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Preface

The periodic arrangement of atoms (nuclei) influences essentially the elec-
tromagnetic processes accompanying the moving charged particles in crys-
tals and results in qualitatively new coherent and orientational effects, which
are not observable in amorphous media. Several of these effects were de-
scribed and systemized in the monograph by M.L. Ter-Mikaelian [1] in 1960s,
where the coherent bremsstrahlung, resonant radiation and electron–positron
pair creation at high energies were considered. The particles taking part in
these processes have a wavelength smaller than the period of crystallographic
lattice.

In 1971, a qualitatively different mechanism of electromagnetic radiation
from high-energy electrons in the crystal was predicted, when the wavelength
of the emitted photons is comparable to the lattice period and the diffraction
of the radiation plays a crucial role. The spectrum of this radiation, named
parametric X-ray radiation (PXR), depends essentially on the crystallographic
parameters. The predicted phenomenon was experimentally observed in 1985,
and up to date there has been much theoretical and experimental work done
on PXR in numerous scientific centres.

In the present monograph, a systematic description of PXR is given and
an analysis of the published studies on PXR is performed. In Part I of the
book, the qualitative features of PXR and the difference between PXR and
other radiation mechanisms are given along with the methods for PXR sim-
ulation under different experimental conditions. In Part II, the experimental
results and their theoretical interpretations are discussed (Chaps. 5 and 6).
The effective application of PXR phenomenon for modern scientific and tech-
nological needs is an actual task of today’s investigations, and the prospective
applications are considered in Chap. 7.

The authors are indebted to the colleagues at Belarussian State University
and Tomsk Polytechnical Institute for a long-term and fruitful collaboration,
which resulted in pioneering observations of PXR and a detailed investigation
of PXR features.
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Theory





1

Electromagnetic Radiation
from a Charged Particle in Crystals:
Qualitative Consideration

1.1 Optical and X-ray Cherenkov Radiation
in Homogeneous Media

Electromagnetic radiation caused by motion of a charged particle has been
studied for more than 100 years. It was firmly believed for an appreciable
period of time that only accelerated particles can radiate electromagnetic
waves.

The possibility of light radiation by a charged particle moving with a con-
stant velocity in a medium began appearing only in 1934 with the works
of Vavilov and Cherenkov [12] and Tamm and Frank [167], who explained
Cherenkov’s experiments. The Vavilov–Cherenkov radiation (VCR) was the
first radiation phenomenon in physics that depends not only on the charge
and velocity of the particle but also on the optical properties of the medium.
Moreover, a fast electron radiating in a medium appeared as the first coherent
self-radiating source of light, whose size significantly exceeded the radiation
wavelength [99]. Later, numerous confirmations of coherent influence of atoms
of a medium on the probability of electromagnetic processes have been dis-
covered and described (see, for example, [21, 30]).

A charged particle moving with a constant velocity v in an optically trans-
parent medium with the dielectric permittivity ε(k, ω), where k is the wave
vector of the photon and ω is its frequency, can radiate if the following con-
dition is fulfilled:

1 − v

c
n(k, ω) cos θ = 0 , (1.1)

where θ is the angle between v and k; c is the light velocity in vacuum and
n(k, ω) =

√
ε(k, ω) is the refractive index of the medium. Evidently, condition

(1.1) can only be satisfied if the velocity of the particle is higher than the phase
velocity of light in the medium, cm:

v > cm =
c

n
, n > 1 . (1.2)

V. Baryshevsky et al: Parametric X-ray Radiation in Crystals
STMP 213, 3–17 (2005)
c© Springer-Verlag Berlin Heidelberg 2005



4 1 Qualitative Consideration of Electromagnetic Radiation

For a long time, the studies and applications of the VCR were limited
within the domain of optical and soft X-ray radiation, when condition (1.2) is
satisfied for numerous media and for a wide range of particle energies. More-
over, the VCR channel was assumed to be forbidden in the frequency range
higher than characteristic atomic frequencies, where the dielectric permittivity
of a uniform medium is determined by the universal expression [25]:

ε(k, ω) = 1 − ω2
0

ω2
< 1, ω > ω0 . (1.3)

Here ω0 is the plasma frequency of the medium, which is usually within the
optical range. Formula (1.3) is not applicable for an anomalous dispersion
region, corresponding to internal atomic shells, and for resonant transitions
of Mössbauer nuclei. As shown for the first time in [24, 27], in the medium
of heavy atoms the VCR is also possible in the range of X-ray wavelengths.
However, it is difficult to observe this effect because of the strong radiation
absorption in the region of anomalous dispersion.

Analysis of the induced effect of Vavilov–Cherenkov and Doppler effect
with transition radiation done in 1971 [4] revealed that conditions for gener-
ation of radiation from a charged particle in a crystal (considering that the
Bragg diffraction is allowed) fundamentally differ from radiation conditions
in an amorphous medium. In this case, the crystal cannot be described by a
certain refractive index, because it has several indices of refraction depending
on the photon frequency and the direction of the photon propagation. This
brings into picture a new radiation type, named parametric X-ray radiation
(PXR) [7, 8], from a charged particle moving with a constant velocity in a
crystal [4, 6, 19, 30]. Solely the crystal structure of the medium was shown
to cause a diffraction of the X-ray bremsstrahlung and transition radiation
[4]. Moreover, a relativistic charged particle moving with a constant velocity
in a crystal radiates X-rays even at large angles [6], whereas radiation in an
amorphous medium is emitted within the angle θ ∼ 1/γ, where γ = E/mc2

is the Lorentz factor of the particle, E is its energy, m is the mass of the
particle. The PXR was found out to form both the waves with the refractive
index n > 1 (slow waves) and the waves with n < 1 (fast waves). The X-ray
quanta in PXR are emitted at both large and small angles with respect to the
particle velocity [6].

The theory of radiation from a charged particle moving with a constant
velocity was also considered in [29], where the resonant radiation in a thin
crystal was described. In this work, however, not much attention is paid to the
refraction effects due to the absence of fast and slow waves and radiation along
the particle velocity. Contrary to the PXR case, the frequency of resonant
radiation increases with the increase in the particle energy.

Papers [4, 6] initiated numerous publications considering X-ray radiation
from a charged particle moving with a constant velocity in a crystal. Despite
the numerous theoretical works on PXR, the phenomenon was experimentally
observed for the first time in 1985 [1, 5]. The results of the experiments were in
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good quantitative agreement with theoretical predictions. Presently, the PXR
physics and applications are being studied in numerous scientific centres and
essential volume of accumulated information requires a systematization and
general analysis, which is the main goal of the present monograph.

1.2 Pseudophoton Spectrum of a Relativistic Electron

The most pictorial qualitative description of the PXR mechanism is given by
the electrodynamic pseudophoton concept introduced in [32]. This approach
exploits the approximate equivalence of the energy flux of the electromagnetic
field, created by a constantly moving charged particle on the one hand, and the
energy flux transferred by the photon beam with a certain angular and spectral
distribution, on the other hand. To calculate this spectrum, the solution for
Maxwell’s equation has to be found for the vector A(r, t) and scalar ϕ(r, t)
potentials, determined from a classic expression for the current j(r, t) and
charge ρ(r, t) density of a point particle with the charge q = Ze [2]:

(
∆ − 1

c2

∂2

∂t2
A(r, t)

)
= −4π

c
j(r, t) ,

(
∆ − 1

c2

∂2

∂t2
ϕ(r, t)

)
= −4πρ(r, t) ,

j(r, t) = vρ(r, t), ρ(r, t) = qδ(r − vt) . (1.4)

Using a standard expansion of potentials and the δ-function in Fourier inte-
grals, the following expressions for electric and magnetic fields accompanying
the particle are derived (the z-axis is along the velocity vector v):

E(r, t) = −1
c

∂A

∂t
−∇ϕ = −i

q

2π2

∫
dk

kc2 − v(kv)
k2c2 − k2

zv2
eikr−ikzvt ,

H(r, t) =
1
c
[vE(r, t)] . (1.5)

In the case of an ultrarelativistic particle with the velocity v ≈ c, the para-
meter ω = kzv, defining the time dependence in (1.5), can be considered as
a frequency of a pseudophoton, and the electromagnetic field in (1.5) can be
split into longitudinal Ez (along v) and transverse E⊥ components:

E⊥ = −i
q

2π2v

∫
dk⊥dω

k⊥
k2
⊥ + ω2(1/v2 − 1/c2)

eik⊥r⊥+iω(z/v−t) ,

Ez = −i
q

2π2v2

∫
dk⊥dω

ω(1 − v2/c2)
k2
⊥ + ω2(1/v2 − 1/c2)

eik⊥r⊥+iω(z/v−t) ,

H(r, t) =
1
c
[vE(r, t)] . (1.6)
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We used here a standard definition of the Lorentz factor for the particle of
energy E and mass m:

γ =
E

mc2
=

1
√

1 − v2/c2
. (1.7)

For an ultrarelativistic particle (γ � 1), the transverse component of the
electromagnetic field is essentially larger than the longitudinal one |E⊥| �
Ez. This situation approximately corresponds to the superposition of free
electromagnetic waves with frequencies ω propagating along the vector v.
The energy flux Πz transferring the electromagnetic field of the particle (1.6)
into the direction of its velocity is

Πz =
∫

dr⊥

∫ ∞

−∞
dt

c

4π
[EH]z =

∫
dr⊥

∫ ∞

−∞
dt

v

4π
|E⊥|2

=
q2

4π2v

∫
dk⊥dω

k2
⊥dω

[k2
⊥ + ω2/γ2v2]2

. (1.8)

However, the energy flux can be represented as the flux of pseudophotons with
energy �ω and angular–spectral distribution n(θ, ω), which is integrated over
frequencies and angles:

Πz =
∫

dk⊥dω�ωn(θ, ω) , (1.9)

where the angle θ between the wave vector of the pseudophoton and the
particle velocity v is established by the relation sin θ = k⊥/ω. Comparing
(1.8) and (1.9), the spectral–angular distribution of pseudophotons is found
to be

n(θ, ω) =
q2

4�ωπ2v

sin2 θ

[sin2 θ + 1/γ2]2
. (1.10)

The well-known expression for the frequency distribution of pseudophotons is
obtained from (1.10) if the integration over k⊥ is performed [2]:

n(ω) =
q2

2�ωπv
ln
(

ηγmc2

�ω

)
. (1.11)

Here, the parameter η ∼ 1 influences inessentially the spectrum and is deter-
mined from the applicability condition for the point particle model [2].

Figure 1.1 shows the angular distribution of pseudophotons for several
different values of the energy of the charged particle, n0 = q2

4π2v . The essential
feature of the functions shown is that they are independent of the frequency.
Each distribution corresponds to the pseudophoton beam, concentrated within
the cone ∆θ ≈ γ−1 with typical minimum along the vector v. Thus, for γ � 1
each pseudophoton can be assumed to have a certain wave vector with a high
accuracy:



1.2 Pseudophoton Spectrum of a Relativistic Electron 7

20

40

60

80

θ, rad

γ=20

γ=10

0.1 0.2 0.3 0.4

n(
)

θ,
ω

n 0
, a

.u
.

hω

Fig. 1.1. Characteristic angular distribution of pseudophotons

Fig. 1.2. Characteristic spectral distribution of pseudophotons

k = ω
v

v2
. (1.12)

At the same time, as Fig. 1.2 shows, the frequency spectrum with the weight
∼ ω−1 contains pseudophotons of arbitrary energy, not exceeding the energy
of the particle. Thus, the electromagnetic field of the relativistic charged par-
ticle moving in vacuum is equivalent to that of the narrow beam of white
electromagnetic radiation with a broad frequency spectrum.

For the particle moving in a medium, Maxwell’s equations (1.4) have to
be corrected for polarizability of the material and for elastic and inelastic col-
lisions of the particle and atoms, which influence the electromagnetic field of
the particle. However, for high-energy particles and thin samples, these cor-
rections are negligible and can be considered in the framework of perturbation
theory. Then the emission process from the charged particle in a medium is
equivalent to the scattering of pseudophotons by atoms. The calculation of the
flux of scattered photons gives a differential cross-section of radiation, which
is a key idea of the pseudophoton approach.
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∆θ∼γ-1

ω
c nk =

2
ωk=

Detector

g

q

Z

θ

Fig. 1.3. Radiation process as the coherent scattering of pseudophotons

1.3 Coherent Bremsstrahlung, Resonant Radiation
and Parametric Radiation in Crystals

Coherent bremsstrahlung (CBS) is one of the famous orientational radiation
effects accompanying a relativistic particle moving in a crystal. This radiation
was shown for the first time in [14, 18, 29] to be caused by interference of
the photons emitted by a charged particle, which interacts with periodically
arranged atoms of the crystal. The phenomenon of CBS is being well studied
nowadays, and there is a diversity of theoretical and experimental works, the
results of which are systematized in the monograph [30]. Another radiation
mechanism caused by the periodical properties of the medium is resonant
radiation (RR). It appears as a result of the interference of the transition
radiation on the boundary of a one-dimensional periodic medium (see, for
example, [15, 26, 30]) and is similar to the Smith–Purcell radiation [28]. PXR,
being also the orientational radiation effect, differs essentially from both CBS
and RR.

The pseudophoton approach is used below to qualitatively describe the
characteristics and differences of these emission types.

Let us consider a charged particle incident on a crystal as a beam of
pseudophotons (Fig. 1.3). The scattering amplitudes of the pseudophotons
reflected from the periodical arrangement of atoms in the crystal are coher-
ent in certain directions and create the diffraction peaks, analogous to those
produced by scattering of the external electromagnetic field from the crystal.
These diffraction peaks [23] can be detected if the wave vector k′ of the scat-
tered radiation is connected with the wave vector k of the incident beam by
the following formula:

k′ = k + g;
ω

c
n =

ωv

v2
+ g . (1.13)

This relationship can satisfy any vector g from the set of the reciprocal lattice
vectors. Vectors g are defined by a translational symmetry of the crystal and
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are an important characteristic of any diffraction process which occurs in the
crystal [23].

Formula (1.13) takes into account the conversion of the primary wave
pseudophoton with the wave vector k in (1.12) into a real photon k′ with the
frequency ω, emitted in the direction parallel to the unit vector n. The electron
velocity does not change during this process (Fig. 1.3). As follows from (1.13),
the coherent process is impossible in a homogeneous medium when g = 0.
In contrast to the diffraction of external radiation, when the frequency and
velocity of a primary photon are clearly defined (1.13) is considered as the
equation for the spectrum of the emitted photons. For a certain value of the
particle velocity and g �= 0, the frequency spectrum of the photons follows
from the solution of the quadratic equation resulting from (1.13):

ω2

v2γ2
+ 2

ω

v2
(vg) + g2 = 0 . (1.14)

As a result, two branches of the spectrum of coherent radiation from a charged
particle in the crystal are distinguished:

ω1,2 = γ2

{

−(vg) ±
√

(vg)2 − v2g2

γ2

}

. (1.15)

For high energies (γ � 1), this equation is transformed to

ω1 ≈ 2|vg|γ2 ≈ 4π

l
γ2c ;

ω2 ≈ v2g2

2|(vg)| =
πgv

sin θB
; sin θB =

|(vg)|
vg

. (1.16)

Thus, the wavelength of photons in the first branch (λ1 = 2πc/ω) is essentially
(with a factor ∼ γ−2) less than the lattice period, whereas the wavelength of
the second branch is of the same order of magnitude as the distance between
the crystallographic planes corresponding to the vector g.

In each branch, the photons are emitted within the narrow cones, axes of
which are differently directed (Fig. 1.4a):

cos θ1 =
(vn)

v
=

c

v
+

(vg)
vω1

≈ 1 ;

cos θ2 =
c

v
+

(vg)
vω2

≈ 1 − 2 sin2 θB ;

θ2 ≈ 2θB . (1.17)

The first branch corresponds to RR, and for relativistic particles the photons
are emitted at small angles to the vector v. The wavelength of the photons is
essentially less than the lattice period and decreases with increasing particle
energy ∼ γ2. The second branch is the PXR, which is emitted into directions



10 1 Qualitative Consideration of Electromagnetic Radiation
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=const

Fig. 1.4. (a) Formation of RR (interference of the pseudophotons from the charged
particle field under small angle scattering) and PXR (interference of pseudophotons
under specular reflection from the planes; the forward PXR is shown in Sect. );
(b) formation of CBS (scattering of the pseudophotons from the atomic field by the
charged particle)

making a large angles to the vector v and the frequency of radiation is deter-
mined by the crystallographic unit cell and almost independent of the electron
energy.

In terms of X-ray diffraction [3], the physics of RR corresponds to the
small-angle diffraction of the hard region of the pseudophoton spectrum,
whereas PXR is related to the Bragg diffraction of pseudophotons with the
frequency of X-ray radiation. Thus, the angular distribution of PXR is repre-
sented by a set of peaks (reflections), corresponding to the diffraction of X-ray
beam in the crystal; this beam has an angular dispersion γ−1 and frequency
spectrum (1.11). Each reflection, corresponding to a certain crystallographic
plane, defined by the reciprocal lattice vector g, is the X-ray beam with the
angular width γ−1 travelling at an angle θB to the particle velocity v:

θB = arcsin
(
|(vg)|

vg

)
. (1.18)

The emission of photons at large angles to the velocity of a relativistic particle
makes a principal difference between PXR and other radiation types (incoher-
ent bremsstrahlung, channelling radiation, undulator and transition radiation,
etc.), which are localized in the narrow cone of width γ−1 around velocity v.
PXR reflections have a spectral width ∆ω/ω ≈ γ−1 and are located near the
frequencies

ωn =
πc

d sin θB
n, n = 1, 2 . . . ; g =

2πn

d
Z , (1.19)

where the unit vector Z is perpendicular to the crystallographic planes
(Fig. 1.3). In experimentally measured units, (1.19) is written as

�ωn [keV] = 1.974
π

d[Å] sin θB

n . (1.20)

We consider here the fundamental distinctions between the formation mech-
anisms of PXR and CBS. As mentioned in [2, 30], bremsstrahlung is emitted

6.2
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due to scattering of the pseudophotons from the atom electromagnetic field
by the moving charged particle (Fig. 1.4b). PXR, in contrast, arises when
the pseudophotons from the electromagnetic field produced by the charged
particle are scattered by the atom electrons. Bremsstrahlung is always ac-
companied by a change in the momentum of the incident particle and the
bremsstrahlung spectrum is determined by the conservation law:

p − p′ − �k = u + g ,

E − E′ − �ω = 0 . (1.21)

When g = 0, each of the atoms of the medium acquires the minimal trans-
ferred momentum u, which corresponds to the conventional incoherent Bethe–
Heitler bremsstrahlung [30]. When g �= 0 (the vector u can be zero), the mo-
mentum is transferred to the crystal as a whole and condition (1.21) defines
the CBS spectrum [30]. The system of equations (1.21) has a single solution

ω(CBS)
n (θ) =

gv

1 − v/c cos θ
=

2πn

d

v sin θB

1 − v/c cos θ
. (1.22)

Therefore, kinematically the CBS can be emitted at an arbitrary θ. However,
the particle energy is high (γ � 1) and the radiation intensity increases for
the small angles θ ∼ γ−1 [30], thus resulting in ω

(CBS)
n ∼ γ2 c

d ; similar results
are found for RR. For γ ∼ 1, CBS can exist at large angles and interfere with
PXR (see Chap. 4).

The detailed analysis of PXR spectra is performed in the following sections.
In this section, we consider the restrictions which result from the approxima-
tions used for the description of this phenomenon by means of the pseudopho-
ton concept. The first approximation used assumes neglecting quantum recoil
during the photon emission. This approximation results from Maxwell’s equa-
tions for a point particle moving along the classical trajectory, and the as-
sumption is valid when the energy of the photon is much less than the particle
energy:

�ω � E . (1.23)

The second approximation is the use of the kinematic (perturbation) the-
ory for pseudophoton diffraction. As for conventional X-ray diffraction, this
approximation is valid for thin crystals of thickness L, which is less than
the extinction length Lext, defined by the frequency of radiation and crystal
polarizability [3]:

L < Lext =
c

ω|ε − 1| . (1.24)

In the X-ray domain, the polarizability |ε − 1| ∼ 10−4−10−5; thus, the kine-
matic theory of PXR is valid in the crystals with the thickness L ∼ 1−10 µm.
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The limitation for the crystal thickness is also caused by multiple (incoher-
ent) scattering of the charged particle in a crystal. For relativistic particles,
the thickness limit can be estimated from the root mean square of the angle
θ2
s (L), which defines the deviation of the particle velocity from the primary

direction [30]:

θ2
s (L) =

E2
s

E2

L

LR
, (1.25)

where Es ≈ 21 MeV and LR is the radiation length.
As follows from (1.10), the typical angular width of the pseudophoton

beam is defined by the parameter γ−1. Therefore, the deviation of the parti-
cle trajectory due to multiple scattering does not influence the pseudophoton
spectrum and, consequently, the spectrum of the emitted photons if the fol-
lowing conditions are fulfilled:

θ2
s (L) < γ−2; L <

(
mc2

Es

)2

LR ≈ 6.3 × 10−4LR . (1.26)

In most of the crystals, these conditions are easier than limitation (1.24),
i.e. dynamical diffraction effects show up for the crystal thickness for which
the multiple scattering is still negligible. In a similar way, the influence of
mosaicity on the PXR spectrum can be evaluated: The parameter describing
mosaicity has to be smaller than the angular distribution of the pseudophotons
∼γ−1.

1.4 Pioneering Experiments on the Observation of PXR

After the theoretical prediction of PXR in 1971, the detailed quantitative
description of PXR characteristics was given in a series of posterior publi-
cations [8, 9, 10, 11, 16, 17, 20]. However, the first successful experiments
on the observation of PXR were carried out 14 years later in 1985 by the
joint experimental team from Tomsk and Minsk. In the first experiment, the
spectrum of the photons emitted within PXR high angular reflection was
measured [1, 13]. The experiment was carried out at the internal beam of the
synchrotron facility Sirius in Tomsk, Russia. The geometry of the experiment
is shown in Fig. 1.5. The electron beam with the angular divergence of 0.1
mrad and monochromaticity of 0.5% was incident on a diamond target with
the dimensions 10 × 6 × 0.35 mm3, which was fixed in a two-axis goniometer.
The beam pulse duration was τ0 = 15 ms, and the energy of the electron beam
was E = 900 MeV.

Since the angular divergence of the studied X-ray radiation should be of
the order γ−1 (in the considered experiment it was 0.6 mrad), the matching
of a Bragg reflection from any crystallographic plane with a detector axis is a
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Fig. 1.5. Geometry of the first PXR experiment

difficult problem. In the experiment, the detector aperture varied from 6 to 20
mrad, that is more than γ−1. To resolve this problem, the diamond crystal was
cut off perpendicularly to the 〈100〉 axis, and the detector was placed at the
angle π/2± 3× 10−3 rad relative to the electron beam. In this case, the 〈100〉
crystallographic axis is aligned to incident electron momentum for the electron
beam intersecting the (100) planes at the angle θB = π/4 and, therefore, the
monochromatic X-ray radiation is expected at the angle 2θB = π/2, at which
the detector was set up. The crystallographic axis of the target was aligned
with the electron beam using the channelling radiation.

To measure the spectral and orientational characteristics of the X-ray ra-
diation, both a NaI(Tl) scintillation spectrometer with a crystal thickness
of about 1 mm and a proportional counter filled with xenon were used.
The 50-mm diameter entrance window was made of 300-µm-thick beryllium
foil. The energy resolution of the scintillation spectrometer at the 57Co line
(�ωγ = 14.4 keV) was ∆ω/ω ≈ 35%, and that of the proportional counter
was ∆ω/ω ≈ 12%. The energy threshold was about �ωth ≈ 12 keV for the
NaI(Tl) detector and �ωth ≈ 3 keV for the proportional counter.

The X-ray radiation spectrum measured by the scintillation spectrometer
is shown in Fig. 1.6, where the peak at �ωexper = 19.5 ± 0.3 keV is clearly
seen. The theoretical value of the expected PXR peak can be calculated using
(1.20) with the lattice constant d = 3.57 Å and θB = π/4, which results in
�ωtheor = 19.7 keV for the eighth-order reflection (n = 8) from the (100)
diamond planes and is in good agreement with the experiment.

The peak width at half maximum is about ∆ω/ω ≈ 30%, which agrees with
the intrinsic energy resolution of the detector. The measured photon yield at
the energy �ω = 19.5 keV (the area under the peak) is about Nph ≈ 10−8

photons/electron.
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a b

Fig. 1.6. The X-ray radiation spectrum of (a) 900MeV and (b) 600 MeV electrons
from a diamond crystal, measured by the NaI(Tl) spectrometer

To check the correctness of observations, the photon spectrum at the same
geometry and for the electron beam energy E = 600 MeV was measured. The
peak position was not changed (Fig. 1.6b), which confirms the analysis above:
The energy of PXR photons is determined by the type and orientation of a
crystal target. Another check was done by moving the detector from the 90◦

Bragg angle to θ = 85◦, where no anomalies were observed (the lower curve
in Fig. 1.6a). Similar results were obtained by rotating the diamond crystal
by 25 mrad keeping the detector position fixed (the lower curve in Fig. 1.6b).

The high-energy threshold of the NaI(Tl) spectrometer did not permit
us to observe the lower-order Bragg reflections in the measured spectra. To
demonstrate a set of diffraction peaks, the X-ray spectrum was also measured
using the proportional counter. Figure 1.7 shows the X-ray radiation spectrum
measured in the Bragg geometry for electrons with energy E = 900 MeV
(the background is eliminated). Two maxima at photon energies �ωexper =
19.7 keV and 9.9 keV fitting well the theoretical values were clearly observed.

Fig. 1.7. The X-ray radiation spectrum of 900 MeV electrons from a diamond crys-
tal, measured by the proportional counter
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The width of the peaks made a good agreement with the energy resolution of
the proportional counter.

These results gave evidence of the first observation of the PXR in the
experiments [1, 13]. It should also be mentioned that the peak at the photon
energy �ωexper = 19.5 keV in the X-ray spectrum from 900 MeV electrons was
observed slightly earlier in 1985 [31]. However, that was a single peak emerging
just slightly from the background in the emission spectrum. Therefore, this
observation was not a reliable basis for drawing the conclusion about PXR,
since such a tiny peak might be caused by the background or other side
processes.

The important step in PXR studies was reported in the experiment in
[5], where the fine angular structure of photon distribution in PXR reflection
was measured. This experiment confirmed an adequacy of PXR representation
as a diffraction of the pseudophoton beam from the crystallographic planes.
According to (1.10) and Fig. 1.1, this beam has distinctive angular distribution
with the intensity minimum along the particle velocity and maximum at an
angle θm = γ−1 to the velocity v. The theoretical work [17] demonstrated
that the reflection of the pseudophoton beam from the crystallographic planes
causes the same fine structure in PXR reflection, which was experimentally
observed for the first time in [5].

An experimental measurement of the angular distribution of PXR from
the 900 MeV electron beam of the synchrotron Sirius (Tomsk, Russia) was
reported in [5]. The beam was aligned along the 〈100〉 axis of the diamond
crystal with the thickness L = 0.08 cm. The X-ray detector was set at the angle
2θB = 90◦ relative to the electron velocity in the plane of the vectors v and g,
where the reciprocal lattice vector g corresponds to the crystallographic planes
(220). Under these conditions, the frequency spectrum of the photons recorded
by the detector consists of the set of lines with ω(n) = nω(220); �ω(220) =
6.96 keV.

The measurement of the PXR fine angular distribution was carried out
using the coordinate detector made of square cells with linear dimension 1.3
cm. Each of these cells was an ionization camera designed for maximum effi-
ciency of registration for the photons with the energy from 2 to 10 keV. The
detector contained 16 × 16 cells and was placed at a distance L1 = 1 m from
the crystal. The signals from the cells were collected by the computer with
a time interval t. After the first measurement, the detector was moved two
cells along the x-axis and the signal was collected with the same interval. The
results of both measurements were subtracted from one another in order to
decrease the influence of the noise signals. The experimental results for the
central cells are shown in Fig. 1.9 and the corresponding theoretical simula-
tions in Fig. 1.8 (the detailed formulas are given in Sect. 2.1). The asymmetry
of the PXR angular distribution in both figures confirms the validity of PXR
theory. Furthermore, the rotation of the crystal by an angle ∆θ in the experi-
ment led to the shift of the intensity maximum for the distance 2L1∆θ, which
is in agreement with (1.18).
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Fig. 1.8. Theoretical angular distribution of the photons for a single PXR reflection

X

Y

16

Fig. 1.9. Measured (upper) and calculated (lower) values for the angular distribu-
tion of the photons for a single PXR reflection

The average number of photons detected from one electron was also esti-
mated from measurements. Figure 1.9 shows the theoretical (the upper num-
bers) and experimental (lower numbers) values of photon number from an elec-
tron counted on the different cells of the detector. These values were divided
by the value Nm, which defines the number of photons counted in the two cen-
tral cells. The experimental value of Nm is (1.0±0.2)×10−6 quanta/electron;
the theoretical value was estimated as 7.8 × 10−7 quanta/electron. Thus, the
first experiments were qualitatively and quantitatively well fitted by the PXR
theory.
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2

Radiation from a Charged Particle
in Periodic Media: Classical Theory

2.1 Representation of Radiation Field via Solution
of the Homogeneous Maxwell’s Equations

The method of pseudophotons, considered in the previous chapter, is conve-
nient for qualitative analysis of parametric X-ray radiation (PXR). PXR in
real crystals, however, has to be quantitatively described more precisely than
the pseudophoton concept. In this chapter, the details and the peculiarities of
the methods used for simulation of PXR spectra are discussed.

In classic electrodynamics, an electromagnetic radiation is described on the
basis of the constrained system of Maxwell’s equations for the electromagnetic
field and the motion equations for the particle with charge q [27, 32]:

div D(r, t) = 4πρ(r, t), div B(r, t) = 0 ,

rot B(r, t) =
1
c

∂D(r, t)
∂t

+
4π

c
j(r, t), rot E(r, t) = −1

c

∂H(r, t)
∂t

,

j(r, t) = v0(t)ρ(r, t), ρ(r, t) = qδ[r − r0(t)] ; (2.1)

d
dt

mv0√
1 − v2

0/c2
= q

{
E + E0 +

1
c

[v0(H + H0)]
}

; v0(t) =
d
dt

r0(t) . (2.2)

Here E(r, t) and H(r, t) are the strengths of the electric and magnetic fields
of the particle, respectively, and E0(r, t) and H0(r, t) are the strengths of the
electric and magnetic external fields, respectively, which are assumed to be
constant during the transmission of the charged particle through the crystal.

Equations (2.1) and (2.2) are complemented by constitutive equations,
which define induction vectors of the fields in the crystal (i, j = 1, 2, 3):

Di(r, t) =
∫ t

−∞
dt′

∫
dr′

∑

j

εij(t − t′, r, r′)Ej(r′, t′) ,

Bi(r, t) =
∫ t

−∞
dt′

∫
dr′

∑

j

µij(t − t′, r, r′)Hj(r′, t′) , (2.3)
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where εij and µij are the tensors of dielectric and magnetic permittivity for the
crystal, respectively. Below only the non-magnetic crystals are considered, i.e.
B = H, H0 = 0. In general, some components of the tensors εij and µij are
interdependent and, therefore, the microscopic interaction of radiation with
the medium is expressed via the tensor of dielectric permittivity [32].

The Lorentz force in the motion equation (2.2) is defined by both external
and radiation fields. However, restricting ourselves to spontaneous processes
without collective (laser) effects, the particle energy loss for radiation yield
is assumed to be negligible, and condition ( ) allows us to neglect a recoil
effect. Thus, the function E(r, t) in (2.2) can be dropped, and then the peri-
odic structure of the crystal takes part in the formation of the radiation field
for two reasons: (i) the trajectory of the charged particle is changed because
of direct interaction between the particle and electric field E0(r, t) of atoms,
and (ii) polarization of the crystal, described by the dielectric permittivity
εij(t − t′, r, r′). The former reason leads to well-known orientational effects,
for instance, coherent bremsstrahlung, particle channelling and channelling
radiation (see [2, 5, 6, 8, 15, 23, 25, 33]).

In the majority of the above mentioned works, the polarization of the
medium has been partially taken into account; yet a crystal is considered to
be a homogeneous medium. In microscopical theory [22, 27] of interaction
between X-rays and matter, however, the periodic crystal structure makes an
essential change of the spatial dispersion of dielectric permittivity, in contrast
to the homogeneous medium.

In particular, the tensor of dielectric permittivity in the constitutive equa-
tion (2.3) becomes a periodic function of coordinates due to its dependence
on the periodic electron density of the crystal. Thus, εij depends not only on
the difference r − r′, as for a homogeneous medium, but on each coordinate
separately.

Taking into consideration these factors, the constitutive equation (2.3) for
the Fourier components of the electromagnetic field in a crystal [22] is written
as

Di(k, ω) =
∑

g

∑

j

εij(k,k + g, ω)Ej(k + g, ω) ,

E(r, t) =
∫

dω

∫
dkE(k, ω)ei(kr−ωt) ,

D(r, t) =
∫

dω

∫
dkD(k, ω)ei(kr−ωt) ,

εij(t, r, r′) =
∑

g

∫
dω

∫
dk εij(k,k + g, ω)eik(r−r′)−iωte−igr′

. (2.4)

In (2.4), the summation is performed over the whole set of reciprocal lattice
vectors g, and the Fourier components of dielectric permittivity are not phe-
nomenological values but are calculated from the averaging of the induction
field over the equilibrium quantum state of the crystal electron subsystem

1 23.
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[22, 27]. Finally, the tensor εij(k,k + g, ω) is expressed through the amplitude
of elastic coherent scattering of photons on atoms and nuclei of the crystal (see
Appendix ). Comparing the constitutive equation (2.4) with the equation
for the spatial dispersion in a homogeneous medium,

Di(k, ω) =
∑

j

εij(k, ω)Ej(k, ω) ,

εij(t, r − r′) =
∫

dω

∫
dk εij(k, ω)eik(r−r′)−iωt , (2.5)

the electromagnetic wave with the wave vector k evidently induces in the
crystal a set of diffracted waves with the wave vectors k+g, contrary to a ho-
mogeneous medium. Using a language of quantum optics, the photon with the
wave vector k is parametrically transformed into wave packet with the wave
vectors k + g (see Sect. ). This transformation occurs in the framework
of linear electrodynamics due to the momentum transfer to crystallographic
lattice, in contrast to the optical wavelength range, where parametric light
transformation occurs due to non-linear polarizability of the medium for in-
teracting photons [34].

The constitutive equations (2.4) are essential for the X-ray wavelength
range and make a basis for the X-ray dynamical diffraction theory, which
has been intensively developed since 1930s and is widely used now in applied
science [4]. In most of the studies dedicated to electromagnetic radiation from
charged particles in crystals [2, 5, 6, 15, 23, 25], the spatial dispersion is taken
into account in the form of (2.5) and, consequently, the results obtained are
inadequate for X-ray wavelengths. The expression for the spatial dispersion
(2.4) was used for the first time for calculation of electromagnetic radiation
in our works [7, 10], and then comprehensively described in [8, 17].

Another technical aspect is important for calculation of PXR spectra. In
real experiments, the crystal where the radiation is formed has a finite thick-
ness. Therefore, boundary conditions at the crystal–vacuum interface have
to be taken into account to solve (2.1)–(2.3). In works devoted to radiation
from charged particles, dealing both with homogeneous constitutive equations
[2, 5, 6, 15, 23, 25] and (2.3), which include diffraction [19], the following ap-
proach is used for boundary conditions. Maxwell’s equations (2.1) for electro-
magnetic fields at the constant current are reduced [27] to a linear differential
equation of second order for E(r, t). The general solution for this equation
is constructed as a linear combination of solutions E(1,2) for homogeneous
equations and a particular solution E(h) for the inhomogeneous equation:

Ei(r, t) = C
(1)
i E

(1)
i (r, t) + C

(2)
i E

(2)
i (r, t) + E

(h)
i (r, t) . (2.6)

The electromagnetic field Ei(r, t) is used to satisfy the regular boundary con-
ditions of electrodynamics, which result in the system of linear inhomogeneous

1.3

A.1
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equations for coefficients C
(1,2)
i . The solutions for these equations, being ex-

pressed through E
(h)
i (r, t), define the intensity of radiation at a large distance

from the crystal [19]. Thus, the construction of a particular solution for in-
homogeneous equations (2.1) is a principal yet difficult step for taking into
account the constitutive equations (2.3) in crystals at arbitrary experimental
geometry [13].

