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By means of the parametric excitation of water waves in a Hele-Shaw cell, we report the existence

of two new types of highly localized, standing surface waves of large amplitude. They are, respectively, of

odd and even symmetry. Both standing waves oscillate subharmonically with the forcing frequency. The

two-dimensional even pattern presents a certain similarity in the shape with the 3D axisymmetric oscillon

originally recognized at the surface of a vertically vibrated layer of brass beads. The stable, 2D odd

standing wave has never been observed before in any media.

DOI: 10.1103/PhysRevLett.107.024502 PACS numbers: 47.54.�r, 47.35.Fg

Parametrically driven surface waves, known as Faraday
waves, can be excited at the free surface of a fluid when the
latter is submitted to periodical vertical oscillations, pro-
vided that the input energy is large enough to balance the
dissipation due to the fluid viscosity [1–3]. At the labora-
tory scale, this experiment is a privileged way to explore
some nonlinear properties of water waves.

Numerous experimental studies evidenced the appear-
ance of various spatial patterns for 3D surface waves,
which can be interpreted as nonlinear couplings between
waves of different wavelengths. Depending on the driving
amplitude and frequency, the observed patterns can be
stripes, squares, hexagons [4,5], and even quasicrystalline
point symmetries (with loss of translational symmetries)
[6,7]. The classical theoretical framework explaining the
emergence of these patterns relies on the devising of an
amplitude equation aimed at capturing basic symmetries
and gauge invariances while keeping the nonlinearities of
lowest degrees [4,8–13].

In the present Letter, we report the existence of two 2D
highly localized standing patterns, respectively, of even
and of odd symmetry. They are obtained by vibrating
vertically a Hele-Shaw (i.e., nearly two-dimensional) cell,
partly filled with water. Both patterns oscillate subhar-
monically with the forcing vibration, the latter being
purely sinusoidal with a single frequency. The profile of
the 2D even pattern resembles somehow an axial slice of
the 3D axisymmetric oscillon obtained with brass beads
[14]. On the other hand, the existence of an oscillon of odd
parity had never been reported in any media up to now.

The system studied is a fluid layer about 5 cm deep
confined in a vertical glass cell (1.7 mm breadth, 30 cm
long). The liquid is distilled water. The temperature is
regulated within a precision of 0:1 �C in order to reduce
fluctuations in surface tension and viscosity. The fluid
vessel is mounted on a shaker and experiences a vertical
purely sinusoidal motion (see Fig. 1). The amplitude of the

cell oscillations can be driven up to 20 mm. The driving
frequency is monitored with a synthesizer and is stable to
about 0.1%. The surface deformation is recorded by means
of a fast camera (250 fps) positioned perpendicularly to the
cell. For water and for the explored range of vibration
frequencies, the thickness of the cell corresponds to a
Hele-Shaw configuration; i.e., the gap ‘ between the two
lateral vertical glasses is small compared to the observed
characteristic length of the wave. The advantage of the
Hele-Shaw configuration is twofold. First, it increases
considerably the domain of existence of oscillonic, local-
ized waves (compared to the case of a 3D tank). Second, it
justifies the assumption of an irrotational motion to treat
theoretically the dynamics of parametrically forced water
waves in the presence of viscous damping.
The experimental protocol is the following. We start

from the at-rest equilibrium state. We choose a forcing
frequency in the range 8–20 Hz (say, 10 Hz), and we
increase slowly the oscillation amplitude up to the forma-
tion of spatially periodic standing waves. The Faraday
waves appear with a finite amplitude at the acceleration
threshold corresponding to the nondimensioned accelera-
tion F" (F" ¼ 2:24 at 10 Hz), where F ¼ �=g, � being the

amplitude of the forcing acceleration and g being the

FIG. 1. Even (left) and odd (right) standing solitary waves.
Driving frequency, 11 Hz; vibration amplitude, 4.1 mm; the
wave amplitudes are of the order of 1.2 cm.
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acceleration due to gravity. Next, the driving acceleration
is decreased down to the vanishing of the surface waves.
Another threshold F# is thus reported (F# ¼ 1:13 at 10 Hz).
The Faraday instability is therefore clearly hysteretic (of
subcritical type) for water in a Hele-Shaw configuration
(see Fig. 2). Once the two thresholds are located, one starts
from the motionless state at F ¼ 0, and the vibration
amplitude is then increased in order to attain the hysteretic
region (F# <F < F"). According to the preparing process,

the free surface remains flat. Next, the free surface is
locally perturbed with an external probe that is quickly
removed. Thus, we observe a standing, localized surface
wave, oscillating with angular frequency ! ¼ �=2 (� the
forcing angular frequency), as shown in Fig. 1. For rigor-
ously identical excitation parameters (F and �), the local-
ized wave can be of various shapes, with either an even or
an odd symmetry [Figs. 1(a) and 1(b); movies can be
accessed in Ref. [15]]. Note that here we abusively use
the term ‘‘odd,’’ because crests and troughs are not exactly
of the same magnitudes, as is the case with nonlinear water
waves—see Figs. 1 and 3). The difference in the observed
shapes may likely be attributed to the probe motion. It
might be envisaged that the even wave could result from
the coupling and binding of two odd localized standing
waves. In Figs. 3(a) and 3(b), the time evolution of, re-
spectively, the even and the odd patterns is reported. Note
that, in both cases, an overturning of the free surface can be
observed temporally.

