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PREFACE 

This introduction to the theory of elementary particles is intended primarily for 
advanced undergraduates who are majoring in physics. Most of my colleagues 
consider this subject inappropriate for such an audience-mathematically too 
sophisticated, phenomelogically too cluttered, insecure in its foundations, and 
uncertain in its future. Ten years ago I would have agreed. But in the last decade 
the dust has settled to an astonishing degree, and it is fair to say that elementary 
particle physics has come of age. Although we obviously have much more to 
learn, there now exists a coherent and unified theoretical structure that is simply 
too exciting and important to save for graduate school or to serve up in diluted 
qualitative form as a subunit of modern physics. I believe the time has come to 
integrate elementary particle physics into the standard undergraduate curriculum. 

Unfortunately, the research literature in this field is clearly inaccessible to 
undergraduates, and although there are now several excellent graduate texts, 
these call for a strong preparation in advanced quantum mechanics, if not quan- 
tum field theory. At the other extreme, there are many fine popular books and 
a number of outstanding Scientijic American articles. But very little has been 
written specifically for the undergraduate. This book is an effort to fill that need. 
It grew out of a one-semester elementary particles course I have taught from 
time to time at Reed College. The students typically had under their belts a 
semester of electromagnetism (at the level of Lorrain and Corson), a semester 
of quantum mechanics (at the level of Park), and a fairly strong background in 
special relativity. 

In addition to its principal audience, I hope this book will be of use to 
beginning graduate students, either as a primary text, or as preparation for a 
more sophisticated treatment. With this in mind, and in the interest of greater 
completeness and flexibility, I have included more material here than one can 
comfortably cover in a single semester. (In my own courses I ask the students 
to read Chapters 1 and 2 on their own, and begin the lectures with Chapter 3. I 
skip Chapter 5 altogether, concentrate on Chapters 6 and 7,  discuss the first two 
sections of Chapter 8, and then jump to Chapter 10). To assist the reader (and 
the teacher) I begin each chapter with a brief indication of its purpose and content, 
its prerequisites, and its role in what follows. 

This book was written while I was on sabbatical at the Stanford Linear 
Accelerator Center, and I would like to thank Professor Sidney Drell and the 
other members of the Theory Group for their hospitality. 

DAVID GRIFFITHS 

vii 





Introduction 

ELEMENTARY PARTICLE PHYSICS 

Elementary particle physics addresses the question, “What is matter made of?’ 
on the most fundamental level-which is to say, on the smallest scale of size. 
It’s a remarkable fact that matter at the subatomic level consists of tiny chunks, 
with vast empty spaces in between. Even more remarkable, these tiny chunks 
come in a small number of different types (electrons, protons, neutrons, pi me- 
sons, neutrinos, and so on), which are then replicated in astronomical quantities 
to make all the “stuff’ around us. And these replicas are absolutely perfect 
copies-not just “pretty similar,” like two Fords coming off the same assembly 
line, but utterly indistinguishable. You can’t stamp an identification number on 
an electron, or paint a spot on it-if you’ve seen one, you’ve seen them all. This 
quality of absolute identicalness has no analog in the macroscopic world. (In 
quantum mechanics it is reflected in the Pauli exclusion principle.) It enormously 
simplifies the task of elementary particle physics: we don’t have to worry about 
big electrons and little ones, or new electrons and old ones-an electron is an 
electron is an electron. It didn’t have to be so easy. 

My first job, then, is to introduce you to the various kinds of elementary 
particles, the actors, if you will, in the drama. I could simply list them, and tell 
you their properties (mass, electric charge, spin, etc.), but I think it is better in 
this case to adopt a historical perspective, and explain how each particle first 
came on the scene. This will serve to endow them with character and personality, 
making them easier to remember and more interesting to watch. Moreover, 
some of the stones are delightful in their own right. 

Once the particles have been introduced, in Chapter 1, the issue becomes, 
“How do they interact with one another?’ This question, directly or indirectly, 
will occupy us for the rest of the book. If you were dealing with two macroscopic 

1 



2 INTRODUCTION 

objects, and you wanted to know how they interact, you would probably begin 
by suspending them at various separation distances and measuring the force 
between them. That’s how Coulomb determined the law of electrical repulsion 
between two charged pith balls, and how Cavendish measured the gravitational 
attraction of two lead weights. But you can’t pick up a proton with tweezers or 
tie an electron onto the end of a piece of string; they’re just too small. For 
practical reasons, therefore, we have to resort to less direct means to probe the 
interactions of elementary particles. As it turns out, almost all our experimental 
information comes from three sources: (1) scattering events, in which we fire 
one particle at another and record (for instance) the angle of deflection; (2) 
decays, in which a particle spontaneously disintegrates and we examine the debris; 
and (3) bound states, in which two or more particles stick together, and we study 
the properties of the composite object. Needless to say, determining the inter- 
action law from such indirect evidence is not a trivial task. Ordinarily, the pro- 
cedure is to guess a form for the interaction and compare the resulting theoretical 
calculations with the experimental data. 

The formulation of such a guess (“model” is a more respectable term for 
it) is guided by certain general principles, in particular, special relativity and 
quantum mechanics. In the diagram below I have indicated the four realms of 
mechanics: 

Small--+ 

Fast & 

The world of everyday life, of course, is governed by classical mechanics. But 
for objects that travel very fast (at speeds comparable to c), the classical rules 
are modified by special relativity, and for objects that are very small (comparable 
to the size of atoms, roughly speaking), classical mechanics is superseded by 
quantum mechanics. Finally, for things that are both fast and small, we require 
a theory that incorporates relativity and quantum principles: quantum field the- 
ory. Now, elementary particles are extremely small, of course, and typically they 
are also very fast. So elementary particle physics naturally falls under the do- 
minion of quantum field theory. 

Please observe the distinction here between a type of mechanics and a 
particular force law. Newton’s law of universal gravitation, for example, describes 
a specific interaction (gravity), whereas Newton’s three laws of motion define 
a mechanical system (classical mechanics), which (within its jurisdiction) governs 
all interactions. The force law tells you what F is, in the case at hand; the me- 
chanics tells you how to use F to determine the motion. The goal of elementary 
particle dynamics, then, is to guess a set of force laws which, within the context 
of quantum field theory, correctly describe particle behavior. 

However, some general features of this behavior have nothing to do with 
the detailed form of the interactions. Instead they follow directly from relativity, 
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from quantum mechanics, or from the combination of the two. For example, 
in relativity, energy and momentum are always conserved, but (rest) mass is not. 
Thus the decay A - p + A is perfectly acceptable, even though the A weighs 
more than the sum ofp plus A. Such a process would not be possible in classical 
mechanics, where mass is strictly conserved. Moreover, relativity allows for par- 
ticles of zero (rest) mass-the very idea of a massless particle is nonsense in 
classical mechanics-and as we shall see, photons, neutrinos, and gluons are all 
(apparently) massless. 

In quantum mechanics a physical system is described by its state, s (rep- 
resented by the wave function #s in Schrodinger’s formulation, or by the ket Is) 
in Dirac’s). A physical process, such as scattering or decay, consists of a transition 
from one state to another. But in quantum mechanics the outcome is not uniquely 
determined by the initial conditions; all we can hope to calculate, in general, is 
the probability for a given transition to occur. This indeterminacy is reflected in 
the observed behavior of particles. For example, the charged pi meson ordinarily 
disintegrates into a muon plus a neutrino, but occasionally one will decay 
into an electron plus a neutrino. There’s no difference in the original pi 
mesons; they’re all identical. It is simply a fact of nature that a given particle can 
go either way. 

Finally, the union of relativity and quantum mechanics brings certain extra 
dividends that neither one by itself can offer: the existence of antiparticles, a 
proof of the Pauli exclusion principle (which in nonrelativistic quantum me- 
chanics is simply an ad hoc hypothesis), and the so-called TCP theorem. I’ll tell 
you more about these later on; my purpose in mentioning them here is to em- 
phasize that these are features of the mechanical system itself, not of the particular 
model. Short of a catastrophic revolution, they are untouchable. By the way, 
quantum field theory in all its glory is difficult and deep, but don’t be alarmed: 
Feynman invented a beautiful and intuitively satisfying formulation that is not 
hard to learn; we’ll come to that in Chapter 6 .  (The derivation of Feynman’s 
rules from the underlying quantum field theory is a different matter, which can 
easily consume the better part of an advanced graduate course, but this need 
not concern us here.) 

In the last few years a theory has emerged that describes all of the known 
elementary particle interactions except gravity. (As far as we can tell, gravity is 
much too weak to play any significant role in ordinary particle processes.) This 
theory-or, more accurately, this collection of related theories, incorporating 
quantum electrodynamics, the Glashow-Weinberg-Salam theory of electroweak 
processes, and quantum chromodynamics-has come to be called the Standard 
Model. No one pretends that the Standard Model is the final word on the subject, 
but at least we now have (for the first time) a full deck of cards to play with. 
Since 1978, when the Standard Model achieved the status of “orthodoxy,” it 
has met every experimental test. It has, moreover, an attractive aesthetic feature: 
in the Standard Model all of the fundamental interactions derive from a single 
general principle, the requirement of local gauge invariance. It seems likely that 
future developments will involve extensions of the Standard Model, not its re- 
pudiation. This book might be called an “Introduction to the Standard Model.” 
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As that alternative title suggests, this is a book about elementary particle 
theory, with very little on experimental methods or instrumentation. These are 
important matters, and an argument can be made for integrating them into a 
text such as this, but they can also be distracting and interfere with the clarity 
and elegance of the theory itself. (I encourage you to read about experimental 
aspects of the subject, and from time to time I will refer you to particularly 
accessible accounts.) For now, I’ll confine myself to scandalously brief answers 
to the two most obvious expedmental questions. 

HOW DO YOU PRODUCE ELEMENT-ARY PARTICLES? 

Electrons and protons are no problem; these are the stable constituents of ordinary 
matter. To produce electrons one simply heats up a piece of metal, and they 
come boiling off. If one wants a beam of electrons, one then sets up a positively 
charged plate nearby, to attract them over, and cuts a small hole in it; the electrons 
that make it through the hole constitute the beam. Such an electron gun is the 
starting element in a television tube or an oscilloscope or an electron accelerator 
(Fig. 1.1). 

To obtain protons you ionize hydrogen (in other words, strip off the elec- 
tron). In fact, if you’re using the protons as a target, you don’t even need to 
bother about the electrons; they’re so light that an energetic particle coming in 
will knock them out of the way. Thus, a tank of hydrogen is essentially a tank 
of protons. For more exotic particles there are three main sources: cosmic rays, 
nuclear reactors, and particle accelerators. 

Cosmic Rays The earth is constantly bombarded with high-energy particles 
(principally protons) coming from outer space. What the source of these particles 
might be remains something of a mystery; at any rate, when they hit atoms in 
the upper atmosphere they produce showers of secondary particles (mostly 
muons, by the time they reach ground level), which rain down on us all the 
time. As a source of elementary particles, cosmic rays have two virtues: they are 
free, and their energies can be enormous-far greater than we could possibly 
produce in the laboratory. But they have two major disadvantages: The rate at 
which they strike any detector of reasonable size is very low, and they are com- 
pletely uncontrollable. So cosmic ray experiments call for patience and luck. 

Nuclear Reactors When a radioactive nucleus disintegrates, it may emit a variety 
of particles-neutrons, neutrinos, and what used to be called alpha rays (actually, 
alpha particles, which are bound states of two neutrons plus two protons), beta 
rays (actually, electrons or positrons), and gamma rays (actually, photons). 

Particle Accelerators You start with electrons or protons, accelerate them to 
high energy, and smash them into a target. By skillful arrangements of absorbers 
and magnets, you can separate out of the resulting debris the particle species 
you wish to study. Nowadays it is possible in this way to generate intense sec- 
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Figure 1.1 The Stanford Linear Accelerator Center (SLAC). Electrons and positrons are 
accelerated down a straight tube 2 miles long, reaching energies as high as 45 GeV. (Photo 
courtesy of SLAC.) 

ondary beams of positrons, muons, pions, kaons, and antiprotons, which in turn 
can be fired at another target. The stable particles-electrons, protons, positrons, 
and antiprotons-can even by fed into giant storage rings in which, guided by 
powerful magnets, they circulate at high speed for hours at a time, to be extracted 
and used at the required moment (Fig. 1.2). 

In general, the heavier the particle you want to produce, the higher must 
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Figure 1.2 CERN, outside Geneva, Swtzerland. SPS is the 450 GeV Super Proton Syn- 
chrotron, later modified to make a proton-antiproton collider; LEP is a 50 GeV electron- 
positron storage ring now under construction. (Photo courtesy of CERN.) 

be the energy of the collision. That's why, historically, lightweight particles tend 
to be discovered first, and as time goes on, and accelerators become more pow- 
erful, heavier and heavier particles are found. At present, the heaviest known 
particle is the Zo, with nearly 100 times the mass of the proton. It turns out that 
the particle gains enormously in energy if you collide two high-speed particles 
head-on, as opposed to firing one particle at a stationary target. (Of course, this 
calls for much better aim!) Therefore, most contemporary experiments involve 
colliding beams from intersecting storage rings; if the particles miss on the first 
pass, they can try again the next time around. Indeed, with electrons and positrons 
(or protons and antiprotons) the same ring can be used, with the plus charges 
circulating in one direction and the minus charges in the other. 

There is another reason why particle physicists are always pushing for 
higher energies: In general, the higher the energy of the collision, the closer the 
two particles come to one another. So if you want to study the interaction at 
very short range, you need very energetic particles. In quantum-mechanical terms, 
a particle of momentum p has an associated wavelength X given by the de Broglie 
formula X = h/p, where h is Planck's constant. At large wavelengths (low mo- 
menta) you can only hope to resolve relatively large structures; in order to ex- 
amine something extremely small, you need comparably short wavelengths, and 
hence high momenta. If you like, consider this a manifestation of the uncertainty 
principle ( A x  Ap 2 h/h)-to make A x  small, Ap must be large. However you 
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look at it, the conclusion is the same: to probe small distances you need high 
energies. 

HOW DO YOU DETECT ELEMENTARY PARTICLES? 

There are many kinds of particle detectors-Geiger counters, cloud chambers, 
bubble chambers, spark chambers, photographic emulsions, Cerenkov counters, 
scintillators, photomultipliers, and so on (Fig. 1.3). Actually, a typical modern 
detector has whole arrays of these devices, wired up to a computer that tracks 
the particles and displays their trajectories on a television screen (Fig. 1.4). The 
details do not concern us, but there is one thing to be aware of: Most detection 
mechanisms rely on the fact that when high-energy charged particles pass through 
matter they ionize atoms along their path. The ions then act as “seeds” in the 
formation of droplets (cloud chamber) or bubbles (bubble chamber) or sparks 
(spark chamber), as the case may be. But electrically neutral particles do not 
cause ionization, and they leave no tracks. If you look at the bubble chamber 
photograph in Fig. 1.1 1, for instance, you will see that the five neutral particles 
are “invisible”; their paths have been reconstructed by analyzing the tracks of 
the charged particles in the picture and invoking conservation of energy and 
momentum at each vertex. Notice also that most of the tracks in the picture are 
curved (actually, all of them are, to some extent; try holding a ruler up to one 
you think is straight). Evidently the bubble chamber was placed between the 
poles of a giant magnet. In a magnetic field B, a particle of charge q and mo- 
mentum p will move in a circle of radius R given by the famous cyclotron formula: 
R = pc/qB, where c is the speed of light. The curvature of the track in a known 

Figure 1.3 An early particle detector: Wilson’s cloud chamber (ca. 1900). (Photo courtesy- 
Science Museum, London.) 
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Figure 1.4 A modern particle detector: The Mark I, at SLAC. (Photo courtesy SLAC.) 

magnetic field thus affords a very simple measure of the particle’s momentum. 
Moreover, we can immediately tell the sign of the charge from the direction of 
the curve. 

UNITS 

Elementary particles are small, so for our purposes the normal mechanical units- 
grams, ergs, joules, and so on-are inconveniently large. Atomic physicists in- 
troduced the electron volt-the energy acquired by an electron when accelerated 
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through a potential difference of 1 volt: 1 eV = 1.6 X joules. For us the 
eV is inconveniently small, but we’re stuck with it. Nuclear physicists use keV 
( lo3 eV); typical energies in particle physics are MeV ( lo6 eV), GeV ( lo9 eV), 
or even TeV ( 10l2 eV). Momenta are measured in MeVlc (or GeVlc, or whatever), 
and masses in MeV/c2. Thus the proton weighs 938 MeV/c2 = 1.67 X g. 

Actually, particle theorists are lazy (or clever, depending on your point of 
view)-they seldom include the c’s and h’s ( h  = h/27~)  in their formulas. You’re 
just supposed to fit them in for yourself at the end, to make the dimensions 
come out right. As they say in the business, “set c = h = 1.” This amounts to 
working in units such that time is measured in centimeters and mass and energy 
in inverse centimeters; the unit of time is the time it takes light to travel 1 
centimeter, and the unit of energy is the energy of a photon whose wavelength 
is 27~ centimeters. Only at the end of the problem do we revert to conventional 
units. This makes everything look very elegant, but I thought it would be wiser 
in this book to keep all the c’s and h’s where they belong, so that you can check 
for dimensional consistency as you go along. (If this offends you, remember that 
it is easier for you to ignore an h you don’t like than for someone else to conjure 
one up in just the right place.) 

Finally, there is the question of what units to use for electric charge. In 
introductory physics courses most instructors favor the SI system, in which charge 
is measured in coulombs, and Coulomb’s law reads 

Most advanced work is done in the Gaussian system, in which charge is measured 
in electrostatic units (esu), and Coulomb’s law is written 

But elementary particle physicists prefer the Heaviside-Lorentz system, in which 
Coulomb’s law takes the form 

The three units of charge are related as shown: 

1 
qHL = G 4 G  = - 4SI G 

In this book I shall use Gaussian units exclusively, in order to avoid unnecessary 
confusion in an already difficult subject. Whenever possible I will express results 
in terms of the fine structure constant 

e2  1 
hc 137 

a = - = -  

where e is the charge of the electron in Gaussian units. Most elementary particle 
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texts write this as e2/4a, because they are measuring charge in Heaviside-Lorentz 
units and setting c = h = 1; but everyone agrees that the number is &. 
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Chapter 1 
~ ~ 

Historical Introduction to the 
Elementary Particles 

This chapter is a kind of ‘yolk history” of elementary particle physics. Its 
purpose is to provide a sense of how the various particles were first discovered, 
and how they f i t  into the overall scheme of things. Along the way some of the 
fundamental ideas that dominate elementary particle theory are explained. 
This material should be read quickly, as background to the rest of the book. 
(As history, the picture presented here is certainly misleading, for it sticks 
closely to the main track, ignoring the false starts and blind alleys that ac- 
company the development ofany science. That’s why I call it ‘yolk” history- 
it’s the way particle physicists like to remember the subject-a succession of 
brilliant insights and heroic triumphs unmarred by foolish mistakes, confusion, 
and frustration. It wasn’t really quite so easy.) 

1.1 THE CLASSICAL ERA (1 897-1 932) 

It is always a little artificial to pinpoint such things, but I’d say that elementary 
particle physics was born in 1897, with J. J. Thomson’s discovery of the electron.’ 
(It is fashionable to carry the story all the way back to Democritus and the Greek 
atomists, but apart from a few suggestive words their metaphysical speculations 
have nothing in common with modem science, and although they may be of 
modest antiquarian interest, their relevance is infinitesimal.) Thomson knew 
that cathode rays emitted by a hot filament could be deflected by a magnet. This 
suggested that they carried electric charge; in fact, the direction of the curvature 
required that the charge be negative. It seemed, therefore, that these were not 
rays at all, but rather streams of particles. By passing the beam through crossed 
electric and magnetic fields, and adjusting the field strength until the net deflection 
was zero, Thomson was able to determine the velocity of the particles (about a 

11 
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tenth the speed of light) as well as their charge-to-mass ratio. (See Fig. 1.1 and 
Problem 1.1). This ratio turned out to be enormously greater than for any known 
ion, indicating that either the charge was extremely large or the mass was very 
small. Indirect evidence pointed to the second conclusion. Thomson called the 
particles corpuscles, and their charge the electron. Later the word electron was 
applied to the particles themselves. 

Thomson correctly surmised that these electrons were essential constituents 
of atoms; however, since atoms as a whole are electrically neutral and very much 
heavier than electrons, there immediately arose the problem of how the com- 
pensating plus charge-and the bulk of the mass-is distributed within an atom. 
Thomson himself imagined that the electrons were suspended in a heavy, pos- 
itively charged paste, like (as he put it) the plums in a pudding. But Thomson’s 
model was decisively repudiated by Rutherford’s famous scattering experiment, 
which showed that the positive charge, and most of the mass, was concentrated 
in a tiny core, or nucleus, at the center of the atom. Rutherford demonstrated 
this by firing a beam of a-particles (ionized helium atoms) into a thin sheet of 

Figure 1.1 The apparatus with which J. J. Thomson discovered the electron. (Photo 
courtesy Science Museum, London.) 
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gold foil (see Fig. 1.2). Had the gold atoms consisted of rather diffuse spheres, 
as Thomson supposed, then all of the a-particles should have been deflected a 
bit, but none would have been deflected much-any more than a bullet is de- 
flected much when it passes, say, through a bag of sawdust. What in fact occurred 
was that most of the a-particles passed through the gold completely undisturbed, 
but a few of them bounced off at wild angles. Rutherford’s conclusion was that 
the a-particles had encountered something very small, very hard, and very heavy. 
Evidently the positive charge, and virtually all of the mass, was concentrated at 
the center, occupying only a tiny fraction of the volume of the atom (the electrons 
are too light to play any role in the sattering; they are knocked right out of the 
way by the much heavier a-particles). 

The nucleus of the lightest atom (hydrogen) was given the name proton by 
Rutherford. In 19 14 Niels Bohr proposed a model for hydrogen consisting of a 
single electron circling the proton, rather like a planet going around the sun, 
held in orbit by the mutual attraction of opposite charges. Using a primitive 
version of the quantum theory, Bohr was able to calculate the spectrum of hy- 
drogen, and the agreement with experiment was nothing short of spectacular. It 
was natural then to suppose that the nuclei of heavier atoms were composed of 
two or more protons bound together, supporting a like number of orbiting elec- 
trons. Unfortunately, the next heavier atom (helium), although it does indeed 
carry two electrons, weighsfour times as much as hydrogen, and lithium (three 
electrons) is seven times the weight of hydrogen, and so it goes. This dilemma 

Zinc sulfide screen Gold foil Collimated beam 
\ of a-particles 

Figure 1.2 Schematic diagram of the apparatus used in the Rutherford scattering ex- 
periment. Alpha particles scattered by the gold foil strike a fluorescent screen, giving off 
a flash of light, which is observed visually through a microscope. 



14 1 /HISTORICAL INTRODUCTION TO THE ELEMENTARY PARTICLES 

was finally resolved in 1932 with Chadwick‘s discovery of the neutron-an elec- 
trically neutral twin to the proton. The helium nucleus, it turns out, contains 
two neutrons in addition to the two protons; lithium evidently includes four; 
and in general the heavier nuclei carry very roughly the same number of neutrons 
as protons. (The number of.neutrons is in fact somewhat flexible: the same atom, 
chemically speaking, may come in several different isotopes, all with the same 
number of protons, but with varying numbers of neutrons.) 

The discovery of the neutron put the final touch on what we might call 
the classical period in elementary particle physics. Never before (and I’m sorry 
to say never since) has physics offered so simple and satisfying an answer to the 
question, “What is matter made of?” In 1932 it was all just protons, neutrons, 
and electrons. But already the seeds were planted for the three great ideas that 
were to dominate the middle period (1930-1960) in particle physics: Yukawa’s 
meson, Dirac’s positron, and Pauli’s neutrino. Before we come to that, however, 
I must back up for a moment to introduce the photon. 

1.2 THE PHOTON (1 900-1 924) 

In some respects the photon is a very “modern” particle, having more in common 
with the Wand Z (which were not discovered until 1983) than with the classical 
trio. Moreover, it’s hard to say exactly when or by whom the photon was really 
“discovered,” although the essential stages in the process are clear enough. The 
first contribution was made by Planck in 1900. Planck was attempting to explain 
the so-called blackbody spectrum for the electromagnetic radiation emitted by 
a hot object. Statistical mechanics, which had proved brilliantly successful in 
explaining other thermal processes, yielded nonsensical results when applied to 
electromagnetic fields. In particular, it led to the famous “ultraviolet catastrophe,” 
predicting that the total power radiated should be infinite. Planck found that he 
could escape the ultraviolet catastrophe-and fit the experimental curve-if he 
assumed that electromagnetic radiation is quantized, coming in little “packages” 
of energy 

E = hv 
where u is the frequency of the radiation and h is a constant, which Planck 
adjusted to fit the data. The modern value of Planck’s constant is 

( 1.2) 
Planck did not profess to know why the radiation was quantized; he assumed 
that it was due to a peculiarity in the emission process: For some reason a hot 
surface only gives off light* in little squirts. 

Einstein, in 1905, put forward a far more radical view. He argued that 
quantization was a feature of the electromagnetic field itself, having nothing to 

h = 6.626 X lo-’’ erg s 

* In this book the word light stands for electromagnetic radiation, whether or not it happens 
to fall in the visible region. 



1.2 THE PHOTON (1 900-1 924) 15 

do with the emission mechanism. With this new twist, Einstein adapted Planck’s 
idea, and his formula, to explain the photoelectric efect: When electromagnetic 
radiation strikes a metal surface, electrons come popping out. Einstein suggested 
that an incoming light quantum hits an electron in the metal, giving up its energy 
(hv); the excited electron then breaks through the metal surface, losing in the 
process an energy w (the so-called work function of the material-an empirical 
constant that depends on the particular metal involved). The electron thus 
emerges with an energy 

E I h v - w  (1.3) 

(It may lose some energy before reaching the surface. That’s the reason for using 
I, instead of =.) Einstein’s formula (1.3) is pretty trivial to derive, but it cames 
an extraordinary implication: The maximum electron energy is independent of 
the intensity of the light and depends only on its color (frequency). To be sure, 
a more intense beam will knock out more electrons, but their energies will be 
the same. 

Unlike Planck’s theory, Einstein’s theory met a hostile reception, and over 
the next 20 years he was to wage a lonely battle for the light quantum.2 In saying 
that electromagnetic radiation is by its nature quantized, regardless of the emission 
mechanism, Einstein came dangerously close to resurrecting the discredited par- 
ticle theory of light. Newton, of course, had introduced such a corpuscular model, 
but a major achievement of nineteenth-century physics was the decisive repu- 
diation of Newton’s idea in favor of the rival wave theory. No one was prepared 
to see that accomplishment called into question, even when the experiments 
came down on Einstein’s side. In 1916 Millikan completed an exhaustive study 
of the photoelectric effect and was obliged to report that “Einstein’s photoelectric 
equation . . . appears in every case to predict exactly the observed results. . . . 
Yet the semicorpuscular theory by which Einstein arrived at his equation seems 
at present wholly ~ntenable.”~ 

What finally settled the issue was an experiment conducted by A. H. 
Compton in 1923. Compton found that the light scattered from a particle at rest 
is shifted in wavelength, according the equation 

X‘ = x + Xc(l - cos 0) ( 1.4) 

where X is the incident wavelength, A’ is the scattered wavelength, 0 is the scattering 
angle, and 

A, = h/mc 

is the so-called Compton wavelength of the target particle (mass m). Now, this 
is precisely the formula you get (Problem 3.24) if you treat light as a particle of 
zero rest mass with energy given by Planck‘s equation, and apply the laws of 
conservation of (relativistic) energy and momentum-just as you would for an 
ordinary elastic collision (Fig. 1.3). That clinched it; here was direct and incon- 
trovertible experimental evidence that light behaves as a particle, on the sub- 
atomic scale. We call this particle the photon (a name suggested by the chemist 
Gilbert Lewis, in 1926); the symbol for a photon is y (from gamma ray). How 
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Before After 

Figure 1.3 Compton scattering. A photon of wavelength X scatters off a particle, initially 
at rest, of mass m. The scattered photon carries wavelength A’ given by equation (1.4). 

the particle nature of light on this level is to be reconciled with its well-established 
wave behavior on the macroscopic scale (exhibited in the phenomena of inter- 
ference and diffraction) is a story I’ll leave to the quantum texts. 

Although the photon initially forced itself on an unreceptive community 
of physicists, it eventually found a natural place in quantum field theory, and 
was to offer a whole new perspective on electromagnetic interactions. In classical 
electrodynamics, we attribute the electrical repulsion of two electrons, say, to 
the electric field surrounding them; each electron contributes to the field, and 
each one responds to the field. But in quantum field theory, the electric field is 
quantized (in the form of photons), and we may picture the interaction as con- 
sisting of a stream of photons passing back and forth between the two charges, 
each electron continually emitting them and continually absorbing them. And 
the same goes for any noncontact force: where classically we interpret “action 
at a distance” as “mediated” by afield, we now say that it is mediated by an 
exchange of particles (the quanta of the field). In the case of electrodynamics, 
the mediator is the photon; for gravity, it is called the graviton (though a fully 
successful quantum theory of gravity has yet to be developed and it may well 
be centuries before anyone detects a graviton experimentally). 

You will see later on how these ideas are implemented in practice, but for 
now I want to dispel one common misapprehension. When I say that every force 
is mediated by the exchange of particles, I am not speaking of a merely kinematic 
phenomenon. Two ice skaters throwing snowballs back and forth will of course 
move apart with the succession of recoils; they “repel one another by exchange 
of snowballs,” if you like. But that’s not what is involved here. For one thing, 
this mechanism would have a hard time accounting for an attractive force. You 
might think of the mediating particles, rather, as “messengers,” and the message 
can just as well be “come a little closer” as “go away.” 

I said earlier that in the “classical” picture ordinary matter is made of 
atoms, in which electrons are held in orbit around a nucleus of protons and 
neutrons by the electrical attraction of opposite charges. We can now give this 
model a more sophisticated formulation by attributing the binding force to the 
exchange of photons between the electrons and the protons in the nucleus. How- 
ever, for the purposes of atomic physics this is overkill, for in this context quan- 
tization of the electromagnetic field produces only minute effects (notably the 
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Lamb shift and the anomalous magnetic moment of the electron). To excellent 
approximation we can pretend that the forces are given by Coulomb’s law (to- 
gether with various magnetic dipole couplings). The point is that in a bound 
state enormous numbers of photons are continually streaming back and forth, 
so that the “lumpiness” of the field is effectively smoothed out, and classical 
electrodynamics is a suitable approximation to the truth. But in most elementary 
particle processes, such as the photoelectric effect or Compton scattering, indi- 
vidual photons are involved, and quantization can no longer be ignored. 

1.3 MESONS (1 934-1 947) 

Now there is one conspicuous problem to which the “classical” model does not 
address itself at all: What holds the nucleus together? After all, the positively 
charged protons should repel one another violently, packed together as they are 
in such close proximity. Evidently there must be some other force, more powerful 
than the force of electrical repulsion, that binds the protons (and neutrons) to- 
gether; physicists of that less imaginative age called it, simply, the strong force. 
But if there exists such a potent force in nature, why don’t we notice it in everyday 
life? The fact is that virtually every force we experience directly, from the con- 
traction of a muscle to the explosion of dynamite is electromagnetic in origin; 
the only exception, outside a nuclear reactor or an atomic bomb, is gravity. The 
answer must be that, powerful though it is, the strong force is of very short range. 
(The range of a force is like the arm’s reach of a boxer-beyond that distance 
its influence falls off rapidly to zero. Gravitational and electromagnetic forces 
have infinite range, but the range of the strong force is about the size of the 
nucleus itself.)* 

The first significant theory of the strong force was proposed by Yukawa in 
1934. Yukawa assumed that the proton and neutron are attracted to one another 
by some sort offield, just as the electron is attracted to the nucleus by an electric 
field and the moon to the earth by a gravitational field. This field should properly 
be quantized, and Yukawa asked the question: What must be the properties of 
its quantum-the particle (analogous to the photon) whose exchange would ac- 
count for the known features of the strong force? For example, the short range 
of the force indicated that the mediator would be rather heavy; Yukawa calculated 
that its mass should be nearly 300 times that of the electron, or about a sixth 
the mass of a proton. (See Problem 1.2.) Because it fell between the electron and 
the proton, Yukawa’s particle came to be known as the meson (meaning “middle- 
weight”). [In the same spirit the electron is called a lepton (“light-weight”), whereas 
the proton and neutron are baryons (“heavy-weight”).] Now, Yukawa knew that 
no such particle had ever been observed in the laboratory, and he therefore 
assumed his theory was wrong. But at the time a number of systematic studies 

* This is a bit of an oversimplification. Typically, the forces go like e-(‘/“)/r*, where a is the 
“range.” For Coulomb’s law and Newton’s law of universal gravitation, a = co; for the strong force 
a is about cm (one fermi). 
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of cosmic rays were in progress, and by 1937 two separate groups (Anderson 
and Neddermeyer on the West Coast, and Street and Stevenson on the East) 
had identified particles matching Yukawa’s description. Indeed, the cosmic rays 
with which you are being bombarded every few seconds as you read this consist 
primarily of just such middle-weight particles. 

For a while everything seemed to be in order. But as more detailed studies 
of the cosmic ray particles were undertaken, disturbing discrepancies began to 
appear. They had the wrong lifetime and they seemed to be significantly lighter 
than Yukawa had predicted; worse still, different mass measurements were not 
consistent with one another. In 1946 (after a period in which physicists were 
engaged in a less savory business) decisive experiments were camed out in Rome 
demonstrating that the cosmic ray particles interacted very weakly with atomic 
n ~ c l e i . ~  If this was really Yukawa’s meson, the transmitter of the strong force, 
the interaction should have been dramatic. The puzzle was finally resolved in 
1947, when Powell and his co-workers at Bristo15 discovered that there are actually 
two middle-weight particles in cosmic rays, which they called P (or “pion”) and 
p (or “muon”). (Marshak reached the same conclusion simultaneously, on theo- 
retical grounds6) The true Yukawa meson is the P; it is produced copiously in 
the upper atmosphere, but ordinarily disintegrates long before reaching the 
ground. (See Problem 3.4.) Powell’s group exposed their photographic emulsions 
on mountain tops (see Fig. 1.4). One of the decay products is the lighter (and 
longer-lived) p, and it is primarily muons that one observes at sea level. In the 
search for Yukawa’s meson, then, the muon was simply an imposter, having 
nothing whatever to do with the strong interactions. In fact, it behaves in every 
way like a heavier version of the electron and properly belongs in the lepton 
family (though some people to this day call it the “mu-meson’’ by force of habit). 

1.4 ANTIPARTICLES (1 930-1 956) 

Nonrelativistic quantum mechanics was completed in the astonishingly brief 
period 1923-1926, but the relativistic version proved to be a much thornier 
problem. The first major achievement was Dirac’s discovery, in 1927, of the 
equation that bears his name. The Dirac equation was supposed to describe free 
electrons with energy given by the relativistic formula E 2  - p2c2 = m2c4. But 
it had a very troubling feature: For every positive-energy solution ( E  = 

+\lp2c2 + m2c4) it admitted a corresponding solution with negative energy ( E  = 

-\lp2c2 + m2c4). This meant, given the natural tendency of every system to 
evolve in the direction of lower energy, that the electron should “runaway” to 
increasingly negative states, radiating off an infinite amount of energy in the 
process. To rescue his equation, Dirac proposed a resolution that made up in 
brilliance for what it lacked in plausibility: He postulated that the negative energy 
states are all filled by an infinite “sea” of electrons. Because this sea is always 
there, and perfectly uniform, it exerts no net force on anything, and we are not 
normally aware of it. Dirac then invoked the Pauli exclusion principle (which 
says that no two electrons can occupy the same state), to “explain” why the 
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Figure 1.4 One of Powell’s earliest pic- 
tures showing the track of a pion in a pho- 
tographic emulsion exposed to cosmic 
rays at high altitude. The pion (entering 
from the left) decays into a muon and a 
neutrino (the latter is electrically neutral, 
and leaves no track). Reprinted by per- 
mission from C. F. Powell, P. H. Fowler, 
and D. H. Perkins, The Study of Elemen- 
tary Particles by the Photographic Method 
(New York: Pergamon, 1959). First pub- 
lished in Nature 159, 694 (1947). 

electrons we do observe are confined to the positive energy states. But if this is 
true, then what happens when we impart to one of the electrons in the “sea” an 
energy sufficient to knock it into a positive energy state? The absence of the 
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“expected” electron in the sea would be interpreted as a net positive charge in 
that location, and the absence of its expected negative energy would be seen as 
a net positive energy. Thus a “hole in the sea” would function as an ordinary 
particle with positive energy and positive charge. Dirac at first hoped that these 
holes might be protons, but it was soon apparent that they had to carry the same 
mass as the electron itself-2000 times too light to be a proton. No such particle 
was known at the time, and Dirac’s theory appeared to be in trouble. What may 
have seemed a fatal defect in 1930, however, turned into a spectacular triumph 
in late 193 1, with Anderson’s discovery of the positron (Fig. 1.5), a positively 
charged twin for the electron, with precisely the attributes Dirac req~ i red .~  

Figure 1.5 The positron. In 1932, Anderson took this photograph of the track left in a 
cloud chamber by a cosmic ray particle. The chamber was placed in a magnetic field 
(pointing into the page) which caused the particle to travel in a curve. But was it a negative 
charge traveling downward, or a positive charge traveling upward? In order to tell, Anderson 
had placed a lead plate across the center of the chamber (the thick horizontal line in the 
photograph). A particle passing through the plate slows down, and subsequently moves 
in a tighter circle. By inspection of the curves, it is clear that this particle traveled upward, 
and hence must have been positively charged. From the curvature of the track, and from 
its texture, Anderson was able to show that the mass of the particle was close to that of 
the electron. (Photo courtesy California Institute of Technology) 
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Still, many physicists were uncomfortable with the notion that we are awash 
in an infinite sea of invisible electrons, and in the forties Stuckelberg and Feynman 
provided a much simpler and more compelling interpretation of the negative- 
energy states. In the Feynman-Stuckelberg formulation the negative-energy so- 
lutions are reexpressed as positive-energy states of a different particle (the posi- 
tron); the electron and positron appear on an equal footing, and there is no need 
for Dirac’s “electron sea” or for its mysterious “holes.” We’ll see in Chapter 7 
how this-the modern interpretation-works. Meantime, it turned out that the 
dualism in Dirac’s equation is a profound and universal feature of quantum 
field theory: For every kind of particle there must exist a corresponding anti- 
particle, with the same mass but opposite electric charge. The positron, then, is 
the antielectron. (Actually, it is in principle completely arbitrary which one you 
call the “particle” and which the “antiparticle”-I could just as well have said 
that the electron is the antipositron. But since there are a lot of electrons around, 
and not so many positrons, we tend to think of electrons as “matter” and positrons 
as “antimatter”). The (negatively charged) antiproton was first observed exper- 
imentally at the Berkeley Bevatron in 1955, and the (neutral) antineutron was 
discovered at the same facility the following year.8 

The standard notation for antiparticles is an overbar. For example, p denotes 
the proton and jT the antiproton; n the neutron and ii the antineutron. However, 
in some cases it is more customary simply to specify the charge. Thus most 
people write e+ for the positron (not 2) and p+ for the antimuon (not ji). [But 
you must not mix conventions: 2+ is ambiguous, like a double negative-the 
reader doesn’t know if you mean the positron or the antipositron, (which is to 
say, the electron).] Some neutral particles are their own antiparticles. For example, 
the photon: 7 = y. In fact, you may have been wondering how the antineutron 
differs physically from the neutron, since both are uncharged. The answer is that 
neutrons carry other “quantum numbers” besides charge (in particular, baryon 
number), which change sign for the antiparticle. Moreover, although its net charge 
is zero, the neutron does have a charge structure (positive at the center and at 
the edges, negative in between) and a magnetic dipole moment. These, too, have 
the opposite sign for ii. 

There is a general principle in particle physics that goes under the name 
of crossing symmetry. Suppose that a reaction of the form 

A + B - C + D  

is known to occur. Any of these particles can be “crossed” over to the other side 
of the equation, provided it is turned into its antiparticle, and the resulting 
interaction will also be allowed. For example, 

A - B + C + D  
A + C - B + D  
C + D - A + B  

In addition, the reverse reaction occurs C + D - A + B, but technically this 
derives from the principle of detailed balance, rather than from crossing sym- 
metry. Indeed, as we shall see, the calculations involved in these various reactions 
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are practically identical. We might almost regard them as different manifestations 
of the same fundamental process. Now, there is one important caveat in this: 
Conservation of energy may veto a reaction that is otherwise permissible. 
For example, if A weighs less than the sum of B, C, and D, then the decay 
A - B + C + D cannot occur; similarly, if A and C are light, whereas B and D 
are heavy, then the reaction A + c - B + D will not take place unless the initial 
kinetic energy exceeds a certain “threshold” value. So perhaps I should say that 
the crossed (or reversed) reaction is dynamically permissible, but it may or may 
not be kinematically allowed. The power and beauty of crossing symmetry can 
scarcely be exaggerated. It tells us, for instance, that Compton scattering 

y + e- - y + e- 

is “really” the same process as pair annihilation 

e- + e+ - y + y 

although in the laboratory they are completely different phenomena. 
The union of special relativity and quantum mechanics, then, leads to a 

pleasing matter/antimatter symmetry. But this raises a disturbing question: How 
come our world is populated with protons, neutrons, and electrons, instead of 
antiprotons, antineutrons, and positrons? Matter and antimatter cannot coexist 
for long-if a particle meets its antiparticle, they annihilate. So maybe it’s just 
a historical accident that in our comer of the universe there happened to be 
more matter than antimatter, and pair annihilation has eliminated all but a 
leftover residue of matter. If this is so, then presumably there are other regions 
of space in which antimatter predominates. Unfortunately, the astronomical 
evidence is pretty compelling that all of the observable universe is made of or- 
dinary matter. Recently, Wilczek and others have put forward a possible expla- 
nation for this cosmic asymmetry. I shall not go into it here, but if you are 
interested, I recommend Wilczek‘s article in Scientijic American (December 
1980). 

1.5 NEUTRINOS (1 930-1 962) 

For the third strand in the story we return again to the year 1930.9 A problem 
had arisen in the study of nuclear beta decay. In beta decay a radioactive nucleus 
A is transformed into a slightly lighter nucleus B, with the emission of an electron: 

A - B + e -  (1.6) 

Conservation of charge requires that B carry one more unit of positive charge 
than A.  [We now realize that the underlying process here is the conversion of a 
neutron (in A )  into a proton (in B), but remember that in 1930 the neutron had 
not yet been discovered.] Thus the “daughter” nucleus (B) lies one position 
farther along on the Periodic Table. There are many examples of beta decay: 
Potassium goes to calcium (j;K - :gCa), copper goes to zinc @Cu - :;Zn), 
tritium goes to helium (:H - $He), and so on. [The upper number is the atomic 



1.5 NEUTRINOS (1 930-1 962) 23 

1000 L 

0 5 10 15 20 

Electron kinetic energy in KeV 

Figure 1.6 The beta decay spectrum of tritium (:H + :He). (Source: G. M. Lewis, 
Neutrinos (London: Wykeham, 1970), p. 30.) 

weight (the number of neutrons plus protons) and the lower number is the atomic 
number (the number of protons).] 

Now, it is a characteristic of two-body decays such as expression ( 1.6) that 
the outgoing energies are kinematically determined, in the center-of-mass frame. 
Specifically, if the “parent” nucleus (A) is at rest, so that B and e come out back- 
to-back with equal and opposite momenta, then conservation of energy dictates 
that the electron energy is 

The derivation of this result will be explained in Chapter 3; for now, the point 
to notice is that E isjxed, once the three masses are specified. But when the 
experiments are done it is found that the emitted electrons vary considerably in 
energy. Equation (1.7) only determines the maximum electron energy, for a 
particular beta-decay process (see Fig. 1.6). 

This was a most disturbing result. Niels Bohr (not for the first time) was 
ready to abandon the law of conservation of energy.* Fortunately, Pauli took a 
more sober view, suggesting that another particle was emitted along with the 
electron, a silent accomplice that cames off the “missing” energy. It had to be 
electrically neutral, to conserve charge (and also, of course, to explain why it left 
no track); Pauli proposed to call it the neutron. The whole idea was greeted with 
some skepticism, and in 1932 Chadwick preempted the name. But in the fol- 
lowing year Fermi presented a theory of beta decay that incorporated Pauli’s 

* It is interesting to note that Bohr was an outspoken critic of Einstein’s light quantum (prior 
to 1924), that he discouraged Dirac’s work on the relativistic electron theory (telling him, incorrectly, 
that Klein and Gordon had already succeeded), that he opposed Pauli’s introduction of the neutrino, 
that he ridiculed Yukawa’s theory of the meson, and that he disparaged Feynman’s approach to 
quantum electrodynamics. 
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particle and proved so brilliantly successful that Pauli's suggestion had to be 
taken seriously. From the fact that the observed electron energies range up to 
the value given in equation (1.7) it follows that the new particle is extremely 
light; as far as we know, its mass is in fact zero. Fermi called it the neutrino. (For 
reasons you'll see in a moment, we now call it the antineutrino.) In modem 
terminology, then, the fundamental beta-decay process is 

(1 -8) n - p+ + e- + i 
(neutron goes to proton plus electron plus antineutrino). 

Now, you may have noticed something peculiar about Powell's picture of 
the disintegrating pion (Fig. 1.4): The muon emerges at about 90" with respect 
to the original pion direction. (That's not the result of a collision, by the way; 
collisions with atoms in the emulsion account for the dither in the tracks, but 
they cannot produce an abrupt left turn.) What that kink indicates is that some 
other particle was produced in the decay of the pion, a particle that left no 
footprints in the emulsion, and hence must have been electrically neutral. It was 
natural (or at any rate economical) to suppose that this was again Pauli's neutrino: 

? T - p + v  (1.9) 

A few months after their first paper, Powell's group published an even more 
striking picture, in which the subsequent decay of the muon is also visible 
(Fig. 1.7). Now, muon decays had been studied for many years, and it was 
well established that the charged secondary is an electron. From the figure 
there is clearly a neutral product as well, and you might guess that it is again a 
neutrino. However, this time it is two neutrinos: 

p - e + 2 v  (1.10) 

How do we know there are two of them? Same way as before: We repeat the 
experiment over and over, each time measuring the energy of the electron. If it 
always comes out the same, we know there are just two particles in the final 
state. But if it varies, then there must be (at least) three. By 1949* it was clear 
that the electron energy in muon decay is not fixed, and the emission of two 
neutrinos was the accepted explanation. By contrast, the muon energy in pion 
decay is perfectly constant, within experimental uncertainties, confirming that 
this is a genuine two-body decay. 

By 1950, then, there was compelling theoretical evidence for the existence 
of neutrinos, but there was still no direct experimental verification. A skeptic 
might have argued that the neutrino was nothing but a bookkeeping device-a 
purely hypothetical particle whose only function was to rescue the conservation 
laws. It left no tracks, it didn't decay; in fact, no one had ever seen a neutrino 
do anything. The reason for this is that neutrinos interact extraordinarily weakly 

*Here, and in the original beta-decay problem, conservation of angular momentum 
also requires a third outgoing particle, quite independently of energy conservation. But the spin assign- 
ments were not so clear in the early days, and for most people energy conservation was the 
compelling argument. In the interests of simplicity, I will keep angular momentum out of the story 
until Chapter 4. 



Figure 1.7 Here, a pion decays into a 
muon (plus a neutrino); the muon sub- 
sequently decays into an electron (and two 
neutrinos). Reprinted by permission from 
C. F. Powell, P. H. Fowler, and D. H. Per- 
kins, The Study of Elementary Particles 
by the Photographic Method (New York: 
Pergamon, 1959). First published in Na- 
ture 163, 82 (1949). 
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with matter; a neutrino of moderate energy could easily penetrate a thousand 
light-years(!) of lead.* To have a chance of detecting one you need an extremely 
intense source. The decisive experiments were conducted at the Savannah River 
nuclear reactor in South Carolina, in the mid-fifties. Here Cowan and Reines 
set up a large tank of water and watched for the “inverse” beta-decay reaction 

(1.11) 

At their detector the antineutrino flux was calculated to be 5 X 1013 particles 
per square centimeter per second, but even at this fantastic intensity they could 
only hope for two or three events every hour. On the other hand, they developed 
an ingenious method for identifying the outgoing positron. Their results provided 
unambiguous confirmation of the neutrino’s existence.” 

As I mentioned earlier, the particle produced in ordinary beta decay is 
actually an antineutrino, not a neutrino. Of course, since they’re electrically 
neutral, you might ask-and many people did-whether there is any distinction 
between a neutrino and an antineutrino. The neutral pion, as we shall see, is its 
own antiparticle; so too is the photon. On the hand, the antineutron is definitely 
not the same as a neutron. So we’re left in a bit of a quandary: Is the neutrino 
the same as the antineutrino, and if not, what property distinguishes them? In 
the late fifties, Davis and Harmer put this question to an experimental test.” 
From the positive results of Cowan and Reines, we know that the crossed reaction 

V + p+ -+ n + e+ 

v + n - p + + e -  (1.12) 

must also occur, and at about the same rate. Davis looked for the analogous 
reaction using antineutrinos: 

i + n -p+ + e- (1.13) 

He found that this reaction does not occur, and thus established that the neutrino 
and antineutrino are distinct particles. 

Davis’s result was not unexpected. In fact, back in 1953 Konopinski and 
MahrnoudI2 had introduced a beautifully simple rule for determining which 
reactions [such as (1.12)] will work, and which [like (1.13)] will not. In effect,? 
they assigned a lepton number L = + 1 to the electron, the muon, and the neutrino, 
and L = - 1 to the positron, the positive muon, and the antineutrino (all other 
particles are given a lepton number of zero). They then proposed the law of 
conservation of lepton number (analogous to the law of conservation of charge): 
In any physical process, the sum of the lepton numbers before must equal the 
sum of the lepton numbers after. Thus the Cowan-Reines reaction (1.1 1) is 
allowed ( L  = - 1 before and after), but the Davis reaction (1.13) is forbidden 
(on the left L = -1, on the right L = +I). [It was in anticipation of this rule 
that I called the beta-decay particle, in expression (1.8), an antineutrino.] In 

* That’s a comforting realization when you learn that hundreds of billions of neutrinos pass 
through every square inch of your body per second, night and day, coming from the sun (they hit 
you from below, at night, having passed right through the earth). 

t Konopinski and Mahmoud (ref. 12) did not use this terminology, and they got the muon 
assignments wrong. But never mind, the essential idea was there. 
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view of the conservation of lepton number, the charged pion decays ( 1.9) should 
actually be written 

?r- - /.- + i 
lr+ - p+ + v 

and the muon decays ( 1.10) are really 

p- --+ e- + v + i 
p+ .-+ e+ + v + i 

(1.14) 

(1.15) 

What property distinguishes the neutrino from the antineutrino, then? The 
cleanest answer is: lepton number-it’s + I  for the neutrino and -1 for the an- 
tineutrino. These numbers are experimentally determinable, just as electric charge 
is, by watching how the particle in question interacts with others. (As we shall 
see, they also differ in their helicity: the neutrino is “left-handed” whereas 
the antineutrino is “right-handed.” But this is a technical matter best saved 
for later.) 

There is a final twist to the neutrino story. Experimentally, the decay of a 
muon into an electron plus a photon is never observed: 

p- f ,  e- + y (1.16) 

and yet this process is consistent with conservation of charge and Conservation 
of the lepton number. Now, there’s a very reliable rule of thumb in particle 
physics (generally attributed to Richard Feynman) which says that whatever is 
not expressly forbidden is mandatory. The absence of p - e + y suggests a law 
of conservation of “mu-ness”; but then how are we to explain the observed 
decays p - e + v + i? The answer occurred to a number of people in the late 
fifties and early sixties: l 3  Suppose there are two different kinds of neutrino-one 
associated with the electron (v,) and one with the muon (v,). If we assign a muon 
number L, = + 1 to p- and v,, and L, = - 1 to p+ and Vr , and at the same time 
an electron number L, = +1 to e- and v,, and L, = -1 to e+ and ie, and refine 
the conservation of lepton number into two separate laws-conservation of elec- 
tron number and conservation of muon number-we can then account for all 
the allowed and forbidden processes. Neutron beta decay becomes 

n - p+ + e- + 5, (1.17) 

the pion decays are 

a- - /.- + v, 
a+ - p+ + v, 

and the muon decays take the form 
- 

p - e- + Se + v, 
p+ - e+ + v, + i, 

(1.18) 

(1.19) 

I said earlier that when pion decay was first analyzed it was “natural” and “eco- 
nomical” to assume that the outgoing neutral particle was the same as in beta 
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decay, and that’s quite true: It was natural, and it was economical, but it was 
wrong. 

The first experimental test of the two-neutrino hypothesis (and the separate 
conservation of electron and muon number) was conducted at Brookhaven in 
1 962.14 Using about loL4 antineutrinos from 7 ~ -  decay, Lederman, Schwartz, 
Steinberger, and their collaborators identified 29 instances of the expected reaction 

V p  + p+ - p+ + n 

and no cases of the forbidden process 

Vp + p+ - e+ + n 

(1.20) 

(1.21) 

With only one kind of neutrino the second reaction would be just as common 
as the first. (Incidentally, this experiment presented truly monumental shielding 
problems. Steel from a dismantled warship was stacked up 44 feet thick, to make 
sure that nothing except neutrinos got through to the target.) 

By 1962, then, the lepton family had grown to eight: the electron, the 
muon, their respective neutrinos, and the corresponding antiparticles (Table 
I .  1).  The leptons are characterized by the fact that they do not participate in 
strong interactions. For the next 14 years things were pretty quiet, as far as the 
leptons go, so this is a good place to pause and let the strongly interacting par- 
ticles-the mesons and baryons, known collectively as the hadrons-catch up. 

1.6 STRANGE PARTICLES (1 947-1 960) 

For a brief period in 1947 it was possible to believe that the major problems of 
elementary particle physics were solved. After a lengthy detour in pursuit of the 
muon, Yukawa’s meson (the -.) had finally been apprehended. Dirac’s positron 
had been found, and Pauli’s neutrino, although still at large (and, as we have 

TABLE 1.1 THE LEPTON FAMILY, 1962-1976 

Lepton Electron Muon 
number number number 

Leptons 

e-  
ve 

P 

UP 

Antileptons 

e+ 

P+ 

- 
Ve 

- 
UP 

- 1  

- 1 
-1 
- 1 

- 1  
- 1  

0 
0 

0 
0 

- 1  

- 1  
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seen, still capable of making mischief), was basically under control. The role of 
the muon was something of a puzzle (“Who ordered that?” Rabi asked); it 
seemed quite unnecessary in the overall scheme of things. On the whole, however, 
it looked in 1947 as though the job of elementary particle physics was essentially 
done. 

But this comfortable state did not last long. In December of that year 
Rochester and Butler” published the cloud chamber photograph shown in Figure 
1.8. Cosmic ray particles enter from the upper left and strike a lead plate, pro- 
ducing a neutral particle, whose presence is revealed when it decays into two 
charged secondaries, forming the upside-down “V” in the lower right. Detailed 
analysis shows that these charged particles are in fact a R+ and a T-. Here, then, 
was a new neutral particle with at least twice the mass of the pion; we call it the 

KO - K+ + K- (1.22) 

In 1949, Powell published the photograph reproduced in Figure 1.9, showing 
the decay of a charged kaon: 

K+ + a+ + P+ + K- (1.23) 

(The KO was first known as the and later as the 0’; the K+ was originally 
called the 7’. Their identification as neutral and charged versions of the same 
basic particle was not completely settled until 1956-but that’s another story, 
to which we shall return in Chapter 4.) The kaons behave in some respects like 
heavy pions, and so the meson family was extended to include them. In due 
course, many more mesons were discovered-the q, the 4, the w,  the p’s, and 
so on. 

Meanwhile. in 1950 another neutral “ Y,’ particle was found, this time by 
Anderson’s group at Cal Tech. The photographs were similar to Rochester’s (Fig. 
1.8), but this time the products were a p+ and a K-. Evidently this particle is 
substantially heavier than the proton; we call it the A: 

A + p +  + K- (1.24) 

The lambda belongs with the proton and the neutron in the baryon family. To 
appreciate this, we must go back for a moment to 1938. The question had arisen, 
“Why is the proton stable?’ Why, for example, doesn’t it decay into a positron 
and a photon: 

p+ - e+ + y (1.25) 

Needless to say, it would be unpleasant for us if this reaction were common (all 
atoms would disintegrate), and yet it does not violate any law known in 1938. 
(Actually, this particular process does violate conservation of lepton number, 
but that law was not recognized, remember, until 1953.) StuckelbergI6 proposed 
to account for the stability of the proton by asserting a law of conservation of 
baryon number: Assign to all baryons (which in 1938 meant the proton and the 
neutron) a “baryon number” A = +1, and to the antibaryons ( F  and 6) 

(“kaon”): 
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3 cm 
of’lead 

Incident cosmic ray 
shower 

Debris 

Figure 1.8 The first strange particle. Cosmic rays strike a lead plate, producing a KO, 
which subsequently decays into a pair of charged pions. (Photo courtesy of Prof. G. D. 
Rochester. Reprinted by permission from Nature 160, 855. Copyright 0 1947, Macmillan 
Journals Limited.) 

A = -1; then the total baryon number is conserved in any physical process. 
Thus, neutron beta decay (n  - p+ + e- + 5,) is allowed ( A  = 1 before and after), 
and so also is the reaction in which the antiproton was first observed: 
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Figure 1.9 K’, entering from above, decays at A:  K+ - T+ + A+ + T-. (The R- subse- 
quently causes a nuclear disintegration at B). [Reprinted by permission from C. F. Powell, 
P. H. Fowler, and D. H. Perkins, The Study of Elementary Particles by the Photographic 
Method (New York: Pergamon, 1959). First published in Rep. Prog. Phys. 13,384 (1950).] 

P + P - P + P + P + P  ( I  .26) 

( A  = 2 on both sides). But the proton, as the lightest baryon, has nowhere to 
go; conservation of the baryon number guarantees its absolute stability.* If we 
are to retain the conservation of baryon number in the light of reaction ( 1.24), 
the lambda must be assigned to the baryon family. Over the next few years 
many more heavy baryons were discovered-the Z’s, the Z’s, and the A’s, and 
so on. [By the way: unlike leptons and baryons, there is no conservation of 
mesons. In pion decay (Y - 1.1- + i,) a meson disappears, and in lambda 
decay (A - p+ + T- )  a meson is created.] 

* Recent “grand unified” theories allow for a minute violation of baryon number conservation, 
and in these theories the proton is nor absolutely stable. See the article by S. Weinberg in Scientific 
American, June 1981. The experimental situation is discussed by J. M. LoSecco et al., Scientific 
American. June 1985. 
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It is some measure of the surprise with which these new heavy baryons 
and mesons were greeted that they came to be known collectively as “strange” 
particles. In 1952 the first of the modern particle accelerators (the Brookhaven 
Cosmotron) began operating, and soon it was possible to produce strange particles 
in the laboratory (before this the only source had been cosmic rays) . . . and with 
this, the rate of proliferation increased. Willis Lamb began his Nobel Prize ac- 
ceptance speech in 1955 with the words 

When the Nobel Prizes were first awarded in 1901, physicists knew something of 
just two objects which are now called “elementary particles”: the electron and the 
proton. A deluge of other “elementary” particles appeared after 1930; neutron, 
neutrino, p meson, 7r meson, heavier mesons, and various hyperons. I have heard 
it said that “the finder of a new elementary particle used to be rewarded by a Nobel 
Prize, but such a discovery now ought to be punished by a $10,000 fine”. [Source: 
Les Prix Nobel 1955, The Nobel Foundation, Stockholm.] 

Not only were the new particles unexpected; there is a more technical sense 
in which they seemed “strange”: They are produced copiously (on a time scale 
of about sec), but they decay relatively slowly (typically about lo-” sec). 
This suggested to Pais” and others that the mechanism involved in their pro- 
duction is entirely different from that which governs their disintegration. In 
modern language, the strange particles are produced by the strong force (the same 
one that holds the nucleus together), but they decay by the weak force (the one 
that accounts for beta decay and all other neutrino processes). The details of 
Pais’s scheme required that the strange particles be produced in pairs. The ex- 
perimental evidence for this was far from clear at that time, but in 1953 Gell- 
Mann18 and Nishijima” found a beautifully simple, and, as it developed stun- 
ningly successful, way to implement and improve Pais’s idea. They assigned to 
each particle a new property (Gell-Mann called it “strangeness”) that (like charge, 
lepton number, and baryon number) is conserved in any strong interaction, but 
(unlike those others) is not conserved in a weak interaction. In a pion-proton 
collision, for example, we might produce two strange particles: 

(1.27) 

Here the K s  carry strangeness S = + 1, the 2’s and the A have S = - 1, and the 
“ordinary” particles-r, p, and n-have S = 0. But we never produce just one 
strange particle: 

?r- + pi f ,  T+ + 2- 
f , T O + A  
f , K o + n  (1.28) 

On the other hand, when these particles decay, strangeness is not conserved: 

A - p+ + T -  

- n + ~ +  
z+ - p+ + TO 

(1.29) 

for these are weak processes, which do not respect conservation of strangeness. 
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There is some arbitrariness in the assignment of strangeness numbers, 
obviously. We could just as well have given S = + 1 to the 2’s and the A, and 
S = - 1 to K+ and KO; in fact, in retrospect it would have been a little nicer that 
way. [In exactly the same sense, Benjamin Franklin’s original convention for 
plus and minus charge was perfectly arbitrary at the time, and unfortunate in 
retrospect since it made the current-carrying particle (the electron) negative.] 
The significant point is that there exists a consistent assignment of strangeness 
numbers to all the hadrons (baryons and mesons) that accounts for the observed 
strong processes and “explains” why the others do not occur. (The leptons and 
the photon don’t experience strong forces at all, so strangeness does not apply 
to them.) 

The garden which seemed so tidy in 1947 had grown into a jungle by 1960, 
and hadron physics could only be described as chaos. The plethora of strongly 
interacting particles was divided into two great families-the baryons and the 
mesons-and the members of each family were distinguished by charge, strange- 
ness, and mass; but beyond that there was no rhyme or reason to it all. This 
predicament reminded many physicists of the situation in chemistry a century 
earlier, in the days before the Periodic Table, when scores of elements had been 
identified, but there was no underlying order or system. In 1960 the elementary 
particles awaited their own “Periodic Table.”20 

1.7 THE EIGHTFOLD WAY (1 961 -1 964) 

The Mendeleev of elementary particle physics was Murray Gell-Mann, who 
introduced the so-called Eightfold Way in 196 1 .21  (Essentially the same scheme 
was proposed independently by Ne’eman.) The Eightfold Way arranged the 
baryons and mesons into weird geometrical patterns, according to their charge 
and strangeness. The eight lightest baryons fit into a hexagonal array, with two 
particles at the center: 

Q = - 1  Q = O  Q =  

The Baryon Octet 

t l  

This group is known as the baryon octet. Notice that particles of like charge lie 
along the downward-sloping diagonal lines: Q = $1 (in units of the proton 
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charge) for the proton and the 2’; Q = 0 for the neutron, the lambda, the Zo, 
and the Zo; Q = -1 for the 2- and the E- .  Horizontal lines associate particles 
of like strangeness: S = 0 for the proton and neutron, S = -1 for the middle 
line and S = -2 for the two Z’s. 

The eight lightest mesons fill a similar hexagonal pattern, forming the 
( pseudo-scalar) meson octet: 

KO K +  

The Meson Octet 

\ \ \ 
\ \ \ 
\ \ \ 

Q = - 1  Q = O  Q = 1  

Once again, diagonal lines determine charge, and horizontals determine strange- 
ness; but this time the top line has S = 1, the middle line S = 0, and the bottom 
line S = - I .  (This discrepancy is a historical accident; Gell-Mann could just as 
well have assigned S = 1 to the proton and neutron, S = 0 to the Z’s and the 
A, and S = -1 to the Z’s. In 1953 he had no reason to prefer that choice, and 
it seemed most natural to give the familiar particles-proton, neutron, and pion- 
a strangeness of zero. After 196 1 a new term-hypercharge-was introduced, 
which was equal to S for the mesons and to S + 1 for the baryons. But later 
developments showed that strangeness was the better quantity after all, and the 
word “hypercharge” has now been taken over for a quite different purpose.) 

Hexagons were not the only figures allowed by the Eightfold Way; there 
was also, for example, a triangular array, incorporating 10 heavier baryons- 
the baryon decuplet: 

A +  A + +  

The Baryon Decuplet 

\ 
Q = O  

\ 
\ 
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@ Kf KO 

n 

Figure 1.11 Established meson nonets. Obviously, we are running out of letters. It is 
customary to distinguish different particles represented by the same letter by indicating 
the mass parenthetically (in MeV/c2), thus K*(892), K*(1430), K*(1650), and so on. In 
this figure the supermultiplets are labeled in spectroscopic notation (see Chap. 5 ) .  At 
present, there are no complete baryon supermultiplets beyond the octet and decuplet, 
although there are many partially filled diagrams. 

Now, as Gell-Mann was fitting these particles into the decuplet, an absolutely 
lovely thing happened. Nine of the particles were known experimentally, but at 
that time the tenth particle-the one at the very bottom, with a charge of -1 
and strangeness -3-was missing: No particle with these properties had ever 
been detected in the laboratory.22 Gell-Mann boldly predicted that such a particle 
would be found, and told the experimentalists exactly how to produce it. More- 
over, he calculated its mass-as you can for yourself, in Problem l .6-and its 
lifetime, Problem 1.8-and sure enough, in 1964 the famous omega-minus par- 
ticle was dis~overed,~~ precisely as Gell-Mann had predicted (see Fig. 1.10). 

Since the discovery of the omega-minus (Q-), no one has seriously doubted 
that the Eightfold Way is correct.* Over the next 10 years, every new hadron 
found a place in one of the Eightfold Way supermultiplets. Some of these are 
shown in Figure 1.1 1. (This is not to say there were no false alarms; particles 
have a way of appearing and then disappearing. Of the 26 mesons listed on a 
standard table in 1963, 19 were later found to be spurious!) In addition to the 
baryon octet, decuplet, and so on, there exist of course an antibaryon octet, 
decuplet, etc., with opposite charge and opposite strangeness. However, in the 
case of the mesons, the antiparticles lie in the same supermultiplet as the cor- 
responding particles, in the diametrically opposite positions. Thus the antiparticle 

* A similar thing happened in the case of the Periodic Table. There were three famous “holes” 
(missing elements) on Mendeleev’s chart, and he predicted that new elements would be discovered 
to fill in the gaps. Like Gell-Mann, he confidently described their properties, and within 20 years all 
three-gallium, scandium, and germanium-were found. 
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of the pi-plus is the pi-minus, the anti-K-minus is the K-plus, and so on (the pi- 
zero and the eta are their own antiparticles). 

Classification is the first stage in the development of any science. The 
Eightfold Way did more than merely classify the hadrons, but its real importance 
lies in the organizational structure it provided. I think it’s fair to say that the 
Eightfold Way initiated the mpdern era in particle physics. 

1.8 THE QUARK MODEL (1964) 

But the very success of the Eightfold Way begs the question: Why do the hadrons 
fit into these curious patterns? The Periodic Table had to wait many years for 
quantum mechanics and the Pauli exclusion principle to provide its explanation. 
An understanding of the Eightfold Way, however, came already in 1964, when 
Gell-Mann and Zweig independently proposed that all hadrons are in fact com- 
posed of even more elementary constituents, which Gell-Mann called quarks.24 
The quarks come in three types (or “flavors”), forming a triangular “Eightfold- 
Way” pattern: 

d U 

\ 
\ 

The u (for “up”) quark carries a charge of 3 and a strangeness of zero; the d 
(“down”) quark carries a charge of - and S = 0; the s (originally “sideways”, 
but now more commonly “strange”) quark has Q = - $ and S = - 1.  To each 
quark (4)  there corresponds an antiquark (q),  with the opposite charge and 
strangeness: 

Q = - L  Q 
3 

The Antiquarks 

- 1  
3 

_ _  
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The quark model asserts that 

1. Every baryon is composed of three quarks (and every antibaryon is 

2. Every meson is composed of a quark and an antiquark. 
composed of three antiquarks). 

With these two rules it is a matter of elementary arithmetic to construct 
the baryon decuplet and the meson octet. All we need to do is list the combi- 
nations of three quarks (or quark-antiquark pairs), and add up their charge and 
strangeness: 

THE BARYON DECUPLET 

444 0 S Baryon 

uuu 
uud 
udd 
ddd 

uds 
dds 

dss 

uus 

uss 

sss 

2 0 
1 0 
0 0 

- I  0 
1 -I  
0 -1 

- I  -1 
0 -2 

-1 -2 
-1 -3 

A++ 
A+ 
A0 
A- 
z*+ 
z*O 
z*- 
z*o 
=*- - 
R- 

Notice that there are 10 combinations of three quarks. Three u's, for instance, 
at Q = 3 each, yield a total charge of +2, and a strangeness of zero. This is the 
A++ particle. Continuing down the table, we find all the members of the decuplet 
ending with the Q- ,  which is evidently made of three s quarks. 

A similar enumeration of the quark-antiquark combinations yields the 
meson table: 

THE MESON NONET 

4Q Q S Meson 

UU 

U d  
dU 
dd 
U S  
d f  
SU 
Sd 
SS 

0 
1 

- I  
0 
1 
0 

- 1 
0 
0 

0 
0 
0 
0 
1 
1 

- I  
- 1  

0 

7ro 

7r+ 
- 

T 

7 
K+ 
KO 
K- 
K O  
?? 

But wait! There are nine combinations here, and only eight particles in the 
meson octet. The quark model requires that there be a third meson (in addition 
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to the TO and the 7) with Q = 0 and S = 0. As it turns out, just such a particle 
had already been found experimentally-the 7’. In the Eightfold Way the 7’ had 
been classified as a singlet, all by itself. According to the quark model it properly 
belongs with the other eight mesons to form a meson nonet. (Actually, since ui, 
dd, and sFall have Q = 0 and S = 0, it is not possible to say, on the basis of 
anything we have done so far, which is the TO, which the 7, and which the 7’. 
But never mind, the point is that there are three mesons with Q = S = 0.) By 
the way, the antimesons automatically fall in the same supermultiplet as the 
mesons: ud is the antiparticle of dzi, and vice versa. 

You may have noticed that I avoided talking about the baryon octet-and 
it is far from obvious how we are going to get eight baryons by putting together 
three quarks. In truth, the procedure is perfectly straightfonvard, but it does call 
for some facility in handling spins, and I would rather save it until Chapter 5. 
For now, I’ll just tantalize you with the mysterious observation that if you take 
the decuplet and knock off the three comers (where the quarks are identical- 
uuu, ddd, and sss), and double the center (where all three are different-uds), 
you obtain precisely the eight states in the baryon octet. So the same set of quarks 
can account for the octet; it’s just that some combinations do not appear at all, 
and one appears twice. 

Indeed, all the Eightfold Way supermultiplets emerge in a natural way 
from the quark model. Of course, the same combination of quarks can go to 
make a number of different particles: The delta-plus and the proton are both 
composed of two u’s and a d; the pi-plus and the rho-plus are both ud; and so 
on. Just as the hydrogen atom (electron plus proton) has many different energy 
levels, so a given collection of quarks can bind together in many different ways. 
But whereas the various energy levels in the electron/proton system are relatively 
close together (the spacings are typically several electron volts, in an atom whose 
rest energy is nearly lo9 electron volts), so that we naturally think of them all 
as “hydrogen,” the energy spacings for different states of a bound quark system 
are very large, and we normally regard them as distinct particles. Thus we can, 
in principle, construct an infinite number of hadrons out of only three quarks. 
Notice, however, that some things are absolutely excluded in the quark model: 
For example, a baryon with S = 0 and Q = -2; no combination of the three 
quarks can produce these numbers. Nor can there be a meson with a charge of 
f 2  (like the A++ baryon) or a strangeness of -3 (like the Q-). For a long time 
there were major experimental searches for these so-called “exotic” particles; 
their discovery would be devastating for the quark model, but none has ever 
been found (see Problem 1.1 1). 

The quark model does, however, suffer from one profound embarrassment: 
In spite of the most diligent search over a period of 20 years, no one has ever 
seen an individual quark. Now, if a proton is really made out of three quarks, 
you’d think that if you hit one hard enough, the quarks ought to come popping 
out. Nor would they be hard to recognize, carrying as they do the conspicuous 
label of fractional charge; an ordinary Millikan oil drop experiment would clinch 
the identification. Moreover, at least one of the quarks should be absolutely 
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stable; what could it decay into, since there is no lighter particle with fractional 
charge? So quarks ought to be easy to produce, easy to identify, and easy to 
store, and yet, no one has ever found one. 

The failure of experiments to produce isolated quarks occasioned wide- 
spread skepticism about the quark model in the late sixties and early seventies. 
Those who clung to the model tried to conceal their disappointment by intro- 
ducing the notion of quark confinement: perhaps, for reasons not yet understood, 
quarks are absolutely confined within baryons and mesons, so that no matter 
how hard you try, you cannot get them out. Of course, this doesn’t explain 
anything, it just gives a name to our frustration. But at least it poses sharply 
what has become a crucial theoretical problem for the eighties: to discover the 
mechanism responsible for quark confinement. There are some indications that 
the solution may be at hand.25 

Even if all quarks are stuck inside hadrons, this does not mean they are 
inaccessible to experimental study. One can probe the inside of a proton in much 
the same way as Rutherford probed the inside of an atom-by firing something 
into it. Such experiments were carried out in the late sixties using high-energy 
electrons at the Stanford Linear Accelerator Center (SLAC). They were repeated 
in the early seventies using neutrino beams at CERN, and later still using protons. 
The results of these so-called “deep inelastic scattering” experiments were strik- 
ingly reminiscent of Rutherford‘s (Fig. 1.12): Most of the incident particles pass 
right through, whereas a small number bounce back sharply. This means that 
the charge of the proton is concentrated in small lumps, just as Rutherford’s 
results indicated that the positive charge in an atom is concentrated at the nu- 
cleus.26 However, in the case of the proton the evidence suggests three lumps, 
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Figure 1.12 (a) In Rutherford scattering the number of particles deflected through large 
angles indicates that the atom has internal structure (a nucleus). (b) In deep inelastic 
scattering the number of particles deflected through large angles indicates that the proton 
has internal structure (quarks). The dashed lines show what you would expect if the 
positive charge were uniformly distributed over the volume of (a) the atom, (b) the proton. 
[Source: F. Halzen and A. D. Martin, Quarks and Leptons (New York Wiley, 1984), p. 
17. Copyright 0 John Wiley & Sons, Inc. Reprinted by permission.] 
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instead of one. This is strong support for the quark model, obviously, but still 
not conclusive. 

Finally, there was a theoretical objection to the quark model: It appears 
to violate the Pauli exclusion principle. In Pauli’s original formulation the ex- 
clusion principle stated that no two electrons can occupy the same state. However, 
it was later realized that the same rule applies to all particles of half-integer spin 
(the proof of this is one of the most important achievements of quantum field 
theory). In particular, the exclusion principle should apply to quarks, which, as 
we shall see, must carry spin 4. Now the A”, for instance, is supposed to consist 
of three identical u quarks in the same state; it (and also the A- and the a-) 
appear to be inconsistent with the Pauli principle. In 1964, 0. W. Greenberg 
proposed a way out of this dilemma:*’ He suggested that quarks not only come 
in three flavors (u, d, and s)  but each of these also comes in three colors (“red,” 
“green,” and “blue,” say). To make a baryon, we simply take one quark of each 
color, then the three u’s in A” are no longer identical (one’s red, one’s green, 
and one’s blue). Since the exclusion principle only applies to identical particles, 
the problem evaporates. 

The color hypothesis sounds like sleight of hand, and many people initially 
considered it the last gasp of the quark model. As it turned out, the introduction 
of color was one of the most fruitful ideas of our time. I need hardly say that 
the term “color” here has absolutely no connection with the ordinary meaning 
of the word. Redness, blueness, and greenness are simply labels used to denote 
three new properties that, in addition to charge and strangeness, the quarks 
possess. A red quark cames one unit of redness, zero blueness, and zero greenness; 
its antiparticle cames minus one unit of redness, and so on. We could just as 
well call these quantities X-ness, Y-ness, and 2-ness, for instance. However, the 
color terminology has one especially nice feature: It suggests a delightfully simple 
characterization of the particular quark combinations that are found in nature. 

All naturally occumng particles are colorless. 

By “colorless” I mean that either the total amount of each color is zero or all 
three colors are present in equal amounts. (The latter case mimics the optical 
fact that light beams of three primary colors combine to make white.) This clever 
rule “explains” (if that’s the word for it) why you can’t make a particle out of 
two quarks, or four quarks, and for that matter why individual quarks do not 
occur in nature. The only colorless combinations you can make are q4 (the 
mesons), qqq (the baryons), and 444 (the antibaryons). (You could have six 
quarks, of course, but we would interpret that as a bound state of two baryons.) 

1.9 THE NOVEMBER REVOLUTION AND ITS 
AFTERMATH (1 974-1 983) 

The decade from 1964 to 1974 was a barren time for elementary particle physics. 
The quark model, which had seemed so promising at the beginning, was in an 
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uncomfortable state of limbo by the end. It had had some striking successes: It 
neatly explained the Eightfold Way, and correctly predicted the lumpy structure 
of the proton. But it had two conspicuous defects: the experimental absence of 
free quarks and inconsistency with the Pauli principle. Those who liked the 
model papered over these failures with what seemed at the time to be rather 
transparent rationalizations: the idea of quark confinement and the color hy- 
pothesis. But I think it is safe to say that by 1974 most elementary particle 
physicists felt queasy, at best, about the quark model. The lumps inside the 
proton were called partons, and it was unfashionable to identify them explicitly 
with quarks. 

Curiously enough, what rescued the quark model was not the discovery of 
free quarks, or an explanation of quark confinement, or confirmation of the 
color hypothesis, but something entirely different and (almost)28 completely un- 
expected: the discovery of the psi meson. The Ic/ was first observed at Brookhaven 
by a group under C. C. Ting, in the summer of 1974. But Ting wanted to check 
his results before announcing them publicly, and the discovery remained an 
astonishingly well-kept secret until the weekend of November 10- 1 1, when the 
new particle was discovered independently by Burton Richter’s group at SLAC. 
The two teams then published sim~ltaneously,~~ Ting naming the particle J, and 
Richter calling it Ic/. The J/+ was an electrically neutral, extremely heavy meson- 
more than three times the weight of a proton (the original notion that mesons 
are “middle-weight” and baryons “heavy-weight” had long since gone by the 
boards). But what made this particle so unusual was its extraordinarily long 
lifetime. For the Ic/ lasted fully lo-’’ seconds before disintegrating. Now, 
seconds may not impress you as a particularly long time, but you must understand 
that the typical lifetimes for hadrons in this mass range are on the order of 1 0-23 
seconds. So the Ic/ has a lifetime about a thousand times longer than any com- 
parable particle. It’s as though someone came upon an isolated village in Peru 
or the Caucasus where people live to be 70,000 years old. That wouldn’t just be 
some actuarial anomaly; it would be a sign of fundamentally new biology at 
work. And so it was with the Ic/: its long lifetime, to those who understood, spoke 
of fundamentally new physics. For good reason, the events precipitated by the 
discovery of the Ic/ came to be known as the November Rev~lution.~’ 

In the months that followed, the true nature of the Ic/ meson was the subject 
of lively debate, but the explanation that won was provided by the quark model. 
It is now universally accepted that the Ic/ represents a bound state of a new 
(fourth) quark, the c (for charm) and its antiquark Ic/ = (cC). Actually, the idea 
of a fourth flavor, and even the whimsical name, had been introduced many 
years earlier, by Bjorken and Gla~how.~’ Indeed, there was an intriguing parallel 
between the leptons and the quarks: 

Leptons: e, v,, p, v, 
Quarks: d, u, s 

If all mesons and baryons are made out of quarks, these two families are left as 
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Figure 1.13 Supermultiplets constructed with four quarks. (From “Quarks with Color 
and Flavor,” by S. Glashow. Copyright 0 Oct. 1975 by Scientific American, Inc. All 
rights reserved.) 
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the truly fundamental particles. But why four leptons and only three quarks? 
Wouldn’t it be nicer if there were four of each? Later, Glashow, Iliopoulos, and 
M a i a r ~ i ~ ~  offered more compelling technical reasons for wanting a fourth quark, 
but the simple idea of a parallel between quarks and leptons is another of those 
farfetched speculations that turned out to have more substance than their authors 
could have imagined. 

So when the Ic, was discovered, the quark model was ready and waiting 
with an explanation. Moreover, it was an explanation pregnant with implications. 
For if a fourth quark exists, there should be all kinds of new baryons and mesons, 
carrying various amounts of charm. Some of these are shown in Figure 1.13; 
you can work out the possibilities for yourself (Problems 1.14 and 1.15). Notice 
that the Ic, itself cames no net charm, for if the c is assigned a charm of + 1, then 
C will have a charm of -1; the charm of the I) is, if you will, “hidden.” To 
confirm the charm hypothesis it was important to produce a particle with “naked” 
(or “bare”) charm.33 The first evidence for charmed baryons (h;=udc and 
possibly 2;’ = uuc) appeared already in 1975 (Fig. 1.14);34 the first charmed 
mesons (Do = CU and D+ = cd) were found in 1976,35 and the charmed strange 
meson (F+ = cS) in 1977.36 (The F meson was recently renamed D,. There is 
also some evidence for usc and ssc.) With these discoveries the interpretation of 
the Ic, as ccwas established beyond reasonable doubt. More important, the quark 
model itself was put back on its feet. 

However, the story does not end there, for in 1975 a new lepton was dis- 
~overed,~’ spoiling Glashow’s symmetry. This new particle (the tau) presumably 
has its own neutrino, so we are up to six leptons, and only four quarks. But 
don’t dispair, because two years later a new heavy meson (the upsilon) was 
dis~overed,~~ and quickly recognized as the camer of a fifth quark, b (for beauty, 
or bottom, depending on your taste): T = b6. Immediately the search began for 
mesons and hadrons exhibiting “naked beauty” (or “bare bottom”). (I’m sorry. 
I didn’t invent this terminology. In a way, its silliness is a reminder of how wary 
people were of taking the quark model seriously, in the early days.) The first 
beautiful baryon, h b  = udb, may have been observed in 198139 (the claim is 
hotly contested4’); the first beautiful mesons (Bo = bd and B -  = b$ were found 
in 1983.4’ At this point it doesn’t take much imagination to predict that a sixth 
quark will eventually be found; it already has a name: t (for truth, of course, or 
top). If and when the t quark is discovered (there were some indications in the 
summer of 1984 that it may have been seen at CERN), Glashow’s symmetry 
will be restored, with six leptons and six quarks. And there (knock on wood) the 
proliferation stops. 

1.1 0 INTERMEDIATE VECTOR BOSONS (1 983) 

In his original theory of beta decay (1933) Fermi treated the process as a contact 
interaction, occurring at a single point, and therefore requiring no mediating 
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Figure 1.14 The charmed baryon. The probable interpretation of this event is V~ 

+ p - A: + p- + xT + x-. The charmed baryon decays (A: - A + x + )  too soon to 
leave a track, but the subsequent decay of the A is clearly visible. (Photo courtesy of N. 
P. Samios, Brookhaven National Laboratory.) 
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particle. As it happens, the weak force (which is responsible for beta decay) is 
of extremely short range, so that Fermi’s model was not far from the truth, and 
yields excellent approximate results at low energies. However, it was widely 
recognized that this approach was bound to fail at high energies, and would 
eventually have to be supplanted with a theory in which the interaction was 
mediated by the exchange of some particle. The mediator came to be known by 
the prosaic name intermediate vector boson. The challenge for theorists was to 
predict the properties of the intermediate vector boson, and for experimentalists, 
to produce one in the laboratory. You may recall that Yukawa, faced with the 
analogous problem for the strong force, was able to estimate the mass of the 
pion in terms of the range of the force, which he took to be roughly the same 
as the size of a nucleus. But we have no corresponding way to measure the range 
of the weak force; there are no “weak bound states” whose size would inform 
us-the weak force is simply too feeble to bind particles together. For many 
years predictions of the intermediate vector boson mass were !ittle more than 
educated guesses (the “education” coming largely from the failure of experiments 
at progressively higher energies to detect the particle). By 1962 it was known 
that the mass had to be at least half the proton mass; 10 years later the experi- 
mental lower limit had grown to 2.5 proton masses. 

But it was not until the emergence of the electroweak theory of Glashow, 
Weinberg, and Salam that a really firm prediction of the mass was possible. In 
this theory there are in fact three intermediate vector bosons, two of them charged 
( W’) and one neutral (2). Their masses were calculated to be42 

Mw = 82 f 2 GeV/c2, Mz = 92 f 2 GeV/c2 (1.30) 

In the late seventies, CERN began construction of a proton-antiproton collider 
designed specifically to produce these extremely heavy particles (bear in mind 
that the mass of the proton is 0.94 GeV/c2, so we’re talking about something 
nearly 100 times as heavy). In January 1983 the discovery of the W(at 81 k 5 
GeV/c2) was reported by Carlo Rubbia’s and five months later the same 
team announced discovery of the 2 (at 95 f 3 G ~ V I C ’ ) . ~ ~  These experiments 
represent an extraordinary technical triumph,45 and they were of fundamental 
importance in confirming a crucial aspect of the Standard Model, to which the 
physics community was by that time heavily committed (and for which a Nobel 
Prize had already been awarded). Unlike the strange particles or the 9, however, 
the intermediate vector bosons were long awaited and universally expected, so 
the general reaction was a sigh of relief, not shock or surprise. 

1.11 THE STANDARD MODEL (1978-?) 

In the current view, then, all matter is made out of three kinds of elementary 
particles: leptons, quarks, and mediators. There are six leptons, classified ac- 
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cording to their charge (Q), electron number (LJ ,  muon number (Lp),  and tau 
number (L). They fall naturally into three families (or generations): 

LEPTON CLASSIFICATION 

- 1 1 0 
First generation 

- 1 0 0 1  
0 0 0 1  

Third generation 

Th re are also six antileptons, with all the signs reversed. The positron, for ex- 
ample, carries a charge of + 1 and an electron number - 1. So there are really 
12 leptons, all told. 

Similarly, there are six “flavors” of quarks, which are classified according 
to charge, strangeness (S ) ,  charm (C), beauty (B), and truth (T) .  [For consistency, 
I suppose we should include “upness” ( V )  and “downness” (D), although these 
terms are seldom used. They are redundant, inasmuch as the only quark with 
S = C = B = T = 0 and Q = 3 ,  for instance, is the up quark, so it is not necessary 
to specify U = 1 and D = 0 as well.] The quarks, too, fall into three generations: 

QUARK CLASSIFICATION 

I 

2 
3 -1 0 0 0 0 0  
5 0 1 0 0 0 0  

_ _  
First generation 

I I 
I 

2 
3 0 0  - 1 0 0 0  
J 0 0  0 1 0 0  

- _  
Second generation 

--l 0 O 1 I 0 0  0 0  
0 0  0 0  

Third generation 

Again, all signs would be reversed on the table of antiquarks. Meanwhile, each 
quark and antiquark comes in three colors, so there are 36 of them in all. 

Finally, every interaction has its mediators: the photon for the electro- 
magnetic force, two W’s and a 2 for the weak force, the graviton (presumably) 
for gravity, . . . but what about the strong force? In Yukawa’s original theory 
(1934) the mediator of strong forces was the pion, but with the discovery of 
heavy mesons this simple picture could not stand; protons and neutrons could 
now exchange rho’s and eta’s and K’s and phi’s and all the rest of them. The 
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Figure 1.15 The three generations of quarks and leptons, in order of increasing mass. 

quark model brought an even more radical revision, for if protons, neutrons, 
and mesons are complicated composite structures, there is no reason to believe 
their interaction should be simple. To study the strong force at the fundamental 
level, one should look, rather, at the interaction between individual quarks. So 
the question becomes: What particle is exchanged between two quarks, in a 
strong process? This mediator is called the gluon, and in the Standard Model 
there are eight of them. As we shall see, the gluons themselves carry color, and 
therefore (like the quarks) should not exist as isolated particles. We can hope to 
detect gluons only within hadrons, or in colorless combinations with other gluons 
(glueballs). Nevertheless, there is substantial indirect experimental evidence for 
the existence of gluons: The deep inelastic scattering experiments showed that 
roughly half the momentum of a proton is carried by electrically neutral con- 
stituents, presumably gluons; the jet structure characteristic of proton scattering 
at high energies can be explained in terms of the disintegration of quarks and 
gluons in flightt6 and glueballs may conceivably have been ob~erved.~’ But no 
one would say that the experimental evidence is really compelling, at this stage. 

This is all adding up to an embarrassingly large number of supposedly 
“elementary” particles: 12 leptons, 36 quarks, 12 mediators (I won’t count the 
graviton, since gravity is not included in the Standard Model). And, as we shall 
see later, the Glashow-Weinberg-Salam theory calls for at least one Higgs particle, 
so we have a minimum of 6 1 particles to contend with. Informed by our expe- 
rience first with atoms and later with hadrons, many people have suggested that 
some, at least, of these 6 1 must be composites of more elementary subparticles 
(see Problem 1.17).48 Such speculations lie beyond the Standard Model and 
outside the scope of this book. Personally, I do not think the large number of 
“elementary” particles in the Standard Model is by itself alarming, for they are 
tightly interrelated. The eight gluons, for example, are identical except for their 
colors, and the second and third generations mimic the first (Fig. 1.16). In the 
next chapter we shall see how this structure leads to the first systematic and 
comprehensive theory of elementary particle dynamics. 
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PROBLEMS 

1.1. If a charged particle is undeflected in passing through uniform crossed electric and 
magnetic fields E and B (mutually perpendicular, and both perpendicular to the 
direction of motion), what is its velocity? If we now turn off the electric field, and 
the particle moves in an arc of radius R, what is its charge-to-mass ratio? 

1.2. The mass of Yukawa’s meson can be estimated as follows. When two protons in a 
nucleus exchange a meson (mass m) they must temporarily violate the conservation 
of energy by an amount me2 (the rest energy of the meson). The Heisenberg un- 
certainty principle says that you may “borrow” an energy AE,  provided you “pay 
it back” in a time At given by A E  At = h (where h = h/2a). In this case we need 
to borrow A E  = mcz long enough for the meson to make it from one proton to 
the other. It has to cross the nucleus (size ro), and it travels, presumably, at some 
substantial fraction of the speed of light, so, roughly speaking, At = ro/c. Putting 
this all together, we have 

Using ro = cm (the size of a typical nucleus), calculate the mass of Yukawa’s 
meson. Express your answer as a multiple of the electron’s mass, and compare the 
observed mass of the pion. [If you find that argument compelling, I can only say 
that you’re pretty gullible. Try it for an atom, and you’ll conclude that the mass of 
the photon is about 7 X g, which is nonsense. Nevertheless, it is a useful 
device for “back-of-the-envelope” calculations, and it does very well for the pi 
meson. Unfortunately, many books present it as though it were a rigorous derivation, 
which it certainly is not. The uncertainty principle does not license violation of 
conservation of energy (nor does any such violation occur in this process; we shall 
see later on how this comes about). Moreover, it’s an inequality, A E  At 3 h, which 
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at most could give you a lower bound on m. It is typically true that the range of a 
force is inversely proportional to the mass of the mediator, but the size of a bound 
state is not always a good measure of the range (that’s why the argument fails for 
the photon: The range of the electromagnetic force is infinite, but the size of an 
atom is not). In general, when you hear a physicist invoke the uncertainty principle, 
keep a hand on your wallet.] 

1.3. In the period before the discovery of the neutron many people thought the nucleus 
consisted of protons and electrons, with the atomic number equal to the excess 
number of protons. Beta decay seemed to support this idea-after all, electrons 
come popping out; doesn’t that imply that there were electrons inside? Use the 
position-momentum uncertainty relation, A x  Ap  3 h ,  to estimate the minimum 
momentum of an electron confined to a nucleus (radius cm). From the 
relativistic energy-momentum relation, E 2  - p2c2 = m2c4, determine the corre- 
sponding energy, and compare it with that of an electron emitted in, say, the beta 
decay of tritilm (Fig. 1.6). (This result convinced some people that the beta-decay 
electron could not have been rattling around inside the nucleus, but must be pro- 
duced in the disintegration itself.) 

1.4. The Gell-Mann/Okubo mass formula relates the masses of members of the baryon 
octet (ignoring small differences between p and n; Z+, Zo, and Z-; and Eo and E-): 

2(mN + mB) = 3m, + mz 

Using this formula, together with the known masses of the nucleon N (use the 
average of p and n), Z (again, use the average), and ,” (ditto), “predict” the mass 
of the A. How close do you come to the observed value? 

