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Abstract: We study the properties of pulsed solutions to the scalar and vector wave equations 
composed of plane-waves with equal longitudinal spatial frequency. This condition 
guarantees that, at all times, the field profile is invariant in the longitudinal direction. 
Particular emphasis is placed on solutions with rotational symmetry. For these solutions, the 
wave concentrates strongly near the axis at a given time. We provide closed-form expressions 
for some of these fields, and show that their wavefronts are approximately spherical. 
Solutions carrying orbital and spin angular momenta are also considered. 
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1. Introduction 

The wave and Helmholtz equations cover a wide range of applications in electromagnetics, 
acoustics, and quantum mechanics. These equations accept a large number of fairly simple 
closed-form solutions within the paraxial approximation, such as monochromatic and pulsed 
Gaussian beams and their higher order generalizations [1,2]. Even beyond the paraxial 
regime, there are several exact monochromatic solutions with interesting properties that have 
been the subject of much attention. These include not only plane waves but also the so-called 
Bessel [3] and Mathieu [4] beams. Such solutions are sometimes called “nondiffracting 
beams” given that their transverse profile is maintained under propagation, However, like 
other authors, we prefer the adjective “propagation-invariant” over “nondiffracting” as the 
latter could give the incorrect impression that these solutions bypass a physical law. 
Similarly, we use the more general noun “field” rather than “beam” since the latter indicates a 
field that is well collimated and whose transverse power distribution is confined to a finite 
region at all times. 

Polychromatic solutions with interesting behaviors have also been considered, in 
particular those that can be expressed as a coherent superposition of Bessel fields. As noted 
by Sheppard [5,6] and Friberg and Turunen [7], there are three types of such solutions that are 
of particular interest. The first corresponds to superpositions in which the nodal cylindrical 
surfaces coincide for all frequencies. The second is the superposition of beams with equal 
cone angle, which gives rise to the well-known X-wave pulses [8,9]. The third type can be 
generalized to give nondispersive pulses with arbitrary group velocity. The solutions 
proposed in this work belong to this third class, in the limit of zero group velocity. 

A useful approach to analyzing and propagating waves is the angular spectrum [10–12]. In 
this article we use the angular spectrum to determine the necessary and sufficient conditions 
for all components of the angular spectrum to propagate forward accumulating equal 
longitudinal phases. This condition guarantees that the z dependence of the solutions is 
separable, which implies that at any given time the field is self-similar. We show that, both in 
two and three dimensions, many closed-form scalar solutions can be found. The simplest of 
these solutions have wavefronts that most of the time are very close to hemispherical, all with 
the same (time-dependent) radius of curvature, but longitudinally displaced. At a given time, 
however, they collapse onto a strongly transversely localized distribution free of the typical 
Bessel side lobes. These solutions involve finite power (unlike Bessel fields and plane waves) 
but not finite energy given their infinite longitudinal extent. We discuss how a variety of 
closed-form versions of these solutions can be found that carry a finite amount of energy, at 
the cost of the dependence in z not being exactly separable. For simplicity, we start by 
considering solutions to the scalar wave equation, and then we propose simple generalizations 
to transverse vector waves that satisfy the free-space Maxwell equations. 

2. Theory 

2.1 The angular spectrum 

The angular spectrum and its use for plane-to-plane propagation can be summarized 
succinctly: Let ( , ,0; )p x y ω  be a monochromatic wave scalar quantity in free space with 

frequencyω . Then, in the plane of 0z = , 

 ( , )( , ,0; ) ( , ,0; ) ,x yi k x k y

x y x yp x y k k dk dkω ω
+∞ +∞

+=   e P  (1) 

and 

 ( , )

2

1
( , ,0; ) ( , ,0; ) ,

4
x yi k x k y

x yk k p x y dxdyω ω
π

+=  e P  (2) 
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a transverse spatial Fourier transform pair, where 1
Lk −  is the angular spectrum as a function 

of wavenumber 2 / /k cπ λ ω= =  ( λ being the wavelength and c the wave speed). 
An important feature of the angular spectrum relates to propagation from the plane 

