =
∫

d4k eikx Ãµ(k) (3.3.16)

into two parts, corresponding to the small and large values of the momentum k. To do this, it is convenient
to pass, first, to the Euclidean version of quantum field theory via the analytic continuation to imaginary
time. In this case, we may define the lower modes as { Ãµ(k), k2 ≡∑4

µ=1 k2
µ ≤ k2

0} for some appropriate

k0 and the higher modes as { Ãµ(k), k2 ≡∑4
µ=1 k2

µ > k2
0}. The transition to the physical case of pseudo-

Euclidean metrics is carried out by backward analytic continuation to real time in the final expression for
the Green functions. Note that we now use the Euclidean γ -matrices, with the defining relations

γµγν + γνγµ = 2δµν µ, ν = 1, 2, 3, 4. (3.3.17)

The electron Green function (Euclidean version) is defined in the usual way

Stot
c (x, y) = δ

δη̄(x)

δ

δη(y)
ZQED[Jµ, η, η̄]

∣∣∣∣
J=η̄=η=0

= 〈0|ψ̄(x)ψ(y)|0〉

= N−1
∫
DAµ(x

′)Dψ̄(x ′)Dψ(x ′) δ[∂µAµ(x
′)]

× exp{−SQED[A(x ′), ψ̄(x ′), ψ(x ′)]}ψ̄(x)ψ(y) (3.3.18)
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where SQED is given in (3.2.183). The calculation of this Green function can be carried out along the
following steps:

(i) Integrate over the spinor electron–positron fields ψ, ψ̄ using the fact that they enter the exponent in
the path integral (3.3.18) quadratically.

(ii) Calculate the integral over the higher modes of the electromagnetic field using standard perturbation
theory (as k2 > k2

0 for the higher modes, the infrared problems do not appear at this stage).
(iii) Calculate the remaining path integral over the lower modes k2 ≤ k2

0 using the specific approximation
outlined later.

The usual calculation of the Gaussian-like Grassmann integral over the fields ψ and ψ̄ gives the
following general structure for the (causal) Green function (3.3.18)

Stot
c (x, y) = N−1

∫
DAµ(x

′) δ[∂µAµ(x
′)]e−Se[A] det(γµ(∂µ + ieAµ)− m)Sc(x, y; A) (3.3.19)

where Se[A] is the action (cf (3.2.71)) of the free electromagnetic field, Sc(x, y; A) is the electron Green
function in the presence of an external electromagnetic field Aµ, i.e. Sc(x, y; A) is the causal solution of
the equation

[γµ(∂µ + ieAµ] − m]Sc(x, y; A) = δ(x − y)

and
det(γµ(∂µ + ieAµ)− m) (3.3.20)

is the determinant of the Dirac operator in the external field. As usual the functional determinant must be
regularized. The most natural way is to divide it by the free Dirac determinant (cf the regularization of
the corresponding determinant for harmonic oscillator in the external field, section 2.2.2). Thus we use
the ratio

det(γµ(∂µ + ieAµ)− m)→ det(γµ(∂µ + ieAµ)− m)

det(γµ(∂µ − m)
= exp

{
Tr ln

(
1I + 1

 ∂ − m
ieA/

)}
= exp

{
−

∞∑
n=1

(−1)ne2n

2n

∫
dx1 · · · dxn Tr[S(0)c (x1 − x2)A/ (x2)

· · · S(0)c (xn − x1)A/ (x1)]
}
. (3.3.21)

The non-trivial terms in the expansion of this exponential (i.e. all terms except unity) represent the so-
called vacuum polarization effect. Note that the sum in (3.3.21) goes only over even powers. This is a
consequence of the Furry theorem (see problem 3.3.1, page 144).

Explicit and exact integration over the electromagnetic fields in (3.3.19) is impossible and we need
some approximation methods. The first non-trivial approximation for the electron Green function can be
obtained under the following assumptions:

(i) Let us set the Dirac determinant divided by the normalization constant (the free Dirac determinant)
equal to unity, i.e. let us neglect all the vacuum polarization terms in (3.3.21).

(ii) After separating the electromagnetic field into the high-frequency part A(hf)
µ

A(hf)
µ (x)

def≡
∫

k2>k2
0

d4k eikx Ãµ(k)
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and the low-frequency part A(lf)µ

A(lf)µ (x)
def≡
∫

k2≤k2
0

d4k eikx Ãµ(k)

(for some constant k0), let us use for the Green function of an electron in the external field the
approximate formula

Sc(x, y; A) ≈ Sc(x, y; A(hf)) exp

{
ie
∫ y

x
dx ′
µ A(lf)µ (x

′)
}

(3.3.22)

where the line integral in the exponent goes along the straight contour connecting the points x and y.
It can be shown that, for fixed x , y, this expression asymptotically converges to the exact one in the
limit k0 → 0.

These assumptions allow us to present the path integral for the electron Green function as a product
of two factors:

S(tot)
c (x, y) = N−1

∫
DA(hf)

µ (x ′) δ[∂µA(hf)
µ (x ′)]Sc(x, y; A(hf)) exp{−Se[A(hf)]}

×
∫
DA(lf)µ (x

′) δ[∂µA(lf)µ (x
′)] exp

{
−Sel[A(lf)] + ie

∫ y

x
dx ′
µ A(lf)µ (x

′)
}
. (3.3.23)

The first factor, containing only the high-frequency electromagnetic field, can be calculated by the
usual perturbation theory and presented in the form

1

(2π)4

∫
d4 p eipx −ip/ + m −  (p)

p2 + (m − (p))2 (3.3.24)

where the electron self-energy  (p) is calculated in the lowest (second-order) approximation
corresponding to the Feynman diagram (cf (3.2.187))

r r

k > k0

p − k

The momentum of the internal photon propagator is bounded from below by the constant k0 which
separates, according to our agreement, the higher and lower frequencies, so that this part of the self-
energy is given by the integral

− 1

(2π)4

∫
k>k0

d4k
k2δµν − kµkν

k4
γµ

m − i(p/ − k/ )

(p − k)2 + m2
γν. (3.3.25)

Its calculation is performed in the vicinity of the mass-shell, p2 ≈ −m2, and a subsequent Fourier
transformation yields the infrared asymptotics of the first factor Sk>k0

c in (3.3.23):

Sk>k0
c ≈ 1

2
Ck0

(
mk0

2π
√

x2

)3/2

(1 + n/ ) exp
{
−mk0

√
x2
}

(3.3.26)
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where n/ ≡ nµγµ, nµ
def≡ xµ/

√
x2, and

Ck0

def≡ 1 − 7e2

16π2
− 3e2

8π2
ln

k0

m
(3.3.27)

mk0

def≡ m

[
1 + 3e2

16π2

(
ln
�2

m2 + 1

)]
− e2

4π2 k0. (3.3.28)

The quantity mk0 is the electron mass calculated in the second order of the usual perturbation theory,
taking into account only the high-frequency electromagnetic field. The parameter � in (3.3.28) defines
the ultraviolet regularization (e.g., ultraviolet cutoff). Of course, the usual ultraviolet renormalization is
necessary.

Let us now turn to the second factor in (3.3.23), containing the low-frequency fields, as they are
particularly important in the infrared region. The usual perturbation, as we have already mentioned, is
inapplicable in this situation. Fortunately, with our assumptions, the second path integral in (3.3.23)
becomes Gaussian and can be calculated straightforwardly. The answer is given by the following contour
(line) integral:

exp

{
− e2

2

∫ y

x

∫ y

x
dx ′
µ dx ′′

ν D(lf)⊥µν (x ′ − x ′′)
}

(3.3.29)

where D(lf)⊥µν (x) is the (free) transversal low-frequency photon propagator:

D(lf)⊥µν (x) = 1

(2π)4

∫
k<k0

δ4k eikx

(
k2δµν − kµkν

k4

)
. (3.3.30)

An approximate calculation (at k0
√

x2 , 1) of the ordinary contour integrals (3.3.29) yields

exp

{
− e2

4π2
k0

√
x2 + 3e2

8π2
ln k0

√
x2 + 3e2

16π2
(1 + 2C− 2 ln 2)

}
(3.3.31)

where C = 0.5772 . . . is the Euler constant. The combination of this ‘infrared’ exponential with the first
factor (3.3.28) finally results in the asymptotic expression for the Green function of an electron in the
infrared region:

S(tot)
c (x)|p2≈−m2 ≈ 1

2
a

m3

(2π)3/2
(m
√

x2)
− 3

2+ 3e2

8π2 (1 + n/ )e−m
√

x2
. (3.3.32)

Here a is the normalization factor

a = 1 + 3e2

8π2 (C− 2 − ln 2)

and m is the physical (renormalized) electron mass. In terms of the regularization parameter�, i.e. before
renormalization, the mass m can be expressed as follows

m = m0

[
1 − 3e2

16π2

(
ln
�2

m0
+ 1

)]
.

The transition to the momentum representation via the Fourier transform gives, for the electron Green
function near the mass-shell (p2 ≈ −m2), the expression

S̃(tot)
c (p)|p2≈−m2 ≈

(
1 − 3e2

4π2

)
m − ip/

m2
(

1 + p2

m2

)1+3e2/(8π2)
. (3.3.33)
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Recall that, together with the non-perturbative calculation, we have partially used ordinary perturbation
theory, so that the infrared asymptotics (3.3.33) of the electron Green function are correct only up to the
higher-order corrections (in the coupling constant e) of ordinary perturbation theory. We stress, however,
that the expression contains all the powers of the coupling constant e (cf the denominator in (3.3.33)), so
that this expression corresponds to the summation of an infinite subset of Feynman diagrams.

As we expected, the electron Green function has a power singularity on the mass-shell (instead of
the ordinary pole, as it would in any finite order of the usual perturbation theory).

3.3.2 Semiclassical approximation in quantum field theory and extended objects (solitons)

So far, we have considered field theories quantized in the vicinity of the trivial field configurationϕ(x) = 0
or (in spontaneous symmetry-breaking) in the vicinity of the non-zero constant field ϕ(x) = a = constant.
However, the field theoretical equations of motion, in many models with appropriate interaction terms,
admit coordinate- and even time-dependent classical solutions with finite energy localized in a restricted
area of the space. Such solutions are called ‘solitons’. The existence of solitons explains many important
phenomena in particle physics, cosmology, solid state physics etc, which cannot be described within
ordinary perturbation theory. In particular, their existence in non-Abelian gauge theories provides a natural
way of introducing magnetic monopoles into field theory. These are hypothetical particles which possess
a quantized magnetic charge (perhaps along with the ordinary electric charge). The modern theory of
magnetic charges was first formulated by Dirac many years ago (Dirac 1931) in the framework of quantum
electrodynamics. Their existence has been under active investigation ever since. The Dirac monopole is
described by a field configuration with a singularity and has to be introduced into the standard QED ‘by
hand’. An intriguing aspect of non-Abelian gauge theories is that they have intrinsically existing solitons
with the properties of magnetic monopoles, the so-called ’t Hooft–Polyakov monopoles (Polyakov 1974,
’t Hooft 1974).

We shall not discuss here the special topic of monopoles (the reader may find an elementary
introduction in Cheng and Li (1984) and a more profound consideration in Rajaraman (1982)). Instead,
we shall discuss, using some simpler examples, the general problem of field theoretical quantization in
the vicinity of solitons.

A different direction in the study of extended objects in quantum field theory was advocated by
Polyakov (1974) and Belavin et al (1975), who pointed out the importance of the classical solutions
of finite action in the Euclidean space, obtained after the continuation to purely imaginary time. Such
solutions, called instantons, exist only in theories with degenerate vacua and they signal tunneling between
these different vacua. We shall consider this type of extended object in the next subsection.

In both solitons and instantons, the usual perturbation theory fails to describe the phenomena
adequately and we have to use the semiclassical WKB approximation (Dashen et al 1974, Polyakov 1974,
Belavin et al 1975). As we have already discussed in chapters 2 and 3, the path integral is the most natural
and practically convenient tool for developing such an approximation. In this case, we will be simply
making a change of variables in the path integral and the general idea is to consider the contribution of
the fluctuations around the non-trivial minima of the action.

♦ Solitons in the two-dimensional scalar field theory

To provide an elementary introduction to the theory of classical localized solutions with finite energy for
the field equations of motion (i.e. solitons), we shall briefly consider an example of λϕ4-theory in one
space and one time dimension. The Lagrangian is given by

L =
∫

dx [ 1
2 (∂tϕ)

2 − 1
2 (∂xϕ)

2 − V (ϕ)] (3.3.34)
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where

V (ϕ) = λ

2
(ϕ2 − a2)2 (3.3.35)

and
a2 = m2/λ.

The Hamiltonian is given by

H =
∫

dx [ 1
2 (∂tϕ)

2 + 1
2 (∂xϕ)

2 + V (ϕ)]. (3.3.36)

As we have discussed in section 3.2.8, the classical ground-state configuration for the case m2 > 0 is

ϕ = ±a = ±
√

m2

λ
(3.3.37)

and the ground-state energy is E = 0. An interesting feature of this model is that, in addition, there
exists a static (time-independent) finite-energy solution of the equation of motion, that is, the soliton. The
time-independent solution can be obtained from the Lagrangian L through the variational principle:

−δL = δ
∫

dx [ 1
2 (∂xϕ(x))

2 + V (ϕ(x))] = 0. (3.3.38)

Mathematically, this is equivalent to the problem of the motion of a particle of unit mass in a potential
−V (q), where the equation of motion is derived from

−δL′ = δ
∫

dx

[
1

2

(
dq

dt

)2

+ V (q)

]
= 0 (3.3.39)

(q is the coordinate of this fictitious particle which should not be confused with the space coordinate x ;
the field ϕ depends on the latter: ϕ = ϕ(x)). Any classical motion of the particle in the potential −V (x)
corresponds to a time-independent solution of the field equation. However, not all of these solutions are
of finite energy. To get a finite-energy solution, we must require ϕ to go to a zero of V (ϕ) as x → ±∞,
so that the energy integral in (3.3.36) is finite. In the fictitious particle problem, this corresponds to the
condition that the particle must go to the zeros of the potential as t → ±∞. Of course, the ground
states where the particle sits at x = a or −a for all times satisfy this requirement, but there are also
non-trivial motions which satisfy this requirement. The finiteness of energy requires the solution to take
on the vacuum value (±a) at t = ±∞, but since we have a system of degenerate vacua, the solution
may take on different minima (+a or −a) at different infinity points (+∞ or −∞). Thus, for example,
there are motions where the particle starts at the top of one hill and moves to the top of the other and has
zero energy, see figure 3.16. We use this property of zero-energy motion to find the explicit form of the
finite-energy solution in the field theory case. From energy conservation in the motion of the fictitious
particle with zero total energy, we have

1

2

(
dq

dt

)2

+ [−V (q)] = 0

which corresponds to the static field equation

1

2

(
dϕ

dx

)2

= V (ϕ). (3.3.40)
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6−V (ϕ)

ϕ−a a

Figure 3.16. The potential −V (ϕ) for the fictitious particle problem which is equivalent to the soliton problem; the
thin line shows the motion of the ‘particle’ which starts at the top of one hill and moves to the top of another one.

Equation (3.3.40) can be solved easily by integration and the result is

x = ±
∫ ϕ

ϕ0

dϕ′ [2V (ϕ′)]−1/2 (3.3.41)

where ϕ0 is the value of ϕ at x = 0 and can be any number between a and −a. The presence of the
arbitrary parameter ϕ0 is due to the translational invariance of equation (3.3.40), i.e. if ϕ = f (x) is a
solution, then ϕ = f (x −c) is also a solution where c is an arbitrary constant. In λϕ4-theory, the potential
is given by (3.3.35) and the finite-energy solutions in (3.3.41) can be written as

ϕ+(x) = a tanh(mx) ϕ−(x) = −a tanh(mx). (3.3.42)

The solution ϕ+ is usually called the kink and ϕ− the anti-kink. The energy of the kink (or anti-kink) can
be calculated from (3.3.42) and (3.3.36) to give

E = 4m3/3λ (3.3.43)

which is indeed finite. It is clear that, as x → ±∞, ϕ+ (or ϕ−) approaches the zeros of V (ϕ), i.e.

ϕ+(x)→ ±a as x → ±∞. (3.3.44)

This behaviour is illustrated in figure 3.17. These solutions can be shown to be stable with respect to small
perturbations even though they are not the absolute minima of the potential energy V (ϕ) (i.e. ϕ = ±a for
all x and t). The physical interest in these finite-energy solutions of the equation of motion comes from
the fact that they resemble a particle with structure for the following reasons.

• Its energy is concentrated in a finite region of space. This is because these solutions ϕ± deviate from
the ground-state configuration, ϕ = ±a (zero energy), only in a small region around the origin.

• It can be made to move with any speed less than unity (i.e. less than the speed of light). This is due to
the fact that the equation of motion is Lorentz covariant and we can apply a Lorentz boost to obtain
a solution with non-zero speed.
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Figure 3.17. The form of the kink solution in two-dimensional λϕ4-field theory.

The kink and anti-kink solutions in λϕ4-theory in two-dimensional spacetime can be characterized
by integers because, from the finite-energy requirement, we have at the spatial infinities:

ϕ(∞)− ϕ(−∞) = 2an n ∈ Z

where n = 0 corresponds to the ground state (ϕ = ±a), n = 1 to the kink solution, and n = −1 to the
anti-kink solution. The value of the number n cannot be changed by smooth deformations of the solutions
and, hence, it is a conserved quantum number, called the topological charge. The adjective ‘topological’
just reflects the fact that the charge depends on the global properties of the solution and cannot be varied by
a smooth deformation of the field. The existence of this number provides the stability of the solitons. This
consideration can be generalized to more complicated theories in higher dimensions (see, e.g., Rajaraman
(1982)).

♦ Quantization in the vicinity of solitons

As we have just seen, there are four sectors of field configurations separated by the topological quantum
number n. Thus, in the corresponding path integral we have to integrate separately over fields obeying the
boundary conditions appropriate for a given sector.

As we have explained previously, the kink solution has an arbitrary parameter due to the translational
invariance. This is a general property of all soliton solutions. Hence, the change of variables ϕ(x) →
ϕcl + �(x) which we have to perform to carry out the semiclassical calculation is not well defined. In
other words, a variation of the translational parameters in ϕcl does not lead to a variation of the action
and ϕcl belongs to a continuous family of stationary solutions, whereas the standard stationary-phase
approximation works well only if the stationary points are sufficiently widely separated. Practically,
the existence of such a degeneracy leads to a zero determinant when we calculate the fluctuation factor
(and since the determinant appears in the denominator, this produces a meaningless infinite factor). The
solution of this problem (also called the zero-mode problem) reduces to treating these free parameters of
ϕcl as dynamical variables, which therefore should be determined from ϕ itself (see, e.g., Gervais (1977),
Rajaraman (1982) and references therein). We shall consider this method in more detail later.
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♦ Quantization of one soliton in two dimensions

We shall discuss the general two-dimensional Lagrangian for a scalar field

L = − 1
2 (∂µϕ)

2 − V (ϕ) (3.3.45)

with only the following condition for the potential:

V (ϕ) = 1

λ2
V (λϕ) (3.3.46)

(restricting ourselves to the specific example of the kink, which we have studied earlier, does not
essentially simplify the consideration). The meaning of condition (3.3.46) is as follows. Let us define
the field ϕ′ = λϕ. Then the Lagrangian and action take the form

L(ϕ) = 1

λ2L
′(ϕ′) S[ϕ] = 1

λ2 S′[ϕ′]

where L′(ϕ′), S′[ϕ′] do not contain any coupling constant. This implies that all the dependence of the
integrand in the corresponding path integral∼ ∫ Dϕ′ exp

{
iS′[ϕ′]/(λ2

~)
}

on the coupling constant comes
in the combination (λ2

~)−1 in the exponent. The validity of the stationary-phase approximation requires
that this combination (λ2

~) be small compared with the action S′[ϕ′cl] of the classical solutions. This is
the correct criterion, which is certainly satisfied when ~ and the coupling λ are both small. Note that this
property of the action (factorization of the coupling constant) is shared by most of the models we have
considered (e.g., by the Yang–Mills action).

The equation of motion corresponding to the Lagrangian (3.3.45) has a classical solitary wave
solution with finite energy:

ϕcl(x, t) = ϕ0

(
x − vt − x0√

1 − v2

)
where ϕ0(x) satisfies the equation

− ∂2

∂x2
ϕ0(x)+ δV

δϕ0(x)
= 0. (3.3.47)

The transition amplitude between the initial and final states described by the wavefunctionals%i [ϕ]
and % f [ϕ] is given by the path integral

S f i = 〈% f |e−iĤ(t f −ti )|%i 〉
=
∫ ∏

x ′
dϕ′(x ′, t f )

∏
x

dϕ(x, t f ) 〈% f |ϕ′(x ′, t f )〉〈ϕ′(x ′, t f )|e−iĤ(t f −ti )|ϕ(x, ti)〉〈ϕ(x, ti )|%i 〉

=
∫
Dϕ(x, τ )Dπ(x, τ ) %̄ f [ϕ(x, t f )]% f [ϕ(x, ti )]

× exp

{
i
∫ t f

ti
dτ
∫

dx [πϕ̇ − H (π, ϕ)]
}

(3.3.48)

with a Hamiltonian of the form

H =
∫

dx [ 1
2π

2 + 1
2 (∂xϕ)

2 + V (ϕ)].
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If, in order to develop a perturbation expansion for the one-soliton sector, we simply expand around
the classical solution ϕ0, as in the case of spontaneous symmetry-breaking, we encounter divergences
originating from the translation invariance of the theory. Namely, the propagator of this perturbation
expansion would be the inverse of the following differential operator:

− ∂2

∂ t2 + �̂2 ≡ − ∂2

∂ t2 + ∂2

∂x2 + V ′′(ϕ0) (3.3.49)

where

�̂2 def≡ ∂2

∂x2 + V ′′(ϕ0) V ′′(ϕ0) = ∂2V

∂ϕ2

∣∣∣∣
ϕ=ϕ0

.

Taking the space derivative of field equation (3.3.47) satisfied by ϕ0, we immediately see that ∂xϕ0 is an
eigenstate of �2 with zero eigenvalue. Thus the propagator is ill defined, since the differential operator
(3.3.49) has a zero eigenvalue (the zero-mode problem).

♦ Separation of the centre-of-mass coordinate (the zero-mode) in the one-soliton sector

To solve this difficulty and to develop a consistent perturbation expansion for the one-soliton sector, we
should, first, separate the centre-of-mass coordinate (such an approach is called the method of collective
coordinates). This can be achieved by a variant of the Faddeev–Popov trick. To this aim, we insert the
following identities into the path-integral expression for the S-matrix element (3.3.48):∫

Dp(τ )
∏
τ

δ(p(τ )+ P) = 1 P ≡
∫

dx π∂xϕ (3.3.50)∫
DX (τ )

∏
τ

δ(Q[ϕ(τ, x + X (τ )), π(τ, x + X (τ ))])∂Q

∂X
= 1.

The first identity is the constraint which serves to identify the variable p(τ ) with the total momentum of
the system (recall that the Noetherian momentum for a field system with the Lagrangian (3.3.45) reads as
follows:

∫
dx (−ϕ̇∂xϕ) =

∫
dx (−π∂xϕ), see, e.g., Bogoliubov and Shirkov (1959)), while the second

identity is the gauge condition associated with this constraint. The τ -dependent functional Q (i.e. it is a
functional only with respect to the dependence of ϕ and π on the space coordinate x) can be arbitrary, but
here we shall consider a concrete example. Note that ∂Q/∂X is given by the Poisson bracket:

∂Q

∂X
= {Q, P} ≡

∫
dx

[
∂Q

∂ϕ

∂P

∂π
− ∂Q

∂π

∂P

∂ϕ

]
. (3.3.51)

Next, let us make a change of variables ϕ → ϕ̃, π → π̃ :

ϕ(τ, x) = ϕ̃(τ, x − X (τ )) ≡ ϕ̃(τ, ρ)
π(τ, x) = π̃(τ, x − X (τ )) ≡ π̃(τ, ρ) (3.3.52)

ρ = x − X (τ )

so that, using ϕ̇ = ˙̃ϕ − Ẋ∂x ϕ̃ and the constraint, we obtain∫
dx [πϕ̇ − H (π, ϕ)] = −p(τ )Ẋ(τ )+ ∫ dρ [π̃ ˙̃ϕ − H (π̃, ϕ̃)]

%i, f [ϕ] = exp{−ipi, f X (ti, f )}%i, f [ϕ̃].
(3.3.53)
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From the first expression, we see that X is the variable conjugate to p, i.e. the centre-of-mass position and
(3.3.52) is a transition to the moving frame attached to this centre of mass. The latter equality in (3.3.53)
reflects the fact that the soliton as a whole (i.e. its centre of mass) moves as a free particle. Thus, we
have explicitly exhibited the total momentum and centre-of-mass position associated with a given field
configuration. If the latter corresponds to a quantum fluctuation around the one-soliton classical solution,
X and p automatically become the position and momentum of this soliton.

Since X appears only in the term pẊ , we can immediately integrate over X and p which leads to

S f i = δ(p f − pi )

∫
Dπ̃ Dϕ̃ %̄ f [ϕ̃]%i [ϕ̃]δ(p + P)δ(Q)

× {Q, P} exp

{
i
∫

dρ dτ [π̃ ˙̃ϕ − H (π̃, ϕ̃)

}
(3.3.54)

where p is not fixed: p = pi + p f . The stationary point of the action with constraints is given by the
following variational equation:

δ

∫
dτ

[ ∫
dρ (π̃ ˙̃ϕ −H)+ α(τ)(p + P)

]
= 0

where α is a Lagrange multiplier. We obtain, for the lowest energy stationary point (ϕ̇cl = 0), exactly the
soliton solution

ϕcl = ϕ0

(√
1 + p2

M2
0

(ρ − a)

)
πcl = −p√

p2 + M2
0

∂xϕcl (3.3.55)

where ϕ0 is a solution of the equation

−∂
2ϕ0

∂x2
+ δV

δϕ0
= 0 (3.3.56)

M0 = ∫
dx (∂ϕ0/∂x)2 and the constant a is fixed by the gauge condition. The corresponding classical

energy is found to be

Ecl =
√

p2 + M2
0 . (3.3.57)

Next, we have to choose an explicit form for the gauge condition. Although an arbitrary choice leads
to a consistent perturbation expansion, free of infrared divergences, we choose a linear gauge condition

Q[ϕ(τ, x + X (τ )] ≡
∫

dx f (x)ϕ(τ, x + X (τ ))

∂Q

∂X
=
∫

dx f (x)∂xϕ(τ, x + X)

(3.3.58)

in order to eliminate the zero-energy mode in the simplest possible way. Here f is still an arbitrary
function but, identifying it later with the zero-frequency eigenfunction, we can completely eliminate the
zero-frequency mode from the path integral. Now, before making the shift ϕ̃ = ϕ0 + χ , it is convenient
to linearize constraint (3.3.50), which is quadratic in fields, by making the following change of variables:

π̃(τ, ρ) = − f (ρ)
p + ∫ dρ *(τ, ρ)[∂x ϕ̃ − f c]∫

dρ f ∂x ϕ̃
+*(τ, ρ) (3.3.59)

(c is some constant to be defined later). Then the constraint becomes

δ(p +
∫

dρ π̃∂x ϕ̃) = δ
(

c
∫

dρ f (ρ)*(τ, ρ)

)
.
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Computing the Jacobian of this transformation, we get (see problem 3.3.2, page 145)

det

(
δπ̃

δ*

)
=
∏
τ

(∫
dρ f ∂x ϕ̃

)−1

which exactly cancels out the ∂Q/∂X given by (3.3.58). Now the Hamiltonian becomes more
complicated:∫

dρ H = (p + ∫ dρ *(τ, ρ)[∂x ϕ̃ − f c])2
2(
∫

dρ f ∂x ϕ̃)2
+
∫

dρ

[
1

2
* 2 + 1

2
(∂x ϕ̃)

2 + V (ϕ̃)

]
. (3.3.60)

Here we have to input the normalization
∫

dρ f 2(ρ) = 1. The transition amplitude now takes the form

S f i = δ(p f − pi)

∫
D* Dϕ̃ %̄ f [ϕ̃]%i [ϕ̃]δ

(∫
dρ f ϕ̃

)
δ

(∫
dρ f*

)
× exp

{
i
∫

dτ
∫

dρ [π̃ ˙̃ϕ − H ]
}

(3.3.61)

and since both the gauge condition and the constraint are linear in the fields, we can easily develop a
perturbation expansion.

♦ Perturbation expansion in the one-soliton sector

At this point, we observe that, due to the property (3.3.46) of our potential, ϕcl is of the order of 1/λ;
accordingly, M0 is of the order of 1/λ2. We can develop the perturbation expansion in λ around the
classical solution

ϕ̃ = ϕcl + χ(τ, ρ). (3.3.62)

Here χ represents small quantum fluctuations around the classical solution. In general, we can also
consider a shift of the momentum variable π̃ = πcl(ρ) + ϑ(τ, ρ). This leads to a relativistic form for
the soliton energy and for the perturbation theory. However, we shall restrict ourselves only to the shift
(3.3.62), because in this case the corresponding perturbation expansion is much simpler.

With the choice of f and c as

f = 1√
M0
∂xϕ0 ≡ %0 c = √M0 (3.3.63)

the Hamiltonian reads as∫
dρ H = M0+ p + ∫ dρ *∂xχ

2M0(1 + ξ/M0)2
+
∫

dρ

[
1

2
* 2 + 1

2
∂xχ

2 + V − V (ϕ0)− δV

δϕ

∣∣∣∣
ϕ0

χ

]
+$V (3.3.64)

with

ξ =
∫

dρ ∂xϕ0(ρ)∂xχ(τ, ρ) (3.3.65)

$V = 1

8

[
− 3

〈∂x%0|∂x%0〉
〈∂x ϕ̃|%0〉2 + 2

〈∂x%0|∂2
x ϕ̃〉

〈%0|∂x ϕ̃〉3 + 〈∂x%0|∂xϕ〉2
〈%0|∂xϕ〉4 +

∑
n,m =0

|〈%n |∂x%m〉|2
〈%0|∂xϕ〉

]
(3.3.66)
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where %m are the eigenfunctions of the operator �̂2:

�̂2%m = ωm%m

and the scalar product for any two functions h1(x), h2(x) is defined as usual:

〈h1|h2〉 def≡
∫

dx h1(x)h2(x).

The additional potential$V starts contributing at the two-loop level (because it is proportional to ~2 after
explicit recovery of the Planck constant). As we learned in chapter 2 (see section 2.5.2), the additional
term$V always arises if a change of variables, in particular (3.3.52), (3.3.62), is carried out with enough
care.

The Feynman rules for the perturbation expansion can now be obtained. The propagator is
determined from the quadratic part of the Hamiltonian by expanding it in terms of the eigenfunctions
of the following differential equations:

�2%m ≡
(
− ∂2

∂ρ2
+ V ′′(ϕ0)

)
%m = ω2

m%m . (3.3.67)

The zero-energy eigenfunction is given by %0. We have chosen f to be given precisely by %0, so that
the ω0 = 0 mode disappears from the eigenfunction expansion of* and χ because of the δ-condition in
(3.3.61).

Since we have used the first-order formalism, this perturbation expansion involves three different
propagators:

〈0|T(χ(t1, x1)χ(t2, x2))|0〉 〈0|T(*(t1, x1)*(t2, x2))|0〉 and 〈0|T(χ(t1, x1)*(t2, x2))|0〉.
The Hamiltonian (3.3.64) contains products of χ and * at the same point and therefore there are
ordering problems if we want to write H as an operator. In the path-integral formalism, this ordering
problem also appears in practice because the perturbation expansion contains the mixed propagator
〈0|T(χ(t, x1)*(t, x2))|0〉 with zero-time separation, which is ambiguous. Using the discrete-time
approximation for the path integral, we find that the expression (3.3.66) corresponds to the mid-point
definition. Namely, we have to choose the field variables χ(τ2l, x),*(τ2l+1, x) and write∫

dτ *χ̇ ≡
∑

l

∫
dx *(τ2l+1, x)[χ(τ2l+2, x)− χ(τ2l, x)].

As we know (see section 2.5), this implies that in the operator formalism,$V is the term associated with
the Weyl ordering for expression (3.3.64) of H . For the perturbation theory this means, in turn, that the
mixed propagator 〈0|T(χ(t, x1)*(t, x2)|0〉 for zero-time separation is taken to be zero, i.e. all closed
loops of the mixed propagator are to be dropped.

Note that in this perturbation expansion, Lorentz invariance is not manifest, but we can show that
higher-order corrections in the coupling constant sum up to restore Lorentz invariance at least at the tree
level (Gervais et al 1975).

The renormalization of the one-soliton sector can be carried out in a straightforward manner, by
adding counter terms (see section 3.2.7). With this systematic perturbation expansion, we can perform
perturbation calculations of any desirable quantities, e.g., energy or field matrix elements in the one-
soliton sector. We refer the reader for these results and their discussion to Gervais et al (1975),
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Gervais (1977) and Rajaraman (1982). Note that expression (3.3.61) a priori looks like a highly non-
renormalizable Hamiltonian since it involves vertices with an arbitrary number of legs. It is remarkable
that finite results are in fact obtained to any order just by using the same counter terms as in the usual
sector. Already at the two-loop level, this involves a remarkable cancelation among highly divergent
integrals.

♦ Remarks on the quantization of several solitons

For the case of several solitons, we obviously need to extract more collective coordinates. A general
method for doing this (see, e.g., Gervais et al (1976)) which can be applied to any problem in which
collective coordinates are relevant exists. For the particular case considered earlier, the generalization can
be achieved quite straightforwardly by introducing into the corresponding path integral the unity in the
form ∫ n∏

α,β=1

d Xα d Pβ Jδ(pα + Pα[π, ϕ])δ(Qβ [π, ϕ]) = 1

J =
∏
τ

det{Pα, Qβ }p =
∏
τ

det

(
δQβ
δXγ

)
where n is the number of solitons, α, β = 1, . . . , n. It is worth noting that for small λ, the soliton position
moves much more slowly than the other degrees of freedom. This is the standard criterion for introducing
collective coordinates (the so-called adiabatic approximation). In this case we can determine an effective
potential by first solving the dynamics of the other degrees of freedom with fixed Xα , Pβ . In the functional
formalism, this is formally done by assuming that %i, f are eigenstates of Pα with eigenvalues pα,i , pα, f ,
and computing for fixed Xα, pβ the effective Hamiltonian defined by the relation

exp

{
−i
∫

dτ Heff(X, P)

}
≡
∫
Dπ̃ Dϕ̃ δ(pα + Pα)δ(Qβ) det{P, Q}%∗

f [ϕ̃]%i [ϕ̃]

× exp

{
i
∫

dτ dx[π̃ ˙̃ϕ − H [π̃, ϕ̃, X]]
}

(3.3.68)

In the adiabatic approximation, the transition probability is given by∫
DXα DPβ e−ipα, f Xα(t f )eipβ,i Xα(ti ) exp

{
i
∫ t f

ti
dt (Pα Ẋα − Heff

}
.

If {Pα, H } = 0, we have H = H [π̃, ϕ̃], which is independent of X and the dynamics of Xα , Pβ is trivial.
The eigenstates are plane waves. In this case, it is better to reverse the method used for the one-soliton
case. Namely, again choosing%i, f to be eigenstates of P̂α , we first integrate over Xα and Pβ , immediately
obtaining ∏

α

δ(pα,i − pα, f )

∫
Dπ̃ Dϕ̃ δ(pα,i + Pα)δ(Q|b) det{P, Q}

× %̄ f [ϕ̃]%i [ϕ̃] exp

{
i
∫

dτ dx [π̃ ˙̃ϕ − H [π̃, ϕ̃]]
}
. (3.3.69)

In order to apply the semiclassical method, we look for the minimum of the action taking into account
the constraints. Technically convenient modifications of the method of collective coordinates have been
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developed by using the BRST invariance (cf section 3.2.7) of the appropriately constructed effective
action (see, e.g., Alfaro and Damgaard (1990)) which are more suitable for the study of solitons in more
complicated field theoretical models.

It is necessary to add that semiclassical calculations of the sort considered in this subsection reveal
a hidden but physically very important symmetry, known as the duality, of some models with topological
solitons. Such a symmetry was first conjectured by Montonen and Olive (1977) for a model in which a
simple gauge group is spontaneously broken into a U(1) electromagnetic gauge group. They noted that
the semiclassical approximation gives the mass of particles with mass

m = √
2

∣∣∣∣v(ne + 4π i,

e

)∣∣∣∣
(v is the vacuum expectation value of the Higgs field, e is the gauge coupling constant; n and , are integers
of any sign), which is invariant under the transformations:

,→ n n → −, e → 4π/e.

On this basis, they suggested that the theory with a weak gauge coupling e is fully equivalent to one
with a strong coupling 4π/e. Unfortunately, the purely bosonic theory does not really have this property
(Osborn 1979). However, there are strong indications that theories with the so-called extended (more
precisely, N = 4) supersymmetry (see, e.g., Weinberg (2000)) are indeed invariant under the interchange
of electric and magnetic quantum numbers and of e and 4π/e. Moreover, even theories with smaller
(N = 2) supersymmetry proved to be invariant with respect to duality transformations of more subtle
sort (Seiberg and Witten 1994). Using this property, Seiberg and Witten were able to carry out prominent
non-perturbative calculations in this type of field theory (for a review, see Intriligator and Seiberg (1996)).

3.3.3 Semiclassical approximation and quantum tunneling (instantons)

Instantons are a special type of vacuum fluctuation in non-Abelian gauge theories and classical solutions
of the Euclidean equations of motion. The instanton, being a solution in Euclidean field theory, is a
minimum of the action in which all kinetic terms are positive. Hence, an instanton solution in a d-
dimensional spacetime is also a time-independent soliton solution in d + 1 dimensions and possible
solutions can be classified simultaneously for both cases. This is based on homotopy theory which we
will not present here (see Rajaraman (1982)). The instantons are characterized by a topological quantum
number (similar to the topological solitons) and correspond to tunneling events between degenerate
classical vacua in the Minkowski space. The existence of the non-zero topological number means that
it is impossible to deform the instanton field configuration into a zero field, keeping the value of the
field action finite. A distinguishing property of the instanton solution is their finite size in the space and
time directions, so that they are localized configurations and remind us of particle-like behaviour in four
dimensions. In fact, they can indeed be treated formally as a kind of particle in four-dimensional quantum
statistical mechanics. However, we should remember that the genuine physical meaning of the solution
is tunnel transitions taking part in the complicated vacuum (ground state) of a non-Abelian quantum
field theory. The transition processes take a finite period of time and therefore the instantons have a finite
‘longitude’ in time. That is why these solutions were called ‘instanton’, the first part of the word reflecting
their time behaviour and the end of the word reflecting their particle-like nature in four dimensions.

The simplest situation relating to instantons happens in non-relativistic quantum mechanics and
corresponds to the tunneling of a particle in the potential V (x) ∼ (x2 − a2)2 with degenerate vacuum
states and we shall use this case as our basic example. Then we shall briefly consider the generalization of
the quantum tunneling phenomenon to the case of Yang–Mills theory (quantum chromodynamics). It is
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necessary to stress that instanton calculations are formally very close to the hopping path approximation
which we considered in the first chapter (section 1.2.6). The reader may find more details on instanton
calculations in Rajaraman (1982) and Schäfer and Shuryak (1998).

♦ Tunneling in quantum mechanics and instantons: double-well potential

For an introduction to instanton methods we start with a relatively simple quantum-mechanical problem,
which does not suffer from any of the divergences that occur in field theory. Tunneling is a quantum-
mechanical phenomenon, a particle penetrating a classically forbidden region. Nevertheless, after
continuing the transition amplitude to imaginary time, the tunneling process can be described by classical
equations of motion.

Let us consider an anharmonic oscillator with a Euclidean action

SE =
∫

dτ

[
ẋ2

2
+ V (x)

]

where V (x) is a double-well potential (cf problem 3.1.9, page 44).
Continuing τ = it , the classical equation of motion is given by

d2x

dτ 2
= +dV

dx
(3.3.70)

where the sign of the potential energy term has changed in comparison with the real-time case. This
means that the classically forbidden regions (for the real time) are now classically allowed. The special
role of the classical tunneling path becomes clear if we consider the Feynman path integral. Although any
path is allowed in quantum mechanics, the path integral is dominated by paths that maximize the weight
factor exp(−S[xcl(τ )]), or minimize the Euclidean action.

Now we choose the concrete form of the potential as follows:

V = λ(x2 − η2)2 (3.3.71)

with minima at ±η, the two ‘classical vacua’ of the system. Quantizing around the two minima, we would
find two degenerate states localized at x = ±η. Of course, we know that this is not the correct result.
Tunneling mixes the two states, the true ground state being (approximately) the symmetric combination,
while the first excited state is the antisymmetric combination of the two states.

Formally, equation (3.3.70) is the same as in two-dimensional λϕ4-theory (cf the preceding section,
equation (3.3.39)) which contains the soliton (kink) solutions. Therefore, we can immediately write the
solution:

xcl(τ ) = η tanh
[ω

2
(τ − τ0)

]
(3.3.72)

which goes from x(−∞) = −η to x(∞) = η. Here, τ0 is a free parameter (the instanton centre)
and ω2 = 8λη2. The action of the solution is S0 = ω3/(12λ). We will refer to path (3.3.72) as the
instanton, since (unlike the soliton) the solution is localized in time. An anti-instanton solution is given
by x A

cl (τ ) = −xcl(τ ).
The semiclassical approximation for the path integral is obtained by systematically expanding the

action around the classical solution, similarly to the case of solitons

〈−η|e−Hτ |η〉 = e−S0

∫
DX (τ ) exp

{
− 1

2

∫
dτ X (τ )

δ2S

δx2

∣∣∣∣
xcl

X (τ )+ · · ·
}
. (3.3.73)
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Note that we implicitly assumed τ to be large, but smaller than the typical lifetime for tunneling. If
τ is larger than the lifetime, we have to take into account multi-instanton configurations (i.e. multiple
movements of the particle from one extremum to another). It is seen that the hopping path method which
we briefly discussed in chapter 1 (section 1.2.6), in fact, coincides with the instanton calculations in
quantum mechanics. Clearly, the tunneling amplitude is proportional to exp{−S0}. The pre-exponent
requires the calculation of fluctuations around the classical instanton solution.

♦ Tunneling amplitude at one-loop order

In order to take into account the fluctuations around the classical path, we have to calculate the path
integral ∫

DX (τ ) exp

{
− 1

2

∫
dτ X (τ )Ô X (τ )

}
(3.3.74)

where Ô is the differential operator

Ô = −1

2

d2

dτ 2 + d2V

dx2

∣∣∣∣
x=xcl

. (3.3.75)

This calculation is carried out in the standard way (see, in particular, section 1.2.7 and the case of solitons
in the preceding section) and it provides a very good illustration of the steps that are required to solve the
more difficult field theory problem (Polyakov 1977).

Expanding the differential operator Ô in some basis {xi (τ )}, we have∫ (∏
n

dxn

)
exp

(
− 1

2

∑
i j

xi Oi j x j

)
=
∏

n

(2π)n/2(det Ô)−1/2. (3.3.76)

The determinant can be calculated by diagonalizing Ô , Ôxn(τ ) = εn xn(τ ). This eigenvalue equation
reads as (

− d2

dτ 2
+ ω2

[
1 − 3

2 cosh2(ωτ/2)

])
xn(τ ) = εn xn(τ ). (3.3.77)

Formally, this equation coincides with the one-dimensional Schrödinger equation (where τ plays the
role of a space coordinate) for the so-called modified Pöshl–Teller potential. In the standard quantum-
mechanical context, this Schrödinger equation is discussed in, e.g., Flügge (1971) (vol I, problem 39) and
in Landau and Lifshitz (1981). There are two bound states plus a continuum of scattering states. The
lowest eigenvalue is ε0 = 0, and the other bound state is at ε1 = 3

4ω
2. The appearance of a zero mode is

related, similarly to the case of solitons, to translational invariance (the fact that the action does not depend
on the location τ0 of the instanton). The normalized eigenfunction (

∫
dτ x2

n = 1) of the zero energy state
is

x0(τ ) =
√

3ω

8

1

cosh2(ωτ/2)
(3.3.78)

which is just the derivative of the instanton solution over τ0 (see the explanation after equation (3.3.49)):

x0(τ ) = −S−1/2
0

d

dτ0
xcl(τ − τ0). (3.3.79)

Recall that the presence of a zero mode also indicates that there is one direction in the functional space in
which fluctuations are large, so the integral is not Gaussian. This means that the integral in that direction
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should not be performed directly in the Gaussian approximation, but has to be treated with care using the
collective coordinate method (see the preceding subsection).

In a quantum-mechanical (not a field theoretical) system, the transition to collective coordinates is
not complicated and can be achieved by replacing the integral over the expansion parameter c0 associated
with the zero-mode direction (we use the mode expansion: x(τ ) =∑n cn xn(τ )) with an integral over the
collective coordinate τ0. Using

dx = dxcl

dτ0
dτ0 = −√S0x0(τ ) dτ0 (3.3.80)

and dx = x0 dc0, we have dc0 = √
S0 dτ0. The functional integral over the quantum fluctuation is now

given by ∫
DX (τ )] exp{−S} =

[∏
n>0

(
2π

εn

)]1/2√
S0

∫
dτ0 (3.3.81)

where the first factor is the determinant with the zero mode excluded. The result shows that the tunneling
amplitude grows linearly with time, i.e. there is a finite transition probability per unit of time.

The next step is to calculate the non-zero-mode determinant. For this purpose we make the spectrum
discrete by considering a finite-time interval [−T/2, T/2] and imposing boundary conditions at ±T/2:
xn(±T/2) = 0. The product of all eigenvalues is divergent, but the divergence is related to large
eigenvalues, independent of the detailed shape of the potential. The determinant can be renormalized by
taking the ratio over the determinant of the harmonic oscillator (similarly to what we did in section 2.2.2,
where we used the ratio of the determinants for a harmonic oscillator and a free particle). The result is

det
[
− d2

dτ 2 + V ′′(xcl)
]

det
[
− d2

dτ 2 + ω2
]
−1/2

=
√

S0

2π
ω

∫
dτ0

det′
[
− d2

dτ 2 + V ′′(xcl)
]

ω−2 det
[
− d2

dτ 2 + ω2
]
−1/2

(3.3.82)

where we have eliminated the zero mode from the instanton determinant, denoting this by a prime:
det → det′, and replaced it by the integration over τ0. We also have to extract the lowest mode from
the harmonic oscillator determinant, which is given by ω2. The next eigenvalue of the fluctuation operator
(3.3.75) is 3ω2/4, while the corresponding oscillator mode is ω2 (up to corrections of order 1/T 2, that
are not important as T → ∞). The rest of the spectrum is continuous as T → ∞. The contribution from
these states can be calculated as follows.

The potential V ′′(xcl) is localized, so for τ → ±∞ the eigenfunctions are just plane waves. This
means that we can take one of the two linearly independent solutions to be x p(τ ) ∼ exp(ipτ ) as τ → ∞.
The effect of the potential is to give a phase shift

x p(τ ) = exp(ipτ + iδp) τ → −∞ (3.3.83)

where, for this particular potential, there is no reflected wave. The phase shift is given (Landau and
Lifshitz 1981) by

exp(iδp) = 1 + ip/ω

1 − ip/ω

1 + 2ip/ω

1 − 2ip/ω
. (3.3.84)

The second independent solution is obtained by τ → −τ . The spectrum is determined by the quantization
condition x(±T/2) = 0, which gives

pnT − δpn = πn (3.3.85)
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while the harmonic oscillator modes are determined by pnT = πn. If we denote the solutions of (3.3.85)
by p̃n , the ratio of the determinants is given by∏

n

[
ω2 + p̃2

n

ω2 + p2
n

]
= exp

{∑
n

log

[
ω2 + p̃2

n

ω2 + p2
n

]}
= exp

{
1

π

∫ ∞

0

2 p dp δp

p2 + ω2

}
= 1

9
(3.3.86)

where we have expanded the integrand in the small difference p̃n − pn = δpn/T and changed from the
summation over n to an integral over p. In order to perform the integral, it is convenient to integrate by
parts and use the result for (dδp)/(dp). Collecting everything, we finally get

〈−η|e−ĤT |η〉 =
[√
ω

π
exp

{
−ωT

2

}][√
6S0

π
exp{−S0}

]
(ωT ) (3.3.87)

where the first factor comes from the harmonic oscillator amplitude (cf the calculations in section 2.2.2)
and the second is the ratio of the two determinants.

Recall that in terms of stationary states the ground-state wavefunction is the symmetric combination
%0(x) = (φ−η(x) + φη(x))/

√
2, while the first excited state E1 = E0 + $E is antisymmetric,

%1(x) = (φ−η(x) − φη(x))/
√

2 (see, e.g., Landau and Lifshitz (1981)). Here, φ±η are the harmonic
oscillator wavefunctions around the two classical minima. For times satisfying T . 1/$E , the tunneling
amplitude is given by

〈−η|e−HT |η〉 = %∗
0 (−η)%0(η)e−E0T +%∗

1 (−η)%1(η)e−E1T + · · ·
= 1

2
φ∗−η(−η)φη(η)($ET )e−ωT/2 + · · · . (3.3.88)

For large times T > 1/$E , we have to take into account the multi-instanton paths, that is, the classical
solution corresponding to multiple movements of the fictitious ‘particle’ from one extremum to another
and backward, as depicted in figure 1.13, page 93, volume I (recall that in the case of classical stochastic
processes, the analogs of the instanton solutions are called hopping paths). If we ignore the ‘interaction’
between instantons, multi-instanton contributions can easily be summed:

〈−η|e−HT |η〉 =
√
ω

π
e−ωT/2

∑
n odd

∫
−T/2<τ1<···<T/2

[ n∏
i=1

ω dτi

](√
6S0

π
exp{−S0}

)n

(3.3.89)

=
√
ω

π
e−ωT/2

∑
n odd

(ωT d)n

n! =
√
ω

π
e−

ωT
2 sinh(ωT d)

where d = (6S0/π)
1/2 exp{−S0}. Under the ‘interaction’ between instantons (which are, of course,

fictitious particles) we understand an account of the difference between the true classical solution of
equation (3.3.70) with multiple movements (from one extremum to another) from just a ‘sewing’ together
of a number of one-instanton solutions (3.3.78). Summing over all instantons simply leads to the
exponentiation of the tunneling rate. Now we can directly read off the level splitting from (3.3.87) and
(3.3.88)

$E =
√

6S0

π
ω exp(−S0). (3.3.90)

If the tunneling rate increases, 1/$E / 1/ω, the interactions between instantons become important.
It is worth mentioning that in the gauge theory of strong interactions (i.e. in quantum

chromodynamics) the multi-instanton configurations play an important role in attempts to explain the
phenomenon of quark confinement (Callan et al (1979), see also Schäfer and Shuryak (1998) and
references therein).
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♦ Fermions coupled to the double-well potential

Let us now add one fermionic degree of freedom ψα (α = 1, 2) coupled to the double-well potential (still
in the framework of non-relativistic quantum mechanics). This model provides additional insight into the
vacuum structure, not only of quantum mechanics, but also of gauge theories: we will see that fermions
are intimately related to tunneling, and that the fermion-induced interaction between instantons leads
to strong instanton–anti-instanton correlations. The names instanton and anti-instanton are attributed to
movements from one extremum to another in opposite directions.

The model is defined by the action

S = 1
2

∫
dt (ẋ2 + W ′2 + ψψ̇ + cW ′′ψσ2ψ) (3.3.91)

where ψα (α = 1, 2) is a two-component spinor, the dots denote time derivatives and primes the spatial
derivatives, and W ′ = x(1− λx). We will see that the vacuum structure depends crucially on the Yukawa
coupling constant c. For c = 0, fermions decouple and we recover the double-well potential studied in
the previous sections, while for c = 1, the classical action is supersymmetric (see, e.g., Weinberg (2000)
and supplement VI). The supersymmetry transformation is given by

δx = ζσ2ψ δψ = σ2ζ ẋ − W ′ζ (3.3.92)

where ζ is a Grassmann variable. For this reason, W is usually referred to as the superpotential.
As before, the potential V = 1

2 W ′2 has degenerate minima connected by the instanton solution. The
tunneling amplitude is given by ∫

dτ J

√
det ÔF√
det′ÔB

e−Scl (3.3.93)

where Scl is the classical action, ÔB is the bosonic operator (3.3.75) and ÔF is the fermionic operator

ÔF = d

dt
+ cσ2W ′′(xcl). (3.3.94)

As explained earlier, ÔB has a zero mode (related to the translational invariance) which has to be treated
separately by introducing the corresponding collective coordinate. The fermion determinant also has a
zero mode, given by

χ(t) = N exp

{
∓
∫ t

−∞
dt ′ cW ′′(xcl)

}
1√
2

(
1
∓i

)
. (3.3.95)

Since the fermion determinant appears in the numerator of the tunneling probability, the presence of a
zero mode implies that the tunneling rate vanishes. This can be explained by the fact that the two vacua
have different eigenvalues of the fermionic number operator ψ̂+ψ̂−, where ψ̂± = (ψ̂1 ± iψ̂2)/

√
2. Thus,

the corresponding two ground states |0,±〉 (where ψ̂+ψ̂−|0,±〉 = ±|0,±〉 cannot be connected by a
bosonic operator. The tunneling amplitude is non-zero only if a fermion is created during the process,
〈0,+|ψ̂+|0,−〉. Formally, we get a finite result because the fermion creation operator absorbs the zero
mode in the fermion determinant. For c = 1, the tunneling rate is given by

〈0,+|ψ̂+|0,−〉 = 1√
πλ2

e−1/(6λ2). (3.3.96)

This result can be checked by performing a direct calculation using the Schrödinger equation.
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♦ Tunneling and instantons in Yang–Mills theory: classical vacua in non-Abelian gauge theory and
topology

Before discussing tunneling phenomena in the Yang–Mills theory, we have to become more familiar
with the classical vacuum (i.e. the extremum of the classical action functional) of the theory. In the
Hamiltonian formulation, it is convenient to use the temporal gauge A0 = 0 (Ai = Aa

i λ
a/2, where the

SU(N) generators satisfy [λa, λb] = 2i f abcλc and are normalized according to Tr(λaλb) = 2δab). In
this case, the momentum conjugate to the field variables Ai (x) is just the electric field Ei = ∂0 Ai . The
Hamiltonian is given by

H = 1

2g2

∫
d3x (E2

i + B2
i ) (3.3.97)

where E2
i is the kinetic and B2

i the potential energy term. The classical vacuum corresponds to
configurations with zero field strength Fµν . For non-Abelian gauge fields this does not imply that the
potential has to be constant, but limits the gauge fields to be ‘pure gauge’

Ai = iU(x)∂iU(x)†. (3.3.98)

In order to enumerate the classical vacua we have to classify all possible gauge transformations U(x). This
means that we have to study equivalence classes of maps from the space R3 (spacelike part of the four-
dimensional spacetime) into the gauge group SU(N). In practice, we can restrict ourselves to matrices
satisfying U(x)→ 1 as x → ∞. Such mappings can be classified using an integer called the winding (or
Pontryagin) number, which counts how many times the group manifold is covered:

nW = 1

24π2

∫
d3x εi j k Tr[(U†∂i U)(U

†∂ j U)(U
†∂kU)]. (3.3.99)

In terms of the corresponding gauge fields, this number is the Chern–Simons characteristic
(problem 3.3.3, page 146)

nCS = 1

16π2

∫
d3x εi j k(Aa

i ∂ j Aa
k + 1

3 f abc Aa
i Ab

j Ac
k). (3.3.100)

Because of its topological meaning, continuous deformations of the gauge fields do not change nCS. In
the case of SU(2), an example of a mapping with winding number n can be found from the ‘hedgehog’
ansatz:

U(x) = exp(i f (r)τ a x̂a) (3.3.101)

where r = |x|, τ a are the generators of SU(2) in the adjoint representation and x̂ a = xa/r . For this
mapping, we find

nW = 2

π

∫
dr sin2( f )

d f

dr
= 1

π

[
f (r)− sin(2 f (r))

2

]∞
0
. (3.3.102)

In order for U(x) to be uniquely defined, f (r) has to be a multiple of π at both zero and infinity, so that
nW is indeed an integer. Any smooth function with f (r → ∞) = 0 and f (0) = nπ provides an example
of a function with winding number n.

We conclude that there is an infinite set of classical vacua enumerated by an integer n. Since they
are topologically different, we cannot go from one vacuum to another by means of a continuous gauge
transformation. Therefore, there is no path from one vacuum to another, such that the energy remains zero
all the way. In other words, the vacuum (extremal) field configurations are separated by non-extremal
configurations.
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♦ Belavin–Polyakov–Schwartz–Tyupkin instantons in the Yang–Mills theory

Having found the infinite set of vacua, we may look for a tunneling path in the gauge theory, which
connects topologically different classical vacua. From the quantum-mechanical example, we know that
we have to look for classical solutions of the Euclidean equations of motion. The best tunneling path is
the solution with the minimal Euclidean action connecting vacua with different Chern–Simons numbers.
To find these solutions, it is convenient to exploit the following identity:

SYM = 1

4g2

∫
d4x Fa

µν Faµν = 1

4g2

∫
d4x

[
±Fa

µν F̃aµν + 1

2
(Fa
µν ∓ F̃a

µν)
2
]

(3.3.103)

where F̃µν = 1/2εµνρσ Fρσ is the dual field strength tensor (the field tensor in which the roles of electric
and magnetic fields are interchanged). The crucial fact is that the first term in the last expression for SYM
is the topological charge (cf explanation after (3.3.44)) called the four-dimensional Pontryagin index Q:

Q = 1

32π2

∫
d4x Fa

µν F̃aµν. (3.3.104)

For finite-action field configurations, Q has to be an integer. This can be seen from the fact that the
integrand is a total derivative:

Q = 1

32π2

∫
d4x Fa

µν F̃aµν =
∫

d4x ∂µKµ =
∫

dσµ Kµ (3.3.105)

Kµ = 1

16π2
εµαβγ

(
Aa
α∂β Aa

γ + 1

3
f abc Aa

αAb
β Ac

γ

)
. (3.3.106)

For finite-action configurations, the gauge potential has to be a pure gauge at infinity Aµ → iU∂µU†.
Similar to the arguments given after equation (3.3.98), all maps from the three sphere S(3) (corresponding
to |x | → ∞) into the gauge group can be classified by a winding number n. Inserting Aµ = iU∂µU† into
(3.3.105) we find that Q = n.

Since the first term in (3.3.103) is a topological invariant and the last term is always positive, it is
clear that the action is minimal if the field is (anti-) self-dual:

Fa
µν = ±F̃a

µν. (3.3.107)

This is a useful observation, because in contrast to the equation of motion, the self-duality equation
(3.3.107) is a first-order differential equation. In addition to this, we can show that the energy–momentum
tensor vanishes for self-dual fields. In particular, self-dual fields have zero (Minkowski) energy density.

From (3.3.103) we can see that the action of a self-dual field configuration is determined by the
topological charge: S = (8π2|Q|)/g2. Furthermore, if the gauge potential falls off sufficiently rapidly at
spatial infinity, the Pontryagin index and the Chern–Simons characteristics are related as follows:

Q =
∫

dt
d

dt

∫
d3x K0 = nCS(t = ∞)− nCS(t = −∞) (3.3.108)

which shows that field configurations with Q = 0 connect different topological vacua. In order to find an
explicit solution with Q = 1, it is useful to start from the simplest configuration with the winding number
n = 1. Similarly to (3.3.101), we can take Aµ = iU∂µU†, with U = ix̂µτ+

µ , where τ±
µ = (τ ,∓i1I). Then

Aa
µ = 2ηaµνxν/x2, where we have introduced the ’t Hooft symbol ηaµν , defined by

ηaµν =
{
εaµν µ, ν = 1, 2, 3
δaµ ν = 4
−δaν µ = 4.

(3.3.109)
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We also define ηaµν by changing the sign of the last two equations. We can now look for a solution of
the self-duality equation (3.3.107) using the ansatz Aa

µ = 2ηaµνxν f (x2)/x2, where f has to satisfy the

boundary condition f → 1 as x2 → ∞. Inserting the ansatz in (3.3.107), we get

f (1 − f )− x2 f ′ = 0. (3.3.110)

This equation is solved by f = x2/(x2 + ρ2), which gives the Belavin–Polyakov–Schwartz–Tyupkin
(BPST) instanton solution (Belavin et al 1975)

Aa
µ(x) =

2ηaµνxν

x2 + ρ2
. (3.3.111)

Here ρ is an arbitrary parameter characterizing the size of the instanton. A solution with topological
charge Q = −1 can be obtained by replacing ηaµν with ηaµν . The corresponding field strength is

(Fa
µν)

2 = 192ρ4

(x2 + ρ2)4
. (3.3.112)

The classical instanton solution has a number of degrees of freedom, which should be treated as
collective coordinates (see the preceding subsection). In the case of SU(2), the solution is characterized by
the instanton size ρ, the instanton position zµ and three parameters which determine the ‘color’ orientation
(i.e. in the space of the su(N) Lie algebra) of the instanton.

Thus, we have described the tunneling path that connects different topological vacua and from the
value of the classical action for it, S = (8π2|Q|)/g2, it is clear that the tunneling probability is

Ptunneling ∼ exp{−8π2/g2}. (3.3.113)

As in the quantum-mechanical example, the coefficient in front of the exponent is determined by a one-
loop calculation (i.e. by the quadratic approximation).

♦ The theta vacua

We have seen that non-Abelian gauge theory has a periodic potential and that the instantons connect the
different vacua. This means that the ground state of a non-Abelian Yang–Mills theory (in particular, of
the SU(3)-theory, physically corresponding to quantum chromodynamics (QCD)) cannot be described
by any of the topological vacuum states, but has to be a superposition of all vacua. This problem is
similar to the motion of an electron in the periodic potential of a crystal (see, e.g., Davydov (1976) and
Ashcroft and Mermin (1976)). It is well known that the solutions form a band ψθ , characterized by a
phase θ ∈ [0, 2π] (sometimes referred to as quasi-momentum). The wavefunctions are Bloch waves,
satisfying the periodicity condition ψθ(x + n) = eiθnψθ(x).

Let us see how this band arises from tunneling events. If instantons are sufficiently dilute, then the
amplitude to go from one topological vacuum |i〉 to another one | j〉, is given by

〈 j | exp(−Ĥτ )|i〉 =
∑
M+

∑
M−

δ(M+−M−− j+i),0

M+!M−! (K τe−S)M++M− (3.3.114)

where K is the pre-exponential factor in the tunneling amplitude and M± are the numbers of instantons
and anti-instantons. Using the identity

δab = 1

2π

∫ 2π

0
dθ eiθ(a−b) (3.3.115)
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the sum over instantons and anti-instantons can be rewritten as

〈 j | exp(−Ĥτ )|i〉 = 1

2π

∫ 2π

0
dθ eiθ(i− j ) exp[2K τ cos(θ) exp(−S)]. (3.3.116)

This result shows that the true eigenstates are the theta vacua, |θ〉 =∑n einθ |n〉. Their energy is

E(θ) = −2K cos(θ) exp(−S). (3.3.117)

The width of the zone is of the order of the tunneling rate. The lowest state corresponds to θ = 0 and has
negative energy. This is as it should be: tunneling lowers the ground-state energy.

Note, however, that although we can construct stationary states for any value of θ , they are not
excitations of the θ = 0 vacuum, because in QCD the value of θ cannot be changed. As far as the strong
interaction is concerned, different values of θ correspond to different worlds. Physical arguments show
that the parameter θ must be very small. Current experiments imply that

θ < 10−9. (3.3.118)

The question of why θ is so small is known as the strong C P problem, because the existence of a non-
vanishing θ -parameter leads to the violation of the charge (denoted by C) and parity (P) symmetries of
the world. The status of this problem is unclear. As long as we do not understand the source of C P
violation in nature, it is not clear whether the strong C P problem should be expected to have a solution
within the standard model or whether there is some mechanism outside the standard model that adjusts θ
to be small.

♦ The tunneling amplitude: pre-exponential factor

The next natural step in the study of instanton contributions is the one-loop calculation of the pre-
exponential in the tunneling amplitude. In gauge theory, this is a rather tedious calculation which was
done by ’t Hooft in a classical paper (’t Hooft 1976). Basically, the procedure is completely analogous
to what we did in the context of quantum mechanics. The field is expanded around the classical solution,
Aµ = A(cl)

µ + δAµ. In QCD, we have to make a gauge choice. In this case, it is most convenient to work

in the background field gauge: Dµ(A
(cl))δAµ = 0, where Dab

µ (A
(cl)) = (δab∂µ + i f ab

c A(cl)c
µ ).

We have to calculate the one-loop determinants for gauge fields, ghosts and possible matter fields.
The determinants are divergent both in the ultraviolet, like any other one-loop graph, and in the infrared
region, due to the presence of zero modes.

We already know how to deal with the zero modes of the system: the integral over the zero mode
must be converted into an integral over the corresponding collective variable. After an appropriate
regularization and renormalization of the ultraviolet divergences, the differential one-instanton tunneling
rate dnI for the gauge group SU(N) proves to be (’t Hooft 1976):

dnI = 0.466 exp(−1.679N)

(N − 1)!(N − 2)!

(
8π2

g2

)2N

exp

{
− 8π2

g2(ρ)

}
d4z dρ

ρ5
. (3.3.119)

This tunneling rate corresponds to the contribution of the instantons with the parameters of their size and
position being in the d4z dρ vicinity of some chosen values of ρ, zµ. Note that the collective coordinates
corresponding to the ‘colour’ orientation form a compact manifold (as well as the whole group SU(N))
and can be simply integrated over (result (3.3.119) was obtained after such an integration).
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3.3.4 Path-integral calculation of quantum anomalies

An anomaly expresses the breakdown of a classical symmetry by quantum effects. This view of an
anomaly arises quite naturally in the path-integral formalism. As we have discussed in the preceding
sections, the generating functional for Green functions of some field theoretical model is expressed in
terms of the path integral, the integrand being the exponential of the classical action of the model or
the corresponding effective action, i.e. modifications due to gauge fixing and ghost-field terms in gauge
theories, for example. If the exponent (classical or effective action) is invariant under some symmetry
transformations, the symmetry under consideration can still be violated by the path-integral measure,
the quantity which reflects the quantum nature of the theory: in general, this does not remain invariant
under the symmetry transformations. The associated Jacobian (after an appropriate regularization) of
the transformations produces precisely the anomaly (Fujikawa 1979, 1980) (see also, e.g., Bertlmann
(1996) and references therein). Although we introduced anomalies (see section 3.2.7) by considering the
regularization and renormalization of Feynman diagrams, this path-integral treatment of the anomaly is
independent of perturbation theory and, for this reason, is called the non-perturbative approach.

In this subsection, we shall perform a chiral transformation of the path integral and find the
anomalous Ward–Takahashi identities. Then, we shall regularize the transformation Jacobian (following
Fujikawa’s work) and, in this way, derive the so-called singlet anomaly (related to one-parameter
(Abelian) gauge transformations). We shall discuss the independence of the anomaly from the choice
of the regularization and the alternative between gauge and chiral symmetry. We shall also present
a generalization of the path-integral method to non-Abelian gauge transformations leading to the non-
Abelian anomaly.

♦ Fermionic path-integral measure and chiral transformations

Historically, the first example of quantum anomalies was the well-known Adler–Bell–Jackiw chiral
anomaly (Adler 1969, Bell and Jackiw 1969). This is connected with the so-called chiral U(1)
transformation

δψ = iαγ5ψ δψ̄ = iαψ̄γ5 (3.3.120)

where α is an infinitesimal real parameter. The corresponding Noether current

j5
µ(x) = ψ̄γµγ5ψ (3.3.121)

obeys classically the following equation

∂µ j5
µ(x) = 2imψ̄γ5ψ (3.3.122)

and it is conserved in the chiral limit m → 0. In the quantum case, however, the anomalous term
1

8π2 F̃µνFµν (where F̃µν is the dual tensor to Fµν , see the definition after equation (3.3.103)) appears on
the right-hand side of the previous equation, spoiling the chiral invariance of the theory. Although this term
could be removed by a suitable counterterm added to the chiral current j5

µ(x), this counterterm spoils the
gauge invariance and is therefore not admissible in any reasonable gauge theory. This situation is typical:
the anomalous symmetries appear in pairs and saving one of them (in the case under consideration, the
gauge symmetry) necessarily spoils the other one (chiral symmetry (3.3.120)). A further example of an
anomalous pair is the conflict between the scale and translational symmetries, leading to the so-called trace
anomaly. In the gravitational background, there is also the so-called Lorentz anomaly, the consequence
of which is the anomalous antisymmetric part of the energy–momentum tensor. For a comprehensive
discussion of this and related topics see the books by Treiman et al (1985) and Bertlmann (1996), where
an extensive list of references can also be found.
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♦ Singlet anomaly

We start with the singlet anomaly related to the one-parameter transformations (3.3.120). Let us consider
quantized Dirac fermions interacting with the non-Abelian field Aa

µ which may be Abelian (in this case,
a is a redundant index) or non-Abelian. The Lagrangian is

L = ψ̄(iD/ − m)ψ (3.3.123)

with the Dirac operator
D/ = γ µDµ = γ µ(∂µ + Aµ) (3.3.124)

and the gauge potential Aµ = Aa
µTa (Ta are the group generators). For the actual calculations, we perform

a Wick rotation to Euclidean spacetime: x0 → x4 = ix0, together with the modification of the γ 0-matrix
(see (3.3.17)) and zero-component gauge field:

γ 0 → γ 4 = iγ 0 A0 → A4 = −iA0. (3.3.125)

Note that now all γ -matrices become anti-Hermitian:

(γ µ)† = −γ µ µ = 1, 2, 3, 4 (3.3.126)

while the γ5-matrix, on the other hand, remains Hermitian:

γ5
def≡ iγ 0γ 1γ 2γ 3 = γ 4γ 1γ 2γ 3 (γ5)

† = γ5. (3.3.127)

Then, the Dirac operator turns out to be Hermitian in the Euclidean spacetime

D/ † = D/ . (3.3.128)

The metric becomes the following:
gµν = −δµν. (3.3.129)

Now, we perform a local chiral transformation:

ψ(x) −→ ψ ′(x) = eiβ(x)γ5ψ(x)

ψ̄(x) −→ ψ̄ ′(x) = eiβ(x)γ5ψ̄(x)
(3.3.130)

where β(x) denotes some gauge function. For an infinitesimal β, the Lagrangian (3.3.123) changes to

L −→ L′ = L− (∂µβ) j5
µ − 2imβρp (3.3.131)

where we have used the axial current
j5
µ = ψ̄γµγ5ψ (3.3.132)

and the pseudoscalar density
ρp = ψ̄γ5ψ. (3.3.133)

Thus, the classical action S = ∫ d4x L transforms as follows:

S → S′ = S +
∫

d4x β(x)[∂µ j5
µ(x)− 2imρp(x)] (3.3.134)
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and remains invariant if the axial current and density satisfy the relation

∂µ j5
µ = 2imρp (3.3.135)

in particular, if in the limit m = 0, the classical conservation law for the axial current is fulfilled.
To approach the phenomena of quantum anomalies, let us consider the path-integral representation

of the Dirac determinant:

det(iD/ − m) =
∫
Dψ(x)Dψ̄(x) exp

{∫
d4x ψ̄(iD/ − m)ψ

}
. (3.3.136)

Performing here the chiral transformation (3.3.130), Fujikawa discovered that the path-integral measure
transforms with a Jacobian containing the anomaly (Fujikawa 1979, 1980). More precisely, he established
the following result:

• The path-integral measure transforms chirally as

Dψ̄ ′Dψ ′ = Dψ̄ Dψ J [β, Aµ] (3.3.137)

where the transformation Jacobian J [β, Aµ] reads as

J [β, Aµ] = exp

{
−
∫

d4x β(x)A(Aµ(x))

}
(3.3.138)

and contains precisely the singlet anomaly in the Euclidean space

A(Aµ(x))
def≡ − i

16π2 ε
µνρσ Tr FµνFρσ . (3.3.139)

(Note that the imaginary unity i disappears in the Minkowski space.)

♦ The Jacobian of the chiral transformations

In order to derive expressions (3.3.138) and (3.3.139) for the singlet anomaly (i.e. to determine the
Jacobian of the chiral transformations), it is convenient to write the path integral (3.3.136) in terms of
the mode expansion (cf sections 1.2.3, 2.2.2 and 3.2.1):

det(iD/ − m) =
∫ ∞∏

n=0

dan db̄n exp

{ ∞∑
n=0

(iλn − m)b̄nan

}

=
∞∏

n=0

(iλn − m) (3.3.140)

where b̄n and an are coefficients of the mode expansion

ψ(x) =
∞∑

n=0

anϕn(x)

ψ̄(x) =
∞∑

n=0

ϕ†
n(x)b̄n

(3.3.141)
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over the orthogonal and complete set of eigenfunctions ϕn(x) of the Dirac operator

D/ ϕn(x) = λnϕn(x). (3.3.142)

Note that the coefficients b̄n and an are Grassmann elements. The substitution of the mode expansion
(3.3.141) into the transformation rule (3.3.130) shows that an infinitesimal chiral transformation of the
expansion coefficients reads as

a′
n =

∑
m

Onm am

b̄′n =
∑

m

Omnb̄m

(3.3.143)

with the transformation matrix

Onm = δnm + i
∫

d4x β(x)ϕ†
n(x)γ5ϕm(x). (3.3.144)

Recall that the Grassmann measure transforms with the inverse determinant (see section 2.6,
equation (2.6.203)), so that ∏

n

da′
n = (det O)−1

∏
n

dan∏
n

db̄′n = (det O)−1
∏

n

db̄n.
(3.3.145)

As a result, the Jacobian of the chiral transformation is cast into the form

J [β] = (det O)−2 = exp{−2 Tr ln O} (3.3.146)

and for an infinitesimal group parameter β, it can be rewritten as

J [β] ≈ exp

{
− 2 Tr ln

(
δnm + i

∫
d4x β(x)ϕ†

n(x)γ5ϕm(x)

)}
≈ exp

{
− 2i

∫
d4x β(x)

∑
n

ϕ†
n(x)γ5ϕn(x)

}
. (3.3.147)

Applying the completeness relation
∑
ϕn(x)ϕ

†
n(y) = δ(x − y) for the Dirac operator eigenfunctions, we

see that the sum in the exponential of (3.3.147) is ill defined:∑
n

ϕ†
n(x)γ5ϕn(x) = Tr γ5 · δ(0) (3.3.148)

and requires a regularization.

♦ Fujikawa’s regularization of the Dirac determinant: derivation of the singlet (Abelian) anomaly

Fujikawa suggested regularizing the determinant by a Gaussian cutoff:

∑
n

ϕ†
n(x)γ5ϕn(x) = lim

M→∞
∑

n

ϕ†
n(x)γ5 exp

{
− D/ 2

M2

}
ϕn(x)

= lim
M→∞

∑
n

ϕ†
n(x)γ5 exp

{
− λ2

n

M2

}
ϕn(x) (3.3.149)
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where M is the (dimensional) parameter of the regularization. The Gaussian factors damp the
contributions from the large eigenvalues, providing the convergence of the sum. It is convenient to evaluate
of the regularized sum using the Fourier transform ϕ̃n of the eigenfunctions

ϕn(x) = 1

(2π)2

∫
d4k eikx ϕ̃n(k). (3.3.150)

Then, using again the completeness of the eigenfunctions, the sum in (3.3.149) can be rewritten as follows:∑
n

ϕ†
n(x)γ5ϕn(x) = lim

M→∞
1

(2π)4

∫
d4k d4l

∑
n

e−ilx ϕ̃†
n(l)γ5 exp

{
− D/ 2

M2

}
eikx ϕ̃n(k)

= lim
M→∞

1

(2π)4

∫
d4k Tr e−ikxγ5 exp

{
− D/ 2

M2

}
eikx (3.3.151)

where the trace in the last expression is understood to be both over the γ -matrices and over the group
generators. The calculation of this integral is carried out with the help of the following decomposition of
the Dirac operator:

D/ 2 = γ µγ νDµDν = ( 1
2 {γ µ, γ ν} + 1

2 [γ µ, γ ν])DµDν

= DµDµ + 1
4 [γ µ, γ ν]Fµν (3.3.152)

where we have used the relation [Dµ, Dν ] = Fµν . The use of this decomposition in (3.3.151) yields the
result (see problem 3.3.4) ∑

n

ϕ†
n(x)γ5ϕn(x) = − 1

32π2 ε
µνρσ Tr Fµν Fρσ . (3.3.153)

This, together with (3.3.147), proves formulae (3.3.138) and (3.3.139) for the singlet anomaly.