1.5. The same formula applies to the mesons (with Z - K, A - 7, etc.); only, for reasons 
that remain something of a mystery, in this case you must use the squares of the 
masses. Use this to “predict” the mass of the 7. How close do you come? 

1.6. The mass formula for decuplets is much simpler-equal spacing between the rows: 

MA - M y  = MZ. - MZ. = MZ* - Mn 

Use this formula (as Gell-Mann did) to predict the mass of the 0-. (Use the average 
of the first two spacings to estimate the third.) How close is your prediction to the 
observed value? 

sec into a lighter 
baryon (from the baryon octet) and a meson (from the pseudo-scalar meson 
octet). Thus, for example, A*+ - p+ + a’. List all decay modes of this form 
for the A-, 2*+, and E*-. Remember that these decays must conserve charge 
and strangeness (they are strong interactions). 

(b) In any decay, there must be sufficient mass in the original particle to cover the 
masses of the decay products. (There may be more than enough; the extra will 
be “soaked up” in the form of kinetic energy in the final state.) Check each of 
the decays you proposed in part (a) to see which ones meet this criterion. The 
others are kinematically forbidden. 

1.8. (a) Analyze the possible decay modes of the 0-, just as you did in Problem 1.7 for 
the A, Z*, and P*. See the problem? Gell-Mann predicted that the 0- would 
be “metastable” (i.e., much longer lived than the other members ofthe decuplet), 
for precisely this reason. (The 0- does in fact decay, but by the much slower 
weak interaction, which does not conserve strangeness.) 

1.7. (a) Members of the baryon decuplet typically decay after 
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(b) From the bubble chamber photograph (Fig. 1.1 1, measure the length of the Q- 
track, and use this to estimate the lifetime of the R-. (Of course, you don’t 
know how fast it was going, but it’s a safe bet that the speed was less than the 
velocity of light; let’s say it was going about 0. lc. Also, you don’t know if the 
reproduction has enlarged or shrunk the scale, but never mind: this is quibbling 
over factors of 2, or 5, or maybe even 10. The important point is that the 
lifetime is many orders of magnitude longer than the sec characteristic 
of all other members of the decuplet). 

1.9. Check the Coleman-Glashow relation [Phys. Rev. B134, 671 (1964)l: 

z+ - z- = p  - n + B’ - z- 
(the particle names stand for their masses). 

1.10. Look up the table of “known” mesons compiled by M. Roos in Rev. Mod. Phys. 
35, 314 (1963), and compare the current Particle Data Booklet2’ to determine 
which of the 1963 mesons have stood the test of time. (Some of the names have 
been changed, so you will have to work from other properties, such as mass, charge, 
strangeness, etc.) 

1.11. Of the spurious particles you identified in Problem 1.10, which are “exotic” (i.e., 
inconsistent with the quark model)? How many of the surviving mesons are exotic? 

1.12. How many different meson combinations can you make with 1,  2, 3, 4, 5, or 6 
different quark flavors? What’s the general formula for n flavors? 

1.13. How many different baryon combinations can you make with 1, 2, 3, 4, 5, or 6 
different quark flavors? What’s the general formula for n flavors? 

1.14. Using four quarks (u, d, s, and c), construct a table of all the possible baryon species. 
How many combinations carry a charm of +l?  How many carry charm $2, 
and +3? 

1.15. Same as Problem 1.14, but this time for mesons. 
1.16. De Rujula, Georgi, and Glashow [Phys. Rev. D12, 147 (1975)] estimated the quark 

masses to be: mu = md = 336 MeV/c2, m, = 540 MeV/c2, and m, = 1500 MeV/ 
c2 (the bottom quark is about 4500 MeV/c2). If they are right, the average binding 
energy for members of the baryon octet is -62 MeV. If they all had exactly this 
binding energy, what would their masses be? Compare the actual values, and give 
the percent error. (Don’t try this on the other supermultiplets, however. There 
really is no reason to suppose the binding energy is the same for all members of 
the group. The problem of hadron masses is a thorny issue, to which we shall return 
in Chapter 5.) 

1.17. M. Shupe [Phys. Lett. 86B, 87 (1979)l has proposed that all quarks and leptons 
are composed of two even more elementary constituents: c (with charge - 113) 
and n (with charge zero)-and their respective antiparticles, Fand fi. You’re allowed 
to combine them in groups of three particles or three antiparticles (ccn, for example, 
or Efifi).  Construct all of the eight quarks and leptons in the first generation in this 
manner. (The other generations are supposed to be excited states.) Notice that each 
of the quark states admits three possible permutations (ccn, cnc, ncc, for example)- 
these correspond to the three colors. Mediators can be constructed from three par- 
ticles plus three antiparticles. V,  Z’, and y involve three like particles and three 
like antiparticles ( W -  = cccflfifi, for instance). Construct W+, Z’, and y in this 
way. Gluons involve mixed combinations (ccnFfifi, for instance). How many pos- 
sibilities are there in all? Can you think of a way to reduce this down to eight? 





Chapter 2 

Elementary Particle Dynamics 

This chapter introduces the fundamental forces by which elementary particles 
interact, and the Feynman diagrams we use to represent these interactions. 
The treatment is entirely qualitative and can be read quickly to get u sense 
of the “lay of the land.” The quantitative details will come in Chapters 6 
through 10. 

2.1 THE FOUR FORCES 

As far as we know, there are just four fundamental forces in nature: strong, 
electromagnetic, weak, and gravitational. They are listed in the following table 
in order of decreasing strength:* 

Force Strength Theory Mediator 

Strong 10 Chromodynamics Gluon 
Electromagnetic 10-2 Electrodynamics Photon 
Weak 10-13 Flavordynamics Wand Z 
Gravitational 10-42 Geometrodynamics Graviton 

To each of these forces there belongs a physical theory. The classical theory of 
gravity is, of course, Newton’s law of universal gravitation. Its relativistic gen- 
eralization is Einstein’s general theory of relativity (“geometrodynamics” would 
be a better term). A completely satisfactory quantum theory of gravity has yet 
to be worked out; for the moment, most people assume that gravity is simply 

* The “strength” of a force is an intrinsically ambiguous notion-after all, it depends on the 
nature of the source and on how far away you are. So the numbers in this table should not be taken 
too literally, and (especially in the case of the weak force) you will see quite different figures quoted 
elsewhere. 
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too weak to play a significant role in elementary particle physics. The physical 
theory that describes electromagnetic forces is called electrodynamics. It was 
given its classical formulation by Maxwell over one hundred years ago. Maxwell's 
theory was already consistent with special relativity (for which it was, in fact, 
the main inspiration). The quantum theory of electrodynamics was perfected 
by Tomonaga, Feynman, and Schwinger in the 1940s. The weak forces, which 
account for nuclear beta decay (and also, as we have seen, the decay of the pion, 
the muon, and many of the strange particles) were unknown to classical physics; 
their theoretical description was given a relativistic quantum formulation right 
from the start. The first theory of the weak forces was presented by Fermi in 
1933; it was refined by Lee and Yang, Feynman and Gell-Mann, and many 
others, in the fifties, and put into its present form by Glashow, Weinberg, and 
Salam, in the sixties. For reasons that will appear in due course, the theory of 
weak interactions is sometimes calledJlavordynamics;' in this book I refer to it 
simply as the Glashow-Weinberg-Salam (GWS) theory. (The GWS model treats 
weak and electromagnetic interactions as different manifestations of a single 
electroweak force, and in this sense the four forces reduce to three.) As for the 
strong forces, beyond the pioneering work of Yukawa in 1934 there really was 
no theory until the emergence of chromodynamics in the mid-seventies. 

Each of these forces is mediated by the exchange of a particle. The gravi- 
tational mediator is called the graviton, electromagnetic forces are mediated by 
the photon, strong forces by the gluon, and weak forces by the intermediate vector 
bosons, Wand Z .  These mediators transmit the force between one quark or 
lepton and another. In principle, the force of impact between a bat and a baseball 
is nothing but the combined interaction of the quarks and leptons in one with 
the quarks and leptons in the other. More to the point, the strong force between 
two protons, say, which Yukawa took to be a fundamental and irreducible pro- 
cess, must be regarded as a complicated interaction of six quarks. This is clearly 
not the place to look for simplicity. Rather, we must begin by analyzing the 
force between one truly elementary particle and another. In this chapter I will 
show you qualitatively how each of the relevant forces acts on individual quarks 
and leptons. Subsequent chapters develop the machinery needed to make the 
theory quantitative. 

2.2 QUANTUM ELECTRODYNAMICS (QED) 

Quantum electrodynamics is the oldest, the simplest, and the most successful 
of the dynamical theories; the others are self-consciously modeled on it. So I'll 
begin with a description of QED. All electromagnetic phenomena are ultimately 
reducible to the following elementary process: 
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This diagram reads: Charged particle e enters, emits (or absorbs) a photon, y, 
and exits.* For the sake of argument, I’ll assume the charged particle is an 
electron; it could just as well be a quark, or any lepton except a neutrino (the 
latter is neutral, of course, and does not experience an electromagnetic force). 

To describe more complicated processes, we simply patch together two or 
more replicas of this primitive vertex. Consider, for example, the following: 

Here, two electrons enter, a photon passes between them (I need not say which 
one emits the photon and which one absorbs it; the diagram represents both 
orderings), and the two then exit. This diagram, then, describes the interaction 
between two electrons; in the classical theory we would call it the Coulomb 
repulsion of like charges (if the two are at rest). In QED this process is called 
Moiler scattering; we say that the interaction is “mediated by the exchange of a 
photon,” for reasons that should now be apparent. 

Now, you’re allowed to twist these “Feynman diagrams” around into any 
topological configuration you like-for example, we could stand the previous 
picture on its side: 

The rule of the game is that a particle line running “backward in time” (as 
indicated by the arrow) is to be interpreted as the corresponding antiparticle 
goingforward (the photon is its own antiparticle, that’s why I didn’t need an 
arrow on the photon line). So in this process an electron and a positron annihilate 
to form a photon, which in turn produces a new electron-positron pair. An 
electron and a positron went in, an electron and a positron came out (not the 
same ones, but then, since all electrons are identical, it hardly matters). This 
represents the interaction of two opposite charges: their Coulomb attraction. In 
QED this process is called Bhabha scattering. There is a quite different diagram 
which also contributes: 

* In this book time always flows upward; the traditional convention. Particle physicists tend 
increasingly to let t run horizontally (to the right), but there is no established consensus on the matter. 
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Both diagrams must be included in the analysis of Bhabha scattering. 
Using just two vertices we can also construct the following diagrams, 

describing, respectively, pair annihilation, e- + e+ - y + y; pair production, 
y + y - e- + e+; and Compton scattering, e- + y - e- + y: 

[Notice that Bhabha and Maller scattering are related by crossing symmetry (see 
Section 1.4); as are the three processes shown here. In terms of Feynman diagrams, 
crossing symmetry corresponds to twisting or rotating the figure.] If we allow 
more vertices, the possibilities rapidly proliferate; for example, with four vertices 
we obtain, among others, the following diagrams: 

f 

In each of these figures two electrons went in and two electrons came out. They 
too describe the repulsion of like charges (Maller scattering). The “innards” of 
the diagram are irrelevant as far as the observed process is concerned. Internal 
lines (those which begin and end within the diagram) represent particles that are 
not observed-indeed, that cannot be observed without entirely changing the 
process. We call them “virtual” particles. Only the external lines (those which 
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enter or leave the diagram) represent “real” (observable) particles. The external 
lines, then, tell you what physical process is occumng; the internal lines describe 
the mechanism involved. 

Please understand: these Feynman diagrams are purely symbolic; they do 
not represent particle trajectories (as you might see them in, say, a bubble chamber 
photograph). The vertical dimension is time, and horizontal spacings do not 
correspond to physical separations. For instance, in Bhabha scattering the electron 
and positron are attracted, not repelled (as the diverging lines might seem to 
suggest). All the diagram says is: “Once there was an electron and a positron; 
they exchanged a photon; then there was an electron and a positron again.” 
Each Feynman diagram actually stands for a particular number, which can be 
calculated using the so-called Feynman rules (you’ll learn how to do this in 
Chapter 6). Suppose you want to analyze a certain physical process (say, Mdler 
scattering). First you draw all the diagrams that have the appropriate external 
lines (the one with two vertices, all the ones with four vertices, and so on), then 
you evaluate the contribution of each diagram, using the Feynman rules, and 
add it all up. The sum total of all Feynman diagrams with the given external 
lines represents the actual physical process. Of course, there’s a problem here: 
there are infinitely many Feynman diagrams for any particular reaction! For- 
tunately, each vertex within a diagram introduces a factor of a = (e2/hc) = &, 
thefine structure constant. Because this is such a small number, diagrams with 
more and more vertices contribute less and less to the final result, and, depending 
on the accuracy you need, may be ignored. In fact, in QED it is rare to see a 
calculation that includes diagrams with more than four vertices. The answers 
are only approximate, to be sure, but when the approximation is valid to six 
significant digits, only the most fastidious are likely to complain. 

The Feynman rules enforce conservation of energy and momentum at 
each vertex, and hence for the diagram as a whole. It follows that the primitive 
QED vertex by itselfdoes not represent a possible physical process. We can draw 
the diagram, but calculation would assign to it the number zero. The reason is 
purely kinematical: e- - e- + y would violate conservation of energy. (In the 
center-of-mass frame the electron is initially at rest, so its energy is mc2. It cannot 
decay into a photon plus a recoiling electron because the latter alone would 
require an energy greater than mc?.) Nor, for instance, is e- + e+ - y kine- 
matically possible, although it is easy enough to draw the diagram: 

In the center-of-mass system the electron and positron enter symmetrically 
with equal and opposite velocities, so the total momentum before the collision 
is obviously zero. But thejinal momentum cannot be zero, since photons always 
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travel at the speed of light; an electron-positron pair can annihilate to make two 
photons, but not one. Within a larger diagram, however, these figures are perfectly 
acceptable, because, although energy and momentum must be conserved at each 
vertex, a virtual particle does not carry the same mass as the corresponding free 
particle. In fact, a virtual particle can have any mass-whatever the conservation 
laws require.* In the business, we say that virtual particles do not lie on their 
mass shell. External lines, by contrast, represent real particles, and these do carry 
the “correct” mass. 

[Actually, the physical distinction between real and virtual particles is not 
quite as sharp as I have implied. If a photon is emitted on Alpha Centauri, and 
absorbed in your eye, it is technically a virtual photon, I suppose. However, in 
general, the farther a virtual particle is from its mass shell the shorter it lives, so 
a photon from a distant star would have to be extremely close to its “correct” 
mass; it would have to be very close to “real.” As a calculational matter, you 
would get essentially the same answer if you treated the process as two separate 
events (emission of a real photon by star, followed by absorption of a real photon 
by eye). You might say that a real particle is a virtual particle which lasts long 
enough that we don’t care to inquire how it was produced, or how it is eventually 
absorbed.] 

2.3 QUANTUM CHROMODYNAMICS (QCD) 

In chromodynamics color plays the role of charge, and the fundamental process 
(analogous to e- - e- + y) is quark + quark-plus-gluon (since leptons do not 
carry color, they do not participate in the strong interactions): 

As before, we combine two or more such “primitive vertices” to represent more 
complicated processes. For example, the force between two quarks (which is 
responsible in the first instance for binding quarks together to make baryons, 
and indirectly for holding the neutrons and protons together to form a nucleus) 
is described in lowest order by the diagram: 

* In special relativity, the energy E, momentum, p, and mass m of a free particle are related 
by the equation E 2  - p 2 2  = m2c4. But for a virtual particle E2 - p2c2 can take on any value. Many 
authors interpret this to mean that virtual processes violate conservation of energy (see Problem 1.2). 
Personally, I consider this misleading, at best. Energy is always conserved. 
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We say that the force between two quarks is “mediated” by the exchange of 
gluons. 

At this level chromodynamics is very similar to electrodynamics. However, 
there are also important differences, most conspicuously, the fact that whereas 
there is only one kind of electric charge (it can be positive or negative, to be 
sure, but a single number suffices to characterize the charge of a particle), there 
are three kinds of color (red, green, and blue). In the process q - q + g, the 
color of the quark (but not its flavor) may change. For example, a blue up-quark 
may convert into a red up-quark. Since color (like charge) is always conserved, 
this means that the gluon must carry away the difference-in this instance, one 
unit of blueness and minus one unit of redness: 

Gluons, then, are “bicolored,” carrying one positive unit of color and one negative 
unit. There are evidently 3 X 3 = 9 possibilities here, and you might expect there 
to be 9 kinds of gluons. For technical reasons, which we’ll come to in Chapter 
9, there are actually only 8. 

Since the gluons themselves carry color (unlike the photon, which is elec- 
trically neutral), they couple directly to other gluons, and hence in addition to 
the fundamental quark-gluon vertex, we also have primitive gluon-gluon vertices, 
in fact, two kinds: three gluon vertices and four gluon vertices: 

This direct gluon-gluon coupling makes chromodynamics a lot more complicated 
than electrodynamics, but also far richer, allowing, for instance, the possibility 
of glueballs (bound states of interacting gluons, with no quarks on the scene 
at all). 

Another difference between chromodynamics and electrodynamics is the 
size of the coupling constant. Remember that each vertex in QED introduces a 
factor of a = &, and the smallness of this number means that we need only 
consider Feynman diagrams with a small number of vertices. Experimentally, 
the corresponding coupling constant for the strong forces, as, as determined, 
say, from the force between two protons, is greater than 1, and the bigness of 
this number plagued particle physics for decades. For instead of contributing 
less and less, the more complex diagrams contribute more and more, and Feyn- 
man’s procedure, which worked so well in QED, is apparently worthless. One 
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Figure 2.1 Screening of a charge q by a dielectric medium. 

of the great triumphs of quantum chromodynamics (QCD) was the discovery 
that in this theory the number that plays the role of coupling “constant” is in 
fact not constant at all, but depends on the separation distance between the 
interacting particles (we call it a “running” coupling constant). Although at the 
relatively large distances characteristic of nuclear physics it is big at very short 
distances (less than the size of a proton) it becomes quite small. This phenomenon 
is known as asymptoticfreedom; it means that within a proton or a pion, say, 
the quarks rattle around without interacting much. Just such behavior was found 
experimentally in the deep inelastic scattering experiments. From a theoretical 
point of view, the discovery of asymptotic freedom rescued the Feynman calculus 
as a legitimate tool for QCD, in the high-energy regime. 

Even in electrodynamics, the effective coupling depends somewhat on how 
far you are from the source. This can be understood qualitatively as follows. 
Picture first a positive point charge q embedded in a dielectric medium (i.e., a 
substance whose molecules become polarized in the presence of an electric field). 
The negative end of each molecular dipole will be attracted toward q, and the 
positive end repelled away, as shown in Figure 2.1. As a result, the particle 
acquires a “halo” of negative charge, which partially cancels its field. In the 

I 
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Intermolecular 7 Figure 2.2 Effective charge as a function 
separation of distance. 
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presence of the dielectric, then, the effective charge of any particle is somewhat 
reduced: 

q e r  = qlc (2.1) 

(The factor c by which the field is reduced is called the dielectric constant of the 
material; it is a measure of the ease with which the substance can be polarized.*) 
Of course, if you are in closer than the nearest molecule, then there is no such 
screening, and you “see” the full charge q. Thus if you were to make a graph of 
the effective charge, as a function of distance, it would look something like 
Figure 2.2. The effective charge increases at very small distances. 

Now, it so happens that in quantum electrodynamics the vacuum itself 
behaves like a dielectric; it sprouts positron-electron pairs, as shown in Feynman 
diagrams such as these: 

3 , * .  *. 

The virtual electron in each “bubble” is attracted toward q, and the virtual 
positron is repelled away; the resulting vacuum polarization partially screens the 
charge and reduces its field. Once again, however, if you get too close to q, the 
screening disappears. What plays the role of the “intermolecular spacing” in this 
case is the Compton wavelength of the electron, A, = h/mc = 2.43 X lo-’’ cm. 
For distances smaller than this the effective charge increases, just as it did in 
Figure 2.2. Notice that the unscreened (“close-up”) charge, which you might 
regard as the “true” charge of the particle, is not what we measure in any ordinary 
experiment, since we are seldom working at such minute separation distances. 
[An exception is the Lamb shift-a tiny perturbation in the spectrum of hydro- 
gen-in which the influence of vacuum polarization (or rather, its absence at 
short distances) is clearly discernible.] What we have always called “the charge 
of the electron” is actually the fully screened efective charge. 

So much for electrodynamics. The same thing happens in QCD, but with 
an important added ingredient. Not only do we have the quark-quark-gluon 
vertex (which, by itself, would again lead to an increasing coupling strength at 
short distances), but now there are also the direct gluon-gluon vertices. So in 
addition to the diagrams analogous to vacuum polarization in QED, we must 
now also include gluon loops, such as these: 
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0 
b a 

It is not clear a priori what influence these diagrams will have on the as 
it turns out, their effect is the opposite: There occurs a lund of competition 
between the quark polarization diagrams (which drive a, up at short distances) 
and gluon polarization (which drives it down). Since the former depends on the 
number of quarks in the theory (hence on the number offlavors, f ) ,  whereas 
the latter depends on the number of gluons (hence on the number of colors, n), 
the winner in the competition depends on the relative number of flavors and 
colors. The critical parameter turns out to be 

a = 2 f -  l l n  (2.2) 

If this number is positive, then, as in QED, the effective coupling increases at 
short distances; if it is negative, the coupling decreases. In the Standard Model, 
f = 6 and n = 3, so a = -2 1, and the QCD coupling decreases at short distances. 
Qualitatively, this is the origin of asymptotic freedom. 

The final distinction between QED and QCD is that whereas many particles 
carry electric charge, no naturally occurring particles carry color. Experimentally, 
it seems that quarks are confined in colorless packages of two (mesons) and three 
(baryons). As a consequence, the processes we actually observe in the laboratory 
are necessarily indirect and complicated manifestations of chromodynamics. It 
is as though our only access to electrodynamics came from the van der Waals 
forces between neutral molecules. For example, the (strong) force between two 
protons involves (among many others) the following diagram: 

d u u  u u d  

006\00 L Aoooo/ 

i // 2 \\ 
d u u  u u d  
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Figure 2.3 A possible scenario for quark confinement: As we pull a u quark out of the 
proton a pair of quarks is created, and instead of a free quark, we are left with a pion and 
a neutron. 

You will recognize here the remnants of Yukawa’s pion-exchange model, but 
the entire process is enormously more complex that Yukawa ever imagined. If 
QCD is correct, it must contain the explanation for quark confinement; that is, 
it must be possible to prove, as a consequence of this theory, that quarks can 
only exist in the form of colorless combinations. Presumably this proof will take 
the form of a demonstration that the potential energy increases without limit as 
the quarks are pulled farther and farther apart, so that it would take an infinite 
energy (or at any rate, enough to create new quark-antiquark pairs) to separate 
them completely (see Fig. 2.3). So far, no one has provided a conclusive proof 
that QCD implies confinement (see, however, ref. 25 in Chapter 1). The difficulty 
is that confinement involves the long-range behavior of the quark-quark inter- 
action, but this is precisely the regime in which the Feynman calculus fails. 

Ti n 

2.4 WEAK INTERACTIONS4 

There is no particular name for the “stuff’ that produces weak forces, in the 
sense that electric charge produces electromagnetic forces and color produces 
strong forces. Some people call it “weak charge.” Whatever word you use, all 
quarks and all leptons carry it. (Leptons have no color, so they do not participate 
in the strong interactions; neutrinos have no charge, so they experience no elec- 
tromagnetic forces; but all of them join in the weak interactions.) There are two 
kinds of weak interactions: charged (mediated by the W’s) and neutral (mediated 
by the 2). The theory is cleaner for leptons than it is for quarks, so let us begin 
with the leptons. 

2.4.1 Leptons 
The fundamental charged vertex looks like this: 
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A negative lepton (it could be e-, p-, or T - )  converts into the corresponding 
neutrino, with emission of a W- (or absorption of a W'): 1- - U I  + W-.* As 
always, we combine the primitive vertices together to generate more complicated 
reactions. For example, the process p- + u, - e- + u, would be represented by 
the diagram: 

Such a neutrino-muon scattering event would be hard to set up in the laboratory, 
but with a slight twist essentially the same diagram describes the decay of the 
muon, p- - e- + u, + i,, which happens all the time: 

(Technically, this is only the lowest-order contribution to muon decay, but in 
weak interaction theory one almost never needs to consider higher-order cor- 
rections.) 

The fundamental neutral vertex is: 

In this case 1 can be any lepton (including neutrinos). The 2 mediates such 
processes as neutrino-electron scattering (v, + e- - Y, + e-): 

Although charged weak processes were recognized from the start (beta decay 
itself is a charged process), the theoretical possibility of neutral weak processes 
was not appreciated until 1958. The Glashow-Weinberg-Salam (GWS) model 

* This implies, of course that I' + V ,  + W+ is also an allowed vertex. 
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includes neutral weak processes as essential ingredients, and their existence was 
confirmed experimentally at CERN in 1973.5 The reason it took so long for 
neutral weak processes to be discovered is twofold: (1) nobody was looking for 
them and (2) they tend to be masked by much stronger electromagnetic effects. 
For example, the Z can be exchanged between two electrons, but 
photon: 

so can the 

Presumably there is a minute correction to Coulomb’s law that’s attributable to 
the first diagram, but the photon-mediated process overwhelmingly dominates. 
Experiments at DESY (in Hamburg) studied the reaction e- + e’ - p- + p+ at 
very high energy and found unmistakable evidence of a contribution from the 
Z 6  But to observe a pure neutral weak interaction one has to go to neutrino 
scattering, in which there is no competing electromagnetic mechanism, and neu- 
trino experiments are notoriously difficult. 

2.4.2 Quarks 

Notice that the leptonic weak vertices connect members of the same generation: 
e- converts to v, (with emission of W-), or p- - p- (emitting a Z) ,  but e- never 
goes to p- nor p- to v,. In this way the theory enforces the conservation of 
electron number, muon number, and tau number. It is tempting to suppose that 
the same rule applies to the quarks, so that the fundamental charged ver- 
tex is: 

A quark with charge - f (which is to say: d, s, or b) converts into the corresponding 
quark with charge +# (u, c, or t, respectively), with the emission of a W-. The 
outgoing quark cames the same color as the ingoing one, but a different flavor. 
It’s not that the W cames off the “missing” flavor-after all, the W must be 
capable of coupling to leptons, which have no flavor; rather,Jlavor is simply not 
conserved in weak interactions. (Because quark flavor typically changes at a weak 
vertex, as quark color changes at a strong vertex, weak interaction theory is 
sometimes called “flavordynamics.”) 

The far end of the Wline can couple to leptons (a “semileptonic” process), 
or to other quarks (a purely hadronic process). The most important semileptonic 
process is undoubtedly d + v, - u + e: 
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Because of quark confinement, this process would never occur in nature 
as it stands. However, turned on its side, and with the U and d bound to- 
gether (by the strong force), this diagram represents a possible decay of the 
pion, ?r- - e- + 5,: 

V I I 

I w- 
I 

ii- 

(For reasons to be discussed later, the more common decay is actually ?r- - 
p- + V r ,  but the diagram is the same: 
tially the same diagram accounts for 
+ e- + Ve):  

with e replaced by p.) Moreover, essen- 
the beta decay of the neutron ( n  - p+ 

?\ii 
+- 

W -  

Thus, apart from strong interaction contamination (in the form of the “spectator” 
u and d quarks), the decay of the neutron is identical in structure to the decay 
of the muon, and closely related to the decay of the pion. In the days before the 
quark model, these appeared to be three very different processes. 
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Eliminating the electron-neutrino vertex in favor of a second quark vertex 
we obtain a purely hadronic weak interaction, A' - p+ + K-:* 

Actually, this particular decay also proceeds by the strong interaction: 

The weak mechanism is an immeasurably smk.. contribution. R ,'11 see more 
realistic examples of nonleptonic weak interactions in a moment. 

The fundamental neutral vertex for leptons (1 - 1 + Z )  leaves the lepton 
species unchanged; again, it is natural to suppose that the same applies to quarks: 

* The A' has the same quark content as the neutron, but this decay is not possible for neutrons 
because they are not heavy enough to make a proton and a pion. 
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This leads to neutrino-scattering processes such as up + p - v, + p :  

P + 
u u d  

u u d  - 
P 

2 exchange also makes a tiny contribution to the electron-proton force within 
an atom. As before, this contribution is masked by the dominant electromagnetic 
force, but it is detectable in certain carefully chosen atomic transitions. 

So far, it’s all pretty simple: The quarks mimic the leptons, as far as the 
weak interactions are concerned. The only difference is that because of the con- 
fining property of the strong force, there are generally spectator quarks present, 
which go along for the ride. Sad to say, this picture is a little too simple. For as 
long as the fundamental quark vertex is allowed to operate only within each 
generation, we can never hope to account for strangeness-changing weak inter- 
actions, such as the decay of the lambda (A - p+ + T-) or the omega-minus 
(Q- - A + K-), which involve the conversion of a strange quark into an up- 
quark: 

The solution to this dilemma was suggested by Cabibbo in 1963, applied to 
neutral processes by Glashow, Illiopoulos, and Maiani (GIM) in 1970, and ex- 
tended to three generations by Kobayashi and Maskawa (KM) in 1973.* The 
essential idea is that the quark generations are “skewed,” for the purposes of 
weak interactions. Instead of 

* The Cabibbo/GIM/KM mechanism will be discussed more fully in Chapter 10. 
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the weak force couples the pairs 

where d’, s’, and b’ are linear combinations of the physical quarks d, s, and b: 

vud v u s  v u b  is)=(: %)($ (2.5) 

If this 3 X 3 Kobayashi-Maskawa matrix were the unit matrix, then d’, s’, and 
b’ would be the same as d, s, and b, and no “cross-generational” transitions 
could occur. “Upness-plus-downness” would be absolutely conserved (just as 
the electron number is); “strangeness-plus-charm’’ would be conserved (like muon 
number); and so would “topness-plus-bottomness” (like tau number). But it’s 
not the unit matrix (although it’s pretty close); experimentally, the magnitudes 
of the matrix elements are’ 

(2.6) 
0.9705 to 0.9770 0.21 to 0.24 0. to 0.014 
0.21 to 0.24 0.971 to 0.973 0.036 to 0.070 
0. to 0.024 0.036 to 0.069 0.997 to 0.999 

Vu, measures the coupling of u to d, V, the coupling of u to s, and so on. The 
fact that the latter is nonzero is what permits strangeness-changing processes, 
such as the decay of the A and the W, to occur. 

1 ( 

2.4.3 Weak and Electromagnetic Couplings of W and Z 
There are also direct couplings of Wand Z to one another, in GWS theory (just 
as there are direct gluon-gluon couplings in QCD): 

\ 

\\ 

Moreover, because the W is charged, it couples to the photon: 

/‘ 
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Although these interactions are critical for the internal consistency of the theory, 
as we shall see in Chapter 11, they are of limited practical importance at this 
point in time (see Problem 2.6). 

2.5 DECAYS AND CONSERVATION LAWS 

One of the most striking general properties of elementary particles is their ten- 
dency to disintegrate; we might almost call it a universal principle that every 
particle decays into lighter particles, unless prevented from doing so by some 
conservation law. The neutrinos and the photon are stable (having zero mass, 
there is nothing lighter for them to decay into); the electron is stable (it’s the 
lightest charged particle, so conservation of charge prevents its decay); and the 
proton is presumably stable (it’s the lightest baryon, and the conservation of 
baryon number saves it). By the same token, the positron and the antiproton 
are stable. But apart from these, all particles spontaneously disintegrate, even 
the neutron, although it becomes stable in the protective environment of many 
atomic nuclei. In practice, our world is populated mainly by protons, neutrons, 
electrons, photons, and neutrinos; more exotic things are created now and then 
(by collisions) but they do not last long. Each unstable species has a characteristic 
mean lifetime,* 7: for the muon it’s 2.2 X lop6 sec; for the ir’ it’s 2.6 X lo-* 
sec; for the PO it’s 8.3 X sec. Most particles exhibit several different 
decay modes; 64% of all K”s, for example, decay into p +  + u r ,  but 2 1% go to 
ir+ + TO, 6% to R+ + P’ + H - ,  5% to (e’ + u, + KO), and so on. One of the 
goals of elementary particle theory is to calculate these lifetimes and branching 
ratios. 

A given decay is governed by one of the three fundamental forces: A++ - 
p+ + T+, for example, is a strong decay; PO - y + y is electromagnetic; and 
2- - n + e- + Se is weak. How can we tell? Well, if a photon comes out, the 
process is certainly electromagnetic, and if a neutrino emerges, the process is 
certainly weak. But if neither a photon nor a neutrino is present, it’s a little 
harder to say. For example, Z- - n + ir- is weak, but A- - n + P- is strong. 
I’ll show you in a moment how to figure that out, but first I want to mention 
the most dramatic experimental difference between strong, electromagnetic, and 
weak decays: A typical strong decay involves a lifetime around sec, a typical 
electromagnetic decay takes about sec, and weak decay times range from 
around sec (for the 7) up to 15 min (for the neutron). For a given type of 
interaction, the decay generally proceeds more rapidly the larger the mass dif- 
ference between the original particle and the decay products, just as a ball rolls 
faster down a steeper hill. There are exceptions: P’ - p+ + u p ,  for example, is 
faster by a factor of lo4 than H+ - e’ + ve, but such cases demand special 
explanations. It is this kinematic effect that accounts for the enormous range in 
weak interaction lifetimes. In particular, the proton and electron together are so 

* The lifetime r is related to the half-life tl/* by the formula tlI2 = (In 2). = 0.6937. The half- 
life is the time it takes for half the particles in a large sample to disintegrate (see Ch. 6, Sect. 6.1). 
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close to the neutron’s mass that the decay n - p+ + e- + ie barely makes it at 
all, and the lifetime of the neutron is greater by far than that of any other unstable 
particle. Experimentally, then, there is a vast separation in lifetime between 
strong and electromagnetic decays (a factor of about 10 million), and again 
between electromagnetic and weak decays (a factor of at least a thousand). Indeed, 
particle physicists are so used to thinking in terms of sec as the “normal” 
unit of time that the handbooks generally classify anything with a lifetime greater 
than lo-’’ sec or so as a “stable” particle!* 

Now, what about the conservation laws which, as I say, permit certain 
reactions and forbid others? To begin with there are the purely kinematic con- 
servation laws-conservation of energy and momentum (which we shall study 
in Chapter 3) and conservation of angular momentum (which comes in Chapter 
4). The fact that a particle cannot spontaneously decay into particles heavier 
than itself is actually a consequence of conservation of energy (although it may 
seem so “obvious” as to require no explanation at all). The kinematic conser- 
vation laws apply to all interactions-strong, electromagnetic, weak, and for 
that matter anything else that may come along in the future-since they derive 
from special relativity itself. However, our concern right now is with the dynarn- 
ical conservation laws that govern the three relevant interactions. Ten years ago 
I would simply have stated them as empirical rules coming from experiment, 
which you just have to memorize. It is in that spirit that we encountered them 
in Chapter 1. But now that we have a workable model for each of the basic 
forces, it becomes a question of examining the fundamental vertices: 

Strong Electromagnetic Weak 

Since all physical processes are obtained by sticking these together in elaborate 
combinations, anything that is conserved at each vertex must be conserved for 
the reactions as a whole. So, what do we have? 

1. Conservation ofcharge: AU three interactions, of course, conserve electric 
charge. In the case of the weak interactions the lepton (or quark) that comes out 
may not have the same charge as the one that went in, but if so, the difference 
is camed away by the W. 

* Incidentally, sec is about the time it takes a light signal to cross a hadron (diameter - m). You obviously cannot determine the lifetime of such a particle by measuring the length 
of its track [as we did for the R- in Problem l.S(b)]. Instead, you make a histogram of muss mea- 
surements, and invoke the uncertainty principle: A E  At = h.  Here A E  = (Am)c2, and At = 7 ,  SO 

we get 

h 
( Am)c 

7=- 

Thus the spread in mass is a measure of the particle’s lifetime. 
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2. Conservation of color: The electromagnetic and weak interactions do 
not affect color. At a strong vertex the quark color does change, but the difference 
is carried off by the gluon. (The direct gluon-gluon couplings also conserve color.) 
However, since naturally occurring particles are always colorless, the observable 
manifestation of color conservation is pretty trivial: zero in, zero out. 

3. Conservation of baryon number: In all the primitive vertices, if a quark 
goes in, a quark comes out, so the total number of quarks present is a constant. 
In this arithmetic we count antiquarks as negative, so that, for example, at the 
vertex q + ij - g the quark number is zero before and zero after. Of course, we 
never see individual quarks, only baryons (with quark number 3), antibaryons 
(quark number -3), and mesons (quark number zero). So, in practice, it is more 
convenient to speak of the conservation of baryon number (A  = 1 for baryons, 
A = - 1 for antibaryons, and A = 0 for everything else). The baryon number is 
just 4 the quark number. Notice that there is no analogous conservation of 
meson number; since mesons carry zero quark number, a given collision or 
decay can produce as many mesons as it likes, consistent with conservation of 
energy. 

4. Electron number, muon number, and tau number: The strong forces do 
not touch leptons at all; in an electromagnetic interaction the same particle 
comes out (accompanied by a photon) as went in; and the weak interactions 
only mix together leptons from the same generation. So, the electron number, 
muon number, and tau number are all conserved. If it weren’t for Cabibbo 
mixing, there would be a similar conservation of generation type for quarks 
(upness-plus-downness, strangeness-plus-charm, and beauty-plus-truth), but the 
fact that the generations are skewed in the weak interactions spoils things, and 
there is no hadronic analog to conservation of the individual lepton numbers. 

5 .  Approximate conservation offlavor: So far, all the conservation laws we 
have considered are absolute, in the sense that they hold for all three interactions, 
as presently understood. An observed violation of any of them would be big 
news, calling for a major overhaul in our view of the subatomic world. But what 
about quark flavor? Flavor is conserved at a strong or electromagnetic vertex, 
but not at a weak vertex, where an up quark may turn into a down quark or a 
strange quark, with nothing at all picking up the lost upness or supplying the 
“gained” downness or strangeness. Because the weak forces are so weak, we say 
that the various flavors are approximately conserved. In fact, as you may re- 
member, it was precisely this approximate conservation that led Gell-Mann to 
introduce the notion of strangeness in the first place. He “explained” the fact 
that strange particles are always produced in pairs: 

for instance, but 

T-(dc) + p+(uud) f ,  ?r+(ud) + Z-(dds) 

by arguing that the latter violates conservation of strangeness. (Actually, this is 
a possible weak interaction, but it will never be seen in the laboratory, because 
it must compete against enormously more probable strong processes that do 
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conserve strangeness.) In decays, however, the nonconservation of strangeness 
is very conspicuous, because for many particles this is the only way they can 
decay; there is no competition from strong or electromagnetic processes. The 
A, for instance, is the lightest strange baryon; if it is to decay, it must go to n 
(or p )  plus something. But the lightest strange meson is the K, and n (or p )  
plus K weighs substantially more than the A. If the A decays at all (and it 
does, as we know: A + p’ + K- 64% of the time, and A - n + KO 36% of the 
time), then strangeness cannot be conserved, and the reaction must proceed 
by the weak interaction. By contrast, the A’ (with a strangeness of zero) can 
go to p+ + K- or n + K by the strong interaction, and its lifetime is accordingly 
much shorter. 

6. The OZI Rule: Finally, I must tell you about one very peculiar case 
that has been on my conscience since Chapter 1. I have in mind the decay of 
the psi, which, you will recall, is a bound state of the charmed quark and its 
antiquark: 1c/ = cC: The 1c/ has an anomalously long lifetime (- lo-*’ sec); the 
question is, why? It has nothing to do with conservation of charm; the net charm 
of the psi is zero. The 1c/ lifetime is short enough so that the decay is clearly due 
to the strong interactions. But why is it a thousand times slower than a strong 
decay “ought” to be? The explanation (if you call it that) goes back to an old 
observation by Okubo, Zweig, and Iizuka, known as the “OZI rule.” These 
authors were puzzled by the fact that the 4 meson (whose quark content, sF, 
makes it the strange analog to the $) decays much mcre often into two K’s than 
into three K’S (the two pion decay is forbidden for other reasons, which we will 
come to in Chapter 4), in spite of the fact that the three pion decay is energetically 
favored (the mass of two K’s is 990 MeV/c2; three K’S weigh only 4 15 MeV/c2). 
In Figure 2.4, we see that the three-pion diagram can be cut in two by snipping 

T i +  lr 0 R -  

6 A A 
u d  d d  d u  

Figure 2.4 The OZI rule: If the diagram can be cut in two by slicing only gluon lines 
(and not cutting open any external particles), the process is suppressed. 
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only gluon lines. The OZI rule states that such processes are “suppressed.” Not 
absolutely forbidden, mind you, for the decay 4 + 3a does in fact occur, but 
far less likely than one would otherwise have supposed. The OZI rule is related 
to asymptotic freedom, in the following sense: In an OZI-suppressed diagram 
the gluons must be “hard” (high energy), since they carry the energy necessary 
to make the hadrons into which they fragment. But asymptotic freedom says 
that gluons couple weakly at high energies (short ranges). By contrast, in OZI- 
allowed processes the gluons are typically “soft” (low energy), and in this regime 
the coupling is strong. Qualitatively, at least, this accounts for the OZI rule. (The 
quantitative details will have to await a more complete understanding of QCD.) 

But what does all this have to do with the +? Well, presumably the same 
rule applies, suppressing + + 3a, and leaving the decay into two charmed D 
mesons (analogs to the K, but with the charmed quarks in place of the strange 
quarks) as the favored route. Only there’s a new twist in the + system, for the 
D’s turn out to be too heavy: A pair of D’s weighs more than the +. So the decay 
+ + D+ + D- (or Do + Do) is kinematically forbidden, while + - 3a is OZI 
suppressed, and it is to this happy combination that the + owes its unusual 
longevity. 

2.6 UNIFICATION SCHEMES 

At one time electricity and magnetism were two distinct subjects, the one dealing 
with pith balls, batteries, and lightning; the other with lodestones, bar magnets, 
and the North Pole. But in 1820 Oersted noticed that an electric current could 
deflect a magnetic compass needle, and 10 years later Faraday discovered that 
a moving magnet could generate an electric current in a loop of wire. By the 
time Maxwell put the whole theory together in its final form, electricity and 
magnetism were properly regarded as two aspects of a single subject: electro- 
magnetism. 

Einstein dreamed of going a step further, combining gravity with electro- 
dynamics in a single unifiedjeld theory. Although this program was not suc- 
cessful, a similar vision inspired Glashow, Weinberg, and Salam to join the weak 
and electromagnetic forces. Their theory starts out with four massless mediators, 
but, as it develops, three of them acquire mass (by the so-called Higgs mechanism), 
becoming the W’s and the Z, while one remains massless: the photon. Although 
experimentally a reaction mediated by W or Z is quite different from one me- 
diated by the y, if the GWS theory is right they are all manifestations of a single 
electroweak interaction. The relative weakness of the weak force is attributable 
to the enormous mass of the intermediate vector bosons; its intrinsic strength is 
in fact somewhat greater than that of the electromagnetic force, as we shall see 
in Chapter 10. 

Beginning in the early seventies, many people have been working on the 
obvious next step: combining the strong force (in the form of chromodynamics) 
with the electroweak force (A la GWS). Several different schemes for implementing 
this grand unification are now on the table, and although it is too soon to draw 
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any definitive conclusions, some of the early results are promising. You will 
recall that the strong coupling constant a, decreases at short distances (which is 
to say, for very high-energy collisions). So too does the weak coupling a,,,, but 
at a slower rate. Meanwhile, the electromagnetic coupling constant, ae, which 
is the smallest of the three, increases. Could it be that they all converge to a 
common limiting value, at extremely high energy? (See Fig. 2.5.) Such is 
the promise of the grand unified theories (GUTs). Indeed, from the functional 
form of the running coupling constants it is possible to estimate the energy at 
which this unification occurs: around 1015 GeV. This is, ofcourse, astronomically 
higher than any currently accessible energy (remember, the mass of the 2 is 
90 GeV/c2). Nevertheless, it is an exciting idea, for it means that the observed 
difference in strength among the three interactions is an “accident” resulting 
from the fact that we are obliged to work at low energies, where the unity of 
the forces is obscured. If we could just get in close enough to see the “true” 
strong, electric, and weak charges, without any of the screening effects of vac- 
uum polarization, we would find that they are all equal. How nice! 

Another suggestion of the GUTs is that the proton may be unstable, al- 
though its half-life is fantastically long (at least lo2’ times the age of the universe). 
It has often been remarked that conservation of charge and color are in a sense 
more “fundamental” than the conservation of baryon number and lepton num- 
ber, because charge is the “source” for electrodynamics, and color for chro- 
modynamics. If these quantities were not conserved, QED and QCD would have 
to be completely reformulated. But baryon number and lepton number do not 
function as sources for any interaction, and their conservation has no deep dy- 
namical significance. In the grand unified theories new interactions are contem- 
plated, permitting decays such as 

p+ - e+ + T O  or pf - ip + ?r+ (2.9) 

in which baryon number and lepton number change. Several major experiments 
are now under way to search for these proton decays. So far, the results are 
negative.’ 

If grand unification works, all of elementary particle physics will be reduced 
to the action of a single force. The final step, then, will be to bring in gravity, 
vindicating at last Einstein’s dream. Indeed, many theorists are already working 

1015 GeV E damental coupling constants. 
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on this, the ultimate unification. But it is probably safe to say that a detailed 
theory is still years off-after all, we hardly know how to carry out the most 
rudimentary calculations in chromodynamics, and here we are speculating about 
a theory two generations more sophisticated! 
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PROBLEMS 

2.1. Calculate the ratio of the gravitational attraction to the electrical repulsion between 
two stationary electrons. (Do I need to tell you how far apart they are?) 

2.2. Sketch the lowest-order Feynman diagram representing Delbruck scattering: 
y + y - y + y. (This process, the scattering of light by light, has no analog in classi- 
cal electrodynamics.) 

2.3. Draw all the fourth-order (four vertex) diagrams for Compton scattering. (There 
are 17 of them; disconnected diagrams don’t count.) 

2.4. Determine the mass of the virtual photon in each of the lowest-order diagrams for 
Bhabha scattering (assume the electron and positron are at rest). What is its velocity? 
(Note that these answers would be impossible for real photons.) 

2.5. (a) Which decay do you think would be more likely, 
I- s - A + * -  or E - - n + a -  

Explain your answer, and confirm it by looking up the experimental data. 
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(b) Which decay of the D”(cU) meson is more likely, 

Do -+ K -  + a+, Do - a- + a+, 
Which is least likely? Draw the Feynman diagrams, explain your answer and 
check the experimental data. (One of the successful predictions of the Cabibbol 
GIM/KM model was that charmed mesons should decay preferentially into 
strange mesons, even though energetically the 2a mode is favored.) 

(c) How about the “beautiful” (B)  mesons? Should they go to the D’s, K’s, or a’s? 
How about “truthful” mesons? 

2.6. Draw all the lowest-order diagrams contributing to the process e+ + e- - W+ 
+ W-.  [One of them involves the direct coupling of Z to W’s and another the 
coupling of y to W’s, so if a positron-electron collider is ever built with sufficient 
energy to make two W’s, these interactions will be directly observable.] 

2.7. Examine the following processes, and state for each one whether it is possible or 
impossible, according to the Standard Model (which does not include GUTS, with 
their potential violation of the conservation of lepton number and baryon number). 
In the former case, state which interaction is responsible-strong, electromagnetic, 
or weak; in the latter case cite a conservation law that prevents it from occumng. 
(Following the usual custom, I will not indicate the charge when it is unambiguous, 
thus y, A, and n are neutral; p is positive, e is negative; etc.) 

(c) 2’ - A + ?yo (d) 8- - n + a- 
(e)  e+ + e- -+ p+ + p- (f) p- - e- + i, 
(8) A+ - p + ?yo (h) i, + p -+ n + e+ 

(i) e + p - v, + a’ (j) p + p +  Z+ + n +KO+ a+ + ao 
(k) P - e+ + Y (1) P + P + P + P + P + P  
(m) n + f i -  ?y+ + a- + KO (n) a + + n - a - + p  
(0 )  K -  - ?y- + ?yo (p) Z+ + n - z- + p 
(9) zo- A + Y (r) X -  -+ A + a- 
( s )  p - p + a -  (t) a- + p -+ A + KO 
(4 To - Y + Y (v) 8- - n + e + V ,  

diagrams for the following processes: 
(a) K+ - p+ + v,, + y 

What interactions are involved? (Both these decays have been observed, by the 

2.9. The upsilon meson, b6, is the bottom-quark analog to the +, cC. Its mass is 9460 
MeV/cZ, and its lifetime is 1.5 X lo-” sec. From this information, what can you 
say about the mass of the B meson, u6? (The observed mass is 5270 MeV/cZ.) 

2.10. The +’ meson, at 3685 MeV/c*, has the same quark content as the + (i.e., cF). Its 
principal decay mode is +’ - + + ?yf + a-. Is this a strong interaction? Is it OZI- 
suppressed? What lifetime would you expect for the +’? (The observed value is 
3 x lo-’’ sec.) 

or Do - K’ + a 

(a) p + j - + ? y + + a o  (b) 1 1 - Y + Y  

2.8. Some decays involve two (or even all three) different forces. Draw possible Feynman 

(b) Z + - p + y  

way.) 





Chapter 3 

Relativistic Kinematics 

In this chapter I summarize the basic principles, notation, and terminology 
of relativistic kinematics. This is material you must know cold in order to 
understand Chapters 6 through 11 (it is not needed for Chapters 4 and 5, 
however, and if you prefer you can read them jrst).  Although the treatment 
is reasonably self-contained, I do assume that you have encountered special 
relativity before-if not, you should pause here and read the appropriate 
chapter in any introductory physics text before proceeding. Ifyou are already 
quite familiar with relativity, this chapter will be an easy review-but read 
through it anyway because some of the notation may be new to you. 

3.1 LORENTZ TRANSFORMATIONS 

According to the special theory of relativity,’ the laws of physics apply just as 
well in a reference system moving at constant velocity as they do in one at rest. 
An embarrassing implication of this is that there’s no way of telling which system 
(if any) is at rest, and hence there is no way of knowing what “the” velocity of 
any other system might be. So perhaps I had better start over. Ahem. 

According to the special theory of relativity,’ the laws ofphysics are equally 
valid in all inertial reference systems. An inertial system is one in which Newton’s 
first law (the law of inertia) is obeyed: objects keep moving in straight lines at 
constant speeds unless acted upon by some force.* It’s easy to see that any two 
inertial systems must be moving at constant velocity with respect to one another, 
and conversely, that any system moving at constant velocity with respect to an 
inertial system is itself inertial. 

“inertial,” you know more than is good for you. Let’s just keep gravity out of it. 
* If you are wondering whether a freely falling system in a uniform gravitational field is 
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Imagine, then, that we have two inertial frames, S and S', with S' moving 
at uniform velocity v (magnitude v )  with respect to S (8, then, is moving at 
velocity -v with respect to S'). We may as well lay out our coordinates in such 
a way that the motion is along the common x/x' axis (Fig. 3.1), and set the 
master clocks at the origin in each system so that both read zero at the instant 
the two coincide (that is, t = t' = 0 when x = x' = 0). Suppose, now, that some 
event occurs at position (x, y, z) and time tin S. Question: What are the spacetime 
coordinates (x', y', z') and t' of this same event in S'? The answer is provided by 
the Lorentz transformations: 

i. x f  = y(x - vt )  
ii. y' = y 

111. zf = 2 
... 

iv. t' = .(i - : x) 

The inverse transformations, which take us back from S' to S, are obtained by 
simply changing the sign of v (see Problem 3.1): 

i'. x = y(x' + v t ' )  
ii'. y = y' 
iii'. z = z' (3.3) 

id. t = y(t' + : x') 
The Lorentz transformations have a number of immediate consequences, 

of which I mention briefly the most important: 
1 .  The relativity of simultaneity: If two events occur at the same time in 

S, but at different locations, then they do not occur at the same time in S'. 
Specifically, if tA = tB ,  then 

S S' 

I I X '  

X 

Figure 3.1 The inertial systems S and S'. 
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(see Problem 3.2). Events that are simultaneous in one inertial system, then, are 
not simultaneous in others. 

2. Lorentz contraction: Suppose a stick lies on the x‘ axis, at rest in S’. Say 
one end is at the origin (x’ = 0) and the other is at L’ (so its length in S‘ is L‘). 
What is its length as measured in S? Since the stick is moving with respect to S, 
we must be careful to record the positions of its two ends at the same instant, 
say t = 0. At that moment the left end is at x = 0 and the right end, according 
to equation (i), is at x = L’/y. Thus the length of the stick is L = L’/y, in S. 
Notice that y is always greater than or equal to 1. It follows that a moving object 
is shortened by a factor of y, as compared with its length in the system in which 
it is at rest. Notice that Lorentz contraction only applies to lengths along the 
direction of motion: perpendicular dimensions are not affected. 

3. Time dilation: Suppose the clock at the origin in S‘ ticks off an interval 
T‘; for simplicity, say it runs from t’ = 0 to t’ = T’. How long is this period as 
measured in S? Well, it begins at t = 0, and it ends when t’ = T’ at x’ = 0, so 
[according to eq. ( i t)]  t = y TI. Evidently the clocks in Stick off a longer interval, 
T = y T’, by that same factor of y ;  or, put it the other way around: moving clocks 
run slow. Unlike Lorentz contraction, which is only indirectly relevant to ele- 
mentary particle physics, time dilation is a commonplace in the laboratory. For 
in a sense every unstable particle has a built-in clock: whatever it is that tells the 
particle when its time is up. And these internal clocks do indeed run slow when 
the particle is moving. That is to say, a moving particle lasts longer (by a factor 
of y) than it would at rest.* (The tabulated lifetimes are, of course, for particles 
at rest.) In fact, the cosmic ray muons produced in the upper atmos- 
phere would never make it to ground level were it not for time dilation (see 
Problem 3.4). 

4. Velocity addition. Suppose a particle is moving in the x direction at 
speed u’, with respect to 5”. What is its speed, u, with respect to S? Well, it travels 
a distance A x  =  AX' + v At’) in a time At = y[At’ + (u/c2)Ax’], so 

- (Ax‘lAt‘) + v - A x  - A x ’ +  u At’ 
At At‘ + (v /c2)  Ax’ 1 + (v/c2)(Ax’/At’) * 

- -  

But Ax/At = u, and Ax’/At‘ = u’, so 

u’ + v 
U =  

1 + (u’u/c2) (3.5) 

The numerator represents the classical answer to the same question, u = u’ + v; 
the denominator introduces a relativistic correction that is small unless u’ and 
v are close to c. Notice that if u’ = c, then u = c also: the speed of light is the 
same in all inertial systems. 

* Actually, the disintegration of an individual particle is a random process; when we speak of 
a “lifetime” we really mean the average lifetime of that particle type. When I say that a moving 
particle lasts longer, I really mean that the average lifetime of a group of moving particles is longer. 
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3.2 FOUR-VECTORS 

It is convenient at this point to introduce some simplifying notation. We define 
the position-time four-vector x', p = 0, 1, 2, 3, as follows: 

xo = ct, x '  = x, x2  = y, x3  = z (3.6) 

In terms of x', the Lorentz transformations take on a more symmetrical ap- 
pearance: 

where 

More compactly: 

2, 

c 
p - -  

3 

X" = 2 ACX" ( p  = 0, 1, 2, 3) 
"=O 

The coefficients A; may be regarded as the elements of a matrix A: 

r - y ~  o 01 
0 1 0  

A =  

(3.8) 

(3.9) 

(3.10) 

(i.e., A," = A f  = y; A: = A? = -yP; A; = A: = 1; and all the rest are zero). To 
avoid writing lots of Z's, we shall follow Einstein's "summation convention," 
which says that repeated Greek indices (one as subscript, one as superscript) are 
to be summed from 0 to 3. Thus equation (3.9) becomes, finally,* 

x'' = Afx' (3.1 1) 

A special virtue of this tidy notation is that the same form describes Lorentz 
transformations which are not along the x direction; in fact, the S and S' axes 
need not even be parallel; the A matrix is more complicated, naturally, but 
equation (3.1 1) still holds. [On the other hand, there is no real loss of generality 
in using expression (3. lo), since we are always free to choose parallel axes, and 
to align the x axis along the direction of v.] 

* In an expression such as this the Greek letter used for the summation index, Y, is of course 
completely arbitrary. The Same goes for the index p, although it must match on the two sides of the 
equation. Thus equation (3.1 I )  could just as well be written x d  = A:x'. Either expression stands for 
the set of four equations: 

x' = A$xo + AYx" + A:x2 + A%3 

x2' = A&' + A:xl + A:x2 + A$c3 

= *I 0 + Alxl  + h:x2 + A h '  

x3' = A&? + A:x' + + Ah3 
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Although the individual coordinates of an event change, in accordance 
with equation (3.1 I), when we go from S to S’, there is a particular combination 
of them that remains the same (Problem 3.7): 

I = (XO)2 - (x’)2 - ( X y  - (x3)2 = ( X o y  - ( X ” ) 2  - ( X 2 y  - (x3’)2 (3.12) 

Such a quantity, which has the same value in any inertial system, is called an 
invariant. (In the same sense, the quantity r2 = x 2  + y 2  + z2 is invariant under 
rotations.) Now, I would like to write this invariant in the form of a sum: 
C:=, x p x p ,  but unfortunately there are those three imtating minus signs. To 
keep track of them, we introduce the metric, g,,, whose components can be 
displayed as a matrix g: 

(3.13) 

(i.e., goo = 1; gll = g22 = g33 = - 1 ;  all the rest are zero).* With the help of g,,, 
the invariant I can be written as a double sum: 

3 3  

I = 2 2 g,,xfix” = g,,x@x” (3.14) 

Carrying things a step further, we define the covariant four-vector x ,  (index 
down) as follows: 

x,  = g,,x” (3.15) 

(i.e., xo = xo,  x 1  = - x l ,  x2 = -x2, x3 = -x3) .  To emphasize the distinction we 
call the “original” four-vector x’ (index up) a contravariant four-vector. The 
invariant I can then be written in its cleanest form: 

,=0 v=o  

I = x,x” (3.16) 

All this will no doubt seem like monstrous notational overkill, just to keep track 
of three minus signs, but it’s actually very simple, once you get used to it. (What’s 
more, it generalizes nicely to noncartesian coordinate systems and to the curved 
spaces encountered in general relativity, though neither of these is relevant to 
us here.) 

The position-time four-vector x p  is the archetype for all four-vectors. We 
define a four-vector, a”, as a four-component object that transforms in the same 
way x ,  does when we go from one inertial system to another, to wit: 

a@‘ T A;a ’ (3.17) 

with the same coefficients A;. To each such (contravariant) four-vector we as- 

* I should warn you that some physicists define the metric with the opposite signs (-1, 1, 1, 
1). It doesn’t matter much-if I is invariant, so too is -I. But it does mean you must be on the 
lookout for unfamiliar signs. Fortunately, most particle physicists nowadays use the convention in 
equation (3.13). 
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sociate a covariant four-vector a,, obtained by simply changing the signs of the 
spatial components, or, more formally 

a, = g’ua” (3.18) 

Of course, we can go back from covariant to contravariant by reversing the signs 
again: 

a’ = glrvay (3.19) 

where g”” are technically the elements in the matrix g-’ (however, since our 
metric is its own inverse, g’” is the same as gpv). Given any two four-vectors, a” 
and b“, the quantity 

a’b, = a,b“ = aObO - a’b’ - a2b2 - a3b3 (3.20) 

is invariant (the same number in any inertial system). We shall refer to it as the 
scalar product of a and b; it is the four-dimensional analog to the dot product 
of two three-vectors (there is no four-vector analog to the cross product).* If you 
get tired of writing indices, feel free to use the dot notation: 

a * b = a,b” (3.21) 

However, you will then need a way to distinguish this four-dimensional scalar 
product from the ordinary dot product of two three-vectors. The best way is to 
be scrupulously careful to put an arrow over all three-vectors (except perhaps 
the velocity, v, which, since it is not part of a four-vector, is not subject to 
ambiguity). In this book, I use boldface for three-vectors. Thus 

a - b  = aobo - a - b  (3.22) 

We also use the notation a* for the scalar product of a’ with itself: 

a2 a .  a = (a012 - a2 (3.23) 

Notice, however, that a2 need not be positive. Indeed, we can classify all four- 
vectors according to the sign of a2: 

If a2 > 0, 
If a2 < 0, 
If a’ = 0, 

a’ is called tirnelike 
a’ is called spacelike 
a’ is called lightlike 

(3.24) 

From vectors it is a short step to tensors: a second-rank tensor, s””, carries 
two indices, has 42 = 16 components, and transforms with two factors of A: 

sW1 = A:AZs““ (3.25) 

a third-rank tensor, tpuX, has three indices, 43 = 64 components, and transforms 
with three factors of A: 

t W A l  = A;A”,:tKCT (3.26) 

* The closest thing is (a%” - a”@), but this is a second-rank tensor, not a four-vector (see 
below). 
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and so on. In this hierarchy a vector is a tensor of rank 1, and a scalar (invariant) 
is a tensor of rank zero. We construct covariant and “mixed” tensors by lowering 
indices (at cost of a minus sign for each spatial index), for example 

(3.27) 

and so on. Notice that the product of two tensors is itself a tensor [(a’b”) is a 
tensor of second rank; (aptuha) is a tensor of fourth rank; and so on.] Finally, we 
can obtain from any tensor of rank n + 2 a “contracted” tensor of rank n, by 
summing like upper and lower indices. Thus s’, is a scalar; tp“, is a vector; aptpVh 
is a second-rank tensor. 

3.3 ENERGY AND MOMENTUM 

Suppose you’re driving down the highway, and pretend for the sake of argument 
that you’re going at close to the speed of light. You might want to keep an eye 
on two different “times”: if you’re worried about making an appointment in 
San Francisco, you should check the stationary clocks posted now and then 
along the side of the road. But if you’re wondering when would be an appropriate 
time to stop for a bite to eat, it would be more sensible to look at the watch on 
your wrist. For according to relativity, the moving clock (in this case, your watch) 
is running slow (relative to the “stationary” clocks on the ground), and so too 
is your heart rate, your metabolism, your speech and thought, everything. Spe- 
cifically, while the “ground” time advances by an infinitesimal amount dt, your 
own (or proper) time advances by the smaller amount dr: 

dt dr = - 
Y 

(3.28) 

At normal driving speeds, of course, y is so close to 1 that dt and dr are essentially 
identical, but in elementary particle physics the distinction between laboratory 
time (read off the clock on the wall) and particle time (as it would appear on 
the particle’s watch) is crucial. Although we can always get from one to the other, 
using equation (3.28), in practice it is usually most convenient to work with 
proper time, because 7 is invariant. All observers can read the particle’s watch, 
and at any given moment they must all agree on what it says, even though their 
own clocks may differ from it and from one another. 

When we speak of the “velocity” of a particle (with respect to the labo- 
ratory), we mean, of course, the distance it travels (measured in the lab frame) 
divided by the time it takes (measured on the lab clock): 

dx 
dt 

” = -  (3.29) 

But in view of what has just been said, it is also useful to introduce the “proper” 
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velocity, q, which is the distance traveled (again, measured in the lab frame) 
divided by the proper time:* 

dx q = -  
dr 

(3.30) 

According to equation (3.28), the two velocities are related by a factor of y: 

t = YV (3.3 1 )  

However, q is much easier to work with, for if we want to go from the lab system, 
S, to a moving system, S’, both the numerator and the denominator in (3.29) 
must be transformed [leading to the cumbersome velocity addition rule (3.5)], 
whereas in equation (3.30) only the numerator transforms; dr, as we have seen, 
is invariant. In fact, proper velocity is part of a four-vector: 

dx” 
f = - 

dr 

whose zeroth component is 

(3.32) 

(3.33) 

Thus 77’ = Y(C, Ox, v y ,  v,) (3.34) 

VJ’ = Y2(C* - v: - v; - v:) = y2c2(1 - v2/c2) = c2 

Incidentally, 7’qP should be invariant, and it is: 

(3.35) 

They don’t make ’em more invariant than that! 
Classically, momentum is mass times velocity. We would like to carry this 

over in relativity, but the question arises: Which velocity should we use-ordinary 
velocity or proper velocity? Classical considerations offer no clue, for the two 
are equal in the nonrelativistic limit. In a sense, it’s just a matter of definition, 
but there is a subtle and compelling reason why ordinary velocity would be a 
bad choice, whereas proper velocity is a good choice. The point is this: If we 
defined momentum as mv, then the law of conservation of momentum would 
be inconsistent with the principle of relativity (if it held in one inertial system, 
it would not hold in other inertial systems). But if we define momentum as mq, 
then conservation of momentum is consistent with the principle of relativity (if 
it holds in one inertial system, it automatically holds in all inertial systems). I’ll 
let you prove this for yourself in Problem 3.10. Mind you, this doesn’t guarantee 

* Proper velocity is a hybrid quantity, in the sense that distance is measured in the lab frame, 
whereas time is measured in the particle frame. Some people object to the adjective “proper” in this 
context, holding that this should be reserved for quantities measured entirely in the particle frame. 
Of course, in its own frame the particle never moves at all-its velocity is zero. If my terminology 
disturbs you, call 1) the “four-velocity.’’ I should add that although proper velocity is the more con- 
venient quantity to calculate with, ordinary velocity is still the more natural quantity from the point 
of view of an observer watching a particle fly past. 
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that momentum is conserved; that’s a matter for experiments to decide. But it 
does say that if we’re hoping to extend momentum conservation to the relativistic 
domain, we had better not define momentum as mv, whereas mq is perfectly 
acceptable. 

That’s a tricky argument, and if you didn’t follow it, try reading that last 
paragraph again. The upshot is that in relativity, momentum is defined as mass 
times proper velocity: 

p = mq (3.36) 

Since proper velocity is part of a four-vector, the same goes for momentum: 

p” = m$ (3.37) 

The spatial components ofp” constitute the (relativistic) momentum three-vector: 

mv 
V i T F p  

p = ymv = (3.38) 

Meanwhile, the “time” component is 

po = ymc (3.39) 

For reasons that will appear in a moment, we define the “relativistic energy,” 
E, as 

me2 E = ymc2 = (3.40) 

The zeroth component ofp”, then, is E/c. Thus energy and momentum together 
make up a four-vector-the energy-momentum four-vector: 

(3.41) 

Incidentally, from equations (3.35) and (3.37) we have 

(3.42) 
E 2  
c2  

which, again, is manifestly invariant. 
The relativistic momentum (3.38) reduces to the classical expression in 

the nonrelativistic regime (v  < c), but the same cannot be said for relativistic 
energy (3.40). To see how this quantity comes to be called “energy,” we expand 
the radical in a Taylor series: 

p@p’ = - - p2 = m2c2 

(3.43) 
1 3 v4 
2 8 c  

1 v2 3 v4 E =  mc2 1 + - - +- - +  . . ( 2 c 2 8 c 4  
= m c 2 + - m u 2 + - m T +  . . . 

Notice that the second term here corresponds to the classical kinetic energy, 
while the leading term (me2) is a constant. Now you may recall that in classical 
mechanics only changes in energy are physically significant-you can add a 
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constant with impunity. In this sense the relativistic formula is consistent with 
the classical one, in the limit o 4 c where the higher terms in the expansion are 
negligible. The constant term, which survives even when o = 0, is called the rest 
energy; 

R = me2 (3.44) 

the remainder, which is energy attributable to the motion of the particle, is the 
relativistic kinetic energy: 

(3.45) 

(Notice that I have never mentioned relativistic mass in all this. It is a superfluous 
quantity that serves no useful function. In case you encounter it, the definition 
is mrel = ym; it has died out because it differs from E only by a factor of c2. 
Whatever can be said about mrel could just as well be said about E, for instance, 
the “conservation of relativistic mass” is nothing but conservation of energy, 
with a factor of c2 divided out.) 

In classical mechanics there is no such thing as a massless particle; its 
momentum (mv) would be zero, its kinetic energy (4 mu2) would be zero, it 
could sustain no force, since F = ma-it would be a dynamical cipher. At first 
glance you might suppose that the same would be true in relativity, but a careful 
inspection of the formulas 

(3.46) 

reveals a loophole: When m = 0 the numerators are zero, but if o = c, the 
denominators also vanish, and these equations are indeterminate (O/O). So it is 
just possible that we could allow m = 0, provided the particle always travels at 
the speed of light. In this case equations (3.46) will not serve to define E and p; 
nevertheless, equation (3.42) presumably still applies, so that 

E = lPlC (3.47) 

for massless particles. Personally, I would regard this “argument” as a joke, were 
it not for the fact that at least two types of massless particles (the photon and 
the neutrinos) are known to exist in nature. They do indeed travel at the speed 
of light, and their energy and momentum are related by equation (3.47). So 
evidently we must take the loophole seriously. You may well ask: If equations 
(3.46) do not define p and E, what does determine the momentum and energy 
of a massless particle? Not the mass (that’s zero by assumption); not the speed 
(that’s always c). How, then, does a photon with an energy of 2 eV differ from 
a photon with an energy of 3 eV? Relativity offers no answer to this question, 
but curiously enough quantum mechanics does, in the form of Planck‘s formula: 

E = hv (3.48) 
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It is thefrequency of the photon that determines its energy and momentum: The 
2 eV photon is red, and the 3 eV photon is purple! 

3.4 COLLISIONS 

The reason for introducing energy and momentum is, of course, that these quan- 
tities are conserved in any physical process. In relativity, as in classical mechanics, 
the cleanest application of these conservation laws is to collisions. Imagine first 
a classical collision, in which object A hits object B (perhaps they are both carts 
on an air table), producing objects C and D. (See Fig. 3.2.) Of course, C and D 
might be the same as A and B; but we may as well allow that some paint (or 
whatever) rubs off A onto B, so that the final masses are not the same as the 
original ones. (We do assume, however, that A, B, C, and D are the only actors 
in the drama; if some wreckage, W, is left at the scene, then we would be talking 
about a more complicated process: A + B - C + D + W.) By its nature, a 
collision is something that happens so fast that no external force, such as gravity, 
or friction with the track, has an appreciable influence. Classically, mass and 
momentum are always conserved in such a process; kinetic energy may or may 
not be conserved. 

Classical Collisions 
1. Mass is conserved, mA + mB = mc + mD. 
2. Momentum is conserved, PA + P B  = PC + PO. 
3. Kinetic energy may or may not be conserved. 

In fact, we may distinguish three types of collisions: “sticky” ones, in which the 
kinetic energy decreases (typically, it is converted into heat); “explosive” ones, 
in which the kinetic energy increases (for example, suppose A has a compressed 
spring on its front bumper, and the catch is released in the course of the collision 
so that spring energy is converted into kinetic energy); and elastic ones, in which 
the kinetic energy is conserved. 

Types of Collisions (Classical) 
(a) Sticky: Kinetic energy decreases, TA + TB > Tc + TD. 
(b) Explosive: Kinetic energy increases, TA + TB < TC + TO. 
(c)  Elastic: Kinetic energy conserved, TA + TB = TC + TO. 

\ 
A 

B 

c o f  

D\ 
Figure 3.2 A collision in which 

After A + B - C + D. Before 
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In the extreme case of type (a), the two particles stick together, and there is really 
only one final object: A + B - C. In the extreme case of type (b), a single object 
breaks in two: A - C + D (in the language of particle physics, A decays into 
C +  D). 

In a relativistic collision, energy and momentum are always conserved. In 
other words all four components of the energy-momentum four-vector are con- 
served. As in the classical case, kinetic energy may or may not be conserved. 

Relativistic Collisions 
1. Energy is conserved, EA + EB = Ec + ED.  
2. Momentum is conserved PA + P B  = PC + PO. 
3. Kinetic energy may or may not be conserved. 

Again, we may classify collisions as sticky, explosive, or elastic, depending on 
whether the kinetic energy decreases, increases, or remains the same. Since the 
total energy (rest plus kinetic) is always conserved, it follows that rest energy 
(and hence also mass) increases in a sticky collision, decreases in an explosive 
collision, and is unchanged in an elastic collision. 

Types of Collisions (Relativistic) 
(a) Sticky: Kinetic energy decreases, rest energy and mass increase. 
(b) Explosive: Kinetic energy increases, rest energy and mass decrease. 
(c) Elastic: Kinetic energy, rest energy, and mass are conserved. 

Please note: Except in elastic collisions, mass is not conserved;* conversely, if 
mass is conserved, the collision is elastic. In an explosive collision (or a particle 
decay), rest energy is converted into kinetic energy (or, in the absurd language 
of the popular press, infuriating to anyone with the slightest respect for dimen- 
sional consistency, “mass is converted into energy”). 

In spite of a certain structural parallel between the classical and relativistic 
analyses, there is a striking difference in the interpretation of inelastic collisions. 
In the classical case we say that energy is converted from kinetic form to some 
“internal” form (heat energy, spring energy, etc.), or vice versa. In the relativistic 
analysis we say that it goes from kinetic energy to rest energy, or vice versa. How 
can these possibly be consistent? After all, relativistic mechanics is supposed to 
reduce to classical mechanics in the limit u 4 c. The answer is that all “internal” 
forms of energy are reflected in the rest energy of an object. A hot potato weighs 
more than a cold potato; a compressed spring weighs more than a relaxed spring. 
On the macroscopic scale, rest energies are enormously greater than internal 
energies, so these mass differences are utterly negligible in everyday life, and 
very small even at the atomic level. Only in nuclear and particle physics are 
typical internal energies comparable to typical rest energies. Nevertheless, in 
principle, whenever you weigh an object, you are measuring not only the masses 
of its constituent parts, but all of their interaction energies as well. 

* In the old terminology we would say that relativistic mass is conserved, but rest mass is not. 
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m m M Figure 3.3 Sticky collision of two equal 

Before After masses (Example 3.1). 

3.5 EXAMPLES AND APPLICATIONS 

Solving problems in relativistic kinematics is as much an art as a science. Although 
the physics involved is minimal-nothing but conservation of energy and con- 
servation of momentum-the algebra can be formidable. Whether a given prob- 
lem takes two lines or seven pages depends a lot on how skillful and experienced 
you are at manipulating the tools and the tricks of the trade. I now propose to 
work a few examples, pointing out as I go along some of the labor-saving devices 
that are available to you.' 

EXAMPLE 3.1 
Two lumps of clay, each of mass m, collide head-on at :c (Fig. 3.3). They 
stick together. Question: What is the mass M of the final composite lump? 

Question: What is the mass, A 4  of the final composite lump? 

Solution. Conservation of energy says El + EZ = EM. Conservation of 
momentum says p1 + pz = pM. In this case conservation of momentum is 
trivial: p1 = -p2, so the final lump is at rest (which was obvious from the 
start). The initial energies are equal, so conservation of energy yields 

2mc2 5 
= - (2mc2) 

- 4  
Me2 = 2E, = 

Conclusion: M = $m. Notice that this is greater than the sum of the 
initial masses; in sticky collisions kinetic energy is converted into rest energy, 
so the mass increases. 

EXAMPLE 3.2 
A particle of mass M, initially at rest, decays into two pieces, each of mass 
m (Fig. 3.4). Question: What is the speed of each piece as it flies off? 

Solution. This is, of course, the reverse of the process in Example 3.1. 
Conservation of momentum just says that the two lumps fly off in opposite 
directions at equal speeds. Conservation of energy requires that 

2m "=fm' so v = c l l  - (2rn/M)' 

V V * 
Before After equal pieces. (Example 3.2). 

m m 
Figure 3.4 A particle decays into two 

0 -  
M 
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This answer makes no sense unless M exceeds 2m; there has to be at least 
enough rest energy available to cover the rest energies in the final state 
(any extra is fine; it can be soaked up in the form of kinetic energy). We 
say that M = 2m is the threshold for the process M - 2m to occur. The 
deuteron, for example, is below the threshold for decay into proton plus 
neutron (md = 1875.6 Mev/c2; m, + m, = 1877.9 MeV/c2), and therefore 
is stable. A deuteron can be pulled apart, but only by pumping enough 
energy into the system to make up the difference. (If it puzzles you that a 
bound state of p and n should weigh less than the sum of its parts, the 
point is that the binding energy of the deuteron, which, like all internal 
energy, is reflected in its rest mass, is negative. Indeed, for any stable bound 
state the binding energy must be negative; if the composite particle weighs 
more than the sum of its constituents, it will spontaneously disintegrate.) 

EXAMPLE 3.3 
A pion at rest decays into a muon plus a neutrino (Fig. 3.5). Question: 
What is the speed of the muon? 

Solution. Conservation of energy requires E, = E, + E,. Conservation 
of momentum gives pa = p, + py; but pm = 0, so p, = -py. Thus the muon 
and the neutrino fly off back-to-back, with equal and opposite momenta. 

To proceed, we need a formula relating the energy of a particle to its 
momentum; equation (3.42) does the job. [You might have been inclined 
to solve equation (3.38) for the velocity, and plug the result into equation 
(3.40). But that would be very poor strategy. In general, velocity is a bad 
parameter to work with, in relativity. Better to use equation (3.42), which 
takes you directly back and forth between E and p.] 

Suggestion 1 .  To get the energy of a particle, when you know 
its momentum (or vice versa), use the invariant 

In the present case, then: 

E, = mrc2 
E, = c m  

E” = I P Y k  = lP,lC 

mmc2 = c m  + lp,lc 

(m,c - IP,I>~ = m:c2 + P: 

Putting these into the equation for conservation of energy, we have 

or 

Figure 3.5 Decay of the charged pion R -  

Before (Example 3.3). 
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Solving for (ppl, we find 
2 m: - m, 

lPpl = C 
2m, 

Meanwhile, the energy of the muon [from eq. (3.49)] is 

Once we know the energy and momentum of a particle, it is easy to 
find its velocity. If E = ymc2 and p = ymv, dividing gives 

PIE = v/c2 

Suggestion 2. If you know the energy and momentum of a 
particle, and you want to determine its velocity, use 

v = pc2/E 

So the answer to our problem is 

(3.50) 

Putting in the actual masses, I get v, = 0.271~.  
There is nothing wrong with that calculation; it was a straightforward 

and systematic exploitation of the conservation laws. But I want to show 
you now a faster way to get the energy and momentum of the muon, by 
using four-vector notation. [I should put a superscript p on all the four- 
vectors, but I don’t want you to confuse the spacetime index p with the 
particle identifier p, so here, and often in the future, I will suppress the 
spacetime indices, and use a dot to indicate the scalar product.] Conser- 
vation of energy and momentum requires 

P7r = P, -k P Y ,  or P Y  = PT - P,  

Taking the scalar product of each side with itself, we obtain 

Pt = P: -k P: - 2Pn.P, 

But 

Therefore 

from which E, follows immediately. By the same token 

0 = m;c2 + mZc2 - 2m,E, 

P, = P7r - PY 

Squaring yields 

m:c2 = m:c2 - 2mTE, 
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But E, = Ip,(c = (p,lc, so 

which gives us lp,l. In this case the problem was simple enough that the 
savings afforded by four-vector notation are meager, but in more compli- 
cated problems the benefits can be enormous. 

Suggestion 3. Use four-vector notation, and exploit the 
invariant dot product. 

One reason the use of invariants is so powerful in this business is that we 
are free to evaluate them in any inertial system we like. Frequently the laboratory 
frame is not the simplest one to work with. In a typical scattering experiment, 
for instance, a beam of particles is fired at a stationary target. The reaction under 
study might be, say, p + p - whatever, but in the laboratory the situation is 
asymmetrical, since one proton is moving and the other is at rest. Kinematically, 
the process is much simpler when viewed from a system in which the two protons 
approach one another with equal speeds. We call this the center-of-momentum 
(CM) frame, because in this system the total (three-vector) momentum is zero. 

EXAMPLE 3.4 
The Bevatron at Berkeley was built with the idea of producing antiprotons, 
by the reaction p + p - p + p + p + p.  That is, a high-energy proton 
strikes a proton at rest, creating (in addition to the original particles) a 
proton-antiproton pair. Question: What is the threshold energy for this 
reaction (i.e., the minimum energy of the incident proton)? 

Solution. In the laboratory the process looks like Figure 3.6a; in the CM 
frame, it looks like Figure 3.6b. Now, what is the condition for threshold? 
Answer: just barely enough incident energy to create the extra two particles. 
In the lab frame it is hard to see how we would formulate this condition, 
but in the CM it is easy: All four final particles must be at rest, with no 
energy “wasted” in the form of kinetic energy. (We can’t have that in the 

Before 

P o f  
P W  

After  

Af ter  

Figure 3.6 p + p - p + p + p + p. (a) In the lab frame; (b) in the CM frame. 
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lab frame, of course, since conservation of momentum requires that there 
be some residual motion.) 

Let ~ $ 0 ~  be the total energy-momentum four-vector in the lab; it is 
conserved, so it doesn’t matter whether we evaluate it before or after the 
collision. We’ll do it before: 

where E and p are the energy and momentum of the incident proton, and 
m is the proton mass. Let pFOT be the total energy-momentum four-vector 
in the CM. Again, we can evaluate it before or after the collision, this time 
we’ll do it after: 

PFOT = (4mc, 0, 0,O) 

since (at threshold) all four particles are at rest. Now p l f - 0 ~  # PFOT, ob- 
viously, but the invariant products P ~ T O T P ~ ~ - O T  and PLTOTPFOT are equal: 

Using the standard relation (3.49) to eliminate p2, and solving for E, we 
find 

E = 7mc2 

Evidently, the incident proton must carry a kinetic energy at least six times 
its rest energy, for this process to occur. (And in fact the first antiprotons 
were discovered when the machine reached about 6000 MeV.) 

This is perhaps a good place to emphasize the distinction between a con- 
served quantity and an invariant quantity. Energy is conserved-the same value 
after the collision as before-but it is not invariant. Mass is invariant-the same 
in all inertial systems-but it is not conserved. Some quantities are both invariant 
and conserved; many are neither. As Example 3.4 indicates, the clever exploi- 
tation of conserved and invariant quantities can save you a lot of messy algebra. 
It also demonstrates that some problems are easier to analyse in the CM system, 
whereas others may be simpler in the lab frame. 

Suggestion 4. If a problem seems cumbersome in the lab 
frame, try analyzing it in the CM system. 

Even if you’re dealing with something more complicated than a collision 
of two identical particles, the center-of-momentum (in which PTOT = 0) is still 
a useful reference frame, for in this system conservation of momentum is trivial: 
zero before, zero after. But you might wonder whether there is always a CM 
frame. In other words, given a swarm of particles with masses ml ,  m2, m3,  . . . , 
and velocities vI  , v2, v3, . . . , does there necessarily exist an inertial system in 
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which the total (three-vector) momentum is zero? The answer is yes; I will prove 
it by finding the velocity of that frame and demonstrating that this velocity is 
less than c. The total energy and momentum in the lab frame ( S )  are 

E T o T  = C yimic2; PTOT = C yimivi (3.5 1) 

Since P+OT is a four-vector, we can use the Lorentz transformations to get the 
momentum in system S’, moving in the direction of PTOT with speed v 

i i 

In particular, this momentum is zero if u is chosen such that 

Now, the length of the sum of three-vectors cannot exceed the sum of their 
lengths (this geometrically evident fact is known as the triangle inequality), so 

v rimi(vi/c> - <  
c C yimi 

and since oi < c, we can be sure that o < c.* Thus, the CM system always exists, 
and its velocity relative to the lab frame is given by 

(3.52) 

It seems odd, looking back at the answer to Example 3.4, that it takes an 
incident kinetic energy six times the proton rest energy to produce a p-p pair. 
After all, we’re only creating 2mc2 of new rest energy. This example illustrates 
the inefficiency of scattering off a stationary target; conservation of momentum 
forces you to waste a lot of energy as kinetic energy in the final state. Suppose 
we could have fired the two protons at one another, making the laboratory itself 
the CM system. Then it would suffice to give each proton a kinetic energy of 
only mc2, one-sixth of what the stationary-target experiment requires. This re- 
alization led, in the early 1970s, to the development of so-called colliding-beam 
machines (see Fig. 3.7). Today, virtually every new machine in high-energy phys- 
ics is a collider. 

EXAMPLE 3.5 
Suppose two identical particles, each with mass m and kinetic energy T, 
collide head-on. Question: What is their relative kinetic energy, T’ (i.e., 
the kinetic energy of one in the rest system of the other)? 

* I am tacitly assuming that at least one of the particles is massive. If aN of them are massless, 
we may obtain D = c, in which case there is no CM system. For example, there is no CM frame for 
a single photon. 
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A m  -6 A- 0 6  

la)  (b) 

Figure 3.7 Two experimental arrangements: (a) Colliding beams; (b) fixed target. 

Solution. There are many ways to do this one. A quick method is to write 
down the total four-momentum in the CM and in the lab 

use equation (3.49) to eliminate p' 

2E2 = mc2(E' + mc2) 

and express the answer in terms of T = E - mc2 and T' = E' - mc2 

T ' = 4 T  1 +- ( 2 2 )  (3.53) 

The classical answer would have been T' = 4T, to which this reduces when 
T < mc2. (In the rest system of B, A has, classically, twice the velocity, and 
hence four times as much kinetic energy as in the CM.) Now, a factor of 
4 is some benefit, to be sure, but the relativistic gain can be greater by far. 
Colliding electrons with a laboratory kinetic energy of 1 GeV, for example, 
would have a relative kinetic energy of 4000 GeV! 

REFERENCES AND NOTES 

1. There are many excellent textbooks on Special Relativity. I recommend J. H. Smith, 
Introduction to Special Relativity (New York: Benjamin, 1967). For a fascinating 
(but unorthodox) approach, see E. F. Taylor and J. A. Wheeler, Spacetime Physics 
(San Francisco: Freeman, 1966). 

2. If you want to go into this more deeply, I recommend R. Hagedorn, Relativistic 
Kinematics (New York: Benjamin, 1964). 

PROBLEMS 

3.1. Solve equation (3.1) for x, y, z, t in terms of x', y', z', t ', and check that you recover 

3.2. (a) Derive equation (3.4). 

equation (3.3). 

(b) According to clocks on the ground (system S),  streetlights A and B (situated 4 
km apart) were both turned on at precisely 8:OO P.M. Which one went on first 
according to an observer on a train (system S'), which moves from A toward 
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B at 4 the speed of light? How much later (in seconds) did the other light go 
on? [Note: As always in relativity, we are talking here about what S‘ observed, 
after correcting for the time it took the light to reach her, not what she actually 
saw (which would depend on where she was located on the train).] 

3.3. (a) How do volumes transform? Specifically, if a container has volume V in its 
own rest frame, S’, what is its volume as measured by an observer in S, with 
respect to which it is moving at speed V? 

(b) How do densities transform? (If a container holds p’ molecules per unit volume 
in its own rest frame, S’, how many molecules per unit volume does it carry 
in S?) 

3.4. Cosmic ray muons are produced high in the atmosphere (at 8000 m, say) and travel 

sec), how far would it go before 
disintegrating, according to prerelativistic physics? Would the muons make it 
to ground level? 

(b) Now answer the same question using relativistic physics. (Because of time di- 
lation, the muons last longer, so they travel farther.) 

(c) Now analyze the same process from the perspective of the muon. (In its reference 
frame it only lasts 2 .2  X 

(d) Pions are also produced in the upper atmosphere. [In fact, the sequence is 
proton (from outer space) hits proton (in atmosphere) - p + p + pions. The 
pions then decay into muons: x-  - F- + 5,; A+ - p+ + u p . ]  But the lifetime 
of the pion is much shorter, a hundredth that of the muon. Should the pions 
reach ground level? (Assume that the pions also have a speed of 0.998 c.) 

3.5. As the outlaws escape in their getaway car, which goes i c ,  the cop fires a bullet 
from the pursuit car, which only goes fc. The muzzle velocity (speed relative to 
gun) of the bullet is lc .  Does the bullet reach its target 
(a) According to prerelativistic physics? 
(b) According to relativity? 

toward the earth at very nearly the speed of light (0.998 c, say). 
(a) Given the lifetime of the muon (2.2 X 

sec; how, then, does it make it to ground?) 

3.6. Find the matrix M that inverts equation (3.1 1): x’ = M;x”‘ [use eq. (3.3)]. Show 
that M is the matrix inverse of A: AM = 1. 

3.7. Show that the quantity I [in eq. (3.12)] is invariant under the Lorentz transformation 
(3.7). 

3.8. A second-rank tensor is called symmetric if it is unchanged when you switch the 
indices (s”’ = s’”); it is called antisymmetric if it changes sign (a”’ = -a*”). 
(a) How many independent elements are there in a symmetric tensor? (Since 

s , these would count as only one independent element.) 
(b) How many independent elements are there in an antisymmetric tensor? 
(c) If s’“ is symmetric, show that s,,” is also symmetric. If a’” is antisymmetric, 

(d) If s’” is symmetric and a’” is antisymmetric, show that s’”arV = 0. 
( e )  Show that any second-rank tensor (t’”) can be written as the sum of an anti- 

symmetric part (a””) and a symmetric part (s’”): 1’’ = up” + s’”. Construct s’“ 
and a’” explicitly, given t’“. 

3.9. A particle is traveling at !c in the x direction. Determine its proper velocity, 7’ (all 

s12  = 21 

show that up, is antisymmetric. 

four components). 
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3.10. 

3.11. 

3.12. 

3.13. 

3.14. 

3.15. 

3.16. 

Consider a collision in which particle A (with mass mA and proper velocity qA) hits 
particle B (mass mB, proper velocity qB), producing particle C(m,, qc) and particle 
D(mD, qD). Suppose that (relativistic) energy and momentum are conserved in 
system S (Le., p$ + p s  = pE + pg) .  Using the Lorentz transformations (3.7), show 
that (relativistic) energy and momentum are also conserved in S'. (Do not assume 
that mass is conserved-in general, it is not: mA + mB # mc + mD.) 

Is p p  timelike, spacelike, or lightlike, for a (real) particle of mass m? How about a 
massless particle? How about a virtual particle? 

How much more does a hot potato weigh than a cold one (in kg)? 

A pion traveling at speed v decays into a muon and a neutrino, x- - p- + 5,. If 
the neutrino emerges at 90" to the original pion direction, at what angle does the 
p come off? [Answer: tan 0 = (1  - m:/m3)/(2Pr2)] 

Particle A (energy E )  hits particle B (at rest), producing particles C,,  C2, . . . : 
A + B - C, + C2 + - - - + C,,. Calculate the threshold (i.e., minimum E )  for this 
reaction, in terms of the various particle masses. 

Answer. [ where M = m, + rnz + . - - + m,] 

Use the result of Problem 3.14 to find the threshold energies for the following 
reactions, assuming the target proton is stationary: 

(b) p + p - p f p + x + + x -  
(c) x - + p - p + j + n  
(d) x- + p + 

(e)  p + p - + p + 2 + + K 0  

(a) P + P + P + P + T O  

+ Zo 

Particle A,  at rest, decays into particles B and C ( A  -+ B + C). 
Find the energy of the outgoing particles, in terms of the various masses. 

Answer: [ 
Find the magnitudes of the outgoing momenta. 

Answer: 

where X is the so-called triangle function: 

X(x, y, z)  = x2 + y2 + 2 2  - 2xy - 2xz - 2yz. 

Note that X factors: X(a2, b2, c2) = (a + b + c)(a + b - c)(a - b + c)(a - b 
- c). Thus [pel goes to zero when mA = mB + mc, and runs imaginary if 
mA < (mB + mc). Explain. 

3.17. Use the result of Problem 3.16 to find the CM energy of each decay product in the 
following reactions: 
(a) T-  - p- + 5, 
0) x0 - Y + Y 
(c) K+ -+ x+ + ?yo 

(d) A - p +  x- 

(e)  R- - A + K -  
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3.18. (a) A pion at rest decays into a muon and a neutrino (C - p- + V,). On the 
average, how far will the muon travel (in vacuum) before disintegrating? [Answer: 
d = [(m; - m:)/(2mwm,)]c~ = 186 m.] 

(b) The length of the muon track in Figure 1.7 is about 0.6 mm (the photograph 
has been enlarged). How do you explain this? 

3.19. Particle A, at rest, decay? into three or more particles: A - B + C + D + * - - . 
(a) Determine the maximum and minimum energies that B can have in such a 

(b) Find the maximum and minimum electron energies in muon decay, p- - e- 

3.20. (a) A particle traveling at speed approaches an identical particle at rest. What is 
the speed of each particle in the CM frame? (Classically, of course, it would 
just be u/2. Why isn’t this true relativistically?) 

