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ike all other sciences, physics is based on experimental observations and quan-
titative measurements. The main objective of physics is to find the limited num-

ber of fundamental laws that govern natural phenomena and to use them to
develop theories that can predict the results of future experiments. The funda-
mental laws used in developing theories are expressed in the language of mathe-
matics, the tool that provides a bridge between theory and experiment.

When a discrepancy between theory and experiment arises, new theories must
be formulated to remove the discrepancy. Many times a theory is satisfactory only
under limited conditions; a more general theory might be satisfactory without
such limitations. For example, the laws of motion discovered by Isaac Newton
(1642–1727) in the 17th century accurately describe the motion of bodies at nor-
mal speeds but do not apply to objects moving at speeds comparable with the
speed of light. In contrast, the special theory of relativity developed by Albert Ein-
stein (1879–1955) in the early 1900s gives the same results as Newton’s laws at low
speeds but also correctly describes motion at speeds approaching the speed of
light. Hence, Einstein’s is a more general theory of motion.

Classical physics, which means all of the physics developed before 1900, in-
cludes the theories, concepts, laws, and experiments in classical mechanics, ther-
modynamics, and electromagnetism. 

Important contributions to classical physics were provided by Newton, who de-
veloped classical mechanics as a systematic theory and was one of the originators
of calculus as a mathematical tool. Major developments in mechanics continued in
the 18th century, but the fields of thermodynamics and electricity and magnetism
were not developed until the latter part of the 19th century, principally because
before that time the apparatus for controlled experiments was either too crude or
unavailable.

A new era in physics, usually referred to as modern physics, began near the end
of the 19th century. Modern physics developed mainly because of the discovery
that many physical phenomena could not be explained by classical physics. The
two most important developments in modern physics were the theories of relativity
and quantum mechanics. Einstein’s theory of relativity revolutionized the tradi-
tional concepts of space, time, and energy; quantum mechanics, which applies to
both the microscopic and macroscopic worlds, was originally formulated by a num-
ber of distinguished scientists to provide descriptions of physical phenomena at
the atomic level.

Scientists constantly work at improving our understanding of phenomena and
fundamental laws, and new discoveries are made every day. In many research
areas, a great deal of overlap exists between physics, chemistry, geology, and
biology, as well as engineering. Some of the most notable developments are 
(1) numerous space missions and the landing of astronauts on the Moon, 
(2) microcircuitry and high-speed computers, and (3) sophisticated imaging tech-
niques used in scientific research and medicine. The impact such developments
and discoveries have had on our society has indeed been great, and it is very likely
that future discoveries and developments will be just as exciting and challenging
and of great benefit to humanity.

STANDARDS OF LENGTH, MASS, AND TIME
The laws of physics are expressed in terms of basic quantities that require a clear def-
inition. In mechanics, the three basic quantities are length (L), mass (M), and time
(T). All other quantities in mechanics can be expressed in terms of these three.

1.1

L
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If we are to report the results of a measurement to someone who wishes to re-
produce this measurement, a standard must be defined. It would be meaningless if
a visitor from another planet were to talk to us about a length of 8 “glitches” if we
do not know the meaning of the unit glitch. On the other hand, if someone famil-
iar with our system of measurement reports that a wall is 2 meters high and our
unit of length is defined to be 1 meter, we know that the height of the wall is twice
our basic length unit. Likewise, if we are told that a person has a mass of 75 kilo-
grams and our unit of mass is defined to be 1 kilogram, then that person is 75
times as massive as our basic unit.1 Whatever is chosen as a standard must be read-
ily accessible and possess some property that can be measured reliably—measure-
ments taken by different people in different places must yield the same result.

In 1960, an international committee established a set of standards for length,
mass, and other basic quantities. The system established is an adaptation of the
metric system, and it is called the SI system of units. (The abbreviation SI comes
from the system’s French name “Système International.”) In this system, the units
of length, mass, and time are the meter, kilogram, and second, respectively. Other
SI standards established by the committee are those for temperature (the kelvin),
electric current (the ampere), luminous intensity (the candela), and the amount of
substance (the mole). In our study of mechanics we shall be concerned only with
the units of length, mass, and time. 

Length

In A.D. 1120 the king of England decreed that the standard of length in his coun-
try would be named the yard and would be precisely equal to the distance from the
tip of his nose to the end of his outstretched arm. Similarly, the original standard
for the foot adopted by the French was the length of the royal foot of King Louis
XIV. This standard prevailed until 1799, when the legal standard of length in
France became the meter, defined as one ten-millionth the distance from the equa-
tor to the North Pole along one particular longitudinal line that passes through
Paris.

Many other systems for measuring length have been developed over the years,
but the advantages of the French system have caused it to prevail in almost all
countries and in scientific circles everywhere. As recently as 1960, the length of the
meter was defined as the distance between two lines on a specific platinum–
iridium bar stored under controlled conditions in France. This standard was aban-
doned for several reasons, a principal one being that the limited accuracy with
which the separation between the lines on the bar can be determined does not
meet the current requirements of science and technology. In the 1960s and 1970s,
the meter was defined as 1 650 763.73 wavelengths of orange-red light emitted
from a krypton-86 lamp. However, in October 1983, the meter (m) was redefined
as the distance traveled by light in vacuum during a time of 1/299 792 458
second. In effect, this latest definition establishes that the speed of light in vac-
uum is precisely 299 792 458 m per second.

Table 1.1 lists approximate values of some measured lengths.

1 The need for assigning numerical values to various measured physical quantities was expressed by
Lord Kelvin (William Thomson) as follows: “I often say that when you can measure what you are speak-
ing about, and express it in numbers, you should know something about it, but when you cannot ex-
press it in numbers, your knowledge is of a meagre and unsatisfactory kind. It may be the beginning of
knowledge but you have scarcely in your thoughts advanced to the state of science.”
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Mass

The basic SI unit of mass, the kilogram (kg), is defined as the mass of a spe-
cific platinum–iridium alloy cylinder kept at the International Bureau of
Weights and Measures at Sèvres, France. This mass standard was established in
1887 and has not been changed since that time because platinum–iridium is an
unusually stable alloy (Fig. 1.1a). A duplicate of the Sèvres cylinder is kept at the
National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.

Table 1.2 lists approximate values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar day for the
year 1900.2 The mean solar second was originally defined as of a mean
solar day. The rotation of the Earth is now known to vary slightly with time, how-
ever, and therefore this motion is not a good one to use for defining a standard.

In 1967, consequently, the second was redefined to take advantage of the high
precision obtainable in a device known as an atomic clock (Fig. 1.1b). In this device,
the frequencies associated with certain atomic transitions can be measured to a
precision of one part in 1012. This is equivalent to an uncertainty of less than one
second every 30 000 years. Thus, in 1967 the SI unit of time, the second, was rede-
fined using the characteristic frequency of a particular kind of cesium atom as the
“reference clock.” The basic SI unit of time, the second (s), is defined as 9 192
631 770 times the period of vibration of radiation from the cesium-133
atom.3 To keep these atomic clocks—and therefore all common clocks and

( 1
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24)

TABLE 1.1 Approximate Values of Some Measured Lengths

Length (m)

Distance from the Earth to most remote known quasar 1.4 � 1026

Distance from the Earth to most remote known normal galaxies 9 � 1025

Distance from the Earth to nearest large galaxy 
(M 31, the Andromeda galaxy) 2 � 1022

Distance from the Sun to nearest star (Proxima Centauri) 4 � 1016

One lightyear 9.46 � 1015

Mean orbit radius of the Earth about the Sun 1.50 � 1011

Mean distance from the Earth to the Moon 3.84 � 108

Distance from the equator to the North Pole 1.00 � 107

Mean radius of the Earth 6.37 � 106

Typical altitude (above the surface) of a satellite orbiting the Earth 2 � 105

Length of a football field 9.1 � 101

Length of a housefly 5 � 10�3

Size of smallest dust particles � 10�4

Size of cells of most living organisms � 10�5

Diameter of a hydrogen atom � 10�10

Diameter of an atomic nucleus � 10�14

Diameter of a proton � 10�15

web
Visit the Bureau at www.bipm.fr or the
National Institute of Standards at
www.NIST.gov

2 One solar day is the time interval between successive appearances of the Sun at the highest point it
reaches in the sky each day.
3 Period is defined as the time interval needed for one complete vibration.

TABLE 1.2
Masses of Various Bodies
(Approximate Values)

Body Mass (kg)

Visible � 1052

Universe
Milky Way 7 � 1041

galaxy
Sun 1.99 � 1030

Earth 5.98 � 1024

Moon 7.36 � 1022

Horse � 103

Human � 102

Frog � 10�1

Mosquito � 10�5

Bacterium � 10�15

Hydrogen 1.67 � 10�27

atom
Electron 9.11 � 10�31
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watches that are set to them—synchronized, it has sometimes been necessary to
add leap seconds to our clocks. This is not a new idea. In 46 B.C. Julius Caesar be-
gan the practice of adding extra days to the calendar during leap years so that the
seasons occurred at about the same date each year.

Since Einstein’s discovery of the linkage between space and time, precise mea-
surement of time intervals requires that we know both the state of motion of the
clock used to measure the interval and, in some cases, the location of the clock as
well. Otherwise, for example, global positioning system satellites might be unable
to pinpoint your location with sufficient accuracy, should you need rescuing.

Approximate values of time intervals are presented in Table 1.3.
In addition to SI, another system of units, the British engineering system (some-

times called the conventional system), is still used in the United States despite accep-
tance of SI by the rest of the world. In this system, the units of length, mass, and

Figure 1.1 (Top) The National Standard Kilogram No.
20, an accurate copy of the International Standard Kilo-
gram kept at Sèvres, France, is housed under a double bell
jar in a vault at the National Institute of Standards and
Technology (NIST). (Bottom) The primary frequency stan-
dard (an atomic clock) at the NIST. This device keeps
time with an accuracy of about 3 millionths of a second
per year. (Courtesy of National Institute of Standards and Technology,
U.S. Department of Commerce)
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time are the foot (ft), slug, and second, respectively. In this text we shall use SI
units because they are almost universally accepted in science and industry. We
shall make some limited use of British engineering units in the study of classical
mechanics.

In addition to the basic SI units of meter, kilogram, and second, we can also
use other units, such as millimeters and nanoseconds, where the prefixes milli- and
nano- denote various powers of ten. Some of the most frequently used prefixes 
for the various powers of ten and their abbreviations are listed in Table 1.4. For 

TABLE 1.3 Approximate Values of Some Time Intervals

Interval (s)

Age of the Universe 5 � 1017

Age of the Earth 1.3 � 1017

Average age of a college student 6.3 � 108

One year 3.16 � 107

One day (time for one rotation of the Earth about its axis) 8.64 � 104

Time between normal heartbeats 8 � 10�1

Period of audible sound waves � 10�3

Period of typical radio waves � 10�6

Period of vibration of an atom in a solid � 10�13

Period of visible light waves � 10�15

Duration of a nuclear collision � 10�22

Time for light to cross a proton � 10�24

TABLE 1.4 Prefixes for SI Units

Power Prefix Abbreviation

10�24 yocto y
10�21 zepto z
10�18 atto a
10�15 femto f
10�12 pico p
10�9 nano n
10�6 micro �
10�3 milli m
10�2 centi c
10�1 deci d
101 deka da
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
1018 exa E
1021 zetta Z
1024 yotta Y
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example, 10�3 m is equivalent to 1 millimeter (mm), and 103 m corresponds 
to 1 kilometer (km). Likewise, 1 kg is 103 grams (g), and 1 megavolt (MV) is 
106 volts (V).

THE BUILDING BLOCKS OF MATTER
A 1-kg cube of solid gold has a length of 3.73 cm on a side. Is this cube nothing
but wall-to-wall gold, with no empty space? If the cube is cut in half, the two pieces
still retain their chemical identity as solid gold. But what if the pieces are cut again
and again, indefinitely? Will the smaller and smaller pieces always be gold? Ques-
tions such as these can be traced back to early Greek philosophers. Two of them—
Leucippus and his student Democritus—could not accept the idea that such cut-
tings could go on forever. They speculated that the process ultimately must end
when it produces a particle that can no longer be cut. In Greek, atomos means “not
sliceable.” From this comes our English word atom.

Let us review briefly what is known about the structure of matter. All ordinary
matter consists of atoms, and each atom is made up of electrons surrounding a
central nucleus. Following the discovery of the nucleus in 1911, the question
arose: Does it have structure? That is, is the nucleus a single particle or a collection
of particles? The exact composition of the nucleus is not known completely even
today, but by the early 1930s a model evolved that helped us understand how the
nucleus behaves. Specifically, scientists determined that occupying the nucleus are
two basic entities, protons and neutrons. The proton carries a positive charge, and a
specific element is identified by the number of protons in its nucleus. This num-
ber is called the atomic number of the element. For instance, the nucleus of a hy-
drogen atom contains one proton (and so the atomic number of hydrogen is 1),
the nucleus of a helium atom contains two protons (atomic number 2), and the
nucleus of a uranium atom contains 92 protons (atomic number 92). In addition
to atomic number, there is a second number characterizing atoms—mass num-
ber, defined as the number of protons plus neutrons in a nucleus. As we shall see,
the atomic number of an element never varies (i.e., the number of protons does
not vary) but the mass number can vary (i.e., the number of neutrons varies). Two
or more atoms of the same element having different mass numbers are isotopes
of one another. 

The existence of neutrons was verified conclusively in 1932. A neutron has no
charge and a mass that is about equal to that of a proton. One of its primary pur-
poses is to act as a “glue” that holds the nucleus together. If neutrons were not
present in the nucleus, the repulsive force between the positively charged particles
would cause the nucleus to come apart.

But is this where the breaking down stops? Protons, neutrons, and a host of
other exotic particles are now known to be composed of six different varieties of
particles called quarks, which have been given the names of up, down, strange,
charm, bottom, and top. The up, charm, and top quarks have charges of � that of
the proton, whereas the down, strange, and bottom quarks have charges of �
that of the proton. The proton consists of two up quarks and one down quark
(Fig. 1.2), which you can easily show leads to the correct charge for the proton.
Likewise, the neutron consists of two down quarks and one up quark, giving a net
charge of zero.

1
3

2
3

1.2

Quark
composition
of a proton
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nucleus
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atoms
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Neutron

Nucleus

Figure 1.2 Levels of organization
in matter. Ordinary matter consists
of atoms, and at the center of each
atom is a compact nucleus consist-
ing of protons and neutrons. Pro-
tons and neutrons are composed of
quarks. The quark composition of
a proton is shown.
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DENSITY
A property of any substance is its density � (Greek letter rho), defined as the
amount of mass contained in a unit volume, which we usually express as mass per
unit volume:

(1.1)

For example, aluminum has a density of 2.70 g/cm3, and lead has a density of 
11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 
27.0 g, whereas an equivalent volume of lead has a mass of 113 g. A list of densities
for various substances is given Table 1.5.

The difference in density between aluminum and lead is due, in part, to their
different atomic masses. The atomic mass of an element is the average mass of one
atom in a sample of the element that contains all the element’s isotopes, where the
relative amounts of isotopes are the same as the relative amounts found in nature.
The unit for atomic mass is the atomic mass unit (u), where 1 u � 1.660 540 2 �
10�27 kg. The atomic mass of lead is 207 u, and that of aluminum is 27.0 u. How-
ever, the ratio of atomic masses, 207 u/27.0 u � 7.67, does not correspond to the
ratio of densities, (11.3 g/cm3)/(2.70 g/cm3) � 4.19. The discrepancy is due to
the difference in atomic separations and atomic arrangements in the crystal struc-
ture of these two substances.

The mass of a nucleus is measured relative to the mass of the nucleus of the
carbon-12 isotope, often written as 12C. (This isotope of carbon has six protons
and six neutrons. Other carbon isotopes have six protons but different numbers of
neutrons.) Practically all of the mass of an atom is contained within the nucleus.
Because the atomic mass of 12C is defined to be exactly 12 u, the proton and neu-
tron each have a mass of about 1 u. 

One mole (mol) of a substance is that amount of the substance that con-
tains as many particles (atoms, molecules, or other particles) as there are
atoms in 12 g of the carbon-12 isotope. One mole of substance A contains the
same number of particles as there are in 1 mol of any other substance B. For ex-
ample, 1 mol of aluminum contains the same number of atoms as 1 mol of lead.

� �
m
V

1.3
A table of the letters in the Greek
alphabet is provided on the back
endsheet of this textbook.

TABLE 1.5 Densities of Various
Substances

Substance Density � (103 kg/m3)

Gold 19.3
Uranium 18.7
Lead 11.3
Copper 8.92
Iron 7.86
Aluminum 2.70
Magnesium 1.75
Water 1.00
Air 0.0012
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Experiments have shown that this number, known as Avogadro’s number, NA , is

Avogadro’s number is defined so that 1 mol of carbon-12 atoms has a mass of
exactly 12 g. In general, the mass in 1 mol of any element is the element’s atomic
mass expressed in grams. For example, 1 mol of iron (atomic mass � 55.85 u) has
a mass of 55.85 g (we say its molar mass is 55.85 g/mol), and 1 mol of lead (atomic
mass � 207 u) has a mass of 207 g (its molar mass is 207 g/mol). Because there
are 6.02 � 1023 particles in 1 mol of any element, the mass per atom for a given el-
ement is

(1.2)

For example, the mass of an iron atom is 

mFe �
55.85 g/mol

6.02 � 1023 atoms/mol
� 9.28 � 10�23 g/atom

matom �
molar mass

NA

NA � 6.022 137 � 1023 particles/mol

How Many Atoms in the Cube?EXAMPLE 1.1
minum (27 g) contains 6.02 � 1023 atoms:

1.2 � 1022 atomsN �
(0.54 g)(6.02 � 1023 atoms)

27 g
�

  
6.02 � 1023 atoms

27 g
�

N
0.54 g

  

  
NA

27 g
�

N
0.54 g

  

A solid cube of aluminum (density 2.7 g/cm3) has a volume
of 0.20 cm3. How many aluminum atoms are contained in the
cube?

Solution Since density equals mass per unit volume, the
mass m of the cube is

To find the number of atoms N in this mass of aluminum, we
can set up a proportion using the fact that one mole of alu-

m � �V � (2.7 g/cm3)(0.20 cm3) � 0.54 g

DIMENSIONAL ANALYSIS
The word dimension has a special meaning in physics. It usually denotes the physi-
cal nature of a quantity. Whether a distance is measured in the length unit feet or
the length unit meters, it is still a distance. We say the dimension—the physical
nature—of distance is length.

