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Outline

 The basic idea:
 Macroscopic version of hole Gas Electron Multipliers (GEM’s)

 ~mm hole size in standard double-face Cu-clad Printed Circuit Board (PCB)
 Characteristics & performance under investigation by several collaborations

 Goals:
 Stable High gain (> 104 up to streamer regime) in pure noble gasses

 quenching gas replaced by UV photon absorption in hole walls
 Good energy resolution

 negligible charge loss due to electron diffusion and avalanche size
(small wrt hole size)

 Direct readout of LEM electrodes
 X-Y segmentation

 Possible applications:
 Cryogenic double phase TPC’s

 low energy (~keV) event localization (Dark Matter, Solar Neutrinos)
 High pressure TPC for medical imaging

 R&D activity fully funded in PD by PRIN 2005
 Photosensitive large area detectors, RICH

 coupling with radiation conversion detectors (CsI photocathodes)
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What is a LEM

 A thick GEM-like gaseous electron
multipliers made of standard
printed-circuit board perforated with
sub-millimeter diameter holes,
chemically etched at their rims

 In-house fabrication using automatic
micromachining

 Self-supporting
 Extremely resistant to discharges (low

capacitance)

 First introduced within the ICARUS
R&D group

 for double phase noble gasses TPC’s in
the keV region

 H. Wang, PhD Thesis, UCLA, 1999
 L. Periale et al, 2000.

 Developed also as GEM alternative
 Coarser resolution
 Low rate physics (slower signals)

 A. Rubbia et al.
 Photo conversion detectors

 Breskin et al.
 Policarpo et al.

Standard GEM LEM
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LEM: principle of operation

 Upon application of a voltage difference across the LEM,
a strong dipole field Ehole is established within the holes.
 Electrons deposited by ionizing radiation in a conversion region

above the LEM, or produced on a solid radiation converter, are
drifting towards the LEM under Edrift and are focused into the LEM
holes by a strong electric field inside the holes.

 Electrons are multiplied within the holes under the high electric field
(~25-50 kV/cm)

 Avalanche electrons are collected on the LEM bottom electrode (a
fraction could also be further transferred to a collecting anode or to
a second, possibly similar, multiplier element).

 Each hole acts as an independent multiplier.
 A more favorable hole aspect ratio allows better avalanche

confinement, reducing photon-mediated secondary effects.
 This leads to higher gains in LEM wrt GEM with similar gas

mixtures and to high-gain operation in a large variety of gases,
including highly scintillating ones like pure noble gasses or CF4.
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LEM: E-field, Avalanche

 Characteristics:
 100% transparency to incoming electrons

 Full detection efficiency
 Strong constant field well confined inside hole

 Avalanche confinement, stable gain
 Uniform field across hole diameter

 Uniform multiplication factor, good resolution

 In pure Argon the development of the avalanche is
well confined inside the hole (0.5 mm diameter)

 At 1bar: avalanche lateral size (incl. diffusion) ~300µm
 Higher pressure squeezes the avalanche size

Negligible charging-up
of hole walls
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Preliminary study of LEM in Ar

LEM prototypes
Thickness = 1.0, 1.6, 2.4 mm
Hole diameter = 0.5 mm

Test set-up
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Typical signals and Spectra (Fe55)

Faster electron
induction signal

Slower ion
induction
signal

Pure Argon (1 bar)

Gain > 1000 
Resolution ~ 30% FWHM

(15-20 % expected)
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 Gain behaviour
 Exponential grow in uniform

electric field (parallel plate
chamber)

 d = detector thickness
 α = Townsend coefficient

(depends on E,p,d)

 Max gain
 Increases with thickness

 Geometrically reduced photon
feedback

 Time stability
 Guaranteed if no discharges

 Far from brake-down voltage
 Sudden degradation after several

occasional break-down
 hole walls carbonization

LEM gain (pure Argon)

! 

G = exp("d)

Fe55 source

1.0 mm

1.6 mm

2.4 mm
P = 1 Bar
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High pressure gain (pure Argon)
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 LEM thickness optimization for high pressure operation
 2.4 mm: too high voltage for reasonable gain
 1.0 mm: too high photon feed-back; early appearance of discharges
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y = a0 + A*exp(-B/x); x=V/Pd

ErrorValue

0.445090.60021a0

28.149559.67A

848.4938127B

 Gain behaviour

 Townsend coefficient α well
described by Rose-Kroff law

 d = detector thickness
 E = electric field
 p = pressure
 A,B = parameters depending

on gas mixture
 Not very significant deviation

from expectations in wide
range of E,p,d

 Easily predictable gain and
break-down value for
different LEM layout

Gain scaling vs pressure and field

! 

G = exp("d)

! 

" = Ap exp(#Bp /E)
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LEM with gas mixtures

 Gain 104-105   (single electrons)
 Rise time < 10ns
 Rate capability: 10MHz/mm2

Example: LEM photon detector with reflective CsI photocathode.