As mentioned above, the profile of the even standing
solitary wave observed here resembles somehow the
profile of the 3D axisymmetric oscillon recognized in a
vibrated layer of bronze spheres [14]. 3D axisymmetric
oscillons have also been seen in liquids [16,17], but they
displayed noticeable differences from the presently re-
ported ones. In Ref. [16], the fluid is a non-Newtonian
clay suspension, and the authors attribute the generation
of oscillons to a nonlinear shear thinning with freq-
uency-dependent viscosity. In Ref. [17], the fluid is a
Newtonian silicon oil, and the parametric forcing is

constituted with two commensurate angular frequencies
m� and n� (where m and n are prime integers). The
oscillon generated by these two superimposed frequencies
vibrates harmonically with the basic forcing frequency �
corresponding to the greatest common divisor of the two
frequencies. On the other hand, in the present Hele-Shaw
cell, both odd and even 2D oscillons oscillate subharmoni-
cally. Moreover, the present study is the first experimental
one performed in a Hele-Shaw cell, and the even 2D
localized standing wave that we report here is very differ-
ent from the 3D axisymmetric oscillon. Indeed, the solu-
tions of the wave equation and their stability differ
drastically according to the space dimensionality. Further-
more, concerning the existence of the odd localized stand-
ing wave, to our knowledge, it had never been observed in
any media hitherto.

FIG. 2. Experimental determination of the region of bistability.
The domain of bistability F 2 ½F#; F"� corresponds to the region

of existence of the standing solitary waves as shown in Fig. 1.
FIG. 3. Temporal evolution of the profile of the subharmonic
solitary waves. (a) Even pattern. (b) Odd pattern.
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Various types of amplitude equations—such as the
forced dissipative nonlinear Schrödinger equation [18,19]
and the complex Swift-Hohenberg equation [20,21]—have
been designed to account for localized standing patterns.
From these theoretical studies, it emerges that the two
ingredients required for the formation of oscillons are
mainly dissipation associated with hysteresis. We note in
passing that amplitude equations are well suited to describe
slowly modulated small-amplitude sinusoidal waves (e.g.,
envelope soliton), which is not the case for oscillons where
the ‘‘carrier’’ wave and its ‘‘envelope’’ have comparable
extents; moreover, the solitary standing waves reported
here have large amplitudes (i.e., they are very steep waves).
Nonetheless, despite their limitation, amplitude equations
give some insight and are thus considered here.

In the Hele-Shaw configuration, it is convenient to in-
troduce the gap-averaged velocity �u of the fluid (overbars
denote quantities averaged over the gap). The (constant)
gap width ‘ is small compared to the water depth h, the
characteristic wavelength 2�=k, the wave amplitude a, and
the cell length. Thus, the average is performed by assuming
that the velocity profile is parabolic across the gap
(Poiseuille’s flow). In the reference frame of the cell, the
gap averaging of the Navier-Stokes equation yields the
two-dimensional equation

�u t þ 6
5ð �u � rÞ �u ¼ ���1r �P� ~g� � �u; (1)

where � ¼ 12�=‘2 is the so-called Rayleigh’s external
viscosity and ~g ¼ ð0; ~gÞ with ~g ¼ g½1� F cosð�tÞ� is the
apparent gravity acceleration experienced by the liquid in
the vibrated cell. The numerical factor 6=5 ¼ �u2= �u2 char-
acterizes an increase in nonlinear effects due to the viscous
boundary layers in the direction perpendicular to the cell.

In Eq. (1), the viscous diffusion term �r2 �u has been
neglected because it is very small compared to � �u. More
precisely, for the observed characteristic wave numbers k,
the viscous damping time ��1 imposed by the Hele-Shaw
geometry is roughly 250 times shorter than the diffusion
time ð�k2Þ�1 arising from the term �r2 �u. It is interesting to
point out that, in the range corresponding to the oscillon
appearance, the viscous damping time ��1 (’ 0:24 s) im-
posed by the Hele-Shaw geometry compares with the
response period �=� (typically 0.2 s). It can be easily
seen that any vorticity field at the initial time is rapidly
damped (in the absence of the source of vorticity) due to
the dissipation term � �u. Since we are interested in estab-
lished regimes, we can neglect the vorticity and hence
consider potential flows. Thus, by introducing a velocity
potential � such that �u ¼ r�, Eq. (1) can be integrated
into a Bernoulli equation, and the water wave equations to
be investigated are

�xx þ�yy ¼ 0 for � h � y � �; (2)

�y ¼ 0 at y ¼ �h; (3)

�t þ �x�x ��y ¼ 0 at y ¼ �; (4)