( , ,0; )p x y ω  to a parallel plane ( , , ; )p x y z ω : the transfer function relation can be written 

simply as 

 ( , , ; ) ( , ,0; ) zik z
x y x yk k z k kω ω= e P P  (3) 

where 

 2 2
2 .z x yk k k k= − −  (4) 

For plane wave propagation in the + z direction one must use the positive real root of Eq. (4) 
when 2 2 2

x yk k k+ ≤  (propagating waves), and the positive imaginary root when 2 2 2
x yk k k+ >  

(evanescent waves). The solutions we consider in what follows do not involve evanescent 
components, so the square root is taken as real and positive and the phase of the transfer 

function is 2 2 2 2/ .z x yk z z c k kω= − − . In the time domain, the field can then be written as 

 
( )

( , , ; ) ( , , ; ) ( , ,0; ) .
x y zi k x k y k z t

i t
x y x yp x y z t p x y z t d k k dk dk d

ω
ω ω ω ω

+ + −+∞ +∞ +∞ +∞
−

+∞ +∞ +∞ +∞

= =   e e P (5) 

2.2 The longitudinal iso-phase condition 

The longitudinal iso-phase condition corresponds to solutions in which the dependence in the 
propagation distance z is separable, that is, for which zk  is fixed. For example, for 

monochromatic beams, this condition reduces to: 

 
2

2 2 .x yk k
c

ω + =  
 

 (6) 

In circularly symmetric beams this leads to the Bessel field solution [3]. However, in this 
work we consider broadband excitations, so the iso-phase condition restricts combinations of 
ω, xk , yk  for which 

 
2

2 2 2 2 ,z x y Lk k k k
c

ω = − − = 
 

 (7) 

where Lk > 0 is constant. Note that the factorization of the dependence in z as a simple 

exponential means that the pulse has vanishing group velocity [7]: the intensity profile of the 
solutions evolve in time and in the transverse dimensions, but not in the main direction of 
propagation despite the wave being composed only of forward propagating traveling waves. 

2.3 Solutions in two dimensions 

We now examine the simplest case of two-dimensional propagation, where the source is 
distributed along a line. This starting point has a few beneficial features. Many practical 
applications in acoustics, medical ultrasound, and radar use 1D arrays that are well-suited to 
the simpler solution. Two-dimensional (2D) arrays are also commonly excited using 
separable, orthogonal, 1D functions. Finally, the 2D solution has properties that are easy to 
visualize and appreciate. 

In 2D, the longitudinal iso-phase condition reduces to: 
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2

2 2.  − = 
 

x Lk k
c

ω
 (8) 

Let us choose a lowest, or base frequency Lω , defined as a plane wave in the z-direction, so 

 
2

2 .L
Lk

c

ω =  
 

 (9) 

All higher frequencies Lω ω≥  can meet the longitudinal iso-phase condition. In a dispersion-

free medium such as free space where 0( )c cω = : 

 2 2 2
2
0

1
( ).x Lk

c
ω ω= −  (10) 

 

Fig. 1. Hyperbola in the 2D Fourier plane defining the iso-phase condition. For forward-
propagating fields and when the analytic signal representation is used only the top (blue) 
branch is used. 

This defines a hyperbola in the 2D Fourier space of [ ],xk ω , as shown in Fig. 1. This 

hyperbola has two branches, corresponding to positive and negative temporal frequencies. We 
choose to use the analytic signal representation of the field, so we only use the positive 
frequency branch whose vertex is at [ ]0, Lω ; the real field results from using the real part of 

the solution. 
Accordingly, we seek to create in the plane z = 0 the scalar function characterized by the 

angular spectrum 

 2 2 2
2
0

1
( ,0; ) ( ) ( ) , 0,x x x Lk A k k

c
ω δ ω ω ω

 
= − − ≥ 

 
P      (11) 
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where [ ]δ ⋅  is the two-dimensional Dirac unit impulse function [13] and an apodization 

function ( )xA k  is included as a practical matter for limited power. The field then yields 

 ( )2 2 2
2
00

1
( , ; ) ( ) ( ) .xL i k x tik z

x x L x

k

p x z t A k k d dk
c

ω

ω

δ ω ω ω
+∞ +∞

=

=−∞ =

 
= − − 

 
 e e  (12) 