The symbols we use in this book to specify length, mass, and time are L, M,
and T, respectively. We shall often use brackets [ ] to denote the dimensions of a
physical quantity. For example, the symbol we use for speed in this book is v, and
in our notation the dimensions of speed are written As another exam-
ple, the dimensions of area, for which we use the symbol A, are The di-
mensions of area, volume, speed, and acceleration are listed in Table 1.6.

In solving problems in physics, there is a useful and powerful procedure called
dimensional analysis. This procedure, which should always be used, will help mini-
mize the need for rote memorization of equations. Dimensional analysis makes
use of the fact that dimensions can be treated as algebraic quantities. That is,
quantities can be added or subtracted only if they have the same dimensions. Fur-
thermore, the terms on both sides of an equation must have the same dimensions.

[A] � L2.
[v] � L/T.

1.4
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By following these simple rules, you can use dimensional analysis to help deter-
mine whether an expression has the correct form. The relationship can be correct
only if the dimensions are the same on both sides of the equation.

To illustrate this procedure, suppose you wish to derive a formula for the dis-
tance x traveled by a car in a time t if the car starts from rest and moves with con-
stant acceleration a. In Chapter 2, we shall find that the correct expression is

Let us use dimensional analysis to check the validity of this expression.
The quantity x on the left side has the dimension of length. For the equation to be
dimensionally correct, the quantity on the right side must also have the dimension
of length. We can perform a dimensional check by substituting the dimensions for
acceleration, L/T2, and time, T, into the equation. That is, the dimensional form
of the equation is

The units of time squared cancel as shown, leaving the unit of length.
A more general procedure using dimensional analysis is to set up an expres-

sion of the form

where n and m are exponents that must be determined and the symbol � indicates
a proportionality. This relationship is correct only if the dimensions of both sides
are the same. Because the dimension of the left side is length, the dimension of
the right side must also be length. That is,

Because the dimensions of acceleration are L/T2 and the dimension of time is T,
we have

Because the exponents of L and T must be the same on both sides, the dimen-
sional equation is balanced under the conditions and 
Returning to our original expression we conclude that This result
differs by a factor of 2 from the correct expression, which is Because the
factor is dimensionless, there is no way of determining it using dimensional
analysis.

1
2

x � 1
2at2.

x �  at2.x �  antm,
m � 2.n � 1,m � 2n � 0,

 Ln Tm�2n � L1

� L
T2 �

n
Tm � L1

[antm] � L � LT0

x �  antm

L �
L
T2 �T2 � L

x � 1
2at2

x � 1
2at2.

TABLE 1.6 Dimensions and Common Units of Area, Volume, 
Speed, and Acceleration

Area Volume Speed Acceleration
System (L2) (L3) (L/T) (L/T2)

SI m2 m3 m/s m/s2

British engineering ft2 ft3 ft/s ft/s2
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True or False: Dimensional analysis can give you the numerical value of constants of propor-
tionality that may appear in an algebraic expression.

Quick Quiz 1.1

Analysis of an EquationEXAMPLE 1.2
Show that the expression v � at is dimensionally correct,
where v represents speed, a acceleration, and t a time inter-
val.

Solution For the speed term, we have from Table 1.6

[v] �
L
T

The same table gives us L/T2 for the dimensions of accelera-
tion, and so the dimensions of at are 

Therefore, the expression is dimensionally correct. (If the ex-
pression were given as it would be dimensionally in-
correct. Try it and see!)

v � at2,

[at] � � L
T2   �(T) �

L
T

CONVERSION OF UNITS
Sometimes it is necessary to convert units from one system to another. Conversion
factors between the SI units and conventional units of length are as follows:

A more complete list of conversion factors can be found in Appendix A.
Units can be treated as algebraic quantities that can cancel each other. For ex-

ample, suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined
as exactly 2.54 cm, we find that

This works because multiplying by is the same as multiplying by 1, because
the numerator and denominator describe identical things.

(2.54 cm
1 in. )

15.0 in. � (15.0 in.)(2.54 cm/in.) � 38.1 cm

 1 m �  39.37 in. � 3.281 ft  1 in. �  0.025 4 m � 2.54 cm (exactly)

1 mi � 1 609 m � 1.609 km  1 ft � 0.304 8 m � 30.48 cm 

1.5

Analysis of a Power LawEXAMPLE 1.3
This dimensional equation is balanced under the conditions

Therefore n � � 1, and we can write the acceleration expres-
sion as

When we discuss uniform circular motion later, we shall see
that k � 1 if a consistent set of units is used. The constant k
would not equal 1 if, for example, v were in km/h and you
wanted a in m/s2.

a � kr �1v2 � k 
v2

r

n � m � 1  and  m � 2

Suppose we are told that the acceleration a of a particle mov-
ing with uniform speed v in a circle of radius r is proportional
to some power of r, say rn, and some power of v, say vm. How
can we determine the values of n and m?

Solution Let us take a to be

where k is a dimensionless constant of proportionality. Know-
ing the dimensions of a, r, and v, we see that the dimensional
equation must be

L/T2 � Ln(L/T)m � Ln�m/Tm

a � kr nvm

QuickLab
Estimate the weight (in pounds) of
two large bottles of soda pop. Note
that 1 L of water has a mass of about
1 kg. Use the fact that an object
weighing 2.2 lb has a mass of 1 kg.
Find some bathroom scales and
check your estimate.
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ESTIMATES AND ORDER-OF-
MAGNITUDE CALCULATIONS

It is often useful to compute an approximate answer to a physical problem even
where little information is available. Such an approximate answer can then be
used to determine whether a more accurate calculation is necessary. Approxima-
tions are usually based on certain assumptions, which must be modified if greater
accuracy is needed. Thus, we shall sometimes refer to the order of magnitude of a
certain quantity as the power of ten of the number that describes that quantity. If,
for example, we say that a quantity increases in value by three orders of magni-
tude, this means that its value is increased by a factor of 103 � 1000. Also, if a
quantity is given as 3 � 103, we say that the order of magnitude of that quantity is
103 (or in symbolic form, 3 � 103 � 103). Likewise, the quantity 8 � 107 � 108.

The spirit of order-of-magnitude calculations, sometimes referred to as
“guesstimates” or “ball-park figures,” is given in the following quotation: “Make an
estimate before every calculation, try a simple physical argument . . . before
every derivation, guess the answer to every puzzle. Courage: no one else needs to

1.6

(Left) This road sign near Raleigh, North Carolina, shows distances in miles and kilometers. How
accurate are the conversions? (Billy E. Barnes/Stock Boston). 

(Right) This vehicle’s speedometer gives speed readings in miles per hour and in kilometers per
hour. Try confirming the conversion between the two sets of units for a few readings of the dial.
(Paul Silverman/Fundamental Photographs)

The Density of a CubeEXAMPLE 1.4
The mass of a solid cube is 856 g, and each edge has a length
of 5.35 cm. Determine the density � of the cube in basic SI
units.

Solution Because 1 g � 10�3 kg and 1 cm � 10�2 m, the
mass m and volume V in basic SI units are

 m � 856 g � 10�3 kg/g � 0.856 kg

Therefore,

5.59 � 103 kg/m3� �
m
V

�
0.856 kg

1.53 � 10�4 m3 �

  � (5.35)3 � 10�6 m3 � 1.53 � 10�4 m3

V � L3 � (5.35 cm � 10�2 m/cm)3  
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know what the guess is.” 4 Inaccuracies caused by guessing too low for one number
are often canceled out by other guesses that are too high. You will find that with
practice your guesstimates get better and better. Estimation problems can be fun
to work as you freely drop digits, venture reasonable approximations for unknown
numbers, make simplifying assumptions, and turn the question around into some-
thing you can answer in your head.

Breaths in a LifetimeEXAMPLE 1.5
approximately

Notice how much simpler it is to multiply 400 � 25 than it 
is to work with the more accurate 365 � 24. These approxi-
mate values for the number of days in a year and the number
of hours in a day are close enough for our purposes. Thus, in
70 years there will be (70 yr)(6 � 105 min/yr) � 4 � 107

min. At a rate of 10 breaths/min, an individual would take

4 � 108 breaths in a lifetime.

1 yr � 400 
days
yr

� 25 
h

day
� 60 

min
h

� 6 � 105 min

Estimate the number of breaths taken during an average life
span.

Solution We shall start by guessing that the typical life
span is about 70 years. The only other estimate we must make
in this example is the average number of breaths that a per-
son takes in 1 min. This number varies, depending on
whether the person is exercising, sleeping, angry, serene, and
so forth. To the nearest order of magnitude, we shall choose
10 breaths per minute as our estimate of the average. (This is
certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is

Estimate the number of gallons of gasoline used each year by
all the cars in the United States.

Solution There are about 270 million people in the
United States, and so we estimate that the number of cars in
the country is 100 million (guessing that there are between
two and three people per car). We also estimate that the aver-

How Much Gas Do We Use?EXAMPLE 1.7

Now we switch to scientific notation so that we can do the
calculation mentally:

So if we intend to walk across the United States, it will take us
on the order of ten million steps. This estimate is almost cer-
tainly too small because we have not accounted for curving
roads and going up and down hills and mountains. Nonethe-
less, it is probably within an order of magnitude of the cor-
rect answer.

107 steps�

(3 � 103 mi)(2.5 � 103 steps/mi) � 7.5 � 106 steps

age distance each car travels per year is 10 000 mi. If we as-
sume a gasoline consumption of 20 mi/gal or 0.05 gal/mi,
then each car uses about 500 gal/yr. Multiplying this by the
total number of cars in the United States gives an estimated 

total consumption of 5 � 1010 gal � 1011 gal.

It’s a Long Way to San JoseEXAMPLE 1.6
Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geography class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length
depends on the person doing the walking, but we can esti-
mate that each step covers about 2 ft. With our estimated step
size, we can determine the number of steps in 1 mi. Because
this is a rough calculation, we round 5 280 ft/mi to 5 000
ft/mi. (What percentage error does this introduce?) This
conversion factor gives us

5 000 ft/mi
2 ft/step

� 2 500 steps/mi

4 E. Taylor and J. A. Wheeler, Spacetime Physics, San Francisco, W. H. Freeman & Company, Publishers,
1966, p. 60.
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SIGNIFICANT FIGURES
When physical quantities are measured, the measured values are known only to
within the limits of the experimental uncertainty. The value of this uncertainty can
depend on various factors, such as the quality of the apparatus, the skill of the ex-
perimenter, and the number of measurements performed. 

Suppose that we are asked to measure the area of a computer disk label using
a meter stick as a measuring instrument. Let us assume that the accuracy to which
we can measure with this stick is 	 0.1 cm. If the length of the label is measured to
be 5.5 cm, we can claim only that its length lies somewhere between 5.4 cm and
5.6 cm. In this case, we say that the measured value has two significant figures.
Likewise, if the label’s width is measured to be 6.4 cm, the actual value lies be-
tween 6.3 cm and 6.5 cm. Note that the significant figures include the first esti-
mated digit. Thus we could write the measured values as (5.5 	 0.1) cm and 
(6.4 	 0.1) cm.

Now suppose we want to find the area of the label by multiplying the two mea-
sured values. If we were to claim the area is (5.5 cm)(6.4 cm) � 35.2 cm2, our an-
swer would be unjustifiable because it contains three significant figures, which is
greater than the number of significant figures in either of the measured lengths. A
good rule of thumb to use in determining the number of significant figures that
can be claimed is as follows: 

1.7

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the least accurate
of the quantities being multiplied, where “least accurate” means “having the
lowest number of significant figures.” The same rule applies to division.

Applying this rule to the multiplication example above, we see that the answer
for the area can have only two significant figures because our measured lengths
have only two significant figures. Thus, all we can claim is that the area is 35 cm2,
realizing that the value can range between (5.4 cm)(6.3 cm) � 34 cm2 and 
(5.6 cm)(6.5 cm) � 36 cm2.

Zeros may or may not be significant figures. Those used to position the deci-
mal point in such numbers as 0.03 and 0.007 5 are not significant. Thus, there are
one and two significant figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of misinterpretation. For
example, suppose the mass of an object is given as 1 500 g. This value is ambigu-
ous because we do not know whether the last two zeros are being used to locate
the decimal point or whether they represent significant figures in the measure-
ment. To remove this ambiguity, it is common to use scientific notation to indicate
the number of significant figures. In this case, we would express the mass as 1.5 �
103 g if there are two significant figures in the measured value, 1.50 � 103 g if
there are three significant figures, and 1.500 � 103 g if there are four. The same
rule holds when the number is less than 1, so that 2.3 � 10�4 has two significant
figures (and so could be written 0.000 23) and 2.30 � 10�4 has three significant
figures (also written 0.000 230). In general, a significant figure is a reliably
known digit (other than a zero used to locate the decimal point).

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report.

QuickLab
Determine the thickness of a page
from this book. (Note that numbers
that have no measurement errors—
like the count of a number of
pages—do not affect the significant
figures in a calculation.) In terms of
significant figures, why is it better to
measure the thickness of as many
pages as possible and then divide by
the number of sheets?
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For example, if we wish to compute 123 � 5.35, the answer given to the correct num-
ber of significant figures is 128 and not 128.35. If we compute the sum 1.000 1 �
0.000 3 � 1.000 4, the result has five significant figures, even though one of the terms
in the sum, 0.000 3, has only one significant figure. Likewise, if we perform the sub-
traction 1.002 � 0.998 � 0.004, the result has only one significant figure even though
one term has four significant figures and the other has three. In this book, most of
the numerical examples and end-of-chapter problems will yield answers hav-
ing three significant figures. When carrying out estimates we shall typically work
with a single significant figure.

Suppose you measure the position of a chair with a meter stick and record that the center
of the seat is 1.043 860 564 2 m from a wall. What would a reader conclude from this
recorded measurement?

Quick Quiz 1.2

When numbers are added or subtracted, the number of decimal places in the
result should equal the smallest number of decimal places of any term in the
sum.

The Area of a RectangleEXAMPLE 1.8
A rectangular plate has a length of (21.3 	 0.2) cm and a
width of (9.80 	 0.1) cm. Find the area of the plate and the
uncertainty in the calculated area. 

Solution
Area � �w � (21.3 	 0.2 cm) � (9.80 	 0.1 cm)  

Because the input data were given to only three significant
figures, we cannot claim any more in our result. Do you see
why we did not need to multiply the uncertainties 0.2 cm and
0.1 cm?

(209 	 4) cm2    �

  � (21.3 � 9.80 	 21.3 � 0.1 	 0.2 � 9.80) cm2

Installing a CarpetEXAMPLE 1.9
Note that in reducing 43.976 6 to three significant figures

for our answer, we used a general rule for rounding off num-
bers that states that the last digit retained (the 9 in this exam-
ple) is increased by 1 if the first digit dropped (here, the 7) is
5 or greater. (A technique for avoiding error accumulation is
to delay rounding of numbers in a long calculation until you
have the final result. Wait until you are ready to copy the an-
swer from your calculator before rounding to the correct
number of significant figures.)

A carpet is to be installed in a room whose length is measured
to be 12.71 m and whose width is measured to be 3.46 m. Find
the area of the room.

Solution If you multiply 12.71 m by 3.46 m on your calcu-
lator, you will get an answer of 43.976 6 m2. How many of
these numbers should you claim? Our rule of thumb for mul-
tiplication tells us that you can claim only the number of sig-
nificant figures in the least accurate of the quantities being
measured. In this example, we have only three significant fig-
ures in our least accurate measurement, so we should express 

our final answer as 44.0 m2.
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SUMMARY

The three fundamental physical quantities of mechanics are length, mass, and
time, which in the SI system have the units meters (m), kilograms (kg), and sec-
onds (s), respectively. Prefixes indicating various powers of ten are used with these
three basic units. The density of a substance is defined as its mass per unit volume.
Different substances have different densities mainly because of differences in their
atomic masses and atomic arrangements.

The number of particles in one mole of any element or compound, called
Avogadro’s number, NA , is 6.02 � 1023.

The method of dimensional analysis is very powerful in solving physics prob-
lems. Dimensions can be treated as algebraic quantities. By making estimates and
making order-of-magnitude calculations, you should be able to approximate the
answer to a problem when there is not enough information available to completely
specify an exact solution.

When you compute a result from several measured numbers, each of which
has a certain accuracy, you should give the result with the correct number of signif-
icant figures.

QUESTIONS

1. In this chapter we described how the Earth’s daily rotation
on its axis was once used to define the standard unit of
time. What other types of natural phenomena could serve
as alternative time standards?

2. Suppose that the three fundamental standards of the met-
ric system were length, density, and time rather than
length, mass, and time. The standard of density in this sys-
tem is to be defined as that of water. What considerations
about water would you need to address to make sure that
the standard of density is as accurate as possible?

3. A hand is defined as 4 in.; a foot is defined as 12 in. Why
should the hand be any less acceptable as a unit than the
foot, which we use all the time?

4. Express the following quantities using the prefixes given in

Table 1.4: (a) 3 � 10�4 m (b) 5 � 10�5 s
(c) 72 � 102 g.

5. Suppose that two quantities A and B have different dimen-
sions. Determine which of the following arithmetic opera-
tions could be physically meaningful: (a) A � B (b) A/B
(c) B � A (d) AB.

6. What level of accuracy is implied in an order-of-magnitude
calculation?

7. Do an order-of-magnitude calculation for an everyday situ-
ation you might encounter. For example, how far do you
walk or drive each day?

8. Estimate your age in seconds.
9. Estimate the mass of this textbook in kilograms. If a scale is

available, check your estimate.

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 1.3 Density
1. The standard kilogram is a platinum–iridium cylinder

39.0 mm in height and 39.0 mm in diameter. What is
the density of the material?

2. The mass of the planet Saturn (Fig. P1.2) is 5.64 �
1026 kg, and its radius is 6.00 � 107 m. Calculate its
density.

3. How many grams of copper are required to make a hol-
low spherical shell having an inner radius of 5.70 cm
and an outer radius of 5.75 cm? The density of copper
is 8.92 g/cm3.

4. What mass of a material with density � is required to
make a hollow spherical shell having inner radius r1 and
outer radius r2 ?

5. Iron has molar mass 55.8 g/mol. (a) Find the volume
of 1 mol of iron. (b) Use the value found in (a) to de-
termine the volume of one iron atom. (c) Calculate
the cube root of the atomic volume, to have an esti-
mate for the distance between atoms in the solid. 
(d) Repeat the calculations for uranium, finding its
molar mass in the periodic table of the elements in
Appendix C.
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6. Two spheres are cut from a certain uniform rock. One
has radius 4.50 cm. The mass of the other is five times
greater. Find its radius.