♦ Anomalous Ward–Takahashi identity

The immediate consequence of the quantum anomaly in chiral theories is the appearance of anomalous
relations between Green functions, i.e. the so-called anomalous Ward–Takahashi identities. The derivation
follows the usual steps for deriving the Ward–Takahashi identities in any theory (cf sections 3.1.5 and
3.2.5). We start from the generating functional Z[η, η̄] for Green functions. For brevity and simplicity
we shall use the generating functional for spinor fields in an external Yang–Mills field, dropping the pure
Yang–Mills Lagrangian and the corresponding functional integration over the gauge fields. The restoration
of the dynamical quantum nature of the Yang–Mills fields adds nothing essential to the discussion of the
anomalous terms in the Ward–Takahashi identity.

Thus, we consider the generating functional

Z[η, η̄, Aµ] = N−1
∫
Dψ̄ Dψ exp

{∫
d4x [L+ η̄ψ + ψ̄η]

}
(3.3.154)

and perform the change of integration variable defined by the chiral transformation (3.3.130) with the
parameter β(x). Since the value of the integral does not depend on the choice of variables and hence on
the value of the parameter β(x), the differentiation over the latter gives the identity

δ

δβ(x)
Z[η, η̄, Aµ] = N−1

∫
Dψ̄ Dψ exp

{∫
d4x [L+ η̄ψ + ψ̄η]

}
× [∂µ j5

µ − 2imρp − A(Aµ(x))+ iη̄γ5ψ + iψ̄γ5η] = 0. (3.3.155)
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Condition (3.3.155) determines all (anomalous) Ward–Takahashi identities of the theory, by differentiation
with respect to the sources. For example, differentiating (3.3.155) with respect to η̄, η and setting the
sources equal to zero, we obtain the following relation between the Green functions:

∂µx 〈0|T j5
µ(x)ψ(x1)ψ̄(x2)|0〉 = 2im〈0|Tρp(x)ψ(x1)ψ̄(x2)|0〉 + 〈0|Ta(Aµ(x))ψ(x1)ψ̄(x2)|0〉

− 〈0|Tγ5ψ(x1)ψ̄(x2)|0〉δ(x − x1)− 〈0|Tψ(x1)ψ̄(x2)γ5|0〉δ(x − x2).

(3.3.156)

We stress that path integral (3.3.154) is independent of parameter β(x) of the chiral transformations
only taking into account the non-trivial transformation of the functional integration measure (non-trivial
Jacobian). This results in the appearance of the anomalous term A(Aµ(x)) in Ward–Takahashi identity
(3.3.155).

Fujikawa (1980) emphasized that the anomaly is independent of the chosen regularization for the
large eigenvalue contributions in the sum (3.3.149). Instead of exponential damping we could also choose
some other function f (x) which is smooth and decreasing sufficiently rapidly at infinity:

exp

{
− λ2

n

M2

}
−→ f

(
λ2

n

M2

)
(3.3.157)

with
f (∞) = f ′(∞) = f ′′(∞) = · · · = 0

f (0) = 1.
(3.3.158)

We suggest the reader checks this claim in problem 3.3.6, page 147. For instance, the choice of

f

(
λ2

n

M2

)
= 1

1 + λn/M2 (3.3.159)

as the cutoff function makes the Fujikawa regularization similar to the well-known Pauli–Villars
regularization (see, e.g., Bogoliubov and Shirkov (1959)).

♦ Competition between gauge and chiral symmetries and the anomaly

Roughly speaking, the calculation of the Jacobian is reduced to the following summation:

∑
n

ϕ†
n(x)γ5ϕn(x) =

∞∑
n=0

4∑
α,β=1

(γ5)αβϕnβϕnα / Tr γ5 · δ(x − x ′)

/ + 1 + 1 − 1 − 1 + 1 + 1 − 1 − 1 + 1 + 1 − 1 − 1 + · · · . (3.3.160)

The sign / is used here to stress the mathematical ambiguity of this chain of expressions: its clarification
requires a regularization which we have just carried out. Here, we want to point out that series (3.3.160)
is conditionally convergent so that it has a definite value depending on the way of summation. Fujikawa’s
Gaussian cutoff (3.3.149) or any regularizer with the properties (3.3.157) and (3.3.158) corresponds to a
summation which preserves the gauge invariance. This leads to a chiral symmetry-breaking and the chiral
trace becomes anomalous: Tr γ5 = 0, in contrast to the naive summation of (3.3.160) in the following
way: (+1 + 1 − 1 − 1)+ (+1 + 1 − 1 − 1)+ · · · = 0. Another option is to choose a regularization that
preserves the exact chiral symmetry. This would lead to an anomaly in the gauge symmetry. This conflict
of the two symmetries is the consequence of the following general fact:
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• The gauge-covariant operator D/ and the chiral matrix γ5 do not commute, their commutator
expectation value giving rise precisely to the anomaly

〈0|ψ̄(x)[D/ , γ5]ψ(x)|0〉 = A[Aµ](x). (3.3.161)

Hence, D/ and γ5 cannot be diagonalized simultaneously.

This, in turn, implies:

• It is impossible to impose both symmetries (gauge symmetry and the chiral symmetry)
simultaneously.

(Calculating the vacuum expectation (3.3.161) pertains to problem 3.3.7, page 147.) Thus the operators
D/ and γ5 satisfy a type of ‘uncertainty principle’: they cannot be simultaneously diagonal and the
corresponding symmetries, gauge and chiral, cannot be simultaneously exact.

♦ Non-Abelian anomaly

So far, we have treated the singlet (or Abelian) anomaly case. But the non-Abelian anomaly is also
determined by the path-integral measure when performing a non-Abelian gauge transformation.

We consider the following non-Abelian Lagrangian (restricting ourselves to the massless case for
simplicity):

L = ψ̄ iD/ψ (3.3.162)

where the Dirac operator
D/ = ∂ + B/ + A/ γ5 (3.3.163)

now contains a vector Bµ = Ba
µT a and an axial Aµ = Aa

µT a gauge potentials. This Dirac operator,
however, is not Hermitian in the Euclidean space

D/ †(B,A) = D/ (B,−A). (3.3.164)

As a result, the Dirac operator has no well-defined eigenvalue problem and we cannot use it for the
regularization procedure. One way to overcome the problem is to work with the Laplacian operators
D/ † D/ or D/ D/ †, which have different sets of eigenfunctions:

D/ † D/ ϕn = λ2ϕn D/ D/ †�n = λ2�n . (3.3.165)

Note that the Dirac operator and its conjugate transform one set of eigenfunctions into another:

D/ ϕn = λn�n D/ †�n = λnϕn. (3.3.166)

They are Hermitian and have well-defined eigenstates. The regularization is performed in a gauge-
covariant way and thus the regularized Jacobian produces the covariant anomaly (Fujikawa 1984, 1985)
(see also Bertlmann (1996) and references therein).

After the expansion of the spinor fields over the eigenfunctions as follows

ψ(x) =
∑

n

anϕ(x) ψ̄(x) =
∑

n

ϕ†(x)b̄m (3.3.167)

the calculation of the Jacobian of the chiral transformations

ψ ′(x) = exp{−β(x)γ5}ψ(x)
ψ̄ ′(x) = ψ̄(x) exp{−β(x)γ5} β(x) = βa(x)T a

(3.3.168)
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goes in a similar way to the case of the Abelian (singlet) anomaly and yields the result

J [β] = exp

{ ∫
d4x

∑
n

(ϕ†
n(x)βγ5ϕn(x)+�†

n(x)βγ5�n(x))

}
. (3.3.169)

The next step is the same as in the Abelian case: we have to regularize the sum in the exponential∑
n

(ϕ†
n(x)βγ5ϕn(x)+�†

n(x)βγ5�n(x))

= lim
M→∞ exp

{
− λ2

n

M2

}∑
n

(ϕ†
n(x)βγ5ϕn(x)+�†

n(x)βγ5�n(x))

= lim
M→∞

∫
d4k

(2π)4
Tr

[
βe−ikxγ5

(
exp

{
− D/ † D/

M2

}
+ exp

{
− D/ D/ †

M2

})
eikx
]
. (3.3.170)

The calculation of the right-hand side gives the so-called covariant anomaly:∑
n

(ϕ†
n(x)βγ5ϕn(x)+�†

n(x)βγ5�n(x)) = 1

32π2
εµναβ Trβ(F+

µνF
+
αβ + F−

µνF
−
αβ) (3.3.171)

where F±
µν denotes the field strength corresponding to the chiral gauge field A±

µ = Bµ ± Aµ.
When working with the fermionic path integral the problem of regularization always occurs.

Fujikawa’s Gaussian cutoff procedure is one possibility, but other techniques also exist, e.g. the heat
kernel and zeta function regularization which are elegant and based on mathematically solid grounds. For
details of these methods, we refer the reader to Bertlmann (1996) and references therein.

3.3.5 Path-integral solution of the polaron problem

An electron moving in a polar crystal polarizes the crystal lattice in its vicinity. Obviously, the perturbation
of the crystal is not static but follows the electron. More precisely, this interaction of an electron with its
surrounding ionic lattice induces vibration of the crystal lattice. In fact, we have already considered the
simplest variant of lattice vibrations at the very beginning of chapter 3 (see section 3.1.1), as a prototype
for a scalar field theory. However, in solid state physics, the quantum theory of lattice vibrations (in more
complicated variants) is of great interest, both from the theoretical and practical points of view, in its own
right. As we learned in section 3.1.1, the transition to normal modes allows us to describe the excitations
of a lattice within the second-quantization formalism, in terms of quasi-particles. In the case of the crystal
lattice, the corresponding quanta of excitations (quasi-particles) are called phonons. The interaction of an
electron with these lattice excitations leads to the ‘dressing’ of the ‘bare’ (free, non-interacting) electron
by ‘clouds’ of phonons. This both lowers the energy of the electron and increases its effective mass in
comparison with the case when the electron interacts with a rigid, non-vibrating lattice, i.e. when it moves
in a fixed external periodic potential (for a definition of the effective mass in the latter case and a general
introduction to solid state physics see, e.g., Ashcroft and Mermin (1976)).

• An electron moving in a crystal together with the accompanying lattice distortion or, in other words,
the physical state of an electron surrounded (‘dressed’) by a cloud of phonons is called a polaron
(see, e.g., Kittel (1987) and references therein).

The polaron problem can also be considered as an interesting field-theory model of non-relativistic
particles interacting with a scalar boson field, and it was widely studied in two contexts: the practical
study of crystal properties and the abstract non-relativistic quantum field theory.
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Figure 3.18. Qualitative behaviour of the dispersion curves for optical and acoustical phonons in crystals. The broken
line shows the domain of interest: it is seen that in this domain, the frequencies ω of the optical phonons are almost
independent of the wavevector k.

♦ Vibrations of a crystal lattice and the polaron Hamiltonian

It is worth mentioning that a real crystal lattice has an essentially more complicated structure than that
depicted in figure 3.1 or its straightforward three-dimensional generalization. We shall not go into a
detailed description, referring the reader to the previously cited books, but just note that a crystal lattice is
formed by periodically arranged cells, each consisting of a few ions. Correspondingly, the structure of the
possible vibrations of such lattices is richer than that of a simple cubic lattice with one ion at each site (as
depicted in figure 3.1 for the one-dimensional case). In particular, there are the so-called acoustic phonons
when the ions of a cell vibrate in the same phase (these phonons correspond to propagation of a sound
in the crystal) and there also exist optical phonons. In the latter case, the ions of a crystal cell vibrate
with opposite phases, so that the centrum of mass of the cell remains at rest. The formation of a polaron
is caused mainly by the optical phonons. The distinctive property of the latter is that their frequency is
almost independent of the wavevector, while acoustic phonons have an almost linear dispersion law, see
figure 3.18.

Let us agree that the potential of the non-perturbed fixed lattice is taken into account by the change in
the electron mass (i.e. the substitution of the mass of a free electron by the effective mass in the periodic
potential of the fixed lattice). If the lattice is distorted because of the presence of an electron in the crystal,
the potential V (x) which acts on the electron due to this deformation is defined by the Laplace equation

∇2V (x) = eρ(x) = −e∇ · P(x) (3.3.172)

where P(x) is the polarization vector, e is the electron charge and ρ(x) is the charge density caused by
the polarization. The polarization vector (which is proportional to shifts of ions) can be written via the
normal modes (via Fourier transform, cf section 3.1.1) as follows:

P(x) = C
∫

d3k

(2π)3

3∑
i=1

[ai (k)eikxei + a∗
i (k)e

−ikxei ] (3.3.173)

(ei are three orthogonal vectors). After quantization, the modes ai(k), a†
i (k) become the creation and

annihilation operators of (optical) phonons. Equation (3.3.172) shows that only the longitudinal mode
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(along the wavevector k) contributes to the polarization charge density. Therefore, we can neglect the two
transversal modes.

Calculations of the charge density according to (3.3.172) yields the change of the potential energy of
an electron caused by lattice vibrations (in other words, due to the interaction with phonons):

V (x) = −i(
√

2πα)1/2
(
~

5ω3

m

)1/4 ∫
d3k

(2π)3
1

|k|(a
∗
k e−ikx − akeikx). (3.3.174)

It can be shown (see, e.g., Kittel (1987)) that the dimensionless electron–phonon coupling constant is
expressed via crystal and electron characteristics as follows:

α = 1

2

(
1

ε∞
− 1

ε0

)
e2

~ω

(
2mω

~

)1/2

(3.3.175)

where ε0 and ε∞ are the static and high-frequency dielectric constants, respectively; ω is the (constant)
frequency of the optical phonons, m and e are the electron mass and charge. The potential (3.3.174)
implies the following Hamiltonian for the electron–phonon system, suggested by Fröhlich (1937, 1954)

H = p2

2
+
∑

k

a∗
kak + i(

√
2πα)1/2

L3

∑
k

1

|k| [a
∗
ke−ik·x − akeik·x] (3.3.176)

where p = −i∇ is the electron momentum operator, x is its coordinate, and L3 is the volume of the
crystal, which tends to infinity. The ks are the usual normal modes (e.g., k = 2πL−1(n1, n2, n3) for a
cubic box) and, as usual, L−3∑

k → (2π)−3
∫

d3k. Also the k = 0 mode is omitted (it describes the
rigid lattice and we have agreed to include its effect in the effective mass). In expression (3.3.176), for
simplicity, we have used such units that ~ = m = ω = 1.

As usual, we cannot find the exact eigenvectors and eigenvalues of the Fröhlich Hamiltonian
(3.3.176) and have to develop some approximate method. The choice of the latter depends on the value of
the coupling constant:

• if the coupling constant is small, α . 1, we can use the perturbation theory;
• for real crystals, the coupling constant α takes values in the range 1–20 (e.g., for crystals of common

salt, α ≈ 5); in this case, we have to use some non-perturbative variational methods.

The first case has no direct practical applications. From the technical point of view, we may use
the ordinary stationary perturbation theory of non-relativistic quantum mechanics, so that the shift of the
electron energy inside a crystal is given by the standard expression (see, e.g., Landau and Lifshitz (1981)
and Davydov (1976)):

$E0 = 〈0|Ĥint|0〉 +
∑

n

〈0|Ĥint|n〉〈n|Ĥint|0〉
E0

0 − E0
n

+ · · · (3.3.177)

where we have separated the Fröhlich Hamiltonian (3.3.176) into two parts: the free Hamiltonian

H0 = p2

2
+
∑

k

a∗
kak (3.3.178)

and the interaction Hamiltonian

Hint = i(
√

2πα)1/2

L3

∑
k

1

|k| [a
∗
ke−ik·x − akeik·x]. (3.3.179)
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The states |n〉, n = 0, 1, 2, . . . , in (3.3.177), are the eigenstates of the free Hamiltonian Ĥ0, while E0
n are

the eigenvalues of H0 corresponding to |n〉. In fact, the corresponding calculations are quite similar to
those in the relativistic field theory. In particular, the contribution of the lowest order of the perturbation
theory can be represented by a Feynman-like diagram similar to that on page 81

r r r rp p

k

p − k

where the wavy line now represents the phonon propagator ∼ 1/k2 and the full line with an arrow
corresponds to the non-relativistic electron propagator. The calculation in the first order in the coupling
constant yields

$E0 = −α
√

2

p
arcsin

p√
2
−→
p→0

−α. (3.3.180)

For small (but non-zero) momenta, expression (3.3.180) can be expanded in a series in p2:

E ≡ E0 +$E0 = p2

2
− α − p2

12
α + · · ·

= p2

2(1 + α/6) − α + · · · . (3.3.181)

This expression shows that the interaction with phonons increases the effective mass of an electron by a
factor (1 + α/6).

♦ Feynman variational method for the large coupling constant

As we have already mentioned, in real crystals the electron–phonon coupling constant takes large values
and the perturbation theory cannot be used. Thus, to estimate the polaron ground-state energy E0, we
have to use another approximation scheme. To this aim, let us first pass to the imaginary time T = −it ,
so that

eiĤt → e−ĤT

and then use the obvious formula

E0 = lim
T→∞

[
− 1

T
ln(Tr e−ĤT )

]
. (3.3.182)

Now, the trace of the exponential can be represented by the path integral and we can use some non-
perturbative approximation method for the evaluation of the path integral. In the present case, the Feynman
variational method (see later) proves to be most suitable. In order to apply it, let us pass in the phonon
Hamiltonian from the annihilation and creation operators to the corresponding coordinates and momenta.
After the Gaussian integration over the momenta, we arrive at the configuration path integral:

Tr e−ĤT =
∫
C{x(0)=x(T )}
C{q(0,k)=q(T ,k)}

Dx(τ )Dq(τ, k) e−S (3.3.183)

where the action S has the form

S =
∫

dτ

[
1

2
ẋ2(τ )+

∫
d3k

(2π)3

(
1

2
(q̇2(τ, k)+q2(τ, k))+√

2(
√

2πα)1/2
1

|k|q(τ, k)eikx(τ )
)]

(3.3.184)
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(x are the electron and q are the phonon coordinates). The path integral over the phonon variables is
Gaussian and we can explicitly calculate it. In fact, we can use the available result of the path integral for
a driven oscillator (see (1.2.262)), which in the present case yields

Tr e−ĤT ≈
∫

x(0)=x(T)
Dx(τ ) exp

{
− 1

2

∫ T

0
dτ ẋ2(τ )

}
× exp

{
2
√

2πα
∫ T

0
dτ ds

∫
d3k

(2π)2
1

k2
eik(x(τ )−x(s))e−|τ−s|

}
(3.3.185)

where we have taken into account that we are interested in the expression at large values of the imaginary
time T , so that we could drop terms which give relatively small contributions in this limit. The only
difference between the integral (3.3.184) and (1.2.262) is that both the phonon coordinates and the
‘external (time-depending) source’ are complex. But the generalization of (1.2.262) to this case is quite
straightforward and can be easily carried out by the reader (note that the results for real and complex
quantities look identical). The integral over k in the exponent of the integrand in (3.3.185) can be
performed (as it is the Fourier transform of 1/x), yielding

Tr e−ĤT ≈
∫

x(0)=x(T)
Dx(τ ) exp

{
− 1

2

∫ T

0
dτ ẋ2(τ )

}
exp

{
α√
8

∫ T

0
dτ ds

∫
e−|τ−s|

|x(τ )− x(s)|
}
.

(3.3.186)
This integral cannot be calculated exactly. To estimate the ground-state energy from above, we shall use
the Feynman variational method (Feynman 1955). To this aim, we first write∫

Dx(τ ) e−S =
∫
Dx(τ ) e−(S−S0)e−S0∫

Dx(τ ) e−S0

∫
Dx(τ ) e−S0 ≡ 〈e−(S−S0)〉S0

∫
Dx(τ ) e−S0 (3.3.187)

where S is the exponent in (3.3.186):

S = 1

2

∫ T

0
dτ ẋ2(τ )− α√

8

∫ T

0
dτ ds

∫
e−|τ−s|

|x(τ )− x(s)| (3.3.188)

and S0 is a test action to be chosen. Then using the Jensen inequality (see (C.2) and (C.5) in appendix C,
volume I), we obtain ∫

Dx(τ ) e−S ≥ exp{−〈S − S0〉S0}
∫
Dx(τ ) e−S0

where

〈S − S0〉 def≡
∫
Dx(τ ) (S − S0)e−S0∫

Dx(τ ) e−S0

(mathematically minded readers may easily generalize the proof of the Jensen inequality in chapter 1 to
the functional case). On the other hand, at large values of T , the trace can be estimated by the ground
state: Tr e−T Ĥ |T→∞ ≈ e−ET (here E denotes the ground-state eigenvalue of the Hamiltonian Ĥ ). Thus
we arrive at the estimation

E ≤ E0 + 1

T
〈S − S0〉S0 (3.3.189)

where E0 is the energy corresponding to the test action S0:

E0 = − lim
T→∞

1

T
ln
∫
Dx(τ ) e−S0. (3.3.190)

It is worth noting that the second term in the action S given by (3.3.188) corresponds to a retarded
potential. The physical reason for this is that a perturbation of a crystal lattice, caused by the motion of
an electron, propagates with a finite speed.
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♦ Choice of the test action

The next step consists in the choice of an appropriate test action S0 which gives the best (lowest) estimation
(3.3.189) for the polaron ground energy. It is clear that an optimal choice depends on the value of the
coupling constant α:

(i) For a weak electron–phonon coupling, α . 1, it is reasonable to choose as S0 the action without any
potential term (i.e. to drop in (3.3.188) the second term completely): S0 = S|α=0. In this case, the
result coincides with that of perturbation theory:

E − E0 ≤ −α. (3.3.191)

Note that the inequality (3.3.191) gives the upper bound for the energy shift and that it is not easy to
obtain this estimation by the usual operator methods.

(ii) For the strong electron–phonon coupling, α , 1, a crystal reacts to the electron movement very
quickly and we can use the test action S0 with the potential term V (x) for the electron in a fixed
external potential, e.g., in the harmonic potential. In this case, the Feynman variational method
proves to be equivalent to the ordinary Ritz variational method in quantum mechanics (with the test
function of the form ∼ e−C x2

).
(iii) It can be shown that, for intermediate values of the coupling constant, 1 ≤ α < 6, instant test

functions do not provide a good energy estimation: no potential term proves to be better than just the
zero potential, V = 0. For this practically important domain of values we have to use some kind of
retarded potential. A natural choice is

S0 = 1

2

∫ T

0
dτ ẋ(τ )+ C

2

∫ T

0
dτ ds (x(τ )− x(s))2e−W |τ−s| (3.3.192)

where C and W are constants to be adjusted to obtain the best upper bound. The choice of the
action S0 can be justified by the following arguments: (i) it is quadratic and hence the corresponding
Gaussian path integral can be calculated; (ii) it is retarded potential; (iii) the exponential factor is
analogous to that in the initial action S.

Thus, to find the upper bound for the ground-state energy in the case of intermediate values of the
coupling constant, we have to calculate

〈S − S0〉S0 = − α√
8

〈 ∫ T

0
dτ ds

e−|τ−s|

|x(τ )− x(s)|
〉

S0

− C

2

〈 ∫ T

0
dτ ds (x(τ )− x(s))2e−|τ−s|

〉
S0

. (3.3.193)

Recall that the averaging is understood with respect to the action S0 as the ratio of two path integrals:

〈F[x(τ )]〉S0

def≡
∫
Dx(τ ) e−S0 F[x(τ )]∫

Dx(τ ) e−S0
. (3.3.194)

As usual, it is convenient to calculate, first, the generating functional

Z[J ] =
〈

exp

{
i
∫ T

0
dτ J(τ )x(τ )

}〉
S0

. (3.3.195)

Then the mean value 〈F[x(τ )]〉S0 for polynomial functionals F (in particular, for the second term on the
right-hand side of (3.3.193)) can be obtained by functional differentiation, while more general functions
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are calculated with the help of the Fourier transform. In particular, for the first term in (3.3.193) we may
write the representation〈

1

|x(τ )− x(s)|
〉

S0

=
〈 ∫

d3k

(2π)3
4π

k2 eik(x(τ )−x(s))
〉

S0

=
∫

d3k

(2π)3
4π

k2 Z[J(u)]
∣∣∣∣

J(u)=k[δ(u−τ )−δ(u−s)]
. (3.3.196)

The generating functional (3.3.195) can be calculated by any method considered in this book, e.g.,
discretization, square completion, quadratic ‘approximation’ (which is exact for quadratic Lagrangians),
mode expansion. In problem 3.3.8, we suggest the reader calculates this generating functional by the
last method. Using the result of this calculation (see (3.3.227)) we readily obtain for the second term in
(3.3.193)

C

2

〈 ∫ T

0
dτ ds |x(τ )− x(s)|2e−W |τ−s|

〉
S0

= 3T C

U W
(3.3.197)

where

U2 ≡ W 2 + 4C

W

while for the first term in (3.3.193) the calculation of the Fourier transform (cf (3.3.196)) at large values
of T gives∫ T

0
dτ ds

〈
e−|τ−s|

|x(τ )− x(s)|
〉

S0

≈ 4T U√
2π

∫ ∞

0
du

e−u√
W 2u + [(U2 − W 2)/U ](1 − e−uU )

. (3.3.198)

The ground-state energy E0 corresponding to the test action S0 can be determined using the general
formula (3.3.182) but it is easier to use the following trick. First, we find the derivative

d E0(C)

dC
= lim

T→∞
1

−T
∫
Dx(τ ) exp{−S0}

d

dC

∫
Dx exp{−S0}

= − 1

T

〈
− 1

2

∫
dτ ds |x(τ )− x(s)|2e−W |τ−s|

〉
S0

= 3

U W
= 3

W
√

W 2 + 4C/W
. (3.3.199)

Now E0 can be found by the integration of (3.3.199) with the obvious boundary condition E0|C=0 = 0.
This yields

E0 = 3
2 (U − W ). (3.3.200)

Collecting all the results, we finally find the upper bound for the polaron ground-state energy E :

E ≤ E0 + 1

T
〈S − S0〉S0

−→
T→∞

3

4U
(U − W )2 − αU√

π

∫ ∞

0
du

e−u√
W 2u + [(U2 − W 2)/U ](1 − e−uU )

. (3.3.201)

The constants W and U (or C) should be adjusted to obtain a lowest upper bound. For extremal values of
the coupling constant, this can be done analytically:
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(i) For small α, the best values of the constants are:

W = 3 U = 3

[
1 + 2α

3W

(
1 − 2

W

[√
1 − W − 1

])]
. (3.3.202)

Then the upper bound turns out to be

E ≤ −α − 1.23
( α

10

)
. (3.3.203)

This estimation can be compared with the correct result obtained from the perturbation expansion:

E ≈ −α − 1.26
( α

10

)
. (3.3.204)

(ii) For large α, the best values for W and U are

W = 1 U = 4α2

9π
− 4

(
ln 2 + 1

2
C

)
+ 1 (3.3.205)

where C = 0.5772 . . . is the Euler constant. These values give the following estimation:

E ≤ − α
2

2π
− 3

2
(2 ln 2 + C)− 3

4
+O

(
1

α2

)
. (3.3.206)

For intermediate values of the coupling constant α, the integration in (3.3.201) cannot be done analytically
and (rather simple) numerical calculations should be used. It is necessary to stress that there are no other
methods, except the Feynman variational one based on the path-integral technique, which would give
reliable results for the intermediate values of the electron–phonon coupling constant α. The reader may
find further details and results on the polaron problem in Feynman (1972a), Kittel (1987) and Heeger
(1988).

3.3.6 Problems

Problem 3.3.1. Prove the Furry theorem (Furry 1937), which can be formulated as follows:

• The determinant (3.3.20) of the Dirac operator in the external field Aµ(x) is an even function of
Aµ(x).

Hint. As we have mentioned, the functional determinant must be regularized. The most natural way is
to divide it by the free Dirac determinant (see the regularization of the corresponding determinant for a
harmonic oscillator in an external field, section 2.2.2). Thus, we have to prove that the ratio

det(γµ(∂µ + ieAµ)− m)

det(γµ(∂µ − m))

of the Dirac operators is an even function of Aµ(x). The required statement follows from the following
chain of equalities:

det

(
1 + 1

 ∂ − m
ieA/

)
= det

(
1 + ieA/

1

 ∂ − m

)
= det

[
1 +

(
ieA/

1

 ∂ − m

)1]
= det

(
1 + 1

 ∂1 − m
ieA/1

)
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= det

[
1 +

(
γ2

1

 ∂ − m
γ−1

2

)(
γ2ieA/ γ−1

2

)]
= det

(
1 + 1

γ2  ∂γ−1
2 − m

ieγ2 A/ γ−1
2

)

= det

(
1 − 1

 ∂ − m
ieA/

)
.

Note that we use Euclidean γ -matrices:

γµγν + γνγµ = 2δµν µ, ν = 1, 2, 3, 4

in the standard representation

γi =
(

0 σi

σi 0

)
i = 1, 2, 3 γ4 =

(
1 0
0 −1

)
for which the following relations are correct:

γ1µ = γµ for µ = 1, 3, 4, γ12 = −γ2.

The latter relations, together with the obvious one, ∂1µ = −∂µ, imply

γ2  ∂1γ−1
2 = ∂ γ2 A/1γ−1

2 = −A/ .

Problem 3.3.2. Calculate the Jacobian of the functional change of variables (cf (3.3.59)):

π̃ (t, ρ) = − f (ρ)
p + ∫ dρ *(t, ρ)[∂x ϕ̃ − f c]∫

dρ f ∂x ϕ̃
+*(τ, ρ)

where f (ρ) is such a function that
∫

dρ f 2(ρ) = 1, and p, c are constants.

Hint. We have to calculate the determinant of the operator with the kernel

δπ̃(t, ρ)

δ*(t, ρ′)
=
[
δ(ρ − ρ′)− 1∫

dρ′′ f (ρ′′)∂x ϕ̃(ρ′)
f (ρ)(∂x ϕ̃(ρ

′)− c f (ρ′))
]
δ(t − t ′)

≡
[

1I − 1

〈 f |∂x ϕ̃〉 | f 〉(〈∂x ϕ̃| − c〈 f |)
]
δ(t − t ′)

where in the second line we have used the Dirac notation for the Hilbert space of functions with the scalar
product 〈 f |g〉 = ∫ dρ f (ρ)g(ρ). Then,

det

[
δπ̃(t, ρ)

δ*(t, ρ′)

]
=
∏

t

exp

{
Tr ln

[
1I − 1

〈 f |∂x ϕ̃〉 | f 〉(〈∂x ϕ̃| − c〈 f |)
]}

=
∏

t

exp

{
ln

c

〈 f |∂x ϕ̃〉
}
=
∏

t

c

[∫
dρ f (ρ)∂x ϕ̃(t, ρ)

]−1

.

The second equality follows from the relation:

Tr

[
1

〈 f |∂x ϕ̃〉 | f 〉(〈∂x ϕ̃| − c〈 f |)
]n

= (〈∂x ϕ̃| f 〉 − c〈 f | f 〉)n
〈 f |∂x ϕ̃〉

=
[ 〈∂x ϕ̃| f 〉 − c

〈 f |∂x ϕ̃〉
]n

.
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Problem 3.3.3. Verify that for a ‘pure gauge’ field configuration (3.3.98), the Chern–Simons topological
characteristic (3.3.100) turns into the winding Pontryagin number (3.3.99).

Hint. Write the integrand of (3.3.100) in matrix form, substitute (3.3.98) and convert into (3.3.99) using
the antisymmetry in the indices and the unitarity relation U†U = 1.

Problem 3.3.4. Using decomposition (3.3.152) of the Dirac operator, calculate the regularized
determinant of the Dirac operator represented in terms of the Fourier transformed eigenfunctions as in
(3.3.151).

Hint. Use the fact that the plane waves shift the differential operator ( f is an arbitrary smooth function)

e−ikx f (∂µ)e
ikx = f (∂µ + ikµ) (3.3.207)

so that after rescaling the integration variable, kµ → Mkµ, the sum (3.3.151) can be represented as
follows:∑

n

ϕ†
n(x)γ5ϕn(x) = lim

M→∞ M4 1

(2π)4

∫
d4k Tr γ5 exp

{
kµkµ − 2ikµDµ

M
− DµDµ

M2 − γ µγ νFµν
2M2

}
.

(3.3.208)
It is important that the properties of γ -matrices, namely,

Tr γ5 = Tr(γ5γ
µγ ν) = 0 (3.3.209)

Tr(γ5γ
µγ νγ ργ σ ) = −4εµνρσ (3.3.210)

leave in the integrand of (3.3.208) only the quadratic term in γ µγ νFµν , in the limit M → ∞. A
subsequent Gaussian integration over kµ produces expression (3.3.153).

Problem 3.3.5. Calculate the singlet chiral quantum anomaly in a two-dimensional Abelian gauge-field
theory.

Hint. To calculate of the Jacobian of the chiral transformation (cf (3.3.138)–(3.3.149)), we have to
regularize the sum ∑

n

ϕ†
n(x)γ5ϕn(x) = lim

M→∞
∑

n

ϕ†
n(x)γ5 exp

{
− D/ 2

M2

}
ϕn(x). (3.3.211)

Decomposing the squared Dirac operator (cf (3.3.152)), shifting the differential operator (see the hint to
the preceding problem, equation (3.3.207)) and rescaling the momentum kµ → Mkµ, we obtain for the
sum:∑

n

ϕ†
n(x)γ5ϕn(x) = lim

M→∞ M2 1

(2π)4

×
∫

d2k Tr

(
γ5 exp

{
−kµkµ − −2ikµDµ

M
− DµDµ

M2
− iγ µγ νFµν

2M2

})
.

(3.3.212)

In two-dimensional Minkowski spacetime, the γ -matrices and metric have the form

γ 0 = σ2 γ 1 = iσ1 γ5 = γ 0γ 1 = σ3

gµν =
(

1 0
0 −1

)
ε01 = 1

(3.3.213)
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while in two-dimensional Euclidean spacetime, they become

γ 0 = iγ4 γ5 = γ 0γ 1 = iγ 4γ 1

gµν = −δµν ε41 = iε01 = i.
(3.3.214)

Note that the relations
γµγ5 = εµνγ ν Tr γ5γµγν = −2εµν (3.3.215)

are valid in both Minkowski and Euclidean spaces. Next, we expand the exponential and take the trace of
the Dirac matrices. As a result, we find the regularized sum∑

n

ϕ†
n(x)γ5ϕn(x) = − i

4π
εµνFµν. (3.3.216)

Thus the Jacobian of the corresponding path-integral measure reads as

J [β] = exp

{
−
∫

dx β(x)
1

2π
εµνFµν

}
(3.3.217)

and the anomaly proves to be the following:

A = 1

2π
εµνFµν. (3.3.218)

(This result is valid both in Minkowski and Euclidean spaces if the ε-tensor is understood in the
appropriate sense, i.e. as in (3.3.213) or in (3.3.214).)

Problem 3.3.6. Prove the regularization independence of the chiral anomaly, i.e. check that the calculation
with an arbitrary regularization function f (x) satisfying the conditions (3.3.158) (instead of the damping
exponential) leads to the same result (3.3.218).

Hint. Repeating the steps of the calculations performed with exponential damping, we arrive at the
expression ∑

n

ϕ†
n(x)γ5ϕn(x) = − 1

2(2π4)

∫
d4k f ′′(k2)εµναβ Tr(FµνFµν) (3.3.219)

and the subsequent integration by parts taking into account conditions (3.3.158) gives the same result
(3.3.153), as in the case of the exponential regularization function.

Problem 3.3.7. Calculate the expectation value (3.3.161) of the commutator of the gauge-covariant Dirac
operator D/ and the γ5-matrix.

Hint. Expanding the Dirac spinors ψ̄ , ψ in terms of eigenfunctions of D/ (see equation (3.3.141)), we
obtain

〈0|ψ̄(x)2iγ5D/ψ(x)|0〉 = 1

N

∫ ∏
i

dai db̄i

∑
m,n

b̄manϕ
†
m(x)2iγ5 D/ ϕn(x) exp

{∑
k

(iλk − m)b̄kak

}
(3.3.220)

where the normalization factor is the usual Dirac determinant

N = det(iD/ − m). (3.3.221)
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This integration gives (recall that b̄i , ai are Grassmann variables)

〈0|ψ̄(x)2iγ5 D/ψ(x)|0〉 = 2
∑

n

ϕ
†
n(x)γ5 D/ ϕn(x)

λn + im
. (3.3.222)

For the commutator we then find

〈0|ψ̄(x)i[γ5, D/ ]ψ(x)|0〉 = 〈0|ψ̄(x)2iγ5 D/ψ(x)|0〉
= 2

∑
n

ϕ
†
n(x)γ5D/ ϕn(x)

λn + im

= 2
∑

n

ϕ
†
n(x)γ5(D/ + im)ϕn(x)

λn + im
− 2m

∑
n

ϕ
†
n(x)iγ5ϕn(x)

λn + im

= − 1

16
εµναβ Tr Fµν Fαβ + 2m〈0|ψ̄(x)γ5ψ(x)|0〉 (3.3.223)

where we have used the regularization result (3.3.153). So we have obtained the anomaly and also the
mass term which explicitly breaks the chiral symmetry (the chiral symmetry exists only in the massless
theory).

Problem 3.3.8. Calculate the generating functional (3.3.195) for the test action S0 (3.3.192), used for
estimating the upper bound for the polaron ground-state energy.

Hint. The periodic boundary conditions for the variables x(τ ) implies the following mode decomposition:

x(τ ) = x(0)+
∞∑

n=1

an sin
nπτ

T
. (3.3.224)

The terms of the action S0 now acquire the form∫ T

0
dτ

1

2
ẋ2 = 1

4

∞∑
n=1

a2
n

n2π2

T

1

2
C
∫ T

0
dτ ds [x(τ )− x(s)]2e−W |τ−s| = 1

2
C
∫ T

0
dτ ds

[ ∞∑
n=1

an

(
sin

nπτ

T
− sin

nπs

T

) ]2

e−W |τ−s|

large T︸ ︷︷ ︸
≈ C

W

∞∑
n=1

(
n2π2/T

W 2 + n2π2/T 2

)
a2

n .

Introducing also the Fourier transform of the external source:

bn = i
∫ T

0
dτ J(τ ) sin

nπτ

T

we can easily find, after Gaussian integration over the mode variables an ,

Z[J ] = exp

{ ∞∑
n=1

b2
n

4An

}
(3.3.225)
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where

An = n2π2

4T

(
1 + 4C/W

W 2 + n2π2/T 2

)
.

For the particular form of the external source

J(u) = K [δ(u − τ )− δ(u − s)]
expression (3.3.225) becomes

Z[K ] = exp


∞∑

n=1

−K 2[sin(nπτ/T )+ sin(nπs/T )]2
n2π2

T

[
1 + 4C/W

W 2+n2π2/T 2

]
 (3.3.226)

−→
T→∞ exp

{
−K 2

2

[
W 2

U2 |τ − s| + 4C

WU3

(
1 − e−|τ−s|U + e−(τ+s)U − 1

2
e−2Ut − 1

2
e−2Us

)]}

≈ exp

{
−K 2

2

[
W 2

U2
|τ − s| + 4C

WU3
(1 − e−|τ−s|U )

]}
(3.3.227)

where

U2 = W 2 + 4C

W
.

To calculate (3.3.226), we have substituted the sum by the integral over the variable nπ/T (which is valid
at large values of T ) and then we have neglected the terms which are exponentially small in almost all the
domain of variation of τ and s.

3.4 Path integrals in the theory of gravitation, cosmology and string theory:
advanced applications of path integrals

This section contains several rather involved topics on path-integral applications in modern theoretical
models such as quantum gravity, (super)strings, cosmology and black holes. The style of this section is
necessarily different from the rest of this book: each of these topics deserves a special book for detailed
discussion. The brief review in this section is intended only to provide a general understanding of the
problems without presenting all the technical details or supplying all the motivations. For discussions of
the details we shall refer the reader to the appropriate literature (where further references can be found).
Some acquaintance on the part of the reader with the basic facts from the differential geometry of Riemann
manifolds (see supplement V) as well as from Einstein’s general theory of relativity is assumed.

3.4.1 Path-integral quantization of a gravitational field in an asymptotically flat spacetime and the
corresponding perturbation theory

A complete theory of quantum gravity is still far from being complete. Moreover, at present, there is the
common belief that a complete and self-consistent quantum gravitational theory cannot be constructed
within the framework of local field theory (e.g., on the basis of Einstein’s general theory of relativity or
some modification of it) but requires more general theoretical concepts, including the quantum theory of
relativistic extended objects such as strings and membranes (see, e.g., Green et al (1987) and Polchinski
(1994, 1996)).

However, if we are interested only in phenomena with energies much lower than the natural
gravitational scale, namely the Planck mass, Mp ≈ 1.2 × 1019 GeV ≈ 2.2 × 10−5 g, we can use the
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local field theory as an effective theory describing phenomena with relatively low energy. The theory
proves to be non-renormalizable and hence cannot be regarded as a fundamental one. But for low-energy
processes, the Planck mass Mp serves as a natural ultraviolet cut-off scale. In this subsection, we consider
the path-integral quantization of this effective theory, while in the section 3.4.5 we shall briefly discuss
string theory.

It is worth stressing that, in both cases, the path-integral technique proves to be crucial for the
successful development of the theories.

♦ Classical action for a gravitational field; gauge invariance and constraints

A gravitational field can be considered as a type of the gauge fields which we have discussed in most
of this chapter. Thus, we may approach the problem of the quantization of the gravitational field in the
framework of the general formalism for gauge-field quantization. This time, the gauge transformations
are general coordinate transformations (diffeomorphisms)

xµ −→ x ′µ = f µ(x)

( f µ being an arbitrary differentiable function) of the spacetime manifold under consideration. In the case
of an asymptotically flat spacetime, i.e. topologically trivial (topologically equivalent to R

4 ) and with a
flat Minkowski metric at infinity, we can clearly separate local (gauge, unphysical) and global spacetime
symmetry transformations: the gauge transformations are diffeomorphisms which do not affect space
infinity (a flat region), while the global Poincaré group transformations act in the whole space, including
the asymptotic flat region, and form the global symmetry group (it is obvious that from the mathematical
point of view, the Poincaré transformations are a particular case of diffeomorphisms). These global
Poincaré transformations include time shifts, defining thereby the proper time variable and the physical
evolution of a gravitational system with asymptotically flat spacetime.

According to Einstein’s general relativity theory (see, e.g., Dirac (1975) and Misner et al (1973)),
a gravitational field is described by a metric gµν(x), which is a function of the spacetime coordinates
xµ, −∞ < xµ < ∞, µ = 0, 1, 2, 3 (due to the topological triviality these coordinates can be chosen
globally on the whole spacetime manifold). In this section we shall denote the flat Minkowski metric as

ηµν : ηµν
def≡ diag{+1,−1,−1,−1}, to distinguish it from the arbitrary non-flat spacetime metric gµν(x).

The condition of asymptotical flatness implies that the coordinates can be chosen so that

gµν(x)−−−−→
r→∞ ηµν +O

(
1

r

)
(3.4.1)

where r = √(x1)2 + (x2)2 + (x3)2. The Einstein action functional

Sgr = 1

16πGN

∫
d4x

√−gR(gµν) (3.4.2)

can be cast into the form

Sgr = 1

16πG2
N

∫
d4x [−�ρµρ∂ν(

√−ggµν)+�ρµν∂ρ(
√−ggµν)+√−ggµν(�ρµσ�

σ
ρν−�ρµν�σρσ )]. (3.4.3)

Here GN is Newton’s constant (which with ~ = c = 1 has the units of [length]2 or [mass]−2: GN = M−2
p ),

g
def≡ det gµν and R(gµν) is the spacetime curvature corresponding to the metric gµν (cf supplement V or

section 2.5), �ρµν denote the Christoffel symbols:

�ρµν
def≡ 1

2 gρσ (∂µgνσ + ∂νgµσ − ∂σ gµν) (3.4.4)
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and the matrix gµν is the inverse of gµν : gµσ gσν = δµν . Under the infinitesimal coordinate transformations

δxµ = εµ(x) (3.4.5)

with the local (coordinate-dependent) parameters εµ(x), the basic quantities transform as follows:

δgµν = − ελ∂λgµν + gµλ∂λε
ν + gνλ∂λε

µ (3.4.6)

δ�ρµν = − ελ∂λ�ρµν − �ρµλ∂νελ − �ρνλ∂µελ + �λµν∂λερ. (3.4.7)

The variation of the action in the form (3.4.3) over �ρµν , considered as independent variables, gives the
equation with the solution (3.4.4). Therefore, we are free to work with the so-called first-order formalism,
where both gµν and �ρµν are independent variables in the action (3.4.3), or to make the substitution of
expression (3.4.4) for the Christoffel symbols, which yields the action

Sgr = 1

16πG2
N

∫
d4x Lgr(h

µν)

= 1

16πG2
N

∫
d4x

(
hρσ ∂ρhµν∂νhσµ − 1

2
hρσ ∂ρhµν∂σhµν + 1

4
hρσ ∂ρ ln h∂σ ln h

)
(3.4.8)

where we have introduced for compactness the quantity (covariant density)

hµν
def≡ √−ggµν h

def≡ det hµν. (3.4.9)

The action (3.4.8) corresponds to the second-order formalism.
To develop the Hamiltonian formalism, whihc in gravitational theories is also called the Arnowitt–

Deser–Misner (ADM) formalism (Arnowitt et al 1960) (see also, e.g., Misner et al (1973)), and to
construct the corresponding path integral, it is convenient to start from the first-order formalism, i.e.
from action (3.4.3) (similarly to the case of Yang–Mills theories, cf section 3.2.3). Standard constrained
system analysis of the Lagrangian in (3.4.3) shows that it contains the non-dynamical variables �0

i0, �k
i0,

�k
i j (i, j, k = 1, 2, 3) which can be expressed via the dynamical variables hµν , �0

ik making use of the
following secondary second-class constraints:

hik�0
ik + h00�i

0i + ∂i hi0 = 0

2hk0�0
ik + h00(�0

i0 − �k
ik )+ ∂i h00 = 0

∂khi0 + hin�0
nk + h00�i

k0 + h0n�i
nk − hi0�n

kn = 0

∂khi j + hiν�
j
νk + h jν�i

νk − hi j�νkν = 0.

(3.4.10)

The natural phase-space variables prove to be

qik = hi0hk0 − h00hik πik = − 1

h00
�0

ik (3.4.11)

and the Lagrangian, after substituting the solution of the constraints (3.4.10), takes the canonical form:

Lgr(q
ik , πik) = 1

2G2

[
πik(x)∂0qik(x)− H (x)−

(
1

h00(x)− 1

)
T0(x)− hi0

h00(x)
Ti (x)

]
(3.4.12)
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with the secondary first-class constraints:

T0(x) ≡ qi j qkl(πikπ j l − πi jπkl )+ g3 R3 = 0 (3.4.13)

Ti (x) ≡ 2[∇i (q
klπkl )−∇k(q

klπil )] = 0 (3.4.14)

(the coefficients in front of them in the Lagrangian play the role of Lagrange multipliers) and with a
Hamiltonian of the form

H (x) = T0(x)− ∂i∂kqik(x). (3.4.15)

In these formulae, R3 denotes the three-dimensional curvature generated by the three-dimensional part
gik , i, k = 1, 2, 3 of the metric gµν and g3 = det gik . The symbol ∇i denotes the covariant derivative with
respect to this three-dimensional metric gik . We can check that the constraints Tµ(x) are in involution,
i.e. they satisfy characteristic property (3.2.57) of first-class constraints. Counting the degrees of freedom
gives two possible physical polarizations of the gravitational field: 6 (coordinates qi j ) − 4 (constraints)
= 2.

♦ Phase-space path integral for the gravitational field in an asymptotically flat space

To construct the phase-space path integral, let us choose the gauge conditions accompanying first-class
constraints (3.4.13) and (3.4.14), in the form (see Popov (1983))

ln det qik = �(x) qik = 0, i = k (3.4.16)

where�(x) is a function with the appropriate asymptotic behaviour: �(x)−−−−→
r→∞ constant /r . The reader

may verify that the necessary condition (3.2.56) is fulfilled for such a choice. Now we are ready to write
down the phase-space path integral for the S-matrix:∫ ∏

i≤k

[Dπik(x)Dqik(x)]Dλ0(x)Dλi (x)
3∏

a=0

δ[χa(x)] det{Tµ, χa}

× exp

{
i
∫

d4x [πik∂0qik − λi Ti − λ0T0 − H (x)]
}

(3.4.17)

where we have denoted, for compactness,

χ0 = ln det qik −�(x) χ1 = q23 χ2 = q31 χ3 = q12 (3.4.18)

λ0 =
(

1

h00
− 1

)
λi = h0i

h00
. (3.4.19)

We do not discuss the boundary conditions for the fields πik(x), qik(x): for an asymptotically flat
spacetime, the consideration is quite similar to that of Yang–Mills fields, which we discussed in
section 3.2.

♦ Transition to the Lagrangian path integral

Gaussian integration over the momentum variables πik produces, as usual, the configuration path integral
(details of the calculation can be found in Popov (1983))

N−1
∫ ∏

x

(
h−5/2(x)

∏
µ≤ν

dhµν(x)

) 3∏
a=0

δ[χa] det B̂ exp{iSgr[hµν]} (3.4.20)
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where the operator B̂ is defined by the Poisson brackets {Tµ, χa} of the constraints and the gauge
conditions: in fact det B̂ is obtained from det{Tµ, χa}, in the process of Gaussian integration, substituting
the momenta πik with their expressions through the metric tensor (cf (3.4.11)) and multiplying by the local
factor 1/h00. Note that the integration measure in the path integral (3.4.20) contains an additional factor∏

x h−5/2(x). This is the reason for writing it explicitly in (3.4.20) as a product over spacetime points
(instead of just the symbolical notationsDhµν(x)). Of course, the product over points is understood in the
sense of an appropriate regularization (discretization or truncated mode expansion). It is very important
that the local prefactor h−5/2 makes the measure in the path-integral gauge invariant.

The reader may explicitly check that operator B̂ satisfies the equality

det B̂
∫
Da(x)

3∏
a=0

δ[χa] = 1. (3.4.21)

According to the general theory of quantum gauge fields (see section 3.2), this means that integral
(3.4.20) goes over the classes of gauge-invariant fields (recall that in the case of gravitational fields, the
role of gauge transformations is played by diffeomorphic transformations of spacetime coordinates; the
corresponding infinitesimal transformations of the metric tensor have the form (3.4.6)).

Now, to present an expression for the configuration path integral in an explicitly relativistically
covariant form (but, of course, not generally, i.e. diffeomorphically covariant form, because we have
already imposed the gauge condition), we can use the Faddeev–Popov trick in order to pass to a covariant
gauge condition. The most convenient such gauge is the so-called harmonicity condition:

∂ν(
√−ggµν) = aµ(x) (3.4.22)

where aµ(x) is some fixed vector field. To this aim, we introduce as usual the functional $h[gµν], such
that

$h[gµν]
∫
D f (x)

∏
µ

δ[∂ν(hµν) f (x) − aµ(x)] = 1 (3.4.23)

where (hµν) f (x) denotes the metric density subjected to the diffeomorphic transformation defined by
the function f (x). In fact, the integrand does not vanish only in the infinitesimal vicinity of the surface
defined by the δ-functional. Therefore, it is enough to use only the infinitesimal form of the diffeomorphic
transformations and the integral can be explicitly calculated (as in Yang–Mills fields), with the following
result for the functional$h [gµν]:

$h[gµν] = det B̂h (3.4.24)

where the operator B̂h acts on a field εµ(x) according to the relation:

(B̂hε)
µ = ∂ν(hνλ∂λεµ)− ∂λ(∂νhµνελ). (3.4.25)

After the transition to the corresponding α-gauge with the help of averaging over the field aµ (cf
section 3.2) and after the introduction of the appropriate ghost fields in order to present the determinant
of the operator B̂h in exponential form, we obtain the path-integral representation for the S-matrix of the
gravitational fields in the form

S = 1

N

∫ ∏
x

(
g5/2(x)

∏
µ≤ν

dgµν(x)

)(∏
µ

DcµDc̄µ
)

× exp

{
iS[gµν] + iα

4

∫
δ4x ∂ρhµρηµν∂σhνσ + i

∫
d4x c̄µ(B̂h)µνcν

}
. (3.4.26)
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♦ Elements of the perturbation theory

Expression (3.4.26) serves as a starting point for the development of perturbation theory for processes
which involve particles mediating gravitational interactions, called gravitons. To develop this theory, we
should separate the non-flat part of the metric either additively

hµν = ηµν + GNuµν (3.4.27)

or multiplicatively
hµν = ηµσ [exp{GN�}]σν. (3.4.28)

Here the matrix fields uµν or�µν generate gravitons, while the Minkowski metric ηµν plays the role of a
classical background. The gravitational action now takes the form

Sgr = S2 +
∞∑

n=1

Gn
NSn+2 (3.4.29)

where S2 is the quadratic form in the field uµν or �µν and Sm , m > 2, are terms of the order m in uµν ,
�µν and their first derivatives. Now the reader may easily construct the Feynman diagram technique in
either of the previously mentioned parametrizations of the gravitational field. We present here only the
free propagators for gravitons:

Gµν,ρσ = 2

k2
[ηµρηνσ + ηµσ ηνρ + (α−1 − 2)ηµνηρσ ]

+ 2(1 − α−1)

k4 [2kµkνηρσ + 2kρkσ ηµν − kµkρηνσ − kνkρηµσ − kµkσ ηνρ − kνkσ ηµρ]
(3.4.30)

and, for the ghost fields,

Gµνgh = −η
µν

k2 . (3.4.31)

It is clear that, because of the higher powers of the fields and their derivatives in action (3.4.29), the
corresponding quantum field theory of gravitation is non-renormalizable. This is, in fact, the central
problem in constructing a self-consistent field theory of quantum gravity and it has induced persistent
attempts to construct more general and self-consistent (renormalizable or even finite) theoretical models.
As we have mentioned, it is assumed that the previously discussed quantum theory based on Einstein’s
general relativity, from the point of view of these more general models, plays the role of an effective
theory with a restricted range of validity (i.e. at relatively low energies E . MP). Although we cannot
say that we already have such a model which provides a complete theory of quantum gravity, there have
been remarkable successes on the way mainly related to the development of the superstring models. We
shall discuss these very briefly later in this section.

Now we pass to the discussion of some more profound (in comparison with the perturbation theory
in the asymptotically flat spacetime) problems of the effective low-energy quantum field theory of
gravitation.

3.4.2 Path integrals in spatially homogeneous cosmological models

In the preceding subsection, we discussed the perturbation theory for the quantum field theory of the
gravitational interaction based on the Einstein action. Although a complete theory of the 3 + 1 quantum
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Figure 3.19. A schematic representation of a spacetime admitting a foliation by spacelike leaves.

gravity is not yet available, many interesting non-perturbative results have also been obtained. A common
tool used to achieve them is the path-integral representation of a quantum gravity transition amplitude and
the semiclassical approximation. Quantum general relativity has a number of peculiar features which are
not encountered in the quantum theories of non-gravitational interactions: for example, the absence of a
background geometry and suitable symmetries to single out the vacuum and to select the Hermitian scalar
product of state vectors. It is therefore natural, as the first steps, to apply the study the simpler, truncated
models, both to test its viability and to gain insight into the type of technique that will be needed in the
full theory. Two main classes of such models exist:

• Four-dimensional ‘solvable’ spatially homogeneous cosmologies, i.e. cosmologies which admit
additional symmetries. In the classical theory, the presence of these symmetries enables us to
integrate the field equations completely. We shall see that their presence also simplifies the task
of quantization.

• Models based on (2+1)-dimensional general relativity (two spatial- and one time-dimension spaces);
these models serve to clarify several interesting and important points, both conceptual and technical.

In this subsection, we shall briefly present some applications of the path-integral techniques for the
quantization of models with homogeneous cosmologies. In the two subsequent subsections, we shall
discuss quantum processes in the (2 + 1)-dimensional general relativity with alternating spacetime
topologies and the path-integral derivation of the basic quantities in the black hole physics.

♦ Homogeneous cosmologies: minisuperspace models

A spacetime is said to be spatially homogeneous if it admits a foliation by spacelike submanifolds
(see figure 3.19) such that the isometry group of the four-metric acts on each leaf transitively. If the
isometry group admits a (not necessarily proper) subgroup which acts simply transitively on each leaf,
the spacetime is said to be of Bianchi type. In this case, we focus on this subgroup and further classify
spacetimes using the properties of the corresponding Lie algebras. If the trace

∑
a f a

ba of structure
constants f a

bc of the Lie algebra vanishes, the spacetime belongs to Bianchi class A, while if the trace
does not vanish, it belongs to Bianchi class B.
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A spatially homogeneous four-metric is said to be diagonal if it can be written in the form:

ds2 = −N2(t) dt2 +
3∑

i=1

gii (t)(ω
i )2 (3.4.32)

where N(t) is the lapse function and ωi is a basis of spatial one-forms which are left invariant by the
action of the isometry group. We can always change the time coordinate t to the proper time, t → t ′:
dt ′ = N(t) dt , so that the coefficient of the first term becomes simply −1. The diagonal metric is then
characterized by the three components gii (t) which are only functions of time. A key issue, however, is
whether the diagonal form of the metric is compatible with the classical field equations. This is the case for
models for which the vector (or the diffeomorphism) constraints (3.4.14) are identically satisfied and only
the scalar (or the Hamiltonian) constraint (3.4.13) remains to be imposed. We shall restrict ourselves to
this class of models which belongs to Bianchi class A, since they admit a Hamiltonian formulation, which
is the starting point for canonical quantization. Since the trace of the structure constants f a

bc vanishes for
these models, they can be entirely formulated in terms of a symmetric matrix nab:

f a
bc = εdbcnda (3.4.33)

where εdbc is the completely anti-symmetric tensor. The signature of nad can then be used to divide
class A models into various types: if nab vanishes identically, we have Bianchi type I; if it has signature
(0, 0,+), we have type II; signature (+,−, 0) corresponds to type VI0; (+,+, 0) corresponds to VII0;
(+,+,−) to type VIII and (+,+,+) to type IX.

• These types of spacetime manifold are called minisuperspaces (actually, the precise definition of
minisuperspaces includes important and rather involved refinements; we refer the reader for details
to, e.g., Ashtekar (1991) and Ashtekar et al (1993)).

A very useful Misner parametrization of the diagonal spatial metric exists:

gii (t) = e2xi (t) i = 1, 2, 3. (3.4.34)

Here xi (t) are considered to be arbitrary functions of the time variable, parametrizing the metric (do not
confuse them with the spacelike coordinates of the genuine spacetime). We can use the ADM procedure
(see preceding subsection) to arrive at the Hamiltonian formulation of minisuperspace models. Since
gii (t) (i = 1, 2, 3) and xi (t) are functions only of time, we actually deal with a quantum-mechanical
model with a finite number of degrees of freedom, not with a field theoretical system. The Misner
parameters xi serve as coordinates of the configuration space of this model and take values in the interval
(−∞,∞), so that the space is topologically trivial. We will denote the momenta conjugate to xi by pi .
Thus, the fundamental Poisson bracket relations are {xi , p j } = δi

j .

♦ Quantization of the minisuperspace models

Thus, we may consider the minisuperspace models as quantum-mechanical systems with Hamiltonians of
the form (cf (3.4.13) and (3.4.15))

H = gi j (x)pi p j + V (x) i = 1, 2, 3. (3.4.35)

This is the general form of a Hamiltonian for a particle in a curved space, which we have discussed in
section 2.5. The essentially new feature of the gravitational minisuperspace models is that expression
(3.4.35) must now be considered as a constraint (cf (3.4.13)). The fact that a Hamiltonian becomes a
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constraint (and hence vanishes in the physical sector) is the general feature of gravitational systems which
appears due to the reparametrization invariance (i.e. absence of a unique time variable). This problem is
not applicable for the asymptotically flat spacetimes considered in the preceding subsection, since in the
latter case we can use the timelike coordinate in the flat region as a proper physical time.

To start the analysis of the minisuperspace models (see, e.g., Marolf (1996)), we first quantize the
Poisson brackets for xi and p j , while completely ignoring the constraint. This provides an auxiliary
Hilbert space Haux. This space is called auxiliary because it contains much more than the physical states
that satisfy the constraints. In our case, we will take this space to be Haux = L2(R3 ), with the operators
x̂ i (coordinates) and p̂i (momenta) acting in the usual way.

The next step in the procedure is to ‘quantize’ the constraint H = 0. For our purposes, this simply
means that we choose some self-adjoint operator Ĥ on Haux, which has the function H as its classical
limit. The usual ordering ambiguity is present at this level and we make no attempt to give a unique
prescription.

Now, if the spectrum of Ĥ were entirely discrete, the implementation of the Dirac prescription
(Dirac 1964) would be straightforward: those eigenstates of H with zero eigenvalue would become the
physical states of our theory and the physical Hilbert space could simply be the Ĥ = 0 eigenspace of
Haux. However, in typical cases, Ĥ also has a continuous spectrum at zero eigenvalue, for which the
corresponding eigenstates are not normalizable in the auxiliary Hilbert space but proved to be instead
‘generalized eigenstates’ of Ĥ , i.e. distributions. We shall, in fact, assume the spectrum of Ĥ to be
entirely continuous at Ĥ = 0: many minisuperspace models can be formulated with a constraint having
only continuous spectrum at E = 0 and we restrict ourselves to this case (e.g., the case of the Bianchi IX
model).

In this situation and under a certain technical assumption concerning the operator Ĥ , the physical
Hilbert space is straightforward to construct. What we would really like to do is to project Haux onto the
(generalized) states which are zero-eigenvalue eigenvectors of H . Of course, since none of these states
is normalizable, this is not a projection in the rigorous sense. Instead, it corresponds to an object δ(Ĥ),
an analog of the Dirac δ-function. Given the previously mentioned assumption on H , the object δ(Ĥ)
can be shown to exist and to be uniquely defined. It exists not as an operator in the Hilbert space Haux,
but as a map from a dense subspace S of Haux to the space S ′ of linear functionals on S (i.e. to the dual
space). The space S may typically be thought of as a Schwarz space; that is, as the space of smooth
rapidly decreasing functions on the configuration space. In this case, S ′ is the usual space of tempered
distributions.

Then the key idea is the following. Although the generalized eigenstates of Ĥ do not lie in Haux,
they can be related to normalizable states through the action of the operator δ(Ĥ ). That is, the generalized
eigenstates |ψphys〉 of Ĥ with zero eigenvalue can always be expressed in the form δ(Ĥ)|ψ0〉, where |ψ0〉
is a normalizable state in S ⊂ Haux:

Hilbert space of
normalizable

functions
|ψ〉 ∈ S ⊂ Haux

Generalized wave-
functions

(distributions)
δ(Ĥ)|ψ〉

Physical subspace
|ψphys〉 ∈ Hphys

- -
δ(Ĥ ) Ĥδ(Ĥ)|ψ〉 = 0

This choice of |ψ0〉 is, of course, not unique and, in fact, we associate with a physical state |ψphys〉 the
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entire equivalence class of normalizable states |ψ〉 ∈ S, satisfying

δ(Ĥ )|ψ〉 = |ψphys〉. (3.4.36)

Each equivalence class of normalizable states will form a single state of the physical Hilbert space.
All that is left now is to construct the physical inner product from the auxiliary Hilbert space. Naively,

the inner product of two physical states |φphys〉 and |ψphys〉 may be written as 〈φ|δ(Ĥ )δ(Ĥ )|ψ〉, where
|φ〉 and |ψ〉 are normalizable states in the appropriate equivalence classes. This inner product is clearly
divergent, as it contains [δ(Ĥ)]2. Instead, we define the physical inner product to be

〈φphys|ψphys〉phys = 〈φ|δ(Ĥ )|ψ〉aux (3.4.37)

where the subscripts phys and aux at the brackets indicate the two different inner products. Note that
(3.4.37) does not depend on which particular states |φ〉, |ψ〉 ∈ S were chosen to represent the physical
states |φphys〉 and |ψphys〉. This construction parallels the case of a purely discrete spectrum: if PH were
a projection onto normalizable zero-eigenvalue eigenstates of Ĥ , we would have P2

H = PH. Note that
if Ĥ is the Hamiltonian for a free relativistic particle (see below, section 3.4.5), this positive definite
inner product corresponds to the Klein–Gordon inner product on the positive-frequency states, but it
corresponds to minus the Klein–Gordon inner product on the negative-frequency states. The positive- and
negative-frequency subspaces are orthogonal as usual.

The algebra of observables commutes with the constraint Ĥ . These are the analogs of the gauge
invariants of classical physics. Each such operator Â then induces the operator Âphys on Hphys through

Âphys|ψphys〉 ≡ δ(Ĥ) Â|ψ〉 (3.4.38)

where again |ψ〉 is any state for which |ψphys〉 = δ(Ĥ)|ψ〉.

♦ What quantity should we derive a path integral for?

As we have learned, path integrals represent transition amplitudes that encode the time evolution of
quantum systems. However, for the cases we consider in this subsection, the Hamiltonian explicitly
vanishes on the physical Hilbert space. Thus, the operator e−iĤ t is just the identity. Nevertheless, the
physical states contain information that can be called dynamical. Thus, there should be some object, more
or less similar to a transition amplitude. It turns out that such an object is just the matrix elements of
the operator δ(Ĥ ) in Haux (Marolf 1996). That is, we have to compute 〈xf|δ(H )|xi〉 where |xf〉 and |xi〉
are generalized eigenstates of the coordinate operators xi . Indeed, when one of the coordinates (say x1)
is considered to represent a ‘clock’ and when this clock behaves semiclassically this object, in a certain
sense, describes the amplitude for the ‘evolution’ of the state |xi〉 at the time x1

i to the state |xf〉 at the
time x1

f . Here xf and xi represent the coordinates on the slices through the configuration space of constant
values of x1.

It is now straightforward to represent this object as a path integral. To do so, consider the path-
integral expression for the operator e−iN Ĥ on Haux. The new parameter N serves as a formal ‘time’
variable. We then integrate N from −∞ to ∞ to turn e−iN Ĥ into δ(Ĥ).

The resulting path integral is then

〈xf|δ(Ĥ)|xi〉 = 1

2π

∫ ∞

−∞
d N
∫
Dx(t)Dp(t) exp

{
i
∫ N

0
dt [pẋ − H (x(t), p(t))]

}
= 1

2π

∫ ∞

−∞
d N
∫
Dx(t)Dp(t) exp

{
i
∫ 1

0
dt [pẋ − N(t)H (x(t), p(t))]

}
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= 1

2π

∫
DN(t)Dx(t)Dp(t)

∏
t

δ(Ṅ (t))$[N(t)]

× exp

{
i
∫ 1

0
dt [pẋ − n(t)H (x(t), p(t))]

}
(3.4.39)

where
∫∞
−∞ d N denotes an integral over the single variable N , whileDx(t)Dp(t) denotes the usual path-

integral measure. The second equality is obtained by a simple change of the time variable t → Nt , while
the last is obtained by converting the ordinary integral over N into the path integral with a simultaneous
fixing of all modes of the function N(t), except the constant one, and putting them to zero due to the
‘gauge condition’ Ṅ (t) ≡ ∂N/∂ t = 0 (represented by the δ-functional in the integrand). The functional
$(G) is the associated Faddeev–Popov determinant.

♦ An example of path-integral representation for the inner product

Having derived a path integral for 〈x f |δ(Ĥ)|xi 〉, it is of interest to see what form this distribution takes in
the simple cases where an exact analytic expression can be obtained.

The Bianchi I model is a minisuperspace describing spatially homogeneous spacetimes of the form
M = T 3 × R which has a foliation by three-tori with flat Riemannian metrics (so that the tori form
spacelike hypersurfaces of M). In the diagonal version of this model, the metric is such that at each
spacetime point of M, three mutually orthogonal closed geodesics intersect and each encircle an arm of
the torus once. This system may be formulated on the configuration space Q = R

3 (i.e. on the space of
possible metrics (3.4.34) on M = T 3 × R), with a constraint of the form

HBI = 1
2 (−p2

1 + p2
2 + p3

2). (3.4.40)

In this case, the coordinate x1 describes the volume of the three-torus T 3, while the coordinates x2 and
x3 describe the ratios of the lengths of minimal curves encircling the torus in different directions. It is
technically easier to consider a slightly modified model with an additional constant term in the constraint:

H = 1
2 (−p2

1 + p2
2 + p2

3 + m2) (3.4.41)

for m2 > 0. To have an idea about the form of the amplitudes 〈x f |δ(Ĥ)|xi 〉 in minisuperspace models, we
consider only the case of the Hamiltonian constraint. The Hamiltonian (3.4.40) (or (3.4.41)) is unbounded
below. The same is true for the corresponding Euclidean action. This is a general property of quantum
general relativity. Since a bounded Euclidean action is required for common arguments involving analytic
continuation to Euclidean time, this property has raised the concern about how a path integral for gravity
might be defined and analyzed (Gibbons et al 1978). The minisuperspace models, being essentially
simpler than the complete general relativity, provide a good opportunity for studying this potentially
dangerous peculiarity of gravitational systems.

Note that the Hamiltonian (3.4.41) looks exactly like that for the free relativistic particle with mass m
(we shall consider a proper relativistic particle in section 3.4.5). However, the physical contents relating
to the two Hamiltonians are quite different. This follows from the fact that the metric which defines
the constraint’s ‘kinetic term’ has a different interpretation in each of the two cases. A free relativistic
particle with p2 < 0 is usually interpreted as ‘traveling backwards in time’, a process which physically
corresponds to the creation of an antiparticle. In the Bianchi-like models, a negative p1 means only that
the torus decreases with the proper time, that is, that the universe is collapsing.

We now proceed to compute the integral

〈xf|δ(Ĥ)|xi〉 = 1

2π

∫ ∞

−∞
d N 〈xf|e−iĤ N |xi〉 = 1

π
Re

(∫ ∞

0
d N 〈xf|e−iĤ N |xi〉

)
(3.4.42)
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where Re denotes the real part. The operator e−iĤ N is just e−im2 N/2 times the evolution operator for a
free non-relativistic particle (with unit mass). Since we consider matrix elements of the operator with a
purely imaginary exponent, the different signs of the ‘kinetic terms’ in the Hamiltonian (3.4.41) do not
lead to any trouble. As a result, its matrix elements are readily seen to be (cf (2.2.59))

〈x f |e−iĤ N |xi 〉 = 1

(2π iN/m)3/2
exp

[
− im2

2

(
N − (xf − xi)

2

m2 N

)]
(3.4.43)

for N > 0. The integration over N in (3.4.42) yields for (xf − xi)
2 > 0 (see Gradshteyn and Ryzhik

(1980), formula 3.471)

〈xf|δ(H )|xi〉 = 2

π(2π)n/2

[√
(xf − xi)2

m

](1−n/2)

K(n/2)−1

(
m
√
(xf − xi)2

)
(3.4.44)

where K(n/2)−1 is the modified Hankel function of order (n/2)− 1. Similarly, for (xf − xi)
2 < 0, we find

〈xf|δ(Ĥ)|xi〉 = − 1

(2π)n/2

[√−(xf − xi)2

m

](1−n/2)

N(n/2)−1

(
m
√
−(xf − xi)2

)
(3.4.45)

(N(n/2)−1 is a Bessel function of the second kind). Note that, for −(xf − xi)
2m2 , 1, the matrix

elements are roughly cos(m
√
−(xf − xi)2). When (xf− xi)

2m2 , 1, the matrix elements contain only the
decreasing exponential exp{−m

√
(xf − xi)2}. This occurs even though the Euclidean action is unbounded

from below.
Recall that the matrix elements (3.4.44) and (3.4.45) describe an evolution (in the sense defined

before equation (3.4.39)) of the components gii (t) of the metric (3.4.32), parametrized with the help of
the Misner parameters xi . This metric is defined on a spacetime without a priori assumed asymptotical
flatness but which is spatially homogeneous (more precisely, on a minisuperspace).

3.4.3 Path-integral calculation of the topology-change transitions in (2 + 1)-dimensional gravity

The path integral in general relativity is a sum over geometries, and it is natural to ask whether this
sum should be extended to include different topologies as well. Since realistic four-dimensional quantum
gravity is a difficult theory, to study this problem it is natural to look again, as in the preceding subsection,
for simpler models that share important features with general relativity. The choice of a simplified
model depends on what questions we wish to ask and, as far as the dynamics of spacetime topologies
is concerned, a particularly useful model is general relativity in three spacetime dimensions. The classical
works in this area are by Deser, Jackiw and ’t Hooft (Deser et al 1984) and Witten (1988) (as a review,
see, e.g., Carlip (1995) and further references therein).

The underlying conceptual issues of quantum gravity and some of the technical aspects as well, are
identical in 2+1 and 3+1 dimensions. But the elimination of one dimension greatly simplifies the theory,
making many computations possible. Moreover, general relativity in 2 + 1 dimensions is renormalizable
(it is, in fact, finite), allowing us to avoid the difficult problems of interpreting path integrals in (3 + 1)-
dimensional gravity.

♦ Preliminaries on the (2 + 1)-gravitation theory

Let us begin by examining the reasons for the simplicity of general relativity in 2 + 1 dimensions. In any
spacetime, the curvature tensor may be decomposed into a curvature scalar R, a Ricci tensor Rµν , and a
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remaining trace-free, conformally invariant piece, the Weyl tensor Cµνρσ (see supplement V). In 2 + 1
dimensions, however, the Weyl tensor vanishes identically, and the full curvature tensor is determined
algebraically by the curvature scalar and the Ricci tensor:

Rµνρσ = gµρRνσ + gνσ Rµρ − gνρRµσ − gµσ Rνρ − 1
2 (gµρgνσ − gµσ gνρ)R. (3.4.46)

In particular, this implies that any solution of the Einstein field equations (without matter fields)

Rµν = 0 (3.4.47)

is flat (i.e. Rµνρσ = 0), and that any solution of the field equations with a cosmological constant,

Rµν = 2�gµν (3.4.48)

has constant curvature. Physically, a (2+1)-dimensional spacetime has no local degrees of freedom: there
are no gravitational waves in the classical theory, and no gravitons in the quantum theory. The vanishing
of the curvature tensor means that any point in a spacetime M has a neighborhood that is isometric to
the Minkowski space. If M has a trivial topology, a single neighborhood can be extended globally, and
the geometry is indeed trivial; but if M contains non-contractible curves, such an extension may not be
possible.

The convenient fundamental variables for a suitable formulation of the (2+1)-gravity are now a triad
eµa(x) (i.e. components of orthonormal frames) and a spin connection ωµa

b. The Einstein–Hilbert action
can be written as

Sgr = 2
∫
M

ea ∧ (dωa + 1
2εabcω

b ∧ ωc) (3.4.49)

where ea = eµa dxµ and ωa = 1
2ε

abcωµbc dxµ. Technically, it is more convenient to deal with forms
and their wedge products (see supplement V) than with their components eµa , ωµbc. Besides, to simplify
formulae, in this subsection we choose such units, that 16πGN = 1. The action (3.4.49) is invariant
under local SO(2, 1) transformations (the three-dimensional analog of the Lorentz transformations in the
Minkowski spacetime),

δea = εabcebτc

δωa = dτ a + εabcωbτc (3.4.50)

as well as ‘local translations’,

δea = dσ a + εabcωbσc

δωa = 0. (3.4.51)

Of course, Sgr is also invariant under diffeomorphisms of M but this is not an independent symmetry: it
can be shown that when the triad eµa is invertible, diffeomorphisms are equivalent to the transformations
(3.4.50)–(3.4.51).

The equations of motion coming from action (3.4.49) are easily derived:

T a[e, ω] = dea + εabcωb ∧ ec = 0 (3.4.52)

and
Ra[ω] = dωa + 1

2ε
abcωb ∧ ωc = 0. (3.4.53)

The first of these determines ω in terms of e. The second then implies that the connection ω is flat
or, equivalently, that the curvature of the metric gµν = eµaeνbηab vanishes, thus reproducing field
equations (3.4.47).
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Figure 3.20. The simplest example of a topology-change manifold for gravity in (1 + 1)-dimensional spacetime: a
one-dimensional ‘universe’  0 is splitting into two disconnected manifolds (‘universes’)  and  ′, thereby changing
its topology; the two-dimensional manifoldM corresponds to this topology-change process.

♦ Path integrals for topology-change transition amplitudes

We are interested in path integrals of the form

K [ω|∂M] =
∫
DωDe exp{iSgr[M]} (3.4.54)

where M is a manifold whose boundary

∂M =  1 ∪ 2 (3.4.55)

is the disjoint union of an ‘initial’ surface  1 and a ‘final’ surface  2. ( 1 and  2 need not be connected
surfaces.) In figure 3.20 we illustrate this with the help of the much simpler case of the (1 + 1)-gravity.
The reader may find concrete examples of topology-change manifolds in (2 + 1)-dimensional gravity in,
e.g., Carlip and Cosgrove (1994). Visually, they are more complicated and we do not present them here.