�t þ 3
5ðr�Þ2 þ ��þ ~g� ¼ 0 at y ¼ �; (5)

where x, y, and t are, respectively, the horizontal, upward
vertical, and temporal variables, and y ¼ �ðx; tÞ, y ¼ 0,
and y ¼ �h are the equations of the impermeable free
surface, of the mean water level, and of the impermeable
horizontal bottom, respectively. The surface tension has
been neglected in Eq. (5), since the capillary length (which
is equal to 2.7 mm for water and air) is small compared to
the observed wavelengths. The water wave equations thus
consist in the incompressibility and irrotationality in the
bulk, with the impermeability boundary conditions of the
free surface and of the cell bottom, together with the zero
pressure at the free surface.
We consider first the linear approximation of

Eqs. (2)–(5). Introducing a damped Fourier-like integral

representation for the surface in the form �ðx; tÞ ¼R1
�1 �ðk; tÞeikx��t=2dk, we found after some algebra that

� satisfies a damped Mathieu equation [22]

�tt þ ½!2
0 � 1

4�
2 �!2

0F cosð�tÞ�� ¼ 0; (6)

where !2
0 ¼ gk tanhðkhÞ. It is well known that such sys-

tems exhibit resonance conditions for n� ¼ 2!0, n being
an integer. Equation (6) as been derived by Benjamin and
Ursell [2] without dissipation (� ¼ 0). If dissipation is
disregarded, the resonance conditions obviously corre-
spond to unbounded solutions. Dissipation is often added
empirically into the Mathieu equation via an ad hoc term.
With the present derivation, dissipation is obtained directly
from the exact equations (i.e., � is known explicitly in
terms of the physical parameters), thanks to the simplifi-
cations yielded by the Hele-Shaw configuration.
We investigate now the effect of nonlinearities. Here-

after, in order to simplify the algebra, the water depth
h is considered as infinite and we consider only one spatial
wave number k corresponding to a single standing mode.
The set of equations (2)–(5) is then solved approxi-
mately via a perturbative scheme using a multiple scale
expansion [23]. After some algebra, an approximate equa-

tion is obtained for the free surface written as �ðx; tÞ ¼
RefAðtÞeið�=2Þt�ið�=4Þg cosðkxÞ þOðA2Þ, where the com-
plex amplitude AðtÞ satisfies the equation

At ¼ ð��1 þ i�2ÞAþ �3A
� � i�4jAj2A; (7)

an asterisk denoting the complex conjugate and where the
�n are real parameters, i.e., �1 ¼ �=2, �2 ¼ !0 ��=2,
�3 ¼ !0F=4, and �4 ¼ !0k

2=10 with !2
0 ¼ gk.

In Eq. (7), the coefficient �1 is related to the viscous
damping of the wave, the coefficient �2 corresponds
to the detuning between the natural frequency of the
mode k in the limit of infinitesimal amplitudes and half
the forcing frequency, the term involving A� is related to
the parametric forcing, and the last term corresponds to the
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nonlinear frequency shift with the wave amplitude. The
linear and nonlinear stability analysis of an equation of
the same form of Eq. (7) has been studied by Meron [24].
For �> 2!0, the instability leading to the formation of a
standing wave is of the supercritical Hopf type, while it
becomes subcritical for �< 2!0.

Seeking for a solution of constant amplitude A ¼
a expði	Þ, we obtain the dispersion relation ½1�ðkaÞ2=
10��=2!0�2¼F2=16��2=ð4!2

0Þ. This relation can be

satisfied only if the right-hand side is positive, implying the
condition F�F# ¼2�=!0. A remarkable feature of Eq. (7)

is that there is a domain of bistability, defined by�< 2!0,

F# <F < F" (with F" ¼ 4
!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½!0 � ð�=2Þ�2 þ ð�2=4Þp
),

where both the flat surface state and the standing wave of
angular frequency �=2 are stable. However, Eq. (7) is
unable to predict the exact shape of the free surface. This
is not surprising, because this equation is derived under the
assumption of small amplitude, while the standing solitary
waves we report here are extremewaves for which there are
no small parameters; moreover, these waves exist only with
a finite amplitude (i.e., they do not bifurcate from the rest).
Thus, the design of a highly nonlinear theory would be
necessary to account for the reported solitary waves, but it
is still far beyond the existing methods.

As previously suggested in Refs. [25,26], the localized
patterns that we observed can be interpreted as resulting
from the coexistence in space of both flat and wavy re-
gions. The simultaneous existence of these flat and wavy
states as results of the same forcing is therefore condi-
tioned by the bistability phenomenon accounted for above.
Thus, as advanced by Umbanhowar, Melo, and Swinney
[14], hysteresis and dissipation are essential ingredients.
Analog mechanisms leading to subcritical Hopf bifurca-
tions and giving rise to localized patterns are also encoun-
tered in many other fields, such as nonlinear optics [27],
chemistry [28], and biology [29].

We acknowledge Alain Pumir and Nail Akhmediev for
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ported by CNRS and Région PACA.
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