The work [11] (see also [8, 17]) proposes an essentially simpler method for
calculation of the radiation intensity from a charged particle moving along an
arbitrary trajectory r0(t) in a medium with any dispersion law. This method
allows us to calculate radiation spectra in a crystal of finite length, using only
the solution for homogeneous Maxwell’s equations, which are known from the
dynamical diffraction theory for any experimental geometry [4]. Excluding the
magnetic field from (2.1),

rot rot E(r, t) +
1
c2

∂2D(r, t)
∂t2

= −4π

c2

∂

∂t
j(r, t) , (2.7)

and changing to the Fourier space of a temporal variable, we arrive at

rot rot E(r, ω) − ω2

c2
D(r, ω) = iω

4π

c2
j(r, ω) ,

j(r, ω) =
1
2π

∫
dt qv0(t)δ[r − r0(t)]eiωt . (2.8)

The Green function can be defined [28] on the left-hand side of (2.8):

εαβγεγµν
∂2

∂xβ∂xµ
Gνλ(r, r′, ω) − ω2

c2

∫
dr1εαβ(r, r1, ω)Gβλ(r1, r

′, ω)

= δανδ(r − r′) , (2.9)

where εαβγ is a Levi-Civita tensor [28]. The indices in (2.9) take the values
α, β, γ, µ, ν = 1, 2, 3 and the summation is performed over internal indices.
Considering the spontaneous radiation only, which vanishes if the current is
absent, the electric field E(r, ω) is written as

Eα(r, ω) = iω
4π

c2

∫
dr′ Gαβ(r, r′, ω)jβ(r′, ω) . (2.10)

The radiation field is then delivered by the solution E(r, ω) at a large distance
from the charge, i.e. the Green function in (2.10) has to be taken in the limit
r � r′. The derivation of this asymptotic for an arbitrary tensor of dielectric
permittivity is given in [8, 17] and described in detail in Appendix A.2. The
resulting approximation is

Gαβ(r, r′, ω) ≈ eikr

4πr

∑

s=1,2

e(s)
α E

(−)∗
kβs (r′, ω), k =

ω

c

r

r
, (2.11)
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where e(s) are the polarization vectors, and E
(−)∗
kβs (r′, ω) are solutions of the

homogeneous Maxwell’s equation

(rot rot E
(−)
ks (r, ω))α − ω2

c2

∫
dr1 ε∗αβ(r, r1, ω)E(−)

kβs(r1, ω) = 0 , (2.12)

which satisfies the following asymptotic boundary condition:

E
(−)
ks (r, ω) ≈ e(s)eikr + f s

e−ikr

r
, r → ∞ , (2.13)

with amplitudes f s independent of r.
Thus, the solution containing the asymptotically convergent spherical wave

is used for describing the radiation produced inside the crystal. This is con-
trary to the scattering (diffraction) of the external electromagnetic wave from
the same medium, when the electromagnetic field E

(+)
ks (r, ω) includes a di-

vergent spherical wave at an infinite distance. Both these solutions are simply
connected with each other by the equation (Appendix A.2)

(E(−)
ks (r, ω))∗ = E

(+)
−ks , (2.14)

which corresponds to the well-known optics reciprocity theorem [16].
To calculate the spectral density of the radiation energy Wnω normalized

to the spatial angle around the observation vector n = k/k, asymptotic (2.11)
for the Green function is substituted into (2.10). Using the Umov–Poynting
vector for derivation of the energy density [20],

Wnω =
cr2

4π2
|E(r, ω)|2, (2.15)

and inserting (2.10) with asymptotic (2.11) and (2.8) into (2.15), two equiva-
lent expressions for the energy density [8, 17] are found:

W (s)
nω =

q2ω2

4π2c3

∣∣∣
∣

∫ ∞

−∞
dt eiωtv0(t)E

(−)∗
ks (r0(t), ω)

∣∣∣
∣

2

=
q2ω2

4π2c3

∣∣∣∣

∫ ∞

−∞
dt eiωtv0(t)E

(+)
−ks(r0(t), ω)

∣∣∣∣

2

. (2.16)

This formula can be used for calculation of the intensity of spontaneous radia-
tion from a charged particle moving in the media with an arbitrary dispersion.
Equation (2.16) is the general form of the classic electrodynamics formula, de-
rived from the spectral expansion of a retarded potential [26]:

W (s)
nω =

q2ω2

4π2c3

∣∣∣
∣

∫ ∞

−∞
dt (v0(t)es)eiωt−ikr0(t)

∣∣∣
∣

2

. (2.17)

Instead of using the intensity distribution (2.16) normalized to one particle,
the spectral–angular density of the photons emitted by the beam of charged
particles of current J in unit time period is often used:
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Fig. 2.1. Wave fields for the calculation of the transition radiation intensity

∂2N

∂n∂ω
=

W
(s)
nω

�ω

J

q
. (2.18)

To illustrate the above-described method, the intensity of transition radiation
[21] from a constantly moving charged particle crossing the boundary between
two different media is calculated below.

Let us consider a semi-infinite homogeneous medium with a surface at
z = 0, where the z-axis is parallel to the inward normal N to the surface.
The medium possesses a dielectric permittivity ε and the velocity of a charged
particle is parallel to the surface normal v‖N (Fig. 2.1). If a detector is placed
in vacuum at an angle θ to the velocity of the particle, the wave vector k has
components kx = −k sin θ, ky = 0, kz = −k cos θ, k = ω/c, in the chosen
coordinate system in Fig. 2.1. According to (2.16), the radiation intensity can
be calculated using the solution of homogeneous Maxwell’s equations, which
describe the reflection and refraction of a plane wave with unit amplitude,
wave vector k0 = −k and polarization es at the boundary. This solution
follows from Fresnel formulas [27]. Because integral (2.16) contains the term
(ves), the radiation is polarized within the plane N ,k0 and the intensity is
proportional to Ez, which is [27]

Ez(x, z) = − sin θeik sin θxΨ(z) ,

Ψ(z) = Ψ1(z) = eik cos θz + R(θ)e−ik cos θz, z < 0 ,

Ψ(z) = Ψ2(z) = T (θ)eik1zz, k1z = k
√

ε − sin2 θ, z > 0 . (2.19)

The coefficients of reflection R and transmission T are

R(θ) =
ε cos θ −

√
ε − sin2 θ

ε cos θ +
√

ε − sin2 θ
,

T (θ) =
2 cos θ

ε cos θ +
√

ε − sin2 θ
. (2.20)
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Substituting (2.19) into (2.16) results in the integral (β = v/c)

I =
∫ 0

−∞
dt vΨ1(vt)eiωt +

∫ ∞

0

dt vΨ2(vt)eiωt

=
iv sin θ

ω

[
1

1 + β cos θ
+

R

1 − β cos θ
− T

1 + β
√

ε − sin2 θ

]

. (2.21)

After some algebraical transformations of (2.20) and (2.21), (2.16) for the
intensity of transition radiation can be rewritten in the well-known form [20]:

Wnω =
q2v2 sin2 θ cos2 θ

π2c3(1 − β2 cos2 θ)2
|F (ω, θ)|2 ,

F (ω, θ) =
(ε − 1)(1 − β2 + β

√
ε − sin2 θ)

(ε cos θ +
√

ε − sin2 θ)(1 + β
√

ε − sin2 θ)
. (2.22)

2.2 PXR from Relativistic Electrons in Thin Crystals

The specific features of PXR become apparent in the case of transmission of
a charged particle through a thin crystal (monocrystalline film) of thickness
L, which is less than the extinction length Lext in (1.24). In this case [27], the
solution E

(+)
ks (r, ω) for homogeneous Maxwell’s equations, which describes the

diffraction of X-rays, can be found using a perturbation theory developed on
the crystal polarizability χij = εij − 1. According to (2.16), the PXR spectrum
can be calculated with equivalent accuracy by simple analytical formulas.

The coherent interaction of X-rays with the crystal, which defines the X-
ray polarizability χij, includes Compton scattering of photons on electrons and
resonant scattering on atomic and nuclear transitions. Both these modes are
utilized in different applications and discussed later.

The X-ray polarizibility of the crystal due to scattering of radiation on
electrons of atoms is calculated, for example, in [22, 27]:

χij = −4πe2

mω2
δijn(r) , (2.23)

where e and m are the charge and mass of the electron, respectively, and n(r)
is the electron density, which is calculated from the averaging of the density
operator over the quantum state of the crystal. This electron density does
not follow from averaging over physically small volume, as in macroscopical
theory. It is a periodic function of coordinates and can be expanded in Fourier
series on reciprocal lattice vectors of a crystal:

n(r) =
∑

g

ngeigr , (2.24)
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where the expansion coefficients of the density ng depend on the volume and
scattering properties of the crystallographic unit cell. Neglecting the absorp-
tion in a thin crystal, these coefficients are related to the Fourier components
of X-ray polarizabilities χg as (Appendix A.1)

χg = −4πe2

mω2
ng .

Within the limits of the Born approximation for χg, the solution for (2.12)
can be found as [27]

E
(+)
−ks(r, ω) = ese−ikr + E

(sc)
−ks(r, ω) ,

E
(sc)
−ks =

e2

mω2
rot rot es

∫

V

dr′ e
ik|r−r′|

|r − r′| n(r′)e−ikr′
. (2.25)

Here es is the polarization and the vector k = kn ≡ ω
c n, n = r

r ,
points to the detector position. The integration is performed over the crystal
volume V .

The motion law r(t) = vt, corresponding to the constantly moving charged
particle, has to be used for calculation of the PXR intensity from (2.17).
The contribution of unperturbative part of the wave field (2.25), which is
proportional to ∫ −∞

−∞
dt ei(ω−kv)t ,

is equal to zero because a free charge does not radiate. The scattered field
E

(sc)
−ks can be written using the integral representation of the Green function

and expression (2.24) for the electron density:

E
(sc)
−ks = −

∑

g

χg

∫

V

dr′
∫

dp

(2π)3
[p[pes]]
p2 − ω2

eip(r−r′)ei(g−k)r′
. (2.26)

Substituting (2.26) into (2.17), the PXR spectral–angular distribution is

W (s)
nω =

q2ω2

4π2c3

∣∣∣
∣
∑

g

χg

∫

V

dr′
∫

dp

(2π)3
(v[p[pes]])

p2 − ω2

∫

V

dr′ei(p+g−k)r′
∫ −∞

−∞
dt ei(ω−pv)t

∣∣∣
∣

2

. (2.27)

If the z-axis is chosen along the velocity v and the cross-section of the crystal
S is large enough, the integration over t and r′

⊥ is reduced to δ-functions,
which cancel the integration over p at the point

p = pg; pgz =
ω

v
, pg⊥ = (k − g)⊥ . (2.28)

The PXR intensity then is
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W (s)
nω =

q2ω2

4π2c3

∣∣∣
∣∣

∑

g

χg
(v[pg[pges]])

(k − g)2⊥ + ω2

v2 (1 − v2

c2 )

∫ L

0

dz

v
ei( ω

v +gz−kz)z

∣∣∣
∣∣

2

. (2.29)

This expression demonstrates that in contrast to the Vavilov–Cherenkov radi-
ation, the PXR by its nature is not a threshold phenomenon, because W

(s)
nω is

non-zero at any energy E of the charged particle. The PXR intensity increases
with the particle energy in a relativistic case when the following condition is
fulfilled: (

1 − v2

c2

)
=
(

mc2

E

)2

= γ−2 � 1 ,

and the radiation is concentrated in the vicinity of directions:

|(k − g)⊥| ≤
ω

vγ
. (2.30)

The integral in (2.29) has resonant behaviour in this case: For arbitrary wave
vectors of an emitted photon, it is of order k−1 ∼ λ and reaches its maximum
close to L � λ under the condition

ν =
1
2

∣
∣∣
ω

v
+ gz − kz

∣
∣∣ ≤ 1

L
, L < Lext . (2.31)

For relativistic particles, the resonances for different vectors g in (2.29) do
not interfere; therefore the PXR intensity equals

W (s)
nω =

∑

g

W (s)
g ;

W (s)
g =

q2ω2

4π2c3
|χg|2

(v[pg[pges]])2
[
(k − g)2⊥ + ω2

v2γ2

]2
sin2 νL

v2ν2
. (2.32)

Thus, the PXR spectral–angular distribution from a relativistic particle is
represented by a diffractional set of peaks (reflections), corresponding to dif-
ferent reciprocal lattice vectors of the crystal. The radiation emitted in each
energy peak is highly monochromatic. The wave vectors of the photons within
the reflection are allocated near the vector defined by conditions (2.30), (2.31)
and k = ω/c:

kB =
ωBv

v2
+ g, ωB = − g2

2gz
=

g

2 sin θB
, (2.33)

where the parameter θB is the angle between v and the crystallographic planes,
corresponding to the reciprocal lattice vector g (Fig. 2.3). PXR photons in the
reflections from the plane sets with Miller indices multiple to the minimal set
{hkl} have multiple frequencies and are concentrated near the same spatial
direction. For the plane sets with reciprocal vectors
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gm =
2π

d{hkl}
mZ{hkl}, m = 1, 2, . . . , d{hkl} =

a√
h2 + k2 + l2

,

where a is a lattice constant and Z{hkl} is a normal to the planes. The angle
θB does not depend on m because sin θB = (Z{hkl}v)/v, and frequencies ω

(m)
B

and vectors k
(m)
B follow from

ω
(m)
B = mω{hkl} = m

πc

d{hkl} sin θB
,

k
(m)
B = mk{hkl}, k{hkl} =

ω{hkl}v

v2
+

2π

d{hkl}
Z{hkl} . (2.34)

Equation (2.32) can be simplified because a single crystal of thickness L (1.24)
contains a macroscopical number of crystallographic planes and

1 � ωL � |χ0|−1 ∼ 105 , (2.35)

which leads to

sin2 νL

ν2
≈ πLδ(ν) = 2πLvδ[ω + v(gz − kz)] . (2.36)

The most specific feature of PXR is that peak distribution is independent
of the energy of a particle. This distribution depends only on the orientation
of the crystal and the particle velocity v. The frequency of monochromatic
radiation in the PXR reflection, according to (2.33), can be smoothly tuned by
the simple rotation of the crystal. Figure 2.2 demonstrates the distribution of
PXR reflections from an electron in a silicon crystal for different orientations,
and the frequencies of reflections for silicon, germanium and diamond are
shown in Table 2.1. The value θph is defined as [18]

a b c

Fig. 2.2. The distribution of the most intense reflections of PXR in a silicon crystal;
R ∼ θB: (a) the particle velocity is directed along the axis 〈100〉, ϕ1 = 18.43◦, ϕ2 =
45.53◦; (b) the same for the axis 〈110〉, ϕ1 = 19.5◦, ϕ2 = 64.3◦; (c) the same for the
axis 〈111〉, ϕ1 = 60◦, ϕ2 = 30◦; the reflection indices are shown on the circles



2.2 PXR from Relativistic Electrons in Thin Crystals 29

Table 2.1. Quantitative characteristics of the PXR intensity and angular distri-
bution from an electron beam in silicon, germanium and diamond crystals. The
electron velocity vector is parallel to the 〈100〉 axis

Crystal (hkl) �ωB Ntot
(hkl) × 106 θph × 104 θph × 105 ND ND

θB (keV) (quanta/electron) (E=50MeV) (E=900MeV)

Si 12.60 0.61 5.81 0.77 1.9(−8) 2.7(−6)

Ge (1 1 3) 12.19 0.17 2.02 1.41 3.1(−8) 5.3(−7)

C 17.55◦ 19.14 2.31 77.0 2.74 5.1(−10) 1.3(−5)

Si 3.44 0.36 1.95 8.32 4.7(−8) 1.6(−6)

Ge (1 1 1) 3.30 0.93 3.12 19.1 5.6(−8) 1.3(−6)

C 35.02◦ 5.22 3.12 3.77 5.78 1.3(−7) 9.1(−7)

Si 4.58 0.29 1.72 4.70 4.1(-8) 1.1(-7)

Ge (2 2 0) 4.39 0.75 2.55 11.0 5.8(-8) 2.0(-7)

C 45◦ 6.96 1.62 6.92 3.27 2.2(-8) 1.7(-6)

θ2
ph = γ−2 + θ2

s(L), (2.37)

for the case when the kinematic theory of PXR can be applied.
Besides the above-considered integral angular distribution, each PXR re-

flection has a non-trivial fine structure, which follows from (2.32). To analyse
this term, it is convenient to introduce a vector

u = k − kB , (2.38)

which is the deviation of the wave vector of the detected photons from the
reflected beam centre (2.33). The axes (X,Z) are in the plane of diffraction,
which is defined by the vectors v, g (Fig. 2.3). The photons are detected at
the angles

θx,y = c
ux,y

ωB
� 1 (2.39)

in the plane perpendicular to kB . The projection uz can be found with the
accuracy ∼ γ−1 from

2

ω
k =

2θ θ
z

x

k B
 =k 0

+ g

0
B

B B

g
k

u

Fig. 2.3. The coordinate system for angular and spectral distributions within PXR
reflections
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(kB + u)2 = k2 =
ω2

c2
, (2.40)

2(kBu) = 2
ωB

v
(ux sin 2θB + uz cos 2θB) ≈ ω2

c2
− ω2

B

v2
,

uz ≈ ω − ωB

c cos 2θB
− θx

ωB

c
tan 2θB . (2.41)

Let us assume that the polarization vector es, accepted by a detector, makes
an angle ϕ with the diffraction planes. We consider below the radiation from
electrons, i.e. q = e in (2.32), and use (2.18) to analyse the spectral–angular
distribution of photons, emitted into the set of reflections {hkl}. The cross-
section of PXR then is (with the accuracy o(γ−2))

∂3N
(s)
{hkl}

∂θx∂θy∂ω
=

α

2π

J

e

∞∑

m=1

(θx cos 2θB cos ϕ + θy sin ϕ)2

(θ2
x + θ2

y + γ−2)2
× |χgm

(ω(m)
B )|2 ω

(m)
B L

c

δ

[
2 sin2 θB

cos 2θB
(ω − ω

(m)
B ) − θxω

(m)
B tan 2θB

]
, (2.42)

where α = e2/�c ≈ 1/137 is a fine structure constant. If the photons of both
polarizations are detected, (2.42) contains the sum of orthogonal polarizations:

∂3N{hkl}
∂θx∂θy∂ω

=
α

2π

J

e

∞∑

m=1

θ2
x cos2 2θB + θ2

y

(θ2
x + θ2

y + γ−2)2
× |χgm

(ω(m)
B )|2 ω

(m)
B L

c

δ

[
2 sin2 θB

cos 2θB
(ω − ω

(m)
B ) − θxω

(m)
B tan 2θB

]
. (2.43)

Similar to the X-ray Bragg diffraction, where the width of the diffraction peak
is defined by the angular and frequency dispersion of the incident beam [27],
the PXR fine structure is also determined by the dispersion of the emitted
photons, both on angles and frequencies. Therefore, in the experiments on
PXR two types of detectors are used. The first type is, for example, an X-ray
film, where the photons of any frequency are registered and the density of
angular distribution is investigated. According to (2.43), this distribution is
localized on the scale δθ ∼ γ−1; hence the following re-scaling of an angular
variable is reasonable:

x = γθx, y = γθy ,

which delivers the results in a form which is independent of the particle energy
[18] and the reflection indices:

∂2N{hkl}
∂x∂y

= N
(tot)
{hkl}

x2 cos2 2θB + y2

(x2 + y2 + 1)2
,

N
(tot)
{hkl} =

α cos 2θB

4π sin2 θB

J

e

∞∑

m=1

|χgm
(ω(m)

B )|2 ω
(m)
B L

c
. (2.44)
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a b

Fig. 2.4. The universal fine angular structure of PXR reflections, corresponding to
θB = 9◦ (a) and θB = 30◦ (b)

Figure 2.4a and b show two-dimensional angular distributions of the PXR
intensity for θB = 9◦ and θB = 30◦, respectively. The specific features of these
distributions are (i) vanishing of intensity in the direction of the vector k{hkl}
and (ii) twofold shape of pattern. Both features have been confirmed in the
first PXR experiments [9].

The frequency spectrum of PXR can be studied by the second type of
detectors, energy dispersive ones, which register the photons of the PXR re-
flection in the frequency scale. As follows from (2.43), this spectrum is a series
of peaks near the frequencies ω

(m)
B = mω{hkl}, which are associated with per-

mitted reflections χgm
(ω(m)

B ) �= 0. The intensity of peaks inside the series
decreases accordingly:

Im ∼ ω|χ(ω)|2 ∼ m−3 .

The spectral distribution near each peak can be derived from (2.43) by inte-
gration over the angles, and written in the universal form using a variable:
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u = γ tan θB
(ω − ω

(m)
B )

ω
(m)
B

,

Φ(u) =
u2(1 + cos2 2θB) + 1

(u2 + 1)3/2
,

∂N
(m)
{hkl}
∂u

=
α cos 2θB

8 sin2 θB

J

e
|χgm

(ω(m)
B )|2 ω

(m)
B L

c
Φ(u) , (2.45)

The simulated PXR spectral distributions are shown in Fig. 2.5, and ex-
perimental measurements can be performed using a detector with the high en-
ergy resolution ∆ω/ω ∼ γ−1. The number of photons emitted in unit time and
within the angular and spectral intervals of the PXR reflection is an impor-
tant characteristics of the parametric X-ray radiation. This value is evaluated
by integration either over x, y in (2.44), or over u in (2.45). Both integrals
diverge logarithmically on the upper limit because the validity of (2.42) is
limited in the region θx ∼ θy ∼ γ−1 � 1. To overcome this obstacle, we limit
the integration area by |u| < ξD � 1, which corresponds to a real angular
resolution of the detector, θD [18]:

ξD ∼ γθD ,

and the full intensity of PXR photons in each spectral peak of reflection weakly
depends on this instrumental parameter:

N
(m)
{hkl} ≈ α cos 2θB

4 sin2 θB

J

e
|χgm

(ω(m)
B )|2 ω

(m)
B L

c

×{(1 + cos2 2θB) ln(ξD +
√

ξ2
D + 1) − cos2 2θB} . (2.46)

The quasi-monochromatic beam contributing to this peak has the shape

Fig. 2.5. The universal spectral fine structure of the PXR reflection: (a) θB = 5◦,
(b) θB = 15◦, (c) θB = 30◦, (d) θB = 45◦
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ω
(m)
{hkl} =

πmc

d{hkl} sin θB
, ∆θx ≈ ∆θy ≈ ∆ω

ω
≈ γ−1 ,

ω
(m)
B L

c
≤ |χ0|−1 . (2.47)

The quantitative estimate of the PXR intensity in a thin crystal is possible
using a parameter of brightness I, which is now widely accepted for charac-
terization of synchrotron radiation (SR) [24]:

I =
N

∆θx∆θy∆ω/ω
= I0

photons
s mrad2(0.1% bandwidth)

.

For the crystal of maximal thickness (2.47), the electron beam of energy E ≥
0.529 GeV, and angular and spectral divergence ∆θ ≈ 1 mrad, ∆ω/ω ≈ |χ0|,
respectively, the brightness in PXR reflection is

I
(m)
{hkl} ≈ α

J

e

|χgm
(ω(m)

B )|2
|χ0|

. (2.48)

To produce a parametric X-ray radiation with the energy �ω0 = 3 keV from
the {111} Ge reflection (the lattice constant a = 5.32 Å), the angle between
the photon beam and the crystallographic plane must be

sin θB =
πc

√
3

ω0a
≈ 0.68 .

The crystal polarizabilities follow from known formulas (see Appendix A.1)

|χ0| ≈ 2.1 × 10−4, |χ{111}| ≈ 1.1 × 10−4 ,

which when substituted into (2.48) results in

IPXR ≈ 1.3 × 1013J [A]
photons

s mrad2(0.1% bandwidth)
.

Comparing this estimate with synchrotron radiation, the same energy of pho-
tons can be reached in synchrotron by electrons of energy E ≥ 2.5 GeV
[24]:

ISR ≈ 6.1 × 1013J [A]
photons

s mrad2(0.1% bandwidth)
.

2.3 Mosaicity of Crystals and Multiple Scattering
of an Electron Beam

The kinematic theory of X-ray diffraction is valid not only for thin single crys-
tals with the thickness (1.24), but also for thick mosaic polycrystalline samples
[31]. These kinds of samples consist of a large number of thin monocrystalline
blocks with the thickness Li < Lext, which are twisted at a random angle
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relative to each other. The diffracted wave fields from different blocks are in-
coherent; thus the full diffracted intensity is a sum of diffraction intensities
from the blocks. The X-ray intensity scattered from a single block can be
calculated on the basis of the kinematic diffraction theory. The summation
of intensities from different blocks is replaced by averaging over random dis-
tribution of the orientation of the normal vector Z to the diffracting plane
around the vector Z{hkl} corresponding to a perfect crystal:

Itot =
∑

i

LiW (Zi) = L

∫
dZ ϕ

(
Z − Z{hkl}

ν

)
W (Z) . (2.49)

Here W (Z) is an intensity of a reflected wave, normalized to the length L =
1, ϕ is a normalized distribution function depending on the dimensionless
mosaicity parameter ν. The mosaicity causes the broadening of the diffraction
peak, and the full intensity is determined by the sample thickness L =

∑
Li �

Lext [31].
The PXR reflections in the mosaic crystals are formed in the same way as in

a single crystal. According to (2.16), they are derived from similar Maxwell’s
equations as for X-ray diffraction. For PXR the divergence of the velocity
vector of the electron beam has to be taken into account, additionally. This
divergence increases along the trajectory of the beam within the crystal due
to multiple scattering on atoms. In the kinematic theory, the PXR output de-
pends on the angle between the crystallographic planes and electron velocity.
Therefore, the divergence of the electron beam and crystal mosaicity can be
treated in a similar way.

The general approach for calculation of the radiation intensity in the
crystal, taking into account the effects of multiple scattering and energy
loss, has been considered in detail in [8]. This approach is based on the
averaging of (2.16) over the trajectory and utilizes the probability density
w(r,v, t; r′,v′, t′) for a particle to have the coordinate r and velocity v in
time t, and r′, v′ in time t′ (see Appendix A.3). In the case of thin samples,
the correlations between the particle states in different time moments can be
neglected. If the sample is perfectly mosaic, the interference of radiation from
different blocks can be ignored, too. Then the calculation of radiation from
single crystalline blocks is reduced to the averaging of (2.43) over the electron
velocity vector n = v/v and normal vector Z to the scattering planes and
particle energy E:

∂3N{hkl}
∂θx0∂θy0∂ω

≡
〈

∂3N{hkl}
∂θx∂θy∂ω

〉
=
∫

dn dZ dE ϕ1

(
n − n0

∆θ

)

× ϕ2

(
Z − Z{hkl}

ν

)
ϕ3

(
E − E0

∆E

)
∂3N{hkl}
∂θx∂θy∂ω

(n,Z, E) . (2.50)

Here ϕi are the normalized functions of the probability distribution of the
above-mentioned variables, and the parameters ∆θ,∆E are root-mean-square
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dispersions of the velocity vector and energy, respectively. The value of ∆θ
depends both on the primary beam divergence ∆θ0 and on the angle of multi-
ple electron scattering in the crystal θs(L), which follows from (1.26). In real
experiments, this angle is essentially larger than the primary beam divergence;
thus

∆θL =
√

(∆θ0)2 + θ2
s (L) ≈ θs(L) .

The crystallographic structure of a sample is not taken into consideration in
multiple scattering calculations; therefore θs(L) does not depend on mosaicity
and is determined by the total sample thickness.

To analyse (2.50), new integration variables are introduced as follows:

ε = E − E0, s = (n − n0), z = (Z − Z{hkl});

s ⊥ n0, z ⊥ Z{hkl}, n0 =
v0

v0
, |ε| � E0, |s| � 1 ,

and the angular variables θx,y in (2.40) are represented in a covariant form:

θx =
(ug) − (un)(gn)

ωBg
; θy =

(u[gn])
ωBg

.

Then with the accuracy o(θ2
s , γ−2) ,

θx ≈ θx0 + cos θBqx, θy ≈ θy0 + cos θBqy, v ≈ v0 +
ε

E0
γ−2
0 , q = s + z ,

where θx,y0 are defined by the vectors n0, Z{hkl}. The latter expressions
prove that both multiple scattering and mosaicity make the same influence
on radiation spectrum, which depends on the detector position. This influence,
for example, is essentially suppressed for the photons emitted backwards the
particle movement (θB = π/2).

In the kinematic approach, the PXR intensity from a single crystalline
block is proportional to the crystallite thickness Li, as follows from (2.50).
Because the emission from separate crystalline blocks is incoherent, the spec-
tral density of photons in the PXR reflection depends on the total sample
thickness [17]:

∂3N{hkl}
∂θx0∂θy0∂ω

=
α

2π

J

e

∞∑

m=1

∫
ds dz dE ϕ1

(
s

∆θL

)
ϕ2

(z

ν

)
ϕ3

( ε

∆E

)

×
(θ2

x0 + q2
x cos2 θB) cos2 2θB + (θ2

y0 + q2
y cos2 θB)

(θ2
x0 + θ2

y0 + q2 cos2 θB + γ−2
0 )2

|χgm
(ω(m)

B )|2 ω
(m)
B L

c

×δ

[
2 sin2 θB

cos 2θB

(
ω − ω

(m)
B − ε

E0
γ−2

)
− (θx0 + qx cos θB)ω(m)

B tan 2θB

]
. (2.51)

This result can be considered as an incoherent model for the formation of
the PXR reflection in thick and mosaic crystals. We consider below the most



36 2 Classical Theory of Radiation

important limiting case of (2.51), simplifying the equation in front of it. The
electron beam in experiments is usually monochromatic enough and the energy
loss for radiation in thin samples is small; hence the factor ∆E/E0 � 1 in
(2.51) can be neglected. The inequality

∆θL > γ−1
0 ,

quantifying the influence of multiple scattering on PXR, does not depend on
the particle energy, as follows from (1.26):

Es

E

√
L

LR
<

mec
2

E
, L <

mec
2

Es
LR ≈ 6.25 × 10−4LR . (2.52)

For majority of real crystals, the radiation length LR ≤ 1 cm and inequality
(2.52) is equivalent to the condition L < Lext for the validity of kinematic
approximation. Therefore, for the perfect mosaic sample, the angular distri-
bution of the PXR intensity is mostly influenced by mosaicity and multiple
scattering. These factors are well described by Gaussian distribution functions,
which make it possible to integrate (2.51):

∂3N{hkl}
∂θx0∂θy0∂ω

=
α

2π

J

e

∞∑

m=1

∫ ∞

−∞
dqy |χgm

(ω(m)
B )|2 L

c cos θB tan 2θB

×
(θ2

x0 + q2
x cos2 θB) cos2 2θB + (θ2

y0 + q2
y cos2 θB)

(θ2
x0 + θ2

y0 + q2 cos2 θB)2
Φ
(

q

νeff

)
,

Φ
(

q

νeff

)
=

1
πν2

eff

exp

(

−
q2
x + q2

y

ν2
eff

)

, νeff =
√

ν2 + θ2
s ,

qx = − sin θB

ω
(m)
B cos2 θB

(
ω − ω

(m)
B

)
+

θx0

cos θB
. (2.53)

This expression is a basis for evaluating PXR features in mosaic samples. Inte-
grating (2.53) over the photon frequency, the formula for the diffraction peak,
analogous to the one used in powder diffractometry [31], can be obtained:

∂2N{hkl}
∂θx0∂θy0

=
α

2π

J

e

L cos 2θB

2 c sin2 θB

Ψ(θx0, θy0) , (2.54)

Ψ(θx0, θy0) =
∞∑

m=1

∫ ∞

−∞
dqxdqy Φ

(
q

νeff

)
|χgm

(ω(m)
B )|2

× ω
(m)
B

(θ2
x0 + q2

x cos2 θB) cos2 2θB + (θ2
y0 + q2

y cos2 θB)
(θ2

x0 + θ2
y0 + q2 cos2 θB)2

.
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Fig. 2.6. Effect of the crystal mosaicity on the PXR angular distribution: J(y) =
Ψ(yγ−1, 0), θB = 30◦, a = γ−1

√
ν2 + θ2

s

Fig. 2.7. Effect of the crystal mosaicity on the PXR intensity: I(a) is the total
intensity of the PXR reflection for different values of parameters a and B = γ−1θD

The integrals in (2.54) are easily calculated numerically. Figure 2.6 demon-
strates the influence of multiple scattering and sample mosaicity effect on the
angular distribution of the PXR reflection. As expected, both factors lead
to the broadening of the PXR peak. The total number of photons in the re-
flection, which is obtained by integrating (2.54) over observation angles, is
changed inessentially in comparison with the ideal single crystal sample of
the same thickness (Fig. 2.7).

2.4 Parametric γ-Radiation in Thin Mössbauer Crystals

Formula (2.32) for the PXR spectral–angular distribution is valid for arbi-
trary dependence of X-ray polarizability on the radiation frequency. Since the
frequency of PXR is tunable, the PXR peak can be positioned into the absorp-
tion region of the atoms of a crystallographic unit cell by rotating a sample.
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In this situation, the calculation of X-ray polarizability must be corrected for
anomalous dispersion [31], i.e. scattering of radiation on the internal atomic
shells. This resonant case is very illustrative for Mössbauer crystals, when
parametric nature of radiation is caused by coherent scattering of the elec-
tromagnetic field of the charged particle on the resonant transitions of nuclei.
The first investigation of this effect in the Vavilov–Cherenkov radiation from
electrons in a homogeneous Mössbauer medium has been done in [30], and
parametric γ-radiation (PGR) in Mössbauer crystals in [12].

In the frequency interval |ω − ωr| ∼ Γ, where ωr and Γ are the frequency
and the width of resonant transition, respectively, the contribution of the
Compton component into polarizability is negligible, in comparison to nuclear
(resonant) scattering. In (2.32), the summation over reciprocal lattice vectors
can be substituted by one term, for which the following condition is fulfilled:

ωr ≈ mω{hkl} = m
πc

d{hkl} sin θB
, gr =

2
c
ωr sin θBZ{hkl} . (2.55)

In the frequency interval close to (2.55), the polarizability of a Mössbauer
crystal depends mainly on the amplitude of coherent scattering of photons
on nuclei. This amplitude can be found using general methods, developed in
[1, 14], for the diffraction of resonant γ-radiation (see also Appendix A.1).
Applying this method (2.32) for PGR in a thin crystal is modified to [17]

W (s)
g =

q2

4π2ω2
r c3

∣∣∣
∣ngr

2K + 1
2K0 + 1

Q(k,kg)
(jkes)([pgv][pgjkg

])
2(ω − ωr + iΓ/2)

∣∣∣
∣

2

× 1
[(k − g)2⊥ + ω2

v2γ2 ]2
4 sin2(ω/v − kz + gz)L/2

v2(ω/v − kz + gz)2
. (2.56)

Here ngr is a Fourier component of the density distribution of resonant nuclei;
kg = k+g; K and K0 are the moments of principal and excited nucleus states,
respectively, and jk is a matrix element of the electromagnetic current, which
defines the resonant transition between principal |0〉 and excited |1〉 nucleus
states:

jk = 〈1| ˆe(v)ne−ikrn |0〉 ,

where |j0|2 = cΓ1/2 and Γ1 is an elastic width of transition.
The Debye–Waller factor Q(k,kg) determines the scattering probability

of γ-quantum on the nucleus without recoil, i.e. without excitation of oscilla-
tions. The value of the factor depends on the characteristic frequency ωph of
phonon spectrum [1] and on the mean square u2 of the amplitude of nucleus
oscillations:

Q(k,kg) ≈ e−1/2[W (k)+W (kg)], Γ < ωph ,

Q(k,kg) ≈ e−W (g), Γ > ωph, W (k) = k2u2 .
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Performing a summation in (2.56) over polarizations and introducing angular
variables (2.39), the following expression is obtained for the PGR intensity
from current J transmitting through the Mössbauer crystal:

∂3Nγ

∂θx∂θy∂ω
=

α

4π2

Jc2

e

∣∣∣
∣ngr

2K + 1
2K0 + 1

Q(k,kg)
∣∣∣
∣

2

×
[(tjk)(tjkg

) − t2(j⊥
k j⊥

kg
)](jkjkg

)

4ω5
r [(ω − ωr)2 + Γ2/4][θ2

x + θ2
y + γ−2]2

4 sin2(ω/v − kz + gz)L/2
(ω/v − kz + gz)2

. (2.57)

Here, the vector t with components (θx cos 2θB; θy) and projection of the trans-
mission current j⊥

k are in the plane, which is perpendicular to the vector
(ωrv/v + g), pointing to the excited PXR reflection. To derive an angular
distribution of resonant γ-quanta, (2.57) has to be integrated over the fre-
quencies. In the interval ∆ω ≥ Γ, the kinematic factor sin2(ω/v−kz +gz)L/2
is assumed to be constant because the condition ΓL < ΓLext � 1 is valid for
real crystals. Thus, the PGR intensity is

∂2Nγ

∂θx∂θy
=

α

2π

Jc2

e

∣
∣∣∣ngr

2K + 1
2K0 + 1

Q(k,kg)
∣
∣∣∣

2

×
[(tjk)(tjkg

) − t2(j⊥
k j⊥

kg
)](jkjkg

)

ω4
r Γ[θ2

x + θ2
y + γ−2]2

sin2 urL/2
u2

r

;

ur =
2 sin2 θB

c cos 2θB
(ωr − ωB) +

ωr

c
θx tan 2θB . (2.58)

The maximum of the PGR intensity is emitted in the direction

θy = 0, θx = tan θB(ωr − ωB) ,

and the peak has an angular width

∆θy � γ−1; ∆θx � 2c

ωrL tan 2θB
. (2.59)

The frequency dependence of PGR is determined by the width of resonant
transition. However, the peak amplitude depends on the proximity of the
Bragg frequency ωB to ωr:

∂Nγ

∂ω
=

α

2π

Jc3

e
L

∣∣∣∣ngr

2K + 1
2K0 + 1

Q(k,kg)
∣∣∣∣

2 cos 2θB

2 sin2 θB

×
[(tjk)(tjkg

) − t2(j⊥
k j⊥

kg
)](jkjkg

)

ω6
r [(ω − ωr)2 + Γ2/4]

[
cos2 2θB
4 sin4 θB

(1 − ωB/ωr)2 + γ−2
]1/2

. (2.60)

Thus, PGR allows us to produce a very convergent resonant radiation that
is necessary in many applications of Mössbauer radiation (for example, [3]).
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Table 2.2. Parameters for Mössbauer crystals (χ0 = −µ/2 Γ
(ω−ωr+iΓ/2)

)

Crystal �ωr Γ/ωr µ Labs (hkl) 2θB

(keV) (cm) (degree)

(0 0 2) 27.2
Fe57 14.4 3 × 10−13 2.6 × 10−4 5 × 10−5 (1 1 1) 23.5

(8 2 2) 178

(0 1 1) 6.8
W183 47.2 6.5 × 10−11 2.9 × 10−6 1.4 × 10−4 (0 0 2) 9.7

(21 11 0) 177

As follows from (2.59), the divergence of the PGR beam from the crystal of
thickness L = 10−4 cm and Mössbauer nuclei Fe57 (ωr = 14.4 keV) is given by

∆θx � 2 × 10−5 rad .