The quantity K [ω|∂M] represented by path integral (3.4.54) depends on the values of the dynamical
variables on the boundary surfaces  1 and  2 and has the meaning of transition amplitude (similarly to
the ordinary quantum-mechanical amplitude K (x, t|x0, t0)).

♦ Boundary conditions for the connection and triad for topology-change processes

Since we are dealing with manifolds with a boundary, we must first determine the appropriate boundary
conditions. The canonical quantization of the (2+1)-gravity on a manifoldR× shows that the states are
gauge-invariant functionals %[ωi

a] of the spatial part of the connection, subject to the constraint that ω
be flat on  . The corresponding boundary conditions for the path integral therefore require us to fix a flat
connectionωi

a on ∂M. Recall that, if there exists a map from a manifoldX to a manifoldY , f : X → Y ,
then any form � on Y induces the form f ∗� on X . For example, for a one-form� = �α dyα, the form
f ∗� is f ∗� = �α

∂ f α

∂xi dx i , where yα = f α(x) is the function locally defining the map X → Y . Since
∂M is a boundary of M, there exists an inclusion map I : ∂M → M. We can then freely specify the
induced connection one-form I ∗ω on ∂M, as long as the induced curvature I ∗R vanishes. The SO(2, 1)
gauge invariance of the resulting amplitude is formally guaranteed by the functional integral over the
normal component of ω: at ∂M, ω⊥a is a Lagrange multiplier for the constraint

Na = 1
2ε

i j (∂i e j
a − ∂ j ei

a + εabc(ωibe jc − ωice jb)) (3.4.56)
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that generates the SO(2, 1) transformations of I ∗ω. Observe that we must integrate over ω⊥ at the
boundary to enforce this constraint, i.e. we must not fix ω⊥ as part of the boundary data. This is in
accordance with canonical theory, in which the wavefunctionals depend only on the tangential (i.e. spatial)
components of ω.

The specification of I ∗ω is not quite sufficient to give us a well-defined path integral. As usual, it is
useful to decompose the fields to be integrated, in particular ω, into a classical field ω(cl) that satisfies the
classical field equations, and a fluctuation�:

ω = ω(cl) +� dω(cl)a + 1
2ε

abcω
(cl)
b ∧ ω(cl)

c = 0. (3.4.57)

Assuming now that ω(cl) exists, the boundary condition

I ∗� = 0

(the usual boundary condition for quantum fluctuations) can be recognized as part of the standard
Dirichlet, or relative, boundary conditions for a one-form. In order to impose complete Dirichlet
conditions, this should be accompanied by the relation

∗D̄ ∗� = 0. (3.4.58)

Here, ∗ is the Hodge-star operator with respect to an auxiliary Riemannian metric h, which we introduce
in order to define a direction normal to the boundary, while D̄ is the covariant exterior derivative coupled
to the background connection ω(cl),

D̄βa = dβa + εabcω(cl)
b ∧ βc.

Since (3.4.58) depends on the non-physical metric h, we must check that the final transition amplitudes
are independent of h.

In order to impose the boundary conditions for the triad ea , which are consistent with those for ωa ,
we observe that e⊥a acts as a Lagrange multiplier for the constraint

Ña = 1
2ε

i j (∂iω j
a − ∂ jωi

a + εabcωibω j c) (3.4.59)

and so, if we integrated over it at the boundaries, this would lead to a delta-functional δ[Ña ] = δ[I ∗Ra]
at the boundary. But we have already required that I ∗ω be flat, therefore such a delta-functional would
diverge. We avoid this redundancy by fixing e⊥ at ∂M. Eventually, we have to prove that transition
amplitudes do not depend on the specific value of e⊥, so this does not contradict the canonical picture
(states depend only on ωa).

As with ω, we can obtain additional boundary conditions by decomposing e into a classical
background field and a fluctuation

e = e(cl) + E de(cl)a + εabcω
(cl)
b ∧ e(cl)

c = 0 (3.4.60)

where E⊥ vanishes, i.e. I ∗(∗E) = 0. This restriction on E is a part of the standard Neumann, or absolute,
boundary conditions for a one-form,

I ∗(∗E) = 0 I ∗(∗D̄E) = 0. (3.4.61)
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♦ Calculation of the path integral

The next step in constructing the path-integral representation for topology-change amplitudes is to choose
gauge conditions to fix the transformations (3.4.50)–(3.4.51). In order to do this, we employ the auxiliary
Riemannian metric h introduced earlier and impose the Lorentz gauge conditions

∗D ∗ Ea = ∗D ∗�a = 0 (3.4.62)

(the Hodge-star operation is defined with respect to the auxiliary metric h). For later convenience, we use
the covariant derivative D coupled to the full connection ω rather than ω(cl) in our gauge-fixing condition.
D and D̄ agree at the boundary, however, so the gauge condition on � reduces to the second equation of
(3.4.58) on ∂M.

To impose (3.4.62) in the path integral, it is convenient to introduce a pair of three-form Lagrange
multipliers ua and va , and add the term

Sgauge = −
∫
M

(ua ∧ ∗D ∗ Ea + va ∧ ∗D ∗�a) (3.4.63)

to the action. It is not difficult to see that for the path integral to be well defined, u should obey relative
boundary conditions (I ∗(∗D ∗ u) = 0), while v should obey absolute boundary conditions (∗v = 0
on ∂M). The latter restriction has again a rather straightforward interpretation: since we are already
imposing the gauge condition (3.4.58) on � at the boundary, we do not need the added delta-functional
δ[∗D ∗�] that would come from integrating over v at ∂M.

As usual, the gauge-fixing process leads to a Faddeev–Popov determinant, which can be incorporated
by adding a ghost term

Sgh = −
∫
M

( f̄ ∧ ∗D ∗ D f + ḡ ∧ ∗D ∗ Dg) (3.4.64)

where f , f̄ , g and ḡ are anticommuting ghost fields. We must be careful again about the boundary
conditions: corresponding to restrictions (3.4.58) and (3.4.61) on � and E , we choose f and f̄ to satisfy
relative boundary conditions and g and ḡ to satisfy the absolute boundary conditions. The full gauge-fixed
action is then

S = Sgr + Sgauge + Sgh

=
∫
M

[Ea ∧ (D̄�a + 1
2εabc�

b ∧�c + ∗D ∗ ua)

+ 1
2εabce(cl)a ∧�b ∧�c − va ∧ ∗D ∗�a − f̄ ∧ ∗D ∗ D f − ḡ ∧ ∗D ∗ Dg]. (3.4.65)

E and v occur linearly in (3.4.65), so we can first integrate over these fields to obtain delta-functionals.
There is one subtlety here: certain modes of E do not contribute to the action. These are nothing
but the familiar zero modes (see section 3.3.2) and, as usual, they must be treated separately in the
integration measure. The integral over the ‘non-zero modes’ of E will give a delta-functional of
D̄�a + 1

2εabc�
b ∧ �c + ∗D ∗ ua . The zeros of this expression form a surface (�̃(s), ũ(s)) in the

field space, and if we expand the action around these zeros, only those fields infinitesimally close to this
surface should contribute to the path integral. Writing � = �̃+ δ�, we find that the relevant zero modes
of E are those Ẽ for which

Dω(cl)+�̃ Ẽ = 0. (3.4.66)

(Note that Ẽ depends on �̃, so the order of integration below cannot be changed.) Performing the
integration over E and v, we obtain∫

D�DuDE Dv eiS =
∫
D�DuD Ẽ δ[D̄�a + 1

2εabc�
b ∧�c + ∗D ∗ ua]δ[∗D ∗�a]. (3.4.67)
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The argument of the first delta-functional vanishes only when D∗D∗ua = 0; assuming that the connection
ω is irreducible, this implies that ua = 0. The delta-functional then imposes the condition

D̄�a + 1
2εabc�

b ∧�c = 0 (3.4.68)

which can be recognized as the requirement that ω = ω(cl) +� be a flat connection. This, in turn, allows
us to eliminate the term∫

M

1
2εabc e(cl)a ∧�b ∧�c = −

∫
M

e(cl)a ∧ D̄�a =
∫

M
D̄e(cl)a ∧�a = 0

in (3.4.65).
We can now use the delta-functionals to perform the remaining integration over �. By a

straightforward calculation, we can show that

D�δ[D̄�a + 1
2εabc�

b ∧�c + ∗D ∗ ua]δ[∗D ∗�a] = Dω̃]|det′ L̃rel− |−1 (3.4.69)

where ω̃ = ω(cl)+�̃ ranges over the flat connections with our specified boundary values and the operation
L̃rel− = ∗Dω̃ + Dω̃∗ maps a one-form plus a three-form (α, β) obeying relative boundary conditions to a
one-form plus a three-form (∗Dω̃α+ Dω̃ ∗β, Dω̃ ∗α) obeying absolute boundary conditions. Performing
the ghost integrals, we finally obtain

K [ω|∂M] =
∫
[dω̃][d Ẽ]det′$̃rel

(0)det′$̃abs
(0)

|det′ L̃rel− | (3.4.70)

where $̃(k) is the Laplacian ∗Dω̃ ∗ Dω̃ + Dω̃ ∗ Dω̃∗ acting on k-forms and the superscripts ‘rel’ and
‘abs’ indicate the function space (with relative or absolute boundary conditions) in which the respective
Laplacians act.

Now, by expanding one-forms and three-forms in modes of L†
−L−, we may prove that

|(det′ L̃−)(det′ L̃†
−)| = det′$̃rel

(1)det′$̃rel
(3) = det′$̃abs

(1)det′$̃abs
(3) . (3.4.71)

Moreover, det′$̃rel
(k) = det′$̃abs

(3−k), since the Hodge-star operator maps any eigenfunction α of $̃rel
(k) to

an eigenfunction ∗α of $̃abs
(3−k) with the same eigenvalue. Similar manipulations then show (Carlip and

Cosgrove 1994) that

K [ω|∂M] =
∫
Dω̃D Ẽ T [ω̃],

T [ω̃] = (det′$̃rel
(3))

3/2(det′$̃rel
(1))

1/2

(det′$̃rel
(2))

= (det′$̃abs
(3) )

3/2(det′$̃abs
(1) )

1/2

(det′$̃abs
(2) )

. (3.4.72)

In principle, integral (3.4.72) determines the transition amplitude for an arbitrary topology change
in 2 + 1 dimensions. In practice, however, the evaluation of the determinants is a rather complicated
problem. Since it is not directly related to a path-integral technique, we refer the reader to the original
papers (see Carlip and Cosgrove (1994), Carlip (1995) and references therein). This calculation shows
that path integrals representing spatial topology change in (2+ 1)-dimensional general relativity need not
vanish, but such topology-changing amplitudes may diverge, thanks to the existence of zero modes Ẽa of
the triad ea . These divergences presumably reflect the appearance of ‘classical’ spacetimes in which the
distances measured with the metric gµν = eµaeνa become arbitrarily large.

Clearly, no firm conclusions about topology change can be drawn without a much better
understanding of the overall normalization of amplitudes in (2 + 1)-dimensional gravity, which would
remove these divergences without breaking the symmetries of the original theory. This is a difficult
problem which still has to be solved.
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3.4.4 Hawking’s path-integral derivation of the partition function for black holes

In this subsection we return to the physical four-dimensional spacetime.
A spacetime domain with such a strong gravitational field that even light cannot leave it is called a

black hole (see, e.g., Misner et al (1973), Novikov and Frolov (1989) and Chandrasekhar (1983)). Black
holes are justly considered the most exotic objects in the Universe and their study is related to the most
fundamental problems of spacetime physics.

The content of this subsection could justly pertain to chapter 4, since we shall discuss mainly the
statistical and thermodynamical properties of black holes, but we prefer to collect together the applications
of path-integral techniques in gravitational theory.

John Wheeler was the first to point out that the existence of black holes contradicts the basic
thermodynamical law, namely, the increasing entropy law, unless we attribute entropy to black holes
themselves. In the early 1970s, Bekenstein argued that black holes indeed have entropy (Bekenstein
1973). The argumentation is based on Stephen Hawking’s theorem which states that the square AH of
a black hole does not decrease with any classical processes, i.e. AH behaves similarly to entropy. Two
years later, Hawking showed that black holes have temperature (Hawking 1975) and a few years later
these conclusions were confirmed and further developed by Gibbons and Hawking (1977), who used
path-integral methods to evaluate the black-hole partition function.

A number of authors have speculated that the large entropy of a black hole should be associated with
a large number of internal states, hidden by the horizon (boundary of the black hole), that are consistent
with the few external parameters (mass, angular momentum and electric charge) that characterize the black
hole. Others have argued that the black-hole entropy can be associated with a large number of possible
initial states that can collapse to form a given black hole. Path-integral analysis does not support either of
these views in an obvious way. Essential progress in understanding the origin of black-hole entropy and
its relation with microscopic quantum properties has only been reached very recently in the framework
of string–membrane theories and the fruitful idea of fundamental dualities in these models (see, e.g.,
Strominger and Vafa (1996), Horowitz (1996), Maldacena et al (1997) and references therein). We shall
not discuss any further this involved and still intensively developing topic but confine ourselves to a short
presentation of the path-integral derivation of the black-hole partition function, following Gibbons and
Hawking (1977) and Brown and York (1994).

♦ A short tour into black-hole thermodynamics and statistical mechanics

Since we are going to discuss the black-hole partition function before chapter 4 which is devoted to
path integrals in statistical physics and since black-hole thermodynamics and statistical mechanics have
some unusual peculiarities, we start from a short presentation of the basic facts needed for the subsequent
derivation of the partition function.

Hawking’s analysis shows that the temperature of a black hole, as measured at spatial infinity,
equals the surface gravity divided by 2π . For a Schwarzschild black hole of mass M , it follows that the
inverse temperature β at infinity is 8πGNM (recall that the Schwarzschild horizon is a sphere of radius
Rg = 2GNM). On the other hand, the standard thermodynamical definition of inverse temperature is
β = ∂S(E)/∂E , where S(E) is the entropy function and E is the thermodynamical internal energy. If the
mass M at infinity and the internal energy E are identified, then the relationship ∂S(E)/∂E = 8πGNM
can be integrated to yield S(E) = 4πG2

N E2 (plus an additive constant). This result is in complete
agreement with the prediction made by Bekenstein that a black hole has an entropy proportional to the
area of its event horizon.

The black-hole entropy S(E) = 4πG2
N E2 is a convex function of E . This is characteristic for an

unstable thermodynamical system: the instability arises because energy and temperature are inversely
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related for black holes. Thus, if fluctuations cause a black hole to absorb an extra amount of thermal
radiation from its environment, its mass will increase and its temperature will decrease. The tendency
then is for a cooler black hole to absorb even more radiation from its hotter environment, causing the
black hole to grow without bound.

These results can be reformulated within the context of statistical mechanics. First, consider the
canonical partition function Zβ for an arbitrary system. In general, Zβ is a sum over quantum states
weighted by the Boltzmann factor e−βE . If ν(E) is the density of quantum states with energy E , then

Zβ =
∫

d E ν(E)e−βE (3.4.73)

(see also section 4.1). The partition function can also be expressed as

Zβ =
∫

d E e−I (E) (3.4.74)

where the ‘action’ is defined by I (E) ≡ βE −S(E) and the entropy function S(E) is the logarithm of the
density of states: S(E) ≡ ln ν(E). As usual, the integral over E can be evaluated in the stationary-phase
approximation by expanding the action I (E) to quadratic order around the stationary points Ec(β), which
satisfy

0 = ∂ I

∂E

∣∣∣∣
Ec

= β − ∂S

∂E

∣∣∣∣
Ec

. (3.4.75)

The Gaussian integral associated with a stationary point Ec will converge if the second derivative of the
action at Ec is positive:

∂2 I

∂E2

∣∣∣∣
Ec

= − ∂
2S

∂E2

∣∣∣∣
Ec

> 0. (3.4.76)

This condition shows that the entropy S(E) should be a concave function at the extremum Ec, in order
for the Gaussian integral to converge.

A further significance of condition (3.4.76) can be seen as follows. In the stationary-phase
approximation, the expectation value of the energy is 〈E〉 ≡ −∂ lnZβ/∂β ≈ Ec and the heat capacity is
C ≡ ∂〈E〉/∂β−1 ≈ ∂Ec/∂β

−1. By differentiating (3.4.75) with respect to β, we find

1 = ∂E

∂β

∂2S

∂E2

∣∣∣∣
Ec

. (3.4.77)

Therefore, the heat capacity is given by

C ≈ −β2

(
∂2S

∂E2

∣∣∣∣
Ec

)−1

= β2

(
∂2 I

∂E2

∣∣∣∣
Ec

)−1

. (3.4.78)

Thus, we see that in the stationary-phase approximation, the convergence of the integral for the canonical
partition function is equivalent to the thermodynamical stability of the system (the concavity of the
entropy), which in turn is equivalent to the positivity of the heat capacity.

For a black hole in particular, the entropy S(E) = 4πG2
N E2 is not a concave function of the internal

energy and the integral for the partition function diverges.
The canonical partition function Zβ characterizes the thermal properties of thermodynamically

stable systems. For unstable systems, Zβ can give information concerning the rate of decay from a
quasi-stable configuration (such as a ‘hot flat space’ in the black-hole example), but it cannot be used to
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define thermodynamical properties such as expectation values, fluctuations, response functions, etc. Thus,
before the partition function can be used as a probe of black-hole thermodynamics, it is first necessary
to stabilize the black hole. It was recognized (see Brown and York (1994) and references therein) that a
black hole is rendered thermodynamically stable by enclosing it in a spatially finite ‘box’ or boundary,
with walls maintained at a finite temperature. In this case, the energy and the temperature at the boundary
are not inversely related because of the blueshift effect for the temperature in a stationary gravitational
field.

The stabilizing effect of a finite box can be explained as follows. Consider a Schwarzschild black
hole of mass M surrounded by a spherical boundary of radius R (do not confuse the boundary radius R
with the Schwarzschild radius Rg = 2GNM). The inverse temperature at infinity is 8πGNM , while the
inverse temperature at the boundary is blueshifted to β = 8πGNM

√
1 − (2GNM)/R. On the other hand,

the inverse temperature is defined by β = ∂S(E)/∂E , where again S(E) is the entropy as a function of
the internal energy E . The entropy of the black hole depends only on the black-hole size and is unaffected
by the presence of a finite box. Thus, the entropy is given by S(E) = 4πG2

NM2 as before, so that equating
the two expressions for inverse temperature, we find that

8πM
√

1 − (2GNM)/R = ∂(4πG2
NM2)

∂E
. (3.4.79)

In this case, the energy E and mass M as measured at infinity do not coincide. Equation (3.4.79) can be
integrated to yield

E = G−1
N R

(
1 −√1 − (2GNM)/R

)
(3.4.80)

where, for convenience, the integration constant has been chosen so that E → M in the limit R → ∞
with M fixed. The significance of this expression can be seen by expanding E in powers of GN M/R with
the result E = M + M2/(2R)+ · · ·. This shows that the internal energy inside the box equals the energy
at infinity M minus the binding energy −GN M2/(2R) of a shell of mass M and radius R. The binding
energy −GN M2/(2R) is the energy associated with the gravitational field outside the box. Observe also
that the internal energy takes values in the range 0 ≤ E ≤ R/GN.

By solving (3.4.80) for M as a function of E , we obtain the entropy function

S(E) = 4πG2
N E2(1 − GN E/(2R))2. (3.4.81)

Note that the derivative ∂S/∂E is a concave function of E (schematically depicted in figure 3.21) that
vanishes at the extreme values E = 0 and E = R/GN. It follows that ∂S/∂E has a maximum βcr. For
β > βcr, the equation β = ∂S/∂E has no solutions for E . On the other hand, for β < βcr, there are
two solutions, E1 and E2. At the larger of these two solutions, say, E2, the second derivative ∂2S/∂E2

is negative and the stability criterion (3.4.76) is satisfied. At the smaller of these two solutions, E1, the
second derivative ∂2S/∂E2 is positive and the stability criterion (3.4.76) is violated. These considerations
indicate that for a small box at low temperature (β > βcr), the equilibrium configuration consists of a
flat space. For a large box at high temperature (β < βcr), the stable equilibrium configuration consists
of a large black hole with the energy E2. The unstable black hole with the energy E1 is an instanton
that governs the nucleation of black holes from flat space. In the limit R → ∞, the stable black-hole
configuration is lost and only the instanton solution survives.

♦ Gravitational action with boundary terms

Since the black-hole stability condition requires the restriction of the spacetime by a finite box, we have to
take care about the appropriate boundary conditions and complete the gravitational action with boundary
terms.
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Figure 3.21. Plots of the black-hole entropy S(E) and its derivative ∂S(E)/∂E , in the presence of a finite box of
radius R.

Assume that the spacetime manifoldM is topologically the product of a spacelike hypersurface and a
real (time) line interval, × I . The boundary of (the finite ‘box’) is denoted ∂ ≡ B; I = [t ′, t ′′] ∈ R.
The spacetime metric is gµν , with the associated curvature tensor Rµνσρ and derivative operator ∇µ. The
boundary ∂M ofM consists of the initial and final spacelike hypersurfaces ′ and  ′′ (cf figure 3.22) at
t ′ and t ′′, respectively, and a timelike hypersurface 3 B = B × I joining them. The induced metric on the
spacelike hypersurfaces at t ′ and t ′′ is denoted by hi j , and the induced metric on 3 B is denoted by γi j .

Consider the gravitational action

S = 1

2κ

∫
M

d4x
√−g(R− 2�)+ 1

κ

∫ t ′′

t ′
d3x

√
hK − 1

κ

∫
3 B

d3x
√−γ.. (3.4.82)

Here, κ = 8πGN and � is the cosmological constant. The symbol
∫ t ′′

t ′ d3x denotes an integral over the
boundary ′′ minus an integral over the boundary surface  ′. The function K is the trace of the extrinsic
curvature Kij (see supplement V) for the boundary surfaces  ′ and  ′′, defined with respect to the future
pointing unit normal uµ. Likewise, . is the trace of the extrinsic curvature .i j of the boundary element
3 B , defined with respect to the outward pointing unit normal nµ.

Under variations of the metric, the action (3.4.82) varies according to

δS = (terms that vanish when the equations of motion hold)

+
∫ t ′′

t ′
d3x Pi j δhi j +

∫
3 B

d3x π i j δγi j − 1

κ

∫ B ′′

B ′
d2x

√
σδα. (3.4.83)

The coefficient of δhi j in the boundary terms at t ′ and t ′′ is the gravitational momentum

Pij = 1

2κ

√
h(K hij − K ij ). (3.4.84)
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Figure 3.22. Schematic presentation of the spacetime manifoldM and its boundary ∂M consisting of the initial  ′
and final  ′′ spacelike hypersurfaces and the timelike hypersurface 3 B = B × I joining them. The unit normal n to
3 B and the normal u to  ′′ at the boundary B ′′ are also depicted.

Likewise, the coefficient of δγi j in the boundary term at 3 B is

π i j = − 1

2κ

√−γ (.γ i j −.i j ). (3.4.85)

Equation (3.4.83) also includes integrals over the ‘corners’ B ′′ = (hypersurface  ′′ at t ′′) ∩ 3 B and
B ′ = (hypersurface at t ′) ∩ 3 B , whose integrands are proportional to the variation of the ‘angle’
α = sinh−1(u · n) between the unit normals uµ of the hypersurfaces at t ′′ and t ′ and the unit normal
nµ of 3 B (see figure 3.22). The determinant of the two-metric on B ′ or B ′′ is denoted by σ .

Let us foliate the boundary element 3 B into two-dimensional surfaces B with induced two-metrics
σab. The three-metric γi j can be written according to the so-called Arnowitt–Deser–Misner decomposition
as

γi j dx i dx j = −N2 dt2 + σab(dxa + V a dt)(dxb + V b dt) (3.4.86)

where N is the lapse function and V a is the shift vector.

♦ The action and related quantities in Lorentzian and Euclidean spaces

In the preceding sections and chapters we used both Lorentz (i.e. real time) and Euclidean (imaginary
time) forms of the path integrals, the latter being obtained by analytical continuation in the time variable.
In the case of a (gravitational) theory with a dynamical metric, the path integral, in general, includes
integration over the variety of all metrics with different signatures and strictly speaking, there is no
distinction between the ‘Lorentzian action’ and the ‘Euclidean action’, or between the ‘Lorentzian
equations of motion’ and the ‘Euclidean equations of motion’. Of course, a particular solution of the
classical equations of motion can be Lorentzian or Euclidean. But for the action functional itself, the
only distinction between Lorentzian and Euclidean is simply one of notation. We have already used what
might be called Lorentzian notation: the action S is defined with the convention that exp{iS} is the phase
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in the path integral; the volume elements for M and 3 B are written as
√−g and

√−γ , respectively; the
lapse function associated with the foliation ofM into hypersurfaces is defined by N ≡ √−1/gtt . (The
lapse function that appears in (3.4.86) is the restriction of this spacetime lapse to the boundary element
3 B . It is defined by N ≡ √−1/γ t t .) Therefore S,

√−g,
√−γ and N are real for Lorentzian metrics and

imaginary for Euclidean metrics.

We can re-express the action in Euclidean notation by making the following changes. Define a new
action functional by SE [g] ≡ −iS[g] so that the phase in the path integral is given by exp{−SE }. We also
rewrite the volume elements for M and 3 B as

√
g ≡ i

√−g and
√
γ ≡ i

√−γ , respectively, and define a
new lapse function by N̄ ≡ √1/gtt ≡ i

√−1/gtt ≡ iN . A bit of care is required in defining the square
roots. For example, the appropriate definition of

√−g is obtained by taking the branch cut in the upper
half complex plane, say, along the positive imaginary axis. Then the imaginary part of

√−g is negative.
Correspondingly, the appropriate definition of

√
g is obtained by taking the branch cut along the negative

imaginary axis. Then the imaginary part of
√

g is positive.

It is also convenient to redefine the timelike unit normal of the slices  . In Lorentzian notation,
the unit normal is defined by uµ ≡ −Nδt

µ and satisfies u · u = −1. A new unit normal is defined by

ūµ ≡ N̄δt
µ ≡ iNδt

µ ≡ −iuµ and satisfies ū · ū = +1. In some contexts, it is also useful to define a
new extrinsic curvature K̄µν in terms of the normal ūµ. K̄µν is related to the old extrinsic curvature Kµν
by K̄µν ≡ −(δσµ − ūσ ūµ)∇σ ūν ≡ i(δσµ + uσuµ)∇σ uν ≡ −iKµν . In turn, K̄µν can be used to define a
new gravitational momentum P̄i j that is related to the momentum of (3.4.84) by P̄i j ≡ −iPij . We will,
however, continue to use the old notation Kij and Pij .

In addition to the notational changes described here, we will also define a new shift vector by
V̄i ≡ igti ≡ iVi . This notation is different from the standard Euclidean notation in the sense that V̄i

is imaginary for Euclidean metrics. One of the motivations for this change is the following. Apart
from surface terms, the gravitational Hamiltonian is a linear combination of constraints built from the
gravitational canonical data with the lapse function and shift vector as coefficients. In conjunction with
the new notation N̄ , V̄i for the lapse and shift, we choose to continue to denote the gravitational canonical
data by hi j , Pij , as previously mentioned. Then the constraints are unaffected by the change in notation,
and the Hamiltonian can be written as H [N, V ] ≡ −iH [N̄, V̄ ]. The overall factor (−i) that appears in
this relationship is precisely what is required for the connection between the evolution operator (e−iĤ t

in particle mechanics) and the density operator (e−Ĥβ in ordinary statistical mechanics). When the
gravitational field is coupled to other gauge fields, such as the Yang–Mills or electromagnetic ones, it
is natural to redefine the Lagrange multipliers associated with the gauge constraints as well.

With our new notation, (3.4.82) becomes

SE = − 1

2κ

∫
M

d4x
√

g(R− 2�)− i

κ

∫ t ′′

t ′
d3x

√
hK + 1

κ

∫
3 B

d3x
√
γ. (3.4.87)

and (3.4.83) becomes

δSE = (terms that vanish when the equations of motion hold)

− i
∫ t ′′

t ′
d3x Pi j δhi j − i

∫
3 B

d3x π i j δγi j + 1

κ

∫ B ′′

B ′
d2x

√
σδᾱ. (3.4.88)

Here, we have defined ᾱ ≡ cos−1(ū · n) so that δᾱ ≡ iδα. Thus, ᾱ is the angle between the unit normals
ū and n of the boundary elements t ′′ (or t ′) and 3 B .
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♦ Functional integral

A path integral constructed from an action SE is a functional of the quantities that are held fixed in the
variational principle δSE = 0. What are held fixed in the variational principle are the quantities that
appear to be varied in the boundary terms of δSE . The fixed boundary data for the action (3.4.87) are the
metric hi j on the surfaces ′,  ′′ at t ′ and t ′′, the angle ᾱ at the corners B ′ and B ′′, and the lapse function
N̄ , the shift vector V̄ a and the two-metric σab on 3 B . In the path integral, the gauge-invariant part of the
data on 3 B corresponds to the inverse temperature β, the chemical potential ωa and the two-geometry of
the boundary B . A detailed analysis (Brown and York 1994) shows that these boundary data correspond
to the thermodynamical description of the corresponding black hole as a grand canonical ensemble:

• The inverse temperature is defined in terms of the boundary data on 3 B by

β =
∫

dt N̄ |B . (3.4.89)

In geometrical terms, this is the proper distance between t ′ and t ′′ as measured along the curves in
3 B that are orthogonal to the slices B .

• The chemical potential is defined in terms of the boundary data on 3 B by

ωa =
∫

dt V̄ a|B∫
dt N̄ |B

=
∫

dt V a |B∫
dt N |B . (3.4.90)

The physical meaning of the ‘chemical potential’ ωa is the proper velocity of the physical system as
measured with respect to observers who are at rest at the system boundary B .

The path integral constructed from the action SE is

ρ[h′′, h′; ᾱ′′, ᾱ′; β,ω, σ ] =
∫
Dg e−SE [g] (3.4.91)

where h′′ and h′ denote the metrics on  ′′ and  ′, while ᾱ′′ and ᾱ′ denote the angles at the corners B ′′
and B ′. This path integral is the grand canonical density matrix for the gravitational field in a box B . The
grand canonical partition function, denoted /[β,ω, σ ], is obtained by tracing over the initial and final
configurations. In path-integral language, this amounts to performing a periodic identification, so that the
manifold topology becomesM =  × S1. In addition, ᾱ′′ and ᾱ′ should be chosen so that the total angle
ᾱ′′ + ᾱ′ equals π . This insures that the boundary ∂M is smooth when the initial and final hypersurfaces
are joined together. Thus, the grand canonical partition function can be written as

/[β,ω, σ ] =
∫

Dh ρ[h, h; ᾱ′′, ᾱ′; β,ω, σ ]
∣∣∣∣
ᾱ′′+ᾱ′=π

. (3.4.92)

The right-hand side of this expression apparently depends on the angle difference ᾱ′′ − ᾱ′. However, we
expect that with periodic identification, ᾱ′′ − ᾱ′ is a pure gauge and in a more detailed analysis would be
absent from the path integral.

One can consider various density matrices and partition functions corresponding to different
combinations of thermodynamical variables, where one variable is selected from each of the conjugate
pairs. For example, in ordinary statistical mechanics the thermodynamically conjugate pairs might consist
of the inverse temperature and energy {β, E}, and the chemical potential and particle number {µ, N}.
Then the grand canonical partition function is /(β,µ), the canonical partition function is Z(β, N) and
the microcanonical partition function (the density of states) is ν(E, N). These partition functions are
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related to each other by Laplace and inverse Laplace transforms, where each transform has the effect of
switching the functional dependence from some thermodynamical variable (such as β) to its conjugate
(such as E).

When the gravitational field is included in the description of the system, all of the thermodynamical
data can be expressed as boundary data. In the path-integral formalism, the effect of the Laplace and
inverse Laplace transforms is simply to add or subtract certain boundary terms from the action.

♦ Black-hole entropy

So far the partition function/[β,ω, σ ] and the density of states ν[ε, j, σ ] were constructed as functional
integrals over the gravitational field on manifolds whose topologies are necessarily  × S1. This would
seem to be an unavoidable consequence of deriving /[β,ω, σ ] and ν[ε, j, σ ] from traces of density
matrices because the density matrices ρ are defined in terms of functional integrals on manifoldsM, with
the product topology × I . However, experience has shown that for a black hole, the functional integrals
for the partition function and density of states are extremized by a metric on the manifold R2 × S2 (S2

corresponds to the topology of the black-hole horizon). Thus, we would expect the black-hole contribution
to the density of states to come from a path integral that is defined on a manifold with the topology R2×S2.
Let us discuss how the black-hole density of states can be related to the microcanonical density matrix.

We begin by considering the manifold M =  × I , where  is topologically a thick spherical
shell (S2 × I ). The boundary ∂ = B consists of two disconnected surfaces, an inner sphere Bi and
an outer sphere Bo. The boundary element 3 B consists of disconnected surfaces as well, 3 Bi = Bi × I
and 3 Bo = Bo × I . The results of the previous sections can be applied in constructing various density
matrices for the gravitational field on  . We wish to consider the particular density matrix ρ∗ that is
defined through the path integral with the action

S(BH)
E = SE −

∫
3 Bo

d3x
√
σ(N̄ε − V̄ a ja)+

∫
3 Bi

d3x
√
σ N̄sa

a /2 (3.4.93)

where ε is identified as an energy surface density for the system. Likewise, we identify ji as the
momentum surface density and sab as the spatial stress. S(BH)

E differs from the action SE by boundary
terms which are not the same for the two disconnected parts of 3 B . The contributions to the variation
δS(BH)

E from 3 Bi and 3 Bo are

δS(BH)
E |3 Bi

=
∫

3 Bi

d3x ((
√
σε)δ N̄ − (√σ ja)δV̄

a + σabδ(N̄
√
σ sab/2)) (3.4.94)

δS(BH)
E |3 Bo

=
∫

3 Bo

d3x (−N̄δ(
√
σε)+ V̄ aδ(

√
σ ja)− (N̄√

σ sab/2)δσab). (3.4.95)

The choice of the boundary terms at the outer boundary element 3 Bo corresponds to the microcanonical
boundary conditions. At the inner boundary element 3 Bi none of the traditional ‘conserved’ quantities
like energy, angular momentum or area is fixed. Thus, they are allowed to fluctuate on the inner boundary
element while their conjugates, the inverse temperature, chemical potential and spatial stress are held
fixed.

We can show (Brown and York 1994) that the black-hole density of states ν∗[ε, j, σ ] is obtained
from the trace of the density matrix ρ∗ = ∫ Dg exp{−S(BH)

E [g]} along with the following special choice
of data on the inner boundary element 3 Bi:

N̄ = 0 (3.4.96)
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V̄ a = 0 (3.4.97)

N̄
√
σηab = 0 (3.4.98)

N̄θ = − 4π

κ(t ′′ − t ′)
. (3.4.99)

From the geometrical point of view, this follows from the fact that conditions (3.4.96)–(3.4.99) effectively
transform the topology  × S1 into the required one, namely, R2 × S2. In (3.4.99), (t ′′ − t ′) is just the
range of the coordinate time t .

The correctness of this prescription can be confirmed by considering the evaluation of the functional
integral for ν∗[ε, j, σ ], where the data ε, ja, σab on the outer boundary 3 Bo correspond to a stationary
black hole. That is, let ε, ja , σab be the stress–energy–momentum for a topologically spherical two-
surface Bo within a time slice of a stationary Lorentzian black-hole solution gL of the Einstein equations.
In the path integral for ν∗[ε, j, σ ], let us fix these data on each slice Bo of the outer boundary 3 Bo. The
path integral can be evaluated semiclassically by searching for metrics that extremize the action S(BH)

E and
satisfy the conditions at both 3 Bo and 3 Bi. One such metric will be the complex metric gC that is obtained
by substituting t → −it in the Lorentzian black-hole solution gL. In the zero-loop approximation for the
path integral, the density of states becomes

ν∗[ε, j, σ ] ≈ exp{−S(BH)
E [gC]}. (3.4.100)

The calculation of the extremal action yields

S(BH)
E [gC] = −2π

κ

∫
Bi

d2x
√
σ . (3.4.101)

The integral that remains is just the area AH of the black-hole event horizon. Thus, in the approximation
(3.4.100), the entropy is

S[ε, j, σ ] = ln ν∗[ε, j, σ ] ≈ 2π

κ
AH. (3.4.102)

With κ = 8πGN, this is the standard result S = AH/(4GN) for the black-hole entropy.
It is worth noting that, as in quantum cosmology, a very promising investigative direction in

black-hole physics is the study of gravitation theories in low-dimensional, especially two-dimensional,
spacetime. Due to their relative simplicity, such models allow us to develop and probe new theoretical
ideas and methods in the theory of black holes. Besides, a strong motivation to study a particular class of
such theories, namely two-dimensional dilaton gravity, appears from the fact that the spherical reduction
(i.e. the assumption that all fields under consideration depend only on time and radial coordinates) of four-
dimensional Einstein gravity precisely produces a theory of this type. Path integrals prove to be a very
powerful tool for the consideration of this model. In particular, in some cases (even for gravitation with
matter fields) the path-integral method allows us to obtain exact non-perturbative results. For a review, we
refer the reader to Kummer and Vassilevich (1999).

3.4.5 Path integrals for relativistic point particles and in the string theory

Path integrals have found one of their most impressive and successful applications in the theory of
(super)strings. The latter nowadays is the most viable candidate for the realization of the old dream and,
in a sense, the ultimate aim of physicists: the construction of a theory of ‘everything’. More precisely, this
is a candidate for a theory describing in a unified way all fundamental interactions, including gravitation.
It is important that string theory should fit very nicely into the pre-existing picture of what physics beyond
the standard model might look like. Besides gravity, string theory necessarily incorporates a number of
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previous unifying ideas (though sometimes in a transmuted form): grand unification, Kaluza–Klein theory
(unification via extra dimensions), supersymmetry and extended supersymmetry. Moreover, it unifies
these ideas in an elegant way, and resolves some of the problems which previously arose—most notably,
difficulties in obtaining chiral (parity-violating) gauge interactions and the renormalizability problem of
the Kaluza–Klein theory, which is even more severe than for four-dimensional gravity. Furthermore, some
of the simplest string theories give rise to precisely the gauge groups and matter representations which
previously arose in grand unification (that is, unification of strong, weak and electromagnetic interactions
on the basis of a single simple Lie group). Thus, we can justly say that string theory is at least a step toward
the unification of gravity, quantum mechanics and particle physics. However, it is worth mentioning that
at present, it is clear that even the original superstring theory (see the book by Green et al (1987) and
references therein) is not general enough to serve as such a unification theory: this ambitious aim requires
a more general theory (sometimes called M-theory), including extended objects of higher dimensions,
such as membranes, as well as a more general formulation in which different extended objects would
appear as particular excitations. At the moment, only isolated results and ideas concerning such a theory
exist (for a review see, e.g., Duff (1999)) and we shall not even slightly touch it in our book. Moreover,
the ‘original’ (super)string theory is also too extensive to be presented here even in a short version. We
shall only be able to introduce the reader to the very basic ideas and some results of this theory, stressing
the advantage of the application of path integrals for their derivations.

To make this introduction easier, we shall start by rederiving the relativistic particle propagator
(Green function) with the help of a path integral, in the first-quantized formalism. Then the basic
techniques and the starting point in the string theory becomes a natural generalization of the result for
relativistic particles.

♦ Propagator for a relativistic point particle in the first-quantized formalism

There are several forms of the action for a relativistic point particle in flat Minkowski space, all of which
lead to the same answer. The most straightforward one is (see, e.g., Landau and Lifshitz (1987))

S′[x(τ )] = −m
∫ x f

x0

ds = −m
∫ 1

0
du
√
ηabẋa(u)ẋ b(u) (3.4.103)

where the integral is taken over the world-line of the particle with the endpoints x0, x f and u is a parameter
(proper time) on the world-line, such that xa(0) = xa

0 , xa(1) = xa
f . This form of the action has

some disadvantages, in particular, it is non-polynomial and highly inconvenient for a consideration of
the massless limit, m → 0. Therefore, we shall use a more suitable form of the action:

S[x; N] = 1

2

∫ 1

0
du

(
ẋ aηabẋb

N
− m2 N

)
. (3.4.104)

The reader may easily verify that both actions S′ and S lead to equivalent equations of motion (i.e. the
same classical physics). We use the indices a, b, . . . (and not µ, ν, . . .) to stress that the dimension of the
spacetime is not necessarily equal to four. In order to prevent the determinant of the metric from depending
on the spacetime dimensionality, in this subsection we choose another signature of the Minkowski metric:
ηab = diag{−1,+1, . . . ,+1}. The action (3.4.104) possesses the reparametrization gauge invariance
with respect to the group G of one-dimensional diffeomorphic transformations

xa(u)→ xa( f (u))

N(u)→ d f

du
N( f (u))

(3.4.105)
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for any differentiable function f (u) that leaves the endpoints of the interval [0, 1] fixed, i.e. provided that

f (0) = 0 f (1) = 1. (3.4.106)

The existence of the reparametrization invariance (3.4.105) shows that the action (3.4.104) can be
considered as an action for a one-dimensional gravity, the field N(u) playing the role of a lapse function
(one-dimensional metric) and xa(u) that of the matter fields. The appearance of the determinant of the
reparametrization, u → f (u), in the transformation of N in (3.4.105) characterizes it as a density of
weight 1. The coordinate xa is a density of weight zero, i.e. a scalar under coordinate reparametrizations.

The momenta conjugate to xa and N are:

pa ≡ δS

δẋ a
= 1

N
ηabẋb

pN ≡ δS

δ Ṅ
= 0

respectively. Since the momentum conjugate to N vanishes identically, the Hamiltonian system is a
degenerate one with a primary first-class constraint. The secondary first-class constraint following from
the primary one pN = 0 is

ṗN = − δS

δN
= paη

ab pb + m2 ≡ H = 0. (3.4.107)

Thus, the Hamiltonian H for a relativistic particle vanishes at the surface defined by the constraints.
Because of this degeneracy, the phase-space Hamiltonian path-integral quantization should be based on
the phase-space path integral with constraints. However, in this section rather than entering into that
discussion of the phase-space integral, let us follow a different route and construct the configuration-
space path integral by geometric reparametrization-invariance considerations alone (see, e.g., Cohen et al
(1986) and Mottola (1995)).

The space X of all configurations of the functions (xa(u), N(u)) may be treated by methods
borrowed from Riemannian geometry. At every ‘point’ Xi = (xa(u), N(u)) in the function space we
introduce the cotangent space δX , labeled by the basis vectors δXi = (δxa(u), δN(u)). In the Riemannian
geometry, we can introduce a metric on a space by defining a quadratic form, the line element, that maps
δX × δX to the real numbers,

(δs)2 = Gij (X)δXi δX j . (3.4.108)

The (infinitesimal) invariant volume measure of integration on the cotangent space, δX

d(δV) =
√

det Gij (X) d(δX1)× d(δX2)× · · · (3.4.109)

may be chosen to satisfy the Gaussian normalization condition,∫
d(δV) exp{− 1

2δXi Gij (X)δX j } = 1 (3.4.110)

and immediately induces an invariant volume measure on the full space X ,

dV =
√

det Gij (X) d X1 × d X2 × · · · . (3.4.111)

All the construction can be justified by a suitable finite-dimensional regularization (via discretization or
Fourier mode cutoff).
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To define the path integral for a system possessing a reparametrization gauge invariance, we have
only to define a quadratic inner product on the cotangent space δX . Then the construction of the
invariant measure on the function space of all configurations proceeds exactly along the lines of (3.4.108)–
(3.4.111). Since the path integral is specified by an invariant action functional and an invariant integration
measure, this procedure preserves the classical reparametrization invariance under quantization. Then, by
identifying configurations which differ only by a reparametrization of coordinates, we may integrate only
over equivalence classes of coordinates, X /G, in a manifestly gauge or coordinate invariant way.

Since both N and δN have weight one under (3.4.105), and∫ 1

0
N(u) du ≡ τ (3.4.112)

is invariant under reparametrizations (acting from the right), we can define an invariant inner product on
X by

〈δN |δN〉N
def≡
∫ 1

0

(
δN

N

)2

N du =
∫ 1

0

(δN)2

N
du

〈δx |δx〉N
def≡
∫ 1

0
δxaηabδx

b N du. (3.4.113)

These invariant products are unique up to a multiplicative constant which may be absorbed into the
normalization of the measure by the condition∫

D(δN) exp{− 1
2 〈δN, δN〉N } = 1 (3.4.114)∫

D(δx) exp

{
− i

2
〈δx, δx〉N

}
= 1. (3.4.115)

A factor of i is inserted into the second Gaussian because the Minkowski metric is pseudo-Riemannian
with one negative eigenvalue in the timelike direction, so that the volume form in (3.4.111) remains
real. In Euclidean signature metrics, this factor would be absent. These definitions generate an invariant
functional measure on the full space X by equations (3.4.108)–(3.4.111). In order to pull this measure
back to an invariant measure on the quotient space of equivalence classes X /G, let us parametrize the
gauge orbits G by the set of differentiable functions f (u) satisfying the endpoint conditions (3.4.106).
Then an arbitrary lapse function N(u) may be written in the form

N(u) = τ d f

du
f (u) = 1

τ

∫ u

0
N(u) du. (3.4.116)

In other words, the gauge equivalence class M/G of all the functions N(u) is characterized completely
by the single parameter τ defined in (3.4.112), while the gauge fiber G is coordinatized by f (u). Hence,
the integration measure on the quotient space is given by

[DN]
[D f ] [Dx] = J (τ ) dτ [Dx] (3.4.117)

where J is the Jacobian of the change of variables from N to (τ, f ). The invariant path integral is then

Krel(x, 1; x0, 0) =
∫

J (τ )dτ
∫
C{x(0)=x0,0;x(1)=x,1}

Dx(τ ) eiS[x;τ ]. (3.4.118)
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To avoid confusion, it is necessary to stress that here we just factor out the volume of the gauge
orbits, while in the case of Yang–Mills theories (section 3.2) we integrated over chosen representatives
from each orbit (this aim is achieved by the imposition of gauge-fixing conditions).

Our task now is to determine the Jacobian J . As follows from (3.4.116), a variation of the lapse
function N(u) can be written as

δN = (δτ )d f

du
+ τ d(δ f )

du
. (3.4.119)

After substituting this form into the inner product definition (3.4.113), the cross term between δτ and
δ f vanishes by using the endpoint conditions (3.4.106). Changing variables in the last term from u to
v ≡ f (u) and defining

ξ(v) ≡ (δ f )(u)|
u= f −1(v)

(3.4.120)

we obtain

〈δN |δN〉N = (δτ )2

τ
+ τ

∫ 1

0
dv ξ(v)

[
− d2

dv2

]
ξ(v) (3.4.121)

after an integration by parts. Now, it is straightforward to verify that the quantity ξ(v) (which parametrizes
infinitesimal diffeomorphisms) is invariant under diffeomorphism group transformations operating from
the right, i.e.

ξ(v)→ ξ(v) f (u)→ f (α(u)) (3.4.122)

but that it transforms as a density of weight −1 under the inverse diffeomorphism group transformations
operating from the left, i.e.

ξ(w)→ 1(
dβ−1(w)

dw

)ξ(β−1(w)) f (u)→ β( f (u)) ≡ w. (3.4.123)

The only quadratic form in ξ that is invariant under both of these two transformations is (see Polyakov
(1981, 1987))

〈ξ |ξ〉 ≡
∫ 1

0
τdv (τξ)2(v) (3.4.124)

provided that τ remains invariant under the first transformation, but

τ → τ

(
dβ−1(w)

dw

)
(3.4.125)

under the second.
With the fully invariant inner product (3.4.124), we may define the integration measure on G by the

Gaussian normalization condition ∫
Dξ(τ ) exp

{
− i

2
〈ξ |ξ〉

}
= 1. (3.4.126)

Returning then to our problem of evaluating the Jacobian J in (3.4.117), we find:

1 =
∫
D(δN) exp

{
− i

2
〈δN |δN〉N

}
=
∫

d(δτ ) J (τ )
∫
Dξ exp

{
− i(δτ )2

2τ
− i〈ξ |(−d2/dv2)ξ〉

2τ 2

}
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= J

(
2πτ

i

)1
2
[

det

(
−τ−2 d2

dv2

)]− 1
2

= constant×J (3.4.127)

where the last result follows by (1.2.227). Hence, the Jacobian J is a constant independent of τ .
Evaluating the propagator in (3.4.118) is now straightforward. The functional integration over xa(u)

with fixed endpoint conditions is the same as that for the free non-relativistic particle, and we are left with
only a simple integral over the proper time τ to perform:

Krel(x, 1; x0, 0) = J
∫ ∞

0
dτ (2π iτ )−

d
2 exp

{
i

2τ
(x − x0)

aηab(x − x0)
b − i

2
τm2

}
= J

∫ ∞

0
dτ
∫

dd p

(2π)d
exp

{
ipa(x − x0)

a − iτ

2
(paη

ab pb + m2)

}
=
∫

dd p

(2π)d
eip·(x−x0)

(p2 + m2 − i0)
(3.4.128)

provided that the constant J = i/2 and an infinitesimal negative imaginary part is added to m2 to define
the τ integral. With this normalization, expression (3.4.128) is recognized as the Feynman propagator
for the free relativistic scalar field, that is, Krel(x, 1; x0, 0) = Dc(x − x0) (cf (3.1.93)), which we have
obtained here by the path-integral treatment of the reparametrization invariant first-quantized particle
action (3.4.104).

Thus, relativistic particles, as well as non-relativistic ones, can be treated in the framework of the
first-quantized formalism. In order to describe particle interactions, we should include, together with the
free particle trajectories as depicted in figure 3.23(a), the merging and splitting trajectories as depicted in
figure 3.23(b). It is seen, that with an appropriate choice of vertex operator, the set of this type of trajectory
corresponds to the first-order contribution to the S-matrix (or four-point Green function) of the scalar ϕ4-
theory. This observation can be generalized, and the whole perturbation expansion for any field theory
can be reconstructed in the first-quantized formalism. However, the approach has obvious shortcomings:

• it is not clear how to consider non-perturbative phenomena (e.g., solitons, instantons, strong coupling
interactions, etc);

• we have to postulate a specific choice of vertices and merging–splitting rules for trajectories which
can be justified only by comparison with the corresponding field theory and

• in the vicinity of the vertices, the trajectories (for example, of the type presented in figure 3.23(b))
are not a one-dimensional manifold (this fact complicates the geometrical description of such
‘branching’ trajectories).

The situation drastically changes in the case of string theory, where attempts to construct straightforwardly
a second-quantized (analog of quantum field) theory meet essential difficulties, while the first-quantized
theory proves to be well defined, self-consistent and powerful.

♦ String basics

The most natural action describing the dynamics of strings, i.e. one-dimensional extended objects, has the
following form

S = − T × (Area of two-dimensional world-sheet)

= − T
∫

d2x
√− det ∂αXa∂βXa α, β = 0, 1 (3.4.129)
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Figure 3.23. A sample of a free particle trajectory (a) and a sample of trajectories of interacting particles (b).

and is called the Nambu–Goto action (the indices a, b = 0, 1, . . . , d − 1 are raised and lowered with the
flat-space metric ηab = diag(−,+,+, . . . ,+)) This generalizes the relativistic action (3.4.103) for a point
particle, which is minus the mass times the invariant length of the world-line. For a static string, this action
reduces to minus the length of the string times the time interval times T , so the latter is the string tension.
Note that in the second line we are describing the world-sheet by Xµ(x0, x1), using a parametrization xα

of the world-sheet, but the action is independent of the choice of parametrization (world-sheet coordinate
invariant). So the two-dimensional spacetime is the string world-sheet, while the spacetime is the field
space where the Xµ live, the target space of the map Xµ : world-sheet → spacetime.

As for relativistic particles, it is useful to rewrite action (3.4.129) in a form which removes the square
root from the derivatives. Let us add a world-sheet metric gαβ(x) (α, β = 0, 1) and let

SP = T
∫

d2x
√

ggαβ∂αXa∂βXa (3.4.130)

where g = det gαβ . This is commonly known as the Polyakov action because he emphasized its virtues for
quantization. The equation of motion for the metric determines it up to a position-dependent normalization

gαβ ∼ ∂αXa∂β Xa; (3.4.131)

inserting this back into the Polyakov action gives the Nambu–Goto action. The Polyakov action makes
sense for either a Lorentzian metric on a world-sheet, with signature (−,+), or a Euclidean metric, with
signature (+,+). Much of the development can be carried out in either case. We shall use the Euclidean
formalism.

In addition to the two-dimensional coordinate invariance mentioned earlier

X ′(x ′) = X (x)
∂x ′α

∂xγ
∂x ′β

∂x δ
g′
αβ(x

′) = gγ δ(x) (3.4.132)

the Polyakov action has another local symmetry, namely, the Weyl invariance, i.e. position-dependent
rescalings of the metric:

g′
αβ(x) = e2σ(x)gαβ(x). (3.4.133)

To proceed with the quantization, we need to remove the redundant degrees of freedom from the
local symmetries. Noting that the metric has three components and there are three local symmetries (two
coordinate reparametrizations and the scale of the metric), it is natural to do this by imposing the following
conditions on the metric:

gαβ(x) = δαβ. (3.4.134)
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This is always possible, at least locally.

After quantization, a string is represented by an infinite set of normal modes, i.e. the set of massive
quantum-mechanical states. The mass gaps $m2 in this set are proportional to the string tension T . The
spectrum of a bosonic string starts from a tachyon state (a state with imaginary mass) and hence the purely
bosonic string theory is not fully self-consistent. The situation is improved in the theory of superstrings,
that is, after the inclusion of fermionic degrees of freedom (introduction of two-dimensional fermionic
fields on the world-sheet of a string). These fermionic degrees of freedom are added in a supersymmetric
way and this provides the ground state with zero mass (cf supplement VI), so that the undesirable tachyon
disappears from the spectrum.

Strings can be open or closed. The zero modes of the open strings consist of spin-1 particles
corresponding to Yang–Mills fields, while closed strings in the massless sector contain gravitons (spin-
2 particles) and, in the case of superstrings, gravitinos (spin- 3

2 particles). At relatively low energies
(essentially less than the Planck mass scale ∼1019 GeV), the massive modes effectively decouple and the
low-energy physics can be described by the effective local field theory for the zero modes (that is, by
supergravity or supersymmetric Yang–Mills theory).

In the first-quantized formalism, string interactions are described similarly to the case of point
particles, i.e. by path integration over world-sheets with appropriate topologies. Examples of such world-
sheets in the case of a four-string interaction for open (b) and closed (c) strings are depicted in figure 3.24.
As we have already mentioned, attempts to construct a second-quantized string theory, i.e. a ‘string field
theory’, have met critical problems which have not been successfully overcome so far. On the other hand,
the shortcomings of the first-quantized formulation pointed out earlier for relativistic particles, become
milder in the case of strings. In particular, it is seen in figure 3.24 that the world-sheets corresponding
to the string interactions are still two-dimensional manifolds (in contrast to the case of point particles)
and the arbitrariness in the definition of the interaction terms in the string perturbation theory is strongly
restricted by the symmetries on the world-sheets, namely by the two-dimensional diffeomorphisms and
Weyl symmetries. Of course, this by no means removes the necessity of a non-perturbative formulation
of the (super)string theory. But the current hopes for such a construction are connected with the so-called
M-theory (see, e.g., Duff (1999)) rather than with a straightforward generalization of a local field theory
to the string case.

We have already pointed out that superstring theory is too extensive and versatile a subject to
present it in this book even briefly. Instead, to give the reader an idea about the typical calculations
and peculiarities of this theory, we shall discuss the so-called Weyl anomaly in the simplest model.

♦ The Weyl anomaly in two dimensions

A simple application of path integrals over string world-sheets is the calculation of the Weyl anomaly in
two dimensions. For this aim, let us consider a single free massless scalar field with the classical action,

Scl[g, φ] =
∫

d2x
√−ggαβ∂αφ∂βφ. (3.4.135)

This is the simplest variant of the string action (3.4.130) with only one space or time coordinate (Xa → ϕ).
Action (3.4.135) is clearly invariant under general coordinate transformations. In addition, it is also
invariant under Weyl rescalings, since when writing

gαβ = e2σ ηαβ
√−g = e2σ (3.4.136)
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Figure 3.24. Generalization of the four-particle interaction world-lines (a) to the case of the four-string interaction
world-sheet for open (b) and closed (c) strings.

we observe that S[φ] is independent of σ . The general coordinate invariance implies that the energy–
momentum tensor derived from S[φ] is covariantly conserved,

∇αT αβ [g, φ] = 0 T αβ [g, φ] = 2√−g

δS[g, φ]
δgαβ

= ∂αφ∂βφ − 1

2
(∂φ)2gαβ (3.4.137)

while the Weyl invariance guarantees that this classical energy–momentum tensor is traceless,

gαβT αβ [φ] = e−2σ δS

δσ
[g = e2σ η, φ] = 0. (3.4.138)

We define the quantum effective action (in Euclidean time) by the covariant path integral

exp(−Seff[g]) =
∫
Dφ exp{−Scl[g, φ]} (3.4.139)

where the generally covariant integration measure over scalar fields must be defined such that∫
Dφ exp{− 1

2 〈φ|φ〉} = 1 〈φ|φ〉 ≡
∫

d2x
√−gφ2. (3.4.140)

Now, the point is that this inner product and the corresponding integration measure over scalar fields Dφ
are invariant under general coordinate transformations but not under Weyl rescalings. Hence, we must
expect the energy–momentum tensor of the quantized theory to remain conserved but have non-zero trace
(in contrast to its classical counterpart). Thus the so-called trace anomaly appears. Although this had to
be discovered by laborious calculations in the operator quantization method, it is actually obvious from
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the Weyl non-invariance of the covariant integration measure (cf section 3.3.4). Note that it is logically
possible to define a Weyl invariant scalar inner product and integration measure by leaving out the

√+g
in (3.4.140), at the price of making it not generally coordinate invariant. In this case, the quantum energy–
momentum tensor would remain traceless, but it would no longer be conserved (this is an analog of the
competition between the chiral and gauge symmetries; see section 3.3.4). If coordinate invariance is
assumed to be a more fundamental symmetry of nature than Weyl invariance, this possibility must be
rejected.

In order to calculate the Weyl trace anomaly, we perform the Gaussian integration in (3.4.139) and
obtain

Seff[g] = 1

2
Tr ln(−�)→ −1

2

∫ ∞

ε

dt

t
Tr exp{−t�} (3.4.141)

where the second equality is the regularized definition (the so-called heat kernel definition) of ‘Tr ln’,
which introduces a cutoff on the lower limit of integration. This regulated form is most convenient for
evaluating the trace anomaly by varying Seff[g] with respect to σ . Using

� = 1√−g
∂α[√ggαβ∂β ] = e−2σ

� (3.4.142)

with � evaluated in the flat Euclidean metric, we find

gαβT αβ = e−2σ δSeff[g]
δσ (x)

= −
∫ ∞

ε

dt 〈x |� exp{−t�}|x〉
= 〈x | exp{−ε�}|x〉
= 1

4π

[
1

ε
+ R

6
+O(ε)

]
(3.4.143)

where the expansion of the heat kernel for exp {−ε�} has been used in the last step as ε → 0, and
we have assumed that the operator � has no zero modes, so that the upper limit of the t integral does
not contribute to the trace. The background metric-independent, divergent first term is associated with
the infinite energy density of the vacuum in flat space, which can be regulated by the full ζ -function
method (see section 1.2.7), or simply subtracted from the definition of the energy–momentum tensor by
a normal-ordering procedure. The finite second term proportional to the Ricci scalar curvature of the
background metric gαβ is the trace anomaly. Note that it indeed comes from the Weyl non-invariance of
the integration measure (3.4.140), since if we used the Weyl invariant measure omitting

√
g from the inner

product defined there, � in (3.4.142) would be replaced by
√

g� = e2σ
� = � which is independent of

σ , so that the variation in (3.4.143) would then give zero identically. Therefore, the trace anomaly is a
necessary and immediate consequence of the covariant definition of the path-integral measure in (3.4.140).

In the conclusion of this section, we shall briefly discuss the case of an action with an arbitrary
number of matter fields. The general form of the trace anomaly of the energy–momentum tensor for
classically Weyl invariant matter in a background gravitational field is

T α (matter)
α = cm

24π
R (3.4.144)

= cm

24π
e−2σ (R − 2�σ) (3.4.145)

in the decomposition gαβ = e2σ ḡαβ . The coefficient cm is defined by the number of matter fields:
cm = (NS + NF) for NS scalar and NF (Dirac) fermion fields. From (3.4.143), this implies that there
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exists an effective anomalous quantum action, such that

δSanom[g]
δσ (x)

= cm

24π
(R − 2�σ) . (3.4.146)

Since the right-hand side of this equation is linear in σ , we may integrate both sides immediately with
respect to σ to obtain the anomalous action:

Sanom[g = e2σ ḡ] = Sanom[ḡ] + cm

24π

∫
d2x

√−ḡ[−σ�σ + Rσ ]. (3.4.147)

The action Sanom[g] must be a scalar under general coordinate transformations and a functional of only
the full gαβ , so that we may use this information to determine the σ -independent integration constant
Sanom[ḡ] and write down the fully covariant but non-local form of the anomalous action:

Sanom = − cm

96π

∫
d2x

√−g
∫

d2x ′√−g′R(x)�−1(x, x ′)R(x ′). (3.4.148)

The contribution of the world-sheets with a given topology to the string amplitudes is proportional
to the path integral (after the factorization of the volume of the gauge group of two-dimensional
diffeomorphisms) ∫

Dσ Dg⊥
µν J (g = e2σ g⊥) exp{−SP − Sanom} (3.4.149)

where g⊥
µν parametrize orbits of the gauge group of two-dimensional diffeomorphisms in the set of the

metrics (similarly to the parameter τ in the case of the relativistic point particle, cf (3.4.112)). The number
of these parameters is finite and depends on the topology of the considered world sheet. The Jacobian J
appears, analogously to the case of point particles, because of the change of variables: gµν → {ξµ, g⊥

µν}
(ξµ are parameters of diffeomorphisms). Finally, SP is the classical action (3.4.130) or its supersymmetric
extension and Sanom is given by (3.4.148). After extracting the Weyl parameter σ from the Jacobian J , i.e.
the transition from J (g = e2σ g⊥) to J̄(g⊥), the coefficient cm in front of the anomalous action changes
as follows:

cm −→ c = cm − 26 = NS + NF − 26

so that the path integral (3.4.149) becomes∫
Dσ Dg⊥

µν J̄(g⊥) exp

{
−SP − c

cm
Sanom

}
.

All the dependence of the integrand on the gauge parameter σ(x) is concentrated in Sanom. Thus, if
we want the quantum system to have the same number of physical degrees of freedom as the classical
prototype (that is, the quantum effective action does not depend on σ(x)), we have to require that the
parameter c, called the central charge, be equal to zero

c = NS + NF − 26 = 0.

In the case of a purely bosonic string (NF = 0), this means that a self-consistent quantization can be
carried out only in a 26-dimensional spacetime (i.e. the number of the coordinates Xa , a = 0, . . . , 25
is equal to 26). In superstrings, fermionic degrees of freedom appear and the supersymmetry fixes their
number NF, so that the central charge is equal to zero at NS = 10. Thus, non-anomalous superstrings
exist only in a ten-dimensional spacetime.
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3.4.6 Quantum field theory on non-commutative spacetimes and path integrals

In the last subsection of this chapter, we shall discuss applications of path integrals in a recently emerged
branch of quantum field theory, namely, in the field theory of non-commutative spacetimes.

The standard concept of a geometric space is based on the notion of a manifoldMwith points x ∈M
locally labeled by a finite number of real coordinates xµ ∈ R

4 . However, it is generally believed that this
picture of spacetime as a manifoldM would break down at very short distances of the order of the Planck
length λP ≈ 1.6×10−33 cm. This implies that the mathematical concepts for high-energy (small-distance)
physics have to be changed or, more precisely, our classical geometrical concepts may not be well suited
for describing physical phenomena at small distances. No convincing alternative description of physics at
very short distances is known, though different routes to progress have been proposed. One such direction
is to try to formulate physics on some non-commutative spacetime. There appear to be too many possi-
bilities to do this, and it is difficult to see what the right choice is. There have been investigations in the
context of Connes’ formulation of the non-commutative geometry (Connes 1994) and his approach to con-
struction of the standard model of electroweak and strong interactions (Connes and Lott 1990). Another
approach is based on the relation between measurements at very small distances and black-hole forma-
tions (Doplicher et al 1994, 1995). One more possibility is based on quantum group theory (see, e.g.,
Chaichian and Demichev (1996)). As shown by Seiberg and Witten (1999), the non-commutative geome-
try naturally appears in string theory. This result provides us with a solid background for the study of field
theories on non-commutative spacetimes which supposedly correspond to the low-energy limit of such
strings theories. It is worth noting that the generalization of commutation relations for the canonical oper-
ators (coordinate–momentum or creation–annihilation operators) was suggested long ago by Heisenberg
(1954) in attempts to achieve regularization for his (non-renormalizable) nonlinear spinor field theory.

The essence of non-commutative geometry consists in reformulating, first, the geometry in terms of
commutative algebras of smooth functions, and then generalizing them to their non-commutative analogs.
One of the main motivations for studying QFT on non-commutative spacetimes is that the notion of
points as elementary geometrical entities is lost and we might expect an ultraviolet cutoff to appear. The
simplest model of this kind is the fuzzy sphere (see Berezin (1975), Hoppe (1989), Grosse et al (1997)
and references therein), i.e. the non-commutative analog of a two-dimensional sphere. As is known
from standard quantum mechanics, a quantization of any compact space, in particular a sphere, leads
to finite-dimensional representations of the corresponding operators, so that in this case any calculation is
reduced to manipulations with finite-dimensional matrices and thus there is simply no place for ultraviolet
divergences. Things are not so easy in the case of non-compact manifolds. Quantization leads to
infinite-dimensional representations and we have no guarantee that non-commutativity of the spacetime
coordinates removes the ultraviolet divergences.

In order to illustrate the main peculiarities of QFT on non-commutative spacetimes, we shall use
a relatively simple example of non-commutative geometry, namely, the Euclidean non-compact plane
with Heisenberg-like commutation relations among coordinates (Chaichian et al 2000). In discussing this
example, we shall see that physically meaningful quantities in non-commutative QFT are the correlation
functions (Green functions) of mean values of quantum fields on a non-commutative spacetime in
localized states from the Hilbert space of a representation of the corresponding coordinate algebra. These
localized states are the best counterparts of points on an ordinary commutative space, which ‘label’ the
(infinite number of) degrees of freedom of the QFT. Thus we must consider a quantum field in non-
commutative QFT as a map from the set of states on the corresponding non-commutative space into
the algebra of secondary quantized operators. We also use this example for the study of symmetry
transformations of non-commutative spacetimes with Lie algebra commutation relations for coordinates.
The non-commutative coordinates prove to be tensor operators, and we consider concrete examples of the
corresponding transformations of localized states (an analog of spacetime point transformations).
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♦ Two-dimensional quantum field theory on non-commutative spacetime with Heisenberg-like
commutation relations

A complex scalar field ϕ(x) on a Euclidean plane P(2) = R
2 is a prescription

x = (x1, x2) ∈ P(2) → ϕ(x) ∈ C

which assigns to any point x of the plane the complex number ϕ(x). In order to pass to a non-commutative
plane and to the corresponding ‘fields’, we introduce in the two-dimensional Euclidean coordinate plane
P(2) the following Poisson bracket:

{xi , x j } = εi j i, j = 1, 2 (3.4.150)

and extend it, by the Leibniz rule, to all smooth functions on P(2) (here εi j is the antisymmetric tensor,
ε12 = 1). The brackets are invariant with respect to the canonical transformations xi → Mij x j +ai , where
Mij is an unimodular (i.e. det M = 1) matrix; a1, a2 are arbitrary constants. In particular, the bracket is
invariant with respect to the two-dimensional group E(2) of isometries of P(2) formed by

(i) rotations: x1 → x1 cosφ + x2 sin φ x2 → x2 cosφ − x1 sin φ

(ii) translations: x1 → x1 + a1 x2 → x2 + a2.
(3.4.151)

In the non-commutative version P(2)λ of the plane, we replace the commuting parameters by the
Hermitian operators x̂i , (i, j = 1, 2) satisfying the commutation relations

[x̂i , x̂ j ] = iλ2εi j i, j = 1, 2 (3.4.152)

where λ is a positive constant of the dimension of length. We realize the operators x̂i , i, j = 1, 2 in a
suitable Fock space F introducing the annihilation and creation operators

α̂ = 1

λ
√

2
(x̂1 + ix̂2) α̂† = 1

λ
√

2
(x̂1 − ix̂2) (3.4.153)

and putting

F =
{
|n〉 = 1√

n! α̂
∗n |0〉; n = 0, 1, . . .

}
.

Here |0〉 is a normalized state satisfying α̂|0〉 = 0.
For all operators of the form

f̂ = λ2

(2π)2

∫
d2k f̃ (k)eikx̂ (3.4.154)

(with a suitable smooth decreasing f̃ (k)), we introduce the ‘integral’ (linear functional) Iλ[ f̂ ] as follows:

Iλ[ f̂ ] def≡ Tr f̂ = f̃ (0). (3.4.155)

Here Tr denotes the trace in the Fock space and kx̂ = k1x̂1 + k2x̂2. The non-commutative analogs of field
derivatives ∂i ϕ̂, i = 1, 2 are defined as

∂i ϕ̂ = εi j
i

λ2
[x̂ j , ϕ̂] i = 1, 2. (3.4.156)

They satisfy the Leibniz rule and reduce to the usual derivatives in the commutative limit.
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In the non-commutative case, the Euclidean action of self-interacting scalar non-commutative
quantum field theory reads as

S(λ)[ϕ̂, ϕ̂†] = S(λ)0 [ϕ̂, ϕ̂†] + S(λ)int [ϕ̂, ϕ̂†] (3.4.157)

with the free part having the form

S(λ)0 [ϕ̂, ϕ̂†] = Iλ[(∂i ϕ̂)
†(∂i ϕ̂) + m2ϕ̂†ϕ̂]. (3.4.158)

The interaction part Sint of the action we shall discuss later (see (3.4.170) and below).

♦ Calculations by the method of operator symbols

The calculation of Green functions and other quantities in non-commutative QFT can be carried out
in a simple and natural way by the use of operator symbols (see section 2.3.1). In fact, transition
to the momentum representation ϕ(̂x) → ϕ̃(k) in (3.4.154) is the first step in the construction of the
corresponding Weyl symbol. If, in addition, we now make the inverse ordinary Fourier transform:

ϕw(x) = λ2

(2π)2

∫
d2k ϕ̃(k)eikx (3.4.159)

we just obtain the Weyl symbol ϕw(x) of the operator ϕ(̂x). Thus, the Weyl symbols or their Fourier
transforms (which plays the role of the momentum representation for a field on the non-commutative plane
P(2)λ ) are in one-to-one correspondence with the set of fields (operators) ϕ(̂x) on the non-commutative
space. This correspondence is based on the relation

Tr exp{iki x̂i } = 2πλ−2δ(2)(k).

As we mentioned in section 2.3.1, the trace of an operator f (̂x)it is expressed via its Weyl symbol as
follows:

Tr f (̂x) = 1

2πλ2

∫
d2x fw(x) = Iλ[ f (̂x)].

Now any action for non-commutative QFT can be obtained from the corresponding classical action by the
substitution of the ordinary point-wise function multiplication by the 0-product. For example,

Tr
∑

i

[̂xi , ϕ(̂x)]2 =
∫

d2x {xi , ϕw(x)}M 0 {xi , ϕw(x)}M

=
∫

d2x (∂iϕw 0 ∂iϕw)(x)

where {·, ·}M is the Moyal bracket:

{ϕ,ψ}M
def≡ 1

λ2
(ϕ 0 ψ − ψ 0 ϕ).

Equivalently, we may use the Fourier transform ϕ̃(p) of the Weyl symbol (momentum representation).
The existence of this field, depending on the commutative variables p1 and p2, corresponds to the
commutativity of the momentum operators of the system considered.

The ‘second quantization’ in the Euclidean case amounts to calculating the path integral over a set of
operator symbols which gives the generating functionalZ[J ] for Green functions:

Z[J ] = N−1
∫
Dϕw(x) exp{−S[ϕw, J, 0]} (3.4.160)
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where S[ϕw, J, 0] is the operator action (3.4.157) on the non-commutative space expressed in terms of
symbols or, in other words, the usual classical action in which the ordinary point-wise multiplication of
the fields is substituted by the star-product.

The Weyl symbol has some special properties which makes it convenient for the calculations. In
particular, the explicit form of the 0-product which makes the algebra of Weyl symbols isomorphic to the
operator algebra is defined by the expression

(ϕw 0 ψw)(x) = ϕw(x) exp

{
i
λ2

2

←
∂ i ε

i j →
∂ j

}
ψw(x)

=
∞∑

m=0

1

m!

(
iλ2

2

)m

εi1 j1 · · · εim jm (∂i1 · · · ∂imϕw)(∂ j1 · · · ∂ jmψw)

= ϕw(x)ψw(x)+O(λ2). (3.4.161)

This immediately shows that a quadratic term in the non-commutative QFT action, written in terms of the
Weyl symbols, has the same form as that on the classical space:∫

d2x (ϕw 0 ψw)(x) =
∫

d2x ϕw(x) exp

{
−i
λ2

2

→
∂ i ε

i j →
∂ j

}
ψw(x)

=
∫

d2x ϕw(x)ψw(x) (3.4.162)

because εi j is antisymmetric. Therefore, the free action of the non-commutative QFT in terms of the Weyl
symbols has the same form as the usual QFT on commutative space. Higher-order (interaction) terms
contain non-locality, but the analysis in Filk (1996) shows that they do not remove ultraviolet divergences.

One more property of the Weyl symbols is their nice behaviour with respect to linear canonical
transformations: if we consider transformations (cf (3.4.151))

x̂ ′
i = Mij x̂ j + bi

the corresponding Weyl symbol transforms as follows

ϕ′w(x) = ϕw(Mx + b)

i.e. it transforms as an ordinary scalar field. This essentially simplifies our study of the invariance
properties of non-commutative quantum field theory.

When considering the Green functions Gw(x, y) ≡ 〈ϕw(x)ϕw(y)〉, we should take into account the
fact that the value of an operator symbol at a point on the classical counterpart of a non-commutative
space has no direct physical or even mathematical meaning. Only the total function can be considered
as a symbol and this defines the corresponding operator. Thus the function Gw(x, y) has the meaning
of an operator symbol acting in the direct product H ⊗H of two copies of the Hilbert space in which a
representation of the coordinate algebra is realized. Now let us recall that in standard QFT, the points of
a commutative space (labeled by values of the coordinates x1, x2) are considered to ‘enumerate’ different
degrees of freedom of the field system. In non-commutative geometry there are no longer any points
but there are states in the Hilbert space of representations of a coordinate algebra instead. Thus we must
consider a quantum field in non-commutative QFT as a map from a set of states on the corresponding non-
commutative space into the algebra of secondary quantized operators, so that the physically meaningful
object in non-commutative QFT is the mean values of the field operators: 〈%|ϕ̂|%〉, |%〉 ∈ H. Of course,
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we can choose any complete set of states, but for clear physical interpretation and comparison with the
commutative limit, the set should satisfy the following requirements:

(i) the states must be localized in spacetime and
(ii) as the parameter of non-commutativity λ goes to zero, the states must shrink to a point.

This consideration shows that in order to convert the Green function Gw(x, y) into a physically
meaningful object, we must average it over some localized state. States which correspond to optimal
rotationally invariant localization around the point x = (x1, x2) of the plane are uniquely (up to a phase
factor) given as the coherent states |ξ〉 for the operators (3.4.153): |ξ〉 = exp{ξα̂† − ξ∗α̂}|0〉 (|0〉 is the
vacuum state in the Fock space F ; ξ = (x1 + ix2)/(

√
2λ)); see (2.3.107).

It can be shown that

ϕN(x) ≡ 〈ξ |ϕ̂|ξ〉 =
∫

d2x ′ ωλ(x − x ′)ϕw(x
′) (3.4.163)

with the smearing function

ωλ(x − x ′) = 1

πλ2 exp

{
− (x − x ′)2

λ2

}
.