(b) Use your result in part (a) to compute the kinetic energy of each particle in the 
CM frame, and thus rederive equation (3 .53) .  

3.21. In reactions of the type A + B - A + C, + C2 + - - (in which particle A scatters 
off particle B, producing C, , C2, . . .), there is another inertial frame [besides the 
lab (B at rest) and the CM (PToT = O)] which is sometimes useful. It is called the 
Breit, or “brick wall,” frame, and it is the system in which A recoils with its mo- 
mentum reversed (pafier = -pbefore), as though it had bounced off a brick wall. Take 
the case of elastic scattering (A + B - A + B); if particle A carries energy E, and 
scatters at an angle 0, in the CM, what is its energy in the Breit frame? Find the 
velocity of the Breit frame (magnitude and direction) relative to the CM. 

3.22. In a two-body scattering event, A + B - C + D, it is convenient to introduce the 
Mandelstam variables 

decay, in terms of the various masses. 

+ Se + v,. 

s = ( P A  + PB)2/c2 
t ( P A  - PC)2/c2 

= ( P A  - PD)2/c2 

(a) Show that s + t + u = m: + mi + m’c + mi.  
The theoretical virtue of the Mandelstam variables is that they are Lorentz invariants, 
with the same value in any inertial system. Experimentally, though, the more ac- 
cessible parameters are energies and scattering angles. 

(b) Find the CM energy of A, in terms of s. t, u and the masses. [Answer: E2M = 

(c) Find the Lab (B at rest) energy of A. [Answer: E2b = (s - m: - m;)c2/2mB] 
(d) Find the total CM energy (ETOT = EA + Es = Ec + ED). [Answer: E$gT = 

3.23. For elastic scattering of identical particles, A + A + A  + A, show that the Mandelstam 

(s + m; - m;)c2/2Vi] 

Vie21 

variables (Problem 3.22) become 

s = 4(p2 + m2c2)/c2 
t = -2p2(1 - cos 0)/c2 
u = -2p2(1 + cos 0)/c2 

where p is the CM momentum of the incident particle, and 0 is the scattering angle. 

3.24. (Compton scattering.) A photon of wavelength X collides elastically with a charged 
particle of mass m. If the photon scatters at angle 0, find its outgoing wavelength, 
A‘. [Answer: A‘ = X + (h/mc)( 1 - cos 0)]  



Chapter 4 

Symmetries 

This chapter is a grab bag ofspecial topics having to do with symmetry. The 
first section contains some general remarks about the mathematical description 
of symmetry (“group theory’? and the relation between symmetry and con- 
servation laws (NoetherS theorem). W e  then take up the case of rotational 
symmetry and its relation to angular momentum and spin. This leads in turn 
to the “internal” symmetries-isospin, SU(3), and jlavor SU(4). Finally, we 
consider “discrete” symmetries-parity, charge conjugation, and time reversal. 
Except for the theory of spin (Sections 4.2, 4.3, and 4.4)-which will be used 
extensively in subsequent chapters-and the material on parity (Section 4.6)- 
which is useful background for Chapter 10-this chapter can be studied as 
superficially (or as deeply) as the reader desires. I recommend a quick pass 
at this stage and a return to specific sections later, as warranted. Some knowl- 
edge of matrix theory is presupposed here; readers familiar with quantum 
mechanics willfind the sections on angular momentum an easy review (those 
unacquainted with quantum mechanics may f ind them obscure, in which case 
they should study the relevant chapter of an introductory quantum text). Group 
theory is touched on here in a scandalously cursory fashion (my main purpose 
is to introduce some standard terminology), but a serious student of elementary 
particle physics should plan eventually to study this subject in far greater 
detail. 

4.1 SYMMETRIES, GROUPS, AND 
CONSERVATION LAWS 

Examine the graph in Figure 4.1. I have no idea what the functional form of 
f ( x )  might be, but this much I can say: it’s an odd function, f (- x )  = -f(x).  
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Figure 4.1 An odd function. 

(If you don’t believe me, trace the curve, rotate the tracing by 1 80°, and check 
that it perfectly fits the original graph.) It follows, for instance, that 

[f(-X)l6 = [f(X)l6, 

I know that no cosines appear in the Fourier expansion of f (x) ,  and that its 
Taylor series contains only odd powers. In fact, I know quite a lot about f (x ) ,  
even though I don’t know its functional form, just from my observation that it 
has a particular symmetry-oddness, in this case. In physics, intuition or a general 
principle often suggests symmetries in a problem, and their systematic exploi- 
tation can be an extremely powerful tool. [In some respects the appeal to sym- 
metry is characteristic of an incomplete theory. For example, if we somehow 
discovered the explicit form of f(x), say, f(x) = CX2 sin(x3), then the theorems 
in equation (4.1) would lose their luster. Why bother with partial information 
when we can have it all? But even in a mature theory, symmetry considerations 
often lead to deeper understanding and calculational simplification; for instance, 
if you’re integrating f(x) from - 3 to +3, it pays to notice that Ax) is odd, even 
if you do know its functional form!] 

The most obvious examples of symmetry in physics are, I suppose, crystals. 
But we’re not so much interested here in static symmetries of shape as in dy- 
namical symmetries of motion. The Greeks apparently believed that the sym- 
metries of nature should be directly reflected in the motion of objects: Stars 
must move in circles because those are the most symmetrical trajectories. Of 
course, planets don’t, and that was embarrassing (it was not the last time that 
naYve intuitions about symmetry ran into trouble with experiment). Newton 
recognized that fundamental symmetries are revealed not in the motions of 
individual objects, but in the set of all possible motions-symmetries are manifest 
in the equations of motion rather than in particular solutions to those equations. 
Newton’s law of universal gravitation, for instance, exhibits spherical symmetry- 
the force is the same in all directions-yet planetary orbits are elliptical. Thus 
the underlying symmetry of the system is only indirectly revealed to us; indeed, 
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TABLE 4.1 SOME SYMMETRIES AND THE ASSOCIATED 
CONSERVATION LAWS 

Symmetry Conservation law 

Translation in time u Energy 
Translation in space tt Momentum 
Rotation u Angular momentum 
Gauge transformation tt Charge 

you might wonder how we would ever have discovered it from the observed 
planetary trajectories if we didn’t have a pretty strong hunch that the gravitational 
field of the sun “ought” to be spherically symmetrical. 

It was not until 1917 that the dynamical implications of symmetry were 
completely understood. In that year Emmy Noether published her famous theo- 
rem relating symmetries and conservation laws: 

NOETHERS THEOREM: SYMMETRIES - CONSERVATION LAWS 

Every symmetry of nature yields a conservation law; conversely, every conser- 
vation law reveals an underlying symmetry. For example, the laws of physics 
are symmetrical with respect to translations in time; they work the same today 
as they did yesterday. Noether’s theorem relates this invariance to conservation 
of energy. If a system is invariant under translations in space, then momentum 
is conserved; if it is symmetrical under rotations about a point, then angular 
momentum is conserved. Similarly, the invariance of electrodynamics under 
gauge transformations leads to conservation of charge (we call this an internal 
symmetry, in contrast to the space-time symmetries). I’m not going to prove 
Noether’s theorem; the details are not tembly enlightening.’ The important thing 
is the profound and beautiful idea that symmetries are associated with conser- 
vation laws (see Table 4.1). 

I have been speaking rather casually about symmetries and I cited some 
examples, but what precisely is a symmetry? It is an operation you can perform 
(at least conceptually) on a system that leaves it invariant-that carries it into a 
configuration indistinguishable from the original one. In the case of the function 
in Figure 4.1, changing the sign of the argument, x - -x, and multiplying the 
whole thing by -1 [ f ( x )  - -f(-x)] is a symmetry operation. For a meatier 
example, consider the equilateral triangle (Fig. 4.2). It is camed into itself by a 
clockwise rotation through 120” (R+), and by a counterclockwise rotation through 

B C 
I , Figure 4.2 Symmetries of the equilateral 

a triangle. 
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120” (R-), by flipping it about the axis Aa (RJ ,  or around the corresponding 
axis through B (Rb), or through C (RJ.  Is that all? Well, doing nothing at all (I) 
obviously leaves it invariant, so this too is a symmetry operation, albeit a pretty 
trivial one. And then we could combine operations, for example, rotate clockwise 
through 240”. But that’s the same as rotating counterclockwise by 120” (i.e., 
R: = R-). As it turns out, we have already identified all the distinct symmetry 
operations on the equilateral triangle (see Problem 4.1). 

The set of symmetry operations on any system must have the following 
properties: 

1. 

2. 

3. 

4. 

Closure. If Ri and Rj are in the set, then the product, RiRj -meaning: 
first perform Rj, then perform Ri -is also in the set; that is, there exists 

Identity. There is an element I such that ZRi = Ri I = R, for all elements 

Inverse. For every element R, there is an inverse, R;’, such that 
R.R:‘ = R - ~ R ,  = I. 
Associativity. R,(R,Rk) = (RiRj)Rk. 

some Rk such that RiRj = Rk. 

R,. 

I 1  I 1  

These are precisely the defining properties of a group. Indeed, the mathematical 
theory of groups may be regarded as the systematic study of symmetries. Notice 
that group elements need not commute: RiRj # RjRi, in general; if all the elements 
do commute, the group is called Abelian. Translations in space and time form 
an Abelian group; rotations do not.’ Groups can befinite (like the triangle group, 
which has just six elements) or infinite (for example, the set of integers, with 
addition playing the role of group “multiplication”). We shall encounter contin- 
uous groups (such as the group of all rotations in a plane) in which the elements 
depend on one or more continuous parameters (the angle of rotation, in this 
case) and discrete groups, in which the element may be labeled by an index that 
takes on only integer values (all finite groups are, of course, discrete). 

As it turns out, most of the groups of interest in physics are groups of 
matrices. The Lorentz group, for instance, consists of the set of 4 X 4 A matrices 
introduced in Chapter 3. In elementary particle physics the most common groups 
are of the type mathematicians call U(n):  the collection of all unitary n X n 
matrices (see Table 4.2). (A unitary matrix is one whose inverse is equal to its 
transpose conjugate: U-’ = o*,) If we restrict further to unitary matrices with 
determinant 1, the group is called SU(n). (The S stands for “special,” which just 

TABLE 4.2 THE MOST IMPORTANT GROUPS IN 
ELEMENTARY PARTICLE PHYSICS 

~ ~ ~~ 

Group name Matrices in group 

U(n) n x n unitary (O*U = 1) 

O(n) n X n orthogonal (00 = 1) 
W n )  n X n unitary with determinant 1 

W n )  n X n orthogonal with determinant 1 
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means “determinant l”.) If we restrict ourselves to real unitary matrices, the 
group is an). (0 stands for “orthogonal”; an orthogonal matrix is one whose 
inverse is equal to its transpose: O-’ = 6.) Finally, the group of real, orthogonal, 
n X n matrices of determinant 1 is SO(n). SO(n) may be thought of as the group 
of all rotations in a space of n dimensions. Thus SO(3) describes the rotational 
symmetry of our world, a symmetry that is related by Noether’s theorem to the 
conservation of angular momentum. Indeed, the entire quantum theory of an- 
gular momentum is really closet group theory. It so happens that SO(3) is almost 
identical in mathematical structure to SU(2), which is the most important internal 
symmetry in elementary particle physics. So the theory of angular momentum, 
to which we turn next, will actually serve us twice. 

One final thing. Every group G can be represented by a group of matrices: 
For every group element a there is a corresponding matrix Ma, and the cor- 
respondence respects group multiplication, in the sense that if ab = c, then 
MaMb = M,. A representation need not be “faithful”: there may be many distinct 
group elements represented by the same matrix. (Mathematically, the group of 
matrices is homomorphic, but not necessarily isomorphic, to G.) Indeed, there 
is a trivial case, in which we represent every element by the 1 X 1 unit matrix 
(which is to say, the number 1). If G is a group of matrices, such as SU(6) or 
O( 18), then it is a (faithful) representation of itsey-we call it the fundamental 
representation. But there will in general be many other representations, by ma- 
trices of various dimensions. For example, SU(2) has representations of dimen- 
sion 1 (the trivial one), 2 (the fundamental one), 3,4,5, and in fact every positive 
integer. A major problem in group theory is the enumeration of all the repre- 
sentations of a given group. Of course, you can always construct a new repre- 
sentation by combining two old ones, thus 

(zeros) 
Ma=( (zeros) ) 

But we don’t count this separately; when we list the representations of a group, 
we are talking about the so-called irreducible representations, which cannot be 
decomposed into block-diagonal form. Actually, you have already encountered 
several examples of group representations, probably without realizing it: An 
ordinary scalar belongs to the one-dimensional representation of the rotation 
group, SO(3), and a vector belongs to the three-dimensional representation; four- 
vectors belong to the four-dimensional representation of the Lorentz group; and 
the curious geometrical arrangements of Gell-Mann’s Eightfold Way correspond 
to irreducible representations of the group SU( 3). 

4.2 SPIN AND ORBITAL ANGULAR MOMENTUM 

The earth, in its motion, carries two kinds of angular momentum: orbital angular 
momentum, rmv, associated with its annual revolution around the sun, and 
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spin angular momentum, Iw, associated with its daily rotation about the north- 
south axis. The same goes for the electron in a hydrogen atom: It too carries 
both orbital and spin angular momentum. In the macroscopic case the distinction 
is not terribly profound; after all, the spin angular momentum of the earth is 
nothing but the sum total of the “orbital” angular momenta of all the rocks and 
dirt clods that make it up, in their daily “orbit” around the axis. In the case of 
the electron this interpretation is not open to us: The electron, as far as we know, 
is a true point particle; its spin angular momentum is not attributable to con- 
stituent parts revolving about an axis, but is simply an intrinsic property of the 
particle itself (see Problem 4.8). 

Classically, we are free to measure all three components of the orbital 
angular momentum vector, L = r X my, to any desired accuracy, and these 
components can assume any values whatever. In quantum-mechanics, however, 
it is impossible in principle to measure all three components simultaneously; a 
measurement of L,, say, inevitably alters the value of L,, by an unpredictable 
amount. The best we can do is to measure the magnitude of L, (or rather, its 
square: L2 = L - L) together with one component (which we customarily take to 
be the z component, LJ.  Furthermore, these measurements can only return 
certain “allowed” values.* Specifically, a measurement of L2 always yields a 
number of the form 

1(1+ 1)h2 (4.2) 

1 = 0 , 1 , 2 , 3  ) . . .  (4.3) 

m1h (4.4) 

(4.5) 

where 1 is a nonnegative integer: 

For a given value of 1, a measurement of L, always gives a result of the form 

where ml is an integer in the range [ - I  + I ] :  
m r =  -1, - I +  1 , . . . ,  - l , O , + l , . . . ,  I -  1 , l  

[(21+ 1) possibilities in all]. Figure 4.3 may help you to visualize the situation. 
Here 1 = 2, so the magnitude of L is l k h  = 2.45h; L, can assume the values 
2h ,  h ,  0, -h, or - 2h. Notice that the angular momentum vector cannot be 
oriented purely in the z direction. 

The same goes for spin angular momentum: A measurement of S 2  = S - S 
can only return values of the form 

s(s + l)h2 (4.6) 

In the case of spin, however, the quantum number s can be a halfinteger as 
well as an integer: 

(4.7) s = o  , 1 1  2 ,  5 2 2 ,  2,3, . . . 

* I am not going to prove the quantization rules for angular momentum, and if this material 
is new to you, I suggest that you consult a textbook on  quantum mechanics. All I propose to do here 
is summarize the essential results we will need in what follows. 
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t’ 

Figure 4.3 Possible orientations of the 
angular momentum vector for 1 = 2. 

For a given value of s, a measurement of S, must yield an answer of the form 

msh (4.8) 

(4.9) 

[(2s + 1) possibilities]. 
Now, a given particle can be put into any orbital angular momentum state 

you wish, but for each type of particle the value of s is fixed. Every pion or kaon, 
for example, has s = 0; every electron, proton, neutron, and quark carries s = 

4; for the p, the $, the photon, and the gluon, s = 1; for the A’s and the Q-,  s = 

3; and so on. We call s the “spin” of the particle. Particles with half-integer spin 
are known as fermions-all baryons, leptons, and quarks are fermions; particles 
with integer spin are known as bosons-all mesons and mediators are bosons 
(see Table 4.3). 

where m, is an integer or half-integer (whichever s is) in the range [-s, s]: 

m,= --s, -s+ 1, . . . )  s- 1,s 

4.3 ADDITION OF ANGULAR MOMENTA 

Angular momentum states are labeled with a “ket”: Ilml) or (sm,). Thus if I say 
the electron in a hydrogen atom occupies the orbital state 13 -1) and the spin 
state I f  i), 1 mean that 1 = 3, ml = -1, s = 4 (which is unnecessary, of course; 
if it’s an electron, s must be f), and m, = f. Now, it may happen that we are 
not interested in the spin and orbital angular momenta separately, but rather in 

TABLE 4.3 CLASSIFICATION OF PARTICLES BY SPIN 

Bosons (integer spin) Fermions ($integer spin) 

Spin 0 Spin 1 

+-Elementary 
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the total angular momentum, J = L + S. (In the presence of coupling between 
L and S-tidal, if it’s the earth-sun system; magnetic, for the electron-proton 
system-it is J, and not L and S individually, that will be conserved.) Or per- 
haps we are studying the two quarks that go to make a I) meson; in this case, 
as we shall see, the orbital angular momentum is zero, but we are confronted 
with the problem of combining the two quark spins to get the total spin of the 
I): S = S1 + S2. In either case the question arises: How do we add two angular 
momenta 

J = J1 + 5 2  (4.10) 

Classically, of course, we just add the components. But in quantum me- 
chanics we do not have access to all three components; we are obliged to work 
with one component and the magnitude. So the question becomes: If we combine 
states \ j l m l )  and [ j2m2),  what total angular momentum state(s) I j m )  do we get? 
The z components still add, naturally, so 

m = ml + m2 (4.1 1) 

but the magnitudes do not; it all depends on the relative orientation of J,  and 
J2 (Fig. 4.4). If they are parallel the magnitudes add, but if they are antiparallel 
the magnitudes subtract; in general, the magnitude of the vector sum is some- 
where between these extremes. As it turns out, we get everyjfrom ( j ,  + j 2 )  down 
to I j ,  - J J ,  in integer steps:3 

j = Ij, -J2l, I j l  - j 2 l  + 1, .  . . , ( j1  + j d  - 1, ( j1  + j d  (4.12) 

For instance, a particle of spin 1 in an orbital state 1 = 3 could have total angular 
momentumj = 4 (i.e., J 2  = 20h2), o r j  = 3 (J2  = 12h2), o r j  = 2 ( J 2  = 6h2). 

EXAMPLE 4.1 
A quark and an antiquark are bound together, in a state of zero orbital 
angular momentum, to form a meson. What are the possible values of the 
meson’s spin? 

Solution. Quarks carry spin f ,  so we can get 4 + f = 1 or f - $ = 0. The 
spin-0 combination gives us the “pseudo-scalar” mesons, d s ,  K’s, 77, 8’; 
“scalar” means spin 0; “pseudo-” will be explained shortly. The spin-1 
combination gives the “vector” mesons, p’s, K*’s, 6, w ;  “vector” means 
spin 1. 

To add three angular momenta, we combine two of them first, using equa- 
tion (4.12), and then add on the third. Thus if we allow the quarks in Example 
4.1 an orbital angular momentum 1 > 0, we get mesons with spin 1 + 1, I ,  and 
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1 - 1. Because the orbital quantum number has to be an integer, all mesons 
carry integer spin (they’re bosons). By the same token, all baryons (made up of 
three quarks) must have half-integer spin (they’re fermions). 

EXAMPLE 4.2 
Suppose you combine three quarks in a state of zero orbital angular mo- 
mentum. What are the possible spins of the resulting baryon? 

Solution. From two quarks, each spin 4, we get a total angular momentum 

1 - f = f (when the first two add to l), and 0 + 4 = 4 (when the first two 
add to zero). Thus the baryon can have a spin of $ or 4, and the latter can 
be achieved in two different ways. In practice, s = 3 is the decuplet, s = f 
is the octet, and evidently the quark model would allow for another family 
with s = f . If we permit the quarks to revolve around one another, throwing 
in some orbital angular momentum, the number of possibilities increases 
accordingly. 

o f f  + f = 1 or 1 - - - - 0. Adding in the third quark yields 1 + f = g or 

Well, equation (4.12) tells us what total angular momentaj we can obtain 
by combining j ,  and j 2 ,  but occasionally we require the explicit decomposition 
of lj,mi)lj2m2) into states of total angular momentum Ijm): 

( J I +JZ) 

Ijlml)lj2m2) = C C&&/&ljm), with m = ml + m2 (4.13) 

The numbers CLk,g2 are known as Clebsch-Gordan coeficients. A book on 
group theory or advanced quantum-mechanics will explain how to calculate 
them. In practice, we normally look them up in a table. (There is one in the 
Particle Data Booklet, and the case j ,  = 2, j 2  = 1 is reproduced in Figure 4.5). 
The Clebsch-Gordan coefficients give the probability of getting j ( j  + 1)h2, if 
we measure J2  (the total angular momentum squared) on a system consisting 
of two angular momentum states Ijlrn,) and Ij2m2): The probability is the square 
of the corresponding Clebsch-Gordan coefficient. 

J =  I Jl -121 

EXAMPLE 4.3 
The electron in a hydrogen atom occupies the orbital state 12 - 1) and the 
spin state 11 f). If we measure J2,  what values might we get, and what is 
the probability of each? 

Solution. The possible values of j are 1 + s = 2 + f = 2 and 1 - s = 2 
- f = 2. The z components add: m = -1 + 4 = -4. We go to the 
Clebsch-Gordan table (Fig. 4.5) labeled 2 X f, which indicates that we are 
combiningj, = 2 withj2 = f, and look for the horizontal row, labeled - 1, 
4; these are the values of mi and m . Reading off the two entries, we find 
12 -1)lf 4) = =15/2 -4)  - &13/2 -f). So the probability ofgetting 
j = 2 is 2, and the probability of gettingj = 2 is 3.  Notice that the probabilities 
add to 1, as, of course, they should. 



112 

’ I 2  
+2 112 

4iSYMMETRIES 

512 
6 1 2  512 312 

1 312 +3/2 
i 2  -112 
+I +I12 

EXAMPLE 4.4 
We know from Example 4.1 that two spin-f states combine to give spin 1 
and spin 0. Find the explicit Clebsch-Gordan decomposition for these 
states. 

Solution. Consulting the f X f table, we find 

115 415 512 312 
415 -115 +I12 +I12 

1 ‘112 215 315 512 312 
0 +I12 315 -215 -112 -112 

(4.14) 

0 -112 
- 1  +I12 

Thus the three spin 1 states are 

111) = 1 L y )  

11 -1) = I f  - $ ) I f  -4) 

2 2  2 2  

110) = (l/fi)[l4t)lf -4) + I f  -yLL)] 2 2 2  ] (4.15) 

loo) = (l/fi)[I4+)14 -{) - I f  - 4 ) l f t ) I  (4.16) 

[By the way, equations (4.15) and (4.16) can be read directly off the Clebsch- 
Gordan table; the coefficients work both directions: 

Ih) = c ~ ~ 4 , ~ 2 l ~ l m I ) l j 2 m 2 )  (4.17) 

This time we read down the columns, instead of along the rows.] The 
spin- 1 combination is called the “triplet,” for obvious reasons, and spin 0 
is called the “singlet.” For future reference, notice that the triplet is sym- 
metric under interchange of the particles, 1 t* 2, whereas the singlet is 
antisymmetric (that is, it changes sign). Incidentally, in a singlet state the 
spins are oppositely aligned (antiparallel); however, it is not the case that 

whereas the spin 0 state is 

J i  ,J2 

315 215 512 312 
215 -315 -312 -312 
- 1  -112 
-2 i l l 2  

415 115 512 
115 -415 -512 
-2 -112 1 
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in a triplet state the spins are necessarily parallel; they are for m = 1 and 
m = -1, but not for m = 0. 

4.4 SPIN 

The most important spin system is s = f ;  the proton, neutron, electron, all 
quarks, and all leptons carry spin f. Furthermore, once you understand the 
formalism for s = f ,  any other case is a relatively simple matter to work out. So 
I’ll pause here to develop the theory of spin f in some detail. A particle with 
spin f can have m, = f (“spin up”) or m, = -f (“spin down”). Informally, we 
represent these two states by arrows: t and &. But a better notation is afforded 
by two-component column vectors, or spinors: 

Iff) = (()) 1 ’ 14 - 4) = ( Y )  (4.18) 

It is often said that a particle of spin f can only exist in one or the other of these 
two states, but that is quite false. The most general state of a spin-f particle is 
the linear combination 

(4.19) 

where a and p are two complex numbers. It is true that a measurement of S, 
can only return the value + f h or - f h ,  but the first outcome, say, does not 

prove that the particle was in the state prior to the measurement. In the 

general case , /aI2 is the probability that a measurement of S, would yield 

the value ++ti,  and lpl2 is the probability of getting -fh. Since these are the 
only allowed results, it follows that 

(A) 0 
la12 + = 1 (4.20) 

Apart from this “normalization” condition, there is no a priori constraint on 
the numbers a and p. 

Suppose now that we are to measure S, or S, on a particle in the state 

( i) . What results might we get, and what is the probability of each? Symmetry 

dictates that the allowed values be -t f h; after all, it’s perfectly arbitrary which 
direction we choose to call z in the first place. But determining the probabilities 
is not so simple. To each component of S we associate a 2 X 2 matrix:* 

* Again, the derivation of these matrices will be found in any quantum-mechanics text. My 
purpose here is to show you how angular momentum is handled in particle physics, not to explain 
why it is done this way. 
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(4.21) 

The eigenvalues of $ are +h/2, and corresponding normalized eigenvectors 
are* 

(4.22) 

(see Problem 4.15). An arbitrary spinor can be written as a linear combination 

- 

of these eigenvectors: (3 
- ( i)  = a( l/E I/") + b( - l / E  'Ii2) (4.23) 

where a = (I/E)(a + P);  b = (I/lh)(a - P)  (4.24) 

The probability that a measurement of S, will yield the value $ h  is laI2; the 
probability of getting -4h is (bI2. Evidently, laI2 + (bI2 = 1 (see Problem 4.16). 

The general procedure, of which this was a particular instance, is as follows: 

1. Construct the matrix, A, representing the observable A in question. 
2. The allowed values of A are the eigenvalues of 2. 
3. Write the state of the system as a linear combination of eigenvectors of 
A; the absolute square of the coefficient of the ith eigenvector is the 
probability that a measurement of A would yield the ith eigenvalue. 

EXAMPLE 4.5 

Suppose we measure S: on a particle in the state . What values might 
we get, and what is the probability of each? 

Solution. The matrix representing S: would be the square of the matrix 
representing S,: 

(3 

s:=-( " h 2 1 0  ) 
4 0 1  

(4.25) 

* A nonzero column matrix 

is called an eigenvector of a given n X n matrix M if 

Mx = Ax 
for some number X (the eigenvalue). Notice that any multiple of x is still an eigenvector, with the 
same eigenvalue. 



4.4 SPIN 4 115 

Since 

every spinor is an eigenvector of $, with eigenvalue h2/4. Thus we would 
be certain to get h2/4 (probability 1). The same goes for 3: and si, 
so every spinor is an eigenstate of S2 = 3: + 3; + Sf, with eigenvalue 
3h2/4. This should come as no surprise-in general, for spin s we must 
have S2 = s(s + l)h2. 

For mathematical purposes the factor of h/2 in equation (4.21) is ugly, 
and it is customary to introduce the Pauli spin matrices: 

0 1  0 -i 
0 -1 

so that S = (h/2)a. The Pauli matrices have many interesting properties, some 
of which are explored in Problems 4.19 and 4.20. We shall encounter them 
repeatedly in the course of this book. 

In a sense, spinors (two-component objects) occupy an intermediate po- 
sition between scalars (one component) and vectors (three components). Now, 
when you rotate your coordinate axes, the components of a vector change, in a 
prescribed manner (see Problem 4.6), and we might inquire how the components 
of a spinor transform, under the same circumstances. The answer4 is provided 
by the following rule: 

(4.27) 

where U(0) is the 2 X 2 matrix 

,y(e) = e-ie.~~2 (4.28) 

The vector 0 points along the axis of rotation, and its magnitude is the angle of 
rotation, in the right-hand sense, about that axis. Notice that the exponent here 
is itself a matrix (!). An expression of this form is to be interpreted as shorthand 
for the power series: 

e A =  1 + A +  f A 2 + $ A 3 +  (4.29) 

(see Problem 4.21).* As you can check for yourself (Problem 4.22), U(0) is a 
unitary matrix of determinant 1; in fact, the set of all such rotation matrices 
constitutes the group SU(2). Thus spin- f particles transform under rotations 
according to the fundamental, two-dimensional representation of SU(2).  Simi- 
larly, particles of spin 1, described by vectors, belong to the three-dimensional 
representation of SU(2); spin-: particles, described by a four-component object, 

* Beware: For matrices it is not the case that eAeB = eA+’, in general. You might want to 
check this by using the matrices in Problem 4.21. However, the usual rule does apply if A and B 
commute (i.e., if AB = BA). 



116 4/SYMMETRIES 

transform under the four-dimensional representation of SU(2); and so on. (The 
construction of these higher-dimensional representations is explored in Problem 
4.23.) You’re probably wondering what SU(2) has to do with rotations; well, as 
I mentioned earlier, SU(2) is essentially* the same group as SO(3), the group of 
rotations in three dimensions. Particles of different spin, then, belong to different 
representations of the rotation group. 

4.5 FLAVOR SYMMETRIES 

There’s an extraordinary thing about the neutron, which Heisenberg observed 
shortly after its discovery in 1932: apart from the obvious fact that it carries no 
charge, it is almost identical to the proton. In particular, their masses are aston- 
ishingly close, mp = 938.28 MeV/c2, m, = 939.57 MeV/c2). Heisenberg’ proposed 
that we regard them as two “states” of a single particle, the nucleon. Even the 
small difference in mass might be attributed to the fact that the proton is charged, 
since the energy stored in its electric field contributes, according to Einstein’s 
formula (E  = me2) to its inertia. Unfortunately, this argument suggests that the 
proton should be the heavier of the two, which is not only untrue, but would be 
disastrous for the stability of matter. More on this in a moment. If we could 
somehow “turn off” all electric charge, the proton and neutron would, according 
to Heisenberg, be indistinguishable. Or, to put it more prosaically, the strong 
forces experienced by protons and neutrons are identical. 

To implement Heisenberg’s idea, we write the nucleon as a two-component 
column matrix 

with p =  (A) and n = ( y )  
(4.30) 

(4.3 1) 

This is nothing but notation, of course, but it is notation seductively reminiscent 
of the spinors we encountered in the theory of angular momentum. By direct 
analogy with spin, S, we are led to introduce isospin, I.? However, I is not 
a vector in ordinary space, with components along the coordinate directions x, 
y, and z, but rather in an abstract “isospin space,” with components we’ll call 
I,, 1 2 ,  and Z3. On this understanding, we may borrow the entire apparatus of 

* There is actually a subtle distinction between SU(2) and SO(3). According to Problem 4.2 1, 
the matrix U for rotation through an angle of 2 i ~  is - 1; a spinor changes sign under such a rotation. 
And yet, geometrically, a rotation through 27 is equivalent to no rotation at all. SU(2) is a kind of 
“doubled” version of SO(3), in which you don’t come back to the beginning until you’ve turned 
through 720”. In this sense spinor representations ofSU(2) are not true representations of the rotation 
group, and that’s why they do not appear in classical physics. In quantum mechanics only the square 
of the wave function cames physical significance, and in the squaring the minus sign goes away. 

t The word derives from the older term isotopic spin, which was misleading, since two isotopes 
of a given nucleus have different numbers of nucleons, whereas isospin rotations preserve the number 
of nucleons. Nuclear physicists use the (better) term isobaric spin. 
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angular momentum, as developed earlier in the chapter. The nucleon carries 
isospin f, and the third component, 13, has the eigenvalues* +$ (the proton) 
and -f (the neutron): 

p = Iff), n = I f  -1 2 )  (4.32) 

The proton is “isospin up”; the neutron is “isospin down.” This is still just 
notation; the physics comes in Heisenberg’s proposition that the strong inter- 
actions are invariant under rotations in isospin space, just as, for example, elec- 
trical forces are invariant under rotations in ordinary configuration space. We 
call this an “internal” symmetry, because it has nothing to do with space and 
time, but rather with the relations between different particles. A rotation through 
1 SO” about axis number 1 in isospin space converts protons into neutrons, and 
vice versa. If the strong force is invariant under rotations in isospin space, it 
follows, by Noether’s theorem, that isospin is conserved in all strong interactions, 
just as angular momentum is conserved in processes with rotational invariance 
in ordinary space.? 

In the language of group theory, Heisenberg asserted that the strong inter- 
actions are invariant under an internal symmetry group SU(2), and the nucleons 
belong to the two-dimensional representation (isospin 4). In 1932 this was a 
bold suggestion; today the evidence is all around us, most conspicuously in the 
“multiplet” structure of the hadrons. Recall the Eightfold Way diagrams in 
Chapter 1: The horizontal rows all display exactly the feature that caught Hei- 
senberg’s eye in the case of the nucleons; they have very similar masses but 
different charges. To each of these multiplets we assign a particular isospin I,  
and to each member of the multiplet we assign a particular 13. For the pions, 
I =  1: 

a+ = Ill), ?To = (lo), ,i- = ( 1  -1) (4.33) 

A = 100) (4.34) 

for the A, I = 0: 

for the A’s, I = 2: 
A++ = Isz), 3 3  Af = I;;), A0 = 1; -1 2 ) ,  A- = 1; -;) (4.35) 

and so on. To determine the isospin of a multiplet, just count the number of 
particles it contains; since I ,  ranges from -I to +I, in integer steps, the number 
of particles in the multiplet is 21 + 1 : 

multiplicity = 21 + 1 (4.36) 

* There is no factor of h in this case; isospin is dimensionless, by convention. 

t By the way, it is tempting to overstate the so-called “charge independence” of the strong 
forces (the fact that they are the same for protons as for neutrons). It does not say that you’ll get the 
same result if you substitute an individual proton for a neutron, only if you interchange aN protons 
and neutrons. [For example, there exists a bound state of the proton and the neutron (to wit, the 
deuteron), but there is no bound state of two protons or two neutrons.] Indeed, any such assertion 
would be incompatible with the Pauli exclusion principle, since a proton and a neutron can be in 
the same quantum state, but two neutrons (or two protons) cannot. 
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The third component of isospin, Z 3 ,  is determined by the charge, Q, of the particle. 
We assign the maximum value, I3 = I ,  to the member of the multiplet with the 
highest charge, and fill in the rest in order of decreasing Q. For the “pre-1974” 
hadrons-those composed of u, d, and s quarks only-the explicit relation be- 
tween Q and 1 3  is the Gell-Mann-Nishijima formula: 

Q = 1 3  + f(A + S)  (4.37) 

where A is the baryon number and Sis  the strangeness.* Originally, this equation 
was a purely empirical observation, but in the context of the quark model it 
follows simply from the isospin assignments for quarks: u and d form a “doublet” 
(like the proton and the neutron): 

u = I f f ) ,  d =  I f  -+) (4.38) 

and all the other flavors carry isospin zero? (see Problems 4.25 and 4.26). 
But classification is not all that isospin does for us. It also has important 

dynamical implications. For example, suppose we have two nucleons. From the 
rules for addition of angular momenta we know that the combination gives a 
total isospin of 1 or 0. Specifically (using Example 4.4), we obtain a symmetric 
isotriplet: 

(4.39) 

and an antisymmetric isosinglet: 

100) = (l /f i)(pn - np) (4.40) 

Experimentally, the neutron and proton form a single bound state, the deuteron 
(d); there is no bound state of two protons or of two neutrons. Thus the deuteron 
must be an isosinglet. If it were a triplet, all three states would have to occur 
since they differ only by a rotation in isospin space. Evidently there is a strong 
attraction in the I = 0 channel, but not in the I = 1 channel. Presumably the 
potential describing the interaction between two nucleons contains a term of 
the form I(’) .  I(*), which takes the value in the triplet configuration and - 2  in 
the singlet (see Problem 4.27). 

Isospin invariance has implications, too, for nucleon-nucleon scattering. 
Consider the processes 

(a) p + p - d + s +  
(b) p + n - d + s O  
(c) n + n - d + s -  (4.41) 

* Since Q. A, and S are all conserved by the electromagnetic forces, it follows that I ,  is also 
conserved. However, the other two components, and hence also I itself, are not conserved in elec- 
tromagnetic interactions. For example, in the decay xo - y + y, I goes from 1 to 0. As for the 
weak interactions, they don’t even conserve S, so I ,  is not conserved in weak processes (for exam- 
ple, A - p + T-). 

t Since isospin pertains only to the strong forces, it is not a relevant quantity for leptons. If 
you insist, all leptons and mediators carry isospin zero. 
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Since the deuteron carries I = 0, the isospin states on the right are 11 l), 1 lo), 
and 11 - l), respectively, whereas those on the left are I1 1), ( l /E)(I  10) + loo)), 
and 11 - 1). Only the I = 1 combination contributes (since the final state in each 
case is pure I = 1, and isospin is conserved), so the scattering amplitudes are in 
the ratio 

& a :  A b :  A, = 1 : ( 1 / f i ) :  1 (4.42) 

As we shall see,* the cross section, 6, goes like the absolute square of the amplitude; 
thus 

6 a :  g b :  6, = 2 :  1 : 2 (4.43) 

Process (c) would be hard to set up in the laboratory, but (a) and (b) have been 
measured, and (when corrections are made for electromagnetic effects) they are 
found to be in the predicted ratio.6 

As a final example, let's consider pion-nucleon scattering, aN - aN. There 
are six elastic processes: 

(a) a + + p - - t a + + p  (b) a0 + p -+ a' + p 
(c) a- f p - a -  + p  (d) a+ + n - a+ + n 

and four charge-exchange processes: 

(g) a+ + n - TO + p  (h) ao + p -+ a+ + n 

Since the pion carries I = 1, and the nucleon I = f , the total isospin can be 3 
or f. So there are just two distinct amplitudes here: &3, for I = ;, and A,, for 
I = f . From the Clebsch-Gordan tables we find the following decompositions: 

(e) 7ro + n - 7ro + n (f) a-+n-?r-+n (4.44) 

(i) a' + n - a- + p (j) a- + p - PO + n (4.45) 

(4.46) 

(4.47) 

(4.48) 

(I'll let you work out the rest, see Problem 4.28). The cross sections, then, stand 
in the ratio 

! 
7r+ + p :  I1 l ) l f f )  = 1;;) 
Po + p :  I l0) l t f )  = ml;f) - (l/V?)lff) 

a- + p: 11 -1) l f f )  = ( l / b ) l $  -4) - \/2/31f - t )  
a+ + n:111)14 -1) = ( l / b ) I ; t )  + @If$) 
a' + n. Il0)lf -f) = ml; -1) + (1/v5)lf -1) 

A- + n: 11 -1)lf -f) = 1; -;) 

Reactions (a) and (f) are pure I = 3: 
A, = Jlf= A3 

The others are all mixtures; for example 

A, = !A3 + #A,,  Aj = (vi/3)A3 - (E/3)Jl, 

* The theory of scattering amplitudes and cross sections will be developed in Chapter 6. In 
this and the following paragraph I anticipate later results, but I hope it is clear from the context how 
the calculation proceeds. If you wish, skip these two paragraphs for now. 
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6, : ec : ej = 91A3I2 : /A3 + 2A1I2 : 2 1 ~ ~  - & , I 2  (4.49) 

At a CM energy of 1232 MeV there occurs a famous and dramatic bump in 
pion-nucleon scattering, first discovered by Fermi in 195 1;7 here the pion and 
nucleon join to form a short-lived "resonance" state-the A. We know the A 
carries I = ;, so we expect that at this energy Jn3 b Al , and hence 

e u : u c : u j = 9 ; 1 : 2  (4.50) 

Experimentally, it is easier to measure the total cross sections, so (c) and (j) are 
combined: 

I ' ! ' I ' l ' I ' / ' l ' -  

(1232) - - 

- - 

- - 

- - 

- - 

- - 

- - 

- - 
- - 

T + P  
- - 

- - 

- - 

= 3  ctot (..+ + PI 
ctot (..- + P) 

As you can see in Figure 4.6, this prediction is well satisfied by the data. 

f 

0 

(4.51) 
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Figure 4.6 Total cross sections for n+p (solid line) and n-p (dashed line) scattering. 
(Source: S. Gasiorowicz, Elementary Particle Physics (New York: Wiley, copyright 0 
1966, page 294. Reprinted by permission of John Wiley and Sons, Inc.) 
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In the late fifties history repeated itself. Just as in 1932 the proton and 
neutron were seen to form a pair, it was now increasingly clear that the nucleons, 
the A, the Z’s, and the E’s together, constituted a natural grouping within the 
baryon family. They all carry spin 4, and their masses are similar. It is true that 
the latter range from 940 MeV/c2, for the nucleons, up to 1320 MeV/c*, for the 
E’s, so it would be stretching things a bit to argue that they are all different states 
of one particle, as Heisenberg had implied for the proton and neutron. Nev- 
ertheless, it was tempting to regard these eight baryons as a supermultiplet, and 
this presumably meant that they belonged in the same representation of some 
enlarged symmetry group, in which the SU(2) of isospin would be incorporated 
as a subgroup. The critical question became: What is the larger group? (The 
“Eight Baryon Problem,” as it was called, was not always phrased this way; at 
the time most physicists were surprisingly ignorant of group theory. Gell-Mann 
worked out most of the formalism he needed from scratch, and only later learned 
that it was well known to mathematicians.) The Eightfold Way was Gell-Mann’s 
solution to the Eight Baryon Problem. The symmetry group is SU(3); the octets 
constitute eight-dimensional representations of SU( 3), the decuplet a ten-di- 
mensional representation, and so on. One thing that made this case more difficult 
than Heisenberg’s was that no naturally occurring particles fall into the funda- 
mental (three-dimensional) representation of SU( 3), as the nucleons, and later 
the K s ,  the E’s, and so on, do for SU(2). This role was reserved for the quarks: 
u, d, and s together form a three-dimensional representation of SU(3),  which 
breaks down into an isodoublet (u, d )  and an isosinglet (s) under SU(2). 

Of course, when the charmed quark came along, the flavor symmetry group 
of the strong interactions expanded once again-this time to SU(4) (some SU(4) 
supermultiplets are shown in Fig. 1.13). But things barely paused there before 
the arrival of the bottom quark, taking us to SU(5),  and the putative top quark, 
SU(6). However, there is an important caveat in this neat hierarchy: Isospin, 
SU(2), is a very “good” symmetry; the members of an isospin multiplet differ 
in mass by at most 2 or 3%, which is about the level at which electromagnetic 
corrections would be expected.* But the Eightfold Way, SU(3), is a badly “bro- 
ken” symmetry; mass splittings within the baryon octet are around 40%. The 
symmetry breaking is even worse when we include charm; the A,’ (udc) weighs 
more than twice the A (uds), although they are in the same SU(4) supermultiplet. 
It is worse still with bottom, and absolutely terrible with top. 

Why is isospin such a good symmetry, the Eightfold Way fair, and flavor 
SU(6)  so poor? The Standard Model blames it all on the quark masses. Now, 
the theory of quark masses is a slippery business, given the fact that they are not 
accessible to direct experimental measurement. Various arguments’ suggest that 
the u and d quarks are intrinsically very light, about ten times the mass of the 
electron. However, within the confines of a hadron their efective mass is much 
greater. The precise value, in fact, depends on the context; it tends to be a little 

* Indeed, it used to be thought that isospin was an exact symmetry of the strong interactions, 
and the whole of the symmetry breaking was attributable to electromagnetic contamination. The fact 
that the n-p mass splitting is in the wrong direction to be purely electromagnetic was troubling, 
however, and we now believe that SU(2) is only an approximate symmetry ofthe strong interactions. 
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Quark flavor 

higher in baryons than in mesons (more on this in Chapter 5). In somewhat the 
same way, the effective inertia of a teaspoon is greater when you’re stirring honey 
than when you’re stirring tea, and in either case it exceeds the true mass of the 
spoon. Generally speaking, the effective mass of a quark in a hadron is about 
350 MeV/c2 greater than its bare mass (see Table 4.4). Compared to this, the 
quite different bare masses of up and down quarks are practically irrelevant; 
they function as though they had identical masses. But the s quark is distinctly 
heavier, and the c, b, and t quarks are widely separated. Apart from the differences 
in quark masses, the strong interactions treat all flavors equally. Thus isospin is 
a good symmetry because the effective u and d masses are so nearly equal (which 
is to say, on a more fundamental level, because their bare masses are so small); 
the Eightfold Way is a fair symmetry because the effective mass of the strange 
quark is not too far from that of the u and d. But the heavy quarks are so far 
apart that their flavor symmetry is severely broken. Of course, this “explanation” 
raises two further questions: (1) Why does the binding of quarks into hadrons 
increase their effective mass by about 350 MeV/c2? The answer presumably lies 
within QCD, although the details are not yet understood.’ (2) Why do the bare 
quarks have the particular masses they do? Is there some pattern here? To this 
question the Standard Model offers no answer; the six bare quark masses, and 
also the six lepton masses, are simply input parameters, for now, and it is the 
business of theories beyond the Standard Model to say where they come from. 

Effective mass 

Bare mass in mesons in baryons 
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Figure 4.7 In the beta decay of cobalt 60, 
most electrons are emitted in the direction 
of the nuclear spin. 

surprised to discover that although there was ample evidence for parity invariance 
in strong and electromagnetic processes, there was no confirmation in the case 
of weak interactions. They proposed a test, which was camed out later that year 
by C. S .  Wu,” to settle the issue. In this famous experiment, radioactive cobalt 
60 nuclei were carefully aligned, so that their spins pointed in, say, the z direction 
(Fig. 4.7). Cobalt 60 undergoes beta decay, and Wu recorded the direction of 
the emitted electrons. What she found was that most of them came out in the 
“northerly” direction, that is, in the direction of the nuclear spin. 

That’s all there was to it. But that simple observation had astonishing 
implications. For suppose we examine the mirror image of that same process 
(Fig. 4.8). The image nucleus rotates in the opposite direction; its spin points 
downward. And yet the electrons (in the mirror) still came off upward. In the 
mirror, then, the electrons are emitted preferentially in the direction opposite to 
the nuclear spin. Here, then, is a physical process whose mirror image does not 
occur in nature; evidently parity is not an invariance of the weak interactions. 
If it were, the electrons in Wu’s experiment would have to come out in equal 
distribution (“north” and “south”), but they don’t. 

The overthrow of parity had a profound effect on physicists-devastating 
to some, exhilarating to others.12 The violation is not a small effect; as we shall 
see in Chapter 10, it is in fact “maximal.” Nor is it limited to beta decay in 
cobalt; once you look for it, parity violation is practically the signature of the 
weak force. It is most dramatically revealed in the behavior of the neutrino. Let 
me explain. In the theory of angular momentum the axis of quantization is, by 

Figure 4.8 Mirror image of Figure 4.7: 
Most electrons are emitted opposite to 
nuclear spin. 
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Figure 4.9 Helicity. In (a) the spin and velocity are parallel (helicity + 1); in (b) they are 
antiparallel (helicity - 1). 

convention, the z axis. Of course, the orientation of the z axis is completely up 
to us, but if we are dealing with a particle traveling through the laboratory at 
velocity v, a natural choice suggests itselfi Why not pick the direction of motion 
as the z axis? The value of (m,/s) for this axis is called the helicity of the particle. 
Thus a particle of spin 4 can have a helicity of +1 (m, = 4) or -1 (m, = -4); 
we call the former “right-handed” and the latter “left-handed.”* The difference 
is not terribly profound, however, because it is not Lorentz-invariant. Suppose 
I have a right-handed electron going to the right (Fig. 4.9a), and someone else 
looks at it from an inertial system traveling to the right at a speed greater than 
2). From his perspective the electron is going to the left (Fig. 4.9b); but it is still 
spinning the same way, so this observer will say it’s a left-handed electron. In 
other words, you can convert a right-handed electron into a left-handed one 
simply by changing your frame of reference. That’s what I mean when I say the 
distinction is not Lorentz-invariant. 

But what if we applied that same reasoning to a neutrino, instead of an 
electron? The neutrino is massless, so it travels at the speed of light, and hence 
there is no observer traveling faster. It is impossible to “reverse the direction of 
motion” of a neutrino by getting into a faster-moving reference system, and 
therefore the helicity of a neutrino (or any other massless particle?) is Lorentz- 
invariant-a fixed and fundamental property, which is not an artifact of the 
observer’s reference frame. It becomes an important experimental matter to 
determine the helicity of a given neutrino. Until the mid-fifties everyone assumed 
that half of all neutrinos would be left-handed, and half right-handed, just like 
photons. What they, in fact, discovered was that 

ALL NEUTRINOS ARE LEFT-HANDED, 
AND ALL ANTINEUTRINOS ARE RIGHT-HANDED. 

Of course, it’s tough to measure the helicity of a neutrino directly; they’re hard 
enough to detect at all. There is, however, a relatively easy indirect method, 
using the decay of the pion: A- -+ p- + 5,. If the pion is at rest, the muon and 
the antineutrino come out back to back (Fig. 4.10). Moreover, since the pion 

* In Chapter 10 I shall introduce a technical distinction between “handedness” and helicity, 
but for the moment we shall use the terms interchangeably. 

t For massless particles only the maximal value of Im,l occurs. For example, the photon can 
have m, = + 1 or m, = - 1, but not m, = 0. So the helicity of a massless particle is always f 1. In 
the case of the photon these represent states of left- and right-circular polarization. The absence of 
m, = 0 corresponds to the absence of longitudinal polarization in classical optics. 
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Figure 4.10 Decay of T- at rest. 

has spin 0, the muon and the antineutrino spins must be oppositely aligned.* 
Therefore if the antineutrino is right-handed, the muon must be right-handed 
too (in the pion rest frame)-and this is precisely what is found e~perimentally.’~ 
Measurement of the muon helicity, then, enables us to determine the antineutrino 
helicity. By the same token, in a+ decay the antimuon is always left-handed, 
and this indicates that the neutrino is left-handed. For contrast, consider the 
decay of the neutral pion, TO - y + y .  Once again, in any given decay the two 
photons must have the same helicity. But this is an electromagnetic process, 
which respects parity, and thus, on the average, we get just as many right-handed 
photon pairs as left-handed pairs. Not so for neutrinos; they only interact weakly, 
and every one is left-handed; the mirror image of a neutrino does not exist.? 
That is about the starkest violation of mirror symmetry you could ask for.$ 

In spite of its violation in weak processes, parity invariance remains a valid 
symmetry of the strong and electromagnetic interactions. It is useful, therefore, 
to develop some formalism and terminology. First a minor technical point: in- 
stead of reflections, which oblige us to choose arbitrarily the plane of the “mirror”, 
we’ll talk about inversions, in which every point is carried through the origin to 
the diametrically opposite location (Fig. 4.1 1). Both transformations have the 
property of turning a right hand into a left hand; in fact, an inversion is nothing 
but a reflection followed by a rotation (1 80” about the y axis, in the figure). Thus 
in the cases of interest (which also possess rotational symmetry) it is a matter of 
indifference which one is used, Let P denote inversion; we call it the “parity 
operator.” If the system in question is a right hand, P turns it into an upside- 

* The orbital angular momentum (if there is any) points perpendicular to the outgoing velocities, 
so it does not affect this argument. 

t This is perhaps too strong a statement. There could, I suppose, be right-handed neutrinos 
around, but they do not interact with ordinary matter by any mechanism presently known. If it turns 
out that neutrinos have a small but nonzero mass, then, of course, right-handed neutrinos must exist. 
None of this, however, can alter the fact that when a T- decays, the emerging p- is right-handed in 
the CM frame and that by itself destroys mirror symmetry. 

By the way, back in 1929, shortly after the publication of Dirac’s equation, Weyl presented a 
beautifully simple theory of massless particles of spin 4, which had the feature that they camed a 
fixed “handedness.” At the time Weyl’s theory aroused limited interest, since there were no massless 
particles known, except for the photon, which cames spin 1. When Pauli introduced the neutrino, 
in 193 I ,  you might suppose that he would dust off Weyl’s theory and put it to use. He did not. Pauli 
rejected Weyl’s theory out of hand, on the ground that it violated mirror symmetry. He lived to 
regret this mistake, and in 1957 Weyl’s theory was triumphantly vindicated. 

f It may occur to you, as it did to many physicists at the time, that if we simultaneously 
convert all particles into their antiparticles, then a kind of mirror symmetry is restored; the image of 
T -  - p- + 5, (with a right-handed antineutrino) becomes r+ - 1’ + vY (with a left-handed neutrino), 
which is perfectly okay. This realization was some comfort, until 1964, when it, too, was shown to 
fail. More on this in the following sections. 
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(a) Reflection (in the x-z plane) 
( x ,  Y .  21 + ( x .  - y ,  z )  

ib )  Inversion ( x ,  y , z l  --f ( - x ,  - Y ,  -z )  Figure 4.1 1 Reflections and inversions. 

down and backward left hand (Fig. 4. I 1 b). When applied to a vector, a, Pproduces 
a vector pointing in the opposite direction: P(a)  = -a. How about the cross 
product of two vectors: c = a X b? Well, if P changes the sign of a and of b, then 
evidently c itself does not change sign: P ( c )  = c .  Very strange! Apparently there 
are two kinds of vectors-“ordinary” ones, which change sign under the parity 
transformation, and this other type, of which the cross product is the classic 
example, which do not. We call the former “polar” vectors, when the distinction 
must be drawn, and the latter “pseudo” (or “axial”) vectors. Notice that the 
cross product of a polar vector with a pseudovector would be a polar vector. 

You will have encountered pseudovectors before, perhaps without using 
this language; angular momentum is one, and so is the magnetic field. In a theory 
with parity invariance, you must never add a vector to a pseudovector, just as 
in a theory with rotational symmetry, you cannot add a vector to a scalar. For 
example, in the Lorentz force law, F = q(E + v/c X B), it is the cross product 
(a polar vector) that enters; B itself could never be added to E. As we shall see, 
it is precisely the addition of a vector to a pseudovector in the theory of weak 
interactions that leads to the breakdown of panty. Finally, the dot product of 
two polar vectors does not change sign under P, but the dot product of a polar 
vector and a pseudovector [or the triple product of three vectors: a - (b X c ) ]  does 
change sign. So there are two kinds of scalars, too: the “ordinary” kind, which 
don’t change sign, and “pseudoscalars,” which do. All this is summarized in 
Table 4.5.* 

* The terminology extends very simply to special relativity: a’ = (a’, a) is called a pseudo- 
vector if its spatial components constitute a pseudovector P(a) = a; p is a pseudoscalar if it goes into 
minus itself under spatial inversions P ( p )  = -p. 
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TABLE 4.5 BEHAVIOR OF SCALARS AND VECTORS 
UNDER THE PARITY TRANSFORMATION, P 

Scalar : P(s) = 5 

Pseudoscalar : P ( p )  = - p  
Vector (or polar vector) : P(v) = -v 
Pseudovector (or axial vector) : P(a) = a 

If you apply the parity operator twice, of course, you’re right back where 
you started: 

P 2  = I (4.52) 

(The panty group, then, consists of just two elements: I and P.) It follows that 
the eigenvalues of P are k 1 (see Problem 4.34). For example, scalars and pseudo- 
vectors have eigenvalue + 1, whereas vectors and pseudoscalars have eigenvalue 
- 1. The hadrons are eigenstates of P and can be classified according to their 
eigenvalue, just as they are classified by spin, charge, isospin, strangeness, and 
so on. According to Quantum Field Theory the parity of a fermion (half-integer 
spin) must be opposite to that of the corresponding antiparticle, while the parity 
of a boson (integer spin) is the same as its antiparticle. We take the quarks to 
have positive intrinsic parity, so the antiquarks are negative.* The parity of a 
composite system in its ground state is the product of the parities of its constituents 
(we say that parity is a ‘‘multiplicative’’ quantum number, in contrast to charge, 
strangeness, and so on, which are “additive”.? Thus the baryon octet and decuplet 
have positive panty, [(+ 1)3], whereas the pseudoscalar and vector meson nonets 
have negative parity [(-l)(+l)]. (The prefix “pseudo” tells you the parity of the 
particles.) For excited states there is an extra factor of (- l)! where 1 is the orbital 
angular m ~ m e n t u m . ’ ~  Thus, in general, the mesons carry a parity of (-l)‘+’ (see 
Table 4.6). Meanwhile, the photon is a vector particle (it is represented by the 
vector potential A”). Its spin is 1 and its intrinsic parity is - 1 .$ 

The mirror symmetry of strong and electromagnetic interactions means 
that parity is conserved in all such processes. Originally, everyone took it for 

* This choice is completely arbitrary; we could just as well do it the other way around. Indeed, 
in principle we could assign positive panty to some quark flavors and negative to others. This would 
lead to a different set of hadronic panties, but the conservation of panty would still hold. The rule 
stated in the text is obviously the simplest, and it leads to the conventional assignments. 

t There is less to this distinction than meets the eye; in a sense, it results from a notational 
anomaly. Scrupulous consistency would require that we write the panty operator in exponential 
form, P = with the operator K playing a role analogous to, say, spin [see eq. (4.28)]. The 
eigenvalues of K would be 0 and 1, corresponding to + 1 and - 1 for P, and multiplication of panties 
would correspond to addition, mod 2, of K. 

+ Incidentally, you will notice here a certain parallel between panty and angular momentum. 
Just as angular momentum comes in two varieties-orbital (associated with the particle’s motion) 
and spin (an intrinsic property of the particle itself), so too does panty. There is the factor (-1)’ 
(associated with the spatial configuration) and the intrinsic panties of the constituents. But whereas 
the net angular momentum of a composite system is the sum of the individual terms, the net parity 
is the product. 
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TABLE 4.6 QUANTUM NUMBERS OF MESONS COMPOSED 
OF u, d, AND s QUARKS 

Observed Nonet 
Orbital Net Typical mass 

ang. mom. spin Jpc / = 1  I =  1 I = O  MeV/c 

1 = 0  s = o  0-+ T K 0, 0‘ 500 

0++ 6 K 6 ,  s* 1150 

s =  1 1 -- P K* 0, @ 800 
I =  1 s = o  1 +- B Q2 H, ? 1250 

s =  1 { 1++ A ,  QI D, E 1300 
2++ A2 K* Lf’ 1400 

granted that the same goes for the weak interactions as well. But a disturbing 
paradox arose in the early fifties, known as the “tau-theta puzzle.” Two strange 
mesons, called at the time r and 6, appeared to be identical in every respect- 
same mass, same spin, same charge, and so on-except that one of them decayed 
into two pions and the other into three pions, states of opposite parity: 

(4.53) 

It seemed most pxuliar that two otherwise identical particles should carry dif- 
ferent parity. The alternative, suggested by Lee and Yang in 1956 was that 
r and 0 are really the same particle (now known as the K’), and panty is simply 
not conserved in one of the decays. This idea prompted their search for evidence 
of panty invariance in the weak interactions and, when they found none, to 
their proposal for an experimental test. 

4.7 CHARGE CONJUGATION 

Classical electrodynamics is invariant under a change in the sign of all electric 
charges; the potentials and fields reverse their signs, but there is a compensating 
charge factor in the Lorentz law, so the forces still come out the same. In ele- 
mentary particle physics we introduce an operation that generalizes this notion 
of “changing the sign of the charge”-it’s called charge conjugation, C, and it 
converts each particle into its antiparticle: 

ClP) = IP) (4.54) 

“Charge conjugation” is something of a misnomer, for C can be applied to a 
neutral particle, such as the neutron (yielding an antineutron), and it changes 
the sign of all the “internal” quantum numbers-charge, baryon number, lepton 
number, strangeness, charm, beauty, truth-while leaving mass, energy, mo- 
mentum, and spin untouched. 
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As with P, application of C twice brings us back to the original state: 

c2 = z (4.55) 

and hence the eigenvalues of C are k 1. Unlike P, however, most of the particles 
in nature are clearly not eigenstates of C. For if Ip) is an eigenstate of C, it 
follows from equation (4.54) that 

(4.56) 

so Ip) and lj) differ at most by a sign, which means that they represent the same 
physical state. Thus only those particles that are their own antiparticles can be 
eigenstates ofC. This leaves us the photon, as well as all those mesons which lie 
at the center of their Eightfold Way diagrams: 7ro, 7, v’, po, 4, w,  +, and so on. 
Because the photon is the quantum of the electromagnetic field, which changes 
sign under C, it makes sense that the photon’s “charge conjugation number” is 
- 1. It can be showni5 that a system consisting of a spin-; particle and its anti- 
particle in a configuration with orbital angular momentum 1 and total spin s 
constitutes an eigenstate of C, with eigenvalue (- 1)’”. According to the quark 
model, the mesons in question are of precisely this form: For the pseudo-scalars, 
1 = 0 and s = 0, so C = +l ;  for the vectors, I = 0 and s = 1, so C = -1. (Often, 
as in Table 4.6, C is listed as though it were a valid quantum number for the 
entire supermultiplet; in fact it pertains only to the central members.) 

C is a multiplicative quantum number, and, like panty, it is conserved in 
the strong and electromagnetic interactions. Thus, for example, the 7ro decays 
into two photons: 

7 ro - - ry+y  (4.57) 

(C = + 1 before and after), but it cannot decay into three photons. (For a system 
of n photons, C = (- l)fl.) Similarly, the w goes to 7ro + y, but never to 7ro + 2y. 
In the strong interactions, charge conjugation invariance requires, for example, 
that the energy distribution of the charged pions in the reaction 

p + J +  7r+ + 7r- + T o  (4.58) 

should (on the average) be identical.I6 On the other hand, charge conjugation is 
not a symmetry of the weak interactions: when applied to a neutrino (left-handed, 
remember), C gives a left-handed antineutrino, which does not exist. So the 
charge-conjugated version of any process involving neutrinos is certainly not a 
possible physical process. And purely hadronic weak interactions also show vi- 
olations of C as well as P. 

Because so few particles are eigenstates of C, its direct application in ele- 
mentary particle physics is rather limited. Its power can be somewhat extended, 
if we confine our attention to the strong interactions, by combining it with an 
appropriate isospin transformation. Rotation by 180” about the number 2 axis 
in isospin space* will carry I3 into - I 3 ,  converting, for instance, a T+ into a P-. 

* Some authors use the number 1 axis. Obviously, any axis in the 1-2 plane will do the job. 
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If we then apply the charge conjugation operator, we come back to T’. Thus 
the charged pions are eigenstates of this combined operator, even though they 
are not eigenstates of C alone. For some reason the product transformation is 
called “G-parity”: 

G = CR2, where R2 = ein12 (4.59) 

All mesons that carry no strangeness (or charm, beauty, or truth) are eigenstates 
of G;* for a multiplet of isospin I the eigenvalue is given (see Problem 4.36) by 

G = (-1)’C (4.60) 

where C is the charge conjugation number of the neutral member. For a single 
pion, G = - 1, and for a state with n pions 

G = (-1)‘ (4.6 1) 

This is a very handy result, for it tells you how many pions can be emitted in a 
particular decay. For example, the p mesons, with I = 1, C = - 1, and hence 
G = +1, can go to two pions, but not to three, whereas the 4, the w,  and the 1c/ 
can go to three, but not to two. 

4.8 CP VIOLATION 

As we have seen, the weak interactions are not invariant under the parity trans- 
formation P; the cleanest evidence for this is the fact that the antimuon emitted 
in pion decay 

IT+ - p+ + v, (4.62) 

always comes out left-handed. Nor are the weak interactions invariant under C, 
for the charge-conjugated version of reaction (4.62) would be 

iT- - p- + 5,  (4.63) 

with a left-handed muon, whereas in fact the muon always comes out right- 
handed. However, if we combine the two operations we’re back in business: CP 
turns the left-handed antimuon into a right-handed muon, which is exactly what 
we observe in nature. Many people who had been shocked by the fall of parity 
were consoled by this realization; perhaps it was the combined operation that 
our intuition had been talking about all along-maybe what we should have 
meant by the “mirror image” of a right-handed electron was a left-handed pos- 
itron.? If we had defined parity from the start to be what we now call CP, the 

* K+, for example, is not an eigenstate of G, for R2 takes it to f?, and C takes that to xo. The 
idea could be extended to the K’s, by using an appropriate SU(3) transformation in place of 
R 2 ,  but since SU(3) is not a very good symmetry of the strong forces, there is little advantage in 
doing so. 

t Incidentally, we could perfectly well take electric charge to be a pseudoscalar in classical 
electrodynamics; E becomes a pseudovector and B a vector, but the results are all the same. It is 
really a matter of taste whether you say the mirror image of a plus charge is positive or negative. 
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trauma of parity violation might have been avoided (or at any rate postponed). 
It is too late to change the terminology now, but at least this pacifies our visceral 
sense that the world “ought” to be left-right symmetric. 

CP invariance has bizarre implications for the neutral K mesons, as was 
first pointed out in a classic paper by Gell-Mann and Pais.” They noted that 
the KO, with strangeness + 1, can turn into its antiparticle I?‘, strangeness - 1 

KO & I?‘ (4.64) 

through a second-order weak interaction we now represent by the diagrams in 
Figure 4.12. (The possibility of such an interconversion between two particles 
is almost unique to the neutral kaon system; among the “stable” particles only 
Dodo and BOBo share the property. See Problem 4.38.) As a result, the particles 
we normally observe in the laboratory are not KO and KO, but rather some linear 
combination of the two. In particular, we can form eigenstates of CP, as follows. 
Because the K’s are pseudoscalars 

PIKO) = -[KO), P I P )  = -IKO) (4.65) 

On the other hand, from equation (4.54) 

CIA?) = IRO), ClP) = /KO) (4.66) 

Accordingly CPIKO) = -/KO), CPIRO) = -(KO) (4.67) 

and hence the (normalized) eigenstates of CP are 

IKl) = (l/E)(lKo) - Ip)) and 1K2) = (1/E)(IK0) + IKo)) (4.68) 

with 
CP(KI)  = IKI) and CPIK2) = -I&) (4.69) 

Assuming CP is conserved in the weak interactions, KI can only decay into a 
state with CP = f l ,  whereas K2 must go to a state with CP = -1. Typically, 

t u  t w -  w -  i 
I I 

d IAI s 

w “ t  
KO KO 

Figure 4.12 Feynman diagrams contributing to 
those with one or both u quarks replaced by c or t.) 

P p. (There are others, including 
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neutral kaons decay into two or three pions. But we have already seen that the 
two-pion configuration cames a parity of + 1, and the three-pion system has 
P = -1 [eq. (4.53)]; both have C = +l .  Conclusion: KI decays into two pions 
(never three); K2 decays into three pions (never two): 

Kl + 2 ~ ,  K2 + 3~ (4.70) 

Now, the 2a decay is much faster, because the energy released is greater. So if 
we start with a beam of KO’s 

K O )  = ( l / f i ) (Ki )  + K2)) (4.7 1) 

the K I  component will quickly decay away, and down the line we shall have a 
beam of pure K2’s. Near the source we should see a lot of 2a events, but farther 
along we expect only 3a decays. 

Well . . . that’s a lot to swallow. As Cronin put it, in a delightful 
memoir: 

So these gentlemen, Gell-Mann and Pais, predicted that in addition to the short- 
lived K mesons, there should be long-lived K mesons. They did it beautifully, 
elegantly and simply. I think theirs is a paper one should read sometime just for 
its pure beauty of reasoning. It was published in the Physical Review in 1955. A 
very lovely thing! You get shivers up and down your spine, especially when you 
find you understand it. At the time, many of the most distinguished theoreticians 
thought this prediction was really baloney. 

But it wasn’t baloney, and in 1956 Lederman and his collaborators discovered 
the K2 meson at Brookhaven. l9  Experimentally, the two lifetimes are 

71 = 0.89 x 1 0 - l ~  sec 
7 2  = 5.2 x 10-’sec (4.72) 

so the Kl’s are mostly gone after a few centimeters, whereas the K2’s can travel 
many meters. Notice that K1 and K2 are not antiparticles of one another, like 
KO and I?‘; rather, each is its own antiparticle (C = - 1 for K1 and C = + 1 for 
K2). They differ ever-so-slightly in mass; experiments give2’ 

m2 - ml = 3.5 x eV (4.73) 

The neutral kaon system adds a subtle twist to the old question, “What is 
a particle?’ Kaons are typically produced by the strong interactions, in eigenstates 
of strangeness (KO and I?‘), but they decay by the weak interactions, as eigenstates 
of CP (Kl and K2). Which, then, is the “real” particle? If we hold that a “particle” 
must have a unique lifetime, then the “true” particles are KI and K2.* But we 
need not be so dogmatic. In practice, it is sometimes more convenient to use 
one set, and sometimes the other. The situation is in many ways analogous to 
polarized light. Linear polarization can be regarded as a superposition of left- 
circular polarization and right-circular polarization. If you imagine a medium 
that preferentially absorbs right-circularly polarized light, and shine on it a linearly 
polarized beam, it will become progressively more left-circularly polarized as it 

* This, incidentally, was the position advocated by Gell-Mann and Pais. 
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passes through the material, just as a KO beam turns into a K2 beam. But whether 
you choose to analyze the process in terms of states of linear or circular polar- 
ization is largely a matter of taste. 

The neutral kaons provide a perfect experimental system for testing CP 
invariance. By using a long enough beam, we can produce an arbitrarily pure 
sample of the long-lived species. If at this point we observe a 2~ decay, we shall 
know that CP has been violated. Such an experiment was reported by Cronin 
and Fitch in 1964.21 At the end of a beam 57 feet long, they found 45 two-pion 
events in a total of 22,700 decays. That’s a tiny fraction (roughly one in 500), 
but unmistakable evidence of CP violation. Evidently the long-lived neutral 
kaon is not a perfect eigenstate of CP after all, but contains a small admixture 
of K1: 

(4.74) 

The coefficient E is a measure of nature’s departure from perfect CP invariance; 
experimentally its magnitude is about 2.3 X 

Although the effect is small, and has never been observed outside the neutral 
kaon system, CP violation poses a far deeper problem than parity ever did. The 
nonconservation of parity was quickly incorporated into the theory of weak 
interactions (in fact, part of the “new” theory-Weyl’s equation for the neu- 
trino-had been “waiting in the wings” for many years). Parity violation was 
easier to handle precisely because it was such a large effect: all neutrinos are left- 
handed, not just 50.01% of them. Parity is, in this sense, maximally violated, in 
the weak interactions. By contrast, CP violation is a small effect on any scale, 
and no one has yet found a “natural” way to accommodate it.* 

The Fitch-Cronin experiment destroyed the last hope for any form of 
exact mirror symmetry in nature. And subsequent study of the semileptonic 
decays of KL has revealed even more dramatic evidence for CP violation. Al- 
though 34% of all KL’s decay by the 3~ mode we have discussed, some 39% 
go to 

or (b) A- + e+ + V, (4.75) 
(a) A+ + e- + 5,  

Notice that CP takes (a) into (b), so if CP were conserved, and KL were a pure 
eigenstate, (a) and (b) would be equally probable. But experiments show22 that 
KL decays more often into a positron than into an electron, by a fractional 
amount 3.3 X Here for the first time is a process that makes an absolute 
distinction between matter and antimatter, and provides an unambiguous, con- 
vention-free definition of positive charge: it is the charge carried by the lepton 
preferentially produced in the decay of the long-lived neutral K meson. The fact 
that CP violation permits unequal treatment of particles and antiparticles suggests 

* A complex phase factor 6 in the Kobayashi-Maskawa matrix is a convenient vehicle for 
introducing CP violation into the Standard Model. Indeed, it was this that led Kobayashi and Maskawa 
to propose a third generation of quarks, before even charm was discovered. At present, however, 6 
is an arbitrary input parameter, which (like the other elements in the KM matrix) nobody knows 
how to calculate. 
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that it may be responsible for the dominance of matter over antimatter in the 
universe.23 

4.9 TIME REVERSAL AND THE TCP THEOREM 

Suppose we made a movie of some physical process, say, an elastic collision of 
two billiard balls. If we ran the movie backward, would it depict a possible 
physical process, or would the viewer be able to say with certainty “No, no, 
that’s impossible; the film must be running in reverse”? In the case of classical 
elastic collisions the “time-reversed’’ process is perfectly possible. (To be sure, 
if we put a lot of billiard balls in the picture the backward version may be highly 
improbable; we would be surprised to see the balls gather themselves together 
into a perfect triangle, with a single cue ball rolling away, and we would strongly 
suspect that the film had been reversed. But that’s just because we know it would 
be extraordinarily difficult to set up the necessary starting conditions, such that 
all the balls would roll together at just the right speeds and in just the right 
directions. Thus the initial conditions may give us a clue to the “arrow of time,” 
but the laws governing the collisions themselves work just as well forward as 
backward.) Until fairly recently it was taken for granted that all elementary 
particle interactions share this time-reversal invariance. But with the downfall 
of parity it was natural to wonder whether time reversal was really so sacred.24 

As it turns out, time reversal is a lot harder to test than P or C. In the first 
place, whereas all particles are eigenstates of P, and many are eigenstates of C, 
none is an eigenstate of T (the “time-reversal operator,” which runs the movie 
backward).* So we cannot check the “conservation of T” simply by multiplying 
numbers, the way we can for P and C. The most direct test would be to take a 
particular reaction (say, n + p 4 d + y), and run it in reverse (d + y 4 n + p) .  
For corresponding conditions of momentum, energy, and spin, the reaction rate 
should be the same in either direction. (This is called the “principle of detailed 
balance,” and it follows directly from time-reversal invariance.) Such tests work 
fine for the strong and electromagnetic interactions, and a variety of processes 
have been checked. The results have always been negative (no evidence of T 
violation), but this is hardly surprising. On the basis of our experience with P 
and C we expect to see a failure of time reversal in the weak interactions, if 
anywhere. Unfortunately, inverse-reaction experiments are tough to do in the 
weak interactions. Take, for instance, the typical weak decay A 4 p+ + T-. The 
inverse reaction would be p+ + H -  -+ A, but we are never going to see such a 
process, because the strong interaction of the proton and the pion will totally 
swamp the feeble weak interaction. To avoid strong and electromagnetic con- 
tamination, we might go to a neutrino process. But it is notoriously difficult to 
do accurate measurements on neutrinos, and here we are presumably looking 
for a very small effect. In practice, therefore, the critical tests of T invariance 
involve careful measurements of quantities that should be precisely zero if T is 
a perfect symmetry. The classic example is a static electric dipole moment on 

* A particle can be identical to its mirror image, and, if it’s neutral, to its own antiparticle, 
but it can’t very well be identical to itself-going-backward-in-time (at least, not if anything ever 
happens to it). 
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an elementary particle.* Probably the most sensitive experiment to date is Ram- 
sey’s upper limit on the electric dipole moment of the neutron? 

Id1 < es(6 X cm) (4.76) 

where e is the charge of the proton. As of 1985, no experiment has shown direct 
evidence of T violation. 

Nevertheless, there is a compelling reason to believe that time reversal 
cannot be a perfect symmetry of nature. It comes from the so-called TCP theorem, 
one of the deepest results of quantum field theory.26 Based only on the most 
general assumptions-Lorentz invariance, quantum mechanics, and the idea 
that interactions are camed by fields-the TCP theorem states that the combined 
operation of time reversal, charge conjugation, and parity (in any order) is an 
exact symmetry of any interaction. It is simply impossible to construct a quantum 
field theory in which the product TCP is violated. If, as the Fitch-Cronin ex- 
periment demonstrated, CP is violated, there must be a compensating violation 
of T. Of course, like any assertion of impossibility, the TCP theorem may just 
be a measure of our lack of imagination; it must be tested in the laboratory, and 
that is one reason it is so important to look for independent evidence of T 
violation. But the TCP theorem has other implications that are also subject to 
experimental verification: If the theorem is correct, every particle must have 
precisely the same mass and lifetime as its antiparticle.? Measurements have 
been made on a number of particle-antiparticle pairs; the most sensitive test to 
date is the IC‘ - xo mass difference, which, as a fraction of the KO mass, is 
known to be less than 6 X So the TCP theorem is on extremely firm 
ground theoretically, and it is relatively secure experimentally. Indeed, as one 
prominent theorist has put it, if a departure is ever found, “all hell breaks loose.” 
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PROBLEMS 

4.1. Prove that I ,  R + ,  R - ,  R,, Rb, and R, are all the symmetries of the equilateral 
triangle. [Hint: One way to do this is to label the three corners, as in Figure 4.2. A 
given symmetry operation cames A into the position formerly occupied by A,  B, 
or C. If A - A, th’en either B + B and C - C, or else B - C and C - B. Take 
it from there.] 

4.2. Construct a “multiplication table” for the triangle group, filling in the blanks on 
the following diagram: 

[In row i, column j ,  put the product RiRj . ]  Is this an Abelian group? How can you 
tell, just by looking at the multiplication table? 

4.3. The triangle group, like any other group, has a trivial one-dimensional represen- 
tation. It also has a nontrivial, one-dimensional representation, in which the elements 
are not all represented by 1. Work out this second one-dimensional representation. 
That is, figure out what number (1  X 1 matrix) each group element is represented 
by. Is this representation faithful? 

4.4. Work out the symmetry group of a square. How many elements does it have? 
Construct the multiplication table, and determine whether or not the group is 
Abelian. 

4.5. (a) Show that the set of all unitary n X n matrices constitutes a group. (To prove 
closure, for instance, you must show that the product of two unitary matrices 
is itself unitary.) 

(b) Show that the set of all n X n unitary matrices with determinant 1 constitutes 
a group. 

(c) Show that O(n) is a group. 
(d) Show that SO(n) is a group. 

4.6. Consider a vector A in two dimensions. Suppose its components with respect to 
Cartesian axes x, y, are (ax, a,,). What are its components (uk, a ; )  in a system x‘, 
y’ which is rotated, counterclockwise, by an angle 0, with respect to x, y? Express 
your answer in the form of a 2 X 2 matrix R(0): 

Show that R is an orthogonal matrix. What is its determinant? The set of all such 
rotations constitutes a group; what is the name of this group? By multiplying the 
matrices, show that R(0,)R(O2) = R(0, + 02); is this an Abelian group? 
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4.7. Consider the matrix (i -:) . Is it in the group 0(2)? How about S0(2)? What 

is its effect on the vector A of Problem 4.6? Does it describe a possible rotation of 
the plane? 

4.8. Suppose we interpret the electron literally as a classical solid sphere of radius r, 
mass m, spinning with angular momentum 4 h. What is the speed, u, of a point on 
its “equator”? Experimentally, it is known that r is less than cm. What is the 
corresponding equatorial speed? What do you conclude from this? 

4.9. When you’re adding angular momenta, using equation (4.12), it is useful to check 
your results by counting the number of states before and after the addition. 
For instance, in Example 4.1 we had two quarks to begin with, each could have 
m, = +t or m, = -4,  so there were four possibilities in all. After adding the 
spins, we had one combination with spin 1 (hence m, = 1 ,  0, or - 1) and one with 
spin 0 (m, = 0)-again, four states in all. 
(a) Apply this check to Examp!e 4.2. 
(b) Add angular momenta 2, 1, and 4: list the possible values of the total angular 

4.10. Show that the “original” beta-decay reaction n - p + e would violate conservation 
of angular momentum (all three particles have spin 4). If you were Pauli, proposing 
that the reaction is really n - p + e + V,, what spin would you assign to the 
neutrino? 

4.11. In the decay A++ - p + R+,  what are the possible values of the orbital angular 
momentum quantum number, I, in the final state? 

4.12. An electron in a hydrogen atom is in a state with orbital angular momentum quan- 
tum number I = 1. If the total angular momentum quantum number j is $, and 
the z component of total angular momentum is i h ,  what is the probability of 
finding the electron with m, = +i? 

4.13. Suppose you had two particles of spin 2, each in a state with S, = 0. If you measured 
the total angular momentum of this system, given that the orbital angular mo- 
mentum is zero, what values might you get, and what is the probability of each? 
Check that they add up to 1. 

4.14. Suppose you had a particle of spin $, and another of spin 2. If you knew that their 
orbital angular momentum was zero, and that the total spin of the composite system 
was 1, and its z component was -4, what values might you get for a measurement 
of S, on the spin-2 particle? What is the probability of each? Check that they add 
up to 1 .  

4.15. Check that x*, equation (4.22), are normalized eigenvectors of s,, [equation (4.21)], 
and find the associated eigenvalues. 

4.16. Show that (a12 + lbI2 = 1, [equation (4.24)], provided the spinor in question is 
normalized [equation (4.20)]. 

4.17. (a) Find the eigenvalues and normalized eigenspinors of s,, [equation (4.21)]. 

momentum, and check your answer by counting states. 

(b) If you measured S, on an electron in the state , what values might you 
get, and what is the probability of each? 

(;;:). 4.18. Suppose an electron is in the state 

(a) If you measured S,, what values might you get, and what is the probability of 
each? 
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(b) If you measured S,, what values might you get, and what is the probability of 

(c) If you measured &, what values might you get, and what is the probability of 
each? 

each? 

4.19. (a) 

(b) 

Show that u: = u: = ui = 1. (“1” here really means the 2 X 2 unit matrix; if 
no matrix is specified, the unit matrix is understood.) 
Show that uxuy = iu,, 
These results are neatly summarized in the formula 

uyur = iu,, uzux = iu,. 

‘Tig) = 6, -k icjjkuk 

(summation over k implied), where 6, is the Kronecker delta: 

I i f i = j  

otherwise 
6..  = 

and 6ijk is the Levi-Civita symbol: 

1, if ijk = 123, 231, or 312 
LJk -1, if ijk = 132, 213, or 321 1 0, otherwise 

t . .  = 

4.20. Use the results of Problem 4.19 to show that 
(a) The commutator, [A, B] = AB - BA, of two Pauli matrices is [u l ,  uJ] = 2 i f ~ ~ k a k .  

(b) The anticommutator, {A, B }  = AB + BA, is { u , ,  uJ} = 26,. 
(c) For any two vectors a and b, (u.a)(u. b) = a -  b + ia.(a X b). 

(b) Find the matrix U representing a rotation by 180” about the y axis, and show 

(c) More generally, show that 

4.21. (a) Show that ernor/* = 16,. ‘ 

that it converts “spin up” into “spin down”, as we would expect. 

0 0 u(e) = cos - - i (8 .  u) sin - 
2 2 

where U(0) is given by equation (4.28), B is the magnitude of 0, and 8 = 010. 
[Hint: Use Problem 4.20, part (c).] 

4.22. (a) Show that U, in equation (4.28), is unitary. 
(b) Show that det U = 1. 

[Hint: You can either do this directly (however, see footnote on page 115), or 
else use the results of Problem 4.2 1 .] 

4.23. The extension of everything in Section 4.4 to higher spin is relatively straightforward. 
For spin 1 we have three states (m, = +1 ,  0, -l), which we may represent by 
column vectors: 

respectively. The only problem is to construct the 3 X 3 matrices gx, gy and &. 
The latter is easy: 
(a) Construct S2 for spin I .  
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To obtain sx and 9, it is easiest to start with the “raising” and “lowering” 
operators, S, = S, f is,, which have the property 

S*lsm) = h b ( S  + 1) - m(m f l)ls(m f 1)) 

(b) Construct the matrices g+ and g-, for spin 1. 
(c) Using (b), determine the spin-1 matrices sx and gy.  
(d) Carry out the same construction for spin 5 .  

to the Eightfold Way diagrams in Chapter 1): R-, Z’, 8’, p’, 7, p.  
4.24. Determine the isospin assignments lI 13) for each of the following particles (refer 

4.25. (a) Check that the Gell-Mann-Nishijima formula works for the quarks u, d, 
and s. 

(b) What are the appropriate isospin assignments, II 13), for the antiquarks, 17, d, 
and S?Check that your assignment is consistent with the Gell-Mann-Nishijima 
formula. 
[Since Q, 13, A ,  and S all add, when we combine quarks together, it follows 
that the Gell-Mann-Nishijima formula holds for all hadrons made out of u, d, 
s, G, d and S.] 

4.26. (a) The Gell-Mann-Nishijima formula, equation (4.37), was proposed in the early 
fifties, which is to say long before the discovery of charm, beauty, or truth. 
Using the table of quark properties (on page 47), and the quark isospin 
assignments, equation (4.38), deduce the general formula expressing Q in terms 
of A, 13, S, C, B, and T. 

(b) Because u and dare the only quarks with nonzero isospin, it should be possible 
to express I3 in terms of U (“upness”) and D (“downness”). What’s the formula? 
Likewise, express A in terms of the flavor numbers U, D, S, C, B, and T. 

(c) Putting it all together, obtain the formula for Q in terms of the flavor numbers 
(that is, eliminate A and I3 from your formula in part (a)). This final version 
represents the cleanest statement of the Gell-Mann-Nishijima formula, in the 
three-generation quark model. 

4.27. For two isospin-$ particles, show that I(’). I(2’ = in ’ the triplet state and - a  in the 

4.28. (a) Refemng to equations (4.47) and (4.48), work out all the aN scattering am- 

singlet. [Hint: I,,, = I(’) + I(2); square both sides.] 

plitudes, JNa through JNj, in terms of JNl and JN3.  
(b) Generalize equation (4.49) to include all 10 cross sections. 
(c) In the same way, generalize equation (4.50). 

4.29. Find the ratio of the cross sections for the following reactions, when the total 
CM energy is 1232 MeV: (a) a- + p - KO + Zo; (b) a- + p - K+ + Z-; (c) a- 
+ p +  K + +  Z+. 

4.30. What are the possible total isospins for the following reactions: (a) K+ + p - 2+ 
+ a’; (b) K-  + p - 2’ + a-. Find the ratio of the two cross sections, assuming 
one or the other isospin channel dominates. 

4.31. On thegraph in Figure 4.6 we see “resonances” as 1525, 1688, 1920, and 2190 (as 
well as the one at 1232). By comparing the two curves, determine the isospin of 
each resonance. The nomenclature is N (followed by the mass) for any state with 
I = 4, and A for any state with I = $. Thus the nucleon is N(939), and the “original” 
A is A( 1232). Name the other resonances, and confirm your answers by looking in 
the Particle Data Booklet. 

4.32. The Po can decay into Z+ + a-, 2’ + a’, or Z- + a+ (also A + a’, but we’re not 
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concerned with that here). Suppose you observed 100 such disintegrations, how 
many would you expect to see of each type? 

4.33. (a) The a particle is a bound state of two protons and two neutrons, that is, a 4He 
nucleus. There is no isotope of hydrogen with an atomic weight of four (4H) ,  
nor of lithium 4Li. What do you conclude about the isospin of an a particle? 

(b) The reaction d + d - a + 7ro has never been observed. Explain why not. 
(c) Would you expect 4Be to exist? How about a bound state of four neutrons? 

(b) Show that any functionflx, y,  z )  can be expressed as the sum of an eigenfunction 
f+(x, y ,  z)  with eigenvalue + 1 and an eigenfunction f-(x, y,  z )  with eigenvalue 
- 1 .  Construct the functions f+ and f- , in terms off: 

4.34. (a) Using equation (4.52), prove that the eigenvalues of P are + 1 .  

4.35. (a) Is the neutrino an eigenstate of P? If so, what is its intrinsic parity? 
(b) Now that we know rt and O+ are actually both the K+, which of the decays in 

4.36. (a) Using the information in Table 4.6, determine the G parity of the following 

equation (4.53) actually violates parity conservation? 

mesons: 7r( 140), p(770), w(783), p(549), p‘(958), 4( 1020),f(1270). 
(b) Show that R2110) = (- 1)’110), and use this result to justify equation (4.60). 

4.37. The dominant decays of the p meson are 

p - 2y (39%), p - 37r (56%), 

and it’s classified as a “stable” particle, so evidently none of these is a purely strong 
interaction. Offhand, this seems odd, since at 549 MeVlc2 the p has plenty of mass 
to decay strongly into 27r or 37r. 
(a) Explain why the 27r mode is forbidden, for both strong and electromagnetic 

(b) Explain why the 37r mode is forbidden as a strong interaction, but allowed as 

4.38. For two particles to interconvert, A a B, it is necessary that they have the same 
mass (which in practice means that they must be antiparticles of one another), the 
same charge, the same baryon and lepton numbers. In the Standard Model, with 
the usual three generations, show that A and B would have to be neutral mesons, 
and identify their possible quark contents. Which of these particles have been found, 
so far? Why doesn’t the neutron mix with the antineutron, in the same way as the 
KO and p mix to produce K ,  and K2? Why don’t we see mixing of the neutral 
strange vector mesons KO * and p *? 

4.39. Suppose you wanted to inform someone on a distant galaxy that humans have their 
hearts on the left side. How could you communicate this unambiguously, without 
sending an actual “handed” object (such as a corkscrew, a circularly polarized light 
beam, or a neutrino). For all you know their galaxy may be made of antimatter. 
You cannot afford to wait for any replies, but you are allowed to use English. 

p - a7ry (5%) 

interactions. 

an electromagnetic decay. 





Chapter 5 

Bound States 

Most of this chapter is devoted to the nonrelativistic theory of two-particle 
bound states, with emphasis on hydrogen (e-p'), positronium (e-e'), char- 
monium (cc;), and bottomonium (bz). This material is not used in subsequent 
chapters and may be skimmed, saved for later, or skipped entirely. Two tools 
from elementary quantum mechanics are essential: the Schrodinger equation 
and perturbation theory; readers unacquainted with these subjects should refer 
to the appropriate sections of an introductory quantum text (though the es- 
sential points are reviewed here, as they arise). TheJinal two sections (5.8 
and 5.9) concern relativistic light quark systems-the familiar mesons and 
baryons-about which far less can be said with conjidence. I concentrate on 
the spin/flavor/color structure of the wave functions and develop c1 model for 
estimating masses and magnetic moments. This material does not involve 
the Schrodinger equation or perturbation theory and can be read independently 
of Sections 5.1 through 5.7.  It will be used briefly later on, in the latter part 
of Chapter 9. 

5.1 THE SCHRODINGER EQUATION FOR A 
CENTRAL POTENTIAL 

Until recently, the theory of bound states played a rather minor role in particle 
physics. There was, of course, hydrogen (proton plus electron)-but this (the 
simplest atom) fell in the domain of atomic physics. And there was the deuteron 
(proton plus neutron)-but this (the simplest nontrivial nucleus) belonged more 
properly to nuclear physics. The quark model, though, changed everything. Sud- 
denly the hadrons themselves were bound states-all mesons were two-quark 
systems, and all baryons were three-quark systems. With this dscovery the theory 
of bound states became an important component of elementary particle physics. 

143 
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The analysis of a bound state is simplest when the constituents travel at 
speeds substantially less than c, for then the apparatus of nonrelativistic quantum 
mechanics can be brought to bear. Such is the case for hydrogen and for hadrons 
made out of heavy quarks (c, b, and t). The more familiar light-quark states 
(made out of u, d, and s) are much more difficult to handle, because they are 
intrinsically relativistic, and quantum field theory (as currently practiced) is not 
well suited to bound-state problems. (Most of the techniques available start from 
the premise that the particles are initially free, and free again after some brief 
interaction (a collision, typically), whereas in a bound state, by its nature, the 
particles interact continuously over a long period.) At present, therefore, there 
exists a very rich theory of “charmonium” (cC; the + meson system) and “bot- 
tomonium” (b6, the ‘f system), but comparatively little can be said about the 
excited states of uzi (say) or dd. How can we tell whether a given bound state is 
relativistic or not? The simplest criterion is the following: If the binding energy 
is small compared to the rest energies of the constituents, then the system is 
nonrelativistic.* For example, the binding energy of hydrogen is 13.6 eV, whereas 
the rest energy of an electron is 5 1 1,000 eV-this is clearly a nonrelativistic 
system. On the other hand, quark-quark binding energies are on the order of a 
few hundred MeV, which is about the same as the effective rest energy of u, d, 
or s quarks, but substantially less than c, b, and t (see Table 4.4). So the light 
quark hadrons are relativistic, but the heavy quark systems are not. 