The maximal number of resonant γ-quanta in the PGR peak is estimated by
integrating (2.58) over the angles under the condition ωB = ωr:

Nγ � α

2ω6
r

Jc5

e
Lγ

∣
∣∣∣ngr

2K + 1
2K0 + 1

Q(k,kg)
∣
∣∣∣

2 cos2 2θB

sin 2θB sin2 θB

Γ2
1

Γ
. (2.61)

Table 2.2 contains all necessary parameters of Mössbauer iron Fe57 and
tungsten W183 crystals, which are required for simulation of PGR spectra.
For instance, the total number of photons (2.61) in the PGR peak from the
resonant transition Fe57(Γ/ωr � 3×10−13,Γ1/Γ � 0.2) [30] with L = 10−4 cm
and the angular width (2.59) corresponds to the source with the brightness

IPGR ≈ 3.4 × 1017J [A] E[GeV]
photons

s mrad2(0.1% bandwidth)
.

The PXR in the vicinity of the atomic absorption edge has been recently
considered in [29].
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3

Dynamical Theory
of Parametric X-ray Radiation

3.1 Quantum Electrodynamics for Radiation Processes
in Crystals

Previous chapters demonstrate a close analogue between the theory of para-
metric X-ray radiation (PXR) in thin crystals and the kinematic theory of
X-ray diffraction, which is used in X-ray analysis, viz. powder diffractometry,
phase identification, contamination analysis, X-ray topography, etc. (see, for
example, [12]). Complementary to kinematic domain, a high-resolution X-ray
diffraction (HRXRD), based on the dynamical diffraction theory, opens a new
horizon for investigation of fine structures of modern materials and nanoscale
objects [2, 16]. By analogy, PXR in thick crystals is expected to extend its
applicability to dynamical domain, too. The crystal is considered to be thick
if the thickness of the sample L � Lext, i.e. for the X-ray range L ≥ 1 µm.

The dynamical theory of PXR [4, 5, 9, 14, 15] is constructed on the basis
of special representation of quantum electrodynamics (QED), developed for
radiation processes in crystals. Generally, the quantum effects are not needed
to be taken into account in simulation of X-ray radiation from charged par-
ticles due to negligible recoil effects �ω � E. However, the use of QED for
the PXR theory has at least two advantages: (i) the quantum approach at
�ω � E is still simple as the classic one, but the results are valid for any
energy; (ii) a clear and straightforward classification of all radiation processes
in crystals and their relation to PXR can be built.

The quantum description of the electromagnetic processes in a crystal is
based on the following representation of the Hamiltonian of the system:

Ĥ = Ĥe,c + Ĥγ,c + Ĥe,γ , (3.1)

which differs from the vacuum QED [1] because the Hamilton operators for
the electron and photon subsystems include both the operators Ĥe, Ĥγ of
the free fields and the coherent potentials of their interaction with a crystal.
Therefore, the second quantization of these fields is based not on the vacuum

V. Baryshevsky et al: Parametric X-ray Radiation in Crystals
STMP 213, 43–56 (2005)
c© Springer-Verlag Berlin Heidelberg 2005
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plane waves but on the one-particle eigenfunctions of the operators Ĥe,c, Ĥγ,c:

Ψ̂(r) =
∑

ν

[bνΨ+
νE(r) + b+

ν Ψ−
νE ] ;

Â(r) =
∑

µ

[aµA+
µω(r) + a+

µ A−
µω] . (3.2)

Here bν (b+
ν ) and aµ (a+

µ ) are the annihilation (creation) operators of electrons
and photons, respectively. Both particles are in stationary states, which are de-
scribed by the wavefunction Ψ−

νE(Ψ+
νE) or by the vector potential A−

µω(A+
µω)

for electrons and photons, respectively. The quantization procedure for the
electromagnetic field in absorbing crystals is presented in detail in [4, 9]. For
PXR, the functions Ψ−

νE and A−
µω for the particles in final states have to be

found as solutions for boundary conditions with convergent spherical waves.
The functions Ψ+

νE and A+
µω for initial states correspond to the solutions

with divergent waves. This fact is the generalization of the well known reci-
procity theorem, which is applied for radiation and scattering processes of
electromagnetic waves [7].

Below we derive explicit functions required for simulation of PXR from an
electron in a crystal. The wavefunctions Ψ±

E (r) for the electron states with
the energy E and quantum number ν are defined as the solutions of the Dirac
equation:

{(αlp̂l)c + βmc2 + U(r) − E}Ψ±
νE(r) = 0 . (3.3)

Here αl, l = 1, 2, 3, β are the Dirac matrices; p̂l = −i�∂/∂xl is the momentum
operator. The potential U(r) describes the coherent interaction of the electron
with the periodical field of a crystal and is expressed through the amplitudes
of its elastic scattering by the atoms of the crystallographic unit cell [17]:

U(r) =
∑

g

UgeigrH(z)H(L − z) ;

Ug = −4πe2

g2Ω

∑

j

[Zj − Fj(g)] eigRj e−Wj(g) , (3.4)

where g is the reciprocal lattice vector; Rj is the coordinate of the atom with
index j in the cell; Zj , and Fj(g) are the nucleus charge and atomic scattering
factor, respectively; e−Wj(g) is the Debye–Waller factor and Ω is the volume
of the unit cell.

The full set of the states for QED in the media is constructed for the
crystal of finite thickness L, which is taken into account in (3.4) by means of
the Heaviside functions H(z) and H(L − z).

On the other hand, the stationary states of the electromagnetic field with
the frequency ω and quantum numbers µ in the crystal are defined by the
vector potentials A±

µω(r), which are the solutions of Maxwell’s equations with
the periodic dielectric permittivity of the crystal [2]:
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εij(r, ω) = δij + χij(r, ω)H(z)H(L − z) . (3.5)

The formulas for calculation of the X-ray polarizability χij(r, ω) are derived
in Appendix :

χij(r, ω) = δij

∑

g

χgeigr ;

χg = − 4πe2

mω2Ω

∑

j

[Fj(g) + f ′(ω) + if ′′(ω)]eigRje−Wj(g) , (3.6)

where f ′ and f ′′ are the anomalous dispersion corrections.
The Hamiltonian Ĥe,γ for the interaction between the electron and elec-

tromagnetic fields in a crystal has the same form as in the vacuum QED
[1]:

Ĥe,γ = e

∫
dr Ψ̂∗(r)(αlÂl(r))Ψ̂(r) , (3.7)

with the field operators (3.2). Similar to the vacuum QED, the amplitude
of any electromagnetic process in the crystal, homogenous media or in exter-
nal fields is calculated using a perturbation theory over the operator Ĥe,γ .
This results in a similar to vacuum diagrams for amplitudes, however, with
modified physical meaning of lines. Instead of thin lines corresponding to the
plane waves in the vacuum QED, the thick lines, defining the wavefunctions
of the particle or the photon and taking into account their interaction with
the media, have to be used. Each diagram uses the same vertex as in the
case of vacuum QED. If multiple photon processes are neglected, the Feyn-
man diagrams of the first order give the most essential contribution to the
radiation yield. In Fig. 3.1, diagram (a) corresponds to the process in the
vacuum QED, which is evidently forbidden due to conservation of momentum
and energy [1]. Other diagrams describe the following radiation processes: (b)
Cherenkov radiation in homogeneous media with the constant refraction index
n; (c) synchrotron radiation from the electron in the magnetic field H; (d)
PXR; (e) coherent bremsstrahlung and radiation from channelled particles;
and (f) a general case of the radiation in a crystal.

The reconstruction of an analytical expression for the scattering amplitude
from the diagram is also similar to the vacuum QED, for example, for diagram
(f) in Fig. 3.1 [5]:

Mfi = 2πδ(E − E1 − ω)Tfi; Tfi = e

∫
dr (Ψ−

ν1E1
)∗(αlA

−
lµω)∗(Ψ+

νE). (3.8)

3.2 Analytical Expressions for the Electron
Wavefunction and the Vector Potential
of the X-ray Field in a Crystal

In order to calculate the matrix elements (3.8), the expressions for electron and
photon eigenstates have to be derived, and several approximations are used

A.1
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H

Fig. 3.1. Feynman diagrams for the quantum electrodynamics in media

here for this derivation. Moreover, the solutions for homogeneous equations
in the quantum case are found similarly to the classic approach on the basis
of (2.16).

The electron wavefunction can be found as a solution of (3.3). A typical
value of the crystal potential |U(r)| ≤ 10 eV and the electron energy E ≥
100 keV, i.e.

|U(r)| � E , (3.9)

which permits us to exclude [1] most of the spinor operators in (3.3) with the
accuracy O(U2/E2):

[
−�

2c2∆ + m2c4 − E2 + 2EU(r) − ic�
(

αl
∂

∂xl

)
U(r)

]
ΨE(r) = 0. (3.10)

The stationary states in the infinite crystal are calculated using the pertur-
bation theory (PT), which is applicable due to (3.9):

ΨE(r) ≡ Ψ0 +
∑

g �=0

Ψg ≈ eipr



1 +
∑

g �=0

B̂geigr



χE ;

B̂g = −2E + (αlhl)
2(pg) + g2

Ug; pz =
√

E2 − m2 − p2
⊥ , (3.11)

where χE is the bispinor for the free electron [1]. The PT fails for only one
special geometry when the particle momentum is perpendicular to the recip-
rocal lattice vector, i.e. (pg) ≈ 0. This case corresponds to the channelling
of the electron, and therefore a nonperturbative method has to be used for
the solution of (3.10) in order to take into account a zone spectrum of the
transverse movement [4]. However, the case of channelling is not essential for
PXR, and we assume (pg) �= 0 and 2(pg) � g2 for relativistic electrons.

The continuity conditions for the wavefunction and its derivative, being
applied at the crystal boundaries z = 0, L, result in
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Ψ
(±)
E ≈ eipr

[
1 + ϕ

(±)
E (r)

]
χE ;

ϕ
(+)
E =

∑

g �=0

B̂geigr{Cg(z)H(z)H(L − z) + Cg(L)H(z − L)} ;

Cg(z) = 1 − ei(p̃g−pz−gz)z; p̃g =
√

E2 − m2 − (p⊥ − g⊥)2 ;

ϕ
(−)
E =

∑

g �=0

B̂−ge−igr{C−g(z − L)H(z)H(L − z) + C−g(−L)H(−z)} . (3.12)

The function Ψ+
E contains the incident plane wave on the left sample side,

and Ψ−
E corresponds to the incident wave from the right side. Both waves are

related [4, 9] by the expression

Ψ−
E (p, r) = [Ψ+

E (−p, r)]∗ . (3.13)

The vector potential A±
µω(r) is found from the diffraction of the emitted

photon and the regular boundary conditions for the field at both surfaces of the
crystal. For the potential A+

µω(r), this procedure is equivalent to the solution
of the conventional X-ray diffraction problem [2]. The function A−

µω(r) is
related to the former by the expression

A−
kω(r) = [A+

−kω(r)]∗,

which is equivalent to the reciprocity theorem. Using the dynamical diffrac-
tion theory [2], the potential A+

µω(r) for the Bragg geometry in a two-beam
approximation is expressed as follows:

A
(+)s
kω (r) ≡ Ak + Ag =

√
4πeikr

{
(es + esgeigrDsg(L))H(−z)

+(esDs0(L − z) + esgeigrDsg(L − z))H(z)H(L − z)
+esDs0(L)H(z − L)

}
;

Ds0(z) = −
2∑

µ=1

γ0
µse

iωεµsLγ−1
0 ; Dsg(z) = β

2∑

µ=1

γg
µse

iωεµsLγ−1
0 . (3.14)

Here Ak and Ag are the primary and diffracted wave fields, respectively
(Fig. 3.2), and the conventional notation of the dynamical diffraction theory
[2] is used: es,esg; s = 1, 2 are the polarization vectors for the primary and
diffraction waves; γ0 = (kN)/k, where N is the normal to the crystal surface;
β = γ0/γg; γg = (kgN)/kg; kg = k + g. The expressions for the vector
potential for the different PXR geometries are compiled in Appendix A.2.

The solutions of the dispersion equation, which defines the refraction of
the waves in a crystal, are expressed [2] through X-ray polarizability (3.6):

εµs =
1
4
{−αB + χ0(β + 1) ±

√
[−αB + χ0(β − 1)]2 + 4βC2

s χhχ−h} ;

Cs = cos 2θB; sin θB =
g

2k
; αB =

2kg + g2

k2
. (3.15)
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2θB

L

ZA kω
+

Agω
+

g

Fig. 3.2. Wave propagation for the diffraction in the Bragg geometry

The dimensionless parameter αB is a deviation of the wave vector of the
emitted photon from the exact Bragg condition. The parameters for a linear
combination of exponents in (3.14) are

γ0
1(2)s =

2ε2(1)s − χ0

2(ε(2(1)s − χ0) − 2(ε1(2)s − χ0) exp[iω(ε2(1)s − ε1(2)s)L/γ0]
;

γg
1(2)s =

−βCsχh

2(ε(2(1)s − χ0) − 2(ε1(2)s − χ0) exp[iω(ε2(1)s − ε1(2)s)L/γ0]
. (3.16)

Thus, (3.11)–(3.16) determine the eigenfunctions inside and outside the crystal
and are used for calculation of the matrix element (3.8).

3.3 Calculation of the Parametric X-ray Radiation
and Coherent Bremsstrahlung Intensities

In general, both PXR and CBS behave as shown in Fig. 3.1f. The differential
cross-section of the radiation process in Fig. 3.1f with an initial electron of
energy E and momentum p and the electron (p1, E1) and the photon (k, ω)
in the final state follows from (3.8) using a standard QED technique [1, 4]:

dσ = 2πδ(E − E1 − ω)|Tfi|2
dkdp1

8�ω(2π)6pE1
. (3.17)

The number of photons emitted during the unit time period, spectral interval
dω and solid angle dΩ in the vicinity of the vector n = ck/ω from the electron
beam with the current J and cross-section S is

∂2N

∂ω∂n
=

Jω

eS�c2

∑∫
|Tfi|2δ(E − E1 − ω)

dp1

8(2π)5pE1
, (3.18)

where the integration over E1,p1, averaging over the electron spin in the initial
state, and summation over the final states have been performed.

As mentioned in Chap. 1, the angular distribution of radiation from a
relativistic electron is concentrated within the narrow cones with the angu-
lar width ∆θ ∼ mc2/E, one along the electron velocity and others along the
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Fig. 3.3. Diagrams for the CBS+PXR radiation

reciprocal lattice vectors. Each of these PXR reflections possesses its own
wavefunctions, corresponding to the vector g. Figure 3.3 shows the diagrams
contributing to PXR side reflections: (a) is the diffraction of emitted photons
into the PXR peak, (b) and (c) are the CBS from the diffracted electrons in
the initial and final states, respectively. The picture demonstrates the differ-
ence between the processes: Despite the large momentum transfer during the
production of photons with the wave vector (k+g) in all cases, the momentum
recoil for PXR is received by the crystal and for CBS it is compensated by
the change of the electron momentum. This compensation is due to electron
diffraction on the crystallographic planes with the reciprocal lattice vector
−g. The electron diffraction peaks, however, are not resolved because they
are allocated within the narrow cone along the electron velocity vector due
to the relativistic energy of electrons and the condition p � �g. Nevertheless,
the secondary effects such as CBS are seen because of the large scattering
angle for the emitted photons due to E � �ω. Using the identity

∣∣∣∣

∫
dr⊥ei(p−p1−k)r⊥

∣∣∣∣

2

= 2πSδ(p⊥ − p1⊥ − k⊥) ,

equation (3.18) is transformed to the following:

∂2Ngs

∂ω∂ n
=

αω

4π2c4
(egsvg)2

J

e
|MPXR + MCBS|2 ;

MPXR =
2∑

µ=1

γg
µs

(
1

q0g
− 1

qµgs

)(
eiqµgsL/γ1 − 1

)
;

MCBS = − U−g

�(vg)
eiq0gL/γ1 − 1

q0g
;

vg =
(
v +

cg

ω

)
; q0g = [ω − (vk−g)]/v; k−g = k − g ;

qµgs = [ω − (vk−gµs)]/v; k−gµs = k − g + ωεµsN/γ0c . (3.19)

Here the polarizations s = 1, 2 are assumed to be separated, and the terms
O(U/E) and O(�g/E) are neglected in the electron wavefunctions. The re-
sulting cross-section depends essentially on the parameters L0g = 1/q0g and
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Lµgs = 1/qµgs, which are the radiation coherent lengths for vacuum and crys-
tals, respectively, and the PXR contribution to (3.19) contains the coherent
superposition of both. In some works [3], the contribution proportional to L0g

is considered as a special radiation mechanism: diffraction transition radia-
tion. In our opinion, this separation is not sufficiently justified by the essential
interference of several amplitudes in Fig. 3.3. The matrix element MPXR is
thus considered as the amplitude of the diffraction of the emitted photons in a
crystal. Equation (3.19) shows that the total radiation intensity is composed
of the interfering PXR and CBS amplitudes. This phenomenon was first dis-
cussed in [6] and compared with the experiment in [13]. The PXR and CBS
interference is shown [10] to be critically essential in the case of nonrelativistic
electrons, when the angular distributions for both radiation mechanisms are
indistinguishable.

For ultrarelativistic electrons, the contributions of both intensities can be
estimated in the following way. The amplitude MPXR is most essential in the
spectral ∆ω/ω and angular ∆θ intervals, where the wave vector of the emitted
photon satisfies the Bragg condition. In this case, the parameters in (3.15) and
(3.16) are,

αB � ∆ω/ω � |χh|; |γh
µs| � 1 .

Thus, PXR contribution within these narrow intervals has a magnitude
(

∂2N

∂ω∂n

)

PXR

≈ α

4πc4

J

e
(egsvg)2ωL2

0g , (3.20)

whereas the PXR contribution to the integral intensity of reflection is [10]

NPXR ≈ α

4π

J

e

|χg|2
sin2 θB

ωBLabs

c

[
1 − e−L/Labs

]
. (3.21)

Here Labs is the crystal absorption length for the X-rays of frequency ωB =
cg/2 sin θB, which corresponds to the Bragg frequency in the PXR reflection.
The same estimations for the CBS contribution are

(
∂2N

∂ω∂n

)

CBS

≈ α

4πc4

J

e
(egsvg)2ωL2

0g

∣∣∣∣
Ug

�cg

∣∣∣∣

2

;
∣∣∣∣
Ug

�g

∣∣∣∣ ≤ 10−2 ;

NCBS ≈ α

4πc4

J

e

m2c4

E2

∣
∣∣∣
Ug

�cg

∣
∣∣∣

2

ωLabs

[
1 − e−L/Labs

]
. (3.22)

Thus, the maximal spectral intensity of PXR is several orders higher than
the intensity of CBS; however, CBS gives a noticeable contribution to the
integral intensity of the reflection. Using (3.4) and (3.6), the ratio of CBS and
PXR intensities in the reflection is

ξ =
NCBS

NPXR
≈
[
Z − F (g)

F (g)

]2 (
m2c3

E�g

)2 1
16 sin4 θB

, (3.23)
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i.e. CBS contributes mainly in the range

E ≤
∣
∣∣∣
Z − F (g)

F (g)

∣
∣∣∣

(
m2c3

4�g sin2 θB

)
. (3.24)

The validity of this estimation is confirmed in [13], where CBS at high energies
(E ≥ 50 MeV) is found to be negligible, except for the high-order harmonics
case when the atomic scattering factor F (g) is exponentially small. Figure
3.4 shows the CBS contribution to the integral intensity of the reflection,
simulated by (3.19) with (dotted lines) and without (solid lines) MCBS for
experimental conditions of [3]. The intensity in Fig. 3.4 is calculated in the
Bragg backward geometry as a function of the angle ψ between the electron
velocity v and the crystal surface normal N in the vicinity of ψ = 0. The
effect of CBS is negligible for the electron energy E = 85 MeV; however, it
becomes evident for E = 30 MeV and essential for E = 10 MeV.

3.4 Dynamical Diffraction Effects
in High-Resolution Parametric X-ray Radiation

In this section, the dynamical effects followed from (3.19) are analysed. For
the narrow spectral–angular range, where these effects become apparent, the
CBS matrix element can be omitted. For convenience, a special coordinate
system is introduced for the PXR reflection g, where the frequency ω and
the angles θ, ϕ of the emitted photons are counted relatively to the vector kB

for the exact Bragg condition αB = 0. In these coordinates, the photon wave
vector k with an accuracy |χg| ≤ 10−5 is [11]

Fig. 3.4. Contribution of CBS to the radiation intensity dependent on the electron
energy
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k = kB + δk; δk = δωnB + ωBθ(nx cos ϕ + ny sin ϕ) ;

δω = ω − ωB; kB = ωB
v

c2
+ g; ωB =

hc2

2v| sin θB|
;

nB =
kB

kB
; θB =

1
2
v̂nB , (3.25)

where the unit vectors nx ‖ [vh], ny ‖ [nxnB] lie on the plane perpendicular
to nB. The terms in (3.19) become

αB =
4 sin2 θB

cos 2θB

δω

ωB
− 2θ sin ϕ tan 2θB; γ0 = (vN); γ1 = (nBN) ;

q0h =
1
2

ωB

c

[
θ2 + θ2

ph

]
; qµhs =

1
2

ωB

c

[
θ2 + θ2

ph − 2εµs

]
;

(egsvg)2

c2
= θ2νs; ν1(2) = sin2 ϕ(cos2 ϕ); θ2

ph =
m2

E2
+ θ2

sc + θ2
M . (3.26)

Similar to the above-considered PXR in thin crystals, the parameter θ2
ph is

introduced, which takes into account the electron multiple scattering θ2
sc and

the crystal mosaicity θ2
M. For the crystal thickness L < Lext � (ωBχ0)−1,

equation (3.19) is reduced to the kinematic diffraction formula, analysed al-
ready in Chap. 2. Therefore, we consider here the domain L > Lext, where
the dynamical effects are expected to be strong. This domain can be named
high-resolution PXR (HRPXR) by analogy with the known high-resolution
X-ray diffraction (HXRXD) field [2]. In order to emphasize the key features
of the HRPXR, the case of the thick crystal L > Labs � (2ωBIm χ0)−1 is con-
sidered, where the oscillations are absent in diffraction peaks [2]. Under this
assumption, the only root Im εµs > 0 in (3.19) is essential and the expression
is simplified:

∂2Ngs

∂ω∂Ω
=

ανsθ
2

ωBπ2

∣∣∣∣
βCsχg

2ε1(2) − χ0

∣∣∣∣

2
∣∣∣∣∣

1
θ2 + θ2

ph

− 1
θ2 + θ2

ph − 2ε1(2)s

∣∣∣∣∣

2

, (3.27)

where the index 1(2) for ω, θ is chosen depending on the sign of Im εµs. The
analytical integration over the azimuth angle ϕ cannot be performed in general
due to the dependency αB(ϕ). There are two essentially different angular
and spectral scales for characterization of the PXR reflection, as follows from
(3.27). The first scale, low-resolution scale (LRS), is defined by the angular
dependence of the radiation coherent length:

(δθ)2 ≤ |χg|; (δθ)LRS ≤
√

|χg| ∼ 10−2−10−3 . (3.28)

The dimensionless angular and frequency distributions, obtained by integra-
tion of (3.27) over θ or ω, have been kinematically considered above and
investigated in numerous experiments. These distributions do not actually
show any dynamical effects and their amplitudes depend on the value Labs.
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The same situation occurs in the conventional low-resolution X-ray diffraction,
where the reflection intensity is proportional to Labs [2].

The high-resolution scale (HRS) in (3.27) is defined by the Bragg condition
for the emitted photons:

|αB| ≤ |χg|; (δθ)HRS � δω

ωB
≤ |χg| ∼ 10−5−10−6 . (3.29)

The experimental set-up for investigation of this fine structure of the PXR
reflection is based on the double-crystal detection scheme, which is widely
used in modern HRXRD, and has been recently applied for HRPXR [3].

To analyse (3.27) in the way combining the advantages of the kinematic
PXR and dynamical X-ray diffraction [2] analysis, we present this distribution
in the universal form, introducing new variables:

ηs =
−βαB + χ0(β − 1)

κs
; xs =

θ2 + θ2
ph

κs
; κs = 2Cs

√
|β|χgχ−g. (3.30)

Then the PXR cross-section is

∂3Ngs

∂ηs∂xs∂ϕ
=

αν2
s

4π2β sin θB
I(ηs, xs) , (3.31)

with the universal function I(η, x) for both polarizations

I =
x − uph

x2|η + sign (η)
√

η2 − 1|2

∣∣∣∣
∣
1 − x

x − η − sign (η)
√

η2 − 1 − u0

∣∣∣∣
∣

2

;

uph =
θ2
ph

κs
; u0 =

χ0

κs
; x > uph; −∞ < η < ∞. (3.32)

Figure 3.5 shows the universal function I(η, x) with a typical HRXRD
Darwin curve shape [2], caused by the factor in (3.32). This effect can be
interpreted as the dynamical Bragg diffraction of the pseudophotons. Besides,
a narrow and high intensity Cherenkov peak appears on the plot due to the
last term in (3.32). Both processes interfere and principally are not separated
into different radiation mechanisms due to their intermixed dependence on
x, uph and u0.

To illustrate the close analogy of HRXRD and HRPXR, two techniques
for description of PXR are discussed below, which are widely used in modern
diffractometry. The first deals with DuMond diagrams [8], which are useful for
consideration of optical properties of the crystal, where the PXR is generated.

Figure 3.6a shows the dependence of the wavelength λB on the angle θB

between the electron velocity and crystallographic planes in a single PXR
peak. Figure 3.6b for real space geometry allows us to evaluate the width of
the PXR peak from the parameter θph, which is the effective distribution of
electron incidence angles.
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Fig. 3.5. Universal function for the HRPXR spectral–angular distribution (uph =
1.5; u0 = 1.0 − i 0.1)

To study a fine structure of the spectral–angular distribution of PXR,
the second mapping technique is convenient, which gives a two-dimensional
representation of the PXR intensity as a function of two scanning variables
[16], x and η. The map on the top of Fig. 3.5 clearly shows the relation
between the intensity and the relative width of different contributions in the
PXR reflection. Estimation of the maximal the PXR spectral intensity from
one electron, corresponding to the Cherenkov peak is

a b

Fig. 3.6. Si (111) PXR reflection: (a) DuMond diagrams for the angle–wavelength
coupling, (b) the corresponding real space geometry
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(
∂3Ngs

∂ηs∂xs∂ϕ

)

max

� αν2
s

4π2β sin θB
Q2 ;

Q =
Re χ0

Im (χ0 − κs)
∼ 100 , (3.33)

which is achieved in a very narrow spectral,

δω

ω
� Im χ0 ∼ 10−6−10−7 ,

and angular range

θ2 � κs � Re χ0 ∼ 10−6 mrad2 .

For example, the magnitude of the PXR peak in the (224) Bragg reflection
in a germanium crystal with the X-ray polarizability χh = −1.44 × 10−5 +
i 7.84 × 10−7, χ0 = −2.90 × 10−5 + i 8.65 × 10−7 is:

I
(s)
{224} ≈ α

J

e

|χgm
(ω(m)

B )|2
Im (χ0 − κs)

≈ 5.1 × 1018J [A]
photons

smrad2(0.1%bandwidth)
. (3.34)

Thus, the brightness of PXR in thick crystals is higher than the one in thin
films (2.48).
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4

PXR from Nonrelativistic Electrons

4.1 Qualitative Analysis

The observation of parametric X-ray radiation (PXR) from ultrarelativistic
electrons with energy E ≥ 50 MeV, considered in the preceding chapters, re-
quires the use of linear particle accelerators, which usually have a low current
J ≤ 10−7 A. The PXR experiments at accelerator facilities are of interest
for studying the fundamental features of the phenomenon and also for several
specific applications. Despite high spectral density of PXR from ultrarelativis-
tic electrons, the parametric X-rays, being used as an X-ray source, cannot
compete with modern synchrotron sources utilizing the storage rings with a
current J � 1−10 A [13].

Contrary to the Vavilov–Cherenkov radiation, the PXR dependence on
the particle energy does not have a threshold, and therefore the radiation is
still intense for electrons with E � 0.1−10 MeV. For this energy, the electron
beams of current J � 0.1−1 A can be obtained under laboratory conditions,
which opens the possibility for wide PXR applications.

The qualitative properties of PXR from nonrelativistic electrons are obvi-
ously explained using a concept of pseudophotons, introduced in Chap. 1. The
electromagnetic field of a charged particle with arbitrary energy E can be rep-
resented as a beam of virtual pseudophotons with almost uniform distribution
in frequency, and this beam is a potential source for the real photons with
white spectrum up to the energy �ω < E. In the framework of this model, any
radiation mechanism can be considered as the converter of the pseudophotons
to the real photons with some spectral interval depending on the interaction
between the particle and the external field. The general formula (2.18) allows
us to find a universal estimation for the spectral–angular distribution of pho-
tons produced by the electron beam in unit time due to the interaction of
latter with some kind of external field or medium:

∂2Ns

∂ω∂n
� α

2πc4
(esv)2R(ω,n, E)L2

coh(ω,n, E)ω
J

e
. (4.1)

V. Baryshevsky et al: Parametric X-ray Radiation in Crystals
STMP 213, 57–71 (2005)
c© Springer-Verlag Berlin Heidelberg 2005
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Here α is the fine structure constant; es is the polarization vector of the photon
with frequency ω; the unit vector n defines the direction of photon emission;
I is the number of electrons, with energy E and velocity v, passing through
the interaction region in unit time.

The dimensionless coefficient R(ω,n, E) defines the probability of the
transformation of a pseudophoton into a real photon with the wave vector
k = ωn/c. The magnitude of the probability depends on the type of radiation
mechanism and satisfies the inequality

R(ω,n, E) ≤ 1 . (4.2)

The coherent length Lcoh, introduced in [4, 7] for the qualitative analysis of
the radiation, is the universal characteristic of any radiation process. The
value of the coherent length is defined by the kinematics of the interaction
between the electron and radiation field and generally can be estimated to
have a lesser value from the following parameters (2.48):

Lcoh = min
{

L, Labs =
2c

ωε′′
, Lcoh = [pz − pfz − kz]−1 ≡ q−1

z

}
, (4.3)

where qz = pz − pfz − kz is the projection of the transmitted momentum
in the direction of the electron velocity; p and pf (Ef ) are the wave vectors
of the electron in the initial and final states, respectively, Ef = E − ω, and L
is the sample length along the electron trajectory. Under the condition ω � E,
the parameter Lcoh is

Lcoh � c

ω[1 − (vn)/cε′]
,

Lcoh � 2c

ω[2(1 − ε′) + γ(−2)]
, if γ =

E

mc2
� 1 . (4.4)

Here ε′ and ε′′ are the real and imaginary parts of the refractive index of the
medium, respectively. From the physical point of view, the value Lcoh defines
the length of the electron path in the medium, where the emitted photons are
coherent.

Expression (4.1) shows that under the assumption of constant electron en-
ergy, the ratio of intensities from various radiation mechanisms is defined
by the transformation coefficients (4.2) and the coherent length. For the
Cherenkov radiation, Lcoh achieves the maximal magnitude under the con-
dition qz = 0 and within the spectral interval, where the inequality ε′ > 1 is
fulfilled. For PXR, R(ω,n, E) is equal to the coefficient of the Bragg reflection
from the crystallographic planes and tends to unity for the photons with the
vector k located nearby the Ewald sphere [2]. Thus, the maximum value of the
PXR intensity corresponds to the case when the Bragg diffraction condition
for the reciprocal vector g
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(k + g)2 = k2 (4.5)

is fulfilled simultaneously with the Cherenkov condition

pz − pfz − kz = 0 . (4.6)

The former condition (4.5) sets the value R close to unity, R � 1, whereas
(4.6) forces the value Lcoh to a maximum. This situation is only possible for
relativistic particles with energy E � m, and the optimal value of the electron
energy Eopt is about 50 MeV [3].

If (4.6) is not fulfilled exactly but the condition γ � 1 is still valid, the
value Lcoh is proportional to (E/mc2)2 and decreases as E2 with the decrease
in energy. The factor (esv)2, being dependent on the square of the character-
istic angle of radiation, increases as E−2, according to (2.43). Therefore, the
spectral intensity of radiation depends on the particle energy as follows:

∂2N

∂n∂ω
∼ E2 . (4.7)

This fact has been experimentally confirmed for PXR in [6]. The estimation
(4.7) indicates the essential feature of the spectral intensity function: the be-
haviour of this function is determined solely by the kinematics of the radiation
process (the coherent length and polarization factor) and not by the mecha-
nism of radiation. As a consequence, the transformation coefficient R(ω,n, E)
remains almost constant in the wide range of the electron energy.

This result predicts the losses of the radiation intensity produced by a
nonrelativistic electron with energy E ∼ 0.1 MeV, which is achievable in X-
ray tubes, by the factor 10−5−10−6 comparing to the maximal possible value.
However, this decrease can be compensated by the increase of the electron cur-
rent from J ∼ 10−8−10−9 A (linear accelerators) up to J ∼ 1 A (achievable in
X-ray tubes). Another specific feature of PXR from nonrelativistic electrons
follows from the angular distribution of radiation and sets a special require-
ment for the detection scheme. In the case of relativistic or ultrarelativistic
particles passing through a crystal, the background radiation caused by ef-
fects other than PXR (for example, coherent and incoherent bremsstrahlung)
is concentrated inside a narrow cone along the direction of the particle beam
(Fig. 4.1a). Therefore, the quasi-monochromatic photon beams detected in
the directions of Bragg angles are due to the PXR phenomenon only. As a re-
sult, even detectors with a relatively low spectral resolution are able to record
the PXR peaks in the vicinity of Bragg reflections. In the case of nonrela-
tivistic electrons, the angular distribution of radiation yielded by all emission
mechanisms, including PXR and CBS, is almost isotropic (Fig. 4.1b). There-
fore, peaks caused by coherent orientational effects are observed on an intense
uniform background, and their shape and amplitude are mainly defined by
the spectral resolution of the detector. Thus, the relativistic factor plays a
principal role in the angular distribution of the emitted photons.
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Fig. 4.1. The spatial distributions of the X-ray radiation intensity for relativistic
(a) and nonrelativistic (b) electrons. The insets show the spectral structure of the
detected peaks

Besides, in the nonrelativistic case, the electron multiple scattering in a
crystal essentially influences the radiation spectral width. According to (1.26),
for the electron energy E � 0.1 MeV, the crystal length optimal for PXR out-
put is L ∼ 0.1−1 µm, which is typical for the transmission electron microscopy
[14]. One more physical effect, gaining strength in the nonrelativistic case, is
an interference of PXR and CBS amplitudes. This effect becomes theoreti-
cally evident if both radiation modes are described by S-matrices of quantum
electrodynamics (2.48). The radiation kinematics of relativistic particles sup-
presses the interference between PXR and other radiations due to the large
difference between pseudophoton frequencies (1.16). Moreover, the CBS am-
plitude is considerably smaller than the PXR amplitude (3.23). Both these
factors point to the maximal interference between PXR and CBS in the case
of nonrelativistic electrons.

4.2 Spectral–Angular Distribution of the Radiation
from Nonrelativistic Electrons in Crystals

A rigorous expression (3.19) for the cross-section of electrodynamic processes
in the crystal has been derived above in the framework of quantum electro-
dynamics, which takes into account the coherent interaction of both electrons
and photons with the media. However, it makes sense to use a general equa-
tion only if (i) the recoil effect is taken into account in radiation of hard
photons, (ii) the quantization of the electron transverse motion is considered
(channelling radiation). Both reasons are important in the case of relativistic
electrons but are negligible in the nonrelativistic case. Therefore, the classi-
cal expression (2.16) can be used to simplify a physical interpretation of the
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results. Thus, the following formula for the spectral density of the photon
number emitted in the direction n is used in this section:

d2N (s)
nω =

αω

4π2c2

∣∣∣∣

∫ tL

0

dt v(t)Eks(r(t), ω)e−iωt

∣∣∣∣

2

dωdn . (4.8)

Here r(t) and v(t) are the coordinates and the velocity of the electron in the
crystal, respectively; Eks(r(t), ω) is the wave field of the emitted electromag-
netic wave. The intervals dω and dn define the spectral and angular area,
respectively, where the photons are detected, and tL represents the time over
which the electron moves inside the crystal of thickness L. The use of thin
crystalline films in PXR experiments from nonrelativistic electrons allows us
to simulate the functions r(t) and Eks(r, ω) by the perturbation theory. This
technique is important for a physical interpretation of the results because (i)
the contributions from different X-ray production modes to the radiation am-
plitude are considered in addition, (ii) the multiple scattering of electrons in
the crystal is neglected.

The electromagnetic field of the emitted radiation within the limits of the
perturbation theory is (see (2.25))

Eks(r, ω) = eseikr +
∑

g �=0

Egsei(k+g)r,

Egs = − χg

[k2
g − ω2/c2]

[kg(ges) −
ω2

c2
es], kg = k + g , (4.9)

where es is the polarization vector; χg are the Fourier components of the
crystal X-ray polarizability.