In fact, ϕN(x) is the normal symbol (see section 2.3.1) of the operator ϕ̂. Therefore, the physical Green
function Gλ(x, y) is given as

Gλ(x, y) = 〈ϕN(x)ϕN(y)〉 =
∫

d2x d2y ωλ(x − x ′)ωλ(y − y ′)Gw(x
′, y ′) (3.4.164)

and it represents a quantum average of the true field functional ϕN(x)ϕN(y) = 〈ξ |ϕ̂|ξ〉〈ζ |ϕ̂|ζ 〉 (where
ξ = (x1 + ix2)/λ

√
2, ζ = (y1 + iy2)/λ

√
2). Similarly, any higher Green functions Gλ(x1, . . . , xn) are

obtained by smearing the corresponding Green functions Gw(x1, . . . , xn).
The formal Green functions Gw(x1, . . . , xn) are, as a matter of rule, singular if some arguments

coincide. However, the physical Green functions Gλ(x1, . . . , xn) are regular due to intrinsic effective
smearing induced by the non-commutativity of the coordinates. In a free field, the formal Green function
G(0)w (x, y) = 〈ϕw(x)ϕw(y)〉0 is given by the standard formula

G(0)w (x, y) = 1

(2π)2

∫
d2k

eik(x−y)

k2 + m2
. (3.4.165)

According to (3.4.164) the corresponding physical Green function G(0)λ = 〈ϕN(x)ϕN(y)〉0 can be
straightforwardly calculated with the result

G(0)λ (x, y) = 1

(2π)2

∫
d2k

eik(x−y)−λ2k2/2

k2 + m2
. (3.4.166)

This can easily be derived by use of the normal symbols. In this case the star-product for normal symbols
has the form

ϕN(ξ̄ , ξ) 0 ϕN(ξ̄ , ξ) = ϕN(ξ̄ , ξ) exp{λ2 ←
∂ ξ

→
∂ ξ̄ }ϕN(ξ̄ , ξ). (3.4.167)

The free action in terms of the normal symbols takes the form

S(N)0 =
∫

d2ξ [∂iϕN(ξ̄ , ξ) exp{λ2 ←
∂ ξ

→
∂ ξ̄ }∂iϕN(ξ̄ , ξ)+ m2ϕN(ξ̄ , ξ) exp{λ2 ←

∂ ξ
→
∂ ξ̄ }ϕN(ξ̄ , ξ)]

= 1

(2π)2

∫
d2κ ϕ̃N(−κ)(2κ̄κ + m2)eλ

2κ̄κ ϕ̃N(κ). (3.4.168)
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Here ϕ̃N(κ) is the Fourier transform of the normal symbol

ϕN(ξ̄ , ξ) = 1

(2π)2

∫
d2κ ei(κξ̄+κ̄ξ )ϕ̃N(κ)

and κ = λ(k1 + ik2)/
√

2.
Whereas G(0)w (x, y) is logarithmically divergent for x → y, the physical Green function is finite:

|G(0)λ (x, y)| ≤ G(0)λ (x, x) = 1

(2π)2

∫
d2k

e−λ2k2/2

k2 + m2 (3.4.169)

depending only on a dimensionless parameter a = λm characterizing the non-commutativity.
If the interaction is switched on, the problem of a perturbative determination of the full Green

function Gλ = 〈ϕN(x)ϕN(y)〉 naturally appears. Within perturbation theory the problem is reduced to
calculating the free-field averages of the type 〈ϕN(x)ϕN(y)Sn

int〉0. However, now the problem of a non-
commutative generalization of the interaction term arises. If we choose, as a commutative prototype, the
(ϕ∗ϕ)2-interaction, the most direct non-commutative generalization is

Sλint[ϕ̂, ϕ̂†] = g
∫

d2x ϕ∗N(x) 0 ϕN(x) 0 ϕ
∗
N(x) 0 ϕN(x). (3.4.170)

This action produces vertices containing factors eλ
2k2/2 on each leg with the momentum ki , i = 1, 2, 3, 4,

plus additional phase factors exp{±iλ2(k1 × k2 + k3 × k4)/2} (here k × p
def≡ εi j ki p j ). The Gaussian

factors e−λ2k2/2 from the propagators are canceled in Feynman diagrams and the ultraviolet divergences
appear. Of course, calculations with different types of operator symbol, being different at intermediate
steps, give the same physical results. Note, however, that the normal symbols of the field operators on the
non-commutative plane have a much clearer physical interpretation since they are related (in fact, equal)
to the mean values over localized coherent states.

However, this is not the only possibility. Insisting only on a commutative limit condition,
limλ→0 Sλint[ϕ̂, ϕ̂†] = Sint[ϕ, ϕ∗], the integrand in the non-commutative integral I [ϕ̂†ϕ̂ϕ̂†ϕ̂] is defined
up to the operator ordering. There is no problem in modifying the operator ordering of the generators x̂1
and x̂2 in the integrand ϕ̂†ϕ̂ϕ̂†ϕ̂ in such a way that the vertices will not contain the exponential factors
exp{λ2k2

i /2} on legs. For example, we can use the normal symbols to construct the free action but the Weyl
symbols to construct the interaction part. The resulting action will lead to ultraviolet-regular Feynman
diagrams. However, besides this pragmatic point of view, any deeper principle preferring such a different
ordering is not known so far.

♦ Symmetry transformations on the quantum plane

Some subgroup of the group of the canonical transformations of the commutation relations for the
coordinate operators can be considered as a group of spacetime symmetry for non-commutative QFT.
As we discussed earlier, the degrees of freedom of non-commutative QFT correspond to a set of localized
(e.g., coherent) states. Thus a natural question about the behaviour of such states under the quantum
spacetime symmetry transformations arises.

The fact that a linear transformation preserves commutation relations for a set of some operators
means that the latter are tensor operators (see supplement IV). It is worth separating the commuting from
the non-commuting operators:

(1) A set of commutative operators. For a general linear transformation of commutative operators
xi → x ′

i = Mij x j + bi , where Mij , bi are ordinary c-number group parameters, the vector |ψx 〉
remains an eigenvector of the transformed operator x ′ but with a shifted eigenvalue x ′

i = Mij x j +bi .
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(2) A set of non-commutative operators: tensor operator. A tensor operator Âi acting in some Hilbert
spaceH, has, by the definition, the property

Â′
i ≡ Mij (g) Â j = Û(g) Âi Û

−1(g) (3.4.171)

where Mij (g) (i, j = 1, . . . , d) is a matrix finite-dimensional representation of a Lie group G,
g ∈ G and Û(g) is a unitary operator in the Hilbert space H. In general, the components Âi

(i = 1, . . . , d) of a tensor operator do not commute with each other. Consider an eigenvector |λ〉A

of one component, say Âd , of the tensor operator. After the transformation, the eigenvector |λ〉A′ of
the transformed component A′

d is related to |λ〉A by the operator Û(g):

|λ〉A′ = Û(g)|λ〉A =
∑
λ′

A〈λ|Û(g)|λ′〉∗A|λ′〉A. (3.4.172)

Then considering the action of transformed component Â′
d on the initial eigenstate |λ〉A , we obtain

Â′
d |λ〉A = Û(g) ÂdÛ−1(g)|λ〉A

=
∑
λ′
λ′ A〈λ′|Û(g)|λ〉A|λ′〉A′ . (3.4.173)

Let us apply this consideration (well known in standard quantum mechanics) to the examples of
Euclidean and pseudo-Euclidean quantum planes. While ultraviolet behaviour in these cases is the same,
their properties with respect to the symmetry transformations are quite different.

We shall consider only the homogeneous part of the transformations. In the Euclidean plane, these
are rotations (3.4.151) (a one-dimensional subgroup of the group Sp(2) ∼ SL(2,R) of the canonical
transformations). The corresponding creation and annihilation operators (3.4.153) are transformed
separately

α̂ → eiφα̂ α̂† → e−iφα̂†

so that the corresponding localized (coherent) states |ξ〉 are transformed in very simple way:

|ξ〉 −→ |eiφξ 〉. (3.4.174)

Thus the localized coherent states are transformed in the simple and physically transparent way. On
the contrary, coordinate eigenstates are transformed non-locally according to (3.4.173). Indeed, the
coordinates are transformed under Euclidean rotations by the formula

x̂1 → x̂ ′
1 = (cosφ)̂x1 + (sinφ)̂x2 = Ûφ x̂1Û−1

φ

x̂2 → x̂ ′
2 = −(sinφ)̂x1 + (cosφ)̂x2 = Ûφ x̂2Û−1

φ .
(3.4.175)

The explicit form of the operator Ûφ is easily found and proves to be

Ûφ = exp

{
− i

2
φ(̂x2

1 + x̂2
2)

}
.

Formally, this operator coincides with the evolution operator for a particle in the harmonic potential. We
have already calculated it by the path-integral method (see (2.2.79))

〈x ′
1|Ûφ|x1〉 = 1√

2π iλ2

√
1

sin φ
exp

{
1

4λ2

1

sin φ
[((x ′

1)
2 + x2

1) cosφ − 2x ′
1x1]

}
. (3.4.176)
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Insertion of this kernel into the formulae (3.4.172) and (3.4.173) leads to the non-local transformation of
eigenstates of the operator x̂1 (eigenstates of x̂2 are transformed quite similarly).

The situation is opposite in the case of the pseudo-Euclidean (Minkowski) plane. Now we have to
use another subgroup of the canonical group SL(2,R): two-dimensional Lorentz group SO(1, 1)

x0 → x ′
0 = (cosh η)x0 + (sinh η)x1

x1 → x ′
1 = (sinh η)x0 + (cosh η)x1.

(3.4.177)

It is convenient to use the light-front variables

x± = 1√
2
(x0 ± x1).

The boosts (3.4.177) now have the simple form

x± → e±ηx±

(η has the meaning of rapidity). On the non-commutative plane the coordinates satisfy the commutation
relations

[x̂+, x̂−] = iλ2. (3.4.178)

The corresponding annihilation and creation operators

α̂ = 1

λ
√

2
(x̂+ + ix̂−) α̂† = 1

λ
√

2
(x̂+ − ix̂−) (3.4.179)

are transformed non-trivially

α̂ → α̂η = (cosh η)α̂ + (sinh η)α̂† = Ûηα̂Û−1
η

α̂† → α̂†
η = (sinh η)α̂ + (cosh η)α̂† = Ûηα̂†Û−1

η .
(3.4.180)

The explicit form of the operator Ûη is easily found and proves to be

Ûη = exp{− 1
2η((α̂

†)2 − α̂2)}.
Thus now the corresponding localized coherent states are transformed as

|ξ〉 −→ |ξη〉 = Ûη|ξ〉.
The most convenient way of calculating the matrix elements 〈ζ |Ûη|ξ〉 uses the path integral

〈ζ |Ûη|ξ〉 =
∫ ∏

τ

dz̄(τ ) dz(τ )

2π
exp

{
ζ̄ z(η)+

∫ η

0
dτ [−z̄(τ )ż(τ )− 1

2
(z̄2(τ )− z2(τ ))]

}
.

This is a Gaussian integral and, as we know, its value is given by the integrand at the extremum trajectory
of the exponent with the boundary conditions: z(0) = ξ , z̄(η) = ζ̄ . The result is:

〈ζ |Ûη|ξ〉 = exp

{
−|ζ |2

2
− |ξ |2

2
+ ζ̄ ξ

cosh η
− ζ̄ 2 − ξ2

2
tanh η

}
.



Path integral in the theory of gravitation 193

Now to realize the properties of the transformed state |ξη〉 = Ûη|ξ〉 we can calculate it in the coordinate
representation (either x+ or x−). For example,

|〈x+|ξη〉|2 ≡ |〈x+|Ûηξ〉|2 = 1√
πλe−η

exp

{
− (x+ − λe−ηξ1)2

λ2e−2η

}

(here ξ = (ξ1 + iξ2)/
√

2). This expression shows that |ξη〉 is also a localized state and with respect to
the coordinate x+ it is located around the point e−η

√
2λRe ξ with the dispersion (λe−η)2 (while |ξ〉 is

located around
√

2λRe ξ with the dispersion λ2). Similarly, with respect to the coordinate x−, the state
|ξη〉 is located around the point eη

√
2λ Im ξ with the dispersion (λeη)2.

♦ Remarks on the relation between an ultraviolet behaviour of QFT on non-commutative
spacetimes and topology

As we have mentioned, the transition to a non-commutative spacetime does not necessarily lead to an
ultraviolet regularization of the quantum field theory constructed in this space, at least in the most natural
way of introducing non-commutativity as presented above. In particular, QFT on non-commutative planes
with Heisenberg-like commutation relations for coordinates and a deformed plane with quantum Eq(2)-
symmetry still contain divergent tadpoles (Filk 1996, Chaichian et al 2000). However, in general, theories
which have the same ultraviolet behaviour on classical spaces may acquire essentially different properties
after the quantization. The reason is that quantization procedure is highly sensitive to the topology of
the manifold under consideration. Thus, while in classical spacetime the theories on a sphere, cylinder
or plane have ultraviolet divergences, in non-commutative spacetime the two-dimensional theories on
the fuzzy sphere and on the quantum cylinder do not have divergences at all. This can be traced to the
compactness properties of the spacetime in question:

• In the case of a fuzzy sphere, models contain a finite number of modes and thus all the usual
integrations are replaced by final sums and, consequently, no ultraviolet divergences can appear.

• In the case of a cylinder, we cannot a priori claim whether the quantum field theory is finite.
However, the non-commutativity of the spacetime together with the compactness of the space (circle)
lead to the intrinsic cutoff in the energy modes. This guarantees the removal of ultraviolet divergences
in the two-dimensional case (Chaichian et al 2000).

• On a non-commutative plane (with a commutative limit which is non-compact in both directions)
with Heisenberg-like or even with commutation relations induced by quantum groups, the non-
commutativity of the spacetime does not lead to an ultraviolet-regular theory (Filk 1996, Chaichian
et al 2000).

Thus, the non-commutativity itself does not guarantee the removal of ultraviolet divergences: in
addition, global topological restrictions are needed—namely, at most one dimension (time) is allowed
to be non-compact, in order to achieve the removal of ultraviolet divergences of a quantum field theory
formulated in a non-commutative spacetime of arbitrary dimensions.



Chapter 4

Path integrals in statistical physics

In the first three chapters we have considered problems related to the physical behaviour of one or
a few particles (or some other physical objects which can be effectively described by one or a few
(quasi)particles as, e.g., the random walk model in polymer physics considered in chapter 1). Though
quantum field theory describes systems with an arbitrary number of degrees of freedom (an arbitrary
number of (quasi)particles), in chapter 3 we actually applied it to systems with a restricted and small
number of particles (e.g., for the description of the scattering process for a few particles). Another way
to express this fact is to say that in chapter 3 we have considered field theories at zero temperature.
However, the majority of realistic systems contain many identical (indistinguishable) particles such as
atoms, electrons, photons etc. An attempt to describe these systems in terms of the individual trajectories
of all particles is absolutely hopeless. Instead, we are interested in the collective behaviour of systems
and describe them in terms of partition functions, mean values, correlation functions, etc. The methods
of derivation, analysis and calculation of such collective characteristics constitute the subject of classical
and quantum statistical mechanics.

In fact, the statistical properties of indistinguishable particles play an important role in the quantum
mechanics of a few particles as well. As is known from standard courses (and as we have previously
mentioned in this book), the Schrödinger wavefunction can be classified according to the irreducible
representations of the permutation group (corresponding to permutations of the quantum numbers of
different but indistinguishable particles). In more than two space dimensions, the representations which
definitely occur in nature are:

• completely symmetrical under the permutations;
• completely antisymmetrical.

The particles which always appear with symmetric wavefunctions are called bosons and those with
antisymmetric wavefunctions are called fermions, the names which we have already used in this book
many times. These features with respect to permutations of the two sorts of particle are in one-to-
one correspondence with the specific forms of the partition functions and, hence, with their different
collective behaviour: Bose or Fermi statistics. Note that, in general, systems of particles with more
general symmetry properties under a permutation group (e.g., obeying the so-called parastatistics, see
section 4.3.3) may exist. This possibility is especially important for the two-dimensional physics, where
it can be responsible for some interesting phenomena (in particular, the fractional Hall effect).

The problem to be discussed in this chapter is how to incorporate the statistical properties into the
path-integral formalism for the study of many-particle systems. As in the preceding chapters, we start from
a short review of the basic notions of classical and quantum statistical mechanics. Then, in section 4.2, we
discuss some applications of the path-integral formalism in classical statistical physics. These applications
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are mainly related to a convenient representation of the so-called configuration integral (entering the
classical partition function) for easier calculation. In section 4.3, we pass to quantum systems and in
order to establish a ‘bridge’ to what we considered in chapter 2, we introduce, at first, a path-integral
representation for an arbitrary but fixed number of indistinguishable particles obeying the Bose or Fermi
statistics. As we shall see, this problem is mathematically equivalent to the construction of path integrals
in a restricted (bounded) domain of the 3N-dimensional space (N is the number of particles, bosons or
fermions, in the three-dimensional space) with appropriate conditions depending of the type of statistics.
We shall also discuss the generalization to the case of particles with parastatistics.

The next step (section 4.4) is the transition to the case of an arbitrary number of particles, which
requires the use of the second quantization, and hence, field theoretical methods. The consideration of
path-integral methods in quantum field theory in chapter 3 will be highly useful in the derivation of
the path-integral representation for partition functions of statistical systems with an arbitrary number of
particles. Moreover, this path-integral representation reveals similarity (at least formal) between the basic
objects of classical or quantum statistics and those of the Euclidean quantum field theory (we have stressed
this similarity in the introduction).

A part of section 4.4 and two subsequent sections 4.5, 4.6 are devoted to some of the most fruitful
applications of the path-integral techniques to the study of fundamental problems of quantum statistical
physics, such as the analysis of critical phenomena (phase transitions), calculations in field theory at finite
(non-zero) temperature and in field theory at finite energy (describing systems with the microcanonical
distribution) as well as to the study of non-equilibrium systems and the phenomena of superfluidity
and superconductivity. One subsection is devoted to the presentation of basic elements of the method
of stochastic quantization, which non-trivially combines ideas borrowed from the theory of stochastic
processes (chapter 1), quantum mechanics (chapter 2) and quantum field theory (chapter 3), as well as
methods of non-equilibrium statistical mechanics (present chapter). The last section of this chapter is
devoted to systems defined on lattices. Of course, there are no continuous trajectories on a lattice and,
hence, no true path integrals in this case. On the other hand, we have learned that the path integrals in
quantum mechanics are defined through their discrete approximations. Therefore, the partition function
or generating functional for a system on a lattice are, in fact, very close to those for continuous systems
and may serve as a regularization for the latter. Thus, the discussion of some principal ideas of the lattice
field theory in a book devoted to path integrals seems to be quite relevant.

4.1 Basic concepts of statistical physics

As in all preceding chapters, we start from a short review of the main facts and an introduction
of the main objects of statistical physics (see, e.g., Balescu (1975), Kittel (1987) and Feynman
(1972a)). The reader well acquainted with the standard formulae and statements of this subject
may use this section only for checking the notational conventions.

• The principal aim of statistical physics is to express the properties of macroscopic objects,
i.e. systems consisting of a huge number of identical particles (molecules, atoms, electrons
etc), through the properties of these constituents and their mutual interactions.

The existence of a large number of particles leads to specific statistical laws. The most
important of them is that a system in an arbitrary state and being in contact with a thermal
reservoir tends to turn into some equilibrium state. The properties of the latter are defined by
such general characteristics of the initial state as the number of particles, their total energy
etc. The process of transition of a system into its equilibrium state is called relaxation and the
characteristic time of this process is called the relaxation time.
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♦ Classical statistical systems

Let us consider a system of N particles assuming, for simplicity, that they do not have internal
degrees of freedom (as, e.g., spin). All statistical properties of this system are encoded in its
phase-space partition function w(x, p), x = {x1, x2, . . . , x3N }; p = {p1, p2, . . . , p3N }, the quantity
w(x, p) d3N x d3N p being the probability to find the coordinates and momenta of the particles of
the system in the vicinity d3N x d3N p of the values x, p. If a system is not in the equilibrium state,
the partition function depends also on the time t .

A statistical description starts with the fact that the possible forms of the partition function
of a system in the equilibrium state can be determined on the basis of a general consideration
without going into the details of the system’s behaviour (i.e. without solving the equations of
motion of the system). There are three basic cases:

• Microcanonical distribution. In a closed system, the total energy is conserved and the points
in the corresponding phase space characterizing the states of the system are uniformly
distributed over a surface of a given value of the energy. This leads to the microcanonical
distribution:

wE (x, p) = A δ(H (x, p)− E) (4.1.1)

where H (x, p) is the energy of the system expressed in terms of the phase variables (i.e.
the Hamiltonian) and E is some value of it (A is a normalization constant).

• Canonical distribution. In reality, we mainly deal with some small subsystems of bigger
systems (strictly speaking, there are no absolutely closed (isolated) systems at all, except,
perhaps, the whole Universe). The distribution function of a subsystem is different from
(4.1.1) but does not depend on the concrete properties of the rest of the entire system,
called the thermostat. To obtain the distribution function of a subsystem from (4.1.1), we
should integrate over the coordinates and momenta of particles of the thermostat. This can
be done by taking into account the smallness of the energy of the subsystem in comparison
with that of the thermostat. As a result, we arrive at the canonical distribution

wC(x, p) = exp

{
F − H (x, p)

kT

}
≡ exp{β(F − H (x, p))}. (4.1.2)

The quantity T in this expression has the physical meaning of the temperature of the system.
It is convenient to introduce the inverse temperature β ≡ 1/kBT (in units of the Boltzmann
constant kB). The normalization coefficient for the distribution (4.1.2),

Z
(cl) def≡ exp{−βF} =

∫
dx dp exp{−βH (x, p)} (4.1.3)

is called the partition function (it is also called the statistical integral or statistical sum) and
is defined by the condition∫

d3N x dp3N exp{β(F − H (x, p))} = 1. (4.1.4)

In distinction from the microcanonical distribution, the energy of a system obeying the
canonical distribution is not fixed but distributed in a thin interval around its mean value
(physically, this corresponds to the possibility of an energy exchange with the thermostat).

• Grand canonical distribution. If the particles of a subsystem may leave it and return through
a surface bounding the subsystem, the probability for the subsystem to be in a state with the
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energy H (x, p) and the number of particles N is given by the grand canonical distribution

wG(x, p) = exp{β(�− H (x, p)+ µN)} (4.1.5)

where µ is the so-called chemical potential related to an average number of particles in the
subsystem and exp{β�} is defined by the normalization condition∫

d3N x d3N pwG(x, p) = 1

that is

/(cl) def≡ exp{−β�} =
∫

d3N x d3N p exp{−β(H (x, p)− µN)}. (4.1.6)

♦ Quantum statistical systems

In quantum mechanics, the distribution functions are substituted by the density operator (also
called the density matrix or statistical operator ) ρ̂. The mean value of a physical quantity
represented by an operator f̂ is given by the expression:

〈 f 〉 = Tr[ρ̂ f̂ ]. (4.1.7)

The density operator in an equilibrium state and in the coordinate representation has the form

ρ̂(x, x ′) =
∑

n

wnψn(x)ψ
∗
n (x

′) (4.1.8)

where ψn(x) are the eigenfunctions of the Hamiltonian operator of the system under
consideration and wn is the distribution of probabilities that the quantum system is in the state
with the energy En. The exact form of this distribution depends again on the general properties
of the considered system:

• For closed systems with fixed total energy, volume and number of particles, the density
operator has the form

ρ̂M = Aδ(Ĥ (̂x, p̂)− E) (4.1.9)

and the distribution is given by
ωn = A(En, V , N) (4.1.10)

where A(En, V , N) is the statistical weight, i.e. the number of quantum states in the vicinity
of the energy En.

• For subsystems with fixed number of particles (canonical ensemble), the density operator
has the form:

ρ̂C = Z−1e−β Ĥ (4.1.11)

the distribution being given by an expression analogous to (4.1.2):

wn = exp{β(F − En)} (4.1.12)

with the partition function (normalization factor):

Z ≡ exp{−βF} =
∑

n

exp{−βEn}. (4.1.13)
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In the operator form, this formula can be rewritten as

Z = Tr exp{−β Ĥ} (4.1.14)

the operator Ĥ being the Hamiltonian of a system.
• For a grand canonical ensemble of quantum particles (i.e. for systems with varying number

of particles), the density operator takes the form:

ρ̂G = /−1e−β(Ĥ−µN̂ ) (4.1.15)

(N̂ is the particle number operator) and the distribution wn reads as

wn = exp{β(�− En − µNn)} (4.1.16)

with the corresponding normalization factor

/ ≡ exp{−β�} =
∑

n

exp{−β(En − µNn)} (4.1.17)

which is the grand canonical partition function.

♦ Thermodynamical quantities and fluctuations

One of the main results of statistical mechanics is the clarification and statistical interpretation
of thermodynamical quantities. In particular, the exponent F of the canonical partition function
Z = exp{−βF} has the thermodynamical meaning of the free energy of a system, while its
derivative with respect to the temperature (at fixed external conditions, e.g., volume of the
system) gives the entropy S:

S = −∂F

∂T
. (4.1.18)

Simple manipulations allow us to derive from (4.1.18) a more general relation:

S = kB ln$ncont (4.1.19)

where $ncont is the number of states which give essential contribution to the partition function.
The relation (4.1.19) is even valid for non-equilibrium states.

The cornerstone of statistical physics is the fact that the physical quantities Xi characterizing
a macroscopic body are equal, approximately but with high precision, to their mean values.
However, due to the approximate nature of these equalities, the quantities Xi have small
stochastic fluctuations around their mean values, characterized by the dispersion

D Xi
def≡ 〈(Xi − 〈Xi 〉)2〉. (4.1.20)

The correlation between two different quantities Xi and X j is characterized by the function

〈(Xi − 〈Xi 〉)(X j − 〈X j 〉)〉.
If Xi and X j are the values of the same physical quantity at the different space points labeled i
and j , the corresponding characteristic

〈(Xi − 〈X〉)(X j − 〈X〉)〉 (4.1.21)
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is called the (space) correlation function. When the distance between two points grows, the
correlation tends to zero (usually exponentially, except the case of phase transitions), since the
fluctuations at distant points are independent.

The applications of statistical mechanics to the equilibrium behaviour of different
macroscopic systems are reduced to calculations of the partition function. Then, the
characteristics of a system can be easily derived in the same way as the different vacuum
expectation values in quantum mechanics and quantum field theory are derived from the
generating functionals.

♦ Classical limit and configuration integral

In the quantum-mechanical formulae (4.1.11)–(4.1.17), we assumed that the spectrum of a
Hamiltonian is purely discrete. This actually occurs in all systems in finite volumes. However,
because of the large number of particles, these spectra are very dense and it is technically
reasonable to pass to an (approximate) integration instead of the summation. Then, the partition
function takes the form

Z =
∫ ∞

0
d E g(E) exp{−βE} (4.1.22)

where g(E) is the density of states at the energy E . In the classical limit, we can pass to the
integration in the formula (4.1.13) using the standard substitution

∑
n → ∫

d3N x d3N p/(2π~)3N

and dividing the result by N !, because a quantum-mechanical state is not changed under the
permutation of identical particles. In the classical limit this yields

Z
(cl) = 1

(2π~)3N N !
∫

d3N x d3N p exp{−βH (x, p)}. (4.1.23)

Note that this expression differs by a factor from the purely classical counterpart given by (4.1.3).
The simplest many-body system is the ideal gas, a collection of a large number of non-

interacting particles. Due to the absence of the interaction the partition function can be computed
exactly and the expression for the free energy reads

F = − 1

β
ln

L3N

λ3N
B

, (4.1.24)

where L3 is the volume of the ideal gas and

λB
def≡
√

2π~2β/m (4.1.25)

is the so-called Boltzmann wavelength.
For more realistic models the problem of the calculation of the partition function is very

complicated. Hence, different approximation methods are required and for this aim, the path-
integral approach proves to be very fruitful and powerful.

The standard Hamiltonian for a system of classical particles with pair-wise interaction has
the form

H (x, p) =
N∑

i=1

(
p2

i

2m
+ V1(xi)

)
+
∑
i< j

V2(xi , x j ). (4.1.26)
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Here the function V1(xi ) represents a potential in an external field, while the symmetric function
V2(xi , x j ) is a potential of pair-wise particle interactions. After the Gaussian integration over the
particle momenta, the partition function becomes

Z
(cl) = Q

λ3N
B N ! (4.1.27)

where again λB = √2π~2β/m and

Q
def≡
∫

d3N x exp

{
− β

(∑
i

V1(xi)+
∑
i< j

V2(xi , x j )

)}
. (4.1.28)

This quantity Q is called the configuration integral; its calculation is the main technical problem
in classical statistical mechanics. As a matter of rule, it is impossible to calculate this integral
exactly in the case of a non-trivial interaction between particles.

The grand canonical partition function / can be written as

/ =
∞∑

N=0

Z
(cl)
N exp{βµN}

=
∞∑

N=0

zN

N !
∫

d3N x
∏

i

exp{−βV1(xi)}
∏
i< j

(1 + gi j ) (4.1.29)

where Z(cl)
N is the canonical partition function for N particles (it is assumed that Z(cl)

0 = 1) and

gi j ≡ −1 + exp{−βV2(xi , x j )}. (4.1.30)

The factor at the configuration integrals in the series (4.1.29) proves to be zN /N !, where the
quantity

z
def≡ 1

λ3
B

eβµ (4.1.31)

is called the activity. An arbitrary term of (4.1.29) can be represented by a diagram with N
vertices and lines corresponding to the so-called superpropagator gi j . This expansion and
the corresponding diagrams are called the Mayer expansion and Mayer diagrams. They are
analogous to the expansion in quantum field theory and the Feynman diagrams but for non-
polynomial, exponential interaction.

In the next section, we shall show that the use of a path-integral representation for the configuration
integrals allows us to present the latter in a form more similar to that encountered in polynomial quantum
field theory and, hence, to develop an expansion which is more convenient in many cases.

4.2 Path integrals in classical statistical mechanics

The calculation of the free energy F (see (4.1.13) and (4.1.24)) for the classical ideal gas can be carried
out explicitly and straightforwardly. This is not the case for the more general problem of evaluating the
partition sum for a non-ideal system. The main difficulty is the calculation of the configuration integral
(4.1.28). There are several approaches to analyze the thermodynamics of non-ideal systems with short-
range interactions: Mayer’s method, the correlation function method, the integral equation method, the
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renormalization group method, etc (see, e.g., Balescu (1975)). One more possibility is to represent the
classical partition function in terms of a path integral and then to use for its calculation one of the methods
discussed in this book.

Consider a system of N identical particles in a volume L3 interacting pairwise through a two-body
potential. Denoting the positions of particles i and j by xi and x j , their interaction energy V (xi − x j )

can often be decomposed in a natural way into the sum of two terms:

V (xi − x j ) = V0(xi − x j )+ V1(xi − x j ). (4.2.1)

For example, in many models, V0 denotes a repulsive hard core potential

V0(xi − x j ) =
{+∞ if |xi − x j | ≤ σ

0 if |xi − x j | > σ
(σ ∈ R is the size of particles) and V1 denotes an attractive potential. If the latter is a weak (i.e. its depth
is small compared to kBT ) and a long-distance one (the range of interaction is large compared to σ ), the
system is called a van der Waals gas. The classical canonical partition functionZ(cl) of such N particles
is given by a multiple integral of the type (4.1.27), (4.1.28):

Z
(cl)(N, β, L3) = 1

λ3N
B N !

∫
L3

d3x1 · · · d3xN exp

{
− β

∑
i< j

V0(xi − x j )− β
∑
i< j

V1(xi − x j )

}
. (4.2.2)

The explicit calculation of this integral for large N and a realistic form of V1(x) is very complicated. As a
step towards its solution, we may try to rewrite (4.2.2) in terms of a path integral and then either calculate
it exactly (if this is possible) or use some approximation method.

The representation of the classical partition function in terms of path integrals is based on the
parametrization of the potential term V1 by means of the auxiliary Gaussian random functions ϕ(x) with
zero mean value and with the correlation function

〈ϕ(x)ϕ(x ′)〉 = −βV1(x − x ′). (4.2.3)

We have discussed such Gaussian random functions (fields) in section 1.2.8. Making use of the results of
this discussion, namely formula (1.2.239), we can present the exponential of the potential V1 in terms of
path integrals (Wiegel (1986) and references therein).

Note that the configuration integral with the potential V0 is simple and can be calculated
straightforwardly. Therefore, for brevity, we put V0 = 0. We also drop the subscript of potential V1,
because in the case of a vanishing V0 we have V1 = V .

♦ Path-integral representation for the configuration integral

Let us consider an auxiliary functional

I [η] = N−1
∫
Dϕ(x) exp

{
− β

2

∫
d3x d3x ′ ϕ(x)H (x − x ′)ϕ(x ′)+ iβ

∫
d3x η(x)ϕ(x)

}
(4.2.4)

where

N =
∫

Dϕ(x) exp

{
−β

2

∫
d3x d3x ′ ϕ(x)H (x − x ′)ϕ(x ′)

}
.

H (x) is the kernel of some linear operator. We can choose the function H (x) so that it satisfies the
condition ∫

d3x ′ V (x − x ′)H (x ′ − x ′′) = δ(x − x ′′). (4.2.5)
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This condition means that V is the inverse operator with respect to H . Then, the usual calculation of the
Gaussian path integral (4.2.4) yields

exp

{
−β/2

∫
d3x d3x ′ η(x)V (x − x ′)η(x ′)

}
= I [η(x)]

= N−1
∫
Dϕ exp

{
β/2

∫
d3x d3x ′ ϕ(x)H (x − x ′)ϕ(x ′)+ iβ

∫
d3x η(x)ϕ(x)

}
. (4.2.6)

The main aim of this section is to associate (4.2.6) with the statistical mechanics of a classical system.
For this purpose, we consider a system consisting of N = N+ + N− charged pointlike particles (N+ and
N− are the numbers of positively and negatively charged particles, respectively). The microscopic charge
density of the system can be written as

η(x) =
N+∑
i=1

δ(x − xi)+
N−∑
j=1

(−1)δ(x − x j ) (4.2.7)

so that we obtain for the full energy

U(x1 . . . xN ) = 1
2

N+∑
i = j=1

V (xi − x j )+ 1
2

N−∑
i = j=1

V (xi − x j )−
N+∑
i=1

N−∑
j=1

V (xi − x j )

=
∫

d3x d3x ′ η(x)V (x − x ′)η(x ′)− (N+ + N−)V (0). (4.2.8)

Using (4.2.5) and (4.2.6), we can write the exponential exp{−βU(x1 . . . xN )} of the system through the
path integral:

exp

{
− β

2

( N+∑
i = j=1

V (xi − x j )+
N−∑

i = j=1

V (xi − x j )− 2
N+∑
i=1

N−∑
j=1

V (xi − x j )

)}

= eNβV (0)/2N−1
∫
Dϕ exp

{
−β

2
〈ϕ, |Hϕ〉 + iβ〈η|ϕ〉

}
(4.2.9)

where we have introduced the scalar products

〈ϕ|Hϕ〉 def≡
∫

d3x d3x ′ ϕ(x)H (x − x ′)ϕ(x ′)

〈ϕ|η〉 def≡
∫

d3x ϕ(x)η(x). (4.2.10)

♦ Example: Kac–Uhlenbeck–Hemmer model

For a particular form of the potential V1 for a one-dimensional van der Waals gas of the type

V1(y − y ′) = − 1
2wγ exp{−γ |y − y ′|} (4.2.11)

(the so-called Kac–Uhlenbeck–Hemmer model; w and γ are the parameters of the model), the outlined
procedure leads to a Wiener-like path integral.
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Note that the inverse of the correlation function of the auxiliary stochastic field, according to the
representation (4.2.3), proves to be

〈ϕ(y)ϕ(y ′)〉−1 = 1

βw0γ 2

(
d2

dy2
− γ 2

)
δ(y − y ′)

(here we understand the correlation function to be the operator (4.2.5)). After substituting this formula
into (4.2.9), the derivative d2/dy2 produces in the exponent the term

∼
∫

dy

(
dϕ

dy

)2

so that the resulting path integral has a Wiener–Feynman–Kac-like form, the variable y playing a role
analogous to the time variable τ in a genuine Wiener integral. For more details on this application of
path integrals and generating functionals, as well as for further references, we refer the reader to Wiegel
(1986).

♦ Diagrammatic expansions

In order to illustrate the usefulness of the path-integral representation for the configuration integral, let us
consider the grand partition function for a plasma of charged particles at a temperature 1/β:

/(cl) =
∞∑

N+,N−=0

zN++ zN−−
N+!N−!

∫
d3N x exp

{
β

2

∑
i = j

V (xi − x j )

}
(4.2.12)

where z+ and z− are the activities of positively and negatively charged particles, respectively. Using
(4.2.6) (or (4.2.9)), we can rewrite this equation as follows:

/(cl) =
∞∑

N+,N−=0

zN++ zN−−
N+!N−!

∫ ∫
d3N x eβN V (0)/2N−1

∫
Dϕ exp{−β/2〈ϕ|Hϕ〉 + iβ〈ϕ|η〉}. (4.2.13)

We assume that the system under consideration is ‘neutral’, N+ = N− and such that z+ = z− = z.
Keeping in mind (4.2.7), we obtain:

/(cl) = N−1
∫
Dϕ exp

(
−β/2〈ϕ|Hϕ〉 + 2zV

∫
d3x cos(βϕ(x))

)
(4.2.14)

where zV = zeβV (0)/2.
In order to calculate / approximately, we can use the usual perturbation theory for non-Gaussian

path integrals. To this aim, we introduce the auxiliary external source J and define

/
(cl)
0 [J ] = N−1

∫
Dϕ exp

{
−β/2〈ϕ|Hϕ〉 +

∫
d3x Jϕ

}
= exp

{
1

2β

∫
d3x d3x ′ J (x)V (x − x ′)J (x ′)

}
(4.2.15)

so that the mean value of any combination f (ϕ(x)) of the fields ϕ(x) is given by the functional derivative

〈 f (ϕ(x))〉H ≡ N−1
∫
Dϕ f (ϕ(x))e−β/2〈ϕ|Hϕ〉 = f

(
δ

δ J (x)

)
/
(cl)
0 [J ]

∣∣∣∣
J=0
. (4.2.16)
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Thus, for /(cl) we obtain the perturbation series

/(cl) =
∞∑

n=1

1

n!
[

2zV

∫
d3x

∞∑
k=0

(−1)k

(2k)!
(
β

δ

δ J (x)

)2k]n

/
(cl)
0 [J ]

∣∣∣∣
J=0

(4.2.17)

with the modified activity zV playing the role of an expansion parameter (an analog of the coupling
constant in quantum field theory).

Following the method used in the preceding chapter for quantum field theory, we can now represent
each term of the sum in (4.2.17) as a diagram with n vertices connected by k lines. Each vertex contributes
an integration over d3x , while the factor −βV (ri − r j ) corresponds to each line connecting the vertices i
and j .

Let us consider a vertex with l lines which begins and ends at the same vertex (recall that such
diagrams are called ‘tadpoles’; the corresponding factor is proportional to V (0)) and j non-tadpole lines
going out from it (external lines with respect to the vertex). The combinatorial prefactor in the integral,
corresponding to such a diagram, reads as

(2k)!
l! j !2l

where 2k = 2l + j is the total number of lines going out from the vertex.
We can show that the summation over the number l of tadpole lines for a given vertex with a fixed

number j of external lines, is equivalent to the renormalization of zV to its original value:

zV ≡ eβV (0)/2z −→ e−βV (0)/2zV = z (4.2.18)

and the singular (local) factor exp{NβV (0)} in (4.2.9) just disappears.
Moreover, the summation of multiple lines connecting two vertices leads to the substitution of each

set of diagrams with multiple lines by one diagram with one effective line, where the effective line is
associated with Mayer’s superpropagator fi j = e−βV (ri−r j ) − 1 (cf (4.1.30)). Thus, the perturbation
theory derived from the path-integral representation of the grand partition function (4.2.14) is equivalent
to the Mayer series derived directly from (4.2.12) (cf (4.1.29)).

♦ The expansion of the canonical partition function in powers of density

For a system with two sorts of particle with the densities ρ+ and ρ−, the partition sum can be written as

Z
(cl) = 1

λ3N
B N+!N−!

∫
d3N x exp

{
− β

2

∑
i j

Vi j (ri − r j )

}
(4.2.19)

(λB is defined in (4.1.25)) and for the free energy F this yields

−βF = lnZ(cl) = N+[1 − ln λBρ+] + N−[1 − lnλBρ−] − βFint

where Fint is the non-ideal part of the free energy:

Fint(N+, N−, β, L3) = ln
∫

d3x1

L3
· · · d3xN

L3
e−βU (4.2.20)

and L3 is the d-dimensional volume of the system.
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Now we rewrite exp{−βU} using (4.2.9):

e−βFint = exp

{
Nβ

2
V (0)

}
N−1

∫
Dϕ exp{−β/2〈ϕ|Hϕ〉}eS1 (4.2.21)

S1 = N+ ln
∫

d3x+
L3 eiϕ(x+) + N− ln

∫
d3x−

L3 e−iϕ(x−).

Since the path integral (4.2.21) is non-Gaussian, it can be calculated only in some approximation. For
example, for a dilute gas we can use the expansion in powers of the densities ρ+, ρ− or the quadratic
approximation (i.e. the expansion of S1 up to the second order in ϕ). In the latter case, we have, for S1
(we assume ϕ is oscillating around ϕc = 0),

S1 ≈ ρ+ + ρ−
L3

|ϕ̃(0)|2 − ρ+ + ρ−
2

∫
d3q

(2π)3
|ϕ̃(q)|2 (4.2.22)

(ϕ̃(q) is the Fourier transform of ϕ(x)), and for the non-ideal part of the free energy we obtain the so-
called Debye–Hückel approximation:

βFint

L3
≈ 1

2

∫
d3q

(2π)3
[ln(1 + β(ρ+ + ρ−)Ṽ (q))− β(ρ+ + ρ−)Ṽ (q)]. (4.2.23)

4.3 Path integrals for indistinguishable particles in quantum mechanics

Statistical methods are applicable to an ensemble of a large number of identical (or several types
of identical) particles. Before we develop path-integral methods for the derivation of statistical
characteristics (partition functions) in the framework of quantum statistical mechanics, let us discuss
peculiarities of path-integral representation for quantum-mechanical transition amplitudes in the case of
a few (a fixed number) indistinguishable particles. As we have learned in chapter 2, the calculation of
a quantum-mechanical transition amplitude for distinguishable particles can be carried out by using the
Feynman–Kac formula (for a general class of scalar potentials). In order to treat identical particles, we can
exploit the fact that this method separates the problem of the potential, dealt with by the Feynman–Kac
functional, from the problem of a correct choice of a set of paths to be integrated over. This allows us to
consider the latter problem for a non-interacting system.

The consideration here is applicable both to real and imaginary time formulations of quantum-
mechanical processes. For definiteness, we shall use the imaginary-time formalism which leads to the
Wiener path integrals and Brownian-like particle trajectories. The propagator over the configuration space
can be obtained by the application of permutations to a linear combination of standard Brownian processes
(quantum particle motion in imaginary time). The boson and fermion diffusion processes are fundamental
to this approach (Lemmens et al 1996) and their relation to the standard Brownian motion is settled
by restricting the configuration space of N particles to a specific domain, as well as by the appropriate
boundary conditions: absorption for the fermion diffusion process and reflection for the boson diffusion
process. In combination with the Feynman–Kac functional, this approach allows us to write the propagator
of the many-body Schrödinger equation as path integration with such boundary conditions (section 4.3.1).

In section 4.3.2, we shall apply this consideration to derive the partition function for fermionic and
bosonic particles in the oscillator potential. In section 4.3.3, we shall expand our consideration to the case
of the parastatistics.
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4.3.1 Permutations and transition amplitudes

The basic idea of this subsection is that for indistinguishable particles, the order in which the position
values are measured is irrelevant. This means that any permutation of the observed values should have
the same probability, so that we can restrict the domain of possible values to an ordered set of positions
x1 ≥ x2 ≥ · · · ≥ xN .

We shall first illustrate the technique for two particles on a line and then generalize the result to N
particles in the three-dimensional space.

♦ Two particles on a line

Let x1 and x2 be the coordinates of the first and second particle, respectively. The configuration space
is two-dimensional: (x1, x2) ∈ R

2 . If the particles are identical, the configuration (x1, x2) and the
configuration (x2, x1) should indicate the same state. For fermions with parallel spin, the anti-symmetry
under interchange of the two particles is taken into account by the propagator

〈x1, x2|e−t Ĥ/~|x ′
1, x ′

2〉 = K (x1, t|x ′
1, 0)K (x2, t|x ′

2, 0)− K (x1, t|x ′
2, 0)K (x1, t|x ′

2, 0) (4.3.1)

where K (x, t|x0, t0) is the propagator for a single particle. For convenience, we use here the Euclidean-
time formalism because later we shall be interested mainly in the corresponding partition function (cf
4.1.4). Let DN define a domain on a line satisfying the condition x1 ≥ x2 ≥ · · · ≥ xn , where
x1, x2, . . . , xn denote the possible components of the positions of the particles on a line. We consider
formula (4.3.1) for x1 ≥ x2 and x ′

1 ≥ x ′
2, so that (x1, x2) ∈ D2 and (x ′

1, x ′
2) ∈ D2. The boundary of D2 is

defined by x1 = x2 and denoted by ∂D2 and the propagator (4.3.1) has the absorption boundary condition

〈x ′
1, x ′

2| exp{−t Ĥ/~}|x1, x2〉|x1=x2 = 〈x ′
1, x ′

2| exp{−t Ĥ/~}|x1, x2〉|x ′1=x ′2 = 0

on this boundary.
Similarly, the symmetry of bosons under permutations leads to the propagator

〈x1, x2|e−t H/~|x ′
1, x ′

2〉 = K (x1, t|x ′
1, 0)K (x2, t|x ′

2, 0)+ K (x1, t|x ′
2, 0)K (x1, t|x ′

2, 0). (4.3.2)

Again, propagator (4.3.2) is a transition amplitude of a two-dimensional diffusion process on D2, but now
with reflecting boundary conditions on ∂D2. As for fermions, the required conditions for such a transition
amplitude are easily verified. It is clear that (4.3.1) and (4.3.2) can be written respectively as a determinant
and a permanent:

〈x1, x2|e−t H/~|x ′
1, x ′

2〉 =
∣∣∣∣ K (x1, t|x ′

1, 0) K (x1, t|x ′
2, 0)

K (x1, t|x ′
2, 0) K (x2, t|x ′

2, 0)

∣∣∣∣
ξ

(4.3.3)

where |a|ξ with ξ = +1 refers to the permanent of a matrix a (for bosons) and |a|ξ with ξ = −1 means
the determinant of a (fermions). (Recall that the permanent of a matrix a is defined by the following sum
over all permutations P:

perm(a) ≡ |a|+ =
∑

P

a1P(1)a2P(2) · · · aN P(N)

see, e.g., Ryser (1963).) This observation allows us to generalize the process for two identical particles to
a process for N identical particles moving in one dimension: we need only substitute the 2× 2 permanent
or determinant by a N × N analog. In this case, the form of the transition amplitude will automatically
take the boundary conditions into account.
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♦ Transition amplitudes for an arbitrary number of identical particles in a three-dimensional space

The starting point of the construction is the projection of the transition amplitudes for distinguishable
particles on a transition amplitude which has the correct symmetry properties under permutation of the
particle positions:

KI(X̄, t|X̄ ′, 0) = 1

N !
∑

P

ξ P K (X̄ P , t|X̄ ′, 0) (4.3.4)

(KI is the propagator for indistinguishable particles). This projection is a weighted average over all
elements P of the permutation group. The weight is the character ξ P of the representation; i.e. ξ P = 1
for bosons, whereas for fermions ξ P+ = 1 for even permutations P+ and ξ P− = −1 for odd permutations
P−. Here a vector X̄ belongs to the configuration space R3N , with the x , y and z components of the j th
particle as the (3 j)th, (3 j+1)th and (3 j+2)th components of X̄ . Its permutations X̄ P can be represented
as

X̄ P = PX̄ (4.3.5)

where P is a 3N × 3N-dimensional matrix with one 3 × 3 identity matrix on each block row and block
column, corresponding to each particle. For instance, for two particles, P can take one of the two forms[

1I3 ©
© 1I3

]
or

[© 1I3
1I3 ©

]
with

1I3 =
[ 1 0 0

0 1 0
0 0 1

]
and © =

[ 0 0 0
0 0 0
0 0 0

]
.

The transition amplitude for the non-interacting identical non-relativistic particles takes the form (cf
(2.2.41))

KI(X̄, t|X̄ ′, 0) =
( m

2π~t

)3N/2 1

N !
∑

P

ξ P exp
{
− m

2~t
[PX̄ − X̄ ′]1[PX̄ − X̄ ′]

}
(4.3.6)

which can readily be rewritten as

KI(X̄, t|X̄ ′, 0) =
( m

2π~t

)3N/2
exp
{
− m

2~t
(X̄ · X̄ + X̄ ′ · X̄ ′)

}( 1

N !
∑

P

ξ P exp
{m

~t
PX̄ · X̄ ′}).

(4.3.7)

♦ Projection on even permutations

We now separate the even permutations P+ from the odd permutations P−, which can be written as
P− = r P+, where r is an element of the permutation group which interchanges two particles (i.e. r is
a transposition). Without loss of generality, we take the first and second particles. Using the fact that
ξ P+ = 1 for both fermions and bosons, we obtain∑

P

ξ P exp
{m

~t
PX̄ · X̄ ′} =∑

P+

(
exp
{m

~t
P+ X̄ · X̄ ′}+ ξ r exp

{m

~t
rP+ X̄ · X̄ ′}) (4.3.8)

where r is a 3N × 3N matrix whose action is to interchange the coordinates of the first and the
second particle. Hence, r only differs from the identity matrix in the block column and the block row
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corresponding to these particles:

r =


© 1I3 © · · · ©
1I3 © © · · · ©
© © 1I3 · · · ©
...

...
...

. . .
...

© © © · · · 1I3

 . (4.3.9)

Note that ξ r = −1 for fermions (since r is an odd permutation) and ξ r = 1 for bosons. Some elementary
algebra then gives∑

P

ξ P exp
{m

~t
PX̄ · X̄ ′} =

∑
P+

exp

{
1

2

m

~t
[1I3N + r ]P+ X̄ · X̄ ′

}

×
(

exp

{
1

2

m

~t
[1I3N − r]P+ X̄ · X̄ ′

}
+ ξ r exp

{
−1

2

m

~t
[1I3N − r]P+ X̄ · X̄ ′

})
(4.3.10)

where 1I3N denotes the 3N × 3N identity matrix (not to be confused with the 3 × 3 identity matrix, 1I3).
Since

1I3N − r =


1I3 −1I3 © · · · ©
−1I3 1I3 © · · · ©
© © © · · · ©
...

...
...

. . .
...

© © © · · · ©

 (4.3.11)

we readily obtain
1I3N − rP+ X̄ · X̄ ′ = (xP+,1 − xP+,2) · (x ′

1 − x ′
2) (4.3.12)

where xP+,1 and xP+,2 are the coordinates of the first and second particles in P+ X̄ . The vector x j denotes
the usual three-dimensional position vector, in contrast to X̄ , which is a vector of dimension 3N , as
previously described.

♦ The parity of KI(X̄, t|X̄
′
, 0) and of its components

The transition amplitude for N three-dimensional non-interacting identical particles is given by

KI(X̄, t|X̄ ′, 0) =
( m

2π~t

)3N/2
exp

{
− m

2~t
(X̄ · X̄ + X̄ ′ · X̄ ′)

}
× 1

N !
∑
P+

exp
{ m

2~τ
[1I3N + r]P+ X̄ · X̄ ′}

×


2 cosh

(
1

2

m

~t
(xP+,1 − xP+,2) · (x ′

1 − x ′
2)

)
for bosons

2 sinh

(
1

2

m

~t
(xP+,1 − xP+,2) · (x ′

1 − x ′
2)

)
for fermions.

(4.3.13)

This form of the amplitude allows us to answer the questions about the state space and boundary
conditions. Indeed, the decompositions

cosh a · b = cosh axbx cosh ayby cosh azbz + cosh axbx sinh ayby sinh azbz
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+ sinh axbx cosh ayby sinh azbz + sinh axbx sinh ayby cosh azbz (4.3.14)

sinh a · b = sinh axbx sinh ayby sinh azbz + sinh axbx cosh ayby cosh azbz

+ cosh axbx sinh ayby cosh azbz + cosh axbx cosh ayby sinh azbz (4.3.15)

allow us to rewrite the transition amplitude as a sum of four terms KI(X̄, t|X̄ ′, 0; ,); , = 0 . . .3:

KI(X̄, t|X̄ ′, 0) =
3∑

l=0

KI(X̄, t|X̄ ′, 0; ,). (4.3.16)

Here the summation index , is associated with combinations of given parities (with respect to the
interchange of the indicated coordinates of the three-dimensional space):

Parity of KI(X̄, t |X̄ ′, 0; ,) for bosons

index: , = 0 , = 1 , = 2 , = 3

x-coordinate even even odd odd
y-coordinate even odd even odd
z-coordinate even odd odd even

(4.3.17)

Parity of KI(X̄, t |X̄ ′, 0; ,) for fermions

index: , = 0 , = 1 , = 2 , = 3

x-coordinate odd odd even even
y-coordinate odd even odd even
z-coordinate odd even even odd

(4.3.18)

In this way we have reduced the problem of construction of the boundary conditions for three-
dimensional particles to the same problem for particles on a line, which we have discussed earlier. The
important consequence is that it is sufficient to analyze each component KI(X̄, t|X̄ ′, 0; ,) with a given
parity individually, with respect to the interchange of particles. For a given value of ,, this function,
defined on the configuration space, can be obtained from a transition amplitude defined on the state space
D3

N ≡ DN ⊗ DN ⊗ DN , because it is a product of the transition probabilities of three independent
processes, each defined on a DN with the appropriate (bosonic or fermionic) boundary conditions.

Let {XF,(t); t ≥ 0} be the set of paths for identical fermions moving in R3 . Then, this set is given
according to the following rule

, = 0 , = 1 , = 2 , = 3

XF,(t) =


XF(t)
YF(t)
ZF(t)


XF(t)
YB(t)
ZB(t)


XB(t)
YF(t)
ZB(t)


XB(t)
YB(t)
ZF(t)

(4.3.19)

where XF(t), YF(t) and ZF(t) denote the set of paths for fermions in the x-, y- and z-directions. Similarly,
XB(t), YB(t) and ZB(t) are the set of paths for bosons in the x-, y- and z-directions. For bosons the
decomposition is as follows

, = 0 , = 1 , = 2 , = 3

XB,(t) =
 XB(t)

YB(t)
ZB(t)

 XB(t)
YF(t)
ZF(t)

 XF(t)
YB(t)
ZF(t)

 XF(t)
YF(t)
ZB(t).

(4.3.20)
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For example, the fermion case with , = 1 is invariant under the even permutations P+ of the particle
coordinates. Furthermore, under r (interchange of two particles) it is antisymmetric in the x-direction
and symmetric in the y- and z-directions. These symmetry properties allow us to restrict the transitions
X̄ ′ → X̄ to a domain D3

N ≡ DN ⊗ DN ⊗ DN , simultaneously satisfying the conditions

X̄ ∈ D3
N ⇐⇒

{ x1 ≥ x2 ≥ · · · ≥ xN

y1 ≥ y2 ≥ · · · ≥ yN

z1 ≥ z2 ≥ · · · ≥ zN

(4.3.21)

with the boundary condition that KI(X̄, X̄ ′; τ ; , = 1) is zero if, during the transition process, the boundary
∂DN is hit in the x-direction, being at the same time symmetric with respect to the boundary ∂DN in the
y- and the z-direction.

The transition amplitude for particles with interactions can be constructed now with the help of the
Feynman–Kac formula. Of course, for a straightforward application of the permutation symmetries, the
potential term must not spoil the indistinguishability of the particles. In other words, it should possess
appropriate symmetry properties under the permutation of particle positions.

The spin states are left out of the picture by assuming that there are no spin-dependent interactions
involved and therefore the spin, as an additional degree of freedom, does not have to be considered
explicitly. Of course, the spin degrees of freedom are implicitly present because two identical particles
are only considered indistinguishable if they are in the same spin state.

4.3.2 Path-integral formalism for coupled identical oscillators

Now we proceed to study the path-integral approach to the calculation of partition functions and
generating functionals in quantum statistical mechanics. First, we consider the direct approach to such
calculations in the familiar case of a harmonic potential. In the next sections, we shall study a general
approach in the framework of field theories at non-zero temperature and at finite energy.

The case of identical particles in a parabolic confinement potential with either harmonic interactions
between the particles, or with an anisotropy induced by a homogeneous magnetic field on top of the
parabolic confinement gives rise to repetitive Gaussian integrals and allows us to derive an explicit
expression for the generating function of the canonical partition function (Brosens et al 1997). For an
ideal gas of non-interacting particles in a parabolic well, this generating function coincides with the grand
canonical partition function. With interactions, the calculation of this generating function (instead of the
partition function itself) circumvents the constraints on the summation over the cycles of the permutation
group and, because of this fact, allows us to calculate the canonical partition function recursively, for the
system with harmonic two-body interactions.

Note that the model of N identical particles in a parabolic well, in the presence of a magnetic field
and with harmonic repulsive or attractive two-body interactions, has its intrinsic value since it constitutes
an exactly soluble idealization of atoms in a magnetic trap.

♦ Harmonically interacting identical particles in a parabolic well

We shall calculate the partition function for N identical particles with the following Lagrangian, including
one-body and two-body potentials:

L = 1

2

N∑
j=1

ṙ2
j − V1 − V2
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V1 = �2

2

N∑
j=1

r2
j V2 = −ω

2

4

N∑
j,l=1

(r j − rl)
2.

The potentials can be rewritten in terms of the centre-of-mass coordinate r and the coordinates u j

describing the positions of the particles measured from the centre of mass:

R = 1

N

N∑
j=1

r j u j = r j − R (4.3.22)

so that

V1 + V2 = VCM + V

VCM = 1

2
N�2 R2 V = W 2

N∑
j=1

u2
j

with
W =

√
�2 − Nω2. (4.3.23)

The requirement that W be real (i.e. �2 ≥ Nω2) expresses the stability condition that the confining
potential be strong enough to overcome the repulsion between the particles. If a harmonic interparticle
attraction is considered, the eigenfrequency W would become W = √

�2 + Nω2, and no stability
condition has to be imposed on the confining potential.

Since the system consists in each direction of one degree of freedom with the frequency � and
(N − 1) degrees of freedom with the frequency W , the propagator

KD(r ′′1 · · · r ′′N , β|r ′1 · · · r ′N , 0) ≡ 〈r ′′1 · · · r ′′N |e−βH |r ′1 · · · r ′N 〉D (4.3.24)

for distinguishable particles (indicated by the subscript D for three dimensions and d in one dimension)
can be calculated from the action expressed in the imaginary-time variable, and it is of course a product
of the propagators Kd per component:

KD(r ′′1 · · · r ′′N , β|r ′1 · · · r ′N , 0) = Kd(x̄
′′, β|x̄ ′, 0)Kd(ȳ

′′, β|ȳ ′, 0)Kd(z̄
′′, β|z̄′, 0) (4.3.25)

where the column vector x̄ contains the x-components of the particles, i.e. x̄T = (x1, . . . , xN ) and
similarly for ȳ and z̄. Knowing the propagator K (x ′′, β|x ′, 0) of a single harmonic oscillator (cf (2.2.77)),
we find for the one-dimensional propagator Kd of the N distinguishable oscillators in the interacting
system that

Kd(x̄
′′, β|x̄ ′, 0) = K (

√
N X ′′, β|√N X ′, 0)�

K (
√

N X ′′, β|√N X ′, 0)W

N∏
j=1

K (x ′′
j , β|x ′

j , 0)W (4.3.26)

where the factor
√

N in
√

N X ′′,
√

N X ′ accounts for the additional factor N in VCM. The denominator
in (4.3.26) compensates for the fact that (N − 1) instead of N degrees of freedom of frequency W
are available. The three-dimensional propagator KD (4.3.24) for N distinguishable oscillators of the
interacting system is, according to (4.3.25) and (4.3.26), given by

KD(r̄ ′′, β|r̄ ′, 0) = K (
√

N R′′, β|√N R′, 0)�
K (

√
N R′′, β|√N R′, 0)W

N∏
j=1

K (r ′′j , β|r ′j , 0)W (4.3.27)

K (r ′′j , β|r ′j , 0)W = K (x ′′
j , β|x ′

j , 0)W K (y ′′j , β|y ′j , 0)WK (z′′j , β|z′j , 0)W (4.3.28)
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where the vectors with bar r̄ denote (as in the preceding section) the points in the configuration space R3N ,
i.e. r̄ ≡ {(x1, y1, z1), . . . , (xN , yN , zN )}. Similarly to the case of free particles considered in preceding
section, the symmetrized density matrix KI for three-dimensional identical particles (indicated by the
subscript I) can be obtained by using the following projection, with P denoting the permutation matrix:

KI(r̄ ′′, β|r̄ ′, 0) = 1

N !
∑

P

ξ P KD(Pr̄ ′′, β|r̄ ′, 0) (4.3.29)

where ξ = +1 for bosons and ξ = −1 for fermions. It should be emphasized that P acts on the particle
indices, not on the components of r separately. The partition functionZ I ≡ Tr exp{−β Ĥ} is then readily
obtained by integrating over the configuration space

ZI =
∫

d3N r̄ KI(r̄, β|r̄, 0) =
∫

d3N r̄
1

N !
∑

P

ξ P KD(Pr̄, β|r̄, 0). (4.3.30)

The integration proceeds in three steps:

(i) the first stage deals with the centre-of-mass treatment;
(ii) the second concerns the cyclic decomposition of the permutations in (4.3.30) and
(iii) at the third step, the summation over the cycles will be performed.

♦ Step 1: The centre-of-mass decoupling

Making use of the δ-function to separate the centre-of-mass variable and the Fourier transform, we obtain

Z I =
∫

d3r
∫

d3k

(2π)3
eik·R K (

√
N R, β|√N R, 0)�

K (
√

N R, β|√N R, 0)W

×
∫

d3N r̄
1

N !
∑

P

ξ P
N∏

j=1

K ((Pr) j , β|r j , 0)We−ik·r j/N . (4.3.31)

This transformation makes R independent of the particle positions relative to the centre of mass. The
real dependence on the relative positions is reintroduced by the Fourier transform. It should be noted that
the explicit dependence of propagator (4.3.27) on R, and the presence of the factor exp{−ik · r j/N} are
consequences of the two-body interactions.

♦ Step 2: Cyclic decomposition

Any permutation can be broken up into cycles (see, e.g., Hamermesh (1964)). Recall that a cycle P(c)l of
length ,, in this context, is a special type of general permutations P . Acting on a subset of , elements xi

(i = 1, . . . , ,), it produces the permutation: P(c)l (xi ) = xi+1 (i = 1, . . . , ,− 1), P(c)l (xl) = x1. Suppose
that the cyclic decomposition of a particular permutation contains M, cycles of length ,. It is known that
the positive integers M, and , then have to satisfy the constraint∑

,

,M, = N. (4.3.32)

Furthermore, the number M(M1, . . .MN ) of cyclic decompositions with M1 cycles of length 1, . . . ,M,

cycles of length ,, . . . is known to be

M(M1, . . . ,MN ) = N !∏
, M,!,M,

. (4.3.33)
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A cycle of length , can be obtained from (,− 1) transpositions. Therefore, the sign factor ξ P can be
decomposed as

ξ P =
∏
,

ξ (,−1)M,. (4.3.34)

Combining these results, we obtain

Z I =
∫

d3 R
∫

d3k

(2π)3
eik·R K (

√
N R, β|√N R, 0)�

K (
√

N R, β|√N R, 0)W

∑
M1···MN

∏
,

ξ (,−1)M,

M,!,M,
(K,(k))M, (4.3.35)

K,(k) =
∫

d3r,+1

∫
d3r, · · ·

∫
d3r1 δ(r,+1 − r1)

N∏
j=1

K (r j+1, β|r j , 0)We−ik·r j/N . (4.3.36)

The δ-function expresses the fact that the decomposition is cyclic. It is obvious that

K,(k) = K
(1D)
, (kx)K

(1D)
, (ky)K

(1D)
, (kz) (4.3.37)

which allows us to analyze K,(k) from its one-dimensional constituents:

K
(1D)
, (kx) =

∫
dx,+1

∫
dx, · · ·

∫
dx1 δ(x,+1 − x1)

N∏
j=1

K (x j+1, β|x j , 0)We−ikx x j /N . (4.3.38)

Using the semigroup property of the harmonic oscillator propagator K (x j+1, β|x j , 0)W, all
integrations but one can be performed

K
(1D)
, (kx) =

∫
dx K (x, ,β|x, 0)W exp

{
−
∫ ,β

0
dτ fx (τ )x(τ )

}
(4.3.39)

where

fx (τ ) = i
kx

N

,−1∑
j=0

δ(τ − jβ). (4.3.40)

The integral (4.3.39) is the propagator KW, f of a driven harmonic oscillator with the Lagrangian

LW, fx = 1
2 ẋ2 − 1

2 W 2x2 + fx (τ )x (4.3.41)

studied in sections 1.2.7 and 1.2.8 (see (1.2.262) and also problem 2.2.14, page 198, volume I). It should
be noted that without the two-body interactions, the driving force (4.3.40) is absent. Taking the result
from (1.2.262) and integrating over the configuration space, we obtain

ZW, fx (β) =
∫

dx KW, fx (x, β|x, 0)

= 1

2 sinh 1
2βW

exp

{
1

2

∫ β

0
dτ
∫ β

0
dσ

fx (τ ) fx (σ )

2W

cosh(( β2 − |τ − σ |)W )
sinh 1

2βW

}
. (4.3.42)

After some straightforward algebra, we obtain for the one-dimensional function K(1D)
, (kx):

K
(1D)
, (kx) = 1

2 sinh 1
2,βW

exp

(
− ,

4N2

k2
x

W

1 + e−βW

1 − e−βW

)
(4.3.43)
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and for its three-dimensional extension

K,(9k) =
(

1

2 sinh 1
2,βW

)3

exp

(
− ,

4N2

k2

W

1 + e−βW

1 − e−βW

)
. (4.3.44)

Using (4.3.32), we are then left with a sixfold integral for the partition function

Z I =
∫

d3 R
∫

d3k

(2π)3
eik·R K (

√
N R, β|√N R, 0)�

K (
√

N R, β|√N R, 0)W
exp

{
− 1

4N

k2

W

1 + e−βW

1 − e−βW

}

×
∑

M1···MN

∏
,

ξ (,−1)M,

M,!,M,

(
1

2 sinh 1
2,βW

)3M,

. (4.3.45)

Both the integrations over k and R are Gaussian, leading to the following series forZ I:

Z I =
(

sinh 1
2βW

sinh 1
2β�

)3

Z
(0)

I(N)

Z
(0)

I(N) ≡
∑

M1···MN

∏
,

ξ (,−1)M,

M,!,M,

(
e− 1

2 ,βW

1 − e−,βW

)3M,

.

(4.3.46)

Without the two-body interactions (W = �, that is ω = 0, cf (4.3.23)), Z(0)I(N) is the partition
function of a set of identical oscillators. The partition functionZ I only differs from it by a centre-of-mass
correction and the actual values of W.

♦ Step 3: The generating function

The remaining summation over the cycles involves the constraint (4.3.32), which, however, can be
removed by the use of the generating function technique. Concentrating on the explicit dependence of
Z
(0)

I(N) on N (with W considered as a parameter), we can construct the following generating function

/(u)
def≡

∞∑
N=0

Z
(0)

I(N)u
N (4.3.47)

with Z(0)I(0) = 1 by definition. The partition function Z(0)I(N) can then be obtained by taking the
appropriate derivatives of /(u) with respect to u, assuming that the series for /(u) is convergent near
u = 0:

Z
(0)

I(N) = 1

N !
d N

duN
/(u)

∣∣∣∣
u=0
. (4.3.48)

The summation over the number of cycles with the length , is now unrestricted and can easily be
performed:

/I(u) = exp

{ ∞∑
,=1

ξ,−1 e− 3
2 ,βW u,

,(1 − e−,βW )3

}
. (4.3.49)

This series can be rewritten into the more convenient form

/I(u) = exp

{
− ξ

∞∑
ν=0

1
2 (ν + 1)(ν + 2) ln(1 − ξue−βW ( 3

2+ν))
}
. (4.3.50)
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It should be noted that, in the case of a model without two-body interaction (W = 0), the function
/I(u) coincides with the grand canonical partition function of a set of identical particles in a parabolic
well.

Considering the differentiation in (4.3.48) step by step, i.e.

Z
(0)

I(N) = 1

N !
d N−1

duN−1

d

du
/(u)

∣∣∣∣
u=0

together with the product rule and an elementary binomial expansion, we can find the following reccurence
relation (Brosens et al 1997):

Z
(0)

I(N) = 1

N

N−1∑
m=0

ξ N−m−1

(
b

1
2 (N−m)

1 − bN−m

)3

Z
(0)

I(m) (4.3.51)

where
b ≡ e−βW . (4.3.52)

The corresponding one-dimensional version of this recurrence relation becomes

Z
(0)

I,(1D)(N) = 1

N

N−1∑
m=0

ξ N−m−1 b
1
2 (N−m)

1 − bN−m
Z
(0)

I,(1D)(m) (4.3.53)

leading to the following explicit expression for the one-dimensional boson Z(0)b and one-dimensional
fermionZ(0)f partition functions:

Z
(0)

b = b
1
2 N∏N

j=1(1 − b j )

Z
(0)

f = b
1
2 N2∏N

j=1(1 − b j )
. (4.3.54)

It is easy to check that these partition functions are the solution of the recurrence relation forZ(0)I,(1D)(N)
with ξ = 1 for bosons and ξ = −1 for fermions. Unfortunately, for the three-dimensional case an analytic
solution of (4.3.51) has not been found and we have to rely on numerical schemes.

Note that the same techniques is applicable to the calculation of the partition function for N identical
oscillators in a constant magnetic field with the Lagrangian:

Lωc = 1
2

N∑
j=1

(ṙ j − 2ωcx j ẏ j )
2 − 1

2�
2

N∑
j=1

r2
j (4.3.55)

where ωc is the cyclotron frequency (Brosens et al 1997).
Having at our disposal expressions for the partition functions (explicit in the one-dimensional case

or obtained numerically from the recurrence relations in the three-dimensional case), we can find all the
thermodynamical characteristics of systems of bosons or fermions in the harmonic potential and in the
magnetic field by using the standard formulae, for example, the free energy F = −β−1 lnZ , the internal
energy U = ∂(βF)/∂β and the specific heat C = ∂U/∂T .
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4.3.3 Path integrals and parastatistics

In the preceding subsections, we discussed the construction of path integrals for identical bosons and
fermions. In this subsection, we shall generalize our consideration to the more general case of particles
obeying parastatistics. Parastatistics, invented by H S Green (1953), is the first ever consistent extension
of fundamental statistics. In this, the standard bosonic or fermionic fields which would create identical
particles are replaced by composite fields whose components commute with themselves and anticommute
with each other for parabosons, or vice versa for parafermions. The number p of components of the
fields defines the ‘order’ of the parastatistics. In general, we can put, at most, p parafermions in a totally
symmetric wavefunction and, at most, p parabosons in a totally antisymmetric one.

Although direct physical applications of parastatistics are absent, it is quite instructive to learn the
path-integral techniques needed for such a generalization.

♦ Basics of the parastatistics

Green noted that the commutator of the number operator with the annihilation and creation operators is
the same for both bosons and fermions:

[̂nk, â
†
l ] = δkl â

†
l . (4.3.56)

The number operator can be written as

n̂k = 1
2 [̂a†

k , âk]± + constant (4.3.57)

with an anticommutator ([·, ·]+ ≡ {·, ·}) in the case of bosons and a commutator ([·, ·]− ≡ [·, ·]) in the
case of fermions. If these expressions are inserted in the commutation relation (4.3.56), the resulting
relation is trilinear in the annihilation and creation operators (Green’s trilinear commutation relation for
his parabose and parafermi statistics):

[[̂a†
k , âl]±, â†

m ]− = 2δlmâ†
k . (4.3.58)

Since these rules are trilinear, the usual vacuum condition

âk|0〉 = 0 (4.3.59)

does not suffice to allow the calculation of matrix elements of the as and a†s. Hence, a condition on the
one-particle states must be added:

âk â†
l |0〉 = δkl |0〉. (4.3.60)

Green found an infinite set of solutions of his commutation rules, one for each integer, by giving an ansatz
which he expressed in terms of Bose and Fermi operators. Let

â†
k =

p∑
α=1

b̂(α)†k âk =
p∑
α=1

b(α)k (4.3.61)

and let b̂(α)k and b̂(β)†k be Bose (Fermi) operators for α = β, but anticommute (commute) for α = β, for
the ‘parabose’ (‘parafermi’) cases. This ansatz clearly satisfies Green’s relation. The integer p is the order
of the parastatistics. The physical interpretation of p is that, for parabosons, p is the maximum number
of particles that can occupy an antisymmetric state, while for parafermions, p is the maximum number
of particles that can occupy a symmetric state (in particular, the maximum number which can occupy the
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same state). The case p = 1 corresponds to the usual Bose or Fermi statistics. From Green’s ansatz,
it is clear that the squares of all norms of states are positive, since the sums of Bose or Fermi operators
give positive norms. Thus, parastatistics gives a set of self-consistent theories. The violations of statistics
provided by parastatistics are gross. Parafermi statistics of order 2 has up to two particles in each quantum
state. High-precision experiments are not necessary to rule this out for all particles we think are fermions.
It is important to note that the parastatistics of order p is related by the so-called Klein transformation to
models with usual bosons or fermions and with exact SO(p) or SU(p) internal symmetry.

♦ The permutation group SN and quantization of many-body systems

As in the case of fermions or bosons, we can deal with a parastatistical system with a fixed number
of particles in a first-quantized formalism. In this approach, the N-body Hilbert space is decomposed
into irreducible representations of the particle permutation group SN (for basic facts about SN see,
e.g., in Hamermesh (1964)). Since the particles are indistinguishable, this group should be viewed as
a ‘gauge’ symmetry of the system, and the states transforming in the same representation have to be
identified. Moreover, since all physical operators are required to commute with the permutation group,
each irreducible component is a superselection sector. Therefore, we can project the Hilbert space to only
some of the irreducible representations of SN . Further, only one state in each irreducible representation
need be kept as a representative of the multiplet of physically equivalent states. The resulting reduced
space constitutes a consistent quantization of N indistinguishable particles. The choice of included
irreducible representations constitutes a choice of quantum statistics.

This description relies on a canonical quantization of the many-body system. It is of interest to
have also a path-integral formulation of a quantum system, since this complements and completes the
conceptual framework and usually offers orthogonal intuition in several cases. For ordinary statistics, this
question was studied in sections 4.3.1 and 4.3.2. Here, we present such a realization for parastatistics
(Polychronakos 1996).

The starting point, as in the ordinary bosonic statistics in section 4.3.1, will be the coordinate
representation of the full (unprojected) Hilbert space, spanned by the position eigenstates |x1, . . . , xN 〉 ≡
|x〉 (where xi can be in a space of any dimension). The collection of such states for a set of distinct xi

transforms in the N !-dimensional defining representation of SN

P̂ |x〉 ≡ |Px〉 = |x P−1(1), . . . , x P−1(N)〉 (4.3.62)

where P is a permutation (the appearance of P−1 is necessary to represent the products of permutations
in the right order).

♦ Projection of states to irreducible representations of SN

Projecting the Hilbert space to an irreducible representation R of SN amounts to keeping only linear
combinations of states within this multiplet transforming in R, that is,

|a; x〉 =
∑

P

Ca(P)P̂ |x〉 a = 1, . . . , dR ≡ dim(R) (4.3.63)

where the sum is taken over all the elements of the permutation group and Ca(P) are appropriately chosen
coefficients. Let us denote by Rab(P̂) the matrix elements of the permutation P̂ in the representations R,
so that

P̂ |a, x〉 =
∑

b

Rab(P
−1)|b, x〉. (4.3.64)
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The defining representation decomposes into irreducible components, classified by the Young
tableaux, each appearing with a certain multiplicity. Thus, we need to clarify whether we have to
keep only one irreducible representation out of each multiplicity or the whole set of a given irreducible
representations. To do this, we note that if instead of the base state |x〉 for the construction of the
states |a, x〉 in (4.3.63) we choose a different permutation P|x〉, then although the new states |a, Px〉
constructed through (4.3.63) still transform in the irreducible representation R, in general they are not
linear combinations of |a, x〉, but rather span a different copy of R. Since we can continuously move in
the configuration space from |x〉 to P|x〉, we conclude that we must keep all irreducible representations
R in the decomposition of the defining representation according to a given multiplicity. To realize this
explicitly, we construct the states

|ab, x〉 =
√

dR

N !
∑

P

Rab(P)P|x〉. (4.3.65)

Using the group property of the representation R(P1)R(P2) = R(P1 P2), we deduce that under the action
of the group SN and under a change of the base point x , these states transform as

P̂ |ab, x〉 =
∑

c

Rac(P
−1)|cb, x〉

|ab, Px〉 =
∑

c

Rcb(P
−1)|ac, x〉.