7. Calculate the mass of an atom of (a) helium, (b) iron,
and (c) lead. Give your answers in atomic mass units
and in grams. The molar masses are 4.00, 55.9, and 
207 g/mol, respectively, for the atoms given.

8. On your wedding day your lover gives you a gold ring of
mass 3.80 g. Fifty years later its mass is 3.35 g. As an av-
erage, how many atoms were abraded from the ring
during each second of your marriage? The molar mass
of gold is 197 g/mol.

9. A small cube of iron is observed under a microscope.
The edge of the cube is 5.00 � 10�6 cm long. Find (a)
the mass of the cube and (b) the number of iron atoms
in the cube. The molar mass of iron is 55.9 g/mol, and
its density is 7.86 g/cm3.

10. A structural I-beam is made of steel. A view of its cross-
section and its dimensions are shown in Figure P1.10.

(a) What is the mass of a section 1.50 m long? (b) How
many atoms are there in this section? The density of
steel is 7.56 � 103 kg/m3.

11. A child at the beach digs a hole in the sand and, using a
pail, fills it with water having a mass of 1.20 kg. The mo-
lar mass of water is 18.0 g/mol. (a) Find the number of
water molecules in this pail of water. (b) Suppose the
quantity of water on the Earth is 1.32 � 1021 kg and re-
mains constant. How many of the water molecules in
this pail of water were likely to have been in an equal
quantity of water that once filled a particular claw print
left by a dinosaur?

Section 1.4 Dimensional Analysis
12. The radius r of a circle inscribed in any triangle whose

sides are a, b, and c is given by 

where s is an abbreviation for Check this
formula for dimensional consistency.

13. The displacement of a particle moving under uniform
acceleration is some function of the elapsed time and
the acceleration. Suppose we write this displacement

where k is a dimensionless constant. Show by
dimensional analysis that this expression is satisfied if 
m � 1 and n � 2. Can this analysis give the value of k?

14. The period T of a simple pendulum is measured in time
units and is described by

where � is the length of the pendulum and g is the free-
fall acceleration in units of length divided by the square
of time. Show that this equation is dimensionally correct.

15. Which of the equations below are dimensionally cor-
rect?
(a)
(b)

16. Newton’s law of universal gravitation is represented by

Here F is the gravitational force, M and m are masses,
and r is a length. Force has the SI units kg� m/s2. What
are the SI units of the proportionality constant G ?

17. The consumption of natural gas by a company satisfies
the empirical equation where V
is the volume in millions of cubic feet and t the time in
months. Express this equation in units of cubic feet and
seconds. Put the proper units on the coefficients. As-
sume a month is 30.0 days.

Section 1.5 Conversion of Units
18. Suppose your hair grows at the rate 1/32 in. per day.

Find the rate at which it grows in nanometers per sec-
ond. Since the distance between atoms in a molecule is

V � 1.50t � 0.008 00t2,

F �
GMm

r 2

y � (2 m) cos(kx), where k � 2 m�1
v � v0 � ax

T � 2
 √ �

g

s � kamtn,

/2.(a � b � c)

(s � c)/s]1/2r � [(s � a)(s � b)

15.0 cm

1.00 cm

1.00 cm

36.0 cm

Figure P1.10

Figure P1.2 A view of Saturn from Voyager 2. (Courtesy of NASA)

WEB
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on the order of 0.1 nm, your answer suggests how
rapidly layers of atoms are assembled in this protein syn-
thesis.

19. A rectangular building lot is 100 ft by 150 ft. Determine
the area of this lot in m2.

20. An auditorium measures 40.0 m � 20.0 m � 12.0 m.
The density of air is 1.20 kg/m3. What are (a) the vol-
ume of the room in cubic feet and (b) the weight of air
in the room in pounds?

21. Assume that it takes 7.00 min to fill a 30.0-gal gasoline
tank. (a) Calculate the rate at which the tank is filled in
gallons per second. (b) Calculate the rate at which the
tank is filled in cubic meters per second. (c) Determine
the time, in hours, required to fill a 1-cubic-meter vol-
ume at the same rate. (1 U.S. gal � 231 in.3)

22. A creature moves at a speed of 5.00 furlongs per fort-
night (not a very common unit of speed). Given that 
1 furlong � 220 yards and 1 fortnight � 14 days, deter-
mine the speed of the creature in meters per second.
What kind of creature do you think it might be?

23. A section of land has an area of 1 mi2 and contains 
640 acres. Determine the number of square meters in 
1 acre.

24. A quart container of ice cream is to be made in the
form of a cube. What should be the length of each edge
in centimeters? (Use the conversion 1 gal � 3.786 L.)

25. A solid piece of lead has a mass of 23.94 g and a volume
of 2.10 cm3. From these data, calculate the density of
lead in SI units (kg/m3).

26. An astronomical unit (AU) is defined as the average dis-
tance between the Earth and the Sun. (a) How many as-
tronomical units are there in one lightyear? (b) Deter-
mine the distance from the Earth to the Andromeda
galaxy in astronomical units.

27. The mass of the Sun is 1.99 � 1030 kg, and the mass of
an atom of hydrogen, of which the Sun is mostly com-
posed, is 1.67 � 10�27 kg. How many atoms are there in
the Sun?

28. (a) Find a conversion factor to convert from miles per
hour to kilometers per hour. (b) In the past, a federal
law mandated that highway speed limits would be 
55 mi/h. Use the conversion factor of part (a) to find
this speed in kilometers per hour. (c) The maximum
highway speed is now 65 mi/h in some places. In kilo-
meters per hour, how much of an increase is this over
the 55-mi/h limit?

29. At the time of this book’s printing, the U. S. national
debt is about $6 trillion. (a) If payments were made at
the rate of $1 000/s, how many years would it take to pay
off a $6-trillion debt, assuming no interest were charged?
(b) A dollar bill is about 15.5 cm long. If six trillion dol-
lar bills were laid end to end around the Earth’s equator,
how many times would they encircle the Earth? Take the
radius of the Earth at the equator to be 6 378 km. 
(Note: Before doing any of these calculations, try to 
guess at the answers. You may be very surprised.)

30. (a) How many seconds are there in a year? (b) If one
micrometeorite (a sphere with a diameter of 1.00 �
10�6 m) strikes each square meter of the Moon each
second, how many years will it take to cover the Moon
to a depth of 1.00 m? (Hint: Consider a cubic box on
the Moon 1.00 m on a side, and find how long it will
take to fill the box.)

31. One gallon of paint (volume � 3.78 � 10�3 m3) covers
an area of 25.0 m2. What is the thickness of the paint on
the wall?

32. A pyramid has a height of 481 ft, and its base covers an
area of 13.0 acres (Fig. P1.32). If the volume of a pyra-
mid is given by the expression where B is the
area of the base and h is the height, find the volume of
this pyramid in cubic meters. (1 acre � 43 560 ft2)

V � 1
3Bh,

Figure P1.32 Problems 32 and 33.

33. The pyramid described in Problem 32 contains approxi-
mately two million stone blocks that average 2.50 tons
each. Find the weight of this pyramid in pounds.

34. Assuming that 70% of the Earth’s surface is covered
with water at an average depth of 2.3 mi, estimate the
mass of the water on the Earth in kilograms.

35. The amount of water in reservoirs is often measured in
acre-feet. One acre-foot is a volume that covers an area
of 1 acre to a depth of 1 ft. An acre is an area of 
43 560 ft2. Find the volume in SI units of a reservoir
containing 25.0 acre-ft of water.

36. A hydrogen atom has a diameter of approximately 
1.06 � 10�10 m, as defined by the diameter of the
spherical electron cloud around the nucleus. The hy-
drogen nucleus has a diameter of approximately 
2.40 � 10�15 m. (a) For a scale model, represent the di-
ameter of the hydrogen atom by the length of an Amer-
ican football field (100 yards � 300 ft), and determine
the diameter of the nucleus in millimeters. (b) The
atom is how many times larger in volume than its
nucleus?

37. The diameter of our disk-shaped galaxy, the Milky Way,
is about 1.0 � 105 lightyears. The distance to Messier
31—which is Andromeda, the spiral galaxy nearest to
the Milky Way—is about 2.0 million lightyears. If a scale
model represents the Milky Way and Andromeda galax-

WEB
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ies as dinner plates 25 cm in diameter, determine the
distance between the two plates.

38. The mean radius of the Earth is 6.37 � 106 m, and that
of the Moon is 1.74 � 108 cm. From these data calcu-
late (a) the ratio of the Earth’s surface area to that of
the Moon and (b) the ratio of the Earth’s volume to
that of the Moon. Recall that the surface area of a
sphere is 4
r 2 and that the volume of a sphere is 

39. One cubic meter (1.00 m3) of aluminum has a mass of
2.70 � 103 kg, and 1.00 m3 of iron has a mass of 
7.86 � 103 kg. Find the radius of a solid aluminum
sphere that balances a solid iron sphere of radius 2.00
cm on an equal-arm balance.

40. Let �A1 represent the density of aluminum and �Fe that
of iron. Find the radius of a solid aluminum sphere that
balances a solid iron sphere of radius rFe on an equal-
arm balance.

Section 1.6 Estimates and Order-of-
Magnitude Calculations

41. Estimate the number of Ping-Pong balls that would fit
into an average-size room (without being crushed). In
your solution state the quantities you measure or esti-
mate and the values you take for them.

42. McDonald’s sells about 250 million packages of French
fries per year. If these fries were placed end to end, esti-
mate how far they would reach.

43. An automobile tire is rated to last for 50 000 miles. Esti-
mate the number of revolutions the tire will make in its
lifetime.

44. Approximately how many raindrops fall on a 1.0-acre
lot during a 1.0-in. rainfall?

45. Grass grows densely everywhere on a quarter-acre plot
of land. What is the order of magnitude of the number
of blades of grass on this plot of land? Explain your rea-
soning. (1 acre � 43 560 ft2.)

46. Suppose that someone offers to give you $1 billion if
you can finish counting it out using only one-dollar
bills. Should you accept this offer? Assume you can
count one bill every second, and be sure to note that
you need about 8 hours a day for sleeping and eating
and that right now you are probably at least 18 years
old.

47. Compute the order of magnitude of the mass of a bath-
tub half full of water and of the mass of a bathtub half
full of pennies. In your solution, list the quantities you
take as data and the value you measure or estimate for
each.

48. Soft drinks are commonly sold in aluminum containers.
Estimate the number of such containers thrown away or
recycled each year by U.S. consumers. Approximately
how many tons of aluminum does this represent?

49. To an order of magnitude, how many piano tuners are
there in New York City? The physicist Enrico Fermi was
famous for asking questions like this on oral Ph.D. qual-

4
3 
 r 3.

ifying examinations and for his own facility in making
order-of-magnitude calculations.

Section 1.7 Significant Figures
50. Determine the number of significant figures in the fol-

lowing measured values: (a) 23 cm (b) 3.589 s
(c) 4.67 � 103 m/s (d) 0.003 2 m.

51. The radius of a circle is measured to be 10.5 	 0.2 m.
Calculate the (a) area and (b) circumference of the cir-
cle and give the uncertainty in each value.

52. Carry out the following arithmetic operations: (a) the
sum of the measured values 756, 37.2, 0.83, and 2.5; 
(b) the product 0.003 2 � 356.3; (c) the product 
5.620 � 
.

53. The radius of a solid sphere is measured to be (6.50 	
0.20) cm, and its mass is measured to be (1.85 	 0.02)
kg. Determine the density of the sphere in kilograms
per cubic meter and the uncertainty in the density.

54. How many significant figures are in the following num-
bers: (a) 78.9 	 0.2, (b) 3.788 � 109, (c) 2.46 � 10�6,
and (d) 0.005 3?

55. A farmer measures the distance around a rectangular
field. The length of the long sides of the rectangle is
found to be 38.44 m, and the length of the short sides is
found to be 19.5 m. What is the total distance around
the field?

56. A sidewalk is to be constructed around a swimming 
pool that measures (10.0 	 0.1) m by (17.0 	 0.1) m. 
If the sidewalk is to measure (1.00 	 0.01) m wide by 
(9.0 	 0.1) cm thick, what volume of concrete is needed,
and what is the approximate uncertainty of this volume?

ADDITIONAL PROBLEMS

57. In a situation where data are known to three significant
digits, we write 6.379 m � 6.38 m and 6.374 m �
6.37 m. When a number ends in 5, we arbitrarily choose
to write 6.375 m � 6.38 m. We could equally well write
6.375 m � 6.37 m, “rounding down” instead of “round-
ing up,” since we would change the number 6.375 by
equal increments in both cases. Now consider an order-
of-magnitude estimate, in which we consider factors
rather than increments. We write 500 m � 103 m be-
cause 500 differs from 100 by a factor of 5 whereas it dif-
fers from 1000 by only a factor of 2. We write 437 m �
103 m and 305 m � 102 m. What distance differs from
100 m and from 1000 m by equal factors, so that we
could equally well choose to represent its order of mag-
nitude either as � 102 m or as � 103 m?

58. When a droplet of oil spreads out on a smooth water
surface, the resulting “oil slick” is approximately one
molecule thick. An oil droplet of mass 9.00 � 10�7 kg
and density 918 kg/m3 spreads out into a circle of ra-
dius 41.8 cm on the water surface. What is the diameter
of an oil molecule?

WEB
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59. The basic function of the carburetor of an automobile
is to “atomize” the gasoline and mix it with air to pro-
mote rapid combustion. As an example, assume that
30.0 cm3 of gasoline is atomized into N spherical
droplets, each with a radius of 2.00 � 10�5 m. What is
the total surface area of these N spherical droplets?

60. In physics it is important to use mathematical approxi-
mations. Demonstrate for yourself that for small angles
(� 20°)

tan � � sin � � � � 
�/180°

where � is in radians and � is in degrees. Use a calcula-
tor to find the largest angle for which tan � may be ap-
proximated by sin � if the error is to be less than 10.0%.

61. A high fountain of water is located at the center of a cir-
cular pool as in Figure P1.61. Not wishing to get his feet
wet, a student walks around the pool and measures its
circumference to be 15.0 m. Next, the student stands at
the edge of the pool and uses a protractor to gauge the
angle of elevation of the top of the fountain to be 55.0°.
How high is the fountain?

64. A crystalline solid consists of atoms stacked up in a re-
peating lattice structure. Consider a crystal as shown in
Figure P1.64a. The atoms reside at the corners of cubes
of side L � 0.200 nm. One piece of evidence for the
regular arrangement of atoms comes from the flat sur-
faces along which a crystal separates, or “cleaves,” when
it is broken. Suppose this crystal cleaves along a face di-
agonal, as shown in Figure P1.64b. Calculate the spac-
ing d between two adjacent atomic planes that separate
when the crystal cleaves.

Figure P1.64

Figure P1.61

55.0˚

62. Assume that an object covers an area A and has a uni-
form height h. If its cross-sectional area is uniform over
its height, then its volume is given by (a) Show
that is dimensionally correct. (b) Show that the
volumes of a cylinder and of a rectangular box can be
written in the form identifying A in each case.
(Note that A, sometimes called the “footprint” of the
object, can have any shape and that the height can be
replaced by average thickness in general.)

63. A useful fact is that there are about 
 � 107 s in one
year. Find the percentage error in this approximation,
where “percentage error” is defined as

� Assumed value � true value �
True value

� 100%

V � Ah,

V � Ah
V � Ah.

L

(b)

(a)

d

65. A child loves to watch as you fill a transparent plastic
bottle with shampoo. Every horizontal cross-section of
the bottle is a circle, but the diameters of the circles all
have different values, so that the bottle is much wider in
some places than in others. You pour in bright green
shampoo with constant volume flow rate 16.5 cm3/s. At
what rate is its level in the bottle rising (a) at a point
where the diameter of the bottle is 6.30 cm and (b) at a
point where the diameter is 1.35 cm?

66. As a child, the educator and national leader Booker T.
Washington was given a spoonful (about 12.0 cm3) of
molasses as a treat. He pretended that the quantity in-
creased when he spread it out to cover uniformly all of
a tin plate (with a diameter of about 23.0 cm). How
thick a layer did it make?

67. Assume there are 100 million passenger cars in the
United States and that the average fuel consumption is
20 mi/gal of gasoline. If the average distance traveled
by each car is 10 000 mi/yr, how much gasoline would
be saved per year if average fuel consumption could be
increased to 25 mi/gal?

68. One cubic centimeter of water has a mass of 1.00 �
10�3 kg. (a) Determine the mass of 1.00 m3 of water.
(b) Assuming biological substances are 98% water, esti-



1.1 False. Dimensional analysis gives the units of the propor-
tionality constant but provides no information about its
numerical value. For example, experiments show that
doubling the radius of a solid sphere increases its mass
8-fold, and tripling the radius increases the mass 27-fold.
Therefore, its mass is proportional to the cube of its ra-
dius. Because we can write Dimen-
sional analysis shows that the proportionality constant k
must have units kg/m3, but to determine its numerical
value requires either experimental data or geometrical
reasoning.

m � kr 3.m   �    r 3,

22 C H A P T E R  1 Physics and Measurements

mate the mass of a cell that has a diameter of 1.0 �m, a
human kidney, and a fly. Assume that a kidney is
roughly a sphere with a radius of 4.0 cm and that a 
fly is roughly a cylinder 4.0 mm long and 2.0 mm in 
diameter.

69. The distance from the Sun to the nearest star is 4 �
1016 m. The Milky Way galaxy is roughly a disk of diame-
ter � 1021 m and thickness � 1019 m. Find the order of
magnitude of the number of stars in the Milky Way. As-
sume the distance between the Sun and the
nearest star is typical.

70. The data in the following table represent measurements
of the masses and dimensions of solid cylinders of alu-

4 � 1016-m

minum, copper, brass, tin, and iron. Use these data to
calculate the densities of these substances. Compare
your results for aluminum, copper, and iron with those
given in Table 1.5.

ANSWERS TO QUICK QUIZZES

1.2 Reporting all these digits implies you have determined
the location of the center of the chair’s seat to the near-
est 	 0.000 000 000 1 m. This roughly corresponds to
being able to count the atoms in your meter stick be-
cause each of them is about that size! It would probably
be better to record the measurement as 1.044 m: this in-
dicates that you know the position to the nearest mil-
limeter, assuming the meter stick has millimeter mark-
ings on its scale.