Ref. PC

R. Chechik et al. Physics/0502131 & NIMA i.p. 
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Open problems for further R&D

 Residual charging-up of holes walls due ions/electrons diffusion
especially at high rate and residual photon feed-back in pure
noble gasses, affecting:
 Maximum Gain
 Energy resolution
 Time stability

 Possible fields of investigation:
 LEM geometry (including multi-step)

 To reduce diffusion effects
 Electrodes oxidation

 To minimize photon feed-back and electron extraction
 Resistive electrodes

 To improve “quenching” effect (RPC-like) and reach streamer mode gain
 Needle-LEM

 To avoid discharges and carbonization of LEM hole walls
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Resistive electrodes

 Hybrid RPC concept:
 Resistive layer “quenches”

the electron avalanche
 Vetronite holes “limit” the

photon propagation and
after pulses

 Goal
 It Should allow gains up to

streamer mode (maybe
limited by photon feed-back
through hole input)

 Disadvantages
 Choice of resistive material

critically depending on rate
and gain (resistive materials
from Quadrant Technology,
ranging from 105 to 1015 Ω-
cm, under investigation)

Preliminary results:
Gain >> 104 easily reached

Vetronite

Resistive
(oxided) electrode

Resistive plates
HV

Signal pickup

A charged particle entering the hole induces an avalanche,
which develops into a spark. The discharge is quenched
when all of the locally (~1 hole) available charge is
consumed. Photons are blocked by vetronite walls.

The discharged area recharges slowly
through the high-resistivity plates.

Before

++++++      ++++++ After_ _ _ _ _      _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _+++++++++++++++
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Needle-LEM

 Coupling of a LEM with a
needle array and oxided-Cu
(or resistive) layer

 Advantages
 much longer

discharge path along
hole walls

 Ion trajectories ending
onto electrodes (no
charging-up)

 More efficient photon
trapping

 Disadvantages
 Critical adjustment

of needle height
and shape:
affecting gain
uniformity

Preliminary results:
Gain >> 104 easily reached
Poor resolution (~50%FWHM)

X, mm

Z,
 m

m

needle

Top electrode

Vetronite
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Specific applications

 Optimization of LEM’s in pure Noble gasses could lead to
improvements in several detection fields
 Avoiding quenching gas could allow

 Higher yields
 More stable performance (less degradation due to aging effects)

 Moreover, segmented LEM, cabable of x,y localization, could find
direct applications in:
 High pressure Xenon TPC’s

 Replacements of wires and strips in CARDIS chamber for fast
medical imaging:

 Better resolutions
 Higher time stability
 No polymerization of quenching gas

 See PRIN 2005
 Large area UV photodetectors

 Coupling with CsI photocathodes
 Reflective CsI coating for UV scintillation collection in TPC’s
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LEM in TPC’s

 Xenon TPC’s (CARDIS-PRIN2005) for fast medical imaging
 Photoelectic e- from ~102 KeV γ’s (Tantalium, Tecnetium)

 Moderate gain required: 102 - 103

 High density (pressure >6 bar): high absorption efficiency
 Good event localiziation: limited e- diffusion allows mm size pixel

 Compton rejection
 Requirements: good energy resolution.

 Segmented LEM could match detector requirements:
 Design with ~mm segmentation seems at reach
 Gain under high pressure under investigation

 Needle-LEM could be used to increase gain

 Double phase cryogenic TPC’s (Ar, Xe)
 Similar  requirements

 High pressure = high density in cryogenic gas phase
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CsI reflective
photocathode

G-10 LEM

LEM with CsI coating

LEM with pure noble gasses

Large area UV photosensitive detectors

Preliminary
results

V. Peskov et al.
(CERN)

Resistive/oxided 
coating

 High CsI q.e. in Ar and Xe
(> 20%)

 Gain >104 allows sensitivity
to single photo-electron

 Good event localization
(down to mm2 size)

hν
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UV Window

CsI
photocathode

G-10 with 
resistive 
coatingReadout plate

LEM with resistive coating

Single LEM structure Hybrid RPC

Readout plate

Large area UV photosensitive detectors
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higher gains are possible with resistive coating

Preliminary
results

P.Fonte et al.
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LEM and RICH
Possible application of LEM in “classical’ RICH

New idea: radiator and detector placed in the same gas volume

The main idea:
replace the wire chamber with LEM’s

Advantages:
simpler design,
possibility to be
insensitive to charged
particles (at ΔV=0)

+VΔV

Radiator

Drift  mesh

CsI

Gas chamber

Pure CF4 or Ar

CsIMesh

Advantages:
simpler design,
More light,
possibility to be
Insensitive to charged
particles (at ΔV=0)

P. Martinengo et al. (CERN)
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Partecipanti, tempi, richieste

 Partecipanti:
 Padova

 B. Baiboussinov
 S. Centro
 F.Pietropaolo (Resp.)
 S. Ventura
 G. Meng

 LNF
 G. Mannocchi
 L .Periale
 P. Picchi

 CERN
 R. De Oliveira
 A. Di Mauro
 P. Martinengo
 V. Peskov

 Richieste ai servizi:
 2 mesi uomo Lab. Elettronico
 2 mesi uomo Officina Meccanica
 1 mese uomo Ufficio Tecnico

 Trasferte:
 Interne: 3 mesi uomo (metabolismo +

tests a LNL)
 Estere: 1 mese uomo (progettazione

PCB e deposizioni CsI)

 Durata: 24 Mesi
 Milestones:

 Primo anno: Prototipi piccola scala (10x10 cm2):
 ottimizzazione layout LEM, LEM+needles, LEM resistive

 Guadagno
 Risoluzione
 Stabilita temporale
 Accoppiamento con fotoconvertitori per VUV

 Secondo anno: LEM di medie dimesioni (30x30 cm2):
 Readout segmentato per:

 Imaging medicale in Xenon ad alta pressione
(CARDIS)

 Fotorivelatori a grande area
 LAr-TPC doppia fase

 Previsioni di spesa: 
 Consumo (totale ~19000 €):

 Forfait workshop PCB CERN (materiale + lavorazione)
~7000 €

 Fornitura Argon e Xenon per test ~ 5000 €
 Fornitura campioni materiale resistivo ~3000 €
 Deposizione CsI al CERN (materiale + lavorazione)

~4000 €

valutazione preliminare