(4.3.66)

Thus, we see that the first index in these states labels the different elements of a single irreducible
representation R, while the second index labels the different equivalent irreducible representations in
the multiplet. Since both indices take dR values, we recover the standard result that each irreducible
representation of SN is embedded in the defining representation a number of times equal to its dimension.

Consider now the matrix element 〈ab, x | Â|cd, y〉, where Â is any physical operator, that is, any
operator commuting with all the elements P̂ of SN . Substituting the definition (4.3.65) and using the
unitarity of P̂ (P̂† = P̂−1) and of R (R∗

ab(P) = Rba(P−1)) we obtain, after a change of summation
variable,

〈ab, x | Â|cd, y〉 = dR

N !
∑

P,P ′,e
Rbe(P

′)Rea(P
−1)Rcd (P)〈x | Â P̂ ′|y〉. (4.3.67)

Using further the Schur orthogonality relation for the representations, i.e.∑
P

Rab(P)Rcd (P
−1) = N !

dR
δadδbc (4.3.68)

we finally obtain

〈ab, x | Â|cd, y〉 =
∑

P

δac Rbd(P)〈x | Â|Py〉. (4.3.69)

Let us first choose Â = 1I. Then this provides the overlap between the states:

〈ab, x |cd, y〉 =
∑

P

δac Rbd (P)δ(x − Py). (4.3.70)

For x in the neighborhood of y, it is P = 1 which contributes to the normalization, for which Rbd (1) = δbd

and we recover the standard normalization for the states.
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♦ Propagator for particles with parastatistics defined by an irreducible representation of the
permutation group SN

Now we can choose Â = e−it Ĥ , where Ĥ is the Hamiltonian, and thus find the propagator
K (ab; x, t|cd; y, 0) between the states of the system. It is clear from (4.3.69) that the first index a in
the state |ab, x〉 propagates trivially. Since this is the index that corresponds to the different but physically
equivalent states within each irreducible representation R, we conclude that the required projection of
the Hilbert space to the physical subspace amounts to simply omitting this index from all states (that is,
freeze this index to the same fixed value for all states of the theory; no physical quantity will ever depend
on the choice of this value). On the other hand, the second index, corresponding to different equivalent
irreducible representations, does not propagate trivially and must, as argued before, be kept. We are led
therefore to the physical states |ba, x〉 → |a, x〉 and the propagator

K R(a; x, t|b; y, 0) =
∑

P

Rab(P)KD(x, t|Py, 0) (4.3.71)

where KD(x, t|Py, 0) = 〈x | exp{−it Ĥ }P̂|y〉 is the usual many-body propagator for distinguishable
particles. Expressing the latter in terms of the standard path integral and using (4.3.71), we obtain the
path-integral form of the propagator for N particles obeying the parastatistics. We note that, due to the
transformation property (4.3.66), the states |a, Px〉 are linear combinations of the states |a, x〉. Therefore,
projecting down to the physical subspace corresponding to R amounts to trading the original N ! copies of
physically equivalent states |Px〉 for a number dR of global internal degrees of freedom for the system,
labeled by the index a.

It is now easy to write down the path integral corresponding to identical particles quantized in the
R-irreducible representation of SN . KD(x, t|Py, 0) can be expressed as an N-body path integral in the
standard way, with particles starting from the positions Pyi = yP−1(i) and ending in the positions xi .
Since all permutations of particle positions are physically equivalent, (4.3.71) instructs us to sum over all
sectors where particles end up in such permuted positions, weighted with the factors Rab(P) depending
on the internal degrees of freedom of the initial and final states. From (4.3.65) and (4.3.70) we can write
the completeness relation within the physical subspace

1IR =
∫

d N x

N !
∑

a

|a, x〉〈a, x | (4.3.72)

and with the use of (4.3.72) it is easy to prove that this transition amplitude satisfies the standard semigroup
property∫

d N y

N !
∑

b

K R(a; x, t|b; y, t ′)K R(b; y, t ′|c; z, 0) = K R(a; x, t|c; z, 0) 0 < t ′ < t . (4.3.73)

♦ Extension to parabosons and parafermions

The extension to parabosons, parafermions or any similar statistics is immediate. Let S = {R1, . . . , Rn}
be the set of allowed irreducible representations of SN in the Hilbert space. The internal degree of freedom
now takes the values A = (R, a), where R ∈ S and a = 1, . . . , dR labels the internal degrees of freedom
within each irreducible representation. So, overall, A takes dR1 + dR2 + · · · + dRn different values. The
propagator (and corresponding path integral) is obviously

KS(A; x, t|B; y, 0) =
∑

P

S(P)AB KD(x, t|Py, 0) (4.3.74)
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where S(P)AB = δRA,RB(RA)ab(P). For parabosons (parafermions) of the order p, S is the set of Young
tableaux with up to p rows (columns). We note that the irreducible representations for parafermions
are the duals of those for parabosons (the dual of a tableau is the tableau with the rows and columns
interchanged). In an appropriate basis, the representation matrices of the dual irreducible representations
R, R̃ are real and satisfy

R̃ab(P) = (−1)P Rab(P) (4.3.75)

where (−1)P is the parity of the permutation. We arrive then at the relation between the weights for
parabosons and parafermions of the order p:

SpF (P)AB = (−1)P SpB(P)AB . (4.3.76)

This extends a similar relation for ordinary fermions and bosons, for which there are no internal degrees
of freedom and SB(P) = 1.

From the path integral we can evaluate the partition function, by simply shifting to Euclidean time
t → −iβ and summing over all initial and final states, with the measure implied by (4.3.72). Given that∑

a

Raa(P) = Tr R(P) = χR(P) (4.3.77)

we get an expression in terms of the characters χR of SN :

ZS(β) =
∫

d N x

N !
∑

P

S(P)〈x |e−β Ĥ |Px〉 where S(P) =
∑
R∈S

χR(P). (4.3.78)

The interpretation in terms of a periodic Euclidean path integral is obvious. The characters χR(P) are a
set of integers, and thus the ‘statistical factors’ S(P) weighing each topological sector of the path integral
are (positive or negative) integers. In the case of parabosons of any order p, however, we note that the
statistical weights are positive (or zero) integers. The ones for parafermions can be either positive or
negative, as given by

SpF (P) = (−1)P SpB(P) SpB(P) ≥ 0. (4.3.79)

A general formula for SpB(P) for an arbitrary p is absent.

♦ Partition function for an ideal parabosonic gas

From these results we can derive the partition function for a gas of parastatistical particles, as well as
the allowed occupancy of single-particle states. Consider a collection of non-interacting particles, for
which the Hamiltonian is separable into a sum of one-body Hamiltonians H = ∑

i H (xi). Let the
energy eigenvalues of the one-body problem be εi and the corresponding one-body Boltzmann factors
Zi = e−βεi . Consider now a sector of the Euclidean path integral characterized by the permutation of final
points P . It is clear that this path integral Z P decomposes into a product of disconnected components,
characterized by the fact that the particle world-lines in each component mix particles only within the
same component. Similarly to the cyclic decomposition in the preceding subsection (see step 2 of the
derivation of the partition function for identical particles), we can decompose the path integral into cyclic
permutations:

Z P =
∏

,∈cycles(P)

Z,. (4.3.80)
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The path integral Z, for a cyclic permutation of , particles taking into account the periodic boundary
conditions for partition functions can be thought of as the path integral of a single particle winding ,
times around the Euclidean time β. This means that

Z,(β) = Z1(,β) =
∑

i

Z,i (4.3.81)

and the corresponding expression forZ P becomes

Z P =
∏

,∈cycles(P)

∑
i

Z,i . (4.3.82)

The expression for the full partition function then becomes

Z S =
∑
R∈S

∑
P

1

N !χR(P)
∏

n∈cycles(P)

∑
i

Z,i . (4.3.83)

Expression (4.3.83) can be presented in a more explicit form via the so-called Schur functions. This
representation does not deal with a path-integral technique and for further details we refer the reader to
the original papers by Suranyi (1990) and Chaturvedi (1996).

4.3.4 Problems

Problem 4.3.1. In chapter 2, we learned that in imaginary time a quantum-mechanical particle formally
looks like a Brownian particle. Check that transition amplitude (4.3.3) for indistinguishable bosons can
be interpreted as a transition probability amplitude for a Brownian particle (boson diffusion process).

Hint. Let X̄ and Ȳ be two elements of D3
N (see definition after (4.3.1)) and construct the following

permanent
KIB(X̄, t|Ȳ , 0) = perm|K (xi , t|y j , 0)|. (4.3.84)

It is clear that KIB (the subscript IB means ‘indistinguishable bosons’) is positive for all (X̄, Ȳ ) pairs
and that it also satisfies the required initial condition

lim
t→0

KIB(X̄, t|Ȳ , 0) = δ(X̄ − Ȳ ). (4.3.85)

Furthermore, in order that KIB can be used as a transition probability density, it has to satisfy the
conservation of probability (normalization) and the semigroup property∫

D3
N

d3N Ȳ KIB(X̄, t|Ȳ , 0) = 1 (4.3.86)∫
D3

N

d3N Ȳ KIB(X̄, t|Ȳ , 0)KIB(Ȳ , s|z̄, 0) = KIB(X̄, t + s|z̄, 0). (4.3.87)

The conservation of probability can be derived using the property that a permanent is invariant under
an interchange of two rows or columns. Hence∫

D3
N

d3N Ȳ KIB(X̄, t|Ȳ , 0) =
∫

D3
N

d3N Ȳ
1

N !
∑

p

KIB(X̄, t|Ȳp, 0)

= 1

N !
∫
R3N

d3N Ȳ perm|K (xi , t|y j , 0)| = 1 (4.3.88)
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where use has been made of the fact that K (xi , t|y j , 0) conserves probability.
The semigroup property follows with an analogous procedure by extending the integration domain

DN to RN using the permutation symmetry and subsequently using the semigroup property of the single-
particle propagators:∫

D3
N

d3N Ȳ KIB(X̄, t|Ȳ , s)KIB(Ȳ , s|Z̄, 0) = 1

N !
∫

D3
N

d3N Ȳ
∑

p

KIB(X̄, t|Ȳp, s)KIB(Ȳp, s|Z̄, 0)

= 1

N !
∫
R3N

d3N Ȳ perm|K (xi , t|y j , s)| × perm|K (y j , s|zk , 0)| = perm|K (xi , t|zk , 0)|.
(4.3.89)

In the last step, the semigroup property of the one-particle propagators gives rise to N ! identical
contributions.

In order to see how the integration over two permanents leads again to a permanent, the following
argument might be useful. Denote by |Ȳ 〉 a fully symmetrized and properly normalized solution of the
Schrödinger equation for free bosons. The resolution of unity is then given by

1 = 1

N !
∫
R3N

d3N Ȳ |Ȳ 〉〈Ȳ |. (4.3.90)

Denoting by H i
0 the Hamiltonian for the i th free particle, and by H0 = ∑N

i=1 H i
0 the Hamiltonian for N

free non-interacting bosons, a diffusion from z̄ ∈ DN to X̄ ∈ DN is given by

KIB(X̄, t|Z̄, 0) = 〈X̄ |e−Ĥ0t/~|Z̄〉 = 1

N !
∫
R3N

d3N Ȳ 〈X̄ |e−Ĥ0(t−s)/~|Ȳ 〉〈Ȳ |e−Ĥ0s/~|Z̄〉. (4.3.91)

The reduction of all identical contributions to the preceding integral by permutation symmetry then leads
to

KIB(X̄, t + s|Z̄, 0) =
∫

D3
N

d3N Ȳ 〈X̄|e−Ĥ0t/~|Ȳ 〉〈Ȳ |e−Ĥ0s/~|Z̄〉

=
∫

D3
N

d3N Ȳ KIB(X̄, t|Ȳ , 0)KIB(Ȳ , s|Z̄, 0). (4.3.92)

Therefore, KIB(X̄, t|Ȳ , 0) is a transition probability density to go from Ȳ to X̄ in a time lapse t for
a system of non-interacting identical particles with Bose–Einstein statistics. The boundary conditions
for this process are determined by the behaviour of KIB(X̄, t|Ȳ , 0) at the boundary ∂DN . Because
∇̄KIB(X̄, t|Ȳ , 0) is zero for X̄ ∈ ∂DN , KIB satisfies Neumann boundary conditions, leading to reflection
for the process at the boundary.

Problem 4.3.2. Transform the initial expression (4.3.30) for the partition function of identical particles
into the form (4.3.31), with separated centre-of-mass variables.

Hint. The centre-of-mass coordinate R does not only depend on the coordinates of all the particles, but it
also has its own propagator. Therefore, substituting R by its expression in terms of the particle positions
and then performing the integration does not seem to be the most adequate way to deal with the integration
over the configuration space. Instead, the following identity is used for the formal treatment of R as an
independent coordinate, at the expense of additional integrations:∫

d3N r̄ f

(
r̄,

1

N

N∑
j=1

r j

)
=
∫

d3 R
∫

d3N r̄ f (r̄, R)δ
(

R − 1

N

N∑
j=1

r j

)
. (4.3.93)
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The Fourier transformation of the δ-function then leads to∫
d3N r̄ f

(
r̄,

1

N

N∑
j=1

r j

)
=
∫

d3 R
∫

d3k

(2π)3
eik·R

∫
d3N r̄ f (r̄, R)e−ik̄·r̄ (4.3.94)

where k̄ = k
N {(1, 1, 1), . . . , (1, 1, 1)} is a 3N-dimensional vector. Applying this transformation to the

partition functionZI and rearranging the factors, we obtain (4.3.31).

4.4 Field theory at non-zero temperature

This section is devoted to field theories describing open systems with exchange of energy between systems
and surrounding thermal reservoirs. In other words, we shall consider canonical quantum statistical
ensembles in the second-quantized formalism, that is quantum field theory at non-zero temperature.

The systems can be non-relativistic (section 4.4.1) or relativistic (sections 4.4.2 and 4.4.3). In either
case, the basic quantities to be calculated are the corresponding canonical density operator (4.1.11), the
partition function (4.1.13) and mean values (4.1.7) of operators constructed from the quantum fields.
In fact, if we are interested only in the static characteristics of thermal systems in equilibrium, the
calculations reduce to expressing the trace of the density operator ρ̂ = Z

−1
β exp{−β Ĥ} through the

path integral (which we have already considered several times in this book; cf sections 2.2.1 and 4.3.2)
and to the subsequent calculation of the path integral (exact or approximate). Therefore, sections 4.4.1
and 4.4.2, devoted to static characteristics, contain only some peculiarities of the trace calculation for
field theoretical systems (diagram techniques, the method of the effective potential). In contrast, if we
wish to study dynamical processes for thermal field systems, we need an essential modification of the
path-integral representation for the partition function (in particular, the doubling of field variables). We
shall consider this topic in section 4.4.3.

4.4.1 Non-relativistic field theory at non-zero temperature and the diagram technique

The non-relativistic field theory is the quantum mechanics of systems with an arbitrary number of
identical particles in the formalism of the second quantization. In classical theory, such systems are
described by the complex fields ϕ, ϕ∗, which are ordinary or anticommuting functions (depending on
whether the particle statistics are bosonic or fermionic). The quantization is carried out with the help
of the usual canonical commutation relations in the bosonic case or anticommutation relations in the
fermionic case.

The free action functional has the form

S0[ϕ∗, ϕ] =
∫

d4x ϕ∗(x)[i∂t − Ĥ1]ϕ(x) (4.4.1)

where x = (t, x) and Ĥ1 is a one-particle Hamiltonian, i.e. a linear operator acting only on x and
having the meaning of the usual quantum-mechanical Hamiltonian for one particle from the system under
consideration:

Ĥ1 = p̂2

2m
+ V1(x)− µ. (4.4.2)

Here the first term is the kinetic energy of the particle, the second is the potential of an external field (e.g.,
a crystal lattice potential for electrons in a solid body) and µ has the meaning of the chemical potential.
If the particles have non-zero spin, the fields ϕ∗, ϕ carry the spin index (hidden in our formulae).
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It is clear from (4.4.1) that iϕ∗ is the canonically conjugate momentum for the field ϕ. Thus, the
canonical (anti)commutation relations have the form

ϕ̂(x)ϕ̂†(x ′)± ϕ̂†(x ′)ϕ̂(x) = ~δ(x − x ′). (4.4.3)

If the fields ϕ∗, ϕ are presented as a series expansion over some orthonormal complete set of
eigenfunctions�α of the operator Ĥ1 or of the kinetic energy part p̂2/(2m),

ϕ̂(x) =
∑
α

âα�α ϕ̂†(x) =
∑
α

â†
α�

∗
α (4.4.4)

the coefficients âα, â†
α obey the standard commutation relations for creation and annihilation operators:

âαâ†
α ± â†

αâα = δαβ
âαâβ ± âβ âα = â†

α â†
β ± â†

β â†
α = 0.

In order to take into account the interaction between the particles of the system, we have to add
higher-order terms into the Hamiltonian. Usually, we consider only pairwise interactions:

Hint =
∫

d3x d3y u(x − y)ϕ∗(t, x)ϕ(t, x)ϕ∗(t, y)ϕ(t, y) (4.4.5)

where u(x − y) is the two-point potential.
If we are interested in calculating the thermodynamical mean values (4.4.16) and (4.4.17), the

variable t should be converted into the Euclidean one, t → τ = −it , and τ plays the role of the
temperature: τ ∈ [0, β ≡ (kBT )−1]. The subsequent formulae are slightly different for the bosonic
and fermionic cases.

♦ Generating functional and diagram technique for the bosonic non-relativistic field theory

In the bosonic case, the path integral is defined over the space of periodic functions

ϕ(τ + β, x) = ϕ(τ, x) ϕ∗(τ + β, x) = ϕ∗(τ, x) (4.4.6)

(because we are calculating the trace (4.1.14)). Assuming that the particles are confined in a box L3 and
taking into account the periodicity (4.4.6), we can make the Fourier transform (i.e. the expansion (4.4.4)
over the eigenfunctions of the one-particle kinetic energy):

ϕ(τ, x) = 1√
βL3

∑
ωn ,k

a(ωn, k)ei(ωnτ−kx)

ϕ∗(τ, x) = 1√
βL3

∑
ωn,k

a∗(ωn, k)e−i(ωnτ−kx)
(4.4.7)

where
ωn = 2πn/β ki = 2πnI/L n, nI ∈ Z. (4.4.8)

In terms of these Fourier components, the complete action takes the form

S =
∑
ω,k

(
k2

2m
− iω − µ

)
a∗(ω, k)a(ω, k)

+ 1

2βL3

∑
k1+k2=k3+k4
ω1+ω2=ω3+ω4

ũ(k1 − k3)a
∗(ω1, k1)a

∗(ω2, k2)a(ω3, k3)a(ω4, k4). (4.4.9)
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Here ũ(k) is the Fourier transform of the two-particle potential u(x),

u(x) = 1

L3

∑
k

eikxũ(k) (4.4.10)

and we have used the shorthand notation ω j ≡ ωn j ( j = 1, 2, 3, 4).
The basic objects in a field theory at non-zero temperature are the thermal Green functions, i.e. the

mean values of the products of field variables:

〈〈T(ϕ̂(τ1, x1) · · · ϕ̂(τn, xn))〉〉β ≡ Tr[ρ̂C(β)(ϕ̂(τ1, x1) · · · ϕ̂(τn, xn))] (4.4.11)

(ρ̂C(β) is the canonical density operator (4.1.11) at the inverse temperature β). The usual steps which
we have carried out several times in this book yield the following path-integral representation for their
generating functional:

Zβ [ j, j∗] = N−1
∫
DϕDϕ∗ exp

{
− 1

~

[
S +

∫
d4x ( j∗(τ, x)ϕ(τ, x)+ j (τ, x)ϕ∗(τ, x))

]}
. (4.4.12)

The perturbation expansion of this path integral leads to the diagram technique with the following basic
elements:

-

@
@
@

�
�
�

I

I
	

	

ω, k

ω1, k1 ω3, k3

ω2, k2 ω4, k4

G0 =
(

iω − k2

2m + µ
)−1

ũ(k1 − k3)+ ũ(k2 − k4) .

Free two-point Green function:

Two-particle vertex:

♦ Generating functional and diagram technique for the fermionic non-relativistic field theory

The quantization of fermionic systems is carried out by integration over Grassmann elements. To obtain
correct statistics, we have to input antiperiodic boundary conditions in τ (problem 4.4.3, page 254):

ϕ(τ + β, x) = −ϕ(τ, x) ϕ∗(τ + β, x) = −ϕ∗(τ, x). (4.4.13)

As a result, the fermionic functions are expanded in the following Fourier series:

ϕ(τ, x) = 1√
βL3

∑
ωn ,k

a(ωn, k)ei(ωnτ−kx)

ϕ∗(τ, x) = 1√
βL3

∑
ωn,k

a∗(ωn, k)e−i(ωnτ−kx)
(4.4.14)

where
ωn = 2π(n + 1/2)/β ki = 2πnI/L n, nI ∈ Z. (4.4.15)

Formally, the action functional for fermionic systems looks the same as for bosonic systems (4.4.9). The
diagram technique is also quite similar and has the following basic elements:
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-

@
@
@

�
�
�

I

I
	

	

ω, k

ω1, k1 ω3, k3

ω2, k2 ω4, k4

G0 =
(

iω − k2

2m + µ
)−1

ũ(k1 − k3)− ũ(k2 − k4) .

Free two-point Green function:

Two-particle vertex:

The only difference is that the frequencies ωβ/(2π) take half-integer values and that the two-particle
potential is antisymmetrized.

4.4.2 Euclidean-time relativistic field theory at non-zero temperature

In this subsection, we consider the calculation of temperature-dependent quantum effects in relativistic
field theories at non-zero temperature. To illustrate the theoretical techniques, we use, at first, the theory
of a single scalar field ϕ. Without any loss of generality we assume that we work in the rest frame of the
system so that a Hamiltonian approach is adequate. Further, in this subsection we shall assume that the
system under consideration is in a thermal equilibrium. In this case, its Green functions are given by the
conventional thermodynamical averaging:

Gβ(x1, . . . , xN ) = 〈〈T(ϕ̂(x1) · · · ϕ̂(xN ))〉〉β
def≡ Tr[ρ̂C (β)T(ϕ̂(x1) · · · ϕ̂(xN ))]
=
∑

n

〈n|T(ϕ̂(x1) · · · ϕ̂(xN ))|n〉 e−βEn∑
m e−βEm

. (4.4.16)

In (4.4.16), |n〉 denote a complete orthonormal set of energy eigenstates of the Hamiltonian with the
eigenvalues En . As β ≡ 1/(κBT ) goes to infinity, we recover the usual expression for the Green functions
of the scalar field, defined as the mean value of the time-ordered product in the ground state |0〉.

The generating functional of these thermal Green functions has the form

Zβ [ j ] =
〈〈

T
(

exp

{
i

~

∫
dx j (x)ϕ(x)

})〉〉
β

= 1

Tr exp{−β Ĥ} Tr

[
e−β Ĥ T

(
exp

{
i

~

∫
dx j (x)ϕ(x)

})]
(4.4.17)

where the trace is taken over any complete set of states.

In the case of zero-temperature quantum field theory, there are two formalisms: in real- and
imaginary-time variables. At non-zero temperature, the two techniques are essentially different and the
choice of one of them crucially depends on the problem to be solved. In this subsection we shall discuss
the Euclidean-time formalism introduced by Feynman (see Feynman (1972a) and references therein)
and developed by Matsubara (1955) for non-relativistic systems, and later extended to field theory (see
Abrikosov et al (1965) and references therein).
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♦ Path-integral representation for the generating functional of thermal Green functions

The usual steps allow us to represent the trace (4.4.17) in terms of the path integral:

Zβ [ j ] = N−1
∫
Dϕ(x) exp

{
−
[

SE,β −
∫ β

0
dτ
∫

d3x jϕ

]}
= N−1

∫
Dϕ(x) exp

{
−
∫ β

0
dτ
∫

d3x

[
1

2
(∂iϕ)

2 + 1

2
m2ϕ2 + V (ϕ)− jϕ

]}
(4.4.18)

where SE,β denotes the Euclidean action on the finite ‘time’ interval [0, β] for the scalar field ϕ. Note that
(∂iϕ)

2 ≡ ∑3
i=0(∂iϕ)

2. It is seen that (4.4.18) is quite similar to the generating functional for ordinary
(Euclidean) field theory, which we considered in chapter 3, the only specific feature of Zβ consisting in
the periodic boundary condition

ϕ(0, x) = ϕ(β, x) (4.4.19)

on the finite ‘time’ interval. The periodicity in the ‘time’ variable τ implies the Fourier decomposition

ϕ(τ, x) = β−1
∞∑

m=−∞

∫
d3k

(2π)3
ϕm(k) exp{i(kx + ωmτ } (4.4.20)

where ωm = 2πm/β.
Let us first consider the free theory. In terms of the Fourier transform, the free action S0,β reads

S0,β [ϕ] = 1

2β

∑
m

∫
d3k

(2π)3
(ω2

m + k2 + m2
0)ϕm(k)ϕ−m(k) (4.4.21)

where ϕ∗m = ϕ−m , so that the propagator in the momentum space has the form

Dβ(ωm , k) = 1

ω2
m + k2 + m2

0

. (4.4.22)

Its Fourier transform, i.e. the propagator in the coordinate space,

Dβ(τ − τ ′, x − x ′) = 1

β

∑
m

∫
d3k

(2π)3
exp{i[ωm(τ − τ )+ k(x − x ′)]}

ω2
m + k2 + m2

0

(4.4.23)

is periodic in the time variable:

Dβ(τ + β, x) = Dβ(τ, x) (4.4.24)

(the Kubo–Martin–Schwinger propagator relation). This is a consequence of the field periodicity
condition. As usual, the generating functional for a theory with interaction can be written formally as

Zβ [ j ] = exp

{
−
∫ β

0
dτ
∫

d3x V

(
δ

δ j

)}
Z0,β [ j ]. (4.4.25)

The power expansion of the exponent in (4.4.25) generates the perturbation series for the Green functions
of the thermal scalar field theory.
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♦ Effective potential and critical temperature

To study the behaviour of a system with a variation of temperature, it is convenient to use the so-called
effective potential. In general, this can be defined in the zero-temperature quantum field theory as well.

• Consider �[φ], the functional Legendre transform of the generating functional W [J ] of connected
Green functions. As we have explained in section 3.1.5, �[φ] generates the one-particle irreducible
(OPI) Green functions. Besides its purely technical merit, the functional �[φ] has a direct physical
meaning, having the interpretation of the quantum generalization of the classical action of the model
under consideration. For this reason, it is termed the effective action of the theory.

To explain this, recall that the initial generating functional Zβ [J ] satisfies the Schwinger equation (cf
section 3.1.5, equation (3.1.143)) which can be rewritten as follows:[(

δS[φ]
δφ(x)

) ∣∣∣∣
φ=φ̂

+ J (x)

]
Zβ [J ] = 0 (4.4.26)

where φ(x) is substituted by the operator (we explicitly recover the Planck constant ~ needed for further
discussion)

φ̂ = −i~
δ

δ J (x)
.

Using the relation Zβ [J ] = exp{W [J ]}, the Schwinger equation can be presented as[(
δS[φ]
δφ(x)

) ∣∣∣∣
φ=φ̃

+ J (x)

]
1I = 0 (4.4.27)

where

φ̃(x) = − i~

(
δW

δ J (x)
− δ

δ J (x)

)
= φ(x)− i~

∫
dy

δ2W

δ J (x)δ J (y)

δ

δφ(y)

= φ(x)+ i~
∫

dy

(
δ2�

δφ(x)δφ(y)

)−1
δ

δφ(y)
(4.4.28)

and 1I is the unit (trivial) functional (i.e. (δ/δ J )1I = 0). On the other hand, the properties of the Legendre
transformation imply (cf section 3.1.5) that

J (x) = − δ�

δφ(x)
. (4.4.29)

The comparison of (4.4.28) and (4.4.29) yields a rather cumbersome equation for the functional �[φ],
which in the classical limit gives

lim
~→0

�[φ] = S[φ]. (4.4.30)

This limit justifies the name effective action for the generating functional �[φ] for OPI-Green functions.
Note, however, that while S[φ] is the integral of a local Lagrangian density, the quantum effective action
is highly non-local:

�[φ] =
∞∑

m=0

1

m!
∫

d4x1 · · · d4xm φ(x1) · · ·φ(xm)�m(x1, . . . , xm) (4.4.31)
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(here �m(x1, . . . , xm) are m-point OPI-Green functions). We can give a quasi-local form to �[φ] by
expanding each field φ(x j ), j = 1 about the point x ≡ x1 and then by integration over all but x = x1
variables:

�[φ] =
∫

d4x [−U(φ)+ 1
2 Z(φ)∂µφ∂

µφ + terms containing derivatives of the order ≥ 4] (4.4.32)

where U(φ), Z(φ) are functions of φ. The limit of U(φ) is the total classical potential Ucl(φ):

lim
~→0

U(φ) = Ucl(φ) ≡ 1
2 m2φ2 + V (φ) (4.4.33)

where V (ϕ) defines a self-interaction of the scalar field.

• U(φ) is the quantum generalization of this classical potential and is known as the effective potential.

The effective potential can be isolated in the full quantum theory by taking the mean field φ to be
constant in spacetime (recall that φ denotes the mean field φ = δW [J ]/δ J , in distinction from the initial
dynamical field ϕ, cf (3.1.154) and (3.1.155)). For such φ, only the effective potential remains in the
series (4.4.32), irrespective of the magnitude of ~. For a system in a spacetime box of volume βL3 and in
the case of constant φ, we have

�[φ] = −βL3V (φ). (4.4.34)

Note that the effective potential is numerically the same quantity in both Euclidean and Minkowski
(real-time) variants of quantum field theory. For finite-temperature Euclidean field theory, the effective
potential is identical to the conventional thermodynamic free energy.

In general, the calculations of most interest are of an effective potential Uβ (the subscript β indicates
that we consider a theory at non-zero temperature) for systems that possess symmetry-breaking at zero
temperature. Then, we expect a restoration of the symmetry as temperature increases. As we shall show,
a finite-order calculation in the loop expansion is sufficient to show that this expectation is correct.

Let us consider the simplest scalar ϕ4-theory with the classical potential term

Ucl(ϕ) = 1

2
m2ϕ2 + λ

4!ϕ
4. (4.4.35)

As we learned in section 3.2.8, at zero temperature and for m2 < 0 the reflection symmetry ϕ → −ϕ is
broken. We anticipate that, at high temperature, this discrete symmetry is restored.

The stationary-phase method gives the following one-loop approximation expression for the effective
potential:

U (1)
β (φ) = Ucl(φ)+ 1

2β

∑
n

∫
d3k

(2π)3
ln(k2 + ω2

n + M2(φ))+ U (1)
R (4.4.36)

where M2(φ) = U ′′
cl(φ) and U (1)

R is the one-loop renormalization counterterm. The sum over n in (4.4.36)
has the general form

f (E) =
∑

n

ln(E2 + ω2
n) (4.4.37)

and diverges. To extract its finite part, let us first find its derivative

∂ f (E)

∂E
= 2

∑
n

E

E2 + ω2
n

= 2
∑

n

E

E2 + (2πn/β)2

= 2β

(
1

2
+ 1

eβE + 1

)
. (4.4.38)
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Here we have used the result (Gradshteyn and Ryzhik (1980), formula 1.421.4)

∞∑
n=1

x

x2 + n2
= − 1

2x
+ 1

2
π coth(πx). (4.4.39)

The integration of (4.4.38) yields

f (E) = 2β[ 1
2 E + β−1 ln(1 − e−βE )] + constant (4.4.40)

and inserting this result in (4.4.36), we obtain finally

U (1)
β (φ) = Ucl(φ)+ {U (1)

β=0(φ)+ U (1)
R (φ)} + W (1)

β (φ). (4.4.41)

In this formula, the terms in the curly brackets give a diverging contribution, independent of temperature
(and hence it can be calculated in the usual zero-temperature quantum field theory) together with the
corresponding counterterms. The temperature-dependent contribution is given by the integral

W (1)
β (φ) = 1

β

∫
d3k

(2π)3
ln(1 − e−βE(k)). (4.4.42)

Note that this temperature-dependent addition to the one-loop effective potential is ultraviolet finite.
For small β (high T ), the integrand in (4.4.42) can be expanded in the power series (high temperature
expansion); this gives

W (1)
β (φ) = −π290(kBT )4 + M2(φ)

24
(kBT )2 +O(T ). (4.4.43)

The net result for the complete one-loop effective potential (after an additional shifting of the origin to the
point U (1)

β (φ = 0)) can be written in the form

U (1)
β (φ) = 1

2
m2

(
1 − T 2

T 2
c

)
φ2 + λ

4!φ
4 (4.4.44)

where the critical temperature Tc is given by

T 2
c = −24m2

λk2
B

. (4.4.45)

Recall that we study the model with spontaneous symmetry-breaking at zero temperature (and, hence,
with m2 < 0). At temperatures T < Tc the one-loop potential retains its degenerate minima. As T
increases to Tc these minima move continuously to the origin φ = 0, becoming coincident at T = Tc. The
restoration of symmetry, with a single minimum at φ = 0, takes place as the temperature becomes higher
than the critical temperature. This behaviour corresponds to a second-order phase transition (in contrast
to a first-order phase transition in which the minima jump discontinuously to the origin at T = Tc).

Unfortunately, this picture of the phase transitions as being very illuminative is a bit oversimplified.
The signal of this oversimplification comes from the fact that the obtained effective potential contradicts
the general property of effective potentials, i.e. the convexity.

Theorem 4.1 (Symanzik). The effective potential is convex even if the classical potential Vcl is non-convex
(e.g., corresponds to the spontaneous breaking, see figure 4.1) (Symanzik 1964).
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Proof. To prove this statement, let us start from the generating functional (in the Euclidean space) with
the constant source j and in a finite volume L3:

Zβ [ j ] =
∫
Dϕ exp

{
− 1

~

[
SE,β [ϕ] − j

∫ β

0
dτ
∫

L3
dxϕ(x)

]}
. (4.4.46)

Defining w( j) as

Zβ [ j ] ≡ exp

{
−β
~
w( j)L3

}
(4.4.47)

we obtain

−~L3 ∂
2w

∂ j2 =
〈( ∫ β

0
dτ
∫

L3
dx ϕ

)2〉
−
〈( ∫ β

0
dτ
∫

L3
dx ϕ

)〉2
(4.4.48)

where the averaging 〈· · ·〉 is defined with respect to the Euclidean (Wiener) functional measure:

〈F[ϕ]〉 =
∫
Dϕ(x) exp

{
− 1
~
(SE,β [ϕ] − j

∫ β
0 dτ

∫
L3 dx ϕ)

}
F[ϕ]∫

Dϕ(x) exp
{
− 1
~
(SE,β [ϕ] − j

∫ β
0 dτ

∫
L3 dx ϕ)

} . (4.4.49)

Applying the Cauchy–Schwarz–Bunyakovskii inequality, 〈(∫ ϕ)2〉 ≥ 〈(∫ ϕ)〉2, to equation (4.4.48), we
find

∂2w

∂ j2 ≤ 0 (4.4.50)

and using the particular case of the general properties of two-point OPI functions (cf (3.1.157)), i.e.

∂2U

∂φ2

∂2w

∂ j2 = −1 (4.4.51)

we finally obtain the desired result:
∂2U

∂φ2
≥ 0 (4.4.52)

(for any finite L3).

◦

Note that this proof and the implication of the statement to quantum field theory are rather formal
(we did not take into account possible divergences and did not discuss the L3 → ∞ limit). However,
this ‘naive’ formalism leads to the correct result (Griffiths 1972). The characteristic form of the effective
one-loop potential for a classical potential with two minima is depicted in figure 4.1.

To resolve the apparent contradiction between ‘naive’ one-loop calculation, spontaneous symmetry-
breaking phenomena and the convexity of the effective potential, we should take into account both extrema
of the double-well classical potential. Indeed, if m2 < 0, the action possesses two extremal points φ±( j)
at constant j , which are solutions of the equation

λφ±(φ2± − φ2
0) = 6 j (4.4.53)

where φ0 = 6|m2|/λ. In the j → 0 limit, SE [φ+] = SE [φ−] and the extremal points contribute
equally. To calculate the corresponding path integral we first have to isolate the zero-frequency mode
(cf sections 3.3.2 and 3.3.3). Using the separation

φ(x) = a +√
hξ(x) (4.4.54)
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Figure 4.1. The effective potential U (1)β (φ) for a scalar theory with a double-well classical potential Vcl(ϕ). The
effective potential is convex and coincides with the classical potential only outside the domain of its extrema.

and the decomposition of unity

1 =
∫ ∞

−∞
da δ

(
a − 1

βL3

∫ β

0
dτ
∫

L3
dx ϕ(x)

)
=
∫ ∞

−∞
da dα exp

{
iα

(
a − 1

βL3

∫ β

0
dτ
∫

L3
dx ϕ(x)

)}
we can write the generating functional in the form

Zβ( j) =
∫

da dαDξ(x) exp

{
− 1

~
(SE,β [a +√

~ξ ] − jaβL3)+ iα
∫ β

0
dτ
∫

L3
δx ξ

}
=
∫

da K (a) exp

{
−βL3

~
(Ucl(a)+ U (1)

R (a)− ja)

}
(4.4.55)

where

K (a) =
∫

dαDξ exp

{∫ β

0
dτ
∫

L3
dx

[
iαξ(x)− 1

2
ξ

(
−∇2 + m2 + 1

2
λa2
)
ξ

− 1

6

√
~λaξ3 − 1

4!λξ
4
]}
. (4.4.56)

Using the semiclassical approximation, the behaviour of the mean field φ( j) in the one-loop
approximation as a function of the source j can be found:

φ( j) ≈ φ0 tanh

(
L3 jφ

~

)
. (4.4.57)

It is easy to verify that the behaviour of φ( j) is different from that for the classical case (i.e. determined
from the classical Lagrangian with the external source) but becomes coincident with the classical
behaviour in the region φ > φ0 (i.e. outside the domain of the extrema of the classical potential). The
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most important point which we have been aiming to illustrate is that despite the convexity of the one-loop
effective potential, we still have the symmetry-breaking since φ( j)→ ±φ0 as j → ±0, as it is seen from
(4.4.57).

At non-zero and increasing temperature the potential has the flat-bottomed ‘bucket’ profile as
in figure 4.1, the base of which gets narrower as T increases and the disappearance of the flatness
signals about the restoration of the symmetry. Note that there are arguments that a more rigorous
description of this phenomenon requires the consideration of more complicated (than just a constant)
field configurations, in particular of the so-called domain walls (de Carvalho et al 1985).

4.4.3 Real-time formulation of field theory at non-zero temperature

In the preceding subsection, we considered the static characteristics of thermal systems in equilibrium.
The equilibrium is achieved as a result of a dynamical process of energy exchange between the fields and
the reservoir in which they are immersed. In these calculations, the underlying dynamics was hidden by
the imaginary-time formalism. Although the results of the Euclidean-time approach are correct, in order
to obtain more detailed information about systems at non-zero temperature, it is desirable to consider the
real-time formulation.

Any approach to a real-time description leads to the doubling of fields, as well as of the corresponding
Hilbert spaces of states. To understand this point qualitatively, let us consider a thermal reservoir
maintaining a certain number of excited quanta in a system. An exchange of energy can come about
by two processes: energy is absorbed by the system

• either by exciting new quanta or
• by annihilating the (Dirac) ‘holes’ of particles maintained by the reservoir.

The appearance of the new possibility of energy absorption in the case of non-zero temperature is
schematically depicted in figure 4.2. The two reverse processes are responsible for the emission of energy
by the system. While in the imaginary-time formulation these two types of process are inseparable, in
the real-time case they lead to a doubling of the fields. This formalism has been developed mainly by
Umezawa with co-authors (see Umezawa et al (1982) and references therein).

♦ Introductory example: the harmonic oscillator with doubling

To illustrate the technique, let us consider the much simpler problem of a free harmonic oscillator. The
doubling implies that we should consider two pairs of mutually commuting creation and annihilation
operators â†, â and b̂†, b̂ which act in the direct product Hilbert space spanned by the states

|n〉|ν〉 = (n!)−1/2(ν!)−1/2(̂a†)n (̂b†)ν |0〉|0〉.
Then the thermal averaging 〈〈Â(̂a†, â)〉〉 (cf (4.4.16)) for any operator Â constructed from â† and â can be
presented as the ordinary quantum-mechanical averaging:

〈〈Â(̂a†, â)〉〉β = 〈β| Â(̂a†, â)|β〉 (4.4.58)

with respect to the state |β〉

|β〉 =
∑

n exp{−βEn/2}|n〉|n〉√∑
n exp{−βEn}

=
∑

n exp{−βωn/2}(n!)−1(̂a†)n (̂b†)n |0〉|0〉√∑
n exp{−βωn}

= (1 − e−βω)1/2 exp{e−βω/2â†b̂†}|0〉|0〉 (4.4.59)
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Figure 4.2. Schematic presentation of energy absorption by a system at zero temperature (a) and the two ways of
absorption at non-zero temperature (b).

(En is the harmonic oscillator energy: En = (n + 1
2 )ω).

In the product Hilbert space, time translation is supposed to be generated by the Hamiltonian

Ĥ = ωâ†â − ωb̂†b̂ (4.4.60)

which is invariant with respect to the canonical transformations generated by the operator

L = iθ (̂ab̂ − â†b̂†) (4.4.61)

i.e.
âβ = eiLâe−iL = (cosh θ )̂a + (sinh θ )̂b†

â†
β = eiLâe−iL = (sinh θ )̂b + (cosh θ )̂a†.

(4.4.62)

Such canonical transformations are well known in the literature as the Bogoliubov transformations. The
state |β〉 can be considered as a result of the corresponding unitary transformation:

|β〉 = eiL̂ |0〉|0〉 (4.4.63)

with the appropriately chosen parameter θ . The latter can most easily be defined from the equality

〈〈̂aâ†〉〉 = 〈β |̂aâ†|β〉
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Figure 4.3. The contour in the complex-time plane for non-zero temperature in the imaginary-time (a) and in the
real-time (b) formalisms.

which, after simple calculation, gives the relation

cosh2 θ = (1 − e−βω)−1.

The doublets â, b̂† and b̂, â† allow us to describe the processes of energy exchange in the thermal bath
mentioned earlier: the oscillator system absorbs energy either by the excitation of additional quanta (̂a†)
or by the annihilation of holes of particles maintained by the thermal reservoir (̂b); the energy emission
similarly involves â and b̂†. The proper creation and annihilation operators that describe the excitation
and de-excitation of the system are the operators â†

β, âβ , given by the Bogoliubov transformation.

♦ Generalization to field theory: path-integral approach

The generalization to field theory is straightforward, though it requires some caution related to the
transition to infinite volume. We shall not discuss the operator thermal formalism for field theory (see
Umezava et al (1982)) using instead a shorter way based on the path-integral approach and a generalization
of the Euclidean (imaginary-time) thermal theory (Niemi and Semenoff 1984).

In the Euclidean formalism of the preceding subsection, we performed the integration in the complex
plane of the time variable from t = 0 to t = −iβ. The periodicity of the fields enables us to generalize
this interval to [−t0,−t0 − iβ] for any real t0. To obtain the real-time theory, we need to choose a different
contour C = C1 +C2 +C3 +C4 (see figure 4.3) with the same endpoints but which includes the real-time
axis (or at least a very large part of it). The causality condition imposes the constraint Im t < 0 (cf the
iε-prescription which we discussed in chapter 3), but there is still considerable freedom in the choice of
possible contour. The choice depicted in figure 4.3(b) is technically most convenient. At the end of the
calculation, we should take the limit t0 → ∞. We shall see that the field defined on the piece C2 can be
interpreted as the second field ϕ2(t, x) = ϕ(t − iβ/2, x). As the temperature T → 0, the contour C2
retreats to infinitely negative imaginary time and the ϕ2 field completely decouples from the theory.

The generating functional formally has the usual form

Zβ =
∫
Dϕ(τ, x)Dπ(τ, x) exp

{
i
∫

C
dτ
∫

d3x (π∂cϕ −H+ jϕ)

}
= N−1

∫
Dϕ(τ, x) exp

{
i
∫

C
dτ
∫

d3x (L(ϕ)+ jϕ)

}
. (4.4.64)

Here ∂c denotes the derivative in the direction of the contour C . The field ϕ is integrated over all
configurations periodic on C . The Lagrangian density on C can be written as

L(ϕ) = − 1
2ϕ(�c + m2)ϕ + V (ϕ) (4.4.65)
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where �c = ∂2
c −∇2. The path integral (4.4.64) contains the fields with non-physical arguments. This is

not convenient for practical use and the next step is to recast it as an integral over fields at real times.
First, we note that the Gaussian integration for the free-field Lagrangian in (4.4.64) can be performed

in the usual way, with the result

Z0,β = exp

{
− 1

2 i
∫

C
d4x d4 y j (x)Dβ(x − y) j (y)

}
(4.4.66)

where Dβ(x − y) is the thermal propagator on the contour, satisfying

(�c + m2)Dβ(x − y) = −δc(x − y). (4.4.67)

Here δc(x)
def≡ δc(τ )δ(x), the variable τ being defined on the contour C . To find the explicit form of

Dβ(x), let us make the partial Fourier transform

D̃β(τ, k) =
∫

d3x

(2π)3
e−ikx Dβ(τ, x) (4.4.68)

so that D̃β(τ, k) satisfies the equation

(∂2
c + E2(k))D̃β(τ, k) = −δc(τ ) (4.4.69)

E2(k) = k2 + m2. (4.4.70)

It is also helpful to decompose the Green function into retarded D(r)β and advanced D(a)β components:

Dβ(x − y) = θc(τx − τy)D
(r)
β (x − y)+ θc(τy − τx)D

(a)
β (x − y) (4.4.71)

whose partial Fourier transforms satisfy the equations

(∂2
c + E2(k))D̃(a,r)β (τ, k) = 0. (4.4.72)

These equations show that D̃(a,r)β (τ, k) are linear combinations of eiEτ and e−iEτ . The coefficients of
these linear combinations are found from the condition

D(a)β (τx − τy − iβ, x − y) = D(r)β (τx − τy, x − y) (4.4.73)

which, in turn, follows from the periodicity of ϕ and the Kubo–Martin–Schwinger relation (4.4.24).
Equations (4.4.72), (4.4.69) and (4.4.73) imply

D̃(r)β (τ, k) = f (E)[e−iEτ + eiE(τ+iβ)]
D̃(a)β (τ, k) = f (E)[eiEτ + e−iE(τ−iβ)]

(4.4.74)

f (E) = i

2E

1

(1 − e−βE )
. (4.4.75)

The key observation for further development is that Dβ(τ1 − τ2, k)→ 0 as t0 → ∞ if τ1 lies on C1
or C2 and τ2 lies on C3 or C4. This means thatZ0,β becomes separable in this limit:

Z0,β [ j ] = Z0,β[ j ;C1C2]Z0,β [ j ;C3C4] (4.4.76)
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in which the time integral in the individual factors is restricted to the appropriate parts of the contour
(x0, y0 lie on either C1,C2 or C3,C4). For sources localized in time, it can be absorbed into the
normalization as t0 → ∞, and we can identifyZ0,β [ j ] with Z0,β[ j ;C1C2] alone.

The next step is to define j1(t, x) = j (t, x), j2(t, x) = j2(t − iβ/2, x), and to rewrite the exponent
in (4.4.66): ∫

C1C2

dx dy j (x)Dβ(x − y) j (y) =
∫

C1

dx dy ja(x)Dab(x − y) jb(y). (4.4.77)

In the integral (4.4.77), as distinct from (4.4.66), all the functions are defined for real time. The matrix
propagator has the components:

D11(x − y) = Dβ(x − y)

D22(x − y) = Dβ(y − x)

D12(x − y) = −D(a)β (x0 − y0 + iβ/2, x − y)

D12(x − y) = −D(r)β (x0 − y0 − iβ/2, x − y)

(4.4.78)

(x0 and y0 are real). The components of the propagator are determined from these definitions and (4.4.71)–
(4.4.74). The full momentum-space propagator Dβ(k) reads

Dβ(k) =
(

D̃c(k) 0
0 −D̃∗

c (k)

)
− 2π iδ(k2 − m2)

eβE − 1

(
1 eβE/2

eβE/2 1

)
(4.4.79)

where D̃c(k) is the usual zero-temperature propagator (3.1.93) for a scalar field (in momentum
representation). The finite-temperature effect is only felt on the mass-shell. Although such terms
may seem surprising, they are the only way in which the defining relation of the Green function,
(�x + m2)D11(x) = −δ(x), can be sustained.

To recast the path integral in a double-field way, let us first write Z0,β as the path integral

+P F0,β [ j1, j2] =
∫
Dϕ1Dϕ2 exp

{
− i
∫

dx [ 1
2ϕa D−1

ab ϕb + jbϕb]
}

(4.4.80)

(D−1
ab is the inverse operator with respect to the matrix propagator). For an interacting theory in the large-t0

limit we can write

Zβ [ j1, j2] = exp

{
− i
∫

C
dx V

(
− i

δ

δ j

)}
Z0,β[ j ]

= exp

{
− i
∫

real time
dx

[
V

(
− i

δ

δ j1

)
− V

(
− i

δ

δ j2

)]}
Z0,β[ j1, j2]

=
∫
Dϕ1Dϕ2 exp

{
− i
∫

dx [ 1
2ϕa D−1

ab ϕb − V (ϕ1)+ V (ϕ2)+ jbϕb]
}
. (4.4.81)

The minus sign of the second terms in the exponents occurs because of the reverse direction of the contour
C2.

Note that only those diagrams in which the field ϕ1, but not ϕ2, appears on the external legs have a
physical meaning. Hence, the ϕ2-field is a kind of ghost field, only occurring in the interior of diagrams.

Thus, we have arrived at the double-field formulation of the scalar field theory at non-zero
temperature using the path-integral approach. A similar analysis can be carried out for fermions. The
doubling that comes from the deformation of the contour is again inevitable.
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4.4.4 Path integrals in the theory of critical phenomena

For a finite system, the partition function Zβ is an entire function of β = 1/(kBT ). However, once
the infinite volume limit is taken the free energy can have singularities. When the singularities occur
for real positive temperature T , the system has phase transitions. The phase transitions and the related
spontaneous symmetry-breakings abound in modern condensed matter physics.

If there are other external parameters in the problem, such as a magnetic field, the location of the
points of phase transition can depend on these parameters. A plot of the location of the points of phase
transition is called a phase diagram. One of the important tasks of statistical mechanics is the derivation
of phase diagrams for realistic systems. Phase diagrams are quite dependent on the specific details of
the system under consideration. However, once the locations of the points of phase transition are known,
there is a remarkable universality in the behaviour of the system near the critical point.

There are many phenomena which occur at an isolated critical temperature Tc and the theory of
critical phenomena relates them together. Some of the principal phenomena are:

• the singularities in the free energy;
• the existence of spontaneous symmetry-breaking;
• the behaviour of correlation functions at long distances.

These are related through the construction of the scaling limit and scaling laws. Before a discussion of
the path-integral technique, we shall briefly recall some general characteristics of phase transitions.

♦ Singularities in the free energy

To discuss singularities in the free energy, it is convenient to define the specific heat c as

c = −T
∂2 f

∂T 2 (4.4.82)

where f
def≡ F/Ld (F is the free energy). Then the simplest generic singularity the specific heat can have

at a critical temperature Tc is

c ∼ Aα|T − Tc|−α. (4.4.83)

The exponent α is referred to as a critical exponent.

♦ Spontaneous symmetry-breaking

According to our discussion in section 4.4.2, we consider the mean value

φ( j) = δW [ j ]
δ j

= lim
L→∞〈ϕ(x)〉β (4.4.84)

(cf (4.4.57)). In lattice spin systems, the external source j may have the direct physical meaning of the

external magnetic field h. Then the mean value φ(T )
def≡ limh→0 φ(h) is termed the magnetization.

If j = 0, interaction (4.4.35) is invariant under ϕ → −ϕ and thus, if φ( j) is continuous at j = 0,
it follows that φ(0) = 0. If T > Tc, this is indeed the case. However, because we are considering the
L → ∞ limit in definition (4.4.84), there is no reason that φ( j) has to be continuous at j = 0 and, indeed,
for T < Tc the continuity fails.
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As we have learned in the preceding subsection, typically as T → Tc, the mean value φ(T )
def≡

lim j→0 φ( j) (in particular, spontaneous magnetization in the case of a spin system) vanishes. Thus we
define a second critical exponent β as

φ(T ) ∼ Aβ(Tc − T )β as T → Tc, T < Tc. (4.4.85)

Another quantity related to the mean value φ( j) is the susceptibility χ :

χ
def≡ ∂φ( j)

∂ j

∣∣∣∣
j=0
. (4.4.86)

This susceptibility also has a singular behaviour at T = Tc and we parametrize this in terms of the
exponent γ as

χ ∼ Aγ |T − Tc|−γ T → Tc. (4.4.87)

In the case of a magnetic external field, χ is the usual magnetic susceptibility.

♦ Correlations

Not only the bulk thermal properties of the system have singularities at Tc, but also the corresponding
phenomena in the correlation functions. Consider, for example, the two-point correlation function (Green
function) in the infinite volume limit:

G(X) = 〈ϕ(0)ϕ(X)〉β . (4.4.88)

When T < Tc, we find that as R ≡ ∑d
i=1 X2

i → ∞, the correlation approaches the limiting value of φ2

exponentially as

G(X) ∼ φ2
(

1 + C(θ, T )

R p
exp{−R/ξ(θ, T )} + · · ·

)
(4.4.89)

where ξ(θ, T ) is called the correlation length (θ denotes the set of angular variables in a polar coordinate
frame in the d-dimensional space). Similarly, when T > Tc,

G(X) ∼ C ′(θ, T )

Rk
exp{−R/ξ ′(θ, T )} + · · · . (4.4.90)

The correlation lengths depend on T and diverge as T → Tc, and thus we define the exponent ν as

ξ(θ, T ) ∼ Aν(θ)|T − Tc|−ν (T → Tc). (4.4.91)

The divergence of the correlation length as T → Tc is a signal that expressions (4.4.89) and (4.4.90)
break down at Tc and instead it is found that for T = Tc the correlations decay as a power law

G(X) ∼ Ac(θ)

Rd−2+η (R → ∞) (4.4.92)

where d is the dimensionality of the system and η is called the anomalous dimension.
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♦ Scaling limit and scaling functions

Of all the phenomena discussed earlier that happen at an isolated critical temperature Tc the most
important is the divergence of the correlation length ξ . The physical meaning of this divergence is that at
the critical temperature the physical scale is infinitely large compared to scales that appeared at the stage
of the initial formulation of a problem (e.g., of interatomic spacing in a crystal body) and thus it is most
natural to renormalize our length scale from the initial characteristic length (e.g., the atomic one) to the
observed physical length:

xi = Xi

ξ(θ(i), T )
(4.4.93)

(θ(i) denotes the set of values of the angular variables in the i th coordinate direction). The limit

T → Tc Xi → ∞ xi fixed (4.4.94)

is the analog of the mass renormalization (chapter 3) and is part of what is called the scaling limit.
If the limit (4.4.94) were the only step, (4.4.89) would vanish because the factor φ2 (the spontaneous

‘magnetization’) vanishes and the factor C(θ, T ) is found to go to a constant independent of T and θ .
Consequently, we also have to divide the correlation function G(X) by φ2 and define the renormalized
Green function as

G R(r) = lim
scaling

φ−2G(X) (4.4.95)

where r2 = ∑
i x2

i and by limscaling we mean (4.4.94). The process of dividing G(X) by φ2 is called
wavefunction renormalization.

♦ Scaling laws

Thus far, the theory discussed may be considered to be descriptive and all the exponents and
functions introduced may be considered to be independent, subject only to the general requirements of
thermodynamic stability. However, if we make an additional assumption that there are no other length
scales in the problem other than the atomic length scale of definition and the physical length scale of
the correlation length and that these two scales join together smoothly, we find that this theory makes
predictions about the relation between critical exponents. These relations are known as scaling laws.

Some more assumptions and reasonable approximations even allow us to obtain numerical values for
the critical exponents on the basis of the scaling limit. We shall present such a calculation using the path-
integral method. In this case, it is more convenient to carry out the scaling transformations of momentum
variables (after the Fourier transform of the fields under consideration), because this method is based on
separate integration over the lower and higher modes of the fields (cf section 3.3.1).

♦ The scaling transformation in the formalism of path integration

Let us consider a statistical system in a box L3 described by the action

S =
∫

dτ d3x

(
1

2
(∂τ ϕ)

2 + 1

2
(∂iϕ)

2 − µ

2
ϕ2 + g

4!ϕ
4
)

(4.4.96)

where x ∈ L3 and 0 ≤ τ ≤ β. This standard ϕ4-functional describes a real scalar field at finite
temperature T . If the coefficient µ in (4.4.96) is negative, the action is negatively defined and a phase
transition is impossible. If µ > 0, the system may undergo a phase transition at some critical temperature
Tc, below which anomalous mean values 〈ϕ(τ, x)〉β = 0 appear. To study the critical exponents for the
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phase transitions, we shall again use the method of the separate integration over higher and lower modes
(Popov 1983) (cf section 3.3.1) in the Fourier expansion of the field ϕ:

ϕ(τ, x) = 1√
βL3

∑
k,w

ei(ωτ−kx)ϕ̃(ω, k). (4.4.97)

Now, we define the functional S(eff)
(0) by the integration over the higher modes ϕ̃(ω, k) with ω = 0 and

with ω = 0, k > k0:

S(eff)
(0) = − ln

∫ ∏
ω =0
all ki

∏
ω=0
k>k0

dϕ̃(ω, k) e−S . (4.4.98)

The general form of the functional S(eff)
(0) reads as

S(eff)
(0) = c0 + 1

2

∫
k<k0

ddk u2(k)ϕ(k)ϕ(−k)

+
∞∑

n=2

1

2n!
∫

ka<k0

( 2n∏
a=1

ddka ϕ(ka)

)
u2n(k1, . . . , k2n)δ

( 2n∑
b=1

kb

)
(4.4.99)

that is, as the sum over the even powers of the field ϕ(k) ≡ ϕ(0, k) and with the cutoff of the integrals at
the upper limits. The constant c0 is not essential for further calculation.

We are going to calculate the asymptotics of the two-point correlator on the basis of the scaling
hypothesis. This aim is achieved through the following steps.

(i) Consider the coefficient function u2(k). Let this function be of the form

u2(k) = u20 + u22k2 + · · · (4.4.100)

in the vicinity of k = 0 (i.e. it can be expanded in even powers of the momentum variable). After the
scaling transformation

ϕ(k)→ ζϕ(k) (4.4.101)

where the parameter ζ is chosen so that
ζ 2u22 = 1 (4.4.102)

we arrive at the functional S(eff) of the form (4.4.99) in which

u2(k) = K + k2 + · · · (4.4.103)

(K is some new constant). Now, let us integrate the functional e−S(eff)
(0) over ϕ(k), with k0/2 < k < k0:

S(eff)
(1) = ln

∫ ∏
k0/2<k<k0

dϕ̃(ω, k) exp{−S(eff)
(0) }. (4.4.104)

The functional S(eff)
(1) differs from S(eff)

(0) by the value of the constants c0 and by the actual form of the
coefficient functions u2n , as well as by the upper limit of the integrals (they are cut off at k0/2 instead
of k0, as in S(eff)

(0) ). Next, we make the transformation

k → 2k ϕ(k)→ ϕ(2k) (4.4.105)
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converting the domain of the momenta k < k0/2 back into k < k0 and again make the transformation
(4.4.101), so that the lowest non-trivial coefficient function in S(eff)

(1) obtains a form analogous to
(4.4.103):

u(1)2 (k) = K1 + k2 + · · · . (4.4.106)

Thus, the path integration (4.4.104), together with the subsequent change of variables (4.4.101) and
(4.4.105) convert the functional (S(eff)

(0) − c0) into the functional (S(eff)
(1) − c1) of the same form, but

with modified coefficient functions.
(ii) We can expand these transformations to other coefficient functions u2n and consider them as a

definition of the nonlinear transformations

u(k+1) = M̂[u(k)] (4.4.107)

of the sets of coefficient functions:

u(k) = {u(k)2 , u
(k)
4 , u

(k)
6 , . . .}. (4.4.108)

The scaling hypothesis (see page 240) implies the following natural assumption: along the line of a
phase transition, the multiple M̂-transformations have, as a limit, a stationary set ust of coefficient
functions:

ust = lim
n→∞ M̂n [u(0)] ust = M̂[ust]. (4.4.109)

Indeed, the stationarity means that the rescaling of the momenta, k → 2k, is equivalent to the scaling
transformation (4.4.101) (cf also (4.4.95)).

(iii) Consider the two-point correlator D(k):

D(k)δ(k + k′) = 〈ϕ(k)ϕ(k′)〉β . (4.4.110)

Let the stationarity condition (4.4.109) be true at n ≥ n0 for some n0, i.e. for the momenta

k < 2−n0k0 (4.4.111)

(k = |k|, k0 = |k0|). For an arbitrarily small k and an integer n, such that the momentum k1 = 2n k
belongs to the interval

2−n0−1k0 < k1 < 2−n0k0 (4.4.112)

we have (due to the stationarity condition (4.4.109))

〈ϕ(k)ϕ(k′)〉β = ζ 2n〈ϕ(k1)ϕ(k′1)〉β (4.4.113)

or, for the function D(k),
D(k) = ζ 2n2−nd D(k1) (4.4.114)

(d is the space dimensionality). Rewriting (4.4.114) as

D(k)k(2 ln ζ/ ln 2−d) = D(k1)k
(2 ln ζ/ ln 2−d)
1 (4.4.115)

we finally obtain the asymptotics

D(k)−→
k→0

ck(d−2 lnζ/ ln 2). (4.4.116)

The Fourier transform gives the corresponding asymptotics in the coordinate space:

D(r) −→
r→∞ r (2 ln ζ/ ln 2−2d). (4.4.117)
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A comparison with (4.4.92) immediately gives an expression for the anomalous dimension:

η = 2 + d − 2 ln ζ

ln 2
. (4.4.118)

Qualitative arguments based on the linearized form of the M̂-transformation, that is

u(k+1) − ust = Â(u(k+1) − ust) (4.4.119)

( Â is the linear operator obtained by the linearization of M̂), allow us to derive the expression for the
correlation length defined in (4.4.89) or (4.4.90) (see problem 4.4.2, page 253):

ξ(T ) ∼ (T − Tc)
− ln 2/ lnλ1 (4.4.120)

where λ1 is the largest eigenvalue of the operator Â. Thus, the critical exponent ν is given by

ν = ln 2

lnλ1
. (4.4.121)

Finally, a similar consideration gives the expression for the critical exponent γ , which defines the
behaviour of the susceptibility (cf (4.4.87)):

γ = 2 ln ζ

ln λ1
− d

ln 2

lnλ1
. (4.4.122)

Thus, the separate integration over the higher Fourier modes, together with the hypothesis about the
relation between the phase transition of stationary points of the M̂-transformations, allow us to express
the critical exponents through the parameters of these transformations. For an explicit calculation of the
critical exponents, we need a further approximation.

Let us neglect all the coefficient functions but u2 and u4 and take u(n)2 , u(n)4 in the form

u(n)2 = k2 + Kn u(n)4 = Qn (4.4.123)

(Kn and Qn are some constants). Then the M̂-transformation for u(n)2 , u(n)4 can be written as the following
series:

u(n+1)
2 (k) = ζ 22−d

(
u(n)2 (k/2)+ z��
��

+ · · ·
)

u(n)4

(a)

(4.4.124)

u(n+1)
4 (k) ≈ u(n+1)

4 (0) = ζ 42−3d

(
u(n)4 + z + · · ·

)
.

u(n)4

(b)

cc
""
z
��
��

��
ZZ

u(n)4

These series are obtained as a result of integration over the selected set of modes as in (4.4.104). We
restricted the perturbation series only to diagrams of types (a) and (b). In the approximation (4.4.123),
i.e. with the constant u(n)4 , diagram (a) does not depend on the external momentum. Requiring that the
coefficient at k2 be equal to unity, we find the scaling parameter ζ which enters the formulae (4.4.118)
and (4.4.122) for the critical exponents:

ζ = 21+d/2. (4.4.125)



244 Path integrals in statistical physics

After this choice, equations (4.4.124) for the coefficient functions (4.4.123) acquire the following explicit
form:

u(n+1)
2 (k) = k2 + Kn+1

= k2 + 4

(
Kn + Qn

2(2π)d

∫
(k0/2)<k<k0

dk

k2 + Kn

)
(4.4.126)

u(n+1)
4 (k) ≈ Qn+1

= k2 + 4

(
Qn − 3

2

Q2
n

(2π)d

)∫
(k0/2)<k<k0

dk

(k2 + Kn)2

(note that the factor 3 in the second equation appears due to three diagrams of type (b) with different
positions of the external momenta, while the factor 1

2 is the symmetry factor of the diagrams). Thus, in
the chosen approximation, the M̂-transformation reduces to the nonlinear transformations of the constants
Kn and Qn .

Equations (4.4.126) show that d = 4 is the specific (critical) value of the space dimensionality for
the following reasons.

• At d > 4 and for small positive ust, formulae (4.4.126) give the inequalities:

0 < Qn+1 < 24−d Qn (4.4.127)

if 0 < Q0 . 1. Therefore, Qn → 0 and hence Kn → 0. As a result, the action S(n) in the limit
n → ∞ becomes the free-field action:

S(n)−−−−→
n→∞ − 1

2

∫
ddk k2ϕ(k)ϕ(−k) (4.4.128)

and all correlation functions, thermodynamical functions and critical exponents coincide with those
for the free-field theory. In particular, for the critical exponents we have:

η = 0 ν = 1
2 γ = 1. (4.4.129)

• For d = 4, the M̂-transformation (4.4.126) also leads to zero values of K and Q and the critical
exponents take free-field theory values.

• For d < 4, a non-trivial stationarity point defined by the equations appears:

Qst = (1 − 2d−4)

[
3

2(2π)d

∫
(k0/2)<k<k0

dk

(k2 + Kn)2

]−1

K = 4

9
(2d−4 − 1)

∫
(k0/2)<k<k0

dk

k2 + Kn

[ ∫
(k0/2)<k<k0

dk

(k2 + Kn)2

]−1

.

(4.4.130)

The linearized operator Â has the form of a 2 × 2 matrix:(
4 − 2Q

(2π)d
∫
(k0/2)<k<k0

dk
(k2+Kn)2

2
(2π)d

∫
(k0/2)<k<k0

dk
k2+Kn

24−d 3Q2

(2π)d
∫
(k0/2)<k<k0

dk
(k2+Kn)3

24−d
(

1 − 3Q
(2π)d

∫
(k0/2)<k<k0

dk
(k2+Kn)2

)) . (4.4.131)

At d < 4, the largest eigenvalue λ1 of this matrix differs from the free-field value (i.e. λ1 = 4)
and, according to (4.4.121), gives the critical exponent ν which also differs from the free-field value
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(4.4.129). Note that the exponent η is still zero in this approximation as in free-field theory (cf
(4.4.125) and (4.4.118)).

The distinguishing role of the dimensionality d = 4 inspired Wilson and Fisher (see Wilson and

Fisher (1972)) to develop a series perturbation expansion in the parameter ε
def≡ 4 − d . This expansion

implies the extension of the usual diagram techniques to spaces of non-integer dimensions. In fact, this
is not completely new: we have already mentioned such a possibility in chapter 3, in the context of
the dimensional regularization of quantum field theories (see section 3.2.7). We shall not present the ε-
expansion in this book and refer the reader to the previously cited original paper and to special reviews
and monographs, e.g., to Ma (1976).

4.4.5 Quantum field theory at finite energy

In this section, we are going to discuss the path-integral formulation of relativistic quantum field theory
at finite energy, using the microcanonical distribution. This method is a natural extension of the real-time
formalism, which we have introduced in section 4.4.3.

In a canonical ensemble, the system of interest is one which is surrounded by a large thermal
reservoir such that the system is kept at a certain temperature T . This is the situation in which the
quantum field theory at finite temperature is formulated. The microcanonical ensemble, on the other
hand, is appropriate for investigating an isolated system with a finite energy E and a volume L3. In the
microcanonical distribution, all microscopic states have equal probabilities; this is based on the ergodic
hypothesis. This microcanonical ensemble is considered to be more fundamental than the canonical one
and it is well known that in the thermodynamical limit (E, L3 → ∞ with E/L3 finite), the canonical
and microcanonical ensembles are equivalent. However, for a system at finite E and L3, there are finite
differences between these two ensembles and we should use the microcanonical ensemble to investigate
such a system.

One of the advantages of the path-integral approach is that the relation between the microcanonical
and canonical cases becomes clear and so is the procedure to take the thermodynamical limit. In this
subsection, the field theory is formulated in Minkowski spacetime (i.e. with real time) so that it can also
be used to investigate the time evolution of the system (see Chaichian and Senda (1993) and Chaichian et
al (1994)). Thus, this is indeed an analog of the real-time field theory at finite temperature. In order to
illustrate how this formulation works, we shall use real scalar field theory with ϕ4 interaction.

An example of a physical situation where these results can be applied is the early universe: the
universe does not have a thermal reservoir. At a late stage in the evolution of the universe, the use
of the canonical ensemble is justified, but at an early stage the microcanonical investigation would be
preferred. Another interesting problem would be the finite-energy effect on the phase transition in the
Landau–Ginzburg model with φ3 and φ4 potentials and in the so-called quark bag models.

♦ The path integral and the microcanonical distribution

For the path-integral formulation of quantum field theory at finite energy we shall use the ‘time-path’
method, which was discussed in section 4.4.3. We present the calculations only for the real scalar boson.
The extension to the other fields is straightforward.

Let us start by defining the partition function in the presence of external source j (x) at fixed energy
E :

Z
(mc)
E [ j ] =

∫
dϕ 〈ϕ, t|δ(Ĥ − E)T

(
exp

{
i
∫

d4x j (x)ϕ̂(x)

})
|ϕ, t〉 (4.4.132)
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where T means the time-ordered product. The sum over the complete set of field configurations (trace)
is taken at a certain time t . Using the integral representation of the delta function, δ(Ĥ − E) =∫ dα

2π exp(−iα(Ĥ − E)), (4.4.132) is written as

Z
(mc)
E [ j ] =

∫
dα

2π
eiαE

∫
dϕ 〈ϕ, t + α|T

(
exp

{
i
∫

d4x j (x)ϕ̂(x)

})
|ϕ, t〉

=
∫

dα

2π
eiαENα

∫
Dϕ exp

{
i
∫

C
d4x (L+ jϕ)

}
where we have used eiα Ĥ |ϕ, t〉 = |ϕ, t +α〉. The second line is the path-integral representation of the first
line. The symbol ‘C’ in the exponent in the second line means that the time path in the integration over
x0 should be chosen such that it connects t to t + α (see later). The α-dependent normalization factor is
represented by Nα . Following the usual procedure, the partition function becomes

Z
(mc)
E [ j ] =

∫
dα

2π
eiαEN′

α exp

{
i
∫

C
d4xLI

(
1

i

δ

δ j (x)

)}
exp

{
− i

2

∫
C

d4x d4x ′ j (x)Dα(x − x ′) j (x ′)
}

(4.4.133)
where, as usual, LI is the interaction Lagrangian and Dα(x − x ′) is a α-dependent propagator. Then the
properly normalized generating functional of Green functions,ZE [ j ], is given by

ZE [ j ] = Z(mc)
E [ j ]/Z(mc)

E [0]
=
∫

dα

2π
eiαE

(
N′
α

ZE [0]
)

exp

{
i
∫

C
d4x LI

(
1

i

δ

δ j (x)

)}
× exp

{
− i

2

∫
C

d4x d4x ′ j (x)Dα(x − x ′) j (x ′)
}
. (4.4.134)

Since the diagrammatic structure of the last two factors with exponentials in (4.4.134) is the same as the
ordinary generating functional in a quantum field theory, we define

Zα[ j ] ≡ exp

{
i
∫

C
d4x LI

(
1

i

δ

δ j (x)

)}
exp

{
− i

2

∫
C

d4x d4x ′ j (x)Dα(x − x ′) j (x ′)
}

≡ BαZ
c
α[ j ] (4.4.135)

where Bα stands for vacuum diagrams andZc
α[ j ] represents the diagrams connected to the external source.

Then (4.4.134) can be written as

ZE [ j ] =
∫

dα

2π
eiαEρE,αZ

c
α[ j ] (4.4.136)

where we have defined
ρE,α = N′

αBα/Z E [0]. (4.4.137)

Defining the α-integrations of ρE,α and Zc
α[ j ] by

ρE,E ′ ≡
∫

dα

2π
eiαE ′

ρE,α Zc
E [ j ] ≡

∫
dα

2π
eiαEZc

α[ j ] (4.4.138)

the generating functional in (4.4.134) can be written as

ZE [ j ] =
∫ E

0
d E ′ ρE,E−E ′Zc

E ′ [ j ]. (4.4.139)
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The N-point Green function in the medium of energy E is given by the derivatives of the generating
functional with respect to external sources:

GE (x1, . . . , xN ) =
∫ E

0
d E ′ ρE,E−E ′

( N∏
i=1

δ

iδ j (xi)

)
Z

c
E ′ [ j ]| j=0. (4.4.140)

♦ Transition to the canonical partition function in the thermodynamic limit

In the thermodynamical limit, E, V , 1 keeping E/V finite, the statistical weight ρE,E−E ′ has a sharp

peak at E ′ ∼ 0. As we shall discuss later, the partition function (density of the field configuration)Z(mc)
E

is related to the entropy SE by Z(mc)
E ∝ exp(SE ). Thus the statistical weight ρE,E−E ′ is approximated in

the thermodynamical limit by

ρE,E−E ′ = exp(SE−E ′ − SE ) ∼ e−βE E ′
(4.4.141)

where βE ≡ ∂SE/∂E is the inverse of the temperature of the system with energy E . Therefore, in the
thermodynamical limit, the generating functional in (4.4.139) can be approximated as

ZE [ j ] ∼
∫ ∞

0
d E ′ e−βE E ′

Zc
E ′ [ j ]. (4.4.142)

This is nothing other than a Laplace transformation of the generating functional for Green functions,
Zc

E ′ [ j ]. Therefore, the right-hand side of (4.4.142) is identified with the generating functional at the
temperature 1/βE in the canonical ensemble. This shows the equivalence between the microcanonical
method and the canonical method in the thermodynamical limit.

♦ Evaluation of the generating functional in the case of fixed energy

Although we are going to discuss the thermodynamical limit in some cases, our main interest is in the
evaluation of (4.4.139).

In the case of the real scalar boson, the propagator in (4.4.133) is defined by the differential equation:

−(∂2 + m2)Dα(x − x ′) = δ4(x − x ′).

In the derivation of (4.4.133), the requirement that the boundary terms vanish gives a periodic boundary
condition:

ϕ(t + α, x) = ϕ(t, x), Dα(t + α, x) = Dα(t, x). (4.4.143)

The explicit derivation of this periodic boundary condition pertains to problem 4.4.4, page 254.
In the real-time formulation of finite-temperature quantum field theory, different choices of the time

paths define field theories which are physically equivalent, but still different, in the sense that quantities
such as propagators are different. We find the same situation in the finite-energy quantum field theory. The
only restriction in choosing the time path is that it should connect a certain time t and t +α. The choice of
the time path which proves to be most convenient for real-time formulation is C = C1 + C2 + C3, shown
in figure 4.4. This consists of three parts: C1 connecting −t to t , C2 connecting t to −t backward in time
and C3 connecting −t to −t + α. Because of the requirement of causality and the well-definedness of the
path integral, the path monotonically decreases in the imaginary time direction by the infinitesimal amount
ε. We will take the limit t going to infinity at the end of the calculations. As in the finite-temperature
quantum field theory, physical operators, which appear as external lines in Green functions, are assumed
to have support on the path C1 and fields having support on C2 and C3 are considered to be ghosts.
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Figure 4.4. The time-path C used to formulate finite-energy quantum field theory.