Integrating first over ω yields 

 ( ) ( ) ( )2 2
02 2

, ; exp .L
xik z

x x L x

x L

A k
p x z t i k x c t k k dk

k k

∞

−∞

 = − +  +
e  (13) 

Note that this integral can be rewritten by parametrizing sinhx Lk k η=  leading to 

 ( ) ( ) ( )0 0, ; sin h exp sin h cos h .Lik z
L Lp x z t c A k ik x c t dη η η η

∞

−∞

 = − e  (14) 

The case for which A is chosen to be constant leads to a closed-form solution in terms of 
modified (or hyperbolic) Bessel functions [13]. Given its infinite power, however, such a 
solution is singular. There are also important details in the choice of the branches of the 
square roots that enter that solution depending on the values of x and t. Both these issues can 
be addressed by considering instead a finite-power solution corresponding to the apodization 

 ( ) 0sin h exp cos h ,L LA k k c qη η = −   (15) 

where q is a positive constant. From the substitution of Eq. (15) into Eq. (14) it can be seen 
that this is equivalent to shifting the origin in time t by an imaginary amount to t − iq. This 
apodization through a complex displacement of a variable is analogous to those used in the 
space domain to achieve nonparaxial analogs of Gaussian beams [14,15]. The solution to the 
integral is found to be given in the compact form 

 2 2 20
0 0( , , ) ( ) exp( ),

2 L L

c
p x z t K k x c t iq ik z = − −   (16) 

where K0 is a modified Bessel function of the second kind of order 0, and the branch cut of 
the square root is assumed at the negative real axis of its argument. The fact that the solution 
is a modified Bessel function can be understood easily. Firstly, assuming that the field is 
separable as ( ), ; ( ; ) exp( )Lp x z t f x t ik z=  and substituting it into the wave equation leads to a 

hyperbolic equation for f that is mathematically analogous to the (1 + 1)D Klein-Gordon 
equation for relativistic quantum mechanics. By then using an ansatz ( ; ) ( )f x t g ρ=  with 

2 2 2
0 ( )x c t iqρ = − −  one finds that g satisfies the modified Bessel differential equation. 

To generate this field, the broadband source distribution at plane z = 0 is simply the real 
part of Eq. (17) with z = 0. For 1D arrays in ultrasound applications, spatial samples of this 
real part would constitute the source excitation signals, typically voltages applied to the 
individual sub-wavelength elements of the 1D array. Note that t = 0 does not correspond to 
the initial time but to the time at which the field is most concentrated spatially; in theory the 
excitation must exist for all negative times. The parameter q determines the width of the 
spectrum used, and therefore how thin the field becomes at t = 0. Several cases are shown in 
Fig. 2, corresponding to different values of q. The corresponding fields at different times are 
shown in the left column in Fig. 3 and Visualization 1 for 0 1Lk c q = . We can see from those 

figures that the transverse width of the field scales with time roughly as 2 2 2
02 c t q+ , so for t 
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= 0 the field collapses into a needle-like thin power distribution with no side lobes. We 
therefore refer to these solutions as “needle pulses”. 

 

Fig. 2. Excitation signal at the initial plane, for 0Lk c q  = 0.001 (a), 1 (b), and 4 (c). 

 

Fig. 3. Real part of the pulses for (left) two dimensions given in Eq. (16), (middle) three 
dimensions with unit vorticity, and (right) the three-dimensional pulses in Eq. (21), at five 
different times. For the first two columns, x ∈ [−20/kL, 20/kL] (vertical) and z ∈ [0,100/kL] 
(horizontal), while for the third, x∈ [−20/KL, 20/KL] and z∈ [-50/KL,50/KL]. 

Note from Fig. 3 that the wavefronts are approximately circular. This can be understood 
by using the fact that 0 ( )K iτ  is proportional to a Hankel function of τ. By using the fact that a 

Hankel function is approximately proportional to the exponential of i times its argument, one 
finds that the wavefronts are defined by the approximate form, for 2 2t q>> : 

 2 2 2 2 2
0 0( ) ( ),x z z c t q+ − ≈ −  (17) 

where 0z  is a constant that determines the wavefront in question. 