For most of this chapter we shall restrict our attention to nonrelativistic 
bound states of two particles. To establish the framework for this discussion I 
must first review some basic quantum mechanics. ’ The principal foundation 
for nonrelativistic quantum theory is Schrodinger’s equation. I cannot pretend 
to derive the Schrodinger equation-any more than one can derive Newton’s 
laws of motion-it is, after all, an axiom of the theory. But I can perhaps 
make it plausible, as follows. In classical mechanics the sum of the kinetic en- 
ergy ( imv2 = p2/2m) and the potential energy (V(x ,  y,  z ) )  is a constant-the 
total energy ( E ) : t  

1 
2m 
- p 2 + V = E  (5.1) 

In quantum mechanics the momentum p is replaced by the momentum operator 

* In general, the total energy of a composite system is the sum of three terms: (i) the rest 
energy of the constituents, (ii) the kinetic energy of the constituents, and (iii) the potential energy of 
the configuration. The latter two are typically comparable in size (the precise relation is given by the 
virial theorem, which you can look up on any mechanics or quantum text). If the binding energy is 
much less than the constituent rest energies, so too is their kinetic energy, and hence the system is 
nonrelativistic. On the other hand, if the mass of the composite structure is substantially different 
from the sum of the rest masses of the constituents, then the kinetic energy is large and the system 
is relativistic. 

t In a dissipative system (say, one with friction), the mechanical energy is not conserved. But 
on the microscopic level there is no such thing as a dissipative force, and what may have looked like 
nonconservation of energy on the macroscopic scale is simply a conversion of energy into an unseen 
form (typically heat). 
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and energy by the operator 

a 
at 

E - i h -  (5.3) 

Equation (5.1) becomes a collection of derivatives, which we take to act on the 
“wave function,” q ( x ,  y, z, t): 

This is the (time-dependent) Schrodinger equation. The solution (Q) describes 
a particle of mass m in the presence of a specified potential energy function V. 
Specifically, I\E(x, y, z, t)I2 dx dy dz is the probability of finding the particle in 
the volume element d3x = dx dy dz, at time t. Since the particle must be some- 
where, the integral of over all space has to be 1: 

d3x = 1 (5.5)  

We say that the wave function is “normalized.”* 
The Schrodinger equation can be solved by “separation of variables.” To 

begin with, we look for solutions that are simple products of a function of position, 
$(x, y, z), and a function of time,f(t):T 

With this ansatz, equation (5.4) can be written 

The left side depends only on position, the right side depends only on time; the 
only way this equation can hold for all x, y, z, and t is if both sides are in fact 
constant. Physically, this “separation constant” represents the total energy of the 
particle, so we call it E: 

df 
dt 

ih - = Ef (5.9) 

The second of these is easy to solve:$ 

* Notice that a solution to the Schriidinger equation (5.4) can be multiplied by any constant 
and still remain a solution. In practice, we fix this constant by demanding that equation (5.5) be 
satisfied; this process is called “normalizing” the wave function. 

t Of course, most solutions to the Schrodinger equation do not have this form. For a justification 
of the method of separation of variables, see, for example, reference 2, Section 3.3. 

# The general solution to equation (5.9) includes an overall multiplicative constant. However, 
since we’re going to multiplyfby $ [eq. (5 .6) ] ,  we may as well absorb the constant into $ and keep 
fas simple as possible. 
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f(t) = e-iWh (5.10) 

The first [eq. (5.8)] is called the time-independent Schrodinger equation. The 
operator on the left is known as the “Hamiltonian”: 

h 2  
2m 

HE---’+ V (5.1 1) 

and the (time-independent) Schrodinger equation has the form of an eigenvalue 
equation: 

H$ = E$ (5.12) 

$ is an eigenfunction of H, and E is the eigenvalue. Evidently, the complete 
wave function for a particle of mass m and energy E, under the influence of a 
potential energy V(x, y, z),  is 

Q(x, y,  z, t )  = $(x, y, z)e-’E‘’h (5.13) 

where $ satisfies equation (5.8).* 
In the case of a spherically symmetrical (or “central”) potential, Vis a 

function only of the distance from the origin, and we adopt the usual spherical 
coordinates (r, 6, 4), in which the Laplacian, V2 = d2/dx2 + d2/ay2 + a2/dz2 
takes the form2 

The time independent Schrodinger equation can now be solved by further sep- 
aration of variables. Writing 

*(r? 6, 4) = R ( m m ( 4 )  (5.15) 

equation (5.8) reduces to three (ordinary) differential equations for the functions 
R, 8, and a: 

(5.16) 

(5.17) 

(5.18) 

The separation constants, 1 and ml,  have been aptly chosen, for they correspond 
precisely to the orbital angular momentum quantum numbers introduced in 
Chapter 4. The solution to equation (5.18) is easy:? 

* Notice that I\klz = [$I2. For most purposes it is only the absolute square ofthe wave function 
that matters, and we shall work almost exclusively with $. Casually, we often refer to $ as “the wave 
function,” but remember that the complete wave function carries the exponential time dependence. 

t The second (linearly independent) solution, e-’”’!’, is covered by letting rnl run to negative 
values. We could use sin(rnl@) and cos(rnl@) instead, and in electrostatics (where the same problem 
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@($) = e‘m@ (5.19) 

Solutions to equation (5.17) are less familiar; they are the so-called associated 
Legendre functions: 

8 ( e )  = Pin’(C0S 0) (5.20) 

where (in case you’re interested)* 

(5.21) 

Actually, it is customary to combine 8 and @, with a conventional normalization 
factor, to form spherical harmonics:? 

(21 + 1) ( I  - m,)! 
(- l)mPP(cos B)eimlB (5.22) 

Spherical harmonics are tabulated in many places (including the Particle Data 
Booklet); a few of the more useful ones are given in Table 5.1. 

Please don’t let the complicated-looking formulas distract you. I include 
them mainly for completeness, but also to demonstrate that there is nothing 
mysterious about the angular part of the wave function; it’s just that it involves 
functions that are not terribly familiar. Notice, however, that in spite of the fancy 
names, they’re only combinations of sines, cosines, and exponentials. Our real 
concern is not with the angular dependence at all, but rather with equation 
(5.16), which carries the sole reference to the specific potential. We can simplify 
the situation slightly by introducing a new function: 

u(r) = rR(r) (5.23) 

in terms of which equation (5.16) becomes 

(5.24) 

We call this the “radial Schrodinger equation”; curiously enough, it has exactly 
the same form as equation (5.8) for one dimension, except that the potential is 
augmented by the so-called “centrifugal barrier,” ( h2/2m)l(1 + l)/r2. 

Equation (5.24) is about as far as we can pursue the matter in general 
terms; at this point we have to put in the particular potential V(r)  for the problem 
at hand. The strategy then will be to solve the radial equation for u(r) and combine 

arises in solving Laplace’s equation) we would, since the potential must be real. But there is no 
such constraint on +, and in quantum mechanics the exponential form (5.19) is preferable, because, 
unlike the sine and cosine, it is an eigenstate of L,. Notice that mI must be an integer, in order that 
a(@ + 27r) will equal @(@); after all, @ and 6 + 27r describe the same geometrical point. 

* Notice that equation (5.21) makes sense only if I ,  like ml, is an integer, and gives zero if 
mI > 1. There exist solutions to equation (5.17) for other values of I and MI. but they do not yield 
normalizable wave functions. 

t This assumes ml 2 0; for mi < 0, we use Y p  = (-l)ml(Yiml)*. 
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TABLE 5.1 SPHERICAL HARMONICS FOR I = 0, 1 , 2 ,  AND 3 

= dj& ( 5  cos’ 8 - 3 cos 8), 

yf = - 4; sin 8 eid, = - dg sin 8 cos 8 ei6 

Yi = - sin 8 (5 cos’ 0 - 1) ei* 

the result with the appropriate spherical harmonic to get the full wave function 
+. In the course of solving the radial equation, however, we shall discover that 
only certain special values of E lead to acceptable results. For most values of E 
the solution to equation (5.24) blows up at large r, and yields a nonnormalizable 
wave function. Such a solution does not represent a possible physical state. This 
rather technical detail is the source of the most striking and important feature 
of quantum mechanics: a bound system cannot have just any old energy (as it 
could classically); instead, the energy can take on only certain specific values, 
the so-called “allowed energies” of the system. Indeed, our real concern is not 
with the wave function itself, but with the spectrum of allowed energies. 

5.2 THE HYDROGEN ATOM 

The hydrogen atom consists, of course, of an electron and a proton. The proton, 
however, is so heavy (relatively) that it essentially just sits at the origin; the wave 
function in question is that of the electron. Its potential energy, due to the electrical 
attraction of the nucleus, is (in Gaussian units) 

e’ 
r 

V(r) = - - (5.25) 

When this potential is put into the radial equation, it is found (see Problem 5.5) 
that normalizable solutions occur only when E assumes one of the special values 

me4 
2h2n2 

En=--- - -a2mc2($) = -13.6 eV/n2 ( n  = I ,  2, 3 , .  . .) (5.26) 

where 
e2 1 
hc 137.036 

a = - = -  (5.27) 
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is the fine structure constant. The corresponding (normalized) wave function is4 

(5.29) 
t i2  

me 
where a = 7 = 0.529 X lo-* cm 

is the “Bohr radius” (roughly speaking, the radius of a hydrogen atom) and 

(5.30) 

is an associated Laguerre polynomial. Obviously, the wave function itself is a 
bit of a mess, but that’s not really what concerns us. The crucial thing is the 
formula of the allowed energies, equation (5.26). [This result was first obtained 
by Bohr in 1913 (more than a decade before the Schrodinger equation was 
introduced) by a brilliant (although, in retrospect, extraordinarily lucky) amalgam 
of classical ideas and primitive quantum theory, a blend, as Rabi put it, of 
“artistry and effrontery.”] Observe that the wave function is labeled by three 
numbers: n, (the “principal quantum number”), which can be any positive in- 
teger-it determines the energy ofthe state [eq. (5.26)]; 1, an integer which ranges 
from 0 up to n - 1 and specifies the total orbital angular momentum [eq. (4.2)]; 
and ml, an integer which can assume any value between -1 and +I,  giving the 
z component of the angular momentum [eq. (4.4)]. Evidently, there are 21 + 1 
different mts, for each I ,  and n different l’s, for each n. The total number of 
distinct states that share the same principal quantum number n, and hence the 
same energy, is, therefore 

n- 1 

2 (21 + 1)  = yt2 

I= 0 

(5.31) 

This is called the degeneracy of the nth energy level. Hydrogen is a surprisingly 
degenerate system; spherical symmetry alone dictates that the 21 + 1 states with 
a given value of the total angular momentum should be degenerate, since they 
differ only in the orientation of L, but this suggests a sequence 1, 3, 5, 7, . . . , 
whereas the energy levels of hydrogen have much higher degeneracies: 1,  4, 9, 
16, . . . , So far, however, we have neglected the electron’s spin, as well as a small 
relativistic effect. Their inclusion, as we shall see in the next section, leads to 
corrections that “lift” the “extra” degeneracy, splitting the Bohr energies into 
groups of closely spaced levels. 

Before coming to that, however, I should describe how the quantized energy 
levels of hydrogen reveal themselves in the laboratory, for in practice we do not 
measure the energies themselves, but rather the wavelength of the light emitted 
when the electron makes a transition from a higher level to a lower one (or the 
light absorbed when it goes the other way).5 The photon cames the dzference 
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in energy between the initial and final states. According to the Planck formula 
[eq. (1. l)], then 

The emitted wavelength, therefore, is given by 

where 
me4c 
4xh3 

RE- 

( 5 . 3 3 )  

(5.34) 

This is the famous Rydberg formula for the spectrum of hydrogen. It was dis- 
covered experimentally by nineteenth-century spectroscopists, for whom R was 
simply an empirical constant. The greatest triumph of Bohr’s theory was its 
derivation of the Rydberg formula, and its calculation of R in terms of the 
fundamental constants m, e, c, and h (see Fig. 5.1). 

5.3 FINE STRUCTURE 

As the precision of experimental spectroscopy improved, small departures from 
the Rydberg formula were detected. Spectral lines were resolved into doublets, 
triplets, and even larger families of closely spaced peaks. This fine structure is 
actually attributable to two distinct mechanisms: one a small relativistic correc- 
tion, and the other a magnetic coupling between the electron’s spin and its 
orbital motion. We shall analyze the two effects separately, and then com- 
bine them. 

But first a word about perturbation theory. Suppose we have solved the 
Schrodinger equation for some Hamiltonian H, in the sense that we know the 
allowed energies E, and the corresponding wave functions $, ( j  being whatever 
collection of indices is used to label the states; in the case of hydrogen, it stands 
for n, 1, and mr). Now suppose we change the Hamiltonian slightly, adding a 
small perturbation AH, so that the new Hamiltonian is  H + AH. This will 
presumably displace the energy levels a bit, and we may ask the question: By 
how much, AE,, is theflh energy level shifted? The answer, to good approxi- 
mation, is that AE, is the average value of AH, as computed in the state $, (see 
Problem 5.8):* 

AE, = ( A H ) ,  = $:(AH)$, d3x (5.35) 

* I think this is a reasonably plausible result, but if you want to see it derived, look in any 
introductory quantum text (such as those in ref. I )  under “perturbation theory.” 
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5.3.1 The Relativistic Correction 

In developing the Schrodinger equation, I used the classical formula for kinetic 
energy: T = p2/2m. The relativistic formula (3.45), expressed in terms of p, is 

T,, = Vp’c’ + m2c4 - me2 = me’[- - 1 1  

= mc2[1 + !(p/mc)’ - { ( p / m ~ ) ~  + * * * -11 

=---+ P’ P4 . . .  (5.36) 
2m 8m3c2 

The lowest-order relativistic correction to the Hamiltonian is therefore 

(5.37) 

Now, to apply equation (5.35), we need the expectation value of p4 (using the 
quantum replacement (5.2) for p )  in the state I ) ~ , ~ , ~ ,  . . . , and that does not look 
easy. Fortunately, we can get around it by using the fact that in such a state 

-- ’’ - En - V 
2m 

(5.38) 

Thus 

(5.39) 
1 

2mc AE,,, = - 7 ( E ;  - 2E,(V) + (V’)) 

Since V = -e2/r, we now require only the expectation values of l / r  and l/r2. 
These are worked out in the more advanced quantum texts? 

1 (i) =nza (5.40) 

(5.41) 

where a, again, is the Bohr radius (5.29). Using these expressions in equation 
(5.39), we find that 

AE,,, = -a4mc2 (5.42) 

The Bohr energy levels go like Ly’mc’ [eq. (5.26)]; the relativistic correction 
cames two more powers of a,  and hence is smaller by a factor of about 
So we’re tallung about a very small perturbation indeed. Thefine structure con- 
stant, a,  owes its name to the fact that it (or rather, cy2) sets the relative scale of 
the fine structure in hydrogen.* 

* However, one might say equally well that a2 sets the scale of the Bohr levels themselves, in 
the sense that a2 = -2E, fmc2. 
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5.3.2 Spin-Orbit Coupling 

From the electron’s point of view it is the proton that circles around, and this 
orbital motion creates a magnetic field at the center given by* 

ev B = -  
cr 

or, in terms of the electron’s orbital angular momentum, L = rmv: 

L 
e 

mcr 
B = -  

(5.43) 

(5.44) 

The spinning electron constitutes a tiny magnetic dipole, with dipole moment? 

e 
mc 

p = - - s  (5.45) 

From classical electrodynamics we know that the energy of a magnetic dipole p 
in the presence of a magnetic field B is7 

w= - P’B (5.46) 

But the electron is not in an inertial frame;$ to make all this rigorous we should 
really speak of the “instantaneously comoving frame” of the electron, the inertial 
system whose velocity coincides with that of the electron at a given moment. 
Following the motion of the electron, then, involves a continuous succession of 
infinitesimal Lorentz transformations, as we step from one comoving frame to 
the next. This procedure leads to the so-called Thomas precession,8 which in the 
present context simply introduces a factor of i. The Hamiltonian for spin-orbit 
coupling is thus 

AH,, = (L-S)  2m2c2r3 (5.47) 

* You can get this most simply by looking up the formula for the magnetic field at the center 
of a circular ring, B = 2al/rc, and using I = e/t for the “proton current,” where t = 2ar/v is the time 
it takes to complete one revolution. Alternatively, exploit the fact that if B = 0 in one inertial system 
(the proton’s), then B = -v/c X E in a system moving with velocity v; in this case E is the field o f  
the proton: e/r2. 

t The proportionality factor between p and S is known as the gyromagnetic ratio. Classically, 
it should have the value -e/2mc, and this is correct for orbital angular momentum. But for relativistic 
reasons spin is “twice as effective as it ought to be” in producing a magnetic dipole. One of the major 
successes of Dirac’s original theory of the electron was its explanation of this extra 2. As it happens, 
however, even this is not quite right; there are minute corrections introduced by quantum electro- 
dynamics that were first calculated by Schwinger in the late forties. By now both experimental and 
theoretical determinations of the anomalous magnetic moment of the electron have been camed out 
to fantastic precision, and stunning agreement. The Particle Data Booklet lists 13 significant digits! 
For our present purpose, though, the magnetic moment of the electron is eh/2mc, the Bohr magneton. 

4 One can, of course, analyze the whole problem in the rest frame of the proton. From this 
perspective there is no magnetic field, and spin-orbit coupling is attributable to the torque T on a 
magnetic dipole m that moves with velocity v through an electric field E: T = -( l/c)m X (v X E). 
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In the presence of spin-orbit coupling neither L nor S is separately con- 
served; the conserved quantity is the total angular momentum, J = L + S.9 
Squaring, we have 

J 2  = L2 + S2 + 2L-S (5.48) 

and hence, using expressions (4.2) and (4.6), we have 

L.S = f h 2 [ j ( j  + 1) - 1(1+ 1) - s(s + l)] (5.49) 

wherej, I ,  and s are the quantum numbers describing total, orbital, and spin 
angular momenta, respectively (for the electron, s = 4, of course). This time we 
need the expectation value of r-3: * 

1 
(+) = l(1 + 4)(1+ l)n3a3 

Putting this into equation (5.35), we find 

[j( j + 1) - 1(1+ 1) - i ]  
AEso = a4mc2 

4n341 + 4)(1 + 1) 

(5.50) 

(5.51) 

Notice that this is of the same order as the relativistic correction, a4mc2, even 
though the physical agencies involved are (in this treatment) entirely different. 
The combination of the two effects, equations (5.42) and (5.5 l), yields the total 
fine structure for hydrogen. Using the fact that j can only be 1 + 4 or 1 - f [eq. 
(4.12)], we obtain (Problem 5.9) 

(5.52) 

Curiously, this formula is identical to that for the relativistic correction alone, 
equation (5.42), except that 1 is replaced by j .  The energies are all depressed 
(AEfs is negative). Since 1 can take on any integer value from 0 to n - 1, j can 
be any half-integer from 4 to n - f, so the nth energy level, En, splits into n 
sublevels (see Fig. 5.2). 

5.4 THE LAMB SHIFT 

A striking feature of the fine structure formula (5.52) is that it depends only on 
j ,  not on 1; in general, two different values of 1 share the same energy. For example, 
the 2S1/2 ( n  = 2,1= 0 , j  = 4) and 2P1/2 (n  = 2, 1 = 1 , j  = 4) states should remain 
perfectly degenerate. In 1947 Lamb and Retherford performed a classic exper- 
iment" which demonstrated that this is not, in fact, the case; the Sstate is slightly 

* See reference 6 .  When 1 = 0, ( r - 3 )  blows up. Really, this case should be handled separately. 
Fortunately, the I cancels out, and our final result, equation (5.52),  is correct even when 1 = 0. The 
spin-orbit coupling by itself is zero, of course, when the orbital angular momentum vanishes, but 
there is a compensating correction to the relativistic part of the fine structure, having to do with the 
non-Hermiticity of p4 when I = 0. 



n = l  \ 
L--_ j= ’  

l = O  I =  1 1 = 2  1=3  
(SI (PI ( D l  ( F )  

Figure 5.2 Fine structure in hydrogen. The nth Bohr level (fine line) splits into n sublevels 
(dashed lines), characterized by j = f ,  i, . . . , (n - i). Except for the last of these, two 
different values of 1 contribute to each level: 1 = j - f and 1 = j + f. Spectroscopists’ 
nomenclature-S for 1 = 0, P for 1 = 1, D for 1 = 2, F for 1 = 3 4 s  indicated. All levels 
are shifted downward, as shown (the diagram is not to  scale, however). 

higher in energy than the P state. The explanation of this Lamb shift was provided 
by Bethe, Feynman, Schwinger, Tomonaga, and others: it is due to the quanti- 
zation of the electromagnetic j e l d  itself: Everywhere else in this discussion-in 
the calculation of the Bohr levels, in the derivation of the fine structure formula, 
and even in the analysis of hyperfine structure in the next section-the electro- 
magnetic field is treated entirely classically. Coulomb’s law is the basis for equa- 
tion (5.25); the Biot-Savart Law yields equation (5.43); the Lorentz force law is 
responsible for equation (5.46). The Lamb shift, by contrast, is an example of a 
radiative correction in quantum electrodynamics, to which the semiclassical* 
theory is insensitive. In the Feynman formalism, it results from loop diagrams, 
such as those in Figure 5.3, which we shall discuss quantitatively later on. 

Qualitatively, the first diagram in Fig. 5.3 describes spontaneous production 
of electron-positron pairs in the neighborhood of the nucleus, leading to a partial 
screening of the proton’s charge (Fig. 2.1). The second diagram reflects the fact 
that the ground state of the electromagnetic field is not zero;” as the electron 
moves through the “vacuum fluctuations” in the field, it jiggles slightly, and this 
alters its energy. The third diagram leads to a tiny modification of the electron’s 

* I call it semiclassical because the electron is treated quantum mechanically, whereas the 
electrodynamic field is treated classically. 
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Vacuum polarization Electron mass renormalization Anomalous magnetic moment 

Figure 5.3 Some loop diagrams contributing to the Lamb shift. 

magnetic dipole moment; equation (5.45) picks up a factor (1 + 4 2 ~ )  = 1.001 16. 
We are not in a position to calculate these effects now, but for completeness, 
here are the results:’* 

For I = 0 

1 
A E L ~ , , , ~  = a5mc2 - { k ( n ,  0 ) }  (5.53) 4n3 

where k(n,  0) is a numerical factor that varies slightly with n, from 12.7 (for 
n = 1) to 13.2 (for n - a). 

For I # 0 

for j  = 1 -t f (5.54) 
1 

A E L ~ ~ ~  = a5mc2 - {k (n .  I) t 4n3 
where k(n, I) is a very small number (less than 0.05) which varies slightly with 
n and 1. Evidently the Lamb shift tiny, except for states with 1 = 0, for which it 
amounts to about 10% of the fine structure. However, because it depends on I,  
it lifts the degeneracy of the pairs of states with common n and j ,  on Figure 5.2, 
and in particular it splits the 2Sl12 and 2PIl2 levels (See Problem 5.1 1). 

5.5 HYPERFINE STRUCTURE 

The fine structure and the Lamb shift are minute corrections to the Bohr en- 
ergy levels, but they are not the end of the story; there is a refinement that is 
smaller still (by a factor of a thousand), due to the spin of the nucleus. The pro- 
ton, like the electron, constitutes a tiny magnet, but because it is so much 
heavier, the same angular momentum (fh) corresponds to a much smaller 
dipole moment: * 

e (5 .55)  w p  = YP - SP 
mPC 

(The proton is a composite object, and its magnetic moment is not simply 
eh/2m,c, as it would be for a truly elementary particle of spin f. Hence the 

* In fancier language, the proton’s gyromagnetic ratio is much smaller than the electron’s 
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Figure 5.4 Field of a magnetic dipole. In the plane of the current loop, B points down 
outside the ring, and up inside the ring. 

factor y,, whose experimental value is 2.7928. Later on we shall see how to 
calculate this quantity in the quark model.) The nuclear spin interacts with the 
electron’s orbital motion by the same mechanism as the spin-orbit contribution 
to the fine structure, only this time there is no hanky-panky about changing 
reference systems, and no Thomas precession to worry about. Referring to our 
earlier calculation [eq. (5.47)], we find that the nuclear spin-orbit interaction is* 

-IpeL (L * S,) mm,c2r3 AH,,, = (5.56)  

At the same time, the proton spin also interacts directly with the electron 
spin. In many books on electricity and magneti~rn’~ it is shown that a magnetic 
dipole p sets up a field 

B(r) = A [ 3 
- p] r (5.57) 

Actually, this formula is not quite right; if we picture the dipole as a tiny current 
loop, equation (5.57) says that in the plane of the loop (where I.L r = 0) B always 
points in the direction opposite to p, whereas inside the loop B is in fact parallel 
to p (see Fig. 5.4). It is true that as we shrink the loop down, to make a “perfect” 
point dipole, the region where the field has the “wrong” direction gets smaller 
and smaller. On the other hand, its strength gets larger and larger, since all those 
field lines must pass through the ring. The correct handling of this “anomalous” 
field is a rather delicate problem in classical  electrodynamic^;'^ the conclusion 
is that 

( 5 . 5 8 )  

where s3(r) is the Dirac delta function?-infinite at r = 0 and zero elsewhere. 
As long as you stay away from the origin, the “nayve” formula (5.57) is perfectly 

* Note that equation (5.44) picks up a minus sign this time, since we’re talking about the field 
of an orbiting electron, not a proton. 

t The delta function is discussed in Appendix A. For now, all you need to know is that 
Jf(r)a3(r)d3r = f ( O ) .  Technically, the first term in equation (5.58) applies to the region outside a tiny 
sphere of radius 6 ,  and the second term to the region inside. At the end of a calculation c is set equal 
to zero. 
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correct. However, as we shall soon see, the delta function term makes a crucial 
contribution to hyperfine structure. In the present case the proton sets up the 
field B, and the energy of the electron in its presence is given by equation (5.46). 
Thus the spin-spin Hamiltonian is 

where Sp and S, are the spin angular momenta of the proton and electron, 
respectively. 

Together, the nuclear spin-orbit interaction (5.56) and the proton-electron 
spin-spin coupling (5.59) are responsible for the hyperfine structure of hydrogen. 
To calculate the resulting energy shifts, we again use the standard formula from 
perturbation theory (5.35). At this point the treatment is quite different for states 
with 1 = 0, so we'll consider them first. Since the orbital angular momentum is 
zero, there is no spin-orbit coupling. Moreover, because the wave function is 
spherically symmetrical (G(0, 4) = l/G) the expectation value of the first 
term in equation (5.59) vanishes (see Problem 5.12). This leaves only the delta 
function contribution 

From equation (5.28) we find (Problem 5.13) that 

(5.60) 

(5.61) 

Let (5.62) 

be the total angular momentum of the atom, with quantum numbersfand mf; 
in the present case L = 0, so F2 = S: + S; + 2S , .Sp ,  and hence 

F = L + S, + S, = J + S, 

i12 2 [ 2 31 
ti2 

2 
S p .  S, = - [f(f+ 1) - ~ p ( ~ p  + 1) - SJS, + I)] = - f ( f+ 1) - - (5.63) 

Thus (5.64) 

Comparing the fine structure formula (5.52), we see that the difference in scale 
is due to the mass ratio (m/mp) in front; it follows that hyperfine effects in 
hydrogen are about one thousand times smaller. Notice that fcan take on two 
values: zero, in the singlet state (when the spins are oppositely aligned) and one, 
in the triplet state (when the spins are parallel). Thus each 1 = 0 level divides 
into two, with the singlet pushed down and the triplet pushed up (Fig. 5.5). For 
n = 1 the energy gap is 

(5.65) 

corresponding to a photon of wavelength 
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Triplet 

/ ’  En (modified by fine / 

structure and lamb shift) / 

\ 
\ 
\ 
\ 
\ 

Figure 5.5 Hyperfine splitting for 1 = 0. 

27rhc A =- -  - 21.1 cm 
t 

(5.66) 

This is the transition that gives rise to the famous “21-centimeter line” in mi- 
crowave astronomy.15 

For 1 = 0, as we have seen, the hyperfine structure comes entirely from 
the “contact” term in the spin-spin coupling; for 1 # 0 it is exactly the reverse. 
This time the delta function contributes nothing; the wave function (5.28) goes 
like r‘ at small r, so $(O) = 0 when 1 > 0. Physically, the centrifugal (pseudo-) 
force keeps the electron away from the nucleus. Accordingly, we now have 

(5.67) 

This expectation value is calculated, for instance, by Bethe and Salpeter;16 the 
result is 

As it turns out, this formula works for 1 = 0 as well, since in that casej  = f ,  
and we recover equation (5.64). Because the proton carries spin f ,  fcan only 
b e j  + 4 o r j  - f ;  with this in mind, equation (5.68) simplifies slightly: 

Each of the levels in Figure 5.2, characterized by particular values of n, I ,  andj, 
is split into two-one moving up, and the other down. 

5.6 POSITRONIUM 

The theory we have developed here for ordinary hydrogen carries over, with 
some modifications, to the so-called “exotic” atoms, in which either the proton 
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or the electron is replaced by some other particle. For instance, one can make 
muonic hydrogen (p+p-),  pionic hydrogen (p’r-) ,  positronium (e’e-), muonium 
(p’e-), and so on. Of course, these exotic states are unstable, but many of them 
last long enough to exhibit a well-defined spectrum. In particular, positronium 
provides a rich testing ground for quantum electrodynamics. It was analyzed 
theoretically by Pirenne in 1944, and first produced in the laboratory by Deutsch 
in 195 1 . I 7  In recent years positronium has assumed a special importance as the 
model for quarkonium. 

The most conspicuous difference between positronium and hydrogen is 
that we are no longer dealing with a heavy, essentially stationary nucleus, around 
which the electron orbits, but rather with two particles of equal mass, both orbiting 
around the common center. As in classical mechanics, this two-body problem 
can be converted into an equivalent one-body problem with the reduced mass 

mlm2 
m1 + m2 

mred =Z 

For if the two-body Hamiltonian has the form 

Pi Pi H = - + - + V(rl, 1-2) 
2ml 2m2 

(5.70) 

(5.71) 

and if the potential depends only on the separation distance, r = Ir2 - rll, and 
if we work in the CM system, where p1 = -p2 = p, then 

(5.72) 

which is the Hamiltonian for a single particle of momentum p and mass mred, 
whose “radial” coordinate, r, is the distance between 1 and 2. The unperturbed 
Hamiltonian for positronium is of the form (5.71), with ml  = m2 = m, so that 
mred = m/2 and V = -e2/r,  the same as hydrogen. So we get the unperturbed 
energy levels for positronium by the simple substitution m - m/2 in the Bohr 
formula (5.26):* 

E F  = ‘ E  = - a2mc2- (5.73) 
1 

4n2 

For example, the ground-state binding energy is 13.6 eV/2 = 6.8 eV. The un- 
perturbed wave functions are the same as before (5.28), except that the Bohr 
radius, which goes like l /m [see eq. (5.29)], is doubled: 

apos = 2a = 1.06 X lo-* cm (5.74) 

The perturbations run much as before, apart from pesky numerical factors. 

( n  = 1, 2, 3 , .  . .) 

For example, the relativistic correction picks up a factor of 2: 

* In the case of ordinary hydrogen, the reduced mass differs from the electron mass by only 
a very small amount, about 0.05%. Nevertheless, technically the m in the Bohr formula is the reduced 
mass, and this does lead to observable differences between the spectra of hydrogen and deuterium. 
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(5.75) 

On the other hand, the expectation value of p4 in the hydrogenic state qnlm goes 
like ( m ~ ) ~ ,  so for positronium it is reduced by ( $)4. All told, then, the relativistic 
correction for positronium is one eighth that of hydrogen [eq. (5.42)]. More 
significant is the fact that in positronium the hyperfine splitting is of the same 
order as the fine structure (a4mc2), since the mass ratio (mlm,) which suppresses 
proton spin effects in hydrogen is one in positronium.* Meanwhile, since the 
“nucleus” (e’) is not stationary, we are no longer working with a truly static 
potential, and there is a new correction due to the finite propagation time for 
the electromagnetic field. This can be calculated using classical electrodynamics; 
it has the form 

e2 1 
AH,,, = - - - [P2 + (P’ ?)*I 2m2c2 r 

(5.76) 

and its contribution is also of order (a4mc2). When all this is put together, the 
fine structure formula for positronium is found to be” 

(5.77) 

where t = 0 for the singlet spin combination, whereas for the triplet 

1 fo r j  = 1 + 1 -(31+ 4) 
( 1  + 1)(21+ 3) ’ I 

(5.78) 

(31 - 1 )  
fo r j  = 1 - 1 ! -  l(21- 1 )  ’ J 

[In hydrogen, where the proton spin (S,) contributes only at the hyperfine level, 
we used J for the sum of the electron’s spin and orbital angular momentum 
(J = L + S& for the total angular momentum we needed a new letter: F = J 
+ S, = L + S, + S,. In positronium the two spins contribute on an equal footing, 
and it is customary to combine them first (S = SI + S 2 )  and use J for the total: 

The Lamb shift, of order a5mc2, makes a smallish correction to this; how- 
ever, since the “accidental” degeneracy is already broken at the fine structure 
level in positronium, the Lamb shift loses much of its interest, and I shall not 
consider it here. There is, however, an entirely new perturbation, with no analog 

J = L + S = L + SI + S2.1 

* This leads to some terminological confusion in the literature. I’ll use the words “fine structure” 
for nll perturbations of order a4rncz, except the pair annihilation term (see below) including the spin- 
spin and positron spin-orbit couplings, whose analogs in hydrogen would be called “hyperfine.” 
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Figure 5.6 Pair annihilation diagram, 
which affects the spectrum of positronium 
but does not occur in hydrogen. 

in hydrogen, resulting from the fact that e+ and e- can annihilate temporarily 
to produce a virtual photon. In the Feynman picture this process is represented 
by the diagram in Figure 5.6. Because it requires that the electron and positron 
coincide, this perturbation is proportional to 1+(0)l2, and hence occurs only when 
1 = 0. [See remarks before eq. (5.67).] Moreover, since the photon carries spin 
1, it takes place only in the triplet configuration. We are not in a position yet to 
calculate this correction, but it raises the energy of the triplet S states by an 
amount 

(I = 0, s = 1) (5.79) 
1 

AEannih. = a4mc2 - 4n3 

Note that it is of the same order as the fine structure. The complete splitting of 
the n = 1 and n = 2 Bohr levels in positronium is indicated on Figure 5.7. 
[Positronium states are conventionally labeled n(2s+1)b, with 1 given in spectros- 
copist’s notation (S for 1 = 0, P for 1 = 1, D for I = 2, etc.), and s the total spin 
(0 for the singlet, 1 for the triplet).] 

As in the case of hydrogen, positronium can make transitions from one 
state to another with the emission or absorption of a photon, whose wavelength 
is determined by the difference in energy between the two levels. Unlike hydrogen, 
positronium can disintegrate completely, the positron annihilating the electron 
to produce two or more real photons. (Why can’t they go to a single real photon?) 
The charge conjugation number for positronium is (- l)‘+’, while for n photons 
C = (see page 129). Thus charge conjugation invariance prescribes the 
selection rule 

(-l)’+s = (-1Y (5.80) 

for the decay of positronium in state I, s into n photons. Since the positron and 
electron overlap only when 1 = 0, such decays occur only from S states.* Evi- 
dently, the singlet (s = 0) must go to an even number of photons (typically two), 
whereas the triplet (s = 1) must go to an odd number (typically three). As we 

* Actually, positronium can in principle decay directly from a state with I > 0 by a higher- 
order process, but it is much more likely to cascade down to an S state first, and decay from there. 
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shall see in Chapter 7, the two-photon annihilation cross section* for low relative 
velocity o in the singlet configuration is 

d = 4..’(&) (5.81) 

In terms of this cross section, the decay rate is 

r = a~l$(o)12 (5.82) 

Using equation (5.61) with the Bohr radius appropriate to positronium [eq. 
(5.74)], we obtain 

1 r = a5mc2 - 
2hn3 

In particular, the lifetime, T = T1, of the ground state is 

2h 
a5mc2 T = - = 1.25 X lO-’’sec 

5.7 QUARKONIUM 

(5.83) 

(5.84) 

In the quark model all mesons are two-particle bound states, qlq2, and it is 
natural to ask if the methods we have developed for hydrogen and positronium 
can be applied to mesons as well. There are two immediate difficulties with this 
program: 

1. Unlike hydrogen and positronium, in which the forces at work are en- 
tirely electromagnetic and well understood, quarks are bound by the strong force. 
We don’t know what potential to use, in place of Coulomb’s law, or what the 
strong analog to magnetism might be, to obtain the spin couplings. In principle, 
these are derivable from chromodynamics, but no one at present knows how to 
do the calculation. Still, we can make some educated guesses, for chromodynam- 
ics is very similar in structure to electrodynamics, except for some nonlinear 
terms which, in the light of asymptotic freedom, probably don’t contribute much 
at short distances. In the language of QCD (quantum chromodynamics), the 
short-distance behavior is dominated by one-gluon exchange, just as in QED 
(quantum electrodynamics) it is dominated by one-photon exchange. Since the 
gluon and the photon are both massless spin-1 particles, the interactions are, in 
this approximation, identical, apart from the overall coupling constant (as in 
place of a )  and various so-called “color factors,” which result from counting the 
number of different colors of gluons that contribute to a given process. All of 
this will be discussed in Chapter 9; for now, the essential point is that at short 
range we expect a Coulombic potential, V - l /r,  and a fine-hyperfine structure 
that is qualitatively similar to that of hydrogen and positronium. On the other 

* This paragraph anticipates some material on cross sections, decay rates, and lifetimes that 
will be discussed in Chapter 6. It is included here for completeness. 
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hand, at large distances we have to account for quark confinement: the potential 
must increase without limit. The precise functional form of V(r)  at large r is 
rather speculative; some authors favor a harmonic oscillator potential, V - r2, 
others a logarithmic dependence, V - ln(r). Perhaps the simplest is a linear 
potential, V - r, corresponding to a constant force. The fact is, any of these can 
match the data presently available reasonably well, because they do not differ 
substantially over the rather narrow range of distances for which we have sensitive 
probes. For our purposes, then, we may as well choose 

V(r)  = - 
4 a,hc 
3 r  

+ For -- (5.85) 

where a, is the chromodynamic analog to the fine structure constant, and $ is 
the appropriate color factor, which we’ll calculate in Chapter 9. Experimentally, 
Fo is about 16 tons (!), which is to say that a quark and an antiquark attract one 
another with a force of at least 16 tons, regardless of how far apart they are.* 
This perhaps makes it easier to understand why no one has ever managed to 
pull a quark out of a hadron. 

2. The light quark (u, d, s) mesons are intrinsically relativistic, since the 
binding energies (typically a few hundred MeV) are not small compared to the 
constituent masses. Everything we have done was based on nonrelativistic quan- 
tum mechanics, in particular, the Schrodinger equation. It is true that we included 
a relativistic correction, but it was only a lowest-order approximation to begin 
with, and the use of perturbation theory for this and the other contributions to 
fine and hyperfine structure was predicated on the assumption that they make 
very small modifications in the energy levels (the splitting is grossly exaggerated 
in Figures 5.2 and 5.7). Unfortunately, an exact solution of the relativistic bound- 
state problem is not available at this stage. For the heavy quarks (c, b, t) ,  though, 
the nonrelativistic theory should work reasonably well.? Even here, however, 
the binding energy ( E )  is such a substantial fraction of the total that we are 
disposed to regard the various energy levels as representing dzflerent mesons, 
with masses given by 

M =  ml + m2 t E/c2 (5.86) 

Shortly before the discovery of the I), Politzer and Appelquist’’ suggested 
that if a heavy “charm” quark existed (as Glashow and others had proposed) it 
should form a nonrelativistic bound state cC; with a spectrum of energy levels 

* At extremely short distances Fo and as themselves decrease, leading to asymptotic freedom, 
but for now we shall treat them as constants. 

t In the case of a purely Coulombic potential, E/mcZ - a’ [eq. (5.26)], so the binding energy 
is a fixed fraction of the rest energy of the constituents, regardless of their mass. If this were true in 
chromodynamics, the heavy quark mesons would be no less relativistic than the light ones. However, 
two things work in our favor here, both attributable to the fact that a bound state of two heavy 
particles is typically smaller than one of two light particles [the Bohr radius, for example, goes like 
l /m (eq. (5.29)]: (i) the light quark mesons are more sensitive to the confining term in the potential, 
and the binding energies of a linear potential go like ??-‘I3, not m, and (ii) because of asymptotic 
freedom, 01, itself is smaller for the heavy quark states; experimentally, it’s about 0.5 for the $J meson, 
but closer to 0.2 for the J/. 
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similar to positronium. They called the system “charmonium” (which does more 
to emphasize the parallel than to beautify the language). When the $ was found, 
in 1974, it was quickly identified as the 13S1 state of charmonium. (In the SLAC 
experiments the $ was produced from e’e- annihilation through a virtual photon: 
e+e- - y - $, so it has to carry the same quantum numbers as y-in particular, 
spin 1. Thus it could not be the ground state of charmonium, but presumably 
it was the lowest-lying state with total angular momentum 1.) Consulting the 
positronium level diagram (Fig. 5.7), we immediately anticipate a spin-0 state 
at lower mass (the 1 ‘So) and six n = 2 configurations. Within two weeks the $’ 
(z3S,) was found. This was easy, because it again carries the same spin-and 
parity-as the photon; it was produced in the same way as the $, simply by 
cranking up the beam energy. In due course all the n = 1 and n = 2 states were 
discovered,20 save for the 2’P1 at a predicted mass of about 3500 MeV/c2, which 
presents special experimental problems. The following nomenclature has been 
adopted: singlet S states (spin 0) are called 7:s; triplet S states (spin 1) are $’s; 
and triplet P states (spin 0, 1, or 2) are designated xo, x l ,  x2. For a while the 
value of n was indicated by primes, but this quickly got out of hand, and the 
current practice is simply to list the mass parenthetically; thus for n = 1 we have 
$ = $(3100); for n = 2, $’ = q(3685); for n = 3, $” = $(4030); for n = 4, $”’ = 

$(4160); and so on.* The correlation between states of charmonium and those 
of positronium is almost perfect (Fig. 5.7). Bear in mind that the gap between 
the two n = 1 levels, which would be called hyperfine splitting in the case of 
hydrogen, is a factor of 10” greater in charmonium than in positronium. Yet 
even over so huge a change of scale, the ordering of the energy levels and, for a 
given value of n, their relative spacing, are strikingly simi1ar.t Unfortunately, 
the exact solutions to the Schrodinger equation with linear-plus-Coulomb po- 
tential are not known, and I cannot give you a simple formula for the “Bohr” 
energies. However, it can, of course, be done numerically (see Table 5.2), and 
Fo can then be chosen so as to fit the data (that’s how the value of 16 tons-or, 
in more sensible units, 900 MeV/fm-was obtained).2’ (See Problem 5.21.) 

All the charmonium states with n = 1 and n = 2 are relatively long-lived, 
because the OZI rule (Chap. 2, Sect. 2.5) suppresses their strong decays. For 
n h 3 the charmonium masses lie above the threshold for (OZI-allowed) pro- 
duction of two charmed D mesons (Do, 6’ at a mass of 1865 MeV/c2, or D’, 
at 1869 MeV/c2). Their lifetimes are therefore much shorter, and we call them 
“quasi-bound states” (see Fig. 5.8). Quasi-bound states of charmonium have 
been observed going up at least as high as n = 4. 

In the aftermath of the November Revolution there was widespread spec- 
ulation about the possible existence of a third quark generation (b  and t), and 

* Some authors, including those of the Particle Data Booklet, number states consecutively, 
starting with 1 for each combination of s, I ,  and j ,  so that what I call a 2P state (in Fig. 5.7) is listed 
as 1P. Sorry about that. Incidentally, the $(3770) is a displaced 33D1 state, and does not really belong 
in this hierarchy. 

t In the early days there was some consternation when the qc and 7: appeared to be about 150 
MeV/c2 too light, but the experiments were wrong, and the corrected values are in accord with theory. 
See reference 20. 
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TABLE 5.2 “BOHR” ENERGY LEVELS FOR LINEAR-PLUS- 
COULOMB POTENTIAL (EQ. 5.85) WITH VARIOUS 

AND ASSUME as = 0.2, m = 1500 MeV/c2 
(REDUCED MASS, 750 MeV/c2). 

VALUES OF Fo. THEY ARE FOR S-STATES ( I =  0 

500 307 617 96 1 1210 
1000 1 533 1100 1550 1940 
1500 127 1480 2040 2550 

Numerical results from unpublished tables prepared by Richard E. Crandall. 

in 1976 Eichten and Gottfried2* predicted that “bottomonium” (b6) would exhibit 
a hierarchy of bound states even richer than charmonium (Fig. 5.9). The bottom 
analog to the D meson (to wit, the B) had an estimated mass large enough that 
not only the n = 1 and n = 2, but also the n = 3 levels should be bound. In 
1977 the upsilon meson was discovered, and immediately interpreted as the 13SI 
state of bottomonium. At present, the 3SI states have been found for n up to 4, 
as well as the six 3P states for n = 2 and n = 3. It happens that the level spacings 
in the 1c/ and T systems are remarkably similar (Fig. 5.10), in spite of the fact 
that the bottom quark is more than three times as heavy as the charm quark. 
For a purely Coulombic potential the spacing is directly proportional to mass, 
[eq. (5.26)], whereas for a purely linear potential it goes like r n - ’ I 3  (Problem 
5.20). Ifwe take the interquark potential (5.85) seriously, the equal spacing must 
be due to a conspiracy of the two terms and an accidental feature of the particular 
value of Fo (which we adjusted, remember, to fit the 1c/ data). The much heavier 
“toponium” (t?) system should be more sensitive to the short-distance (Coulom- 

- - 
C C c c  - + 

dJ * 
(a) (b )  

Figure 5.8 (a) OZI-suppressed decay for charmonium below the DD threshold, (b) OZI- 
allowed decay for channonium above the Dd threshold. 
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1,100 

1,000 

4 3S1 (T”’(10575)) 
Quasi-bound states 

Bound states 

- 

- 

1 ’So ----- 
’ S States 3S States ’ P States 3 P  States ’ D States 30 States 

Figure 5.9 Bottomonium. Note that there are far more bound states than for charmo- 
nium-compare Fig. 5.7. (From “Quarkonium,” by E. Bloom and G.  Feldman. Copyright 
0 May 1982 by Scientific American, Inc. All rights reserved.) 

bic) part of the potential, and presumably will not share the equal spacing of 1c/ 
and T.* 

Incidentally, charmonium and bottomonium are only the first two of six 
possible “quarkonium” systems; in addition to toponium, we can look forward 
eventually to the mixed combinations c6, 3, and b?. The model for these, how- 
ever, will be muonium (p’e-), rather than positronium. 

5.8 LIGHT QUARK MESONS 

Consider now the mesons made entirely out of light quarks (u, d, s). These are 
relativistic systems, remember, so we cannot use the Schrodinger equation, and 

* However, a logarithmic potential gives level separations that are independent of mass, 
so if the toponium system does match the # and T splittings, it will be an argument for using 
V(r)  - ln(r). 
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4 3s1 $ (4160) 

3 3s1 U; (4030) 
1 .o 

t 

T”’(10570) 

‘I”’( 10350) 

T’(10020) 

T (9460) 

Figure 5.10 Level spacings in the $ and T systems. (Source: D. H. Perkins, Introduction 
to High-Energy Physics, 2d Ed. (Reading, MA: Addison-Wesley, 1982), p. 214.) 

the theory is rather limited.23 In particular, we shall not concern ourselves with 
the spectrum of excited states (Table 4.6), as we did in the case of the heavy 
quarks, but will confine our attention to the ground state, with 1 = 0. The quark 
spins can be antiparallel (singlet state, s = 0) or parallel (triplet state, s = 1); the 
former configuration yields the pseudoscalar nonet, the latter gives the vector 
nonet (Fig. 5.1 1). 

To begin with I want to clear up a problem that was not resolved in Chapter 
1. We obtained nine mesons simply by combining a quark and an antiquark in 
all possible combinations (Chap. 1, Sect. 1.8), but this left three neutral states 
with strangeness 0 (uU, dd, and SF), and it was not clear which of these was the 
TO, which the 7, and which the 7’ (or, in the vector case, the po, w ,  and 4). We 
are now in a position to resolve the ambiguity. The up and down quarks constitute 
an isospin doublet: 

u = l i t ) ,  d =  14 -4) (5.87) 

So too do the antiquarks: 

d =  -111) 2 2  , u =  14 -1 2 )  (5.88) 

(Notice that dcarries Z, = + 4, and U has Z3 = - 4; within a multiplet, the particle 
with the higher charge is assigned the greater Z3. The minus sign is a technical 

which does not affect the argument here in any essential way.) When 
we combine two particles with Z = 4, we obtain an isotriplet (eq. 4.15) 
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KO K +  K *O K * +  

P +  

Pseudoscalar nonet Vector nonet 

Figure 5.1 1 Light-quark mesons with I = 0. 

( 1  1 > =  -ud 
11 0) = (uU - d d ) / E  (5.89) 
11 -1) = dii 

100) = (uzi + d d ) / f i  (5.90) 

In the case of the pseudoscalar mesons the triplet is the pion; for the vector 
mesons it is the p. Evidently the 7ro (or the po) is neither uU nor dd, but rather 
the linear combination 

TO, po = (uU - d d ) / E  (5.91) 

If you could pull a TO apart, half the time you’d get a u in one hand and a U in 
the other, and half the time you’d get a d and a d. 

This leaves two I = 0 states (the isosinglet combination, equation (5.90), 
and sF) which must represent q and q’ (or o and 4). Here the situation is not so 
clean, for these particles carry identical quantum numbers, and they tend in 
practice to “mix.” In the case of the pseudoscalars the physical states appear 
to be 

and an isosinglet (4.16) 

q = (ui i  + dd - 2 ~ F ) f f i  
q‘ = (uii + dd + sF)/fi 

whereas for the vector mesons we find 

w = (uzi + d d ) / f i  
4 = sf 

(5.92) 
(5.93) 

(5.94) 
(5.95) 

To the extent that the Eightfold Way is a good symmetry, the pseudoscalar 
combinations are more “natural”, since the q’, which treats u, d, and s sym- 
metrically, is unaffected by SU(3)  transformations; it is a “singlet” under SU(3), 
in exactly the same sense that the no is a singlet under SU(2) (isospin). The q, 
meanwhile, transforms as part of an SU(3) “octet”, whose other members are 
the three pions and the four K’s. (This is, in fact, the original pseudoscalar octet.) 
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- 
d U s 

- - 
s U d 

Figure 5.12 Quarks and antiquarks. 

By contrast, neither the 4 nor the w is an SU(3)  singlet. They are, you might 
say, “maximally” mixed, since the strange quark is isolated from the other two. 
[Incidentally, the other meson nonets seem to follow the 4-w mixing pattern, 
with the possible exception of the D and E (Table 4.6).] 

Meanwhile, the strange mesons are constructed by combining an s quark 
with u or d 

Kt = US; = dS; Ko = -sd K-  = SU (5.96) 

In the language of group theory, the three light quarks belong to the fundamental 
representation (denoted 3) of SU(3), whereas the antiquarks belong to the con- 
jugate representation (3) (See Fig. 5.12). What we have done is to combine these 
representations, obtaining an octet and a singlet: 

3 0 3 = 8 0 1  (5.97) 

just as in Chapter 4 we combined two two-dimensional (spin-;) representations 
of SU(2)  to obtain a triplet and a singlet:* 

2 0 2 = 3 0 1  (5.98) 

If SU( 3) were a perfect symmetry, all the particles in a given supermultiplet 
would have the same mass. But they obviously do not; the K weighs more than 
three times the n, for example. As I indicated in Chapter 4, the breaking of 
flavor symmetry is due to the fact that the quarks themselves have unequal 
masses; the u and d quarks weigh about the same (which is why isospin is such 
a good symmetry) but the s quark is substantially heavier. Roughly speaking, 
the K’s weigh more than the H’S because they contain an s in place of a u or d. 
But that cannot be the whole story, for if it were, the p’s would weigh the same 
as the n’s; after all, they have the same quark content and are both in the spatial 
ground state (n = 1, I = 0). Since the pseudoscalar and vector mesons differ only 
in the relative orientation of the quark spins, the difference in their masses must 
be attributed to a spin-spin interaction, the QCD analog to hyperfine splitting 
in the ground state of hydrogen. The QED formula, remember, is 

* Unfortunately (from the point of view of notational consistency) representations of SU(3) 
are customarily labeled by their dimensionality, whereas representations of SU(2) are more often 
identified by their spin, so that equation (5.98) would usually be written f 0 = 1 0 0. By the way, 
it happens that the fundamental representation of SU(2) is equivalent to its conjugate; there’s only 
one kind of spin f. That’s why we were able in equation (5.88),  to represent U and d in terms of 
ordinary isospin-f states. For SU(3) this is no longer the case. 
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TABLE 5.3 PSEUDOSCALAR AND VECTOR 
MESON MASSES (MeV/c*) 

S/BOUND STATES 

Meson Calculated ObSeNed 

iT 140 138 
K 484 496 
I I  559 549 
P 780 716 
w 780 783 
K* 896 892 
dJ 1032 1020 

(5.60) 

It seems reasonable to suppose that the spin-spin coupling in QCD has a similar 
structure; that is, it should be proportional to the dot product of the spins and 
inversely proportional to the product of the constituent masses. On this as- 
sumption we are led to the following meson mass formula: 

(S1* S2) M(meson) = ml + m2 + A ~ 

11111122 
(5.99) 

The coefficient A is related to 1$(0)l2, which we are not in a position to calculate. 
One assumes it is the same for all the vector and pseudoscalar mesons, since 
they occupy the same quantum state.* By the usual trick of squaring S = 

S1 + S2 [see eq. (5.63)], we find that 

} (5.100) th2 ,  
- 3  h2, 

for s = 1 (vector mesons) 
for s = 0 (pseudoscalars) 

s,.s2 = 

For constituent masses mu = md = 310 MeV/c2, m, = 483 MeV/c2, the “best- 
fit” value of A is (2m,/k)2160 MeV/c2, and we obtain the results in Table 5.3. 
Considering its somewhat shaky theoretical foundation, equation (5.99) works 
surprisingly well, matching seven independent meson masses to an accuracy of 
about 1%, with three adjustable input parameters. (Notice, however, that the 7’ 
is not included in the table. See Problem 5.22.) 

5.9 BARYONS 

Some day, presumably, we shall be able to make nonrelativistic heavy-quark 
baryons-ccc, perhaps, or even, cbt. These are the baryonic relatives of quar- 

* In my view this is a questionable assumption: (i) For a Coulombic potential we know [eqs. 
(5.6 1 and 5.29)] that IG(0)lz goes like the cube ofthe reduced mass (for a linear potential it is proportional 
to m). Why preserve the explicit mass dependence in the denominator of equation (5.99), if we are 
prepared to ignore it in the numerator? (ii) The central (13 = 0) members of each nonet combine a 
quark with its own antiquark, and hence admit annihilation diagrams, just as positronium does, that 
are not possible for the other mesons. However, nothing succeeds like success, and equation (5.99) 
works remarkably well. 
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TABLE 5.4 LIGHT-QUARK BARYONS ( J  = SPIN, P = PARITY, S = STRANGENESS, I = 

ISOSPIN. THIS IS NOT A COMPLETE LIST; BARYONS WITH SPINS AS HIGH 
AS HAVE BEEN OBSERVED.) 

s = -1 

s = - 2  s = - 3  
W 3 )  

Representation J s = o  I = O  i=1 

8 
10 

1 

8 

10 

8 
8 

10 

8 
10 

2 
3 +  
I 
1- 
2 
1- 
2 
r-  
2 

3 -  
I 

2 -  
2 
I -  
I 
3 -  
I 
3+  
2 
I+ 
2 
I+ 
2 
2 +  
2 
I+ 
2 
7 +  
I 
1+ 

3 +  
I 
2 

N(939) 
A(1232) 

N( 1535) 
N( 1700) 
N( 1520) 
N( 1700) 
N( 1670) 
A(1650) 
A(1670) 
N( 18 10) 
N(1688) 
A( 19 10) 

A( 1890) 
A( 1950) 
N(1470) 
A( 1690) 

A(1116) Z(1193) E(1318) 

A( 1405) 
A( 1520) 
A( 1670) Z( 1750) 
A( 1870) 
A( 1690) Z( 1670) a( 1820)? 

2( 1940)? 
A(1830) 2(1765) 

2(1385) E(1533) Q(1672) 

A( 1860) 
A(1815) Z(1915) E(2030)? 

Z(2030) 
2( 1660) 

Source: S .  Gasiorowicz and J. L. Rosner. Am. J. Phys. 49,954 (1981). 

konium-“quarkelium,” you might call it, since the nearest atomic analog would 
be helium. At present, though, it is hard enough to make a baryon with one 
heavy quark, never mind three, and I won’t speculate here about the heavy quark 
baryon spectrum. On the other hand, the array of observed light quark baryons 
is immense (see Table 5.4). Baryons are harder to analyze than mesons, for 
several reasons. In the first place, a baryon is a three-body system. There’s not 
just one orbital angular momentum to consider, but two (see Fig. 5.13). We’ll 
concentrate on the ground state, for which 1 = I’ = 0. In that case the angular 
momentum of the baryon comes entirely from the combined spins of the three 
quarks. Now, the quarks carry spin $, so each can occupy either of two states: 
“spin up” (t), or “spin down” (1). Thus we have eight possible states for the 
three quarks: (TTT), (TTI), (TlT), (tll), ( lTT) ,  (ITl), (llT), and (111). But these are not 

Figure 5.13 Orbital angular momenta for 
a three-body system. L is the angular mo- 
mentum of 1 and 2 about their center of 
mass (A); L’ is the angular momentum of 
this combination and 3 about the center 
of mass of all three (B). 
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the most convenient configurations to work with, because they are not eigenstates 
of the total angular momentum. As we found in Example 4.2, the quark spins 
can combine to give a total of 1 or f ,  and the latter can be achieved in two 
distinct ways. Specifically 

spin 3 ($s) (5.101) 

13 1) = (TTT) 
It f) = ( T T I  + T l T  + l T T ) / f i  

13 -1) = (11T + IT1 + Tll)/b 

J 15 -3) = (111) 

spin f ($12) (5.102) I 1 4 ; ) ~ ~  = (TL - ~T)T/E 
I f  -4 )12  = (T1 - lT)l/E 

The spin-3 combinations are completely symmetric, in the sense that interchang- 
ing any two particles leaves the state untouched. The spin-f combinations are 
partially antisymmetric: interchange of two particles switches the sign. The first 
set is antisymmetric in particles 1 and 2 (hence the subscript); the second is 
antisymmetric in 2 and 3. We could also, of course, construct a pair of states 
antisymmetric in 1 and 3: 

However, these are not independent of the other two; as you can check for 
yourself, 

I )13 = I )I2 + I )23 (5.105) 

In the language of group theory, the direct product of three fundamental (two- 
dimensional) representations of SU(2) decomposes into the direct sum of a four- 
dimensional representation and two two-dimensional representations:* 

2 0 2 0 2 = 4 0 2 0 2  (5.106) 

A second respect in which baryons are more complicated than mesons has 
to do with the Pauli exclusion principle. In its original formulation the Pauli 
principle stated that no two electrons can occupy the same quantum state. It 
was designed to explain why all the electrons in an atom don't simply cascade 
down to the ground state ($loo) (there wouldn't be much left of chemistry if they 
did): they cannot, because the ground state can only accommodate two of them- 
one spin up, one spin down. Once those positions are occupied, the next electrons 
are stuck in the first excited state, n = 2, . . . , and so on. In this form the Pauli 

* If the representations are labeled by spin, instead of dimensionality, equation (5.106) reads 
' @ ' @ ' - 3  - 0 0 4. Incidentally, it is also possible to construct a spin-4 combination that is 
symmetric in particles 1 and 2: 1 ) = I ),, + I )*,. Some authors prefer to use I ),, and I ), instead 
of1 )12 and I )z. 
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principle seems a little ad hoc, but it is actually based on something far deeper: 
If two particles are absolutely identical, then the wave function should treat them 
on an equal footing. If someone secretly interchanges them, the physical state 
should not be altered. You might conclude from this that $( 1, 2) = 1/42, l), but 
that’s a little too strong. Physical quantities are determined by the square of the 
wave function, so all we can say for sure is that $(l, 2) = *$(2, 1): the wave 
function must either be even-symmetric-or odd-antisymmetric-under the 
interchange of two identical particles.* But which is it, even or odd? Nonrela- 
tivistic quantum-mechanics offers no answer; there are simply two classes of 
particles-bosons, for which the wave function is even, and fermions, for which 
it is odd. It is an empirical fact that all particles of integer spin are bosons, 
whereas those of f-integer spin are fermions. One of the major achievements of 
quantum field theory was the rigorous proofof this connection between “spin 
and statistics.” 

Bosons (integer spin) - symmetric wave function: $( 1, 2) = $(2, 1) 
Fermions (f-integer spin) - antisymmetric wave function: +(I ,  2) = 7 4 2 ,  1) 

Suppose that we have two particles, one in state $a and the other in state 
qa. If the particles are distinct (one a muon and one an electron, say) then it 
makes sense to ask which is in state and which in state $@. The wave function 
for the system is 

+(I, 2) = $a(l)lc.s(2> 

if particle 1 is in $a and 2 is in $@, or 

$(I, 2) = $a(l)$u(2) 

if it’s the other way around. But if the two particles are indistinguishable, we 
cannot say which is in which state. If the particles are identical bosons, the wave 
function is the symmetric combination 

(5.107) 

and if they are identical fermions, the wave function is the antisymmetric com- 
bination 

$(I> 2) = U/m$a(1)$@(2) - $0(1)$a(2)) (5.108) 

In particular, if you try to put two fermions (electrons, say) into the same state 
(qu = you get zero; it can’t be done. That’s the original Pauli exclusion 
principle; but we see now that it is not an ad hoc assumption, but rather a 
consequence of a structural requirement on the wave functions of identical par- 
ticles. Notice, by the way, that the Pauli principle does not apply to bosons; you 
can put as many pions into the same state as you like. Nor is there any symmetry 
requirement for distinguishable particles; that’s why we didn’t have to worry 
about it when we were constructing meson wave functions (since one constituent 

* From 1$(1, 2)12 = (+(2, 1)12 it follows only that $(1, 2) = eIm$(2, I). However, applying the 
interchange twice brings us back to where we started, so e2‘+ = 1, and hence elm = + 1. 

$( 1, 2) = ( 1 1 )rC/a(2) + $A 1 )$a(2)) 
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is a quark and the other an antiquark, they’re always distinguishable). But in 
the case of the baryons we’re putting three quarks together, and this time we 
must take the antisymmetrization requirement into account. 

Now, the wave function of a baryon consists of several pieces; there is the 
spatial part, describing the locations of the three quarks; there is the spin part, 
representing their spins; there is aflavor component, indicating what combination 
of u, d, and s is involved; and there is a color term, specifying the colors of the 
quarks: 

$ = $(space) $(spin) $(flavor) $(color) (5.109) 

It is the whole works that must be antisymmetric under the interchange of any 
two quarks.* We do not know the functional form of the spatial ground-state 
wave function, but it is surely symmetric; since 1 = 1’ = 0, there is no angular 
dependence at all. The spin state can either be completely symmetric ( j  = t )  or 
of mixed symmetry ( j  = 4). As for flavor, there are 33 = 27 possibilities: uuu, 
uud, udu, udd, . . . , sss, which we reshuffle into symmetric, antisymmetric, and 
mixed combinations; they form irreducible representations of SU(3), just as the 
analogous spin combinations form representations of SU(2). These are conve- 
niently displayed in eightfold-way patterns: 

ddd (ddu +dud + u d d l l f l  (uud + udu + d u u ) / f l  uuu 

(uds t  usd+dus+dsu+sud+sdu)l& 

dds + dsd + sdd ) l f l  ( uus + usu + suu ) l f i  

(dss +sds + s s d ) l f l  (uss + sus + ssu 

sss 

$$: Completely symmetric states 1 
* Notice that a subtle extension of the notion of “identical particle” has implicitly been made 

here, for we are treating all quarks, regardless of color or even flavor, as different states of a single 
particle. 
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$ A  : Completely antisymmetric state 

1 $, : Antisymmetric in 1 and 2 1 

$ 2 3 :  Antisymmetric in 2 and 3 L 
Thus the combination of three light quark flavors yields a decuplet, a singlet, 
and two octets; in the language of group theory, the direct product of three 
fundamental representations of SU( 3) decomposes according to the rule 
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3 @ 3 @ 3 =  1 0 @ 8 @ 8 @ 1  (5.110) 

Incidentally, we can also construct an octet which is antisymmetric in 1 and 3, 
but this is not independent ($13 = $12  + $23); we have already used up the 27 
states available in making the four representations 10, 8, 8, and 1. 

$, 3 :  Antisymmetric in 1 and 3 

Finally, there is the question of color. In Chapter 1, I stated a general rule 
that all naturally occurring particles are colorless; if a meson contains a red 
quark, it must also contain an untired quark, and every baryon must harbor one 
quark of each color. Actually, this is a naYve formulation of a deeper law: 

PARTICLE IS A COLOR SINGLET 
EVERY NATURALLY OCCURRING 

The three colors generate a color S U ( 3 )  symmetry, just as the three light quark 
flavors generate fravor SU(3) .  (The former is, however, an exact symmetry- 
quarks of different colors all weigh the same-whereas the latter is only approx- 
imate-quarks of different flavor carry different mass.) By putting together three 
colors, we obtain a color decuplet, two color octets, and a color singlet (simply 
make the flavor - color transcription u - red, d - green, s - blue, in the 
diagrams above). But nature chooses the singlet, and so for baryons the color 
state is always 

$(color) = (rgb - rbg + gbr - grb + brg - b g r ) / G  (5.1 11)  

Because the color wave function is the same for all baryons, we generally 
do not bother to include it explicitly. However, it is absolutely crucial to remember 
that $(color) is antisymmetric, for this means the rest of the wave function must 
be symmetric. In particular, in the ground state [with $(space) symmetric] the 
product of $(spin) and $(flavor) has to be completely symmetric. Suppose we 



5.9 BARYONS 179 

start with the symmetric spin configuration; this must go with the symmetric 
flavor state, and we obtain the spin-2 baryon decuplet: 

$(baryon decuplet) = $,(spin) +,(flavor) (5.1 12) 

EXAMPLE 5.1 
Write down the wave function for the A', in the spin state mi = - 1 (never 
mind the space and color parts). 

Solution. 
/A+:  2 -4) = [(uud + udu + duu)/fi][(llT + lTl + Tll)/fi] 

= [u(l)u(l)d(T) + u(l)u(T)d(l) + u(T)u(l)d(l) 
+ u(l)d(l)u(T) + u(l)d(T)u(l)+ u(T)d(l)u(l) 
+ d(l)u(l)u(T) + d(l)u(T)u(l) + d(T)u(l)u(l)]/3 

For instance, if you could pull such a particle apart, the probability is 6 
that the first quark would be a d with spin up, and $ that it would be a u 
with spin down. 

The baryon octet is a little trickier, for here we must put together states of 
mixed symmetry to make a completely symmetric combination. Notice first that 
the product of two antisymmetric functions is itself symmetric. Thus $12(spin) 
X q12(flavor) is symmetric in 1 and 2, for we pick up two minus signs when 
1 * 2. Likewise, $23(spin).$23(flavor) is symmetric in 2 and 3, and 
rC/13(spin).$13(flavor) is symmetric in 1 and 3. If we now add these, the result 
will clearly be symmetric in all three (for the normalization factor, see Prob- 
lem 5.26): 

$(baryon octet) = (b/3)[$12(spin) $12(flavor) 
+ $23(spin) $23(flavor) + $13(spin) $~dflavor)l (5.1 13) 

EXAMPLE 5.2 
Write down the spin/flavor wave function for a proton with spin up. 

Solution. 

Ip: 44) = { {(TlT - lTT)(udu - duu) + $ ( T T l  - TlT)(uud - udu) 
v2 + $ ( T T l  - lTT)(uud - duu)} 7 = { uud(2TTl - T l T  - LTT) 

-- (u(l)u(T)d(T)) + permutations. 
3 f2  
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If nothing else, I hope you will have gathered from this exercise that the 
construction of baryon wave functions is a nontrivial business, in the quark 
model. Apart altogether from the spatial wave function, there are three spins to 
juggle, as well as three flavors and three colors, and it all has to be put together 
in a way that is consistent with the Pauli principle. Perhaps also you will forgive 
me for deferring the explanation of how three quarks can generate the baryon 
octet (the decuplet, remember, we got by naive quark counting back in Chapter 
1). The essential point is that the comers of the decuplet contain three identical 
quarks (uuu, ddd, and sss); they necessarily form a symmetric flavor state, and 
hence must go with the symmetric spin state ( j  = ;). With two identical quarks 
(uud, say) there are three arrangements (uud, udu, duu); you can make a sym- 
metric linear combination, which goes into the decuplet, and two of mixed 
symmetry, which belong to SU(3) octets. Finally, with all three different, uds, 
there are six possibilities-the completely symmetric linear combination com- 
pletes the decuplet, the completely antisymmetric combination makes an SU( 3 )  
singlet, and the remaining four go into the two octets. Notice again the essential 
(if hidden) role of color in all this. Without it we would be looking for antisym- 
metric spin/flavor wave functions; spin ; (symmetric) would have to go with the 
flavor singlet (antisymmetric). It is possible to make a spin-5 octet without color 
(see Problem 5.28), but in place of the decuplet we would have just one spin-; 
baryon. It was to avoid that disaster, without sacrificing the Pauli principle, that 
color was introduced in the first place.25 

5.10 BARYON MASSES AND MAGNETIC MOMENTS 

As an application of the baryon spin/flavor wave functions, we now calculate 
the magnetic dipole moments of the particles in the octet.* In the absence of 
orbital motion, the net magnetic moment of a baryon is simply the vector sum 
of the moments of the three constituent quarks: 

P = Pl + 112 + P3 (5.1 14) 

It depends on the quark flavors (because the three flavors carry different magnetic 
moments) and on the spin configuration (because that determines the relative 
orientations of the three dipoles). As I mentioned earlier (eq. (5.45)), the magnetic 
dipole moment of a spin-f point particle of charge q and mass rn is? 

4 
mc p = - s  (5.45) 

* No decuplet moments have been measured, so I won’t bother with them. As for the mesons, 
the pseudoscalars have no spin, and hence have zero magnetic moment. The vector mesons do have 
magnetic moments, but as far as I know they have not been measured. 

t This ignores radiative corrections, which should be larger for quarks than for electrons, but 
still small relative to the total magnetic moment. 
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Its magnitude, then, is 

(5.115) 

More precisely, this is the value of pz in the spin-up state, for which S, = h/2; 
if the charge is negative, so too is p-this reminds us that the magnetic moment 
points opposite to the spin. It is customary to refer to p, rather than p itself, as 
“the magnetic moment” of the particle. For the quarks, we have 

2 eh 1 eh 1 eh 
p u = - -  3 2mUc ps=--- (5.1 

3 2mg 2 p d = - - -  3 2m4’ 

EXAMPLE 5.3 
Calculate the magnetic moment of the proton. 

Solution. The wave function was found in Example 5.2. The first term is 

so this term contributes an amount 

Similarly, the second term (u(T)u(l)d(T)) gives h p d ,  as does the third.* We 
could continue in this way to evaluate all nine terms, but the rest are 
simply permutations, in which d occupies position 2 or position 1. The 
result, then, is 

pp  = 3[$(2~u - p d )  f i k p d  f hpdl = f(4pu - pd) 

In this way we can calculate all the octet magnetic moments in terms of 
p,, pd ,  and ps (Problem 5.29). The results are listed in the second column of 
Table 5.5. To get numbers, we need to know the quark magnetic moments 
(5.1 16). Using the baryon constituent quark masses in Table 4.4, we obtain the 

* Note that everything is normalized, so that for instance (u(t)l u ( f ) )  = 1, and the states are 
orthogonal (u ( t ) lu (J . ) )  = 0. 
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TABLE 5.5 MAGNETIC DIPOLE MOMENTS OF OCTET BARYONS 

Baryon Moment Prediction Experiment 

2.79 2.793 
- 1.86 -1.913 
-0.58 -0.6 1 

2.68 2.33 f 0.13 
0.82 

- 1.05 -1.41 k 0.25 
- 1.40 -1.253 k 0.014 
-0.47 -0.69 f 0.04 

The numerical values are given as multiples of the nuclear magneton, eh/2m,,c = 3.152 
x MeVJgauss. 
Source: S. Gasiorowicz and J. L. Rosner, Am. J. Phys. 49, 954 (1981). 

figures in the third column of Table 5.5. The comparison with experiment is 
reasonably good, considering the uncertainties in the quark masses and anom- 
alous magnetic moments. Somewhat better predictions are obtained if we take 
ratios. In particular, to the extent that mu = md, we have 

(5.118) 

which compares well with the experimental value, 0.68497945 k 0.00000058. 
Finally, we come to the problem of baryon masses. The situation is the 

same as for the mesons: If flavor SU(3) were a perfect symmetry, all the octet 
baryons would weigh the same. But they don’t. We attribute this in the first 
instance to the fact that the s quark is more massive than u and d. But that can’t 
be the whole story, or the A wouTcarry the same mass as the 2’s and the A’s 
would match the proton. Evidently there is a significant spin-spin (“hyperfine”) 
contribution, which, as before, we take to be proportional to the dot product of 
the spins and inversely proportional to the product of the masses. The only 
difference is that this time there are three pairs of spins to contend with: 

M(baryon) = ml + m2 + m3 + A’ 

Here A’ [like A in equation (5.99)] is a constant, which we adjust to obtain the 
optimal fit to the data. 

The spin products are easiest when the three quark masses are equal, for 

J2=(S i  + S 2 + S 3 ) 2 = S : + S ~ + S : + 2 ( S ~ . S 2 + S 1 ’ S 3 + S 2 ’ S 3 )  (5.120) 

and hence 

(5.121) 
for j = ;(decuplet) 

-ah2, for j = t(octet) 
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Thus the nucleon (neutron or proton) mass is 

3 h2 
4 m', 

MN = 3mu - - - A' 

the A is 

3 h2 
4 m', 

MA = 3m, + - - A '  

and the 0- is 

3 ti2 

4 m, 
M n = 3 m , + - ~ A '  

(5.122) 

(5.123) 

(5.124) 

Indeed, in the case of the decuplet the spins are all "parallel" (every pair combines 
to make spin 1) so 

(S1 + S2)2 = s: + s3 + 2s, 'S2 = 2h2 (5.125) 

(and the same for 1 and 3, or 2 and 3). Hence for the decuplet 

h2 
SI'S2 = S,'S3 = S2'S3 = - 

4 

[which is consistent, notice, with eq. (5.121)], and therefore 

while 

ME* = mu + 2m, + 

(5.126) 

(5.127) 

(5.128) 

The Z and A can be done by noting that the up and down quarks combine to 
make isospin 1 and 0, respectively, and in order for the spin/flavor wave function 
to be symmetric, under the interchange of u and d, the spins must therefore 
combine to a total of 1 and 0, respectively. For the Z's, then 

whereas for the A 

Using these results together with equation (5.121), we find 

(5.131) 
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TABLE 5.6 BARYON OCTET AND 
DECUPLET MASSES (MeV/c2) 

_ _ _ _ ~ ~ ~  ~~ 

Baryon Calculated Observed 

N 939 
A 1116 
z 1 I79 
2 I 1327 
A 1239 
z* 1381 
I r* 1529 
n 1682 

939 
1114 
1 I93 
1318 
1232 
1384 
1533 
1672 

( 5.1 32) and 

I’ll let you figure out the mass of the 3’s (Problem 5.32): 

(5.133) 

Using the constituent quark masses in Table 4.4, and picking A’ = (2m,/h)2 - 
50 MeV/c2, we obtain an excellent fit to the experimental data (Table 5.6). 
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PROBLEMS 

5.1. (a) The deuteron’s mass is 1875.6 MeV/c’. What is its binding energy? Is this a 
relativistic system? 

(b) If you take the up- and down-quark masses to be those given in Table 4.4, 
(“effective mass in mesons”), what is the binding energy of a pion? Is this a 
relativistic system? 

5.2. Derive equations (5.16), (5.17), and (5.18) from equation (5.8), using equations 

5.3. Show that the spherical harmonics are either even or odd under the parity trans- 

(5.14) and (5.15).  

formation, depending on whether 1 is even or odd. That is 

p: Yi“(6, 4) - (-l)‘Yi”(O, 4) 

5.4. Using equations (5.21) and (5.22), find H, fl, and Y:. Check your results against 
Table 5 . 1 .  

5.5. Show that putting equation (5.25) into equation (5.24) leads to the Bohr energies, 
equation (5.26). [Hint; The basic idea is to solve equation (5.24) by a power series, 
and demand that the result be normalizable. But if you have never been through 
this derivation before, you had better refer to a quantum text before proceeding. 
See, for example, Merzbacher (ref. l), Chap. 10, Sects. 5 and 6.1 

5.6. Use equation (5.28) to obtain the ground-state wave function $loo. Check that it 
satisfies the Schrodinger equation (5.8), with the appropriate energy, and that it is 
properly normalized. [Answer: $loo = ( l / a ) e - r ’ 4 ]  

5.7. Work out all of the hydrogen wave functions for n = 2, using equation (5.28). (How 
many are there?) 

5.8. Suppose you are interested in some dynamical quantity, Q(r, p)-for instance, 
kinetic energy (p2/2m), potential energy (V(r)), or angular momentum (r x p). If 
you measure Q on an ensemble of particles all in the same state $, you will not in 
general get reproducible results; quantum mechanics can only tell you the probability 
of obtaining a given answer. In particular, the average (or “expectation”) value of 
Q is given by the formula 

(a) Compute ( r ) ,  (r ’ ) ,  ( r - I ) ,  (r-’) in the ground state of hydrogen. [Use the wave 

(b) Find the expectation values of the kinetic and potential energies in the ground 

5.9. Derive the fine structure formula (5.52), starting with the relativistic correction 
(5.42) and the spin-orbit coupling (5.5 1 ) .  

5.10. Find the energy splitting between the j  = 4 and j = f levels for n = 2 (see Fig. 5.2), 
in electron volts. How does this compare with the spacing between the n = 2 and 
n = 1 Bohr energies? 

5.11. Estimate the Lamb shift energy gap between the 2S1/2 and 2P1/2 levels in hydrogen, 
using equations (5.53) and (5.54). What is the frequency of the photon emitted in 
such a transition? [The experimental value is 1057 MHz.] 

function from Problem 5.6.1 

state of hydrogen. Is their sum what you would expect? 
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5.12. 

5.13. 

5.14. 

5.15. 

5.16. 

5.17. 

5.18. 

Suppose A and B are two fixed vectors. Show that the expectation value of 

Q [3(A * i ) ( B  * i )  - (A B)] 

is zero in any spherically symmetrical state. [Hint: First convince yourself that (Q) 
must be proportional to (A - B): 

where a, the proportionality constant, is independent of A and B. To evaluate a, 
take the case where A and B are parallel, and choose the z axis to lie along this 
direction. Then 

a = ((3 cos2 0 - 1)) 

Now perform the 0 integral. [Notice that the argument is not affected if an arbitrary 
function of r is thrown into the expectation value. In particular, the expectation 
value of the first term in equation (5.59) must vanish for an electron in the S state.] 

Derive equation (5.61). [Hint: First show, using (5.30), that L;-,(O) = n(n!).] 
If you include the fine structure, Lamb shift, and hyperfine splitting, how many 
different n = 2 energy levels are there altogether in hydrogen? Find the hyperfine 
splitting between the 2Sl12 and 2PIl2 levels, and compare the Lamb shift (Prob- 
lem 5.1 1). 

Analyze the splitting of the n = 3 Bohr level in positronium. How many different 
levels are there, and what are their relative energies? Construct the level diagram, 
analogous to Figure 5.7. 

The cross section for e+ + e- - 37, in the triplet spin configuration, is 

Find the lifetime of positronium in the 13SI state. [The experimental answer is 1.45 
x lo-’ sec.] 

Suppose particle A has charge ea, and particle B has charge eb. Assume A is much 
heavier than B. As we shall see in Chapter 7, the cross section for the electromagnetic 
process A + 2 - B + B is 

Calculate the decay rate for “muonic muonium” p’p- in its ground state (a) to y 
+ y and (b) to e+ + e-. 

Just as positronium, in the triplet configuration, decays to three photons (Problem 
5.16), the 1c/ meson (charmonium in the triplet configuration) decays to three gluons. 
(The gluons subsequently turn into various combinations of hadrons.) Indeed, the 
cross section for c + C - 3g is the same as for e+ + e- - 37, only with a3 - 
&a: (the & is a so-called “color factor,” which you’ll learn how to calculate in 
Chapter 9). Use this, together with the formulas in Problems 5.16 and 5.17, and 
equation (5.82), to determine the “branching ratios” 

r(1c/ - hadrons):r(+ - e+e-):r($ - p+p-) 

Compare the experimental results. 

5.19. Would you consider the q5(sF) meson bound or quasi-bound? 
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5.20. On dimensional grounds, show that the energy levels of a purely linear potential, 
V(r) = For, must be of the form 

where a, is a dimensionless numerical factor. 

5.21. Use the numerical results on Table 5.2 to “predict” the masses of the four lightest 
9’s and T’s; compare the experimental results (Fig. 5.10). What value of Fo gives 
the best fit to the level spacings? Why aren’t the calculated masses in better agreement 
with the experiments? 

5.22. On the basis of equation (5.99), using the values of mu, md, m,, and A given in the 
text, calculate all the meson masses in Table 5.3. [Hint: For the 11, 4, and w, first 
find the mass for pure uU, pure dd, and pure SS. Think of the 11, for instance, as 
being duii, ddd, and fsE] Also apply the formula to the q‘, and note the disastrous 
result. [For commentary on the 9‘ mass problem, see C. Quigg, Gauge Theories of 
the Strong, Weak, and Electromagnetic Interactions (New York Benjamin, 1983), 
p. 252.1 

5.23. In the text we used equation (5.99) to calculate the masses of light quark pseudo- 
scalar and vector mesons. But the same formula can be applied to heavy quark 
systems involving charm and beauty quarks. 
(a) Calculate the masses of the pseudoscalar mesons qc(cF), D(cU), F(cF), and the 

corresponding vector mesons +(cF), D*(czl), and F*(cs-). Compare the experi- 
mental values, from the Particle Data Booklet. 

(b) Do the same for the “beautiful” mesons bU, bF, bZ, and b6. [At present only 
the pseudoscalar B(bii) and the vector T(b6) have been detected experi- 
mentally.] 

5.24. Construct the eight states ql2 in Section 5.9. [Hint: The six outer ones are easy- 
the quark content is determined by Q and S, and all you have to do is antisymmetrize 
in 1 and 2. To get the two states in the center, remember that the one in the “Z0” 
position forms an isotriplet with the “Z+” and “2-”; the “A” may then be con- 
structed by orthogonalizing with respect to “ZO” and $A .] 

5.25. Find the color wave function for mesons, analogous to equation (5.1 1 1). 

5.26. Check that the baryon octet spin/flavor wave function (5.1 13) is correctly nor- 
malized. Remember that qI3 is not independent of qI2 and qZ3. 

5.27. Construct the spin-flavor wave functions, as in Example 5.2, for Z+ with spin up 
and A with spin down. 

5.28. Construct a totally antisymmetric spin/flavor baryon octet. [In this configuration 
we do not need color to antisymmetrize the wave function. However, an antisym- 
metric decuplet cannot be constructed.] (See Halzen and Martin, ref. 24, Exercise 
2.18.) 

5.29. (a) Derive the expressions in the second column of Table 5.5 .  
(b) From these results, calculate the numbers in the third column of Table 5.5. 

5.30. Calculate the ratio p,/pp in the configuration you found for Problem 5.28. Notice 
that p p  is negative in this case (!). Is your result consistent with experiment? (Here, 
then, is a second strike against the quark model without color, the first strike being 
its failure to account for the decuplet.) 

5.31. Show that pp+ = -pP- = p p .  (See Halzen and Martin, ref. 24, Exercise 2.19). 

5.32. Use equation (5.1 19) to determine the mass of the ,”. 



Chapter 6 

The Feynman Calculus 

In this chapter we begin the quantitative formulation of elementary particle 
dynamics, which amounts, in practice, to the calculation of decay rates (r) 
and scattering cross sections (a). The procedure involves two distinct parts: 
(I) evaluation of the relevant Feynman diagrams to determine the “amplitude” 
(&)for the process in question, and (2) insertion of& into Fermis “Golden 
Rule” to compute F or a, as the case may be. To avoid distracting algebraic 
complications, I introduce here a s i m p l ~ e d  model. Realistic theories-QED, 
QCD, and G WS-are developed in succeeding chapters. If you like, Chapter 
6 can be read immediately after Chapter 3. Study it with scrupulous care, or 
what follows will be unintelligible. 

6.1 LIFETIMES AND CROSS SECTIONS 

As I mentioned in the Introduction, we have three experimental probes of ele- 
mentary particle interactions: bound states, decays, and scattering. Nonrelativistic 
quantum mechanics (in Schrodinger’s formulation) is particularly well adapted 
to handle bound states, which is why we used it, as far as possible, in Chapter 
5. By contrast, the relativistic theory (in Feynman’s formulation) is especially 
well suited to describe decays and scattering. In this chapter I’ll introduce the 
basic ideas and strategies of the Feynman “calculus”; in subsequent chapters we 
will use it to develop the theories of strong, electromagnetic, and weak inter- 
actions. 

To begin with, we must decide what physical quantities we would like to 
calculate. In the case of decays, the item of greatest interest is the lifetime of the 
particle in question. What precisely do we mean by the lifetime of, say, the 
muon? We have in mind, of course, a muon at rest; a moving muon lasts longer 

189 



190 6/THE FEYNMAN CALCULUS 

(from our perspective) because of time dilation. But even stationary muons don’t 
all last the same amount of time, for there is an intrinsically random element 
in the decay process. We cannot hope to calculate the lifetime of any particular 
muon; rather, what we are after is the average (or “mean”) lifetime, T, of the 
muons in any large sample. Now, elementary particles have no memories, so 
the probability of a given muon decaying in the next microsecond is independent 
of how long ago that muon was created. (It’s quite different in biological systems: 
An 80-year-old man is much more likely to die in the next year than is a 20- 
year-old, and his body shows the signs of eight decades of wear and tear. But all 
muons are identical, regardless of when they were produced; from an actuarial 
point of view they’re all on an equal footing.) The critical parameter, then, is 
the decay rate, I?, the probability per unit time that any given muon will disin- 
tegrate. If we had a large collection of muons, say, N(t),  at time t, then N r  dt of 
them would decay in the next instant dt. This would, of course, decrease the 
number remaining: 

dN = - r N  dt (6.1) 

N(t) = N(0)e-r‘ (6.2) 

It follows that 

Evidently, the number of particles left decreases exponentially with time. As you 
can check for yourself (Problem 6. l), the mean lifetime is simply the reciprocal 
of the decay rate: 

1 
7 = -  

r (6.3) 

Actually, most particles can decay by several different routes. The T+, for 
instance, usually decays to p’ + v,, but sometimes one goes to e+ + u,; occa- 
sionally, a A+ decays to p+ + v, + y, and they have even been known to go to 
e+ + u, + T O .  In such circumstances the total decay rate is the sum of the individual 
decay rates: 

n 

rtot = C ri 
i= 1 

and the lifetime of the particle is the reciprocal of rtot: 
5- = 1/rtot (6.5) 

In addition to 7, we want to calculate the various branching ratios, that is, the 
fraction of all particles of the given type that decay by each mode. Branching 
ratios are determined by the decay rates: 

Branching ratio for ith decay mode = r,/rtot (6.6) 

For decays, then, the essential problem is to calculate the decay rate ri for each 
mode; from there it is an easy matter to obtain the lifetime and branching ratios. 

How about scattering? What quantity should the experimentalist measure 
and the theorist calculate? If we were talking about an archer aiming at a “bull’s- 
eye,” the parameter of interest would be the size of the target, or more precisely 
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the cross-sectional area it presents to a stream of incoming arrows. In a crude 
sense, the same goes for elementary particle scattering: If you fire a stream of 
electrons into a tank of hydrogen (which is essentially a collection of protons) 
the parameter of interest is the size of the proton-the cross-sectional area u it 
presents to the incident beam. The situation is more complicated than in archery, 
however, for several reasons. First of all the target is “soft”; it’s not a simple case 
of “hit-or-miss,” but rather “the closer you come the greater the deflection.” 
Nevertheless, it is still possible to define an “effective” cross section; I’ll show 
you how in the next paragraph. Second, the cross section depends on the nature 
of the “arrow” as well as the structure of the “target.” Electrons scatter off hy- 
drogen more sharply than neutrinos and less so than pions, because different 
interactions are involved. It depends, too, on the outgoing particles; if the energy 
is high enough we can have not only elastic scattering (e  + p - e + p ) ,  but a 
variety of inelastic processes, such as e + p - e + p + y, or e + p + T O ,  or even, 
in principle, Y, + A. Each one of these has its own (“exclusive”) scattering cross 
section, ui (for process i). In some experiments, however, the final products are 
not examined, and we are interested only in the total (“inclusive”) cross section. 

n 

utot = c Ul 
i= 1 

Finally, each cross section typically depends on the velocity of the incident particle. 
At the most naYve level we might expect the cross section to be proportional to 
the amount of time the incident particle spends in the vicinity of the target, 
which is to say that u should be inversely proportional to o. But this behavior is 
dramatically altered in the neighborhood of a “resonance”-a special energy at 
which the particles involved “like” to interact, forming a short-lived semibound 
state before breaking apart. Such “bumps” in the graph of u versus v (or, as it 
is more commonly plotted, 0 versus E )  are in fact the principal means by which 
short-lived particles are discovered (see Fig. 4.6). So, unlike the archer’s target, 
there’s a lot of physics in an elementary particle cross section. 

Let’s go back, now, to the question of what we mean by a “cross section” 
when the target is “soft.” Suppose a particle (maybe an electron) comes along, 
encounters some kind of potential (perhaps the Coulomb potential of a stationary 
proton), and scatters off at an angle B. This scattering angle is a function of the 
impact parameter b, the distance by which the incident particle would have 
missed the scattering center, had it continued on its original trajectory (Fig. 6.1). 
Ordinarily, the smaller the impact parameter, the larger the deflection, but the 
actual functional form of B(b) depends on the particular potential involved. 

EXAMPLE 6.1 Hard-Sphere Scattering 
Suppose the particle bounces elastically off a sphere of radius R. From 
Figure 6.2, we have 

Thus 
and hence b = R cos(8/2) or 6 = 2 cos-’ (b/R) 
This is the relation between B and b for classical hard-sphere scattering. 

b = R sin a,  2a + 0 = T 

sin a = sin(ir/2 - 012) = cos(0/2) 
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Scattering center impact parameter. 

If the particle comes in with an impact parameter between b and b + db, 
it will emerge with a scattering angle between I9 and I9 + do. More generally, if 
it passes through an infinitesimal area du, it will scatter into a corresponding 
solid angle dQ (Fig. 6.3). Naturally, the larger we make du, the larger dQ will be. 
The proportionality factor is called the diflerential scattering cross section, D: 

da = D(I9)dQ (6.8) 

In principle, D might depend on the azimuthal angle 4; however, most potentials 
of interest are spherically symmetrical, in which case the differential cross section 
depends only on I9 (or, if you prefer, on b). By the way, the notation, D, is my 
own; most people call it simply du/dQ, and in the rest of the book I’ll revert to 
the standard terminology. The name “differential cross section” is poorly chosen; 
it’s not a differential at all, in the mathematical sense (the words would apply 
more naturally to du than to da/dQ). 

Now, from Figure 6.3 we see that 

du = lb db d41, dQ = Isin I9 dI9 d4l (6.9) 

(Areas and solid angles are intrinsically positive, hence the absolute value signs.) 
Accordingly, 

(6.10) 

Figure 6.2 Hard-sphere scattering. 
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- 
Figure 6.3 Particle incident in area da scatters into solid angle da. 

EXAMPLE 6.2 
In the case of hard-sphere scattering, Example 6.1, we find 

d8 
and hence 

Rb sin(8/2) 
2 sin 8 

R2 cos(8/2) sin(0/2) - R2 
2 sin 0 4 

= -  - -  D(0) = 

Finally, the total cross section is the integral of du over all solid angles: 

c = s du = s D(8)dfl (6.11) 

EXAMPLE 6.3 
For hard-sphere scattering 

R2 7 dfl = rR2 u = 

which is, of course, the total cross section the sphere presents to an incoming 
beam: Any particles within this area will scatter, any outside will pass by 
unaffected. 

As Example 6.3 indicates, the formalism developed here is consistent with our 
naYve sense of the term “cross section,” in the case of a “hard” target; its virtue 
is that it applies as well to “soft” targets, which do not have sharp edges. 