The great simplification resulting from the choice of this path is that the operators on the C3 path
decouple from those on the C1 and C2 paths. This is because, in the limit t → ∞, the propagator
connecting the paths Ca (a = 1, 2) and C3 vanishes due to the Riemann–Lebesgue theorem and the
adiabatic switching-off of the external source j (x) (see problem 4.4.5, page 255). Therefore, the real-
time part C1 + C2, which is used to evaluate the ensemble average of the time-dependent operators, and
the thermodynamical part C3 are separated. Thus we can write the generating functional of connected
diagrams in (4.4.135) as follows:

Zc
α[ j ] = Zc(1+2)

α [ j ] · Zc(3)
α [ j ] (4.4.144)

whereZc(a) is the one for fields on the path Ca . In general, we can choose any path connecting t and t +α
within the requirement of consistency of the theory and they give physically equivalent results when the
system is in equilibrium. The equivalence of the different choices of path is a simple consequence of the
completeness of the set of states inserted at each moment in the path integration, which is the same as the
situation in finite-temperature quantum field theory. An example of a calculation showing the equivalence
of physical quantities obtained by choosing different paths is suggested in problem 4.4.6, page 255.

♦ The Green function and Feynman rules

Since the C1 + C2 part decouples from the C3 part in the limit t → ∞, let us concentrate, at first, on the
former. The C1 + C2 part of the quantity Zα defined in (4.4.135) is

Z(1+2)
α [ j ] = exp

{
i
∫

c
d4x LI

(
1

i

δ

δ j (x)

)}
× exp

{
− i

2

∑
a,b

∫
Ca

d4x
∫

Cb

d4x ′ ja(x)D
ab
α (x − x ′) jb(x

′)
}

(4.4.145)

where ja is an external source having support on Ca and the summation is taken over a, b = 1, 2. In
(4.4.145), Dab represents a propagator between the fields on Ca and Cb:

Dα(x − x ′) ≡ Dab
α (x − x ′) x ∈ Ca, x ′ ∈ Cb, a = 1, 2.

The integration over the path Ca is given by∫
Ca

d4x = εa

∫ t

−t
d4x

∣∣∣∣
t→∞

(4.4.146)
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where εa equals 1 for a = 1 and −1 for a = 2. Therefore, it is convenient to introduce the notation

D̄ab
α (x − x ′) ≡ εaεb Dab

α (x − x ′). (4.4.147)

Then, (4.4.145) becomes

Z(1+2)
α [ j1, j2] = exp

{
i
∑

a

εa

∫
d4x LI(δ/iδ ja)

}
× exp

{
− i

2

∑
a,b

∫
d4x d4x ′ ja(x)D̄

ab
α (x − x ′) jb(x

′)
}
. (4.4.148)

The Feynman rules of the C1 + C2 part in the φ4-theory become

r ra b = iD̄ab
α (k)
r
��

@@ ��

@@

r r

rr

a a

a a
= −iλεa

where D̄(k) is the Fourier transform of D̄(x). In problem 4.4.4, page 254, we suggest explicitly
calculating the propagators and their periodicity properties. The 2 × 2-matrix propagator D̄ab is given by

iD̄ab
α (k) =

( i
k2−m2+iε

+ 2πδ(k2 − m2) f (−)α (ωk) −2πε(k0)δ(k2 − m2) f (−)α (k0)

−2πε(k0)δ(k2 − m2) f (+)α (k0)
−i

k2−m2−iε
+ 2πδ(k2 − m2) f (−)α (ωk)

)
f (−)α (u) =

∞∑
n=1

e−inαu f (+)α (u) = 1 + f (−)α (u) (4.4.149)

where ωk = √
k2 + m2. Note that α has a small negative imaginary part, α = Reα− iε, due to our choice

of the path C . The propagator given in (4.4.149) has the property

D̄ab
α (x) = D̄ba

α (−x) and D̄ab
α (k) = D̄ba

α (−k).

For example, the two-point Green function of fields on C1 at the tree level is obtained using (4.4.140) and
(4.4.149):

G11
E (k) =

∫
dα

2π
eiαEρE,α(iD11

α (k)) (4.4.150)

=
∫ E

0
d E ′ ρE,E−E ′

[
iδ(E ′)

k2 − m2 + iε
+ 2πδ(k2 − m2)

∞∑
n=1

δ(E ′ − nωk)

]
.

In the thermodynamical limit, using (4.4.141) and (4.4.142), (4.4.150) is approximated as

G11
E (k) ∼

∫ E

0
d E ′ e−βE E ′

[
iδ(E ′)

k2 − m2 + iε
+ 2πδ(k2 − m2)

∞∑
n=1

δ(E ′ − nωk)

]
= i

k2 − m2 + iε
+ 2πδ(k2 − m2)

1

eβEωk − 1
. (4.4.151)

Thus, we have recovered the two-point Green function D11
β (k) in the finite-temperature quantum field

theory, cf (4.4.79). We should note that the temperature in (4.4.151), 1/βE , is given by the microcanonical
ensemble with the energy E , namely βE = ∂SE/∂E .



250 Path integrals in statistical physics

Let us turn to the C3 part. The propagator of the fields on the C3 path depends on the sign of α.
Using the same notation as before, we have:

iD̄33
α (x) = θ(α)

{
θ(x0)

∫
d4k

(2π)4
e−ikx 2πδ(k2 − m2) f (+)α (k0)

+ θ(−x0)

∫
d4k

(2π)4
e−ikx2πδ(k2 − m2) f (−)α (k0)

}
+ θ(−α)

{
θ(x0)

∫
d4k

(2π)4
e−ikx 2πδ(k2 − m2) f (−)α (k0)

+ θ(−x0)

∫
d4k

(2π)4
e−ikx2πδ(k2 − m2) f (+)α (k0)

}
. (4.4.152)

Because of the finiteness of the time interval on the C3 path, the propagator in (4.4.152) is not Fourier
transformed like those in (4.4.149).

♦ Examples of calculations in φ4 theory

Let us consider the full propagator as a sum of self-energies (problem 4.4.7, page 256 suggests
calculating the expectation value of the number operator for a system with fixed energy). In the one-
loop approximation, the self-energy ab

α of the scalar boson is given by the diagram

- -rr r

�

�

�

�a b.

After a straightforward calculation, taking care with the positions of the poles of the propagators, we
obtain

 ab
α = (τ3)

ab(−i (0) − i (1)α ) ≡ (τ3)
ab α

 (0) = λ

2

2πn/2�(1 − d/2)

32π4(m2)1−d/2

 (1)α = λ

2

∫
d3k

(2π)3ωk
f (−)α (ωk)

(4.4.153)

where τ3 =
(

1 0
0 −1

)
and we have used the dimensional regularization, d = 4 − δ (cf section 3.2.7).

It is useful to rewrite the matrix propagator in the following form:

iD̄ab
α (k) = [θ(k0)�

(+)
R,α(ωk)+ θ(−k0)�

(−)
A,α(ωk)] i

k2 − m2 + iε

+ [θ(k0)�
(+)
A,α(ωk)+ θ(−k0)�

(−)
R,α(ωk)] i

k2 − m2 − iε
(4.4.154)

where A and R stand for the advanced and retarded parts, respectively, and (±) for the positive and
negative k0 parts. The 2 × 2-matrices� are defined by

�
(+)
R,α(ωk) =

(
f (+)α (ωk) − f (−)α (ωk)

− f (+)α (ωk) f (−)α (ωk)

)
�
(−)
R,α(ωk) =

(− f (−)α (ωk) f (+)α (ωk)

f (−)α (ωk) − f (+)α (ωk)

)
�
(+)
A,α(ωk) =

(− f (−)α (ωk) f (−)α (ωk)

f (+)α (ωk) − f (+)α (ωk)

)
�
(−)
A,α(ωk) =

(
f (+)α (ωk) − f (+)α (ωk)

− f (−)α (ωk) f (−)α (ωk)

)
.
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The matrices� have simple product relations

� ·� ≡ �τ3� �
(±)
R ·�(±)R = �(±)R �

(±)
R ·�(±)A = 0

�
(±)
A ·�(±)R = 0 �

(±)
A ·�(±)A = �(±)A .

(4.4.155)

Using the propagator in (4.4.154) and the product property between �(±)A,R in (4.4.155), the sum of self-
energies

~ = + Æ
��

+ Æ
��

  Æ
��
 + · · ·

is performed. Let us denote this sum, that is, the two-point Green function at finite energy taking into
account the interaction, by i$ab

α (k). Then we find

i$α(k) =
{
θ(k0)

[
i

k2 − m2 − i α + iε
�
(+)
R,α +

i

k2 − m2 − i α − iε
�
(+)
A,α

]
+ θ(−k0)

[
i

k2 − m2 − i α + iε
�
(−)
A,α +

i

k2 − m2 − i α − iε
�
(−)
R,α

]}
. (4.4.156)

Here, we impose the renormalization condition that m2 +  (0) be the physical mass.

♦ The entropy, effective action and the behaviour of symmetry at high energy

It is an interesting problem to investigate the symmetry behaviour in finite-energy quantum field theory.
For this purpose, we can use the general formulation based on the entropy and the effective action adapted
to finite-energy quantum field theory. The definition of the effective action in finite-energy quantum field
theory has some peculiarities, and we refer the reader for their discussion to Chaichian and Senda (1993)
and Chaichian et al (1994). The entropy and effective action can be calculated using the perturbation
theory with respect to the coupling constants or by the stationary-phase approximation.

Since we are treating the system quantum mechanically, there is a certain width of energy, δE , such
that we cannot distinguish between the energy eigenvalues E and E + δE because of the uncertainty
principle. From the physical point of view, the uncertainty of the energy is of the order of the momentum
uncertainty, namely δE ∼ L−1. In the following, we will not specify δE and we will consider it as a
constant. The appropriate definition of the effective action Seff,E in the finite-energy field theory reads

Seff,E [φ] def≡ ln

{
δE
∫

dα

2π
eiαEN′

αBαei�α[φ]
}

(4.4.157)

where �α[φ] is, as usual, the generating functional of the one-particle irreducible (OPI) Green functions
(depending on the parameter α),

φa
α(x) ≡ εa

∂Wα[ j ]
∂ ja(x)

εa =
{ 1 a = 1
−1 a = 2
ε(α) a = 3

�α[φ] = Wα[ j ] −
∫

C
d4x j (x)φα(x). (4.4.158)

Here ε(α) is a step-function: ε(α) = α/|α| for α = 0 and ε(0) = 0. Note that the time integration in the
definition of �α is taken over the path C because of the definition of φa; W is the generating functional of
connected Green functions.
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It is interesting to see the symmetry behaviour at high-energy density. For this purpose, let us
examine the case m2 < 0 for ϕ4-theory, where spontaneous symmetry-breaking occurs at zero energy.
Since we are considering a classical field which is independent of the coordinate, we define the density of
the effective potential as in the finite-temperature case (cf (4.4.47)):

wE [φ] = − 1

L3
Seff,E [φ].

The condition that the symmetry is restored is

d2wE [φ]
dφ2

|φ=0 > 0.

This condition gives, in the stationary-phase approximation, for the α-integration in (4.4.157):

λ

24

(
30E

π2 L3

)1/2

> |m2|.

Therefore, the critical energy density εc = Ec/L3, above which the symmetry is restored, is

εc ∼ π2

30

(
24|m2|
λ

)2

.

In a similar way as that presented for φ4-theory, we can formulate the quantum field theory at finite
energy for gauge theories such as QCD. In this case, the formulation would be useful in describing the
dynamical evolution of a strongly interacting system, e.g., ion–ion collisions. We could also study the
behaviour of the QCD running coupling constant as a function of energy in analogy with temperature
behaviour.

4.4.6 Problems

Problem 4.4.1. Calculate the effective potential for ϕ4-theory in the one-loop approximation using the
stationary-phase method, cf (4.4.36).

Hint. Let us consider the general action for a real scalar field:

S =
∫

d4x [ 1
2 (∂ϕ)

2 + 1
2 m2ϕ2 + V (ϕ)]

and expand it (up to quadratic terms) about the solution ϕc of the stationary equation,

δS

δϕ
+ J (x) = 0

for the action in the presence of the external source. The Gaussian integration yields

Z[J ] ≈
[

det(�+ m2)

det(�+ m2 + U ′′(ϕc))

]1/2

exp

{
i

~

[
S[ϕc] +

∫
d4x Jϕc

]}
.
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The approximation for the generating functional for connected Green functions proves to be

~

i
W [J ] = ~

i
lnZ = S[ϕc] +

∫
d4x Jϕc

+ 1
2 i~[Tr ln(�+ m2 + U ′′(ϕc))− Tr ln(�+ m2)] +O(~2). (4.4.159)

The mean value of the field is defined by

φ(x) = ~

i

δW [J ]
δ J (x)

and satisfies φ = ϕc +O(~). Since ϕc is a solution of the equation

δS

δϕ
+ J (x) = 0

the relation (4.4.159) can be written as

~

i
W [J ] = S[φ] +

∫
d4x Jφ + 1

2
i~[Tr ln(�+ m2 + U ′′(φ))− Tr ln(�+ m2)+O(~2). (4.4.160)

The effective action �[φ] is obtained now by a Legendre transform and reads as

�[φ] = �(0)[φ] + �(1)[φ] +O(~2) (4.4.161)

where
�(0)[φ] = S[φ]

(cf (4.4.30)) and
�(1)[φ] = 1

2 i~[Tr ln(�+ m2 + U ′′(φ))− Tr ln(�+ m2).

The transition to the momentum representation (i.e. the Fourier transform) and the addition of the
appropriate counter-terms (i.e. renormalization) give the required result (4.4.36).

Problem 4.4.2. Give qualitative arguments supporting formula (4.4.120) for the correlation length ξ(T ),
with the help of the linearized form of the M̂-transformation (4.4.109) and the definition (4.4.89), (4.4.90).

Hint. Since at the critical temperature Tc the set ust is the stationary point of the M̂-transformation, we
may assume that in the vicinity of the critical temperature, the difference u(n) − ust for large values of n
is proportional to the difference T − Tc. On the other hand, if the system is outside the phase transition
curve, the iterated application of the M̂-transformation does not result in ust. The closer the system
becomes to the phase transition curve, the more iterations are required to remove it from the vicinity of
ust. To estimate the number of such iterations, let us linearize the M̂-transformation as in (4.4.119). Then
the difference u(n+m) − ust is of the order

u(n+m) − ust ∼ λm
1 (T − Tc) (4.4.162)

where λ1 is the maximal eigenvalue of the linearized transformation (4.4.119). If the difference (4.4.162)
is large enough, e.g., if it is of the order of the critical temperature (which is a characteristic quantity for
a system near a phase transition), we can say that the system is not in the vicinity of the phase transition.
Thus, supposing Tc ∼ λm

1 (T − Tc), we have the following estimation for the necessary number m of
M̂-transformations:

m ∼ ln(Tc/(T − Tc))

ln λ1
. (4.4.163)
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The correlation function of the new system (i.e. after the M̂-transformations) has the exponential
asymptotics: G(r) −→

r→∞ exp{−r/ξ0} (because it is outside the vicinity of the phase transition). But this

new system is nothing but the initial one after the scale increasing by 2m times. Therefore the correlator
of the initial system has the asymptotics

exp

{
− r

2mξ0

}
. (4.4.164)

From (4.4.163) and (4.4.164), we find an expression for the correlation length, ξ(T ) ∼ 2m , which is
equivalent to (4.4.120).

Problem 4.4.3. Show that the calculation of the trace of the density operator for fermionic systems
amounts to path integration with antiperiodic conditions (4.4.13).

Hint. Use the explicit derivation of the path integrals for fermionic systems in problem 2.6.10, page 316,
volume I (its generalization to field systems is quite straightforward) and derive the trace of an operator.

Problem 4.4.4. Show explicitly that the propagator of a scalar field at finite energy obeys the periodic
boundary conditions (4.4.143).

Hint. Assuming that the volume of the system is sufficiently large, the Fourier components of the free
field and their commutation relations are given by

ϕ(x) =
∫

d3k√
(2π)32ωk

(akei(kx−ωkx0) + a†
ke−i(kx−ωkx0))

[ak, a
†
k′ ] = δ3(k − k′) others = 0. (4.4.165)

The two-point Green function in a medium of finite energy E in the time-path formalism is defined as

GE (x − y) =
∫

dα

2π
eiαEρE,α〈Tc(φ(x)φ(y))〉α

where 〈·〉α on the right-hand side means

〈Â B̂〉α ≡ Tr(e−iα Ĥ Â B̂)/Tr(e−iα Ĥ )

and ρE,α is defined in (4.4.137). Because of the contour ordering, we introduce the contour step-function
θc(x0 − y0), which is one if x0 is closer to the end of the contour than y0, 1

2 when x0 = y0 and otherwise
0. Then,

〈Tc(ϕ(x)ϕ(y))〉α = θc(x0 − y0)〈ϕ(x)ϕ(y)〉α + θc(−x0 + y0)〈ϕ(y)ϕ(x)〉α.
Using the standard procedure, we obtain

〈ϕ(x)ϕ(y)〉α =
∫

d4k

(2π)3
e−ik(x−y)ε(k0)δ(k

2 − m2)(1 + f (−)α (k0))

〈ϕ(y)ϕ(x)〉α =
∫

d4k

(2π)3
e−ik(x−y)ε(k0)δ(k

2 − m2) f (−)α (k0)

where we are using the metric (+,−,−,−) and ε(k) equals k/|k| for k = 0 and 0 for k = 0. The quantity
f (−)α is defined in (4.4.149). Let us define D> and D< by

iD>α (k) = 2πε(k0)δ(k2 − m2) f (+)α (k0)

iD<α (k) = 2πε(k0)δ(k2 − m2) f (−)α (k0)
(4.4.166)
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and their Fourier transformation by Dα(x) =
∫ d4k
(2π)4

e−ik(x−y)Dα(k). Since the two-point Green function
and the propagator are related by

GE (x − y) =
∫

dα

2π
e−iαEρE,α iDα(x − y)

the propagator is obtained as

Dα(x − y) = θc(x0 − y0)D
>
α (x − y)+ θc(−x0 + y0)D

<
α (x − y). (4.4.167)

For the propagators of the fields on the path C1 + C2, the result in (4.4.149) is found by Fourier-
transforming this expression and using the definition of D̄ in (4.4.147). The propagator of the fields
on C3 in (4.4.152) is obtained directly from (4.4.167).

In order to check the periodicity (4.4.143), let us discuss keeping t finite in the definition of the path
C . For x1 = (−t, x1) ∈ C1 and ∀x2 ∈ C , we find that

Dα(x1 − x2) = D<α (−t − x2,0, x1 − x2) (4.4.168)

where we have used the fact that x1 is placed at the starting point of the path C . For x1 = (α− t, x1) ∈ C3,
at the endpoint of the path C , and ∀x2 ∈ C , the propagator becomes

Dα(x1 − x2) = D>α (−t + α − x2,0, x1 − x2). (4.4.169)

Using the expressions of D> and D< from (4.4.166) and the property f (−)α (−u) = − f (+)α (u) for u > 0,
we find that

D>α (−t + α − x2,0, x1 − x2) = D<α (−t − x2,0, x1 − x2).

Therefore, the right-hand side of (4.4.168) is equal to the right-hand side of (4.4.169). Thus we have
found the desired periodicity.

Problem 4.4.5. Show the decoupling of the C3 part from C1 + C2.

Hint. The decoupling of the C3 part from C1 + C2 is equivalent to the vanishing of the propagator
connecting Ca, a = 1, 2 and C3. After integrating out the field, the part connecting the sources on Ca

and C3 is given by

i
∫

Ca

d4x
∫

C3

d4x ′ ja(x)Dα(x − x ′) j3(x
′)

= i
∫

d4k

(2π)4
e−ik0t

∫
Ca

d4x
∫ α

0
dt ′
∫

d3x ′ e−ik(x−x ′) ja(x)D
<
α (k) j3(−t + t ′, x ′) (4.4.170)

where we have changed the integration variable over time on C3. Since j3 is chosen to be a smooth
function of x ′ ∈ (C3, r3), (4.4.170) has a form in which we can use the Riemann–Lebesgue theorem
with respect to the k0 integration. Thus, implemented with a standard adiabatic switching on and off
mechanism for the external source, the right-hand side of (4.4.170) vanishes in the limit t → ∞.

Problem 4.4.6. Show the equivalence of the different choices of time paths: the one depicted in figure 4.4
and the path presented in figure 4.5
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Figure 4.5. The alternative time path C ′ for the formulation of finite-energy quantum field theory.

Hint. The merit of the path C in figure 4.4 is that the real-time part C1 + C2 and the equilibrium part C3
decouple, making the theory simple. However, there is always the possibility of choosing the other path,
in particular, the path C ′ = C ′

1 + C ′
2 depicted in figure 4.5. The general reason for the independence of

the results of the choice of paths is the very construction of the path integral based on the completeness of
the states at each time. To verify this statement by practical calculation, we can find the one-loop effective
action using C ′. For further hints, see Chaichian and Senda (1993). Here, we note only that similarly to
the discussion in the preceding problem, the paths C ′

1 and C ′
2 decouple.

Problem 4.4.7. Calculate the expectation value of the number operator at tree level for a system with a
microcanonical density operator (i.e. with fixed finite energy).

Hint. The number operator of the state with momentum k is n̂(1)k = a(1)†k a(1)k , where a(1)k is a Fourier

component of the field on C1 (see problem 4.4.4). The expectation value of n̂(1)k in a medium of energy E
is

〈n̂(1)k 〉E = lim
ε→0

∫
d3x d3 y

(2π)32ωk
e−ik(x−y)(∂x0 + iωk)(∂y0 − iωk)〈T(ϕ1(x)ϕ1(y))〉E |x0=t+ε,y0=t

= L3

(2π)3

∫ E

0
d E ′ ρE,E−E ′

∞∑
n=1

δ(E ′ − nωk)

where ϕ1 represents a field on the path C1. To obtain the last line, we have used the explicit form of the
two-point Green function 〈T(ϕ1(x)ϕ1(y))〉E = G11

E , where G11
E is given in (4.4.150). The total number

operator is given by

N̂ =
∫

d3k

(2π)32ωk
n̂(1)k .

Thus, its expectation value becomes

〈N̂ 〉E = L3

(2π)3

∫ E

0
d E ′ ρE,E−E ′ N̄ (E ′)

N̄(E ′) ≡ L3

(2π)3

∫
d3k

(2π)32ωk

∞∑
n=1

δ(E ′ − nωk) (4.4.171)

where N̄(E ′) means the number of particles in the subsystem of energy E ′.
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4.5 Superfluidity, superconductivity, non-equilibrium quantum statistics and the
path-integral technique

At the beginning of the last century, it was shown on statistical grounds only (Bose 1924, Einstein 1925,
Fermi 1926) that, under extreme conditions, ideal gases of indistinguishable particles have remarkable
features on a macroscopic scale. Furthermore, in the case of an interacting gas even more stunning
phenomena may occur. A well-known example in this context is superconductivity. In a superconducting
metal, an attractive interaction between two electrons with opposite momenta causes an instability in
the Fermi surface together with the formation of Cooper pairs (Cooper 1956) (see also, e.g., de Gennes
(1989) and references therein). The latter are allowed to move freely through the lattice, resulting in a
superconducting current and a vanishing resistance. According to the successful BCS theory (Bardeen et
al 1957) describing this, the attractive interaction is the result of a phonon exchange process, and BCS
theory shows that superconductivity can, in a certain sense, be regarded as a result of a Bose–Einstein
condensation of the Cooper pairs. Another striking example of this condensation process is associated
with the superfluid phase of liquid 4He (see, e.g., Griffin (1993) and Griffin et al (1995)).

Phenomenologically, the characteristics of superfluidity can be explained if the dispersion relation of
the elementary excitations differs from the particle-like dispersion ε(k) = ~

2k2/2m and is linear for small
momenta. To see that this feature indeed implies superfluidity, let us consider liquid 4He in a very long
cylindrical pipe moving with velocity v along its symmetry axis. Describing the strongly interacting Bose
liquid in the pipe as an assembly of non-interacting quasiparticles in a state of thermal equilibrium, we find
by the usual methods of statistical mechanics that, in the laboratory frame, the number of quasiparticles
with momentum ~k and energy ~ω(k) is given by

N(k) = 1

e(~ω(k)−~k·v)/kBT − 1
. (4.5.1)

The velocity v is still arbitrary at this point, but its magnitude has an upper bound because the occupation
numbers N(k) must be positive. Therefore, we require for all k = 0 that ~ω(k) > ~k · v. In this case, the
total momentum P = ∑k ~kN(k) carried along the walls of the pipe, is, at low temperatures T , clearly
much smaller than the momentum Nmv that we obtain when the whole liquid containing N atoms moves
rigidly with the walls. Hence, if the dispersion relation is linear, i.e. ~ω(k) = ~c|k|, we conclude by a
Galilean transformation that the fluid can have a stationary (frictionless) flow if the speed is small enough
and obeys v < c. Herewith, both the existence of superfluidity as well as a critical speed above which the
phenomenon cannot take place is explained (of course, only at a heuristic level). The linear dispersion at
long wavelengths in a Bose system with short-range interactions is well established by now. However, to
calculate its speed c from first principles is not feasible in general and in particular not for the strongly
interacting 4He liquid. To achieve that, we have to consider a dilute Bose gas, for which we can rely on
the weakness of the interactions or, more precisely, on the smallness of the gas parameter (na3)1/2, where
n is the density and a is the radius of interaction of the particles in the gas.

An approach to describing Bose–Einstein condensation (and hence to the phenomena of superfluidity
and superconductivity) depends on what we are going to find out about this phenomenon. If we are
interested in calculating the magnitude of the Bose–Einstein condensate, the spectrum of (quasi)particles,
spatial correlators and other static characteristics, we can use the methods of the equilibrium quantum
statistics based on a path integral with imaginary time (see section 4.4.1). Starting from the non-relativistic
secondary quantized action (4.4.1) together with an interaction of the form (4.4.5) and using the standard
path-integral technique, we can develop an appropriate approximation method for calculating the static
physical characteristics of the condensation. As usual in phase transitions, a finite-order perturbation
theory approximation is not suitable for this aim, and we have to sum some infinite series of Feynman
diagrams. An advantage of the path-integral formalism is that it allows us to develop an improved
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perturbation expansion in the domain of small momenta of the particles (see section 3.3.1), which is
especially important in the case of the condensation. We shall present some essential points of this
approach in sections 4.5.1 and 4.5.2.

If we are interested in describing the formation process of the Bose–Einstein condensate, we have
to use the methods of non-equilibrium quantum statistics. The time-dependent phenomena and the
characteristics of a quantum system which is in contact with a thermal reservoir and which undergoes
Bose–Einstein condensation are discussed in section 4.5.3.

4.5.1 Perturbation theory for superfluid Bose systems

The perturbation theory for statistical systems (non-relativistic field theory at imaginary time) has been
developed in section 4.4.1. This theory is applicable at high temperature (above the critical temperature
of the phase transition to the superfluid state) and it below the phase transition should be modified. As
discussed in section 4.4.4, the characteristic property of the phase transition is the existence of long-range
correlations, so that the correlator 〈ϕ(τ, x)ϕ(τ, y)〉β decreases as r = |x − y| → ∞ as a power and not
as an exponential. In a three-dimensional space this correlator as r → ∞ tends to a constant ρ0 which is
just the condensate density.

♦ Simplest perturbation theory taking into account a condensate

In order to develop a perturbation theory for the action (4.4.1), (4.4.5) taking into account a possible
non-zero condensate, we make a field variable shift:

ϕ(τ, x)→ ϕ′(τ, x)+ α ϕ∗(τ, x)→ (ϕ′)∗(τ, x)+ α (4.5.2)

where |α| = ρ0. After the transition to the Fourier transform (4.4.7) for the fields ϕ(τ, x)→ a(ω, k) ≡
a(k), the shift (4.5.2) reads as

a(k)→ b(k)+ α
√
βL3δk0 a∗(k)→ b∗(k)+ α∗

√
βL3δk0 (4.5.3)

and the action takes the form

S =
∑

k

{(
k2

2m
− iω − µ

)
b∗(k)b(k)+ |α|2(̃u(0)+ ũ(k))b∗(k)b(k)

+ ũ(k)
2
(α2b∗(k)b∗(−k)+ (α∗)2b(k)b(−k))

+ 1

2
√
βL3

∑
k1+k2=k3

[̃u(k1)+ ũ(k2)](αb∗(k1)b
∗(k2)b(k3)+ α∗b(k1)b(k2)b

∗(k3))

+ 1

4βL3

∑
k1+k2=k3+k4

[̃u(k1 − k3)+ ũ(k1 − k4)]b∗(k1)b
∗(k2)b(k3)b(k4)

+
√
βL3[γ ∗b(0)+ γ b∗(0)] − βL3[µ|α|2 − 1

2 ũ(0)|α|2]
}
. (4.5.4)

Here γ = ũ(0)|α|2 − αµ. All the terms in this action except the first one (which corresponds to an ideal
gas) are considered as perturbations. In addition to the elements mentioned in section 4.4.1, the diagram
technique for the perturbation theory in the case of a possible condensate contains the following elements:
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The constant α is chosen so that the sum of all diagrams with one external line are cancelled out;
graphically this condition looks as follows:
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+ · · · = 0

This requirement is equivalent to the condition

〈̂b(0)〉β = 〈̂b†(0)〉β = 0

or

〈̂a(0)〉β = α
√
βL3 〈̂a†(0)〉β = α∗

√
βL3

and
〈̂a(k )̂a†(k)〉β = 〈̂b(k )̂b†(k)〉β + βL3|α|2δk0. (4.5.5)

The last relation shows that |α|2 has the meaning of a condensate density.

♦ Normal and anomalous Green functions and the spectrum of particles

Later in this section we shall put, for simplicity, 2m = 1 (together with kB = ~ = 1).
In a superfluid system, along with the usual (‘normal’) Green function

G(k) = 〈̂b(k )̂b†(k)〉β (4.5.6)

two anomalous functions appear:

G(an)(k) = −〈̂b(k )̂b(−k)〉β Ḡ(an)(k) = 〈̂b†(k )̂b†(−k)〉β. (4.5.7)

These Green functions can be expressed by normal and anomalous self-energy parts  1 and  2 (which
are sums of the OPI diagrams), according to the following Dyson–Schwinger equations (cf section 3.1.5):

G(k) = G0(k)+ G0(k) 1(k)G(k)+ G0(k) 2(k)G(an)(−k)

G(an)(k) = G0(−k) ∗
1 (k)G(k)+ G0(−k) 1(−k)G(an)(−k).

(4.5.8)
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In a dilute gas with a small parameter
n1/3a . 1 (4.5.9)

(this means that the radius of particle interactions a is much smaller than the mean distance between the
particles; the latter is obviously related to the density of particles n) we can develop (see Popov (1983)) an
appropriate approximation for the calculation of the self-energy parts  1,  2 and solve equations (4.5.7)
with the result

G(k) = iω + k2 +�
ω2 + k4 + 2�k2

G(an)(k) = �

ω2 + k4 + 2�k2

(4.5.10)

where

�
def≡ t0ρ0 = µ− 2

(4π)3/2
ζ(3/2)t0T 3/2 (4.5.11)

(ζ(x) is the Riemann ζ(x)-function) and the constant t0 is the characteristic of the interaction between
particles (namely, their scattering amplitude in the limit of zero momenta, ki → 0, i = 1–4). Recall that
ρ0 is the condensate density. This solution is valid only for � > 0, that is, for temperatures T below
the critical value Tc defined by the condition � = 0. If � < 0 (that is, for a high temperature T , only a
non-anomalous Green function exists:

G(k) = 1

iω − k2 +�. (4.5.12)

After the analytical continuation iω→ E , we can extract the spectrum of the system (defined by the poles
of the Green functions), above and below the critical temperature:

E =
√

k4 + 2�k2 � > 0 (superfluid phase) (4.5.13)

E = k2 + |�| � < 0 (normal phase). (4.5.14)

It is seen that in the first case for |k| . √
�, the spectrum of particles becomes linear. As we have

explained in the introduction to this section, such a spectrum implies superfluidity.

♦ Comment on the improved perturbation expansion for superfluid systems by separate path
integration over higher and lower modes

The calculation of higher orders of the perturbation theory considered earlier shows that it becomes slowly
convergent in the vicinity of both the critical temperature (i.e.� ≈ 0) and small momenta of the particles
(k ≈ 0). This situation can be improved (Popov 1983) by separate consecutive path integrations over the
higher and lower modes of the fields, as in section 3.3.1. The corresponding calculation in this approach
goes through the following steps:

(i) The fields ϕ(τ, k), ϕ∗(τ, k) are separated into lower-mode ϕ0(τ, k), ϕ∗0 (τ, k) and higher-mode
ϕ1(τ, k), ϕ∗1(τ, k) parts: ϕ0, ϕ∗0 correspond to Fourier modes with momenta |k| < κ in the expansion
(4.4.7), while ϕ1, ϕ∗1 have Fourier modes with |k| ≥ κ . Here κ is some small parameter which is
adjusted for an optimal convergence of the perturbation expansion.

(ii) Using the standard perturbation theory as before, we calculate the effective action S(eff)[ϕ0, ϕ
∗
0 ] for

the lower mode fields ϕ0, ϕ∗0 :

exp{−S(eff)[ϕ0, ϕ
∗
0 ]} =

∫
Dϕ∗1 Dϕ1 exp{−S}.
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The only specific feature of this calculation is that all sums over momenta are cut off at the lower
limit κ . Thus, this perturbation expansion has no divergences at small values of momenta.

(iii) The effective action S(eff)[ϕ0, ϕ
∗
0 ] can be expanded into power series in the field variables and for the

small parameter κ , the expansion can be restricted up to quadratic terms. Thus, the remaining path
integration over the lower mode fields ϕ0, ϕ∗0 becomes Gaussian and can be carried out exactly.

The improved perturbation expansion allows us to obtain more detailed information about superfluid
systems. In particular, we can find (Popov 1983) the 1/k2-asymptotics of the Green function

G(0, k)−−−−→
k→0

constant
1

k2 .

Among other things, this asymptotic shows that it is impossible for the condensate to form in one- and
two-dimensional spaces since the singularity 1/k2 is non-integrable in the low-dimensional spaces.

4.5.2 Perturbation theory for superconducting Fermi systems

The phenomenon of superconductivity in Fermi systems is quite close to the superfluidity of Bose systems.
In the path-integral formalism, the analog of the Bose field ϕ turns out to be the product of two Fermi
fields, ψψ , and the analog of the one-particle correlator 〈ϕ(τ ′, x ′)ϕ(τ, x)〉 turns out to be the two-particle
correlator (mean value of four Fermi fields):

〈ψ(τ1, x1)ψ(τ2, x2)ψ̄(τ3, x3)ψ̄(τ4, x4)〉. (4.5.15)

A system of Fermi particles has long-distance correlations if, at fixed differences x1 − x2 and x3 − x4, the
correlator (4.5.15) decreases in the limit x1 − x3 slower than an exponential or even has a finite non-zero
limiting value. In the latter case, we can expect anomalous Green functions to exist:

〈ψ(τ1, x1)ψ(τ2, x2)〉 and 〈ψ̄(τ3, x3)ψ̄(τ4, x4)〉. (4.5.16)

In ordinary perturbation theory, such mean values vanish. In order to modify the perturbation expansion
taking possible anomalous non-zero mean values into account, let us add to the action the terms with the
external sources η(p), η̄(p) of the form

S(an) ∼
∑

p

(η̄(p)a(p)a(−p)+ η(p)a∗(p)a∗(−p)) (4.5.17)

where a(p), a∗(p) are the amplitudes in the Fourier transform of the fields ψ , ψ̄ . The peculiarity of this
action functional is that now the number of particles is not a conserved quantity and for non-zero η(p),
η̄(p), the anomalous mean values (4.5.16) do not vanish. In order to find out whether the system undergoes
a phase transition into the superconducting state, we have to study the limit η(p) → 0, η̄(p) → 0: if
the anomalous mean values (4.5.16) have a non-zero limit, the system is in the superconducting state,
otherwise the system is in the normal state. Such a study can be carried out using the perturbation theory
and the Dyson–Schwinger equations (cf section 3.1.5).

♦ Superconductivity and perturbation theory for Fermi systems

To introduce the diagram technique we must take into account the spin degrees of freedom for the Fermi
particles and describe them by the fields ψs(τ, x), s being the spin projection onto some space direction.
Let us restrict ourselves to the following non-zero anomalous mean values:

S(an) def≡ 〈ψs (τ1, x1)ψ−s(τ2, x2)〉β
S̄(an) def≡ 〈ψ̄s (τ3, x3)ψ̄−s(τ4, x4)〉β

(4.5.18)
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while 〈ψsψs〉β and 〈ψ̄s ψ̄s〉β vanish. Then, the path-integral technique (see section 3.1.5) allows us to

derive the following Dyson–Schwinger equations for the normal S(p)
def≡ 〈ψ̄s(τ1, x1)ψs(τ2, x2)〉β and

the anomalous Green functions:

S(p) = S0(p)+ S0(p) 1(p)S(p)+ S0(p) 2(p)S(an)(p)

S(an)(p) = −S0(p) ̄2(p)S(p)+ S0(−p) 1(−p)S(an)(p).
(4.5.19)

Here  1 and  2 are the self-energy parts, i.e. the sums of one-particle irreducible (cf section 3.1.5)
diagrams
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In these diagrams, the line →→− denotes the normal Green function S(p), while −←→− denotes the
anomalous Green function S(an)(p).

Since the free Green function S0(p) is given by (see section 4.4.1)

S0(ω, k) = 1

−k2 + iω + λ (4.5.20)

(cf (4.4.1) and (4.4.2)), the solution of (4.5.19) can be written as

S(p) = iω + k2 − µ+ 1(−p)

(iω + k2 − µ+  1(−p))(iω − k2 − µ− 1(p))− | 2(p)|2

S(p) = iω + k2 − µ+ 1(−p)

(iω + k2 − µ+ 1(−p))(iω − k2 − µ− 1(p))− | 2(p)|2 .
(4.5.21)

In order to obtain an explicit expression for the anomalous Green function, as in the Bose gas, the
expansion for the self-energy parts has to be cut off in a self-consistent way. This can be done, in
particular, in the case of the small gas parameter n1/3a . 1. Then we can show (Popov 1983) that
the main contribution to the self-energy parts is given by the diagrams:
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(which can be summed by the so-called T -matrix method).
As a result of the calculation of the anomalous Green functions, we can find physically important

characteristics of superconducting systems, in particular, the energy gap$(0) in the spectrum of a system
in a superconducting state (we recover the particle mass m explicitly):

$(0) = 4 p2
F

m
exp

{
− 2π2

m|t0|pF
− 2

}

where pF = √
2mµ is the Fermi momentum (radius of the Fermi sphere) and t0 is the value of the T -

matrix in the domain p ≤ pF, where it can be approximated by the constant t0 = T (p1 = p2 = p3 =
p4 = 0) (cf (4.5.11) in a Bose gas). The critical temperature of the transition to the superconducting state
is expressed in terms of the energy gap as follows

Tc = exp {C}
π

$(0) (4.5.22)

(C = 0.5772 . . . is the Euler constant).

4.5.3 Non-equilibrium quantum statistics and the process of condensation of an ideal Bose gas

Our main goal in this section is to introduce the reader to the problems of formation and evolution of
the Bose–Einstein condensation and their description in terms of path integrals. We shall start from the
relatively simple case of an ideal Bose gas: at first, from an isolated one and then coupled to a thermal
reservoir. In fact, considering the model for an ideal gas provides quite a comprehensive presentation
of the path-integral techniques in the theory of superfluidity. The introduction of an interaction, which
physically is extremely important, does not require essentially new path-integral methods. Therefore, we
shall not discuss the Bose–Einstein condensation of a realistic interacting gas in full detail (for a complete
consideration of this complicated topic, we refer the reader, e.g., to Griffin (1993), Griffin et al (1995),
Stoof (1999) and references therein).

♦ Ideal gas of bosonic quantum point particles

In the textbooks, an ideal Bose gas of quantum particles is generally discussed in terms of the average
occupation numbers of the one-particle states χα(x). Given the canonical density matrix ρ̂C(t0) of the gas
at an initial time t0, these occupation numbers obey

Nα(t) = Tr[ρ̂C(t0)ϕ̂
†
α(t)ϕ̂α(t)] (4.5.23)

with ϕ̂†
α(t) and ϕ̂α(t) the usual creation and annihilation operators of second quantization in the

Heisenberg picture, respectively. Because the Hamiltonian of the gas

Ĥ =
∑
α

εαϕ̂
†
α(t)ϕ̂α(t) (4.5.24)

commutes with the number operators N̂α(t) = ϕ̂†
α(t)ϕ̂α(t), the non-equilibrium dynamics of the system

is trivial and the average occupation numbers are, at all times, equal to their value at the initial time t0. If
we are also interested in fluctuations, it is convenient to introduce the eigenstates of the number operators,
i.e.

|{Nα}; t〉 =
∏
α

(ϕ̂†
α(t))

Nα
√

Nα ! |0〉 (4.5.25)
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and to consider the full probability distribution

P({Nα}; t) = Tr[ρ̂(t0)|{Nα}; t〉〈{Nα}; t|] (4.5.26)

which is again independent of time for an ideal Bose gas. The average occupation numbers are then
determined by

Nα(t) =
∑
{Nα }

NαP({Nα}; t) (4.5.27)

and the characteristics of the fluctuations (dispersions of observables) can be obtained from similar
expressions.

It is even more convenient to consider the eigenstates of the field operator

ϕ̂(x, t) =
∑
α

ϕ̂α(t)χα(x) (4.5.28)

that is, coherent states for the creation and annihilation operators ϕ̂α(t), ϕ̂†
α(t) with the equal-time

commutation relation [ϕ̂α(t), ϕ̂†
α(t)] = 1. As we know from section 2.3.3, an eigenstate of ϕ̂(x, t) with

the eigenvalue φ(x) =∑α φαχα(x) is given by

|φ; t〉 = exp

{∫
d x φ(x)ϕ̂†(x, t)

}
|0〉 = exp

{∑
α

φαϕ̂
†
α(t)

}
|0〉 (4.5.29)

and is also clearly an eigenstate of ϕ̂α(t), with the eigenvalue φα. A straightforward generalization of the
coherent state properties discussed in chapter 2 to the case of an infinite number of creation–annihilation
operators shows that these eigenstates obey the inner product

〈φ; t|φ′; t〉 = exp

{∫
d x φ∗(x)φ′(x)

}
= exp

{∑
α

φ∗αφ′α
}

(4.5.30)

and the completeness relation ∫ ∏
α

dφ∗α dφα
2π i

|φ; t〉〈φ; t|
〈φ; t|φ; t〉 = 1I. (4.5.31)

Thus, in analogy with the occupation number representation in (4.5.26), we can now develop another
description of the Bose gas, by making use of these coherent states and considering the probability
distribution

P[φ∗, φ; t] = Tr

[
ρ̂C(t0)

|φ; t〉〈φ; t|
〈φ; t|φ; t〉

]
. (4.5.32)

Although we expect this probability distribution to be once again independent of time, let us nevertheless
proceed to deriving its equation of motion in a way that can be generalized when we consider an interacting
Bose gas. First, we need to expand the density matrix ρ̂(t0) in terms of these coherent states. For an
isolated Bose gas, it is appropriate to take an initial density matrix that commutes with the total number
operator N̂ =∑α N̂α(t) and then we find the expression

ρ̂C(t0) =
∫ ∏

α

d(φ∗0)α d(φ0)α

2π i
ρ[|φ0|2; t0] |φ0; t0〉〈φ0; t0|

〈φ0; t0|φ0; t0〉 (4.5.33)

in which the expansion coefficients ρ[|φ0|2; t0] only depend on the amplitude of the field φ0(x), but not on
its phase. This is equivalent to saying that the initial state of the gas does not have a spontaneously broken
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U(1) symmetry. Since we are ultimately interested in the dynamics of the Bose–Einstein condensation
which implies U(1)-symmetry-breaking, it is crucial not to consider an initial state in which this symmetry
is already broken.

Next, we substitute this expansion into equation (4.5.32) to obtain

P[φ∗, φ; t] =
∫ ∏

α

d(φ∗0 )α d(φ0)α

2π i
ρ[|φ0|2; t0] |〈φ; t|φ0; t0〉|2

〈φ; t|φ; t〉〈φ0; t0|φ0; t0〉 . (4.5.34)

This is a particularly useful result, because the time dependence is now completely determined by the
matrix element 〈φ; t|φ0; t0〉, for which we can immediately write the path-integral representation.

♦ Schwinger–Keldysh closed time-path formalism

The next step is again, as in the foregoing sections, based on modification of the integration over the
time variable. Recall that 〈φ, t|φ, t0〉 is given by the path integral in the holomorphic representation
(see section 3.1.1) over all complex fields ϕ(x, t+) =∑α ϕα(t+)χα(x), with the asymmetrical boundary
conditions (3.1.82):

〈φ; t|φ0; t0〉 =
∫
C{ϕ∗(x,t)=φ∗(x);ϕ(x,t0)=φ0(x)}

Dϕ∗Dϕ exp

{
i

~
S+[ϕ∗, ϕ]

}
(4.5.35)

with the ‘forward’ action S+[ϕ∗, ϕ] given by (cf (4.4.1) and (3.1.83))

S+[ϕ∗, ϕ] =
∑
α

{
− i~ϕ∗α(t)ϕα(t)+

∫ t

t0
dt+ ϕ∗α(t+)

(
i~
∂

∂ t+
− εα

)
ϕα(t+)

}
. (4.5.36)

In the same manner, the matrix element 〈φ; t|φ0; t0〉∗ = 〈φ0; t0|φ; t〉 can be written as a path integral over
all field configurations ϕ(x, t−) =∑α ϕα(t−)χα(x) evolving ‘backward’ in time from t to t0, i.e.

〈φ; t|φ0; t0〉∗ =
∫
C{ϕ(x,t)=φ(x);ϕ∗(x,t0)=φ∗0 (x)}

Dϕ∗Dϕ exp

{
i

~
S−[ϕ∗, ϕ]

}
(4.5.37)

with the ‘backward’ action

S−[ϕ∗, ϕ] =
∑
α

{
− i~ϕ∗α(t0)ϕα(t0)+

∫ t0

t
dt− ϕ∗α(t−)

(
i~
∂

∂ t−
− εα

)
ϕα(t−)

}
=
∑
α

{
− i~ϕ∗α(t)ϕα(t)+

∫ t0

t
dt− ϕα(t−)

(
− i~

∂

∂ t−
− εα

)
ϕ∗α(t−)

}
. (4.5.38)

Putting all these results together, we see that the probability distribution P[φ∗, φ; t] can in fact be
represented by a path integral over all fields ϕ(x, t) that evolve backwards from t to t0 and then forward
in time from t0 to t . Absorbing, for brevity, the factor ρ[|φ0|2; t0] into the normalization factor of the
functional integral, we thus arrive at the desired result:

P[φ∗, φ; t] = N−1
∫
Ct {ϕ(x,t)=φ(x);ϕ∗(x,t)=φ∗(x)}

Dϕ∗Dϕ exp

{
i

~
S[ϕ∗, ϕ]

}
(4.5.39)

where the total (backward–forward) action obeys

S[ϕ∗, ϕ] = S−[ϕ∗, ϕ] + S+[ϕ∗, ϕ] = −i~
∑
α

(ϕ∗α(t)ϕα(t)− |φα|2)

+
∑
α

∫
Ct

dt ′
{

1

2

(
ϕ∗α(t ′)i~

∂

∂ t ′
ϕα(t

′)− ϕα(t ′)i~ ∂
∂ t ′
ϕ∗α(t ′)

)
− εαϕ∗α(t ′)ϕα(t ′)

}
(4.5.40)
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Figure 4.6. The closed time Schwinger–Keldysh contour defining the path integral for the probability distribution.

and the integration along the closed Schwinger–Keldysh contour Ct is defined by
∫
Ct dt ′ = ∫ t0

t dt− +∫ t
t0

dt+ as depicted in figure 4.6 (this is the so-called closed time-path Schwinger–Keldysh formalism
(Schwinger 1961, Keldysh 1965)).

♦ The Fokker–Planck equation for the probability distribution of an ideal gas

We are now in a position to derive the equation of motion, i.e. the Fokker–Planck equation, for
the probability distribution P[φ∗, φ; t]. This is most easily achieved by performing the variable
transformation

ϕ(x, t±) = φ(x, t ′)± ξ(x, t ′)/2
in (4.5.39), where t ′ is the projection of the t+, t− times, as shown in figure 4.6. In this manner, the
fields ϕ(x, t−) and ϕ(x, t+) which exist on the backward and forward branch of the Schwinger–Keldysh
contour, respectively, are ‘projected’ onto the real-time axis. Moreover, at the same time, we perform
a separation between the (semi)classical dynamics described by φ(x, t ′) and the quantum fluctuations
determined by ξ(x, t ′). After the transformation, we have

P[φ∗, φ; t] =
∫
C{φ(x,t)=φ(x);φ∗(x,t)=φ∗(x)}

Dφ∗Dφ
∫
Dξ∗Dξ exp

{
i

~
S[φ∗, φ; ξ∗, ξ ]

}
(4.5.41)

with

S[φ∗, φ; ξ∗, ξ ] =
∑
α

∫ t

t0
dt ′
{
φ∗α(t ′)

(
i~
∂

∂ t ′
− εα

)
ξα(t

′)+ ξ∗α (t ′)
(

i~
∂

∂ t ′
− εα

)
φα(t

′)
}
. (4.5.42)

Since this action is linear in ξα(t ′) and ξ∗α(t ′), the integration over the quantum fluctuations leads only to
a constraint and we find that

P[φ∗, φ; t] = N−1
∫
C{φ(x,t)=φ(x);φ∗(x,t)=φ∗(x)}

Dφ∗Dφ

×
∏
α

δ

[(
−i
∂

∂ t ′
− εα

~

)
φ∗α(t ′) ·

(
i
∂

∂ t ′
− εα

~

)
φα(t

′)
]

(4.5.43)

or equivalently that (problem 4.5.2, page 278)

P[φ∗, φ; t] =
∫ (∏

α

d(φ∗0 )αd(φ0)α

2π i

)
P[|φ0|2; t0]

∏
α

δ(|φα − φcl
α (t)|2) (4.5.44)

where we have used the fact that P[φ∗, φ; t0] is only a function of the amplitude |φ|2 and also introduced
the quantity φcl

α (t) obeying the semiclassical equation of motion

i~
∂

∂ t
φcl
α (t) = εαφcl

α (t) (4.5.45)
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and the initial condition φcl
α (t0) = φ0,α.

The latter equation is thus solved by φcl
α (t) = φ0,αe−iεα(t−t0)/~ and we conclude from a simple

change of variables in (4.5.44) that for an ideal Bose gas, P[φ∗, φ; t] = P[|φ|2; t0], as expected (there
is no U(1)-symmetry-breaking). We also see from (4.5.44) that the desired equation of motion for
P[φ∗, φ; t] reads as

i~
∂

∂ t
P[φ∗, φ; t] = −

(∑
α

∂

∂φα
εαφα

)
P[φ∗, φ; t] +

(∑
α

∂

∂φ∗α
εαφ

∗
α

)
P[φ∗, φ; t]. (4.5.46)

This is the Fokker–Planck equation for an ideal Bose gas. We expect this result to be related to the fact
that in the operator formalism the occupation numbers Nα(t) are independent of time.

It is not difficult to show that any functional that only depends on the amplitudes |φα|2 is a solution
of the stationary solutions of the Fokker–Planck equation. As it stands, the Fokker–Planck equation,
therefore, does not lead to a unique equilibrium distribution. This is not surprising because for an isolated,
ideal Bose gas there is no mechanism for redistributing the particles over the various energy levels and
thus for relaxation towards equilibrium. However, the situation changes when we allow the bosons in
the trap to tunnel back and forth to a reservoir at a temperature T . The corrections to the Fokker–Planck
equation that are required to describe the physics in this case are considered next. However, to determine
these corrections in the most convenient way, we have to generalize the theory slightly because with the
probability distribution P[φ∗, φ; t] we are only able to study spatial, but not temporal correlations in the
Bose gas.

To study these as well, we construct, as usual, a generating functionalZ[J, J ∗] for the time-ordered
correlation functions. To this aim, we introduce the probability distribution PJ [φ∗, φ; t] for a Bose gas in
the presence of the external currents J (x, t) and J ∗(x, t), by adding to the Hamiltonian the terms

−~
∫

d x (ϕ̂(x, t)J ∗(x, t)+ J (x, t)ϕ̂†(x, t)) = −~
∑
α

(ϕ̂α(t)J
∗
α (t)+ Jα(t)ϕ̂

†
α(t))

and integrate this expression over φ(x) to obtain the desired generating functional:

Zβ [J, J ∗] =
∫ ∏

α

dφ∗α dφα
2π i

PJ [φ∗, φ; t] =
∫
Dϕ∗Dϕ exp

{
i

~
S[ϕ∗, ϕ]

}
× exp

{
i
∫
C∞

dt
∫

d x (ϕ(x, t)J ∗(x, t)+ J (x, t)ϕ∗(x, t))
}
. (4.5.47)

Note that Zβ [J, J ∗] is indeed independent of the time t because of the fact that PJ [φ∗, φ; t] is a
probability distribution (cf (4.5.31) and (4.5.32)) and thus properly normalized. We are therefore allowed
to deform the contour Ct to any closed contour that runs through t0. Since we are, in principle, interested
in all times t ≥ t0, the most convenient choice is the contour that runs backward from infinity to t0 and
then forward from t0 to infinity. This contour is denoted by C∞ and also called the Schwinger–Keldysh
contour in the following, because in practice there is never any confusion with the more restricted contour
Ct that is required when we consider a probability distribution. Now all time-ordered correlation functions
can be obtained by functional differentiation with respect to the currents J (x, t) and J ∗(x, t). We have,
for instance, that

Tr[ρ̂C(t0)ϕ̂(x, t)] = 1

i

δ

δ J ∗(x, t)
Zβ [J, J ∗]

∣∣∣∣
J,J ∗=0

(4.5.48)

and similarly that

Tr[ρ̂C(t0)TC∞(ϕ̂(x, t)ϕ̂
†(x ′, t ′))] = 1

i2
δ2

δ J ∗(x, t)δ J (x ′, t ′)
Zβ [J, J ∗]

∣∣∣∣
J,J ∗=0

. (4.5.49)
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Note that the times t and t ′ always have to be larger than or equal to t0 for these identities to be valid.

♦ Bosonic quantum particles coupled to a reservoir

As a reservoir, we take an ideal gas of N bosons in a box with volume L3. The states in this box are
labeled by the momentum ~k and equal to χk(x) = exp {ik · x} /L3/2. They are created and annihilated
by second-quantized fields %̂†

k , %̂k and have an energy ε(k) = ~
2k2/2m +$V ex, where $V ex accounts

for a possible bias between the potential energies of a particle in the centre of the trap and a particle in the
reservoir. The reservoir is also taken to be sufficiently large that it can be treated in the thermodynamic
limit and is in equilibrium, with the temperature T and the chemical potential µ, for the times t < t0. At
t0 it is brought into contact with the Bose gas under consideration by means of the tunnel Hamiltonian

Ĥ int = 1

L3/2

∑
α

∑
k

(tα(k)ϕ̂α(t)%̂
†
k(t)+ t∗α(k)%̂k(t)ϕ̂

†
α(t)) (4.5.50)

with complex tunneling matrix elements tα(k) that, for simplicity, are assumed to be almost constant for
momenta ~k smaller than some fixed momentum ~kc, but to vanish rapidly for momenta larger than this
cutoff.

To study the evolution of the combined system for times t ≥ t0, we thus have to deal with the action

S[ϕ∗, ϕ;%∗,%] = − 1

L3/2

∑
α

∑
k

∫
C∞

dt (tα(k)ϕα(t)%∗
k (t)+ t∗α(k)%k(t)ϕ

∗
α(t))

+
∑
α

∫
C∞

dt ϕ∗α(t)
(

i~
∂

∂ t
− εα + µ

)
ϕα(t)

+
∑

k

∫
C∞

dt %∗
k (t)

(
i~
∂

∂ t
− ε(k)+ µ

)
%k(t) (4.5.51)

if we measure all energies relative to the chemical potential. Let us also introduce the complex field
%(x, t) = ∑k %k(t)χk(x) for the degrees of freedom of the reservoir. However, we are only interested
in the evolution of the Bose gas in the trap and therefore only in the time-ordered correlation functions of
this part of the system. The corresponding generating functional

Zβ [J, J ∗] =
∫
Dϕ∗Dϕ

∫
D%∗D% exp

{
i

~
S[ϕ∗, ϕ;%∗,%]

}
× exp

{
i
∫
C∞

dt
∫

d x (ϕ(x, t)J ∗(x, t)+ J (x, t)ϕ∗(x, t))
}

(4.5.52)

is of the same form as the functional integral in (4.5.47), but now with an effective action, that is defined
by

exp

{
i

~
S(eff)[ϕ∗, ϕ]

}
≡
∫
D%∗D% exp

{
i

~
S[ϕ∗, ϕ;%∗,%]

}
. (4.5.53)

Hence, our next task is to integrate out the field %(x, t), which can be done exactly because it only
requires a Gaussian integration (see problem 4.5.5, page 279):

S(eff)[ϕ∗, ϕ] =
∑
α,α′

∫
C∞

dt
∫
C∞

dt ′ ϕ∗α(t)

×
{(

i~
∂

∂ t
− εα + µ

)
δα,α′δ(t, t

′)− ~ α,α′(t, t
′)
}
ϕα′(t

′) (4.5.54)
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with the self-energy α,α′(t, t ′) of the form

~ α,α′(t, t
′) = 1

~L3

∑
k

t∗α(k)G(k; t, t ′)tα′(k) (4.5.55)

where G(k; t, t ′) is the Green function obeying(
i~
∂

∂ t
− ε(k)+ µ

)
G(k; t, t ′) = ~δC(t, t

′). (4.5.56)

Here we have introduced the δC function on the Schwinger–Keldysh contour defined by∫
C∞

dt ′ δC(t, t ′) = 1.

In order to solve equation (4.5.56), we need to know the appropriate boundary conditions at t = t ′. To
derive them, we note that G(k; t, t ′) describes the properties of the reservoir and, similarly to (4.5.49), it
can be expressed via the density matrix ρ̂C,R of the reservoir as follows:

iG(k; t, t ′) = Tr[ρ̂C,R(t0)TC∞(%̂k(t)%̂
†
k(t

′))]. (4.5.57)

From this identification, we see that the desired solution fulfilling the appropriate boundary conditions

G(k; t, t ′)|t=t ′ = −i(N (B)(k) + 1
2 )

is apparently

G(k; t, t ′) = −ie−i(ε(k)−µ)(t−t ′)/~{θ̃ (t − t ′)(1 + N (B)(k))+ θ̃ (t ′ − t)N (B)(k)} (4.5.58)

with N (B)(k) = 1/(eβ(ε(k)−µ)− 1) being the appropriate Bose distribution function and β = 1/(kBT ). It
is convenient to decompose the Green function into its pieces G>(k; t − t ′) and G<(k; t − t ′) by means
of

G(k; t, t ′) = θ̃ (t − t ′)G>(k; t − t ′)+ θ̃ (t ′ − t)G<(k; t − t ′). (4.5.59)

Due to the fact that we are always dealing with time-ordered correlation functions, such a decomposition
turns out to be a generic feature of all the functions on the Schwinger–Keldysh contour that we will
encounter in the following.

♦ Properties of the effective action for an ideal gas in a reservoir

Having obtained the Green function of the reservoir, we can now return to our discussion of the effective
action S(eff)[ϕ∗, ϕ] for the Bose gas in the trap. We again perform the transformation ϕα(t±) =
φα(t) ± ξα(t)/2 to explicitly separate the (semi)classical dynamics from the effect of fluctuations. This
leads to the following expression for the effective action

S(eff)[φ∗, φ; ξ∗, ξ ] =
∑
α

∫
dt

{
φ∗α(t)

(
i~
∂

∂ t
− εα + µ

)
ξα(t)+ ξ∗α (t)

(
i~
∂

∂ t
− εα + µ

)
φα(t)

}
−
∑
α,α′

∫
dt
∫

dt ′ (φ∗α(t)~ 
(−)
α,α′(t − t ′)ξα′(t ′)+ ξ∗α (t)~ (+)α,α′(t − t ′)φα′(t ′))

− 1
2

∑
α,α′

∫
dt
∫

dt ′ ξ∗α (t)~ K
α,α′(t − t ′)ξα′(t ′) (4.5.60)
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where we have introduced the retarded and advanced components of the self-energy (4.5.55) defined by

 
(±)
α,α′(t − t ′) = ±θ̃ (±(t − t ′))( >α,α′(t − t ′)− <α,α′(t − t ′)) (4.5.61)

and the so-called Keldysh component

 K
α,α′(t − t ′) =  >α,α′(t − t ′)+ <α,α′(t − t ′) (4.5.62)

which is associated with the part which is quadratic in the fluctuations.
In order to clarify the physical content of these various components of the self-energy, it is useful to

write the factor

exp

{
− i

2

∑
α,α′

∫
t0

dt
∫

t0
dt ′ ξ∗α (t) K

α,α′(t − t ′)ξα′(t ′)
}

in the integrand of the functional integral
∫
Dφ∗DφDξ∗Dξ exp{iS(eff)}[φ∗,φ;ξ∗,ξ ]/~ as a Gaussian

integral over a complex field η(x, t). Then the total effective action becomes:

S(eff)[φ∗, φ; ξ∗, ξ; η∗, η]
=
∑
α,α′

∫
t0

dt
∫

t0
dt ′ φ∗α(t)

{(
i~
∂

∂ t
− εα + µ− η∗α(t)

)
δα,α′δ(t − t ′)− ~ 

(−)
α,α′(t − t ′)

}
ξα′(t

′)

+
∑
α,α′

∫
t0

dt
∫

t0
dt ′ ξ∗α(t)

{(
i~
∂

∂ t
− εα + µ− ηα(t)

)
δα,α′δ(t − t ′)− ~ 

(+)
α,α′(t − t ′)

}
φα′(t

′)

+ 2
∑
α,α′

∫
t0

dt
∫

t0
dt ′ η∗α(t)(~ K )−1

α,α′(t − t ′)ηα′(t ′) (4.5.63)

and is thus linear in ξα(t) and ξ∗α (t). Integrating over these fluctuations, we conclude from this action that
the field φ(x, t) is constrained to obey the Langevin equations

i~
∂

∂ t
φα(t) = (εα − µ)φα(t)+

∑
α′

∫ ∞

t0
dt ′ ~ (+)

α,α′(t − t ′)φα′(t ′)+ ηα(t) (4.5.64)

and

−i~
∂

∂ t
φ∗α(t) = (εα − µ)φ∗α(t)+

∑
α′

∫ ∞

t0
dt ′ φ∗α′(t

′)~ (−)
α′,α(t

′ − t)+ η∗α(t) (4.5.65)

with the Gaussian noise terms ηα(t) and η∗α(t) which, from the last term in the right-hand side of (4.5.63),
are seen to have the time correlations

〈η∗α(t)ηα′(t ′)〉 =
i~2

2
 K
α,α′(t − t ′) = 1

2

∫
dk
(2π)3

(1 + 2N (B)(k))t∗α(k)e−i(ε(k)−µ)(t−t ′)/~tα′(k) (4.5.66)

in the thermodynamic (infinite-volume) limit.

♦ Long-time behaviour of the ideal gas coupled to a reservoir

Let us consider the limit t0 → −∞, which physically means that we neglect the initial transients that
are due to the precise way in which the contact between the trap and the reservoir is made, and focus on
the ‘universal’ dynamics which is independent of these details. In addition, at long times, the dynamics
of the gas is expected to be sufficiently slow and we can neglect the memory effects altogether. Also,
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we consider the case of a reservoir that is so weakly coupled to the gas in the trap that we can treat the
coupling in the second order of perturbation theory. As a result, we can also neglect the non-diagonal
elements of the self-energies. Eventually, we are then allowed to put

 
(±),K
α,α′ (t − t ′) =  (±),Kα δα,α′δ(t − t ′). (4.5.67)

With these simplifications, the Langevin equations (4.5.64) and (4.5.65) become

i~
∂

∂ t
φα(t) = (εα + ~ (+)α − µ)φα(t)+ ηα(t) (4.5.68)

and the complex conjugate equation for φ∗α(t). The retarded self-energy in this equation is given by

~ (+)α =
∫

dk
(2π)3

t∗α(k)
1

εα + i0 − ε(k) tα(k) (4.5.69)

and using the well-known formula for the distributions (generalized functions), i.e.

1

ω − ω′ ± i0
= P

ω − ω′ ∓ iπδ(ω − ω′)

(P denotes the principal value part of an integral) the result can be decomposed into real and imaginary
parts:

Sα ≡ Re +
α =

∫
dk
(2π)3

t∗α(k)
P

εα − ε(k) tα(k) (4.5.70)

and

Rα ≡ − Im +
α = π

∫
dk
(2π)3

δ(εα − ε(k))|tα(k)|2. (4.5.71)

The interpretation of these results is quite obvious if we consider the average of the Langevin equation,
i.e.

i~
∂

∂ t
〈φα〉(t) = (εα + Sα − iRα − µ)〈φα〉(t) (4.5.72)

which is solved by
〈φα〉(t) = 〈φα〉(0)e−i(εα+Sα−µ)t/~e−Rα t/~. (4.5.73)

Hence, the real part of the retarded self-energy Sα represents the shift in the energy of state χα(x), due
to the coupling with the reservoir, while the fact that |〈φα〉(t)|2 = |〈φα〉(0)|2e−2Rα t/~ ≡ |〈φα〉(0)|2e−�α t

shows that the average rate of decay �α of the state χα(x) is equal to 2Rα/~.
Next, we are going to determine i~∂〈|φα|2〉(t)/∂ t . To do so we first formally solve the Langevin

equation by

φα(t) = e−i(εα+~ (+)α −µ)t/~
{
φα(0)− i

~

∫ t

0
dt ′ η(t ′)ei(εα+~ (+)α −µ)t ′/~

}
. (4.5.74)

Multiplying this with the complex conjugate expression and taking the average, we obtain:

〈|φα|2〉(t) = e−2Rα t/~
{
〈|φα|2〉(0)+ i

2
 K
α

∫ t

0
dt ′ e2Rα t ′/~

}
(4.5.75)

which shows that

i~
∂

∂ t
〈|φα|2〉(t) = −2iRα〈|φα|2〉(t) − 1

2
~ K

α . (4.5.76)
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On the other hand, the Keldysh component of the self-energy is given by

~ K
α = −2π i

∫
dk
(2π)3

(1 + 2N (B)(k))δ(εα − ε(k))|tα(k)|2 (4.5.77)

and therefore obeys
~ K

α = −2i(1 + 2N (B)α )Rα (4.5.78)

with N (B)α = (eβ(εα−µ) − 1)−1 being the Bose distribution function. Relation (4.5.78) is a particular case
of the important fluctuation–dissipation theorem in quantum statistics, because it relates the strength of
the fluctuations determined by ~ K

α , to the amount of dissipation that is given by Rα . The fluctuation–
dissipation theorem ensures that the gas relaxes to thermal equilibrium. This can be seen from (4.5.76),
because substituting the fluctuation–dissipation theorem leads to

i~
∂

∂ t
〈|φα|2〉(t) = −2iRα〈|φα|2〉(t)+ iRα(1 + 2N (B)α ) (4.5.79)

which tells us that at equilibrium (that is, if ∂〈|φα|2〉(t)/∂ t = 0) we have 〈|φα|2〉 = N (B)α + 1
2 , as it

should be. Substituting this identity in (4.5.79), we indeed obtain the correct rate equation for the average
occupation numbers

∂

∂ t
Nα(t) = −�αNα(t)+ �αN (B)α = −�αNα(t)(1 + N (B)(k))+ �α(1 + Nα(t))N

(B)(k) (4.5.80)

that might justly be called the quantum Boltzmann equation for the gas, because the right-hand side
contains precisely the rates for scattering into and out of the reservoir.

From the time-evolution equations for 〈φα〉(t) and 〈|φα|2〉(t) we can read off the corresponding
Fokker–Planck equation for the ideal gas coupled to the reservoir (cf also problem 4.5.1, page 277 for a
direct derivation of the Fokker–Planck equation):

i~
∂

∂ t
P[φ∗, φ; t] = −

(∑
α

∂

∂φα
(εα + ~ (+)α − µ)φα

)
P[φ∗, φ; t]

+
(∑

α

∂

∂φ∗α
(εα + ~ (−)α − µ)φ∗α

)
P[φ∗, φ; t]

−
(

1

2

∑
α

∂2

∂φ∗α∂φα
~ K

α

)
P[φ∗, φ; t]. (4.5.81)

Using again the fluctuation–dissipation theorem, it is not difficult to show that the stationary solution of
this Fokker–Planck equation is

P[φ∗, φ;∞] =
∏
α

1

N (B)α + 1
2

exp

{
− 1

N (B)α + 1
2

|φα|2
}
. (4.5.82)

Summarizing, the dynamics of a gas coupled to a reservoir is solved by

〈φα〉(t) = 〈φα〉(0)e−i(ε′α−µ)t/~e−�α t/2 (4.5.83)

and
Nα(t) = Nα(0)e−�α t + N (B)α (1 − e−�α t ). (4.5.84)
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In the limit t → ∞, the average of the annihilation operators 〈φα〉(t) thus always vanishes, but the average
occupation numbers Nα(t) relax to the equilibrium distribution Nα = (eβ(εα−µ) − 1)−1. Although this
appears to be an immediately obvious result, its importance stems from the fact that it is also true if
we tune the potential energy bias $V ex, such that at low temperatures the ground state χ ′

0(x) acquires
a macroscopic occupation, i.e. N0 , 1. The gas therefore never shows a spontaneous breaking of the
U(1) symmetry, in agreement with the notion that we are essentially dealing with an ideal Bose gas in
the grand canonical ensemble. The reason for the absence of spontaneous symmetry-breaking can also be
understood from our stationary solution of the Fokker–Planck equation in (4.5.82), which shows that the
probability distribution for |φ0| is proportional to the Boltzmann factor e−β(ε0−µ)|φ0|2 in the degenerate
regime of interest and the corresponding free energy F(|φ0|) = (ε0 − µ)|φ0|2 never shows an instability
towards the formation of a non-zero average of |φ0|, due to the fact that ε0 − µ can never become less
then zero. Once we introduce interactions between the atoms in the gas, this picture changes completely.

♦ A comment on the non-diagonal parts of the self-energies

Before we start a short discussion of a weakly interacting Bose gas, it is necessary to make a final remark
about the effect of the non-diagonal elements of the self-energies (recall that we used the simplified
diagonal ansatz (4.5.67)). Physically, including these non-diagonal elements accounts for the change in
the wavefunctions χα(x), due to the interaction with the reservoir. This can clearly be neglected if the
coupling with the reservoir is sufficiently weak or, more precisely, if |~ (+)

α′,α(εα + Sα − µ)| is much
smaller than the energy splitting |εα′ − εα| between the states of the gas. A strong-coupling situation can
also be studied and the main difference is that we need to expand our various fields not in terms of the
eigenstates χα(x) but in the eigenstates χ ′

α(x) of the non-local Schrödinger equation

ε′αχ ′
α(x) =

(
−~

2∇2

2m
+ V ex(x)

)
χ ′
α(x)+

∫
d x ′ Re[~ (+)(x, x ′; ε′α − µ)]χ ′

α(x
′) (4.5.85)

where ε′α are the new eigenvalues and ~ (+)(x, x ′; ε) = ∑
α,α′ χα(x)~ 

(+)
α,α′(ε)χ

∗
α′(x

′). In this new
basis, the non-diagonal elements of the self-energies can now be neglected and we find essentially the
same results as before. We only need to replace εα + Sα by ε′α and tα(k) by

∑
α′

(∫
d x χ ′

α(x
′)χ∗

α′(x)
)

tα′(k).

Neglecting the non-diagonal elements in this basis only requires that the real part of the retarded self-
energy is much larger than its imaginary part, which is always fulfilled in the low-energy regime.

♦ Bose–Einstein condensation of an interacting gas

As well as the majority of non-trivial realistic physical models, the Bose gas with interaction cannot be
solved exactly and we should find appropriate approximation methods. The usual perturbation theory
is not suitable for the consideration of phase transitions. Thus, further investigations amount essentially
to the summation of an appropriate infinite series of Feynman diagrams of the perturbation theory, or,
equivalently, to approximate solution of integro-differential equations of the type (4.5.85). We shall
present, for completeness, a very brief sketch of such an analysis in the rest of this section. We shall
consider only a homogeneous Bose gas: in this case, we are allowed to take the thermodynamic limit in
which the Bose–Einstein condensation becomes a true second-order phase transition. We are then, in fact,
studying the dynamics of a spontaneous symmetry-breaking under the most ideal circumstances.
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As we have mentioned earlier, the energies ε′α and the corresponding eigenstates χ ′
α(x) for an

ideal gas can be determined from a non-local Schrödinger equation of the type (4.5.85), once we know
the retarded self-energy ~ (+)(x, x ′; t − t ′). The same is true for a homogeneous atomic Bose gas
with interactions, only with the exception that the non-zero self-energy is now due to the interatomic
interactions and not to the presence of a reservoir. In a sense, an interacting gas also plays the role of
its own reservoir. Moreover, the homogeneity of the gas leads to an important simplification, because
translational invariance requires that the retarded self-energy is only a function of the relative distance
x − x ′. Therefore, the Schrödinger equation in (4.5.85) is solved by χ ′

k(x) = χk(x) and

ε′(k) = ε(k)+ Re[~ (+)(k; ε′(k)− µ)] (4.5.86)

where ε(k) = ~
2k2/2m again and

 (+)(x − x ′; t − t ′) =
∫

dk
(2π)3

∫
dε

2π~
 (+)(k; ε)ei(k·(x−x ′)−ε(t−t ′)/~). (4.5.87)

To solve (4.5.86), we need of course an expression for the retarded self-energy of a weakly interacting
Bose gas, which follows once we know the full self-energy~ (k; t, t ′) defined on the Schwinger–Keldysh
contour C∞. Unfortunately, even for a dilute system this quantity cannot be calculated exactly and some
approximation is called for. The approximation that we will make here is the so-called many-body T -
matrix approximation. The main motivation for this approximation is that due to the smallness of the gas
parameter (na3)1/2 (cf (4.5.9)), it is very unlikely for three or more particles to be within the range of the
interaction and we only need to account for all possible two-body processes taking place in the gas.

Given the effective interaction V (k, k′, K ; t, t ′) for the scattering of two atoms which at the time
t ′ have the momenta ~(K/2 ± k′) and at the time t , the momenta ~(K/2 ± k), respectively, the exact
self-energy obeys a Hartree–Fock-like relation

~ (k; t, t ′) = 2i
∫

dk′

(2π)3
V (k − k′, k − k′, k + k′; t, t ′)G(k′; t ′, t) (4.5.88)

where the Green function equals again (4.5.58), but with ε(k), replaced by ε′(k) to make the theory self-
consistent. Since we are dealing with bosons, the effective interaction is a sum of a direct and an exchange
term and can be written as V (k, k′, K ; t, t ′) = (T (k, k′, K ; t, t ′)+ T (−k, k′, K ; t, t ′))/2 in terms of the
many-body T -matrix that obeys the Lippmann–Schwinger equation (see, e.g., Taylor (1972))

T (k, k′, K ; t, t ′) = V (k − k′)δ(t, t ′)+ i

~

∫
C∞

dt ′′
∫

dk′′

(2π)3
V (k − k′′)

× G(K/2 + k′′; t, t ′′)G(K/2 − k′′; t, t ′′)T (k′′, k′, K ; t ′′, t ′) (4.5.89)

with V (k − k′) being the Fourier transform of the interatomic interaction potential. By iterating this
equation, we see that the many-body T -matrix indeed sums all possible collisions between two particles.
Moreover, the Green functions G(K/2 ± k′′; t, t ′′) describe the propagation of an atom with momentum
~(K/2±k′′) from the time t ′′ to the time t in the gas. Therefore, we also see that the many-body T -matrix
incorporates the effect of the surrounding gaseous medium on the propagation of the atoms between two
collisions. A detailed consideration of this equation (Stoof 1999) allows us to conclude that for the thermal
momenta, i.e. for momenta ~k which are of the order of ~/λB (λB is defined in (4.1.25)), we have

ε′(k; t) = ε(k)+ 8πn(t)a~2

m
(4.5.90)



Superfluidity, superconductivity, non-equilibrium statistics 275

(a is the radius of particle interactions). However, this conclusion is not valid for momenta ~k that are
much smaller than the thermal momenta, because in that case the energy denominator in the integrant
favors the small momenta where the occupation numbers are especially large in the degenerate regime.
For such momenta and, in particular, for the momenta obeying ~k < ~

√
8πna . ~/λB, it has been found

in a good approximation that

ε′(k; t) = ε(k)+ 8πn(t)a~2

m
− 2

∫
d3k ′

(2π)3

∫
d3k ′′

(2π)3
|V (+)(0, k′, k′′)|2 N(k′; t)N(k′′; t)

P

~2k′ · k′′/m
(4.5.91)

(the V (+) component of V is defined similarly to (4.5.62)).
In principle, equations (4.5.90) and (4.5.91) already show clearly the tendency of the gas to become

unstable towards Bose–Einstein condensation, because the energy of the one-particle ground state is
shifted less upwards compared to the one-particle states with thermal energies. To show when the gas
is actually unstable, we need to compare the energy of the zero-momentum state with the instantaneous
chemical potential which is found to be

µ(t) / 8πn(t)a~2

m
+ µ0(t) (4.5.92)

where the time dependence of the ideal gas chemical potentialµ0(t) ≡ µ0(n(t) and T (t)) is related to the
precise path in the density–temperature plane that is followed during the cooling process. An instability
therefore occurs once the quantity

ε′(0; t)− µ(t) / −µ0(t)− 2
∫

dk′

(2π)3

∫
dk′′

(2π)3
|V (+)(0, k′, k′′)|2 N(k′; t)N(k′′; t)

P

~2k′ · k′′/m

becomes less than zero (cf the comment after (4.5.84)). It can be shown that the gas indeed develops the
required instability for Bose–Einstein condensation if a > 0 and the temperature is less than a critical
temperature Tc.