Formula (4.9) can be used for radiation from low-energy electrons in a
crystal of arbitrary thickness because the kinematics of PXR assumes the
vector k to be far from the Ewald sphere, and dynamical effects are negligible
[10]. Clearly, the interaction of electrons and electromagnetic radiation with a
crystal leads not only to a change of the stationary states of electromagnetic
field but also to the modification of the motion law r(t) of the electron. The
emission of CBS is caused by the scattering of electrons on a coherent periodic
potential, which is defined by the Coulomb interaction of the particle beam
with both the electron density of the crystal and that of the nuclei. This
potential follows from (3.4):

U(r) =
1
Ω

∑

g �=0

Ugeigr,

Ug = 4πe
∑

i

eigRi
[Zi − Fi(g)]

g2
e−W (g). (4.10)

The law of motion r(t) for an electron in potential (4.10) is found by solving
the Newton equations with an accuracy up to O(Ug):
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r(t) = r0 + v0t + r1(t) ,

r1(t) = i
e

m

∑

g

g

(gv0)2
Ugeigv0t . (4.11)

The velocity of the electron beam in vacuum is designated here as v0. The
inequality r1 � v0t defines the validity region of the subsequent calculations of
the radiation intensity. Substituting (4.11) into this inequality, the expression
for the range of validity is straightforward:

4παZeff

mv2g2Ω
�ωL � 1 . (4.12)

Here Zeff is an averaged electric charge per single atom, Ω is the volume of
the crystallographic unit cell. In fact, condition (4.12) means that a restric-
tion to the length of a particle trajectory within the crystal has the same
value as the extinction length of the emitted photons, and therefore the clas-
sic approach can be applied to relatively thick crystals. The wavefunction of
a particle, being a part of the matrix element for the radiation intensity, is
determined by the essentially lesser extinction length of the electrons. For a
crystal of thickness not exceeding the photon extinction length, the consid-
erable phase oscillations of the electron wavefunctions are mutually cancelled
in the initial and final states of the particle. Therefore, it is not necessary to
take into account the multi-wave diffraction of electrons [14] for calculation
of the radiation matrix elements in (2.48).

After the substitution of (4.11) into (4.8), an expression for the radiation
intensity in a thin crystal is derived with an accuracy up to O(Ug):

∂2N
(s)
n,ω

∂ω∂n
=

α

4π2c2
ω
∑

g �=0

|Ags(ω,n)|2 , (4.13)

where the amplitudes Ags are (the z-axis is parallel to the velocity vector v0)

Ags =
{

v0Egs −
e

m

Ug

gv0

[
esg + (esv0)

kg

gsv0

]}
Q ,

Q =
sin qLz/v0

q
, q =

ω − v0(k + g)
2

. (4.14)

The first term in formula (4.14) describes PXR, whereas the second term de-
termines the coherent bremsstrahlung. The position of the intensity peaks in
formula (4.14) is defined by the same kinematic factor |Q|2 for both mecha-
nisms. This factor is due to the coherent interference of radiation formed by
different crystallographic planes. A similar factor (2.36) has been considered
for the kinematic model of PXR from relativistic electrons in thin crystals,
and in the same way, the contribution of this term to the intensity can be
represented as
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|Q|2 = 2π
Labs

v0

[
1 − e−Lz/Labs

]
δ(ω − v0(k + g)) . (4.15)

Here Labs is the absorption length of the crystal for X-rays of frequency deter-
mined from the zeros of the δ-function argument in (4.15). Thus, the spectral
and angular distributions of radiation, which result from coherent processes
initiated by a nonrelativistic electron beam inside a thin crystal, are defined by
the sum of resonant terms. The most important point is that both terms, i.e.
parametric X-ray radiation and coherent bremsstrahlung, impose the same
conditions on the frequency and the direction of the emitted photons. For
each selected crystallographic reflection with the interplanar distance d, a set
of narrow spectral lines with frequencies ωn(θ) is formed in the direction of
the observation angle θ to the velocity vector of the electron:

ωn(θ) =
2πv0 sin θB

d(1 − v0/c cos θ)
n, n = 1, 2, . . . . (4.16)

The relative width of these lines is

∆ω0

ω
≈ v0

Lzωn(θ)
, (4.17)

where θB is the angle between the velocity v0 and the crystallographic planes
scattering the X-rays. For nonrelativistic electrons, the number of emitted
photons depends weakly on the variation of angle θ and is defined by the
sum of the interfering amplitudes of PXR and CBS. The number of photons
emitted in a chosen direction and integrated in the vicinity of the peak and
in the frequency interval ∆ω > ∆ω0 is expressed for Lz ≤ Labs as

∂Ns

∂n
� α

2πc2
ωn

Lz

v0
|APXR + ACBS|2 , (4.18)

where

APXR =
χg

[k2
g − ω2/c2]

[
(v0kg)(ges) −

ω2

c2
(v0es)

]
, (4.19)

ACBS = − eUg

mΩ(gv0)

[
ges + (v0es)

kg

v0g

]
. (4.20)

In comparison to the case of relativistic particles, a new physical result
follows from formulas (4.18)–(4.20), viz. considerably different ratios of PXR
and CBS amplitudes in relativistic and nonrelativistic cases. For relativistic
particles, this ratio depends on the electron energy (3.23), whereas for non-
relativistic particles the ratio of the first to the second term in formula (4.18)
depends only on the distribution of charge density within the elementary
crystal cell. This makes it necessary to take precisely into account the instru-
mental function of the detector and incoherent bremsstrahlung background
when performing a theoretical analysis of experimental curves .
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Equations (4.19) and (4.20) explain the role of the relativistic factor in the
formation of coherent peaks. The expression in the denominator of formula
(4.19)

δ = k2
g − ω2

n/c2 = 2
ωn

c
(ng) + g2 � g2

(
1 − v0 sin θB

c(1 − v0 cos θ)

)
(4.21)

describes the deviation of the emitted photon wave vector from the Ewald
sphere. For the nonrelativistic case, when the condition 1 − v0/c ≈ 1 is ful-
filled, the value of the parameter δ is approximately equal to δ ≈ g2, and the
contributions of PXR and CBS to coherent peaks are of the same order. As
the energy of the electron E increases with v0 → 1, the parameter δ becomes
negligible for some angles θ, and the intensity of PXR increases proportionally
to (E/m)2, reaching its maximum at Eopt ∼ m/

√
|χg| [3].

The angular distribution of the X-ray radiation scattered from the set
of crystallographic planes in the nonrelativistic case is almost isotropic, and
the difference between the polarization terms in (4.19) and (4.20) can be
neglected. Using (4.16) for the resonant frequency, the ratio of PXR and CBS
contributions to the coherent peak is obtained:

δg =
APXR

ACBS
�

∑
i Fi(g)eigRi

∑
i[Zi − Fi(g)]eigRi

. (4.22)

Equation (4.22) reflects the physical nature of peak formation in the radiation
spectra. PXR contributes to peaks due to the coherent scattering of emitted
photons by the atomic electrons only, whereas CBS is caused by the coher-
ent scattering of incident charged particles both by electrons and nuclei of a
crystal.

Equations (4.18)–(4.20) define the position and relative amplitudes of the
lines in the ideal spectra of the coherent X-ray radiation from nonrelativistic
electrons in a crystal. Figure 4.2 shows the spectra simulated on the basis of
the presented theory for Si (a, b), MgO (c, d) and LiF (e, f) crystals. Panels
(a) and (c) correspond to the electron velocity parallel to the 〈111〉 crystal-
lographic axis, (b) and (d) to that parallel to 〈100〉 and curves (e) and (f)
are calculated for electrons striking the crystal perpendicular to the (110)
and (100) planes, respectively. Only the reflections contributing essentially to
the peak intensities are depicted. The symbols (hkl) denote a single crystal-
lographic plane, and {hkl} means a crystal set of plane. The ideal spectra
shown in Fig. 4.2 demonstrate the positions of peaks, their absolute inten-
sities and the contribution of the PXR intensity (black part of the bar) to
the full output (full bar). The panels on the left are drawn on a logarithmic
scale to emphasize the intensity recession in the high-order peak series. In
the panels on the right, the contributions of radiation produced by different
crystallographic planes to the full spectral lines are separated. The linear in-
tensity scale is chosen to present a real PXR contribution in the radiation
yield. The crystals and experimental conditions of [9, 11] are used for simula-
tions (the radiation peaks from nonrelativistic electrons have been reported in
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Fig. 4.2. The most intense series of CBS+PXR peaks for Si (a, b), MgO (c, d)
and LiF (e, f) crystals, for different crystal orientation. The individual reflections
and sets of crystal planes contributing to the peaks are depicted near the bars

these works for the first time). The diagrams for Si and MgO are calculated
for the electrons energy E = 120 keV and observation angle θ0 = 96◦; the
spectra for LiF single crystal are simulated for E = 84 keV and θ0 = 67.5◦.
The fine spectral and angular structure of peaks will be studied in the next
section.

4.3 Simulation of Real Radiation Spectra

The principal difference between the above-derived ideal spectrum of interfer-
ing PXR and CBS from nonrelativistic particles and the PXR spectrum from
ultrarelativistic particles is that the low-energy particles emit the radiation
isotropically, whereas the angular distribution of the ultrarelativistic PXR
represents the set of reflections with divergence determined by the relativistic
factor mc2/E (Fig. 4.1a). Anothers important point is that in the relativistic
case the incoherent interaction of electrons with the crystal concentrates the
radiation within a narrow cone directed along the particle motion direction.
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Therefore, the intensity of PXR exceeds considerably the incoherent back-
ground when the X-rays are observed in the directions other than the velocity
of electrons. Under this condition, the PXR peaks can be recorded even with
detectors of relatively low spectral resolution. The coherent bremsstrahlung
from relativistic particles is localized in the vicinity of the electron beam di-
rection and its spectrum shifts to the hard X-ray region.

In the experiments with nonrelativistic electrons (Fig. 4.1b), the peaks,
being composed of PXR and CBS contributions, are accompanied by an
intense background caused by other radiation types, e.g., the incoherent
bremsstrahlung. The angular distribution of the latter is also almost isotropic
for nonrelativistic particles. Therefore, the investigation of the spectral dis-
tribution of PXR+CBS peaks at fixed observation angles requires a detector
with a high energy resolution, or an additional analyser crystal in front of the
detector. Actually, such analysers are also necessary when the synchrotron
radiation is used as an X-ray source [8].

To define the requirements for the detector, the spectral intensities of
coherent X-ray radiation (CXR) and incoherent bremsstrahlung (IBS) have
to be estimated. Comparing the intensities, we disregard the kinematic factors
related to the weak dependence of intensity on the radiation angle, i.e., the
angular distributions of both CXR and IBS are assumed to be isotropic. This
allows us to determine the most essential dimensionless parameters affecting
the ratio of PXR+CBS to IBS output. Using formula (28.4.2) from [1], the
number of IBS quanta emitted within the spectral interval ∆ω can be written
as

∂Ns

∂n
� 4α

3π
Z2

(
α�

mc

)2

ρLz ln
137
Z1/3

∆ω

ω
, (4.23)

where ρ is the concentration of the scattering centres (ρ = 1/Ω for crystals
with a single atom per elementary cell). The only photons produced by the IBS
mechanism and emitted near one of the PXR peaks are considered here, and
the amplitudes of PXR and CBS in (4.19) are assumed to be equal and do not
depend on angles. Then, using the explicit expression (3.6) for polarizability,
the estimation is

∂Ns

∂n
� α

2π
ωnLzv0

[
4πα�

mcω2

S(g)
Ω

e−W (g)

]2

.

For the crystal with a single atom per unit cell, the structure amplitude S(g)
is

S(g)
Ω

e−W (g) � ρZ ,

and the ratio of PXR to IBS intensities within the limits of approximations
used above is

η =
[∂Ns/∂n]PXR

[∂Ns/∂n]IBS

� ρc2

ω3
n

6π2v0

ln 137/Z1/3

ωn

∆ω
. (4.24)
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Thus, the ratio of intensities in the vicinity of the peak is determined by the
coherency factor

ξn =
c3ρ

ω3
n

, (4.25)

which results from the interference of the radiation emitted by the electrons
on the periodic atomic structure of a crystal. For example, for the experiment
[9] with a LiF crystal and electrons of energy 63 keV penetrating the crystal
parallel to the 〈100〉 crystallographic axis and the observation angle θ = 67.5◦,
the coherency factor ξ � 0.39 for spectral series related to the (200) reflection,
and ξ � 0.79 for the (111) reflection. To distinguish spectral peaks from
the uniform background, the detector has to have a resolution satisfying the
condition ξ1 � 1:

ξ1 = ξ
ω

∆ω
. (4.26)

The parameter ξ1, describing the signal/background ratio in the spectrum,
reaches its maximum value when the resolution of the detector is of the same
order as the linewidth of PXR, as formula (4.17) states. In real experiments,
this resolution value can be achieved by using an analyser crystal. Assum-
ing the same conditions as in the experiment [9], the maximum value of the
parameter η for the reflection the (200) is approximately equal to

ηmax � c2ρ

ω3
n

6π

ln 137/Z1/3
ωnLz � 1.3 × 103 , (4.27)

for the spectral resolution of the detector 0.1%. The resolution of detectors in
the experiments [9, 11] was, however, only about 10%. The better the spectral
resolution of the detector, the larger the coherency factor, in accordance with
(4.24), and the higher the relative magnitude of PXR peaks in comparison to
the background of incoherent bremsstrahlung. This result has been recently
confirmed in experiments [12], where the low-energy part of the radiation
spectrum was recorded using a crystal spectrometer with a 40 eV resolution
and a new fine structure of peaks has bean revealed.

The absolute number of photons emitted by one electron and contributing
to the PXR+CBS peak is essentially smaller than the PXR intensity from
ultrarelativistic electrons. However, due to the considerably higher current
density, which can be achieved for nonrelativistic particles, the integral num-
ber of quanta is relatively large in this case. Using again the parameters of
the experiment [9], i.e. the electron current and energy 1 µA and 63 keV,
respectively, 100nm thick LiF crystal, velocity of electrons is parallel to the
〈100〉 axis, the estimation for the absolute number of detected photons in the
vicinity of the peak from the (200) reflection is given by (4.18)

N0 � 5.1 × 102 photons s−1 ω0 � 3.89 keV . (4.28)

Here the values for the Bragg and observation angles are taken as θB = 0 and
θ = 67.5◦, respectively, and the detector registers the photons in the solid
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Fig. 4.3. Geometrical sketch of vectors and angles describing the PXR and CBS
processes

angle ∆Ω ∼ 10−3 steradian. This estimation is in good agreement with the
radiation intensity observed in [9].

Now we calculate the real PXR+CBS spectra, taking into account the
convolution of the ideal spectra with both angular and spectral resolution
functions of the detector and the background of incoherent radiation. To per-
form this convolution, the following substitution is used (Fig. 4.3):

k = k0 + q; k0 = ωge . (4.29)

Here the vector e defines the direction of the detector centre and the parameter

ωg =
v sin θB

(1 − v cos θ0)
g (4.30)

determines the frequency of a peak in the ideal PXR+CBS spectrum, cor-
responding to the reciprocal lattice vector g. The instrumental functions de-
scribing the angular and spectral resolutions of the detector are

f1(θ) =
1
π

exp
[
− (θ − θ0)2

∆θ2

]
,

f2(ω) =
1√
π

exp
[
− (ω − ωr)2

∆ω2

]
, (4.31)

where ∆θ is the angle aperture of the detector with a pin-hole slit at the
front, ∆ω is the detector spectral resolution and the frequencies ωr = rε (r =
0, 1, 2, . . .) correspond to the rth detector channel with width ε. Because in
real experiments ε < ∆ω � ωr and ∆θ � θ0, the phase volume of the detected
photons can be expressed via new variables as

ω � ωg + qz +
q2

2ω0
,

dk = dq � ω2
r η dη dϕ dν ,

ν = ω − ωr, η = θ − θ0 , (4.32)
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where the z-axis is parallel to the vector k0 and ϕ is the angle between the
vector q⊥ and the perpendicular to the plane defined by the vectors v0 and
g. Then the number of counts Nr in rth channel of the detector normalized
for one electron, for the conditions of the experiment [9, 11], is

Nr = B∆θ2 ∆ω

ωr
+

1
π3/2

∞∫

0

ηdη

2π∫

0

dϕ

∞∫

−∞

dν

{
e−

η2

∆θ2 e−
(ν−ωr)2

∆ω2

+
∑

g

Agδ[(ν + ωr − ωg)(1 − v0/c cos θ0) − ωrv0η cos ϕ]
}

. (4.33)

Here Ag and B are the amplitudes of the coherent and incoherent components
of the radiation, respectively. According to formulas (4.18)–(4.23), they are

Ag =
α

2πc2
v0ωrLz|χg(ωr)|2

∣∣1 + δ−1
g

∣∣2 , (4.34)

B =
4α

3π
Z2

(
e2

�

mc

)2
Lz

Ω
ln

137
Z1/3

. (4.35)

Performing the integration over ν in (4.33), we arrive at

Nr = B∆θ2 ∆ω

ωr
+

1
π3/2

∞∫

0

ηdη

2π∫

0

dϕe−
η2

∆θ2
∑

g

Ag

× exp
[
− (ωg − ωr + urη cos ϕ)2

∆ω2

]
, (4.36)

where
ur =

v0ωr

1 − v0/c cos θ0
.

In general, the integrals in formula (4.36) have to be calculated numerically.
However, within the limits of the approximations used in this chapter, a simple
analytical formula can be derived for the radiation spectrum by using the
Feynman–Jensen inequality

〈eA〉 ≥ e〈A〉,

which is known from applications of statistical physics [5] and valid for aver-
aging over normalized functions of a statistical distribution. As a result, the
following approximate expression can be obtained:

Nr �
α

2π
Lz∆θ2|χ0(ωr)|2 ωr

{
1

6π2
ω3

r Ω
(

ln
137
Z1/3

)
∆ω

ωr

+ v0

∑

g

∣∣∣∣
χg(ωr)
χ0(ωr)

∣∣∣∣

2 ∣∣1 + δ−1
g

∣∣2 exp
[
− (ωg − ωr)2

∆ω2
− ∆θ2u2

r

4∆ω2

]}
, (4.37)
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a b c

Fig. 4.4. Theoretical simulations (solid lines) and experimental data (open dots)
reproduced from [11] for (a) Si and (b) MgO and from [9] for (c) LiF. The arrows
show the emission lines of Si, Mg and Fe. Each panel contains two curves at different
energy of electrons

which permits us to the study the dependence of the real PXR+CBS spectra
on the principal parameters of the experiment. Figure 4.4a–c demonstrate the
experimental data (open dots) reproduced from [9, 11] and theoretical spec-
tra (solid lines) simulated by (4.37) for crystals Si, MgO (v0 ‖ 〈111〉) and
LiF (v0 ⊥ (110)), respectively. The parameters of the crystals and detectors
are shown in Table 4.1. For each crystal, we depict two pairs of curves cor-
responding to different electron energies, demonstrating the dependence of
the peak positions on the velocity of the electrons. The characteristic emis-
sion lines of Si, Mg and Fe are indicated by vertical arrows. The probable
reasons of discrepancy between theory and experiment in the fits presented
above are (i) the uncertainty of the angular resolution of detectors in exper-
iments [9, 11], (ii) the approximate modelling of the instrumental function
in (4.31) and (iii) the neglect of the background radiation from back- and
multiple-scattered electrons. The disagreement of simulations and measure-
ments in the low-frequency region is caused by the low-energy threshold of
detector sensitivity, which has not been taken into consideration in calcu-
lations. The experimental results reported in [9, 11] confirm the contribu-
tion of both radiation types, coherent bremsstrahlung and parametric X-ray
radiation, to the coherent yield from nonrelativistic electrons. The results of
this section also indicate the possibility of qualitative and quantitative de-
scription of X-ray radiation from nonrelativistic electrons in thin crystals on
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Table 4.1. Crystal data and parameters of the experiments [9, 11]

Crystal a0 ∆ω θ0 ∆θ2 Lz |χ0|ω=5 keV

(Å) (keV) (deg) (sterad) (Å)

Si [11] 5.4309 0.1 96 0.05 1000 4.03 ×10−5

MgO [11] 4.21 0.1 96 0.05 1000 6.03 ×10−5

LiF [9] 4.0276 0.2 67.5 0.002 1000 4.13 ×10−5

the basis of the perturbation theory. The use of the classical electrodynamics
approach allows us to avoid cumbersome calculations based on the multi-wave
theory of electron diffraction, as treated in [11].

The experiments with a high spectral resolution are necessary for detailed
studies on coherent radiation [12], which can realize the exact separation of
PXR+CBS peaks from other types of radiation. For example, two- or three-
crystal arrangements utilizing additional analyser crystals might be used.
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5

Interpretation of Experimental Results

5.1 Experimental Observation of PXR

Experimental studies of PXR have been performed in a wide range of elec-
tron energies. As already mentioned in Sect. 1.4, PXR was first experimentally
realized in 1985. Baryshevsky and coauthors [5, 44] used 900 MeV electrons
from the Sirius (Tomsk, former USSR) synchrotron and a diamond crystal.
Later, numerous experiments with diamond and silicon crystals, investigating
an angular [4, 6, 30, 43] and electron beam dependence [6] in the electron
energy range 200–900 MeV, were reported by the same group. The facilities
where PXR was measured after the Tomsk were synchrotron ARUS (Yerevan,
former USSR) [26] and LINAC LUE-40 (Kharkov, former USSR) [1]. Since
these experiments, linear accelerators have been extensively used for produc-
tion of parametric X-rays, promising a less expensive and more affordable
way to produce parametric X-rays. In the past decade, a number of LINAC
facilities contributed to PXR research: Naval Postgraduate School (Monterey,
USA) [49, 50], S-DALINAC (Darmstadt, Germany) [53], SAL (Saskatchewan,
Canada) [51], Tohoku University (Sendai, Japan) [75], Kyoto University (Ky-
oto, Japan) [55], Hokkaido University (Sapporo, Japan) [16], Rensselaer Poly-
technic Institute (Troy, USA) [74]. The synchrotron facilities MAMI (Mainz,
Germany) [40] and INS (Tokyo, Japan) [24] were utilized for PXR from ul-
trarelativistic electrons. The use of synchrotrons and linear accelerators al-
lows us to cover a broad range of electron energies, from 3.5 MeV [53] to
4500 MeV [26]. Parametric X-rays were also measured from 70 GeV protons
[14] at IHEP (Serpukhov, Russia) proton accelerator in 1991 and recently [3]
at JINR (Dubna, Russia) from 5 GeV protons.

Both Laue (Fig. 5.1a) and Bragg (Fig. 5.1b) geometries are applied for
PXR measurements; the latter is also used in backward scattering experiments
(Fig. 5.1c) [27, 54]. An extremely asymmetric diffraction (EAD) geometry (the
Bragg-to-Laue transition case) has been also applied in several experimental
set-ups [13]. In the experiment [75], the electron beam has been directed par-
allel to the sample surface yet not penetrating inside a crystal. The summary

V. Baryshevsky et al: Parametric X-ray Radiation in Crystals
STMP 213, 75–104 (2005)
c© Springer-Verlag Berlin Heidelberg 2005
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b c

Fig. 5.1. Typical experimental geometries for PXR production: (a) Laue, (b) Bragg,
(c) Bragg backwards

of basic experimental parameters of some PXR experiments is presented in
Table 5.1.

For a target, the diversity of crystals has been explored. Silicon single
crystal is one of the most frequently used crystals [1, 8, 13, 14, 16, 24, 27,
37, 39, 40, 45, 51, 54, 55, 67, 70, 73] with different Bragg reflections excited
for PXR production: (111), (220), (333), (311), (224), etc. The other materi-
als used for a target are diamond [5, 26, 30, 43, 44, 52, 53], LiF [74], quartz
and teflon [75], GaAs [11, 12], Ge [7, 74], W [2], Cu and pyrolytic graphite
[10, 50, 74]. The physical properties of the crystal, e.g. lattice period, absorp-
tion and thermal characteristics, purity, etc., influence the spectral position of
the PXR reflection as well as the intensity of the peaks. For example, the PXR
production competes with absorption of radiation along the escape path of
photons in the crystal. For materials composed of heavy elements, the absorp-
tion losses of PXR increase more rapidly than the PXR yield, which makes
light element targets more attractive. There are also numerous experiments
with multilayered and grating targets [20, 21, 22, 59, 60, 61] where the prin-
ciple of constructive interference of PXR and transition radiation is used to
gain a radiation output.

As mentioned in Sect. 2.2, two types of detectors are used to record angular
and energy dispersive dependence, respectively. For spatial resolution of PXR
peaks, the proportional counter (PC) [8, 9, 24, 26, 45] or Si-PIN [16, 39, 54,
55, 70, 74] or CCD [27, 40, 67] detectors are used. In some experiments [27],
the additional analysing crystal along with the CCD is used to combine an
energy dispersive and angular schemes. For energy dispersive measurements of
spectral PXR distributions, the NaI scintillation spectrometer [5, 8, 9, 24, 30,
44, 45] or the silicon drift Si(Li) detectors are mostly utilized [27, 52, 53]. In
the work [67], a special CCD camera was used for simultaneous determination
of the photon energy and position.

After the primary experiments, which discovered and confirmed the PXR
phenomenon [4, 5, 6, 30, 43, 44], most of the follow-on experiments were ded-
icated to investigation of special features of parametric X-rays. The natural
linewidth and line shape of PXR peaks were studied in [40, 52] using an
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Table 5.1. Principal parameters of some published PXR experiments

Experiment Geometry Crystal, t Ee−/p+ (MeV) Detector

SIRIUS, Tomsk Laue/Bragg C, 0.35; 0.8 mm 900 NaI(Tl), PC

[5, 30, 43, 44]

SIRIUS, Tomsk [8, 9] Laue Si, 0.35 mm 900 NaI(Tl)

ARUS, Yerevan [26] Laue C, 0.2; 1 mm 4,500 NaI

LUE-40, Kharkov [1] Laue Si, 30 µm 900 Si(Li)

SIRIUS, Tomsk [11, 12] Laue GaAs, 400 µm 500, 900 PC

INS, Tokyo [24] Laue Si, 0.5 mm 200-1,100 NaI(Tl)

NPS, Monterey [49, 50] Laue/Bragg Si, 20−320 µm; 90 Si(Li)

graphite, 1.39 mm

LUE-40, Kharkov [37, 73] Laue Si, 20; 30 µm 15,25 Si(Li)

IHEP, Serpukhov [14] Laue Si, 18 mm 70,000 (p+) YAlO3:Ce3+

SIRIUS, Tomsk [13] Laue/Bragg/EAD Si, 0.15; 0.4 mm 300−900 PC

INS, Tokyo [45] Laue Si, 0.2−5 mm 900 NaI

S-DALINAC [52, 53] Laue C, 55 µm 3.5−9.1 Si(Li)

SAL, Saskatchewan [51] Laue Si, 20 µm 230 CCD

MAMI, Mainz [40] Laue Si, 124 µm 855 CCD

MAMI, Mainz [39] Laue Si, 100−600 µm 855 Si-PIN

S-DALINAC [67] Laue Si, 13 µm 80.5 CCD

ICR, Kyoto [55] Bragg Si, 250 µm; 3 mm 100 Si-PIN

Tohoku LINAC, surface quartz, teflon 150 Si bolometer

Sendai [75]

S-DALINAC [54] Bragg backwards Si, 12.5 µm; C, 50 µm 30.2−87 Si-PIN

SIRIUS, Tomsk [61] Bragg [W/B4C]300/Si, 0.36 µm 500 CdTe

SIRIUS, Tomsk [59] Laue GaAs strips, 300×14 µm 500 CdTe

Hokkaido LINAC, Laue Si, 200−625 µm 45 Si-PIN

Sapporo [16]

MAMI, Mainz [27] Bragg backwards Si, 525 µm 855 Si(Li), CCD

PRI, Troy [74] Laue, Bragg LiF, 1.5 mm 56 Si-PIN

JINR, Dubna [3] Bragg Si, 300 µm; 5,000 (p+) Si(Li)

graphite, 2 mm

absorbing foil (Cu, Ti, Ni) technique. The PXR yield dependence on the crys-
tal thickness was the aim of experiments reported in [39, 45, 75]. The polariza-
tion of parametric X-rays was measured in [8, 9, 67, 70], the PXR production
dependence on the energy of electrons was measured in [16, 24, 53], the tem-
perature influence on the PXR intensity was measured in [18], the effect of
electron beam parameters was observed in [16, 75] and the crystal materials
were optimized in [74]. The experiments [37, 64] deal with the interference of
PXR and coherent bremsstrahlung. The influence of the multiple scattering
on the PXR yield and radiation threshold behaviour have been investigated
in [13, 24, 45]. PXR in the forward direction of electron velocity is considered
in [17, 28, 58].

Up to now, the majority of PXR experiments have been carried out to
study fundamental physical properties of phenomenon and to investigate prin-
cipal dependencies. However, there are several works on optimization of the
PXR yield for real applications. The use of PXR for mammography imag-
ing is discussed in [68]; the application of parametric X-rays for metrology of
semiconductor quantum wires and wafers is proposed in [16]; the optimization
of experimental conditions to create a tunable X-ray source is performed in
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[23, 74]. In [31, 32, 33, 34], the authors propose to use the forward directed and
PXR-related radiations as a generation mechanism for free-electron lasers.

All above-cited experiments concern the PXR from relativistic and ultra-
relativistic electrons. There are also a few experiments on the interference
of PXR and CBS from nonrelativistic electrons. Korobochko et al. [62] mea-
sured the X-ray radiation from electrons (45 and 84 keV) passing through a
LiF crystal. Later, similar experiments [71] were conducted with Si and MgO
crystals and 40−120 keV electrons.

5.2 Spectral Distribution of PXR Peaks
from Relativistic Electrons

The quantitative interpretation of PXR measurements depends essentially
on the experimental geometry and instrumental function of a detector. To
illustrate this fact, the results of pioneering experiments [5, 78] shown in Fig.
1.7 are considered below. Theoretical analysis [35, 36] of these data shows that
the condition of the EAD geometry is fulfilled in this case when either incident
or diffracted waves travel along the crystal surface [19]. In both experiments,
the electron beam with energy 900 MeV impinged on the edge of a diamond
crystal, and the energy spectrum of X-ray radiation was measured at 90◦

to the electron velocity (Fig. 5.2a). In [5], the electron velocity was parallel
to the 〈110〉 crystallographic axis; thus the detector recorded the radiation
from pseudophotons diffracted from {100} planes of the crystal (Fig. 5.2b).
The experiment [78] used the opposite geometry, i.e. v||〈100〉, and PXR from
{110} was measured. In both cases, 2θB = 90◦, which corresponds to EAD.

In the case of EAD, the expression for the field in a crystal A
(+)s
kω (r),

required for calculation of the PXR intensity, does not follow from (3.14)–
(3.16). The reason is the solutions of the dispersion equation εµs, which have to
be corrected along with the boundary conditions by considering the specularly

0

g

a b

Fig. 5.2. (a) The relative position of the electron beam, crystal and detector in
[5, 78]; (b) the sketch of the diffraction process



5.2 Spectral Distribution of PXR Peaks 79

reflected waves from the crystal surfaces [19]. To construct the solution for
homogeneous Maxwell’s equations in the EAD case, the wave vector K in a
medium is defined in such a way that its tangential component is continuous
at the boundary crystal vacuum (Fig. 5.2):

K = k − kεN , (5.1)

where k, |k| = k = ω/c, is the wave vector in vacuum and the other pa-
rameters are the same as in (3.14)–(3.16). Because the vector k corresponds
to the wave travelling from the detector to the radiating particle, the dif-
fracted wave has a wave vector kg = k + g along the crystal surface, and
γg = (kgN)/k � 1. Thus, for calculation of the effective polarization ε in a
medium, the cubic equation instead of the quadratic one has to be used:

− 2γ0ε
3 + 4γ0γgε

2 + 2γ0(αB + χ0)ε + χ2
0 + αBχ0 − C2

s χgχ−g = 0 . (5.2)

The roots of this equation have been investigated in detail in [42, 57]. For the
solution of the boundary condition EAD, only two of them εµs (µ = 1, 2),
corresponding to damping inside a crystal wave, have to be used. As a result,
the expression for the vector potential of a radiation field is as follows (compare
with (3.14)):

A
(+)s
kω (r) =

√
4π

{
(eseikr + As

spegseik′r)H(−z)

+ eikr
∑

µ=1,2

e−ikεµsz(esAµs + egsAgµseigr)H(z)
}

, (5.3)

where As
sp and k′ = (k⊥ + g⊥,

√
k2 − (k⊥ + g⊥)2) are the amplitude and

the wave vector, respectively, for the specularly reflected wave. The following
expressions for the field amplitudes can be calculated [35, 36]:

A1s =
(2ε1sγ0 + χ0)(γ′

0 − γg + ε2s)
(ε2s − ε1s)[2γ0(γ′

0 − γg) + 2γ0(ε2s + ε1s) + χ0]
, γ′

0 =
(k′N)

k
,

A2s = 1 − A1s, Agµs = −2εµsγ0 + χ0

χ−gCs
Aµs, As

sp = Ag1s + Ag2s . (5.4)

Replacing k → −k in the wave field derived above, the matrix element (3.18)
is directly calculated. Then the spectral–angular distribution of photons from
a single electron in the PXR reflection g and a crystal of thickness L can be
simulated:

∂2Ngs

∂ω∂n
=

αω

4π2c4
(egsv)2

∣∣∣
∣∣

∑

µ=1,2

AgµsLg

(
1 − e−iL/Lg

)
∣∣∣
∣∣

2

e−2z0kε′′µs . (5.5)

Here Lg = c[ω − v(k + g)]−1 is a coherent radiation length, z0 is the point of
electron penetration inside a crystal, ε′′µs is an imaginary part of polarizability
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and n is a unit vector to the detector. For relativistic particles, the main
contribution to the radiation amplitude is given by the wave field travelling
along the electron trajectory, i.e., the diffracted wave (Fig. 5.2).

Two facts should be emphasized for PXR in the EAD mode. According to
(5.5), the intensity decreases within the small distance from the entry point
z0. This is contrary to the conventional Bragg geometry (3.19), where the de-
crease takes place along the entire crystal length. The second point is that the
coherence length is independent of the polarizability εµs due to the condition
(vN) ≈ 0. Thus, for the EAD geometry, the ‘density effect’, [76], influencing
the radiation processes in a homogeneous medium, disappears. For ultrarela-
tivistic electrons, the following geometrical conventions are useful:

n = − cos θ N + θxex + θyey, v = v [cos ψ ex + ψzN + ψyey] , (5.6)

where the small angles θx, θy, θ =
√

θ2
x + θ2

y ∼ mc2/E � 1 define the
deviation of the photon wave vector from the centre of PXR reflection,
ψz, ψy, ψ =

√
ψ2

z + ψ2
y are the deviations of electrons from the incident beam

due to multiple scattering and ex,ey are the unit vectors (Fig. 5.2). The
coherent length with the accuracy O(θ, ψ) is

1
Lg

≡ q =
1
c

[(vg) − ω(1 − θx − ψz)] ≈
1
c

[ωB − ω(1 − θx)] . (5.7)

As follows from (5.5), the PXR intensity is maximal at the condition q = 0,
which defines the position of the PXR spectral line:

ω =
(vg)

1 − θx − ψz
≈ ωB(1 + θx), ωB =

gc√
2

. (5.8)

In this approximation, the radiation frequency is independent of the deviation
ψ of the electron velocity from the primary direction, i.e. in the EAD geometry
PXR is weakly influenced by multiple scattering. The deviation αB of the wave
vector k from the Bragg condition is:

αB =
2kg + g2

k2
= −

[
γ−2 + (θy − ψy)2 + (θx − ψz)2

]
, γ =

E

mc2
. (5.9)

Because the coherence length Lg does not depend on the polarizability, ex-
pression (5.5) can be used in (2.36) at the condition ωL/c � 1:

4L2
g sin2 L/2Lg = πLδ(q) ,

which is valid, despite the absorption, for the crystal of thickness L � Labs,
used in experiments [6, 177]. According to Sect. 1.3, the multiple scattering
of electrons can be taken into account by averaging (5.9) over the angles ψ:



5.2 Spectral Distribution of PXR Peaks 81

〈αB〉 = −
[
γ−2 + θ2 + θ2

s(L)
]

, (5.10)

where the root-mean-square angle θ2
s(L) is determined by (1.25).

Thus, the parameter 〈αB〉 in the dispersion equation (5.2) is negative in
the vicinity of the PXR peak, and the real part of the coefficient 2γ0(〈αB〉 +
χ0) in this equation is non-zero due to the condition χ′

0 < 0 for the X-ray
polarizability. The approximate analytical expressions for roots are then

ε1s = − χ0

2γ0
+

C2
s |χg|2

2γ0(〈αB〉 + χ0)
, ε2s = γg +

√
γ2

g + 〈αB〉 + χ0 ,

|ε2s| ∼
√

|χ0| � |ε1s| ∼ |χ0| . (5.11)

Due to the condition |ε2s| � |ε1s|, the principal contribution to the PXR
intensity is delivered by the term with µ = 1 in (5.5). In addition, for 2θB =
90◦, C1 = 1, C2 = 0 (EAD), and the radiation is almost polarized in the
direction perpendicular to the plane of vectors N , g (σ-polarization). This
simplifies (5.5) with the accuracy O(|χ0|2):

∂2Ngσ

∂ω∂n
=

α ωL (θ2
y + 〈ψ2

z〉)|χg|2µe

2πc2|γ−2 + θ2 + θ2
s(L) − χ′

0|2
δ

[
g√
2
− ω

c
(1 − θx)

]
,

∂2Ngπ

∂ω∂n
=

〈ψ2
y〉

(θ2
y + 〈ψ2

z〉)
∂2Ngσ

∂ω∂n
. (5.12)

Taking into account 〈ψ2
z〉 = 〈ψ2

y〉 = θ2
s/2 and the experimental condition

θ2
s � |χ′

0|, we obtain Ngπ � Ngσ.
The spectral intensity of PXR in EAD mode is proportional to Lω/c for

the crystal of any length and can essentially exceed the PXR intensity for
conventional Laue and Bragg modes, when the maximal value of Labsω/c is
determined by the absorption length Labs(ω) of the radiation in the crystal.
The crystal absorption is presented in (5.5) as a factor, depending on the
electron coordinate z0. Assuming the beam cross-section de and uniform dis-
tribution of particles inside a beam, the average of (5.5) over z0 results in the
decrease of mean photon numbers per electron, which is taken into account
in (5.12) by the factor

µe =
1 − e−2deε′′11ω/c

2deε′′11ω/c
< 1 .

