Development of “Large gas Electron Multiplier” (LEM) detectors for high gain operation in ultra-pure noble gasses

B. Baibussinov, G. Meng, F. Pietropaolo, S. Ventura, S. Centro.

R&D Proposal - INFN PD - GR. V
Padova, 7 - 6 - 2006
Outline

- **The basic idea:**
 - Macroscopic version of hole Gas Electron Multipliers (GEM’s)
 - ~mm hole size in standard double-face Cu-clad Printed Circuit Board (PCB)
 - Characteristics & performance under investigation by several collaborations

- **Goals:**
 - Stable High gain (> 10^4 up to streamer regime) in pure noble gasses
 - quenching gas replaced by UV photon absorption in hole walls
 - Good energy resolution
 - negligible charge loss due to electron diffusion and avalanche size (small wrt hole size)
 - Direct readout of LEM electrodes
 - X-Y segmentation

- **Possible applications:**
 - Cryogenic double phase TPC’s
 - low energy (~keV) event localization (Dark Matter, Solar Neutrinos)
 - High pressure TPC for medical imaging
 - R&D activity fully funded in PD by PRIN 2005
 - Photosensitive large area detectors, RICH
 - coupling with radiation conversion detectors (CsI photocathodes)
What is a LEM

- A thick GEM-like gaseous electron multipliers made of standard printed-circuit board perforated with sub-millimeter diameter holes, chemically etched at their rims
 - In-house fabrication using automatic micromachining
 - Self-supporting
 - Extremely resistant to discharges (low capacitance)

- First introduced within the ICARUS R&D group
 - for double phase noble gasses TPC’s in the keV region

- Developed also as GEM alternative
 - Coarser resolution
 - Low rate physics (slower signals)
 - A. Rubbia et al.
 - Photo conversion detectors
 - Breskin et al.
 - Policarpo et al.
LEM: principle of operation

- Upon application of a voltage difference across the LEM, a strong dipole field E_{hole} is established within the holes.
 - Electrons deposited by ionizing radiation in a conversion region above the LEM, or produced on a solid radiation converter, are drifting towards the LEM under E_{drift} and are focused into the LEM holes by a strong electric field inside the holes.
 - Electrons are multiplied within the holes under the high electric field (~25-50 kV/cm)
 - Avalanche electrons are collected on the LEM bottom electrode (a fraction could also be further transferred to a collecting anode or to a second, possibly similar, multiplier element).

- Each hole acts as an independent multiplier.
 - A more favorable hole aspect ratio allows better avalanche confinement, reducing photon-mediated secondary effects.
 - This leads to higher gains in LEM wrt GEM with similar gas mixtures and to high-gain operation in a large variety of gases, including highly scintillating ones like pure noble gasses or CF4.
LEM: E-field, Avalanche

- Characteristics:
 - 100% transparency to incoming electrons
 - Full detection efficiency
 - Strong constant field well confined inside hole
 - Avalanche confinement, stable gain
 - Uniform field across hole diameter
 - Uniform multiplication factor, good resolution

- In pure Argon the development of the avalanche is well confined inside the hole (0.5 mm diameter)
 - At 1bar: avalanche lateral size (incl. diffusion) ~300µm
 - Higher pressure squeezes the avalanche size

Negligible charging-up of hole walls
Preliminary study of LEM in Ar

LEM prototypes
Thickness = 1.0, 1.6, 2.4 mm
Hole diameter = 0.5 mm

Test set-up
Typical signals and Spectra (Fe^{55})

Pure Argon (1 bar)

Gain > 1000
Resolution ~ 30% FWHM
(15-20 % expected)
LEM gain (pure Argon)

Gain behaviour
- Exponential growth in uniform electric field (parallel plate chamber)
 \[G = \exp(\alpha d) \]
 - \(d \) = detector thickness
 - \(\alpha \) = Townsend coefficient (depends on \(E, p, d \))

Max gain
- Increases with thickness
 - Geometrically reduced photon feedback

Time stability
- Guaranteed if no discharges
 - Far from break-down voltage
- Sudden degradation after several occasional break-down
 - hole walls carbonization

Fe\(^{55}\) source

\[G = \exp(d) \]

P = 1 Bar

1.0 mm

1.6 mm

2.4 mm

Gain

Voltage (V)
High pressure gain (pure Argon)

- **Fe55 source**
 - LEM thickness 1.6mm

- **Cd109 source**
 - LEM thickness 1.6mm

- LEM thickness optimization for high pressure operation
 - 2.4 mm: too high voltage for reasonable gain
 - 1.0 mm: too high photon feed-back; early appearance of discharges

7 June 2006
Gain scaling vs pressure and field

- Gain behaviour

\[G = \exp(\alpha d) \]

- Townsend coefficient \(\alpha \) well described by Rose-Kroff law

\[\alpha = A p \exp(-Bp / E) \]

 - \(d \) = detector thickness
 - \(E \) = electric field
 - \(p \) = pressure
 - \(A,B \) = parameters depending on gas mixture

- Not very significant deviation from expectations in wide range of \(E,p,d \)

 - Easily predictable gain and break-down value for different LEM layout
LEM with gas mixtures

Example: LEM photon detector with reflective CsI photocathode.