Diameter
Substance Mass (g) (cm) Length (cm)

Aluminum 51.5 2.52 3.75
Copper 56.3 1.23 5.06
Brass 94.4 1.54 5.69
Tin 69.1 1.75 3.74
Iron 216.1 1.89 9.77
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Motion in One Dimension

In a moment the arresting cable will be
pulled taut, and the 140-mi/h landing of
this F/A-18 Hornet on the aircraft carrier
USS Nimitz will be brought to a sudden
conclusion. The pilot cuts power to the
engine, and the plane is stopped in less
than 2 s. If the cable had not been suc-
cessfully engaged, the pilot would have
had to take off quickly before reaching
the end of the flight deck. Can the motion
of the plane be described quantitatively
in a way that is useful to ship and aircraft
designers and to pilots learning to land
on a “postage stamp?” (Courtesy of the
USS Nimitz/U.S. Navy)

2.1 Displacement, Velocity, and Speed

2.2 Instantaneous Velocity and Speed

2.3 Acceleration

2.4 Motion Diagrams

2.5 One-Dimensional Motion with
Constant Acceleration

2.6 Freely Falling Objects

2.7 (Optional) Kinematic Equations
Derived from Calculus

GOAL Problem-Solving Steps

C h a p t e r  O u t l i n e

P U Z Z L E RP U Z Z L E R
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s a first step in studying classical mechanics, we describe motion in terms of
space and time while ignoring the agents that caused that motion. This por-
tion of classical mechanics is called kinematics. (The word kinematics has the

same root as cinema. Can you see why?) In this chapter we consider only motion in
one dimension. We first define displacement, velocity, and acceleration. Then, us-
ing these concepts, we study the motion of objects traveling in one dimension with
a constant acceleration.

From everyday experience we recognize that motion represents a continuous
change in the position of an object. In physics we are concerned with three types
of motion: translational, rotational, and vibrational. A car moving down a highway
is an example of translational motion, the Earth’s spin on its axis is an example of
rotational motion, and the back-and-forth movement of a pendulum is an example
of vibrational motion. In this and the next few chapters, we are concerned only
with translational motion. (Later in the book we shall discuss rotational and vibra-
tional motions.)

In our study of translational motion, we describe the moving object as a parti-
cle regardless of its size. In general, a particle is a point-like mass having infini-
tesimal size. For example, if we wish to describe the motion of the Earth around
the Sun, we can treat the Earth as a particle and obtain reasonably accurate data
about its orbit. This approximation is justified because the radius of the Earth’s or-
bit is large compared with the dimensions of the Earth and the Sun. As an exam-
ple on a much smaller scale, it is possible to explain the pressure exerted by a gas
on the walls of a container by treating the gas molecules as particles. 

DISPLACEMENT, VELOCITY, AND SPEED
The motion of a particle is completely known if the particle’s position in space is
known at all times. Consider a car moving back and forth along the x axis, as shown
in Figure 2.1a. When we begin collecting position data, the car is 30 m to the right
of a road sign. (Let us assume that all data in this example are known to two signifi-
cant figures. To convey this information, we should report the initial position as 
3.0 � 101 m. We have written this value in this simpler form to make the discussion
easier to follow.) We start our clock and once every 10 s note the car’s location rela-
tive to the sign. As you can see from Table 2.1, the car is moving to the right (which
we have defined as the positive direction) during the first 10 s of motion, from posi-
tion � to position �. The position values now begin to decrease, however, because
the car is backing up from position � through position �. In fact, at �, 30 s after
we start measuring, the car is alongside the sign we are using as our origin of coordi-
nates. It continues moving to the left and is more than 50 m to the left of the sign
when we stop recording information after our sixth data point. A graph of this infor-
mation is presented in Figure 2.1b. Such a plot is called a position–time graph.

If a particle is moving, we can easily determine its change in position. The dis-
placement of a particle is defined as its change in position. As it moves from
an initial position xi to a final position xf , its displacement is given by We
use the Greek letter delta (�) to denote the change in a quantity. Therefore, we
write the displacement, or change in position, of the particle as

(2.1)

From this definition we see that �x is positive if xf is greater than xi and negative if
xf is less than xi . 

�x � x f � x i

x f � x i .

2.1

A

TABLE 2.1
Position of the Car at
Various Times

Position t(s) x(m)

� 0 30
� 10 52
� 20 38
� 30 0
� 40 � 37
� 50 � 53
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A very easy mistake to make is not to recognize the difference between dis-
placement and distance traveled (Fig. 2.2). A baseball player hitting a home run
travels a distance of 360 ft in the trip around the bases. However, the player’s dis-
placement is zero because his final and initial positions are identical.

Displacement is an example of a vector quantity. Many other physical quanti-
ties, including velocity and acceleration, also are vectors. In general, a vector is a
physical quantity that requires the specification of both direction and mag-
nitude. By contrast, a scalar is a quantity that has magnitude and no direc-
tion. In this chapter, we use plus and minus signs to indicate vector direction. We
can do this because the chapter deals with one-dimensional motion only; this
means that any object we study can be moving only along a straight line. For exam-
ple, for horizontal motion, let us arbitrarily specify to the right as being the posi-
tive direction. It follows that any object always moving to the right undergoes a
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Figure 2.1 (a) A car moves back
and forth along a straight line
taken to be the x axis. Because we
are interested only in the car’s
translational motion, we can treat it
as a particle. (b) Position–time
graph for the motion of the 
“particle.”
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positive displacement ��x, and any object moving to the left undergoes a negative
displacement ��x. We shall treat vectors in greater detail in Chapter 3. 

There is one very important point that has not yet been mentioned. Note that
the graph in Figure 2.1b does not consist of just six data points but is actually a
smooth curve. The graph contains information about the entire 50-s interval during
which we watched the car move. It is much easier to see changes in position from
the graph than from a verbal description or even a table of numbers. For example, it
is clear that the car was covering more ground during the middle of the 50-s interval
than at the end. Between positions � and �, the car traveled almost 40 m, but dur-
ing the last 10 s, between positions � and �, it moved less than half that far. A com-
mon way of comparing these different motions is to divide the displacement �x that
occurs between two clock readings by the length of that particular time interval �t.
This turns out to be a very useful ratio, one that we shall use many times. For conve-
nience, the ratio has been given a special name—average velocity. The average ve-
locity of a particle is defined as the particle’s displacement �x divided by
the time interval �t during which that displacement occurred:

(2.2)

where the subscript x indicates motion along the x axis. From this definition we
see that average velocity has dimensions of length divided by time (L/T)—meters
per second in SI units.

Although the distance traveled for any motion is always positive, the average ve-
locity of a particle moving in one dimension can be positive or negative, depending
on the sign of the displacement. (The time interval �t is always positive.) If the co-
ordinate of the particle increases in time (that is, if then �x is positive and

is positive. This case corresponds to motion in the positive x direction.
If the coordinate decreases in time (that is, if then �x is negative and
hence is negative. This case corresponds to motion in the negative x direction.vx

x f � x i),
vx � �x/�t

x f � x i),

vx � 
�x
�t

vx

Figure 2.2 Bird’s-eye view of a baseball
diamond. A batter who hits a home run
travels 360 ft as he rounds the bases, but his
displacement for the round trip is zero.
(Mark C. Burnett/Photo Researchers, Inc.)

Average velocity

3.2
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We can interpret average velocity geometrically by drawing a straight line be-
tween any two points on the position–time graph in Figure 2.1b. This line forms
the hypotenuse of a right triangle of height �x and base �t. The slope of this line
is the ratio �x/�t. For example, the line between positions � and � has a slope
equal to the average velocity of the car between those two times, (52 m � 30 m)/
(10 s � 0) � 2.2 m/s.

In everyday usage, the terms speed and velocity are interchangeable. In physics,
however, there is a clear distinction between these two quantities. Consider a
marathon runner who runs more than 40 km, yet ends up at his starting point. His
average velocity is zero! Nonetheless, we need to be able to quantify how fast he
was running. A slightly different ratio accomplishes this for us. The average
speed of a particle, a scalar quantity, is defined as the total distance trav-
eled divided by the total time it takes to travel that distance:

The SI unit of average speed is the same as the unit of average velocity: meters
per second. However, unlike average velocity, average speed has no direction and
hence carries no algebraic sign. 

Knowledge of the average speed of a particle tells us nothing about the details
of the trip. For example, suppose it takes you 8.0 h to travel 280 km in your car.
The average speed for your trip is 35 km/h. However, you most likely traveled at
various speeds during the trip, and the average speed of 35 km/h could result
from an infinite number of possible speed values.

Average speed �
total distance

total time
Average speed

magnitude as the supplied data. A quick look at Figure 2.1a
indicates that this is the correct answer.

It is difficult to estimate the average velocity without com-
pleting the calculation, but we expect the units to be meters
per second. Because the car ends up to the left of where we
started taking data, we know the average velocity must be
negative. From Equation 2.2,

We find the car’s average speed for this trip by adding the
distances traveled and dividing by the total time: 

2.5 m/sAverage speed �
22 m � 52 m � 53 m

50 s
�

�1.7 m/s�
�53 m � 30 m

50 s � 0 s
�

�83 m
50 s

�

vx �
�x
�t

�
x f � x i

tf � ti
�

xF � xA

tF � tA

Find the displacement, average velocity, and average speed of
the car in Figure 2.1a between positions � and �.

Solution The units of displacement must be meters, and
the numerical result should be of the same order of magni-
tude as the given position data (which means probably not 10
or 100 times bigger or smaller). From the position–time
graph given in Figure 2.1b, note that m at s
and that m at s. Using these values along
with the definition of displacement, Equation 2.1, we find
that

This result means that the car ends up 83 m in the negative
direction (to the left, in this case) from where it started. This
number has the correct units and is of the same order of

�83 m�x � xF � xA � �53 m � 30 m �

tF � 50xF � �53
tA � 0xA � 30

INSTANTANEOUS VELOCITY AND SPEED
Often we need to know the velocity of a particle at a particular instant in time,
rather than over a finite time interval. For example, even though you might want
to calculate your average velocity during a long automobile trip, you would be es-
pecially interested in knowing your velocity at the instant you noticed the police

2.2

Calculating the Variables of MotionEXAMPLE 2.1
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car parked alongside the road in front of you. In other words, you would like to be
able to specify your velocity just as precisely as you can specify your position by not-
ing what is happening at a specific clock reading—that is, at some specific instant.
It may not be immediately obvious how to do this. What does it mean to talk about
how fast something is moving if we “freeze time” and talk only about an individual
instant? This is a subtle point not thoroughly understood until the late 1600s. At
that time, with the invention of calculus, scientists began to understand how to de-
scribe an object’s motion at any moment in time.

To see how this is done, consider Figure 2.3a. We have already discussed the
average velocity for the interval during which the car moved from position � to
position � (given by the slope of the dark blue line) and for the interval during
which it moved from � to � (represented by the slope of the light blue line).
Which of these two lines do you think is a closer approximation of the initial veloc-
ity of the car? The car starts out by moving to the right, which we defined to be the
positive direction. Therefore, being positive, the value of the average velocity dur-
ing the � to � interval is probably closer to the initial value than is the value of
the average velocity during the � to � interval, which we determined to be nega-
tive in Example 2.1. Now imagine that we start with the dark blue line and slide
point � to the left along the curve, toward point �, as in Figure 2.3b. The line be-
tween the points becomes steeper and steeper, and as the two points get extremely
close together, the line becomes a tangent line to the curve, indicated by the green
line on the graph. The slope of this tangent line represents the velocity of the car
at the moment we started taking data, at point �. What we have done is determine
the instantaneous velocity at that moment. In other words, the instantaneous veloc-
ity vx equals the limiting value of the ratio �x/�t as �t approaches zero:1

(2.3)vx � lim
�t:0

 
�x
�t3.3

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of 
the upper left -hand corner of the graph shows how the blue line between positions � and �
approaches the green tangent line as point � gets closer to point �.

Definition of instantaneous
velocity
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t(s)
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1 Note that the displacement �x also approaches zero as �t approaches zero. As �x and �t become
smaller and smaller, the ratio �x/�t approaches a value equal to the slope of the line tangent to the 
x -versus-t curve.
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In calculus notation, this limit is called the derivative of x with respect to t, written
dx/dt:

(2.4)

The instantaneous velocity can be positive, negative, or zero. When the slope
of the position–time graph is positive, such as at any time during the first 10 s in
Figure 2.3, vx is positive. After point �, vx is negative because the slope is negative.
At the peak, the slope and the instantaneous velocity are zero.

From here on, we use the word velocity to designate instantaneous velocity.
When it is average velocity we are interested in, we always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its
velocity. As with average speed, instantaneous speed has no direction associated
with it and hence carries no algebraic sign. For example, if one particle has a
velocity of � 25 m/s along a given line and another particle has a velocity of 
� 25 m/s along the same line, both have a speed2 of 25 m/s.

vx � lim
�t:0

 
�x
�t

�
dx
dt

Figure 2.4 Position–time graph for a particle having an x coordi-
nate that varies in time according to the expression x � �4t � 2t2.

Average and Instantaneous VelocityEXAMPLE 2.2

These displacements can also be read directly from the posi-
tion–time graph.

�8 m �

  � [�4(3) � 2(3)2] � [�4(1) � 2(1)2]

A particle moves along the x axis. Its x coordinate varies with
time according to the expression where x is in
meters and t is in seconds.3 The position–time graph for this
motion is shown in Figure 2.4. Note that the particle moves in
the negative x direction for the first second of motion, is at rest
at the moment t � 1 s, and moves in the positive x direction
for (a) Determine the displacement of the particle in
the time intervals t � 0 to t � 1 s and t � 1 s to t � 3 s.

Solution During the first time interval, we have a negative
slope and hence a negative velocity. Thus, we know that the
displacement between � and � must be a negative number
having units of meters. Similarly, we expect the displacement
between � and � to be positive.

In the first time interval, we set and
Using Equation 2.1, with we ob-

tain for the first displacement

To calculate the displacement during the second time in-
terval, we set and 

�xB:D � x f � x i � xD � xB 

tf � tD � 3 s:ti � tB � 1 s

�2 m  �

 � [�4(1) � 2(1)2] � [�4(0) � 2(0)2]

�xA:B � x f � x i � xB � xA 

x � �4t � 2t2,tf � tB � 1 s.
ti � tA � 0

t � 1 s.

x � �4t � 2t2,

2 As with velocity, we drop the adjective for instantaneous speed: “Speed” means instantaneous speed.
3 Simply to make it easier to read, we write the empirical equation as rather than as

When an equation summarizes measurements, consider its coef-
ficients to have as many significant digits as other data quoted in a problem. Consider its coefficients to
have the units required for dimensional consistency. When we start our clocks at t � 0 s, we usually do
not mean to limit the precision to a single digit. Consider any zero value in this book to have as many
significant figures as you need.

x � (�4.00 m/s)t � (2.00 m/s2)t 2.00.
x � �4t � 2t2
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(2.5)

As with velocity, when the motion being analyzed is one-dimensional, we can
use positive and negative signs to indicate the direction of the acceleration. Be-
cause the dimensions of velocity are L/T and the dimension of time is T, accelera-

a x �
�vx

�t
�

vx f � vxi

tf � ti

The average acceleration of the particle is defined as the change in velocity �vx
divided by the time interval �t during which that change occurred:

ACCELERATION
In the last example, we worked with a situation in which the velocity of a particle
changed while the particle was moving. This is an extremely common occurrence.
(How constant is your velocity as you ride a city bus?) It is easy to quantify changes
in velocity as a function of time in exactly the same way we quantify changes in po-
sition as a function of time. When the velocity of a particle changes with time, the
particle is said to be accelerating. For example, the velocity of a car increases when
you step on the gas and decreases when you apply the brakes. However, we need a
better definition of acceleration than this.

Suppose a particle moving along the x axis has a velocity vxi at time ti and a ve-
locity vxf at time tf , as in Figure 2.5a.

2.3

Figure 2.5 (a) A “particle” mov-
ing along the x axis from � to �
has velocity vxi at t � ti and velocity
vxf at t � tf . (b) Velocity– time
graph for the particle moving in a
straight line. The slope of the blue
straight line connecting � and �
is the average acceleration in the
time interval �t � tf � ti .

Average acceleration

These values agree with the slopes of the lines joining these
points in Figure 2.4.

(c) Find the instantaneous velocity of the particle at t �
2.5 s.

Solution Certainly we can guess that this instantaneous ve-
locity must be of the same order of magnitude as our previ-
ous results, that is, around 4 m/s. Examining the graph, we
see that the slope of the tangent at position � is greater than
the slope of the blue line connecting points � and �. Thus,
we expect the answer to be greater than 4 m/s. By measuring
the slope of the position–time graph at t � 2.5 s, we find that

vx � �6 m/s

(b) Calculate the average velocity during these two time
intervals.

Solution In the first time interval, 
Therefore, using Equation 2.2 and the displacement

calculated in (a), we find that

In the second time interval, therefore,

�4 m/svx(B:D) �
�xB:D

�t
�

8 m
2 s

�

�t � 2 s;

�2 m/svx(A:B) �
�xA:B

�t
�

�2 m
1 s

�

tA � 1 s.
�t � tf � ti � t B �

�

�

�

t ft i

vxi

vxf

vx a–x
 =

∆t

∆vx

∆vx
∆t

t

(b)

ti tf

(a)

x

v = vxi v = vxf

�
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tion has dimensions of length divided by time squared, or L/T2. The SI unit of ac-
celeration is meters per second squared (m/s2). It might be easier to interpret
these units if you think of them as meters per second per second. For example,
suppose an object has an acceleration of 2 m/s2. You should form a mental 
image of the object having a velocity that is along a straight line and is increasing
by 2 m/s during every 1-s interval. If the object starts from rest, you should be 
able to picture it moving at a velocity of � 2 m/s after 1 s, at � 4 m/s after 2 s, and
so on.

In some situations, the value of the average acceleration may be different over
different time intervals. It is therefore useful to define the instantaneous acceleration
as the limit of the average acceleration as �t approaches zero. This concept is anal-
ogous to the definition of instantaneous velocity discussed in the previous section.
If we imagine that point � is brought closer and closer to point � in Figure 2.5a
and take the limit of �vx/�t as �t approaches zero, we obtain the instantaneous
acceleration:

(2.6)

That is, the instantaneous acceleration equals the derivative of the velocity
with respect to time, which by definition is the slope of the velocity– time graph
(Fig. 2.5b). Thus, we see that just as the velocity of a moving particle is the slope of
the particle’s x -t graph, the acceleration of a particle is the slope of the particle’s
vx -t graph. One can interpret the derivative of the velocity with respect to time as the
time rate of change of velocity. If ax is positive, then the acceleration is in the positive
x direction; if ax is negative, then the acceleration is in the negative x direction.