♦ Dynamics of the zero-momentum part of the order parameter

At the semiclassical level, the results obtained earlier show that the effective action for the long-
wavelength dynamics of the gas, i.e. for states with momenta ~k < ~

√
8πna, is given by

Scl[φ∗, φ] =
∫

dt

{∑
k

φ∗k(t)
(

i~
∂

∂ t
− ε′(k; t)+ µ(t)

)
φk(t)

− 1

2V

∑
k,k′,K

T (+)(0, 0, 0; 0)φ∗K/2+k(t)φ
∗
K/2−k(t)φK/2−k′(t)φK/2+k′(t)

}
(4.5.93)

(the T (+) component of T is defined similarly to (4.5.62)). The field φ(x, t) can be considered as the
order parameter of the Bose gas. The effective action Scl[φ∗, φ] defines the Landau–Ginzburg theory for
this order parameter. In particular, we thus find that the dynamics of the zero-momentum part of the order
parameter, i.e. the condensate, is determined by

Scl
0 [φ∗0 , φ0] =

∫
dt

{
φ∗0 (t)

(
i~
∂

∂ t
− ε′(0; t)+ µ(t)

)
φ0(t)− T (+)(0, 0, 0; 0)

2V
|φ0(t)|4

}
. (4.5.94)
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Introducing the density ρ0(t) of the condensate and its phase θ0 by means of the relation φ0(t) ≡√
ρ0(t)V eiθ0 , this simply leads to

Scl
0 [ρ0, µ] = V

∫
dt

(
−ε′(0; t)+ µ(t)− T (+)(0, 0, 0; 0)

2
ρ0(t)

)
ρ0(t). (4.5.95)

Note that in the process of deriving the last equation, we have omitted the topological term∫
dt (i~∂ρ0(t)/∂ t) as it does not affect the equations of motion and is therefore irrelevant at the

semiclassical level. This is, in principle, important only when we also want to consider the quantum
fluctuations of the condensate. Clearly, this action is minimized by ρ0(t) = 0, if ε′(0; t) − µ(t) > 0.
However, we have a non-trivial minimum at

ρ0(t) = − ε
′(0; t)− µ(t)

T (+)(0, 0, 0; 0)
(4.5.96)

if ε′(0; t)− µ(t) < 0. This result gives the desired evolution of the condensate density after the gas has
become unstable, in terms of the time-dependent chemical potential µ(t). The next task is therefore to
determine an equation of motion for the chemical potential.

To achieve this, we have to consider the interactions between the condensed and non-condensed parts
of the gas, which have been neglected so far. Substituting φk(t) = φ0(t)δk,0 + φ′k(t)(1 − δk,0) into the
semiclassical action and integrating over the fluctuations φ′k(t) describing the non-condensed part of the
gas, we find that the correct semiclassical action for the condensate reads as

Scl[ρ0, µ] = Scl
0 [ρ0, µ] − i~ ln(Z cl[ρ0, µ]) (4.5.97)

where Z cl[ρ0, µ] represents the functional integral over the fluctuations for given evolutions of the
condensate density and the chemical potential. Writing Scl[φ∗0 + φ′∗, φ0 + φ′] as Scl

0 [φ∗0 , φ0] +
Scl

1 [φ′∗, φ′; ρ0, µ], we obtain

Z cl[ρ0, µ] =
∫
Dφ′∗Dφ′ exp

{
i

~
Scl

1 [φ′∗, φ′; ρ0, µ]
}
. (4.5.98)

With this action, the total density of the gas is calculated in the thermodynamic limit as

ρ(t) = 1

V

δScl[ρ0, µ]
δµ(t)

= ρ0(t)+
∫

d3k

(2π)3
N(k; t) (4.5.99)

where the occupation numbers are found from

N(k; t) =
∫
Dφ′∗Dφ′ φ′∗k (t)φ

′
k(t) exp{iScl

1 [φ′∗, φ′; ρ0, µ]/~}
Z cl[ρ0, µ] . (4.5.100)

The latter two equations, together with (4.5.96), both give the condensate density ρ0(t) and the chemical
potential µ(t) as a function of the total density ρ(t) and formally thus completely solve the semiclassical
dynamics of the gas.

Determining the occupation numbers N(k, t) requires solving an interacting quantum field theory,
which cannot be done exactly. An approximation is thus called for. Taking only the quadratic terms
in Scl

1 [φ′∗, φ′; ρ0, µ] into account amounts to the Bogoliubov approximation. Indeed, the action for the
fluctuations then becomes equal to

SB[φ′∗, φ′] =
∫

dt

{∑
k =0

φ′∗k (t)
(

i~
∂

∂ t
− ε(k)− ρ0(t)T

(+)(0, 0, 0; 0)

)
φ′k(t)

− 1

2
T (+)(0, 0, 0; 0)ρ0(t)

∑
k =0

(φ′∗k (t)φ
′∗
−k(t)+ φ′−k(t)φ

′
k(t))

}
(4.5.101)
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if we use (4.5.91) to evaluate the energy difference ε′(k; t) − ε′(0; t) = ε(k) at the long wavelengths of
interest here. The energies of the Bogoliubov quasiparticles, at this level of approximation, thus obey

~ω(k; t) =
√
ε2(k) + 2ρ0(t)T (+)(0, 0, 0; 0)ε(k). (4.5.102)

They are purely real and correspond to the linear dispersion relation for small momenta. However, in
the Bogoliubov approximation, the quasiparticles are non-interacting. This is reasonable sufficiently far
below the critical temperature when the condensate density is large, but not very close to the critical
temperature. In that case, the interactions between the quasiparticles are very important and cannot be
neglected.

We refer the reader for details and for further consideration (in particular, for the study of fluctuations
and determination of the full probability distribution P[φ∗, φ; t]) to van Kampen (1981), Popov (1983),
Zinn-Justin (1989), Griffin (1993), Griffin et al (1995) and Stoof (1999).

4.5.4 Problems

Problem 4.5.1. Derive the Fokker–Planck equation (4.5.81) for an ideal Bose gas coupled to a reservoir,
directly from the effective action S(eff)[φ∗, φ; ξ∗, ξ ] defined in (4.5.60), making the same approximations
on the self-energies as in (4.5.67) (and without making use of the Langevin equations).

Hint. The effective action for the probability distribution P[φ∗, φ; t] in the required approximation reads

S(eff)[φ∗, φ; ξ∗, ξ ] =
∑
α

∫ t

t0
dt ′ φ∗α(t ′)

(
i~
∂

∂ t ′
− εα − ~ (−)α + µ

)
ξα(t

′)

+
∑
α

∫ t

t0
dt ′ ξ∗α(t ′)

(
i~
∂

∂ t ′
− εα − ~ (+)α + µ

)
φα(t

′)

− 1
2

∑
α

∫ t

t0
dt ′ ξ∗α (t ′)~ K

α ξα(t
′) (4.5.103)

and is quadratic in the fluctuation field ξ(x, t). We can thus again perform the integration over this field
exactly. The result is

S(eff)[φ∗, φ] =
∑
α

∫ t

t0
dt ′

2

~ K
α

∣∣∣∣(i~
∂

∂ t ′
− εα − ~ (+)α + µ

)
φα(t

′)
∣∣∣∣2 ≡

∫ t

t0
dt L(t ′). (4.5.104)

Since the probability distribution P[φ∗, φ; t] is equal to the functional integral

P[φ∗, φ; t] =
∫
C{φ(x,t)=φ(x);φ∗(x,t)=φ∗(x)}

Dφ∗Dφ exp

{
i

~
S(eff)[φ∗, φ]

}
(4.5.105)

we know that P[φ∗, φ; t] must obey the ‘Schrödinger equation’ that results from quantizing the classical
theory with the Lagrangian L(t).

The quantization of this theory is straightforward. The momentum conjugate to φα(t) is

πα(t) = ∂L(t)

∂(∂φα(t)/∂ t)
= 2i

 K
α

(
−i~

∂

∂ t
− εα − ~ (−)α + µ

)
φ∗α(t) (4.5.106)
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whereas the momentum conjugate to φ∗α(t), i.e. π∗
α(t), is given by the complex conjugate expression. The

corresponding Hamiltonian is therefore

H =
∑
α

{
πα(t)

∂φα(t)

∂ t
+ π∗

α(t)
∂φ∗α(t)
∂ t

}
− L(t)

=
∑
α

{
− i

~
πα(t)(εα + ~ (+)α − µ)φα(t)+ i

~
π∗
α(t)(εα + ~ (−)α − µ)φ∗α(t)

}
+
∑
α

 K
α

2~
|πα(t)|2. (4.5.107)

Applying now the usual quantum-mechanical recipe of demanding non-vanishing commutation relations
between the coordinates and their conjugate momenta, we can put in this case π̂α = (~/i)∂/∂φα and
similarly π̂∗

α = (~/i)∂/∂φ∗α . The ‘Schrödinger equation’

i~
∂

∂ t
P[φ∗, φ; t] = Ĥ P[φ∗, φ; t] (4.5.108)

then indeed reproduces the Fokker–Planck equation in (4.5.81) exactly.

Problem 4.5.2. Prove the equivalence of expressions (4.5.43) and (4.5.44), (4.5.45) for the probability
distribution P[φ∗, φ; t] of an ideal Bose gas.

Hint. Use the result of problem (1.2.6) and the fact that ρ[|φ0|2; t0] enters the normalization constantN−1

(see the comment before (4.5.39)).

Problem 4.5.3. Derive the time-evolution equation for the mean values 〈φα〉(t) and 〈|φα|2〉(t) for an ideal
Bose gas with the probability distribution P[φ∗, φ; t] satisfying the Fokker–Planck equation (4.5.46).

Hint. We first consider the average 〈φα〉(t) =
∫
Dφ∗Dφ φαP[φ∗, φ; t]. Multiplying (4.5.46) with φα

and integrating over φ(x), we find after a partial integration that

i~
∂

∂ t
〈φα〉(t) = εα〈φα〉(t) (4.5.109)

which precisely corresponds to the equation of motion of 〈ϕ̂α(t)〉 = Tr[ρ̂C(t0)ϕ̂α(t)] in the operator
formalism. Similarly, we find that

i~
∂

∂ t
〈φ∗α〉(t) = −εα〈φ∗α〉(t) (4.5.110)

in agreement with the result for 〈ϕ̂†
α(t)〉 = Tr[ρ̂C(t0)ϕ̂†

α(t)].
Next, we consider the average of |φα|2, for which we immediately obtain

i~
∂

∂ t
〈|φα|2〉(t) = 0. (4.5.111)

Problem 4.5.4. Derive a relation between the mean value 〈|φα|2〉(t) of an ideal Bose gas and the
occupation numbers Na of the one-particle states.

Hint. To give the relation between 〈|φα|2〉(t) and Nα(t) is complicated by the fact that at equal times the
operators ϕ̂α(t) and ϕ̂†

α(t) do not commute. However, the path integral produces time-ordered operator
products. This implies that 〈|φα|2〉(t) is the value at t ′ = t of

Tr[ρ̂C(t0)TCt (ϕ̂α(t)ϕ̂
†
α(t

′))] = θ̃ (t − t ′)Tr[ρ̂C(t0)ϕ̂α(t)ϕ̂
†
α(t

′)] + θ̃ (t ′ − t)Tr[ρ̂C(t0)ϕ̂
†
α(t

′)ϕ̂α(t)]



Superfluidity, superconductivity, non-equilibrium statistics 279

with TCt being the time-ordering operator on the Schwinger–Keldysh contour and θ̃ (t, t ′) the symmetrical
Heaviside function. Since the latter is equal to 1

2 at equal times, we conclude that

〈|φα|2〉(t) = Nα(t)+ 1
2 . (4.5.112)

Thus, the stationarity of 〈|φα|2〉 (proved in the preceding problem) is related to the fact that the occupation
numbers Nα(t) for an ideal gas are independent of time (see the beginning of section 4.5.3).

Problem 4.5.5. Calculate the effective action S(eff) for an ideal Bose gas in a thermal reservoir defined by
the Gaussian path integral (4.5.53).

Hint. Let us introduce the δC function on the Schwinger–Keldysh contour defined by∫
C∞

dt ′ δC(t, t ′) = 1

and the Green function G(k; t, t ′) obeying (4.5.56), i.e.(
i~
∂

∂ t
− ε(k)+ µ

)
G(k; t, t ′) = ~δC(t, t

′). (4.5.113)

The action S[ϕ∗, ϕ;%∗,%] can be written as a complete square or, more precisely, as the sum of two
squares S1[ϕ∗, ϕ] and S2[ϕ∗, ϕ;%∗,%] that are given by

S1[ϕ∗, ϕ] =
∑
α

∫
C∞

dt ϕ∗α(t)
(

i~
∂

∂ t
− εα + µ

)
ϕα(t)

− 1

~L3

∑
α,α′

∑
k

∫
C∞

dt
∫
C∞

dt ′ ϕ∗α(t)t∗α(k)G(k; t, t ′)tα′(k)ϕα′(t ′) (4.5.114)

and

S2[ϕ∗, ϕ;%∗,%] =
∑

k

∫
C∞

dt

(
%∗

k(t)−
1

~L3/2

∑
α

∫
C∞

dt ′ t∗α(k)ϕ∗α(t ′)G(k; t ′, t)
)

×
(

i~
∂

∂ t
− ε(k)+ µ

)(
%k(t)− 1

~L3/2

∑
α

∫
C∞

dt ′ G(k; t, t ′)ϕα(t ′)tα(k)
)

(4.5.115)

respectively. Since the first term is independent of the field %(x, t), we only need to evaluate the
functional integral

∫
D%∗D% exp (i S2[ϕ∗, ϕ;%∗,%]/~). Performing a shift in the integration variables,

we see, however, that this functional integral is equal to∫
D%∗D% exp

{
i

~

∑
k

∫
C∞

dt %∗
k (t)

(
i~
∂

∂ t
− ε(k)+ µ

)
%k(t)

}
= Tr[ρ̂C,R(t0)] = 1. (4.5.116)

As a result, the effective action S(eff)[ϕ∗, ϕ] is just equal to S1[ϕ∗, ϕ], which can be rewritten as in (4.5.54).

Problem 4.5.6. Derive the Bose gas effective action S(eff)[φ∗, φ; ξ∗, ξ; η∗, η] with the auxiliary stochastic
field η∗, η (the result is given by (4.5.63)), which leads to the Langevin equations (4.5.64) and (4.5.65).
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Hint. Multiply the integrand of the path integral defining the effective action S(eff)[φ∗, φ; ξ∗, ξ ] in (4.5.60)
by a factor 1, which is written as the Gaussian integral

∫
Dη∗Dη exp{iS(eff)

aux [η∗, η]/~}, with

S(eff)
aux [η∗, η] = 1

2

∑
α,α′

∫
dt
∫

dt ′
(

2η∗α(t)−
∑
α′′

∫
dt ′′ ξ∗α′′(t

′′)~ K
α′′,α(t

′′ − t)

)

× (~ K )−1
α,α′(t − t ′)

(
2ηα′(t

′)−
∑
α′′

∫
dt ′′ ~ K

α′,α′′(t
′ − t ′′)ξα′′(t ′′)

)
(4.5.117)

and add this action to S(eff)[φ∗, φ; ξ∗, ξ ].

4.6 Non-equilibrium statistical physics in the path-integral formalism and
stochastic quantization

This section is devoted to one of the most striking manifestations of the deep interrelations between
stochastic processes, quantum mechanics and statistical physics, which we have stressed throughout the
book. Namely, we shall discuss the method of the so-called stochastic quantization.

An alternative scheme for quantization based on stochastic averages has been presented by Parisi and
Wu (1981) (see also, e.g., Damgaard and Hüffel (1987) and Namiki (1992) for comprehensive reviews
and references). The main idea of this stochastic quantization approach to quantum mechanics is to view
the quantum theory in the Euclidean time as the equilibrium limit of a statistical system coupled to a
thermal reservoir. This system evolves in a new additional time direction, which is called stochastic time
until it reaches the equilibrium limit for infinite stochastic time. The coupling to the heat reservoir is
simulated by means of a stochastic noise field which forces the original dynamical variables to wander
randomly similarly to the Brownian particle (Wiener process) which we discussed in detail in chapter 1.
In the equilibrium limit, the stochastic averages become identical to the ordinary Euclidean vacuum
expectation values. The Minkowski (real) time variant of the formalism (with the usual iε-prescription for
the regularization of the corresponding path integrals) is also available and we shall discuss it as well as
the Euclidean variant.

There are two equivalent formulations of stochastic quantization due to the general properties of the
stochastic processes (see chapter 1):

• In one formulation, all fields have an additional dependence on stochastic time. Their stochastic time
evolution is determined by a Langevin equation which has a drift term constructed from the gradient
of the classical action of the system. The expectation values of observables are obtained by ensemble
averages over the Wiener measure.

• Corresponding to this Langevin equation, there is an equivalent diffusion process which is defined
in terms of the Fokker–Planck equation for the probability distribution characterizing the stochastic
evolution of the system. Now, the expectation values of the observables are defined by functionally
integrating them with the stochastic time-dependent Fokker–Planck probability distribution.

In several models, we can mathematically rigorously verify that in the infinite stochastic time limit,
this Fokker–Planck probability distribution converges to the standard Euclidean configuration-space path-
integral density.

Over the past years, stochastic quantization has been successfully applied to different problems, in
particular, for the quantization of gauge-field theory without gauge-fixing terms, for studies of quantum
anomalies, investigations of supersymmetric models and for the regularization and renormalization
program. An important area of application of this approach consists of the numerical (Monte Carlo)
simulations for a non-perturbative study of field theories.
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In this section, we shall outline the prescription of the Parisi–Wu stochastic quantization method
starting from the elementary example of ordinary integrals (‘zero-dimensional’ quantum system), then
consider how to calculate the transition amplitudes in ordinary quantum mechanics within the stochastic
scheme and, finally, we shall discuss the stochastic quantization of field theories, including gauge-
invariant models.

4.6.1 A zero-dimensional model: calculation of usual integrals by the method of ‘stochastic
quantization’

Let us start by considerating the generating functional for the zero-dimensional model, that is, from the
following (one-dimensional) integral

Z( j) = N−1
∫

dx e−S(x)e j x (4.6.1)

where S(x) is some polynomial (e.g., S(x) = (x2/2 + gx4/4)) and N = Z(0). The main idea of the
stochastic quantization approach is to express the mean value

Gm = ∂m

∂xm
Z( j)

∣∣∣∣
j=0

= N−1
∫

dx xme−S(x) (4.6.2)

as a large-‘time’ mean value over a non-equilibrium statistical ensemble, as it relaxes to the equilibrium
distribution ∼ exp{−βS(x)}. To this aim, we generalize the integration variable x to a random variable
x(s) (cf chapter 1), depending on an auxiliary ‘time’ s.

Let W (x1, s1|x0, s0) be the (conditional) transition probability that x(s) has the value x1 at the time
s1, if it had value x0 at time s0. The stochastic process x(s) is chosen to be Markovian (see chapter 1) and
stationary, so that W depends only on the time difference s1 − s0 and, for brevity, we put s0 = 0. Thus,
the requirement of relaxation of the fictitious statistical system to the equilibrium state can be formulated
as follows:

lim
s→∞ W (x, s|x0, 0) = N−1 exp{−S(x)} (4.6.3)

and it is obviously independent of the initial position x0.
From the computational point of view, the condition (4.6.3) is important because it implies the

ergodic property of the stochastic process:

lim
s→∞

∫ ∞

−∞
dx xn W (x, s|x0, 0) = N−1

∫ ∞

−∞
dx xn exp{−S(x)}

= lim
s→∞

1

s

∫ s

0
ds′ xn(s′) (4.6.4)

(see, e.g., Klauder (1983)), that is, the ensemble average is identical to the temporal average for a sample
path. Once we have chosen an evolution equation for x(s) such that (4.6.3) follows, the computer
simulation of the time average is straightforward. This way of calculation seems to be too cumbersome
for ordinary integrals of the type (4.6.1), but in field theory, it can be quite reasonable.

Next, we proceed to establish the equation of evolution for x(s).

♦ Langevin equation for the auxiliary stochastic process x(s) and the Fokker–Planck equation for
the transition probability

As we learned from section 1.2, the time evolution of a stochastic process at the microscopic level
is governed by the Langevin equation (cf (1.2.24)). On the other hand, at the macroscopic level its
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time behaviour is defined by the corresponding Fokker–Planck equation. Let us show that the required
relaxation of the probability W (i.e. the limit (4.6.3)) is guaranteed if the stochastic process satisfies the
following Langevin equation:

∂x(s)

∂s
= −∂S(x)

∂x
+ η(s) (4.6.5)

where η(s) is the white-noise stochastic process, so that (cf (1.2.13))

〈η(s)〉stoch = 0 〈η(s2)η(s1)〉stoch = 2δ(s2 − s1) (4.6.6)

with all higher connected correlation functions vanishing.
To show that the Langevin equation (4.6.5) gives the correct behaviour for W , we integrate it for a

small time interval$s:

$x(s) ≈ −∂S(x)

∂x
$s +

∫ s+$s

s
ds′ η(s′). (4.6.7)

From (4.6.6) and (4.6.7), we can now deduce that

lim
$s→0

〈
$x(s)

$s

〉
stoch

= −∂S(x)

∂x

lim
$s→0

〈
($x(s))2

$s

〉
stoch

= 2 (4.6.8)

lim
$s→0

〈
($x(s))n

$s

〉
stoch

= 0 n > 2.

The last equality follows from the fact that the higher-order correlation functions of η(s) vanish. These
are exactly the conditions (1.2.15)–(1.2.17) for a transition probability which leads to a Fokker–Planck
equation of the form (1.2.21). Thus in the concrete case (4.6.8), the Fokker–Planck equation reads as

∂

∂s
W (x, s|x0, 0) = ∂

∂x

[
∂S(x)

∂x
+ ∂

∂x

]
W (x, s|x0, 0). (4.6.9)

It is easy to see that the equilibrium solution (that is, satisfying ∂s W = 0) of equation (4.6.9) is indeed
given by the required Boltzmann-like distribution: W = constant× exp{−S(x)}.

♦ The generating functional for Green functions in the approach of stochastic quantization

We wish to construct a generating functional for the stochastic correlation functions

δm Z(J )

δ J (s1) · · · δ J (sm)

∣∣∣∣
J=0

= 〈x(s1) · · · x(sm)〉stoch. (4.6.10)

The practical meaning of these correlation functions is that in the limit of the infinite stochastic time
s, they are equal to the integrals

∫
dx xm exp{−βS(x)}, which we study by the stochastic quantization

method. Correspondingly, after the generalization to higher-dimensional models, such correlators in the
infinite time limit become the usual Green functions for quantum-mechanical or field operators.

The generating functional Z [J ] is constructed in two steps (Gozzi 1983). First we note that the
form (4.6.6) of the correlation functions for the white noise η(s) shows that the ensemble average of any
functional F[η] can be written as the following path integral:

〈F[η]〉stoch =
∫
Dη(s) F[η(s)] exp

{
−
∫ ∞

0
ds η2(s)

}
. (4.6.11)
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The reader may easily verify that correlation functions (4.6.6) are indeed reproduced by this path integral.
Thus, the required generating functional can be presented as the integral (4.6.11), with functional F[J ] of
the form

F[J, η] = exp

{∫ ∞

0
ds J (s)xη(s)

}
where xη(s) satisfies Langevin equation (4.6.5) and, hence, implicitly depends on η(s). At the second
step, we introduce a new integration variable y(s) and rewrite the functional F[J, η] as the path integral
over it:

F[J, η] =
∫
Dy(s) δ[y(s)− xη(s)] exp

{∫ ∞

0
ds J (s)y(s)

}
(4.6.12)

so that the generating functional reads as

Z [J ] =
∫
DηDy(s) δ[y(s)− xη(s)] exp

{
−
∫ ∞

0
ds η2(s)+

∫ ∞

0
ds J (s)y(s)

}
. (4.6.13)

Now we want to recover the dependence of xη on η, rewrite the δ-functional as a δ-functional
explicitly depending on η and, using this, integrate over the latter. The method of calculation is quite
analogous to the Faddeev–Popov trick which we used in section 3.2.4 for the transition from a gauge field
to the gauge parameter integration variables. To achieve this, we change the order of the integrations in
(4.6.13):

∫
DηDy(s)→ ∫

Dy(s)Dη and denote by η̃ the solution of the equation

y(s)− xη̃(s) = 0

for a fixed function y(s). It is clear (cf the similar consideration after (3.2.132)) that the only contribution
to the path integral over η comes from the infinitesimal vicinity of η̃. Then, for small variations ξ(s)
around η(s) the Langevin equation (4.6.5) which relates xη and η reads as

∂

∂s
(xη̃ + δx)+ [S′(xη̃)+ S′′(xη̃)δx] = η̃ + ξ (4.6.14)

where the prime denotes the derivative in x and where we have kept only the first-order terms in the
variation δx corresponding to the infinitesimal variation ξ . This variation δx is related to ξ by the linear
differential operator:

M̂δx
def≡ ∂

∂s
δx + S′′(xη̃)δx = ξ. (4.6.15)

Substituting (4.6.15) into the path integrals (4.6.13) yields

Z [J ] =
∫
Dy(s)Dξ δ[M̂−1ξ ] exp

{
−
∫ ∞

0
ds η2(s)+

∫ ∞

0
ds J (s)y(s)

}
=
∫
Dy(s) det M̂ exp

{
−
∫ ∞

0
ds η̃2(s)+

∫ ∞

0
ds J (s)y(s)

}
=
∫
Dy(s) det M̂ exp

{
−
∫ ∞

0
ds

[(
∂y

∂s′
+ S′(x)

)2

− J (s)y(s)

]}
. (4.6.16)

Calculating the determinant of the operator M̂ results in the additional exponential (problem 4.6.1,
page 293):

det M̂ = exp

{∫ ∞

−∞
ds θ̃ (0)S′′(y(s))

}
(4.6.17)
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where θ̃ (0) = 1
2 is the value of the symmetrical θ̃ -function (cf (1.2.281)). The choice of the type of

step-function (θ , see (1.1.43), or θ̃ ) depends on the way in which the discrete approximation of the path
integral is defined. In particular, the symmetrical θ̃ -function corresponds to the midpoint prescription (see
Gozzi (1983) for details).

Substituting (4.6.17) into (4.6.16) enables us to write the generating functional Z [J ] in terms of the
path integral

Z [J ] =
∫
C{x0,0;x,s}

Dx exp

{
− S(eff) +

∫ ∞

0
ds J (s)x(s)

}
(4.6.18)

with ‘effective action’

S(eff) def≡
∫ ∞

0
ds

{[
∂x

∂s
+ S′(x)

]2

− 1

2
S′′(x)

}
. (4.6.19)

Note that in (4.6.19), the functional integration is over all paths with a fixed starting point: x(s =
0) = x0. Sometimes, this proves to be too restrictive and it is convenient to choose x0 to have a probability
distribution p(x0). This leads to an extra integration in (4.6.18):

Z [J ] =
∫

dx0 p(x0)

∫
C{x0,0;x,s}

Dx exp{−S(eff)}+∫∞0 ds J(s)x(s). (4.6.20)

In some cases, particular choices of p(x0) make calculations simpler.
A similar approach based on the idea of stochastic quantization is possible for the analysis of integrals

with complex S(x) in (4.6.1). This allows us to consider the path-integral formulation of the stochastic
quantization in real time. We shall use this possibility in the next subsection for the stochastic quantization
of quantum-mechanical systems (i.e. systems depending on real physical time in addition to the auxiliary
stochastic one).

4.6.2 Real-time quantum mechanics within the stochastic quantization scheme

Now let us expand the stochastic quantization method to a non-relativistic quantum-mechanical particle
with coordinates x(t), that is, to systems which depend on the physical time variable t .

The generating functional Z[J ] produces vacuum expectations of the dynamical operators under
consideration (see chapter 3). Therefore, if we are interested in vacuum expectations, generalizing the
formalism presented in the foregoing subsection to the case of dependence on an additional (physical)
time variable t is straightforward (with the obvious substitution of the exponents −S → iS in all the
formulae). Given some arbitrary functional f of the coordinates x(t), its vacuum expectation value can
be obtained as the equilibrium limit s → ∞ of the stochastic correlation function 〈 f [x; s]〉

〈0| f (̂x)|0〉 = lim
s→∞〈 f [x; s]〉 (4.6.21)

which can be defined as

〈 f [x; s]〉 =
∫
Dx f [x]W [x; s]. (4.6.22)

Here P[x; s] is a normalized (generalized) probability distribution, obeying the Fokker–Planck equation

∂

∂s
W [x; s] =

∫ ∞

−∞
dt

δ

δx(t)

(
δ

δx(t)
− i

δS

δx(t)

)
W [x; s]. (4.6.23)

In this subsection, we prefer to work in real-time quantum mechanics to demonstrate the possibility of
stochastic quantization directly in real time and because our main interest now concerns the calculation
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of quantum-mechanical transition amplitudes. But we implicitly assume the iε-prescription for the
regularization (convergence) of the path integrals which we shall encounter in this formalism.

As we discussed in the preceding subsection, stochastic correlations can be obtained alternatively by
assigning an additional stochastic time dependence x(t)→ x(t, s) to x(t) via the Langevin equation

∂x(t, s)

∂s
= i

δS

δx(t, s)
+ η(t, s). (4.6.24)

Its solution has to be inserted into the given functional f and the average over the white noise η,
characterized by

〈η(t, s)η(t ′, s′)〉 = 2δ(t − t ′)δ(s − s′) (4.6.25)

finally has to be worked out.
However, in quantum mechanics, together with the calculation of vacuum expectation values (mainly

used in field theory), we are frequently interested in the normalized matrix elements of time-ordered
products of operators between the state vectors |x, t〉, which are eigenstates of the Heisenberg operators
x̂(t) belonging to the eigenvalues x . We therefore introduce new stochastic correlation functions, taking
care of the boundary values xi at ti and x f at t f . We consider, for example,

〈x f , t f |T(x(t1)x(t2))|xi , ti 〉
〈x f , t f |xi , ti 〉 = lim

s→∞〈x(t1, s)x(t2, s)〉stoch (4.6.26)

and define, in analogy to (4.6.21),

〈x(t1, s)x(t2, s)〉stoch =
∫
C{xi ,ti ;x f ,t f }

Dx x(t1)x(t2)W [x; s]. (4.6.27)

W now satisfies Fokker–Planck equation (4.6.23) with the time integration restricted to the interval
t ∈ [ti , t f ]. It follows that the stationary solution is given by (constant) × eiS , so that the standard
path-integral representation emerges at the equilibrium limit of (4.6.27).

♦ Transition amplitudes in the formalism of the stochastic quantization

Due to the normalization condition for the probability density W we cannot directly express the transition
amplitude 〈x f , t f |xi , ti 〉 in terms of it. The stochastic expectation values calculated either with Fokker–
Planck or Langevin equation techniques are always normalized automatically and it seems difficult to
find a way to reproduce such quantities as transition amplitudes within the framework of the stochastic
quantization. It is, however, possible to relate 〈x f , t f |xi , ti 〉 to the normalized stochastic expectation value
of the Hamiltonian Ĥ (Hüffel and Nakazato 1994).

The key observation for achieving such a relation is that the Schrödinger equation implies the equality

∂

∂ ti
ln〈x f , t f |xi , ti 〉 = i

〈x f , t f |H (ti)|xi , ti 〉
〈x f , t f |xi , ti 〉 . (4.6.28)

The right-hand side is a normalized expectation value of the Hamiltonian at ti , which provides that this
quantity is obtainable as a limit of the stochastic average 〈H (ti , s)〉stoch. Note that for conservative systems
the stochastic average of the Hamiltonian is t-independent at equilibrium (i.e. s → ∞). Therefore, for
calculational simplicity, we evaluate it at the initial time t = ti . Substituting the stochastic average instead
of the right-hand side of (4.6.28), we have for its solution:

〈x f , t f |xi , ti 〉 = c̃ exp

{
i
∫ ti

dt ′ lim
s→∞〈H (t ′, s)〉stoch

}
(4.6.29)
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with c̃ being a constant independent of ti . For a transparent presentation, we restrict ourselves to
Hamiltonians quadratic in the canonical variables. In this case, we can separate the contributions from the
classical trajectory and arrive at

〈x f , t f |xi , ti 〉 = c̃ exp

{
i
∫ ti

dt ′ Hcl(t
′)
}

exp

{
i
∫ ti

dt ′ lim
s→∞〈Hfl(t

′, s)〉stoch

}
= c exp{iScl} exp

{
i
∫ ti

dt ′ lim
s→∞〈Hfl(t

′, s)〉stoch

}
. (4.6.30)

Here the classical action Scl has appeared as a result of the well-known relation ∂Scl/∂ ti = Hcl(ti ) (see,
e.g., ter Haar (1971)) and is composed of the classical path xc(t), as usual.

The constant c, in principle, could depend on x f and xi which, however, is not the case. This follows
from a similar variational principle as before for 〈x f , t f |xi , ti 〉 with respect to x f and xi and the relations
∂Scl/∂x f = pc(t f ) and ∂Scl/∂xi = −pc(ti ) (problem 4.6.2, page 293). So the constant c is indeed t f , ti ,
x f , xi independent and can be fixed by requiring the transition amplitude to approach a Dirac δ-function
δ(x f − xi ) in the limit of ti = t f .

♦ Phase-space formulation

Since we have related the transition amplitude to an expectation value of the Hamiltonian, it is natural to
rely on a phase-space formulation of the stochastic quantization (Ohba 1987). To this aim, we separate
the dynamical variables x(t) and p(t) into classical and fluctuation parts in the usual way:

x(t) = xc(t)+ X (t) p(t) = pc(t)+ P(t) (4.6.31)

and implement the boundary conditions for the fluctuations X (ti ) = X (t f ) = 0 by the Fourier
decompositions

X (t) =
∞∑

n=1

xn sin
nπ

T
(t − ti ) (4.6.32)

P(t) =
∞∑

n=1

pn cos
nπ

T
(t − ti )+ p0

2
T = t f − ti . (4.6.33)

Note that no boundary conditions are imposed on the momentum variable P(t) and that any function
defined in [ti , ti + T ] can continuously be extended to [ti − T, ti + T ] as an even function, like the
previous P . Stochastic quantization proceeds by introducing the s-dependence for the Fourier modes
xn → xn(s), pn → pn(s), according to the phase-space Langevin equations

d

ds
xn = i

δS

δxn
+ ξn d

ds
pn = i

δS

δpn
+ ηn (4.6.34)

where the noises fulfill

〈ξn(s)ξm(s′)〉stoch = 〈ηn(s)ηm(s
′)〉stoch = 2δnmδ(s − s′)

〈ηn(s)ξm(s
′)〉stoch = 0. (4.6.35)

For the quadratic case, (4.6.34) is explicitly solved by(
xn

pn

)
(s) =

∫ s

0
dσ exp{iAn(s − σ)}

(
ξn
ηn

)
(σ ) (4.6.36)



Non-equilibrium statistical physics and stochastic quantization 287

where An is a model-dependent matrix. Using the stochastic calculus, we can derive the following
correlators:

〈xn(s)ξm(s)〉stoch = 〈pn(s)ηm(s)〉stoch = δnm

〈xn(s)ηm(s)〉stoch = 〈pn(s)ξm(s)〉stoch = 0 (4.6.37)

and find that the correlations containing stochastic time derivatives vanish in the equilibrium limit s → ∞〈
xn(s)

dxm(s)

ds

〉
stoch

=
〈
xn(s)

dpm(s)

ds

〉
stoch

=
〈

pn(s)
dxm(s)

ds

〉
stoch

=
〈

pn(s)
dpm(s)

ds

〉
stoch

→ 0.

(4.6.38)

♦ Example: a free particle in the phase-space formalism of the stochastic quantization

The easiest example to discuss is the non-relativistic free particle with the Hamiltonian

H = p2

2m
. (4.6.39)

We have now

Sc = m

2T
(x f − xi )

2 Sfl =
∞∑

n=1

(
nπ

T
xn pn − p2

n

2m

)
T

2
− p2

0
T

8m
(4.6.40)

and get

dxn

ds
= inπ

2
pn + ξn

dpn

ds
= i
(nπ

T
xn − pn

M

) T

2
+ ηn

dp0

ds
= − i

T

4M
p0 + η0. (4.6.41)

From the fact (see (4.6.38)) that in the equilibrium limit the correlators〈
pm(s)

dxn(s)

ds

〉
stoch

〈
pm(s)

dp0(s)

ds

〉
stoch

and

〈
p0(s)

dp0(s)

ds

〉
stoch

vanish, we immediately find

〈pm pn〉 ≡ lim
s→∞〈pm(s)pn(s)〉stoch = 0 〈pm p0〉 = 0 〈p2

0〉 = −4im

T
. (4.6.42)

Furthermore,

lim
s→∞〈Hfl(ti , s)〉stoch = lim

s→∞
〈P2(ti , s)〉stoch

2m
= 〈p2

0〉
8m

= − i

2T
(4.6.43)

so that

i
∫ ti

dt ′ lim
s→∞〈Hfl(t

′, s)〉stoch = −i
∫ T

dT

(
− i

2T

)
= −1

2
ln T (4.6.44)

and finally

〈x f , t f |xi , ti 〉 = c
1√
T

eiSc c =
√

m

2π i
(4.6.45)

(cf (2.2.41)). The transition amplitudes for another standard example, i.e. for the harmonic oscillator also
can be found by the stochastic quantization method; this calculation pertains to problem 4.6.3, page 294.
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♦ Configuration-space formulation

Although the phase-space formulation is the natural one, sometimes it is technically more convenient
to use the configuration-space formulation. The transition to the Lagrangian (configuration-space)
formulation is achieved by stochastic averaging the Legendre transformation:

〈Hfl(ti , s)〉stoch =
〈

P(ti , s)
∂X

∂ t
(ti , s)

〉
stoch

− 〈Lfl(ti , s)〉stoch. (4.6.46)

Now the stochastic average of the fluctuation part of the Hamiltonian can be expressed through the average
of the derivatives of the coordinates (Hüffel and Nakazato 1994):

lim
s→∞〈Hfl(ti , s)〉stoch = m

2
lim

t1,t2→ti
∂t1∂t2 lim

s→∞〈X (t1, s)X (t2, s)〉stoch (4.6.47)

where we have used the time-splitting procedure to define the averaging of the velocities properly.
Substituting this average into (4.6.30) again gives the transition amplitudes. In particular, for a free

particle or a harmonic oscillator, we obtain the same results (4.6.45) and (4.6.86).
Having these formulae to hand, we can develop a perturbation theory for systems with non-quadratic

Hamiltonians based on an iterative solution of the Langevin equation under given boundary conditions.

4.6.3 Stochastic quantization of field theories

The original aim of Parisi and Wu (1981) was to use stochastic methods to quantize gauge-field theories
without adding gauge-fixing terms. We shall sketch how this comes about later in this section, but we now
start from the more simple example of scalar-field theory.

The formal extension of the stochastic quantization methods presented in the two preceding
subsections to scalar-field theory in d dimensions encounters a little difficulty. Since in field theories
we usually deal (at least at the first step of an investigation) with Green functions and not directly with
transition amplitudes, it is more convenient to consider the stochastic quantization in the Euclidean-time
formalism.

♦ Stochastic quantization of the scalar field theory

Similar to the one-dimensional case in section 4.6.1, the integrand in the path-integral representation of
the generating functional for Green functions of this theory, that is N−1 exp{−S[ϕ]}, is interpreted as the
equilibrium distribution of the non-equilibrium statistical system. The scalar field ϕ(x), x = {x, t = x4},
is generalized to a stochastic field ϕ(x, s), driven by the Langevin equation

∂ϕ(x, s)

∂s
= − δS[ϕ]

δϕ(x, s)
+ η(x, s) (4.6.48)

which is the direct generalization of (4.6.5). Note that s is the auxiliary ‘stochastic’ time, while the
physical (Euclidean) time x4 is included in the argument x of the field. The stochastic external field
η(x, s) have correlator functions which are straightforward generalizations of (4.6.6):

〈η(x, s)〉stoch = 0 〈η(x2, s2)η(x1, s1)〉stoch = 2δ(s2 − s1)δ(x2 − x1) (4.6.49)

and with all higher connected correlation functions vanishing.
The Euclidean Green functions appeared as the large stochastic time limits:

lim
s→∞〈ϕη(x1, s1)ϕη(x2, s2) · · ·ϕη(xm, sm)〉stoch = N−1

∫
Dϕ(x) ϕη(x1)ϕη(x2) · · ·ϕη(xm) exp{−S[ϕ]}

(4.6.50)
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where the field ϕη(x, s) satisfies the Langevin equation and hence implicitly depends on the external
stochastic field η. A strict proof of this relation requires a suitable regularization of the ultraviolet
divergences in the quantum field theory and is a rather complicated problem. However, we can show
that it is indeed correct in the framework of the perturbation theory (Floratos and Iliopoulos 1983) (see
also Rivers (1987)).

♦ Perturbation theory based on the Langevin equation

Let us consider ϕ4-theory with a standard interaction Lagrangian Lint = gϕ4/4!. In order to develop the
perturbation theory, we start from the free-field Langevin equation which according to (4.6.48), reads as
follows:

∂ϕ(x, s)

∂s
= (∂2

µ − m2)ϕ(x, s)+ η(x, s) (4.6.51)

with a solution of the form

ϕη(x, s) =
∫ s

0
ds′
∫

d4x ′ D(ret)(x − x ′, s − s′)η(x ′, s′) (4.6.52)

expressed in terms of the retarded Green function (i.e. D(ret)(x, s) = 0 for s < 0) and satisfying[
∂

∂s
− (∂2

µ − m2)

]
D(ret)(x − x ′, s − s′) = δ(x − x ′)δ(s − s′) (4.6.53)

(for simplicity, we have chosen the vanishing initial condition: ϕη(x, 0) = 0). It is not difficult to see that
the Green function is given by

D(ret)(x, s) = θ(s)
∫

d4k

(2π)4
exp{−s(k2 + m2)+ ikx}. (4.6.54)

Using (4.6.52), we can now find the non-equilibrium correlation function D(st)(x − x ′; s, s′) def≡
〈ϕη(x, s)ϕη(x ′, s′)〉stoch

D(st)(x − x ′; s, s′) =
∫ s

0
dσ
∫ s ′

0
dσ ′

∫
dy dy ′ D(ret)(x − y, s − σ)

× D(ret)(x ′ − y ′, s′ − σ ′)〈η(y, σ )η(y ′, σ ′)〉stoch

= 2
∫ ∞

0
dσ
∫

dy D(ret)(x − y, s − σ)D(ret)(x ′ − y, s′ − σ). (4.6.55)

Substituting (4.6.54) in (4.6.55) yields

D(st)(x − x ′; s, s′) =
∫

d4k

(2π)4
D̃(st)(k; s, s′)eikx (4.6.56)

where

D̃(st)(k; s, s′) = D̃c(k)[exp{−(k2 + m2)|s − s′|} − exp{−(k2 + m2)(s + s′)}] (4.6.57)

with D̃c(k) = (k2 + m2)−1 being the usual Euclidean free-field propagator (cf (3.1.93)). It is seen that
at equal large stochastic time (s = s′ → ∞), the stochastic Green function converts into the usual field
theoretical Green function:

lim
s→∞ D̃(st)(k; s, s) = D̃c(k). (4.6.58)
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We used the simplest initial condition, ϕη(x, 0) = 0, but actually the results at large s do not depend on
the choice of the initial condition (see problem 4.6.4, page 295).

If the interaction term Lint = λϕ4/4! is included in the Euclidean action, the Langevin equation can
partially be integrated out as

ϕη(x, s) =
∫ s

0
ds′
∫

d4x ′ D(ret)(x − x ′, s − s′)[η(x ′, s′)+ 1
6λϕ

3
η(x

′, s′)]. (4.6.59)

This equation permits an iterative solution in powers of the coupling constant λ:

ϕη(x, s) =
∫ s

0
ds′
∫

d4x ′ D(ret)(x − x ′, s − s′)

×
{
η(x ′, s′)+ 1

6λ

[ ∫ s ′

0
dσ
∫

d4y D(ret)(x ′ − y, s′ − σ)η(y, σ )
]3

+O(g2)

}
. (4.6.60)

From this approximate solution, we can again construct D(st)(x − x ′; s, s′) def≡ 〈ϕη(x, s)ϕη(x ′, s′)〉stoch or
any other correlation function up to the orderO(g2). Further iterations generate higher powers of λ.

♦ The generating functional for Green functions in the stochastically quantized field theory

The generating functional for Green functions in scalar-field theory is the straightforward generalization
of that for the zero-dimensional model (cf (4.6.13)–(4.6.20)). Thus we present only the result:

Z[J ] =
∫
Dϕ p(ϕ(x, 0)) exp

{
− S(eff)[ϕ] +

∫
d4x

∫ ∞

0
ds J (x, s)ϕ(x, s)

}
(4.6.61)

where

S(eff)[ϕ] =
∫

dx ds

{
1

4

(
∂ϕ

∂s

)2

+ 1

4

(
δS[ϕ]
δϕ(x, s)

)2

− 1

2

δ2S[ϕ]
δϕ2(x, s)

}
(4.6.62)

is the effective Fokker–Planck action (S is the initial Euclidean action for field theory).
In ϕ4-field theory, the effective action takes the form

S(eff)[ϕ] = S(eff)
0 [ϕ] + S(eff)

int [ϕ] (4.6.63)

where the free part S(eff)
0 [ϕ] reads as

S(eff)
0 [ϕ] =

∫
dx ds

{
1

4

(
∂ϕ

∂s

)2

+ ((∂2
µ − m2)ϕ)2 − λϕ2

}
(4.6.64)

and the interaction part S(eff)
int [ϕ] is

S(eff)
int [ϕ] = 1

4!
∫

dx ds

{
λ2ϕ6

6
− 2λϕ3(∂2

µ − m2)ϕ

}
. (4.6.65)

The leading term of the finite-time free-field propagator (4.6.56) can be read immediately from (4.6.64)
for λ = 0. For λ = 0, S(eff)

0 [ϕ] and S(eff)
int [ϕ] provide the general rules for a diagrammatic representation

of the stochastic Green functions.
The renormalizability of such a (4 + 1)-dimensional theory is not obvious, but it has been proven

(Klauder and Ezawa 1983) that it is indeed renormalizable similarly to conventional ϕ4-field theory.
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♦ Stochastic quantization and gauge fixing

As we have already mentioned, the original aim of Parisi and Wu (1981) when they suggested the
stochastic quantization method was to simplify quantization of gauge-field theories avoiding gauge fixing.
We shall explain why the stochastic approach allows us to quantize without gauge condition on the
example of the simplest Abelian gauge theory without matter (i.e. the theory of free photons).

Recall (see section 3.2) that in the case of the action for the Abelian gauge field Aµ (see (3.2.18) and
(3.2.19))

SYM = 1
4

∫
dx FµνFµν = 1

2

∫
dx Aµ(−∂2δµν + ∂µ∂ν)Aν (4.6.66)

(with Fµν = ∂µAν − ∂ν Aµ) we are unable to construct a propagator by inserting the action directly into
the path integral without modification, because the differential operator in this action is not invertible.
However, suppose we extend Aµ to a stochastic field Aµ(x, s) satisfying the Langevin equation

∂Aµ(x, s)

∂s
= (∂2δµν − ∂µ∂ν)Aν(x, s)+ ηµ(x, s). (4.6.67)

We take the external stochastic field ηµ(x, s) to have the following correlator functions (cf (4.6.6))

〈ηµ(x, s)〉stoch = 0

〈ηµ(x2, s2)ην(x1, s1)〉stoch = 2δµνδ(x2 − x1)δ(s2 − s1).

Then equation (4.6.67) with the boundary condition Aµ(x, 0) = 0 is solved, in analogy with (4.6.52), as

Aµ(x, s) =
∫ s

0
ds′
∫

d4x ′ D(ret)
µν (x − x ′, s − s′)ηµ(x ′, s′) (4.6.68)

where D(ret)
µν is the retarded Green function, satisfying[(

∂

∂s
− ∂2

)
δµν + ∂µ∂ν

]
D(ret)
νρ (x, s) = δµρδ(x)δ(s). (4.6.69)

The advantage of (4.6.69) is that whereas (−∂2δµν + ∂µ∂ν) has no inverse, the operator[(
∂

∂s
− ∂2

)
δµν + ∂µ∂ν

]
,

is non-singular. This means that the photon propagator in the formalism of the stochastic quantization can
be constructed without gauge fixing.

To see this, let us pass to the Fourier transformed Langevin equation

∂ Ãµ(k, s)

∂s
= −k2

(
δµν − kµkν

k2

)
Ãν(k, s)+ η̃µ(k, s). (4.6.70)

The corresponding Fourier transform of the retarded Green function reads as

D̃(ret)
µν (k, s − s′) =

[(
δµν − kµkν

k2

)
e−k2|s−s ′| + kµkν

k2

]
θ(s − s′). (4.6.71)
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Now we can find the stochastic photon propagator:

D̃(st)
µν (k; s, s′)δ(k + k ′) def≡ 〈Ãµ(k, s) Ãν(k, s

′)〉stoch

=
∫ s

0
dσ
∫ σ ′

0
dσ ′

∫
dy dy ′ D̃(ret)

µλ (k, s − σ)D̃(ret)
νρ (k ′, s′ − σ ′)〈̃ηλ(k, σ )̃ηρ(k ′, σ ′)〉stoch

= 2δ(k + k ′)
∫ ∞

0
ds
∫

dy D̃(ret)
µλ (k, s − σ)D̃(ret)

νρ (k ′, s′ − σ)δλρ. (4.6.72)

After substituting the solution (4.6.71), we arrive at the final result:

D̃(st)
µν (k; s, s′) = D̃L

µν(k)[exp{−k2|s − s′|} − exp{−k2|s + s′|} + 2 min(s, s′)
kµkν

k2 (4.6.73)

where D̃L
µν(k) coincides with the transverse gauge propagator (i.e. in the Lorentz gauge, cf (3.2.144)):

D̃L
µν(k) =

1

k2

(
δµν − kµkν

k2

)
. (4.6.74)

As has been shown by Parisi and Wu (1981), the last term in (4.6.73) does not contribute to the gauge-
invariant quantities. The remaining term, for large stochastic times s = s′ → ∞, gives the photon with
the propagator D̃L

µν(k).

♦ Gauge freedom in the formalism of the stochastic quantization

Stochastic quantization seems to lead to a specific choice of the gauge condition (namely, the Lorentz
gauge). However, this is not true. To understand this, let us decompose the gauge field into transverse and
longitudinal components:

AT
µ(k, s) =

(
δµν − kµkν

k2

)
Aν(k, s)

AL
µ(k, s) =

kµkν
k2

Aν(k, s).

After a similar decomposition of η, Langevin equation (4.6.68) decomposes as

∂AT
µ

∂s
= −k2 AT

µ + ηT
µ (4.6.75)

∂AL
µ

∂s
= ηL

µ. (4.6.76)

We can see that the longitudinal field satisfies the frictionless Brownian equation. This is a consequence
of the gauge invariance of the photon action, which implies δSYM/δAL

µ = 0. The consequence of this
fact is the following: if we use, instead of Aµ(x, 0) = Aµ(k, 0) = 0, some non-zero initial condition
Aµ(x, 0), the solution to (4.6.75) for the transverse part is (cf (4.6.88)):

AT
µ(k, s) = AT(0)

µ (k, s)+ Aµ(k, 0) exp{−k2s} (4.6.77)

where AT(0)
µ (k, s) is the solution for the vanishing initial condition. As s → 0, AT

µ(k, s) → AT(0)
µ (k, s)

irrespective of the boundary condition AT
µ(k, 0). Thus, the transverse part of the photon field behaves as
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a Markov variable, losing all memory of the initial condition. This is not the case for the longitudinal
part AL

µ of the field which, with no damping term, always remembers its initial configuration AL
µ(k, 0). In

particular, if
AL
µ(k, 0) = kµα(k) (4.6.78)

equation (4.6.76) is solved as

AL
µ(k, 0) =

∫ s

0
ds′ θ(s − s′)ηL

µ(k, s
′)+ kµα(k). (4.6.79)

As a result, the large-time stochastic propagator D̃(st)(k; s, s′) does depend on the initial condition for
the longitudinal field. Specifically, with the choice (4.6.78), the large-time behaviour is modified by the
addition of the term kµkνα(k2)/k2. Choosing an appropriate gauge function α(k), we can reproduce any
gauge-equivalent form of the gauge propagator.

Thus, while the stochastic quantization method does not require the introduction of a gauge-fixing
term into the Yang–Mills action, it proves to be totally equivalent to the standard path-integral quantization
of gauge fields considered in chapter 3.

4.6.4 Problems

Problem 4.6.1. Calculate the determinant of the operator M̂ in (4.6.15), that is

M̂ = ∂

∂s
+ S′′(xη̃)

using its representation via path integrals over auxiliary (Grassmann) variables.

Hint. We introduce two Grassmann variables (‘ghosts’) c(s) and c∗(s) (cf (3.2.168)) and present (det M̂)
in terms of the path integral:

det M̂ =
∫
Dc∗(s)Dc(s) exp

{
−
∫

ds c∗(s)M̂c(s)

}
.

We can calculate this path integral by a series expansion in analogy with the usual perturbation theory,
in which the role of the ‘free action’ S0 is attributed to the part of the exponent defined by the operator
∂/∂s, that is, S0 = ∫

ds (c∗∂c/∂s). This series can be easily summed due to the specific form of the
corresponding ‘free propagator’: D0(s − s′) = θ̃ (s − s′). This leads to the vanishing of all loop diagrams
but one (since θ̃ (s − s′)θ̃ (s′ − s) = 0 if s′ = s). The result of the calculation is

det M̂ = exp

{
θ̃ (0)

∫
ds S′′(x(s)

}
.

Problem 4.6.2. Prove that the constant c in (4.6.30) is indeed independent of x f and xi .

Hint. Use the fact that
∂

∂x
|x〉 = i p̂|x〉

(in coordinate representation) and carry out the calculations similarly to (4.6.28)–(4.6.30), but where the
time derivatives are substituted with spatial ones and the Hamiltonian with the momentum operator. Then,
use the relation from the classical Hamiltonian mechanics:

∂Scl

∂x f
= pc(t f )

∂Scl

∂xi
= −pc(ti ).
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Problem 4.6.3. Using as a guide the example of a free particle considered in section 4.6.2, derive the
transition amplitude for a quantum-mechanical harmonic oscillator in the framework of the phase-space
stochastic quantization formalism (by the method of the Langevin equation).

Hint. Using the results of chapter 2, we find that the harmonic oscillator Hamiltonian

H = p2

2m
+ 1

2
mω2x2 (4.6.80)

corresponds to the following classical and quantum actions:

Scl = ωm

2 sinωT
[(x2

i + x2
f ) cosωT − 2xi x f ]

S =
∞∑

n=1

(
nπ

T
xn pn − p2

n

2m
− 1

2
mω2x2

n

)
T

2
− p2

0
T

8m
(4.6.81)

so that

dxn

ds
= i
(nπ

T
pn − mω2xn

) T

2
+ ξn

dpn

ds
= i
(nπ

T
xn − pn

m

) T

2
+ ηn

dp0

ds
= − i

T

4m
p0 + η0. (4.6.82)

From 〈
pn

dp0

ds

〉
stoch

〈
p0

dp0

ds

〉
stoch

we find, in the equilibrium limit,

〈pn p0〉 = 0 〈p2
0〉 = −i

4m

T
(4.6.83)

and from 〈
pm

dxn

ds

〉
stoch

combined with 〈
pm

dpn

ds

〉
stoch

we find

〈pn pm〉 = 2im

T

δnm( nπ
Tω

)2 − 1
. (4.6.84)

Therefore (recalling the boundary condition X (ti ) = 0),

lim
s→∞〈Hfl(ti , s)〉stoch = 1

2m

( ∞∑
n,m=1

〈pn pm〉 + 〈p2
0〉

4

)
= − iω

2
cot Tω (4.6.85)

and the transition amplitude is obtained as

〈x f , t f |xi , ti 〉 = c
1√

sin Tω
eiSc c =

√
mω

2π i
. (4.6.86)
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Thus, the result for the harmonic oscillator does coincide with that obtained by the usual path-integral
method (see chapter 2).

Problem 4.6.4. Prove that the stochastic Green function (4.6.55) for large s = s′ does not depend on a
concrete choice of the initial condition for the Langevin equation (4.6.51).

Hint. The Fourier transformed Langevin equation (4.6.51) reads as

∂ϕ(k, s)

∂s
= −(k2 − m2)ϕ(k, s)+ η(k, s). (4.6.87)

If, instead of choosing ϕ(k, 0) = 0, we take an arbitrary initial condition, the solution is

ϕη(k, s) = ϕ(0)η (k, s)+ ϕη(k, 0) exp{−(k2 + m2)s} (4.6.88)

where ϕ(0)η (k, s) is the solution for the vanishing initial condition. As s → ∞, ϕη(k, s) relaxes to

ϕ
(0)
η (k, s). Therefore, D(st)(x − x ′; s, s′) def≡ 〈ϕη(x, s)ϕη(x ′, s′)〉stoch does not depend on the choice

of the initial condition for large s = s′.

4.7 Path-integral formalism and lattice systems

In the last section of this book we return essentially to our starting point. Recall that in all chapters of this
book, to construct path integrals in stochastic processes, quantum mechanics, field theory and statistical
physics, we have started from discrete-time or discrete-spacetime approximations. Then, our aim was to
pass to the corresponding continuum limits which just leads to what is called a ‘path integral’. However,
in many cases, there are strong reasons for the direct investigation of the discrete approximations of the
path integrals without going to the continuum limit. These cases can be separated into two groups:

(i) investigations of genuine lattice (physically discrete) systems (for example, spin systems in solid
state physics);

(ii) investigations of physically continuous systems by non-perturbative methods based on the
discretization of the spacetime (for example, computer simulations in the so-called lattice gauge
theory of the fundamental interactions).

The objects which appear in the description of physically discrete systems (for example, an expression for
the partition function for a lattice system) cannot be truly named ‘path integrals’. In fact, they are usual
multiple integrals.

To discretize continuous time or spacetime variables to calculate path integrals related to physically
continuous systems, we have used this approach many times in this book (recall, for example, the
calculation of the Wiener integrals in section 1.1.4 or the calculations for the quantum-mechanical
oscillator potential in section 2.2.2). In fact, since the very definition of a path integral is heavily based on
the discrete approximation (especially, in quantum mechanics), this proves to be a most reliable method of
calculation. Such calculations become extremely important and fruitful in situations when there are simply
no other suitable exact or approximate ways to reach physical results. This is true, in particular, for the
gauge theory of strong interactions (QCD), cf section 3.2.8. The problem of self-consistent calculations
of physical quantities for field systems in discrete spacetime in such a way that their results are valuable
for the continuum limit, is a central issue for lattice gauge theory.

Both the theory of physical lattice systems and lattice gauge theory are very extensive subjects (for a
general introduction, see, e.g., Kogut (1979); for a more extensive discussion of physical lattice systems,
see, e.g., Feynman (1972a), Baxter (1982) and Izumov and Skryabin (1988); for the lattice gauge theory,
see Creutz (1983) and Montvay and Münster (1994)). In this section, we shall discuss and briefly review
some elements of these theories and their relation to the path-integral techniques.
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4.7.1 Ising model as an example of genuine discrete physical systems

The simplest and most studied models of discrete physical systems are formulated according to the
following general rules:

(i) The random variables s are chosen to lie on the intersections of a rectangular lattice with L sites in
each dimension (d = 1, 2, 3).

(ii) The random variable s at each site takes on a finite number N of values.
(iii) The energy functional H [s] is translationally invariant with periodic boundary conditions.
(iv) The interaction between variables is of finite range.

Some examples of such energy functionals in two dimensions are:

(i) The nearest-neighbour two-dimensional Ising model in a magnetic field

H [s] = −
L∑

j,k=1

[J1s jks( j+1)k + J2s jks j (k+1) + hs jk] (4.7.1)

where s jk = ±1.
(ii) The N-state chiral Potts model

H [s] = −
L∑

j,k=1

N−1∑
n=1

[Evn (σ j kσ
∗
( j+1)k)

n + Eh
n (σ j kσ

∗
j (k+1))

n + Hnσ
n
jk] (4.7.2)

where σ N
jk = 1. When N = 2, we note that (4.7.2) reduces to (4.7.1).

The class of models restricted by conditions (i)–(iv) can be expanded. The variables could lie on the
bonds as well as on the lattice sites. Continuous variables could be used and a familiar example of such a
system is the n-component classical Heisenberg magnet

H [v] = −
L∑

j,k=1

[v j k · v( j+1)k + v j k · v j (k+1)] (4.7.3)

where v = {v1, . . . , vn}, v2 = 1. The lattice can also be triangular, hexagonal, etc.
As always in statistical physics, the principal problem is to calculate the partition function for this

models:
Zβ =

∑
ϕ

e−βH [ϕ] (4.7.4)

where ϕ is any of the lattice variables s, σ or v.
Eventually, we are usually interested in the thermodynamic limit when

L → ∞ T fixed and positive (4.7.5)

and the main quantity to be calculated in this case is the free energy per site in the dimension d:

f = −kT lim
L→∞

1

Ld
lnZ. (4.7.6)
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♦ One-dimensional Ising model

We start from the simplest example of the Ising model on a one-dimensional lattice.
The Hamiltonian for spins interacting through nearest neighbours on a one-dimensional lattice

(chain) is given by

H = −J
N∑

i=1

si si+1 + h
N∑

i=1

si . (4.7.7)

This Hamiltonian describes a spin system on a lattice with N sites and subjected to an external magnetic
field h, which is constant. The classical partition function for this system is

Zβ =
∑

si=±1

e−βH

=
∑

si=±1

exp

{
− β

[
− J

N∑
i=1

si si+1 + h
N∑

i=1

si

]}
. (4.7.8)

The spin variables satisfy the periodic boundary condition (also called the cyclicity condition)

si+N = si . (4.7.9)

♦ Relating the one-dimensional Ising model to a quantum-mechanical system through the path
integral

To study the one-dimensional Ising model, let us use our experience in quantum mechanics. To this aim,
consider the quantum-mechanical system descried by the Hamiltonian

Ĥ = −ασ1 + γ σ3 (4.7.10)

where σi are the Pauli matrices and α and γ are two (for the time being) arbitrary constant parameters.
Let |s〉 denote the two-component eigenstates of σ3, such that

σ3|s〉 = s|s〉 s = ±1. (4.7.11)

The matrix element
〈s f |e−t Ĥ |si 〉 (4.7.12)

can be approximated by the discrete version of the path integral

〈s f |e−t Ĥ |si 〉 ≈
∑

si=±1

〈s f |e−ε Ĥ |sN 〉〈sN |e−ε Ĥ |sN−1〉 · · · 〈s2|e−ε Ĥ |si 〉 (4.7.13)

where ε = t/N . The individual factors in (4.7.13) can be presented (up toO(ε2)-terms) in the following
form (see problem 4.7.1, page 308)

〈si+1|e−ε Ĥ |si 〉 ≈ 〈si+1|(1 + εασ1 − εγ σ3)|si 〉 +O(ε2)

= 1
4 (si + si+1)

2 + εα 1
4 (si − si+1)

2 − εγ 1
2 (si + si+1)+O(ε2)

= exp

{
�

4
(si − si+1)

2 + λ

2
(si + si+1)

}
+O(ε2) (4.7.14)
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where the constants� and λ are defined by the relations:

e� = εα sinh(λ) = −εγ.
Therefore, we can write

Tr e−t Ĥ = lim
N→∞

∑
si=±1

exp

{
�

N∑
i=1

(
1

2
(si − si+1)

)2

+ λ
N∑

i=1

1

2
(si + si+1)

}

= lim
N→∞

∑
si=±1

exp

{
�

N∑
i=1

1

2
(1 − si si+1)+ λ

N∑
i=1

si

}

= lim
N→∞ eN�/2

∑
si=±1

exp

{
− �

2

N∑
i=1

si si+1 + λ
N∑

i=1

si

}

= lim
N→∞

(
t

N
α

)N/2 ∑
si=±1

exp

{
− 1

2
ln

tα

N

N∑
i=1

si si+1 − t

Nγ

N∑
i=1

si

}
. (4.7.15)

Thus, if we identify the parameters as follows:

−1

2
ln

tα

N
= β t

Nγ
= h (4.7.16)

we find the following formal relation between the quantum-mechanical trace (with the Hamiltonian
(4.7.10)) and the partition functionZβ of the one-dimensional classical Ising model defined by (4.7.8):

Tr e−t Ĥ = lim
N→∞

(
tα

N

)N/2

Zβ

where the temperature and the magnetic field are given by (4.7.16).

♦ Calculation of the partition function for the one-dimensional Ising model via the path-integral
technique

It is interesting that a very simple way of explicit calculation of the partition function for the Ising
model is to express it in a form quite similar to the discrete approximation of the path integral. Namely,
manipulations analogous to those we have previously used to establish the relation with the quantum-
mechanical problem, allow us to present the partition function as follows (see problem 4.7.2, page 309):

Zβ =
∑

si=±1

exp

{
β

[
J

N∑
i=1

si si+1 − h
N∑

i=1

si

]}
=
∑

si=±1

〈s1|K|sN 〉〈sN |K|sN−1〉 · · · 〈s2|K|s1〉

= Tr KN = ξ N
1 + ξ N

2 (4.7.17)

where K is the 2 × 2 matrix

K = eβ J [coshβh1I + e−2β J σ1 − sinhβhσ3]
=
(

eβ(J−h) e−β J

e−β J eβ(J+h)

)
(4.7.18)
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and ξ1,2 are its eigenvalues:

ξ1,2 = eβ J coshβh ± (e2β J sinh2 βh + e−2β J )1/2. (4.7.19)

Knowledge of the explicit form of the partition function opens the possibility to obtain all the
thermodynamical quantities, e.g., the magnetization M = −(Nβ)−1∂ lnZβ/∂h etc.

♦ Two-dimensional Ising model

The Hamiltonian of the Ising model can be straightforwardly generalized to higher space dimensions,
but the calculation of the explicit expression for the partition function becomes more complicated. We
shall consider only the simplest generalization: the two-dimensional Ising model. Once again, we shall
consider the variables si1 i2 = ±1, i1, i2 = 1, . . . , L on a two-dimensional rectangular lattice, the number
L denoting the total number of sites along either of the two axes, while N = L2 is the total number of
sites and spins on the lattice. At the final stages, we assume L2 → ∞. The Hamiltonian describing the
interaction of the spins (in the absence, for simplicity, of an external magnetic field) is now given by (we
have already mentioned it as an example in (4.7.1)):

−βH (s) =
∑
mn

[b1smns(m+1)n + b2smnsm(n+1)] β = 1/(kBT ) (4.7.20)

where bα = Jα/kBT are the dimensionless coupling constants and Jα are the magnetic exchange energies.
The partition function and the free energy per site are:

Zβ =
∑

s=±1

e−βH(s) (4.7.21)

− β f = lim
N→∞

1

N
lnZβ (4.7.22)

where the sum is taken over 2N spin configurations provided by smn = ±1 at each site.
Making use of the identity for the typical bond weight: ebss ′ = cosh b + sinh b · ss′, which readily

follows from (ss′)2 = +1, we find that

Zβ = (2 cosh b1 cosh b2)
N Q (4.7.23)

where Q is the reduced partition function

Q
def≡ 2−N

∑
s=±1

[∏
mn

(1 + t1smns(m+1)n)(1 + t2smnsm(n+1))

]
(4.7.24)

where tα = tanh bα.
Noting that s2

mn = 1, we reach the following form of the reduced partition function:

Q = 2−N
∑

s=±1

∏
mn

(1 + t1smns(m+1)n + t2smnsm(n+1) + t1t2smns(m+1)(n+1)). (4.7.25)

This form or the direct the expression (4.7.24) for the reduced partition function are suitable for high-
and low-temperature expansions. We shall not go into the details of this perturbative technique which
can be found in, e.g., Kogut (1979). Instead, since we are mainly interested in possible applications of
path integrals, we shall show that the partition function can be presented as a discrete version of the path
integral over Grassmann variables.
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♦ Discrete approximation for fermionic path integrals and analytic solutions for two-dimensional
Ising models

It was realized that the notion of integration over anticommuting Grassmann variables (see section 2.6.1)
is a powerful tool to study the two-dimensional Ising model (Fradkin and Shteingradt (1978), Popov
(1983), Plechko (1988), Itzykson and Drouffe (1989) and references therein).

A straightforward calculation shows that the following Gaussian fermionic integral:

Q =
∫ ∏

mn

dc∗mn dcmn exp

{∑
mn

[(cmnc∗mn − t1cmnc∗(m−1)n − t2cmnc∗mn−1

− t1t2cmnc∗(m−1)(n−1))− t1cmnc(m−1)n − t2c∗mnc∗m(n−1)]
}

(4.7.26)

is equal to the reduced partition function up to the boundary effects, which are inessential as L2 → ∞.
Here cmn, c

∗
mn are totally anticommuting Grassmann variables, two per site. It is seen that this fermionic

integral is quite similar to the discrete approximation of the fermionic path integral (cf section 2.6.1).
The advantage of representation (4.7.26) is that it can be evaluated explicitly. This can be performed by
passing to the momentum space by means of the following Fourier substitution:

cmn = 1

L

∑
pq

cpq exp

{
i
2π

L
(mp + nq)

}
c∗mn = 1

L

∑
pq

c∗pq exp

{
−i

2π

L
(mp + nq)

}
(4.7.27)

where cpq , c∗pq are the new fermionic variables of integration. Integral (4.7.26) now appears in the form

Q =
∫ ∏

pq

dc∗pq dcpq exp

{∑
pq

[
cpqc∗pq

(
1 − t1 exp

{
i
2πp

L

}

− t2 exp

{
i
2πq

L

}
− t1t2 exp

{
i
2π

L
(p + q)

})
− t1cpqc(L−p)(L−q) exp

{
i
2πp

L

}
− t2c∗(L−p)(L−q)c

∗
pq exp

{
i
2πq

L

}]}
. (4.7.28)

Note that the fermionic measure transforms in a trivial way by passing from (4.7.26) to (4.7.28). This
is because the Jacobian of substitution (4.7.27) is unity, as follows from the orthogonality of the Fourier
eigenfunctions.

Integral (4.7.28) decouples into a product of simple low-dimensional integrals. Since only the
variables with momenta pq and (L − p)(L − q) interact in (4.7.28), integral (4.7.28) can be expressed as
the product of the following independent factors:∫

dc∗(L−p)(L−q) dc(L−p)(L−q) exp{Spq + S(L−p)(L−q)} (4.7.29)

where

Spq =
[

cpqc∗pq

(
1 − t1 exp

{
i
2πp

L

}
− t2 exp

{
i
2πq

L

}
− t1t2 exp

{
i
2π

L
(p + q)

})
− t1cpqc(L−p)(L−q) exp

{
i
2πp

L

}
− t2c∗(L−p)(L−q)c

∗
pq exp

{
i
2πq

L

}]
.

The elementary integral (4.7.29) can be evaluated readily by making use of definitions (2.6.33)–(2.6.36).
By comparing (4.7.28) and (4.7.29), it follows that the partition function Q arises if we multiply the
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factors (4.7.29) over only one-half of the points in the momentum space. That is, we have to multiply
factors (4.7.29) in such a way that if the given mode pq is already included into the product, then the
conjugated mode (L − p)(L − q) is not to be included, and vice versa. This means, in turn, that the total
product of factors (4.7.29) over the complete set of momentum modes, 0 ≤ p, q ≤ L − 1, yields the
squared partition function:

Q2 =
L−1∏
p=0

L−1∏
q=0

[
(1 + t2

1 )(1 + t2
2 )− 2t1(1 − t2

2 ) cos
2πp

L
− 2t2(1 − t2

1 ) cos
2πq

L

]
. (4.7.30)

Respectively, the reduced free energy per site is:

−β fQ = 1

2

∫ 2π

0

∫ 2π

0

dp

2π

dq

2π
ln[(1 + t2

1 )(1 + t2
2 )− 2t1(1 − t2

2 ) cos p − 2t2(1 − t2
1 ) cos q]. (4.7.31)

The free energy (4.7.31) is associated with the reduced partition function, Q, while the true partition
function is given by (4.7.23). Thus, the true free energy per site appears in the form

−β f = ln 2 + 1

2

∫ 2π

0

∫ 2π

0

dp

2π

dq

2π
ln[cosh 2b1 cosh 2b2 − sinh 2b1 cos p − sinh 2b2 cos q]. (4.7.32)

This is the well-known Onsager solution (Onsager 1944) for the free energy of the two-dimensional
Ising model on a rectangular lattice. Let us assume that t1, t2 > 0 (or, equivalently, J1, J2 > 0, i.e. the
ferromagnetic case). It is seen that if

1 − t1 − t2 − t1t2 = 0 tα ≡ tanh(Jα/kBT ) (4.7.33)

the integrand in (4.7.31) has the logarithmic singularity at p = q = 0. Thus, the condition (4.7.33) fixes
the critical point of the Ising model. Equivalently, this condition can be written in the more usual form:

sinh

(
2J1

kBT

)
sinh

(
2J2

kBT

)
= 1. (4.7.34)

Since the free energy is known, the specific heat C can be obtained by differentiation with respect to
the temperature: C = kBβ

2 (∂2(−β f )/∂β2). The singularity in the specific heat appears to be logarithmic
near Tc: C/kB ∼ | ln |τ ||, τ = (T − Tc)/Tc → 0, as can be deduced from (4.7.31) or (4.7.32). Also, it is
not difficult to find the spontaneous magnetization M ≡ 〈smn〉 for the model:

M8 = 1 − 1

8

(1 − t2
1 )

2(1 − t2
2 )

2

t2
1 t2

2

. (4.7.35)

From (4.7.35), we find M ∼ |T − Tc|1/8 as |T − Tc| → 0, with the universal value of the critical index
β = 1/8 for the magnetization.

Thus, the integration over the anticommuting Grassmann fields is a powerful tool with which to
analyze the two-dimensional Ising models. However, it is worth mentioning that in the presence of an
external magnetic field, the Grassmann factorization method discussed earlier requires additional rather
complicated combinatorial consideration (see, e.g., Popov (1983)).
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4.7.2 Lattice gauge theory

Lattice gauge theory is a primary tool for the study of non-perturbative phenomena in hadronic physics.
In addition to giving quantitative information on the confinement of quarks and gluons (i.e. the absence
of free quarks and gluons), the approach yields first-principle calculations of hadronic spectra and matrix
elements. At fixed lattice spacing, the quantities of interest are expressed as a discrete version of path
integrals. These multiple integrals can be approximated by a variety of techniques borrowed from
statistical mechanics. Especially promising is a numerical technique, the Monte Carlo method. The
lattice provides an ultraviolet cutoff which allows the system to be placed on a computer. Perhaps most
importantly, the cutoff is not based on perturbation theory, and thus we can study non-perturbative physics,
such as confinement. Also, unlike some other non-perturbative schemes, in this case we have a well-
defined system to study.

Lattice gauge theory is rather an old subject, going back to Wilson’s work of the early 1970s (for a
review, see, e.g., Kogut (1979), Creutz (1983) and Montvay and Münster (1994)). Through the 1980s, it
grew into a major industry. The field is currently dominated by computer simulations, although it is, in
fact, considerably broader.