The absorption of PXR photons in a crystal is less than the absorption of
X-rays of the same energy in a homogeneous medium:

ε′′11 = χ′′
0

(
1 − |χg|2

|γ−2 + θ2 + θ2
s(L) − χ′

0|2
)

< χ′′
0 , (5.13)

which is a consequence of the known Borrmann effect [25].
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According to (1.19) and (5.12), the specific feature of the PXR spectrum
inside a single reflection is a discrete sequence of spectral lines. In the case
of relativistic electrons, the frequencies of these lines do not depend on the
particle energy and correspond to different reciprocal lattice vectors:

ω
(l)
B =

cg(l)

√
2

=
πc

√
2

d(hkl)
l, l = 1, 2, . . . , (5.14)

where d(hkl) is a minimal distance between the reflecting crystallographic
planes. In the experiments [5, 44] with the diamond crystal (lattice constant
a = 3.57 Å), the photon energies in {100} and {110} reflections are localized
at

�ω
(l)
(100) =

π�c
√

2
a

l × 0.63 × 1017 keV ≈ 2.46 × l keV, l = 4, 8, . . .

d(110) =
a√
2
, �ω

(l)
(110) ≈ 3.47 × l keV, l = 2, 4, 6, . . . . (5.15)

To quantitatively fit the theoretical results to the experimental data, the de-
pendence of the spectral distribution and total number of photons in PXR
peaks on the angular θD and energy δωD resolution of a detector has to be
taken into account. Summing over the polarization and integrating over the
angle θx in (5.12), the radiation intensity is

∂2N (l)

∂ω∂θy
= N

(l)
0

θ2
y + θ2

s

ω(l)|θ2
ph + θ2

y + u2|2 H [θD − |u|] ,

N
(l)
0 =

α ω(l)L |χg|2µe

2πc
, θ2

ph = γ−2 + θ2
s − χ′

0, u =
ω

ω(l)
− 1, (5.16)

where H[z] is a stepwise Heaviside function. The natural spectrum of the PXR
line near the frequency ω(l) is then

∂N (l)

∂ω
=

N
(l)
0

ω(l)

{ |u2 + θ2
ph| + θ2

s

|u2 + θ2
ph|3/2

arctan
θD√

|u2 + θ2
ph|

+
θD(θ2

s − |u2 + θ2
ph|)

|u2 + θ2
ph|(θ2

D + |u2 + θ2
ph|)

}
H [θD − |u|] (5.17)

and depends on the ratio between the kinematic parameter θph and two in-
strumental parameters θD and δωD. The value θD ∼ SD/R (SD is the area
of the detector slit) depends on the distance R between the crystal and the
detector. According to classification [40], the ‘far case’ (θD < δωD/ω(l)) or
‘near case’ (θD > δωD/ω(l)) mode can be realized in the experiment.

Reflections from the planes {100} and {110} with other indices are equal
to zero; LD is the total distance between the crystal and the detector; η is
the detector efficiency; the value µe =

[
1 − exp(d/L

(c)
abs)

]
L

(c)
abs/d is fulfilled as

a result of averaging on the electron coordinates z0 in (5.5).
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Table 5.2. Experimental parameters for spectra simulation

Plane ω
(l)
B ω

(l)
exp |χ0| |χg |2 θ2

ph × 106 L
(c)
abs (cm) L

(w)
abs (cm) L

(a)
abs (cm) η% µe

index (keV) (keV) ×106 ×1013 (rad2) diamond window air

(400) 9.82 9.7 ± 0.15 15.31 120.0 18.58 0.12 0.148 136 78 0.73
(800) 19.65 19.7 ± 0.23 3.83 1.0 6.77 0.63 1.003 1,058 15 0.94
(220) 6.95 6.8 ± 0.15 30.62 883.0 33.89 0.04 0.045 52 94 0.24
(440) 13.84 13.8 ± 0.15 7.66 14.8 10.60 0.29 0.342 388 27 0.87
(660) 20.84 20.7 ± 0.20 3.40 0.6 6.35 0.75 1.026 1,262 15 0.98

L (cm) L1 (cm) L2 (cm) LD (cm) a (cm) d E LR θD × 102

(cm) (MeV) (cm) (rad)

0.1 ± 0.02 0.6 155 187 2.5 0.08 900 14.8 1.30

[44] [44, 78] [44, 78] [44, 78] [44, 78]
– 0.005 72 104 0.65 – – – 0.63

[ 78,30 ] [30] [44, 78] [30] [30]

In experiments [5, 30, 44, 78], the following conditions were used (Table
5.2):

θph � θD � δωD/ω(l) . (5.18)

The real shape of the PXR line is defined by the instrumental function of the
detector, and data fitting is based on the integral photon number N

(l)
th in the

peak, which follows from (5.17):

N
(l)
th =

π

2
N

(l)
0

{
ln(D2

l + 1) − D2
l

D2
l + 1

}
, Dl =

θD

|θph|
� 1 . (5.19)

There are also additional contributions to the observed number of photons
N

(l)
D , from coherent bremsstrahlung and diffracted bremsstrahlung (DBS).

Most of the bremsstrahlung photons from the relativistic charged particle
moving in a medium are concentrated in a narrow cone around the particle
velocity [15]. These photons can be reflected by crystallographic planes and
diffract in the directions of PXR reflections [35].

The DBS contribution to the reflection intensity can be estimated if PXR
is considered as a result of pseudophoton diffraction (Sect. 1.2). The number
of photons in the PXR peak, corresponding to the reciprocal lattice vector g,
is

NPXR(g) ≈ n(ω)R(g)δωD , (5.20)

where n(ω) ≈ (α/2πω) ln(E/�ω) is the spectral density of pseudophotons and
R(g) is the probability of the reflection of photons with frequency ω from
crystallographic planes. The number of DBS photons is

NDBS(g) ≈ nBS(ω)R(g)δωD . (5.21)
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The spectral density of bremsstrahlung quanta, emitted on the length Lext

inside a crystal with atoms of charge Z and volume ρ0, is [35]

nBS(ω) ≈ 16
3

Z2αr2
e

ρ0Lext

ω
ln
(

E2

�mc2ω

)
. (5.22)

Here re is the electromagnetic radius of an electron, and Lext is inversely
proportional to the crystal polarizability:

Lext =
1

ω|χ0|
, |χ0| ≈

4πZrec
2

ω2
ρ0 . (5.23)

From (5.20)–(5.21), the estimate for the DBS and PXR ratio is straightfor-
ward:

ξ1 =
NDBS

NPXR
≈ 4ω

3c
Zre

[
1 +

ln γ

ln(E/�ω)

]
. (5.24)

For the considered experiments, ω ≈ 10 keV, Z = 6, E = 900 MeV, the para-
meter ξ1 ≈ 3×10−3; thus the DBS contribution to the total reflection intensity
can be neglected. The relative contribution of coherent bremsstrahlung to the
total intensity is also inessential and derived from (3.23):

ξ =
NCBS

NPXR
≈
(

m2c4

E�g

)2 1
16 sin4 θB

≈ 10−4 . (5.25)

Figure 5.3 compares the values N
(l)
exp calculated from the spectra in Fig. 1.7

by taking into account the detector background correction and its intrinsic
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Fig. 5.3. The diagram of the experimental and theoretical values for PXR quanta
emitted in various reflections. Solid area: the number of quanta counted by the
detector N

(l)
exp; unshaded area: theoretical number N

(l)
th of PXR quanta generated

in the crystal; shaded area: the values N
(l)
D calculated by taking into account the

corrections on the photon absorption between the crystal and the detector and on
the detector efficiency in accordance with Table 5.2
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spectral function in the Gaussian form. Besides, we take into account the
PXR absorption at the accelerator exit, the detector input windows and in
the air between the crystal and the detector. Various radiation harmonics
have different absorption lengths L

(l)
abs in these media and, as a result, the

correlation between the values N
(l)
exp for different peaks is essentially changed

in comparison with the corresponding values N
(l)
th . All parameters required for

calculation are shown in Table 5.2. The number of quanta N
(l)
D calculated by

taking into account these corrections fits the experimental results quite well.

5.3 Investigation of the Production Mechanism of PXR

By now, numerous experimental and theoretical works have been published,
investigating the production mechanism of PXR. In this section, we consider
some of them, where the qualitative properties of PXR emission and detection
have been studied.

As follows from (1.19), the formation of the series of harmonics at a fixed
detector and crystal position is one of the important unique features of PXR.
The detailed investigation of these series was carried out in [39, 49]. In the
experiments [39], the intensity of PXR reflections from 855 MeV electrons
transmitting through the silicon crystal was measured. By rotating the crystal,
the intensity of harmonics, corresponding to different crystallographic planes
but at fixed angle θB = 22.5◦, was recorded.

The typical series of the PXR reflection from the set of {111} planes is
shown in Fig. 5.4. The position of the peaks is well explained by (1.19) if the
lattice constant a = 5.43 Å is used:
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Fig. 5.4. The energy spectrum of PXR for the beam energy E = 855 MeV and the
Bragg angle θB = 22.5◦
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�ω
(l)
(111) =

π�c
√

3
a sin θB

l × 0.63 × 1017 keV ≈ 5.12 × l keV ,

l = 1, 3, 4, 5 . . . . (5.26)

The theoretical interpretation of PXR spectra, which uses an averaging of
coherent length [48] for taking into account the multiple electron scattering,
failed to explain the experiment [39]. This failure can be understood from
general analysis of multiple scattering of electrons, considered in Sect. 1.3 on
the basis of the classical theory. In the general case of thick crystals, the to-
tal PXR output is obtained from the averaging of intensity over all electron
trajectories, defined by the kinetic equation [29]. However, this task can be es-
sentially simplified, and an analytical solution can be obtained in two limiting
cases, which are often realized in experiments. The first case [48] corresponds
to the limitation of the crystal thickness:

L < L0, θ2
s (L0) = γ−2 + |χ0| , (5.27)

i.e. multiple scattering does not change the radiation coherence over entire
particle trajectory in the medium. This approximation for multiple scatter-
ing is called coherent model. Using (1.25) for the average angle of multiple
scattering and explicit expression for polarizability, the parameter L0(ω,E) is

L0(ω,E) = LR

[
mc2

E2
s

+
ω2

0

ω2

E2

E2
s

]
. (5.28)

On the other hand, according to Sect. 1.3, the approximate averaging over
the trajectories as well as over mosaicity of crystal can also be done for thick
crystals if the thickness and energy (or angular) resolution of the detector
satisfies the conditions

L > L0,
δωD

ωB
> θ2

s (L) , (5.29)

which are applicable to [39].
The crystal in this case can be considered as the aggregate of blocks, each

with the thickness Li ∼ L0. The radiation from these blocks is formed in-
coherently; however, due to low energy resolution of the detector, the PXR
reflections from separate blocks are located within the single peak. Thus, the
total number of photons in the peak is proportional either to the total crys-
tal thickness L =

∑
Li or to the absorption length Labs if L > Labs. The

procedure of averaging over the blocks in calculation of the PXR intensity is
analogous to the one used in X-ray diffractometry [46, 69], where the scatter-
ing amplitude from crystallographic planes within a single block of a mosaic
crystal is calculated by the kinematic theory, and the integral intensity is
proportional to L or Labs.

In [41, 46], the incoherent model has been developed, useful for practical
applications, for example for [39]. The applicability of this model is restricted
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by (5.29). To use it, the factor f(N ,v,k) is implemented in the kinematic
equation (2.44), which approximately takes into account the absorption and
the deviation of electron trajectory from the primary direction. The following
expression results for the angular distribution of photons in the PXR reflec-
tion:

∂2Ng

∂θx∂θy
=

α

4πc

∞∑

l=1

ω
(l)
B Labs

∣∣∣χg(ω
(l)
B )

∣∣∣
2

sin2 θB

θ2
x cos2 2θB + θ2

y

(θ2
x + θ2

y + γ−2 + |χ0|)2
f(N ,v,k) ,

f(N ,v,k) =
∣∣
∣∣
cos(2θB − φ)

cos φ

∣∣
∣∣
(
1 − e−L/Labs| cos φ|

)
, φ = v̂N . (5.30)

For simulation of the detected intensity in [39], the convolution of (5.30) with
the Gaussian angular distribution σS for electrons due to multiple scattering
has been used:

σS =
13.6 MeV

E

√
L

LR
[1 + 0.038 ln(L/LR)] .

Table 5.3 demonstrates a very good agreement between the theoretical
and experimental values of the photon flux per steradian and single electron
calculated and measured in [39] by means of the method described above.
The real values of Labs are compared with those obtained from the fit of the
experimental data.

Table 5.3. Measured and calculated photon flux of PXR for the (111), (220) and
(224) reflections at the maximum of the angular distribution [40]

Plane Energy (eV) Photon Flux dN/dΩ, e− sr Lth
a Lexp

a µm
Measured Calculated µm [45]

(111) 5,166 (4.5 ± 0.5) ×10−3 4.3 × 10−3 20.2 –
(220) 8,332 (6.5 ± 0.8) ×10−3 6.3 × 10−3 84.9 91 ± 5
(224) 14,630 (5.4 ± 0.5) ×10−3 5.2 × 10−3 – –
(440) – – – 657.8 649 ± 80

The effectiveness of the incoherent model for multiple scattering in thick
crystals is confirmed in [24, 45], where the dependence of PXR on the crystal
thickness and electron energy has been investigated. In these experiments,
the integral PXR output from {111} and {110} planes in a 0.2 mm < L < 5
mm thick Si crystal and electron energy 200 MeV < E < 1100 MeV has been
measured. The typical PXR spectrum from [24, 45] is shown in Fig. 5.5. For
the silicon crystal, the radiation length LR = 5.1 cm and the plasma frequency
ω0 = 1.2×1015 s−1. For the electron energy E = 500 MeV and photon energy
�ω = 10 keV, the value L0 � 0.1 mm; i.e. in [24, 45] condition (5.29) for
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Fig. 5.5. A typical spectrum of PXR for the electron energy 1,100 MeV from [45].
The upper and lower discrimination levels for counting the PXR photons belonging
to the (111) reflection are shown by the arrows

applicability of the incoherent model has been satisfied. Figures 5.6 and 5.7
from the papers [24, 45] show that the dependence of the PXR intensity on
the parameters L and E can be simulated quite reasonably in the framework
of the ‘incoherent model’ if conditions (5.29) are fulfilled.
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Fig. 5.6. The electron energy dependence of the PXR photon numbers accepted
by the detector solid angle 9.12 × 10−5 sr for θ = θB. The experimental values are
plotted by solid circles. The solid and dashed curves are the theoretical predictions of
the coherent and incoherent model, respectively. The thin line shows the simulation
of the multiple scattering by means of a more rigorous method [63]
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Fig. 5.7. Crystal thickness dependence of the PXR intensity. The circles are for the
(220) reflection and the asterisks are for the (440) reflection. The solid and dashed
lines are predictions of the coherent model for the (220) and (440) reflections. The
dotted and dot-dashed lines are the simulation by the incoherent model for the same
reflections. The arrows show the X-ray absorption length in the crystal for the (220)
and (440) reflections, respectively

A very important role for understanding the microscopic nature of PXR
is played by the experiment [49], where low-energy electrons (E = 90 MeV)
were used for monitoring intensity damping in the peak sequence of the pho-
ton energy spectrum depending on the harmonics number l. The results for
the silicon target are well explained by the incoherent model. For a pyrolytic
graphite sample, the maximal up to date number of harmonics lmax = 8 for the
(111) reflection has been detected. The surprise was the underestimate of the
theoretical intensity Il for higher harmonics [49], for example Iexp

8 /Ith
8 � 200.

The interpretation failure was explained [49] by incorrect mosaicity consider-
ation in the PXR emission process. The discrepancy between the theoretical
predictions and experimental measurements [49] for high harmonics was also
discussed in [79]. Diffraction of the bremsstrahlung quanta and the loss of
some emitted quanta due to the pulse shortness were assumed as possible
reasons for this discrepancy.

The considerable gain of intensity in higher harmonics, however, may also
be related to the contribution of coherent bremsstrahlung to the peaks with
a higher l. The resonant frequencies of PXR and CBS (Sect. 3.3) are defined
by the same kinematic factors, therefore the intensity (3.19) depends on the
amplitudes of both processes. For the mosaic graphite crystal in [49], condi-
tion (5.29) is fulfilled, and (3.19) can be simplified in the framework of the
incoherent model, using a kinematic approximation (5.29). Thus, the angular
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distribution of the photons at fixed θB in the spectral peak with index l is
given by

∂2Nl

∂θx∂θy
=

α

4πc
ωlLabs(ωl)f(N ,v,k)

(θ2
x cos2 2θB + θ2

y)

sin2 θB

×
∣∣∣∣

χgl
(ωl)

(θ2
x + θ2

y + γ−2 + |χ0|)
− 4πα[Z − F (gl)]e−W (gl)

sin θBl3
(
d

a
)3
∣∣∣∣

2

,

gl =
2π

d
l, ωl = c

gl

2 sin θB
. (5.31)

Here F (gl) is the atomic scattering factor and e−W (gl) is the Debye–Waller
factor; d is the distance between the planes for the considered reflection and
a is the lattice constant. Taking into account χgl

(ωl) ∼ F (gl)e−W (gl), it is
evident that the first harmonics are mainly contributed by PXR for Z � F (gl)
and E = 90 MeV, as follows from (5.31). However, due to exponential damping
of the atomic factor for a higher l, the relative contribution of CBS (the second
term in (5.31)) becomes principal. The less the atomic charge of the crystal,
the more pronounced the effect. It is important that the PXR contribution
to the intensity reduces as ∼ θ−2, whereas the CBS contribution increases as
∼ θ2. Therefore, the ratio between the numbers of detected PXR and CBS
quanta strongly depends on the angular resolution of the detector.

Figure 5.8 shows the results of CBS consideration in the PXR spectrum for
the experiment [49]. The contributions of PXR and CBS are shown separately
for several harmonics from [49]. All the theoretical curves are simulated by
integration over the angles in (5.31) within the intervals θD = γ−1, 10γ−1 rad
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Fig. 5.8. Spectral harmonics of the radiation from the electron of E = 90 MeV
in the graphite mosaic crystal for the (002) series with θB = 22.5◦ [49] and their
theoretical simulations
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and using F (gl) from [47, 77]. The above results show that a more detailed
study is necessary for accurate explanation of the experiment.

The dependence of the PXR the peak frequency on the crystal and detector
orientation with respect to the electron beam is important for applications.
For arbitrary electron energy, the relation between these parameters is defined
by (4.16):

ωl =
(vgl)

1 − (vk)/ck
. (5.32)

In general, the peak frequency of spectral series depends on both the angle
θB between the velocity and reflecting planes v̂gl = π/2 − θB and the angle
θ0 between the velocity and detector (Fig. 2.3). In experiments, where the
angular dependence of ωl was investigated, the relativistic electrons were used:
(1− v2) = γ−2 � 1. Then according to (2.38), the wave vector of the emitted
photon is located near the vector kB, k = kB + u, u/kB ∼ γ−1 � 1. Because
v̂kB = 2θB, the peak frequency depends on the single angle only:

ωl ≈
glc

2 sin θB
(1 + θx cot θB) , (5.33)

where θx ∼ γ−1 defines the projection of the vector k − kB onto the plane of
the vectors v and kB (Fig. 2.3).

Figure 5.9 shows the experimental measurements of the PXR photon en-
ergy as a function of angles for different scan types. In [53], the intensity of the
(111) reflection from a diamond crystal and an electron of energy E = 8.3 MeV
were measured for simultaneous rotation of the crystal around v and keeping
the detector on the maximal reflection intensity. This scan is described by
(5.33) with θx = 0 and is, in fact, represents the DuMond diagram for this
reflection. The measurements in [66] have been carried out with electrons of

(a) (b)

Fig. 5.9. Angular dependence of the PXR photon energy: (a) the value θB was
varied with θ0 = 2θB [53]; (b) the value θ0 = 2θB was fixed and the crystal rotated
by the angle θx near the value θB [67]
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E = 45 MeV and a Si crystal for the (220) reflection. The detector position
was fixed at θ0 = 2θB, and the crystal was rotated by a small angle θx with
respect to θB to remain on the peak. For this scan, the energies of the detected
photons are on the straight lines, corresponding to (5.33) at a fixed θB.

Thus, the spectral and intensity experimental PXR features from rela-
tivistic electrons are well explained by the kinematic theory with correc-
tion for multiple scattering, detector instrumental function and coherent
bremsstrahlung.

5.4 Angular Distribution and Polarization of PXR

The fine structure of the PXR angular distribution and polarization of photons
in the reflection follows directly from the kinematic PXR theory [46, 48]. The
first experiments (see Sect. 1.4) already qualitatively confirmed the asymmetry
of the intensity in angular distribution with respect to the centre of reflection.
The detailed experimental study of the PXR reflection fine structure has been
performed in [73].

Figure 5.10 shows the experimental angular distribution of PXR in the
(111) reflection for the Laue geometry from a 17 µm-thick Si crystal and sim-
ulated on the basis of the kinematic theory of X-ray intensity [73]. As shown
in the experimental sketch (Fig. 5.10a), the angular distribution was scanned
at a fixed observation angle θ0 = 0.306 rad with respect to the beam velocity
by rotating the crystal by an angle Φ. The angular variables for intensity dis-
tribution are expressed via Φ using (2.51)–(2.54), and after integration over
the frequencies the PXR intensity is (absorption included)

∂N

∂Φ
=

α

2π

J

e

∞∑

l=1

∣∣∣χgl
(ω(l)

B )
∣∣∣
2 ω

(l)
B Labs(1 − e−L/Labs)

c sin2 θB

× (∆Φ)2 cos2 2θB
[
(∆Φ)2 + γ−2 + |χ0(ω

(l)
B )|

]2 ,

ω
(l)
B =

πc
√

3
a sin θB

l, a = 5.43 Å, θB =
θ0 + ∆Φ

2
, ∆Φ = Φ − Φ0 . (5.34)

The centre of the PXR reflection is positioned at Φ0 = 0.153 rad, whereas
the maxima are located at ∆Φ± = ±

√
γ−2 + |χ0|. In contrast to the curve in

Fig. 2.5, there is an asymmetry in the angular distribution of intensity, which
is explained by different values of the factor cos2 2θB/ sin2 θB at points ∆Φ±
for low-energy electrons γ−2 � |χ0|. The larger the electron energy E, the
smaller the asymmetry. The existence of a close to zero intensity minimum
at Φ = Φ0 means that multiple electron scattering was negligible for the
thickness of the crystal used. The simulation [73] using the formula analogous
to (5.34), fits well the experimental data (Fig. 5.10).
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Fig. 5.10. Angular distributions of the photons in the PXR reflection in accordance
with [73] (Laue case): (a) the experimental set-up; (b) experimental data for the
photon intensity as a function of Φ from the electrons with energy E = 15.7 MeV
(points), theoretical simulation without taking into account the absorption of the
photons in a crystal (dashed line) and with absorption (solid line); (c) the same for
the electron energy E = 25.7 MeV

The PXR angular distribution of electrons of E = 100 MeV in the Bragg
geometry was measured in [55]. The (111) reflection of a silicon crystal was
used, and a detector was placed at an angle θ0 = 144◦ to the electron beam.

The experimental data and simulations are depicted in Fig. 5.11. There
is no intensity minimum at the centre of reflection due to the increase of the
multiple scattering angle, which corresponds to the theory of Sect. 1.3 for
thick crystals. The theoretical simulations in [55] demonstrate the dynamical
diffraction effects for the perfect crystals, which lead to the increase of the
absorption length, according to (5.13).

The experiments [51] with the (220) PXR reflection from the 20-µm Si
crystal, θB = 45◦ and electrons with E = 230 MeV, present for the first time
a map of the angular distribution using a special imaging detector. Accord-
ing to the PXR theory for this geometry, the pattern is almost completely
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(a) (b)

Fig. 5.11. Angular distributions of the photons in the PXR reflection according
to [55] (Bragg case): (a) experimental data for the photon intensity as a function
of θB from the electrons with energy E = 100 MeV and the crystal thickness L =
250 µm (points); theoretical simulation with the absorption of the photons in a
crystal (dashed line) and without absorption (solid line); (b) the same for L =
3, 000 µm

polarized along the direction θy perpendicular to the plane of the vectors v
and g. Moreover, the analysis of the contribution from different harmonics
into PXR angular distribution is carried out (Fig. 5.12). In [39], the analysis
of contributions by other than PXR radiative mechanisms into reflections of
different orders was performed. The experimental results (Fig. 5.13) demon-
strate an increased role of the non-PXR radiations in the reflections, which
agrees with the estimate (5.31) for a graphite crystal.

Concerning the polarization of PXR, the investigation of anisotropy effects
for the scattering of X-rays in a medium is not really done today, as it was for
optical diapason [38], for example. The tensor of the dielectric permittivity
for X-rays is, in contrast to the optic range, isotropic for almost the entire
range of frequencies, except for the narrow region near characteristic atomic
lines and nuclear resonant transitions (Appendix A.1). Preferential vectors of
polarization (eigenvectors) es⊥k, s = 1, 2, for X-rays in crystals are caused
by the interference of the waves reflected from the crystallographic planes.
Therefore, they are defined by the experimental geometry (the Bragg angle
θB and reciprocal lattice vectors g), but not by the atomic characteristics. In
the most usual case of two-beam diffraction, the eigenvectors are π-polarized
(eπ is in the plane of the vectors k and g) and σ-polarized (eσ is perpendicular
to the plane of k and g) [56]. The diffraction theory for both waves differs by
the polarization factor Cs in the Fourier component of the X-ray polarizability:

χs
g = χgCs, Cσ = 1, Cπ = cos 2θB . (5.35)

For conventional X-ray diffraction, the radiation reflected from the crystal-
lographic planes consists of an incoherent mixture of waves with σ- and
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Fig. 5.12. Some results from [51]: (a) image of the PXR angular distribution from
the (220) reflection, θB = 45◦; (b) vertical scan of intensity as a function of angle
θy (points), harmonics l = 1 (dot-dashed line), l = 2 (dashed line), contribution by
both harmonics (solid line)

π-polarizations. In the case of the Bragg diffraction, the contribution of π-
polarization is

Pπ =
1

1 + cos2 2θB
, 0.5 < Pπ < 1 , (5.36)

whereas in the Laue diffraction, the parameter Pπ varies between the same
limits, but depends on both θB and the crystal thickness [25].

The polarization properties of PXR from relativistic particles are similar to
those of X-rays in conventional diffraction. According to the two-beam approx-
imation for PXR (Sect. 1.3), the intensity of radiation in the PXR reflection is
composed of two incoherent photon fluxes with σ- and π-polarizations. There-
fore, the degree of PXR polarization for the reciprocal vector g is introduced
as a relative intensity of π-polarized photons:

Pπ(g) =
∆Nπ

∆Nπ + ∆Nσ
,

∆Ns =
∫ ∫

∆ΩD

dθxdθy

∫

∆ωD

∂2N
(s)
g

∂Ω∂ω
; s = σ, π , (5.37)
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Fig. 5.13. Angular θx-distribution of PXR at the Bragg angle θB = 22.5◦ [39]. The
top plot shows the (111)-distribution and the bottom plot the (333)-distribution. The
experimental data are represented by circles, and the curves show the contribution
by PXR (broken line), transition radiation (point) and bremsstrahlung (dash-dotted)

where the integration over the angular and frequency resolution of the detector
is performed.

In kinematic approximation for PXR (2.42), where ϕ = 0 for σ-polarization
and ϕ = π/2 for π-polarization, and for real detectors (∆ωD/ω > γ−1), the
integrals in (5.37) are cancelled and PXR polarization can be calculated from
(5.36), like in the case of X-ray diffraction.

When the incoherent model for crystal mosaicity and multiple scattering is
adopted, formula (2.51) for the PXR spectral density may be used, and PXR
polarization is calculated by (5.36). For PXR in perfect crystals, however, the
calculation of Pπ(g) with dynamical effects requires the numerical integration,
and the result depends on the crystal thickness. In the target with L > Lext,
the polarization depends on θB only. The behaviour of the Pπ(θB) dependence
is illustrated in Fig. 5.14, where the polarization analogue of the DuMond
diagram is shown for a Si crystal and ∆θD = ∆ωD/ω = 10−2.

Complementary to integral interpretation of the PXR polarization, the
fine structure of radiation polarization in the vicinity of the PXR peak has
been studied in [65]. The theoretical approach of [65] is based on the kine-
matic formula (2.29), which connects the PXR spectral–angular distribution
of polarization es, s = 1, 2, (es · k) = 0 proportionally to (es(ωv/c2 − g))2.
For fixed values of the vectors v, g,k, the polarization vectors can be cho-
sen to put e1 onto the plane (k, ωv/c2 − g), and e2 perpendicularly to this
plane. Then the radiation is locally polarized at each point of the distribution
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Fig. 5.14. Diagrams for the polarization of PXR from the electrons with energy
E = 50 MeV in a Si crystal for the limiting cases of thin (solid line) and thick (dash
line) crystals

θx, θy within the PXR reflection. The angle between the polarization plane
and radiation plane (v, k) is found in [70]:

Ψ = arctan
g[v × k]

(vk)(g(v/c + k/k))
. (5.38)

Figure 5.15 [65] shows the angular distribution of PXR polarization for the
(220) reflection in the Si crystal from electrons with energy E = 80.5 MeV and

0 1 2 3 4 5 6 7

θx

θy

-0.5° 0.5°0° 1°

1°

0.5°

0°

-0.5°

Θ=20.98°

Fig. 5.15. Angular distribution of the polarization of PXR [65]. Each long dash
indicates the direction of the polarization plane calculated using (5.38). Experimen-
tal results for the polarization direction and degree, measured within eight stripes
denoted by 0–7, are shown by the bold arrows. The maximum of the PXR intensity
is concentrated in a circle, indicated by small dashes
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θB = 20.98◦. The theoretical curves are simulated by (5.38), and the arrows
show the experiment [72], where eight independent polarizations have been
identified using a CCD polarimeter.

For polarization of radiation from nonrelativistic electrons, the approach
[65] can also be applied. However, in this case the wave vector of photons is
determined by the detector position (see Chap. 4). Moreover, the interference
of PXR and CBS in (4.18) leads to a cumbersome expression for polarization
plane parameters, and therefore the formula for this case is skipped here.

5.5 Observation of PXR from Protons

The majority of experiments on PXR have been conducted with electron
beams due to their wide availability and easy operation. The experiments
[3, 14] present the detection of PXR from relativistic protons with energy
E = 70 GeV at IHEP (Serpukhov, Russia) and E = 5 GeV at JINR (Dubna,
Russia). The goal of these experiments was to confirm the PXR theory for
other than electron particles and to use the PXR phenomenon as an identifica-
tion procedure for charged particles and evaluation of their energy. Up to now,
the paper [14] have been a unique measurement of PXR from heavy particles,
and therefore we describe in details the first experiment. In the recent exper-
iment [3], the PXR peaks have been resolved uniquely due to the use of the
detector with higher resolution. The monocrystal of silicon 40×40×18 mm3

in size was used for excitation of the PXR (220) reflection. The angle θB was
within the range 2◦−6◦, and the proton beam of (1−5) × 106 particles/fall
intensity and ∼3 mrad divergence was evacuated from the ring by a bent
crystal. The choice of the Bragg angle value was motivated by the optimal
crystal thickness for the maximal PXR output in the range of 30−100 keV.
The scintillation counter, based on the Y Al O3 : Ce3+ crystal of size 25 × 3
mm2, had an relative energy resolution 28% at γ-line 59.5 keV of collimated
source 241Am and had a best efficiency for the mentioned photon energies.
The detection scheme registered only those PXR quanta, which were synchro-
nized in time with proton transmission, that improved the signal/noise ratio.
The number of protons interacting with target was defined by a plastic scin-
tillation detector placed near the target and included into the synchronization
circuit. The distance between the detector and the target was 75 cm.

Figure 5.16 shows the PXR spectra for experiments at two angles θB1 =
5.7◦ and θB2 = 4.7◦, for which the frequencies (2.34) are ωB1 ≈ 28.2 keV and
ωB2 ≈ 37.6 keV, respectively. The curves display the obstacle of PXR proton
experiments for small observation angles, viz. high background level due to
incoherent X-ray radiation from charged particles interacting with the crystal.
As the Fig. 5.16 shows ([14] and private communications with the authors of
[14]) the PXR peaks were observed and clearly identified after background
substraction.
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Fig. 5.16. PXR spectra from the protons with energy E = 70 GeV for the (220)
reflection in Si: (a) θB1 = 5.7◦; (b) θB2 = 4.7◦; the arrows show the theoretical values
for PXR frequencies ωB; incuts show the PXR peaks after background substruction

The quantum yield has also been measured for frequencies corresponding
to the PXR reflection at the above-mentioned observation angles; N

(1)
exp =

(7.87± 1.57)× 10−6 quanta/p+ and N
(2)
exp = (1.77± 0.35)× 10−5 quanta/p+.

For theoretical calculations, formula (2.46) can be used because of essential
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Fig. 5.17. Angular distribution of PXR spectra from the protons with energy E =
70GeV for the (220) reflection in Si, θB = 2.3◦: (a) the angle between the proton
velocity and plane (220) is φ = 0; (b) φ = 2.3◦; (c) the theoretical distribution; the
points correspond to the difference between (a) and (b)
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Fig. 5.18. Radiation spectrum from the protons of the 5 GeV penetrating silicon
crystal. The reflecting plane (100) at θB = 20◦ has been selected. The clear PXR
peak at 10.21 keV along with the characteristic nickel lines is well resolved

suppression of multiple scattering in the case of protons. This calculation [16]
results in the following theoretical values: N

(1)
theor = 8.4×10−6 quanta/p+ and

N
(2)
theor = 1.1 × 10−5 quanta/p+.

For complete identification of the radiation mechanism, the angular dis-
tribution of photons was measured [14] for θB = 2.3◦, which is shown in
Fig. 5.17.

The scanning in the horizontal plane was carried out with the step 25
mrad. Each point in the curve is the result of PXR integration over the energy
interval 30−100 keV. The curve in Fig. 5.17a was measured for protons, which
incident parallel to the (220) plane, and then the target was rotated to make
an angle θB = 2.3◦ between the planes and beam (the curve in Fig. 5.17b). The
results of numerical integration by (2.44) are shown in Fig. 5.17c, where the
maximum of radiation is located at 2θB = 4.6◦ = 80.2 mrad. According to
the theory in Sect. 1.2, the FWHM of PXR angular distribution is conditioned
by the energy resolution of the detector, if it is low. This fact explains well
the measured value ∆θexp = 50 ± 7 mrad in the discussed experiment.

The experiment [3] used a semiconductor silicon detector with high
resolution, which enhanced the PXR peaks, so they have been observed as
distinguishable maxima at low background. The samples were a 100 µm-thick
silicon single crystal plate and a 2 mm-thick mosaic pyrolytic graphite spec-
imen. Figure 5.18 shows the radiation spectrum from the (100) Si reflection
measured at θB = 20◦. On the right side from the two characteristic nickel
lines (detector housing), the PXR peak at 10.21 keV is clearly seen.

Thus, the experiments [3, 14] give a convincing evidence of PXR from
heavy particles.
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6

High-Resolution PXR Experiments

6.1 Spectral Width of PXR Peaks

The PXR experiments discussed in the previous chapter are referred to as
low-resolution scale (LRS) measurements, according to the classification in
Sect. 3.4. The results reported in various publications on LRS demonstrate the
applicability of the kinematic diffraction theory and simple averaging model
for multiple scattering and mosaicity for the treatment of experimental data.

Recently, several high-resolution scale PXR experiments have been con-
ducted, which opens new application abilities for this phenomenon. The the-
oretical treatment of HRPXR is based on the dynamical diffraction theory
(see Chap. 3). The first measurements of the PXR natural linewidth were
performed in [20] applying an absorption technique. However, the low-energy
electrons with E = 10 MeV were used in this experiment, and the PXR
linewidth was found as 48 eV for the photons of �ω = 8.98 keV, which refers
in this case to LRS. The new qualitative level was reached by using a double-
crystal set-up, widely used in conventional X-ray diffraction and utilized for
PXR for the first time in [7]. This experiment was conducted at Mainz Mi-
crotron MAMI with 855 MeV electrons. The experimental set-up is depicted
in Fig. 6.1. The electron beam of divergence ∼ 35 µrad was evacuated from the
storage ring by the magnetic field and a struck Si single crystal of thickness
L = 525 µm. The same crystal with the thickness L1 = 1 mm was used as
an analyser. The geometry of the experiment was the Bragg symmetric reflec-
tion from the family of {111} planes; the variation of θB = (π − ψ1,x)/2 was
achieved by rotating a crystal by (−10 to +10) mrad. The reflecting planes
of the analyser crystal were set to the energy dispersive position [22] with the
shift ∆ψ2,x = 45.6 mrad, as shown in the DuMond diagram (Fig. 6.1b). This
geometry allowed us to scan an energy spectrum in the range (−0.3−0.3) eV
with respect to the centre of the reflection �ω

(l)
B .

Four reflections were investigated in [7], for which the frequency is calcu-
lated from (3.17):

V. Baryshevsky et al: Parametric X-ray Radiation in Crystals
STMP 213, 105–127 (2005)
c© Springer-Verlag Berlin Heidelberg 2005
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Analyser

analyser

(b)

(a)

Fig. 6.1. Dispersive double-crystal arrangement for observation of radiation in the
backward geometry: (a) experimental set-up from [7], rotation of the target crystal
permitted to change the angle θB = (π−ψ1,x)/2, reflection from the analyser crystal
permitted to scan the photon energy spectrum by changing the tilt angle ψ2,x/2;
(b) corresponding to (a) DuMond diagram

�ω
(l)
B = �ω(111)l, l = 1, 3, 4, 5 ;

�ω(111) = 1.974
π
√

3
aSi

= 1.978 keV . (6.1)

Table 6.1 contains the parameters required for theoretical interpretation
of data from [7]. The thickness of the target crystal satisfies

L > Labs � Lext ,

i.e. the formulas from Sect. 3.4 can be used, and the radiation intensity does
not depend on L. Moreover, the multiple scattering can be neglected in sim-
ulations, because a Bragg diffracted wave is formed [6] on the limited length
of the crystal (∼ Lext), and for the electron energy E = 855 MeV condition
(1.26) is fulfilled:

θ2
s (Lext) =

E2
s

E2

Lext

LR
< γ−2 .