From now on we shall use the term acceleration to mean instantaneous accel-
eration. When we mean average acceleration, we shall always use the adjective
average.

Because the acceleration can also be written

(2.7)

That is, in one-dimensional motion, the acceleration equals the second derivative of
x with respect to time.

Figure 2.6 illustrates how an acceleration–time graph is related to a
velocity– time graph. The acceleration at any time is the slope of the velocity– time
graph at that time. Positive values of acceleration correspond to those points in
Figure 2.6a where the velocity is increasing in the positive x direction. The acceler-

ax �
dvx

dt
�

d
dt �

dx
dt � �

d2x
dt2

vx � dx/dt,

ax � lim
�t:0

 
�vx

�t
�

dvx

dt
Instantaneous acceleration

tA
t

tB tC

(a)

t

(b)

vx
ax

tA tB

tC

Figure 2.6 Instantaneous accel-
eration can be obtained from the
vx -t graph. (a) The velocity– time
graph for some motion. (b) The
acceleration–time graph for the
same motion. The acceleration
given by the ax -t graph for any
value of t equals the slope of the
line tangent to the vx -t graph at the
same value of t.
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ation reaches a maximum at time tA , when the slope of the velocity– time graph is
a maximum. The acceleration then goes to zero at time tB , when the velocity is a
maximum (that is, when the slope of the vx -t graph is zero). The acceleration is
negative when the velocity is decreasing in the positive x direction, and it reaches
its most negative value at time tC .

Average and Instantaneous AccelerationEXAMPLE 2.4
Solution Figure 2.8 is a vx -t graph that was created from
the velocity versus time expression given in the problem state-
ment. Because the slope of the entire vx -t curve is negative,
we expect the acceleration to be negative.

The velocity of a particle moving along the x axis varies in
time according to the expression m/s, where
t is in seconds. (a) Find the average acceleration in the time
interval t � 0 to t � 2.0 s.

vx � (40 � 5t2)

Figure 2.7 (a) Position–time graph for an object moving along
the x axis. (b) The velocity– time graph for the object is obtained by
measuring the slope of the position–time graph at each instant. 
(c) The acceleration–time graph for the object is obtained by mea-
suring the slope of the velocity– time graph at each instant.

Graphical Relationships Between x, vx , and axCONCEPTUAL EXAMPLE 2.3
The position of an object moving along the x axis varies with
time as in Figure 2.7a. Graph the velocity versus time and the
acceleration versus time for the object.

Solution The velocity at any instant is the slope of the tan-
gent to the x -t graph at that instant. Between t � 0 and 
t � tA , the slope of the x -t graph increases uniformly, and so
the velocity increases linearly, as shown in Figure 2.7b. Be-
tween tA and tB , the slope of the x -t graph is constant, and so
the velocity remains constant. At tD , the slope of the x -t graph
is zero, so the velocity is zero at that instant. Between tD and
tE , the slope of the x -t graph and thus the velocity are nega-
tive and decrease uniformly in this interval. In the interval tE

to tF , the slope of the x -t graph is still negative, and at tF it
goes to zero. Finally, after tF , the slope of the x -t graph is
zero, meaning that the object is at rest for 

The acceleration at any instant is the slope of the tangent
to the vx -t graph at that instant. The graph of acceleration
versus time for this object is shown in Figure 2.7c. The accel-
eration is constant and positive between 0 and tA, where the
slope of the vx -t graph is positive. It is zero between tA and tB

and for because the slope of the vx -t graph is zero at
these times. It is negative between tB and tE because the slope
of the vx -t graph is negative during this interval.

t � tF

t � tF .

(a)

(b)

(c)

x

t Ft Et Dt Ct Bt A

t Ft Et Dt Ct B

t
t AO

t
O

t
O t Ft Et Bt A

v x

a x

Make a velocity– time graph for the car in Figure 2.1a and use your graph to determine
whether the car ever exceeds the speed limit posted on the road sign (30 km/h).

Quick Quiz 2.1
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So far we have evaluated the derivatives of a function by starting with the defi-
nition of the function and then taking the limit of a specific ratio. Those of you fa-
miliar with calculus should recognize that there are specific rules for taking deriva-
tives. These rules, which are listed in Appendix B.6, enable us to evaluate
derivatives quickly. For instance, one rule tells us that the derivative of any con-
stant is zero. As another example, suppose x is proportional to some power of t,
such as in the expression

where A and n are constants. (This is a very common functional form.) The deriva-
tive of x with respect to t is

Applying this rule to Example 2.4, in which vx � 40 � 5t 2, we find that 
dvx/dt � �10t.

ax �

dx
dt

� nAtn�1

x � Atn

�

The negative sign is consistent with our expectations—
namely, that the average acceleration, which is represented by
the slope of the line (not shown) joining the initial and final
points on the velocity– time graph, is negative.

(b) Determine the acceleration at t � 2.0 s.

Solution The velocity at any time t is 
and the velocity at any later time t � �t is

Therefore, the change in velocity over the time interval �t is

Dividing this expression by �t and taking the limit of the re-
sult as �t approaches zero gives the acceleration at any time t:

Therefore, at t � 2.0 s,

What we have done by comparing the average acceleration
during the interval between � and � with the
instantaneous value at � is compare the slope of
the line (not shown) joining � and � with the slope of the
tangent at �.

Note that the acceleration is not constant in this example.
Situations involving constant acceleration are treated in Sec-
tion 2.5.

(�20 m/s2)
(�10 m/s2)

�20 m/s2ax � (�10)(2.0) m/s2 �

ax � lim
�t:0

 
�vx

�t
� lim

�t:0
 (�10t � 5�t) � �10t  m/s2

�vx � vxf � vxi � [�10t �t � 5(�t)2] m/s

vxf � 40 � 5(t � �t)2 � 40 � 5t2 � 10t �t � 5(�t)2

5t2) m/s,
vxi � (40 �

�10 m/s2

a x �
vxf � vxi

tf � ti
�

vxB � vxA

tB � tA
�

(20 � 40) m/s

(2.0 � 0) s

We find the velocities at ti � tA � 0 and tf � tB � 2.0 s by
substituting these values of t into the expression for the ve-
locity:

Therefore, the average acceleration in the specified time in-
terval is�t � tB � tA � 2.0 s

vxB � (40 � 5tB 

2) m/s � [40 � 5(2.0) 

2] m/s � �20 m/s

vxA � (40 � 5tA 

2) m/s � [40 � 5(0) 

2] m/s � �40 m/s

Figure 2.8 The velocity– time graph for a particle moving along
the x axis according to the expression m/s. The ac-
celeration at t � 2 s is equal to the slope of the blue tangent line at
that time.

vx � (40 � 5t2)
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MOTION DIAGRAMS
The concepts of velocity and acceleration are often confused with each other, but
in fact they are quite different quantities. It is instructive to use motion diagrams
to describe the velocity and acceleration while an object is in motion. In order not
to confuse these two vector quantities, for which both magnitude and direction
are important, we use red for velocity vectors and violet for acceleration vectors, as
shown in Figure 2.9. The vectors are sketched at several instants during the mo-
tion of the object, and the time intervals between adjacent positions are assumed
to be equal. This illustration represents three sets of strobe photographs of a car
moving from left to right along a straight roadway. The time intervals between
flashes are equal in each diagram. 

In Figure 2.9a, the images of the car are equally spaced, showing us that the
car moves the same distance in each time interval. Thus, the car moves with con-
stant positive velocity and has zero acceleration.

In Figure 2.9b, the images become farther apart as time progresses. In this
case, the velocity vector increases in time because the car’s displacement between
adjacent positions increases in time. The car is moving with a positive velocity and a
positive acceleration.

In Figure 2.9c, we can tell that the car slows as it moves to the right because its
displacement between adjacent images decreases with time. In this case, the car
moves to the right with a constant negative acceleration. The velocity vector de-
creases in time and eventually reaches zero. From this diagram we see that the ac-
celeration and velocity vectors are not in the same direction. The car is moving
with a positive velocity but with a negative acceleration.

You should be able to construct motion diagrams for a car that moves initially
to the left with a constant positive or negative acceleration. 

2.4

(a)

v

(b)

a

v

(c)

v

a

Figure 2.9 (a) Motion diagram for a car moving at constant velocity (zero acceleration). 
(b) Motion diagram for a car whose constant acceleration is in the direction of its velocity. The
velocity vector at each instant is indicated by a red arrow, and the constant acceleration by a vio-
let arrow. (c) Motion diagram for a car whose constant acceleration is in the direction opposite the
velocity at each instant.
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(a) If a car is traveling eastward, can its acceleration be westward? (b) If a car is slowing
down, can its acceleration be positive?

ONE-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

If the acceleration of a particle varies in time, its motion can be complex and diffi-
cult to analyze. However, a very common and simple type of one-dimensional mo-
tion is that in which the acceleration is constant. When this is the case, the average
acceleration over any time interval equals the instantaneous acceleration at any in-
stant within the interval, and the velocity changes at the same rate throughout the
motion.

If we replace by ax in Equation 2.5 and take and tf to be any later time
t, we find that

or

(for constant ax) (2.8)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity and its (constant) acceleration. A
velocity– time graph for this constant-acceleration motion is shown in Figure
2.10a. The graph is a straight line, the (constant) slope of which is the acceleration
ax ; this is consistent with the fact that is a constant. Note that the slope
is positive; this indicates a positive acceleration. If the acceleration were negative,
then the slope of the line in Figure 2.10a would be negative.

When the acceleration is constant, the graph of acceleration versus time (Fig.
2.10b) is a straight line having a slope of zero.

Describe the meaning of each term in Equation 2.8.

Quick Quiz 2.3

ax � dvx/dt

vx f � vxi � axt

ax �
vx f � vxi

t

ti � 0a x

2.5

Quick Quiz 2.2

Figure 2.10 An object moving along the x axis with constant acceleration ax . (a) The
velocity– time graph. (b) The acceleration–time graph. (c) The position–time graph.

(a)

vxi

0

vxf

t

vxi

axt

t

(c)

x

0
t

xi

Slope = vxi

t

Slope = vxf

(b)

0
t

Slope = 0

vx ax

ax

Slope = ax

Velocity as a function of time
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Because velocity at constant acceleration varies linearly in time according to
Equation 2.8, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

(for constant ax) (2.9)

Note that this expression for average velocity applies only in situations in which the
acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.9 to obtain the displacement of any
object as a function of time. Recalling that �x in Equation 2.2 represents xf � xi ,
and now using t in place of �t (because we take ti � 0), we can say

(for constant ax) (2.10)

We can obtain another useful expression for displacement at constant acceler-
ation by substituting Equation 2.8 into Equation 2.10:

(2.11)

The position–time graph for motion at constant (positive) acceleration shown in
Figure 2.10c is obtained from Equation 2.11. Note that the curve is a parabola. The
slope of the tangent line to this curve at equals the initial velocity vxi , and
the slope of the tangent line at any later time t equals the velocity at that time, vxf .

We can check the validity of Equation 2.11 by moving the xi term to the right-
hand side of the equation and differentiating the equation with respect to time: 

Finally, we can obtain an expression for the final velocity that does not contain
a time interval by substituting the value of t from Equation 2.8 into Equation 2.10:

(for constant ax) (2.12)

For motion at zero acceleration, we see from Equations 2.8 and 2.11 that 

That is, when acceleration is zero, velocity is constant and displacement changes
linearly with time.

In Figure 2.11, match each vx -t graph with the ax -t graph that best describes the motion.

Equations 2.8 through 2.12 are kinematic expressions that may be used to
solve any problem involving one-dimensional motion at constant accelera-

Quick Quiz 2.4

vx f � vxi � vx
x f � x i � vxt �  when ax � 0

vx f  

2 � vxi  

2 � 2ax(x f � x i)

x f � x i �
1
2

(vxi � vxf)� vx f � vxi

ax
� �

vx f  

2 � vxi  

2

2ax
    

vx f �
dxf

dt
�

d

dt
 �x i � vxi t �

1
2

axt2� � vxi � axt

t � ti � 0

x f � x i � vxit � 1
2axt2 

x f � x i � 1
2(vxi � vxi � axt)t

xf � xi � vxt � 1
2(vxi � vx f)t

vx �
vxi � vx f

2

Figure 2.11 Parts (a), (b), and
(c) are vx -t graphs of objects in
one-dimensional motion. The pos-
sible accelerations of each object as
a function of time are shown in
scrambled order in (d), (e), and
(f).
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tion. Keep in mind that these relationships were derived from the definitions of
velocity and acceleration, together with some simple algebraic manipulations and
the requirement that the acceleration be constant.

The four kinematic equations used most often are listed in Table 2.2 for con-
venience. The choice of which equation you use in a given situation depends on
what you know beforehand. Sometimes it is necessary to use two of these equations
to solve for two unknowns. For example, suppose initial velocity vxi and accelera-
tion ax are given. You can then find (1) the velocity after an interval t has elapsed,
using and (2) the displacement after an interval t has elapsed, us-
ing You should recognize that the quantities that vary dur-
ing the motion are velocity, displacement, and time.

You will get a great deal of practice in the use of these equations by solving a
number of exercises and problems. Many times you will discover that more than
one method can be used to obtain a solution. Remember that these equations of
kinematics cannot be used in a situation in which the acceleration varies with time.
They can be used only when the acceleration is constant.

x f � x i � vxit � 1
2axt2.

vx f � vxi � axt,

TABLE 2.2 Kinematic Equations for Motion in a Straight Line 
Under Constant Acceleration

Equation Information Given by Equation

vxf � vxi � axt Velocity as a function of time
xf � xi � (vxi � vxf)t Displacement as a function of velocity and time
xf � xi � vxit � axt 2 Displacement as a function of time
vxf

2 � vxi
2 � 2ax(xf � xi) Velocity as a function of displacement

Note: Motion is along the x axis.

1
2

1
2

The Velocity of Different ObjectsCONCEPTUAL EXAMPLE 2.5
fined as �x/�t.) There is one point at which the instanta-
neous velocity is zero—at the top of the motion.

(b) The car’s average velocity cannot be evaluated unambigu-
ously with the information given, but it must be some value
between 0 and 100 m/s. Because the car will have every in-
stantaneous velocity between 0 and 100 m/s at some time
during the interval, there must be some instant at which the
instantaneous velocity is equal to the average velocity.

(c) Because the spacecraft’s instantaneous velocity is con-
stant, its instantaneous velocity at any time and its average ve-
locity over any time interval are the same.

Consider the following one-dimensional motions: (a) A ball
thrown directly upward rises to a highest point and falls back
into the thrower’s hand. (b) A race car starts from rest and
speeds up to 100 m/s. (c) A spacecraft drifts through space at
constant velocity. Are there any points in the motion of these
objects at which the instantaneous velocity is the same as the
average velocity over the entire motion? If so, identify the
point(s).

Solution (a) The average velocity for the thrown ball is
zero because the ball returns to the starting point; thus its 
displacement is zero. (Remember that average velocity is de-

Entering the Traffic FlowEXAMPLE 2.6
of ax , but that value is hard to guess directly. The other three
variables involved in kinematics are position, velocity, and
time. Velocity is probably the easiest one to approximate. Let
us assume a final velocity of 100 km/h, so that you can merge
with traffic. We multiply this value by 1 000 to convert kilome-

(a) Estimate your average acceleration as you drive up the en-
trance ramp to an interstate highway.

Solution This problem involves more than our usual
amount of estimating! We are trying to come up with a value
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yields results that are not too different from those derived
from careful measurements.

(b) How far did you go during the first half of the time in-
terval during which you accelerated?

Solution We can calculate the distance traveled during
the first 5 s from Equation 2.11:

This result indicates that if you had not accelerated, your ini-
tial velocity of 10 m/s would have resulted in a 50-m move-
ment up the ramp during the first 5 s. The additional 25 m is
the result of your increasing velocity during that interval.

Do not be afraid to attempt making educated guesses and
doing some fairly drastic number rounding to simplify mental
calculations. Physicists engage in this type of thought analysis
all the time.

75 m� 50 m � 25 m �

x f � x i � vxit � 1
2axt2 � (10 m/s)(5 s) � 1

2(2 m/s2)(5 s)2

ters to meters and then divide by 3 600 to convert hours to
seconds. These two calculations together are roughly equiva-
lent to dividing by 3. In fact, let us just say that the final veloc-
ity is m/s. (Remember, you can get away with this
type of approximation and with dropping digits when per-
forming mental calculations. If you were starting with British
units, you could approximate 1 mi/h as roughly 
0.5 m/s and continue from there.) 

Now we assume that you started up the ramp at about one-
third your final velocity, so that m/s. Finally, we as-
sume that it takes about 10 s to get from vxi to vxf , basing this
guess on our previous experience in automobiles. We can
then find the acceleration, using Equation 2.8:

Granted, we made many approximations along the way, but
this type of mental effort can be surprisingly useful and often

2 m/s2ax �
vxf � vxi

t
�

30 m/s � 10 m/s
10 s

�

vxi � 10

vx f � 30

Carrier LandingEXAMPLE 2.7
(b) What is the displacement of the plane while it is stop-

ping?

Solution We can now use any of the other three equations
in Table 2.2 to solve for the displacement. Let us choose
Equation 2.10:

If the plane travels much farther than this, it might fall into
the ocean. Although the idea of using arresting cables to en-
able planes to land safely on ships originated at about the
time of the First World War, the cables are still a vital part of
the operation of modern aircraft carriers.

63 mx f � x i � 1
2(vxi � vx f)t � 1

2(63 m/s � 0)(2.0 s) �

A jet lands on an aircraft carrier at 140 mi/h (� 63 m/s). 
(a) What is its acceleration if it stops in 2.0 s?

Solution We define our x axis as the direction of motion
of the jet. A careful reading of the problem reveals that in ad-
dition to being given the initial speed of 63 m/s, we also
know that the final speed is zero. We also note that we are 
not given the displacement of the jet while it is slowing 
down. Equation 2.8 is the only equation in Table 2.2 that does
not involve displacement, and so we use it to find the accelera-
tion:

�31 m/s2ax �
vx f � vxi

t
�

0 � 63 m/s
2.0 s

�

Watch Out for the Speed Limit!EXAMPLE 2.8
catch up to the car. While all this is going on, the car contin-
ues to move. We should therefore expect our result to be well
over 15 s. A sketch (Fig. 2.12) helps clarify the sequence of
events.

