Development of "Large gas Electron Multiplier" (LEM) detectors for high gain operation in ultra-pure noble gasses

B. Baibussinov, G. Meng, *F. Pietropaolo*, S. Ventura, S. Centro.

R&D Proposal - INFN PD - GR. V Padova, 7 - 6 - 2006

Outline

The basic idea:

- Macroscopic version of hole Gas Electron Multipliers (GEM's)
 - ~mm hole size in standard double-face Cu-clad Printed Circuit Board (PCB)
 - Characteristics & performance under investigation by several collaborations

Goals:

- Stable High gain (> 10⁴ up to streamer regime) in pure noble gasses
 - quenching gas replaced by UV photon absorption in hole walls
- Good energy resolution
 - negligible charge loss due to electron diffusion and avalanche size (small wrt hole size)
- Direct readout of LEM electrodes
 - X-Y segmentation
- Possible applications:
 - Cryogenic double phase TPC's
 - low energy (~keV) event localization (Dark Matter, Solar Neutrinos)
 - High pressure TPC for medical imaging
 - R&D activity fully funded in PD by PRIN 2005
 - Photosensitive large area detectors, RICH
 - coupling with radiation conversion detectors (CsI photocathodes)

7 June 2006

What is a LEM

- A thick GEM-like gaseous electron multipliers made of standard printed-circuit board perforated with sub-millimeter diameter holes, chemically etched at their rims
 - In-house fabrication using automatic micromachining
 - Self-supporting
 - Extremely resistant to discharges (low capacitance)
- First introduced within the ICARUS R&D group
 - for double phase noble gasses TPC's in the keV region
 - H. Wang, PhD Thesis, UCLA, 1999
 - L. Periale et al, 2000.
- Developed also as GEM alternative
 - Coarser resolution
 - Low rate physics (slower signals)
 - A. Rubbia et al.
 - Photo conversion detectors
 - Breskin et al.
 - Policarpo et al.

Standard GEM

LEM

7 June 2006

LEM: principle of operation

- Upon application of a voltage difference across the LEM, a strong dipole field E_{hole} is established within the holes.
 - Electrons deposited by ionizing radiation in a conversion region above the LEM, or produced on a solid radiation converter, are drifting towards the LEM under E_{drift} and are focused into the LEM holes by a strong electric field inside the holes.
 - Electrons are multiplied within the holes under the high electric field (~25-50 kV/cm)
 - Avalanche electrons are collected on the LEM bottom electrode (a fraction could also be further transferred to a collecting anode or to a second, possibly similar, multiplier element).
- Each hole acts as an independent multiplier.
 - A more favorable hole aspect ratio allows better avalanche confinement, reducing photon-mediated secondary effects.
 - This leads to higher gains in LEM wrt GEM with similar gas mixtures and to high-gain operation in a large variety of gases, including highly scintillating ones like pure noble gasses or CF4.

LEM: E-field, Avalanche

- Characteristics:
 - 100% transparency to incoming electrons
 - Full detection efficiency
 - Strong constant field well confined inside hole
 - Avalanche confinement, stable gain
 - Uniform field across hole diameter
 - Uniform multiplication factor, good resolution

- In pure Argon the development of the avalanche is well confined inside the hole (0.5 mm diameter)
 - At 1bar: avalanche lateral size (incl. diffusion) ~300µm
 - Higher pressure squeezes the avalanche size

Negligible charging-up of hole walls

Preliminary study of LEM in Ar

Typical signals and Spectra (Fe⁵⁵)

Pure Argon (1 bar)

Gain > 1000 Resolution ~ 30% FWHM (15-20 % expected)

LEM gain (pure Argon)

- Gain behaviour
 - Exponential grow in uniform electric field (parallel plate chamber)

$$G = \exp(\alpha d)$$

- d = detector thickness
- α = Townsend coefficient (depends on E,p,d)
- Max gain
 - Increases with thickness
 - Geometrically reduced photon feedback
- Time stability
 - Guaranteed if no discharges
 - Far from brake-down voltage
 - Sudden degradation after several occasional break-down
 - hole walls carbonization

High pressure gain (pure Argon)

Fe⁵⁵ source Cd¹⁰⁹ source LEM thickness 1.6mm LEM thickness 1.6mm -GAIN 2.3bar GAIN 1.9bar 1400 1200 GAIN 2.9bar GAIN 1.82bar GAIN 2.5bar GAIN 1.77bar GAIN 2.7bar GAIN 1.7bar GAIN 3.21bar 1200 1000 GAIN 1.6bar GAIN 3.41bar 1.5bai AIN GAIN 3.54bar 1 4bar ΔΙΝ 1000 800 GAIN 1.15bar GAIN 1bar GAIN Gain 800 600 600 400 400 200 200 Λ 2200 2400 2600 2800 3000 3200 3400 3600 4500 5000 3500 4000 5500 6000 Voltage (V) Voltage (V)

- LEM thickness optimization for high pressure operation
 - 2.4 mm: too high voltage for reasonable gain
 - 1.0 mm: too high photon feed-back; early appearance of discharges

Gain scaling vs pressure and field

Gain behaviour

$$G = \exp(\alpha d)$$

 Townsend coefficient α well described by Rose-Kroff law

$$\alpha = Ap \exp(-Bp / E)$$

- d = detector thickness
- E = electric field
- p = pressure
- A,B = parameters depending on gas mixture
- Not very significant deviation from expectations in wide range of E,p,d
 - Easily predictable gain and break-down value for different LEM layout

LEM with gas mixtures

Example: LEM photon detector with reflective CsI photocathode.