EXAMPLE 6.4 Rutherford Scattering 
A particle of charge q1 scatters off a stationary particle of charge q2 .  In 
classical mechanics the formula relating the impact parameter to the scat- 
tering angle is’ 

91q2 
2E 

b = - ~0t(8/2) 
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where E is the initial kinetic energy of the incident charge. The differential 
cross section is therefore 

D(0) = ( q‘q2 
4E sin2 (8/2) 

In this case the total cross section is actually infinite:* 
” 1  

sin B d0 = cc 

Suppose now, that we have a beam of incoming particles, with uniform 
luminosity L ( L  is the number of particles passing down the line per unit time, 
per unit area). Then dN = L du is the number of particles per unit time passing 
through area da, and hence also the number per unit time scattered into solid 
angle dQ: 

dN = L du = LD(B)dQ 

It follows that 

da 1 dN 
dQ L dQ 
- _  - D(0) = - - (6.12) 

This is frequently a more convenient way to think of the differential cross section: 
It is the number of particles per unit time scattered into solid angle dQ, divided 
by dQ and by the luminosity. (Or, as accelerator physicists like to put it, “the 
event rate is the cross section times the luminosity”.)‘f 

6.2 THE GOLDEN RULE 

In Section 6.1 I introduced the basic physical quantities we need to calculate: 
decay rates and scattering cross sections. In either case there are two ingredients 
in the recipe: (1) the amplitude (A) for the process and (2) the phase space 
available.$ The amplitude contains all the dynamical information; we calculate 
it by evaluating the relevant Feynman diagrams, using the “Feynman rules” 
appropriate to the interaction in question. The phase space factor contains only 
kinematical information; it depends on the masses, energies, and momenta of 
the participants, and reflects the fact that a given process is more likely to occur 

* This is related to the fact that the Coulomb potential has infinite range (see footnote on 
p. 17). 

t In this discussion I have assumed that the target itself is stationary, and that the incident 
particle is simply deflected as it passes through the scattering potential. My purpose was to introduce 
the essential ideas in the simplest possible context. But in Section 6.2 the formalism is completely 
general; it includes the recoil of the target, and allows for a change in the identity of the participants 
during the scattering process (in the reaction ?r- + p+ - K+ + 8-, for example, dQ might represent 
the solid angle into which the KC scatters). * The amplitude is also called the matrix element; the phase space is sometimes called the 
density offinal states. 
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the more “room to maneuver” there is in the final state. For example, the decay 
of a heavy particle into many light secondaries involves a large phase space 
factor, for there are many different ways to apportion the available energy. By 
contrast, the decay of the neutron ( n  - p + e + i,), in which there is almost no 
extra mass to spare, is tightly constrained, and the phase space factor is 
very small.* 

The transition rate for a given process is determined by the amplitude and 
the phase space according to Fermi’s “Golden Rule”: 

2* 
h 

transition rate = - / & I 2  X (phase space) (6.13) 

A derivation of the Golden Rule in the nonrelativistic context will be found in 
any quantum mechanics text2; for the relativistic version one must consult a 
book on quantum field t h e ~ r y . ~  We shall not go into that here; for our purposes 
it will suffice to quote the quantitative formulation of the Golden Rule in the 
two cases of interest: 

Golden Rule for Decays. Suppose particle 1 decays into several other 

1 - + 2 + 3 + 4 +  + n  (6.14) 

particles 2, 3, 4, , . . , n: 

The decay rate is given by the formula? 

where p i  = (Ei/c, p i )  is the four-momentum of the ith particle (which cames 
mass mi, so that ET - pfc2 = m:c4).$ The delta functions enforces conservation 
of energy and momentum; it is zero unless pI = p2 + p3 + . - - + p n .  The 
decaying particle is presumed to be at rest: p1 = (mlc, 0). S is a product of 
statistical factors: l/j! for each group o f j  identical particles in the final state. 

Equation (6.15) determines the dzfferential rate for a decay in which the three- 
momentum of particle 2 lies in the range d3p2 about the value p 2 ,  that of particle 
3 lies in the range d3p3 about p 3 ,  and so on. Ordinarily, we are not interested in 
the individual momenta of the decay products, and so we integrate over all 

* For a more extreme case, consider the (kinematically forbidden) decay R- - E -  + c. Since 
the final products weigh more than the R, there is no phase space available at all, and the decay rate 
is zero. 

t The formula looks simpler if you collect together the various factors of c, 2 ~ ,  and so on, 
but its structure is clearer when they are grouped as shown. 

$ Notice that this makes E, a function of pi: Ei = c w ;  in fact, as far as equation 
(6.15) is concerned, Ei should be regarded as shorthand for this expression. 

Q Those unfamiliar with the Dirac delta function should study Appendix A before proceeding. 
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outgoing momenta to get the total decay rate r for mode in question (6.14). In 
particular, if there are only two particles in the final state 

In general, the amplitude A is a function of p2 and p3, and it cannot be taken 
outside the integral. Nevertheless, for a two-body decay we can carry out the 
integration explicitly, without knowing the functional form of A, as the following 
two examples show. Because the general case (Example 6.6) involves some cum- 
bersome algebra, we shall first consider the special case in which the decay prod- 
ucts are both massless (Example 6.5). 

EXAMPLE 6.5 
A particle of mass m decays into two massless secondaries (for instance, 
a0 - y + y). If the amplitude for the process is A(p2,  p3), find the de- 
cay rate. 

Solution. First, rewrite the delta function, using the fact that El = mc2 
and p1 = 0: 

a4(p, - p2 - ~ 3 )  = 6 a3(-p2 - p3) (6.17) 

Since m2 = m3 = 0, we have EZ = Ip~lc, E3 = Ip3lc. Thus 

X a(mc - I P Z I  - I P ~ I ) W P ~  - P3)d3P2 d3p3 (6.18) 

Next, use a3(-p2 - p3) to do the p3 integral. This simply replaces every p3 
by -p2, reflecting the conservation of momentum: 

(6.19) 

At this stage IAI' is a function of p2 alone; indeed, since it has to be a 
scalar, it can only depend on Ip21.* Going to spherical coordinates, 

d3p2 = lp2I2 dlp21sin I9 dI9 d4 (6.20) 

and performing the angular integration, sin I9 dI9 d4 = 4a, we have 

(6.2 1 )  

* If the particles carry spin, then 1.h2l2 might depend also on (p i .S j )  and (S i .S j ) .  However, 
since experiments rarely measure the spin orientation, we almost always work with the spin-averaged 
amplitude. In that case, as in the case of spin 0, the only vector in sight is p2, and the only scalar 
variable is pi. 
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Now [see eq. (A.9)] 

and we conclude that 

(6.22) 

(6.23) 

where Jn is evaluated at the momenta dictated by the conservation laws, 
to wit: p3 = -p2 and lp21 = mc/2.* 

EXAMPLE 6.6 Two-Body Decay 
Consider now the general case of a two-body decay, in which the outgoing 
particles carry masses m2 and m3. Find the decay rate, assuming Jn is 
given. 

Solution. Again, we begin by rewriting the delta function, as in equation 
(6.17), and performing the p3 integral; but this time E2 = c m ,  
E3 = c m ,  so in place of equation (6.19) we have 

(6.24) 

l 2  is now a function only of Ip21, so we can introduce spherical As before, 
coordinates and do the angular integration: 

s 
p2 d p  (6.25) 

where p is shorthand for lp21. We could use the general formula (A.13) to 
reduce the remaining delta function, but it is simpler, and more illumi- 
nating, to make a change of variables: Let 

E = C ( m + m )  (6.26) 

(Physically, E represents the total energy of the outgoing particles-hence 
the choice of letter.) It follows that 

0~ / & 1 2  6(mlc - VGijTQ - m) mm r=-S, 8 ~ h m l  

(6.27) 

and therefore 

I& l 2  5 6( mlc - "dE (6.28) 
r=-f S "  

8 i ~  h ml (m2+m3)c* C 

* In the specific case ro - y + y there are two identical particles in the final state, so S = 4. 
F o r r o - u t 5 , S =  1. 



198 6/THE FEYNMAN CALCULUS 

But [eq. (A.9)] 

6(mIc - E/c) = c6(E - m1c2) (6.29) 

and we conclude that 

(6.30) 

provided ml  > (m2 + m3); otherwise the delta function spike is outside the 
domain of integration and we get r = 0, recording the fact that a particle 
cannot decay into heavier secondaries. Here po is the value of p for which 
E = mlc2. Solving equation (6.26), we find (Problem 6.5) that 

po = - dmj + mi + m': - 2m:m: - 2m:m: - 2m:m: 
C 

(6.31) 

Remember that p was short for the variable Ipzl; po is the particular value 
of (p21 that is consistent with conservation of energy, and equation (6.31) 
simply reproduces the result we obtained back in Chapter 3 (see Problem 
3.16). In more comprehensible notation, then, 

2ml 

(6.32) 

where IpI is the magnitude of either outgoing momentum, given in terms 
of the three masses by equation (6.3 l), and & is evaluated at the momenta 
required by the conservation laws. Notice that if mz = m3 = 0, then IpI = 

mlc/2 and we recover equation (6.23). 

The final two-body decay formula (6.32) is surprisingly simple and general. 
We shall use it frequently in later chapters. Unfortunately, when there are three 
or more particles in the final state the integrals cannot be done until we know 
the specific functional form of & for the process in question. In such cases (of 
which we shall encounter mercifully few) you have to go back to the Golden 
Rule, and work it out from scratch. 

Golden Rule for Scattering Suppose particles 1 and 2 collide, producing 

1 + 2 - 3 + 4 +  + n  (6.33) 

particles 3, 4, . . . , n: 

The cross section is given by the formula 

x ( 2 ~ ) ~  a4(pl + p2 - p 3  - p4 - + - - pn) (6.34) 

where, as before, Pi = (Ei/C, pi )  is the four-momentum of particle i (mass mi), 
Ei = c m ,  and S is a statistical factor (l/j! for each group o f j  identical 
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Figure 6.4 Two-body scattering in the CM frame. 

particles in the final state). Note that the delta function enforces conservation 
of energy and momentum. 

Equation (6.34) determines the cross section for a process in which the three- 
momentum of particle 3 lies in the range d3p3 about the value p3, that of particle 
4 falls in the range d3p4 about p4, and so on. In a typical situation we study only 
the angle at which particle 3 emerges. In that case we integrate over all the other 
momenta (p4, p5, . . . , p,,), and over the magnitude of p3; what’s left gives us 
da/dB, the differential cross section for the scattering of particle 3 into solid 
angle dB. 

EXAMPLE 6.7 Two-Body Scattering in the CM Frame 
Consider the process 

1 + 2 - 3 + 4  (6.35) 

in the CMframe (Fig. 6.4). If the amplitude is Jtt, calculate the differential 
cross section. 

Solution. In the CM frame, p2 = -p l ,  and hence p1-p2 = E1E2/c2 
+ p:. It follows, after some simple algebra (see Problem 6.7), that 

(6.36) V(PI .pd2 - ( m i m 2 ~ ~ ) ~  = (El + Ez)IPII/c 

Thus da = (811) hc s1h12c 
d3p3 d3p4 ,34(p1 + p2 - p3 - p4) (6.37) 

(EI + E~IPII E3E4 

As usual, we begin by rewriting the delta function:* 

(6.38) 

Next we express the outgoing energies in terms of p3 and p4 (Ei = 

c m ,  and carry out the p4 integral (which sends p4 - -p3):t 

* Observe that p, and pz arefixed vectors (related by our choice of reference frame: p2 = -p,), 
but at this stage p, and p4 are integration variables. It is only after the p4 integration that they are 
restricted (p4 = -p3), and after the lp3/ integration that they are determined by the scattering 
angle 8. 

t I follow the standard (sloppy) notation, in which we use the same symbol, du, before and 
after integration over p4 (and indeed over Ip3I as well, as you’ll see in a moment). 
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d3p3 (6.39) 6((E, + E2)/c) - - m) X mm 
This time, however, IAI’ depends on the direction of p 3  as well as its 
magnitude,* so we cannot carry out the angular integration. Writing 

d3p3 = p2 dp dQ (6.40) 

(where p is shorthand for lp31 and dQ = sin 0 d0 d4), we obtain 

p 2  dp (6.41) ~ ( ( E I  + E ~ ) / c )  - - m) X 
l G Q - q m  

The integral over p is the same as in equation (6.25), with m2 - m4 and 
ml - ((El + E2)/c2). Quoting our previous result (6.32), I conclude that 

(6.42) 

where IpfI is the magnitude of either outgoing momentum and / p i [  is the 
magnitude of either incoming momentum. 

As in the case of decays, the two-body final state is peculiarly simple, 
in the sense that we are able to carry the calculation through to the end 
without knowing the explicit functional form of A. We will be using equation 
(6.42) frequently in later chapters. 

By the way, lifetimes obviously carry the dimensions of time (seconds); 
decay rates (r = 1 /T ) ,  therefore, are measured in inverse seconds. Cross sections, 
have dimensions of meu-cm2, or, more conveniently, “barns”: 

1 barn = cm2 (6.43) 

Differential cross sections, du/dQ, are given in barns per steradian, or simply 
barns (steradians, like radians, being dimensionless). The amplitude, A, has 
units which depend on the number of particles involved: If there are n external 
lines (incoming plus outgoing), the dimensions of .A4 are those of momentum 
raised to the power 4 - n: 

Dimensions of .M = ( m ~ ) ~ - ~  (6.44) 

* In general, I.nZI’ depends on all four momenta. However, in this case p2 = -pI and p4 = 
-p3, so it remains a function only of pI  and p3, (assuming again that spin does not come into 
it). From these vectors we can construct three scalars: pI . p I  = lpIIz. p3*p3 = Ip3l2, and p1 *p3  = 

\pIIIp31 cos 8. But pI is fixed, so the only integration variables on which JJtl’ can depend are Jp3J 
and 8. 
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For example, in a three-body process (A  - B + C), A has dimensions of mo- 
mentum; in a four-body process ( A  - B + C + D, or A + B - C + D), .& is 
dimensionless. You can check for yourself that the two Golden Rules then yield 
the correct units for r and CT. 

6.3 THE FEYNMAN RULES FOR A TOY THEORY 

In Section 6.2 we learned how to calculate decay rates and scattering cross sec- 
tions, in terms of the amplitude A for the process in question. Now 1’11 show 
you how to determine A itself, using the “Feynman rules” to evaluate the relevant 
diagrams. We could go straight to a “real-life’’ system, such as quantum elec- 
trodynamics, with electrons and photons interacting via the primitive vertex: 

This is the original, the most important, and the best understood application of 
Feynman’s technique. Unfortunately, it involves diverting complications (due 
to the fact that the electron carries spin 4 and the photon carries spin 1) which 
have nothing to do with the Feynman calculus as such. In Chapter 7 I’ll show 
you how to handle particles with spin, but for the moment I don’t want to 
confuse the issue, so I’m going to introduce a “toy” theory, which does not 
pretend to represent the real world, but will serve to illustrate the method, with 
a minimum of extraneous baggage.4 

Imagine a world in which there are just three kinds of particles-call them 
A ,  B, and C-with masses mA, mB, and mc. They all have spin 0, and each is 
its own antiparticle. There is one primitive vertex, by which the three particles 
interact: 

I shall assume that A is the heaviest of the three, and in fact weighs more than 
B and C combined, so that it can decay into B + C. The lowest-order diagram 
describing this disintegration is: 

I A  
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to which there are (small) third-order corrections: 

Y u/ 
and even smaller ones of higher order. Our first project will be to calculate the 
lifetime of the A, to lowest order. After that, we’ll look at various scattering 
processes, such as A + A - B + B: 

A + B - + A  + B: 

and so on. We shall determine the cross sections for such events. Our problem 
is to find the amplitude JN. associated with a given Feynman diagram. The ritual 
is as f01lows:~ 

1. Notation. Label the incoming and outgoing four-momenta p I  , p 2 ,  . . . , 
pn (Fig. 6.5). Label the internal momenta ql , q2, . . . . Put an arrow on 
each line, to keep track of the “positive” direction (arbitrarily assigned, 
for the internal lines).* 

2. Coupling Constant. For each vertex, write down a factor of 

- ig 

g is called the coupling constant; it specifies the strength of the interaction 
between A, B, and C. In this toy theory g has the dimensions of mo- 
mentum; in the “real-world’’ theories we shall encounter later on the 
coupling constant is always dimensionless. 

* Since these particles are their own antiparticles, we do not need the arrows here to keep 
track of that distinction. In later chapters we shall have to be more careful. 
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\ / 

Figure 6.5 A typical Feynman diagram, ]:-];I \&  with external lines labeled (internal lines 
not shown). 

3. Propagator. For each internal line, write a factor 

1 
2 2  4,’ - rnjc 

where qj is the four-momentum of the line (qy = qyqj,) and rnj is the 
mass of the particle the line describes. (Note that qy # rn:c2, because a 
virtual particle does not lie on its mass shell.) 

4. Conservation of Energy and Momentum. For each vertex, write a delta 
function of the form 

( 2 ~ ) ~  a4(kl + k2 + k3) 

where the k‘s are the three four-momenta coming into the vertex (if the 
arrow leads outward, then k is minus the four-momentum of that line). 
This factor imposes conservation of energy and momentum at each 
vertex, since the delta function is zero unless the sum of the incoming 
momenta equals the sum of the outgoing momenta. 

5. Integration over Internal Momenta. For each internal line, write down 
a factor 

and integrate over all internal momenta. 
6 .  Cancel the Delta Function. The result will include a delta function 

(27d4 a4(P,  + P2 + - * -PJ 

enforcing overall conservation of energy and momentum. Erase this 
factor, and what remains is -i&* 

* Once you get used to it, steps 4, 5 ,  and 6 can be collapsed into a single rule: “Integrate over 
all undetermined internal momenta.” This is how most books do it, right from the start, but I think 
the method presented here is clearer, even if it does take a little extra time. By the way, you’ll notice 
that every delta function carries a factor of ( 2 ~ ) ~ ,  and every four-dimensional volume element carries 
a factor of ( 2 ~ ) - ~ .  Most of these factors eventually cancel out, and you might wonder if they are 
really necessary (similar remarks apply to the i ’s  in the propagators and coupling constants). They 
are necessary, and the prescription given here is the most systematic way to keep track of them. 
Feynman is supposed to have shouted once in exasperation (at a graduate student who “couldn’t be 
bothered with such trivial matters”), “If you can’t get the 47’s in the right place, you don’t know 
nothing!” 
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Figure 6.6 Lowest-order contribution to 
A - B f C .  

I 
A 

In the following sections we’ll see how these rules are used to evaluate some 
elementary Feynman diagrams in the “ABC theory.” 

6.4 LIFETIME OF THE A 

The simplest possible diagram, representing the lowest-order contribution to 
A - B + C, has no internal lines at all (Fig. 6.6). There is one vertex, at which 
we pick up a factor of -ig (rule 2 )  and a delta function 

a4(PI - P2 - P3) 

(rule 4), which we promptly discard (rule 6), obtaining -i& = -ig, or 

& = g  (6.45) 

This is the amplitude (to lowest order); the decay rate is found by plugging & 
into equation (6.32): 

(6.46) 

where jpl (the magnitude of either outgoing momentum) is 

c 
/PI = - v mi + mi + m: - 2mfim3 - 2mim& - 2m3m& (6.47) 

2mA 
The lifetime of the A, then, is 

1 87rhm;c r = - = -  
g2Ipl 

You should check for yourself that r comes out with the correct units. 

6.5 SCATTERING 

(6.48) 

The lowest-order contribution to the process A + A - B + B is shown in Figure 
6.7. In this case there are two vertices (hence two factors of -ig), one internal 
line, with the propagator 
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B B 

A A 

i 
q2 - m$c2 

two delta functions: 

and one integration: 

Rules 1 through 5 ,  then, yield 

The second delta function serves to pick out the value of everything else at the 
point q = p4 - p 2 ,  so we have 

As promised, there is one remaining delta function, reflecting overall conservation 
of energy and momentum. Erasing it (rule 6), we are left with 

(6.49) 

But that’s not the whole story, for there is another diagram of order g2, 
obtained by “twisting” the B lines (Fig. 6.8). (You don’t get yet another new 
diagram by twisting the A lines; the only choice here is whether p3 connects to 
p1 or to p 2 ) .  Since this differs from Figure 6.7 only by the interchange p 3  - p4, 
there is no need to compute it from scratch; quoting equation (6.49), we 

Figure 6.8 Second diagram contributing 
A A in lowest order to A + A - B + B. 
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. xB - - - - - - - 
A-0-A 

After 

p1 p2 

Before 
B 

Figure 6.9 A + A - B + B in the CMframe. 

can write down immediately the total amplitude (to order g 2 )  for the process 
A + A  - B + B: 

(6.50) g 2  
( ~ 4  - ~ 2 ) ~  - mcc 

Notice, incidentally, that At is a Lorentz-invariant quantity. This is always the 
case; it is built into the Feynman rules. 

Suppose we are interested in the differential cross section (da/dQ) for this 
process, in the CM system (Fig. 6.9). Say, for simplicity, that mA = mB = m and 
mc = 0. Then 

(p4 - p2)’ - mk’ = pz + pt  - 2p2 .p4 = -2p2(1 - cos 8) (6.51) 
(p3 - ~ 2 ) ~  - m$c2 = p i  + p i  - 2p3 - p 2  = -2p2(1 + cos 0) (6.52) 

g 2  
(p3 - p d 2  - m k ’  2 2 +  & =  

(where p is the incident momentum of particle l) ,  and hence 

(6.53) A = - -  g‘ 
p2 sin2 8 

According to equation (6.42), then, 

da 
(6.54) 

In this case, as for Rutherford scattering (Example 6.4), the total cross section 
is infinite. 

6.6 HIGHER-ORDER DIAGRAMS 

So far we have looked only at lowest-order (“tree level”) Feynman diagrams; in 
the case of A + A - B + B, for instance, we considered the graph: 

This diagram has two vertices, so that JM. is proportional to g 2 .  But there are a 
number of diagrams with four vertices which contribute to this process. If the 
added line starts on line (l), it could terminate also on line (1): 
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or it could terminate on line (2): 

B B 

A A 

or on line (3): 

or on line (4) or line (5). So there are five diagrams in which the added line 
attaches to line (1). There are five also, of course, in which it attaches to line ( 2 ) ,  
but we have already counted one of these (the one joining lines (1) and ( 2 ) ) ,  so 
there are four new diagrams. Likewise, three for line (3), two for line (4), and 
one for line (5). All told, then, there are 

5 + 4 +  3 + 2 + 1 = 15 

fourth-order diagrams for this process, and another 15 for the “twisted” version. 
(Disconnected diagrams, such as 

don’t count.) 
I am certainly not going to evaluate all these “one-loop’’ diagrams (or even 

think about two-loop diagrams), but I would like to take a closer look at one of 
them-the one in which line (5) joins onto itself: 
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Applying Feynman Rules 1 through 5, we obtain 

X d4q1 d4q2 d4q3 d4q4 (6.55) 

Integration over q l ,  using the first delta function, replaces ql by (pI - p 3 ) ;  in- 
tegration over q 4 ,  using the last delta function, replaces q4 by (p4 - p2): 

g4 
[(PI - P3I2 - mk21[(p4 - P d 2  - mk’l  

Here the first delta function replaces q 2  by p1 - p3 - q3, so the second delta 
function becomes 

a 4 ( n  + p2 - 173 - ~ 4 )  

which, by rule 6 ,  we erase, leaving 

1 
d4q 

(6.57) 

(I drop the subscript on q3 at this point.) 
You can try calculating this integral, if you’ve got the energy, but I’ll tell 

you right now you’re going to hit a snag. For the four-dimensional volume 
element could be written d4q = q3 dq dQ’ (where dQ’ stands for the angular part) 
(just as in two-dimensional polar coordinates the element of area is r dr dB and 
in three-dimensional spherical coordinates the volume element is r2 dr sin 0 d0 
d4).  At large q the integrand is essentially just l/q4, so the q integral has the 
form 

S JM. = i(:) 2 2 2  

1 4 

[ ( P I  - ~ 3 ) ~  - mcc I [(PI - p3 - 4)’ - mYI(q2 - &c2) 

(6.58)  

The integral is logarithmically divergent at large q. This disaster, in one form or 
another, held up the development of quantum electrodynamics for nearly two 
decades, until, through the combined efforts of many great physicists-from 
Dirac, Pauli, Kramers, Weisskopf, and Bethe through Tomonaga, Schwinger, 
and Feynman-systematic methods were developed for “sweeping the infinities 
under the rug.” The first step is to regularize the integral, using a suitable cutoff 
procedure that renders it finite without spoiling other desirable features (such as 
Lorentz invariance). In the case of equation (6.57) this can be accomplished by 
introducing a factor 

-M2c2 
(42 - M 2 2 )  (6.59) 
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under the integral sign. The cutofmass M is assumed to be very large, and will 
be taken to infinity at the end of the calculation (note that the “fudge factor” 
(6.59) goes to 1 a s M +  a).* The integral can now be calculated6 and separated 
into two parts: a finite term, independent of M, and a term involving (in this 
case) the logarithm of M, which blows up as M - co. 

At this point a miraculous thing happens: all the divergent, M-dependent 
terms appear in the final answer in the form of additions to the masses and the 
coupling constant. If we take this seriously, it means that the physical masses 
and couplings are not the m’s and g’s that appeared in the original Feynman 
rules, but rather the “renormalized” ones, containing these extra factors: 

mphysical = m + am; gphysical = g + 6g (6.60) 

The fact that 6rn and 6g are infinite (in the limit M - co) is disturbing, but not 
catastrophic, for we never measure them anyway; all we ever see in the laboratory 
are the physical values, and these are (obviously) finite (evidently the unmea- 
surable “bare” masses and couplings, rn and g, contain compensating infinities).t 
As a practical matter, we take account of the infinities by using the physical 
values of rn and g in the Feynman rules, and then systematically ignoring the 
divergent contributions from higher-order diagrams. 

Meanwhile, there remain the finite (M-independent) contributions from 
the loop diagrams. They, too, lead to modifications in rn and g (perfectly cal- 
culable ones, in this case)-which, however, are functions of the four-momentum 
of the line in which the loop is inserted ( p l  - p3 in the example). This means 
that the efective masses and coupling constants actually depend on the energies 
of the particles involved; we call them “running” masses and “running” coupling 
constants. The dependence is typically rather slight, at low energies, and can 
ordinarily be ignored, but it does have observable consequences, in the form of 
the Lamb shift (in QED) and asymptotic freedom (in QCD).S 

The procedure I have sketched in the last three paragraphs is called renor- 

* No one would deny that this procedure is artificial. Still, it can be argued that expression 
(6.59) merely reflects our ignorance of the high-energy (short distance) behavior of quantum field 
theory. Perhaps the Feynman propagators are not quite right in this rkgime, and M is simply a crude 
way ofaccounting for the unknown modification. (This would be the case, for example, ifthe “particles” 
have substructure that becomes relevant at extremely close range.) Dirac once remarked: 

It’s just a stopgap procedure. There must be some fundamental change in our ideas, probably 
a change just as fundamental as the passage from Bohr’s orbit theory to quantum mechanics. 
When you get a number turning out to be infinite which ought to be finite, you should admit 
that there is something wrong with your equations, and not hope that you can get a good 
theory just by doctoring up that number. [From P. Buckley and F. D. Peat, A Question of 
Physics (Toronto: University of Toronto Press, 1979), page 39.1 
t In case it is some comfort, I should point out that essentially the same thing occurs in 

classical electrodynamics: the electrostatic energy of a point charge is infinite, and makes an infinite 
contribution (via E = mc2) to the particle’s mass. Perhaps this means that there are no true point 
charges, in classical electrodynamics; perhaps that’s what it means in quantum field theory, too. In 
neither case, however, do we know how to avoid the point particle as a theoretical construct. 

# A physical interpretation of the running coupling constant in QED and QCD was suggested 
in Chapter 2, Section 2.3. A nice explanation of mass renormalization is given by P. Nelson in 
American Scientist, 13, 66 (1985): (footnote continues on p .  210) 
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malization. If all the infinities arising from higher-order diagrams can be accom- 
modated in this way, we say that the theory is renormalizable. ABC theory and 
quantum electrodynamics are renormalizable. In the early seventies ’t Hooft 
showed that all gauge theories, including chromodynamics and the electroweak 
theory of Glashow, Weinberg, and Salam, are renormalizable. This was a pro- 
foundly important discovery, because, beyond lowest-order calculations, a non- 
renormalizable theory yields answers that are cutoff-dependent and, therefore, 
really, quite meaningless. 
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the rules for QED (R. P. Feynman, Phys. Rev. 76, 749 and 769 (1949)). It remained 
for Freeman Dyson to show how the Feynman Rules could be obtained from quantum 
field theory (F. J. Dyson, Phys. Rev. 75, 486 and 1376 (1949) and 82, 428 (1951)). 
For a fascinating personal history of these events, see Chapters 5 and 6 of Dyson’s 
book Disturbing The Universe (New York: Harper & Row, 1979). We shall return 
to the question of how Feynman’s Rules are derived in Chapter 1 1; for now I will 
simply treat them as axioms. 
The method is explained in J. J .  Sakurai, Advanced Quantum Mechanics (Reading, 
MA: Addison-Wesley, 1967); see particularly the useful collection of formulas in 
Appendix E. 

According to renormalization theory, not only the strengths of the various interactions but 
the masses of the participating particles appear to vary on differing length scales. To get a feel 
for this seemingly paradoxical statement, imagine firing a cannon underwater. Even neglecting 
friction, the trajectory will be very different from the corresponding one on land, since the 
cannonball must now drag with it a considerable amount of water, modifying its apparent, 
or “effective,” mass. We can experimentally measure the cannonball‘s effective mass by shaking 
it to and fro at a rate w, computing the mass from F = mu. (This is how astronauts “weigh” 
themselves in space.) Having found the effective mass, we can now replace the difficult problem 
of underwater ballistics by a simplified approximation: we ignore the water altogether, but in 
Newton’s equations we simply replace the true cannonball mass by the effective mass. The 
complicated details of the interaction with the medium are thus reduced to determining one 
effective parameter. 

A key feature of this approach is that the effective mass so computed depends on w, 
since as w approaches zero, for example, the water has no effect whatever. In other words, the 
presence of a medium can introduce a scale-dependent effective mass. We say that the effective 
mass is “renormalized” by the medium. In quantum physics, every particle moves through a 
“medium” consisting of the quantum fluctuations of all particles present in the theory. We 
again take into account this medium by ignoring it but changing the values of our parameters 
to scale-dependent “effective” values. 
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PROBLEMS 

6.1. Derive equation (6.3). [Hint: What fraction of the original sample decays between 
t and t + dt? What, then, is the probability of any given particle decaying between 
t and t + dt? Take it from there.] 

6.2. Nuclear physicists traditionally work with “half-life” ( t I l 2 )  instead of mean life (7); 
t I l2  is the time it takes for half the members of a large sample to decay. Show that 
for exponential decay [eq. (6.2)] 

t I l2  = r In 2 

6.3. (a) Suppose you started out with a million muons (at rest); how many would still 
sec later? (b) What is the probability of a .rr- lasting more 

6.4. A nonrelativistic particle of mass m scatters from a fixed repulsive potential, 

be around 2.2 X 
than 1 sec? 

V(r)  = k/r2,  where k is a constant. 
(a) Find the scattering angle, 8, as a function of the impact parameter, b. 
(b) Determine the differential cross section du/dQ. 
(c) Find the total cross section. 
[References: Goldstein (ref. l ) ,  p. 108, eq. (3-97), and Becker, Introduction to Theo- 
retical Mechanics (New York: McGraw-Hill, 1954), p. 231, Example 10-3.1 

6.5. Derive equation (6.3 l), using definition (6.26). 
6.6. As an application of Example 6.5, consider the decay of .rro - y + y. Of course, 

the .rro is a composite object (uC and dd) ,  and so equation (6.23) does not really 
apply. But let’s pretend that the KO is a true elementary particle, and see how close 
we come. Unfortunately, we don’t know the amplitude A; however, it must have 
the dimensions of mass times velocity [eq. (6.44)], and there is only one mass and 
one velocity available. Moreover, the emission of each photon introduces a factor 
of (the fine structure constant) into A, as we shall see in Chapter 7, so the 
amplitude must be proportional to a. On this basis, estimate the lifetime of the TO. 
Compare the experimental value. [Evidently, the decay of the no is a much more 
complicated process than this crude model suggests. See C. Quigg, Gauge Theories 
of the Strong, Weak, and Electromagnetic Interactions, Reading, MA: Benjamin/ 
Cummings, 1983, eq. (1.2.25).] 

(b) Obtain the corresponding formula for the lab frame (particle 2 at rest). 
6.7. (a) Derive equation (6.36) for scattering of particles 1 and 2 in the CM. 

[Answer: d(pl  ‘ ~ 2 ) ’  - (m1m2c2)2 = m21plIc~ 

6.8. Consider the case of elastic scattering, A + B - A + B, in the lab frame ( B  initially 
at rest) assuming the target is so heavy ( m g 2  % EA) that its recoil is negligible. Use 
equation (6.34) to determine the differential scattering cross section. 

[Answer: (dcr/dQ) = ( f i / S ~ m g ) ~ I A  l21 

6.9. Consider the collision 1 + 2 - 3 + 4 in the lab frame ( 2  at rest), with particles 3 
and 4 massless. Obtain the formula for the differential cross section. 

6.10. (a) Analyze the problem of elastic scattering (m3 = m i ,  m4 = m2) in the lab frame 
(particle 2 at rest). Derive the formula for the differential cross section. 
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(b) If the incident particle is massless (ml = 0), show that the result in part (a) 
simplifies to 

6.11. (a) Is A - B + B a possible process in the ABC theory? 
(b) Suppose a diagram has nA external A lines, nB external B lines, and nc external 

C lines. Develop a simple criterion for determining whether it is an allowed 
reaction. 

(c) Assuming A is heavy enough, what are the next most likely decay modes, after 
A - B + C? Draw a Feynman diagram for each decay. 

6.12. (a) Draw all the lowest-order diagrams for A + A - A  + A.  (There are six of them.) 
(b) Find the amplitude for this process, in lowest order, assuming mB = mc = 0. 

Leave your answer in the form of an integral over one remaining four- 
momentum, q. 

6.13. Calculate daldfl for A + A - B + B, in the CM frame, assuming mB = mc = 0. 
Find the total cross section, a. 

6.14. Find daldfl and a for A + A - B + B in the lab frame. (Let E be the energy, and 
p the momentum, of the incident A. Assume mB = mc = 0.) Determine the non- 
relativistic and ultrarelativistic limits of your formula. 

6.15. (a) Determine the lowest-order amplitude for A + B - A + B. [Note: There are 
two diagrams.] 

(b) Find the differential cross section for this process in the CM frame, assuming 
mA = mB = m, mc = 0. Express your answer in terms of the incident energy, 
E, and the scattering angle, 8. 

(c) Find daldfl for this process in the lab frame, assuming B is much heavier than 
A,  and remains stationary. A is incident with energy E. [Hint: See Problem 
(6.8). Assume mB $ mA, mc, and EIc2.] 

(d) In case (c), find the total cross section, a. 



Chapter 7 

Quantum Electrodynamics 

In this chapter I introduce the Dirac equation, state the Feynman rules for 
quantum electrodynamics, develop some useful calculational tools, and derive 
some of the classic QED results. The treatment leans heavily on material 
fvom Chapters 2, 3, and 6, as well as on the spin-4 formalism in Chapter 4.  
In turn, Chapter 7 is the indispensable foundation for everything that follows 
(however, you may want to skip Example 7.8 and Section 7.9, together with 
the related passages in Chapters 8 and 9). 

7.1 THE DlRAC EQUATION 

Although the “ABC” model in Chapter 6 is a perfectly legitimate quantum field 
theory, it does not describe the real world, because the particles A, B, and C 
have spin 0, whereas quarks and leptons carry spin f ,  and mediators carry spin 
1. The inclusion of spin can be algebraically cumbersome; that’s why I decided 
to introduce the Feynman calculus in the context of a “toy” theory free of such 
distractions. In nonrelativistic quantum mechanics particles are described by the 
Schrodinger equation; in relativistic quantum mechanics particles of spin 0 are 
described by the Klein-Gordon equation, particles of spin 4 by the Dirac equation, 
and particles of spin 1 by the Proca equation. Once the Feynman rules have 
been established, however, the underlying field equation fades into the back- 
ground-that’s how we got through Chapter 6 without ever mentioning the 
Klein-Gordon equation. But for spin f the very notation of the Feynman rules 
presupposes some familiarity with the Dirac equation. So for the next three 
sections we shall study the Dirac theory in its own right. 

In Chapter 5 I “derived” the Schrodinger equation by starting with the 
classical energy-momentum relation: 

21 3 
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P2 - + V / = E  
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(7.1) 

applying the quantum prescription 

h 
P‘TV,  

1 

and letting the resulting operator act on 

a* h2 
2m at 

V2\k + v\E = ih - -- 

a 
at 

E - i h -  (7.2) 

the “wave function,” #: 

(Schrodinger equation) (7.3) 

The Klein-Gordon equation can be obtained in exactly the same way, beginning 
with the relativistic energy-momentum relation, E 2  - p2c2 = m2c4, or (better) 

(7.4) 

(I’ll leave out the potential energy, from now on; we’ll stick to free particles). 
Surprisingly, the quantum prescription (7.2) requires no relativistic modification; 
in four-vector notation, it reads 

psp,  - m2c2 = 0 

p,  - ih d, (7.5) 

Here* 
a =-  

ax” 

which is to say 

a a a 
ax ’ dY az a 2 = - ,  a 3 = -  (7.7) a =-  d o = - -  1 c at ’ 

l a  

Putting (7.5) into (7.4), and letting the derivatives act on a wave function $, we 
obtain 

-h2  spa,$ - m2c2$ = o (7.8) 

- or 
2 

+ V2$ = (y) $ (Klein-Gordon equation) (7.9) 
I a2$ 

c2 at2 
-- 

Schrodinger apparently discovered this equation even before the nonrel- 
ativistic one that bears his name; it was eventually rejected on the ground that 
(for reasons we need not go into) it was incompatible with the statistical inter- 
pretation of $ [which says that [ # I 2  is the probability of finding the particle at 
the point (x, y, z)] .  The source of the difficulty was traced to the fact that the 
Klein-Gordon equation is second order in t.? So Dirac set out to find an equation 
consistent with the relativistic energy-momentum formula, and yet first order 
in time. Ironically, in 1934 Pauli and Weisskopf showed that the statistical in- 

* The gradient with respect to a contravariant position-time four-vector x’ is itself a covariant 
four-vector, hence the placement of the index. Written out in full, equation (7.5) says (E/c, -p) - 
ih - - , V . Of course, = a p x ,  (See Problem 7.1 .) (iaai 1 

t Notice that the Schrodinger equation (7.3) i s j r s t  order in t. 
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terpretation itself is flawed in relativistic quantum theory,* and restored the 
Mein-Gordon equation to its rightful place, while keeping the Dirac equation 
for particles of spin 4. 

Dirac’s basic strategy was to “factor” the energy-momentum relation (7.4). 
This would be easy if we had only po (that is, if p were zero): 

(7.10)  PO)^ - m2c2 = ( p o  + mc)(pO - mc) = o 
We then obtain two first-order equations: 

(ao - mc) = 0 or (po  + mc) = o (7.1 1) 

either one of which guarantees that p”p, - m2c2 = 0. But it’s a different matter 
when the other three components ofp”  are included; in that case we are looking 
for something of the form 

WP, - m2c2) = (PKpK + m c ) ( r h  - mc) (7.12) 

where P K  and y h  are eight coefficients to be determined.? Multiplying out the 
right-hand side, we have 

PK~yxPEPx - M P “  - r“)p, - m2c2 

We don’t want any terms linear in pM, so we must choose P“ = y“; to finish the 
job, we need to find coefficients y“ such that 

P”P, = Y“YhPxPx 

- (P2)2 - (P3I2 = (r0)2(P0)2 + (r’)2(P1)2 + (r2)2(P2)2 
+ (r3)2(P3)2 + (TOY1 + Y1Y0)POPl 

+ (Y1Y2 + Y2YllPlP2 + (TIT3 + Y3Y11PlP3 

which is to say 

(Pol2 - 

+ (Toy2 + Y2Y0)P0P2 + (Toy3 + Y3Y0)PoPs 

+ h 2 y 3  + y3y2b2p3 (7.13) 

You see the problem: we could pick yo = 1 and y1 = y2 = y3 = i, but there 
doesn’t seem to be any way to get rid of the “cross-terms”. At this point Dirac 
had a brilliant inspiration: what if the 7’s are matrices, instead of numbers?Since 
matrices don’t commute, we just might be able to find a set such that 

= 1, 

ypy” + y”yp = 0, for y # Y (7.14) 

(y’)2 = (y2)2 = (y3)2 = -1, 

Or, more succinctly, 

{r”, 7”) = 2gS” (7.15) 

* The essential point is that a relativistic theory must account for pair production and anni- 

t In case the notation confuses you, I’ll write equation (7.12) out “long-hand”: 

hilation, and hence the number of particles is not a conserved quantity. 

(PO)’ - (p’)’ - (p2 )2  - (p3)’ - m2c2 
= (pop0 - p’p’ - pzp’ - p3p3 + mc)(yOpO - y’p’ - r’p2 - y3p3 - mc) 
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where g’” is the Minkowski metric [eq. (3.13)], and curly brackets denote the 
anticommutator: 

( A ,  B }  = AB + BA (7.16) 

You might try fiddling with this problem for yourself. It turns out that it can be 
done, although the smallest matrices that work are 4 X 4. There are a number 
of essentially equivalent sets of “gamma matrices”; we’ll use the standard “Bjor- 
ken and Drell” convention:’ 

0 oi 
0 -1 O ) ,  (7.17) 

where ui ( i  = 1, 2, 3) is the indicated Pauli matrix [eq. (4.26)], 1 denotes the 
2 X 2 unit matrix, and 0 is the 2 X 2 matrix of zeroes.* 

As a 4 X 4 matrix equation, then, the relativistic energy-momentum relation 
does factor: 

(ppp, - m2c2) = (yNpp, + mc)(yAp, - mc) = 0 (7.18) 

We obtain the Dirac equation, now, by peeling off one term (it doesn’t really 
matter which one, but this is the conventional choice-see Problem 7.10): 

yppp - rnc = 0 (7.19) 

Now we make the usual substitution pp - ih d, [eq. (7.5)] and let the result act 
on the wave function +: 

itiy”d& - mc+ = 0 (Dirac equation) (7.20) 

Note that + is now a four-element column matrix: 

(7.21) 

We call it a “bi-spinor,” or “Dirac spinor.” (Although it carries four components, 
this object is not a four-vector. In Section 7.3 I’ll show you how it does transform 
when you change inertial systems; it’s not going to be an ordinary Lorentz trans- 
formation.) 

7.2 SOLUTIONS TO THE DIRAC EQUATION 

Let’s now look for simple solutions to the Dirac equation. Suppose first that + 
is independent of position: 

* When the context allows no room for ambiguity, I’ll use 1 and 0 this way for 2 X 2 or 
4 X 4 matrices; also, a unit matrix of the appropriate dimension is implied, when necessary, as on 
the right-hand side of equation (7.15). Incidentally, since u is not the spatial part of a four-vector, 
we do not distinguish upper and lower indices: ui = ui .  
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(7.22) 

In view of equation (7.5), this describes a state with zero momentum (p = 0). 
The Dirac equation (7.20) reduces to 

or 

where 

ih a$ 
- yo - - mc$ = 0 
c at 

carries the upper two components, and 

carries the lower two. Thus 

(7.23) 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

and the solutions are 

$A(t) = e-i(mc2/h)l$A(0),  $At) = e+i(mc2/h)t * B ( O )  (7.28) 

Referring to equation (5.10) we recognize the factor 

e-iEt/h (7.29) 

as the characteristic time dependence of a quantum state with energy E. For a 
particle at rest, E = mc2, so is exactly what we should have expected, in the 
case p = 0. But what about $B? It ostensibly represents a state with negative 
energy ( E  = -mc2). This is the famous disaster I mentioned back in Chapter 1, 
which Dirac at first tried to avoid by postulating an unseen infinite “sea” of 
negative energy particles, which fill up all those unwanted states.* Instead, we 
now interpret the “negative energy” solutions as representing antiparticles with 
positive energy. Thus describes electrons (for example), whereas qB describes 
positrons. Each is a two-component spinor, just right for a system of spin 4. In 
conclusion then, the Dirac equation with p = 0 admits four independent solutions 
(ignoring normalization factors, for the moment): 

* You might ask why we don’t simply assume that $B is always zero; call the negative energy 
solutions “physically unacceptable” and forget about them. Unfortunately, this can’t be done. In a 
quantum system we need a complete set of states, and the positive energy states by themselves are 
not complete. In the Schrodinger equation the sign of i is purely conventional. Had we made the 
other choice, then eiE‘lh would replace (7.29) as the characteristic time dependence for a stationary 
state of energy E. In relativistic quantum theory both signs are forced on us, and this, when properly 
interpreted, implies the existence of antiparticles. 
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describing, respectively, an electron with spin up, an electron with spin down, 
a positron with spin up, and a positron with spin down. 

We look next for plane-wave solutions, of the form 

+(,., t )  = ae-i/h(Et-p.r) u(E, P) (7.31) 

or, in tidier notation 

U ( P )  +(,,,) = ae-(ilh)x*P (7.32) 

(Here a is a normalization constant, irrelevant to our present purpose, but nec- 
essary later to keep the units consistent.) We’re hoping to find a bispinor u(p )  
such that +(x) satisfies the Dirac equation. (At this stage p (Elc, p )  is simply 
a set of four arbitrary parameters, but since they turn out to represent energy 
and momentum it seems simplest to assign them the appropriate letters right 
from the start.) Because the x dependence is confined to the exponent 

i 
t i p  

(7.33) a + = - - p  ae-(;lh)x”PvU 

Putting this into the Dirac equation (7.20), we get 
ywp’p,ae-(i/h)~*~u - mCae-(~ /h)x’~U = 0 

or (yppp - mc)u = 0 (7.34) 

This is known as the “momentum space Dirac equation”. Notice that it is purely 
algebraic, with no derivatives. If u satisfies equation (7.34), then 1F/ (7.32) satisfies 
the Dirac equation (7.20). 

Now 

y@pp = yOp0 - y * p = - -I-) (7.35) 
p - a  -E/c 
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where, as before, the subscript A denotes the upper two components, and B 
stands for the lower two. In order to satisfy equation (7.34), then, we must have 

Substituting the second of these into the first gives 

But 

0 1  0 - i  

(7.36) 

(7.37) 

(7.38) 

where 1 is the 2 X 2 unit matrix (written in explicitly, just this once). 

Thus 

(7.40) 

(7.41) 

That is, in order to satisfy the Dirac equation, E and p [in eq. (7.31)] must obey 
the usual relativistic energy-momentum relation. That's hardly surprising, but 
it is interesting to see how the Dirac equation enforces this requirement. As an 
equation for E, (7.41) admits two solutions: 

E = ?dm2c4 + p2c2 (7.42) 

The positive root is associated with particle states, and the negative root with 
antiparticle states. 

Returning to equation (7.36), and using (7.38), it is a simple matter to 
construct four independent solutions to the Dirac equation (ignoring normal- 
ization factors for a moment): 

* Equation (7.40) would also allow U, = 0 as a solution; however, the same argument, starting 
with equation (7.36) but inserting the first into the second, yields equation (7.40) with uE in place of 
u,. Thus unless uA and tiE are both zero (in which case we have no solution at all) equation (7.41) 
must hold. 
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C 
(1) Pick uA = (i), 
(2) Pick uA = ( y ) , 
(3) Pick uB = ( y ) , 
(4) Pick us = ( y )  , 

then zig2 E + mc2 

E + mc2 ( p . u ) ( y )  = E + mc2 ( -pz ) C c Px - iPy 
then us = 

E - me2 
then U A  = 

E - mc2 
then uA = 

(7.43) 

For (1) and (2) we must use the plus sign in equation (7.42), otherwise uB blows 
up as p -+ 0; these are evidently particle solutions. For (3) and (4) we are obliged 
to use the minus sign; these are antiparticle states. It is convenient to normalize 
these spinors in such a way that* 

utu = 21El/c (7.44) 

where the dagger signifies the transpose conjugate (or “Hermitian conjugate”): 

u = + u+ = (a*P*y*6*) 

so that 

Thus the four solutions are: 

(with E = drn2c4 + p2c2) 

(7.45) 

* Actually, there are at least three different conventions in the literature: utu = 2)El/c (Halzen 
and Martin), U ~ U  = IEl/rncZ (Bjorken and Drell), U ~ U  = 1 (Bogoliubov and Shirkov). In this 
one instance I depart from Bjorken and Drell, whose choice introduces spurious difficulties when 
rn -t 0. 



7.2 SOLUTIONS TO THE DlRAC EQUATION 221 

C ( P X  - iPJ 

E - mc2 

(with E = -1Jrn2c4 + p2c2) 

and the normalization constant is (see Problem 7.3) 

(7.46) 

N = V ( ~ E I  + mc2)/c (7.47) 

You might guess that u( ’ )  describes an electron with spin up, d2) an electron 
with spin down, and so on, but this is not quite the case. For Dirac particles the 
spin matrices [generalizing (4.2 l)] are 

h 
S = - 2, 

2 
with Z = (i 8) (7.48) 

and it’s easy to check that d’), for instance, is not an eigenstate of &. However, 
if we orient the z axis so that it points along the direction of motion (in which 
case px = p y  = 0) then u(’) ,  d2), u ( ~ ) ,  and d4) are eigenspinors of S,; u ( ’ )  and u ( ~ )  
are spin up, and u(’) and d4) are spin down* (Problem 7.6). 

I said earlier that E and p [in eq. (7.31)] are mathematical parameters 
which correspond physically to energy and momentum, and this is quite true 
for the electron states, u( ’ )  and u(’). However, the E in d3) and d4) cannot represent 
positron energy; all free particles, positrons and electrons alike, carry positive 
energy. The “negative-energy” solutions must be reinterpreted as positive energy 
antiparticle states. To express these solutions in terms of the physical energy and 
momentum of the positron, we flip the signs of E and p: 

(7.49) 

Mind you, these are the same old solutions to the Dirac equation; I have simply 
adopted a different sign convention for the parameters-one that better conforms 
to their physical interpretation.? It is customary to use the letter o for positron 
states, expressed in terms of the physical energy and momentum:$ 

+(,., 2 )  = a e i / h ( E f - ~ . r )  u(-E, - p )  [for solutions (3) and (4)] 

* As a matter of fact, it is impossible to construct spinors that satisfy equation (7.34) and are, 
at the same time, eigenstates of S, (except in the special case p = p z i ) .  The reason is that S by itself 
is not a conserved quantity; only the total angular momentum, L + S, is conserved here (see Problem 
7.8). It is possible to construct eigenstates of helicity, Z .p^ (there’s no orbital angular momentum 
about the direction of motion), but these are rather cumbersome (see Problem 7.7) ,  and in practice 
it is easier to work with the spinors (7.46), even though their physical interpretation is not so clean. 
All that really matters is that we have a complete set of solutions. 

t If it bothers you to change notation in “midstream” like this, go back to equation (7.32) 
and don’t call it p ”  at all-call it k’ (or something). Then, at the end, identify ko = E/c, k = p for 
solutions (1)  and (2), ko = -E/c, k = -p for solutions (3) and (4). 

$ It is conventional to associate d’) with d4), and u ( * )  with -d3). In the special case p x  = 
p v  = 0, then, u ( ’ )  is spin down and u(’) is spin up. This seems silly at first, but there is a reason for it: 
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C ( P X  - iPJJ 
/ E + m c 2  1 

\ l /  

(E:;2) C ( P X  + b y )  

E + m c 2  ’ v‘”(E, p) = -u‘~’(-E, -p) = -N 

(with E = dm2c4 + p2c2) (7.50) 

From now on I will never mention d3) and d4); the solutions we shall use 
are d’), u(’) (representing the two spin states of an electron with energy E and 
momentum p), and d’) ,  d2) (representing the two spin states of a positron with 
energy E and momentum p). Notice that whereas the u’s satisfy the momentum 
space Dirac equation (7.34) in the form 

(y&pp, - mc)u = 0 (7.34) 

the v’s obey the equation with the sign of p p  reversed: 

(y&& + mc)v = 0 (7.51) 

Incidentally, plane waves are, of course, rather special solutions to the Dirac 
equation. They are the ones of interest to us, however, because they describe 
particles with specified energies and momenta, and in a typical experiment these 
are the parameters we control and measure. 

7.3 BILINEAR COVARIANTS 

I mentioned in Section 7.1 that the components of a Dirac spinor do not trans- 
form as a four-vector, when you go from one inertial system to another. How, 
then, do they transform? I shall not work it out here, but merely quote the re- 
sult:2 If we go to a system moving with speed v in the x direction, the transfor- 
mation rule is 

rc/ - $‘ = S$ (7.52) 

The charge conjugation operator takes an electron with spin up into a positron with spin down, so 
this way u ( ’ ) ,  o(’) are “particle-antiparticle pairs,” as are d2), o(’) (see Problem 7.9). 
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where S is the following 4 X 4 matrix: 

s = a+ + a_yoy l=  (a::l ‘;:I) 
with 

(7.53) 

a, = k m  (7.54) 

and y = l / m ,  as usual. 

be reasonable to try the expression 
Suppose we want to construct a scalar quantity out of a spinor $. It would 

$+$ = ($T$€$f$$) = I$? + 1$d2 + 1$d2 + 1$412 (7.55) 

Unfortunately, this is not a scalar, as you can check by applying the preceding 
transformation rule:* 

In fact (see Problem 7.11): 

Of course, the sum of the squares of the elements of a four-vector is not invariant 
either; we need minus signs for the spatial components [eq. (3.12)]. With a little 
trial-and-error you will discover that in the case of spinors we need minus signs 
for the third and fourth components. Just as we introduced covariant four-vectors 
to keep track of the signs in Chapter 3, we now introduce the adjoint spinor: 

$ = $+To = ($T $f -$T -$I? (7.58) 

I claim that the quantity 

$4 = $ t ~ o $  = Mi12 + I$z12 - 1$312 - M412 (7.59) 

is a relativistic invariant. For StyoS = yo (Problem 7.1 l), and hence 

($$Y = ($’)+yo$’ = $tStyOS$ = $tyo$ = $$ (7.60) 

In Chapter 4 we learned to distinguish scalars and pseudoscalars, according 
to their behavior under the parity transformation, P: (x, y,  z) - (-x, -y, -z). 
Pseudoscalars change sign; scalars do not. It is natural to ask whether $$ is the 

* Note that the transpose of a product is the product of the transposes in reverse order: - 
(AB), = (ABX, = A,kBk,  = B,& = 

The same goes for the Hermitian conjugate: 

(AB)t = BtA+ 
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former type, or the latter. First, we need to know how Dirac spinors transform 
under P. Again, I won’t derive it, but simply quote the r e ~ u l t : ~  

$ - $’ = To$ (7.61) 

It follows that 

($$Y = ($’)tY0$’ = $t(yo)tyoyo$ = $tYo$ = $$ (7.62) 

so ($$) is invariant under P; it’s a “true” scalar. But we can also make a pseudo- 
scalar out of $: 

$?* (7.63) 

where 

(7.64) 

I’ll let you check that it is Lorentz-invariant (Problem 7.12). As for its behavior 
under parity 

W $ Y  = ($’)tr0r5$’ = $t-Y0y0y570$ = $tT5-f0$ (7.65) 

(I used the fact that = 1 in the last step.) Now, the yo is on the “wrong 
side” of the y’, but we can “pull it through” by noting that it anticommutes 
with yl, y2, and y3 [eq. (7.15)] and commutes (of course) with itself (y3y0 = 

0 3  2 0 -  -7 y , Y y - -Toy2, y1y0 = -YOYI, yoyo = YOYO), so 
7 5 7 0  = iyOy’y2y3yO = (-1)3yO(iyOyly2y3) = -yo75 

By the same token, y5 anticommutes with all the other y matrices: 

{T”, 7’1 = 0 (7.66) 

At any rate 

($Y5$Y = -$tr0r5$ = -($y5$) (7.67) 

so it’s a pseudoscalar. 
All told, there are 16 products of the form $r$j (taking one component 

from $* and one from $), since i a n d j  run from 1 to 4. These 16 products can 
be added together in various linear combinations to construct quantities with 
distinct transformation behavior, as follows: 

(four components) 1 (7.68) 

( I )  $$ = scalar (one component) 
(2) $y5$ = pseudoscalar (one component) 
( 3 )  $yr$ = vector 
(4) $ypy5$ = pseudovector (four components) I 
(5) $afi”+ = antisymmetric tensor (six components) i 

I 
c”u - (Y”Y” - 7”r’) (7.69) 

2 
where 

This gives 16 terms, so it’s all we can hope to make, in this way. You cannot, 
for example, construct a symmetric tensor bilinear in $* and $, and if you’re 
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looking for a vector, $-y”lC/ is the only candidate.* (Another way to think of it is 
this: 1, y’, y”, y’y’, and d‘” constitute a “basis” for the space of all 4 X 4 
matrices; any 4 X 4 matrix can be written as a linear combination of these 16. 
In particular, if you ever encounter a product of five y matrices, say, you may 
be sure that it can be reduced down to a product of no more than two.) Pause 
a moment to admire the notation in (7.68). The tensorial character of the bilinear 
covariants, and even their behavior under parity, is indicated at a glance: $y”+ 
looks like a four-vector, and it is a four-vector. But y” by itself is certainly not 
a four-vector; it’s a collection of four fixed matrices (7.17); they don’t change 
when you go to a different inertial system-it’s lC/ that changes. 

7.4 THE PHOTON 

In classical electrodynamics the electric and magnetic fields (E and B) set 
up by a charge density p and a current density J are determined by Maxwell’s 
equations:? 

r (i) v . E = ~ ~ ~  (iii) V .  B = 0 1 
1 dE 47r (7.70) 

(ii) v ~ E + - ! B = o  (iv) V X B - - - =- J  
c dt c at c 

In relativistic notation, E and B together form an antisymmetric second-rank 
tensor, the “field strength tensor,” F””: 

,/ 0 -Ex -Ey -Ez\ 

(7.7 1) 

(that is, Fol = Ex, F1’ = -Bz, etc.), while p and J constitute a four-vector: 

J” = (cp, J) (7.72) 

The inhomogeneous Maxwell equations [(i) and (iv)] can now be written more 
neatly (Problem 7.18) 

(7.73) 

* Notice that $yo$ = $tyoyO$ = Gt$, so $t$ is actually the zeroth component of a four-vector. 
That’s why the normalization convention (7.44), which no doubt looked peculiar at the time, is 
actually very sensible. By normalizing utu to the zeroth component of the four-vector p”, we obtain 
a relativistically “natural” convention (see Problem 7.14). By the way, as in nonrelativistic quantum 
mechanics, $*$ has the dimensions of (volume)-’, so the constant a in equation (7.3 1) cames the 
units rn~(h-~”).  

t This section presupposes some familiarity with classical electrodynamics; it is designed to 
make the description of photons in quantum electrodynamics more plausible, but if you don’t un- 
derstand it, skip directly to Section 7.5. As always, I use Gaussian cgs units. 



226 7/QUANTUM ELECTRODYNAMICS 

From the antisymmetry of F’’” (that is: F”” = -P”) it follows (Problem 7.18) 
that J ,  is divergenceless: 

d,J. = 0 (7.74) 

Or, in three-vector notation, V - J = -dp/dt; this is the “continuity equation,” 
expressing local conservation of charge (Problem 7.19). 

As for the homogeneous Maxwell equations, (iii) is equivalent to the state- 
ment that B can be written as the curl of a vector potential, A: 

B = V X A  (7.75) 

With this, (ii) becomes 

V X  E S - -  = O  ( (7.76) 

which is equivalent to the statement that E + (l/c)(dA/dt) can be written as the 
gradient of a scalar potential, V: 

1 dA E = - V V - - -  
c at 

In relativistic notation, equations (7.75) and (7.77) become 

where 

(7.77) 

(7.78) 
(7.79) 

In terms of this four-vector potential, the inhomogeneous Maxwell equations 
(7.73) read: 

JV (7.80) 

In classical electrodynamics thefields are the physical entities; the potentials 
are simply useful mathematical constructs. The virtue of the potential formulation 
is that it automatically takes care of the homogeneous Maxwell equations: given 
equations (7.75) and (7.77), (ii) and (iii) follow immediately, no matter what V 
and A may be. This leaves us only the inhomogeneous equation (7.80) to worry 
about. The defect of the potential formulation is that V and A are not uniquely 
determined. Indeed, it is clear from equation (7.78) that new potentials 

4T 
a,afiAu - ~ Y ( ~ . A W )  = - 

C 

A; = A,, + a,h (7.81) 

(where X is any function of position and time) would do just as well, since 
d’A”’ - d’A”’ = P A u  - $A”. Such a change of potentials, which has no effect on 
the fields, is called a gauge transformation. We can exploit this gauge freedom 
to impose an extra constraint on the p~tent ia l :~  

d’A” = 0 (7.82) 

This is called the Lorentz condition; with it Maxwell’s equations (7.80) simplify 
still further: 
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(7.83) 

1 a2 
c2 at2 

Here 0 = d”d, = - - - V2; it is called the dxlembertian operator. 

Even the Lorentz condition, however, does not uniquely specify A”. Further 
gauge transformations are possible, without disturbing equation (7.82), provided 
that the gauge function satisfies the wave equation: 

ox = 0 (7.84) 

Unfortunately, there is no clean way to eliminate the residual ambiguity in A”, 
and one can either (1) live with the indeterminacy, which means carrying along 
spurious degrees of freedom, or (2) impose an additional constraint, which spoils 
the manifest Lorentz covariance of the theory. Both approaches have been used 
in formulating quantum electrodynamics; we shall follow the latter course. In 
empty space, where J’ = 0, we pick (see Problem 7.20) 

A’ = 0 (7.85) 

The Lorentz condition then reads 

V * A = O  (7.86) 

This choice (the Coulomb gauge) is attractively simple, but by selecting one 
component (Ao) for special treatment, it ties us down to a particular inertial 
system (either that, or it obliges us to perform a gauge transformation in con- 
junction with every Lorentz transformation, in order to restore the Coulomb 
gauge condition). In practice, this is very seldom a problem, but it is aesthetically 
displeasing. 

In quantum electrodynamics A’ becomes the wave function of the photon. 
The free photon satisfies equation (7.83) with J” = 0 

OA’ = 0 (7.87) 

which we recognize in this context as the Klein-Gordon equation (7.9) for a 
massless particle. As in the case of the Dirac equation, we look for plane-wave 
solutions with momentum p = (E/c, p): 

~ ” ( ~ 1  = ae-(Vhlp.x t P (PI (7.88) 

Here eP is the polarization vector-it characterizes the spin of the photon-and 
a is a normalization factor. Substituting equation (7.88) into equation (7.87), 
we obtain a constraint on p”: 

p”p, = 0, so that E = lplc (7.89) 

Meanwhile, elr has four components, but they are not all independent. The 

p”ty = 0 (7.90) 

which is as it should be for a massless particle. 

Lorentz condition (7.82) requires that 
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Moreover, in the Coulomb gauge we have 

c o = o ,  t a p  = o  (7.91) 

which is to say that the polarization three-vector ( t )  is perpendicular to the di- 
rection of propagation; we say that a free photon is transversely polarized. For 
this reason the Coulomb gauge ’is also known as the transverse gauge. Now, there 
are two linearly independent three-vectors that are perpendicular to p ;  for ex- 
ample, if p points in the z direction, we might choose 

(7.92) 

Thus instead offour independent solutions for a given momentum (too many, 
for a particle of spin l), we are left with only two. That looks like too few: 
shouldn’t the photon have three spin states? The answer is no: a massive particle 
of spin s admits 2s + 1 different spin orientations, but a massless particle has 
only two, regardless of its spin (except for s = 0, which has only one). Along its 
direction of motion it can only have m, = +s or ms = -s; its helicity, in other 
words, can only be + l  or -1.* 

t ( l )  = (1, 0,  01, t ( 2 )  = (0, 1, 0 )  

7.5 THE FEYNMAN RULES FOR QUANTUM 
ELECTRODYNAMICS 

In Section 7.2 we found that free electrons and positrons of momentum 
p = (E/c, p ) ,  with E = vm2c4 + p2c2, are represented by the wave functions? 

Electrons Positrons 

= ae-(i/h)p.x @)( P )  $(x) = a,(i/h)p-+)(p) (7.93) 

where s = 1, 2 for the two spin states. The spinors u(’) and ds) satisfy the mo- 
mentum space Dirac equations: 

(yPpP - mc)u = 0 (yPpfl + mc)v = 0 (7.94) 

and their adjoints, U = uty0, V = vtyO, satisfy 

z7(ypp,, - mc) = 0 U(yPpfl + mc) = 0 
They are orthogonal, 

z7(Uu(2)  = 0 

* Photon states with m, = t 1 correspond to right- and left-circular polarization; the respective 
polarization vectors are c*  = T(c, f itz)/E. Notice that it is by specifying a particular gauge that we 
eliminate the nonphysical (m, = 0) solution. If we were to follow a “covariant” approach, in which 
we avoid imposing the Coulomb gauge condition, longitudinal free photons would be present in the 
theory. But these “ghosts” decouple from everything else, and they do not affect the final results. 

7 To make this section as self-contained as possible for easier reference, and also to emphasize 
the similarities and differences in the theories of electrons, positrons, and photons, I begin with a 
summary of the essential results from earlier sections. For the sake of argument I speak of “electrons” 
and “positrons,” but they could as well be p- and p’, or T -  and T’, or (with the appropriate electric 
charges) quarks and antiquarks-in short, any point charges of spin 4. 
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normalized, 

Uu = 2mc Uv = -2mc 
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(7.96) 
and complete, in the sense that 

( Y P ,  - mc) 2 &$s) = 2 U(~)ZP) = (y,p, + mc) 
s=1,2 s= 1,2 (7.97) 
(see Problem 7.22). A convenient explicit set (u(’), d2), v(’), v ( ~ ) )  is given in 
equations (7.46) and (7.50). Ordinarily, we shall be averaging over electron and 
positron spins, and in that case it doesn’t matter that these are not pure spin up 
and spin down; all we really need is completeness. For the occasional problem 
in which the spins are specified, we must, of course, use the spinors appropriate 
to the case at hand. 

Meanwhile, a free photon of momentum p = (E/c, p), with E = Iplc, is 
represented by the wave function 

Photons 

~ f i ( ~ )  = ae-(i/h)n.x t it.) (7.98) 

where s = 1, 2 for the two spin states (or “polarizations”) of the photon. The 
polarization vectors €rs) satisfy the momentum space Lorentz condition: 

tfip, = 0 (7.99) 

They are orthogonal, in the sense that 

6 r k l ( 2 )  = 0 (7.100) 

and normalized 

E G C =  1 (7.101) 

In the Coulomb gauge 

2 = 0 ,  6 - p  = 0 (7.102) 

and the polarization three-vectors obey the completeness relation (Problem 7.23) 

(7.103) 

A convenient explicit pair 

gram, proceed as follows: 

~ ( 2 ) )  is given in equation (7.92). 
To calculate the amplitude, &, associated with a particular Feynman dia- 

1. Notation. Label the incoming and outgoing four-momenta p I  , p2,  . . . , 
p,, and the corresponding spins sI , s2,  . . . , s,; label the internal four- 
momenta q1 , q2, . . . . Assign arrows to the lines as follows: the arrows 
on external fermion lines indicate whether it is an electron or a positron; 
arrows on internal fermion lines are assigned so that the “direction of 
the flow” through the diagram is preserved (i.e., every vertex must have 
one arrow entering and one arrow leaving). The arrows on external 
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I I 
\ / 
\ 

Figure 7.1 A typical QED diagram, with i.-i\ external lines labeled. (Internal lines not 
p1 r S 1  P2 2 52  p 3  ”3 shown.) 

photon lines point “forward”; for internal photon lines the choice is 
arbitrary. (See Fig. 7.1 .) 

2. External Lines. External lines contribute factors as follows: 

Incoming ( 1 ): u 

Outgoing ( f ): ii 
Incoming ( / ): v 
Outgoing ( J ): 
Incoming ( J ): eF 

Outgoing ( /  ): eF* 

Electrons: 

i Positrons: 

Photons: { 
3. Vertex Factors. Each vertex contributes a factor 

&-f’ 
The dimensionless couplin constant g, is related to the charge of the 
positron: g, = e V m  = f- 4.lra.* 

4. Propagators. Each internal line contributes a factor as follows: 

i(-fF4; + mc) Electrons and positrons: 
q2 - m2c2 

Photons: - igFY 
q2 

5. Conservation of Energy and Momentum. For each vertex, write a delta 

( 2 ~ ) ~  fi4(kl + k2 + k3) 

function of the form 

* In Heaviside-Lorentz units, with h and c set equal to 1, g, is the charge of the positron, 
and hence is written “e” in most texts. In this book I use Gaussian units, and keep all factors of h 
and c. The easiest way to avoid trouble over units is to express all results in terms of the universal 
dimensionless quantity a. In writing the Feynman rules for QED I assume we are dealing with 
electrons and positrons. In general, the QED coupling constant is - g m c ,  where q is the charge 
of the particle (as opposed to the antiparticle). For electrons, q = -e, but for “up” quarks, say, 
q = 2, 

3 ’  
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where the k‘s are the three four-momenta coming into the vertex (if an 
arrow leads outward, then k is minus the four-momentum of that line, 
except for external positrons*). This factor enforces conservation of 
energy and momentum at the vertex. 

6 .  Integrate Over Internal Momenta. For each internal momentum q, write 
a factor 

and integrate. 
7. Cancel the Delta Function. The result will include a factor 

corresponding to overall energy-momentum conservation. Cancel this 
factor, and what remains is - iA.  

As before, the procedure is to write down all diagrams contributing to the process 
in question (up to the desired order), calculate the amplitude (A)  for each one, 
and add them up to get the total amplitude, which is then inserted into the 
appropriate formula for the cross section or the lifetime, as the case may be. 
There’s just one new twist, here: the antisymmetrization of fermion wave func- 
tions requires that we insert a minus sign in combining amplitudes that differ 
only in the interchange of two identical external fermions. It doesn’t matter 
which diagram you associate the minus sign with, since the total will be squared 
eventually anyway; but there must be a relative minus sign between them. 

8. Antisymmetrization. Include a minus sign between diagrams that differ 
only in the interchange of two incoming (or outgoing) electrons (or 
positrons), or of an incoming electron with an outgoing positron (or 
vice versa). 

The handling of fermion loops will be discussed in the final section of this chapter. 

7.6 EXAMPLES 

We are now in a position to reproduce many of the classic calculations in quan- 
tum electrodynamics. Just so you don’t get lost in the details, let me begin by 
giving you a catalog of the most important processes (see Table 7.1). The simplest 

* The problem here is that the arrows are being asked to do double duty: they establish the 
convention for the sign of momentum, and in the case of external fermion lines, they tell you whether 
it is a particle or an antiparticle (for internal lines we need not distinguish). The latter role takes 
precedence, so for external positrons the “positive” direction for momentum is opposite to the direction 
of the arrow. 



TABLE 7.1 CATALOG OF BASIC QUANTUM ELECTRODYNAMIC PROCESSES 

Second-order processes 

Elastic 

Electron-muon scattering (e t /r +. e t /r) 

(Mott scattering ( M  >> m )  Rutherford scattering ( v Q c ) )  

Electron-electron scattering ( e - +  e--+ e- t e - )  

(Mdller scattering) 

Inelastic 

Pair annihilation ( e - +  e+  +. y + y) H xi 

Cornpton scattering (y t e - +  y + e- )  

Most important third-order process 

232 
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P1, s1 Figure 7.2 Electron-muon scattering. 

case is electron-muon scattering, for here only one diagram contributes in sec- 
ond order.* 

EXAMPLE 7.1 Electron-Muon Scattering 
In applying the Feynman rules, we proceed “backward” along each fermion 
line (Fig. 7.2): 

Notice that the space-time indices on the photon propagator contract with 
those of the vertex factors at either end of the photon line. Carrying out 
the (trivial) q integration, and dropping the overall delta function, we find 

In spite of its complicated appearance, with four spinors and eight y ma- 
trices, this is just a number, which you can work out once the spins are 
specified (see Problem 7.24). 

EXAMPLE 7.2 Electron-Electron Scattering 
In this case there is a second diagram, in which the electron that emerges 
with momentum p 3  and spin s3 comes from the p 2 ,  s2 electron, instead of 
the p l ,  s1 electron (Fig. 7.3). We can obtain this amplitude from equation 
(7.104) simply by the replacement p 3 ,  s3 c-) p4, s4. According to rule 8, the 
two diagrams are to be subtracted, so the total amplitude is 

[ WrW 1 )“(4h,U(2)1 A = -  g: 
(P1 - P3)* 

(7.105) 

* It doesn’t have to be an e and a p, of course. Any spin-f point charges would do (e and 7, 
for instance, or p and 7, or electron and quark, etc.), as long as you put in the correct masses and 
charges. As a matter of fact, most books use electron-proton scattering as the canonical example, but 
that is actually a rather inappropriate choice, since the proton is a composite structure, not a point 
particle. Still, to the extent that the internal structure of the proton can be ignored, it is not a bad 
approximation (it is rather like treating the sun as a point mass in the theory of the solar system). In 
the regime where the “muon” is much heavier than the “electron,” we have Mott scattering; if, 
moreover, the “electron” is nonrelativistic, it reduces to Ruthe$ord scattering, and actually reproduces 
exactly the same formula for the cross section as Rutherford obtained using classical mechanics. 
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Figure 7.3 “Twisted” diagram for elec- 
tron-electron scattering. 

EXAMPLE 7.3 Electron-Positron Scattering 
Again, there are two diagrams.* The first is similar to the electron-muon 
diagram (Fig. 7.4): 

-is,. 
(W4 J [ii(3)(keYP)U(1)1 42 

x [v(2)(iser”)v(4)lS4(p, - ~3 - 4N4(p2 + 4 - p4)d4q 

Notice that “proceeding backwards” along an antiparticle line means 
working forward in time; the order is always adjoint spinor/gamma matrix/ 
spinor. The amplitude for this diagram is thus 

The other diagram represents virtual annihilation of the electron and pos- 
itron, followed by pair production (Fig. 7.5): 

x [v(2)(igeYy)u(1)164(4 - P3 - P4P4(PI + P2 
The amplitude for this diagram is therefore 

4d44 

(7.107) 

/ P ,  I S ,  pz , s,\ Figure 7.4 Electron-positron scattering. 

* The fact that there are two diagrams for electron-electron and electron-positron scattering, 
but only one for electron-muon scattering, would appear offhand to be inconsistent with the classical 
limit. After all, Coulomb’s Law says that the force of attraction or repulsion between two particles 
depends only on their charges, not on whether they happen to be identical (or antiparticles of one 
another). In the nonrelativistic limit, then, we should get the same answer whether we use the electron- 
muon formula or the electron-electron formula. The amplitudes, to be sure, are not the same, but 
the cross-section formula (6.34) cames a factor of S, which is 4 for electron-electron scattering and 
I for electron-muon scattering. [For electron-positron scattering, S = 1, but the second amplitude 
(7.107) is smaller than the first (7.106) by a factor (vlc)’, so that in the nonrelativistic limit only A, 
contributes.] 
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c 

Figure 7.5 Second diagram contributing 
to electron-positron scattering. 

Now, do we add these diagrams, or subtract them? Interchanging the in- 
coming positron and the outgoing electron in the second diagram (Fig. 
7.5), and then redrawing it in a more customary configuration 

we recover the first diagram (Fig. 7.4). According to rule 8 ,  then, we need 
a minus sign: 

(7.108) 

EXAMPLE 7.4 Compton Scattering 
For an example involving the electron propagator and photon polarization, 
consider the case of Compton scattering, y + e - y + e. Again there are 
two diagrams, but they do not differ by the interchange of fermions, and 
the amplitudes add. The first diagram (Fig. 7.6) yields 

x 4 3 ) *  6 4 ( ~ 1  - p 3  - 4)a4(p2 + Q - ps)d44 

Notice that the space-time index on each photon polarization vector is 
contracted with the index of the y matrix at the vertex where the photon 
was created or absorbed. Notice also how the electron propagator fits in 
as we work our way backward along the fennion line. I have introduced 
here the convenient shorthand “a-slash”: 
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Figure 7.6 Compton scattering. 

pz s2 

d-  a@?,, (7.109) 

Evidently, the amplitude associated with this diagram is* 

Meanwhile, the second diagram (Fig. 7.7) yields 

and the total amplitude is A = A I + A2. 

7.7 CASIMIR’S TRICK AND THE TRACE THEOREMS 

In some experiments the incoming and outgoing electron (or positron) spins are 
specified, and the photon polarizations are given. If so, the next thing to do is 
insert the appropriate spinors and polarization vectors into the expression for 
A, and compute 1 & 1 2 ,  the quantity we actually need to determine cross sections 
and lifetimes. More often, however, we are not interested in the spins. A typical 
experiment starts out with a beam of particles whose spin orientations are random, 
and simply counts the number of particles scattered in a given direction. In this 
case the relevant cross section is the average over all initial spin configurations, 
i, and the sum over all final spin configurations, f: In principle, we could compute 
lA(i + f ) I 2  for every possible combination, and then do the summing and av- 
eraging: 

(IAl2) = average over initial spins, sum over final spins, 
of IA(i + f ) l 2  (7.1 12) 

Figure 7.7 
scattering. 

Second diagram for Compton 

* Here and below, f* means y”(~:); the y matrix is not conjugated. 
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In practice, it is much easier to compute (IA1’) directly, without ever evaluating 
the individual amplitudes. 

Consider, for instance, the electron-muon scattering amplitude (7.104). 
Squaring, we have 

~ ~ ~ ~ ~ r ” ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ r a ~ ~ ~ ~ l ~ ~ ~ ~ ~ y Y U ~ ~ ~ 1 * ~ ~ ~ ~ ~ r ” ~ ~ ~ ~ 1 *  (7.1 13) 
g: 

(PI - Pd4 
/A12 = 

(I use v for the second space-time index, to avoid confusion.) A glance at the 
first and third terms (or the second and fourth) reveals that we must handle 
quantities of the general form 

G = [ii(a)rlu(b)l[ii(a)r2u(b)i* (7.1 14) 

where (a) and (b)  stand for the appropriate spins and momenta, and rl , and r2 
are two 4 X 4 matrices. All the other processes described in Section 7.6-M0ller, 
Bhabha, and Compton scattering, as well as pair production and annihilation- 
lead to expressions with similar structure. To begin with, we evaluate the complex 
conjugate (which is the same as the Hermitian conjugate, since the quantity in 
brackets is a 1 X 1 “matrix”): 

[ ii(~)r 2 ~ ( b ) ] *  = [ u(a)tyor2u(b)] = u(b)trtr0+u(a) (7.1 15) 

Now, yo+ = yo, and = 1, so 

[ c ( ~ ) r ~ u ( b ) ] *  = u(b)+yoyor$you(a) = ii(b)F,~(a) (7.116) 

where* F2 = YortYo (7.1 17) 

Thus G = [ G( a ) r  u( b)] [ ii( b) P2u( a)] (7.118) 

We are ready now to sum over the spin orientations of particle (b). Using 
the completeness relation (7.97), we h’ave 

2 G = G(a)r,{ 2 u‘”(Pb)c‘”’(Pb) F2u(a) 

(7.1 19) 
b spins sb= 1,2 1 

= ii(a)rl(h + mbc)Fzu(a) = c(a)&u(a) 

where Q is a temporary shorthand for the 4 X 4 matrix 

Q rl(h + mbc)F2 (7.120) 

Next, we do the same for particle (a): 

C C G = C zl(”J(p,)Q~‘~J(p,) 

Or, writing out the matrix multiplication explicitly (i a n d j  are summed from 1 

a spins b spins sa=1,2 

to 4): 

*-Observe that the overbar now serves two different functions. O_n a spinor it denotes the 
adjoint: li. = qtyo [eq. (7.58)]; on a 4 X 4 matrix it defines a new matrix: r = yOrtyO. 
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where Tr denotes the trace of the matrix (the sum of its diagonal elements): 

Tr(A) = CiAi1 (7.122) 

C [~((a)rlu(b)l[~(a)r2u(b)l* = wui + m&(% + m d l  (7.123) 

Conclusion: 

all spins 

This may not look like much of a simplification, but notice that there are no 
spinors lefi; once we do the summation over spins, it all reduces to matrix mul- 
tiplication and taking the trace. For want of a better name, I call equation (7.123) 
“Casimir’s trick,” since Casimir was apparently the first one to use it.’ If either 
u (in 7.123) is replaced by a v, the corresponding mass on the right-hand side 
switches sign (see Problem 7.26). 

EXAMPLE 7.5 
In the case of electron-muon scattering (7.113), r2 = y”, and hence 
P2 = yoy”tyo = y y  (Problem 7.27). Applying Casimir’s trick twice, we find 

x W T L L M  + MCh”(A + Mc)l (7.124) 

where rn is the mass of the electron and M is the mass of the muon. The 
factor of $ is included because we want the average over the initial spins; 
since there are two particles, each with two allowed spin orientations, the 
average is a quarter of the sum. 

Casimir’s trick reduces everything down to a problem of calculating the 
trace of some complicated product of y matrices. This algebra is facilitated by 
a number of theorems, which I collect together below (I’ll leave the proofs to 
you-see Problems 7.29 through 7.32). First of all, I should mention three facts 
about traces in general: if A and B are any two matrices, and a is any number 

1. 
2 .  Tr(0lA) = aTr(A) 

Tr(A + B) = Tr(A) + Tr(B) 

3. Tr(AB) = Tr(BA) 

It follows from number 3 that Tr(ABC) = Tr(CAB) = Tr(BCA), but this 
is not equal, in general, to the trace of the matrices taken in the other order: 
Tr(ACB) = Tr(BAC) = Tr(CBA). In this way you can “peel” matrices off the 
back end of a product and move them around to the front, but you must 
preserve the ordering. It is useful to note that 

4. gLLygpy = 4 

and to recall the fundamental anticommutation relation for the y matrices (to- 
gether with an associated rule for “slash” products): 

5 .  ypyy + y”y” = 2gp” 5’. B”+ &d= 2a - b 
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From these there follows a sequence of “contraction theorems”: 

6. yry” = 4 

8. yry”yXyp = 4g”’ 8’. y,.dByp = 4a .  b 
7. ypyUy” = -27” 7’. y,&” = - 2 8  

9. ypy“yXyUy’ = -2yUyXy” 9’. y,.dBky” = -2Bi-i 

And finally, there is a set of “trace theorems”: 

10. 
11. Tr(1) = 4 
12. Tr(y”y”) = 4g”“ 12’. T r ( m  = 4a.b 
13. Tr(y”y”yXy“) 13’. Tr(.dBk& = 4(a b c ’  d 

Since y5 = iy0y’y2y3 is the product of an even number of y matrices, it follows 
from rule 10 that Tr(y5yp)  = Tr(y5ypy”yx) = 0. When y5 is multiplied by an 
even number of y’s, we find 

The trace of the product of an odd number of gamma matrices is zero 

= 4(grugX“ - g””g’“ + g”ug“x) - a - c  b - d  + a - d  bet) 

14. Tr(y5)  = 0 
15. Tr(y5ypy”) = 0 15’. Tr(y5d@ = 0 
16. Tr(y5ypy”yXy“) = 4iePYXu 16’. Tr(y58,/& = 4ie”YXua,b,~Xdu 

where 

- 1, if pvhu is an even permutation of 0123, 
+ 1, if pvhu is an odd permutation, r 0,  if any two indices are the same.* 

ccuXU = 

* By “even permutation” I mean an even number of interchanges of two indices. Thus 

superscripts. It might seem strange that toIz3 is minus 1; why not make it plus I ?  It’s purely conventional, 
of course. Evidently, whoever established the definition wanted €0123 to be plus 1, and from that it 
follows that t0Iz3 = -1, since three spatial indices are raised. By the way, if you are used to working 
with the three-dimensional Levi-Civita symbol trik (see Problem 4.19), be warned that although an 
even permutation on three indices corresponds to preservation of cyclic order (tyk = t,k, = Ckg) ,  this 
is not the case forfour indices: trVha = -tuhor = chap” = - c .  O r Y h  

cpuha = - w h o  = vhrs = - c uhop , and so on. Putting it differently, tPuhu is antisymmetric in every pair of t t  
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The second trace (in 7.124) is the same, with m -+ M, 1 - 2, 3 - 4, and 
the Greek indices lowered. So 

7.8 CROSS SECTIONS AND LIFETIMES 

We are now back on familiar “turf.” Having calculated I & l 2  (or, where appro- 
priate, (IJn12)), we simply plug it into the relevant cross-section formula from 
Chapter 6: equation (6.34), in the general case; equation (6.42), for two-body 
scattering in the CM; or one of the equations from Problems (6.8), (6.9), or 
(6.10), in the lab frame. 

EXAMPLE 7.7 Mott and Rutherford Scattering 
An electron (mass m) scatters off a much heavier “muon” (mass M B m). 
Assuming that the recoil of M can be neglected, find the differential scat- 
tering cross section in the lab frame ( M  at rest). 

Solution. According to Problem (6.8), the cross section is given by 

Because the target is stationary, we have (see Fig. 7.8): 

PI = ( 4 ,  P I )  9 P3 = (5 9 P3) 9 P4 = (Mc, 0) 

where E is the incident (and scattered) electron energy, p1 is the incident 
momentum, and p3 is the scattered momentum (their magnitudes are equal, 
lpll = lp3l = lpl, and the angle between them is 8: p1 - p3 = p2 cos 8). So 

(PI - P3I2 = --(PI - P3I2 = -p: - p: + 2Pl.  p3 
e 

= -2p2(1 - cos e)  = -4p2 sin2 - 
2 

Figure 7.8 
heavy target. 

Electron scattering from a 
... 2’p3 - _ _ _  

After 
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E 2  2 . 2 8  

2 
( P I  6 ~ 3 )  = 2 - P I  * p3 = p2 + m2c2 - p2 cos e = m2c2 + 2p sin 

Putting this into equation (7.126), we have 

") (7.127) 
p2 sin2 (812) 

and therefore (recalling that g, = V47ra) 
2 

- -  du - ah ) [ ( r n ~ ) ~  + p2 cos2 !] (7.128) dQ (2p2 sin2 (8/2) 2 

This is the Mott formula. It gives, to good approximation, the differential 
cross section for electron-proton scattering. If the incident electron is non- 
relativistic, so that p2 + (mc)2, equation (7.128) reduces to the Rutherford 
formula (compare Example 6.4): 

- = (  da e2 
dQ 2mv2 sin2 (8/2) 

(7.129) 

What about decays? Actually, there is no such thing, in pure QED, for if 
a single fermion goes in, that same fennion must eventually come out; a fermion 
line cannot simply terminate within a diagram, nor is there any mechanism in 
QED for converting one fermion (say, a muon) into another (such as an electron). 
To be sure, there exist electromagnetic decays of composite particles, for example, 
r0 - y + y; but the electromagnetic component in this process is nothing but 
quark-antiquark pair annihilation, q + 4 - y + y. It is really a scattering event, 
in which the two colliding particles happen to be in a bound state. The cleanest 
example of such a process is the decay of positronium: e+ + e- - y + y, which 
we consider in the following example. We'll do the analysis in the positronium 
rest frame (which is to say, in the CM frame of the electron-positron pair). They 
are typically moving rather slowly; indeed, for purposes of calculating the am- 
plitude we shall assume they are at rest. On the other hand, this is one of those 
cases in which we cannot average over initial spins, because the composite system 
is either in the singlet configuration-spins antiparallel-or in the triplet con- 
figuration-spins parallel-and the formula for the cross section (and hence the 
lifetime) is quite different in the two cases.* 

EXAMPLE 7.8 Pair Annihilation 
Compute the amplitude, &, for e+ + e- - y + y, assuming the electron 
and positron are at rest, and in the singlet spin configuration. 

* As a matter of fact, you can do this particular problem by Casimir's trick, because of a rather 
special circumstance: the singlet state can only decay to an even number of photons (predominantly 
two) and the triplet to an odd number (usually three). So in calculating the matrix element for 
e+ + e- - y + 7, we are automatically selecting out the singlet configuration even if the triplet was 
included in the sum over spins. 
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Solution. Two diagrams contribute, as shown in Figure 7.9. The amplitudes 
are (for simplicity I’ll suppress the complex conjugate signs on the 2s): 

and they add 

M = M1 + M2 (7.132) 

With the initial particles at rest, the photons come out “back to back,” 
and we may as well choose the z axis to coincide with the photon line; 
then 

P1 = W l ,  0, 0, 01, P2 = mc(1, 0, O,O) ,  
p4 = mc(l,O, 0, - 1 )  p 3  = mc(l,O, 0, l) ,  (7.133) 

and hence 

(PI - p d 2  - m2c2 = (pl - p4)2 - m2c2 = - 2 ( m ~ ) ~  (7.134) 

The amplitudes simplify somewhat if we exploit rule 5’ from Section 7.7: 

31d3 = -y3&1 + 2(pl ’ € 3 )  

But € 3  has only spatial components (in the Coulomb gauge), whereas pI is 
purely temporal, so pl 0 c3 = 0, and hence 

$ I f 3  = -f3dl (7.135) 

Similarly # 3 p i  = - K 3  P3 + 2(P3 ’ € 3 )  

but (p3 * c 3 )  = 0 by virtue of the Lorentz condition (7.90), so 

8 3 k 3  = -&3d3 (7.136) 

Therefore 

But (PI - mc)u( 1 )  = 0, because u( 1) satisfies the Dirac equation (7.34), so 

($1 - 8 3  + r n c ) f 3 u (  1) = f3(-$1 + g 3  + mc)u( 1 )  

($1 - 8 3  + rnc)x3u( 1 )  = pi83u(1) (7.137) 

>-< x 
1 2 

Figure 7.9 Two contributions to pair annihilation. 
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By the same token 

(di - $4 mc)P4u( 1 = /&44u( 1) (7.138) 

Putting all this together, we find 

NOW ~3 = mc(yO - r3), 8 4  = mc(yO + y3) 

so the expression in square brackets can be written as 

(7.140) 

But 

and therefore 

(7.141) 

(7.142) 

In Chapter 4 (Problem 4.20) we encountered the useful theorem 

(a 0 a)(. - b) = a - b + ia - (a X b) 

(/483 + 4384) = -2t3*c4 

(7.143) 

(7.144) 
It follows that 

(which we could have obtained directly from rule 57, and 

(8483 - 436) = 2ik3 X c4) - Z (7.145) 

where Z = (; ",) , as before. Accordingly 

(7.146) 

So far, I have said nothing about the spins of the electron and positron. 

& -  g: - 2)(2)[c3 c4y0 + i(e3 x c4) - 2y3]u( 1) 
(mc) 

Remember that we are interested in the singlet state: 

(t1 - l t ) / f i  
Symbolically 

&singlet = - hiT)/fi (7.147) 

Atl is obtained from equation (7.146) with "spin up" for the electron 

u(1) = G@ (7.148) 
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and “spin down” for the positron 

U(2) = 6 ( 0 0  1 0 )  (7.149) 

Using these spinors, we find 

so 

U(2)70u(l) = 0 (7.150) 
v(2)zY3u(i) = -2mc.f (7.151) 

= -2igz(c3 x ~ 4 ) ~  (7.152) 

Meanwhile, for we have 

u(1) = lhh-c(i) , U(2) = - 6 ( O O O  1) (7.153) 

from which it follows that 

= 2ig2(t3 x ~ 4 ) ~  = -.&Ti (7.154) 

Thus the amplitude for annihilation of a stationary e’e- pair into two 
photons, which emerge in the directions k 2, is 

&singlet = -2fi ig2(t3 t4)r (7.155) 

(I note in passing that since A,, = -AlT, the triplet configuration 
(T1 + l T ) / f i  gives zero, confirming our earlier observation that the two- 
photon decay is forbidden in that case.) 

Finally, we must put in the appropriate photon polarization vectors. 
Recall that for “spin up” (m, = + 1) we have 

(7.156) €1 = - ( l / f i ) ( l ,  i, 0 )  
whereas for “spin down” (m, = - 1) 

c1 = ( l / f i ) ( l ,  -i, 0 )  (7.157) 

If the photon is traveling in the +z direction, these correspond to right- 
and left-circular polarization, respectively. Since the z component of the 
total angular momentum must be zero, the photon spins must be oppositely 
aligned: T1 or LT. In the first case we have 

(tl): t3 = - ( l / f i ) ( l ,  i, o), t4 = ( l / f i ) ( l ,  -i, 01, 
so that t3 x t4 = iK (7.158) 

In the second case 3 and 4 are interchanged, so that 

(lT): 63 x t 4  = -2k (7.159) 

Evidently, we need the antisymmetric combination, (T1 - l T ) / f i ,  which 
should come as no surprise: this corresponds to a total spin of zero, just 
as it did when we combined two particles of spin f. Again, the amplitude 
is (&Ti - &,,)/Jb, only this time the arrows refer to photon polarization. 
Finally, then: 
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&singlet = - 4 d  (7.160) 

(I have restored the complex conjugation of the polarization vectors, sup- 
pressed until now; this simply reverses the signs in (7.158) and (7.159).) 