First, we write expressions for the position of each vehicle
as a function of time. It is convenient to choose the position
of the billboard as the origin and to set as the time the
trooper begins moving. At that instant, the car has already
traveled a distance of 45.0 m because it has traveled at a con-
stant speed of vx � 45.0 m/s for 1 s. Thus, the initial position
of the speeding car is 

Because the car moves with constant speed, its accelera-
xB � 45.0 m.

tB � 0

A car traveling at a constant speed of 45.0 m/s passes a
trooper hidden behind a billboard. One second after the
speeding car passes the billboard, the trooper sets out 
from the billboard to catch it, accelerating at a constant
rate of 3.00 m/s2. How long does it take her to overtake the
car?

Solution A careful reading lets us categorize this as a con-
stant-acceleration problem. We know that after the 1-s delay
in starting, it will take the trooper 15 additional seconds to
accelerate up to 45.0 m/s. Of course, she then has to con-
tinue to pick up speed (at a rate of 3.00 m/s per second) to
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FREELY FALLING OBJECTS
It is now well known that, in the absence of air resistance, all objects dropped 
near the Earth’s surface fall toward the Earth with the same constant acceleration
under the influence of the Earth’s gravity. It was not until about 1600 that this 
conclusion was accepted. Before that time, the teachings of the great philos-
opher Aristotle (384–322 B.C.) had held that heavier objects fall faster than lighter
ones.

It was the Italian Galileo Galilei (1564 –1642) who originated our present-
day ideas concerning falling objects. There is a legend that he demonstrated the
law of falling objects by observing that two different weights dropped simultane-
ously from the Leaning Tower of Pisa hit the ground at approximately the same
time. Although there is some doubt that he carried out this particular experi-
ment, it is well established that Galileo performed many experiments on objects
moving on inclined planes. In his experiments he rolled balls down a slight in-
cline and measured the distances they covered in successive time intervals. The
purpose of the incline was to reduce the acceleration; with the acceleration re-
duced, Galileo was able to make accurate measurements of the time intervals. By
gradually increasing the slope of the incline, he was finally able to draw conclu-
sions about freely falling objects because a freely falling ball is equivalent to a
ball moving down a vertical incline. 

2.6

The trooper starts from rest at and accelerates at
3.00 m/s2 away from the origin. Hence, her position after any
time interval t can be found from Equation 2.11: 

The trooper overtakes the car at the instant her position
matches that of the car, which is position �:

This gives the quadratic equation

The positive solution of this equation is . 

(For help in solving quadratic equations, see Appendix B.2.)
Note that in this 31.0-s time interval, the trooper tra-
vels a distance of about 1440 m. [This distance can be calcu-
lated from the car’s constant speed: (45.0 m/s)(31 � 1) s �
1 440 m.]

Exercise This problem can be solved graphically. On the
same graph, plot position versus time for each vehicle, and
from the intersection of the two curves determine the time at
which the trooper overtakes the car.

31.0 st �

1.50t2 � 45.0t � 45.0 � 0

1
2(3.00 m/s2)t2 � 45.0 m � (45.0 m/s)t

 x trooper � x car 

x trooper � 0 � 0t � 1
2 axt2 � 1

2(3.00 m/s2)t2

 x f � x i � vxit � 1
2axt2 

t � 0

tion is zero, and applying Equation 2.11 (with gives
for the car’s position at any time t:

A quick check shows that at this expression gives the
car’s correct initial position when the trooper begins to
move: Looking at limiting cases to see
whether they yield expected values is a very useful way to
make sure that you are obtaining reasonable results. 

x car � xB � 45.0 m.

t � 0,

x car � xB � vx cart � 45.0 m � (45.0 m/s)t

ax � 0)

Figure 2.12 A speeding car passes a hidden police officer.

vx car = 45.0 m/s
ax car = 0
ax trooper = 3.00 m/s2

tC = ?

��

tA = �1.00 s tB = 0

�

Astronaut David Scott released a
hammer and a feather simultane-
ously, and they fell in unison to the
lunar surface. (Courtesy of NASA)
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You might want to try the following experiment. Simultaneously drop a coin
and a crumpled-up piece of paper from the same height. If the effects of air resis-
tance are negligible, both will have the same motion and will hit the floor at the
same time. In the idealized case, in which air resistance is absent, such motion is
referred to as free fall. If this same experiment could be conducted in a vacuum, in
which air resistance is truly negligible, the paper and coin would fall with the same
acceleration even when the paper is not crumpled. On August 2, 1971, such a
demonstration was conducted on the Moon by astronaut David Scott. He simulta-
neously released a hammer and a feather, and in unison they fell to the lunar sur-
face. This demonstration surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to
an object dropped from rest. A freely falling object is any object moving
freely under the influence of gravity alone, regardless of its initial motion.
Objects thrown upward or downward and those released from rest are all
falling freely once they are released. Any freely falling object experiences
an acceleration directed downward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration by the symbol g. The
value of g near the Earth’s surface decreases with increasing altitude. Furthermore,
slight variations in g occur with changes in latitude. It is common to define “up” as
the � y direction and to use y as the position variable in the kinematic equations.
At the Earth’s surface, the value of g is approximately 9.80 m/s2. Unless stated 
otherwise, we shall use this value for g when performing calculations. For making
quick estimates, use 

If we neglect air resistance and assume that the free-fall acceleration does not
vary with altitude over short vertical distances, then the motion of a freely falling
object moving vertically is equivalent to motion in one dimension under constant
acceleration. Therefore, the equations developed in Section 2.5 for objects moving
with constant acceleration can be applied. The only modification that we need to
make in these equations for freely falling objects is to note that the motion is in
the vertical direction (the y direction) rather than in the horizontal (x) direction
and that the acceleration is downward and has a magnitude of 9.80 m/s2. Thus, we
always take where the minus sign means that the accelera-
tion of a freely falling object is downward. In Chapter 14 we shall study how to deal
with variations in g with altitude.

ay � �g � �9.80 m/s2,

g � 10 m/s2.

The Daring Sky DiversCONCEPTUAL EXAMPLE 2.9
�t after this instant, however, the two divers increase their
speeds by the same amount because they have the same accel-
eration. Thus, the difference in their speeds remains the
same throughout the fall. 

The first jumper always has a greater speed than the sec-
ond. Thus, in a given time interval, the first diver covers a
greater distance than the second. Thus, the separation dis-
tance between them increases.

Once the distance between the divers reaches the length
of the bungee cord, the tension in the cord begins to in-
crease. As the tension increases, the distance between the
divers becomes greater and greater.

A sky diver jumps out of a hovering helicopter. A few seconds
later, another sky diver jumps out, and they both fall along
the same vertical line. Ignore air resistance, so that both sky
divers fall with the same acceleration. Does the difference in
their speeds stay the same throughout the fall? Does the verti-
cal distance between them stay the same throughout the fall?
If the two divers were connected by a long bungee cord,
would the tension in the cord increase, lessen, or stay the
same during the fall?

Solution At any given instant, the speeds of the divers are
different because one had a head start. In any time interval

Definition of free fall

Free-fall acceleration 
m/s2g � 9.80

QuickLab
Use a pencil to poke a hole in the
bottom of a paper or polystyrene cup.
Cover the hole with your finger and
fill the cup with water. Hold the cup
up in front of you and release it. Does
water come out of the hole while the
cup is falling? Why or why not?
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Describing the Motion of a Tossed BallEXAMPLE 2.10
The ball has gone as high as it will go. After the last half of
this 1-s interval, the ball is moving at � 5 m/s. (The minus
sign tells us that the ball is now moving in the negative direc-
tion, that is, downward. Its velocity has changed from �5 m/s
to � 5 m/s during that 1-s interval. The change in velocity is
still �5 � [�5] � �10 m/s in that second.) It continues
downward, and after another 1 s has elapsed, it is falling at a
velocity of �15 m/s. Finally, after another 1 s, it has reached
its original starting point and is moving downward at 
�25 m/s. If the ball had been tossed vertically off a cliff so
that it could continue downward, its velocity would continue
to change by about �10 m/s every second.

A ball is tossed straight up at 25 m/s. Estimate its velocity at 
1-s intervals.

Solution Let us choose the upward direction to be posi-
tive. Regardless of whether the ball is moving upward or
downward, its vertical velocity changes by approximately 
�10 m/s for every second it remains in the air. It starts out at
25 m/s. After 1 s has elapsed, it is still moving upward but at
15 m/s because its acceleration is downward (downward ac-
celeration causes its velocity to decrease). After another sec-
ond, its upward velocity has dropped to 5 m/s. Now comes
the tricky part—after another half second, its velocity is zero.

Follow the Bouncing BallCONCEPTUAL EXAMPLE 2.11
changes substantially during a very short time interval, and so
the acceleration must be quite great. This corresponds to the
very steep upward lines on the velocity– time graph and to
the spikes on the acceleration–time graph.

A tennis ball is dropped from shoulder height (about 1.5 m)
and bounces three times before it is caught. Sketch graphs of
its position, velocity, and acceleration as functions of time,
with the � y direction defined as upward.

Solution For our sketch let us stretch things out horizon-
tally so that we can see what is going on. (Even if the ball
were moving horizontally, this motion would not affect its ver-
tical motion.)

From Figure 2.13 we see that the ball is in contact with the
floor at points �, �, and �. Because the velocity of the ball
changes from negative to positive three times during these
bounces, the slope of the position–time graph must change
in the same way. Note that the time interval between bounces
decreases. Why is that?

During the rest of the ball’s motion, the slope of the
velocity– time graph should be � 9.80 m/s2. The accelera-
tion–time graph is a horizontal line at these times because
the acceleration does not change when the ball is in free fall.
When the ball is in contact with the floor, the velocity

(a)

1.0

0.0

0.5

1.5
�

�

�

� � �

Figure 2.13 (a) A ball is dropped from a height of 1.5 m and
bounces from the floor. (The horizontal motion is not considered
here because it does not affect the vertical motion.) (b) Graphs of
position, velocity, and acceleration versus time.
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Not a Bad Throw for a Rookie!EXAMPLE 2.12
A stone thrown from the top of a building is given an initial
velocity of 20.0 m/s straight upward. The building is 50.0 m
high, and the stone just misses the edge of the roof on its way
down, as shown in Figure 2.14. Using as the time the
stone leaves the thrower’s hand at position �, determine 
(a) the time at which the stone reaches its maximum height,
(b) the maximum height, (c) the time at which the stone re-
turns to the height from which it was thrown, (d) the velocity
of the stone at this instant, and (e) the velocity and position
of the stone at 

Solution (a) As the stone travels from � to �, its velocity
must change by 20 m/s because it stops at �. Because gravity
causes vertical velocities to change by about 10 m/s for every
second of free fall, it should take the stone about 2 s to go
from � to � in our drawing. (In a problem like this, a sketch
definitely helps you organize your thoughts.) To calculate the
time t B at which the stone reaches maximum height, we use
Equation 2.8, noting that and setting
the start of our clock readings at 

Our estimate was pretty close.

(b) Because the average velocity for this first interval is 
10 m/s (the average of 20 m/s and 0 m/s) and because it
travels for about 2 s, we expect the stone to travel about 20 m.
By substituting our time interval into Equation 2.11, we can
find the maximum height as measured from the position of
the thrower, where we set 

Our free-fall estimates are very accurate.

(c) There is no reason to believe that the stone’s motion
from � to � is anything other than the reverse of its motion

20.4 m�

 y B � (20.0 m/s)(2.04 s) � 1
2(�9.80 m/s2)(2.04 s)2

ymax � y B � vy A t � 1
2ayt2 

y i � yA � 0:

2.04 st � tB �
20.0 m/s
9.80 m/s2 �

20.0 m/s � (�9.80 m/s2)t � 0

tA � 0:
vy B � 0vy B � vy A � ayt,

t � 5.00 s.

tA � 0

�

�

�

�

�

tD = 5.00 s
yD = –22.5 s
vyD = –29.0 m/s

tC = 4.08 s
yC = 0
vyC = –20.0 m/s

tB = 2.04 s
yB = 20.4 m
vyB = 0

50.0 m

tE = 5.83 s
yE = –50.0 m
vyE = –37.1 m/s

tA = 0
yA = 0
vyA = 20.0 m/s

�

Figure 2.14 Position and velocity versus time for a freely falling
stone thrown initially upward with a velocity m/s.vyi � 20.0

Which values represent the ball’s velocity and acceleration at points �, �, and � in Figure
2.13?

(a)
(b)
(c)
(d) vy � �9.80 m/s, ay � 0

vy � 0, ay � �9.80 m/s2
vy � 0, ay � 9.80 m/s2
vy � 0, ay � 0

Quick Quiz 2.5
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Optional Section

KINEMATIC EQUATIONS DERIVED FROM CALCULUS
This is an optional section that assumes the reader is familiar with the techniques
of integral calculus. If you have not yet studied integration in your calculus course,
you should skip this section or cover it after you become familiar with integration.

The velocity of a particle moving in a straight line can be obtained if its position
as a function of time is known. Mathematically, the velocity equals the derivative of
the position coordinate with respect to time. It is also possible to find the displace-
ment of a particle if its velocity is known as a function of time. In calculus, the proce-
dure used to perform this task is referred to either as integration or as finding the 
antiderivative. Graphically, it is equivalent to finding the area under a curve.

Suppose the vx -t graph for a particle moving along the x axis is as shown in
Figure 2.15. Let us divide the time interval into many small intervals, each of
duration �tn . From the definition of average velocity we see that the displacement
during any small interval, such as the one shaded in Figure 2.15, is given by

where is the average velocity in that interval. Therefore, the dis-
placement during this small interval is simply the area of the shaded rectangle.

vxn�xn � vxn �tn ,

tf � ti

2.7

position �. Because the elapsed time for this part of the
motion is about 3 s, we estimate that the acceleration due
to gravity will have changed the speed by about 30 m/s. 
We can calculate this from Equation 2.8, where we take

We could just as easily have made our calculation between
positions � and � by making sure we use the correct time in-
terval, 

To demonstrate the power of our kinematic equations, we
can use Equation 2.11 to find the position of the stone at

by considering the change in position between a
different pair of positions, � and �. In this case, the time is

Exercise Find (a) the velocity of the stone just before it hits
the ground at � and (b) the total time the stone is in the air.

Answer (a) � 37.1 m/s (b) 5.83 s

�22.5 m  �

  � 1
2(�9.80 m/s2)(5.00 s � 4.08 s)2

 � 0 m � (�20.0 m/s)(5.00 s � 4.08 s)

yD � yC � vy Ct � 1
2ayt2 

tD � tC :

tD � 5.00 s

 � �29.0 m/s

vy D � vyA � ayt � 20.0 m/s � (�9.80 m/s2)(5.00 s)

t � tD � tA � 5.00 s:

�29.0 m/s�

vy D � vy B � ayt � 0 m/s � (�9.80 m/s2)(5.00 s � 2.04 s)

t � tD � tB :

from � to �. Thus, the time needed for it to go from � to
� should be twice the time needed for it to go from � to �.
When the stone is back at the height from which it was
thrown (position �), the y coordinate is again zero. Using
Equation 2.11, with we obtain

This is a quadratic equation and so has two solutions for
The equation can be factored to give

One solution is corresponding to the time the stone 

starts its motion. The other solution is which is 

the solution we are after. Notice that it is double the value we
calculated for tB .

(d) Again, we expect everything at � to be the same as it
is at �, except that the velocity is now in the opposite direc-
tion. The value for t found in (c) can be inserted into Equa-
tion 2.8 to give

�

The velocity of the stone when it arrives back at its original
height is equal in magnitude to its initial velocity but oppo-
site in direction. This indicates that the motion is symmetric.

(e) For this part we consider what happens as the stone
falls from position �, where it had zero vertical velocity, to

�20.0 m/s

vy C � vy A � ayt � 20.0 m/s � (�9.80 m/s2)(4.08 s)

t � 4.08 s,

t � 0,

t(20.0 � 4.90t) � 0

t � tC .

 0 � 20.0t � 4.90t2 

yC � y A � vy A t � 1
2ayt2 

y f � yC � 0 and y i � yA � 0,
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The total displacement for the interval is the sum of the areas of all the rec-
tangles:

where the symbol � (upper case Greek sigma) signifies a sum over all terms. In
this case, the sum is taken over all the rectangles from ti to tf . Now, as the intervals
are made smaller and smaller, the number of terms in the sum increases and the
sum approaches a value equal to the area under the velocity– time graph. There-
fore, in the limit or the displacement is

(2.13)

or

Note that we have replaced the average velocity with the instantaneous velocity
vxn in the sum. As you can see from Figure 2.15, this approximation is clearly valid
in the limit of very small intervals. We conclude that if we know the vx -t graph for
motion along a straight line, we can obtain the displacement during any time in-
terval by measuring the area under the curve corresponding to that time interval.

The limit of the sum shown in Equation 2.13 is called a definite integral and
is written

(2.14)

where vx(t) denotes the velocity at any time t. If the explicit functional form of 
vx(t) is known and the limits are given, then the integral can be evaluated.

Sometimes the vx -t graph for a moving particle has a shape much simpler than
that shown in Figure 2.15. For example, suppose a particle moves at a constant ve-

lim
�tn:0

 �
n

 vxn�tn � �tf

ti
 vx(t) dt

vxn

Displacement � area under the vx -t graph

�x � lim
�tn:0

 �
n

 vxn �tn

�tn : 0,n : 	,

�x � �
n

 vxn �tn

tf � ti

Definite integral

Figure 2.15 Velocity versus time for a particle moving along the x axis. The area of the shaded
rectangle is equal to the displacement �x in the time interval �tn , while the total area under the
curve is the total displacement of the particle.

vx

t

Area = vxn ∆ tn

∆t n

t i t f

vxn
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locity vxi . In this case, the vx -t graph is a horizontal line, as shown in Figure 2.16,
and its displacement during the time interval �t is simply the area of the shaded
rectangle:

As another example, consider a particle moving with a velocity that is propor-
tional to t, as shown in Figure 2.17. Taking where ax is the constant of pro-
portionality (the acceleration), we find that the displacement of the particle dur-
ing the time interval to is equal to the area of the shaded triangle in
Figure 2.17:

Kinematic Equations

We now use the defining equations for acceleration and velocity to derive two of
our kinematic equations, Equations 2.8 and 2.11.