The solutions given earlier are of course not the only ones of their type. In fact, since the 
Laplacian and second time derivative operators that appear in the wave equation commute 
with derivatives in x or t, any combination of transverse or temporal derivatives of these 
solutions are also solutions. Combinations of derivatives in x can be used, for example, to 
create fields with nodal lines. 
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2.4 Solutions in three dimensions with rotational symmetry 

Analogous results can be found for fields in three dimensions. For example, the following 
finite-power solution exists which has rotational symmetry: 

 ( ) ( )
2 2 2

0

0 2 2 2
0

exp ( )
, , exp ,

( )

L

L

L

k c t iq
p z t c ik z

k c t iq

ρ
ρ

ρ

 − − − =
− −

 (18) 

where 2 2x yρ = + . By using the same arguments as in the previous section, it is easy to 

show that these solutions have approximately spherical wavefronts, that they also have a full 

width of approximately 2 2 2
02 c t q+ , and that the parameter q regulates how spatially 

localized these solutions are at t = 0. Further, by applying appropriate operators [16] one can 
find other interesting solutions. For example, applying m times the vorticity ladder operator 

Ĉ± ±= ⋅∇v  (where (1, ,0) 2i± = ±v ) to the solutions above gives rise to closed-form 

expressions for fields with vorticity m± , so that the needle at t = 0 is hollow. The right 
column of Fig. 3 and Visualization 2 show longitudinal cross sections of the real part of such 
fields with unit vorticity and 0 1Lk c q = . 

Further, if solutions not to the scalar wave equa 0z tion but to the free-space Maxwell 

equations are desired, one can apply vector operators to (1, ,0) 2i± = ±v the scalar solutions. 

For example, the following operator transforms a scalar solution into a similar transverse 
vector solution with definite helicity (that is, whose monochromatic plane wave components 
have circular polarization): 

 ( )
2

2 2
0 0

1ˆ .
2

p i p
c t c t

± ±
± ±

 ×∇ ∂ ∂= ⋅∇ ∇ ± − ∂ ∂ 

v vC v  (19) 

Linear combinations of the form ˆ ˆexp( 2) exp( 2)i i pα α+ −
 + − C C , where α is real, lead to 

pulses that have approximately linear polarization at t = 0, with an orientation determined by 
α. Finally, azimuthal and radial polarizations can be achieved through the action of the 
following operators, where z = (0,0,1): 

 ( ) ( )A R
ˆ ˆ, .p p p p= ×∇ = ∇× ×∇C z C z        (20) 

In all cases, an appropriate constant factor must also be used for unit correction. 

2.5 Needle pulses with limited energy 

Lk The apodization function used earlier means that the fields do not require an infinite 

amount of power. They do require in theory an infinite amount of energy, since they exist for 
all time and extend indefinitely in the z direction. In is therefore interesting to consider pulsed 
versions of these fields that have also finite energy. This is particularly easy to achieve with 
the three-dimensional pulses in Eq. (18), whose 1

Lk − depende Lk nce in is simply as a linear 

factor in the exponent and a global factor of . One can find closed-form finite-energy 
solutions simply by integrating in the product of Eq. (18) with Lk  and a weight function of 

Lk  centered around a longitudinal wavenumber LK  and whose inverse Fourier transform can 

be found analytically: 

 ( ) ( ) ( ) ( )2 2 2
2 0+, , , , ( ) , , ( ) ,

∞

=
−∞

= − = − −
L L

L L L L k K
p z t k p z t F k K dk p z t f z i c t iqρ ρ ρ ρ  (21) 
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where ( )zF k  is the Fourier transform of . That is, the finite-energy solution is just the product 

of the infinite-energy solution times an envelope analytic function of a complex argument. 
For example, using a Gaussian weight of width δ gives 

 
( ) ( )

( ) ( )

2

2 2

2 2
2 2 2

0+

( )1
, , , , exp

22

, , exp ( ) ,
2

∞

−∞

=

 −= − 
 

 
= − − − 

 



L L

L L
L L

k K

k K
p z t k p z t dk

p z t z i c t iq

ρ ρ
δπδ

δρ ρ

 (22) 

The third column of Fig. 3 and Visualization 3 show this pulse at five different times for 
1Lqω =  and 10LKδ = . Strictly speaking, this solution includes a small amount of backward 

propagating components, since the Gaussian tails extend over all negative values of Lk . One 

could limit the integration region to the positive semi-axis (giving a solution for f in terms of 
error functions), or use other options for F that vanish explicitly for 0Lk <  such as rectangle 

or semicircle functions or the product of Heaviside step functions and decaying exponentials. 