For the angle θB ≈ π/2, the parameters |Cs| = 1, β = −1, and the spectral
and angular variables for photons arrived at the analyser, are related to the
rotation angle of the target crystal as

θx ≈ ψ1,x, θy ≈ 0, αB ≈ −4
ω − ω

(l)
B

ω
(l)
B

+ 2ψ2
1,x , (6.2)
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Table 6.1. Parameters for data interpretation [7]

(hhh) γ−2 θ2
s (L) |χ′

0| × 105 χ′′
0 × 106 |χL| × 105

�ωB (keV)

(111) 20.8 69.1 11.3 1.97

(333) 3.6 × 10−7 3.1 × 10−6 2.89 1.20 0.97 5.93

(444) 1.60 0.39 0.59 7.91

(555) 1.03 0.16 0.20 9.89

with the accuracy of detector slit parameters δx, δy. The radiation is polar-
ized within the plane (v, g) and (3.29)–(3.31) deliver the spectral–angular
distribution of single PXR reflection:

∂2N
(l)
π

∂ψ1,x∂ω
=

αδy

π2ω
(l)
B

(ψ2
1,x + 1/2δ2

y)
∣∣∣χg(ω

(l)
B )

∣∣∣
2

|ε(αB)|2

+

∣∣
∣∣∣

1
ψ2

1,x + γ−2
− 1

ψ2
1,x + γ−2 − χ0(ω

(l)
B ) − ε(αB)

∣∣
∣∣∣

2

,

ε(αB) =
1
2

[
µ + sign µ

√
µ2 − 4χgχ−g

]
, µ = αB − 2χ0 . (6.3)

The accuracy of (6.3) is adjusted to δy � γ−1. The parameter µ/2|χg| is
equivalent to the deviation parameter for the reflection curve in the dynamical
theory [6]. Using (6.3), we discuss here a physical meaning of amplitudes of
the processes forming the total PXR intensity (see also Sect. 3.4). For this
purpose, the variable µr for the maximum position and natural angular ∆Ψ
and spectral Γ widths are introduced to characterize the amplitudes by taking
part in the formation of PXR reflection [ 17,13 ].

In the first term of (6.3), the angular and spectral distributions are not
interdependent and, therefore, a simple estimates for them are

µ(1)
r ≈ 0, ∆Ψ

(l)
1 ≈ γ−1, Γ(l)

1 ≈ 2|χg|ω(l)
B , N

(l)
1m ≈ αδy

π2

ψ2
1,x

ψ2
1,x + γ−2

, (6.4)

where N
(l)
1m determines the intensity of the spectral maximum of the ampli-

tude. The above parameters describe the radiation which is formed on the
extinction length Lext and can be considered as a Bragg diffraction of the
electromagnetic field of a particle, or diffraction transition radiation (DTR)
[7].

The position of the spectral maximum of the amplitude in the second term
depends on both angle and reflection order:

ψ2
1,x + γ−2 = Re

{
χ0(ω

(l)
B ) − ε(αB)

}
. (6.5)

Here, the radiation is formed on the absorption length Labs and corresponds
to the Cherenkov mechanism (VCR). The parameters in this case are
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µ(2)
r ≈ ψ2

1,x + γ−2 +
∣∣
∣χ0(ω

(l)
B )

∣∣
∣ ,

∆Ψ
(l)
2 ≈

√
|χ0(ω

(l)
B )| Γ(l)

2 ≈ Im{χ0}ω(l)
B � Γ(l)

1 ,

N
(l)
2m ≈ αδy

π2

ψ2
1,x

ψ2
1,x + γ−2 +

∣
∣∣χ0(ω

(l)
B )

∣
∣∣

∣∣∣∣
∣

χg(ω
(l)
B )

Im{χ0(ω
(l)
B )}

∣∣∣∣
∣

2

. (6.6)

Equations (6.2)–(6.6) prove the conditional character of mechanism sepa-
ration in the formation of PXR, because the amplitude ratio and interference
have a dynamical nature and depend on the reflection. This fact is illustrated
by theoretical interpretation of the experiment [7], which was carried out
with the one-crystal scheme (LRS mode). The energy resolution of the semi-
conductor or CCD detector was �∆ωD ≈ (0.2−0.4) keV, which is enough to
distinguish between the different reflections l. Due to validity of the condition
∆ωD � Γ(l)

1,2, the integration over the frequency in (6.3) can be performed:

∂N
(l)
π

∂ψ1,x
=

2αδy

∣∣∣χg(ω
(l)
B )

∣∣∣

π2

(ψ2
1,x + 1/2δ2

y)
(ψ2

1,x + γ−2)2
I(ψ1,x) ,

I(ψ2
1,x) =

∫ ∞

−∞

dt

|t + sign t
√

t2 − 1|2

+

∣∣
∣∣∣
1 −

ψ2
1,x + γ−2

ψ2
1,x + γ−2 − χ0 − χg(t + sign t

√
t2 − 1)

∣∣
∣∣∣

2

. (6.7)

The integral (6.7) is evaluated analytically, yet results in a cumbersome ex-
pression. Figure 6.2 shows the simulated PXR angular distribution using (6.7).
The radiation intensity is non-zero even for ψ1,x = 0 due to finite angular res-
olution of slit δy.

The high-resolution part of the experiment [7] was carried out with the
double-crystal scheme (Fig. 6.1). The radiation frequency spectrum was mea-
sured at two angles ψ

(1)
1,x/2 = 0.3 mrad and ψ

(2)
1,x/2 = 5 mrad. The theoretical

shape of the natural PXR lines is calculated for different orders of {111} series
in [8, 13] on the basis of the dynamical theory and neglecting the multiple
scattering ((6.3) along with the data in Table 6.1 can be used), and the results
for [7] are shown in Fig. 6.3.

The difference in the position and the width of HRPXR lines in the left and
right panels of Fig. 6.3 is explained by (6.4)–(6.6), if the following inequality
is used:

ψ
(1)
1,x/2 ≈ γ−1 � ψ

(2)
1,x/2 ≈

√
|χ0(ω

(l)
B )| .

For small values of ψ
(1)
1,x/2, the maxima of DTR and VCR amplitudes are of

the same order. On the other hand, for ψ
(2)
1,x/2 the shift of the VCR line with

respect to the reflection centre depends on the index l, and the amplitude of

DTR decreases by
(
γψ

(2)
1,x/2

)−2

∼ 10−2 times.
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(b)

(a)

Fig. 6.2. PXR angular distribution for the experimental parameters from [7]: (a)
the (111) reflection; (b) the (333) reflection. The dashed lines correspond to the
experimental data [7], the solid lines represent the calculation by (6.7) and the
dotted lines shows the contribution of DTR alone

Figure 6.4 shows the HRPXR measurements from [7]. The position of
peaks fits well to theoretical predictions; however, the dynamics of their width
is essentially different from the expected behaviour of natural lines. This effect
also takes place in HRXRD [6], where the line shape is the result of convolution
of natural spectrum with the instrumental function of the slit and the analyser.
Since in [7] the same Si crystal for the analyser was used as as for the target,
the deviation parameter µ/2|χg| is equivalent for both. Therefore, using the
simple approximation for the instrumental function, the line shape is found
to be Gaussian with the FWHM depending on resolutions of all instrumental
elements:

∆
(
�ω

(l)
1,2

)
≈ �

√[
Γ(l)

1,2

]2
+
[
2|χg|ω(l)

B

]2
+
[
ω

(l)
B

]2
θ2

s . (6.8)
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Fig. 6.3. Calculated spectral distributions of X-rays emitted from a semi-infinite Si
single crystal in the backward direction for an electron with an energy of 855 MeV
[7]. The left panel shows the results for various reflection orders at the angle ψ

(1)
1,x/2,

and the right panel shows the results at the angle ψ
(2)
1,x/2

Here, Γ(l)
1,2 are the spectral widths of PXR, the second term in (6.8) results from

the Darwin–Prins reflection of the analyser, and the third term determines the
mean-square angle of multiple scattering, θ2

s .
Figure 6.5 shows an agreement between the measured [7] and calculated

values of FWHM by (6.8) (θs ≈ 1.7 mrad) at different ψ1,x.

6.2 Forward Direction PXR

The specific character of the photon spectrum in the direction of movement
of relativistic charged particles was pointed out in the first theoretical works
on PXR [10, 12]. This specificity is caused by the dynamical character of the
formation of radiation in the crystal, and this fact is well explained by the
classic (2.16) or quantum (3.8) theory. In contrast to a homogeneous medium,
where the X-ray intensity is determined by a plane wave, in a crystal the
radiation is formed by the vector potential Aks(r) for Bloch states of the
electromagnetic field. The Bloch states are the stationary superpositions of
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Fig. 6.4. Experimental data for line shape measurements with double-crystal
arrangement from [7]. Left and right panels correspond to the same cases an in
Fig. 6.3

0 108642

hω, keV

x

x
x

x
(555)

(111)
(333)

(444)∆,
 m

eV

10

1

100

1000

Fig. 6.5. Measured and calculated values for the PXR linewidths: the black circles
(experiment) and open circles (theory) correspond to the electron tilt angle ψ1,x/2 =
0.3 mrad; the black squares and open squares show the values in the case of ψ1,x/2 =

5.0 mrad; × corresponds to the natural bandwidth of the PXR line Γ
(l)
2
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direct and diffracted waves, which in the two-beam approximation are (µ =
1, 2)

A
(µ)
ks (r) = eikrnµs

[
esA

(µ)
0 + egsA

(µ)
g eigr

]
. (6.9)

The effective refraction index nµs = 1+2εµs for the electromagnetic wave in a
crystal, and the polarization vectors es,e1s and the relation between A

(µ)
0 , A

(µ)
g

are defined in (3.14)–(3.16). Expression (6.9) is valid for any k [6]; however,
the amplitude A

(µ)
g becomes essential near the Bragg condition (3.26):

|αB| =
∣∣∣∣
2kg + g2

k2

∣∣∣∣ ≤ |χg| . (6.10)

Because the direct and diffracted waves in the crystal are independent, the
change of the amplitude of one wave near (6.10) causes the change of an-
other. In the dynamical diffraction theory, this connection leads to the known
pendellösung effect [6]. By analogy, the emission of PXR from a relativistic
particle into side reflection (amplitude A

(µ)
g ) influences the spectrum (ampli-

tude A
(µ)
0 ) of the forward direction PXR (FDPXR). Contrary to PXR at large

angles to the particle velocity, this phenomenon cannot be described by the
first-order perturbation theory on crystal polarizability [26].

The mechanism of FDPXR differs from resonant transition or diffracted
radiation [26]. The latter is an interference of transition radiation from crys-
tallographic planes; its optical equivalent is the Smith–Purcell radiation [24].
This radiation (see Sect. 1.3) is another branch of the dispersion equation
for the spectrum of emitted photons. In the case of relativistic particles, the
diffraction radiation is emitted at a small angle to the particle velocity and its
frequency is proportional to E2, contrary to FDPXR, which is independent
of the particle energy.

Despite earlier theoretical predictions of FDPXR [11, 13, 16, 21], the first
observations have been reported only recently [4, 7, 9] because of the necessity
of the HRPXR set-up. Figure 6.6 shows the sketch of the experiment [9].

The general PXR amplitude is calculated from (3.14) by selecting a wave
vector k, directed to the observation point (see Sects. 2.1 and 3.1). The spec-
trum of FDPXR (3.14) in a crystal of thickness L follows from (3.19) using a
substitution

egs → es, k−g → k, γg
µs → γ0

µs, vg → v .

For relativistic electrons with γ = E/mc2 � 1, for which the CBS contri-
bution is negligible and radiation angle θ ≈ γ−1 � 1, the spectral–angular
distribution of photons with polarization es and per one electron is

∂2Ngs

∂ω∂n
=

α

ωπ2c2
(esv)2

∣∣∣∣∣

2∑

µ=1

γ0
µs

(
1
θ2

γ

− 1
θ2

µs

)
Mµs(L)

∣∣∣∣∣

2

;
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Fig. 6.6. Schematic representation of the experimental set-up as the top view from
[9]. FDPXR is produced by 855 MeV electrons on the (111) planes of Si single-
crystal targets of 56, 58, 1, 000 µm thicknesses. Measurements were performed at
target Bragg angles θB = 9.059◦ and θB = 10.797◦corresponding to a PXR pho-
ton energy �ωB = 12.556 keV and 10.554 keV respectively. The analyser is a Si
single crystal located at a distance of 5.5 m or 7.345 m from the target. Forward
emitted radiation is reflected at the (333) planes at a Bragg angle θA

B = 28.219◦ and
detected with the position sensitive pn-CCD detector at a distance 5.5 m from the
analyser crystal. The energy of the reflected radiation is a function of the emission
angle θx

Mµs(L) = (e−iθ2
µsωL/2cγ0 − 1) ;

θ2
γ = θ2 + γ−2; θ2

µs = θ2 + γ−2 − 2εµs , (6.11)

where e1 is perpendicular to the diffraction plane k, g, and e2 lies in this
plane.

Because of the coupling of direct and diffracted waves in FDPXR, the
geometry (Bragg or Laue) of the experiment influences the FDPXR intensity.
For Laue geometry, used in the experiments [7, 9], the coefficients γ0

µs are

γ0
1(2)s =

2ε2(1)s − χ0

2(ε2(1)s − ε1(2)s)
. (6.12)

To calculate the radiation amplitude, the vector potential (3.14) with contin-
uous boundary conditions on the crystal surfaces has to be used. Therefore,
the spectrum (6.11) includes the radiations due to the jump of dielectric per-
mittivity at both the entrance and exit surfaces of the crystal, the so-called
transition X-ray radiation (TXR). To use this classification, we transform
(6.11) into

∂2Ngs

∂ω∂n
= I

(s)
TXR + I

(s)
FDPXR ,

I
(s)
TXR =

αp2
sθ

2

ωπ2

|χ0|2
θ4

γ |θ2
χ|2

∣
∣∣∣∣

2∑

µ=1

γ0
µsMµs(L)

∣
∣∣∣∣

2

,
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I
(s)
FDPXR =

αp2
sθ

2

ωπ2

{∣∣∣∣∣

2∑

µ=1

γ0
µs

(
1
θ2

χ

− 1
θ2

µs

)
Mµs(L)

∣∣∣∣∣

2

− 2
2∑

µ=1

2∑

ν=1

Re
[
γ0

µsγ
0∗
νsMµs(L)M∗

νs(L)
(

1
θ2

χ

− 1
θ2

µs

)(
1
θ2

χ

− 1
θ2

γ

)∗]}
,

θ2
χ = γ−2 + θ2 − χ0, p1 = sinϕ, p2 = cos ϕ , (6.13)

where ϕ is an angle between the diffraction plane and radiation plane (k,v).
The first term in (6.13) differs from the regular TXR spectral–angular

distribution in a homogeneous plate of thickness L [26] by the dependence
of interference of radiation at the entrance and exit crystal surfaces on the
effective refraction index (1+2εµs). This effect was observed in [9] and used for
weakening of the TXR contribution by selection of a proper crystal thickness.

The principal obstacle for experimental observation of FDPXR is the con-
centration of latter within the narrow angular cone ∼ γ−1 around the particle
velocity, where the photons produced by any radiative mechanism are trans-
mitted. This background is absent in the case of wide-angle PXR reflections.
To analyse the observation conditions for FDPXR, the signal/noise ratio is
derived below [16] from (6.13). Let us assume that the photons of frequency
ω are detected in the angular region θ ≤ γ−1 by the detector with the energy
resolution �∆ωD and aperture ∆ΩD ≤ γ−2. Then, the estimate for the first
term in (6.13) follows straightforwardly, which does not depend on the crystal
thickness (interference and polarization effects are neglected):

∆NTXR ≈ α

π2

|χ0|2γ6

(1 + γ2|χ0|)2
∆ωD

ω
∆ΩD . (6.14)

For FDPXR photons, the maximal spectral density of PXR corresponds to
the Cherenkov peak, which is conditioned by

Re(θ2
µs) = Re(θ2 + γ−2 − 2εµs) = 0 . (6.15)

For thick crystals, 4ω Im(εµs)L � 1, (6.13) (see also Sect. 3.4) gives a maximal
peak intensity:

Imax
FDPXR ∼ 1

4|Im(εµs)|2
, ∆αB ≈ ∆ωB

ωB
≈ 2|Im(εµs)| , (6.16)

where the deviation from the Bragg condition, ∆αB, defines the spectral width
∆ωB of the peak, according to (3.26). Using formula (3.15) for the effective
polarizability εµs and condition ∆ωB � ∆ωD, which is satisfied for every
detector, the integral number of photons in the FDPXR peak is

∆NFDPXR ≈ α

π2

∣∣∣∣
|χg|2γ4

(1 + γ2|χ0|)2 + |χg|2γ4

∣∣∣∣

2 1
γ2|Im(χ0)|

∆ΩD . (6.17)
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Thus, the signal/noise ratio in the FDPXR experiment is expected to be

ξF ≈
∣∣
∣∣

|χg|2(1 + γ2|χ0|)
|χ0| [(1 + γ2|χ0|)2 + |χg|2γ4]

∣∣
∣∣

2 1
|Im(χ0)|

ω

∆ωD
. (6.18)

The ratio ξF depends on the particle energy and tends to 1 if the energy
resolution of the detector is comparable with the width of the Bragg reflection
from the analyser. For the optimal particle energy γ2|χ0| ≈ 1 and detector
resolution ∆ωD ≈ |χg|ω:

ξopt ≈
1
4
|χg|2
|χ0|2

|χg|
|Im (χ0)|

. (6.19)

In general, this estimate must include the contributions of other radiation
types, e.g. bremsstrahlung. However, assuming a narrow spectral interval of
the detector, these contributions can be neglected (see (4.24)). Substituting a
typical value of X-ray polarizability [1] into (6.19), the value ξopt is found to be
varied within the limits 0.1−1.0. In successful FDPXR experiments [4, 9] with
a double-crystal set-up, the low peak magnitude fits the estimate (6.19) well.
There are several published proposals for improvement of the signal/noise ra-
tio in FDPXR experiments. In [16], two set-ups have been suggested: (i) use
of difference between parametric and transition radiations in the polarization
plane; (ii) use a spectra subtraction at different positions of the target crys-
tal. The different behaviour of the dependence [11] of radiation spectra on
the particle energy for PXR and transition radiation allows us to distinguish
between them. The first FDPXR experiment [7] used the precise measurement
of orientational dependence of TXR from entrance and exit surfaces of a thin
target crystal. Figure 6.7 from [7] demonstrates the explicit peak formed by
constructive interference of TXR from both surfaces. This peak is described
by the first term in (6.13) and is conditioned by θ2

µsωL/2cγ0 = π. The diffrac-
tion condition (6.10) has to be satisfied to change the position of the peak for
small variation of radiation angle (Fig. 6.7). The opposite case of destructive
interference is shown in Fig. 6.8a from [9], where the thickness of the crystal,
L1, was chosen to satisfy the condition θ2

µsωL1/2cγ0 = 2π.
Figure 6.8b shows the direct FDPXR measurements in [9] from the thick

crystal, when the background is caused by TXR from the exit surface. The
ratio of the peak intensity to background is also well explained by (6.19).

6.3 Multiwave PXR

The multiwave diffraction of emitted parametric X-rays in a crystal gives one
more proof of PXR dynamical nature in thick perfect crystals. Both classic
theory in Sect. 2.1 and quantum theory in Sect. 3.1 derive the PXR intensity
from homogeneous Maxwell’s equations and boundary conditions, which also
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Fig. 6.7. Results of the experiment [7] for the photon energy of 12.556 keV and the
target thickness of 56 µm. The white vertical lines in the left panels are constructive
interference fringes as taken by the pn-CCD detector. From the upper to the lower
panel the rotation angle ψx of the target crystal increases, starting from 0.0007 rad,
in steps ∆ψx = −0.00035 rad. The error bars in the right panels show projected
spectra of the pn-CCD detector rows. The full lines represent calculations on the
basis of formulas from [5], which are analogous to (6.13) yet with other notations

describe the conventional X-ray diffraction in the crystal from an external X-
ray source. The difference between the expressions for electromagnetic fields
for both processes, PXR and X-ray diffraction, is only in the choice of the
wave vector k (see Appendix A.2). Therefore, the known features of multiwave
HRXRD [14] have to have the analogues in HRPXR.

The detailed consideration of multiwave PXR has been done in [15, 25],
and here we present a general approach to theoretical treatment of this case.
Assume that the wave vector satisfies the Bragg condition for N reciprocal
lattice vectors simultaneously (N is the order of multiple Bragg diffraction):

km = k + m, m = 0, g,h, . . . ,

αm =
k2

m − k2

k2
≤ |χm|, m = 1, 2, . . . , N . (6.20)

In this case the wave field E
(s)
k (r, ω) inside a crystal can be represented as a

sum of transverse Bloch waves with polarizations e
(s)
m , s = σ, π, which travel
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Fig. 6.8. Results of the experiment [19] for the photon energy of 10.554 keV and
the target thickness of 58 µm (a) and 1,000 µm (b). The intensity distributions are
summed over all 64 rows of the pn-CCD detector as a function of the column number.
From the upper to the lower panel, the rotation angle ψx of the target crystal
decreases starting from 0.0005435 rad, in steps ∆ψx = −0.0005894 rad. Destructive
interference can clearly be recognized in (a). Panel (b), upper curves: beam spot
size about 560 × 434 µm2, the pn-CCD detector was shifted to the observation
angle θy = 0.0006 rad. Panel (b), lower curves: reduced beam spot size about 114×
200 µm2, the direction of the electron beam was altered resulting in an effective
vertical observation angle θy = 0.0004 rad and a shift of 2.6 pixels horizontally

in the direction of Bragg diffraction km and correspond to 2N -dispersion
branches [14]:

E
(s)
k (r, ω) =

∑

m

e(s)
m B(s)

m (r) ,

B(s)
m (r) =

N∑

j=1

λ(j)D(s,j)
m exp(i[km − (ε(j) − αm/2γm)nω/c]r) . (6.21)

Here γm are the cosines of the angles between the X-ray wave vector and the
internal normal to the crystal surface, the parameters λ(j) are the coefficients
of excitations of various dispersion branches with amplitudes D

(s,j)
m and ε(j)

defines the refraction of the corresponding Bloch waves depending on the
deviation parameters αm.

The wave amplitudes D
(s,j)
m and the values ε(j) can be found as the eigen-

vectors and eigenvalues of the dynamical diffraction equations which have the
form of 2N × 2N matrix equations [14]:
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∑

s′

∑

m′

Gss′

mm′D(s′,j)
m = 2ε(j)D(s,j)

m ,

Gss′

mm′ ≡ αmδss′

mm′ − 1
γm

{
χm−m′(e(s)

m e
(s′)
m′ )

+ iχQ
m−m′/k2

[
(kmkm′)(e(s)

m e
(s′)
m′ ) + (kme

(s′)
m′ )(e(s)

m km′)
]}

, (6.22)

where χm−m′ , χQ
m−m′ are the dipole and quadrupole components of the crystal

dielectric polarizability χ(r, ω) in a Fourier series over the reciprocal lattice
vectors.

The coefficients λ(j) are defined due to the boundary conditions. For a
plate-shaped crystal these conditions are reduced to the system of linear equa-
tions

2N∑

j=1

C(s,j)
m λ(j) = δm0(δsσ cos ϕ + δsπ sin ϕ) , (6.23)

with C
(s,j)
m = D

(s,j)
m for the Laue-case Bragg waves (γm > 0) and C

(s,j)
m =

D
(s,j)
m exp(−iε(j)ωL/c) for the Bragg case (γm < 0); L is the thickness of the

crystal plate and ϕ is the angle between the polarization plane of the incident
wave defined by the detector and vector e

(s)
m .

Substituting (6.21)–(6.23) into the general formula (2.16), we find the gen-
eral expression for the spectral–angular distribution of multiwave PXR. Let
us write it only for the case of the thick crystal:

∂2Ngs

∂ω∂n
=

α

ωBπ2

∣∣
∣∣∣∣

∑

s′

2N∑

j=1

(ve(s′)
g )λ(j)(ω)

D
(s′,j)
g (ω)

Q(j)(ω)

∣∣
∣∣∣∣

2

,

Q(j)(ω) = γ−2 + θ2
x + θ2

y + θ2
s + γg(2ε(j) − αm) . (6.24)

This expression is a generalization of the two-beam dynamical diffraction for-
mula (3.27) for the multiwave case. As in (3.27), the frequency ωB corresponds
to the exact Bragg condition and radiation angles θx, θy are chosen in the plane
perpendicular to ωBv/c2 + g.

There are some new qualitative PXR features expected for multiwave dif-
fraction. First of all, the forbidden reflection can be excited, for example,
the (222) PXR reflection in a germanium crystal [15]. This becomes possible
due to coupling in a three-wave Bragg diffraction of two planes (311) and
(133), analogously to the Renninger effect in conventional X-ray diffraction.
The angular distribution in the (222) reflection differs essentially from the
two-beam case, because the radiation probability is localized in the narrow
spectral domain. This effect is not yet experimentally investigated.

The second important feature of multiwave PXR, which was also consid-
ered in [15, 25], is a fine structure of angular distribution and gain of the



6.3 Multiwave PXR 119

Cherenkov peak intensity inside a narrow spectral interval. The PXR distri-
bution inside reflection is determined by two factors in (6.24): the amplitude
D

(s′,j)
g (ω), which is close to unity near the Bragg condition:

|αg| < |χg|, |D(s′,j)
g (ω)| ≈ 1 , (6.25)

and the parameter Q(j)(ω), which defines the position of the Cherenkov peak:

Re[Q(j)(ω)] = γ−2 + θ2
x + θ2

y + θ2
s + γg[2Re(ε(j)) − αm] = 0 . (6.26)

If both conditions (6.25) and (6.26) are fulfilled, the PXR intensity gets a
gain:

ξ ≈
∣∣∣∣

χ|g|
Im (χ0)

∣∣∣∣

2

∼ 102−103 .

In the case of two-beam diffraction (see Sects. 3.4 and 6.1), the Cherenkov
peak is conditioned by (6.26) but its position leaves out the region (6.25),
which suppresses the peak amplitude by |χg|2/|χ0|2 times. In the multiwave
case, conditions (6.25) and (6.26) are fulfilled simultaneously, which results in
fine structure of PXR reflection [15, 25], which is analogous to Kössel lines in
conventional multiwave diffraction [14]. The detailed experimental investiga-
tion of multiwave effects requires a HRPXR technique because the spectral–
angular interval, where they become apparent, is considerably less than the
reflection width.

The first experiments on angular distribution of PXR reflection in the
multiwave case were carried out at synchrotron Sirius (Tomsk, Russia) [2, 3].

(a) (b)

Fig. 6.9. Schematic layouts of four-wave (a) and eight-wave (b) PXR experiments.
All coupled Bragg reflections are shown. The angles θx and θy are varied along the
PSD rule and perpendicularly to the picture plane. θB indicates the Bragg angle for
the measured reflection
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The electron beam of 500 MeV (four-wave experiment) and 900 MeV (eight-
wave experiment) has been used. The schematic layout of the experiments
is shown in Fig. 6.9. A 400-µm-thick GaAs single-crystal plate cut par-
allel to the (100) plane was set on the goniometer in such a way that
the electron beam moved through it nearly along the incidence direction
for the four-beam Bragg diffraction (000), (220), (153), (153) of X-rays with
λ = 0.6708 Å in the experiment [3], and for the eight-beam diffrac-
tion (000), (400), (022), (022), (202), (202), (040), (440) of X-rays with λ =
1.9987 Å in [2]. In the latter case, the incidence direction was parallel to
the 〈110〉 crystallographic axis. The experiments were aimed to reveal the
changes in one of the PXR reflections due to coupling with X-ray beams radi-
ated along the other directions. Therefore, only one PXR beam corresponding
to the Bragg planes (220) and (400) was registered in [3] and [2], respectively.
The radiation was detected by a linear position sensitive detector (PSD). A
series of PXR angular distributions as functions of θx on the PSD rule were
measured while varying the angle θy by a linear displacement of the detector
(Fig. 6.9). The PXR angular distributions measured in the experiments [2, 3]
are shown in Figs. 6.10 and 6.11, respectively.

The PXR angular distribution corresponding to the four-wave diffraction
geometry [3] displays an asymmetry in the height of the right and left peaks.
This is contrary to the case of two-wave PXR generation, where the peaks
are symmetrical. The theoretical interpretation of these peaks [25] displayed
the contribution of both multiwave effects and non-homogeneous beam cross-
section to the asymmetry of the curve (see also the analysis of the asymmetry
of the angular distribution in Sect. 5.4).

In the case of eight-wave PXR generation (Fig. 6.11), the prominent asym-
metry of two peaks (the left peak is 2.5 times higher than the right one) and the
splitting of the left peak into two parts is seen. For comparison, the respective

Fig. 6.10. The PXR angular distribution for the (220) reflection in GaAs measured
in [3] under the four-wave diffraction condition
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a b

Fig. 6.11. The PXR angular distribution for the (400) reflection in GaAs under
the eight-wave diffraction condition: (a) the experiment [2]; (b) the theoretical dis-
tribution calculated in two-wave approximation

two-wave angular distribution calculated under the same experimental condi-
tions is presented in Fig. 6.11b. The theoretical analysis of this experiment [25]
demonstrated the extension of the spectral–angular interval, where the cross-
influence of different reflections is essential. This fact explains qualitatively
the experiment [2]; however, quantitative fitting requires the consideration of
instrumental effects.

The direct confirmation of multiwave PXR has been also recently obtained
in [7]. The angular distribution of the PXR reflection from the (111) Si crys-
tal has been measured in backward diffraction geometry. The experimental
set-up was similar to Fig. 6.1; however, the pn-CCD detector was used to reg-
ister separately two-dimensional angular distributions for different reflections
(nnn), n = 1, 3, 4, 5 . . .. The condition for observation of multiwave PXR in
this geometry is the equality of the reflection frequency ω

(n)
B = cgn/2 and

the Bragg frequency for other selected reflection (hkl) with properly chosen
indices. Using (2.34), this condition is analytically written as [7]

ωhkl =
cghkl

2 cos θ0
, cos θ0 =

(ghklgn)
ghklgn

=
h + k + l

√
3(h2 + k2 + l2)

;

n =
h2 + k2 + l2

h + k + l
. (6.27)

This equation is satisfied for n = 3, 4, 5 for the reflections (111) and (224),
(004) and (044), (135) and (026), respectively.

Typical intensity distributions are shown in Fig. 6.12 from the paper [7].
The predicted multiwave interference appears indeed for the (333) and (555)
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Fig. 6.12. Intensity distributions in the backward direction taken with the pn-CCD
detector [7]. In the upper, middle and lower panels, intensity distributions for the
(111), (333) and (555) reflections are shown, respectively. A vacuum tube with an
inner diameter of 20 nm limited the view area

reflections, while the (111) reflection shows the typical smooth distribution.
The marked regions on the diagrams for the (333) and (555) reflections fit
well the theoretical prediction for Kössel line positions in four-wave PXR [7].
The asymmetry of the (333) reflection, however, is not explained by theory
and caused probably by the deformation of the crystal surface [7].

6.4 PXR in the Degenerate Case
of Two-Beam Diffraction

Another manifestation of dynamical diffraction in PXR has been predicted in
[18] and not yet been experimentally observed. It is known [23] that the con-
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ventional diffraction problem has a singularity when two X-ray eigenwaves are
degenerated, i.e. their refraction indices are equal to each other. In this case,
the wave fields are described by so-called Voigt waves instead of superposition
of plane waves under usual conditions. This singularity should affect the PXR
spectrum for certain orientation of the crystallographic planes relative to the
electron velocity.

The above-mentioned degeneracy exists in the case of the Bragg diffraction
geometry only, when the wave field is described by (3.14)–(3.16). Then the
general expression (3.19) for the spectral–angular distribution of PXR quanta
radiated per relativistic electron has the following form:

∂2Ngs

∂ω∂ n
=

α|χ(s)
g |2

4π2c2ω
θ2p2

sβ
2

∣∣∣∣
∣
1 − eiq

(s)
1 ωL

q
(s)
1

− 1 − eiq
(s)
2 ωL

q
(s)
2

∣∣∣∣
∣

2

×
∣∣
∣∣(2ε

(s)
2 − χ0) exp

(
i
ω

γ0
ε
(s)
1 L

)
− (2ε

(s)
1 − χ0) exp

(
i
ω

γ0
ε
(s)
2 L

)∣∣
∣∣

−2

,

q
(s)
1,2 =

1
2

(
θ2 + γ−2 − 2ε

(s)
1,2

)
. (6.28)

The notations for (6.28) are introduced in (3.14)–(3.16), and the polarization
factor ps is defined in (6.13). The high-energy electrons are considered here
to skip multiple scattering and CBS effects.

When the equality ε
(s)
1 = ε

(s)
2 is fulfilled (degenerate diffraction case), both

factors in (6.28) are equal to zero and the detailed analysis of the uncertainty
is necessary near the singularity. Let us introduce the definition

χ(s)
g χ

(s)
−g ≡ z′s + iz′′s , χ0 = χ′

0 + iχ′′
0

and consider the equations which define the degenerate case for PXR. The
first one is the equality of the refraction indices:

Re(ε(s)1 − ε
(s)
2 ) = 0 . (6.29)

The second equation is the Cherenkov condition for PXR:

Re q
(s)
1,2 =

1
2

(
θ2 + γ−2 − 2ε

(s)
1,2

)
= 0 . (6.30)

The solution for (6.29), (6.30) defines the resonant values of the radiation
angle θ0 and the deviation parameter α

(0)
B :

θ2
0 = (−βz′s)

1/2 − γ−2 − |χ′
0|, |β| >

|χ′
0|2
z′s

,

α
(0)
B = −χ′

0(1 − β) + 2(−βz′s)
1/2

β
. (6.31)

The values χ′
0 and z′s have to be calculated for the frequency ωB = g/2 sin θB

corresponding to the centre of PXR reflection.
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From (6.31) it follows that the considered singularity takes place only
for the case β < 0, |β| ≥ 1, which corresponds to the asymmetric Bragg
diffraction geometry. In order to analyse the PXR intensity, we expand the
most essential terms in formula (6.28) into the power series of (αB − α

(0)
B ):

ε
(s)
1,2 =

1
2
(a ± ∆εs), q

(s)
1,2 = q0 ∓

1
2
∆εs, q0 =

1
2
(γ−2 + θ2 − a) ,

a = γ−2 + θ2 + iχ′′
0(1 + β) − 1

2
β(αB − α

(0)
B ) ,

∆εs = (−βz′s)
1/2

[

−β(αB − α
(0)
B ) − iχ′′

0(1 − β + 2
Im χ

(s)
g

χ′′
0

√
|β|)

]1/2

.(6.32)

The imaginary part of ∆εs is non-zero for any αB because of the conditions
β < 0 and χ′′

0 > Im χ
(s)
g . Thus, for a sufficiently thick crystal the inequality

exp
[
iω(ε(s)1 − ε

(s)
2 )

L

c

]
� 1

is always fulfilled, and there is no singularity in the denominator of formula
(6.28). Therefore, let us consider a crystal with thickness L, which is larger
than the primary extinction length Lext for the radiation, but smaller than
the absorption length in the degenerate case, until the PXR spectral intensity
includes the singularity, that is

Lext =
c

ω|χ′
0|

� L � c

ωIm ∆εs
<

c

ω|χ′
0|

= Labs . (6.33)

The inequalities (6.33) permit us to transform formula (6.28) in the vicinity
of its maximum as follows:

∂2Ngs

∂ω∂ n
=

α|χ(s)
g |2

4π2c2ω
θ2p2

sβ
2 sin2 κξ/4

(µξ/4)2

× (1 + tan2 κ)
[(θ2 + γ−2 + |χ′

0|) tan2 κ + 4µ2]2
, (6.34)

where

µ = (−βz′s)
1/2, ξ = −β(αB − α

(0)
B )

4z′s
− 1, κ = µωL/c .

The PXR spectral intensity (6.34) in the case of degenerate diffraction is the
oscillating function of the parameter

κ = (−βz′s)
1/2ωL/c .

These oscillations take place at the variation of both the crystal length and
the orientation of the crystal relative to the electron velocity. Even the total
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(a) (b)

Fig. 6.13. Oscillations of the PXR intensity of the (220) reflection in diamond
as a function of the electron incidence angle: (a) schematic experimental layout;
(b) theoretical values are calculated for the parameters ϕ0 = 5◦, θD = 2.5◦, E =
900 MeV, L = 0.01 cm, N0 = 3.5×10−6 quanta/electron (dotted, dashed and solid
curves correspond to σ-polarization, π-polarization and the total number of emitted
quanta, respectively)

number of quanta registered by the detector with angular width θD � 1
oscillates as well. This number is calculated by integrating formula (6.34):

Ngs =
α|χ(s)

g |2
16 sin2 θB

|β|ωBL

c

(
1 +

1
B2

)

×
{

ln
(1 + ρD)2 + A2

1 + A2
− 1

A

(
tan−1 1 + ρD

A
+ tan−1 1

A

)}
, (6.35)

where

A =
2(−βz′s)

1/2

B(γ−2 + |χ′
0|)

, B = tan
[
(−βz′s)

1/2ωBL/c
]
, ρD =

θ2
D

(γ−2 + |χ′
0|)

.