The defining equation for acceleration (Eq. 2.6),

may be written as or, in terms of an integral (or antiderivative), as

vx � � ax dt � C1

dvx � axdt

ax �
dvx

dt

�x � 1
2(tA)(axtA) � 1

2 a xtA 

2

t � tAt � 0

vx � axt,

�x � vxi�t  (when vx f � vxi � constant)

Figure 2.16 The velocity– time curve
for a particle moving with constant veloc-
ity vxi . The displacement of the particle
during the time interval is equal to
the area of the shaded rectangle.

tf � ti

vx = vxi = constant

t f

vxi

t

∆t

t i

vx

vxi

Figure 2.17 The velocity– time curve for a
particle moving with a velocity that is propor-
tional to the time.

t

v x = a xt

v x

a xtA

t A

�
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where C1 is a constant of integration. For the special case in which the acceleration
is constant, the ax can be removed from the integral to give

(2.15)

The value of C1 depends on the initial conditions of the motion. If we take 
when and substitute these values into the last equation, we have

Calling vx � vxf the velocity after the time interval t has passed and substituting
this and the value just found for C1 into Equation 2.15, we obtain kinematic Equa-
tion 2.8:

(for constant ax)

Now let us consider the defining equation for velocity (Eq. 2.4):

We can write this as or in integral form as

where C2 is another constant of integration. Because this ex-
pression becomes

To find C2 , we make use of the initial condition that when This gives
Therefore, after substituting xf for x, we have

(for constant ax)

Once we move xi to the left side of the equation, we have kinematic Equation 2.11.
Recall that is equal to the displacement of the object, where xi is its initial
position.

x f � x i

x f � x i � vxit � 1
2axt2

C2 � x i .
t � 0.x � x i

x � vxit � 1
2axt2 � C 2 

x � � vxi dt � ax �t dt � C2

x � � (vxi � axt)dt � C2 

vx � vx f � vxi � axt,

x � � vx dt � C2

dx � vxdt

vx �
dx
dt

vxf � vxi � axt

 C1 � vxi 

vxi � ax(0) � C1

t � 0
vx � vxi

vx � ax � dt � C1 � axt � C1
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Besides what you might expect to learn about physics concepts, a very valuable skill
you should hope to take away from your physics course is the ability to solve compli-
cated problems. The way physicists approach complex situations and break them
down into manageable pieces is extremely useful. We have developed a memory aid to
help you easily recall the steps required for successful problem solving. When working
on problems, the secret is to keep your GOAL in mind!

GOAL PROBLEM-SOLVING STEPS

Gather information
The first thing to do when approaching a problem is to understand the situation.
Carefully read the problem statement, looking for key phrases like “at rest” or
“freely falls.” What information is given? Exactly what is the question asking? Don’t
forget to gather information from your own experiences and common sense. What
should a reasonable answer look like? You wouldn’t expect to calculate the speed
of an automobile to be 5 � 106 m/s. Do you know what units to expect? Are there
any limiting cases you can consider? What happens when an angle approaches 0°
or 90° or when a mass becomes huge or goes to zero? Also make sure you carefully
study any drawings that accompany the problem.

Organize your approach
Once you have a really good idea of what the problem is about, you need to think
about what to do next. Have you seen this type of question before? Being able to
classify a problem can make it much easier to lay out a plan to solve it. You should
almost always make a quick drawing of the situation. Label important events with
circled letters. Indicate any known values, perhaps in a table or directly on your
sketch. 

Analyze the problem
Because you have already categorized the problem, it should not be too difficult to
select relevant equations that apply to this type of situation. Use algebra (and cal-
culus, if necessary) to solve for the unknown variable in terms of what is given.
Substitute in the appropriate numbers, calculate the result, and round it to the
proper number of significant figures.

Learn from your efforts
This is the most important part. Examine your numerical answer. Does it meet
your expectations from the first step? What about the algebraic form of the re-
sult—before you plugged in numbers? Does it make sense? (Try looking at the
variables in it to see whether the answer would change in a physically meaningful
way if they were drastically increased or decreased or even became zero.) Think
about how this problem compares with others you have done. How was it similar?
In what critical ways did it differ? Why was this problem assigned? You should have
learned something by doing it. Can you figure out what?

When solving complex problems, you may need to identify a series of subprob-
lems and apply the GOAL process to each. For very simple problems, you probably
don’t need GOAL at all. But when you are looking at a problem and you don’t
know what to do next, remember what the letters in GOAL stand for and use that
as a guide. 

47
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SUMMARY

After a particle moves along the x axis from some initial position xi to some final
position xf, its displacement is

(2.1)

The average velocity of a particle during some time interval is the displace-
ment �x divided by the time interval �t during which that displacement occurred:

(2.2)

The average speed of a particle is equal to the ratio of the total distance it
travels to the total time it takes to travel that distance.

The instantaneous velocity of a particle is defined as the limit of the ratio
�x/�t as �t approaches zero. By definition, this limit equals the derivative of x with
respect to t, or the time rate of change of the position:

(2.4)

The instantaneous speed of a particle is equal to the magnitude of its velocity.
The average acceleration of a particle is defined as the ratio of the change in

its velocity �vx divided by the time interval �t during which that change occurred:

(2.5)

The instantaneous acceleration is equal to the limit of the ratio �vx/�t as
�t approaches 0. By definition, this limit equals the derivative of vx with respect to
t, or the time rate of change of the velocity:

(2.6)

The equations of kinematics for a particle moving along the x axis with uni-
form acceleration ax (constant in magnitude and direction) are

(2.8)

(2.10)

(2.11)

(2.12)

You should be able to use these equations and the definitions in this chapter to an-
alyze the motion of any object moving with constant acceleration.

An object falling freely in the presence of the Earth’s gravity experiences a
free-fall acceleration directed toward the center of the Earth. If air resistance is ne-
glected, if the motion occurs near the surface of the Earth, and if the range of the
motion is small compared with the Earth’s radius, then the free-fall acceleration g
is constant over the range of motion, where g is equal to 9.80 m/s2.

Complicated problems are best approached in an organized manner. You
should be able to recall and apply the steps of the GOAL strategy when you need
them.

  vx f  

2 � vxi  

2 � 2ax(x f � x i)

 x f � x i � vxit � 1
2axt2 

x f � x i � vxt � 1
2(vxi � vx f)t

 vx f � vxi � axt 

ax � lim
�t:0

 
�vx

�t
�

dvx

dt

a x �
�vx

�t
�

vx f � vxi

tf � ti

vx � lim
�t:0

 
�x
�t

�
dx
dt

vx �
�x
�t

�x � x f � x i
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QUESTIONS

building. At what time was the plant one-fourth the
height of the building?

13. Two cars are moving in the same direction in parallel lanes
along a highway. At some instant, the velocity of car A ex-
ceeds the velocity of car B. Does this mean that the acceler-
ation of car A is greater than that of car B? Explain.

14. An apple is dropped from some height above the Earth’s
surface. Neglecting air resistance, how much does the ap-
ple’s speed increase each second during its descent?

15. Consider the following combinations of signs and values
for velocity and acceleration of a particle with respect to a
one-dimensional x axis:

1. Average velocity and instantaneous velocity are generally
different quantities. Can they ever be equal for a specific
type of motion? Explain.

2. If the average velocity is nonzero for some time interval,
does this mean that the instantaneous velocity is never
zero during this interval? Explain.

3. If the average velocity equals zero for some time interval �t
and if vx(t) is a continuous function, show that the instan-
taneous velocity must go to zero at some time in this inter-
val. (A sketch of x versus t might be useful in your proof.)

4. Is it possible to have a situation in which the velocity and
acceleration have opposite signs? If so, sketch a
velocity– time graph to prove your point.

5. If the velocity of a particle is nonzero, can its acceleration
be zero? Explain.

6. If the velocity of a particle is zero, can its acceleration be
nonzero? Explain.

7. Can an object having constant acceleration ever stop and
stay stopped?

8. A stone is thrown vertically upward from the top of a build-
ing. Does the stone’s displacement depend on the location
of the origin of the coordinate system? Does the stone’s ve-
locity depend on the origin? (Assume that the coordinate
system is stationary with respect to the building.) Explain.

9. A student at the top of a building of height h throws one
ball upward with an initial speed vyi and then throws a
second ball downward with the same initial speed. How
do the final speeds of the balls compare when they reach
the ground?

10. Can the magnitude of the instantaneous velocity of an ob-
ject ever be greater than the magnitude of its average ve-
locity? Can it ever be less?

11. If the average velocity of an object is zero in some time in-
terval, what can you say about the displacement of the ob-
ject for that interval?

12. A rapidly growing plant doubles in height each week. At
the end of the 25th day, the plant reaches the height of a

Velocity Acceleration

a. Positive Positive
b. Positive Negative
c. Positive Zero
d. Negative Positive
e. Negative Negative
f. Negative Zero
g. Zero Positive
h. Zero Negative

Figure Q2.16

Describe what the particle is doing in each case, and
give a real-life example for an automobile on an east-west
one-dimensional axis, with east considered to be the posi-
tive direction.

16. A pebble is dropped into a water well, and the splash is
heard 16 s later, as illustrated in Figure Q2.16. Estimate the
distance from the rim of the well to the water’s surface.

17. Average velocity is an entirely contrived quantity, and
other combinations of data may prove useful in other
contexts. For example, the ratio �t/�x, called the “slow-
ness” of a moving object, is used by geophysicists when
discussing the motion of continental plates. Explain what
this quantity means.
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WEB

6. A person first walks at a constant speed v1 along a
straight line from A to B and then back along the line
from B to A at a constant speed v2 . What are (a) her av-
erage speed over the entire trip and (b) her average ve-
locity over the entire trip?

Section 2.2 Instantaneous Velocity and Speed
7. At a particle moving with constant velocity is

located at and at the particle is
located at (a) From this information, plot
the position as a function of time. (b) Determine the
velocity of the particle from the slope of this graph.

8. The position of a particle moving along the x axis varies
in time according to the expression where x is
in meters and t is in seconds. Evaluate its position (a) at

and (b) at 3.00 s � �t. (c) Evaluate the limit
of �x/�t as �t approaches zero to find the velocity at

9. A position–time graph for a particle moving along the
x axis is shown in Figure P2.9. (a) Find the average 
velocity in the time interval to 
(b) Determine the instantaneous velocity at by
measuring the slope of the tangent line shown in the
graph. (c) At what value of t is the velocity zero?

t � 2.0 s
t � 4.0 s.t � 1.5 s

t � 3.00 s.

t � 3.00 s

x � 3t2,

x � 5.00 m.
t � 6.00 sx � �3.00 m,

t � 1.00 s,

Figure P2.9

Figure P2.3 Problems 3 and 11.

x (m) 0 2.3 9.2 20.7 36.8 57.5
t (s) 0 1.0 2.0 3.0 4.0 5.0

1 2 3 4 5 6 7 8
t(s)

–6

–4

–2

0

2

4

6

8

10

x(m)

10

12

6

8

2

4

0
t(s)

x(m)

1 2 3 4 5 6

2. A motorist drives north for 35.0 min at 85.0 km/h and
then stops for 15.0 min. He then continues north, trav-
eling 130 km in 2.00 h. (a) What is his total displace-
ment? (b) What is his average velocity?

3. The displacement versus time for a certain particle mov-
ing along the x axis is shown in Figure P2.3. Find the av-
erage velocity in the time intervals (a) 0 to 2 s, (b) 0 to
4 s, (c) 2 s to 4 s, (d) 4 s to 7 s, (e) 0 to 8 s.

4. A particle moves according to the equation ,
where x is in meters and t is in seconds. (a) Find the av-
erage velocity for the time interval from 2.0 s to 3.0 s.
(b) Find the average velocity for the time interval from
2.0 s to 2.1 s.

5. A person walks first at a constant speed of 5.00 m/s
along a straight line from point A to point B and then
back along the line from B to A at a constant speed of
3.00 m/s. What are (a) her average speed over the entire
trip and (b) her average velocity over the entire trip?

x � 10t2

10. (a) Use the data in Problem 1 to construct a smooth
graph of position versus time. (b) By constructing tan-
gents to the x(t) curve, find the instantaneous velocity
of the car at several instants. (c) Plot the instantaneous
velocity versus time and, from this, determine the aver-
age acceleration of the car. (d) What was the initial ve-
locity of the car?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 2.1 Displacement, Velocity, and Speed
1. The position of a pinewood derby car was observed at

various times; the results are summarized in the table
below. Find the average velocity of the car for (a) the
first second, (b) the last 3 s, and (c) the entire period 
of observation.
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11. Find the instantaneous velocity of the particle described
in Figure P2.3 at the following times: (a) t � 1.0 s, 
(b) t � 3.0 s, (c) t � 4.5 s, and (d) t � 7.5 s.

Section 2.3 Acceleration
12. A particle is moving with a velocity of 60.0 m/s in the

positive x direction at t � 0. Between t � 0 and t �
15.0 s, the velocity decreases uniformly to zero. What 
was the acceleration during this 15.0-s interval? What is
the significance of the sign of your answer?

13. A 50.0-g superball traveling at 25.0 m/s bounces off a
brick wall and rebounds at 22.0 m/s. A high-speed cam-
era records this event. If the ball is in contact with the
wall for 3.50 ms, what is the magnitude of the average
acceleration of the ball during this time interval? (Note:
1 ms � 10�3 s.)

14. A particle starts from rest and accelerates as shown in
Figure P2.14. Determine: (a) the particle’s speed at 
t � 10 s and at t � 20 s, and (b) the distance traveled in
the first 20 s.

numerical values of x and ax for all points of inflection.
(c) What is the acceleration at t � 6 s? (d) Find the po-
sition (relative to the starting point) at t � 6 s. (e) What
is the moped’s final position at t � 9 s?

17. A particle moves along the x axis according to the equa-
tion where x is in meters and t is
in seconds. At t � 3.00 s, find (a) the position of the
particle, (b) its velocity, and (c) its acceleration.

18. An object moves along the x axis according to the equa-
tion m. Determine 
(a) the average speed between t � 2.00 s and t � 3.00 s,
(b) the instantaneous speed at t � 2.00 s and at t �
3.00 s, (c) the average acceleration between t � 2.00 s
and t � 3.00 s, and (d) the instantaneous acceleration
at t � 2.00 s and t � 3.00 s.

19. Figure P2.19 shows a graph of vx versus t for the motion
of a motorcyclist as he starts from rest and moves along
the road in a straight line. (a) Find the average acceler-
ation for the time interval t � 0 to t � 6.00 s. (b) Esti-
mate the time at which the acceleration has its greatest
positive value and the value of the acceleration at that
instant. (c) When is the acceleration zero? (d) Estimate
the maximum negative value of the acceleration and
the time at which it occurs.

x � (3.00t2 � 2.00t � 3.00)

x � 2.00 � 3.00t � t2,

Figure P2.14
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15. A velocity– time graph for an object moving along the x
axis is shown in Figure P2.15. (a) Plot a graph of the ac-
celeration versus time. (b) Determine the average accel-
eration of the object in the time intervals t � 5.00 s to 
t � 15.0 s and t � 0 to t � 20.0 s.

16. A student drives a moped along a straight road as de-
scribed by the velocity– time graph in Figure P2.16.
Sketch this graph in the middle of a sheet of graph pa-
per. (a) Directly above your graph, sketch a graph of
the position versus time, aligning the time coordinates
of the two graphs. (b) Sketch a graph of the accelera-
tion versus time directly below the vx -t graph, again
aligning the time coordinates. On each graph, show the

Figure P2.16
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Section 2.4 Motion Diagrams
20. Draw motion diagrams for (a) an object moving to the

right at constant speed, (b) an object moving to the
right and speeding up at a constant rate, (c) an object
moving to the right and slowing down at a constant
rate, (d) an object moving to the left and speeding up
at a constant rate, and (e) an object moving to the left
and slowing down at a constant rate. (f) How would
your drawings change if the changes in speed were not
uniform; that is, if the speed were not changing at a
constant rate?

Section 2.5 One-Dimensional Motion with 
Constant Acceleration

21. Jules Verne in 1865 proposed sending people to the
Moon by firing a space capsule from a 220-m-long can-
non with a final velocity of 10.97 km/s. What would
have been the unrealistically large acceleration experi-
enced by the space travelers during launch? Compare
your answer with the free-fall acceleration, 9.80 m/s2.

22. A certain automobile manufacturer claims that its super-
deluxe sports car will accelerate from rest to a speed of
42.0 m/s in 8.00 s. Under the (improbable) assumption
that the acceleration is constant, (a) determine the ac-
celeration of the car. (b) Find the distance the car trav-
els in the first 8.00 s. (c) What is the speed of the car
10.0 s after it begins its motion, assuming it continues to
move with the same acceleration?

23. A truck covers 40.0 m in 8.50 s while smoothly slowing
down to a final speed of 2.80 m/s. (a) Find its original
speed. (b) Find its acceleration.

24. The minimum distance required to stop a car moving at
35.0 mi/h is 40.0 ft. What is the minimum stopping dis-
tance for the same car moving at 70.0 mi/h, assuming
the same rate of acceleration?

25. A body moving with uniform acceleration has a velocity
of 12.0 cm/s in the positive x direction when its x coor-
dinate is 3.00 cm. If its x coordinate 2.00 s later is � 5.00
cm, what is the magnitude of its acceleration?

26. Figure P2.26 represents part of the performance data
of a car owned by a proud physics student. (a) Calcu-
late from the graph the total distance traveled. 
(b) What distance does the car travel between the
times t � 10 s and t � 40 s? (c) Draw a graph of its ac-

celeration versus time between t � 0 and t � 50 s. 
(d) Write an equation for x as a function of time for
each phase of the motion, represented by (i) 0a, (ii)
ab, (iii) bc. (e) What is the average velocity of the car
between t � 0 and t � 50 s?

27. A particle moves along the x axis. Its position is given by
the equation with x in meters
and t in seconds. Determine (a) its position at the in-
stant it changes direction and (b) its velocity when it re-
turns to the position it had at t � 0.

28. The initial velocity of a body is 5.20 m/s. What is its veloc-
ity after 2.50 s (a) if it accelerates uniformly at 3.00 m/s2

and (b) if it accelerates uniformly at � 3.00 m/s2?
29. A drag racer starts her car from rest and accelerates at

10.0 m/s2 for the entire distance of 400 m mi). (a) How
long did it take the race car to travel this distance? 
(b) What is the speed of the race car at the end of the run?