7 June 2006

Open problems for further R&D

- Residual charging-up of holes walls due ions/electrons diffusion especially at high rate and residual photon feed-back in pure noble gasses, affecting:
 - Maximum Gain
 - Energy resolution
 - Time stability
- Possible fields of investigation:
 - LEM geometry (including multi-step)
 - To reduce diffusion effects
 - Electrodes oxidation
 - To minimize photon feed-back and electron extraction
 - Resistive electrodes
 - To improve "quenching" effect (RPC-like) and reach streamer mode gain
 - Needle-LEM
 - To avoid discharges and carbonization of LEM hole walls

Resistive electrodes

- Hybrid RPC concept:
 - Resistive layer "quenches" the electron avalanche
 - Vetronite holes "limit" the photon propagation and after pulses
- Goal
 - It Should allow gains up to streamer mode (maybe limited by photon feed-back through hole input)
- Disadvantages
 - Choice of resistive material critically depending on rate and gain (resistive materials from Quadrant Technology, ranging from 10⁵ to 10¹⁵ Ωcm, under investigation)

Preliminary results: Gain >> 10⁴ easily reached

A charged particle entering the hole induces an avalanche, which develops into a spark. The discharge is quenched when all of the locally (~1 hole) available charge is consumed. Photons are blocked by vetronite walls.

The discharged area recharges slowly through the high-resistivity plates.

 Coupling of a LEM with a needle array and oxided-Cu (or resistive) layer

- Advantages
 - much longer discharge path along hole walls
 - Ion trajectories ending onto electrodes (no charging-up)
 - More efficient photon trapping

- Disadvantages
 - Critical adjustment of needle height and shape: affecting gain uniformity

Top electrode

Preliminary results: Gain >> 10⁴ easily reached Poor resolution (~50%FWHM)

Vetronite

Specific applications

- Optimization of LEM's in pure Noble gasses could lead to improvements in several detection fields
 - Avoiding quenching gas could allow
 - Higher yields
 - More stable performance (less degradation due to aging effects)
- Moreover, segmented LEM, cabable of x,y localization, could find direct applications in:
 - High pressure Xenon TPC's
 - Replacements of wires and strips in CARDIS chamber for fast medical imaging:
 - Better resolutions
 - Higher time stability
 - No polymerization of quenching gas
 - See PRIN 2005
 - Large area UV photodetectors
 - Coupling with CsI photocathodes
 - Reflective CsI coating for UV scintillation collection in TPC's

Xenon TPC's (CARDIS-PRIN2005) for fast medical imaging

- Photoelectic e⁻ from ~10² KeV γ's (Tantalium, Tecnetium)
 - Moderate gain required: 10² 10³
 - High density (pressure >6 bar): high absorption efficiency
 - Good event localiziation: limited e⁻ diffusion allows mm size pixel
- Compton rejection
 - Requirements: good energy resolution.
- Segmented LEM could match detector requirements:
 - Design with ~mm segmentation seems at reach
 - Gain under high pressure under investigation
 - Needle-LEM could be used to increase gain
- Double phase cryogenic TPC's (Ar, Xe)
 - Similar requirements
 - High pressure = high density in cryogenic gas phase

V. Peskov et al. (CERN)

Large area UV photosensitive detectors

LEM with resistive coating P.Fonte et al.

Large area UV photosensitive detectors

7 June 2006

higher gains are possible with resistive coating

Partecipanti, tempi, richieste

valutazione preliminare

- Partecipanti:
 - Padova
 - B. Baiboussinov
 - S. Centro
 - F.Pietropaolo (Resp.)
 - S. Ventura
 - G. Mena
 - LNF
 - G. Mannocchi
 - L.Periale
 - P. Picchi
 - CFRN
 - R. De Oliveira
 - A. Di Mauro
 - P. Martinengo
 - V. Peskov
- Richieste ai servizi:
 - 2 mesi uomo Lab. Elettronico
 - 2 mesi uomo Officina Meccanica
 - 1 mese uomo Ufficio Tecnico
- Trasferte:
 - Interne: 3 mesi uomo (metabolismo + tests a LNL)
 - Estere: 1 mese uomo (progettazione PCB e deposizioni Csl)

- Durata: 24 Mesi
- Milestones:
 - Primo anno: Prototipi piccola scala (10x10 cm²):
 - ottimizzazione layout LEM, LEM+needles, LEM resistive .
 - Guadaqno
 - Risoluzione .
 - Stabilita temporale
 - Accoppiamento con fotoconvertitori per VUV
 - Secondo anno: LEM di medie dimesioni (30x30 cm²):
 - Readout segmentato per:
 - Imaging medicale in Xenon ad alta pressione (CARDIS)
 - Fotorivelatori a grande area
 - LAr-TPC doppia fase
- Previsioni di spesa:
 - Consumo (totale ~19000 €):
 - Forfait workshop PCB CERN (materiale + lavorazione) • ~7000€
 - Fornitura Argon e Xenon per test ~ 5000 €
 - Fornitura campioni materiale resistivo ~3000 €
 - Deposizione CsI al CERN (materiale + lavorazione) ~4000€