As an example, Fig. 6.13 shows the geometry of the possible experiment for
degenerate diffraction observation and the number of PXR photons as a func-
tion of the angle between the electron beam velocity and the crystallographic
planes. The oscillations of the value Ns are different for both polarizations
and can be observed under conditions of HRPXR, because they are defined
by sufficiently small variation of the crystal orientation.
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7

Prospective Applications of PXR

7.1 PXR as a Tunable Source of Monochromatic X-rays

The previous chapters concern the fundamental properties of PXR, which have
been experimentally observed and theoretically explained. The most recent
efforts of scientists are aimed at finding effective applications of PXR, which
profit from specific features of PXR.

The most prominent feature of PXR is a high radiation intensity in a nar-
row spectral interval, which is selected by experimental geometry or electron
beam parameters. Therefore, the first application of PXR is seen as a mono-
chromatic X-ray source. The most effective source of such kind is known to be
a synchrotron radiation (SR), reflected from a monochromatizing crystal. The
physical parameters of SR [48] are compared below with the analogous para-
meters of PXR. The angular distribution of photons emitted in the spectral
interval ∆ω per second and at the electron current J is [48]

∂2NSR

∂θ∂ψ

∣
∣∣∣
ψ=0

=
3α

4π2
γ2 ∆ω

ω
K(y)

J

e
. (7.1)

The angle θ is defined in the orbital plane and is perpendicular to the electron
velocity, whereas ψ is normal to this plane; K(y) is a universal function of the
parameter y = ω/ωc, which is related to the orbital radius R. This function
describes the frequency distribution of radiation and reaches a maximum at

ω = ωc =
3γ3c

2R
. (7.2)

Usually, to compare different sources, relation (7.1) is transferred into practical
units and considered as average brightness Υ:

∂2NSR

∂θ∂ψ

∣∣
∣∣
ψ=0

= ΥSR [photons s−1[mrad]−2(0.1[% bandwidth])−1]

= 1.327 × 1013 E2 [GeV] J [A] K(y), (7.3)

V. Baryshevsky et al: Parametric X-ray Radiation in Crystals
STMP 213, 129–154 (2005)
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and at frequency (7.2), the maximal energy of emitted photons is expressed
via the amplitude B of the magnetic the field:

�ωc [keV] = 0.665 E2 [GeV] B [T] . (7.4)

According to Sect. 3.4, the optimal conditions for PXR are realized for dy-
namical diffraction of radiation in thick monocrystals of thickness L > Labs

and in the frequency and angular vicinity of Cherenkov’s peak. Neglecting the
effects of diffraction polarization, and for the frequency ωB corresponding to
the reciprocal lattice vector g and the electron current J1, (3.26)–(3.32) result
in

∂3NPXR

∂θ∂ψ∂ω
≈ α

ωBπ2
(θ2 + ψ2)

∣
∣∣∣

βχg

δB(θ2 + ψ2 + γ−2 + θ2
s − χ0 − δB)

∣
∣∣∣

2
J1

e
,

δB =
1
2

[
µ +

√
µ2 + 4βχgχ−g

]
,

µ = χ0(β − 1) − 2β

(
ω − ωB

ωB

2 sin2 θB

cos 2θB
− ψ tan 2θB

)
. (7.5)

The photons are concentrated in the cone with the centre of the reflection,
determined by the angle 2θB to the electron velocity v; the asymmetry pa-
rameter is β > 0 for the Laue case and β < 0 for the Bragg case; θ2

s is a
mean-square angle of electron multiple scattering. For PXR, the angle ψ de-
fines the deviation of the photon wave vector from the reflection centre in the
plane (g, v) and θ is the deviation perpendicular to the (g, v) direction; the
polarizations χ0, χg are calculated for the frequency ω = ωB.

As theory in Sect. 3.4 and experiment in Sect. 5.2 stated, the spectral
width of the PXR peak is determined by the imaginary part of the X-ray
polarizability. For the spectral interval ∆ω > ωBχ′′

0 ∼ 10−6, (7.5) can be
integrated over the frequency of detected photons and the analogue of (7.1)
is obtained for PXR:

∂2NPXR

∂θ∂ψ

∣∣∣∣
ψ=0

=
α

π

β2 cos 2θB

sin2 θB

× θ2|χg|4
|χ′′

0 | |θ2 + γ−2 + θ2
s − χ′

0|4
J1

e
H[∆ω − ωB|χ′′

0 |] , (7.6)

where H[x] is a Heaviside function. The maximum of photon numbers is
reached at an angle θ0 and the photons are concentrated in cone δθ:

θ2
0 =

1
3
(γ−2 + θ2

s − χ′
0) ,

δθ ≈
√

γ−2 + θ2
s − χ′

0 . (7.7)

Then, the ratio of the average brightness for SR and PXR is
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ξ =
ΥPXR

ΥSR
=

9π

64
β2 cos 2θB

sin2 θB

|χg|4
|χ′′

0 | |γ−2 + θ2
s − χ′

0|3
ωB

γ2∆ω

J1

J
. (7.8)

The analogue of (7.4) for PXR is the position of the central frequency of the
PXR peak (1.20). In contrast to SR, this frequency is independent of energy;
however, it depends on the interplane distance d, radiation angle and reflection
order n. Contrary to SR, the photons are emitted not in a wide interval K(y),
but in a narrow interval δω, which depends on crystal parameters only:

�ωB [keV] = 1.974
π

d[Å] sin θB

n ,

δω ≈ |χ′′
0 |

cos 2θB

2 sin2 θB

− δψ cot θB . (7.9)

Thus, the principal advantage of PXR from relativistic particles is, ac-
cording to (7.7) and (7.9), a narrow and highly monochromatic photon beam,
which is formed directly during emission and does not require any further
monochromatizing, as in the SR case [29]. Moreover, the PXR features do not
depend on the particle energy if the following conditions are fulfilled:

γ−2 < |χ′
0|, E > Eopt = mc2

√
|χ′

0| ∼ 50−100MeV . (7.10)

For this particle energy, the photons with �ω ∼ 1−20 keV can be produced,
whereas for SR the electron energy must be E ∼ 2−5 GeV to yield the photons
of the same frequency.

The quantum output Q(E) is often used to quantify the absolute value of
the average brightness of a PXR source in the units of (7.3). The value Q is
defined as the number of photons emitted by one electron of energy E at a
solid angle ∆ΩD = 1 mrad2 within the spectral PXR peak. Under conditions
(7.5), this value is

Q(E) [photons e−1 mrad−2] ≈ α

π

β2 cos 2θB

sin2 θB

×
∫

dΩD
(θ2 + ψ2)|χg|4

|χ′′
0 | |θ2 + γ−2 + θ2

s − χ′
0|4

. (7.11)

Then, the PXR average brightness in the above-mentioned units is

ΥPXR [photons s−1 mrad−2(0.1% bandwidth)−1]
≈ 0.625 Q(E) × 1022 J1 [A] . (7.12)

The magnitude of Q(E) under condition (7.10) is weakly dependent on the
electron energy; however, it is strongly influenced by a crystal type and exper-
imental geometry. The estimates made in Sects. 2.2 and 3.4 (see also Fig. 7.1)
give the limits
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Fig. 7.1. Calculated quantum output for 500-µm-thick crystal targets for several
reflection planes and crystal face planes [17]. The upper photon energy limit in each
case was limited by a requirement of an angle of more than 9◦ between the detector
and the electron beam axis

10−8 ≤ Q(E) ≤ 10−4 . (7.13)

The practical significance of the PXR source becomes apparent either when its
average brightness is comparable with SR brightness, or when the compactness
and low power inputs are important. The analysis of (7.8) indicates several
ways for optimization of the PXR source: (i) the choice of the crystal and the
reflection to maximize the quantum output Q(E); (ii) the choice of electron
source and radiation geometry to reach high current J1 for energy E ∼ Eopt;
(iii) selection of the applications requiring narrow ∆ω. Up to now, a large
volume of theoretical and experimental work has been done in the mentioned
directions.

The diverse materials have been investigated at Rensselaer Polytechnic In-
stitute (USA) for construction of a novel tunable X-ray source using the 100
MeV linear accelerator (see [17, 39, 40] and citations therein). The objective of
their investigation is the optimized production of PXR for future applications
in medical imaging, material characterization and detection of explosives and
nuclear materials. Up to now, the main interest is connected with optimiza-
tion of the crystal characteristics: lattice parameters; bulk thickness; electric,
thermal and absorptive properties; the growth and polishing techniques. Nu-
merous theoretical simulations and experiments have been done to optimize
the mentioned characteristics; some of the results are presented in Fig. 7.1.

A variety of well-documented single crystals to include Si, Ge, Cu, pyrolytic
graphite and W was considered. PXR intensities were calculated for the (111),
(220) and (002) planes at Bragg angles from 5◦ up to 90◦. The differential
intensity at the peak of one of the angular distribution cones was integrated
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across the 1 mm2 detector surface placed at a distance 1 m from the crystal.
For each crystal, the peak intensity appears at a different Bragg angle and
different X-ray energies. Pyrolytic graphite shows to be most promising for
photon energies less than 25 keV, while Cu or W is best at higher energies.
However, the mosaic spread of the graphite might degrade these results and
this issue is now under experimental investigations by authors of [162–175].

The recent experiments ([2, 30] and citations therein) at synchrotron Sirius
(Tomsk, Russia) are principal in the case of the increase of the average PXR
brightness. Most of PXR experiments (Chaps. 5 and 6) have been conducted at
linear accelerators, where the average current J1 ≤ 10−6 A, which is much less
than that at synchrotron J1 ∼ 1 A. The experiment [2] has been carried out
for investigation of the PXR emission during the multiple passes of electrons
through periodic and crystalline targets mounted inside a synchrotron, and
the similar experiments [35] have been carried out at SAL (Canada).

The arrangement of the experiment [2] is shown in Fig. 7.2. The elec-
trons strike the internal radiator T . The current of accelerated electrons Ne

with the initial energy E = 800 MeV was measured with an indicative de-
vice I. Bremsstrahlung Bs, generated in the target, was detected by a Gauss-
quantometer Q. In the case of the crystal target, the PXR emitted at an angle
of θD = 18◦12′ with respect to the electron beam was observed by a NaI(Tl)
detector collimated by a vertical slit, which provided an angular resolution
of about 1 mrad. The scraper S on the opposite side of the synchrotron ring
intersected electrons which had lost energy after passing through the internal
radiator. The quantometer determined the radiation losses, We, of the elec-
trons in the target as a function of the radial position R of the target. From
the experimental data for the energy losses, the number of passes k of the
electrons through the target was estimated in the range 10−46 for various
targets.

Fig. 7.2. Experimental arrangement from [2]: target T , Gauss quantometer Q,
NaI(Tl)-spectrometer D, scraper S, indicative device I
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These data show that multiple passes through targets may increase the
brightness of the PXR source mounted inside cyclic accelerators or storage
rings. For the investigation of the influence of multiple passes of the electron
beam on the angular and spectral characteristics of PXR, a 48-µm-thick (220)
Si crystal mounted on a goniometer head was used [2]. The experimental
geometry corresponded to the first PXR spectral-peak position ωB ≈ 19 keV.
The measured angular and frequency spectra of the collimated PXR emitted
from the crystal aligned under the Bragg condition θB = 0.5θD are shown
in Fig. 7.3 for a single pass, k = 1 (points) and for multiple pass, k = 20
(solid curves). The spectra are normalized at their peaks in order to compare
their spectral distributions, but the absolute yield was increased by a factor
of about 20.

(a) (b)

Fig. 7.3. Peak-normalized spectra [2] of collimated PXR generated from a single
pass, k = 1 (points) and multiple passes, k = 20 (solid line) of 800 MeV electrons
through a 48-µm-thick (220) Si crystal: (a) frequency distribution; (b) angular spec-
tra

The experiment [30] also demonstrated the brightness gain for PXR from
artificial periodic structures. The scheme of the experimental set-up [30] is
shown in Fig. 7.4. The synchrotron has a 20 ms pulse duration with a 4 Hz
repetition rate, and the divergence of the electron beam was about 0.2 mrad;
the radiator was mounted on a goniometer in the Bragg geometry.

The X-ray mirror, used as a periodic structure, consisted of 300 periods of
W and B4C with spacing d = 12.36 Å, which have been grown on a 380-µm Si
substrate. The W and B4C layers were of thicknesses d1 ≈ 5 Å and d2 ≈ 7 Å,
respectively. The X-rays generated in the mirror or in its Si substrate were
detected by a CdTe semiconductor detector placed at an angle θD = 66.3
mrad with respect to the electron beam velocity at a distance of 443 cm. The
detector aperture was 4 mm2 and the relative energy resolution reached 10% at
line 8.1 keV. The bremsstrahlung γ-rays generated in the mirror were detected
with a gamma quantometer and used to determine the current through the
mirror and, ultimately, the mirror efficiency.
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Fig. 7.4. The experimental apparatus from [30]: γ-quantometer Q, detector D,
radiator T mounted on the goniometer head

Both the spectra of the X-rays generated in the mirror and in the Si
crystalline substrate were measured. The results of [30] in Fig. 7.5 demonstrate
the source brightness gain for multilayers, compared to a monocrystal, despite
the fact that the thickness of the multilayers (0.37 µm) is less than that of
the crystal (100 µm). The quantum output Q(E) for [30] and the average
brightness are

Q(E) ≈ 2.2 × 10−7 [photons e−1 mrad−2] ,

Υ [photons s−1 mrad−2(0.1% bandwidth)−1]
≈ 1.375 × 1015 J1 [A] , (7.14)

(a) (b)

Fig. 7.5. The spectra measured in [30]: (a) the X-rays generated in the multilayers at
mirror angles θ0 = 31.1, 33.2, 36.1 mrad (curves 1, 2 and 3, respectively), maximal
peak (1) corresponds to the Bragg angle of the reflection θ0 = θB = θD/2; (b)
spectra, generated in the mirror (1) and in the Si substrate
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which are satisfactory for some medical applications [37].
To find optimal conditions for the PXR brightness gain from artificial pe-

riodic structures [41, 42, 45], we consider here the basic principles of emission
by a relativistic particle in a one-dimensional periodic structure. The total
intensity is an interference of transition radiation [34] from periodic inter-
faces between different media. When the polarizability of the multilayers
χj ≤ 10−5, this radiation is shown [11, 23] to be equivalent to PXR from a
one-dimensional crystal with periodic polarizability:

χ(r, ω) =
∞∑

l=−∞
χl(ω)eiglr, χ0(ω) =

χ(W )d1 + χ(B4C)d2

d
,

χl(ω) =
i(χ(B4C) − χ(W ))

2πl
(1 − e−igld1) ,

χ−l(ω) = − i(χ(B4C) − χ(W ))
2πl

(1 − eigld1) ,

gl = gl N , gl =
2π

d
l, l = 0,±1,±2, . . . , (7.15)

where N is a normal vector to the surface of multilayers (Fig. 7.4), χ(W )(ω),
χ(B4C)(ω) are the X-ray polarizabilities of tungsten and B4C, respectively.
Using these definitions, the PXR from the multilayers can be calculated using
formulas for PXR in the crystal. For instance, the PXR frequencies ω

(1)
B for

the first multilayers harmonics and the ω113 PXR reflection for Si substrate
at θB = 33.15 mrad are

�ω
(1)
B =

π

d sin θB
≈ 15.4 keV ,

�ω113 =
π
√

11
dSi sin θB

≈ 118 keV , (7.16)

which fit the experimental results in Fig. 7.5. The theoretical estimate for the
quantum output Q(E) in [30] follows from (7.11) at ∆ΩD = 1 mrad2:

Q(E) [photons e−1 mrad−2] ≈ α

π sin2 θB

|χg(ωB)|ωB
2L

c
10−6 , (7.17)

where the radiator thickness L < Labs, as was in [30]. The effective polarizabil-
ity of the multilayers is calculated on the basis of the layers’ polarizabilities
[19, 43]:

|χML
g (ω(1)

B )| ≈ 2.9 × 10−6 ,

and
Q(E) ≈ 3.3 × 10−7 [photons e−1 mrad−2] ,

which agrees with the results of [30].
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According to (7.17), the essential gain of Q(E) is due to the small scatter-
ing angle θB of photons. Thus, both the choice of radiator crystal and that of
photon emission angle are important for optimization of the PXR the source.

The energy E of the electron beam influences the effectiveness of PXR as
well. The dependence Q(E) is conditioned by multiple factors (see Sect. 5.3);
however, the qualitative estimate from [25] gives a satisfactory accuracy for
average brightness:

ΥPXR(E) ≈ E2

E2 + E2
opt

Q(Eopt) × 1022 J1(E) [A] , (7.18)

where Eopt is defined in (7.10).
The decrease of the quantum output at low electron energy can be com-

pensated in average brightness by the increase of the current J1(E), as for
example, in compact betatron yielding E ∼ 30 MeV electrons and designed
for mammography [37]. The PXR from nonrelativistic electrons (E ∼ 100 keV)
is suggested in [25] for the increase of the radiation brightness (see Chap. ),
which is important at laboratory conditions [28].

7.2 Anomalous Scattering Method for Crystallography

The PXR spectra include information about the structures where this radia-
tion is generated, which promises one more application of PXR. The analysis
of these spectra could complete essentially the standard methods based on the
conventional diffraction of external X-rays in the investigated crystals [21, 24]
or periodical multilayered structures [22, 44]. In this section, the possibility
of the PXR application for the direct measurement of the phases of struc-
ture amplitudes is considered. This problem is very essential for unambiguous
calculation of the electron density in the X-ray structure analysis.

Development of various physical methods for the direct measurements of
the phases of structure amplitudes is of great interest for X-ray diffractome-
try [46, 47]. These methods are especially claimed when the structure of the
organic crystals with a complicated multiple-atom elementary unit cell has to
be determined. Several simple and effective methods for solution of the phase
problem were suggested long time ago for special cases (see [46] and citation
therein). The first is the method of the isomorphic replacement when a heavy
atom is introduced into the investigated structure. The second approach is
the anomalous scattering method (ASM) when the intensities of the reflected
waves are measured for two different X-ray wavelengths close to the absorp-
tion edge of one of the atoms in the crystallographic unit cell. Both methods
permit us to obtain the phase information even for thin or mosaic crystals
when the kinematic theory of diffraction is applicable. For the practical X-ray
structure analysis, the phases can be calculated through the solutions of the
simple algebraic equations is also essential.

4
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Several methods for the direct measurement of the phases have been sug-
gested on the basis of the interference phenomena which are related to the var-
ious multiple-beam diffraction set-ups. As a rule, the interference between the
waves diffracted by different planes is essential for thick and perfect crystals
when the effects of the dynamical X-ray diffraction are strongly pronounced.
However, the realization of such methods for macromolecular organic crystals
is very problematic because most of them are thin and mosaic. Besides, the
evaluation of the phases in the case of multiple-beam diffraction even for the
ideal crystals requires complicated and precise measurements.

The further development of simple and universal realizations of ASM is
still attractive due to its kinematical domain. There are two known obstacles
for the universal application of ASM: (i) an X-ray source of monochromatic
radiation with smoothly varied wavelength has to be used and (ii) absorp-
tion edges in most organic crystals correspond to soft X-rays. For example,
the most heavy sulfur atom in amino acids has the Kα-line corresponding to
the photon energy �ωK � 2.45 keV, or the wavelength λK � 5.019 Å. Both
problems are essential for ASM application under the laboratory conditions
because of the absence of tunable soft X-ray sources. They can be overcome
with the use of the synchrotron radiation; however, there are also some diffi-
culties in this case, i.e. the standard crystal monochromators are not efficient
for soft X-rays.

The ASM realization discussed in the present section is based on the
analysis of the spectra of the parametric X-ray radiation generated by the
electrons passing through the investigated crystal. This approach could be
realized under the laboratory conditions with PXR either from relativistic
electrons (E ∼ 30−50 MeV), when the crystal is placed inside the compact
betatron [37], or from nonrelativistic electrons (E ∼ 100 keV).

As follows from formula (2.47), the radiation frequency in the PXR reflec-
tion can be tuned by simple rotation of the crystal with respect to the electron
beam. This PXR feature is analysed here in order to justify the possibility
of the direct measurement of the phase of the structure amplitude F (g). We
choose the incidence angle of the electron beam in such a way that the radi-
ation frequency of the PXR reflection from the investigated plane is equal to
the frequency ωK corresponding to the K-edge of the absorption band of one
of the substances in the considered crystal:

sin θK
B =

gc2

2vωK
=

c

4πv
gλK , (7.19)

where λK is the wavelength of the Kα-line for this substance.
An analogous approach has been discussed in [21] for the case of the dy-

namical diffraction and hard X-rays corresponding to the characteristic lines
of heavy atoms. However, these conditions are not fulfilled for the crystals
of the organic compounds, which are of the most interest in the current in-
vestigation. Therefore, we estimate the typical parameters of the interaction
between X-rays and organic crystals, i.e. the polarizability χ0, the extinction
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length Lext and the absorption length Labs. For numerical calculations, the
organic compound with the chemical formula

C13H14N2OS (7.20)

is chosen, whose structure has been recently resolved [27] . The crystal pos-
sesses a monoclinic symmetry described by the space group P21/c and in-
cludes four molecules in the elementary unit cell. The parameters of the cell
(a, b, c), the volume Ω and the angle β are

a = 10.202 Å, b = 7.203 Å, c = 17.618 Å ;

Ω = 1270 Å
3
; β = 101.09◦ . (7.21)

In accordance with formula (2.47), most of the PXR reflections for this crystal
correspond to large wavelengths λ ≤ 40 Å. The wavelength of the K -edge of
the sulfur atom belongs to this range and is considered as the basic for the
realization of the ASM scheme. Another reason for the selection of sulfur is
the presence of this element in most of organic compounds; thus isomorphic
replacement is not required. The atom of sulfur has also a large nucleus charge
and, therefore, its coordinates are well defined in the X-ray structure analysis
[38].

The total number of electrons in the elementary unit cell of the consid-
ered crystal is Ztot = 4 × 138 = 552. The X-ray polarizability χ0(λ1) at the
wavelength λ1 = λK/1.1 � 4.66 Å near λK � 5.019 Å corresponding to the
K -edge of the absorption band of the atom S is

χ0 = − e2Ztotλ
2
1

4π2mc2Ω
, (7.22)

and the numerical values are

χ0 � −7.98 × 10−5 + i 3.47 × 10−6; Lext =
λ1

π|χ0|
� 1.86 µm;

Labs � 21.4 µm . (7.23)

The average effective charge for a single scattering atom in the organic crystals
is small enough (for the considered case Zeff � 4), therefore, electron multi-
ple scattering in an organic matter is essentially less than that in inorganic
crystals. The organic crystals are usually grown as thin films or mosaic crys-
tals consisting of small blocks of thickness L ∼ Lext . Thus, the angular and
frequency distributions of the PXR intensity emitted by one electron into the
reflection with the vector ωBv/c2 + g can be calculated in the framework of
kinematic approximation. The frequency of X-rays in the reflection unambigu-
ously depends on the exit angle of the photons because of condition (2.54),
and the angular distribution within the reflection is defined by the following
parameter:
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θph =
√

γ−2 + |χ0| � 10−2 . (7.24)

The main contribution to the reflection intensity is defined by the first non-
forbidden harmonic. The spectral width of this harmonic depends on the pa-
rameter θph:

(
∆ω

ω

)

PXR

� θph . (7.25)

To perform an integration over the angles in formula (2.54), the dependence of
polarizability on frequency and angle due to equation (7.19) should be taken
into account. This dependence has an obvious form (A.1):

χg(ω) = −4πre

ω2Ω
F (g) ;

F (g, ω) =
∑

j

[f0j(g) + f ′
j(ω) + i f ′′

j (ω)]e−Wj(g)eigRj . (7.26)

Within the range of the PXR harmonic spectral width, the most essential
dependence on the frequency in formula (1.13) is defined by the functions
f ′, f ′′. This dependence becomes universal and localized near the frequency
ω � ωK of the absorption edge [46], if the anomalous corrections are normal-
ized to f0. Figure 7.6 demonstrates the relative width of the absorption edge,
which is essentially more than the characteristic width of the PXR reflection
∆ω/ωK � 1 � θph. Therefore, the polarizability χg(ω) is assumed to be con-
stant with the argument ω = ω

(n)
B for calculation of the integral in (1.7). The

value f ′′(ω) is not well determined at the angle θH , which corresponds to the
condition ω

(n)
B = ωK . However, the applications considered below operate in

the frequency range

1.1 <

∣∣∣
∣∣
ω

(n)
H − ωK

ωK

∣∣∣
∣∣
< 1.5 , (7.27)

where the anomalous corrections give an important contribution to the struc-
ture amplitudes, changing smoothly within the limits of the PXR reflections.

After integration over the angles in formula (2.54), the intensity of the
photons In, emitted into the single PXR harmonic by the electron current J
passing through the investigated crystal, is calculated straightforwardly:

In = A(E,ω
(n)
B )|F (gn, ω

(n)
B )|2 ;

A(E,ω
(n)
B ) =

e22π2r2
e(

ω
(n)
B

)3

Ω2�c4

(1 + cos2 θB)Labs

sin2 θB

×
(

1 − exp
(
− L

Labs

))[

ln

(
θ2
D + θ2

ph

θ2
ph

)

− θ2
D

θ2
D + θ2

ph

]
J

e
. (7.28)
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Fig. 7.6. Imaginary (upper curve) and real (lower curve) anomalous corrections in
the range of the absorption edge

Here the parameter θD ∼ θph defines the angular width of the detector and the
harmonic spectral width is in accordance with formula (7.25). The spectral
resolution of the detector is supposed to be sufficient to measure separately
every PXR harmonic. The value A(E,ω

(n)
H ) in (1.15) describes the kinematics

of the radiation process and does not depend on the structure amplitude F .
Using fundamental constants, formula (7.28) permits us to estimate the

rate of the photon counts in experiments:

In

[
photon

s

]
� 5.6 × 107 1

(ω(n)
B )3Ω2

K|F (gn, ω
(n)
B )|2J [µA] ;

K =
(1 + cos2 θB)Labs

sin2 θB

[
1 − e−L/Labs

] [

ln

(
θ2
D + θ2

ph

θ2
ph

)

− θ2
D

θ2
D + θ2

ph

]

. (7.29)

The following units are used: keV for radiation frequency, Å3 for the volume
of the crystallographic unit cell, µm for the absorption length and the crystal
thickness and K is approximately equal to unity. For the crystal (7.20) of
thickness L = 10 µm and X-ray radiation close to the Kα-line of the atom S
for reflection with F (g) ∼ 20, formula (7.29) gives an estimate

In

[
photon

s

]
� 1.0 × 104J [µA] . (7.30)

The success of experimental realization of the considered method depends on
the ratio of the X-ray intensity in the PXR reflection (signal) to the intensity
of X-rays emitted by the electrons due to another processes, which are not
strictly connected to the structure amplitudes (noise). The bremsstrahlung is
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the process contributing essentially to radiation background to the continuous
spectrum due to the interaction between the electrons and medium. In the case
of relativistic electrons, the total flux of the bremsstrahlung is concentrated
in the narrow cone with the angle of divergence ∼ θph along the particle
velocity. Therefore, the photons emitted into PXR reflections at the large
angles with respect to the electron velocity are registered with low background,
as confirmed in several experiments.

The only competing process for PXR in the range of the anomalous scat-
tering is a characteristic radiation (ChR), which is caused by excitation of the
crystal atoms by electron beam. This radiation is represented by the set of
narrow spectral lines and has almost isotropic angular distribution. In most of
the cases, the relative spectral width of the ChR lines is essentially less than
the width of the PXR harmonics defined by formula (7.25):

(
∆ω

ω

)

ChR

�
(

∆ω

ω

)

PXR

. (7.31)

If the photons are detected by an X-ray spectrometer with the energy res-
olution of the same order as the spectral width of the PXR reflection, the
intensities of PXR and ChR can be independently measured in the frequency
range (7.27). To compare the radiation intensities for both mechanisms, the
experimental data for the photo-ionization σph and for the fluorescence yield
Yf (Z) [48] are used for calculation of the probability of the excitation of the
atom S by the electron beam (Z is the atom nucleus charge). Expression (7.19)
is used for calculation of the spectral density of pseudophotons (7.30) corre-
sponding to one electron. Then the intensity of ChR quanta generated from
the crystal with thickness L and the density of the sulfur atoms nS by the
electron current J and registered by the detector with the angular resolution
θD can be calculated as follows:

IChR �
∫ ∞

ωmin

dωn(ω)σph(ω)Yf (Z)nSL
θ2
D

2
J

e
. (7.32)

Experimental data for the value σph of the atom S can be interpolated by the
analytical formula:

σph(ω) � σ0

(ωmin

ω

)2

; σ0 � 0.7 × 10−22 m2; �ωmin � 150 eV ,

and the value Yf (16) � 0.1 [48]. We choose the same values for other physical
parameters as in expression (7.30):

nS =
1
Ω

; Ω = 1270 Å
3
; L = 10 µm; θD = 10−2 .

Finally,

IChR

[
photon

s

]
� 2.1 × 104J [µA] . (7.33)
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Thus, the intensities of ChR and PXR have the same order of magnitude
for the considered experimental conditions. The high intensity of PXR is es-
sential for the following experimental aspect of the problem. The anomalous
scattering corrections for the atom S have the values 3 < |∆f ′| ∼ ∆f ′′ < 5
for the frequency range (7.27), which corresponds to several percents from
the full structure amplitude of typical organic crystals. Therefore, the use
of ASM requires accurate measurement of the intensity of PXR reflections,
which also takes place for the standard X-ray structure analysis [38]. The ac-
curacy of the intensity measurements is mainly defined by the fluctuations of
the counting rate, which produces a restriction for the minimal observation
time tmin. Particularly, in order to measure the structure amplitude with the
relative accuracy δF , the value tmin should be of order

tmin � 1
Inδ2

F

, (7.34)

where In is the X-ray intensity.
Now we consider how this information can be used for the direct measure-

ment of the phases of structure amplitudes. We provide the simulation for the
organic crystal described by (7.20) and (7.21) in order to find the experimental
conditions for realization of ASM on the basis of PXR.

The structure of the organic crystal (7.20) has already been solved [27], and
the real values of the structure amplitude modulus |F0(g)| and its phase ϕ0(g)
can therefore be calculated for the reciprocal lattice vector g = (h, k, l) =
(1, 1, 3). When this amplitude is calculated for the wavelength λ, which is
essentially different from the K-edge λK of the absorption edge of any atom
in the crystal unit cell, the anomalous scattering corrections are small and the
structure amplitudes do not depend on the wavelength but are defined by the
electron density distribution only. The following values are calculated for the
above-mentioned reflection and λ = 1.54 Å [19, 43]:

F0(1, 1, 3) = F ′
0 + i F′′

0 = 11.79 − i 0.170 ;

|F0| = 11.79; ϕ0 = arctan
F ′′

0

F ′
0

= −0.014 . (7.35)

When ASM is used, the modulus of the structure amplitude |F0(g)| is sup-
posed to be known because it can be measured from either corresponding
diffraction intensity or PXR intensity in the same reflection but far from the
absorption edge. The structure factor |S(g)| and its phase ψ(g) for the sulfur
atom in the crystallographic unit cell are defined in the following way:

FS(g) = fS(g)S(g), S(g) = e−WS(g)
∑

s

eigRs (7.36)

where fS(g) and e−WS(g) are the atomic scattering factor and the Debye–
Waller factor of the sulfur atom, respectively, and the structure factor S(H)
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is defined by the coordinates Rs of these atoms in the elementary cell. For
the considered reflection g = (1, 1, 3) and wavelength 1.54 Å these values are
equal to

fS(g) = 1.718 − i0.069; e−WS(g) = 0.94 ;
|S(g)| = 0.133 ψ(g) � 0 . (7.37)

Usually, the modulus and phase of the structure factor FS(H) can be con-
sidered as known value because the positions of the most heavy atoms in the
unit cell are defined accurately during the primary analysis of the Patterson
function [38]. This assumption on the values |S(g)|, ψ(g) actually means that
unknown phases are calculated relatively to the phases corresponding to the
distribution of the anomalously scattering atoms in the unit cell. Therefore,
the phase ψ(g) can be substituted by the zero value.

Now the structure amplitudes may be calculated taking into account the
anomalous scattering corrections for the sulfur atom and the X-ray frequencies
ω1 = 1.1ωK ; ω2 = 1.5ωK . The results are as follows:

F (g, ω1,2) = |F0(g)|(cos ϕ0 + i sin ϕ0) + ∆F′
1,2 + i∆F′′

1,2 ;
∆F1,2 = ∆fS(ω1,2)S(g) ;

∆F ′′
1 = −0.696; ∆F ′′

2 = 0.279 ;
∆F ′′

1 = −1.202; ∆F ′′
2 = −0.622 . (7.38)

In order to extract the anomalous scattering corrections for the considered
reflection, the structure amplitude modulus should be measured with the ac-
curacy better than δ � 10%.

Let us now simulate the PXR characteristics for this reflection, considering
the radiation from the electron beam with the energy E = 30 MeV and current
J = 1 µA. The observation angles θ1,2, which allow us to measure the intensity
of the radiation with two different frequencies, are calculated by means of
formula (7.19):

θ1,2 = arcsin
(

gc2

2vω1,2

)
; θ1 = 34.6◦; θ2 = 24.6◦ . (7.39)

These peaks are easily separated with necessary accuracy.
In some cases, it may be difficult to measure PXR intensities at two po-

sitions of the detector close to each other in the limits of the angular width
of one reflection corresponding to the definite reciprocal lattice vector g. In
this situation, the measurements for the fixed frequency but for two different
reflections corresponding to the reciprocal lattice vectors g and (−g) can be
performed. This approach was usually considered for ASM in the conventional
diffraction experiments [38], and it is possible for the crystal with unit cell
without the centre of symmetry (ϕ0 �= 0;π). In this case, a geometry of the
PXR experiment should be inverted relatively to the electron velocity in com-
parison with the initial position and the amplitude F (−g, ω1) is calculated by
means of the formula
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F (−g, ω1) = |F0(g)|(cos ϕ0 − i sin ϕ0) + ∆F ′
1,2 + i∆F ′′

1,2 . (7.40)

Now we can use the values of the structure amplitudes (7.35–7.40) in formula
(7.29) for calculation of the PXR intensities. In accordance with (7.37), for
the reflection (113) the phase ϕ0 is very close to zero because of the symmetry
of the considered structure and, therefore, the use of the reflection (113) is
not effective. However, PXR intensities for two close frequencies (observation
angles according to (7.39)) for the same reflection can be measured and the
calculation results in the following values:

Ig,ω1 = 1.28 × 104 [ph s−1]; Ig,ω2 = 1.08 × 104 [ph s−1] . (7.41)

Here the value L = Labs = 10 µm is used for the crystal thickness; θD = 10−2

and the same values are used for the current and energy of the electron beam as
in (7.38). The magnitude of the intensity is weakly sensitive to the accuracy
of the definition of the experimental parameter θD, since it is included in
the argument of the logarithmic function only. If the considered crystal is
also characterized by some mosaicity parameter δ, this parameter should be
included in formula (7.29) along with the value θD when calculating the PXR
intensity [20]. Thus, the PXR intensities should be measured with the relative
accuracy 15%. According to (7.34), such accuracy can be obtained for the
observation time tobs � 20 s if the photon intensity is given by (7.31).

For investigations of structures with the centre of symmetry it is important
to distinguish whether the structure amplitude has the phase ϕ0 = 0 or ϕ0 =
π. The considered approach could solve this problem as well. If the phase ϕ0

in (7.38) is assumed to be equal to π instead of zero, the correlation between
the PXR intensities changes essentially:

I(−)
g,ω1

= 1.02 × 104 [ph s−1]; I(−)
g,ω2

= 1.19 × 104 [ph s−1] . (7.42)

In real experiment with the application of PXR for ASM, the main goal is
to evaluate the phase ϕ0, which means that the inverse problem should be
solved. The modulus of the structure amplitudes has to be calculated on the
basis of the intensity measurements for two different positions of the detector:

|F (g, ω1,2)| =
√

Ig,ω1,2A(E,ω1,2) , (7.43)

with the function A(E,ω) defined by formula (7.31).
Then the unknown phase ϕ0 can be calculated as the solution of the equa-

tions which follow from (7.38):

sin ϕ0(g) =
Q1∆F ′

2 − Q2∆F ′
1

2|F0(g)|P ;

cos ϕ0(g) = −Q1∆F ′′
2 − Q2∆F ′′

1

2|F0(g)|P ;

Q1,2 = |F (g, ω1,2)|2 − |F0(g)|2 − (∆F ′
1)

2 − (∆F ′′
1 )2 ;

P = ∆F ′′
1 ∆F ′

2 − ∆F ′′
2 ∆F ′

1 . (7.44)
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Both sin ϕ0(g) and cos ϕ0(g) should be calculated in order to find the sign
of the phase uniquely [38]. The essential obstacle for practical realization of
ASM on the basis of PXR is a radiation damage of the investigated crystal by
an incident electron beam. If ASM is assumed to be used for studies of organic
objects such as proteins, the probable radiation damage can be estimated in
the following way. The expression [32] for energy loss by electrons of primary
energy E and current J in unit time and within the layer of thickness L is

∆E ≈ J
4πe4ZtotL

Ωmc2
B(E) , (7.45)

where B(E) is a dimensionless function weakly dependent on E. The energy
change ∆E causes the temperature increase ∆T :

kB
ζtotSL

Ω
∆T ≈ ∆E . (7.46)

Here kB is a Boltzmann constant, kBζtot is a specific heat of the crystallo-
graphic unit cell and S is an electron beam cross-section. Using (7.45) and
(7.46), a rough estimate for the crystal temperature increase in unit time can
be derived:

∆T [K s−1] ≈ Zeff

ζeff

J [µA]
S [mm2]

, (7.47)

where the averaged values Zeff and ζeff are normalized to a single atom of
the crystallographic unit cell. Expression (7.47) can be used for prediction
of radiation damages of the investigated samples. The practical values of this
estimate have to be evaluated particularly for every possible ASM application.

In conclusion, the PXR in Mössbauer crystals (Sect. 2.4) can also be used
in γ-resonant nuclear spectroscopy. Several applications of this set-up for cor-
relation and temporal measurements have been discussed in [3, 12].