That was a lot of work, for a rather modest looking answer. What can we 
do with it? In the first place, we can calculate the total cross section for electron- 
positron annihilation. In the CM frame, the differential cross section is [see eq. 

(7.161) 

Here 

and, since the collision is nonrelativistic 
El = E2 = mc2, lpfl = mc (7.162) 

lpil = mv (7.163) 

where v is the incident electron (or positron) speed. (We used v = 0 in calculating 
&, but obviously we cannot do so here. Is there an inconsistency in this? Not 
really. Think of it this way: & (and also E l ,  E2, Ipfl, and IPJ) could be expanded 
in powers of v/c. What we have done is to calculate the leading term in each 
expansion.) Putting all this together, we find 

Since there is no angular dependence, the total 
2 

a = $ (?2) 

Finally, we would like to determine the 

(7.164) 

cross section is 4~ times t h k 6  

(7.165) 

lifetime of positronium, in the 
singlet state. This is clearly related to the cross section for pair annihilation 
(7.169, but what is the precise connection? Well, going back to equation (6.12) 

du 1 dN 
ds2 L dQ 
_ -  (6.12) 

we see that the total number of scattering events per unit time is equal to the 
luminosity times the total cross section: 

N =  L a  (7.166) 

If p is the number of incident particles per unit volume, and if they are traveling 
at speed v, then the luminosity (Fig. 7.10) is 

L = pv (7.167) 

For a single “atom,” the electron density is 1$(0)12, and Nrepresents the probability 
of a disintegration, per unit time-which is to say, the decay rate. Thus 

r = vUl$(o)I2 (7.168) 
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@ w j  V_ Figure 7.10 The number of particles in 
the cylinder is pAu dt, so the luminosity 
(number per unit area per unit time) 

.*:;* : :’* - 0 .  

v dt is pu. 

Equations (7.165) and (7.168) are the formulas we used in Chapter 5 to determine 
the lifetime of positronium, T = l/r [see eq. (5.84)]: 

(7.169) 

7.9 RENORMALIZATION 

In Section 7.6 we considered “electron-muon” scattering, described in lowest 
order by the diagram 

and by the corresponding amplitude 

= -gf[c(PdY’U(P~)l % [fi(P4)YYU(Q2)1 (7.1 70) 

with 4 = P l  - P 3  (7.171) 

There are a number of fourth-order corrections, of which perhaps the most 
interesting is the “vacuum polarization” diagram 

4 

Here the virtual photon momentarily splits into an electron-positron pair, leading 
(as we saw qualitatively in Chapter 2) to a modification in the effective charge 
of the electron. My purpose now is to indicate how this works out quantitatively. 

The amplitude for this diagram is (Problem 7.38) 

(7.172) 
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Its inclusion amounts 

247 

to a modification of the photon propagator: 

(7.173) 

where [comparing (7.170) and (7.172)]: 

Unfortunately, this integral is divergent. NaYvely, it should go like 

(7.175) 

(That is, it should be “quadratically divergent.”) In actual fact, because of can- 
cellations in the algebra, it only goes like lnlkl (it is “logarithmically divergent”). 
But never mind-either way, it blows up. We encountered a similar problem in 
Chapter 6; it seems to be characteristic of closed-loop diagrams in the Feynman 
calculus. Once again, the strategy will be to absorb the infinities into “renor- 
malized” masses and coupling constants. 

The integral (7.174) carries two space-time indices; once we have integrated 
over k, the only four-vector left is q’, so I”” must have the general form gJ ) 
+ q,qv( ), where the parentheses contain some functions of q2.  We write it 
thus:’ 

I”” = -jgpyq21(q2) + %4”J(q2) (7.176) 

The second term contributes nothing to A, since the q, contracts with y” in 
equation (7.172), giving 

[ i (P3)@(Pi ) l  = c(P3)(& - Z&)U(Pi) 

lkI2 
Ikl 

s lk13 dlkl 7 = s Ikldk = lkI2, as Ikl - co 

while, from equation (7.94) 

AdPd = mc, i(P312-6 = MP3)mc 

(7.177) 

So we’ll forget about the second term in equation (7.176). As for the first term, 
appropriate massaging of the integral (7.174) reduces it to the form (Prob- 
lem 7.39) 

z(l - z))dz} (7.178) 

The first integral clearly isolates the logarithmic divergence. To handle it, we 
temporarily impose a cutoff M (not to be confused with the mass of the muon), 
which we shall send to infinity at the end of the calculation: 

(7.179) 
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The second integral 
I 

f(x) = 6 1 z( 1 - z) ln(1 + xz(1 - z))dz (7.180) 

is perfectly finite. It’s irritating that it has to be left in this form; the integral just 
can’t be reduced to elementary functions. It is easy enough, however, to evaluate 
numerically (Fig. 7.1 l), and the limiting expressions for large and small x are 
simple: 

In x (x % 1) 

At any rate 

(7.181) 

(7.182) 

Notice that q2 is negative, here. If the incident electron’s three-momentum in 
the CM is p, and the scattering angle is 8, then (Problem 7.40) 

(7.183) 

Thus -q2/m2c2 - v2/c2, and the limiting cases in equation (7.18 1) correspond 
to nonrelativistic and ultrarelativistic scattering, respectively. 

The amplitude for electron-muon scattering, including vacuum polanza- 
tion, is therefore 

e 42 = -4p2 sin2 - 
2 

Now comes the critical step, in which we “sop up” the infinity (contained for 
the moment in the cutoff M )  by introducing the “renormalized” coupling con- 
stant 

(7.185) 

Rewriting (7.184) in terms of gR,  we have 

/ t /’ 
Figure 7.11 Graph off(x) [eq. (7.1 SO)]. 
Solid line is the numerical result; dashed 
line below is In x [which approximates 
f ( x )  at large XI; straight line above is x/5 
[which approximates f ( x )  at small XI. / 
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[Equation (7.184) is only valid to order g: anyway, so it doesn’t matter whether 
we use g, or gR within the curly brackets.] There are two important things to 
notice about this result: 

1. The infinities are gone: there is no M in equation (7.186). All reference 
to the cutoff has been absorbed into the coupling constant. To be sure, everything 
is now written in terms of gR, instead of g,. But that’s all to the good: gR, not 
g,, is what we actually measure in the laboratory (in Heaviside-Lorentz units it 
is the charge of the electron-or muon-and we determine it experimentally as 
the coefficient of attraction or repulsion between two such particles). If, in our 
theoretical analysis, we look only at “tree level” (lowest-order) diagrams, we are 
led to suppose that the physical charge is the same as the “bare” coupling constant, 
g,. But as soon as we include higher-order effects we find that it is really gR, not 
g,, that corresponds to the measured eleotric charge. Does this mean that our 
earlier results are all wrong? No. What it means is that by naikely interpreting 
g, as the physical electric charge we were unwittingly taking into account the 
divergent part of the higher-order diagrams. 

2. There remains thefinite correction term, and here the important thing 
to notice is that it depends on q2. We can absorb this, too, into the coupling 
constant, but the “constant” is now a function of q2;  we call it a “running” 
coupling constant: 

or, in terms of the fine structure “constant” (8, = G): 

(7.187) 

(7.188) 

The effective charge of the electron (and the muon), then, depends on the mo- 
mentum transferred in the collision. Higher momentum transfer means closer 
approach, so another way of saying it is that the effective charge of each particle 
depends on how far apart they are. This is a consequence of vacuum polarization, 
which “screens” each charge. We now have an explicit formula for what was, 
in Chapter 2, a purely qualitative description. How come Millikan and Ruth- 
erford, or even Coulomb, never noticed this effect? If the electron’s charge is not 
a constant, why doesn’t this foul up everything from electronics to chemistry? 
The answer is that the variation is extremely slight, in nonrelativistic situations. 
Even in a head-on collision at &c, the correction term in equation (7.188) is 
only about 6 X low6 (Problem 7.41). For most purposes, therefore, 4 0 )  = & 
will do just fine. Nevertheless, the second term in (7.188) makes a detectable 
contribution to the Lamb shift, for example.8 Moreover, we shall encounter the 
same problem in quantum chromodynamics, where (because of quark confine- 
ment) the short-distance, relativistic r6gime is the case of interest. 

We have concentrated on one particular fourth-order process (vacuum 
polarization), but there are, of course, several others. There are the “ladder- 
diagrams”: 
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These are finite and present no particular problems. But there are also three 
divergent graphs: 

(and of course three more in which the extra virtual photon couples to the 
muon). The first two renormalize the electron’s mass; the third modifies its 
magnetic moment. In addition, all three, considered separately, contribute to 
the renormalization of the electron’s charge. Luckily, the latter contributions 
cancel one another, so that equation (7.185) remains valid. (I say “luckily,” for 
these corrections depend on the mass of the particle to which the virtual photon 
line attaches, and if they did not cancel we would have a different renormalization 
for the muon than for the electron. The Ward identity (the official name for this 
cancellation) guarantees that renormalization preserves the equality of electric 
charges, irrespective of the mass of the carrier).* And then, there are even higher- 
order diagrams, such as 

These introduce further terms in equation (7.188), of order a2, a3, and so on, 
but we shall not pursue the matter here, for the essential ideas are now on 
the table. 
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J. J. Sakurai, Advanced Quantum Mechanics (Reading, MA: Addison-Wesley, 1967), 
pp. 2 16 ff. 

7. My notation follows that of F. Halzen and A. D. Martin, Quarks and Leptons, (New 
York: Wiley, 1984), Chap. 7, and Bjorken and Drell (ref. l), Chap. 8. I refer the 
reader to these texts, or to Sakurai (ref. 6), for further discussion. 

convention; that is, +’ = -yo+ would do just as well. 

Sect. 6.5. 

8. See, for example, Halzen and Martin (ref. 7) Sect. 7.3. 

PROBLEMS 

7.1. Show that dr#J/dxp is a covariant four-vector (4 is a scalar function of x, y, z, 
and t).  [Hint: First determine [from (3.7)] how covariant four-vectors transform; 
then use ar#J/dxp’ = (dr#J/ax”)(dx”/dx”’) to find out how &$/axp transforms.] 

7.2. Show that equation (7.17) satisfies equation (7.15). 

7.3. Derive equation (7.47), using equations (7.44) and (7.46). 

7.4. Show that u(’) and u(’) [eq. (7.46)] are orthogonal, in the sense that ~ ( ‘ ) ~ u ( ’ )  = 0. 
Likewise, show that d3) and d4) are orthogonal. Are u(’) and d3) orthogonal? 

7.5. Show that for u(’) and u(*) [eq. (7.46)] the lower components (ue) are smaller than 
the upper ones (tia), in the nonrelativistic limit, by a factor vfc. [This observation 
simplifies matters, when we are doing nonrelativistic approximations; we think of 
uA as the “big” components and uE as the “little” components. (For d3) and d4) 
the roles are reversed.) In the relativistic limit, by contrast, uA and uE are comparable 
in size.] 

7.6. If the z axis points along the direction of motion, show that equation (7.46) reduces 
to 

f \ i ( E  + rnc2)/c 1 
ti(’)= \ r  ( E  - 1 mc2)/c ) , a n d s o o n  

Confirm that these are eigenspinors of S,, and find the eigenvalues. 

7.7. Construct the normalized spinors u(+) and u(-) representing an electron of mo- 
mentum p with helicity f 1. [That is, find the u’s that satisfy equation (7.34), 
with positive E, and are eigenspinors of the helicity operator ( 5 .  Z) with eigen- 
values f 1.1 

c 

Pz t IPI ( E  + mc2) 
where uA = ( ) and NZ = 

P x  + iPY 
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7.8. [The purpose of this problem is to demonstrate that particles described by the Dirac 
equation carry “intrinsic” angular momentum (S) in addition to their orbital angular 
momentum (L), neither of which is separately conserved, although their sum is. It 
should be attempted only if you are reasonably familiar with quantum mechanics.] 
(a) Construct the Hamiltonian, H,  for the Dirac equation. [Hint: Solve equation 

(7.19) for p”/c. Solution: H = cyo(y.p + mc), where p = (h/ i )V is the mo- 
mentum operator.] 

(b) Find the commutator of H with the orbital angular momentum L = r X p. 
[Solution: [H, L] = -ihcro(r x p)] 
Since [H, L] is not zero, L by itself is not conserved. Evidently there is some 
other form of angular momentum lurking here. Introduce the “spin angular 
momentum,” S, defined by equation (7.48). 

(c)  Find the commutator of H with the spin angular momentum, S = ( h / 2 ) Z .  
[Solution: [H, S] = ihcyO(r x p)] 
It follows that the total angular momentum, J = L + S, is conserved. 

(d) Show that every bispinor is an eigenstate of S2, with eigenvalue h2s(s + l), 
and find s. What, then, is the spin of a particle described by the Dirac equation? 

7.9. The charge conjugation operator (C) takes a Dirac spinor + into the “charge-con- 
jugate” spinor +c,  given by 

+c = iy2+* 

[See Halzen and Martin, ref. 7, Sect. 5.4.1 Find the charge-conjugates of u “ )  and 
u(’), and compare them with v( ’ )  and d2). 

7.10. In going from equation (7.18) to (7.19), we (arbitrarily) chose to work with the 
factor containing the minus sign. How would Section 7.2 be changed if we were to 
replace (7.19) by yWpW + m c  = O? 

(b) Show that StyoS = yo. 
7.11. (a) Starting from equation (7.53), calculate StS, and confirm equation (7.57). 

7.12. Show that 4y’+ [eq. (7.63)] is invariant under equation (7.52). 

7.13. Show that the adjoint spinors U(’,2) and a(’%*) satisfy the equations 

U((YfiPW - me) = 0, Zl(yfipp + me) = 0 

[Hint: Take the transpose conjugate of equations (7.34) and (7.5 1); multiply from 
the right by yo, and show that (yW)+yo = yOyfi.] 

7.14. Show that the normalization condition (7.44), expressed in terms of the adjoint 
spinors, becomes 

Uu = -Uv = 2mc 

7.15. Show that $yp+ is a four-vector, by confirming that its components transform 
according to the Lorentz transformation rule (3.7). Check that it transforms as a 
(polar) vector under parity (that is, the “time” component is invariant, whereas the 
“spatial” components change sign). 

7.16. Show that the spinor representing an electron at rest [eq. (7.30)] is an eigenstate of 
the parity operator, P. What is its intrinsic parity? How about the positron? What 
if you changed the sign convention in equation (7.61) (see ref. 3)? [Notice that 
whereas the absolute panty of a spin-f particle is in a sense arbitrary, the fact that 
particles and antiparticles carry opposite parity is not arbitrary.] 
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7.17. (a) Express y”y” as a linear combination of 1, y5, y”, y”y5, and u”“. 

(b) Construct the matrices d2, d3, and uZ3 [eq. (7.69)], and relate them to Zl, Z2, 
and Z3 [eq. (7.48)]. 

7.18. (a) Derive equations (7.70, i and iv) from equation (7.73). 
(b) Prove equation (7.74), from equation (7.73). 

7.19. Show that the continuity equation (7.74) enforces conservation of charge. [If you 
don’t see how to do this, look in any electrodynamics textbook.] 

7.20. Show that we are always free to pick A’ = 0, in free space [eq. (7.85)]. [That is, 
given a potential A” which does not satisfy this constraint, find a gauge function A, 
consistent with equation (7.84), such that Ah, in equation (7.8 l), is zero.] 

7.21. Suppose we apply a gauge transformation (7.81) to the plane-wave potential (7.88), 
using as the gauge function 

x = i h K a e - ( f / h ) p . x  

where K is an arbitrary constant and p is the photon four-momentum. 
(a) Show that this X satisfies equation (7.84). 
(b) Show that this gauge transformation has the effect of modifying c”: c” - 

c” + KP”. [In particular, if we choose K = -cO/pO we obtain the Coulomb gauge 
polarization vector (7.9 l).] 
This observation leads to a beautifully simple test for the gauge invariance of 
QED results: the answer must be unchanged if you replace e” by c” + KP”. 

7.22. Using u( ’ ) ,  u(’) (7.46) and u(’), d2) (7.50), prove the completeness relations (7.97). 
[Note that the matrix multiplication is “backwards”: uzi is a 4 X 4 matrix, defined 
by (uz i ) ,  = u 4 . l  

7.23. Using q I )  and q 2 )  (7.92), confirm the completeness relation (7.103). 

7.24. Evaluate the amplitude for electron-muon scattering (7.104) in the CM system, 
assuming the e and p approach one another along the z axis, repel, and return back 
along the z axis. Assume the initial and final particles all have helicity + 1. [Answer: 

7.25. Determine the total amplitude [the analog to equation (7.104), or (7.109, or (7.108), 
or (7.110) plus (7.11 l)] for pair annihilation, e+ + e- - y + y. 

7.26. Work out the analog to Casimir’s trick (7.123) for antiparticles 

n = -2gZl 

c [a (a)r 10 (b)” (aF2v (HI* 
all spins 

and for the “mixed” cases 

c t t-j(a)r P ( ~ ) I  t t-j(4r20 mi*,  c tu (m u(b)i[a (a)r2u(m* 
all spins all spins 

7.27. (a) Show that yoy’t-yo = y”, for v = 0, 1, 2, or 3. 
(b) If r is any product of y matrices (r = TaYb’ - yc) show that f‘ [eq. (7.1 17)] is 

7.28. Apply Casimir’s trick to obtain an expression analogous to equation (7.124) for 
the same product in reverse order, = yc* * ybya. 

Compton scattering. Note that there are four terms here: 

I&I’ = l./n1(2 + I&# + &,AT + &.T&2 
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7.29. (a) Prove trace theorems I ,  2, and 3, in Section 7.7. 
(b) Prove equation 4. 
(c) Using the anticommutation relation 5, prove 5’. 

7.30. (a) Use the anticommutation relation 5 to prove the contraction theorems 6, 7, 8, 
and 9. 

(b) From 7, prove 7’; from 8, prove 8 from 9, prove 9’. 

7.31. (a) Confirm the trace theorems 10, 11, 12, and 13. 
(b) From 12, prove 12’; from 13, prove 13’. 

7.32. (a) Prove theorems 14, 15, and 16. 
(b) From 15, prove 15’; from 16, prove 16‘. 

7.33. (a) Show that @“XotavX, = -66,“. (Summation over p, v, X implied.) 
(b) Show that tB”Xuc,,v8T = -2(6; 6: - 6: 6,“). 
(c) Find the analogous formula for t”YXot,+8r. 

(d) Find the analogous formula for tp“Xot,+8,. 

[Here 6: is the Kronecker delta: 1 if  p = v, 0 otherwise. It could be written in 
terms of the mixed (co/contravariant) metric tensor: 6: = g”, = g,’.] 

7.34. Starting with equation (7.105), determine the spin-averaged amplitude, [analogous 
to equation (7.126)] for electron-electron scattering. Assume we’re working at high 
energies, so that the mass of the electron can be ignored (i.e., set m = 0). [Hint: 
You can read (lJnIlZ) and ( ) & , I 2 )  from equation (7.126). For (JnlJnS) use the 
same strategy as Casimir’s trick to get 

Then exploit the contraction theorems to evaluate the trace. Notice that for massless 
particles the conservation of momentum (pI + p2 = p3 + p4) implies that p ,  -p2 = 

P ~ * P ~ , P I - P ~  = P Z ’ P 4 ? a n d ~ l * ~ 4  = P Z - P ~ . I  

7.35. (a) Starting with equation (7.126), find the spin-averaged amplitude for electron- 
muon scattering in the CM frame, in the high-energy regime (m, M - 0). 

(b) Find the CM differential cross section for electron-muon scattering at high 
energy. Let E be the electron energy and 0 the scattering angle. 

k n s w e r : k  da = (8”~)~ - & (1 + C O S ~  0/2)] 
2E2 sin4 012 

7.36. (a) Using the result of Problem (7.34), determine the spin-averaged amplitude for 
electron-electron scattering in the CM in the high-energy regime ( m  - 0). 

(b) Find the CM differential cross section for electron-electron scattering at high 
energy. 

Compare the answers to Problems 7.35 and 7.36. (See footnote page 234). 

7.37. Starting with equation (7.155), calculate IJnlZ, and use equation (7.103) to sum 
over photon polarizations. Check that the answer is consistent with equation (7.160), 



PROBLEMS 255 

and explain why this method gives the correct answer. [Note that we are now 
summing over all photon polarizations, whereas in fact the photons must be in the 
singlet configuration.] 

7.38. Derive equation (7.172). For this we need one last Feynman rule: For a closed 
fermion loop include a factor - 1 and take the trace. 

7.39. Derive equation (7.178). [Hint: Use the integral theorems in Appendix E of Sakurai 
(ref. 6).] 

7.40. Derive equation (7.183). 

7.41. Evaluate the correction term in eq. (7.188) for the case of a head-on collision in 

Problems 42-44 pertain to the following model: 
the CM; assume the electron is traveling at he.  

What $the photon, instead of being a massless vector (spin 1) particle, were a 
massive scalar (spin 0) particle? Specijically, suppose the QED vertex factor were 

(where I is the 4 X 4 unit matrix), and the ‘bhoton”propagat0r were 
ige 1 

--1 

q2 - (m,c)2 . 
There is no photon polarization vector now, and hence no factor for external photon 
lines. Apart from this, the Feynman rules for QED are unchanged. 

(a) Calculate the decay rate for y - e+ + e-. 
(b) If m, = 300 MeV/c2, find the lifetime of the “photon,” in seconds. 

(b) Calculate the spin-averaged quantity, (I& 1’). 
(c) Determine the differential cross section for electron-muon scattering in the CM 

frame. Assume the energy is high enough so that the electron and muon masses 
can be neglected: me, m, - 0. Express your answer in terms of the incident 
electron energy, E and the scattering angle, 8. 

(d) From your result in (c), calculate the total cross section, assuming the “photon” 
is extremely heavy, myc2 + E. 

(e) Going back to (b), consider now the case of low-energy scattering from an 
extremely heavy “muon”: Ipel/c < me < m, < m,. Find the differential cross 
section in the lab frame (muon at rest), assuming the muon does not recoil 
appreciably. Compare the Rutherford formula (Example 7.7), and calculate 
the total cross section. 

7.44. (a) Find the amplitude, A, for pair annihilation, e+ + e- - y + y), in this theory. 
(b) Determine (I& 12 ) ,  assuming the energy is high enough that we can ignore both 

(c) Evaluate your result, in (b), in the CM system. Express your answer in terms 

(d) Find the differential cross section for pair annihilation, in the CM system, still 

7.42. Assuming it is heavy enough, this “photon” can decay. 

7.43. (a) Find the amplitude, A, for electron-muon scattering, in this theory. 

the electron and the “photon” mass (me, m, - 0). 

of the incident electron energy, E. and the scattering angle, 8. 

assuming me = m, = 0. Is the total cross section finite? 





Chapter 8 

Electrodynamics of Quarks 
and Hadrons 

Because the electromagnetic interactions of electrons are well understood, 
they serve as useful probes of the structure of mesons and baryons. In this 
chapter we investigate the two most important examples: production ofhadrons 
in eie- scattering, and “deep inelastic scattering” of electrons and protons. 
Both were crucial in establishing the color/’avor model of quarks. This ma- 
terial will not be used in subsequent chapters, but the first two sections, at 
least, should be studied with care. 

8.1 ELECTRON-QUARK INTERACTIONS 

Everything I said in Chapter 7 about the electrodynamics of electrons and muons 
applies just as well to quarks (using, of course, the appropriate charge: $ e  or 
- fe). However, the experimental situation is complicated by the fact that the 
quarks themselves never see the light of day, and we are obliged to infer from 
the observed behavior of mesons and baryons what their constituents are up to. 
In this chapter we shall consider two important examples: the production of 
hadrons in electron-positron scattering, for which 
process is 

the underlying electromagnetic 

257 
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and high-energy electron-proton scattering (“deep inelastic scattering”), for which 
the basic diagram is 

In the former case the quark-antiquark pair subsequently “hadronizes,” pro- 
ducing the mesons and baryons we actually observe; in the latter case the quark 
is accompanied by “spectator” quarks to make up the proton. However, that 
part of the problem is chrornodynamics, not electrodynamics; for the moment, 
we are concerned only with the electrodynamic part of the process. 

8.2 HADRON PRODUCTION IN e’e- SCATTERING 

Electrons and positrons do not participate in the strong interactions; at present 
energies, the only way an e+e- coltision can produce strongly interacting particles 
is through a virtual photon: e+ + e- - y - q + 4 - hadrons. (By 1987 the 
Linear Collider at SLAC should be operating at energies high enough to produce 
virtual 2’’s copiously; the dominant mechanism will then be the weak interaction: 
e+ + e- - 2’ - q + 4 - hadrons.) For a brief moment the quarks fly apart as 
free particles, but when they reach a separation distance of around m (the 
diameter of a hadron), their (strong) interaction is so great that new quark- 
antiquark pairs are produced-this time mainly from gluons: 

4 4 

These quarks and antiquarks, literally dozens of them, in a typical modem ex- 
periment, join together in myriad combinations to make the mesons and baryons 
that are actually recorded at the detector. In all the debris there is one unmis- 
takable footprint left behind by the original quark-antiquark pair: the hadrons 
emerge in two back-to-back “jets,” one along the direction of the primordial 
quark, the other marking the direction of the antiquark (Fig. 8.1). [Occasionally 
one sees a three-jet event (Fig. 8.2), indicating that a gluon carrying a substantial 
fraction of the total energy was emitted in conjuntion with the original q4 pro- 
duction: 



Figure 8.1 A typical two-jet event. (Courtesy J. Dorfan, SLAC.) 

Figure 8.2 A three-jet event. (Courtesy J. Dorfan, SLAC.) 

259 
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Indeed, the observation of three-jet events is generally regarded as our most 
direct evidence for the existence of gluons.] 

Now, the first stage in this process (e’ + e- - y - q + 4) is ordinary 
QED; the calculation is exactly the same as for e+ + e- - y - p’ + y-: 

Y 
The amplitude is 

where Q is the quark charge, in units of e ( 3 ,  for u, c, and t; - 4 for d, s, and b). 
Exploiting Casimir’s trick, we obtain 

(1.4’) = 1 [ I’ Tr[y”M + mc)y”(ls; - mc)] 
4 (PI + P d 2  

x WYWl - MCh”(H3 + Mc)l (8.2) 

where m is the mass of the electron and M is that of the quark. (See Problem 
8.1 .) Invoking the trace theorems of Chapter 7, we can reduce this to 
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Or, in terms of the incident (CM) electron energy E and the angle 8 between 
the incoming electron and the outgoing quark: 

mc2 Mc2 
(IJnI2) = Q2d{ 1 + (7) + (7) 

+ [ 1 - (3][ 1 - (37 cos2 8 )  (8.4) 

The differential scattering cross section is given by equation (6.42); integrating 
over 0 and 4, we obtain the total cross section (Problem 8.2): 

a = -  rQ2 (h;r - d m  [ I + -  (T’)’][ - I + -  ( ~ ’ r ]  - (8 .5 )  3 1 - (mc2/E)’ 

Notice the threshold at E = Mc2; for energies less than this the square root 
is imaginary, reflecting the fact that the process is kinematically forbidden when 
there is not enough energy to create the q4 pair. If we are substantially above 
threshold ( E  > Mc2 9 mc2), equation (8.5)  simplifies considerably:* 

As we crank up the beam energy, we encounter a succession of such thresholds- 
first the muon and the light quarks, later (at about 1500 MeV) the charm quark, 
the tau (at 1784 MeV), the bottom quark (4700 MeV) and eventually (one hopes) 
the top quark. There is a beautiful way to display this structure: suppose we 
examine the ratio of the rate of hadron production to that for muon pairs: 

a(e+e- - hadrons) 
a(e+e- - p+p-) 

R =  (8.7) 

Since the numerator includes all the quark-antiquark events,? equation (8.6) 
gives 

in which the sum is over all quark flavors with thresholds below E. Notice the 
3 in front-it records the fact that there are three colors for each flavor. We 
anticipate a “staircase” graph for R(E),  then, ascending one step at each new 

* This approximation is actually better than it looks, because of a lucky algebraic cancellation: 
expanding the radical, i 1  - ( M c ~ / E ) ~  [ I  + f(Mc2/E)’] = 1 - a ( M c ~ / E ) ~ .  . . , so the error is of order 
( M c ~ / E ) ~ ,  not (Mc’/E)’. As for the electron mass terms, these are smaller to begin with, though there 
is a second-order correction; however, these terms cancel exactly in the calculation of R 

t The T lepton decays predominantly into hadrons, and this should add something (less than 
1) to R, above 1784 MeV. This presumably explains why the experimental numbers are somewhat 
higher than the “ u  + d + s + c” line in Figure 8.3. The fact that the (unanticipated) T threshold 
comes so soon after the c led to some confusion at first, and the theory seemed to be in trouble, but 
the discovery of the T ,  and the flatness of the graph above the I’ restored confidence in this simple 
picture. 

leq. (8.711. 
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quark threshold, with the height of the rise determined by the quark’s charge. 
At low energy where only the u, d, and s quarks contribute, we expect 

R = 3[($)’ + (-4)’ + (-+)’I = 2 (8.9) 

R = 2 + 3(3)2 = (8.10) 

R = + 3(-- 9 2  = y (8.1 1) 

Between the c threshold and the b threshold we should have 

and above the b 

The experimental results are shown in Figure 8.3. (The top quark should 
produce a jump to R = 5; evidently its mass exceeds 18 GeV/c2, since no such 
rise is apparent in these data.) The agreement between theory and experiment 
is pretty good, especially at high energy. But you may well ask why it is not 
perfect. Apart from the approximation in going from equation (8.5) to equation 
(8.6) (which artificially sharpens the comers at each threshold), and the neglect 
of the tau (which leads to an underestimate in the region above 1784 GeV), we 
have made a fundamental oversimplification in assuming that we could treat 
the process as a sequence of two independent operations: e’e- - q4 (QED) 
followed by 44 - hadrons (QCD). In point of fact, the quarks produced in the 
first step are not free particles, obeying the Dirac equation; rather, they are virtual 
particles, on their way to a second interaction. This is particularly critical when 
the energy is right for formation of a bound state (6 = sS; $ = cC; ‘T = b6); in 
the vicinity of such a “resonance” the interaction of the two quarks can scarcely 
be ignored. Hence the sharp spikes in the graph, which typically occur just below 
each threshold. In the broad plateau regions, however, the flatness of the graph 
is an indication that our naYve picture is not too bad. Like the jet structure, this 
is a manifestation of asymptotic freedom, and not surprisingly it works better 
at high energies. 

But, really, all this is quibbling anyway, for the importance of Figure 8.3 
lies not in what the small discrepancies whisper, but in what the overall agreement 
shouts: the factor of 3 in equation (8.8) clearly belongs there. Without it the 
theory would be wildly off (look at the dashed line in Figure 8.3)-and not just 
as isolated resonances, but across-the-board. That 3, remember, counts the num- 
ber of colors. Here, then, is compelling experimental evidence for the color 
hypothesis-a hypothesis that was introduced originally for esoteric theoretical 
reasons but is now, of course, an indispensable ingredient in the whole story of 
strong interactions. 

8.3 ELASTIC ELECTRON-PROTON SCATTERING 

We now turn to electron-proton scattering, our best probe of the internal structure 
of the proton. If the proton were a simple point charge, obeying the Dirac equa- 
tion, we could just copy our analysis of electron-muon scattering, with M now 
the mass of the proton. The lowest-order Feynman diagram would be 
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Electron Proton 

and the (spin-averaged) amplitude would be [eq. (7.124)] 
4 

(/&12) = $ L’” electronLrv proton (8.12) 

where q = p I  - p3 and [eq. (7.125)] 

L%ctron = ~ ( P ? P !  + P ~ P ?  + g””[(mc)2 - ( P I  .p3)1} (8.13) 
(and a similar expression for L;;oton, only with m - M and 1 ,  3 - 2, 4).  We 
used these results in Example 7.7 to derive the Mott and Rutherford scattering 
formulas. 

But the proton is not a simple point charge, and so, long before the advent 
of the quark model, a more flexible formalism was introduced for describing 
electron-proton scattering. We might represent the process, in lowest-order QED, 
by a diagram like this: 

where the blob on the right serves to remind us that we don’t really know how 
the (virtual) photon interacts with the proton. (We do assume, however, that 
the scattering is elastic: e + p - e + p; we shall consider inelastic processes, 
e + p - e + X ,  in the next section.) Now, the essential point is that the electron 
vertex and the photon propagator are unchanged, and therefore, since (IAI’) 
neatly factors [eq. (8.12)], 

(8.14) 

where K p y  is an unknown quantity describing the photon-proton vertex. 
Well . . . not completely unknown, for this much we can say: it is certainly 

a second-rank tensor, and the only variables that it can possibly depend on are 
p 2 ,  p 4 ,  and q. Since q = p4 - p2, these three are not independent, and we are 
free to use any two of them; the customary choice is q and p2 (I’ll drop the 
subscript from here on: p = p2 is the initial proton momentum). Now, there 
aren’t many tensors that can be constructed out of just two four-vectors; the 
most general possible form is 
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where the Ki are (unknown) functions of the only scalar variable in the problem: 
q2. [Notice that p2 = (Mc)’ is a constant, and q - p  = -q2/2]. The factors (Mc)-’ 
have been pulled out, in defining K2,  K4, and K 5 ,  just so all the K s  will have 
the same dimensions.* In principle, we could add an antisymmetric combination 
(p’q’ - p‘q”), but since L”“ is symmetric (8.13), such a term would contribute 
nothing to ( / & I 2 ) .  Now, these four functions are not independent; it can be 
shown (Problem 8.4) that 

qfiKfiY = 1 (8.16) 

from which it follows (Problem 8.5) that 

(8.17) 

Thus K”” can be expressed in terms ofjust two (unknown) functions, K1(q2) and 
K2(q2): 

K2 1 1 + 7 ( p w  + 2 qw)(p” + 5 q”)  (8.18) 
(Mc) 

A fundamental problem for any theory of proton structure is to determine 
these two functions. They are easy enough to measure experimentally, for they 
are directly related to the electron-proton elastic scattering cross section. Ac- 
cording to equations (8.13) and (8.18), (Problem 8.7) 

We shall work in the laboratory frame, with the target proton at rest, p = (Mc, 
0, 0,O). An electron with incident energy E scatters at an angle 8, emerging with 
energy E’. Let us assume it’s a moderately energetic collision (E, E’) % mc2, 
so that we can safely ignore the mass of the electron (set m = 0);t then pl = 

E E‘ 
- (1, p i )  and p 3  = - (1, p,), with pi - fif = cos 8, and we find (Problem 8.8) 
c C 

*) (8.20) ( 2K1 sin2 5 + K2 cos2 - 
2 

8 g‘c2 
(I“’) = 4EE‘ sin4 (8/2) 

The outgoing electron energy, E’, is not an independent variable; it is kinemat- 
ically determined by E and I9 (Problem 8.9): 

E 
1 + (2E/Mc2) sin2 (I9/2) 

E‘ = (8.21) 

* The subscript 3 is traditionally reserved for a term that enters in the corresponding analysis 
of neutrino-proton scattering, but does not occur here. 

t The Mott formula (7.127) neglects proton structure and proton recoil; it applies to the 
regime E Q Mc2, but it does not assume E B mc2. We now work in the regime E % mc2, but do not 
ignore proton structure and recoil (i.e., we do not assume E Q Mc’). In the intermediate range, 
mc2 Q E Q Mc2, the two results agree. (See Problem 8.10.) 
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For a massless incident particle we have (Problem 6.10) 

hE’ ’ 
dQ = (7) TMCE (IJnl’) (8.22) 

and so, for elastic electron-proton scattering 

$ [2K1 sin2 (8/2) + K2 cos’ (0/2)] (8.23) 
da 

where E’ is given by equation (8.21). This is known as the Rosenbluth formula; 
it was first derived in 1950.’ By counting the number of electrons scattered in a 
given direction, for a range of incident energies, we can determine the “form 
factors” KI(4’) and K2(q2), and compare the results with theoretical predictions2 

(see Fig. 8.4). 

8.4 INELASTIC ELECTRON-PROTON SCATTERING 

At modest energies, electron-proton scattering is necessarily elastic ( e  + p - 
e + p); the proton recoils, but it’s still just a proton. But if the incident electron 
carries enough energy, all sorts of other stuff may come out-pions, kaons, 
deltas, you name it. We describe such an inelastic process (e  + p + e + X )  by 
a diagram of the form 

Electron Proton 

Again, the blob veils our ignorance about the photon-proton vertex; the extra 
outgoing lines represent the hadronic “shrapnel” from the exploded proton. As 
before, the electron vertex is unaffected by all the excitement at the proton end, 
and so the (spin-averaged) amplitude, for a given final state X ,  takes the form 

4 

(IJnl 2 ) - g e L ” ”  - 2 electron&v(X) (8.24) 

where Kpy is some (unknown) quantity describing the subprocess y + p - X; it 
depends on 4 = (PI - p3), p = p2, and the various outgoing momenta p4, p 5 ,  
. . . , pn. The scattering cross section is determined by the “Golden Rule” [eq. 
(6.34)] : 
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Figure 8.4 Proton elastic form factors. Apart from an overall constant (1 + K ) ,  the 
electric and magnetic form factors GE and GM (ref. 2) are practically identical, and [at 
least, up to about 10 (GeV/c)*] are well fit by the phenomenological “dipole” function 
Gd (solid line). Circles are experimental values of GM/( 1 + K)(=GE). [Source: H. Frauen- 
felder and E. M. Henley, Subatomic Physics (Englewood Cliffs, NJ: Prentice-Hall, copyright 
0 1974), p. 127. Based on data of P. N. Kirk et al., Phys. Rev. D8, 63 (1973).] 

However, in a typical experiment only the momentum of the scattered 
electron (p3) is recorded. What we measure is the so-called “inclusive” cross 
section, in which all accessible final states X ,  and all possible outgoing momenta, 
are included. To obtain the inclusive cross section from equation (8.25), we sum 
over X and integrate over p4, p5, . . . , Pn: 

x ( 2 4 4  64(q + - p4 - . . . - Pn) (8.27) 

For a massless electron of energy E striking a stationary proton of mass M, 
the square root is just ME. Meanwhile, d3p3 = /p312 dlp31dQ, and (again setting 
m = 0) Ip31 = E‘/c, where E’(=E3) is the outgoing electron energy. Thus 
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da ah 2 E ‘  
dE‘ dQ - (cq’) E 

- L’”W’” -- - (8.28) 

Notice that E‘ is not kinematically determined by E and 8, in the inelastic case, 
for the outgoing hadrons can soak up a range of energies. [More precisely, the 
total hadronic momentum, ptot = p4 + p5 + - - - + p,,, is no longer constrained 
by the condition p&,t = M2c2,  as it would be for a single proton. Therefore p3 = 

p ,  + p2 - ptot is also unconstrained, and equation (8.21) no longer follows.] 
Accordingly, what we are interested in is the differential cross section for scattering 
in a particular energy range dE’, and this is what equation (8.28) gives us. 

From here on the story is familiar: W,, is a second-rank tensor, which can 
only depend on q and p ,  all other momenta having been integrated out. As 
before, it can be written in the form 

However, this time the Wi are functions of two independent scalars, q2 and q . p 
(because p:,, is no longer constrained, q * p  is no longer related to q2). Once again, 
we have (Problem 8.4) 

q,Wfi” = 0 (8.30) 

from which it follows that (Problem 8.1 1 )  

and therefore W’” can be expressed in terms of just two “structure functions”: 

”@) + $$ [ p @  - ( y ) q ’ ] [ p “  - (y)q‘‘] (8.32) 

Putting equations (8.13) and (8.32) into equation (8.28) (and again setting rn = 

0) we conclude 

ah  y [ 2 W 1  sin2 (8/2) + W2 cos2 (8/2)] (8.33) -= (  da 
dE’ dQ 2E sin2 (8/2) 

Equation (8.33) is the fundamental result for inclusive inelastic electron- 
proton scattering; it is the analog to the Rosenbluth formula (8.23) 

ah E‘ [2KI sin2 (8/2) + K2 cos2 (8/2)] (8.23) 
- = (  da 
d0  4ME sin2 (8/2) E 

which describes elastic scattering. Remember that the structure functions ( W, 
and W2) depend on two independent variables, for a given incident energy (E) .  
The experimentalist would use E‘ and 8, whereas the theorist would generally 
prefer the Lorentz-invariant quantities q2 and 4 - p-or better (for reasons you’ll 
see in the next section)-q2 and 

4’ 

2 4 . P  
X’-- (8.34) 



8.5 THE PARTON MODEL AND BJORKEN SCALING 269 

By contrast, the elastic form factors (K ,  and K2) depend on only one variable (8, 
for the experimentalist, q2 for the theorist)-in this case E’ is determined by 
equation (8.21) and x is fixed (x = 1). In a formal sense, elastic scattering is a 
special case of inelastic scattering, in which we impose an extra constraint 
(& = M2c2) on the outgoing hadron momenta. It should be possible, therefore, 
to obtain the Rosenbluth‘ formula from equation (8.33), by appropriate choice 
of the Ws. You can check for yourself that 

(8.35) 

does the job (see Problem 8.12). 
I should point out that there is precious little physics in all of this; what 

we have done is to set the agenda for a theory of proton structure. A successful 
theory must enable us to calculate the structure functions and form factors, 
which at this stage are completely arbitrary. The most nahe model treats the 
proton as a simple point charge; in this case (Problem 8.6) 

K1 = -q2 and K2 = ( ~ M c ) ~  (8.36) 

It’s not a bad model at low energies, where only elastic scattering occurs, and 
the electron never gets close enough to “see” the structure of the proton. But it 
is grossly inadequate at high energies (see Fig. 8.5). In the next two sections we 
shall see what the quark model has to say about the high-energy rkgime. 

8.5 THE PARTON MODEL AND BJORKEN SCALING 

In the late sixties, Bjorken predicted that at very high energy the dependence of 
the inelastic structure functions on q2 fades away, and they become functions 
of x alone. More precisely, he suggested that3 

t 
t 

P 
14‘ 
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t 
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Figure 8.5 Cross section for inclusive inelastic electron-proton scattering, as a function 
of “missing mass” ( W = a / c ) .  The elastic peak at W = M has been reduced by factor 
8.5, to fit it on the graph. (Source: J.  I .  Friedman and H. W. Kendall; reproduced, with 
permission, from the Annual Review of Nuclear and Particle Science, Volume 22, 0 
1972 by Annual Reviews Inc.; page 210.) 
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Figure 8.6 Scaling behavior of the structure function Wz in deep inelastic scattering. 
Here the quantity -(q2/2Mc2x) Wz(q2, x) is plotted against -q2 (in GeV/c)*, for x = 0.25. 
(Source: J. I. Friedman and H. W. Kendall; reproduced, with permission, from the Annual 
Review of Nuclear and Particle Science, Volume 22, 0 1972 by Annual Reviews Inc.; 
page 227.) 

MW1(q2, x) - Fdx) (8.37) 

(8.38) 

in the so-called “deep inelastic scattering” rkgime, where -q2[ =(4EE’/c2) 
X sin2 (0 /2 ) ]  and q.p[=M(E - E’)] are both large, but their ratio (2x = 
-q2/q-p)  is not.* This behavior is known as “scaling,” and it was dramatically 
confirmed by experiments at SLAC in the early seventies (Fig. 8.6). As we shall 
see in a moment, scaling is a consequence of the fact that the proton is made of 
pointlike constituents (“partons”-hideous term-they were called in those days, 
when it was unfashionable to take quarks and gluons too seriously). In 1969, 
Callan and Gross4 suggested that Bjorken’s scaling functions are related: 

~ x F ~ ( x )  = F ~ ( x )  (8.39) 

This, too, has been confirmed experimentally (Fig. 8.7). The Callan-Gross re- 
lation reflects the fact that the charged constituents of the proton carry spin 4 
(for spin 0 one predicts 2xF1/F2 = 0, instead of 1, and this is clearly inconsistent 
with the data). The experimental verification of Bjorken scaling and the Callan- 
Gross relation in deep inelastic scattering provided the first compelling evidence 
for the existence of quarks. 

There are several ways to derive equations (8.37), (8.38), and (8.39), but 
the crucial point is that at high energies the virtual photon interacts with a single 
essentially free quark,? We can treat this scattering, therefore, using the old 

* Experimentally, Bjorken scaling sets in for -q2 5 1 (GeV/c)* and ( q e p )  5 3.5 (GeV/c)2. 
Notice that x is restricted to the range 0 I x 5 1 (see Problem 8.13). 

t At low energies (long wavelengths) the photon “sees” the whole proton as a simple point 
charge-that gives Mott scattering, At high energies (short wavelengths) the photon “sees” a single 
quark-this gives Bjorken scaling and the Callan-Gross relation. At intermediate energies the photon 
“sees” the proton in all its complex structure-this will clearly be the hardest case to analyse. 
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Figure 8.7 Scaling functions and the Callan-Gross relation. In (a) and (b) I plot the 
experimental measurements of F,(x)  and F*(x). In (c) the ratio 2xF1 /F2 is plotted against 
x, as a test of the Callan-Gross relation, which evidently holds well for x 5 0.2. [Data 
from A. Bodek et al., Phys. Rev. D20, 1471 (1979).] 

electron-muon results. According to equations (8.35) and (8.36), the structure 
functions for scattering off a quark of flavor i are 

(8.40) 
2mic’Qf 

6(Xi - 1) 
4* 

6(Xj - l), 
Qf wi, = - wi = - 
2mi 

Here mi is the mass of the quark and 

(8.41) 
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where pi is the quark’s momentum. As before, Q; is the quark charge, in units 
of e (3  for the u, - 4 for d and s); we include a factor of Q: in W’ so that we 
don’t have to touch the rest of the cross-section formula (8.33). The trouble is, 
although the proton momentum is p, we do not know the momenta of the in- 
dividual quarks. Let us suppose that zi is the fraction of the total momentum 
camed by quark i, so that 

Pi = Zip  (8.42) 
[This may sound reasonable, but it is actually a pretty slippery proposition, for 
it assumes that each component pr gets the same fraction of p”. There is no 
room here for the quarks to move around within the proton; if the proton is at 
rest, so too are all the quarks. In particular, it follows (since p f  = m f c 2  and 
p2 = M2c2)  that 

mi = z j M  (8.43) 

which implies that if zi is variable, so too is the quark mass!*] Equation (8.42) 
implies that 

X x .  = - 
Zi 

and hence 

(8.44) 

2x2Mc2 
Q: 6(x - z;) (8.45) Wi = -- Q: 

2M q2 
wl = - 6(x - Zj),  

Finally, letJ(zi) be the probability that the ith quark carries momentum fraction 
z;. Integrating over zi, and summing over all the quarks in the proton, we conclude 
that 

(8.46) 

Thus 
1 

MWI = - 2 Q:f;(x) F ~ ( x )  (8.48) 
2 i  

-- 4 2  W2 = x C Q:J(x) = F2(x) 
2Mc 2x i 

(8.49) 

confirming the Bjorken scaling law. Comparing the two expressions, we obtain 

F2(x) = 2XFI(X) (8.50) 
which is the Callan-Gross relation. 

The importance of Bjorken scaling and the Callan-Gross formula lies in 
the fact that they provide for a clear experimental test of the quark-parton model, 

* More rigorous derivations of the scaling equations avoid this problem by working in the 
“infinite momentum frame,” in which the proton energy is so much greater than its mass that the 
proton and the quarks can be treated as massless particles, and (8.43) is trivially satisfied. 



8.6 QUARK DISTRIBUTION FUNCTIONS 273 

a test that was passed with flying colors in SLAC’s deep inelastic scattering ex- 
periments. Protons reaZly do have charged constituents, and those constituents 
really do behave as pointlike Dirac particles, carrying spin 1 . One modest dividend 
is a radical simplification in the analysis of high-energy electron-proton scattering, 
for in place of two unknown functions of two variables [Wl(q2, x) and 
W2(q2, x)] we now have only one unknown function of one variable to contend 
with [Fl(x)] .  If we put equations (8.37), (8.38), and (8.39) back into (8.33), we 
find 

da 2EE’ cos2 !] (8.51) 
(E - El)* 2 

Moreover, equation (8.48) shows that to finish the job we need to know the 
probability functionsX(x), for then 

Fdx) = 1 c e3x4 (8.52) 

We consider this problem in the following section. 

I 

8.6 QUARK DISTRIBUTION FUNCTIONS 

If we take equation (8.43) at face value, the momentum fraction camed by the 
ith quark is proportional to its mass, and the probability densityf; must therefore 
be a delta function:* 

J ( Z i )  = a(” - Zi) 
M (8.53) 

If, moreover, the proton consists simply of two up quarks and a down quark, 
then equation (8.48) says 

F ~ ( ~ )  = - 1 2  {(-r 6($ - X) + (f)’ A($- x) + (+)’ a(: - x)} (8.54) 
2 3  

and if mu = md, we obtain the simple result? 

, F2(x) = x 6 (8 .55)  

In this model the cross section reduces to the electron-muon form, with the 
quark mass in place of the muon mass. The proton as such has disappeared 
from the problem; we simply have elastic scattering of electrons from free quarks. 

What’s wrong with this naive picture (which, as you can see from Figure 
8.7, is totally incompatible with the experimental data)? Basically, we have taken 
too literally the idea that the quarks inside a proton are free. It is true that they 

* I assume that L’f;(x)dx = 1, since this is the total probability of finding quark i with some 

t Consistency requires that mu = f M, for if these are the only constituents of the proton, we 
xf;(x)dx = 1. However, this naive picture ignores the contribution of gluons and 

fraction of the proton momentum. 

must have C j  
“sea” quarks, as we shall see momentarily. 
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Figure 8.8 Quark structure functions. 
[Source: F. Halzen and A. D. Martin, 
Quarks and Leptons (New York: Wiley, 

0 0.2 0.4 0.6 0.8 1.0 copyright 0 1984), p. 203. Reprinted by 
X permission of John Wiley & Sons, Inc.] 

behave as free particles in their interaction with the virtual photon, but on a 
longer time scale they are obviously not free; after all, they are bound together 
by the confining force of QCD. In particular, the “mass” of a quark within a 
hadron is not a very well-defined notion (as we have discovered on several pre- 
vious occasions-see Chap. 4, Sect. 4.5 and Chap. 5 ,  Sects. 5.8 and 5.10). Since 
they are continually interacting with one another, the quarks are really virtual 
particles, and do not lie on their mass shells. In this sense it is appropriate after 
all to regard mi as a continuous variable, in equation (8.43), and the delta function 
in (8.53) is smeared out accordingly. Exactly what shape it assumes is a problem 
for quantum chromodynamics, which we are not presently in a position to address. 

Moreover, it is an oversimplification to say that the proton consists only 
of quarks. Let’s say that u(x) is the probability (density) that momentum fraction 
x is carried by a u quark, and d(x) is the corresponding probability for a dquark,* 
so that 

F2(x) = x{<$)2u(x) + (V 4 4 )  (8.56) 

[In the nahe model u(x) = 26(m,/M - x) and d(x) = 6(md/M - x).] One is 
tempted to guess that u(x) = 2d(x), but this assumption is not sustained by the 
data (see Fig. 8 . Q  at least, not near x = 0 and x = 1. (A quark carrying 90% of 
the proton’s momentum is almost certain to be a u, whereas at the 10% level it 
is only slightly more likely to be a u.) Nevertheless, the average momentum 
carried by up quarks ($ pxu(x)dx) is surely twice the average carried by the 
down quark, since there are twice as many ofthem, and they all weigh about 
the same: 

rl rl 

* More precisely, if you had a large sample of protons, u(x)dx is the average number of up 
quarks (per proton) carrying a momentum fraction between x and ( x  + dx). 
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[And this is confirmed by data on electron-neutron scattering (see Problem 8.15).] 
Combining equations (8.56) and (8.57), we find 

I I s, x d(x)dx = s, F2(x)dx (8 .58 )  

If you measure the area under the experimental curve (Fig. 8.7b), you’ll find 
that this integral is about 0.18, and hence 

f l  f l  

J x d(x)dx = 0.18, J xu(x)dx = 0.36 (8.59) 
0 0 

These numbers have a remarkable implication: the average total momentum 
carried by the quarks is 

PI PI 

J xpu(x)dx + J xpd(x)dx = ~ ( 0 . 1 8  + 0.36) = 0 . 5 4 ~  (8.60) 
0 0 

On the average, then, only 54% of the proton’s momentum is accounted for by 
the quarks. Who’s got the rest of it? Answer: the gluons. They’re uncharged, so 
they don’t contribute to electron-proton scattering, but they do carry a share of 
the proton’s momentum. The structure functions allow us to determine the 
momentum carried by charged partons; whatever is left over must be ascribed 
to uncharged partons. Thus, in an indirect way, the deep inelastic scattering 
experiments provide substantial evidence for the existence of gluons, as well as 
quarks. 

Finally, even the quark content of the proton is more complicated than I 
have suggested. For the gluons can produce quark-antiquark pairs: 

U U d 

Proton 

L. , 

At any given moment the proton might actually contain an extra uU pair, or 
dd, or sS, or even several such pairs. (In principle, it could even have a heavy 
quark pair-cF, bb, &but this is far less likely, because of the large mass term 
in the denominator of the quark propagator.) We call the “original” quarks 
(u, u, d, for the proton) “valence” quarks, and the “extra” ones “sea” quarks. 
It is possible for the virtual photon, in electron-proton scattering, to couple to 
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one of the sea quarks, so they should really be included in our formulas for 
FI and F2: 

Fl(x)  = ~ { ( ~ ) ’ [ u ( x )  + ii(x)] + ($)’[d(x) + d(x) + s (x)  + F(x)]} (8.61) 

Not much progress here: we seem to have traded one unknown function 
for six unknown functions! Fortunately, the same “quark structure functions”* 
occur (with different coefficients) in electron-neutron scattering, and in neutrino- 
proton scattering, so we have a certain amount of independent experimental 
information about them. In addition, they are constrained by several “sum rules” 
(see Problem 8.16). Because the sea quarks are all produced by the same mech- 
anism, and carry roughly the same mass, it is reasonable to assume that 

- 
ii(x) z d(x) E S(x) z s (x)  (8.62) 

while the up and down quark distributions can be separated into a valence part 
and a sea part [the latter presumably again equal to s(x)]  

u(x) = u,(x) + s(x) ,  d(x) = d,(x) + s (x)  (8.63) 

This reduces the problem down to three unknown functions: 

F ~ ( x )  = A { ~ U ~ ( X )  + d,(x) + 12s(x)} (8.64) 

The shape ofthese functions, as inferred from experiments, is indicated in Figure 
8.8. Notice that the sea contributes only at relatively low x (that is, sea quarks 
typically carry only a small fraction of the proton’s momentum-that’s why I 
could safely ignore them in calculating the gluon contribution). Now, the number 
of valence u quarks is certainly 2, and for d quarks, 1, so 

s,’ u,(x)dx = 2, s,’ d,(x)dx = 1 (8.65) 

It follows that 

(8.66) 

and therefore, in principle, we can determine the average number of sea quarks 
of each species, by measuring the area under the Fl(x)  graph (Fig. 8.7a). Un- 
fortunately, the area is extremely sensitive to the behavior of the function as 
x - 0, and depending on how you extrapolate the experimental curve, it is 
possible to produce any number between 0.5 and infinity. (As a matter of 
fact, some theories predict that the proton contains enormous numbers of very 
low-energy sea quarks; hence, I suppose, the name “sea”). 

* In this business everything is called a “structure function”: W, , W,, F ,  , and F2 are “proton 
structure functions”; theA’s and u(x), LT(x), d(x), d(x), s(x), S(x), u,(x), and h ( x )  are “quark structure 
functions.” I prefer the term “distribution functions” for the latter. 
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PROBLEMS 

8.1. 

8.2. 

8.3. 

(a) Derive equation (8. l ) ,  from the Feynman rules for QED. 
(b) Obtain equation (8.2) from equation (8.1). 
(c) Derive equation (8.3) from equation (8.2). 
(d) Derive equation (8.4) from equation (8.3). 
Derive equation (8 .5 ) ,  starting with equation (8.4). 
Why don’t we use cr(efe- - e’e-) in the denominator, to define R [eq. (8.7)]? 
[Answer: For one thing, we would have to include the crossed diagram 

and the kinematic factors would no longer cancel.] 

8.4. Prove equation (8.16). [Hint: First show that q,,LFy = 0. Then argue that we may 
as well take K” such that q,Kp” = 0, in the sense that any term in K”” that does 
not obey q,K”’ = 0 will contribute nothing to Lp”K,,.] Comment: Equation (8.16)  
actually follows more simply and generally from charge conservation at the proton 
vertex, but I have not developed the formalism here to make this argument (see 
Halzen and Martin, ref. 2, Sects. 8.2 and 8.3). 

[ One way to proceed is as follows. Take q” = (0, 0, 0, q); then q,L” = 0 =) L”“ = 

@). So Lp’K,, = (ni)(nz), 0 0 0 0  x x x x  and x x x x  may as well be zero. 
0 0 0 0  
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8.5. Prove equation (8.17), from equation (8.16). [Hint: First contract with q., then 

8.6. Find K,  and K2 for a “Dirac” proton. [Answer: compare (8.13) and (8.18): K,  = 

8.7. Derive equation (8.19). 

8.8. Derive equation (8.20). 

8.9. Derive equation (8.21). 

with p .  .] 

-q2, Kz = (~Mc)’.] 

8.10. Check that the Rosenbluth formula (8.23) agrees with the Mott formula (7.128) in 
the intermediate-energy rtgime (mc2 << E 4 Mc’). Use the expressions for K1 and 
K2 appropriate to a “Dirac” proton (Problem 8.6). 

8.11. Derive equation (8.31). [Note the reduction to equation (8.17) in the elastic case, 
where p * q = -q2/2.) 

8.12. Put equation (8.35) into equation (8.33), and carry out the E’ integration (holding 
0 constant) to recover equation (8.23). 

8.13. Show that x [eq. (8.34)] is restricted to the range 0 5 x 5 1. What sort of collision 
would have x = l?  What sort of collision has x = O? [Answers; Elastic; E % E’.] 

8.14. Suppose the proton were a “Dirac” charge; would the structure functions scale? If 
so, what are Fl(x)  and F2(x) in this case? Is the Callan-Gross relation satisfied? 
[Answer: F,(x) = $6(x - 1); F2(x) = 6(x - 1); yes.] 

8.15. Electron-neutron scattering experiments are harder to do than electron-proton ex- 
periments, because you cannot make a target of free neutrons. Nevertheless, the 
essential data can be inferred from electron-deuteron scattering, and it is found that 

s,’ FpelltIO” dx = 0.12 

Use this, together with the proton result 

to confirm equation (8.57). [Hint: How do you suppose u”(x) and d”(x) are related 
to the corresponding functions for the proton?] 

8.16. From the known flavor content of the proton, find the value of $ [u(x) - zi(x)]dx. 
State corresponding “sum rules” for d and s. 

8.17 Are the data in Figures 8.7b and 8.8 compatible with equation (8.56)? 



Chapter 9 

Quantum Chromodynamics 

In this chapter I develop the Feynman rules for quantum chromodynamics, 
the theory of strong interactions. Some suggestive results in perturbative QCD 
are derived (in particular, the efective interquark potential in various meson 
and baryon configurations), and the essential ideas underlying asymptotic 
freedom are sketched. This material relies heavily on Chapter 7, and also on 
the last three sections of Chapter 5.  It is not necessary as background for 
Chapters I0 and 11. 

9.1 FEYNMAN RULES FOR CHROMODYNAMICS 

In the last two chapters we have seen how quantum electrodynamics (QED) 
describes the interactions of charged particles; in the present chapter we look at 
how quantum chromodynamics (QCD) describes the interactions of colored par- 
ticles. Electromagnetic interactions are mediated by photons, chromodynamic 
interactions by gluons. The strength of the electromagnetic force is set by the 
coupling constant 

g,= G (9.1) 

g, = G (9.2) 

In appropriate units g, is the fundamental charge (the charge of the positron). 
The strength of the chromodynamic force is set by the “strong” coupling constant 

which may be thought of as the fundamental unit of color. Quarks come in three 
colors,* “red” (r), “blue” (b), and “green” (g). Thus the specification of a quark 

* Quarks also come in differentflavors, of course, but this is irrelevant in QCD, except insofar 
as the different quark flavors carry different musses. Just as QED only looks at the charge of a particle, 
QCD cares only about its color. 

279 
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state in QCD requires not only the Dirac spinor u‘”(p), giving its momentum 
and spin, but also a three-element column vector c, giving its color: 

c = ( i for red, ( 8 ) for blue, ( 8 ) for green (9.3) 

(I’ll label the elements of c by a Roman subscript near the middle of the 
alphabet-ci, for example-so that i, j ,  k, . . . run from 1 to 3 over quark colors.)* 

Typically, the quark color changes at a quark-gluon vertex, and the differ- 
ence is carried off by the gluon. For example: 

(In this diagram a red quark turned into a blue quark, emitting a red-antiblue 
gluon.) Each gluon carries one unit of color and one of anticolor. It would 
appear, then, that there should be nine species of gluons--r6 r6, rg, b6 b6, bg, 
g t  g6, gg. Such a nine-gluon theory is perfectly possible in principle, but it would 
describe a world very different from our own. In terms of color SU(3)  symmetry 
(on which, as we shall see, QCD is based), these nine states constitute a “color 
octet”: 

(9.4) 

(9.5) 

I 11) = (r6 + bQ/E 
12) = -i(d - bQ/E 

14) = (re+ gQ/\/2 

15) = - i(rg - gQ/\/2 

(6) = (be+ g6)/\/2 

18) = (rF + bb - 2gg ) /G  
13) = (TY- bS) / f i  17) = - ’  l(bg - g6)/\/2 

19) = (rF+ b6 + gg)/lb 
(See Section 5.8; there we were concerned withflavor, not color, but the math- 
ematics is identical-just let u, d, s - r, b, g. We’re not concerned with isotopic 
spin, here, and I have used different linear combinations of states within the 
octet. This simplifies the notation later on.) If the singlet gluon existed, it would 
be as common and conspicuous as the photon.? Confinement requires that all 
naturally occurring particles be color singlets, and this “explains” why the octet 
gluons never appear as free particles.$ But 19) is a color singlet, and if it exists 

and a “color singlet”: 

* I should perhaps warn you that most books do not specify quark color states explicitly; they 
are “implied,” or “understood to be contained in u(p).” I think it is wiser at this stage to write them 
out explicitly, even at the cost of some extra notational complexity. 

t Maybe the “ninth gluon” is the photon! That would make for a beautiful unification of the 
strong and electromagnetic interactions. Of course, the coupling strength isn’t quite right, but that’s 
a problem with all unification schemes, and could presumably be handled. There’s a much more 
serious difficulty with this idea, which I’ll let you figure out (see Problem 9.1). 

+ Notice the distinction between “colorless” and “color singlet.” Gluons 13) and IS) are colorless, 
in the sense that the net amount of each color is zero, but they are not color singlets. The situation 
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as a mediator it should also occur as a free particle. Moreover, it could be ex- 
changed between two color singlets (a proton and a neutron, say), giving rise to 
a long-range force with strong coupling,* whereas in fact we know that the strong 
force is of very short range. In our world, then, there are evidently only eight 
kinds of gluons.7 

Like the photon, gluons are massless particles of spin 1; they are represented 
by a polarization vector, E’, which is orthogonal to the gluon momentum, p: 

t’pr = 0 (Lorentz condition) (9.6) 

(9.7) 
This spoils manifest Lorentz covariance, but it cannot be helped (see Sect. 7.4). 
To describe the color state of the gluon, we need in addition an eight-element 
column vector, a: 

As before, we adopt the Coulomb gauge:$ 

to = 0, so that c - p = 0 

a =  

0‘ 
0 
0 
0 
0 
0 
1 r 0, 

for 17), and so on (9.8) 

[Elements of a will be labeled by a Greek superscript near the front of the alphabet 
(a*); a, p, y, . . . run from 1 to 8 over gluon color states.] Because the gluons 
themselves carry color (in contrast to the photon, which is electrically neutral), 
they couple directly to one another. In fact, there is a three-gluon vertex and a 
four-gluon vertex: 

is analogous to spin: We can have a state with S, = 0, but this does not prove it has spin 0 (although 
spin 0 certainly implies S, = 0, and by the same token a color singlet is necessarily colorless). Many 
authors use the word “colorless” to mean “color singlet,” but this can lead to misunderstanding. (I 
was sloppy myself, back in Chapters 1 and 2, because at that stage it was not possible to explain the 
idea of a color singlet.) You might prefer the word “color-invariant” (instead of “color singlet”), or 
even “color scalar”; the essential point is that such a state is unaffected by the transformations of 
color SU(3) (see Problem 9.2). 

* Because gluons are massless, they mediate a force of infinite range (the same as electrody- 
namics). In this sense the force between two quarks is actually long range. However, confinement, 
and the absence of a singlet gluon, conceals this from us. A singlet state (such as the proton) can only 
emit and absorb a singlet (such as the pion), so individual gluons cannot be exchanged between a 
proton and a neutron. That’s why the force we observe is of short range. If the singlet gluon existed, 
it could be exchanged between singlets, and the strong force would have a component of infinite 
range. 

t In group theoretical terms, the issue here is whether the symmetry of QCD is U(3)  (which 
would require all nine gluons) or SU(3) (which calls for only eight). The experimental situation 
resolves the question decisively in favor of the latter. 

4 There is a subtle problem here, because gauge transformations in chromodynamics are more 
complicated than equation (7.8 l ) ,  and in fact the Coulomb gauge cannot be consistently imposed. 
However, the correction to equation (7.8 1) contains a factor of gs, and hence, in the Feynman calculus, 
the “error” introduced by using the Coulomb gauge can be compensated for by appropriate modi- 
fication of the rules for computing higher-order (loop) diagrams. 
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Before I can state the Feynman rules for QCD, I need to introduce two 
items of notation. First, the Gell-Mann “A-matrices,” which are to SU(3) what 
the Pauli spin matrices are to SU(2): 

0 1 0  0 -i 0 

0 0 1  0 0 -i 0 0 0  

Second, the commutators of the X matrices define the “structure constants” 
(f ap’) of the group SU(3): 

[Aa, A01 = 2ij-4’X’ (9.10) 

(summation over y-from 1 to 8-implied by the repeated index). The structure 
constants are completely antisymmetric, f = f = -f You can work 
them out for yourself (Problem 9.5). Since each index runs from 1 to 8, there 
are 8 X 8 X 8 = 5 12 structure constants in all, but most of them are zero, and 
the rest can be obtained by antisymmetry from the following set: 

f 1 4 7  = 2 4 6  = 2 5 7  = 3 4 5  = 5 1 6  = 6 3 7  = L 
f ’ 2 3  = 1 f f f f f  2 ,  

f4558 = f 6 7 8  = (9.11) 

I can now state the Feynman rules for evaluating tree-level diagrams* 
in QCD: 

1. External Lines. For an external quark with momentum p ,  spin s, and 
color c: 

incoming ( r’ 1: u(~ ) (p )c  
outgoing ( / ): zP(p)ct 

Quark { (9.12) 

(note that ct = c“* will be a row matrix). For an external antiquark: 

* Loop diagrams in QCD require special rules, including the introduction of so-called “Faddeev- 
Popov ghosts.” These are deep waters, into which we shall not venture here.’ 
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(9.13) 
incoming ( / 1: ij("(p)c+ 
outgoing ( / ): v(')(p)c 

Antiquark 

where c represents the color of the corresponding quark. For an external 
gluon of momentum p ,  polarization 6 ,  and color a, include a factor 

incoming ( 

outgoing ( .ig"/ ): e:(p)a** 

(9.14) Gluon 

To avoid confusion it is helpful to indicate on the diagram the indices 
(space-time and color) you are using for each gluon. 

2. Propagators. Each internal line contributes a factor 

(9.15) 
iW+ mc) 
q2 - m2c2 

Quark-antiquark ( 7 ): 
a , p  9- P , " ) :  -is," 

4* 
Gluon ( 

3. Vertices. Each vertex introduces a factor 

- igs 
2 

): - X"y" Quark-gluon ( 

(9.16) 

(9.17) 

a, P 

-gsJ ""kp(kl - k2)A f guA(k2 - k 3 ) g  + gAfi(k3 - ~ I ) P ]  (9.18) 

Here the gluon momenta (k l ,  k2,  k3) are assumed to point into the 
vertex; if any point outward in your diagram, change their signs. 

Four gluon 
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Everything else is the same as for QED: Impose conservation of energy and 
momentum at each vertex to determine the internal four momenta; follow each 
fermion line "backward" along the arrow, erase the overall delta function, and 
set the result equal to -iA. In the next two sections I'll work out some examples, 
to show you how it goes. 

9.2 THE QUARK-QUARK INTERACTION 

In this section we consider the interaction between two quarks (also a quark and 
an antiquark) in lowest-order QCD. Of course, we cannot observe quark-quark 
scattering directly in the laboratory (although hadron-hadron scattering is an 
indirect manifestation), so we won't be looking for cross sections here. Instead, 
we concentrate on the effective potentials between quarks-the QCD analog of 
the Coulomb potential in electrodynamics. We used such potentials, with a 
promise to derive them later, back in Chapter 5 ,  in the analysis of quarkonium. 
Bear in mind that this is a perturbation theory calculation, valid only insofar as 
the coupling a3 is small. We cannot hope to get the confining term in the potential 
by this route-we are implicitly relying on asymptotic freedom, and all we're 
going to find is the short-range behavior. Nevertheless, we will obtain a very 
suggestive result: Quarks attract one another most strongly when they are in the 
color singlet configuration (indeed, in other arrangements they generally repel). 
At very short range, then, the color singlet is the "maximally attractive channe1"- 
an indication that binding is more likely, at least, for singlet states.* 

Case I :  Quark and Antiquark Consider first the interaction of a quark 
and an antiquark, in QCD. We shall assume that they have different flavors, so 
the only diagram (in lowest order) is the one in Figure 9.1 ,t representing, for 
instance, u + d - u + d. The amplitude is given by 

* This is a very pleasing conclusion, but it does not prove that binding muSt occur in the color 
singlet, or that it cannot occur in other configurations. For this we would have to know the long- 
range behavior of the potential, about which, at present, we can only speculate. 

t In principle, for the same flavor (e.g.. u + u - u + u) we should include a second diagram: 
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P3r c3 

Figure 9.1 The quark-antiquark inter- 
p1, C l  p Z r  c2 action. 

(9.20) 

(summation over a implied). This is exactly what we had for electron-positron 
scattering (7.106), except that g, is replaced by gs (of course), and we have in 
addition the “color factor” 

f =  ~(cfA-c,)(cJx~c,) (9.22) 

The potential describing the q4 interaction is, therefore, the same as that acting 
in electrodynamics between two opposite charges (to wit: the Coulomb potential), 
only with a replaced byfa,: 

(9.23) 

Now, the color factor itself depends on the color state of the interacting quarks. 
From a quark and an antiquark we can make a color singlet (9.5) and a color 
octet (9.4) (all members of which yield the samef). I’ll calculate the octet color 
factor first, because it’s a little easier.* 

EXAMPLE 9.1 Color Factor for Octet Configuration 
A typical octet state (9.4) is rh (any of the others would do just as 
well; see Problem 9.6). Here the incoming quark is red, and the incoming 
antiquark is antiblue. Because color is conserved, the outgoing quark must 
also be red and the antiquark antiblue. Thus 

C l = c 3 = ( i ) ,  c 2 = c 4 = ( % )  

- 1 A“ A“ andhence f= [(1 O O ) A ‘ ( i ) ] k  1 O ) A a ( : ) ]  - 5 1 1  22 

However, in the nonrelativistic limit of interest here this second diagram does not contribute anyway 
(see footnote, page 234), so in practice what we’re doing applies just as well whatever the quark 
flavors. (See also Problem 9.7.) 
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A glance at the X matrices reveals that the only ones with entries in the 11 
and 22 positions are X3 and A*. So 

f = $(X:iXh + XfiX&) = +[(1)(-1) + ( l / ~ ) ( l / h ) ]  = -: (9.24) 

EXAMPLE 9.2 Color Factor for Singlet Configuration 
The color singlet state is (9.5) 

(l/E)(rY+ b6 + g s )  

If the incoming quarks are in the singlet state (as they would be for a 
meson, say) the color factor is a sum of three terms: 

The outgoing quarks are necessarily also in the singlet state, and we get 
nine terms in all, which can be written compactly as follows: 

1 
(XSXC) = - Tr(X"X*) 

1 1  1 f =  -.-.- 
4 h E  r l J r  12 

(9.25) 

(summation over i and j ,  from 1 to 3, implied in the second expres- 
sion). Now 

Tr(AaAo) = 26"@ (9.26) 

(Problem 9.3), so, with the summation over a, 

Tr(XnXa) = 16 (9.27) 

Evidently, then, for the color singlet 

f = 4  3 (9.28) 

Putting equations (9.24) and (9.28) into equation (9.23), we conclude that 
the quark-antiquark potentials are 

(color singlet) 
4 ( 4 4  Vqj(r) = - - - 
3 r  

(color octet) 
1 (%tic) 
6 r  

Vqj(r) = - - 

(9.29) 

(9.30) 

From the signs we see that the force is attractive in the color singlet but repulsive 
for the octet. This helps to explain why quark-antiquark binding (to form mesons) 
occurs in the singlet configuration but not in the octet (which would have pro- 
duced colored mesons). 
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P4l  c4 

p Z ,  c2 Figure 9.2 The quark-quark interaction. 

Case 2: Quark and Quark We turn now to the interaction of two quarks. 
Again, we shall assume that they have different flavors, so the only diagram (in 
lowest order) is the one indicated in Figure 9.2,* representing, say, u + d - u 
+ d. The amplitude is 

2 

(9.31) 

This is the same as for electron-muon scattering (7.104), except that g, is replaced 
by g,, and there is a color factor 

f = t (CIX”Cl)( cdX%3) (9.32) 

The potential, therefore, takes the same form as that for like charges in electro- 
dynamics: 

-gs 1 - 
= - --j “3)rW 1 )l[~(4)r,u(2)l(c~h“c*)(CdXC(C*) 

4 q  

(9.33) 

Again, the color factor depends on the configuration of the quarks. From two 
quarks, however, you can’t make a singlet and an octet (as for qq)-rather, we 
obtain a triplet (the antisymmetric combinations): 

(rb - b r ) / f i  
(triplet) 

(gr - r g ) / f i  
(9.34) 

and a sextet (the symmetric combinations):t 

rr, bb, gg, c (rb + br ) / f i ,  (bg + g b ) / E ,  (gr + r g ) / f i  

* For identical quarks there is also the “crossed” diagram: 

However, inclusion of this diagram, together with the statistical factor S i n  the cross-section formula, 
leads to the same nonrelativistic limit (see footnote page 234), so in fact our potentials are correct 
even for same-flavor quarks. 

t In group theoretical language, 3 0 3 = 1 0 8, but 3 0 3 = 3 0 6 .  



288 S/QUANTUM CHROMODYNAMICS 

EXAMPLE 9.3 Color Factor for Sextet Configuration 
A typical sextet state is rr (use any of the others if you prefer-you'll get 
the same result forf). In this case 

CI = c2 = c3 = c4 = (;) 

EXA 

1 
3 

- _ -  

IPLE 9.4 Color Factor for Triplet Configuration 
A typical triplet state is (rb - b r ) / t i ,  so 

(9.36) 

(9.37) 

Putting equations (9.36) and (9.37) into equation (9.33), we conclude that 
the quark-quark potentials are 

(color triplet) 2 (ashc) 
3 r  Vqg(r) = - - - 

(color sextet) 1 ( f f S W  

3 r  
Vqg(r) = - - 

(9.38) 

(9.39) 

In particular, the signs indicate that the force is attractive for the triplet and 
repulsive for the sextet. Of course, that's not too helpful as it stands, because 
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neither combination occurs in nature.* However, it does have interesting im- 
plications for the binding of three quarks. This time we can make a singlet 
(completely antisymmetric), a decuplet (completely symmetric), and two octets 
(of mixed symmetry), as we found in Section 5.9 of Chapter 5 . t  Since the singlet 
is completely antisymmetric, every pair of quarks is in the (antisymmetric) triplet 
state-the attractive channel. In the decuplet, every pair is in the (symmetric) 
sextet state-they repel. As for the two octets, some pairs are triplet and some 
are sextet; we expect some attraction, then, and some repulsion. Only in 
the singlet configuration, though, do we get complete mutual attraction of the 
three quarks. Again, this is a comforting result: as in the case of mesons, the po- 
tential is most favorable for binding when the quarks are in the color singlet 
configuration. 

9.3 PAIR ANNIHILATION IN QCD 

In this section we consider the process quark plus antiquark - two gluons- 
the QCD analog of pair annihilation. The calculation is quite similar to Example 
7.8; however, in QCD there are three contributing diagrams, in lowest order: 

(3) (4) 

01. I.( 0, v 

P3, Sg, c3 P4 I S4, cq 

9 

(1 )  (2) PZ. S2, cz P ,  I s, I c, x x  2 1 

The amplitude for diagram 1 is given by 

(9.40) 

(To simplify the already overburdened notation I’ll leave the * off the gluon 
polarization vectors and color states until the end.) Here q = p I  - p 3 ,  so 

(9.41) q2 - m2c2 = p: - 2p1 - p 3  i- p: - m2c2 = -2p, - p 3  

* if you don’t heed the warning in footnote (*) on p. 284, you may be alarmed to find that 
two quarks in the triplet state attract one another. There is some comfort in the observation that the 
singlet q4 coupling is twice as strong; but still, if this were the whole story we might very well expect 
triplet qq binding to occur, leading to free “diquark” states. There has, in fact, been some speculation 
about the possible existence of diquarks within nuclei.’ 

t In Chapter 5 we were dealing withflavor, not color, but the mathematics is the same. Group 
theoretically, 3 0 3 0 3 = 1 0 8 0 8 0 10. 



290 S/QUANTUM CHROMODYNAMICS 

(9.42) 

Notice that the A's appear this time in the opposite order. Finally, for diagram 
3: 

gx a6y 
- id3  = ~ ) c t [  -i ~6y,]u(1)cI[ -i 71 - {-ssf"Py[gPy(-ps + p4)x 

+ g"A(-P4 - 4 ) p  + g A p ( q  + P3)"1}[€5aTl[Ca$l (9.44) 

In this case q = p3 + p4, so q2  = 2p3.p4; simplifying (and using e3.p3 = 

t4-p4 = 0), we find (Problem 9.10): 

x fmPYapa$(ctAYcI) (9.45) 

So far, this is all completely general (and rather messy). To make things 
more manageable, let's assume (as we did in our study of e'e- annihilation) that 
the initial particles are at rest: 

PI = P2 = (mc, O ) ,  P3 = (mc PI, P4 = (mc, -PI (9.46) 
Then P I  *p3 = PI  -p4 = (mc)' and p3 'p4 = 2 ( m ~ ) ~  (9.47) 

Meanwhile, in the Coulomb gauge, equation (9.7) 

p3 ' €4 = -p ' €4 = -p4 - €4 = 0 (9.48) 

(likewise p4 * t3 = 0), so two terms in A3 drop out. Using equations (7.137) and 
(7.138) to simplify A, and A2, we find that the total amplitude (A = Al + A2 
+ A3) can be written 

ayat i@)cJ[&.h/4z~ij4X~P + Y ~ A A ~ A "  
A = - -  ss' 

8 ( m ~ ) ~  
- i(c3 * €4)(A - A)f"pyAylcIu(l) (9.49) 

We may as well orient our coordinates so that the z axis lies along p; then 

= mc(yO - y3), A = mc(yO + y3), A - A  = 2mcy3 (9.50) 

From equations (7.142) and (7.143) we have 

€3 €4 = -(c3 * t4) - i(t3 x c4) - z, y i p 3  = -(€3 - t4)  + i ( t3  x c4) - z (9.5 1) 

Putting this into equation (9.49), and exploiting the commutation relation (9.10) 
for the A's, we obtain 
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3a9 2)(2)~&~3 - e d {  A", Ap}y0 
JM=-aa" sf 

8mc 
+ i(e3 x e4) .  Z([A", xply0 + {A", ~ q ~ 3 ) ) ~ ~ ~ ( 1 )  (9.52) 

where curly brackets denote the anticommutator: { A ,  B }  = AB + BA. (You 
might compare this result with the corresponding expression in QED (7.146), 
to which it reduces if you set all the A's equal to 1, drop the color states a and 
c, and let gs/2 - g,.) 

Suppose now we put the quarks into a spin-0 (singlet) state (the triplet state 
cannot go to two gluons anyway; it needs at least three): 

(9.53) 

2)(2)you(1) = fi(2)2y0u(1) = 0,  v ( 2 ) ~ ~ ~ ~ ( 1 )  = -2mci (9.54) 

J2/1 = (JtttL - Al1)/1Jz 

For ATl we have [see eqs. (7.150) and (7.151)] 

As before, All = -Atl, and we are left with* 

g 2  JM = -iE 2 (e3 x t41r agat(ct{Aa, A P } C ~ )  (spin singlet) (9.55) 

Once again, we have obtained a result that is identical to the one in QED (eq. 
7.155), except that g, + g,, and there is a color factor 

f= $aga$(cJ{A", A ~ } C ~ )  (9.56) 

In particular, if the quarks occupy the color singlet state, ( l / b ) ( r F  + b6 + g a ,  
then 

4 

1 

8 f i  
= - aFa$Tr{A", X p }  (9.57) 

But Tr { A", A@} = 2Tr(A"Xp) = 4 P p  (9.58) 

(Problem 9.3), so 

1 f=- 2b aya; (color singlet) 

Now, the singlet state for two gluons (see Problem 9.12) is 

l 8  
Isinglet) = - C ln)h)2 V i  n = ,  

(9.59) 

(9.60) 

* At this stage all terms in q - c4 drop out. The fact that 4 is proportional to c3 - c4 [eq. (9.49)] 
means that the diagram containing a three-gluon vertex makes no contribution, when the quarks are 
at rest in the spin singlet configuration. Most books simply ignore it from the start, but in principle 
it should be included (see also Problem 9.1 I). 
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(9.61) 
1 

aya; = - (8) = 2 f i  v i  
Evidently 

and hence f = 6213 (9.62) 

Conclusion: for q + 4- g + gin  the spin singlet, color singlet configuration, 
with the quarks at rest, the amplitude is 

JM. = - 4 G g :  (9.63) 

[see eq. (7.160)], and the cross section is 

(9.64) 

[see eq. (7.165)]. Just as the cross section for e+ + e- - y + y indicated, the 
positronium decay rate 

r = &(o)12 (9.65) 

[eq. (7.168)], so we can now give a formula for the decay of a spin-0 quarkoniurn 
state (such as Vc-note that $ and 'Y themselves carry spin 1, and go to three 
gluons): 

(9.66) 

As it stands, this is not terribly useful, since we don't know $(O). However, the 
electromagnetic decay vC - 27 involves the same factor, and we can derive a 
clean expression for the branching ratio (see Problem 9.13). 

9.4 ASYMPTOTIC FREEDOM 

In the last section of Chapter 7 we found that the loop diagram 

in quantum electrodynamics makes the effective charge of the electron a function 
of the momentum transfer q:* 

(9.67) 

* It also introduces a divergent term, which we soak up in the "renormalized" charge 
[eq. (7 .185) ] .  But that's an entirely different problem, one which (however troublesome you may 
find it) has no observable consequences, and once the appropriate words have been said is of no 
further importance. The perfectlyjnite dependence of a on q2 is the significant matter, for it car- 
ries direct and measurable implications. 
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The coupling strength increuses as the charges get closer together (larger 1q21), a 
fact that we interpret physically as a consequence of “vacuum polarization”: the 
vacuum functions as a kind of dielectric medium, partially screening the charge. 
The closer we approach, the less complete is the screening, and the greater is the 
effective charge. Of course, equation (9.67) is valid only to order c~(0)~. There 
are higher-order corrections, of which the dominant ones come from chains of 
bubbles: 

As it happens, these can be summed explicitly, and the result is* 

Ostensibly, the coupling blows up at ln(1q21/(mc)2) = 3 ~ / a ( 0 ) .  However, this is 
not to be taken too seriously, since it occurs at an energy of about MeV, 
which (to put it mildly) is not an accessible region (see Problem 9.15). 

Much the same thing happens in QCD: quark-antiquark bubbles 

lead to a screening of the quark color which (modulo appropriate color factors) 
is the same as equation (9.67). However, there is a new twist to the story, for in 
QCD we also have virtual glum bubbles 

* This is perhaps not so surprising. What we have, in effect, is the geometric series 

1 
1 + x + x 2 + x 3 +  =- 

1 - x  

where x is for one bubble, x 2  is for two, and so on. Although equation (9.68) is correct to all orders 
in a(O), it is not exact, since we are ignoring diagrams such as 

These can be shown to make a much smaller contribution in the limit 1q21 9 ( r n ~ ) ~ .  Equation (9.68) 
is called the “leading log” approximation. 
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as well as diagrams of the .form 

It turns out4 that the gluon contribution works in the other direction, producing 
“antiscreening,” or “camouflage.” I do not know of a persuasive qualitative 
explanation of this effect5-suffice it to say that the formula for the running 
coupling constant in QCD [analogous to eq. (9.68)] is 

where n is the number of colors (3, in the Standard Model), andfis the number 
of flavors (6, in the Standard Model). In any theory for which 1 I n  > 2f; anti- 
screening will dominate, and the coupling constant will decrease with increasing 
/q21; at short distances the “strong” force becomes relatively weak. This, of course, 
is the basis of asymptoticfreedom, on which so much of what we can say quan- 
titatively about the hadrons is predicated. Asymptotic freedom is what allows 
us to treat partons as essentially free particles, leading to Bjorken scaling; it is 
what licenses the use of the Feynman calculus in QCD to calculate interquark 
potentials; it is a basic ingredient in the theory of quarkonium; and it is presum- 
ably responsible for the OZI rule. Chromodynamics would have gone out of 
business if it had not been for the timely discovery of asymptotic freedom.6 

You may have noticed the appearance of a new parameter, p, in equation 
(9.69). In electrodynamics it is natural to define “the charge” of a particle as the 
long-range (fully screened) value-that’s what Coulomb and Millikan measured, 
and it’s what an engineer or a chemist or even an atomic physicist (unless he’s 
measuring the Lamb shift) is concerned with. Thus a(0) is the “good old” fine 
structure constant, &, and it is the sensible parameter in terms of which to do 
perturbation expansions. But we don’t have to do it this way; we could work 
from any other value of q2 [provided only that we stay well below the singularity 
in (9.68), where a(1q21) runs larger than 1, and perturbation theory breaks down]. 
In QCD, however, we cannot work from q2 = 0, because that’s where a, is large. 
We must use as a reference some place where a, is small enough to justify a 
perturbation expansion. That’s why equation (9.69) is expressed in terms of 
as (p2) ,  instead of as(0). Provided that it’s large enough so that as(p2)  < 1, it 
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doesn’t matter what value of p we use (see Problem 9.16). Indeed, if we introduce 
a new variable A, defined by 

In h2 = In p 2  - 127r/[( 1 I n  - 2 f ) a s ( p 2 ) ]  (9.70) 

the running coupling constant can be expressed in terms of a singZe parameter: 

(9.7 1) 

(see Problem 9.17). This compact result tells us explicitly the value of the strong 
coupling at any 1q21, in terms of the constant A. Unfortunately, it is hard to 
determine A precisely from experimental data, but hc appears to lie somewhere 
in the range 

100 MeV < Ac < 500 MeV. (9.72) 

Notice that whereas the QED coupling varies only minutely over the accessible 
energy range (Problem 9.15), variation in the QCD coupling is substantial (Prob- 
lem 9.18). 

9.5 APPLICATIONS OF QCD 

It must be admitted that the number of things one can actually calculate in QCD 
is, at this stage, embarrassingly meager. I have not, of course, shown you every- 
thing that has been done: violations of scaling, due to gluon emission processes 
such as 

have been analyzed in detail, and the agreement with experiment is impressive; 
QCD corrections to the R formula [eq. (8.8)] can be computed; you can work 
out the distribution of jets in efe- and e p  scattering; and the “Drell-Yan” 
process, p + p - p’ + p- + x, can be studied for scaling  violation^.^ All this is 
perturbative, based on asymptotic freedom, and limited to the short-distance 
region. At the other extreme, much work has been devoted to an understanding 
of confinement in QCD, but this, involving as it must the long-range behavior 
of the interquark force, cannot be done perturbatively. The most promising 
technique is “lattice gauge theory,” in which the space-time continuum is re- 
placed by a finite lattice of discrete points, and the equations of QCD are solved 
numerically. One hopes to achieve realistic results in the limit as the lattice 
spacing shrinks to zero.8 The trouble is that any theory, even QED, exhibits 
confinement on a finite lattice. The delicate question is whether this behavior 
persists in the continuum limit. In QED we find a kind of “phase transition” at 
which the system flips over to a nonconfining mode; computer studies indicate 
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that no such phase transition occurs in QCD, and so the theory remains confining. 
This is tantalizingly close to a confirmation of confinement in QCD, although 
a rigorous proof would, of course, be preferable. 

But even confinement, important though it is, has more to do with the 
internal consistency of the model than with experimental data. If QCD is the 
correct theory of strong interactions, where is its solution to the classic problems 
in hadron physics? Why don’t we now calculate the neutron-proton mass dif- 
ference, or the force between two protons, or the cross section for pion-nucleon 
scattering, or the binding energy of the deuteron? The trouble is that all these 
simple-sounding questions involve complicated many-body problems. I sup- 
pose that in the course of time we will find ways of handling such matters using 
QCD, just as physical chemists have learned to apply quantum mechanics 
to large molecules. But for the moment we must make do with more modest 
 achievement^.^ 

REFERENCESANDNOTES 

1 .  The interested reader should consult the classic treatise by E. S. Abers and B. W. 
Lee, Phys. Rep. 9C, (1973), 1. 

2. People in the know seem to be able to calculate color factors on their fingers; everyone 
has his or her own tricks. See D. H. Perkins, Introduction to High-Energy Physics, 
2d Ed. (Reading, MA: Addison-Wesley, 1982), App. G; F. Halzen and A. D. Martin, 
Quarks and Leptons, (New York: Wiley, 1984), Sect. 2.15 and p. 21 1 ;  C. Quigg, 
Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (Reading, 
MA: Benjamin/Cummings, 1983), pp. 198- 199. I prefer to do it by the more pedestrian 
method shown here, which is close in spirit to the approach of G. L. Kane in Color 
Symmetry and Quark ConJinement, Proceedings of the 12th Rencontre de Mariond, 
Vol. 111, J. Tran Thanh Van, ed. (1977), p. 9. 

3. See F. Close, “Demon Nuclei,” in Nature 296, 305 (1982). 
4. C. Quigg, ref. 2, Sect. 8.3. 
5. See, however, C. Quigg, ref. 2, p. 223 and Sci. Am.  (April 1985). 
6. H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); Phys. Rep. 14C, 130 (1974); D. J. 

7. Halzen and Martin, ref. 2, Chaps. 10 and 11; Quigg, ref. 2, Sects. 8.4 and 8.5. 
8. C. Rebbi, Sci. Am.  (February 1983). 
9. A summary of the experimental evidence in support of QCD is given by P. Soding 

Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1 973). 

and G. Wolf, Ann. Rev. Nucl. Part. Sci. 31, 231 (1981). 

PROBLEMS 

9.1. Why can’t the “ninth gluon” be the photon? [Answer: The gluon would couple to 
all baryons with the same strength, not (as the photon does) in proportion to their 
charge. Since the mass and baryon numbers are approximately proportional in bulk 
matter, such a force would, in fact, look very much like an extra contribution to 
gravity. There was a flurry of interest in this possibility in early 1986. (E. Fischbach 
et al., Phys. Rev. Lett. 56, 3 (1986). See, however, the comments in Phys. Rev. Lett. 
56, 2423 (1986).] 



PROBLEMS 297 

9.2. 

9.3. 

9.4. 

9.5. 

9.6. 

9.7. 

Color SU(3)  transformations relabel “red,” “blue,” and “green” according to the 
transformation rule 

c +  CI = Uc 

where U is any unitary ( UUt = 1) 3 X 3 matrix of determinant 1, and c is a three- 
element column vector. For example 

U =  0 0 1  CP : 3 
would take r - b, b - g, g - r. The ninth gluon (19)) is obviously invariant under 
U, but the octet gluons are not. Show that 17) and 18) go into linear combinations 
of one another: 

17’) = (~17) + PIS), IS’) = 717) + 618) 

Find the numbers a, P,  7 ,  and 6. 

Show that 

Tr(A“X@) = 26“p  

(Notice that all the X matrices are traceless.) 