It is worth noting that the ultimate goal of lattice gauge theory is to obtain results for the
corresponding field theoretical systems in the continuum spacetime. Recall that in chapter 3 we started
from discrete approximation of the path integrals in order to justify the definition and rules of calculation
for truly path integrals in the continuous spacetime. After a suitable regularization (which can also be
defined in continuous spacetime: an example is the dimensional regularization) we can obtain direct
results for the continuous case. In contrast, in lattice (gauge) theory, all calculations are carried out within
the discrete (lattice) approximation of the spacetime and of the corresponding multiple integrals. Only at
the final step of the calculation do we recover results which are valid for the continuous spacetime limit.
For this to be possible, the lattice system should satisfy certain conditions, in particular its parameters
must be close to a critical point which corresponds to a second type of phase transition (see, e.g., Kogut
(1979)). For the reader’s convenience, we have schematically presented these two approaches (based
on conventional path integrals and lattice field theory) to the calculation of field theoretical quantities in
figure 4.7.

By now, lattice gauge theory has become a very extended subject with many specific problems,
technical and theoretical achievements and restrictions, as well as computational methods. In this section,
we shall discuss some basic ideas of this approach; for further details we refer the reader to the previously
cited reviews and books.

♦ The pure gauge lattice action

Space and time are assumed to be discretized in a hypercubic lattice. It is usual to call the lattice spacing a.
In quantum chromodynamics (QCD), a gauge-field configuration is described by a set of SU(3) matrices
attached to oriented links (bonds) of the lattice. The relation between these SU(3) matrices and the usual
continuum gauge field is:

Uµ(x) = P

{
exp

{
iag0

∫ 1

0
dτ Ai

µ(x + τaµ̄)
λi

2

}}
(4.7.36)

where Uµ(x) is the SU(3) matrix (see figure 4.8) attached to the link starting from the site x (x denotes
a set of four integers labelling the site) and going to the site x + aµ̂ (µ = 0, . . . , 3); g0 is the bare
coupling constant, µ̄ is the unit vector in the positive µ direction, i is a color (i.e. SU(3)) index and λi

(i = 1, . . . , 8) are the Hermitian traceless 3 × 3 complex matrices (Gell–Mann matrices). P means a
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Figure 4.7. Schematic presentation of the relation between continuous quantum field theory, lattice field theory and
path integrals.

path-ordered product. The same link, oriented in the opposite direction, corresponds to the inverse matrix

U−µ(x + aµ̄) = U−1
µ (x). (4.7.37)

A gauge transformation is represented by an arbitrary set of SU(3) matrices labeled by the sites of the
lattice g(x) and acts as

Uµ(x)→ g(x)Uµ(x)g−1(x + aµ̄) (4.7.38)

A plaquette is an elementary square composed by four adjacent links, to which the following SU(3)
matrix is attached:

P(x)µ,ν = Uµ(x)Uν(x + aµ̄)U−1
µ (x + aν̄)U−1

ν (x) (4.7.39)
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Figure 4.8. The attachment of lattice gauge fields.

the trace of which is gauge invariant which can be easily checked. The simplest pure gauge lattice action
is:

Slat[U] =
∑

x,µ,ν

ηµν
2

g2
Re{Tr[1 − P(x)µ,ν]}

−→
a→0

1

4

∑
i,µ,ν

∫
d4x Fi

µν(x)F
iµν(x) (i = 1, . . . , 8) (4.7.40)

for any gauge configuration defined by the set of Uµ(x) for all links.
We restrict ourselves to the SU(3) gauge group because of its physical importance and for

concreteness. In fact, the construction can, quite straightforwardly, be generalized to any gauge group.
It is necessary to note that a large number of alternative gauge-invariant lattice actions which have

the same limit when a → 0 as the action in (4.7.40) exist.

♦ Starting point of lattice gauge theory: discrete approximation of the Euclidean path integral

The principal object in lattice field theory is the lattice (discrete) form of the path integral (in Euclidean
space) for the corresponding gauge theory. In particular, the two-point correlation function for the local
quantitiesO(x), O′(y) is given by∫ ∏

x,µ,νdU(x)µν exp{−Slat[U]}O(x)O′(y)∫ ∏
x,µ,νdU(x)µν exp{−Slat[U]} (4.7.41)

where Slat[U] is given by (4.7.40).
Although the lattice represents a broad framework for the non-perturbative definition of a field theory,

the subject is currently dominated by one approach, that of Monte Carlo simulation.

♦ Monte Carlo simulations

The crucial remark is that the positivity of Slat[U] in (4.7.40) gives to exp{−Slat[U]} the meaning of
a probability distribution, properly normalized by the denominator in (4.7.41), and (4.7.41) is simply
the formula for a mean value in a probabilistic sense: thus we use the analogy of a field theory with
statistical physics in the path-integral formalism, which we have already stressed many times. Although
the probabilistic ensemble in (4.7.41) is the huge ensemble of Euclidean gauge-field configurations, most
of them contribute for an exponentially suppressed amount. It was suggested that an algorithm called
Monte Carlo simulations that selects gauge-field configurations at random according to the probability
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law exp{−Slat[U]}/Z should be used. A Monte Carlo program sweeps over a lattice stored in a
computer memory and makes random changes biased by this ‘Boltzmann weight’. Such an algorithm
will automatically discard the configurations with negligible contributions. Once a large number N of
uncorrelated configurations has been produced by the algorithm, the result is∫ ∏

x,µ,νdU(x)µν e−SlatO(x)O′(y)∫ ∏
x,µ,νdU(x)µν e−Slat

= 1

N

N∑
n=1

On(x)O
′
n(y)+O

(
1√
N

)
(4.7.42)

where On(x) is the quantityO(x) with the values of the fields in the nth gauge configuration. Of course,
many different algorithms may be used, improved, tested and intense activity continues on this issue.

One of the attractive features of the technique is that the entire lattice is available in the computer
memory; so, in principle, we can measure anything. On the other hand, there are inherent statistical
fluctuations which may make some things hard to extract. This represents a new aspect of theoretical
physics, wherein theorists have statistical errors. In addition, these calculations have several sources of
systematic errors, such as the effects of finite volume and finite lattice spacing. Quark fields, added to
the pure Yang–Mills SU(3)-fields, introduce further sources of error. Furthermore, many calculations are
made feasible by what is termed the valence or quenched approximation, wherein virtual quark loops are
neglected.

♦ Quark actions and the problem of simulating fermions

Up to now, we have considered QCD with only gauge fields. Quark fields introduce serious unsolved
problems. One problem is the issue of finding a reasonable computer algorithm for simulating fermions.
In particular, since the quark fields are anticommuting, the full action is not an ordinary number, and
the analogy with classical statistical mechanics breaks down. Algorithms in current practice begin by
formally integrating out (at the stage of continuous gauge theory) the fermions, to give a determinant

Z =
∫
DADψ̄ Dψ exp{−[SYM + ψ̄(γ µ∂µ − iγ µAµ + m)ψ]}

=
∫
DA e−SYM det(γ µ∂µ − iγ µAµ + m).

After the discretization, this determinant is, however, of a rather huge matrix, and is quite tedious to
simulate. Over the years, many clever tricks have been used to simplify the problem.

The other old problem with quarks has to do with the issue of fermion doubling and chiral symmetry.
Quark fields are located on lattice sites, and look quite like continuum quark fields, except for a different
normalization: four spin and three color components. The naive action that we are tempted to use for
quarks on the lattice is

Squarks =
∑

x

{
1

2a
[ψ̄(x)(−γµ)Uµ(x)ψ(x + aµ̄)+ (µ̄→ −µ̄,Uµ → U−1

µ )] + ψ̄(x)mψ(x)
}

(4.7.43)

whose formal limit when a → 0 is the standard continuum QCD quark action and which is gauge invariant
as well as chiral invariant when m = 0. However, this naive action is not satisfactory because it encounters
the ‘doubling problem’. The point is that for one species of quarks in (4.7.43), the quark spectrum has 16
quarks in the continuum limit a → 0.

Let us discuss the problem in somewhat more detail in one space dimension. A naive discretization
of the Dirac Hamiltonian is

Ĥ0 = K
N∑
α=1

i(̂a†
αâα+1 − b̂†

αb̂α+1)+ m
N∑
α=1

â†
α b̂α + h.c.
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where âα and b̂α are fermionic annihilation operators on the sites α located along a line and h.c. denotes
the Hermitian conjugate terms. The operators (̂a†

α, âα), (̂b
†
α, b̂α) represent the upper and lower components

of a two-component spinor (the index α labels the sites on a one-dimensional lattice). The spectrum of
single-particle states for this Hamiltonian is easily found in momentum space:

E2 = m2 + 4K 2 sin2(q)

where q runs from 0 to 2π . Filling the negative energy states to form a Dirac sea, the physical excitations
consist of particles as well as antiparticle ‘holes’. The doubling problem manifests itself in the fact
that there are low-energy excitations for the momenta q in the vicinity of π , as well as 0. In d spatial
dimensions, this doubling increases to a factor of 2d .

A simple solution to the doubling was presented by Wilson (1977), who added a term that created a
momentum-dependent mass

Ĥ = Ĥ0 − r K
N∑
α=1

(̂a†
αb̂α+1 + b̂†

αâα+1 + h.c.)

where r is called the Wilson parameter. The energy spectrum is now

E2 = 4K 2 sin2(q)+ (m − 2Kr cos(q))2

and we see that the states at q near π have a different energy than those near zero. For the continuum
limit, the parameters should be adjusted so that the extra states become infinitely heavy.

This Hamiltonian has a special behaviour when 2Kr = m. In this case, one of the fermion
species becomes massless. This provides a mechanism for obtaining light quarks and chiral symmetry.
Unfortunately, when the gauge interactions are turned on, the parameters renormalize, and tuning becomes
necessary to maintain the massless quarks. This is the basis of the conventional approach to chiral
symmetry with Wilson fermions: we tune the ‘hopping parameter’ K until the pion is massless, it is
then called the chiral limit.

In the four-dimensional spacetime, the Wilson action takes the form

SWilson =
∑

x

{
1

2a

∑
µ

[ψ̄(x)(r − γµ)U(x)µψ(x + aµ̄)+ (µ̄→ −µ̄,Uµ → U−1
µ )]

+ ψ̄(x)
(

m + r

a

)
ψ(x)

}
. (4.7.44)

The effect of the additional terms proportional to r is to yield a massO(r/a) to the 15 doublers, leaving
only one quark with a finite mass when a → 0, as desired.

Other quark actions that improve the a → 0 limit also exist. All these aim at the same theory, QCD,
and the lattice versions may be viewed as a class of QCD regularization scheme. Discretization cuts off
the ultraviolet singularities. The different actions are different regularization schemes. Furthermore, any
regularization procedure of a field theory has to be complemented by a renormalization scheme.

Clearly, all regularization and renormalization schemes must give the same physical quantities when
a → 0 and the volume goes to infinity. However, due to the numerical uncertainties and to the finite value
used for a and the volume, these different methods do indeed differ somehow in their physical predictions.
These differences are taken as a tool to estimate the systematic errors due to finite a, finite volume, etc.
The statistical errors due to the finite number of gauge configurations used in the Monte Carlo may be
estimated from the Monte Carlo itself, under some assumptions about the probability distribution of the
quantities in question.
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♦ The quenched approximation

The difficulties with simulating dynamical fermions have led to the majority of simulations being done
in the ‘valence’ or ‘quenched’ approximation. Here the feedback of the fermion determinant on the
dynamical gauge fields is ignored (i.e. it is replaced by unity). Hadrons are studied via quark propagators
in a gauge field obtained in a simulation of gluon fields alone. In terms of Feynman diagrams, all gluonic
exchanges are included between the constituent quarks, but the effects of virtual quark production (‘quark
loops’ in the language of Feynman diagrams), beyond simple renormalization of the gauge coupling, are
dropped. The primary motivation is to save orders of magnitude in computer time. These dynamical quark
loops increase by several orders of magnitude the computation time and also the difficulty. This becomes
even worse for larger lattices, since the computation time increases like ∝ N4/3 instead of ∝ N for a pure
gauge theory (N being the number of lattice sites). While this may seem a drastic approximation, the fact
that the naive quark model works so well hints that things might not be so bad.

♦ An example: computation of a pseudoscalar meson mass and of fπ

Let us consider in short how we compute a physical quantity on a simple example. The axial-current
two-point correlation function in Euclidean spacetime and integrated over spatial coordinates reads as∫

d3x 〈0|( ˆ̄ψ(0)γ0γ5ψ̂(0))( ˆ̄ψ(x4, x)γ0γ5ψ̂(x4, x))|0〉 =
∑

n

|〈0| ˆ̄ψ(0)γ0γ5ψ̂(0)|n〉|2 e−mn x4

2mn

x4→∞/ |〈0| ˆ̄ψ(0)γ0γ5ψ̂(0)|π〉|2 e−mπ x4

2mπ
≡ f 2

π

mπ
2

e−mπ x4 (4.7.45)

where fπ is the so-called leptonic decay constant of the π meson. The sum
∑

n is a sum over a complete
set in the Hilbert space that is coupled to the vacuum by the axial current. At large time, due to the
exponential decay, the lightest state dominates the sum. We denoted the latter state as π , but it can also
be some other pseudoscalar meson, depending on the mass of the quarks.

The two-point correlation function in (4.7.45) may be computed by the Monte Carlo method
described earlier. Once the calculation is performed, the large x4 exponential slope gives the mass mπ ,
and once the latter is measured, the prefactor provides an estimate of the leptonic decay constant fπ . An
obvious limitation of this method is that the signals produced by the excited states are difficult to extract
from the statistical noise of the dominant ground state.

The practical limitations in the computing power lead to limitations for the domain of lattice QCD:
the momenta are quantized to a few allowed values due to the finite volume, and also bounded to values
below or equal to ∼ 1 GeV. Generally speaking, only ground states and only systems with one hadron at
a time are available.

Another area of extensive investigation in lattice gauge theory is the phase transition of the vacuum
to a plasma of free quarks and gluons at a temperature of a few hundred MeV. Both theoretical analysis
and numerical simulations have shown the existence of a high temperature regime wherein confinement
is lost and chiral symmetry is manifestly restored.

♦ Hamiltonian lattice gauge theory

In 1975, Kogut and Susskind (see Kogut (1979) and references therein) derived a lattice Hamiltonian
in which only the (d − 1)-dimensional space is discretized while the time variable remains continuous.
Theoretically, in the continuum limit this approach is equivalent to Wilson’s Lagrangian formulation of
lattice gauge theory where the gauge-field theory is discretized on the d-dimensional spacetime lattice.
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The Hamiltonian formulation starts from the lattice Hamiltonian

H = g2

2a

∑
l,i

Ei
l Ei

l −
1

a
Slat[U] (4.7.46)

where Ei
l stands for the chromo-electric fields (cf (3.2.97)) on the three-dimensional links l. The mass

spectrum can be obtained directly by solving the eigen-equation Ĥ%[U ] = ε%%[U ]. Here ε% is the
eigenvalue of Ĥ . When a → 0, a huge number of gauge configurations are correlated, and it is very
difficult to diagonalize the Hamiltonian with sufficient accuracy. In a feasible calculation, the gauge
configuration space has to be truncated. An inappropriate truncation scheme often violates the continuum
limit, and destroys the scaling behaviour for the physical quantities. Therefore, special care must be
taken when choosing a truncation scheme. On the other hand, the Hamiltonian method does have some
advantages over the Lagrangian method. In particular, it is relatively simple to obtain wavefunctions of
the hadronic states.

Since the lattice provides a non-perturbative definition of a field theory, there have been numerous
efforts in the methods are used on other models. A particularly active area has been developed towards
understanding gravity. The general idea would be to discretize the points of spacetime and then do a
sum over curvatures. So far, the results of this program have been limited, but no other non-perturbative
approach to quantum gravity has yet been successful and the potential payoff is great.

There have been suggestions that there might indeed be some fundamental (physical) lattice or
fundamental minimal length at a scale below current observations (e.g., at the scale of the Planck length)
and this assumption opens up a vast number of variations. The main obstacles which appear in the
path of a practical implementation of this suggestion are the necessity to match the requirements of the
relativistic Poincaré invariance. The latter is obviously violated by a solid lattice structure introduced
‘by hand’. During the last years, essentially new possibilities to achieve this goal based on the so-called
non-commutative geometry have appeared (for a review see, e.g., Chaichian and Demichev (1996)).

4.7.3 Problems

Problem 4.7.1. Calculate the matrix element 〈si+1|e−ε Ĥ |si 〉 for Hamiltonian (4.7.10) which is the
quantum-mechanical counterpart of the Ising Hamiltonian (4.7.7) and show that it can be presented in
the form (4.7.14).

Hint. We start from the relations

〈si+1|si 〉 = 1
4 (si + si+1)

2,

〈si+1|σ1|si 〉 = 1
4 (si − si+1)

2 (4.7.47)

〈si+1|σ3|si 〉 = 1
2 (si + si+1).

From the fact that for any i , si = ±1, we can easily deduce the set of algebraic identities:

( 1
2 (si + si+1))

2n = ( 1
2 (si + si+1))

2 for n ≥ 1

( 1
2 (si + si+1))

2n+1 = 1
2 (si + si+1) for n ≥ 0

( 1
2 (si − si+1))

2n = ( 1
2 (si + si+1))

2 for n ≥ 1 (4.7.48)

( 1
2 (si + si+1))

n( 1
2 (si − si+1))

m = 0 for n,m ≥ 1

( 1
2 (si + si+1))

2 + ( 1
2 (si − si+1))

2 = 1
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which allows us to make the following transformations (� and λ are arbitrary constant parameters):

exp

{
�

(
1

2
(si − si+1)

)2

+ λ1

2
(si + si+1)

}

= 1 +
∞∑

n=1

1

n!

[
�

(
1

2
(si − si+1)

)2

+ λ1

2
(si + si+1)

]n

= 1 +
∞∑

n=1

1

n!

[
�n
(

1

2
(si − si+1)

)2n

+ λn
(

1

2
(si + si+1)

)n
]

= 1 +
∞∑

n=1

�n

n!
(

1

2
(si − si+1)

)2

+
∞∑

n=1

λ2n+1

(2n + 1)!
(

1

2
(si + si+1)

)2n+1

+
∞∑

n=1

λ2n

(2n)!
(

1

2
(si + si+1)

)2

= 1 + (e� − 1)

(
1

2
(si − si+1)

)2

+
∞∑

n=1

λ2n+1

(2n + 1)!
1

2
(si + si+1)

+
∞∑

n=1

λ2n

(2n)!
(

1

2
(si + si+1)

)2

= 1 + (e� − 1)

(
1

2
(si − si+1)

)2

+ sinh λ
1

2
(si + si+1)

+ (coshλ− 1)

(
1

2
(si + si+1)

)2

= coshλ

(
1

2
(si + si+1)

)2

+ e�
(

1

2
(si − si+1)

)2

+ sinh λ
1

2
(si + si+1). (4.7.49)

Finally, neglecting the terms of the orderO(ε2), we can identify

coshλ = 1 sinhλ = −εγ e� = εα (4.7.50)

and this leads to the required result (in the required approximation).

Problem 4.7.2. Derive the partition function for the one-dimensional Ising model in the form (4.7.17)
which is similar to the discrete approximation for the path integral representing the trace of the operator
K given in (4.7.18). Calculate the eigenvalues of the matrix K (the answer is presented in (4.7.19)).

Hint. Making use of the identities (4.7.48), we derive

exp

{
β Jsi si+1 − βh

2
(si + si+1)

}
= eβ J exp

{
−2β J

[
1

2
(si − si+1)

]2

− βh

2
(si + si+1)

}

= eβ J

[
cosh(βh)

[
1

2
(si + si+1)

]2

+ e−2β J
[

1

2
(si − si+1)

]2

− sinh(βh)
1

2
(si + si+1)

]
.



310 Path integrals in statistical physics

If we define the matrix K as in (4.7.18), its matrix elements between the eigenstates |si 〉 and |si+1〉 of the
operator σ are calculated to be

〈si+1|K|si 〉 = exp{β Jsi si+1 − βh 1
2 (si + si+1)}

and this proves formulae (4.7.17) and (4.7.18). The eigenstates of the matrix K can easily be obtained
from the equation: det(K − ξ1I) = 0.

Note that this method of evaluating the partition function is known as the matrix method and K is
called the transfer matrix (cf also next problem).

Problem 4.7.3. Find the form of the evolution operator ÛT (also called a transfer matrix) for the harmonic
oscillator on a discrete-time lattice with the spacing a, postulating that it has the following matrix elements
(for an arbitrary value of the spacing a):

〈xi+1|ÛT(a)|xi〉 = exp

{
− 1

2π

[
1

a
(xi+1 − xi )

2 + 1

2
ω2axi+1 + ω2ax2

i

]}
.

Note that the usual evolution operator Û(t) = exp{−Ĥh.o.t} (in imaginary time) has the same matrix
elements in the limit of infinitesimally small time:

〈xi+1|Û(ε)|xi 〉|ε→0 ≈ exp

{
− 1

2π

[
1

ε
(xi+1 − xi )

2 + 1

2
ω2εxi+1 + ω2εx2

i

]}
(cf (2.2.31)).

Hint. Use the relation

〈x ′| exp{− 1
2 a p̂2}|x〉 =

∫
dp dp′ 〈x ′|p′〉〈p′| exp{− 1

2 ap2}|p〉〈p|x〉
= constant exp{− 1

2 a~2(x ′ − x)2}
to obtain

ÛT(a) = exp

{
− 1

4h2 aω2x̂2
}

exp

{
− 1

2h
aω2 p̂2

}
exp

{
− 1

4h2 aω2x̂2
}
.

The operator ordering in this formula is important.

Problem 4.7.4. Show that in the limit of infinitesimally small evolution time, the logarithm of the transfer
matrix ÛT(a) obtained in the preceding problem 4.7.3 becomes the usual Hamiltonian for the harmonic
oscillator, that is

Ĥa
def≡ −

(
~

a
ln ÛT(a)

)
−→
a→0

Ĥh.o. = 1

2
( p̂2 + ω2 x̂2).

Hint. Use the Baker–Campbell–Hausdorff formula (2.2.6) to show that in the limit a → 0,

ÛT(a) ≈ exp
{
−a

~
[Ĥh.o. +O(a)]

}
.



Supplements

I Finite-dimensional Gaussian integrals

• The basic one-dimensional Gaussian integral:

G0(α)
def≡
∫ ∞

−∞
dx e−αx2 =

√
π

α
α > 0. (I.1)

• The Gaussian-like integrals of the form

G2n(α)
def≡
∫ ∞

−∞
dx x2ne−αx2

n = 1, 2, 3, . . . (I.2)

can be obtained recursively by differentiation:

G2(n+1)(α) = −∂G2n(α)

∂α
. (I.3)

• The explicit form of some Gaussian-like integrals:

∫ ∞

−∞
dx x2e−αx2 =

√
π

α

(
1

2α

)
(I.4)∫ ∞

−∞
dx x4e−αx2 =

√
π

α

(
3

4α2

)
(I.5)∫ ∞

−∞
dx x6e−αx2 =

√
π

α

(
15

8α3

)
. (I.6)

• The one-dimensional Gaussian integral on a half-line:

G[0,∞]
1 (α)

def≡
∫ ∞

0
dx xe−αx2 = 1

2α
α > 0. (I.7)

• The Gaussian-like integrals of the form

G[0,∞]
2n+1 (α)

def≡
∫ ∞

0
dx x2n+1e−αx2

n = 0, 1, 2, . . . (I.8)

can be obtained recursively by differentiation:

G[0,∞]
2n+3 (α) = −∂G[0,∞]

2n+1 (α)

∂α
. (I.9)
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• The explicit form of some Gaussian-like integrals on a half-line:∫ ∞

0
dx x3e−αx2 = 1

2α2 (I.10)∫ ∞

0
dx x5e−αx2 = 1

α3 (I.11)∫ ∞

0
dx x7e−αx2 = 3

α4
. (I.12)

• The basic Gaussian integral with a linear term in the exponent:

G
(±)
0 (α, β)

def≡
∫ ∞

−∞
dx e−αx2±βx =

√
π

α
eβ

2/4α α > 0. (I.13)

• The Gaussian-like integrals of the form

G(±)n (α, β)
def≡
∫ ∞

−∞
dx xne−αx2±βx n = 1, 2, 3, . . . (I.14)

can be obtained recursively by differentiation:

G
(±)
n+1(α, β) = ±∂G

(±)
n (α, β)

∂β
. (I.15)

• The explicit form of some Gaussian-like integrals with linear term in the exponent:∫ ∞

−∞
dx xe−αx2+βx =

√
π

α

(
β

2α

)
eβ

2/(4α) (I.16)∫ ∞

−∞
dx x2e−αx2+βx =

√
π

α

[
1

2α
+
(
β

2α

)2
]

eβ
2/(4α). (I.17)

• The basic Gaussian integral with purely imaginary exponent:

I
(±)
0 (α, β)

def≡
∫ ∞

−∞
dx e−i(αx2±βx) def≡ lim

η→+0

∫ ∞

−∞
dx e−i(αx2±βx)−ηx2 =

√
π

−iα
eiβ2/(4α) (I.18)

where α > 0 or α < 0.

• The Gaussian-like integrals of the form

I(±)n (α)
def≡
∫ ∞

−∞
dx xne−i(αx2±βx) n = 1, 2, 3, . . . (I.19)

can be obtained recursively by differentiation:

I
(±)
n+1(α, β) = ∓1

i

∂I
(±)
n (α, β)

∂β
. (I.20)

• The basic multiple d-dimensional Gaussian integral:

G
(d)
0 (Aij , β j )

def≡
∫ ∞

−∞
d(d)x exp

{
−

d∑
i, j=1

xi Ai j x j ±
d∑

i=1

βi xi

}
= πd/2

√
det A

exp

{ d∑
i, j=1

βi (A
−1)i jβ j

}
(I.21)

((A−1)i j are the matrix elements of the inverse matrix A−1).
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II Table of some exactly solved Wiener path integrals

We list some practically useful Wiener path integrals which can be explicitly calculated and expressed in
terms of elementary functions. Recall that dWx(τ ) is the Wiener path-integral measure

dWx(τ )
def≡ exp

{
− 1

4D

∫ t

t0
dτ ẋ2(τ )

} t∏
τ=t0

dx(τ )√
4πD dτ

and the basic Wiener formula is the integral with this measure over the set of all continuous but non-
differentiable functions:∫

C{x0,t0;x,t}
dWx(τ ) = 1√

4πD(t − t0)
exp

{
− (x − x0)

2

4D(t − t0)

}
. (II.1)

The generating formula for the rest of the path integrals which we list below is the path integral∫
C{x0,t0;x,t}

dWx(τ ) exp

{
−
∫ t

t0
dτ [k2x2(τ )− η(τ)x(τ )]

}

=
[

k

2π
√

D sinh(2k
√

D(t − t0))

] 1
2

exp

{
−k
(x2 + x2

0) cosh(2k
√

D(t − t0))− 2x0x

2
√

D sinh(2k
√

D(t − t0))

}

× exp

{√
D
∫ t

t0
dτ
∫ τ

t0
dτ ′ η(τ)η(τ ′) sinh(2k

√
D(t − τ )) sinh(2k

√
D(τ ′ − t0))

k sinh(2k
√

D(t − t0))

}
× exp

{∫ t

t0
dτ η(τ )

x0 sinh(2k
√

D(t − τ ))+ x sinh(2k
√

D(τ − t0))

sinh(2k
√

D(t − t0))

}
(II.2)

for the driven oscillator (an oscillator in a field of an external force) which was obtained in chapter 1 (see
(1.2.262)). As we have learned, this path integral is, actually, the generating (characteristic) functional.
Therefore, all other path integrals presented in this appendix can be derived from it via functional
differentiation or as particular cases for specific forms of the external force. For the reader’s convenience,
we present them in explicit form. The corresponding Feynman path integral can be reduced to the Wiener
one by the transition to the Euclidean time, as has been explained in section 2.1.

• Transition to the limit k → 0 and an appropriate functional differentiation of (II.2) give the following
sequence of path integrals:

∫
C{x0,t0;x,t}

dWx(τ ) exp

{∫ t

t0
dτ η(τ )x(τ )

}
= 1√

4πD(t − t0)
exp

{
− (x − x0)

2

4D(t − t0)

}

× exp

{
2D
∫ t

t0
dτ
∫ τ

t0
dτ ′ η(τ)η(τ ′) (t − τ )(τ

′ − t0)

t − t0

+
∫ t

t0
dτ η(τ )

(t − τ )x0 + (τ − t0)x

t − t0

}
(II.3)∫

C{x0,t0;x,t}
dWx(τ ) xn(s) = 1√

4πD(t − t0)
exp

{
− (x − x0)

2

4D(t − t0)

}

×
[n/2]∑
k=0

n!
k!(n − 2k)!

[
2D
(t − s)(s − t0)

t − t0

]k [
(t − s)x0 + (s − t0)x

t − t0

]n−2k

(II.4)
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where [n/2] denotes the integral part of n/2;∫
C{x0,t0;x,t}

dWx(τ )
∫ t

t0
ds xn(s) = 1√

4πD(t − t0)
exp

{
− (x − x0)

2

4D(t − t0)

}

×
[n/2]∑
k=0

n−2k∑
p=0

Dk

(n + 1)

(p + k)!
k!p!

(n − p − k)!
(n − 2k − p)! (t − t0)

k+1x pxn−2k−p
0 (II.5)

∫
C{x0,t0;x,t}

dWx(τ ) x(s′)x(s) = 1√
4πD(t − t0)

exp

{
− (x − x0)

2

4D(t − t0)

}

×
[

2D
(t − max(s′, s))(min(s′, s)− t0)

t − t0
+ (t − s)x0 + (s − t0)x

t − t0

(t − s′)x0 + (s′ − t0)x

t − t0

]
(II.6)∫

C{x0,t0;x,t}
dWx(τ )

∫ t

t0
ds ds′ [x(s)− x(s′)]2 = 1√

4πD(t − t0)

× exp

{
− (x − x0)

2

4D(t − t0)

}
(t − t0)2

6
[D(t − t0)+ (x − x0)

2] (II.7)

∫
C{x0,t0;x,t}

dWx(τ ) exp {αx(s)} = 1√
4πD(t − t0)

exp

{
− (x − x0)

2

4D(t − t0)

}

× exp

{
2α2 D

(t − s)(s − t0)

t − t0
+ α (t − s)x0 + (s − t0)x

t − t0

}
(II.8)∫

C{x0,t0;x,t}
dWx(τ ) exp

{
α

∫ t

t0
ds x(s)

}
= 1√

4πD(t − t0)
exp

{
− (x − x0)

2

4D(t − t0)

}

× exp

{
α(t − t0)(x + x0)+ α2 D

12
(t − t0)

3

}
. (II.9)

• The following integrals with non-zero k2 are obtained by separating the time interval into two parts
and by using the ESKC relation:

∫
C{x0,t0;x,t}

dWx(τ ) exp
{
−k2x2(s)

}
= 1√

4πD(t − t0 + 4Dk2(t − s)(s − t0))

× exp

{
− 1

4D

(x − x0)
2 + 4Dk2[(t − s)x2

0 + (s − t0)x2]
t − t0 + 4Dk2(t − s)(s − t0)

}
(II.10)

∫
C{x0,t0;x,t}

dWx(τ ) exp

{
− k2

∫ t

0
dτ [x(τ )− x(s)]2

}
=
[

k

2π
√

D sinh(2k
√

D(t − t0))

] 1
2

× exp

{
−k

(x2 − x2
0)

2

2
√

D sinh(2k
√

D(t − t0))
cosh(2k

√
D(s − t0)) cosh(2k

√
D(t − s))

}
. (II.11)

• The following path integrals are obtained from (II.2) with non-zero k2 by a specific choice of the
external force and/or by functional differentiations:
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C{x0,t0;x,t}

dWx(τ ) exp

{
− k2

∫ t

0
dτ x2(τ )

}

=
[

k

2π
√

D sinh(2k
√

D(t − t0))

] 1
2

exp

{
−k
(x2 + x2

0 ) cosh(2k
√

D(t − t0))− 2x0x

2
√

D sinh(2k
√

D(t − t0))

}
(II.12)∫

C{x0,t0;x,t}
dWx(τ ) exp

{
− k2

∫ t

0
dτ x2(τ )+ α

∫ t

t0
dτ x(τ )

}

=
[

k

2π
√

D sinh(2k
√

D(t − t0))

] 1
2

exp

{
−k
(x2 + x2

0 ) cosh(2k
√

D(t − t0))− 2x0x

2
√

D sinh(2k
√

D(t − t0))

}

× exp

{
α

2k
√

D
(x + x0) tanh(

√
Dk(t − t0))+ α2

4k2

[
(t − t0)− 1

k
√

D
tanh(

√
Dk(t − t0))

]}
(II.13)∫

C{x0,t0;x,t}
dWx(τ ) exp

{
− k2

∫ t

0
dτ x2(τ )

}
x(s)

=
[

k

2π
√

D sinh(2k
√

D(t − t0))

] 1
2

exp

{
−k
(x2 + x2

0 ) cosh(2k
√

D(t − t0))− 2x0x

2
√

D sinh(2k
√

D(t − t0))

}

× x0 sinh(2k
√

D(t − s))+ x sinh(2k
√

D(s − t0))

sinh(2k
√

D(t − t0))
(II.14)∫

C{x0,t0;x,t}
dWx(τ ) exp

{
− k2

∫ t

0
dτ x2(τ )

}
x(s)x(s′)

=
[

k

2π
√

D sinh(2k
√

D(t − t0))

] 1
2

exp

{
−k
(x2 + x2

0 ) cosh(2k
√

D(t − t0))− 2x0x

2
√

D sinh(2k
√

D(t − t0))

}

×
[

x0 sinh(2k
√

D(t − s))+ x sinh(2k
√

D(s − t0))

sinh(2k
√

D(t − t0))

× x0 sinh(2k
√

D(t − s′))+ x sinh(2k
√

D(s′ − t0))

sinh(2k
√

D(t − t0))

+
√

D sinh(2k
√

D(t − max(s, s′))) sinh(2k
√

D(min(s, s′)− t0))

k sinh(2k
√

D(t − t0))

]
(II.15)∫

C{x0,t0;x,t}
dWx(τ ) exp

{
− k2

∫ t

0
dτ x2(τ )+ αx(s)

}

=
[

k

2π
√

D sinh(2k
√

D(t − t0))

] 1
2

exp

{
−k
(x2 + x2

0 ) cosh(2k
√

D(t − t0))− 2x0x

2
√

D sinh(2k
√

D(t − t0))

}

× exp

{
α

x0 sinh(2k
√

D(t − s))+ x sinh(2k
√

D(s − t0))

sinh(2k
√

D(t − t0))

}

× exp

{
α2

√
D sinh(2k

√
D(t − s)) sinh(2k

√
D(s − t0))

2k sinh(2k
√

D(t − t0))

}
. (II.16)
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III Feynman rules

The functional methods presented in sections (3.1.2)–(3.1.5) and (3.2.4)–(3.2.6) lead to the following
general Feynman rules for the computation of (connected) Green functions:

(i) Draw all topologically distinct, connected diagrams of the desired order.
(ii) In each diagram, attach a propagator to each internal line according to tables 3.1, page 27; 3.2,

page 38; 3.3, page 76; 3.4, page 78 and 3.5, page 79.
(iii) To each vertex, assign a vertex function given in the same tables, derived from the relevant term in

the interaction Lagrangian.
(iv) For each internal momentum p not fixed by the momentum conservation at vertices, write a factor∫

d4 p/(2π)4.
(v) Multiply the contribution for each diagram by:

(a) a factor (−1) for each closed fermion loop;
(b) a relative factor (−1) for graphs which differ from each other only by an interchange of two

identical external fermion lines;
(c) a symmetry factor 1/r with

r = Np

∏
n=2,3,...

2β(n!)αn

where αn is the number of pairs of vertices connected by n identical self-conjugate lines, β is the
number of lines connecting a vertex with itself and Np is the number of permutations of vertices
which leave the diagram unchanged with fixed external lines.
Examples:

�� ��
�
�
�
�
�


�
	
�
�
�
� ��@@@@

��

Np = 1, α2 = 1, β = 0, so that r = 2

Np = 1, αn = 0, β = 1, so that r = 2

Np = 2, α2 = 1, β = 0, so that r = 4.

(vi) The OPI Green functions �(n)(p1, . . . , pn) come from the OPI diagrams.
(vii) For the scattering amplitude T (p1, . . . , pn), put all the external lines on their mass shell, i.e.

p2
i = m2

i and provide external fermion lines with spinors: u( p) (or v( p)) for fermions (or
antifermions) entering with momentum p; ū( p) (or v̄( p)) for fermions (or antifermions) leaving
with momentum p. Provide the external vector bosons with polarization vectors: u j

l (−k) (or u j
l (k))

for the vector boson entering (or leaving) with momentum k.

IV Short glossary of selected notions from the theory of Lie groups and algebras

In this glossary, we recall some basic definitions from the theory of Lie groups and algebras which are
used in the main text (the definitions are presented in alphabetical order). Of course, rigorous definitions
can be given only in the appropriate context of a complete exposition of the theory and we refer the reader,
e.g., to the books by Wigner (1959), Barut and Ra̧czka (1977), Zhelobenko (1973), Wybourn (1974) and
Vilenkin (1968) for further details and clarifications.
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♦ Baker–Campbell–Hausdorff formula

The Baker–Campbell–Hausdorff formula (sometimes also called the Campbell-Hausdorff or Campbell–
Baker–Hausdorff formula) is a formula for computing the Lie algebra element Z defined by the relation

eZ = eX eY

where X and Y are elements of some Lie algebra g. According to the Baker–Campbell–Hausdorff formula,
the element Z is given by the following series:

Z =
∞∑

n=0

Cn(X,Y )

where the terms Cn(X,Y ) are determined by the recursion formula

(n + 1)Cn+1(X,Y ) = 1
2 [X − Y,Cn(X,Y )]
+

∑
p≥1,2p≤2

K2p

∑
k1,...,k2p>0

k1+···+k2p=n

[Ck1(X,Y ), [· · · , [Ck2p (X,Y ), X + Y ] · · ·]] (IV.1)

(n ≥ 1, X,Y ∈ g) and by the condition C1(X,Y ) = X + Y . Here the coefficients K2p are found from the
power series expansion of the following auxiliary even function f (t) of an ordinary variable t :

f (t) = t

1 − e−t
− t

2
= 1 +

∞∑
p=1

K2pt2p.

The terms Cn(X,Y ) may be calculated from (IV.1) in succession; unfortunately, the calculations become
complicated very rapidly. However, the first few terms may be calculated without too much difficulty:

C2(X,Y ) = 1
2 [X,Y ]

C3(X,Y ) = 1
12 [X, [X,Y ]] + 1

12 [Y, [Y, X]]
C4(X,Y ) = − 1

48 [Y, [X, [X,Y ]]] − 1
48 [X, [Y, [X,Y ]]].

♦ Character of a group

The character of a group G is a homomorphism of the given group into some standard Abelian group
GA. Usually,GA is taken to be the multiplicative group T of complex numbers with unit absolute values:
T = {z ∈ C | z∗z = 1}. The characters form a linearly independent system in the space of all T -valued
functions on G. They are also one-dimensional linear representations of G. In the one-dimensional case,
the concept of a character of a group coincides with that of a character of a representation of a group.
Sometimes, the characters of a group are understood to mean characters of any of its finite-dimensional
representations.

♦ Character of a representation of a group

In the case of a finite-dimensional representation π , this is the function χπ on the groupG defined by the
formula

χπ(g) = Trπ(g) g ∈ G.
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For arbitrary continuous representations of a groupG, this definition is generalized as follows:

χπ(g) = χ[π(g)] g ∈ G
where χ[π(g)] is a linear functional defined on some ideal I of the algebra A generated by the family of
operators π(g), g ∈ G, which is invariant under inner automorphisms of A.

♦ Coset in a group

A coset in a group G by a subgroup G0 (from the left) is a set of elements of G of the form

gG0 = {gh | h ∈ G0}
where g is some fixed element of G. This coset is also called the left coset by G0 in G defined by g.
Every left coset is determined by any of its elements. Since gG0 = G0 if and only if g ∈ G0, for all
g1, g2 the cosets g1G0 and g2G0 are either equal or disjoint. Thus, G decomposes into pairwise disjoint
left cosets by G0. Similarly, we define right cosets (as sets G0g, g ∈ G) and also right decomposition of
G with respect to G0. These decompositions consist of the same number of cosets. We can define the set
G/G0 as the set of right (left) cosets. For normal (invariant) subgroups, the left and right decompositions
coincide. In this case, we simply speak of the decomposition of a group with respect to a normal subgroup
and G/G0 is a group.

For finite groups G, the number of elements in each coset is clearly given by the order of G0. Since
the cosets define the decomposition of G into disjoint subsets, for finite groups this implies Lagrange’s
theorem stating that the order dG of G is divisible by the order dG0 of G0 (dG/dG0 gives the number
of elements in G/G0). For a Lie group G of dimension d(G) and G0 ⊂ G of dimension d(G0),
an analogous result holds: d(G/G0) = d(G) − d(G0). For example, if G = SO(3) is the three-
dimensional rotation group and G0 = SO(2) is the one-dimensional group of rotations around a given
axis, G/G0 = SO(3)/SO(2) is the two-dimensional sphere.

♦ Groups: finite, infinite, continuous, Abelian, non-Abelian; subgroup of a group

A set G of elements g1, g2, g3, . . . is said to form a group if a law of multiplication of the elements is
defined which satisfies certain conditions. The result of multiplying two elements ga and gb is called the
product and is written gagb. The conditions to be satisfied are the following:

(i) The product gagb of any two elements is itself an element of the group, i.e.

gagb = gd for some gd ∈ G.

(ii) In multiplying three elements ga, gb and gc together, it does not matter which product is made first:

ga(gbgc) = (gagb)gc

where the product inside the brackets is carried out first. This implies that the use of such brackets
is unnecessary and we may simply write gagbgc for the triple product. This property is called the
associativity of the group multiplication.

(iii) One element of the group, usually denoted by e and called the identity or unity, must have the property

ega = gae = ga.
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(iv) To each element ga of the group there corresponds another element of the group, denoted by g−1
a and

called the inverse of ga, which has the properties

gag−1
a = g−1

a ga = e.

In general, gagb is not the same element as gbga . A group for which gagb = gbga for all elements
ga and gb is called an Abelian group. Its elements are said to commute. If at least one pair of elements do
not commute, i.e. we have gagb = gbga , then the group is called non-Abelian.

The number of elements in a group may be finite, in which case this number is called the order of
the group, or it may be infinite. The groups are correspondingly called finite or infinite groups. Among
the latter, the most important for physics are the continuous ones, for which the group elements, instead
of being distinguished by a discrete label, are labeled by a set of continuous parameters (see below the
definition of a continuous Lie group and related objects). The simplest continuous non-Abelian group is
the rotation group in the three-dimensional space. The rotations in a two-dimensional space (on a plane),
however, form an Abelian group.

Given a set of elements forming a group G, it is often possible to select a smaller number of these
elements which satisfy the group definitions among themselves. They are said to form a subgroup of G.
An invariant (also called the normal) subgroup is a subgroup H of G with the property that gHg−1 = H
for any g ∈ G (that is, for each h ∈ H and g ∈ G, we have g−1hg ∈ H ). For example, the translations
and rotations of the three-dimensional space generate a group which has the translations as the normal
subgroup.

♦ Haar and bi-invariant measures on a Lie group

The so-called Haar measure defines the invariant integration measure for Lie groups. This means that
we can identify a volume element dµ(g) defining the integral of a function f over a Lie group G as∫
G

dµ(g) f (g) and with the property that the integral is both left and right invariant∫
G

dµ(g) f (g−1
0 g) =

∫
G

dµ(g) f (gg−1
0 ) =

∫
G

dµ(g) f (g).

The invariance follows from the invariance of the volume element dµ(g):

dµ(g) = dµ(g0g) = dµ(gg0)

which implies that the expression for dµ(g) at a neighborhood of the point g can be found by fixing the
value of dµ(g) at g = e (unit element) and by performing a left or right translation by g: dµ(g) = dµ(e).
Let the action of a map x → g(x) (left translation) be given by xi → yi (x j ), with xi being the coordinates
in the neighbourhood of the unit element e and denote by dx1, . . . , dxn the volume element spanned by
the coordinate differentials dx1, dx2, . . . , dxn at the point e. Then, the volume element spanned by the
same coordinate differentials at the point g is given by

dµ(g) = |J |−1 dx1, dx2, . . . , dxn

where J is the Jacobian for the map x → g(x) evaluated at the unit element e:

J = ∂(y1, . . . , yn)

∂(x1, . . . , xn)
.

In a right- or a left-translation, dx1, dx2, . . . , dxn is multiplied by the same Jacobian determinant so
that dµ(g) is indeed right and left invariant. A straightforward manner to derive the Haar measure is
to consider a faithful matrix representation of the group and take some subset of matrix elements as the
coordinates xi . The Lie groups also allow an invariant metric and dµ(g) is just the volume element√

g dx1, . . . , dxn associated with this metric.
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Example. The volume element of the group SU(2). The elements a of SU(2) can be represented as 2× 2
unitary matrices of the form

a =
∑
µ

xµσ̃µ
∑
µ

xµxµ = 1

where the σ̃ -matrices are defined by σ0 = 1 and σ̃i = −iσi , with σi being the Pauli spin matrices, so
that we have σ̃i σ̃ j = −δi j σ̃0 + εi j k σ̃k . The coordinates of SU(2) can be taken as the coordinates xi ,

i = 1, 2, 3, so that we have x0 = ±√
1 − r2, r ≡

√∑
i x i x i . Clearly, the SU(2) group manifold can be

regarded as a three-dimensional sphere of unit radius (
∑4
µ=1 xµxµ = 1) in Euclidean space E4. The unit

element e corresponds to the origin: xi = 0, x0 = 1. The left action of the element a on b can be written
as c = ab =∑µ zµσµ, where the coordinates zµ are given by

zi = (x0yi + xi y0)+ εi j k x j yk

z0 =
√

1 −
∑

i

zi zi .

From this relation, the Jacobian matrix at yi = 0 can be deduced: ∂zi/∂y j = x0δi j + εi j k xk and its
determinant is J = ±√

1 − r2, depending on the sign of x0. The invariant integration measure reads as

dµ = 1√
1 − r2

dx1 dx2 dx3.

Note that the metric of SU(2) can be deduced as the metric induced from the Euclidean space E4 into
which SU(2) is embedded as a sphere.

♦ Isomorphisms, automorphisms, homomorphisms

Let X and X ′ be two sets with some relations among the elements of the each set.
For example, X and X ′ can be groups, and the corresponding relations can be the group

multiplications: gagb = gc for ga, gb, gc ∈ X and g′
ag′

b = g′
c for g′

a, g′
b, g′

c ∈ X ′. Another example
is ordered sets with defined inequalities a > b, a, b ∈ X and a′ > b′, a′, b′ ∈ X ′.

Let there be a one-to-one correspondence (map) ρ : X −→ X ′ preserving the relations among the
elements ofX ,X ′, i.e. if some relation is fulfilled for a, b ∈ X , then the corresponding relation is fulfilled
for ρ(a), ρ(b) ∈ X ′ and vice versa. In this case, the sets X and X ′ are called isomorphic: X ∼= X ′, and
the correspondence ρ is called isomorphism.

In particular, if the sets coincide, X = X ′, a one-to-one correspondence ρ, preserving structure
relations, is called automorphism.

If each element a ∈ X is mapped into a unique image, a single element a′ ∈ X ′, but reverse is not
in general true (e.g., a′ may be the image of several elements of X or not be the image of any elements of
X ) and the map preserves structure relations in X and X ′, then this map is called homomorphism.

♦ Lie groups, Abelian and semisimple Lie groups; Lie algebras

The elements g(a1, a2, . . . , ar ) of a continuous group depend on some real parameters ai which are
all essential in the sense that the group elements cannot be distinguished by any smaller number of
parameters. The number r is called the dimension of the group. Each parameter has a well-defined
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range of values. For the elements to satisfy the group postulate, a multiplication law must be defined, and
the product of two elements

g(a1, a2, . . . , ar )g(b1, b2, . . . , br ) = g(c1, c2, . . . , cr )

must be another group element. Thus the new parameters ci must be expressible as functions of the as
and bs

ci = φi (a1, a2, . . . , ar , b1, b2, . . . , br ) i = 1, . . . , r.

It is customary to define the parameters in such a way that the identity element has all the parameters
equal to zero. The r functions φi must satisfy several conditions in order for the group postulates to be
satisfied. The groups with differentiable functions φi are called Lie groups. More precisely, a group G
having the structure of a smooth manifold such that the mapping (g, h) → gh−1 of the direct product
G⊗G intoG is analytic is called a Lie group. The main method of research in the theory of Lie groups is
the infinitesimal method, which reduces the study largely to the consideration of a purely algebraic object,
a Lie algebra.

An abstract Lie algebra is a vector space g together with a bilinear operation [·, ·] from g× g into g,
satisfying

[X1 + X2, y] = [X1,Y ] + [X2,Y ] X1, X2,Y ∈ g
[αX,Y ] = α[X,Y ] α ∈ C or R, X,Y ∈ g

[X,Y ] = −[Y, X] X,Y ∈ g
[X, [Y, Z ]] + [Y, [Z , X]] + [Z , [X,Y ]] = 0 X,Y, Z ∈ g (Jacobi identity).

In all cases of our interest, the bilinear operation [·, ·] can be understood as the commutator in the
corresponding associative algebra

[X,Y ] = XY − Y X.

There exists a tight interrelation between Lie groups and Lie algebras. Recovering a Lie groupG from its
Lie algebra g is possible by the exponential map: exp : g→ G. IfG is a linear group (that is, a subgroup
of a general linear group GL(n,R)), the exponential mapping takes the form:

g = eX ≡
∞∑

m=0

1

m! Xm g ∈ G, X ∈ g.

In order to obtain a Lie algebra from the group structure, let us consider a representation
T (a1, . . . , ar ) of the group G in a space V . By convention, the parameters are chosen such that the
identity element has all ai = 0, so that

T (0, . . . , 0) = 1.

If all parameters ai are small, then, to the first order in these parameters,

T (ai ) / 1 +
∑

i

ai Xi

where the Xi are some linear operators, independent of the parameters ai . These operators are called the
infinitesimal operators or generators of the group in a given representation and are expressed explicitly
as partial derivatives

Xi = ∂T (a1, . . . , ar )

∂ai

∣∣∣∣
a1=···=ar=0

.
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For any representation T of a groupG, the set of infinitesimal operators Xi satisfy the commutation
relations

[Xi , X j ] =
∑

k

f k
i j Xk

where the numbers f k
i j , called structure constants, are the same for all representations T of G. Thus, the

infinitesimal operators (generators) of a Lie group form the Lie algebra with the commutator playing the
role of the bilinear operation in the abstract Lie algebra.

A certain combination of generators of a Lie algebra which commutes with all the generators is called
the invariant or Casimir operator of the group. The maximal number of such independent operators is
equal to the rank of the group, the latter being defined as the maximal number of generators of the Lie
algebra commuting among themselves.

A Lie algebra L is semisimple if it has no non-zero Abelian ideals.
A Lie algebra L is simple if it has no ideals (except the zero ideal and the whole L).
A connected Lie group which does not contain non-trivial connected Abelian normal subgroups is

called a semisimple Lie group. A connected Lie group is semisimple if and only if its Lie algebra is
semisimple. A connected Lie group is said to be simple if its Lie algebra is simple, i.e. if G does not
contain non-trivial connected invariant subgroups other than G.

♦ Maurer–Cartan form

The Maurer–Cartan form
is a left-invariant one-form on a Lie group G, i.e. a differential form ω of degree 1 on G, satisfying

the condition ,∗gω = ω for any left translation ,g : h → gh, g, h ∈ G. The differential dω of a Maurer–
Cartan form obeys the following Maurer–Cartan equation:

dω(X,Y ) = −ω([X,Y ])

where X,Y are arbitrary left-invariant vector fields on G and [X,Y ] is their commutator.

♦ Real forms of Lie algebras and groups

The complex extension gc of an arbitrary real Lie algebra g (Lie algebra over R) is the Lie algebra
which consists of elements of the form X = X + iY ; X,Y ∈ g (as the vector space) and with the
Lie multiplication

Z = [Z1, Z2] = ([X1, X2] − [Y1,Y2])+ i([X1,Y2] + [Y1, X2])
= X + iY

Z1 = X1 + iY1 Z2 = X2 + iY2.

The real form of a complex Lie algebra gc (Lie algebra over C ) is the real Lie algebra gr, such that
its complex extension coincides with gc.

Let G be the complex Lie group generated by a complex Lie algebra gc. The subgroup Gr which
corresponds to (i.e. generated by) the real form gr of the Lie algebra gc is called the real form of the
complex Lie groupG.
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♦ Representations: faithful, irreducible, reducible, completely reducible (decomposable),
indecomposable, adjoint

A representation of an algebra A (group G) is a homomorphism of A (or G) into an algebra (group) of
linear transformations of some vector space V .

A representation is termed faithful if the homomorphism is an isomorphism.
A subspace V1 ⊂ V of a representation space V is called an invariant subspace with respect to an

algebra A (group G) if T v ∈ V1 for all v ∈ V1 and all T ∈ A (or T ∈ G).
A representation is called irreducible if the representation space V has no invariant subspaces (except

the whole space V and the zero space {0}). Otherwise, the representation is called reducible.
A representation is called completely reducible or decomposable if all linear transformations of

the representation can be presented in the form of block-diagonal matrices, each block acting in the
corresponding invariant subspace. Otherwise, the representation is called indecomposable.

The representation of a Lie group G (Lie algebra g) in the vector space of the Lie algebra g itself is
called the adjoint representation and the corresponding transformations are denoted by Adg , g ∈ G (adX ,
X ∈ g). In the case of a Lie algebra, the adjoint representation is defined by the commutator in g:

adX Y = [X,Y ] X,Y ∈ g.

♦ Root system of a semisimple Lie algebra; positive and simple roots

The Cartan subalgebra gH of a semisimple Lie algebra g is the maximal Abelian subalgebra in g with
completely reducible adjoint representation. Let g be a semisimple Lie algebra with the Cartan subalgebra
gH ⊂ g and α be a linear function on gH. If the linear subspace Lα ⊂ g, defined by the condition

Lα := {Y ∈ g | [X,Y ] = α(X)Y ∀X ∈ gH}
does exist (i.e. Lα = 0), the function α is called the root of g, and Lα is called the root subspace. The
system of non-zero roots is denoted by $. Actually, all root subspaces are one dimensional, so that Lα is
a root vector.

The Cartan subalgebra and root vectors give a very convenient basis for an arbitrary semisimple Lie
algebra g and provide their classification. In particular, the Cartan–Weyl basis of a semisimple Lie algebra
g consists of a basis {Hi} of the Cartan subalgebra gH and the root vectors Eα ∈ Lα . In this basis, for any
α, β ∈ $, the defining commutation relations have the form

[Hi , Eα] = α(Hi )Eα Hi ∈ gH

[Eα, Eβ ] =


0 if α + β = 0 and α + β /∈ $
Hα if α + β = 0
Nα,β Eα+β if α + β ∈ $

where the constants Nα,β satisfy the identity Nα,β = −N−β,−α .
Thus the problem of the classification is reduced to the study of the possible sets of constants Nα,β .
A root α is called positive if the first coordinate of the corresponding Hα is positive. The subsystem

of positive roots is denoted by $+.
A positive root is called simple if it cannot be expressed as the sum of two other positive roots.
There is a one-to-one correspondence between the roots α ∈ $ and the elements Hα ∈ gH of the

Cartan subalgebra defined by the equality

〈X, Hα〉 = α(X) ∀X ∈ gH.
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Here 〈·, ·〉 denotes the Killing form (scalar product) on g

〈X,Y 〉 = Tr(adX adY ) ∀X,Y ∈ g.
Usually, the scalar product 〈Hα, Hβ〉 is denoted simply as (α, β).

♦ Schur’s lemmas

Schur’s first lemma. Let T (g) be an irreducible representation of a group G in a space V and let A be
a given operator in V . Schur’s first lemma states that if T (g)A = AT (g) for all g ∈ G, then A = λ1I,
where 1I is the identity (or unity) operator. In other words, any given operator which commutes with all the
operators T (g) of an irreducible representation of the group G, is a constant multiple of the unit operator.

Schur’s second lemma. Let T1(g) and T2(g) be two irreducible representations of a group G in two spaces
V1 and V2 respectively, of dimensions s1 and s2 and let A be an operator which transforms vectors from
V1 into V2. Schur’s second lemma states that, if T1(g) and T2(g) are inequivalent and T1(g)A = AT2(g)
for all g ∈ G, then A = 0, i.e. it is the null (or zero) operator.

♦ Semidirect sum of Lie algebras and semidirect product of Lie groups (inhomogeneous Lie
algebras and groups)

Let gM and gT be Lie algebras and D : X → D(X), X ∈ gM be a homomorphism of gM into the set of
linear operators in the vector space gT , such that every D is a differentiation of gT (i.e. D satisfies the
Leibniz rule). Define in the direct space of gM and gT the Lie algebra structure using the Lie brackets in
gM and gT and

[X,Y ] = D(X)Y X ∈ gM, Y ∈ gT .

One can check that all the Lie axioms are satisfied. The obtained Lie algebra g is called the semidirect
sum of gM and gT :

g = gT +⊃gM.

Such an algebra generates the semidirect product of the Lie groupsGM andGT , which can be defined
independently as follows. Let GT be an arbitrary group, GA

T be the group of all automorphisms of GT ,
GM ⊂ GA

T be some subgroup and �(g) be the image of g ∈ GT under an automorphism� ∈ GM.
The semidirect product G = GT×⊃ GM of the groups GT and GM is the group of all ordered pairs

(g,�), where g ∈ GT , � ∈ GM, with the group multiplication

(g,�)(g′,�′) = (g�(g′),��′)

the unity element (e, id), e being the unity in GT , and the inverse elements

(g,�)−1 = (�−1(g−1),�−1).

Examples of semidirect product of Lie groups are the Poincaré group and the group of rotations and
translations of a Euclidean space.

♦ Tensor operators

Let g → M(g) be a matrix representation of a group G in a finite dimensional vector space V and g → Ug

be a unitary representation of G in a Hilbert spaceH. A set {T a}dim V
a=1 of operators in H is called a tensor

operator if
U−1

g T aUg = Ma
b(g)T

b.



Some basic facts about differential Riemann geometry 325

♦ Universal enveloping algebra

A universal enveloping algebra U(g) of a Lie algebra g is a quotient algebra

U(g)
def≡ Ag/J[·,·]

where Ag is a (free) associative algebra generated by all Xi ∈ g (i = 1, . . . , dim g) and J[·,·] is the
two-sided ideal generated by elements of the form XY − Y X − [X,Y ], ∀X,Y ∈ g.

V Some basic facts about differential Riemann geometry

This supplement contains basic facts about differential geometry of manifolds, mainly about Riemann
spaces, needed for understanding some advanced applications of path integrals considered in this book.
For further details, we refer the reader to the introductory books by Isham (1989), Visconti (1992) and
to the classical monograph by Kobayashi and Nomizu (1969). In this supplement, we use the following
condensed notation for the derivatives of a quantity Aσ ...τµν...ρ(x) (which can be a tensor or non-tensor):

Aσ ...τµν...ρ,λ(x)
def≡ ∂

∂xλ
Aσ ...τµν...ρ(x).

♦ Curved space: invariant distance, metric, parallel displacement and Christoffel symbols

In a curved space, we are confined to curvilinear coordinates and the invariant distance ds between the
point xµ and a neighboring point xµ + dxµ is given by

ds2 = gµν(x)dxµ dxν.

With a network of curvilinear coordinates, the parameters gµν = gνµ, given as functions of the
coordinates, fix all the elements of distance; so, they fix the metric.

Suppose we have a vector Xµ located at some point P . If the space is curved, we cannot give a
meaning to a parallel vector at a different point Q, as we can easily see if we think of the example of a
curved two-dimensional space in a three-dimensional flat Euclidean space. However, if we take a point
P ′ close to P , there is a parallel vector at P ′, with an uncertainty of the second order with respect to
the distance between P and P ′. We can transfer the vector continuously along a path by this process of
parallel displacement. Taking a path from P to Q, we end up with a vector at Q which is parallel to the
original vector at P with respect to this path. But a different path would give a different result.

We can obtain the formula for the parallel displacement of a vector by supposing that the curved
space M under consideration is immersed in a flat space E of higher dimension with the coordinates yn:
M→ E : xµ → yn(xµ). The metric gµν in this case has the form induced by this immersing:

gµν = yn
,µyn,ν . (V.1)

Then shifting a vector Xn , tangent to the ‘surface’ M, in the space E so as to keep it parallel to itself
(which means, of course, keeping the components constant), to a neighboring point on the surface and
projecting it down to this surface, we obtain the change d Xµ in Xµ (i.e. in the vector Xn written in terms
of the x-coordinates: Xn = yn

,µXµ):

gνρ d Xρ = Xµyn
,µyn,ν,σ dxσ . (V.2)

This can be written in the more compact and convenient form:

d Xν = Xµ�µνσ dxσ (V.3)
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with the help of the Christoffel symbols

�µνσ = 1
2 (gµν,σ + gµσ,ν − gνσ,µ) (V.4)

(everywhere the indices are lowered and raised with the help of the metric tensor gµν and its inverse
gµν : gµνgνσ = δµ

σ ). In this form, all reference to the flat space used for the derivation of the parallel
displacement has disappeared, as the Christoffel symbol involves only the metric gµν of the curved space.
Thus we can forget about the auxiliary flat space and define the parallel displacement in a curved space
by equation (V.3). By differentiation and by using the matrix identity

gµν,σ = −gµρgντ gρτ,σ (V.5)

we can infer that the length of a vector is unchanged by the parallel displacement: d(gµνXµXν ) = 0.
It is frequently useful to raise the first index of the Christoffel symbol so as to form

�µνσ = gµλ�λνσ .

This symbol is symmetrical in its two lower indices.
A curve in M, the tangent vector of which is parallel to itself along the whole curve, is called a

geodesic. This is defined by the equation

∂2xµ

∂τ 2
+ �µνσ

∂xν

∂τ

∂xσ

∂τ
= 0 (V.6)

where τ is a parameter on the curve.

♦ Covariant differentiation, the curvature tensor and Bianci identities; Ricci and Weyl tensors

The usual derivative of a vector field, Xµ,ν , is no longer a tensor because its transformations under a
general change of coordinates, xµ → x ′µ(xµ), contain an inhomogeneous part:

Xµ′,ν ′ = Xρ,σ xσ,ν ′x
ρ

,µ′ + Xρxρ
,µ′ν ′ .

We can, however, modify the process of differentiation so as to get a tensor. To this aim, we define the
covariant derivative:

∇νXµ ≡ Xµ;ν
def≡ Xµ,ν − �σµνXσ . (V.7)

This derivative satisfies the usual Leibniz rule:

(XµYν);σ = Xµ;σYν + XµYν;σ (V.8)

and can be straightforwardly generalized to any tensor of a higher rank,

Zµν...;σ = Zµν...,σ − �-term for each index.

For example, for the second-rank tensor, the differentiation reads as

Zµν;σ = Zµν,σ − �ρµσ Zρν − �ρνσ Zµρ. (V.9)

Formula (V.8) for the covariant derivative of a product

(Z1 Z2);σ = (Z1);σ Z2 + Z1(Z2);σ (V.10)
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holds quite generally, with Z1 and Z2 being any kind of tensor quantity.
With product law (V.10), it is seen that the covariant differentiation is very similar to the ordinary

differentiation. But there is an important distinction: the covariant differentiation is not commutative:

(∇µ∇ν −∇ν∇µ)Xσ ≡ Xσ ;ν;µ − Xσ ;µ;ν = XρRρσνµ (V.11)

where
Rρσµν = �ρσµ,ν − �ρσν,µ + �τσµ�ρτν − �τσν�ρτµ. (V.12)

This quantity proves to be a tensor and is called the Riemann–Christoffel tensor or the curvature tensor.
It has the following symmetry properties (Rλσνµ = gλρRρσνµ):

Rρσνµ = −Rρσµν
Rρσνµ + Rρνµσ + Rρµσν = 0

Rµνρσ = −Rνµρσ
Rµνρσ = Rρσµν = Rσρνµ

and satisfies the Bianchi identities:

Rρ
µνσ ;τ + Rρ

µστ ;ν + Rρ
µτν;σ = 0. (V.13)

If the space under consideration is flat, the curvature tensor Rρσνµ vanishes. Conversely, if Rρσνµ = 0, we
can prove that the space is flat.

In many applications, the Ricci tensor Rµν , which is obtained by contracting two indices, appears:

Rµν = Rνµ
def≡ Rρµνρ

= �ρµν,ρ − �ρµρ,ν + �τµν�ρτρ − �τµρ�ρντ (V.14)

the scalar curvature
R = gµν Rµν (V.15)

and the Weyl (conformal) tensor which, in a four-dimensional space, has the form

Cµνρσ = Rµνρσ + 1
2 (gµσ Rνρ − gµρRνσ + gνρRµσ − gνσ Rµρ)+ 1

6 (gµρgνσ − gµσ gνρ)R. (V.16)

The vanishing of the Weyl (conformal) tensor is the necessary and sufficient condition for the spacetime
to coincide locally with the Euclidean space after a suitable conformal transformation of the metric, i.e.
after a substitution gµν(x)→ �(x)gµν(x) with some function �(x).

Note that all the formulae presented are correct under the assumption that the space under
consideration has zero torsion and non-metricity (see the cited books at the beginning of supplement V
for an explanation).

♦ Einstein’s law of gravitation, Schwarzschild solution and black holes

The essence of Einstein’s law of gravitation is expressed in his equations which, in the case of empty
spacetime (i.e. spacetime without matter and other physical fields except the gravitational field), reads as

Rµν = 0. (V.17)

The flat spacetime obviously satisfies (V.17). The geodesics are then straight lines and so, the particles
move along straight lines. If a spacetime is not flat, the Einstein equations put restrictions on the curvature
and the metric.
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Even for an empty spacetime, the Einstein equations are nonlinear and therefore very complicated.
There is, however, one special case which can be solved without too much trouble, namely, the static
spherically symmetric field produced by a spherically symmetric body at rest. The most general form for
ds2 in the four-dimensional spacetime, compatible with the spherical symmetry, is

ds2 = U(r) dt2 − V (r) dr2 − W (r)r2(dθ2 − sin2 θ dφ2)

where U , V and W are functions of r only. In a convenient coordinate system, the spherically symmetric
static solution of equation (V.17) has the form

ds2 =
(

1 − ρb.h.

r

)
dt2 −

(
1 − ρb.h.

r

)−1
dr2 − r2 dθ2 − r2 sin2 θ dφ2 (V.18)

and is known as the Schwarzschild solution. It holds outside the surface of the body producing the field,
where there is no matter. The parameter ρb.h. of the solution is related to the mass of this body. A physical
analysis of this solution shows that the region r < ρb.h. cannot communicate with the space for which
r > ρb.h.. Any signal, even a light signal, would take an infinite time to cross the boundary r = ρb.h..
Thus, we cannot have a direct observational knowledge of the region r < ρb.h.. Such a region is called a
black hole, because objects may fall into it but nothing can come out.

♦ Extrinsic and intrinsic curvatures

Let some manifold X be embedded into a higher-dimensional Riemann space M. There are two
approaches to the definition of the curvature for X . On the one hand, we can consider X as a Riemannian
space with a metric induced by that of M (in full analogy with (V.1)) and then use formula (V.12) to
define its curvature. This yields what is called the intrinsic curvature. On the other hand, we can carry
out the same construction that gives the definition of the curvature for surfaces in a usual flat Euclidean
space and apply it to submanifolds in a Riemann space. The result is a different concept of the curvature,
known as the extrinsic curvature. We have the following relationship:

Ki = Ke + Kt

where Kt is the curvature ofM in the direction of the tangent plane to X and Ki, Ke are the intrinsic and
extrinsic curvatures, respectively.

♦ Lie derivative

Besides the covariant derivative, we can define another useful derivative, called the Lie derivative acting
on a tensor field Z defined on a manifold. This derivative produces a tensor field LX Z of the same type
as Z . The Lie derivative is constructed using a vector field X = {Xµ} defined on the same manifold and
in local coordinates is given by the formula

(LX Z)µ1···µk
ν1···νp

= Xµ∂µZµ1···µk
ν1···νp

−
k∑

i=1

∂ρXµi Z
µ1···µi−1ρµi+1···µk
ν1···νp +

p∑
j=1

∂ν j XρZµ1···µk
ν1···νi−1ρνi+1···νp

.

♦ Differential forms

An exterior differential form of degree p, or simply a p-form, on a differentiable manifoldM is a p times
covariant skew-symmetric tensor field onM. If {x1, . . . , xn} is a local system of coordinates in a domain



Supersymmetry in quantum mechanics 329

of the manifold M, the one-forms {dx1, . . . , dxn} constitute a basis of the cotangent space T ∗
x (M) at a

given point x . For this reason, any exterior p-form ω can be written in this domain as follows:

ω =
∑

µ1,...,µn

aµ1···µn (x) dxµ1 ∧ · · · ∧ dxµn

where aµ1···µn (x) is a skew-symmetric tensor field onM. The wedge-product ∧ produces from a p-form
α and a k-form β the (p + k)-form α ∧ β and satisfies the condition of graded commutativity:

α ∧ β = (−1)pkβ ∧ α.

The concept of differentiation of a function is generalized to the concept of exterior differential which
maps the space of p-forms into the space of (p + 1)-forms and has the following properties:

d(dω) = 0 d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

where ω, α, β are arbitrary exterior forms (α has the degree p). In local coordinates, the exterior
differential reads as

dω =
∑

ρ,µ1,...,µn

∂aµ1···µn (x)

∂xρ
dxρ ∧ dxµ1 ∧ · · · ∧ dxµn .

Differential forms are an important component of the apparatus of differential geometry (see, e.g., Isham
(1989), Visconti (1992) and Kobayashi and Nomizu (1969)).

VI Supersymmetry in quantum mechanics

The concept of supersymmetry, which relates bosonic and fermionic states in quantum mechanics, i.e.
combines integer and half-integer spin states (particles) in one multiplet, has been playing an important
role in the development of quantum field theory during the last two decades (see, e.g., Wess and
Bagger (1983), Roček and Siegel (1983), West (1987), Weinberg (2000) and references therein). The
supersymmetric models of unification of the fundamental interactions are the most promising candidates
to extend the standard model of strong and electroweak interactions. Gravity was also generalized by
incorporating supersymmetry (SUSY) into a theory called supergravity. In this theory, Einstein’s general
theory of relativity turns out to be a necessary consequence of a local gauged SUSY. Thus, local SUSY
theories provide a natural framework for the unification of gravity with the other fundamental interactions
of nature. Another theoretical motivation for studying supersymmetry is offered by the string theory
(Green et al 1987).

In our book, we have used or, at least, mentioned several times the supersymmetry transformations
(in particular, in sections 2.6.3, 3.2.7 and 3.4.5) which involve Grassmann (anticommuting) parameters.
These are examples of SUSY Lie group transformations. In order to obtain an insight about the
physical meaning and consequences of the supersymmetry, it is helpful to consider the corresponding
Lie superalgebras. In this supplement, we shall consider the non-relativistic SUSY quantum mechanics
(Witten 1981) as a simple realization of a superalgebra involving fermionic and bosonic operators.

A quantum-mechanical system characterized by a self-adjoint Hamiltonian Ĥ , acting on some
Hilbert space H, is called supersymmetric if there exists a supersymmetry (also called supercharge)
operator Q̂, obeying the following anticommutation relations:

{Q̂, Q̂} = 0 = {Q̂†, Q̂†} {Q̂, Q̂†} = Ĥ . (VI.1)
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An immediate consequence of these relations is the conservation of the supercharge and the non-
negativity of the Hamiltonian,

[Ĥ, Q̂] = 0 = [Ĥ , Q̂†] Ĥ ≥ 0. (VI.2)

A simple model of supersymmetric quantum mechanics is defined on the Hilbert space H =
L2(R) ⊗ C

2 , that is, it characterizes a spin- 1
2-like particle (with mass m > 0) moving along the one-

dimensional line. In constructing a supersymmetric Hamiltonian on H, let us first introduce the bosonic
operators Â, Â† and the fermionic operators f̂ , f̂ †:

Â = ~√
2m

d

dx
+ W (x) Â† = −~√

2m

d

dx
+ W (x)

f̂ = σ+ =
(

0 1
0 0

)
f̂ † = σ− =

(
0 0
1 0

) (VI.3)

where the superpotential W (x) is assumed to be continuously differentiable. Obviously, these operators
obey the following commutation and anticommutation relations

[ Â, Â†] =
√

2~√
m

W ′(x) { f̂ , f̂ †} = 1 (VI.4)

and allow us to define suitable supercharges

Q̂ = Â ⊗ f̂ † =
(

0 0
Â 0

)
Q̂† = Â† ⊗ f̂ =

(
0 Â†

0 0

)
(VI.5)

which satisfy the required relations {Q̂, Q̂} = 0 = {Q̂†, Q̂†}. Note that Q̂ is a combination of the
generalized bosonic annihilation operator and the fermionic creation operator. Finally, we may construct
a supersymmetric quantum system by defining the Hamiltonian in such a way that the second relation in
(VI.1) also holds:

Ĥ = {Q̂, Q̂†} =
(

Â† Â 0
0 Â Â†

)
=
(

Ĥ1 0
0 Ĥ2

)
(VI.6)

with

Ĥ1 = − ~
2

2m

d2

dx2
+ W 2(x)− ~√

2m
W ′(x) (VI.7)

Ĥ2 = − ~
2

2m

d2

dx2
+ W 2(x)+ ~√

2m
W ′(x) (VI.8)

being the standard Schrödinger operators acting on L2(R).

Example: SUSY harmonic oscillator. We can introduce a Fock space of bosonic occupation numbers
and the creation and annihilation operators a and a† which, after a suitable normalization, obey the
commutation relations

[̂a, â†] = 1 [N̂ , â] = −â [N̂ , â†] = â† N̂ = â†â Ĥ = N̂ + 1
2 . (VI.9)

For the case of the SUSY harmonic oscillator, we can rewrite the operators Q̂ (Q̂†) as a product of
the bosonic operator â and the fermionic operator f̂ . Namely, we write Q̂ = â ⊗ f̂ † and Q̂† = â† ⊗ f̂ ,
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where the matrix fermionic creation and annihilation operators are defined in (VI.3) and obey the usual
algebra of the fermionic creation and annihilation operators, namely

{ f̂ †, f̂ } = 1 { f̂ †, f̂ †} = { f̂ , f̂ } = 0 (VI.10)

as well as the commutation relation

[ f̂ , f̂ †] = σ3 =
(

1 0
0 −1

)
. (VI.11)

The SUSY Hamiltonian can be rewritten in the form

Ĥ = Q̂ Q̂† + Q̂† Q̂ =
(
− d2

dx2 + x2

4

)
I − 1

2
[ f̂ , f̂ †]. (VI.12)

The effect of the last term is to remove the zero-point energy. This is a general property of SUSY
systems: if the ground state is SUSY invariant, i.e. Q|0〉 = Q†|0〉 = 0, then, from the expression of
the Hamiltonian, Ĥ = {Q̂, Q̂†}, we can immediately infer that the ground state has zero energy.

The state vector can be thought of as a matrix in the Schrödinger picture or as the state |nb, n f 〉 in
the Fock space picture. Since the fermionic creation and annihilation operators obey anticommutation
relations, the fermion number is either zero or one. We will choose the ground state of H1 to have zero
fermion number. Then, we can introduce the fermion number operator

nF = 1 − σ3

2
= 1 − [ f̂ , f̂ †]

2
. (VI.13)

The actions of the operators a, a†, f, f † in this Fock space are then:

â|nb, n f 〉 = |nb − 1, n f 〉 f̂ |nb, n f 〉 = |nb, n f − 1〉
â†|nb, n f 〉 = |nb + 1, n f 〉 f̂ †|nb, n f 〉 = |nb, n f + 1〉. (VI.14)

Now we can see that the operator Q̂† = −îa f̂ † has the property of changing a boson into a fermion
without changing the energy of the state. This is the boson–fermion degeneracy, characteristic of all
SUSY theories.

As can be seen from (VI.3), for the general case of SUSY quantum mechanics, the operators â, â†

are replaced by Â, Â† in the definition of Q̂, Q̂†, i.e. we write Q̂ = Â ⊗ f̂ † and Q̂† = Â† ⊗ f̂ . The
effect of Q̂ and Q̂† is now to relate the wavefunctions of Ĥ1 and Ĥ2 which have fermion number zero
and one respectively, but now there is no simple Fock space description in the bosonic sector because the
interactions are nonlinear. Again, as in the harmonic oscillator, in quantum theory with an exact symmetry
the ground state must be invariant with respect to the group transformations. This means, in turn, that the
ground state must be annihilated by the generators of the symmetry group and the ground-state energy
vanishes. Otherwise, SUSY is said to be broken.
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second-order, 230
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