7.3 Parametric Beam Instability
and PXR Free-Electron Laser

From the point of view of quantum theory, the PXR is considered in the above
section as a spontaneous radiation. In this section, we consider a possibility of
observing induced PXR and developing an X-ray laser on this basis. Different
mechanisms of the induced X-ray radiation are now actively studied, which
may serve as a basis for construction of an X-ray laser, functioning over the
10–100 keV range. Various types of free-electron lasers, using the Compton
scattering of a light wave by an electron beam [33], resonance transition radi-
ation [36], channelling particle radiation [ 31,26 ], have been considered. The
analysis of the obstacles revealed that large current densities j > 1013 A cm−2

of relativistic electrons are necessary to realize the induced radiation mode.
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This fact puts a question mark on the possibility of the X-ray coherent genera-
tion in the mentioned range. The emission from charged particles in a crystal
to large angles to the particle velocity has been shown [13, 14, 15, 16] to
provide a radical change in a gain of the radiation and reduces the required
current density for the generation start to the values j ∼ 108 A cm−2, which
make possible the development of PXR FEL. This possibility follows from the
recently discovered law of parametric beam instability [13, 14, 15, 16], which
occurs when an electron (positron) beam passes through a crystal. This in-
stability leads to a drastic increase of the coefficient of the induced radiation
in the crystal and reduces the threshold current for the generation start. We
consider here the classic theory of this phenomenon [9].

The classic approach to the electron movement assumes Maxwell’s equa-
tions (2.1) for the description of the interaction between the charged particle
and wave fields of radiation and the crystal. Keeping in mind the X-ray diffrac-
tion of emitted photons in the framework of two-wave approximation (A.1),
these equations are

(
k2 − ω2

c2
ε0

)
Ek,ω − k(kEk,ω) − ω2

c2
χ−gEg,ω =

4πiω
c2

j(k, ω) ,

(
k2

g − ω2

c2
ε0

)
Eg,ω − kg(kgEg,ω) − ω2

c2
χgEk,ω =

4πiω
c2

j(kg, ω) ,

k(ε0Ek,ω + χ−gEg,ω) = 4πin(k, ω) ,

kg(ε0Eg,ω + χgEk,ω) = 4πin(kg, ω) ,

ε0 = 1 + χ0, ωn(k, ω) + kj(k, ω) = 0 . (7.48)

Here Ek,ω is the amplitude of the direct wave and Eg,ω is that of the dif-
fracted wave with the vector kg = k + g, n(k, ω) and j(k, ω) are the Fourier
components of the charge density and current of the beam, respectively:

n(k, ω) =
∫

drdt ei(ωt−kr)n(r, t) ,

n(r, t) = e
∑

j

δ[r − rj(t)], j(r, t) = e
∑

j

vj(t)δ[r − rj(t)] , (7.49)

for electrons on the trajectory rj(t).
To analyse the influence of the diffraction on the instability, we separate

the amplitudes of transverse E
(s)
t (polarization es, s = σ, π) and longitudinal

E
(s)
l electromagnetic waves. The system of equations for these amplitudes is

(k2c2 − ω2ε0)E
(s)
k,t − ω2χ−gCsE

(s)
g,t = 4πiωj

(s)
t (k, ω) ,

(k2
gc2 − ω2ε0)E

(s)
g,t − ω2χgCsE

(s)
k,t = 4πiωj

(s)
t (kg, ω) ,

ωE
(s)
l (k, ω) = −4πij(s)

l (k, ω) . (7.50)

The longitudinal component also creates the wave with the charge density
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4πn(k, ω) = −kE
(s)
l (k, ω) .

To obtain an explicit expression for the beam current, the coordinate rj and
velocity vj(t) for the jth particle are represented as

vj(t) = u + δvjt(t) + δvjl(t) ,

rj(t) = rj0 + ut + δrj(t) + δvjl(t) , (7.51)

where u is the total beam velocity, δvjt(t) and δvjl(t) are perturbations of
the velocity of the jth particle due to transverse and longitudinal waves,
respectively, and δrj(t) is the electron trajectory change due to interaction
with the radiation wave field.

For the analysis of the beam instability, the system of equations has to
be resolved within the linear approximation for amplitudes of the radiation
field [18]. In this approximation, the Fourier components of transverse and
longitudinal fields are

j
(s)
t (k, ω) = i

k(esu)
4π

E
(s)
l (k, ω) + e

∑

j

δvjt(ω − ku)e−ikrj0 ,

j
(s)
l (k, ω) = i

(ku)
4π

E
(s)
l (k, ω) + e

∑

j

δvjl(ω − ku)e−ikrj0 , (7.52)

where δvjt,l(ω) are obtained by the Fourier transformation of δvjt,l(t).
Maxwell’s equations (7.48) have to be supplemented by equations of motion
(2.1) for an electron in the electromagnetic field E(rj(t), t):

dvj(t)
dt

=
e

mγ
E(rj(t), t) +

e

mγc
(vj(t) × H(rj(t), t))

− e

mγc2
vj(t)vj(t)E(rj(t), t) ,

1
c

∂H(rj(t), t)
∂t

= −∇× E(rj(t), t) . (7.53)

Equations (7.53) are solved in linear approximation, and after Fourier trans-
formation the longitudinal and transverse components of the velocity are
(γ2 = 1 − u2/c2)

− iωδv
(s)
jt (ω) =

e

mγ(2π)3

∫
dk′eikrj0

×
{[

1 − (esu)2

c2

]
− k′u

ω + k′u
− (esu)(ku)

kc2

}
E

(s)
k′,t(ω + k′u) ,

− iωδv
(s)
jl (ω) =

e

mγ(2π)3

∫
dk′eikrj0

×
{[

1 − (ku)2

k2c2

]
+
[

k′(esu)
ω + k′u

− (k′u)2

k′2c2

]}
E

(s)
k′,t(ω + k′u) .

(7.54)
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For the primary homogeneous beam

∑

j

ei(k−k′)rj0 = nB(2π)3δ(k − k′), nB =
J

ecS
, (7.55)

where nB is the electron density of the beam of current J and cross-section S.
Using (7.48)–(7.55), the following closed linear equation system for transverse
and longitudinal wave fields is found for two-wave diffraction:

{k2c2 − ω2[ε0 + χ
(s)
tt (k)]}E(s)

k,t − ω2χ−gCsE
(s)
g,t = ω2χ

(s)
tl (k)E(s)

k,l ,

{k2
gc2 − ω2[ε0 + χ

(s)
tt (kg)]}E(s)

g,t − ω2χgCsE
(s)
g,t = ω2χ

(s)
tl (kg)E

(s)
kg,l ,

{(ω − ku)2 − ω2χ
(s)
ll }E(s)

k,l = ω2χ
(s)
lt (k)E(s)

k,l . (7.56)

χ
(s)
tl is a tensor of the beam polarizability, which is physically analogous to

the crystal polarizabilities:

χ
(s)
tt (k) = − ω2

B

γω2

[
1 − ω(esu)2

c2(ω − ku)

]
, χ

(s)
tl (k) = − ω2

B

γω3
k(esu) ,

χ
(s)
ll (k) =

ω2
B

γω2

[
1 − (ku)2

k2c2

]
, χ

(s)
lt (k) =

ω2
B

γω2
(esu)[

k

ω
− (ku)

kc2
] ,

ω2
B =

4πe2nB

m
. (7.57)

The determinant of (7.57) delivers a dispersion equation for k and ω. For
relativistic particles, the terms with (ω − ku) in denominator are essential,
whereas the terms with (ω−kgu)−1 are negligible. Thus, the dispersion equa-
tion is

{[
k2c2 − ω2ε0 +

ω2
B

γ

] [
k2

gc2 − ω2ε0 +
ω2

B

γ

]
− ω4C2

s χgχ−g

}
=

− ω2
Bu2

γ(ω − ku)2
θ2k

(
k − ωu cos θ

c2

)[
k2

gc2 − ω2ε0 +
ω2

B

γ

]
≡ A(kz, ω)

(ω − ku)2
. (7.58)

Here θ � 1 is an angle between k and the beam velocity u; the latter corre-
sponds to the axis Z. The most essential influence on the dispersion equation
is exerted by variation of the current due to the calculation of the longitu-
dinal component of the radiation field performed under the beam particles
(the right-hand side of (7.58)). The solution of non-linear dispersion equation
(7.58) is localized [18] in the intersection of dispersion equations, correspond-
ing to the wave fields of radiation in the crystal and radiation of the spatial
charged beam. The coordinates kz0 and ω0 of this intersection are found from

{
[k2c2 − ω2ε0][k2

gc2 − ω2ε0] − ω4C2
s χgχ−g

}
≡ D(kz, ω) = 0 ,

(ω − ku)2 = 0 . (7.59)
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The frequency and wave vector of radiation have to satisfy the diffraction
conditions at the time of PXR emission, and therefore

kz0 = kB(1 + δ), ω0 = ukB(1 + δ), |δ| � 1 , (7.60)

with kB determined from the Bragg condition for the excited reciprocal lattice
vector:

kB = −2k⊥g⊥ + g2

g sin θB
, sin θB =

(gu)
gu

, (7.61)

and the deviation δ is

δ =
χgχ−g − (η + ξ)2

2ν(η + ξ)
,

ν = −g sin θB

kB
, η =

k2
⊥

k2
B

≈ θ2, ξ = γ−2 − χ0 . (7.62)

According to the general method for instability analysis [18, 33], the solution
of the dispersion equation (7.58) may be found as an expansion series over
the detunings ω′ and k′

z near the point (7.60):

kz = kz0 + k′
z, ω = ω0 + ω′, |kz0| � |k′

z|, ω0 � |ω′| ;

D(kz, ω) � ω′ ∂D0

∂ω
+ k′

z

∂D0

∂kz
+

1
2
ω′2 ∂2D0

∂ω2

+
1
2
k′2

z

∂2D0

∂k2
z

+ kzω
′ ∂2D0

∂kz∂ω
+ . . . , (7.63)

where index 0 points to the coordinate (kz0, ω0).
For an arbitrary crystal orientation and radiation angle in (7.63), the first

and second terms are enough to preserve an accuracy (such as for homogeneous
medium [18]), and (7.58) is transformed to

(ω′ − uk′
z)

2(ω′ − vgk
′
z) =

A(kz0, ω0)
∂D0/∂ω

, (7.64)

where the velocity of the spatial charge wave is

vg = − ∂D0/∂kz

(∂D0)/∂ω
=

c2

uε0

[
1 +

ν(η + ξ)2

χgχ−g + (η + ξ)2

]
. (7.65)

The most effective transmission of beam energy into radiation energy occurs
under the synchronism condition [18] when the velocities of the wave and the
beam are equal:

vg = u . (7.66)



7.3 Parametric Beam Instability and FEL 151

As follows from (7.65), for X-rays this condition is fulfilled due solely to the
crystal periodicity, i.e. at g �= 0, χg �= 0. From the instability theory [18, 33],
the negative imaginary part Im(kz), so-called increment of instability, is a
quantitative criterion, which determines the exponential increase of primary
perturbation. This parameter defines the amplification coefficient on the unit
length, i.e. the gain

G [sm−1] = Im(kz) ,

which is the principal characteristics of FEL [33]. If (7.66) is satisfied, the
solution of (7.64) results in the following G for the parametric beam instability:

G =
√

3
2

(
Qω0χgχ−g

u2c2kz0[χgχ−g + (1 + ν)(η + ξ)2]

)1/3

,

Q = −ω2
Bu2θ2k0(k0 − ω0 cos θu/c2)

2ω0γ
. (7.67)

Contrary to the Cherenkov instability in a homogeneous medium [1], the am-
plification coefficient in a 3D periodic medium depends essentially on the
crystal material and orientation, which is a direct way to gain an interaction
between the radiation and electron beam. The geometry of emission, when
∂D0/∂kz in (7.63) becomes zero, is of special interest [9, 14, 15]:

θ =

[
|χg|√

| cos 2θB|
− 1

γ2
− |χ0|

]1/2

,

1 < 2 sin2 θB < 1 +
χgχ−g

(γ−2 + |χ0|)2
. (7.68)

The diffracted wave in this case travels at an angle ∼ 90◦ to the beam velocity:

2θB =
π

2
+ ψ ,

θ sin 2θB < ψ < θ sin 2θB +
χgχ−g

(γ−2 + |χ0|)2
. (7.69)

In addition, to the longitudinal component, the transverse component of
the diffracted wave becomes parallel to the electron velocity in this case and
performs a supplementary work on beam modulation (bunching). Mathemat-
ically, this regime leads to the transformation of (7.64):

(ω′ − uk′
z)

2(k′2
z − Fω′) = 2

A(kz0, ω0)
∂2D0/∂k2

z

,

F = −2
∂D0/∂ω

∂2D0/∂k2
z

= −ε0u
2|χg|g sin θB

2c| cos 2θB|3/2
. (7.70)

For the optimal case of small detuning ω′ → 0, the gain of the parametric
instability is
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G =
(

Qω0|χg|
| cos 2θB|1/2

)1/4

. (7.71)

Thus, at certain choice of parameters of the 3D crystal, the dependence of
the amplification coefficient on the particle density in the beam can qualit-
atively be changed, in comparison to the homogeneous medium: n

1/3
B → n

1/4
B .

Taking into consideration the inequality ω3Q � 1, which is fulfilled for the
current in real devices, the change in power degree influences significantly
G. Later, Baryshevsky and Feranchuk [16] studied the influence of quantum
effects on instability increment, and N -wave diffraction is shown to increase
the increment due to the dependence

G ∼ (nB)1/(N+2) .

The detailed theory and analysis of PXR FEL development on the basis of the
parametric instability of charged particle beams passing through a crystal have
been carried out in [7, 8, 10]. Under the conditions of multiwave diffraction,
the generation threshold is proved to be reduced due to the phenomenon of the
parametric beam instability. This fact makes it possible to observe an induced
PXR radiation as well as an induced channelling radiation in a LiH crystal
at the electron beam current density j ∼ 108 cm−2 and energy from tens
to hundreds MeV. Moreover, this phenomenon is also observable [4] for the
particles moving inside a slit made inside this crystal. This discovery extends
the phenomenon of the parametric beam instability to the vacuum electronic
devices, such as travelling wave tubes and backward wave oscillators, and to
different types of spontaneous radiation. Based on these investigations, a new
type of FEL has been proposed, named a volume free-electron laser (VFEL)
[5]. The first lasing of VFEL in the millimetre wavelength range was observed
in 2001 [6].

The advantage of FEL on the basis of undulator is the use of vacuum duct
for an electron beam and radiation, which for the large undulator length LU

results in a high integral amplification coefficient KU = GULU . For FEL, on
the basis of PXR, the amplification length is limited by the absorption length
Labs. However, the optimization of the parameters of the crystal or artificial
periodic nanostructure [41, 42, 45] to increase the quantum output (Sect. 7.1)
and the use of the diffraction geometry for anomalous transmission to in-
crease the Labs (Sect. 3.4) both allow us to increase the integral amplification
coefficient for PXR, too.

References

1. A.I. Akhiezer, Ya.B. Fainberg: Dokl. Akad. Nauk USSR 69, 555 (1949) 151
2. M.Yu. Andreyashkin, V.V. Kaplin, S.R. Uglov, V.N. Zabaev, M. Piestrup: Appl.

Phys. Lett. 72, 1385 (1998) 133, 134



References 153

3. V.G. Baryshevsky: Channelling, Radiation and Reactions at Crystals under High
Energy (Belarussian State University, Minsk 1982) 146

4. V.G. Baryshevsky: Dokl. Akad. Sci. USSR 299, 19 (1988) 152
5. V.G. Baryshevsky: Nucl. Instrum. Methods A 445, 281 (2000) 152
6. V.G. Baryshevsky, K.G. Batrakov, A.A. Gurinovich, I.I. Ilienko, A.S. Lobko,

V.I. Moroz, P.F. Sofronov, V.I. Stolyarsky: Nucl. Instrum. Methods A 483, 21
(2002) 152

7. V.G. Baryshevsky, K.G. Batrakov, I.Ya. Dubovskaya: J. Phys. D: Appl. Phys.
24, 1250 (1991) 152

8. V.G. Baryshevsky, K.G. Batrakov, I.Ya. Dubovskaya: Nucl. Instrum. Methods
A 358, 93 (1995); Nucl. Instrum. Methods A 375, 292 (1996) 152

9. V.G. Baryshevsky, I.Ya. Dubovskaya, I.D. Feranchuk: Izv. Belarussian Akad.
Nauk, Ser. Fiz-Mat. Nauk 1, 92 (1988) 147, 151

10. V.G. Baryshevsky, I.Ya. Dubovskaya, A.V. Zege: Phy. Lett. A 149, 30 (1990);
Nucl. Instrum. Methods B 51, 368 (1990) 152

11. V.G. Baryshevsky, I.D. Feranchuk: Izv. Belarusian Acad. Sci. (Ser. Fiz.-Mat.
Nauk) N 2, 117 (1975) 136

12. V.G. Baryshevsky, I.D. Feranchuk: Phys. Lett. A 76, 452 (1980) 146
13. V.G. Baryshevsky, I.D. Feranchuk: Dokl. Belarussian Akad. Nauk 27, 995 (1983)

147
14. V.G. Baryshevsky, I.D. Feranchuk: Dokl. Belarussian Akad. Nauk 28, 336 (1984)

147, 151
15. V.G. Baryshevsky, I.D. Feranchuk: Phys. Lett. A 102, 141 (1984) 147, 151
16. V.G. Baryshevsky, I.D. Feranchuk: Izv. Belarussian Akad. Nauk, Ser. Fiz-Mat.

Nauk 2, 79 (1985) 147, 152
17. Y. Danon, B.A. Sones, R.C. Block: Novel X-ray source at the RPI LINAC

ANS Transactions, Summer Meeting, Hollywood, FL, 2002, vol 86; B. Sones, Y.
Danon, R. Block: Advances in parametric X-ray production at the RPI linear
accelerator, ANS Annual Meeting, ANS Transactions, San Diego, CA vol 88
(2003) p. 352 132

18. N.S. Erokhin, M.V. Kuzelev, S.S. Moiseev, A.A. Rukhadze, A.B. Swartzburg:
Non-Equilibrium and Resonant Processes in Plasma Radiophysics (Nauka,
Moscow 1982) 148, 149, 150, 151

19. I.D. Feranchuk, L.I. Gurskii, L.I. Komarov, O.M. Lugovskaya, F. Burgäzy, A.P.
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A

Appendix

A.1 X-ray Polarizability and Eigenwaves
for the Electromagnetic Field in a Crystal

The general expression for the tensor of the dielectric permittivity εij(k,kg, ω)
in the constitutive equation (2.4) contains the tensor of the X-ray polarizabil-
ity χij, which describes the interaction of X-ray radiation with the crystal:

εij(k,kg, ω) = δijδk,kg
+ χij(k,kg, ω), i, j = 1, 2, 3 . (A.1)

The components of χij are not phenomenological parameters but microscopic
characteristics of the crystal, which are expressed through the amplitudes of
the scattering of X-ray photons on periodically arranged atoms and nuclei
(see, for example, [6]):

χij(k,kg, ω) =
4πc2

ω2Ω

∑

a

[
f

(e)
ij,a(g, ω) + f

(n)
ij,a(k,kg, ω)

]
eigRa . (A.2)

Here Ω is the volume of a crystallographic unit cell; Ra is the coordinate of the
ath atom in the cell; f

(e)
ij,a is the amplitude of the elastic coherent scattering

of photons on atom’s electrons [8]:

f
(e)
ij,a(g, ω) = −δijr0[Fa(g) + ∆f ′(ω) + i∆f ′′(ω)]e−Wa(g) , (A.3)

where r0 = e2/mc2 is the electromagnetic radius of an electron; Fa(g) is an
atomic scattering factor; ∆f ′

a(ω), ∆f ′′
a (ω) are the real and imaginary parts

of anomalous dispersion corrections, respectively, which take into account the
absorption and resonant scattering of photons; e−Wa(g) is the Debye–Waller
factor, which quantifies the reduction of the elastic amplitude due to inelastic
scattering on the crystal phonons. The method for calculation of the X-ray
polarizability for various crystals is presented in [7].

The contribution to polarizability by the scattering of photons on resonant
nuclear transitions is essential for Mössbauer crystals [1]:
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f
(n)
ij,a(k,kg, ω) = − ñ

4ωr

2J + 1
2J0 + 1

Γ1

�(ω − ωr) + Γ
Pij(k,kg)ηae−Wa(k,kg). (A.4)

where ωr is the frequency of resonant transition of nuclei of the cell with
weight ηa; Γ1 and Γ are the elastic and total widths of the excited level,
respectively; J1 and J are the angular moments of the excited and ground
states, respectively; the polarization factor Pij(k,kg) is determined by the
multiplicity of transition:

E1 → Pij = δij , M1 → Pij =
(kkg)δij − kikgj

k2
,

E2 → Pij =
1
k2

[(kkg)δij + kjkgi − 2kikgj ] .

The Debye–Waller factor depends on the ratio of the width Γ to the phonon
energy of a crystal �ωphon:

Wa(k,kg) =
1
2
u2

a(k2 + k2
g), Γ � �ωphon,

Wa(k,kg) =
1
2
u2

ag2, Γ � �ωphon ,

where u2
a is the mean square amplitude of nuclear oscillations near an equi-

librium position.
In the X-ray domain, the X-ray polarizability is typically |χi,j| ∼

10−4−10−6. For the solution of Maxwell’s equations (2.1) with the accuracy
O(|χi,j|2), the electromagnetic field in a medium remains transverse, and the
interaction between the field and the crystal is essential at the wave vectors
k, satisfying the Bragg condition [9]:

αB =
2kg + g2

k2
≤ χ0 . (A.5)

In most cases, condition (A.5) is fulfilled for only one reciprocal lattice vector
g for fixed k, and the two-wave approximation of the dynamical diffraction
theory is valid [3]. Then, the eigenwaves of the electromagnetic field, required
for description of processes in the crystal (Sect. 3.2), are composed of the
linear combination of plane waves:

A
(s)
kω(r) = esAkseikr + egsAgseikgr, s = σ, π ,

E
(s)
kω(r) = i

ω

c
A

(s)
kω(r) , (A.6)

where the unit polarization vectors are

eσ ‖ egσ ‖ [k × g], eπ ‖ [k × [k × g]], egπ ‖ [kg × [k × g]] ,

and the amplitudes of wave (A.6) have to satisfy the algebraic equations:
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{k2 − k2
0(1 + χ

(s)
00 )}Aks − k2

0χ
(s)
01 Ags = 0 ,

{k2
g − k2

0(1 + χ
(s)
11 )}Ags − k2

0χ
(s)
10 Aks = 0 ,

k0 =
ω

c
, χ

(s)
00 = esiesjχij(k,k), χ

(s)
11 = egsiegsjχij(kg,kg) ,

χ
(s)
01 = esiegsjχij(k,kg), χ

(s)
10 = egsiesjχij(kg,k) . (A.7)

If the resonant scattering of X-rays on atoms and nuclei is negligible, then

χ
(s)
00 ) = χ

(s)
11 ) = χ0, χ

(s)
01 = χ−gCs, χ

(s)
10 = χgCs,

Cσ = 1, Cπ = cos 2θB .

The condition of zero determinant for system (A.7) delivers the effective re-
fraction indices for eigenwaves inside a crystal:

kµs = k0
k

k
nµs, nµs(1 + εµ1), µ = 1, 2 ,

εµs =
1
4

[
q ±

√
q2 + 4βχ00αB − χ00χ11 + χ

(s)
01 χ

(s)
10

]
,

q = χ00 + βχ11 − βαB, β =
γ0

γg
, γ0 = cos(k,N), γg = cos(kg,N), (A.8)

where N is a normal to the crystal surface.

A.2 Asymptotic for the Green Function
and Boundary Conditions for the Electromagnetic Field

The asymptotic of the Green function (Sect. 2.1) for Maxwell’s equations in
the medium with an arbitrary dielectric permittivity is derived here in the
limit r � r′. This function is the solution of the following equation (k0 =
ω/c, α, β = 1, 2, 3):

εαβγεγµν
∂2

∂xβ∂xµ
Gνλ(r, r′, ω) − k2

0

∫
dr1εαβ(r, r1, ω)Gβλ(r1, r

′, ω)

= δαλδ(r − r′) . (A.9)

Expressing the dielectric permittivity through the X-ray polarizability

εαβ(r, r1, ω) = δαβδ(r − r1) + χαβ(r, r1, ω) ,

Equation (A.9) is reformulated in the integral form:

Gαβ(r, r′, ω) = G
(0)
αβ(r, r′, ω)

+ k2
0

∫
dr1dr2G

(0)
αµ(r, r1, ω)χµν(r1, r2, ω)Gνβ(r2, r

′ω) . (A.10)
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The Green function G
(0)
αβ(r, r′, ω) for equation (A.9) in vacuum is represented

[12] as an expansion of eigenstates of the free electromagnetic field:

G
(0)
αβ(r, r′, ω) =

1
(2π)3

∫
dq

∑

s=1,2

e
(s)
α (q)e(s)∗

β (q)eiq(r−r′)

q2 − k2
0 (1 + iO)

, (A.11)

where e(s)(q), s = 1, 2; (q,e(s)) = 0 are two mutually orthogonal unit vectors
of polarization of the plane electromagnetic wave with the wave vector q. In
the considered case here, r � r′, the following asymptotic for the function
G

(0)
αβ is valid:

G
(0)
αβ(r, r′, ω) ≈ 1

4π

∑

s=1,2

e(s)
α (k)e(s)∗

β (k)
eik0r

r
e−ikr′

, k = k0
r

r
. (A.12)

Using (A.12), the asymptotic (A.10) can be written as

Gαβ(r, r′, ω) ≈ 1
4π

eik0r

r

∑

s=1,2

e(s)
α (k)

×
[
e
(s)
β (k)eikr′

+ k2
0

∫
dr1dr2eikr1χ∗

µν(r1, r2, ω)G∗
νβ(r2, r

′ω)
]∗
. (A.13)

If the iterative solution of (A.10) for the exact Green function is used, the
expression in the square brackets in (A.13) is represented as the series

E
(s,−)
k,β (r) = e

(s)
β (k)eikr

+ k2
0

∫
dr1dr2G

(0,∗)
νµ (r, r1ω)χ∗

βν(r1, r2, ω)e(s)
µ eikr2 + . . . , (A.14)

where the asymptotic behaviour of the function

G
(0,∗)
αβ (r, r′, ω) ≈ 1

4π

∑

s=1,2

e(s)∗
α (k)e(s)

β (k)
e−ik0r

r
eikr′

corresponds to a convergent spherical wave.
We now consider the eigenstates of the electromagnetic field in the medium

with the dielectric permittivity ε∗αβ(r, r1, ω), which are the solutions of the
homogeneous equation analogous to (A.9):

εαβνενµγ
∂2

∂xβ∂xµ
E

(s,−)
k,γ − k2

0

∫
dr1ε

∗
αβ(r, r1, ω)E(s,−)

k,β = 0 . (A.15)

The integral form of this equation, after using the Green function
G

(0,∗)
αβ (r, r′, ω) and normalizing to the unit amplitude of the incident wave, is
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E
(s,−)
k,α (r) = e(s)

α (k)eikr

+ k2
0

∫
dr1dr2G

(0,∗)
αβ (r, r1, ω)χ∗

βγ(r1, r2, ω)E(s,−)
k,β (r2) = 0 , (A.16)

and the iterative solution of this equation is delivered by series (A.15), which
confirms (2.11) in Sect. 2.1.

The matrix elements for amplitudes of the electromagnetic field in the crys-
tal are calculated (see Sect. 3.1) on the basis of the vector potential A

(s,−)
k (r)

and boundary conditions at the entrance and exit surfaces of the sample.
The conventional boundary conditions of electrodynamics (the continuity of
the tangential component of the field strength vectors and the normal com-
ponents of the induction vectors [10]) in the X-ray region are reduced [9]
with the accuracy O(|χ0|2) to the continuity of all field components and their
derivatives. Within the framework of the two-wave approximation for the dy-
namical diffraction theory, (A.6)–(A.8) have to be taken into account. Then,
the normalized vector potential, which is continuous at the sample surfaces
z = 0 and z = L, is (see 3.14)

A
(s,−)
k (r) =

√
4πeikr{esΦ(s)(z) + egsΦ(s)

g (z)eigr} . (A.17)

The explicit expressions for Φ(s)(z) and Φ(s)
g (z) in the case of different

diffraction geometries and photon observation angles are as follows:

(1a) The Bragg case (β < 0, γ0 > 0, γg < 0):

Φ(s)(z) = {D∗
s0(0)H(−z) + D∗

s0(z)H(z)H(L − z) + H(z − L)} e−ikzL ,

Φ(s)
g (z) = βξg∗

s

{
D∗

sg(z)H(z)H(L − z) + D∗
sg(L)H(z − L)

}
e−ikzL ,

Ds0(z) = ξ0
1se

−ik0ε1sz/γ0 + ξ0
2se

−ik0ε2sz/γ0 ,

Dsg(z) = e−ik0ε1sz/γ0 − e−ik0ε2sz/γ0 ,

ξ0
1,2s = ±2ε2,1s − χ00

∆s
, ξg

s =
χs

10

∆s
,

∆s = (2ε2s − χ00)e−ik0ε1sz/γ0 − (2ε1s − χ00)e−ik0ε2sz/γ0 . (A.18)

(1b) The Bragg case (β < 0, γ0 < 0, γg > 0):

Φ(s)(z) = H(−z) + D
(1∗)
s0 (z)H(z)H(L − z) + D

(1∗)
s1 (L)H(z − L) ,

Φ(s)
g (z) = −βξg∗

s

{
D(1∗)

sg (0)H(−z) + D(1∗)
sg (z)H(z)H(L − z)

}
,

D
(1)
s0 (z) = ξ0

1se
ik0(ε1sz+ε2sL)/|γ0| + ξ0

2se
ik0(ε2sz+ε1sL)/|γ0| ,

D(1)
sg (z) = eik0(ε1sz+ε2sL)/|γ0| − eik0(ε2sz+ε1sL)/|γ0|. (A.19)

(2a) The Laue case (β > 0, γ0 > 0, γg > 0):
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Φ(s)(z) = D
(2∗)
s0 (L)H(−z) + D

(2∗)
s0 (L − z)H(z)H(L − z)

+e−ikzLH(z − L) ,

Φ(s)
g (z) = β

{
D(2∗)

sg (L)H(−z) + D(2∗)
sg (L − z)H(z)H(L − z)

}
,

D
(2)
s0 (z) = −ζ0

1se
ik0ε1sz/γ0 − ζ0

2se
ik0ε2sz/γ0 ] ,

D(2)
sg (z) = ζg

1se
ik0ε1sz/γ0 + ζ0

2se
ik0ε2sz)/γ0 ,

ζ0
1,2s = ∓2ε2,1s − χ00

2(ε2s − ε1s)
, ζg

1,2s = ∓ χs
01

2(ε2s − ε1s)
. (A.20)

(2b) The Laue case (β > 0, γ0 < 0, γg < 0):

Φ(s)(z) = H(−z) + D
(3∗)
s0 (z)H(z)H(L − z) + D

(3∗)
s0 (L)H(z − L) ,

Φ(s)
g (z) = β

{
D(3∗)

sg (z)H(z)H(L − z) + D(3∗)
sg (L − z)H(z − L)

}
,

D
(3)
s0 (z) = −ζ0

1se
ik0ε1sz/|γ0| − ζ0

2se
ik0ε2sz/|γ0| ,

D(3)
sg (z) = ζg

1se
ik0ε1sz/|γ0| − ζ0

2se
ik0ε2sz)/|γ0| . (A.21)

A.3 Accurate Calculation of PXR
with Multiple Scattering of Electrons

For the description of PXR fine structure and high-resolution PXR, a more
accurate calculation than that in Sect. 2.3 of the multiple scattering of charged
particles is necessary. Equation (2.16) has to be averaged over all the particle
trajectories in the crystal [4, 5]:

W (s)
nω =

q2ω2

4π2c3

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ w1(r,v, t)w2(r,v, t|r′,v′, t′)

eiω(t−t′)
(
vE

(−)
ks (r, ω)

)∗ (
v′E

(−)
ks (r′, ω)

)
, (A.22)

where w1(r,v, t) is the particle distribution function at the time t, w2

(r,v, t|r′,v′, t′) is the probability density to find a particle at the time t′

at the position r′,v′, if it was at the position r,v at the time t.
The periodic crystal structure influences the beam distribution function in

a small phase volume near the boundaries of the Brillouin zones. This case is
essential if the primary beam velocity v0 is parallel to the crystallographic axes
(planes) and particles are trapped into the channelling mode. In other cases,
the kinetic equation for a homogeneous medium can be used for averaging
the distribution function over the trajectories. The energy E and ϑ of velocity
deviation are more convenient variables to be used in w1, w2 instead of the
velocity v. In the case of relativistic particles ϑ � 1, the kinetic equation is
[4]
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∂w

∂t
+ v

∂w

∂r
= q(E)∆ϑw + K̂(E)w ;

q(E) =
c

LR

E2
s

4E2
, ∆ϑ =

∂2

∂ϑ2
x

+
∂2

∂ϑ2
y

,

K̂(E)w =
∫ ∞

0

u2 + E2 − 2uE/3
(u − E)

[
w(ϑ, u, t)

u2
H(u − E)

+
w(ϑ,E, t)

E2
H(E − u)

]
. (A.23)

Equation (A.23) uses the Bete–Gaitler [2] formula for bremsstrahlung, which
is dominant in particle energy losses; the parameter Es and LR from (1.26)
are the characteristic energy and the radiation length of the multiple scatter-
ing of electron beam on the shielded potential of crystal atoms, respectively.
The functions w1 and w2 are the solutions of (A.23) under different initial
conditions:

w1(t = 0) = δ(r − r0)δ(ϑx)δ(ϑy)δ(E − E0) ,

w2(t = t′) = δ(r − r′)δ(ϑx − ϑ′
x)δ(ϑy − ϑ′

y)δ(E − E′) , (A.24)

where r0 and E0 are the initial position and the beam energy at the time
t = 0, respectively.

To analyse the radiation spectrum in a crystal of thickness L, the expres-
sions for wave fields from Appendix A.2 have to be used. The integration area
is divided into three parts: (−∞, 0), (0, t0), (t0,∞), where t0 = L/(v0N)
corresponds to the time of the escape of the particle from the crystal and the
fluctuations of the time taken by the particle to pass through the crystal due to
multiple scattering are neglected; N is a normal to the crystal surface. Thus,
there are nine different contributions to the total radiation intensity, each
having a certain physical interpretation and depending on the experimental
geometry. The detailed analysis of (A.22) is given in [5], and an example of the
Laue geometry is presented below. For relativistic particles, the energy losses
for radiation are comparatively low, whereas multiple scattering is essential.
Then the operator K̂(E) in (A.23) can be dropped and q(E) = q(E0) ≡ q0 is
constant, and the solution of (A.23) for w1(r, ϑ, t), w2(r−r′, ϑ, ϑ′, t− t′) with
the initial conditions (A.24) are derived in [13, 14]. The contribution to the
intensity (A.22) due to the particle trajectory in the crystal is [5]

W (s)
nω =

q2ω2

2π2c3
C2

s

∣∣∣∣
χg

2(ε2s − ε1s)

∣∣∣∣

2

Re
∫ t0

0

dt

∫ t0−t

0

dτ

×
[
(egsv0)2Q1(1 + ∆) + 2q0tQ2

]
[
∑

µ=1,2

Fµs − Φs

]

, (A.25)

where the polarization factor Cs and the diffraction parameters follow from
A.2, and the multiple scattering is determined by
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Q1 =
1

cosh u(1 + ητ tanhu)
exp

[
iωτθ2

2
− ηθ2 tanhu

4q(1 + ηt tanhu)

]
,

Q2 =
Q1

cosh u(1 + ητ tanhu)
, ∆ =

1 − cosh u(1 + ητ tanhu)2

cosh u(1 + ητ tanhu)2
,

Fµs = exp

[

− icτ
Lµs

− t0 − t − τ/2

L
(a)
µs

]

,

Φs = exp

[

− icτ
L2s

+
τ

L
(a)
2s

− iω(ε∗2s − ε1s)(t0 − t)

]

+ exp

[

− icτ
L2s

− τ

L
(a)
2s

+ iω(ε2s − ε∗1s)t

]

,

u = ητ, η =
√

2iωq0 ,

Lµs =
2c

ω[γ−2 + θ2 + 2(1 − Re εµs)]
, L(a)

µs =
2c

ω Im εµs
. (A.26)

The functions Q1, Q2 and ∆ depend on the coherent length of bremsstrahlung
[14]:

LBS =
c√

2ωq0
,

and their influence on the spectral–angular characteristics of radiation is de-
termined by the ratio of LBS and PXR coherent length Lµs.

For high-energy electrons (LBS ∼ γ → ∞) or for heavy charged particles
(q0 → 0), the functions Q1,2 → 1, ∆ → 0. Then the main contribution
to the intensity is given by the first term in (A.25), which has a minimum
∼ θ2 of the photon radiation in the diffraction direction kB. The term in
(A.25) proportional to 2q0tQ2 corresponds to bremsstrahlung, which has a
maximum in the direction kB. In the case of thin crystals, these facts fit well
the results of Sect. 2.3. In general, the influence of multiple scattering results in
cumbersome expressions and has been investigated in [5]. Here we emphasize
only the expression which is useful for fitting of the HRPXR experimental data
(see Sect. 2.3). The formula used in (3.26) for the photon radiation angle,

θ2
ph = γ−2 + θ2

sc + θ2
M ,

has to be substituted for higher accuracy by

θ2
ph = γ−2 + ζθ2

sc + θ2
M ,

and the dimensionless parameter ζ is varied in the region 1.2 < ζ < 3 for
different crystal thicknesses [5].
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