What are the structure constants for SU(2)? That is, what are the numbersfuk in 

= 2 i f i j k 2  

(a) Given thatfaBY is completely antisymmetric (so thatf’  I * = 0 automatically, 
I,  etc.) how and having calculatedf ’ ”, we don’t need to bother with f2 I ’, f 

many distinct nontrivial structure constants remain? 

(Of these, it turns out that only nine are nonzero-those listed in equation 
(9.1 1)-and among these there are only three different numbers.) 

(b) Work out [A’ ,  A2], and confirm that f”’ = 0 for all y except 3, while 

(c) Similarly, compute [A’, A3] and [A4, A’], and determine the resulting structure 

Calculate the octet qq color factor using the state 
(4 bE 
(b) ( r Y -  b6)f i  
(c) ( r f +  b6 - 2gg)fi 

Find the amplitude 

f ’ 2 3  = 1. 

constants. 

for the diagram 
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What is the color factor [analogous to eq. (9.22)] in this case? Evaluate f i n  the 
color singlet configuration. Can you explain this answer? [Answer: it's zero; a singlet 
cannot couple to an octet (gluon).] 

9.8. Calculate the sextet qq color factor using the state (rb + br )E .  

9.9. Color factors always involve expressions of the form X;X% (summed over a). There 
is a simple formula for this quantity, which shortens the arithmetic: 

xgx;, = 26j/ s,, - $sv 6k, 
[See Kane, ref. 21. Check this theorem for 
(a) i = j = k = l = l  [see eq. (9.36)] 
(b) i = j = 1 ,  k = I = 2 [see eq. (9.24)] 
(c) i = 1 = 1 ,  j = k = 2 [see eq. (9.37)] 

and 
(d) Use it to confirm equation (9.27). 

9.10. Derive equation (9.45), starting from equation (9.44). 

9.11. There is a simple test for the gauge invariance of an amplitude (A) in QCD 
(or QED): Replace any gluon (or photon) polarization vector by its momentum 
(eg - p 3 ,  say), and you must get zero (see Problem 7.21). Show using this criterion 
that A = Jtzl + A2 + A, is gauge-invariant, but A1 + A2 alone is not. [Thus the 
three-gluon vertex is essential in QCD to preserve gauge invariance. Notice, by 
contrast, that A, + A2 alone is gauge-invariant in QED (Example 7.8). The fact 
that X matrices do not commute makes the difference.] 

9.12. Construct the color singlet combination of two gluons (9.60). [One method is as 
follows: 

Let c =  (8) 
Under SU(3), c - c' = Uc, where U is a unitary (UUt = 1 )  matrix of determinant 
1. Similarly, let dt = (t 6, g), transforming by the rule dt - d't = dtUt. Form the 
matrix 

M = c d t = ( $  5 $) 
Note that M' = c'gt  = UMUt. 
Remove the trace: 

N = M - f [Tr (M) ] ,  so that Tr(N)  = 0 

[Note that Tr(M') = Tr(M) = (rF+ b6 + gg3, so this combination is SU(3)-invariant; 
it is the singlet combination in 3 0 3 = 1 0 8, N is the octet.] 

N' = M' - f(Tr(M')] = UMUi - f[Tr(M)]UUt = UNUt 

The question is how to put together two 8's to make a 1 ;  that is, how to make 
something bilinear in Nl and N2 which is invariant under U. The solution is 

s = Tr(N,NZ) 
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9.13. 

9.14. 

9.15. 

9.16. 

9.17. 

9.18. 

For 

s' = Tr(N\N4) = Tr(UNIUTUN2UT) = Tr(UTUNlN2)  = T r ( N l N 2 )  = s 

It remains to figure out what s is in terms of the elements of M I  and M2:  

Tr(NlN2) = Tr{(Ml - f [ T r ( M ~ ) l ( M z  - ) [Tr(M2)l}  
= W M 1 M z )  - S [ T ~ ( M I ) I [ T ~ ( M Z ) I  
= j[(rQl(rQz + (66),(b6)2 + (ggh(ggI21 
- f [ ( rq1(b6)2  + (rQl(g& + (b6)l(r02 + (b6)l(gg)2 
+ (gg)l(rQ2 + (gi)l(b6)21 + [(r6)l(b02 + (rg)l(g% 
+ (b%(r6)2 + (bg)l(g6)2 + (gflI(rg)z + (g6)dbg)Zl 

+ i5)115)2 + 16)116)2 + 17)117)2 + 18)118)2 = C 1n)11n)2 

= 11)111)2 + 12>112)2 + 13)113>2 + 14>114>2 
8 

n- I 

This-the invariant product of two octets-is the SU(3) analog to the dot product 
of two 3-vectors in SU(2) . ]  

Determine the branching ratio r(7, - 2g) / r (vC - 27) .  [Hint: Use equation (9.66) 
for the numerator, and a suitable modification of equations (7.165) and (7.168) for 
the denominator. There are two modifications: (i) the quark change is Qe, and (ii) 
there is a color factor of 3, for quarks in the singlet state (9.5). Answer: i(as/a)2.] 

(Gluon-gluon scattering) 
(a) Draw the lowest-order diagrams (there are four of them) representing the in- 

(b) Write down the corresponding amplitudes. 
(c) Put the incoming gluons into the color singlet state; do the same for the outgoing 

gluons. Compute the resulting amplitudes. 
(d) Go to the CM frame, in which each gluon has energy E; express all the kinematic 

factors in terms of E and the scattering angle 8. Add the amplitudes to get the 
total, A. 

teraction of two gluons. 

(e)  Find the differential scattering cross section. 
(f) Determine whether the force is attractive or repulsive (if it is the former, this 

may be a likely glueball configuration). 

(a) Calculate the energy (m) at which the QED coupling constant (9.68) blows 
up. (Remember, a(0) = &, the fine structure constant.) 

(b) At what energy do we get a 1% departure from a(O)? Is this an accessible energy? 

Prove that the value of p in equation (9.69) is arbitrary. [That is, suppose physicist 
A uses the value pa, and physicist B uses a different value, p b .  Assume A's version 
of equation (9.69) is correct, and prove that B's is also correct.] 

Derive equation (9.7 1)  from equations (9.69) and (9.70). 

Calculate a, at 10 and 100 GeV. Assume Ac = 0.3 GeV. What if Ac = 1 GeV? 
How about Ac = 0.1 GeV? 





Chapter 10 

Weak Interactions 

This chapter surveys the theory of weak interactions. It relies heavily on 
Chapter 7, but not on Chapters 8 and 9; Section 4.6 of Chapter 4 would be 
useful background. I begin by stating the Feynman Rules for the coupling of 
leptons to W’, and treat three classic problems in some detail: the beta decays 
of the muon, the neutron, and the chargedpion. Next, we consider the coupling 
of quarks to W’, which brings in the Cabibbo angle, the GIM mechanism, 
and the Kobayashi-Maskawa matrix. In Section 10.6 I state the Feynman 
rules for coupling quarks and leptons to the Zo, and thejnal section (probably 
the most ditficult in this book) shows how all electromagnetic and weak vertex 
factors can be derived, in the Glashow- Weinberg-Salam electroweak theory. 

10.1 CHARGED LEPTONIC WEAK INTERACTIONS 

The mediators of weak interactions (analogous to photons in QED and gluons 
in QCD) are the W‘s ( Wf and W-) and the Zo. Unlike the photon and gluons, 
which are massless, these “intermediate vector bosons” are extremely heavy- 
by far the heaviest elementary particles yet detected. Experimentally, 

(10.1) 

Now, a massive particle of spin 1 has three allowed polarization states (m, = 1, 
0, --l), whereas a free massless particle has only two (if z is the direction of 
motion, the “longitudinal” polarization rn, = 0 does not occur). Thus for photons 
and gluons, we imposed both the Lorentz condition 

Mw = 82 k 2 GeV/c2, M z  = 92 f 2 GeVjc2 

t”p, = 0 (10.2) 

(reducing the number of independent components in elr from 4 to 3) and also 

30 1 
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the Coulomb gauge (to = 0, so that E - p = 0, which reduces it further from 3 to 
2). However, for the W‘s and the Z the Lorentz condition alone exhausts the 
gauge freedom, and we do not invoke the Coulomb gauge. Moreover, the prop- 
agator for massive spin-1 particles is no longer simply -igFY/q2, but rather,* 

-i(gpy - q”qu/M2c2) (propagator for Wand 2)  (10.3) 
q 2  - M2C2 

where M is Mw or Mz,  as the case may be. In practice, q2 is ordinarily so much 
smaller than that we may safely use 

(propagator for q2 < ( M C ) ~ )  (10.4) 

However, when a process involves energies that are comparable to Mc2 we must, 
of course, revert to the exact expression. 

The theory of “charged” weak interactions (mediated by the W’s) is simpler 
than that for “neutral” ones (mediated by the Z ) ,  so for the moment I shall 
concentrate on the former. In this section we consider the coupling of W’s to 
leptons: in the next section we’ll discuss their coupling to quarks and hadrons. 
The fundamental leptonic vertex is 

w- 

Here an electron, muon, or tau is converted into the associated neutrino, with 
emission of a W- (or absorption of W+). The reverse process (q - 1- + W+) is 
also possible, of course, as well as the “crossed” reactions involving antileptons. 
The Feynman rules are the same as for QED (apart from the modifications 
already mentioned to accommodate the massive mediator), except for the vertex 
factor 

(10.5) -is, 
- y”( 1 - y5) (weak vertex factor) 
21Jz 

The various 2’s are purely conventional, and g, = Gw is the “weak coupling 
constant” (analogous to ge in QED and g, in QCD). The factor (1 - y’), however, 
is of profound importance, for y” alone would yield a vector coupling (like QED 
or QCD), whereas y”y5 gives an axial vector [see eq. (7.68)]. A theory that adds 

* It might bother you that this does not reduce to the photon propagator as M - 0. For 
particles of spin 1 (or higher) the massless limit is notoriously treacherous, because in one critical 
respect it is not a continuous procedure. The number of degrees of freedom (that is, the number of 
allowed spin orientations) drops abruptly from 2s + 1 (for M # 0) to 2 (for M = 0). There are ways 
of formulating the theory that allow a smooth transition to M = 0, but only at the cost of introducing 
spurious nonphysical states. 
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a vector to an axial vector is bound to violate the conservation of parity, and 
this is precisely what happens in the weak interactions (Chap. 4, Sect. 4.6).* 

EXAMPLE 10.1 Inverse Muon Decay 
Consider the process 

up + e- - p- + ve 

represented (in lowest order) by the diagram 

Here q = p1 - p 3 ,  and for any experiment likely in the near future q 2  6 
MLc2,  so we can safely use the simplified propagator (10.4), and the am- 
plitude is 

Applying Casimir’s trick (7.123), we find 

for the first trace, and 

(10.10) 

Actually, we want the sum over final spins but the average over initial 

* In fact, the violation is “maximal,” in the sense that the two terms are equally large. When 
parity violation was first considered, a factor of the form (1  + 67’) was used, but experiments soon 
dictated that t = - I .  (See Problem 10.1.) We call it a “V-A” (“vector minus axial vector”) coupling. 
Fermi’s original theory of beta decay was a pure vector theory (like QED), and although others 
proposed scalar, pseudoscalar, tensor, or pure axial couplings, it was not until 1956 that anyone 
seriously contemplated mixing terms of different panty. 

t Note that cpuhotpvxr = -2(6;6: - 6,”s:). (See Problem 7.33.) 
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spins. The electron has two spin states, but the neutrino (as we learned in 
Chapter 4, Section 4.6) has only one (if you like, the incident neutrinos 
are always polarized, since they only come "left-handed"). So 

(10.11) 

If we now go to the CM frame, and neglect the mass of the electron 

( 1 0.1 2) 

where E is the incident electron (or neutrino) energy. The differential scat- 
tering cross section [eq. (6.42)] is isotropic (all scattering angles equally 
likely) 

( 10.13) 

and the total cross section is 
2 2 2  

~=&[(&rhCE]2I l  -(%)} (10.14) 

10.2 DECAY OF THE MUON 

Electron-neutrino scattering is not the easiest thing in the world to study exper- 
imentally, but the closely related process, muon decay (p - e + up + Se),  is the 
cleanest of all weak interaction phenomena, theoretically and experimentally. 
The Feynman diagram 

leads to the amplitude 

from which we obtain, as before, 

( 1 0.1 6) 

In the muon rest frame, pI = (rn,c, o), we have 
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PI 'P2  = m,E2 (10.17) 

and since p 1  = p2 + p3 + p4 

from which it follows that 

(m: - m5>c2 
P3'P4 = - m,E2 (10.19) 

The algebra will be simpler later on, at no significant cost in accuracy, if we set 
m, = 0, so that 

4 

= (&) m:E2(rn,c2 - 2E2) (10.20) 
Mwc 

Now, the decay rate is given by the Golden Rule (6.15):* 

a>4 a4(p1 - ~2 - ~3 - ~ 4 )  
d r  = - (IJ"1') ( c d3p2 )( c d3p3 )( c d3p4 )(2 

2hm, ( 2 ~ ) ~ 2 E ,  ( 2 ~ ) ~ 2 E ~  ( 2 ~ ) ~ 2 E ~  
(10.21) 

where E2 = Ip21c, E3 = Ip3lc, and E4 = Jp41c. To begin with, we peel apart the 
delta function: 

?i4(p1 - p2 - p3 - p4)  = 6 a3(p2 + p 3  + p4)  (10.22) 

and perform the p 3  integral: 

where E3 now stands for Ip2 + p41c. Next we'll do the p2  integral. Setting the 
polar axis along p4 (which is fixed, for the purposes of the p 2  integration), we 
have ($r = IP2 + P d 2  = p i  + pz  f 2 P 2 .  P4 

(10.24) 1 
= - (E:  + Ej + 2E2E4 cos 8 )  

C2 

and (10.25) 

The 4 integral is trivial (s d4 = 27r); to carry out the 8 integration, let 

( 1  0.26) 1 E3 x = - \/E: + E i  + 2E2E4 cos 8 = - 
C C 

* Note that this is a three body decay, so we have to go all the way back to the Golden Rule. 
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so that 
E2E4 sin 8 d8 

cE3 
dx = - (10.27) 

-6 m e- - - - - -  sin 8 d8 
E3 ( Ir c c c E2 E3 ") Then 

- 6(m,c - x - 
c c  

- 
E2 E4 

otherwise J 

(10.29) 
1 1 
- VE; + E: -t 2E2E4 = - IE2 k E4I where X+ 
C C 

The inequality in equation (10.28) can be expressed more neatly: 

IE2 - E4( < (mPc2 - E2 - E4) < E2 + E4 (10.30) 

or, adding (E2 + E4) and dividing through by 2: 

f { IE2 - E4( + E2 + E4} < $m,c2 < (E2 + E4) (10.31) 

The term on the left is simply the larger of E2 and E4; the other one is necessarily 
even smaller, so expression (10.3 1)  is equivalent to three inequalities: 

E2 < $m,c2 
E4 < $mpc2 

(E2 + E4) > $mpc2 
(10.32) 

[These constraints make good sense kinematically: Particle 2, for example, gets 
the maximum possible energy when 3 and 4 emerge diametrically opposite to 
it: 

0-3 
-4 2-0 

In this case 2 picks up half the available energy ( $m,c2), while 3 and 4 share the 
other half. If there is a nonzero angle between 3 and 4, 2 gets less, and 3 plus 4 
get correspondingly more. Thus $m,c2 is the maximum energy for any individual 
outgoing particle, and the minimum total for any pair.] 

The inequalities (10.32) specify the limits on the E2 and E4 integrals: E2 
runs from im,c2 - E4 up to $mac2, and E4 will go from 0 to $mrc2. The 8 and 
6 integrals leave us with 

( I M 2 > c  d3P4 dI' = dE2 - 
( 4 ~ ) ~ h m ,  E: 

(10.33) 

Putting in equation (10.20) and carrying out the E2 integral, we have 
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Finally, writing 

E4 dE4 d3p4 = 4r(--) - 
C 

and dropping the subscript (E  = E4 is the electron energy), we obtain 

(10.35) 

This tells us the energy distribution of the electrons emitted in muon decay. It 
fits the experimental spectrum perfectly (Fig. 10.1). The total decay rate is 

and hence the lifetime of the muon is 

(10.36) 

(10.37) 

Notice that g, and Mw do not appear separately, either in the muon lifetime 
formula or in the electron-neutrino scattering cross section; only their ratio occurs. 
It is traditional, in fact, to express weak interaction formulas in terms of the 
“Fermi coupling constant” 

2 l5 GF= - (4) ( h ~ ) ~  
8 Mwc 

Thus the muon lifetime is written 

192a3h7 
G2m:c4 7 =  

(10.38) 

(10.39) 

In Fermi’s original theory of beta decay (1933) there was no W; the interaction 
was supposed to be a direct four-particle coupling, represented in the Feynman 
language by a diagram of the form 
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15 X 

5 x  

Positron momentum MeV/c 

Figure 10.1 Experimental spectrum of positrons in p’ - e’ + v, + v,. The solid line is 
the theoretically predicted spectrum based on equation ( 10.39, corrected for electro- 
magnetic effects. (Source: M. Bardon et al., Phys. Rev. Lett. 14, 449 (1965)) 

From the modern perspective, Fermi’s theory combined the W propagator 
with the two vertex factors, in the diagram 

to make an effective four-particle coupling constant GF. It worked, but only 
because the Wis so heavy that expression (10.4) is a good approximation to the 
true propagator (10.3),* and in fact it was recognized already in the fifties that 
Fermi’s theory could not be valid at high energies. The idea of a weak mediator 
(analogous to the photon) was suggested by 0. Klein as far back as 1938. 

* Fermi also thought the coupling was pure vector, as I mentioned in the footnote (*) on 
p. 303. Despite these defects (for which Fermi could scarcely be blamed; after all, he invented the 
theory at a time when the neutrino was a wild speculation and the Dirac equation itself was quite 
new) Fermi’s theory was astonishingly prescient, and all subsequent developments have been relatively 
small adjustments to it. 
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If we put in the observed muon lifetime and mass, we find that 

= 1.166 X 10-’/GeV2 (10.40) 

The corresponding value of g, (less accurately known, at present, because of the 
experimental uncertainty in Mw) is 

g, = 0.66 (10.41) 

and hence the “weak fine structure constant” is 

(10.42) 

This number should come as something of a shock: It is larger than the electro- 
magnetic fine structure constant (a  = &), by a factor of nearly five! Weak 
interactions are feeble not because the intrinsic coupling is small (it isn ’l), but 
because the mediators are so massive-or, more precisely, because we typically 
work at energies so far below the Wmass that the denominator in the propagator 
(q2 - Mkc’) is extremely large. New machines are presently under construction 
that will run at energies close to Mwc2, and in this regime the “weak” interactions 
will far surpass the electromagnetic ones in strength. 

10.3 DECAY OF THE NEUTRON 

The success of the muon decay formula (10.35) encourages us to apply the same 
methods to the decay of the neutron, n - p + e + 5,. Of course, the neutron 
and proton are composite particles, but just as the Mott and Rutherford cross 
sections (which treat the proton as an elementary “Dirac” particle) give a good 
account of low-energy electron-proton scattering, so we might hope that the 
diagram 

p1 

(the same as for muon decay, only with n - p + W- in place of y - v p  + W-) 
will afford a reasonable approximation to neutron beta decay. From a calcula- 
tional point of view the only new feature is that 3 is now a massive particle (a 
proton, instead of a neutrino). As it happens (Problem 10.4) this does not change 
the amplitude: 

(10.43) 
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which is the same as (10.16). In the rest frame of the neutron, we find 

( [ & I 2 )  = (&)'m,E2[(m: - mz - m3)c' - 2m,E2] (10.44) 
MWC 

In this case the electron rest energy is a substantial fraction of the total energy 
released, (m, - m, - m,)c2, so we cannot afford to ignore the electron mass. 

The decay rate calculation proceeds as before: 

7d4 a4(P, - P2 - P3 - P4) 
d r  = - ( I & I 2 )  ( c d3p2 )( c d3p3 )( c d3p4 )(2 

2hm, ( 2 7 ~ ) ~ 2 E ~  ( 2 ~ ) ~ 2 E ~  ( 2 ~ ) ~ 2 E ~  
(10.45) 

where E2 = clp21, E3 = c m ,  E4 = c m  (10.46) 

The p3 integral yields 

2 c 3 ( i ~ i 2 )  d3p2 d3p4 - - - - - - d r  = E2 E3 ") (10.47) 
( 4 ~ ) ~  h mn E2 E3 E4 

which is the same as equation (10.23), except that this time 

E3 = ci(p2 + p4)2 + m;c2 
To carry out the p2 integral, we set 

(10.48) 

1 
d3p2 = (p2I2 dlp21 sin 0 d0 d+ = E: dE2 sin 0 d0 dd (10.49) 

and orient the coordinates so that the z axis lies along p4 (which is fixed, for 
purposes of the p2 integral); then 

E3 = cl/lp2I2 + lp4I2 + 2Jp211p41 cos 0 + m;c2 = cx (10.50) 

C 

and 
E2 sin 0 d0 - dx 

E3 lP4l 

The + and 0 (or rather, x)  integrals yield 

(10.5 1) 

(10.52) 

I = [ 6( m,c - x - 
c c  

where 

(10.53) 
0, otherwise 

and the limits [from (10.50)] are 

x, = i<lp2t * Ip4O2 + m;c2 (10.54) 

As before, equation (1  0.53) defines the range of the E2 integral; I'll let you work 
out the algebra (Problem 10.5): 
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f ( m f  - m; + m2)c' - m,E4 
Ek = 

mn - E4/c2 T lP,l/c 
The E2 integral is thus 

31 1 

(10.55) 

E+ 

E2[(mf - mz - m$)c2 - 2m,E2]dE2 = J(E4) (10.56) d 
47r 

and since 

we conclude that 

d3P4 = 4T1P4I2 dlP41 = -p I P 4 E 4  dE4 (10.57) 

(10.58) 

(since there is no further occasion for ambiguity, I'm eliminating the subscript 
on E4; from now on E is the electron energy). 

Equation (10.58) is exact (use it, if you like, to rederive equation (10.35), 
setting m, - m, and m,, me - 0), but J(E) is a rather cumbersome function. 
From the definition (10.56): 

I 2mn 
2 - 3  

J(E) = - (m: - m; - rn2)c2(B: - E 2 )  - - (E: - E!) (10.59) 

where E, are given by equation (10.55). It pays to approximate, at this stage, 
recognizing that there are four small numbers here: 

me 
mn mn 

c =  mn - mp = 0.0014, 6 - = 0.0005, 

(The last of these is not independent, of course: 42 = q2 - S2.) Expanding to 
lowest order (Problem 10.5), we obtain 

4 
q)2 = 7 E-[(m, - 

C 
m,)c2 - El2 (10.61) 

So the distribution of electron energies is given by 

- dr ( ~ gw 2)IE-[(mn - rn,)c2 - El2 (10.62) 
dE r 3 h  2Mwc 

The experimental results are shown in Figure 10.2. The electron energies 
range from mec2 up to about (m, - m,)c2 (Problem 10.6). Integrating over E, 
we get the total decay rate (Problem 10.7): 

(2a4 - 9a2 - 8 ) s  + a In(a + m) (10.63) 1 
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t 

0 0.51 1 1.29 

€(MeV) 

Figure 10.2 Electron energy distribution from neutron beta decay. (Solid line is the 
theoretical curve; dots are experimental data.) [Source: C. J. Christensen et al., Phys. Rev. 
D5, 1628 (1 972), Figure 4.1 

where (10.64) 

Putting in the numbers, we find (Problem 10.8) 

7 = - 1 = 1316 sec (10.65) r 
This is in the right ball park, as they say: The experimental neutron lifetime* is 
898 k 16 sec, and given that weak decays range from 15 min down to sec, 
perhaps we should be pleased to get the right order of magnitude. But why isn’t 
the agreement perfect? 

The main problem is that we have treated the proton and neutron as though 
they were simple point particles, interacting with the Win exactly the same way 
as leptons do. To be honest about it, we should go back to the beginning, admit 
that we do not really know how the W couples to composite structures, draw in 
a blob on the Feynman diagram (to symbolize our ignorance) 

and express the amplitude in terms of various unknown “form factors,” whose 

* The number is taken from the Particle Data Booklet. Free neutrons are hard to work with, 
and the “official” neutron lifetime has changed substantially over time, dropping by more than 10% 
in the last 15 years. Note also that nuclear physicists tend to list the havlzfe ( f t 12  = T In 2), and beta- 
decay specialists often quote the “comparative half-life”-the so-called “$‘’ value-which has certain 
kinematic and Coulombic factors removed. (For the neutron the correction factor f i s  about 1.7.) 
All this is just to warn you that the numbers quoted in the literature for the neutron “lifetime” are 
scattered all over the map, and it pays to read the fine print and check the date. 
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structure is limited only by Lorentz covariance-just as we did in Chapter 8 for 
the proton-photon vertex. Only when a mature QCD can provide us with the 
detailed structure of the nucleons will we be in a position to perfect the neutron 
lifetime calculation. 

And yet, the Mott formula works well for low-energy electron-proton scat- 
tering: Why does essentially the same procedure give us the right answer in 
electrodynamics, but not in the weak interactions? In both cases the wavelength 
of the “probe” ( y  or W, as the case may be) is much larger than the diameter 
of the “target” ( p  or n) (see Problem 10.9); the nucleon’s internal structure is 
not “resolved,” and it behaves as a point particle. The crucial question, though, 
is: What is the net coupling strength of this object? Of course, the net charge of 
the proton is simply e (the same as for the p+, say.) It doesn’t matter what 
complicated processes are going on inside-valence quarks emitting virtual 
gluons, gluons producing quark-antiquark pairs, these “sea” quarks recombining, 
and so on-because all this frenzied activity conserves charge. From the per- 
spective of a long wavelength photon it just looks like a point, and the net charge 
of the composite nucleon is just the sum of the charges of the valence quarks. 
But there is no a priori reason to suppose that the same applies to the weak 
coupling; when a gluon splits into a quark-antiquark pair, the net contribution 
of this pair to the weak coupling may not be zero-who knows? To account for 
this, we make the following replacement in the n - p + W vertex factor: 

(10.66) 

where cv is the correction to the vector “weak charge,” and cA is the correction 
to the axial vector “weak charge.”* Now, the same basic process, n - p + e 
+ V e ,  occurs not only for the free neutron, but also within radioactive nuclei, so 
we have in principle many independent opportunities to measure cv and cA .t 
The experimental results are as follows: 

CV = 1 .OOO f 0.003, CA = 1.26 -t 0.02 (10.67) 

Surprisingly, the vector weak charge is not modified by the strong interactions 
within the nucleon. Presumably, like electric charge, it is “protected” by a con- 
servation law; we call this the “Conserved Vector Current” (CVC) hypothesis. 
Even the axial term is not altered much; evidently, it is “almost” conserved. We 
call this the “Partially Conserved Axial Current” (PCAC) hypothesis. 

The effect of the substitution (10.66) on the neutron lifetime is something 
you can calculate for yourself, if you have the stamina; to good approximation, 
the decay rate is increased by a factor of 

$(c$ + 3c5) = 1.44 

and the lifetime is decreased in the same ratio: 

(10.68) 

* cv and cA are related to the q2 = 0 limits of the corresponding weak form factors. 

t A particular favorite is I4O + I4N, which is known (from the observed spin and panty of 
the initial and final states) to involve only vector coupling. It affords a direct and relatively precise 
measure of cv. 
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1316 sec 
1.44 

7 - =  = 914 sec (10.69) 

This is now within the error bars of the experimental value. Unfortunately, the 
agreement is deceptive, for there is yet another correction to be made. The un- 
derlying quark process here is d - u + W (with two spectators): 

Proton 
A 
d u u  

Neutron 

and this quark vertex carries a factor of cos Bc,  where 

Bc = 13.1" (10.70) 

is the Cabibbo angle. I'll have more to say about this in the next section, but the 
essential point for now is that our theoretical value for the neutron lifetime, 
corrected for nonconservation of the axial charge and modified by the Cabibbo 
angle, is 

914 sec 
7- = ~ = 963 sec 

cos2 Bc 
(10.71) 

Two steps forward, one step back!* 

10.4 DECAY OF THE PION 

According to the quark model, the decay of a charged pion (r- - I- + 51, where 
1 is a muon or an electron) is really a scattering event in which the incident 
quarks happen to be bound together: 

- 
ii- 

* This isn't the end of the story; there is a small Coulomb correction, (due to the attraction 
of the electron and proton in the final state); there is presumably some q2 dependence in the form 
factors even near q2 = 0; and there may yet be inaccuracies in the experimental data. In particular, 
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In this sense it is a weak-interaction analog to positronium decay (e+ + e- + y 
+ y) or qc decay (c  + C --+ g + g)-electromagnetic and strong processes, re- 
spectively. We could analyze it this way, following the methods of Example 7.8 
and Chapter 9, Section 9.3 (see Problem lO.lO.), but in the end we would be 
stuck with a factor of 1#(0)12, and at this stage we have no idea what the wave 
function (9) of the quarks within a pion looks like. Given that such a calculation 
will carry this undetermined multiplicative factor anyway, it is simpler to proceed 
as follows. 

Redraw the Feynman diagram, with a blob to represent the coupling of 
,I- to w-: 

c 
Pion 

We may not know how the W couples to the pion, but we do know how it 
couples to the leptons, so the amplitude must have the general form 

(10.72) 

where F” is a “form factor” describing the A - W blob. It has to be a four- 
vector, to contract with the yc in the lepton factor. But the pion has spin zero; 
the only vector associated with it, out of which we might construct F”, is its 
momentum, p”.* (I won’t bother with a subscript on the pion’s momentum: 
p = p1 .) So F’ must be some scalar quantity times p”: 

F” =La” (10.73) 

(In principle,f, is a function of$-the only available scalar-but since the pion 
is on its mass shell, p2 = mIc2 and hencef, is simply a fixed number. We call it 
the “pion decay constant”.)? 

the neutron lifetime is very sensitive to uncertainties in cA. But we are within 6% of the experimental 
result, and it is time to move on. 

* Notice that we introduce the (weak) pion form factor at the level of A, whereas for the 
(electromagnetic) proton form factors and structure functions we waited until the (IA 1’) stage. The 
reason is that the proton has a spin, and we would have to include that in the roster of available 
vectors; it is only after we have averaged over the spins that the list reduces to two, and the problem 
becomes manageable. The pion, however, has no spin, so we can afford to introduce the form factor 
directly in A, where it is only a vector quantity, instead of a tensor. 

t The pion decay constant evidently contains the factor of lG(0)l2 alluded to earlier; we have 
simply wrapped our ignorance in a more convenient package. (See Problem 10.10.) 
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Summing over the outgoing spins, we have 

(10.74) 

[the trace was already calculated in equation (10.91. But p = p2 + p3 ,  so 

P 'P2  = P 2 ' P 3 ,  P 'P3  = m : c 2 f P 2 * P 3  (10.75) 

and p2 = pi  + p: + 2p2.p3, so that 2p2.p3 = (m: - m:)c2 (10.76) 

Thus 

(a constant). 
The decay rate is given by the standard formula (6.32): 

(10.77) 

(10.78) 

and the outgoing momentum is [see eq. (6.31) or Problem 3.161 

Thus (10.80) 

Of course, without knowing the decay constant,f,, we cannot calculate the pion 
lifetime.* Nevertheless, we are able to determine the branching ratio 

r(,c - e- + Ve)  - mf(m: - m2)2 
qT- - p- + 5,) rn;(m: - m,) 

- ; = 1.28 x 10-4 (10.8 1 )  

The experimental number is 1.23 k 0.02 X At first glance this is a very 
surprising result, for it predicts (correctly) that the pion prefers the muon mode, 
in spite of the fact that the electron is much lighter. Phase space considerations 
favor decays for which the mass decrease is as large as possible, and unless some 
conservation law intervenes, we ordinarily find that the lightest final state is the 
most common one. Pion decay is the notorious exception, and it calls for some 
special dynamical explanation. A clue is suggested by equation (10.80): Notice 
that if the electron were massless, the T- - e- + 5,  mode would be forbidden 
completely. Can we understand this limiting case? Yes. The pion has spin 0, so 
the electron and the antineutrino must emerge with opposite spins, and hence 
equal helicities: 

* It is a rather striking fact that if you put i n h  = m,c (or, better yet, m,c cos Bc) you come 
out very close to the T- -3 p- + Zfi lifetime, but I know of no persuasive theoretical justification for 
this ansatz. 
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The antineutrino is always right-handed, so the electron must be right-handed 
as well. But if the electron were truly massless, then (like the neutrino) it would 
only exist as a left-handed particle. More precisely, the 1 - y5 in the weak vertex 
factor would couple only to left-handed electrons, just as it couples only to left- 
handed neutrinos (see Problem 10.1 1). That’s why if the electron were massless, 
the decay .rr- -+ e- + ie could not occur at all, and why (the physical electron 
being very close to massless) the decay is so heavily suppressed. 

10.5 CHARGED WEAK INTERACTIONS OF QUARKS 

In the case of leptons, the coupling to W’ takes place strictly within a particular 
generat ion: 

(2) , , (lepton generations) 

That is, e- -+ u, + W-, p- - u, + W-, 7- - u, + W-, but there is no cross- 
generational coupling, of the form e- - ulr + W-, for example. This observation, 
in fact, is enshrined in the laws of conservation of electron number, muon num- 
ber, and tau number. The coupling of W to quarks is not quite so simple, for 
although the generation structure is similar 

(1) , (z) , (L) (quark generations) 

the weak interactions do not strictly respect their separate identities. There are, 
to be sure, interactions of the form d -+ u + W- (the process that underlies 
neutron decay, n -+ p + e + ie), but there exist as well cross-generational cou- 
plings, such as s -+ u + W- (seen, for example, in the decay A -+ p + e + it). 
Indeed, if this were not the case, we would have three absolute “flavor-conser- 
vation” laws: conservation of “upness-plus-downness,” “charm-plus-strange- 
ness,” and “truth-plus-beauty”--analogous to the three lepton number conser- 
vation laws. As a result, the lightest strange particle (K-) would be absolutely 
stable, and so would the B meson (the lightest beautiful particle); our world 
would be a quite different place. 

In 1963 (when u, d, and s were the only quarks known) Cabibbo’ suggested 
that the d -+ u + W- vertex cames a factor of cos Bc, whereas s - u + W- 
carries a factor of sin Oc; apart from that they are identical to the leptonic cou- 
plings [eq. (10.5)]: 
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The strangeness-changing process (s - u + W-) is conspicuously weaker than 
the strangeness-conserving one (d - u + W-), so evidently the "Cabibbo angle" 
Bc is rather small. Experimentally 

Bc = 13.1" (10.83) 

The weak interactions almost respect quark generations . . . but not quite. 

EXAMPLE 10.2 Leptonic Decays 
Consider the decay K- - 1- + 5 / ,  where I is an electron or a muon. This 
is the analog to 7 ~ -  decay (Sect. 10.4), but now the quark vertex is s 
+ U - W-, instead of d + U - W-. From equation (10.80) we have 

The coupling strength is presumably the same as before, except that where 
contained a factor of cos Bc, fK carries a factor of sin Bc. Accordingly, 

Putting in the appropriate numbers, we get 0.96 for the muon mode 
( I  = p) and 0.19 for the electron mode (1 = e). [The experimental ratios 
are 1.34 and 0.26, respectively, corresponding to a Cabibbo angle of 15.4". 
These decays are pure axial-vector, and as we discovered earlier-see eq. 
( 10.67)-perfect agreement is not to be expected.] 

For obvious reasons, processes of the kind considered in Example 10.2 are 
called Ieptonic decays. There also exist semileptonic decays, such as T- - TO 

+ e- + Y,, Ko - 7r' + p- + Yp (Fig. 10.3a), or for that matter the beta decay of 
the neutron: n - p+ + e- + 5,. Finally, there are nonleptonic weak interactions, 
such as K- - K O  + 7 ~ -  or A - p+ + T- (Fig. 10.3b). Generally speaking, the 
latter are the hardest to analyze, because there is strong interaction contamination 
at both ends of the W line. We shall not consider nonleptonic weak processes 
in this book.(2) 

EXAMPLE 10.3 Semileptonic Decays 
In the case of neutron decay (n  - p + e + 5J the basic quark process is 
d - u + W- (with two spectators). However, there are two d quarks in 
the neutron, and either one could couple to the W; the net amplitude for 
the process is the sum. The simplest way to keep track of the numbers 
is to use the quark wave functions of Chapter 5 ,  Section 5.9; the flavor 
states $,', for instance, give n = (ud - du)d/\Jz, from which (with d - u) 
we get [(uu - uu)d + (ud - du)u]/\Jz = (ud -. du)u/\Jz = p. The overall 
coefficient is then simply cos Bc (as I claimed at the end of Section 10.3). 
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B +  P+ B 

r h - 7  h - 
U UP I.1- d u u  U d p-.” 
S d u s  

w 4J 
K O  A 

(a) (b) 

Figure 10.3 (a) A typical semileptonic decay (I? - a+ + F- + V,). (b) A typical nonleptonic 
weak decay (A - p+ + T-). 

By contrast, in the decay Zo - Zt + e + V e ,  the quark process is still 
d - u, but here 2’ = [(us - su)d + (ds - sd)u]/2 - [(us - su)u + (us 
- su)u]/2 = (us - su)u = fiZ’, and hence the amplitude carries a factor 
of fi cos Bc.* The decay rate is given by equation (10.63), which reduces 
(in the case a % 1) to the form 

where Am is the baryon mass decrease and X is the Cabibbo factor 
(cos Bc,  for neutron decay; fi cos Bc, for Zo - Z+ + e + V e ;  etc.). I’ll let 
you work out the numbers for yourself (Problem 10.13).? 

Cabibbo’s theory was very successful in correlating dozens of decay rates, 
but there remained a disturbing problem: this picture allowed the KO to decay 
into a p’p- pair (see Fig. 10.4). The amplitude should be proportional to 
sin Bc cos Bc, but the calculated rate is far greater than the experimental lim- 
its allow. A solution to this paradox was proposed in 1970 by Glashow, Iliop- 
oulos, and Maiani (GIM).3 They introduced a fourth quark (+remember, 
this was four years before the “November Revolution” produced the first direct 
experimental evidence for charm-whose couplings to s and d carry factors of 
cos Bc and -sin Bc, respectively: 

- zgw - i g w  
- y’( 1 - y5)(-sin 0,) 
2 l h  2 f i  

- y”( 1 - y5) cos Bc (10.85) 

* Actually, there is a technical difference here: The active quark is bound to the spectator in 
a spin singlet state. Fortunately, this does not affect the lifetime. 

t This procedure includes only the valence quarks, and hence is insensitive to the noncon- 
servation of the axial coupling. As we found in equation (10.68), PCAC can lead to a correction of 
nearly 50%, so one does not expect fine precision in the lifetimes. Cabibbo’s theory included a way 
of calculating the axial couplings, but I shall not go into that here. 
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Y 

KO = ( & I  Figure 10.4 The decay €i? - p’ + p- 

In the “GIM mechanism,” the diagram in Fig. 10.4 is canceled by the corre- 
sponding diagram with c in place of u (Fig. 10.5), for this time the amplitude is 
proportional to -sin Bc cos Bc.* 

The Cabibbo-GIM scheme invites a simple interpretation: Instead of the 
physical quarks d and s, the “correct” states to use in the weak interactions are 
d‘ and s’, given by 

(10.86) d’ = d cos Bc + s sin Bc,  s‘ = -d sin Bc + s cos Bc 

or, in matrix form 

(10.87) 

The W’s couple to the “Cabibbo-rotated” states 

in exactly the same way that they couple to lepton pairs, (:) and (”;) ; their 

couplings to the physical particles (states of specific flavor) are then given by 

U C 

= ( d  cos Bc + s sin Bc 1’ = (-d sin Bc + s cos Oc 

That is, d - u + W- carries a factor cos B,, s - u + W- a factor sin B,, and 
so on.? 

* The cancellation is not perfect, because the mass of the c is not the same as the mass of the 
u. However, these virtual particles are so far off the mass shell that both propagators are essentially 
just i d q 2 .  (In calculating JN we shall be integrating over the one remaining internal momentum 
which is not fixed by the conservation laws. This is essentially the momentum “circulating around 
the loop.” Because of the two Wpropagators, the main contribution will come in the region of the 
W mass, which is so much greater than the c or u mass that the latter can, to good approximation, 
be neglected. Actually, the decay does occur, it’s just extremely slow, and if you include the effects 
of u/c mass difference, the calculation is consistent with the observed rate.) 

t It is purely conventional that we “rotate” d and s, rather than u and c; we could accomplish 
the same purpose by introducing u’ = u cos Bc - c sin Bc and c‘ = u sin Bc + c cos Bc.  Incidentally, 
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Figure 10.5 The GIM mechanism. [This 

quark replacing the u.] 
Y J diagram cancels (10.4). Note the virtual c 

2-k 
KO = (dF) 

At the time, the GIM mechanism seemed a little extravagant-introducing 
a new quark just to fix a rather esoteric technical defect in a largely untested 
theory. But the skeptics were silenced by the discovery of the rF/(cC) in 1974. 
Meanwhile, Kobayashi and Maskawa4 had generalized the Cabibbo-GIM scheme 
to handle three generations of quarks.* The “weak interaction generations,” 

(weak interaction quark generations) ( 10.88) (3 ’ (3 ’ (J 
are related to the physical quark states by the Kobayashi-Maskawa matrix: 

Uud Uus Uub 
(10.89) 

where Uud, for example, specifies the coupling of u to d(d - u + W-). There 
are nine entries in the KM matrix, but they are not all independent (see Problem 
10.14). U can be reduced to a kind of “canonical form,” in which there remain 
just three “generalized Cabibbo angles,’’ (e l ,  0 2 ,  0,) and one phase factor ( S ) : 5  

(10.90) 
s1c3 

-s1c2 c1c2c3 - ~ 2 ~ 3  el6 cIc2s3 + ~ 2 ~ 3  ei6 
-sIs2 cIs2c3 + ~ 2 ~ 3  ei6 cls2s3 - ~ 2 ~ 3  el6 