- Gain 10^4-10^5 (single electrons)
- Rise time < 10ns
- Rate capability: 10MHz/mm2

A. Breskin
Open problems for further R&D

- Residual charging-up of holes walls due ions/electrons diffusion especially at high rate and residual photon feed-back in pure noble gasses, affecting:
 - Maximum Gain
 - Energy resolution
 - Time stability
- Possible fields of investigation:
 - LEM geometry (including multi-step)
 - To reduce diffusion effects
 - Electrodes oxidation
 - To minimize photon feed-back and electron extraction
 - Resistive electrodes
 - To improve “quenching” effect (RPC-like) and reach streamer mode gain
 - Needle-LEM
 - To avoid discharges and carbonization of LEM hole walls
Resistive electrodes

- Hybrid RPC concept:
 - Resistive layer “quenches” the electron avalanche
 - Vetronite holes “limit” the photon propagation and after pulses

- Goal
 - It should allow gains up to streamer mode (maybe limited by photon feed-back through hole input)

- Disadvantages
 - Choice of resistive material critically depending on rate and gain (resistive materials from Quadrant Technology, ranging from 10^5 to 10^{15} Ω-cm, under investigation)

Preliminary results:
Gain $>> 10^4$ easily reached
Needle-LEM

- Coupling of a LEM with a needle array and oxidized-Cu (or resistive) layer
- Advantages
 - much longer discharge path along hole walls
 - Ion trajectories ending onto electrodes (no charging-up)
 - More efficient photon trapping
- Disadvantages
 - Critical adjustment of needle height and shape: affecting gain uniformity

Preliminary results:
Gain >> 10^4 easily reached
Poor resolution (~50% FWHM)

X, mm
Z, mm
needle
Top electrode
Vetronite

7 June 2006
Specific applications

- Optimization of LEM’s in pure Noble gasses could lead to improvements in several detection fields
 - Avoiding quenching gas could allow
 - Higher yields
 - More stable performance (less degradation due to aging effects)
- Moreover, segmented LEM, capable of x,y localization, could find direct applications in:
 - High pressure Xenon TPC’s
 - Replacements of wires and strips in CARDIS chamber for fast medical imaging:
 - Better resolutions
 - Higher time stability
 - No polymerization of quenching gas
 - See PRIN 2005
 - Large area UV photodetectors
 - Coupling with CsI photocathodes
 - Reflective CsI coating for UV scintillation collection in TPC’s
LEM in TPC’s

- Xenon TPC’s (CARDIS-PRIN2005) for fast medical imaging
 - Photoelectic e^- from $\sim 10^2$ KeV γ’s (Tantalium, Tecnetium)
 - Moderate gain required: $10^2 - 10^3$
 - High density (pressure >6 bar): high absorption efficiency
 - Good event localization: limited e^- diffusion allows mm size pixel
 - Compton rejection
 - Requirements: good energy resolution.

- Segmented LEM could match detector requirements:
 - Design with \simmm segmentation seems at reach
 - Gain under high pressure under investigation
 - Needle-LEM could be used to increase gain

- Double phase cryogenic TPC’s (Ar, Xe)
 - Similar requirements
 - High pressure = high density in cryogenic gas phase
LEM with CsI coating

V. Peskov et al. (CERN)

Large area UV photosensitive detectors

- High CsI q.e. in Ar and Xe (> 20%)
- Gain >10^4 allows sensitivity to single photo-electron
- Good event localization (down to mm2 size)

Preliminary results
Large area UV photosensitive detectors

Single LEM structure

UV Window

CsI photocathode

G-10 with resistive coating

Hybrid RPC

Readout plate

Preliminary results

higher gains are possible with resistive coating
Possible application of LEM in “classical’ RICH

The main idea: replace the wire chamber with LEM’s

Advantages: simpler design, possibility to be insensitive to charged particles (at $\Delta V=0$)

New idea: radiator and detector placed in the same gas volume

Advantages: simpler design, more light, possibility to be insensitive to charged particles (at $\Delta V=0$)
Partecipanti, tempi, richieste

valutazione preliminare

- **Partecipanti:**
 - Padova
 - B. Baiboussinov
 - S. Centro
 - F. Pietropaolo (Resp.)
 - S. Ventura
 - G. Meng
 - LNF
 - G. Mannocchi
 - L. Periale
 - P. Picchi
 - CERN
 - R. De Oliveira
 - A. Di Mauro
 - P. Martinengo
 - V. Peskov

- **Richieste ai servizi:**
 - 2 mesi uomo Lab. Elettronico
 - 2 mesi uomo Officina Meccanica
 - 1 mese uomo Ufficio Tecnico

- **Trasferte:**
 - Interne: 3 mesi uomo (metabolismo + tests a LNL)
 - Estere: 1 mese uomo (progettazione PCB e deposizioni CsI)

- **Durata:** 24 Mesi

- **Milestone:**
 - Primo anno: Prototipi piccola scala (10x10 cm²):
 - ottimizzazione layout LEM, LEM+needles, LEM resistive
 - Guadagno
 - Risoluzione
 - Stabilità temporale
 - Accoppiamento con fotoconvertitori per VUV
 - Secondo anno: LEM di medie dimensioni (30x30 cm²):
 - Readout segmentato per:
 - Imaging medica in Xenon ad alta pressione (CARDIS)
 - Fotorivelatori a grande area
 - LAr-TPC doppia fase

- **Previsioni di spesa:**
 - Consumo (totale ~19000 €):
 - Forfait workshop PCB CERN (materiale + lavorazione) ~7000 €
 - Fornitura Argon e Xenon per test ~ 5000 €
 - Fornitura campioni materiale resistivo ~3000 €
 - Deposizione CsI al CERN (materiale + lavorazione) ~4000 €