2.6 Ultrasound linear array results 

The longitudinal iso-phase solution is applicable to the field of ultrasound since acoustic 
waves are solutions to the scalar wave equation, and dispersion in water-based materials is 
negligible. As an independent test of these solutions, relevant to the domain of medical 
ultrasound imaging using one dimensional linear arrays, the excitation function shown in Fig. 
4(a) was applied in the Field II simulation program [17, 18] to a 5 Mhz 100% bandwidth 
array of the class commonly used in clinical scanners. Specifically, Lω  was set to 5.0 MHz, 

and the excitation function was sampled in time at 500 Mhz and sampled in the spatial 
dimension at increments of 0.0495 mm commensurate with the pitch of the elements of the 
linear array. To apply strict limits on time and space, a Gaussian apodization function was 
multiplied to the excitation function of Fig. 4(a), with 6σ  in time of 6 microseconds and 6σ  
in space of 256 active transducer elements (13 mm). For convenience, the speed of sound c  
was set to 1000 m/sec. 

 

Fig. 4. 5Mhz medical ultrasound linear array simulation of the acoustic pressure field resulting 
from the longitudinal iso-phase excitation with additional Gaussian apodization in time and 
space. Three time points are shown, before and after the convergence of the broadband 
components at time steps proportional to 2π/ωL. Image size (vertical or transverse dimension x 
horizontal or axial dimension): 1.55mm x 3.75mm. 
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The simulated ultrasound field demonstrates the principal characteristics of the solutions 
shown in Fig. 3, in that they exhibit spherical curvature over an extended axial range, then a 
convergence followed by a reverse spherical curvature. The axial extent is seen to be limited 
by the aggressive time and space apodization applied at the source plane. 

3. Discussion 

We found broadband fields whose dependence in the longitudinal direction is separable from 
that in the transverse ones as well as from time. Surprisingly, there are simple closed form 
solutions with controllable localization factors, both in two and three dimensions, for scalar 
and electromagnetic fields. For the scalar solutions with rotational symmetry discussed here, 
the wavefronts are approximately a train of identical hemispherical shells whose radius varies 
with time. At the time of maximal focusing, these fields take the form of long, needle-like 
distributions of optical (or acoustic) power. 

Considering implementation in optical systems, it is interesting to note that the 
longitudinal iso-phase condition is reminiscent of the dispersion relation for a slab metallic 
waveguide filled with a material with negligible dispersion, except that the role of the 
transverse and longitudinal directions are reversed. This suggests one mechanism for 
generating this type of field: a broadband coherent focused pulse can be made to pass through 
a thin, high-Q, Fabry-Perot planar cavity with negligible material dispersion. The cavity 
would transmit only plane wave components in different directions that approximately satisfy 
the longitudinal iso-phase condition. In ultrasound, sonar, and radar applications, on the other 
hand, these pulses can be generated simply by appropriate phasing of the source array 
elements. 

As these results are preliminary, further work is required to make detailed comparisons of 
these needle pulse fields against other commonly used pulses with some form of propagation 
invariance. In particular, we recently learned that another group has been studying similar 
pulses and that their work will appear published concurrently with ours [19]. The potential 
applications are quite broad, ranging from imaging in pulse-echo systems, to use in 
conjunction with nonlinear systems and media where the long axis peak spatial and temporal 
intensity can provide a unique configuration of higher order or supra-threshold effects. 
However, the relative simplicity of the longitudinal iso-phase condition and the closed-form 
solutions provides a straightforward means for obtaining further experimental, analytical, and 
simulation results. 
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