Here c, stands for cos 0,,  and s, for sin 0,. If O2 = O3 = 0, the third generation 
does not mix with the other two, and we recover the original Cabibbo-GIM 
picture, with O 1  = BC. However, there is compelling evidence (namely, the ob- 

~~~ ~~ 

you might ask why a similar rotation does not occur in the lepton sector. The answer is, it already 
has-or rather, we’d never notice it if it did. The point is that all neutrinos are massless, and any 
linear combination of them is still massless. So there is no “tag” to identify the “unrotated” states, 
and what we call u,, for example, is “the neutrino paired with the e in weak interactions,” just as d’ 
is “the quark paired with u in weak interactions.” 

* It is interesting to note that Kobayashi and Maskawa proposed a third quark generation 
before the second was complete, and long before there was any experimental evidence for a third 
generation of leptons or quarks. They were motivated by a desire to explain CP violation within the 
Cabibbo-GIM scheme. It turned out that for this purpose they needed a complex number in the 
“rotation” matrix (10.87), but such a term could always be eliminated, by suitable redefinition of 
the quark phases, unless they went to a 3 X 3 matrix, and hence to three generations. It remains to 
be seen whether the 6 term in the KM matrix is the actual source of CP violation in nature, but the 
precocious prediction of three generations has, of course, been richly confirmed. 
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served decay of the B-(bii) meson) for some third-generation mixing, although 
it must be fairly small in order to account for the success of the original Cabibbo- 
GIM scheme. The Standard Model offers no insight into the KM matrix (indeed, 
this is one of the most conspicuous weaknesses of the Standard Model); for the 
moment, we simply take the values of the matrix elements from experiment. 
There is a small industry devoted to the accurate measurement of these param- 
eters. So far, only their magnitudes are known with any precision:6 

0.9705 to 0.9770 0.21 to 0.24 0. to 0.014 I: 0. to 0.024 0.036 to 0.069 0.997 to 0.999 

The third generation mixing (the off-diagonal elements in the third row and 
column) turns out to be very small indeed, as we learned from the surprisingly 
long lifetime of the B meson (lo-’* sec). 

lU,l = 0.21 to 0.24 0.971 to 0.973 0.036 to 0.070 

10.6 NEUTRAL WEAK INTERACTIONS 

In 1958, Bludman7 suggested that there might exist neutral weak interactions, 
mediated by an uncharged partner of the W’s-the Z’: 

Herefstands for any lepton or any quark. Notice, however, that the same Fermion 
comes out as went in Gust as in QED and QCD). We do not allow couplings of 
the form p- - e- + Z’, for example (this would violate conservation of muon 
and electron number), nor of the form s - d + Z’ (such a strangeness-changing 
neutral process would lead to KO - p’ + p-, which, as I have already remarked, 
is strongly suppressed).* In 1961, Glashow’ published the first paper on unifi- 
cation of weak and electromagnetic interactions; his theory required the existence 

* In the case of neutrul processes, it doesn’t matter whether you use the physical states (d, s, 
h) or the “Cabibbo-rotated” states (d‘, s’, h’). Schematically, the argument runs as follows: 

>--2 gives Al - dd’ = dd cos2 Bc + Fs sin’ Bc + (& + Fd) sin Bc cos Bc 

So the sum of the two is A,,, - d d  + 3s’ = dd + Fs. Thus the net amplitude, once both diagrams 
are combined, is the same whichever states we use. (The same argument generalizes to three generations, 
as long as the KM matrix is unitary.) 
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of neutral weak processes, and specified their structure (see Sect. 10.7). In 1967, 
Weinberg and Salam' formulated Glashow's model as a "spontaneously broken 
gauge theory," and in 197 1, 't Hooft" demonstrated that the Glashow-Weinberg- 
Salam scheme is renormalizable. Thus there were increasingly persuasive theo- 
retical reasons for thinking that neutral weak interactions occur in nature, but 
for a long time there were no experimental data to support this hope. Finally, 
in 1973," a bubble chamber photograph at CERN (Fig. 10.6) revealed the first 
convincing evidence for the reaction 

5, + e - 5, + e 

suggesting mediation by the Zo: 

The same series of experiments also witnessed the corresponding neutrino-quark 
process, in the form of inclusive neutrino-nucleon scattering: 

5, + N - 5, + X 
u , + N - u , + X  

Their cross sections were about a third as large as those of the related charged 
events (5, + N - p' + X and u, + N - p- + X ) ,  indicating that this was indeed 
a new kind of weak interaction, and not simply a higher-order process 

Figure 10.6 The first picture of a neutral weak process (5, + Q -+ 5, + e-). The neutrino 
enters from the left (leaving no track), and strikes an electron, which moves off horizontally 
to the right, emitting two photons (which show up in the picture only when they subse- 
quently produce electron-positron pairs) as it slows down and spirals inward in the su- 
perimposed magnetic field. (Photo courtesy CERN.) 
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(which would yield a far smaller cross section). The CERN results came as wel- 
come encouragement to electroweak theorists, who had been out on a limb now 
for several years. Meanwhile a series of deep inelastic neutrino scattering exper- 
iments was conducted (also at CERN) that confirmed not only the basic structure 
of charged and neutral weak interactions, but also the quark-parton model itself- 
which carries over directly from electron-nucleon scattering, (an electromagnetic 
process) to neutrino-nucleon scattering (a weak process).’2 

As we have seen, the coupling of quarks and leptons to W’ is a universal 
“ V-A” form; the vertex factor is always 

- is, 
- y”( 1 - 7’) 
21Jz 

( w‘* vertex factor) (10.92) 

(It is true that the axial coupling to composite structures, such as the proton, is 
modified, but that is a result of strong interaction contamination-the underlying 
quark process is pure V-A). The coupling of the Zo is not so simple: 

(10.93) 

where g, is the neutral coupling constant, and the coefficients cf and cf, depend 
on the particular quark or lepton (f) involved. In the GWS model, all these 
numbers are determined by a single fundamental parameter O w ,  called the “weak 
mixing angle” (or “Weinberg angle”). See Table 10.1. Moreover, the weak cou- 
pling constants are related to the basic unit of electric charge: 

- 1gz 

2 - -y.<cf - ~57’)  ( z O  vertex factor) 

ge g ,  
g, = - gz = sin 8, ’ sin 8, cos 8, 

(10.94) 

where g, is the electromagnetic coupling constant (in appropriate units, the charge 

TABLE 10.1 NEUTRAL VECTOR AND 
AXIAL VECTOR 
COUPLINGS 
IN THE GWS MODEL 
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of the positron). You’ll see where these predictions come from in the following 
section. The Standard Model provides no way to calculate 0, itselc like the KM 
matrix, its value is taken from experiment: 

Ow = 28.7” (sin2 Ow = 0.23) (10.95) 

Derivation of 0, stands as a major challenge for any theory going beyond the 
Standard Model. Meanwhile, the Zo propagator is [eq. (10.3)] 

In the typical case q2 G M$c2, it reduces to 

(10.96) 

(10.97) 

Finally, the W’ and Zo masses are related by 

Mw = Mz cos 8, (10.98) 

Equations (10.93)-( 10.98) are the basic predictions of the GWS model. Given 
the weak mixing angle, we can now calculate the Wand Z masses (see Problem 
10.17). Their discovery by Rubbia at CERN in 1983, at Mw = 82 GeV/c2 and 
Mz = 92 GeV/c2 (as predicted) was persuasive evidence for the GWS m0de1.l~ 

EXAMPLE 10.4 Elastic Neutrino-Electron Scattering 
In Example 10.1 we calculated the cross section for the W-mediated process 
v, + e - u, + p. We now consider the related Zo-mediated reaction 
v, + e - u, + e: 

PA 

The amplitude is 

and hence 
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Figure 10.7 Elastic neutrino-electron scattering in the CM 

where m is the mass of the electron, and cv and cA are the neutral weak 
couplings for the electron. If we now go to the CM frame, and ignore the 
electron mass (i.e., set m - 0), we find 

where E is the electron (or neutrino) energy, and 0 is the scattering angle 
(Fig. 10.7). The differential scattering cross section [eq. (6.42)] is 

and the total cross section (integrating over all angles) is 

Putting in the GWS values for cv and cA (from Table 10. I), and comparing 
the result of Example 10.1 [eq. (10.14)], we find that for energies substan- 
tially above the muon mass 

U ( V ,  + e- - up + e-) 1 4 
u(vr + e - Y ,  + p-) 4 3 

- - - -  sin2 8 ,  + - sin4 Ow = 0.09 (10.104) 

The current experimental valueI4 is 0.08, which, given the 10% uncertainties 
in the measurements, as well as the (somewhat smaller) uncertainty in O w ,  
is excellent agreement. 

You might well ask why it took so long for neutral weak interactions to 
be detected in the laboratory: after all, 15 years separate Bludman's original 
speculations from the definitive experiments at CERN. The reason is that most 
neutral processes are "masked" by competing electromagnetic ones. For example, 
e+ + e- - p' + p- can occur either by a virtual 2' or by a virtual y (Fig. 10.8); 
at low energies the photon mechanism overwhelmingly dominates.* That's why 

* It is interesting to note, however, that there is a weak contamination in every electromagnetic 
process, since the Zo couples to everything the y does (and then some). For example, the Coulomb 
potential binding the electrons to the nucleus in an atom is slightly modified by Zo exchange, and 
this is observable in atomic spectra. Similarly, there is a weak contribution to electron-proton scattering. 
Although these effects are minute, they carry a tell-tale signature: parity violation. (See ref. 15.) 
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neutrino scattering was originally used to confirm the existence of neutral weak 
interactions; neutrinos have no electromagnetic coupling, so the weak effects are 
not obscured. But neutrino experiments are notoriously difficult; hence the long 
delay. An alternative would be to work at extremely high energies-specifically, 
in the neighborhood of the Zo mass, where the denominator of the Zo propagator 
is small, and the "weak" interaction is correspondingly large. In the early days 
it was hard to estimate O w ,  and hence the Zo mass was quite uncertain. But by 
the late seventies a variety of experimental data pointed to Ow = 29", and hence 
to Mz = 90 GeV/c2 (see Problem 10.17). This prediction was stunningly con- 
firmed in 1983,13 and inspired a major effort to build electron-positron colliders 
that would operate at the Z o  peak. [Two such facilities, the Stanford Linear 
Collider (SLC) at SLAC, and LEP at CERN, are presently under construction, 
and scheduled to begin operation in 1987 and 1989, respectively.] 

EXAMPLE 10.5 Electron-Positron Scattering Near the Zo Pole 
Consider the process e' + e- -f+f(Fig. 10.9), wherefis any quark or 
lepton.* This time we shall not use the approximate form of the Zo prop- 
agator [eq. (10.97)], for we are interested precisely in the regime q2 = 
(MZc)'. The amplitude is 

X g,, - 4'4")[C(2)y"(c$ - c5y5)u( l)] (10.105) ( (Mz42 

where q = p ,  + p 2  = p 3  + p4. Since we are working in the vicinity of 90 
GeV, we can afford to ignore the lepton and quark masses.? In this case 
the second term in the propagator contributes nothing, for q, contracts 
with y' to give 

* Not an electron, however, for then we would have to include the diagram 

>--< 
t I assume mf < Mz,  which is safe unless perhapsfis a top quark. All we know at present is 

that m, > 23 GeV. 



328 10/WEAK INTERACTIONS 
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Figure 10.9 Electron-positron scattering 
p1 p2 near the Zo pole. 

U(4M(CV - c.4r5)v(3) 

b u t d =  83 + H4, and G(4)A = 0 (the Dirac equation (7.94) for a massless 
particle), and 

A ( C V  - c,4rS)v(3) = (CV + CAr5>A~(3) = 0 

for the same reason. Thus 

(10.106) 

Now, the first trace is 

and there is the corresponding expression for the second trace, so we obtain 

In the CM frame this reduces to 

- ScC~c.vc5 cos e }  (10.1 10) 

where E is the energy of each particle and 0 is the scattering angle. The 
differential scattering cross section (6.42) is therefore 

- ~C/C~C:C~ cos e }  (10.1 1 1 )  
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and the total cross section is 

As it stands, u blows up at the Zo pole-that is, when the total energy 
(2E) hits the value Mzc2 (just right to put the Zo on its mass shell). The 
problem is that we have treated the Zo as a stable particle, which it is not. 
It has a finite lifetime 7z  (not yet accurately measured), which has the effect 
of "smearing out" its mass. We can account for this by modifying the 
propagator16 

1 1 
(10.1 13) 

q 2  - ( M ~ C ) ~  - q 2  - ( M Z ~ ) ~  + ihMzrz 

where rz is the decay rate (I', = 1/TZ). With this adjustment, the cross 
section becomes 

Because h r z  4 Mzc2, the correction for finite Zo lifetime is negligible 
except in the immediate vicinity of the Zo pole, where it has the effect of 
softening the infinite spike. 

In Chapter 8 we calculated the cross section for the same process 
when mediated by a photon [eq. (8.6)]: 

(10.1 15) 

(where Qf is the charge of J in units of e). Thus the ratio of weak to 
electromagnetic rates in (for example) muon production, is 

u(e+e- - Z O  - p+p-) - (f - 2 sin2 8, + 4 sin4 
(sin 8, cos 

( 10.1 16) 

The factor in curly brackets is approximately 2, if we use the current value 
of the weak mixing angle (10.95). Substantially below the Zo pole (2E G 
Mzc2), then, 

1 
E4 

[(2E)' - (Mzc2)2]2 + (hI'zMzc2)2 

u(e+e- - y - p+p-) - {  
X 

( 10.1 17) 

and the electromagnetic route dominates (at 2E = fMzc2,  for instance, 
the weak contribution is less than 1%). But right on the Zo pole (2E = 

MZC2) 

(10.1 18) 
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Figure 10.10 Electron-positron scattering in the neighborhood of the Zo pole. 

The lifetime of the Zo is easily estimated (Problem 10.20); using firz = 

2.5 GeV, we obtain az/a, E 200. At the Zo pole, therefore, the weak 
mechanism is favored, by a factor of well over 100, and possibly by as 
much as 1000.* (See Fig. 10.10.) 

10.7 ELECTROWEAK UNIFICATION 

10.7.1 Chiral Fermion States 

All the cards are now on the table;? it remains only to explain where the GWS 
parameters in Table 10.1 and equations (10.94) and (10.98) come from. Glashow’s 
original aim was to unfy  the weak and electromagnetic interactions, to combine 

* Equally interesting is the electromagnetic-weak “interference” that occurs when the two 
amplitudes are combined: I&, + hZl2 = + 1&z12 + 2 Re(h,&). We have calculated 1 & z 1 2  
and (in Chap. 8) I&,/’, but the cross term provides a sensitive test of the GWS theory, even at energies 
substantially below the Z o  pole. (See Halzen and Martin, ref. 12, Sect. 13.6, and ref. 15.) Indeed, it 
was the success of the electroweak interference experiments in 1978 that convinced most theorists 
that the GWS model is correct. For a contemporary account, see Physics Today, September 1978, 
p. 17. 

t I have not discussed the couplings of W ‘ s  and Zo’s to one another (or of W‘s to the photon). 
The rules are similar to those for gluon-gluon coupling in QCD, and are listed in Appendix D. 
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them into a single theoretical system, in which they would appear not as unrelated 
phenomena, but rather as different manifestations of one fundamental “elec- 
troweak” interaction. This was a bold proposition, in 1961.17 In the first place, 
there was the enormous disparity in strength between weak and electromagnetic 
forces. However, as Glashow and others recognized, this could be accounted for 
if the weak interactions were mediated by extremely massive particles. Of course, 
this immediately begs the second question: If it’s really all one basic interaction, 
how come the electromagnetic mediator (y) is massless, when the weak mediators 
( W’ and Zo) are so heavy? Glashow had no particularly good answer (“It is a 
stumbling block we must overlook,” he said coyly). The solution was provided 
by Weinberg and Salam, in 1967 (see refs. 8 and 9) in the form of the “Higgs 
mechanism” (Chapter 11). Finally, there is a structural difference between the 
electromagnetic and weak vertex factors, which at first glance would seem to 
preclude any possibility of unification: The former are purely vectorial (y”), 
whereas the latter contain vector and axial vector parts. In particular, the W’ 
coupling is “maximally” mixed I/-A in character (y”( 1 - y5)). 

This last difficulty is overcome by the ingenious device of absorbing the 
matrix (1  - 7’) into the particle spinor itself. Specifically, we define 

(10.119) 

The subscript (L)  stands for “left-handed,” and is supposed to make you think 
“helicity - 1 .” However, this is somewhat misleading, since uL is not, in general, 
a helicity eigenstate. In fact, as you can easily show (see Problem 10.23) 

E - m c L /  

( 1 0.1 20) 

Ifthe particle in question is massless, then E = Iplc, and 

where (10.122) 

as before. Recall [eq. (7.48)] that h/2Z is the spin matrix for a Dirac particle, 
and hence (a^ - Z) is the helicity, with eigenvalues k 1. Accordingly 

(for m = 0 only) 

(10.123) 

More generally, f( 1 - r5) functions as a “projection operator,” picking out the 
helicity - 1 component of u(p).  On the other hand, ifthe particle is not massless, 
it is only in the ultrarelativistic regime (E  + mc2) that equation (10.121) holds 
(approximately), and hence only in this limit that uL (as defined by equation 
( 10. I 19) carries helicity - 1. Nevertheless, everybody calls uL a “left-handed” 

1 0, 
{u(p), 

if u(p)  carries helicity + 1 

if u(p)  carries helicity - 1 
Hl  - T5)U(P) = 
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TABLE 10.2 CHIRAL SPINORS 

1 O/WEAK INTERACTIONS 

Particles Antiparticles 

R and L correspond to helicity + 1 and - I  if m = 
0, and approximately so if E % mc2. 

state, and I shall stick to the customary language.* Meanwhile, for an antiparticle 
equation ( 10.12 1) reads 

+(p) = - (p^ .z )v (p)  (if rn = 0) (10.124) 

(see Problem 10.23), and for this reason we define 

(10.125) 

The corresponding “right-handed” spinors are 

As for the adjoint spinors, we have 

[Recall that 7’ is Hermitian (ySt = 7’), and it anticommutes with 7fi (7’7’ = 

-75rfi).] Similarly 

We call these various spinors (summarized in Table 10.2) “chiral” fermion states 
(from the Greek word for “hand”-same root as “chiropractor”). 

I emphasize that all this is only notation and terminology; it is useful because 
it allows us to recast the weak and electromagnetic interactions in a form that 
facilitates their unification. Consider, to begin with, the coupling of an electron 
and a neutrino to the W- (as it occurs, say, in inverse beta decay, Example 10.1): 

* Please understand that equation (10.1 19) is a definition of uL-nobody’s arguing about that. 
I’m only worrying about the potentially misleading name. “Left-handed” does not mean “helicity 
- 1 ,” except in cases where the particle’s mass is negligible. 
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The contribution to from this vertex is given by 

(10.129) 

(here e and v stand for the particle spinors; for a while we need to keep careful 
track of the different particle species, and u,, u,,, etc. just gets too cumbersome). 
This quantity is called the (negatively charged) weak “current”; as we shall see, 
it plays a role somewhat analogous to the electric current in QED. Now 

and 

so 

(10.131) 

(10.132) 

This may not look like much of an improvement, but it enables us to rewrite 
equation (10.129) more neatly, in terms of the chiral spinors: 

j ;  = iLYpeL (10.133) 

The weak vertex factor is now purely vectorial-but it couples only left- 
handed electrons to left-handed neutrinos. In the latter sense it is still structurally 
different from the fundamental vertex in QED; however, we can play a similar 
game there, too. Notice that 

(10.134) 

(similarly U = UL + UR), so the electromagnetic “current” can itself be written 
in terms of chiral spinors: 

jEm = -Fr,e = -(CL + CR)y,(eL + eR) = -FLypeL - f?RYpeR (10.135) 

(For future purposes it is best to build in a factor of -1, to account for the 
negative charge of the electron). Observe that the “cross terms” vanish: 

e (10.136) 

but ( 1  - Y5)(1 + ?5) = 1 - (r5)* = o (10.137) 

Equations (10.133) and (10.135) are beginning to look like the stuff of which 
one might build a unified theory. It is true that the weak current only couples 
left-handed states, whereas the electromagnetic current couples both types, but 
apart from that they are strikingly similar. So attractive is this formulation that 
physicists have come to regard left- and right-handed fermions almost as different 
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particles.* In this view, the factor (1 - r5)/2 in the charged weak coupling char- 
acterizes the participating particles, rather than the interaction itselc the latter 
is vectorial in all cases-strong, electromagnetic, and weak alike. 

10.7.2 Weak lsospin and Hypercharge 

In addition to the negatively charged weak current 

describing the process e- - u, + W-, there is also, of course, a positively charged 
current 

representing the process u, - e- + W’. We can express them both in a more 
compact notation by introducing the left-handed doublet 

and the 2 X 2 matrices 

so that 

L 
X L  = (2) (10.138) 

(10.139) 

( 10.140) 

The matrices 7’ are linear combinations of the first two Pauli spin matrices [eq. 
(4.26)] : 

T+ = 1(,1 2 - + iT2 )  (10.141) 

* There is a danger in carrying this too far. You may find yourself wondering, for example, 
whether the left-handed electron necessarily has the same mass as the right-handed electron; or, 
noting that no vector interaction can couple a left-handed particle to a right-handed one [see eqs. 
(10.136) and (10.137)], you may ask how the two “worlds” communicate at all. Both questions are 
based on a misunderstanding of uL and uR. The problem is that, useful as it is in describing particle 
interactions, handedness is not conserved in the propagation of a free particle (unless its mass is zero). 
(Formally, 7’ does not commute with the free particle Hamiltonian.) In fact, uL and uR do not satisfy 
the Dirac equation (see Problem 10.24). A particle that starts out left-handed will soon evolve aright- 
handed component. (By contrast, helicity is conserved in free-particle propagation.) Only for massless 
fermions can left- and right-handed species be considered distinct particles in the full sense of the 
word; and, of course, left- and right-handed neutrinos are distinct: as far as we know right-handed 
neutrinos do not exist at all. 
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(I use the letter 7 here, instead of 0,  to avoid possible confusion with ordinary 
spin.) This is all very reminiscent of isospin; in Chapter 4, Section 4.5, we put 
the proton and neutron into a doublet similar to (10.138). Indeed, we could 
contemplate a full “weak isospin” symmetry, if only there were a third weak 

(: -3: current, corresponding to $7’ = 4 
(10.142) 

“Perfect!” (I hear you exclaim.) “There’s the neutral weak current!” Not so fast. 
This current only couples left-handed particles; in the older language it is pure 
V-A, whereas the neutral weak interaction involves right-handed components 
as well. But hang on-we’re almost there. 

Building on the parallel with isospin, we are led to consider a weak analog 
of hypercharge (Y),* which is related to electric charge (Q, in units of e) and the 
third component of isospin (Z’), by the Gell-Mann-Nishijima formula [eq. (4.37)]: 

Q = Z 3 + $ Y  (10.143) 

We introduce, then, the “weak hypercharge” current 

j :  = 2jEm - 2j: = -2&yPeR - FLyPeL - YLY,,YL ( 1 0.1 44) 

This is an invariant construct, as far as weak isospin is concerned, for the latter 
does not touch right-handed components at all, and the combination 

&yPeL + ~LY,VL = )SLY~XL 

is itself invariant.? The underlying symmetry group is called SU(2)L 0 U(1); 
SU(2)L refers to the weak isospin (with a subscript to remind us that it involves 
left-handed states only), and U( 1) refers to weak hypercharge (involving both 
chiralities). 

I have developed all this in terms of the electron and its neutrino, but it is 
a trivial matter to extend it to the other leptons and quarks. From the left-handed 
doublets (Cabibbo-rotated, in the case of the quarks) 

we construct three weak isospin currents 

jP = ~ X L Y ~ T X L  
and a weak hypercharge current 

. Y  - 2‘em - 2.3 
J P  - J P J P  

(10. 

(10. 

46) 

47) 
* You have probably forgotten this word, but hypercharge is essentially the same as strangeness, 

only shifted, in the case of baryons, so that the center row of Eightfold Way diagrams will always 
carry Y = 0. Specifically, Y = S + A, where A is the baryon number. 

t If you care to think of it this way, what we have done is to combine two weak-isospin 
doublets to make an isotriplet, SLeL, ( S L e ~  - &eL), FLuL [analogous to (5.89)], and an isosinglet 
(iLuL + eLeL) [analogous to (5.90)]. The first three go to make the weak isospin currents j’ and j ’ ;  
the last, together with a right-handed piece, makes the weak hypercharge current, jy. 
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where jEm is the electric current: 

(10.148) 

(summed over the particles in the doublet, with Qi the electric charge).* 

10.7.3 Electro-Weak Mixing 

Now, the GWS model asserts that the three weak isospin currents couple, with 
strength g,, to a weak isotriplet of intermediate vector bosons, W, whereas the 
weak hypercharge current couples with strength g‘/2 to an isosinglet intermediate 
vector boson, B: 

( 10.149) 

Within this fundamental structure is contained all of electrodynamics and all of 
the weak interactions. The arrow denotes a three-vector in weak isospin space; 
the dot product can be written out explicitly: 

j, - W, = j : ~ ” ’  + j ; ~ f i *  + j ,  3 W,’ (10.150) 

or, in terms of the charged currents, j :  = J :  k i j ; :  

j;Wp = ( l / f i ) j : ~ p +  + ( l / f i ) j ; ~ , -  + j : ~ * ’  (10.151) 

where = ( 1 / f i ) ( ~ :  T iW;> (10.152) 

are the wave functions representing the W’ particles. 
The couplings to W’ can now be read off, from the coefficients of W: in 

expression (10.149). For example, in the process e- - u, + W- we have j ;  = 

YLypeL = 5y,[( 1 - y5)/2]e [see eq. (10.129)], giving a term 

The vertex factor is 

(10.154) 

which is exactly what we started with [eq. (10.5)]. 

* You might ask what the dzference is between weak isospin (and hypercharge) and their 
ordinary (“strong”) counterparts. The question is particularly pertinent when you come to the light 

quarks: The weak isospin doublet is . Pretty similar 

. . . is there anything to this? Nope. After all, (i) weak isospin applies to leptons as well as quarks 
(and to all three quark generations); (ii) weak isospin involves only the left-handed chiralities, (all 
right-handed states are singlets-i.e., invariant-as far as weak isospin is concerned); (iii) weak iso- 
doublets are Cabibbo-rotated. To put it plainly, strong isospin and weak isospin have nothing to do 
with one another, save for a common mathematical structure (which, for that matter, they share with 
many other systems, such as ordinary spin $) and the (perhaps unfortunate) similarity in their names. 

, whereas the strong isospin doublet is (2 
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But the underlying SU(2)L 0 U( 1)  symmetry is “broken,” in GWS theory: 
The two neutral states, W3 and B, ‘‘mix,’’ producing one massless linear com- 
bination (the photon), and an orthogonal massive combination (the Zo): 

A,  = B, cos 8, + W;f sin 8, 
Z, = -B, sin 8, + W: cos 8, (10.155) 

(You see now why 8, is called the “weak mixing angle.”) In terms of the physical 
states (A’ and Z”), then, the neutral portion of the electro-weak interaction 
(10.149) reads: 

g, cos 8, j :  - g‘ - sin 8, j ;]Zp} (10.156) 
2 

Of course, we know the electromagnetic coupling; in the present language it is 

- ig, jEm A’ (10.157) 

Meanwhile, from equation (10.147), jEm = j :  + ij,’. Evidently consistency of 
the unified electro-weak theory with ordinary QED requires 

g, sin 8, = g’ cos 8, = g, (10.158) 

The weak and electromagnetic coupling constants are not independent. 
There remains the weak coupling to the Zo. 

-igz(j: - sin2 e , j ; m ) z ~  

(10.156), and (10.158), we obtain 

where ge 
g z  = sin 8, cos 8, 

Using equations ( 10.147), 

(10.159) 

(10.160) 

From expression (10.159) we can pick out the neutral weak couplings. For ex- 
ample, the process v, - u, + Zo comes exclusively from the j :  term; referring 
back to equation (10.142), we have 

gz - 
2 

-i - (vLy,vL)Zp = - 

and hence the vector and axial vector couplings [eq. (10.93)] are cb = c2 = f. 
I’ll leave it for you to work out the other entries in Table 10. I* (Problem 10.26). 

Finally, there is the obvious question: why is the underlying SU(2)2 0 U( 1) 
symmetry of the electroweak interactions “broken”-why do the B and W3 
states “mix”? [eq. (lO.l55)]-to form the Zo and the photon? If weak and elec- 
tromagnetic interactions are, deep down, both manifestations of a single elec- 
troweak force, how come the weak mediators ( W and 2’) are so heavy, while 
the electromagnetic mediator (7) is massless? We shall address these matters in 
the next chapter. 

* Since the weak mixing angle is undetermined, in the GWS model, there remain in effect 
two independent coupling constants (ge and g,, say, or g, and gz); in this sense it is not a completely 
unified theory, but rather an integrated theory of weak and electromagnetic interactions. 
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PROBLEMS 

10.1. (a) Calculate (IJnI’) for v, + e- - p- + v, using the more general coupling 
y”( 1 + ty’). Check that your answer reduces to equation ( 10.1 1) in the case 
t = - 1 .  

(b) Let rn, = m, = 0, and calculate the CM differential scattering cross section. 

(c) If you had accurate experimental data on this reaction, how could you deter- 

10.2. Calculate the lifetime of the T lepton. Compare the experimental result. (Assume 
that the muon mass can be neglected, in comparison with m, . Do the experimental 
data support this approximation?) 

10.3. Suppose the weak interaction were pure vector (as Fermi supposed). Would you 
still get the graph shown in Figure 10. l? 

10.4. Using the coupling y”(1 + 67’) for n - p + W, but y’(l - y’) for the leptons, 
calculate the spin-averaged amplitude for neutron beta decay. Show that your 
result reduces to equation ( 10.43) when t = - 1 .  

Also, find the total cross section. 

mine t? 

1 + (171 ‘p4)(p2 . ~ 3 ) ( l  + t)’ - (1 - c2)mPmnc2h .~4)1 

10.5. (a) Derive equation (10.55). (b) Derive equation (10.6 1) .  

10.6. In the text I said that electron energies in neutron decay range up to about 
(m, - mp)c2. This is not exact, since it ignores the kinetic energy of the proton 
and the neutrino. What kinematic configuration gives the maximum electron 
energy? Apply conservation of energy and momentum to determine the exact 
maximum electron energy. 

[Answer: (m: - m: + m~)c2/2m,.] 

How far off is the approximate answer (give the percent error)? 

(b) Approximate as suitable for m, G Am = (m, - mp). Note that me now drops 
10.7. (a) Integrate equation (10.62) to get equation (10.63). 

out. 

10.8. Obtain equation (10.65). 

10.9. Find the minimum de Broglie wavelength (A = h/p) of the Win neutron decay, 
cm). [Answer: maximum and compare it with the diameter of the neutron (- 
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IpI = 1.18 MeV/c, occurring when p and e emerge back to back, so the minimum 

10.10. Analyze T-  decay as a scattering process, using the methods of Example 7.8 and 
Section 9.3. Calculate the decay rate, and, by comparing your answer with the 
one in the text, obtain the formula for J ,  in terms of 1$(0)l2. Assume mu = 

md = m. 

= lo-'' cm] 

10.11. Show that if mc2 Q E 

where u is a particle spinor satisfying the Dirac equation: 

with E > 0 [eq. (7 .36)] .  Show therefore that the projection matrix 

P+ = t ( l  5 75) 

picks out the helicity f 1 component of u: 

z * p^(P,u) = '-(P*u) 

10.12. Calculate the ratio of the decay rates K- - e- + Y, and K-  - p- + iP. The 
observed K-  lifetime is 1.2 X lo-' sec, and 64% of all K-  particles decay by the 
p- + V P  route. Estimate the kaon decay constant f K .  

10.13. Calculate decay rates for the following processes: (a) Zo - 2' + e + V,, (b) 2-  - 
A + e + 5,, (c) Z- - Xo + e + 5,, (d) A - p + e + V,, (e) 2- - n + e + Ve;  
(f) Xo - 2' + e + 5, .  Assume the coupling is always yp( 1 - y5)-that is, ignore 
the strong interaction corrections to the axial coupling-but do not forget the 
Cabibbo factor. Compare the experimental data, where available. 

10.14. (a) Show that as long as the KM matrix is unitary (U-l = u), the GIM mechanism 
for eliminating 

(b) How many independent real parameters are there in the general 3 X 3 unitary 
matrix? How about n X n? 
We are free to change the phase of each quark wave function (normalization 
of u really only determines IN12; see Problem 7.3) ,  so 2n of these parameters 
are arbitrary-or rather, (2n - l), since changing the phase of all quark wave 
functions by the same amount has no effect on U. Question: Can we thus 
reduce the KM matrix to a real matrix (if it is real and unitary, then it is 
orthogonal: U-' = 0). 

( c )  How many independent real parameters are there in the general 3 X 3 (real) 
orthogonal matrix? How about n X n? 

(d) So, what is the answer? Can you reduce the KM matrix to real form? How 
about for only two generations (n  = 2)? 

10.15. Show that the KM matrix (10.90) is unitary for any (real) numbers 01,  0 2 ,  03, 

- p'p- works for three (or any number of) generations. 

and 6 .  



PROBLEMS 341 

10.16. Suppose you started with a T’ meson ( td) .  Given equation (10.91), what is the 
most likely sequence of decays? [Answer: Leaving out pions or leptons, we expect 

10.17. Using the value of the Fermi constant GF [eq. (10.40)] and of 8, [eq. (10.95)], 
“predict” the mass of the W’ and the Zo, in GWS theory. Compare the experi- 
mental values. 

10.18. In Example 10.4 I used muon neutrinos, rather than electron neutrinos. As a 
matter of fact, U, and V ,  beams are easier to produce then u, and 5,,  but there is 
also a theoretical reason why up + e- - u, + e- is simpler than u, + e- - u, + e- 
or V ,  + e- - V ,  + e-. Explain. 

10.19. (a) Calculate the differential and total cross section for 5, + e- - U p  + e- in the 
GWS model. 
[Answer: Same as equation (10.103), only with the sign of cAcv reversed; see 
Halzen and Martin, ref. 12, eq. 13.49.1 

(b) Find the ratio u(V, + e- - V ,  + e-)/u(u, + e- - up + e-). Assume the energy 
is high enough that you can set me = 0. 

wherefis any quark or any lepton. 
Assumefis so light (compared to the Z )  that its mass can be neglected. 

T’ - Bo - D’ - KO *‘.I 

10.20. (a) Calculate the decay rate for Zo + f +  

(b) Assuming these are the dominant decay modes, find the branching ratio for 
each species of quark and lepton (remember that the quarks come in three 
colors). Assume that 2m, < M z ,  and that the approximation in (a) is valid 
even for t. 
[Answer; 3% each for e, p, 7; 6% each for u,, u,,, u,; 10% each for u, c, t;  14% 
each for d, s, b.] 

(c) Calculate the lifetime of the Zo. How would it change if there exists a fourth 
generation? (Notice that an accurate measurement of the Zo lifetime will 
tell us how many quarks and leptons there can be with masses less than 
45 GeVlc’.) 

10.21. Estimate R (the total ratio of quark pair production to muon pair production in 
e+e- scattering), when the process is mediated by Zo. For the sake of argument 
assume the top quark is light enough so that equation ( 10.1 12) can be used. Don’t 
forget color. 

10.22. Graph the ratio, equation (10.1 16) as a function of total energy (2E),  using 2 for 
the expression in brackets, Mzc2 = 90 GeV, and h r z  = 2.5 GeV. 

10.23. Derive equation (10.120), using equation (7.36). Also derive equation (10.124). 

10.24. (a) If u(p)  satisfies the Dirac equation (7.34), show that uL and uR (Table 10.2) 

(b) Find the eigenvalues and eigenspinors of the matrices P, = ;( 1 f 7’). 
(c) Can there exist spinors that are simultaneously eigenstates of P+ (say) and of 

do not (unless m = 0). 

the Dirac operator (d- mc)? 
[Answer: No; these operators do not commute.] 

10.25. Work out the weak isospin currents j :  and j :  for the light quark doublet u and 
d’. Also, construct the electromagnetic current ( jZm) and the weak hypercharge 
current (j:). (Leave your answers in terms of d‘.) 

10.26. From expression (10.159), determine the vector and axial vector couplings in 
Table 10.1. 





Chapter 11 

Gauge Theories 

This chapter introduces the “gauge theories” that are now believed to underlie 
all elementary particle interactions. I begin with the Lagrangian formulation 
of classical mechanics, and proceed to Lagrangian field theory, the principle 
of local gauge invariance, the notion of spontaneous symmetry breaking, and 
the Higgs mechanism (which accounts for the mass of the W s  and the Z). 
This material is quite abstract (in contrast to previous chapters); it concerns 
the fundamental quantum field theories from which the Feynman rules derive. 
It will not help you to calculate any cross sections or lifetimes. On the other 
hand, the ideas discussed here constitute the foundation on which virtually 
all modern theories are predicated. To understand this chapter it will help to 
have studied some Lagrangian mechanics, but more essential is the relativistic 
notation in Chapter 3, the taste of group theory in Chapter 4, the Feynman 
calculusfrom Chapter 6 ,  and the Dirac equation from Chapter 7. 

11 . I  LAGRANGIAN FORMULATION OF CLASSICAL 
PARTICLE MECHANICS 

According to Newton’s second law of motion, a particle of mass m, subjected 
to a force F, undergoes an acceleration a given by 

F = ma (1  1.1) 

If the force is conservative, it can be expressed as the gradient of a scalar potential 
energy function U: 

F = -vu (11.2) 

and Newton’s law reads 

343 
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dv 
m- = - V U  

dt 
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(1 1.3) 

where v is the velocity.’ 

grangian” 
An alternative formulation of classical mechanics begins with the “La- 

L =  T -  U (11.4) 

where T is the kinetic energy of the particle: 

T =  1my2 2 (11.5) 

The Lagrangian is a function of the coordinates qi (say, q1 = x, 4 2  = y, q3 = z)  
and their time derivatives qi(ql = v,, q2 = v,, q3 = vz). In the Lagrangian for- 
mulation the fundamental law of motion is the Euler-Lagrange equation:2 

( i  = 1, 2, 3) 

Thus in Cartesian coordinates we have 

(11.6) 

(11.7) 

(11.8) 

and the Euler-Lagrange equation (for i = 1) reproduces the x component of 
Newton’s law, in the form of equation (1 1.3). The Lagrangian formulation is 
thus equivalent to Newton’s (at least, for conservative systems), but it has certain 
theoretical advantages, as we shall see in the following sections. (See also 
Problem 1 1.1 .) 

11.2 LAGRANGIANS IN RELATIVISTIC FIELD THEORY 

A particle, by its nature, is a localized entity; in classical particle mechanics we 
are typically interested in calculating its position as a function of time: x(t), y(t),  
z(t).  A j e l d ,  on the other hand, occupies some region of space; in field theory 
our concern is to calculate one or more functions of position and time: &(x, y, 
z, t). The field variables & might be, for example, the temperature at each point 
in a room, or the electric potential V ,  or the three components of the magnetic 
field B. In particle mechanics we introduced a Lagrangian L that was a function 
of the coordinates qi and their time derivatives, ql; in field theory we start with 
a Lagrangian (technically, a Lagrangian density) &, which is a function of the 
fields 4i and their x, y, z and t derivatives: 

(11.9) 
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In the former case, the left side of the Euler-Lagrange equation ( 1 1.6) involves 
only time derivatives; a relativistic theory must treat space and time coordinates 
on an equal footing, and the Euler-Lagrange equations generalize as you might 
expect: 

”(&) = g ( i  = 1, 2, 3 , .  . .) (11.10) 

EXAMPLE 11.1 The Klein-Gordon Lagrangian for a Scalar (Spin-O) Field 
Suppose we have a single, scalar field variable 4, and the Lagrangian is 

2 h  (mcY 1 
2 

h: = -(d&dJ)(&$) - - - $2 

In this case 

(1 1.1 1) 

(11.12) 

(If this confuses you, write out the Lagrangian “longhand”: 

In this form it is clear that 

and so on.) Meanwhile 

and hence the Euler-Lagrange formula requires 

which is the Klein-Gordon equation [eq (7.9)], 
field theory) a particle of spin 0 and mass m. 

(11.13) 

describing (in quantum 

EXAMPLE 11.2 The Dirac Lagrangian for a Spinor (Spin- f ) Field 
Consider now a spinor field $, and the Lagrangian 

h: = i(hc)$y’ a,$ - (mc2)$$ (11.14) 

We treat $ and the adjoint spinor $ as independent field variables.* Ap- 
plying the Euler-Lagrange equation to 4, we find 

* Since J.  is a complex spinor, there are actually eight independent fields here (i runs from 1 
to 8): the real and imaginary parts of each of the four components of J.. But in applying the Euler- 
Lagrange equations any linear combinations of these eight will do just as well, and we choose to use 
the four components of J.  plus the four components of J.. 
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so that (11.15) 

This is the Dirac equation [eq. (7.20)], describing (in quantum field theory) 
a particle of spin 4 and mass m. Meanwhile, if we apply the Euler-Lagrange 
equation to I), we obtain 

a& 
a+ 

-= - = -mc2$ ific$y’, 
aL 

W,$) 

and hence i + (7)~ = 0 

which is the adjoint of the Dirac equation (see Problem 7.13). 

EXAMPLE 11.3 The Proca Lagrangian for a Vector (Spin-1) Field 
Finally, suppose we take a vector field, A’, with the Lagrangian 

Here 

(see Problem 11.2), and 

so the Euler-Lagrange equation yields 
2 

d,(d’A” - PA”) + (7) A” = 0 

(11.17) 

(11.18) 

(11.19) 

This is called the Proca equation; it describes a particle of spin 1 and mass 
m. Incidentally, since the combination (@A” - PA’) occurs repeatedly in 
this theory, it is useful to introduce the shorthand 

(1 1.20) F!-’Y ( )PA” - a”A” 

Then the Lagrangian reads 

and the field equation becomes 

2 

d,F’’” + (y) A” = 0 

(11.21) 

( 1 1.22) 
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If the notation is beginning to remind you of electrodynamics, it’s no ac- 
cident, for the electromagnetic field is precisely a massless vector field; if 
you set m = 0 in equation (1  1.22) you’re left with Maxwell’s equations for 
empty space. 

The Lagrangians in these examples came out of thin air (or rather, they 
were concocted in such a way as to reproduce the desired field equations). In 
classical particle mechanics L is derived (L  = T - U), but in relativistic field 
theory L: is usually taken as axiomatic-we have to start somewhere. The La- 
grangian for a particular system is by no means unique; you can always multiply 
L by a constant, or add a divergence, (drM’, where M” is any function of 4, 
and d&)-such terms cancel out when you apply the Euler-Lagrange equations, 
so they do not affect the field equations. In this sense the factors of 4 in the 
Klein-Gordon Lagrangian, for example, are purely conventional.* Apart from 
that, however, what we have here are the Lagrangians for spin 0, spin 4, and 
spin 1. So far, however, we are talking only of free fields, with no sources or 
interactions. 

EXAMPLE 11.4 The Maxwell Lagrangian for a Massless Vector Field with 
Source J p  

Suppose 

(11.23) 

where F’” (again) stands for F A ”  - $A”, and J’ is some specified function. 
The Euler-Lagrange equations yield 

- 1  1 
1 6 ~  ’“ c ’  = - F’”F - - J@A 

(11.24) 

which (as we found in Chapter 7, Section 7.4) is the tensor form of Maxwell’s 
equations, describing the electromagnetic fields produced by a current J’. 
Incidentally, it follows from equation ( 1 1.24) that 

a,.r = o (1 1.25) 

That is, the internal consistency of the Maxwell Lagrangian ( 1 1.23) requires 
that the current satisfy the continuity equation (7.74); you can’t just put 
in any old function for J’-it’s got to respect conservation of charge. 

* The Lagrangian (L)  cames units of energy [eq. ( 1  I .4)], and the Lagrangian density (L) has 
the units of energy per unit volume. The fields carry dimensions as follows: 

6 (scalar field): \/ML/T 
4 (spinor field): L-”* 

A’ (vector field): \/ML/T 

These are chosen so that 4 will go over to the Schrodinger wave function (in the nonrelativistic limit) 
and A’ to the Maxwell vector potential (in the nonquantum limit). By the way, in Heaviside-Lorentz 
units the Proca and Maxwell Lagrangians would be multiplied by 4n. 
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11.3 LOCAL GAUGE INVARIANCE 

Notice that the Dirac Lagrangian 

(11.14) 

is invariant under the transformation 

\c, - e’@$ (global gauge transformation) (1  1.26) 

(where 8 is any real number), for then 4 - Cis$, and in the combination $$ 
the exponential factors cancel out. For historical reasons, we call (1 1.26) a (global) 
gauge transformation (“phase” transformation would be a more sensible term). 
But what if the phase factor is different at different space-time points; that is, 
what $8 is a function of xp: 

\c, - e’@(x) $ (local gauge transformation) (1  1.27) 

Is the Lagrangian invariant under such a “local” gauge transformation? The 
answer is no, for now we pick up an extra term from the derivative of 8: 

d,(e’@+) = i(a,e)e’@$ + e’@d,\c, (1 1.28) 

so that L - 6 - hc(d,O)$y”$ (1 1.29) 

Actually, for what follows it is convenient to pull a factor of -(q/hc) out of 8, 
letting 

tic 
4 

A(x) = - - 8(x) (11.30) 

where q is the charge of the particle involved. In terms of A, then, 

L - -c + (4+Y”$)dpA (11.31) 

under the local gauge transformation 

$ - e-iqNx)/hc$ (11.32) 

So far, there is nothing particularly new or deep in all this. The crucial 
point comes when we demand that the complete Lagrangian be invariant under 
local gauge transformations.* Since the free Dirac Lagrangian (1 1.14) is not 
locally gauge invariant, we are obliged to add something, in order to soak up 
the extra term in equation ( 1  1.3 1). Suppose 

L = [ihc$y” a,$ - rnc2$$] - (q$yP\c,)A, (1 1.33) 

where A,  is some new field (called a “gauge” field) which transforms under local 
gauge transformations according to the rule 

* I know of no compelling physical argument for why a global invariance should necessarily 
hold locally. If you believe that gauge transformations are in some sense “fundamental,” then I 
suppose one should be able to cany them out independently at spacelike-separated points (which 
are, after all, out of communication with one another). But I think this begs the question. Better, for 
the moment at least, to take the requirement of local gauge invariance as a new principle of physics 
in its own right. 
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A,  + A,  + a,x (11.34) 

This “new, improved” Lagrangian is now invariant under local gauge transfor- 
mations; the price we had to pay was the introduction of a new vector field that 
couples to $ through the last term in equation (1 1.33) (see Problem 1 1.6). But 
equation (1  1.33) isn’t the whole story; the full Lagrangian must include a “free” 
term for the gauge field. Since it is a vector field, we look to the Proca Lagrangian 

-1 
(11.21) 

But there is a problem here, for whereas F”” = PA” - $Aw is invariant under 
(1  1.34), as you should check for yourself, A”A, is not. Evidently, the gauge field 
must be massless (mA = 0), otherwise local gauge invariance will be lost. 

Conclusion: if we start with the Dirac Lagrangian, and impose local gauge 
invariance, we are forced to introduce a massless vector field (A,), and the com- 
plete Lagrangian becomes 

L = [ ihc$yp a,$ - me2$$] + - FpuFWy - [(&yPic,)A,] (1 1.35) [i1, I 
As you will have guessed, A” is precisely the electromagnetic potential; the gauge 
transformation rule for A” (1 1.34) is just what we found back in Chapter 7 [eq. 
(7.8 l)], and the last two terms in equation (1 1.35) reproduce the Maxwell La- 
grangian (1 1.23), with the current density 

J” = C4($Y”$) (1  1.36) 

Thus the requirement of local gauge invariance, applied to the free Dirac La- 
grangian, generates all of electrodynamics, and specifies the current produced 
by Dirac particles. 

In case the procedure for invoking local gauge invariance seems mysterious, 
let’s review it, and see what was actually involved. The difference between global 
and local gauge transformations arises when we calculate derivatives of the fields 
[eq. ( 1  1.28)]: 

(1 1.37) 

Instead of a simple phase factor, we pick up an extra term involving d,X. I f  in 
the original (free) Lagrangian we replace every derivative (a,) by the so-called 
“covariant derivative” 

4 
hc 21p = a, + i- A,  (11.38) 

the transformation of A ,  [eq. (1 1.34)] will cancel the offending term in equation 
(1  1.37) 

a,,$ -+ e-i@/f’ca) ic, ( 1  1.39) 
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and the invariance of L is restored. The substitution of a), for a,, then, is a 
simple device for converting a globally invariant Lagrangian into a locally in- 
variant one; we call this the “minimal coupling rule” [it’s what I used, in fact, 
to generate the extra term in eq. (1 1.33)].* But the covariant derivative introduces 
a new vector field (Aw), which requires its own free Lagrangian; if the latter is 
not to spoil local gauge invariance, we must take the gauge fields to be massless. 
This leads to the final expression (1 1.35), which people in the know would im- 
mediately recognize as the Lagrangian for quantum electrodynamics-Dirac 
fields (electrons and positrons) interacting wth Maxwell fields (photons). 

The idea of local gauge invariance goes back to the work of Hermann Weyl 
in 19 1 9.3 However, its power and generality were not fully appreciated until the 
early seventies. Our starting point-the global phase transformation ( 1 1.26)- 
may be thought of as multiplication o f+  by a unitary 1 X 1 matrix: 

$ - U+, where UtU = 1 (1 1.40) 

(Here U = eio). The group of all such matrices is U( 1) (see Table 4.2), and hence 
the symmetry involved is called “U( I )  gauge invariance.” This terminology is 
extravagant for the case at hand (a 1 X 1 matrix is a number, so why not leave 
it at that?), but in 1954 Yang and Mills4 applied the same strategy (insisting that 
a global invariance hold locally) to the group SU(2), and later on the idea was 
extended to color SU( 3), producing chromodynamics. In the Standard Model 
all of the fundamental interactions are generated in this way. 

11.4 YANG-MILLS THEORY 

Suppose now that we have two spin-$ fields, 
absence of any interactions, is 

and $2. The Lagrangian, in the 

(1 1.41) 

It’s just the sum of the two Dirac Lagrangians. (Apply the Euler-Lagrange equa- 
tions to this L, and you’ll find that and +* both obey the Dirac equation, 
with the appropriate mass.) But we can write equation ( 1 1.4 1) more compactly 
by combining q1 and 11/2 into a two-component column vector: 

L = [ihc$,y” - mlc2$111/1] + [ihc$2ypda$2 - m2c2$2$2] 

(1 1.42) 

(Of course, 
might prefer a double-index notation: 

and *z are themselves four-component Dirac spinors, and you 
where a = 1, 2 identifies the particle 

* The minimal coupling rule is much older than the principle of local gauge invariance. In 
terms of momentum [p,, - iha,, see eq. (7.5)] it reads p,, - p,, - i(q/c)A,, and is a well-known 
trick in classical electrodynamics for obtaining the equation of motion for a charged particle in the 
presence of electrodynamic fields. See J.  D. Jackson, Classical Electrodynamics, 2d Ed. (New York 
Wiley, 1975), eq. (12.29). It amounts, in this sense, to a sophisticated formulation of the Lorentz 
force law. In modern particle theory we prefer to regard local gauge invariance as fundamental, and 
minimal coupling as a device for achieving it. 
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and i = 1 ,  2, 3, 4 labels the spinor component. However, in the present context 
we are only concerned with the particle index, although the Dirac matrices, of 
course, act on the spinor indices.) The adjoint spinor is 

$ = ($1 $2) ( I  1.43) 

and the Lagrangian becomes 

L = ihc$y’ a,$ - c’$M$ (1 1.44) 

where (1 1.45) 

is the “mass matrix.” In particular, if the two masses happen to be equal equation 
( I  1.44) reduces to 

L = ihc$y’ a& - mc2$$ ( I  1.46) 

This looks just like the one-particle Dirac Lagrangian. However, $ is now 
a two-element column vector, and L admits a more general global invariance 
than before: 

*+ u* (1 1.47) 

where U is any 2 X 2 unitary matrix 

UTU= 1 ( I  1.48) 

For under the transformation (1 1.47), 

$ -+ $u+ (1 1.49) 

and hence the combination $$ is invariant. Now, just as any complex number 
of modulus 1 can be written in the form eiB, with real 0, so any unitary matrix 
can be written in the form’ 

u= eiH (11.50) 

where H is Hermitian (Ht = H).* Moreover, the most general Hermitian 
2 X 2 matrix can be expressed in terms of four real numbers, al , a2, a3, and 0 
(Problem 1 I .  10): 

H = 0 1 + 7 . a  (11.51) 

where 1 is the 2 X 2 unit matrix, T ~ ,  r2,  73 are the Pauli matrices (4.26), and the 
dot product is a convenient shorthand for rial + 72a2 + 73a3. Thus any unitary 
2 X 2 matrix can be expressed as a product: 

(1 1.52) u = ei8eir. a 

* In matrix theory the natural generalization of complex conjugation (*) is Hermitian con- 
jugation (?)--transpose conjugation. Of course, there’s no distinction in the case of 1 X 1 matrices 
(complex numbers), but for higher dimensions it is the Hermitian conjugate that shares the most 
useful properties of ordinary complex conjugation. In this sense the closest analog to a real number 
(a = a*) is a Hermitian matrix ( A  = A’), and the analog to a number of modulus 1 (a*u = 1) is a 
unitary matrix (A+A = 1). 
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We have already explored the implications ofphase transformations (el’); in this 
section we shall concentrate on transformations of the form 

+ - [global SU(2) transformation] (11.53) 

The matrix en’a has determinant 1 [see Problem 4.221, and therefore belongs 
to the group SU(2). Generalizing the terminology of Section 11.3, we say that 
Lagrangian ( 1 1.46) is invariant under global SU(2) gauge transformations.* What 
Yang and Mills did was to promote this global invariance to the status of a locul 
invariance. 

The inspiration and the strategy were similar to Weyl’s, but the imple- 
mentation is more subtle, in fact, it’s quite remarkable that it works at all. The 
first step is to let the parameters (a) be functions of xp [as before, equation 
(1 1.30), I’ll let X(x) = -(hc/q)a(x), where q is a coupling constant analogous to 
electric charge]: 

+ + S+, where S E e-‘q”x(x)/hc [local SU(2) transformation] (1  1 S4) 

As it stands, I is not invariant under such a transformation, for the derivative 
picks up an extra term: 

a,,+ - S a,,+ + (d,S)+ ( 1  1.55) 

The remedy, again, is to replace the derivative in 6 by a “covariant derivative,” 
modeled on equation ( 1 1.38), but taking into account the structure of equation 
(1  1.55): 

( 1  1.56) 23, = d,, + i - T - A ,  

and assign to the gauge fields A, (it takes three of them this time) a transformation 
rule such that 

a,+ - s(a,+) ( 1  1.57) 

For then the Lagrangian ( 1  1.46) will clearly be invariant. 
It is not a trivial matter to deduce the transformation rule for A, from 

( 1  1 .57).6 I’ll leave it for you to show (Problem 11.1 1) that A, - A;, where A; 
is given by 

4 
h C  

7 * A: = S(7 A,,)S-’ + i - (d,S)S-’ (1 1.58) 

This much is relatively straightforward. But S and S-’ in the first term cannot 
be brought together, because they do not commute with T - A,,. Nor is the gradient 
of S simply -i(q7 * d,X/hc)S, because S does not commute with 7 - d,X. You can 
work out the exact result (using Problems 4.20 and 4.2 l), if you have the energy, 

(3 

* It is also invariant under the larger group U(2) .  But (1  1 S 2 )  shows that any element of U ( 2 )  
can be expressed as an element of SU(2)  times an appropriate phase factor (in group-theoretical 
language, U ( 2 )  = U( 1) 0 SU(2)) ,  and since we have already studied U( 1) invariance, the only thing 
new here is the SU(2) symmetry. 
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but the answer is not particularly illuminating. For our purposes it will suffice 
to know the approximate transformation rule, in the limiting case of very small 
A, for which we may expand S and keep only the first-order terms: 

In this approximation equation (1 1.58) yields 

iq 
hc 

7-A: E T - A ,  + - [ T - A , ,  T - A ]  + T * ~ , A  

and hence (using Problem 4.20, to evaluate the commutator) 

29 
hc 

A: E A, + d,A + - (A X A,,) 

The resulting Lagrangian 

1 = ificlc/y”a),$ - me2$$ = [ihcrC/y” a,$ - mc21c/$] - (&’T$)*A,, 

(11.59) 

(1 1.60) 

(11.61) 

(1 1.62) 

is invariant under local gauge transformations (1  1.54) and (1 1 S S ) ,  but we have 
been obliged to introduce three new vector fields A’ = (A?, A$ ,  A$), and they 
will require their own free Lagrangian: 

1 
FYF,,3 = - - F’” * F,, F$”F,,z - - (1 1.63) 

1 1 1 1 - - - F P  
167r 167r 167r 169 1 F,”l - - A -  

(Again, the three-vector notation pertains to the particle indices.) The Proca 
mass term 

2 &(y) A”.*” (1 1.64) 

is excluded by local gauge invariance; as before, the gauge fields must be massless. 
But this time the old association Fp“ = @A” - PA” must itself be modified, for 
with this definition the gauge field Lagrangian (1 1.63) is not invariant either (see 
Problem 1 1.12). Rather, we take* 

FP @A” - SAP - ?!! (A’ X A”) (1 1.65) hc 

Under infinitesimal local gauge transformations ( 1 1.6 1) 

F’” + F”” + - 2q (A X F”“) (11.66) 

(Problem 1 1.13), and hence LA is invariant. (See Problem 1 1.14 for a proof that 
the invariance extends to j n i t e  gauge transformations.) 

h C  

* Definition (1  1.65) is not as arbitrary as it may seem; the point is that with three vector fields 
there is a second antisymmetric tensor form available, (A” X A”), and the coefficient, -2q/hc, is 
chosen precisely to make LA invariant. Notice that when the coupling constant q goes to zero we 
are left with the free Dirac Lagrangian for each spinor field and the free (massless) Proca Lagrangan 
for each of the three gauge fields. 
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Conclusion: The complete Yang-Mills Lagrangian is 

1 
167r 

L = [ihcqy” a,$ - mc2$$] - - F’” - F,, - (&’T$) - A, (1 1.67) 

with F,” defined by equation (1 1.65); it is invariant under local SU(2) gauge 
transformations, (1 1.54) and (1 1.58), and describes two equal-mass Dirac fields 
in interaction with three massless vector gauge fields. It all results from insisting 
that the global SU(2) invariance of the original free Lagrangian (1 1.46) shall 
hold locally. Borrowing the language of electrodynamics, we say that the Dirac 
fields generate three currents 

J” Cq(qy’T$) (1 1.68) 

which act as sources for the gauge fields; the Lagrangian for the gauge fields 
alone 

1 
- J”. A, 
C 

(1 1.69) 

is reminiscent of the Maxwell Lagrangian (1 1.23), and gives rise to a rich and 
interesting classical field theory.’ (See Problem 1 1.15.) 

Although Yang-Mills theory is inspired by the same idea as Weyl’s (namely: 
a global invariance should hold locally), the implementation was more subtle at 
two points: (1) the local transformation rule for gauge fields, and (2) the expression 
for F’” in terms ofA”. Both complications derive from the fact that the symmetry 
group in question is non-Abelian (2 X 2 matrices do not commute, whereas 
1 X 1 matrices-obviously-do). To emphasize the distinction, we refer to the 
Weyl case as an Abelian gauge theory, and Yang-Mills as a nun-Abelian gauge 
theory. In contemporary elementary particle physics many symmetry groups 
have been explored; we shall encounter a few in the remaining sections of this 
book. However, the hard work is over: Extending non-Abelian gauge theory to 
higher symmetry groups is a straightforward procedure, once the Yang-Mills 
model is on the table. 

Curiously, though, Yang-Mills theory in its original form turned out to 
be of little use. After all, it starts from the premise that there exist two elementary 
spin-4 particles of equal mass, and as far as we know there are no such pairs in 
nature. Yang and Mills themselves had the nucleon system (proton and neutron) 
in mind, and thought of their model as a way of implementing Heisenberg’s 
isospin invariance in the strong interactions. The small mass difference between 
proton and neutron, 1.29 MeV/c2, would be attributed to electromagnetic 
symmetry-breaking. For the theory to succeed there had to exist a massless 
isotriplet of vector (spin- 1) particles. The only candidates in sight are the p mesons; 
but they are hardly massless (M, = 770 MeV/c2), and this is not a minor dis- 
crepancy that can be plausibly blamed on electromagnetic contamination. A 
number of attempts were made to doctor up Yang-Mills theory to accommodate 
massive gauge bosons, but by the time they finally bore fruit (through the Higgs 
mechanism) it was pretty clear that p ,  n, and p are composite particles anyway, 
and that isospin is just one component of a larger flavor symmetry that is too 
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drastically broken to play any fundamental role in the strong interactions. When 
non-Abelian gauge theory finally came into its own, it was in the context of color 
(SU( 3)) symmetry in the strong interactions and weak isospin-hypercharge (SU(2) 
0 U( 1)) symmetry in the weak interactions. Meanwhile, for more than a decade 
after 1954 the Yang-Mills model languished-a lovely idea that nature had 
evidently chosen not to exploit. 

11.5 CHROMODYNAMICS 

According to the colored quark model, each flavor of quark comes in three 
colors-red, blue, and green. Although the various flavors carry different masses 
(Table 4.4), the three colors of a given flavor are all supposed to weigh the same. 
Thus the free Lagrangian for a particular flavor reads 

As before, we can simplify the notation by introducing 

so that 

(11.71) 

(11.72) 

This looks just like the original Dirac Lagrangian, only + now stands for a three- 
component column vector (each element of which is itself a four-component 
Dirac spinor). Just as the one-particle Dirac Lagrangian ( 1 1.14) has (global) U( 1) 
phase invariance, and the (equal mass) two-particle Lagrangian (1 1.41) admits 
U(2)  invariance, so this (equal mass) three-particle Lagrangian exhibits U(3) 
symmetry. That is to say, it is invariant under transformations of the form 

+--* ($-$W (11.73) 

where U is any unitary 3 X 3 matrix: 

U ? U =  1 (1 1.74) 

But remember [eq. (1 1.50)], any unitary matrix can be written as an ex- 

U = e”, with Ht = H (11.75) 

Moreover, any 3 X 3 Hermitian matrix can be expressed in terms of nine real 
numbers, a l ,  a2 ,  . . . , as, and 0 (Problem 11.16): 

H = 0 1 + X . a  (11.76) 

where 1 is the 3 X 3 unit matrix, XI, X2, . . . , X8 are the Gell-Mann matrices [eq. 
(9.9)], and the dot product now denotes a sum from 1 to 8: 

(1 1.77) 

ponentiated Hermitian matrix: 

X’a Xlal + X2a2 + * ’ ’ + Xsaj3 
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(11.78) Thus 

We have already explored phase transformations (e”); what is new is the second 
term. The matrix e’X’a has determinant 1 (see Problem 11.17); it belongs to the 
group SU(3).* So what we are interested in is the invariance of the Lagrangian 
( 1  1.72) under SU(3) gauge transformations, a global symmetry that we now 
propose to make local. 

That is: we modify L in such a way as to render it invariant under local 
SU( 3) gauge transformations: 

$ - s$, where S e-iqX’b(x)/hc (11.79) 

(again, I let 4 = -(hc/q)a, with the coupling constant q playing a role analogous 
to electric charge in QED). As always, the trick is to replace the ordinary deriv- 
ative, d,, by the “covariant derivative” a),: 

u = e i O e i X ~ a  

(1  1.80) 

and assign to the gauge fields A, (there are eight of them, notice) a transformation 
rule such that 

a,$ - S(a),$) (11.81) 

Again [see eq. (1 1 .%)I, this entails 

X * A: = S ( X  * A$-’ + i - (d,S)S-’ (1  1.82) 

which, for the infinitesimal case, yields a formula identical to expression ( 1 1.6 1) 

(3 
29 
hC 

A: E A, + d,4 + - (4 X A,) 

However, this time the cross-product notation is shorthand for 
8 

(B c)t = c hjkBJck 
j,k= 1 

(1  1.83) 

.84) 

whereJJk are the structure constants of SU(3) [eq. (9.10)], analogous to cr,k for 
SU(2). (See Problem 11.18.) 

L = ihc$y,’a),$ - rncz$$ = [ihc$y’ dp$ - rnc’$$] - (g$y”X$) -A,  (1  1.85) 

is invariant under local SU(3)  gauge transformations [( 1 1.79) and (1  1.82)] but 
as usual the cost is the introduction of gauge fields A, (eight of them, this time). 
In particle language, these correspond to the eight gluons, just as the U( 1) gauge 
field in Weyl’s theory represents the photon.? To finish the job we must adjoin 
the free gluon Lagrangian 

The modified Lagrangian 

* In the language of group theory, we have shown that U ( 3 )  = U( 1) 0 SU(3).  
t Remember that a “ninth gluon,” coupling universally to all quarks, is apparently excluded 

by experiment (see Problem 9.1). 
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where, as in the Yang-Mills case 

[with the SU(3) “cross-product’’ defined by equation (1 1.84)]. 
Conclusion: The complete Lagrangian for chromodynamics is 

L = [ihc$y” d,$ - mc2$+] - - F””-F,, - (q$y”X+)-A, 
1 

167r 

357 

(1 1.86) 

(1 1.87) 

(11.88) 

Of course, we need six replicas of equation (1 1.88), each with the appropriate 
mass, to handle the six quark flavors. L is invariant under local SU(3)  gauge 
transformations, and describes three equal mass Dirac fields (the three colors of 
a given quark flavor) in interaction with eight massless vector fields (the gluons). 
It derives from the requirement that the global SU(3) symmetry of the original 
Lagrangian (1 1.70) should hold locally. The Dirac fields constitute eight color 
currents 

J” = cq($y’X$) (1  1.89) 

which act as sources for the color fields (A,), in the same way that electric currents 
act as sources for the electromagnetic field. The theory described here is very 
close in structure to that of Yang and Mills. In this case, however, we believe it 
to be the correct description of a phenomenon realized in nature: the strong 
interaction. 

11.6 FEYNMAN RULES 

Up to this point the Lagrangians we have considered might just as well describe 
classical fields as quantum ones; indeed, the Maxwell Lagrangian will be found 
in any textbook on classical electrodynamics. The passage from a classical field 
theory to the corresponding quantum field theory does not involve modification 
of the Lagrangian or the field equations, but rather a reinterpretation of the field 
variables; the fields are “quantized,” and particles emerge as quanta of the as- 
sociated fields. Thus the photon is the quantum of the electrodynamic field, A”; 
leptons and quarks are quanta of Dirac fields; gluons are quanta of the eight 
SU(3)  gauge fields; and W’ and 2’ are quanta of the appropriate Proca fields. 
The quantization procedure itself is recondite, and this is not the place to go 
into it;* for our purposes the essential point is that each Lagrangian determines 
a particular set of Feynman rules. What we need, then, is a prescription for 
working out the Feynman rules dictated by a given Lagrangian. 

To begin with, notice that L consists of two kinds of terms: the free La- 
grangian for each participating field, plus various interaction terms (Lint). The 
former-Klein-Gordon, for spin 0; Dirac, for spin 4; Proca, for spin 1; or some- 
thing more exotic, for a theory with higher spin-determines the propugutor; 
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the latter-obtained by invoking local gauge invariance, or by some other 
means-determine the vertex factors: 

Free Lagrangian - propagator 

Interaction terms - vertex factors 

Let us consider the propagators first. 

the free field equations: 
Application of the Euler-Lagrange equation to the free Lagrangian yields 

[ d d, + (7)~ = 0 (Klein-Gordon, for spin 0) ( 1 1.13) 

[ iy” d, - (?)I# = 0 (Dirac, for spin 4) (11.15) 

[dF(dpAu - $A@) + (?)’A’] = 0 (Proca, for spin 1) (1 1.22) 

The corresponding “momentum-space” equations are obtained by the standard 
prescription [eq. (7.5)] p ,  ++ i h  a,: 

(1 1.90) 

(1  1.91) 

(1 1.92) 

[ p 2  - ( ~ c ) ~ ] Q ,  = O 

[d- (mc>l# = 0 
K-P2 + ( W 2 ) g , ”  + p,p”lA” = 0 

The propagator is simply (i times) the inverse of the factor in square brackets: 

i 
Spin-0 propagator: 

p2 - ( r n C ) 2  

2 (d+ mc) Spin-4 propagator: - - - i  a- mc p2 - (mc)2 
- 2  

Spin- 1 propagator: 

(1 1.93) 

(1 1.94) 

(11.95) 

Note that in the second case this factor is a 4 X 4 matrix, and we want the matrix 
inverse; in the third case the factor is a second-rank tensor (Tpu), and we want 
the tensor inverse (T-’),”, such that T,,(T-’)’” = 6;. (See Problem 11.19.) These 
are precisely the propagators we used in Chapters 6 ,  7 ,  and lo.* Since we ob- 
viously cannot set m - 0 in the Proca propagator (1 1.95), we must go back to 
the free field equation ( 1 1.22) to work out the photon propagator: 

(Maxwell, for massless spin 1) (1 1.96) d,(d~A” - PA,) = 0 

* Actually, this procedure only determines the propagator up to a multiplicative constant, 
since the field equations, ( I  1.90), ( I  1.91), and (1  1.92), can always be multiplied by such a factor. In 
the “canonical” form of these equations the coefficient of mc or (mc)2 is taken to be & I ,  with the 
sign matching that of the mass term in L. Other conventions lead to a slightly different set of 
Feynman rules, but do not, of course, change the calculated reaction amplitudes. 
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As I have remarked before, this equation does not uniquely determine A”; if we 
impose the Lorentz condition 

a,A” = 0 (7.82) 

then ( 1 1.96) reduces to 

a2AY = 0 (1 1.97) 

which, in momentum space, can be written 

(-P2g,JA” = 0 (11.98) 

So the photon propagator is 

( 1  1.99) g,u Massless spin- 1 propagator: -i 7 
To get the vertex factors, first write down i& in momentum space 

(ih a, - p,), and examine thejelds involved; these determine the qualitative 
structure of the interaction. For example, in the case of the QED Lagrangian 
(1  1.35) 

i& = -i(q$y@$)A, ( 1 1 * 100) 

there are three fields involved ($, $, and A,), and this defines a vertex in which 
three lines are joined-an incoming fermion, an outgoing fermion, and a photon. 
To obtain the vertex factor itself, simply rub out thejeld variables: 

(QED vertex factor for negatively charged particle) ( 1  1,101) 

(In the case of the photon, what we actually rub out is M A ’ ;  the extra factor 
is due to our use of cgs units which are, for this purpose, a little cumbersome.) 
The same goes for chromodynamics (1  1.88): The quark-gluon coupling 

( 1 1,102) L i n t  = -(q$Y”’$) * A, 

yields a vertex of the form 

with the vertex factor 

(11.103) gs -i - ypX 
2 

(The strong coupling constant is traditionally defined with a factor of 2: g, 5 
2 m q ,  where q is the “strong charge” appearing in the Lagrangian). However, 
there are also direct gluon-gluon couplings, coming from the F”” * F,, term in L, 
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since F’” contains not only the “free” part, @A“ - PA”, but also an interaction 
term -2q/hc(Ap X A”) [eq. (1 1.87)]. Squaring it out, we find: 

Lint = (&--) [(@A” - PA’) - (A, X A,) + (A” X A”) - (d,A, - &A,)] 

( 1 1.104) 

The first term carries three factors of A”, and leads to the three-gluon vertex 
(9.18); the second term camesfour factors of A’, and gives the four-gluon vertex 
(9.19). (For some practice in extracting Feynman rules from Lagrangians, see 
Problems 1 1.20 and 1 1.2 1 .) 

11.7 THE MASS TERM 

The principle of local gauge invariance works beautifully for the strong and 
electromagnetic interactions. In the first place, it gives us a machine for deter- 
mining the couplings (in the “old days” the construction of Lint was a purely 
ad hoc guess). Moreover, as ’t Hooft and others proved in the early seventies,’ 
gauge theories are automatically renormalizable. But the application to weak 
interactions was stymied by the fact that gauge fields have to be massless. Re- 
member, the mass term in the Proca Lagrangian is not locally gauge invariant, 
and whereas the photon and the gluons are massless, the Ws and the Zo certainly 
are nut. So the question arises, Can we doctor up gauge theory in such a way as 
to accommodate massive gauge fields? The answer is yes, but the procedure- 
exploiting spontaneous symmetry-breaking and the Higgs mechanism-is dia- 
bolically subtle, and it pays to begin by thinking very carefully about how one 
identifies the mass term in a Lagrangian. 

Suppose, for instance, you were given the following Lagrangian for a scalar 
field 6: 

L = 4(a,6)(~6) + eda4)’ (11.105) 

where (Y is some (real) constant. Where is the mass term here? At first glance 
there’s no sign of one, and you might conclude that this is a massless field. But 
that is incorrect, for if you expand the exponential, L takes the form 

L = 4(d”$)(d’r$) + 1 - a262 + 4a“4 - :a666 + - - * (1 1.106) 

The 1 is irrelevant (a constant term in 1 has no affect on the field equations), 
but the second term looks just like the mass term in the Klein-Gordon Lagrangian 
( 1  1.1 l), with a2 = 4(mc/h)2. Evidently this Lagrangian describes a particle of 
mass 

m = Eati/c (11.107) 

The higher-order terms represent couplings, of the form 
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and so on. This is not supposed to be a realistic theory, of course-I offer it only 
as an example of how the mass term in a Lagrangian may be “disguised.” To 
identify it, we expand L in powers of $ and pick out the term proportional to 
$2 (in general, it’s the term of second order in the fields-$, $, A”, or whatever). 

But there is a deeper subtlety lurking here, which I illustrate with the fol- 
lowing Lagrangian: 

L = 4(d&)(dP$) + 4p2$2 - 9 2 4 4  (1  1.108) 

Here p and X are (real) constants. The second term looks like a mass, and the 
third like an interaction. But wait! The sign is wrong [compare equation 
(1  1.1 l)]-if that’s a muss term, then m is imaginary, which is nonsense. How, 
then, should we interpret this Lagrangian? To answer this question, we must 
understand that the Feynman calculus is really a perturbation procedure, in 
which we start from the ground state (the “vacuum”), and treat the fields as 
fluctuations about that state. For the Lagrangians we have considered so far, the 
ground state-the field configuration of minimum energy-has always been the 
trivial one: 4 = 0. But for the Lagrangian ( 1  1.108), 4 = 0 is not the ground state. 
To determine the true ground state, we write L as a “kinetic” term (4 dP$ d”$) 
minus a “potential” term [inspired by the classical Lagrangian (1 1.4)]: 

L = T - U  ( 1 1.109) 

and look for the minimum of U. In the present case 

U(4) = -1 2P 2 4 2 + 1 x 2 4 4  4 (1  1.110) 

( 1  1.1 11) 

and the minimum occurs at 

$ = kp/X 

(see Fig. 1 1.1). For this Lagrangian, the Feynman calculus must be formulated 
in terms of deviations from one or the other of these ground states. This suggests 
that we introduce a new field variable, q, defined by 

(1  1.1 12) q = $ + -  P 
X 

In terms of q,  the Lagrangian reads 

L = ;(d,q)(d’q) - p2q2 k pXq3 - iX2q4 + b(p2/X)2 ( 1  1.1 13) 

The second quantity is now a mass term with the correct sign, and we discover 
[comparing eq. (1 1.1 l)] that the mass of the particle is 

rn = i hp r i / c  (1 1.1 14) 
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Meanwhile, the third and fourth terms represent couplings of the form 

(the last term is a constant, signifying nothing). 
I emphasize that Lagrangians ( 1 1.108) and ( 1 1.1 13) represent exactly the 

same physical system; all we have done is to change the notation (1 1.1 12). But 
the first version is not suited to the Feynman calculus (technically, a perturbation 
series in 4 would not converge, because it is an expansion about an unstable 
point); only in the second formulation can we read off the mass and the vertex 
factors. 

Conclusion: To identify the mass term in a Lagrangian, we first locate the 
ground state [the field configuration for which U(4) is a minimum] and reexpress 
L as a function of the deviation, g, from this minimum. Expanding in powers 
of g, we obtain the mass from the coefficient of the g 2  term. 

11.8 SPONTANEOUS SYMMETRY-BREAKING 

The example we have just considered illustrates another phenomenon of im- 
portance: spontaneous symmetry-breaking. The original Lagrangian (1 1.108) is 
even in 4: It is invariant as 4 --+ -4. But the reformulated Lagrangian (1 1.1 13) 
is not even in g; the symmetry has been “broken.” How did this happen? It 
happened because the “vacuum” (whichever of the two ground states we care 
to work with) does not share the symmetry of the Lagrangian. (The collection 
of all ground states, of course, does, but to set up the Feynman formalism we 
are obliged to work with one or the other of them, and that spoils the symmetry.) 
We call this “spontaneous” symmetry-breaking because no external agency is 
responsible (as, for example, gravity breaks the three-dimensional symmetry in 
this room, making “up” and “down” quite different from “left” and “right”). 
To put it the other way around, the true symmetry of the system is “hidden” 
by the arbitrary selection of a particular (asymmetrical) ground state. There are 
examples of spontaneous symmetry-breaking in many branches of physics. Take, 
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Figure 11.2 Spontaneous symmetry- 
breaking in a plastic strip. 

for instance, a thin plastic strip (say, a short ruler): If you squeeze the ends 
together, it will snap into a curved configuration, but it can just as well buckle 
to the left as to the right-both are ground states for the system, and either one 
breaks the left-right symmetry (see Fig. 1 1.2). 

But the spontaneously broken symmetry we have just considered was a 
discrete symmetry, with just two ground states. More interesting things happen 
when we consider continuous symmetries. (Replace the plastic strip in Figure 
1 1.2 with a plastic rod-say, a knitting needle. Then it can buckle in any direction, 
not just left or right.*) It is easy to construct a Lagrangian with spontaneously 
broken continuous symmetry. For example 

(1  1.1 15) 

This is identical to equation (1 1.108), except that now there are two fields, 41 
and 42, and because L involves only the sum of the squares, it is invariant 
under rotations in $2 space.? 

-c = S(d,4l>(d*4,) + 4(df142)(df142) + tP2(4?  + 49 - iX2(4? + 

This time the “potential energy” function is 

W = - L  2P 2 (4? + 43 + ix2c4: + (11.116) 

and the minima lie on a circle of radius PIX: 

4Li” + 4Li” = P2/X2 (1 1.1 17) 

(see Fig. 11.3). To apply the Feynman calculus, we have to expand about a 
particular ground state (“the vacuum”)-we may as well pick 

4ld” = PIX ;  42min = 0 (11.118) 

As before, we introduce new fields, 1 and E ,  which are the fluctuations about 
this vacuum state: 

(1  1.1 19) rl = 41 - PIX;  E = 4 2  

* A more sophisticated example is the ferromagnet: In the ground state all the electron spins 
are aligned, but the direction of alignment is an accident of history. The theory is symmetrical, but 
a given piece of iron has to pick a particular orientation, and that breaks the symmetry. 

t Group theoretically, it is invariant under SO(2): @, - @, cos i3 + @2 sin 0; & - -6, sin 9 
+ 42 cos 9, for any “rotation angle” 0. (See Problem 4.6.) 
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Figure 11.3 
(1 1.1 16). 

The potential function 

Rewriting the Lagrangian in terms of these new field variables, we find (Problem 
1 1.22): 

The first term is a free Klein-Gordon Lagrangian (1 1.1 1)  for the field 7, which 
evidently carries a mass 

m, = V2ph/c (1 1.121) 

[the same as before, see eq. (1 1.1 14)]; the second term is a free Lagrangian for 
the field [, which is massless: 

mt = 0 ( 1 1.122) 

and the third term defines five couplings: 

(the final constant, of course, is irrelevant). In this form the Lagrangian doesn’t 
look symmetrical at all; the symmetry of (1 1.1 15) has been broken (or rather, 
“hidden”) by the selection of a particular vacuum state. 

The important thing to notice here is that one of the fields ([) is automat- 
ically massless. This is no accident. It can be shown (Goldstone’s theorem”) 
that spontaneous breaking of a continuous global symmetry is always accom- 
panied by the appearance of one or more massless scalar (spin-0) particles (we 
call them “Goldstone bosons”).* Well, this is a disaster; we were hoping to use 

* Intuitively, this is related to the fact that there is no resistance to excitations in the [ direction. 
Hick the bent knitting needle and it wdl spin freely about the axis, whereas radial excitations encounter 
a restoring force, and the system oscillates. 
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the mechanism of spontaneous symmetry-breaking to account for the mass of 
the weak interaction gauge fields, but now we find that this introduces a massless 
scalar boson, and there is no such thing on the roster of known elementary 
particles.* But hold on, for there is one final incredible twist in the story. It 
comes when we apply the idea of spontaneous symmetry-breaking to the case 
of local gauge invariance. 

11.9 THE HIGGS MECHANISM 

The Lagrangian we studied in Section 11.8 can be written more neatly if we 
combine the two real fields, 4 ,  and 42, into a single complex field: 

so that 

(1 1.123) 

( 1 1.1 24) 

In this notation (and it is nothing but notation) the Lagrangian ( 1 1.1 15) reads 

L = +(a&)*(a%$) + 1P2(4*4) - f ~ ~ ( 4 * 4 ) ~  (1  1.125) 

and the rotational (SO(2)) symmetry that was spontaneously broken becomes 
invariance under (V( 1)) phase transformations: 

4 - eie4 (1 1.126) 

This is precisely the kind of symmetry we considered back in Section 11.3, 
except that now we are working with scalar fields instead of with spinors. We 
can make the system invariant under local gauge transformations 

4 - ei@(x) 4 (11.127) 

by the usual device of introducing a massless gauge field A,, and replacing the 
derivatives in equation (1 1.125) with covariant derivatives (1  1.38): 

Thus 

4 
hC 

Bg = a, + i- A ,  

L = 1 2 [ (a, - 2 4 ) 4 * ] [  (a, + $ 4 4 1  

(11.128) 

( 1  1.129) 

Now we simply retrace our steps in Section 11.8, applying them to the 

( 1 1.1 30) 

locally invariant Lagrangian ( 1 1.129). Defining the new fields 

77 = 41 - PIX, 4 = 42 

* It is hard to imagine that such a particle could have escaped detection. With heavy particles 
this is always a possibility-maybe you just didn’t have enough energy to produce it-but a massless 
particle would surely have shown up somewhere, if only in the form of “missing” energy and mo- 
mentum. 



366 1 l/GAUGE THEORIES 

[compare eq. (1  1.1 19)], the Lagrangian becomes (see Problem 1 1.25): 

- Xp(v3 + 7742)  - 4 1 P(r4 + 2V2t2 + t4) } + (d’ - (11.131) 

The first line is the same as before, equation (1 1.120); it describes a scalar particle 
(7) of mass &h/c and a massless Goldstone boson (6). The second line describes 
the free gauge field A’, but-mirabile dictu!-it has acquired a mass: 

( 1  1.132) 

[compare the Proca Lagrangian ( 1  1.2 l)]. The term in curly brackets specifies 
various couplings of t ,  8, and A’ (see Problem 1 1.26). It is easy to see where the 
mass of A” came from: The original Lagrangian (1 1.129) contains a term of the 
form d*4A,AP, which-absent spontaneous symmetry-breaking-would rep- 
resent a coupling: 

But when the ground state moves “off center,” and the field p/X picks up a 
constant [(eq. (1 1.130)], this piece of the Lagrangian takes the form of the Proca 
mass term. 

However, we still have that unwanted Goldstone boson (t). Moreover, 
there is a suspicious-looking quantity in L: 

( 1 1.133) 

What are we to make of this? If we read it as an interaction, it leads to a vertex 
of the form . 

i: 
in which the 4 turns into an A .  Any such term, bilinear in two different fields, 
indicates that we have incorrectly identified the fundamental particles in the 
theory (see Problem 1 1.23). Both difficulties involve the field [ = d2, and both 
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can be resolved exploiting the local gauge invariance of L [in the original form 
(1 1.129)] to transform this jield away entirely! Writing equation ( I  1.126) in 
terms of its real and imaginary parts: 

4 + 4’ = (cos 8 + i sin 0)(dI + i42) 
= cos 0 - 42 sin 0) + i(qhl sin 0 + 42 cos 8) (11.134) 

we see that picking 

0 = -tan-1(42/41) ( 1  1.135) 

will render 4’ real, which is to say that 45 = 0. The gauge field A” will transform 
accordingly (1 I .34), but the Lagrangian will take the same form in terms of the 
new field variables as it did in terms of the old ones (that’s what it means to say 
that L is invariant). The only difference is that 4 is now zero. In this particular 
gauge, then, the Lagrangian ( I 1.13 1) reduces to 

+ (d’ (1 1.136) 

By an astute choice of gauge, we have eliminated the Goldstone boson and the 
offending term in &; we are left with a single massive scalar q (the “Higgs” 
particle) and a massive gauge field A”. 

Please understand that Lagrangians ( 1 1.129) and (1 1.136) describe exactly 
the same physical system; all we have done is to select a convenient gauge ( 1 1.135) 
and rewrite the fields in terms of fluctuations about a particular ground state 
(1 1.130). We have sacrificed the manifest symmetry of (1 I .  129) in favor of a 
notation that makes the physical content more transparent, and allows us to 
extract the Feynman rules more directly. There is an illuminating way to think 
of this: A massless vector field cames two degrees of freedom (transverse polar- 
izations); when A” acquires mass, it picks up a third degree of freedom (longi- 
tudinal polarization). Where did this extra degree of freedom come from? Answer: 
it camejiom the Goldstone boson, which meanwhile disappearedjiom the theory. 
The gauge field “ate” the Goldstone boson, thereby acquiring both a mass and 
a third polarization state.* This is the famous Higgs mechanism, built on the 
union of gauge invariance and spontaneous symmetry-breaking. 

According to the Standard Model, the Higgs mechanism is responsible for 
the masses of the weak interaction gauge bosons ( W’ and Zo). The details are 
still matters of speculation-the Higgs particle has never been seen in the lab- 
oratory (presumably it is just too heavy to make with any existing accelerator),? 

* We don’t have to adopt any particular gauge. However, if we do not, the theory will contain 
a nonphysical “ghost” particle, and it is simplest to eliminate it explicitly from the start. 

t Many particle physicists are presently campaigning for the construction of a Superconducting 
Supercollider (SSC), whose main purpose would be to search for the Higgs particle. 
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and the Higgs “potential” [a($)] is completely unknown (I used U = --4p2($*$) 
+ $X2($*$)2 just for the sake of argument). There may in fact be many Higgs 
particles, or it may be a composite structure, but never mind: The important 
thing is that we have found a way in principle of imparting mass to the gauge 
fields,* and that is our license to believe that all the fundamental interactions- 
weak as well as strong and electromagnetic-can be described by local gauge 
theories. ’ ’ 
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PROBLEMS 

11.1. One advantage of the Lagrangian formulation is that it does not commit us to 
any particular coordinate system-the q’s in equation ( I  1.6) could be Cartesian 

* In the Standard Model the Higgs particle is also responsible for the masses of quarks and 
leptons; they are initially taken to be massless, but are assumed to have Yukawa couplings (see 
Problem 1 1.2 1) to the Higgs particle. When the latter is “shifted,” by spontaneous symmetry-breaking 
( 1  1.130), the Yukawa coupling splits into two parts, one of which is a true interaction, and the other 
a mass term for the field $. This is a nice idea, but it does not help us to calculate the fermion masses, 
since the Yukawa coupling constants themselves are unknown. Only when (and i f )  the Higgs particle 
is actuallyfound will it be possible to confirm all this empirically. 
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coordinates or polar coordinates or any other variables we might use to designate 
the particle’s position. Suppose, for example, we want to analyze the motion of a 
particle that slides fnctionlessly on the inside surface of a cone mounted with its 
axis pointing upward, as shown. 

t ‘ 

X I 

(a) Express T and U in terms of the variables z and 4 and the constants (Y (the 
opening angle ofthe cone), rn (the mass ofthe particle), and g(the acceleration 
of gravity). 

(b) Construct the Lagrangian, and apply the Euler-Lagrange equations to obtain 
differential equations for z(t) and $(t). 

(c) Show that L = (rn tan’ ct)z’ i  is a constant ofthe motion. What is this quantity, 
physically? 

(d) Use the result in (c) to eliminate 4 from the z equation. (You are left with a 
second-order differential equation for z(t); if you want to pursue the problem 
further, it is easiest to invoke conservation of energy, which yields afirst-order 
equation for z.)  

11.2. Derive equation ( 1 1.17). 

11.3. Starting with equation (1 1.19), show that d,Ap = 0, and hence that each component 
of A, satisfies the Klein-Gordon equation: U 4 ”  + (rnc/h)’A” = 0. 

11.4. As it stands, the Dirac Lagrangan ( 1  1.14) treats $ and $ asymmetrically. Some 
people prefer to deal with them on an equal footing, using the modified Lagrangan 

L 

Apply the Euler-Lagrange equations to this 6, and show that you get the Dirac 
equation ( 1  1.15) and its adjoint. 

11.5. The Klein-Gordon Lagrangian for a complex field would be 

L = j(d&)*(dh#J) - f(rnc/h)’4*4 

Treating 4 and 4* as independent field variables, deduce the field equations for 
each, and show that these field equations are consistent (i.e., one is the complex 
conjugate of the other). 

11.6. Apply the Euler-Lagrange equations to (1 1.33) to find the Dirac equation with 
electromagnetic coupling. 

11.7. Show that the Dirac current (1 1.36) satisfies the continuity equation (1 1.25). 
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11.8. The complex Klein-Gordon Lagrangian (Problem 11.5) is invariant under the 
global gauge transformation + - e”4. Impose local gauge invariance to construct 
the complete gauge-invariant Lagrangian, and determine the current density Jp. 
Check that this current obeys the continuity equation (1 1.25). 

11.9. (a) Suppose the field variables (+J  are subjected to an infinitesimal global trans- 
formation &$,. Show that the Lagrangan L(A, a,+J changes by an amount 

In particular, if the Lagrangian is invariant under the transformation in ques- 
tion, then 6L = 0, and the term in curly brackets constitutes a conserved 
current (that is, it obeys the continuity equation). This is the essence of Noeth- 
er’s theorem, relating symmetries of the Lagrangian to conservation laws. 

(b) Apply Noether’s theorem to the Dirac Lagrangian (1 1.14), to construct the 
conserved current associated with global phase invariance [equation ( 1  1.26)]. 
Compare the electric current (1 1.36). 

(c) Do the same for the complex Klein-Gordon Lagrangian in Problem I 1.8. 

11.10. Derive equation (1 1.51). 

11.11. Deduceequation(ll.58)fromequation(ll.57), using(11.54),(11.55), and(11.56). 

11.12. Suppose we were to define 

FW a” - ~ A P  

in Yang-Mills theory. 
(a) Find the transformation rule for this F””, under infinitesimal gauge transfor- 

(b) Determine the infinitesimal transformation rule for LA (1 1.63), in this case. 
mations ( 1 1.6 1). 

Is the Lagrangian invariant? 

2g 
hC 

Answers: (a) F”’ - F”” + - [A X F” + A” X - A” X P A  

11.13. Derive equation ( 1  1.66), starting with (1 1.61) and (1 1.65). 

11.14. Prove that gauge field Lagrangian (1 1.63) is invariant under finite local gauge 
transformations, as follows: 
(a) Using expressions (1 1.58) and (1 1.65), show that 

,- . P ” ’  = s(,-. FP’)S-’ 

[Note that d,(S-’S) = 0 =+ (a,S-’)s = -s-’(a,s).l 
(b) Show, therefore, that 

Tr[(r * F’”)(r * F,”)] 

is invariant. 
(c) Using Problem 4.20(c), show that the trace in (b) is equal to 2Fp”- F,”. 

11.15. Apply the Euler-Lagrange equations to Lagrangian (1 1.69). Using the standard 
associations (7.7 l), (7.72), and (7.79), obtain “Maxwell’s equations” for classical 
Yang-Mills theory. [Note that there are three charge densities, three current den- 
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sities, three scalar potentials, three vector potentials, three “electric” fields, and 
three “magnetic” fields, in this theory.] (Unlike electrodynamics, your expressions 
for the divergence and curl of the E s  and B s  will inevitably involve the potentials.) 

11.16. Show that any Hermitian 3 X 3 matrix can be written as a linear combination of 
the unit matrix and the eight Gell-Mann matrices [eq. (1 1.76)]. 

11.17. (a) Show that det(eA) = eTflA), for any matrix A.  [Hint: Check it first for a diagonal 
matrix. Then extend the proof to any diagonalizable matrix (S-IAS = D, 
where D is diagonal, for some matrix S)-show that Tr (A)  = Tr (D) and 
S-’eAS = eD, so that det(eA) = det(eD). Of course, not all matrices are di- 
agonalizable; however, every matrix can be brought into Jordan canonical 
form (S-’AS = J, where J is diagonal except for some 1’s immediately below 
the main diagonal). Take it from there.] 

(b) Show that e”‘” [in equation (1  1.78)] has determinant 1. 

11.18. Starting with equation (11.81), derive (1 1.82) and ( 1  1.83). 

11.19. Confirm that the Proca propagator (1 1.95) is the inverse of the tensor in equation 

11.20. Construct the Lagrangian for ABC theory (Chap. 6). 

11.21. Give a physical interpretation of the Yukawa Lagrangian: 

( I  1.92), in the sense explained in the text. 

What are the spins and masses of the particles? What are their propagators? Draw 
the Feynman diagram for their interaction, and determine the vertex factor. 

11.22. Derive equation (1 I .  120). 

11.23. Suppose we took 

as the fundamental fields, instead of definition (1 1.1 19). Express the Lagrangian 
(1 1.120) in terms of and &. [Comment: Offhand, it looks as though we have 
two massive fields here, and thus escape Goldstone’s theorem. Unfortunately, 
there is also a term of the form -p2$1$2. If you interpret this as an interaction, it 
converts into &, and vice versa, but that means neither one exists as an in- 
dependent free particle. Rather, such an expression should be interpreted as an 
off-diagonal term in the mass matrix (1 1.45), indicating that we have incorrectly 
identified the fundamental fields in the theory. The physical fields are those for 
which A4 is diagonal, and for which no direct transitions from one to the other 
can occur. We have encountered this situation once before, in Section 4.8 of 
Chapter 4: We found that c-* p ,  and hence that these are not the physical 
particle states; instead, the linear combinations K,  and K2,  in terms of which the 
mass matrix is diagonal, are the “true” particles.] 

$2, 63). 
What are the masses of the three particles? How many Goldstone bosons are there 
in this case? 

11.24. Generalize the argument following equation (1 1.1 15) to three fields 

11.25. Starting from expressions ( 1 1.129) and ( 1 I .  130), derive equation (1 1.13 1). 

11.26. Draw the primitive vertices for all the interactions in curly brackets in equation 
( 1 1.13 1). Circle the ones that survive in equation ( 1 I .  136). 



Appendix A 

The Dirac Delta Function 

The Dirac delta function, 6(x), is an infinitely high, infinitesimally narrow spike at the 
origin, with area 1 (Fig. A. 1). Specifically 

6(x) = G(x)dx = 1 

Technically, it’s not a function at all, since its value is not finite at x = 0. In the mathematical 
literature it is known as a generalized function, or distribution. It is, if you like, the limit 
of a sequence of functions, such as rectangles of height n and width I/n, or isosceles 
triangles of height n and base 2/n (Fig. A.2), or any other shape you might wish to use. 

Iff(x) is some “ordinary” function (that is, not another delta function-in fact, 
just to be on the safe side let’s say that f(x) is continuous-then the product f(x)d(x) is 
zero everywhere except at x = 0. It follows that 

f(X)b(X) = f(0)6(x) (‘4.2) 

(This is the most important fact about the delta function, so make sure you understand 
why it is true. The point is that since the product is zero anyway except at x = 0, we may 
as well replacef(x) by the value it assumes at the origin.) In particular 

f(x)KWx = f ( 0 )  W d x  = f(0) (A.3) L 
Under an integral, the delta function “picks out” the value off(x) at x = 0. (Here and 
below, the integral need not run from -a to +a; it is sufficient that the domain extend 
across the delta function, and - c  to +t would do just as well.) 

Of course, we can move the spike from x = 0 to some other point, x = a; 

6(x - a )  = 6(x - a)dx = 1 (‘4.4) 
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4 

I x infinitely high and infinitesimally narrow). 

(see Fig. A.3). Equation (A.2) generalizes to  

and equation (A.3) generalizes to 

Now, how would we interpret the expression 6(kx), if k is some nonzero (real) 
number? Suppose we multiply by an “ordinary” function f ( x )  and integrate: 

We may change variables, letting y = kx, so that x = y /k ,  and dx = l / k  dy. If k is positive, 
the integration still runs from --M to  +m, but if k is negative, then x = 00 implies 
y = -a, and vice versa, so the order of the limits is reversed. Restoring the “proper” 
order costs a minus sign. Thus 

(The lower signs apply when k is negative, and we can account for this neatly by putting 
absolute value bars around the k, as indicated.) In this context, then, 6(kx) serves the 
same purpose as (l/lkl)6(x): 

+ 

* 
-1 -1 1 1  x 

2 

Figure A.2 Two sequences of functions whose limit is 6(x). 
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Figure A.3 “Graph” of 6(x - a). 

Because this holds for anyf(x),  it follows that the delta function expressions are equal:* 

1 6 ( b )  = - 6(x) 
Ikl 

(‘4.9) 

What we have just analyzed is really a special case of the general form b(g(x)), 
where g(x) is some function of x. 6(g(x)) has spikes at the zeros, x I  , x2, x3, . . . , of g(x): 

(A.lO) g(xJ = 0 ( i  = 1, 2, 3, . . . , n) 
In the neighborhood of the ith zero, we may expand g(x) as a Taylor series: 

g(x) = g(xJ + (X - xi)g’(xj) + $(x - xJ2g”(xj) + * - - E (X - xi)g’(Xj) (A.l I )  

In view of equation (A.9), the spike at xi has the form 

(A.12) 

The factor lg’(xi)1-’ tells us the “strength” of the delta function at xi .  Putting this together 
with the spikes at the other zeros, we conclude 

(A. 13) 

Thus any expression of the form 6(g(x)) can be reduced to a sum of simple delta functions.? 

EXAMPLE A.l 
Simplify the expression 6(x2 + x - 2). 

Solution. Here g(x) = x2 + x - 2 = (x - l)(x + 2); there are two zeros, at xI = 

1 and x2 = -2. Differentiating, g’(x) = 2x + 1, so g’(xl) = 3 and g‘(x2) = -3. Thus 

6(x2 + x - 2) = f6(x - 1) + f6(x + 2) 

* You ought to ponder that last step for a moment. Ordinarily, the equality of two integrals 
certainly does not imply equality of the integrands. The crucial point here is that the integrals are 
equal for anyflx).  Suppose the delta function expressions 6(kx) and (l/lkl)6(x) actually dzfered, say, 
in the neighborhood of the point x = 17. Then I would pick a functionf(x) that was sharply peaked 
about x = 17, and the integrals would not be equal. Since, on the contrary, the integrals must be 
equal, it follows that the delta function expressions are themselves equal. [Well, technically they 
might still differ at isolated points, provided these contribute nothing to the integral. But we can 
silence this objection by noting that both sides of equation (A.9) are clearly zero except at x = 0.1 

t Equation (A.13) is exact, notwithstanding the truncated Taylor series (A.11) I used in its 
derivation. At xi, the “extra” terms are zero, since they contain powers of (x - xi). 
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It is an easy matter to generalize to three (or more) dimensions: 

= 6(X)W@) (A.14) 

This three-dimensional delta function is zero everywhere except at the origin, where it 
blows up. The triple integral over s3(r) is 1: 

and J f(r)63(r - ro)d3r = f(r0) (A.16) 

For example, the charge density (charge per unit volume) of a point charge q located at 
the point ro can be written 

p(r) = 4 a3(r - ro) 

PROBLEMS 

A.1. 

A.2. 

A.3. 

A.4. 

A S .  

A.6. 

(a) h3 (2x2 + 7~ + 3)qx  - i)dx = ? 
(b) h3 In (1 + x)6(a - x)dx = ? 

Use equation (A.13) to simplify the expression 6(- - x - 1). 
Use equation (A. 13) to simplify the expression 6(sin x). Sketch this function. 

Letf(y) = h* S(y - x(2  - x))dx. Findf(y), and plot it from y = -2 t o y  = +2. 

1 dZ f, x4[ 2 6(x - 3) dx = ? [Hint: Integrate by parts.] 

Evaluate 
is over a sphere of radius 1.5 centered at (2, 2, 2). 

r - (a - r)63(r - b)d3r, if a = (1, 2, 3), b = (3, 2, l), and the integration 



Appendix B 

Decay Rates and 
Cross Sections 

B.l Decays 

Suppose particle 1 decays into particles 2, 3, 4, . . . , nt 

1 * 2 + 3 + 4 +  * * -  + n  

The decay rate is given by the formula 

where pi = (Ei/c, p i )  is the 4-momentum of the ith particle (which carries mass mi, so 
that Ef - pfc2 = mfc4). The decaying particle is presumed to be at rest: p1 = (rnlc, 0). 
S is a product of statistical factors: l/j! for each group of j identical particles in the 
final state. 

Two-Body Decays If there are just two particles in the final state, the integrals can be 
performed explicitly. The total decay rate is 

Where IpI is the magnitude of either outgoing momentum: 

C 
1p1= 2ml Vmj + mi + m! - 2m:m: - 2rn;mf - 2m:m: 

In particular, if the outgoing particles are massless, then JpI = mIc/2, and 

IJM. l2 
S r=- 

16ahml 

(B.3) 

03.4) 
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B.2 Cross Sections 

Suppose particles 1 and 2 collide, producing particles 3, 4, . . . , n: 

1 + 2 - 3 + 4 + . . . + n  

The cross section is given by the formula 

x ( 2 ~ ) ~  6 4 ( ~ 1  + p2  - p3  - p4 - . . - - pn) (B.5) 

where as before) p ,  = (Ei/c, pi)  is the 4-momentum of particle i (mass mi), Ei = 

c +- m:c2 + p f ,  and S is a statistical factor ( l / j !  for each group o f j  identical particles in the 
final state). 

Two-Body Scattering If there are just two particles in the final state, the integrals can 
be performed explicitly. 

(a) In the center-ofmomentum ,frame. Here 

f(p1 - p d 2  - ( m 1 m 2 c ~ ) ~  = (El  + E2)IpII/c 03.6) 

and (B.7) 

where lpil is the magnitude of either incoming momentum, and IpfI is the magnitude of 
either outgoing momentum. In particular, for elastic scattering ( A  + B - A + B),  [p i [  = 

Ipj-l, so [letting E = (El  + E2)/2]: 

(b) In the labframe (particle 2 at rest). Here 

V(P1 .P2)2 - (37113722c2)2 = m2clp,l (B.9) 

In the case of elastic scattering ( A  + B - A + B), the differential cross section is 

(B. 10) 
PZSIJn I 2  2 = (kr m21pII/Ip31(EI + m2c2) - IpllE3 cos 01 

If, in particular, the incident particle is massless (ml = 0), this reduces to 

If the target recoil is negligible (m2c2 & El ) ,  then (B.lO) reduces to 

da h 2  
- do = (r) rm2c IJnI2 

If the outgoing particles are massless (m, = m4 = 0), (B.5) yields 

da SW I21P3I 

z? = (kr m21pII(E1 + m2c2 - lpllc cos 0 )  

(B.11) 

(B. 12) 

(B. 13) 



Appendix C 

Pauli and Dirac Matrices 

C.l Pauli Matrices 

These are three Hermitian, unitary, traceless 2 X 2 matrices: 

0 1  0 -i 

(Often we use numerical indices: ul = a,, u2 = uy, u3 = u,; u is not part of a 4-vector, 
and we do not distinguish upper and lower indices: u, = a’, u2 = u2, uj = u3.) 

(a) Product Rules. 

(A 2 X 2 unit matrix is implied in the first term, and summation over k in the second). 
Thus, in particular: 

u; = .; = u2 = 1 

uxuy = iuz, uyu, = iu,, U,U, = iu,, 
[ui, uj] = 2itijkok (commutator) 

{ U i ,  U j }  = 26, (anticommutator) 

and for any two vectors a and b, 

(C.7) (a.u)(b.u) = a - b  + h - ( a  X b) 

(b) Exponentials. 
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C.2 Dirac Matrices 

These are four unitary traceless 4 X 4 matrices: 

1 0  
0 1  -a’ 

(Here 1 is the 2 X 2 unit matrix, and 0 is the 2 X 2 matrix of zeros; a’ are the Pauli 
matrices. Lowering indices changes the sign of the “spatial” components: yo = yo, y i  = 

-y’.) We introduce as well the auxiliary matrices 

7 5  e iyOy‘y2y3 (C.10) 

(C. 1 1) 

i 
a’” = (y’y” - y”y”) (C. 12) 

For any 4-vector a’, we define the 4 X 4 matrix Bas  follows: 

d- aryP (C .  13) 

(a) Product Rules. In terms of the metric 

(C.14) 

\ o  0 0 - 1 )  

(note that g+”g,,. = 4), we have: 

y’y“ + y”y’ = 2g”, &+Bd= 2a.b (C.15) 
Ye?’ = 4 (C.16) 

y c y y  = -2y’, y,dy’ = - 2 8  (C. 17) 
YcY’YXY’ = 4gYA, y,dBy’ = 4a. b (C. 18) 

ypy’y”y“y’ = -2y“yAy’, ypdB& = -2RBd (C. 19) 

(b) Trace Theorems. The trace of the product of an odd number of gamma matrices 

Tr(1) = 4 (C.20) 
Tr (y’y’) = 4g”’, Tr (8B) = 4a b (C.21) 

(C.22) g gUX), 

is zero. 

Tr (yPyPyAy0) = 4(g’”gA“ - g N A g v “  + No 

Tr(&‘&= 4 ( a - b c . d - a . c b - d +  a - d b - c )  

Since y5 is the product of an even number of y matrices, it follows that Tr (y5y’) = 0 
and Tr (y5ypy”yx) = 0. When y5 is multiplied by an even number of y’s, we find 

Tr (7’) = 0 (C.23) 
Tr (y5ypy”)  = 0, Tr (y’&) = 0 (C.24) 

Tr (y5ywy’yXy“) = 4 i ~ ~ “ ~ ~ ,  Tr (y5&k& = 4it’YAoa,b,cAdo (C.25) 

where trVXo = - 1, if puXa is an even permutation of 0 123, + 1 for an odd permutation, 
and 0 if any two indices are the same. Note that 

t’YAU trvxr = -2(s,xs; - 6:s:) (C.26) 



Appendix D 

Feynman Rules (Tree Level) 

D.l External Lines 

Spin 0: (nothing) 

Incoming particle: u 
Incoming antiparticle: t, 
Outgoing particle: U 
Outgoing antiparticle: v 

Spin f: 

incoming: t” 1‘ outgoing: P* 
Spin 1: 

D.2 Propagators 

2 
Spin 0: 

q2 - (mc)2 

i(d+ mc) 
q2 - (rnc)’ 

Spin f: 

(Massless: - -‘&v 

4‘ 

-k. - 4”4./(mc)21 Massive: i q2 - (mc)’ 

Spin 1: 

D.3 Vertex Factors 

QED: 
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(Here I is any lepton, and v( the corresponding 
neutrino.) 

(Here i = u, c, or t, a n d j  = d, s, or b; 
U is the Kobayashi-Maskawa matrix.) 

(Herefis any quark or lepton.) 
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PI  

I 
9 3  t z o  

I 

The weak coupling constants are related to the electromagnetic coupling constant: 

ge ge 
g , = - ;  g,= 

sin 8, sin 8, cos 8, ’ 

There are also “mixed” couplings of the photon to the Wand Z: 
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Index 

A:  see Conservation laws; Baryon number 
ABC theory, 201-213 
Abelian, 106, 354 

Accelerator, 4 
Adjoint, 223, 228 
Allowed energies, 148 
a: see Fine structure constant 
a,, 61, 77, 165, 279, 294 
a,, 76, 302, 309 
a particle: see Particles 

See also Gauge invariance; Groups 

Amplitude, 119, 189, 194-195, 200-201, 
229.23 1 

Anderson, C. D., 18, 20, 29 
Angular momentum, 103 

addition, 109-1 13 
eigenfunctions: see Spherical harmonics 
eigenvalues, 146 
matrices: see Spin matrices 
orbital, 107-109, 153, 252 
spin, 103, 107-109, 116, 252 

Annihilation: see Pair annihilation 
Anomalous magnetic moment 

electron, 17, 153, 156, 232 
proton, 156-157 

Anticommutator, 139, 216 
Antielectron: see Positron 
Antineutrino, 24, 26-28, 124-125 
Antineutron, 2 1 
Antiparticle, 3, 18-22, 36-37, 135, 217, 220- 

Antiproton, 2 1, 30-3 1 ,  96-97 
Antisymmetric state, 112, 118, 174-180 
Antisymmetric tensor, 100, 224 
Antisymmetrization, 23 1 

22 1 

384 

Associated Lagueme polynomial, 149 
Associated Legendre function, 147 
Associated production, 32-33 
Asymptotic freedom 62-64, 164-165, 209, 

Axial vector, 126-127, 224, 302-303, 324 
279,292-295 

B: see Beauty 
B meson, 44, 79, 167 
b quark, 44, 122 
Bare: see Charge; Coupling constant; Mass 
Barn, 200 
Baryon, 17,29, 34, 36 

decuplet, 34-36, 38, 11  1, 179 
magnetic moment, 180-1 82 
mass, 182-184 
number: see Conservation laws 
octet, 33, 39, 11  1, 179-180 

Beautiful baryon, 44 
Beautiful meson, 44 
Beauty, 44, 47 
Beta decay, 22-24, 27, 46, 52, 56, 301, 309- 

314 
p particle: see Electron 
Bethe, H. A,, 155, 159, 208 
Bevatron, 2 1, 96 
Bhabha scattering, 57-59, 78, 232, 234 
Bilinear covariants, 222-225 
Bispinor: see Dirac spinor 
Bjorken, J. D., 42, 269 
Bjorken scaling, 269-273, 294-295 
Bohr, N., 13,23, 149, 151 
Bohr energies, 148, 186 
Bohr magneton, 153 
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Bohr model, 13 
Bohr radius, 149 
Bohr theory, 149-151 
Boson, 109, 175 
Bottom: see Beauty 
Bottomonium, 143-144, 167-168 

See also T meson 
Bound state, 2, 39, 42, 52, 143-188 
Branching ratio, 72, 190, 316 
Brookhaven, 32, 42, 132 
Breit frame, 102 
Brick wall frame: see Breit frame 
Broken symmetry, 336 

Bubble chamber, 35 
See also Gauge invariance 

C see Charm; Charge, conjugation 
c quark, 42-44, 122 
Cabibbo, N., 70, 317 
Cabibbo angle, 301, 314,317-321 
Cabibbo theory, 317-322 
Callan-Gross relation, 270-273 
Casimir’s trick, 236-238, 253 
Center of momentum, 96-98 
Central potential, 146 
Centrifugal bamer, 147, 159 

Chadwick, J., 14 
Charge 

bare, 63, 249 
conjugation, 103, 128-130, 134-135, 162, 

222,252 
conservation: see Conservation laws 
effective, 63, 249 
electric, 47, 60, I I8 
independence, 1 17 
renormalization, 246-250 
weak, 65 
See also Coupling constant 

CERN, 6,40,44,46,67,323-325, 327 

Charged weak interactions, 30 1-304 
Charm, 42-44,47, 165 
Charmed baryons, 43-45 
Charmed mesons, 43-44 
Charmonium, 44, 143-144, 162-169 

See also J.  meson 
Chiral states, 330-333 
Chromodynamics, 55-56, 355-357 

See also Quantum chromodynamics 
Clebsch-Gordan coefficients, 1 1 1-1 12 
Cloud chamber, 7, 20 
CM: see Center of momentum 
Coleman-Glashow formula, 53 
Colliding beams, 6,46, 98-99 
Collisions, 9 1-93 
Color, 41-42, 60-61, 64, 74, 261-262, 279 

factor, 164, 285-289, 291 
octet, 280, 285-286 
sextet. 288 
singlet,178, 188, 280-281, 284-286, 289, 

291,298 

SU(3), 178,281, 355-356 
triplet, 287-288 

See also Color, singlet 
Colorless particle, 41, 64-65, 280-28 1 

Commutator, 139 
Completeness, 217, 221, 229, 237 
Compton, A. H., 15 
Compton 

scattering, 15-16, 58, 78, 102, 232, 235- 

wavelength, 15, 63 
Confinement, 40,42,64-65, 286,289,295- 

Conservation laws, 72-76, 79, 103, 105 

236 

296 

angular momentum, 105 
baryon number, 29-31, 72-74, 77, 118 
charge, 32, 72-73, 105, 128, 226, 313 
color, 74 
electron number, 27,47, 74, 3 17 
energy, 51-52, 60, 91-92, 105, 203, 230 
flavor, 67, 74-75 
isospin, 1 17- 120 
lepton number, 26-27, 3 1 
mass, 9 1-92 
momentum, 91-92, 105,203,230 
muon number, 27,74, 317 
panty, 125-128 
quark number, 74 
strangeness, 32-34, 74-75, 118 
tau number, 47, 74, 3 17 

Conserved current, 3 13 
Continuity equation, 226, 347 
Contraction of indices, 87 
Contraction theorems, 239 
Contravariant four-vector, 85, 2 14 
Cosmic rays, 4, 18-20, 29, 100 
Coulomb force, 57 
Coulomb gauge, 227-229,28 1, 302 
Coulomb potential, 148, 164, 194, 285, 287 
Coupling constant, 6 1, 202 

bare, 249 
dimensions, 230 
effective, 63, 209-210 
electromagnetic, 62-63, 230, 336, 359 
renormalized, 247-248, 292 
running, 62, 77, 209-210,249, 292, 294- 

strong, 61, 77, 279, 359 
weak, 77, 302, 309,324,335-337 
See also Charge 

295 

Covariant derivative, 349, 352, 356, 365 
Covariant four-vector, 85-86, 214, 251 
Cowan, C. L., 26 
CP violation, 130-134, 32 1 
Cronin, J. W., 132-133, 135 
Crossing symmetry, 21-22, 58 
Cross section, 1 19, 189- 194, 378 
See also Golden rule, for scattering 

A + A -* B + B, 204-206 
hard sphere, 193 
Mott, 241 
nucleon-nucleon, 1 19 
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Cross section (Continued) 
pair annihilation (QCD), 292 
pair annihilation (QED), 164, 187, 245, 

pion-nucleon, 119-120, 140 
Rutherford, 194, 241 

26 I 

two-body, 199-201 
Current 

charged weak, 332 
color, 357 
conserved, 226, 313 
electromagnetic, 225-227, 333, 335-336, 

weak hypercharge, 334-335 
weak isospin, 334-335 
Yang-Mills, 354 

Cutoff, 208, 247 
CVC hypothesis, 3 13 
Cyclotron formula, 7 

349 

D meson, 44, 76, 79, 166 
D, meson: see F meson 
d quark, 37, 122 
D’Alembertian, 227 
Davis, R., 26 
De Broglie wavelength, 6 
Decay rate, 189-190, 195-198, 377 

kaon, 318 
muon, 304-309 
neutron, 3 1 1-3 12 
pion, 3 16 
positronium, 164, 245-246 
quarkonium, 292 
two-body, 197-198 

Decays, 2, 3, 72-76, 93-94, 241 
Decuplet: see Baryon, decuplet 
Deep inelastic scattering, 40, 48, 257-258, 

Degeneracy, 149 
Delbruck scattering, 78 
A, 31, 34, 69, 120 
Delta function: see Dirac delta function 
Density of states, 194 

DESY, 67 
Detailed balance, 2 1-22, 134 
Detectors, 7 
Deuteron, 118, 143 
Differential cross section, 192, 200, 245 
Differential decay rate, 195 
Dimensions 

amplitudes, 200-201 
coupling constants, 202, 230 
fields, 347 

266-273 

See also Phase space 

Dipole function, 267 
Dipole moments: see Electric dipole moment; 

Diquarks, 289 
Dirac, P. A. M., 18, 208-209, 214-215 
Dirac delta function, 157, 195-196, 203, 

Magnetic moment 

230-231,373-376 

Dirac equation, 18, 2 13-222 

Dirac matrices, 2 15, 380 

Dirac sea, 18-2 1, 2 17 
Dirac spinor, 216, 226 
Disconnected diagram, 207 
Discrete symmetry, 103 
Dot product, 86 
Down quark: see d quark 
Downness, 47 
Drell-Yan process, 295 
Dresden, M., 201 

momentum space, 218, 228 

See also Gamma matrices 

Effective charge: see Charge 
Effective mass: see Mass 
Eigenfunction, 146 
Eigenvalue, 114, 146 
Eigenvector, I14 
Eight-baryon problem, 12 1 
Eightfold Way, 33-39, 107, 121-122 
Einstein, A,, 14-15, 76 
Einstein summation convention, 64 
Elastic collision, 9 1-92 
Electric dipole moment, 135 
Electric form factor, 267 
Electrodynamics, 55-56, 225-228 

See also Quantum electrodynamics 
Electromagnetic current: see Current 
Electromagnetic decay, 24 1 
Electromagnetic field, 225 
Electromagnetic force, 55-56 
Electromagnetic potential, 226 
Electron, 4, 11-12, 230 
Electron number: see Conservation laws 
Electron-deuteron scattering, 278 
Electron-electron scattering: see Msller scat- 

Electron-muon scattering, 232-233, 238-240 
Electron-neutron scattering, 276, 278 
Electron-positron scattering 

tering 

elastic: see Bhabha scattering 
inelastic, 257-262, 327-330 

Electron-positron annihilation: see Pair anni- 

Electron-proton scattering 
elastic, 262-267, 269 
inelastic, 266-269 

See also GWS theory 

hilation 

Electroweak force, 3, 46, 56, 322, 330-337 

Electroweak interference, 326, 330 
Elementary particles, 1 

See also Particles 
Energy 

conservation: see Conservation laws 
kinetic, 90-92, 152 
operator, 145; see also Hamiltonian 
relativistic, 87-9 1, I52 
rest, 90 

Energy-momentum four-vector, 89 
7 meson, 38-39, 170 
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q‘ meson, 38-39, 170, 172, 188 
Euler-Lagrange equation, 344-345 
Exchange of particles, 16, 57, 6 1 

Exclusion principle: see Pauli 
Exotic atom, 159 
Exotic particle, 53 
Expectation value, I5 I-  152, I86 
External line, 58-60, 229-23 1, 282-283 

See also Mediator 

F meson, 44 (now called D,) 
Faddeev-Popov ghost, 282 
Family: see Generation 
Fermi, E., 23, 56, 120 
Fermi constant (GF), 307-309 
Fermi’s Golden Rule: see Golden Rule 
Fermi theory of beta decay, 23-24,44, 46, 

Fermion, 109, 175 
Feynman, R. P., 3, 21, 27, 56, 155, 203, 208 
Feynman calculus, 59, 189-212, 361-362 
Feynman diagram, 55, 57, 59, 189, 194, 201, 

Feynman rules, 3, 59, 194, 213, 357-360, 

56, 307-308 

203 

38 1-384 
ABC theory, 201-204 

QCD, 279-284 

weak interactions, 302, 3 17-3 18, 322 
Feynman-Stuckelberg interpretation, 2 1 
Field strength tensor, 225 
Fifth force, 296 
Fine structure, 151-155 
Fine structure constant, 9, 59, 148, 152, 230, 

249, 294, 309 
Flavor, 41-44, 47, 53, 64, 116-122, 279,280 
Flavordynamics, 55-56, 67 
Form factor, 266-269, 3 12, 3 15 
Four-momentum, 89 
Four-vector, 84-87 
Four-velocity: see Proper velocity 
ft-value, 3 12 
Fundamental representation, 12 1, 17 1 

GWS, 336-337 

QED, 213, 228-231, 255 

G: see G-parity 
GF: see Fermi constant 
Gamma matrices, 2 16, 224, 238-239, 380 
Gamma rays: see Photon 
Gauge fields, 348-349, 352, 356 
Gauge invariance, 253, 298 

abelian, 354 
broken, 362-365 
global, 348, 350, 352, 354 
local 348-350, 352, 354, 365-367 
nonabelian, 354-355 

Gauge theory, 2 10, 343-37 1 
Gauge transformation, 105, 226-227, 348- 

Cell-Mann, M., 32-34, 36-37, 56, 131-132 
349 

Cell-Mann matrices, 282, 355 
Cell-Mann-Nishijima formula, 118, 140, 334 
Cell-Mann-Okubo mass formula, 52 
Generation, 47-48, 317, 321-322 
Ghost particle, 228, 282, 367 
GIM mechanism, 44,70-7 I ,  30 1, 3 19-320, 

Glashow, S. L., 42-44, 56, 70, 322-323, 330 
Global gauge transformation, 348, 352, 354 
Glueball, 48, 6 I 
Gluon, 48, 55-56,60-61,260, 275,279-281 

octet, 280 
Gluon-gluon coupling, 6 I ,  282-284,29 1, 

Golden Rule, 189, 194-201, 305 

322 

299, 359-360 

for decays, 195, 305 
for scattering, 198- 199 

Goldstone boson, 364, 366-367 
Goldstone’s theorem, 364, 37 1 
G-parity, 129-30 
Grand Unification, 3 1, 76-77 
Gravitational force, 55 
Graviton, 16, 48, 55-56 
Greenberg, 0. W., 41 
Ground state 

baryon, 176 
hydrogen, 186 
See also Vacuum 

Group theory, 103, 106 
Groups, 106 

abelian, 106 
continuous, 106 
finite, 106 
infinite, 106 
O(n), 106, 137 
SO(3), 107 

SU(2), 107, 121, 352 
See also Isospin 

SU(2) x U(I), 334-337, 355 
SU(3), 103, 107, 121 

SU(6), 103, 121 
SU(n),  106, 137 
U(n),  106 

SO(n), 106-107, 137 

See also Eightfold Way; Color, SU(3) 

GUTS; see Grand Unification 
GWS (Glashow/Weinberg/Salam) theory, 3, 

46, 48, 56, 66, 76, 210, 301, 322-325, 
330-337 

Gyromagnetic ratio, 153, I56 

Hadron, 28, 33, 143 
See also Baryon; Meson 

Hadron production, 257-262 
Half-life, 72, 21 1, 312 
Hamiltonian, 146, 151-153, 158, 160, 252 
Hard-sphere scattering, 191-193 
Heaviside-Lorentz units, 9, 230, 249, 347 
Heavy lepton, 44 
Heavy quark, 165, 172 
Helicity, 27, 124, 221, 330-333, 339 
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Heisenberg, W., 116 

Hermitian conjugate, 220, 223 
Hermitian matrix, 351, 355 
Hidden symmetry, 364 
Higgs mechanism, 76, 330, 343, 354, 360, 

Higgs particle, 48, 367 
Higher-order processes, 58, 63, 202, 206-2 10, 

Hole theory, 20-2 1 
t’Hooft, G., 210, 323, 360 
Hydrogen, 143, 148-159 
Hypercharge, 34, 334-335 

Hyperfine splitting 

See also Uncertainty principle 

365-368 

246-250,281,292-294 

See also Weak hypercharge 

in baryons, 182-1 84 
in hydrogen, 156-159 
in mesons, 172 
in positronium, 16 1 

Identical particles, 1, 41, 175-176 
Impact parameter, 19 1 
Inclusive cross section, 267-269 
Indistinguishable particles, 1 
Inertial frame, 8 1 
Infinite momentum frame, 272 
Intermediate vector boson, 46, 56, 335 

Internal line, 58-60, 202, 229 
Internal momenta, 203, 231 
Internal quantum number, 128 
Internal symmetries, 103, 105, 116-120 
Intrinsic angular momentum: see Angular 

momentum, spin 
Intrinsic parity: see Parity 
Intrinsic strength of weak force, 76, 309 
Intersecting storage rings, 6 
Invariance, 105 

Invariant, 85, 88-89,94,97,281 
Inverse beta decay, 26, 303 
Inversion, 125-126 
Ionization, 7 
Irreducible representation, 107 
Isospin, 103, 116-120, 335 

See also Weak isospin 

See also W, Z 

See also Symmetry 

Jf$:  see $ meson 
Jets, 48, 258-260 

Kmeson, 29-38, 128, 131-133, 318 
Kaon: see K meson 
Ket, 3, 109 
Klein-Gordon equation, 2 13-2 15, 227 
KM matrix: see Kobayashi-Maskawa matrix 
Kobayashi-Maskawa matrix, 70-7 1 ,  133, 

Kronecker delta, 139 
301, 321-322, 325 

Lagrangian, 343-347 
classical, 343-344 
Dirac, 345-346 
Higgs, 367 
Klein-Gordon, 345 
Maxwell, 347 
Proca, 346-347 
QCD, 357 
QED, 350 
Yang-Mills, 354 
Yukawa, 371 

Lagrangian density, 344, 347 
See also Lagrangian 

Lamb, W. E., 32, 154 
Lamb shift, 17, 154-156, 161, 209, 249, 294 
A (scale parameter in QCD), 295 
A baryon, 29, 32-35, 70 
X matrices: see Gell-Mann matrices 
Laplacian, 146 
Lederman, L. M., 28, 132 
Lee, T. D., 56, 122, 128 
Left-handed doublet, 334-3 3 5 
Left-handed state, 27, 124, 330-334 
Lepton number, 26-27 

Leptonic decay, 3 18 
Leptons, 17-18, 28, 65-67 

See also Conservation laws 

families, 47 
table, 28, 47 
weak interactions, 301-304, 3 17 
See also Electron; Muon; Neutrino; Tau 

Levi-Civita symbol, 139, 239, 254, 303 
Lifetime, 42, 52, 72-73, 75-76, 132, 189-190 

A particle, 204 
muon, 307 
neutron, 3 12-3 14 
pion, 3 16 
positronium, 164, 187, 246 
See also Decay rate 

Light quark baryons, 172-1 84 
Light quark mesons, 143, 168-172 
Lightlike four-vector, 86 
Linear-plus-coulomb potential, 165-167 
Local gauge invariance, 3, 343, 348-350, 352, 

Local gauge transformations, 348, 365 
Logarithmic divergence, 208, 247 
Longitudinal polarization, 30 1 
Loopdiagram, 207-210, 231, 246, 255, 281- 

282, 292-294 
Lorentz condition, 226-229, 28 1, 301-302 
Lorentz contraction, 83 
Lorentz invariance, 85-86, 97 
Lorentz transformations, 81-84 
Lowering operator, 140 
Luminosity, 194, 245-246 

360 

Magnetic form factor, 267 
Magnetic moment, 153 

anomalous: see Anomalous magnetic mo- 
ment 
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baryons, 180- 182 
electron, 17, 153, 156 
proton, 156-157 

Mandelstam variables, 102 
Marshak, R. E., 18 
Mass formulas 

baryons, 182- 184 
Coleman-Glashow, 53 
Gell-Mann-Okubo, 52 
mesons, 172 
pion, 51 
quarkonium, 165 
Wand Z,  325 

bare, 122 
constituent, 122 
current, 122 
effective, 121-122, 209-210 
matrix, 351, 371 
neutral kaon, 132, 135 
origin, 368 
physical, 209 
relativistic, 90, 92 
renormalized, 209, 247 
running, 209 
shell, 60 
term, 360-362 

Massless particle, 90 
Matrix element, 194 

Matter-antimatter asymmetry, 22, 134 
Maximal parity violation, 123, 133, 303 
Maxwell, J .  C., 56, 76 
Maxwell Lagrangian, 347 
Maxwell’s equations, 225-228 
Mechanics, 2 
Mediator, 16, 47-48, 55-57, 61, 301, 308- 

309 
See also Gluon; Graviton; Intermediate 

vector boson; Photon; Pion; W, Z 
Meson, 17-18, 29, 31, 33-34, 36, 38-39, 128, 

Mass 

See also Amplitude 

168-72 
mass, 171-172 
nonet, 36, 38-39, 128, 169 
octet, 34 

Metric, 85, 216 
Millikan, R. A,, 15, 39 
Minkowski metric: see Metric 
Minimal coupling, 350 
Mixing 

Cabibbo, 70-7 I ,  74, 3 17-322 
Kobayashi-Maskawa, 70-7 I ,  32 1-322, 325 
neutral kaons, 130- 134 
neutral mesons, 170- 17 I 

Maller scattering, 57-58, 232-233 
Momentum 

conservation: see Conservation laws 
four-vector, 89 
operator, 144, 2 I4 
relativistic, 87-9 1 
space, 2 18, 228-229, 358 

Mott scattering, 232-233, 240-241, 265, 270, 
309,3 13 

Multiplets, 1 17- 1 18 
Multiplicative quantum number, 127, 129 
Muon, 4, 18-19,24-25,27,66, 100, 304- 

Muon number, 27,47 

Muonium, 159- 160, 168 

309 

See also Conservation laws 

N see Nucleon 
n: see Neutron 
Neddermeyer, S. ,  18 
Ne’eman, Y., 33 
Negative energy states, 18, 217-218, 221 
Neutral weak interactions, 65-67, 322-324, 

Neutrino, 14, 19,22-28, 124-125 
Neutrino-electron scattering, 303, 323-327 
Neutrino-nucleon scattering, 323-324 
Neutron, 14, 24, 27, 68, 116, 135, 309-315 
Ninth gluon, 280-281, 296,356 
Noether’s theorem, 103, 105, 117, 370 
Nonabelian gauge, 354-355 
Nonet: see Meson, nonet 
Nonleptonic decay, 3 18-3 19 
Normalization 

326 

Dirac spinor, 218, 220-221, 225, 229 
Pauli spinor, I I3 
polarization vector, 229 
wave function, 145 

November Revolution, 41-45, 166 
Nucleon, 1 16 

Nucleon-nucleon scattering, 1 18- I I9 
Nucleus, 12- 14 

See also Neutron; Proton 

O(n): see Groups 
Octet, 35 

See also Baryon, octet; Color, octet; Gluon, 
octet; Meson, octet 

R-, 34-36, 52-53,70 
w ,  170, 172 
Orthogonal matrix, 107 
Orthogonal polarization vectors, 229 
Orthogonal spinors, 228, 25 1 
OZI rule, 75-76, 79, 166-167, 294 

P see Parity, operator 
Pair annihilation, 58, 161-162, 215, 232, 

Pair production, 58, 215, 232 
Pais, A,, 32, 131-132 
Parity, 103, 122-128, 130-131, 134, 223-224 

241-245,257-262,289-292 

baryon, 127 
conservation, 125, 127-128 
intrinsic, 127 
invariance, 122- 123 
meson, 127-128 
operator, 125-127, 224 
particle and antiparticle, 127, 252 
photon, 127 
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Parity (Continued) 
quarks, 127 
violation, 123, 131 

Particle Data Booklet, 50, 11  1 
Particles 

O L ,  12-13, 141 
antineutrino, 24, 26-28, 124-125 
antineutron, 2 1 
antiproton, 2 1, 30-3 1, 96-97 
B meson, 44, 79, 167 
b (beauty or bottom) quark, 44, 122 
p: see Electron 
c (charm) quark, 42-44, 122 
D meson, 44, 76, 79, 166 
d (down) quark, 37, 122 
A, 31, 34, 69, 120 
deuteron, 118, 143 
electron, 4, 11-12, 230 
q, 38-39, 170 
q', 38-39, 170, 172, 188 
F meson, 44 (now called D,) 
y: see Photon 
gluon, 48, 55-56,60-61,260,275, 279- 

graviton, 16, 48, 55-56 
J or J/$ meson: see $ meson 
K meson 

28 1 

charged, 29, 31-38, 128, 318 
neutral, 29-30, 32-38, 131-133 

kaon: see K meson 

A,, 44-45 
muon, 4, 18-19, 24-25, 27, 66, 100, 304- 

309 
neutrino, 14, 19, 22-28, 124-125 
neutron, 14, 24, 27, 68, 116, 135, 309-314 
nucleon, 116 

w meson, 170, 172 
6 meson, 75, 170, 172,262-263 
photon, 14-17,47,55-57, 225-230 
T meson: see Pion 

A, 29, 32-35, 70 

0-, 34-36, 52-53, 70 

pion, 18-19, 24-25, 27, 51, 68, 124-125, 
211, 314-317 

positron, 14, 20-21, 217, 230 
proton, 4, 13, 29-34, 39-40, 77, 116, 262- 

$ meson, 42, 44, 75, 144, 262-263; see 

p meson, 170, 172 
s (strange) quark, 37, 122 

t (top or truth) quark, 44, 47, 122 
T lepton, 44, 47, 26 1 
u (up) quark, 37, 122 
T meson, 44, 79, 144, 167-169, 262-263 

275 

also Charmonium 

Z, 31-33, 182-184 

W, 44-47, 55-56, 301 
Z, 31, 33, 35, 78, 182-184 
Z, 6,46-47, 55-56, 301, 340 

Parton model, 269-273 
Partons, 42, 270 

See also Gluon; Quark 
Pauli, W., 23, 125, 208, 215 

Pauli matrices, 115, 139, 216, 334, 351, 379 
Pauli principle, 1, 3, 18, 41, 174-176 
PCAC hypothesis, 3 13, 3 19 
Perturbation theory, 59 

nonrelativistic, 143, 15 1 
relativistic: see Feynman calculus 

Perturbative QCD, 279, 295 
Phase transformation: see Gauge transforma- 

tion I 

Phase space, 194-195 
6 meson, 75, 170, 172, 262-263 
Photoelectric effect, 15 
Photon, 14-17,47, 55-57, 225-230 
Pion, 18-19,24-25,27, 51,68, 124-125, 

Pion decay constant, 3 15-3 16 
Planck, M., 14 
Planck formula, 14, 90, 149 
Planck's constant, 14, 108 
Plane waves, 2 18, 227 
Polar vector, 126-127 
Polarization, 62-63, 227-229 
Polarization vector, 227-229 
Positron, 14, 20-2 1 ,  21 7, 230 
Positronium, 143, 159-64, 245-246 
Potential 

Coulomb, 148, 164, 194, 285, 287 
four-vector, 226-228 
interquark, 165-167, 279, 284-289 
linear-plus-coulomb, 165- 167 
scalar, 226 
vector, 226-228 

211, 314-317 

Potential energy term, 36 1, 363 
Powell, C. F., 18-19, 24-25, 29, 31 
Primitive vertex: see Vertex 
Proca equation, 2 13, 346 
Projection matrix, 339 
Propagator, 203, 357 

electron, 230 
gluon, 283 
modified, 247 
photon, 230 
quark, 283 
spin zero, 203, 358 
spin one-half, 203, 358 
spin one, massive, 302, 358 
spin one, massless, 230, 359 
unstable particle, 329 
Wand Z, 302, 325, 329 

Proper time, 87 
Proper velocity, 88 
Proton, 4, 13, 29-34, 39-40, 77, 116, 262- 

Pseudoscalar, 126- 127, 223-224 
Pseudoscalar mesons, 34, 110, 169-172 
Pseudovector: see Axial vector 
$ meson, 42, 44, 75, 144, 262, 263 

275 

See also Charmonium 

Q: see Charge, electric 
Quantum chromodynamics (QCD), 3, 55-56, 

60-65, 164, 279-299, 355-357 
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Quantum electrodynamics (QED), 3, 18, 55- 

Quantum field theory, 2, 3, 10, 16, 21, 135, 

Quantum mechanics, 2, 3, 143-148, 189 
Quark 

60,63, 153, 155,213-255 

175, 189,213, 343, 357 

confinement: see Confinement 
distribution functions, 273-276 
masses, 53, 122 
model, 37-44 
number, 74 
search, 39-40 
table, 47, 122 
weak interactions, 3 17-322 
See also particles 

Quark-quark interaction, 284-289 
Quarkonium, 160, 162-169 

Quasi-bound state, 162-163, 166 
See also Bottomonium; Charmonium 

R, 261-263 
Rabi, I. I., 29, 149 
Radial equation, 147 
Radiative corrections, 155 
Raising operator, 140 
Range, 17, 51-52 
Reactor, 4, 26 
Real particle, 59-60 
Reduced mass, 160 
Reflection, 125- 126 
Regularization, 208 
Relativistic correction, 15 1-152 
Relativistic mechanics, 2, 87-99 
Relativity, 3, 81-82 
Reines, F., 26 
Renormalization, 156, 209-2 10, 246-250, 

360 
Representation, 107, 116 
Resonance, 120, 140, 19 1,262-263 
p meson, 170, 172 
Richter, B., 42 
Right-handed state, 27, 124, 331-333 
Rochester, G. D., 29-30 
Rosenbluth formula, 266, 268-269 
Rotation, 105-106 
Rotation group, 107 

See also Groups 
Rotation matrix, 115, 137, 139 
Rubbia, C., 46, 327 
Running coupling constant: see Coupling 

constant 
Rutherford, E., 12-13, 249 
Rutherford scattering, 12-13, 40, 193-194, 

Rydberg formula, 15 1 
232-233, 240-241, 309, 313 

S: see Strangeness 
s (strange) quark, 37, 122 
Salam, A., 56, 323, 330 
Scalar, 87, 224 

See also Invariant 

Scalar product, 86 
Scaling: see Bjorken scaling 
Scattering, 2 

See also Bhabha scattering; Collisions; 
Compton; Cross sections; Electron- 
muon scattering; Electron-positron scat- 
tering; Electron-proton scattering; 
Golden Rule; Mclller scattering; Mott 
scattering; Neutrino-electron scattering; 
Rutherford scattering 

Scattering amplitude, 1 19 
See also Amplitude 

Scattering angle, 19 1 - 192 
Schrodinger equation, 143-148, 213-214, 

Schwinger, J. S., 56, 153, 155, 208 
Screening, 62-64, 249, 294 
Sea: see Dirac sea 
Sea quarks, 275-276 
Semileptonic decay, 67, 3 18-3 19 
Separation of variables, 145- 146 
Sextet, 288 

Simultaneity, 82 
Singlet, 112, 118, 158-159 

See also Color, singlet 
SLAC, 5, 8,40,258, 273, 327 
Slash notation, 235-236, 238 
SO(n): see Groups 
Solar neutrinos, 26 
Spacelike four-vector, 86 
Spectator quark, 68, 70 
Spectrum, 148, 150-151, 155, 162-163, 167 
Spherical harmonics, 147-148, 186 
Spin: see Angular momentum 
Spin 4, 113-116 
Spin matrices, 1 13-1 15, 139,, 22 1 
Spin and statistics, 175 
Spin-averaged amplitude, 236 
Spin-orbit coupling, 151, 153-154, 157 
Spin-spin coupling: see Hyperfine structure 
Spinor, 1 13- 1 15 

Spontaneous symmetry-breaking, 323, 343, 

Stable particle, 72-73 
Standard Model, 3, 46-48, 121-122, 322, 

State, 3 
Statistical factor, 195 
Stevenson, E. C., 18 
Storage rings, 5 
Strange particles, 28-33 
Strangeness, 32-34, 37-39, 47, 1 18 
Street, J. C., 18 
Strength, 55, 76, 78 
Strong force, 17, 32-33, 55-56, 279 
Structure constants, 282, 297 
Structure functions, 264-276 

217 

Z, 31-33, 182-184 

See also Dirac spinor 

360, 362-365 

325, 350, 367-368 

See also Quark, distribution functions; 
Form factor 

Stiickelberg, E. C. G., 21, 29 
Subparticles, 48, 53 
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Sum rules, 276, 278 
Supermultiplet, 36, 43, 12 1, I7 1-80 

See also Baryon, decuplet; Baryon, octet; 
Meson, nonet 

Su(n): see Groups 
Symmetric state, 1 12, 1 18, 174 
Symmetric tensor, 100 
Symmetry, 103-141 

See also Gauge invariance; Groups; Invari- 
ance 

T: see Time reversal 
t quark, 44, 47, 122 
r lepton, 44, 47, 26 1 
T number, 47 

7-0 puzzle, 128 
TCP theorem, 3, 135 
Tensor, 86-87 
Bc: see Cabibbo angle 
O w :  see Weak mixing angle 
Thomas precession, 153 
Thomson, J. J., 11-12 
Three-jet event, 258-260 
Threshold, 22, 96-97, 101, 261-263 
Time dilation, 83 
Time reversal, 103, 134-135 
Timelike four-vector, 86 
Ting, C. C. ,  42 
Top, 44,47 
Top quark: see t quark 
Toponium, 167 
Total cross section, 193 
Trace, 237-239 
Trace theorems, 238-239, 380 
Transformation 

See also Conservation laws 

Dirac spinor, 222-223 
four-vector: see Lorentz transformations 
tensor, 86-87 
See also Charge, conjugation; Parity; Time 

reversal 
Transition probability, 3 
Translation, 105 
Transverse gauge: see Coulomb gauge 
Transverse polarization, 228 
Tree-level diagram, 206, 249, 282 
Triangle function, 10 I 
Triplet, 112, 118, 158-159 
Truth, 44, 47 
Two-jet event, 258-259 
Two-neutrino hypothesis, 27-28 

u quark, 37, 122 
U(n): see Groups 
Uncertainty principle, 5 1-52, 73 
Unification, 3 1, 76-78, 330-337 

See also: Electroweak force; Grand Unifi- 
cation; GWS theory 

Unitary matrix, 106, 351 
Units, 8, 9, 200-201, 230, 347 
Up quark: see u quark 
Upness, 47 
'T meson, 44, 79, 144, 167-169,262-263 

V-A interaction, 303, 324, 330 
V-events, 29 
Vacuum, 362-364 
Vacuum polarization, 63, 156, 246, 293 
Valence quarks, 275-276 
Vector, 224 
Vector interaction, 302-303, 309, 313, 324, 

Vector meson, 110, 169-172 
Vector potential, 226-228 
Velocity addition rule, 83, 88 
Vertex, 73 

330, 332 

ABC, 201 

QED, 56-57, 230, 359 
weak, 65-67, 69-71, 302, 317,322,336- 

QCD, 60-61, 280,282-283, 353 

337 
Vertex factor: see Feynman rules; Vertex 
Virial theorem, 144 
Virtual particle, 58-60, 78,257-258 

Wboson, 46-47, 48, 55-56, 301 
Ward identity, 250 
Wave function, 3, 145, 176, 214, 347 
Weak force, 32, 55-56, 123, 301-341 
Weak hypercharge, 333-335 
Weak interaction, 65-72 

charged, 65, 67, 301-304, 317-322 
neutral, 66, 69, 322-330 

Weak isospin, 333-335 
Weak mixing angle, 324, 336 
Weinberg, S., 56, 323, 330 
Weinberg angle: see Weak mixing angle 
Weyl, H., 125, 350, 354, 356 
Work function, 15 
Wu, C. S., 123 

E ,  31, 33, 35, 78, 182-184 

Yang, C. N., 56, 122, 128, 350 
Yang-Mills theory, 350-355 
Yukawa, H., 17-18, 47, 56 
Yukawa coupling, 368 
Yukawa meson, 14, 17-18,47, 51, 65 

See also Pion 

Z boson, 6,46-47, 55-56, 301, 340 
Zweig, G., 37 
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