30. A car is approaching a hill at 30.0 m/s when its engine
suddenly fails, just at the bottom of the hill. The car
moves with a constant acceleration of � 2.00 m/s2 while
coasting up the hill. (a) Write equations for the position
along the slope and for the velocity as functions of time,
taking x � 0 at the bottom of the hill, where vi �

30.0 m/s. (b) Determine the maximum distance the car
travels up the hill. 

31. A jet plane lands with a speed of 100 m/s and can accel-
erate at a maximum rate of � 5.00 m/s2 as it comes to
rest. (a) From the instant the plane touches the runway,
what is the minimum time it needs before it can come
to rest? (b) Can this plane land at a small tropical island
airport where the runway is 0.800 km long?

32. The driver of a car slams on the brakes when he sees a
tree blocking the road. The car slows uniformly with an
acceleration of � 5.60 m/s2 for 4.20 s, making straight
skid marks 62.4 m long ending at the tree. With what
speed does the car then strike the tree?

33. Help! One of our equations is missing! We describe con-
stant-acceleration motion with the variables and para-
meters vxi , vxf , ax , t, and xf � xi . Of the equations in
Table 2.2, the first does not involve The second
does not contain ax , the third omits vxf , and the last

x f � x i .

(1
4

x � 2.00 � 3.00t � 4.00t2

Figure P2.26
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(a) What is the speed of the ball at the bottom of the
first plane? (b) How long does it take to roll down 
the first plane? (c) What is the acceleration along the
second plane? (d) What is the ball’s speed 8.00 m along
the second plane?

40. Speedy Sue, driving at 30.0 m/s, enters a one-lane tun-
nel. She then observes a slow-moving van 155 m ahead
traveling at 5.00 m/s. Sue applies her brakes but can ac-
celerate only at �2.00 m/s2 because the road is wet.
Will there be a collision? If so, determine how far into
the tunnel and at what time the collision occurs. If not,
determine the distance of closest approach between
Sue’s car and the van.

Section 2.6 Freely Falling Objects
Note: In all problems in this section, ignore the effects of air
resistance.

41. A golf ball is released from rest from the top of a very
tall building. Calculate (a) the position and (b) the ve-
locity of the ball after 1.00 s, 2.00 s, and 3.00 s.

42. Every morning at seven o’clock
There’s twenty terriers drilling on the rock.
The boss comes around and he says, “Keep still
And bear down heavy on the cast-iron drill
And drill, ye terriers, drill.” And drill, ye terriers, drill.
It’s work all day for sugar in your tea . . .
And drill, ye terriers, drill.

One day a premature blast went off
And a mile in the air went big Jim Goff. And drill . . .

Then when next payday came around
Jim Goff a dollar short was found.
When he asked what for, came this reply:
“You were docked for the time you were up in the sky.” And
drill . . .

—American folksong

What was Goff’s hourly wage? State the assumptions you
make in computing it.

Problems 53

leaves out t. So to complete the set there should be an
equation not involving vxi . Derive it from the others.
Use it to solve Problem 32 in one step.

34. An indestructible bullet 2.00 cm long is fired straight
through a board that is 10.0 cm thick. The bullet strikes
the board with a speed of 420 m/s and emerges with a
speed of 280 m/s. (a) What is the average acceleration
of the bullet as it passes through the board? (b) What is
the total time that the bullet is in contact with the
board? (c) What thickness of board (calculated to 
0.1 cm) would it take to stop the bullet, assuming 
the bullet’s acceleration through all parts of the board
is the same?

35. A truck on a straight road starts from rest, accelerating
at 2.00 m/s2 until it reaches a speed of 20.0 m/s. Then
the truck travels for 20.0 s at constant speed until the
brakes are applied, stopping the truck in a uniform
manner in an additional 5.00 s. (a) How long is the
truck in motion? (b) What is the average velocity of the
truck for the motion described?

36. A train is traveling down a straight track at 20.0 m/s
when the engineer applies the brakes. This results in an
acceleration of � 1.00 m/s2 as long as the train is in mo-
tion. How far does the train move during a 40.0-s time
interval starting at the instant the brakes are applied?

37. For many years the world’s land speed record was held
by Colonel John P. Stapp, USAF (Fig. P2.37). On March
19, 1954, he rode a rocket-propelled sled that moved
down the track at 632 mi/h. He and the sled were safely
brought to rest in 1.40 s. Determine (a) the negative ac-
celeration he experienced and (b) the distance he trav-
eled during this negative acceleration.

38. An electron in a cathode-ray tube (CRT) accelerates
uniformly from 2.00 � 104 m/s to 6.00 � 106 m/s over
1.50 cm. (a) How long does the electron take to travel
this 1.50 cm? (b) What is its acceleration?

39. A ball starts from rest and accelerates at 0.500 m/s2

while moving down an inclined plane 9.00 m long.
When it reaches the bottom, the ball rolls up another
plane, where, after moving 15.0 m, it comes to rest. 

Figure P2.37 (Left) Col. John Stapp on rocket sled. (Courtesy of the U.S. Air Force)
(Right) Col. Stapp’s face is contorted by the stress of rapid negative acceleration. (Photri, Inc.)
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43. A student throws a set of keys vertically upward to her
sorority sister, who is in a window 4.00 m above. The
keys are caught 1.50 s later by the sister’s outstretched
hand. (a) With what initial velocity were the keys
thrown? (b) What was the velocity of the keys just be-
fore they were caught?

44. A ball is thrown directly downward with an initial speed
of 8.00 m/s from a height of 30.0 m. How many sec-
onds later does the ball strike the ground?

45. Emily challenges her friend David to catch a dollar bill as
follows: She holds the bill vertically, as in Figure P2.45,
with the center of the bill between David’s index finger
and thumb. David must catch the bill after Emily releases
it without moving his hand downward. If his reaction
time is 0.2 s, will he succeed? Explain your reasoning.

49. A daring ranch hand sitting on a tree limb wishes to
drop vertically onto a horse galloping under the tree.
The speed of the horse is 10.0 m/s, and the distance
from the limb to the saddle is 3.00 m. (a) What must be
the horizontal distance between the saddle and limb
when the ranch hand makes his move? (b) How long is
he in the air?

50. A ball thrown vertically upward is caught by the thrower
after 20.0 s. Find (a) the initial velocity of the ball and
(b) the maximum height it reaches.

51. A ball is thrown vertically upward from the ground with
an initial speed of 15.0 m/s. (a) How long does it take
the ball to reach its maximum altitude? (b) What is its
maximum altitude? (c) Determine the velocity and ac-
celeration of the ball at t � 2.00 s.

52. The height of a helicopter above the ground is given by
h � 3.00t3, where h is in meters and t is in seconds. Af-
ter 2.00 s, the helicopter releases a small mailbag. How
long after its release does the mailbag reach the
ground?

(Optional)
2.7 Kinematic Equations Derived from Calculus

53. Automotive engineers refer to the time rate of change
of acceleration as the “jerk.” If an object moves in one
dimension such that its jerk J is constant, (a) determine
expressions for its acceleration ax, velocity vx, and posi-
tion x, given that its initial acceleration, speed, and posi-
tion are axi , vxi , and xi , respectively. (b) Show that

54. The speed of a bullet as it travels down the barrel of a ri-
fle toward the opening is given by the expression

where v is in me-
ters per second and t is in seconds. The acceleration of
the bullet just as it leaves the barrel is zero. (a) Deter-
mine the acceleration and position of the bullet as a
function of time when the bullet is in the barrel. 
(b) Determine the length of time the bullet is acceler-
ated. (c) Find the speed at which the bullet leaves the
barrel. (d) What is the length of the barrel?

55. The acceleration of a marble in a certain fluid is pro-
portional to the speed of the marble squared and is
given (in SI units) by a � � 3.00v2 for If the mar-
ble enters this fluid with a speed of 1.50 m/s, how long
will it take before the marble’s speed is reduced to half
of its initial value?

ADDITIONAL PROBLEMS

56. A motorist is traveling at 18.0 m/s when he sees a deer
in the road 38.0 m ahead. (a) If the maximum negative
acceleration of the vehicle is � 4.50 m/s2, what is the
maximum reaction time �t of the motorist that will al-
low him to avoid hitting the deer? (b) If his reaction
time is actually 0.300 s, how fast will he be traveling
when he hits the deer?

v � 0.

v � (�5.0 � 107)t2 � (3.0 � 105)t,

ax 

2 � axi 

2 � 2J(vx � vxi).

WEB

Figure P2.45 (George Semple)

WEB

46. A ball is dropped from rest from a height h above the
ground. Another ball is thrown vertically upward from
the ground at the instant the first ball is released. Deter-
mine the speed of the second ball if the two balls are to
meet at a height h/2 above the ground.

47. A baseball is hit so that it travels straight upward after
being struck by the bat. A fan observes that it takes 
3.00 s for the ball to reach its maximum height. Find
(a) its initial velocity and (b) the maximum height it
reaches.

48. A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box,
which she crushed to a depth of 18.0 in. She suffered
only minor injuries. Calculate (a) the speed of the
woman just before she collided with the ventilator box,
(b) her average acceleration while in contact with the
box, and (c) the time it took to crush the box.



Problems 55

1 cm. Compute an order-of-magnitude estimate for 
the maximum acceleration of the ball while it is in con-
tact with the pavement. State your assumptions, the
quantities you estimate, and the values you estimate for
them.

65. A teenager has a car that speeds up at 3.00 m/s2 and
slows down at � 4.50 m/s2. On a trip to the store, he ac-
celerates from rest to 12.0 m/s, drives at a constant
speed for 5.00 s, and then comes to a momentary stop
at an intersection. He then accelerates to 18.0 m/s, 
drives at a constant speed for 20.0 s, slows down for 
2.67 s, continues for 4.00 s at this speed, and then
comes to a stop. (a) How long does the trip take? 
(b) How far has he traveled? (c) What is his average
speed for the trip? (d) How long would it take to walk
to the store and back if he walks at 1.50 m/s?

66. A rock is dropped from rest into a well. (a) If the sound
of the splash is heard 2.40 s later, how far below the top
of the well is the surface of the water? The speed of
sound in air (at the ambient temperature) is 336 m/s.
(b) If the travel time for the sound is neglected, what
percentage error is introduced when the depth of the
well is calculated?

67. An inquisitive physics student and mountain climber
climbs a 50.0-m cliff that overhangs a calm pool of wa-
ter. He throws two stones vertically downward, 1.00 s
apart, and observes that they cause a single splash. The
first stone has an initial speed of 2.00 m/s. (a) How
long after release of the first stone do the two stones hit
the water? (b) What was the initial velocity of the sec-
ond stone? (c) What is the velocity of each stone at the
instant the two hit the water?

68. A car and train move together along parallel paths at
25.0 m/s, with the car adjacent to the rear of the train.
Then, because of a red light, the car undergoes a uni-
form acceleration of � 2.50 m/s2 and comes to rest. It
remains at rest for 45.0 s and then accelerates back to a
speed of 25.0 m/s at a rate of 2.50 m/s2. How far be-
hind the rear of the train is the car when it reaches the
speed of 25.0 m/s, assuming that the speed of the train
has remained 25.0 m/s?

69. Kathy Kool buys a sports car that can accelerate at the
rate of 4.90 m/s2. She decides to test the car by racing
with another speedster, Stan Speedy. Both start from
rest, but experienced Stan leaves the starting line 1.00 s
before Kathy. If Stan moves with a constant acceleration
of 3.50 m/s2 and Kathy maintains an acceleration of
4.90 m/s2, find (a) the time it takes Kathy to overtake
Stan, (b) the distance she travels before she catches up
with him, and (c) the speeds of both cars at the instant
she overtakes him.

70. To protect his food from hungry bears, a boy scout
raises his food pack with a rope that is thrown over a
tree limb at height h above his hands. He walks away
from the vertical rope with constant velocity v boy , hold-
ing the free end of the rope in his hands (Fig. P2.70).

57. Another scheme to catch the roadrunner has failed. A
safe falls from rest from the top of a 25.0-m-high cliff to-
ward Wile E. Coyote, who is standing at the base. Wile
first notices the safe after it has fallen 15.0 m. How long
does he have to get out of the way?

58. A dog’s hair has been cut and is now getting longer by
1.04 mm each day. With winter coming on, this rate of
hair growth is steadily increasing by 0.132 mm/day
every week. By how much will the dog’s hair grow dur-
ing five weeks?

59. A test rocket is fired vertically upward from a well. A cat-
apult gives it an initial velocity of 80.0 m/s at ground
level. Subsequently, its engines fire and it accelerates
upward at 4.00 m/s2 until it reaches an altitude of 
1000 m. At that point its engines fail, and the rocket
goes into free fall, with an acceleration of � 9.80 m/s2.
(a) How long is the rocket in motion above the ground?
(b) What is its maximum altitude? (c) What is its veloc-
ity just before it collides with the Earth? (Hint: Consider
the motion while the engine is operating separate from
the free-fall motion.)

60. A motorist drives along a straight road at a constant
speed of 15.0 m/s. Just as she passes a parked motorcy-
cle police officer, the officer starts to accelerate at 
2.00 m/s2 to overtake her. Assuming the officer main-
tains this acceleration, (a) determine the time it takes
the police officer to reach the motorist. Also find 
(b) the speed and (c) the total displacement of the 
officer as he overtakes the motorist.

61. In Figure 2.10a, the area under the velocity– time curve
between the vertical axis and time t (vertical dashed
line) represents the displacement. As shown, this area
consists of a rectangle and a triangle. Compute their ar-
eas and compare the sum of the two areas with the ex-
pression on the righthand side of Equation 2.11.

62. A commuter train travels between two downtown sta-
tions. Because the stations are only 1.00 km apart, the
train never reaches its maximum possible cruising
speed. The engineer minimizes the time t between the
two stations by accelerating at a rate a1 � 0.100 m/s2

for a time t1 and then by braking with acceleration 
a2 � � 0.500 m/s2 for a time t2 . Find the minimum
time of travel t and the time t1 .

63. In a 100-m race, Maggie and Judy cross the finish line in
a dead heat, both taking 10.2 s. Accelerating uniformly,
Maggie took 2.00 s and Judy 3.00 s to attain maximum
speed, which they maintained for the rest of the race.
(a) What was the acceleration of each sprinter? 
(b) What were their respective maximum speeds? 
(c) Which sprinter was ahead at the 6.00-s mark, and by
how much?

64. A hard rubber ball, released at chest height, falls to 
the pavement and bounces back to nearly the same
height. When it is in contact with the pavement, the
lower side of the ball is temporarily flattened. Suppose
the maximum depth of the dent is on the order of 
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ANSWERS TO QUICK QUIZZES

2.1 Your graph should look something like the one in (a).
This vx-t graph shows that the maximum speed is 
about 5.0 m/s, which is 18 km/h (� 11 mi/h), and 
so the driver was not speeding. Can you derive the accel-
eration–time graph from the velocity– time graph? It
should look something like the one in (b).

2.2 (a) Yes. This occurs when the car is slowing down, so that
the direction of its acceleration is opposite the direction
of its motion. (b) Yes. If the motion is in the direction

(a) Show that the speed v of the food pack is
v boy , where x is the distance he has

walked away from the vertical rope. (b) Show that the
acceleration a of the food pack is 
(c) What values do the acceleration and velocity have
shortly after he leaves the point under the pack 
(x � 0)? (d) What values do the pack’s velocity and ac-
celeration approach as the distance x continues to in-
crease?

71. In Problem 70, let the height h equal 6.00 m and the
speed v boy equal 2.00 m/s. Assume that the food pack
starts from rest. (a) Tabulate and graph the speed–time
graph. (b) Tabulate and graph the acceleration–time
graph. (Let the range of time be from 0 to 5.00 s and
the time intervals be 0.500 s.)

72. Astronauts on a distant planet toss a rock into the air.
With the aid of a camera that takes pictures at a steady
rate, they record the height of the rock as a function of
time as given in Table P2.72. (a) Find the average veloc-
ity of the rock in the time interval between each mea-
surement and the next. (b) Using these average veloci-

h2(x2 � h2)�3/2 vboy 

2.

x(x2 � h2)�1/2

ties to approximate instantaneous velocities at the mid-
points of the time intervals, make a graph of velocity as
a function of time. Does the rock move with constant
acceleration? If so, plot a straight line of best fit on the
graph and calculate its slope to find the acceleration.

73. Two objects, A and B, are connected by a rigid rod that
has a length L. The objects slide along perpendicular
guide rails, as shown in Figure P2.73. If A slides to the
left with a constant speed v, find the speed of B when 

 � 60.0°.

Figure P2.73

α

L

y

x

v

A

B

xO

y

chosen as negative, a positive acceleration causes a de-
crease in speed.

2.3 The left side represents the final velocity of an object.
The first term on the right side is the velocity that the ob-
ject had initially when we started watching it. The second
term is the change in that initial velocity that is caused by
the acceleration. If this second term is positive, then the
initial velocity has increased If this term is neg-
ative, then the initial velocity has decreased (vxf � vx i).

(vxf � vx i).

TABLE P2.72 Height of a Rock versus Time

Time (s) Height (m) Time (s) Height (m)

0.00 5.00 2.75 7.62
0.25 5.75 3.00 7.25
0.50 6.40 3.25 6.77
0.75 6.94 3.50 6.20
1.00 7.38 3.75 5.52
1.25 7.72 4.00 4.73
1.50 7.96 4.25 3.85
1.75 8.10 4.50 2.86
2.00 8.13 4.75 1.77
2.25 8.07 5.00 0.58
2.50 7.90

x

h

m

�

vboy

av

Figure P2.70
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2.4 Graph (a) has a constant slope, indicating a constant ac-
celeration; this is represented by graph (e).

Graph (b) represents a speed that is increasing con-
stantly but not at a uniform rate. Thus, the acceleration must
be increasing, and the graph that best indicates this is (d).

Graph (c) depicts a velocity that first increases at a
constant rate, indicating constant acceleration. Then the

vx(m/s)

t(s)

6.0

4.0

2.0

0.0

–2.0

–4.0

–6.0

20 30 40 5010

ax(m/s2)

t(s)

0.60

0.40

0.20

0.00

–0.20

–0.40

–0.60

30 4010 5020

velocity stops increasing and becomes constant, indicat-
ing zero acceleration. The best match to this situation is
graph (f).

2.5 (c). As can be seen from Figure 2.13b, the ball is at rest for
an infinitesimally short time at these three points.
Nonetheless, gravity continues to act even though the ball
is instantaneously not moving.

(a) (b)
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3.2 Vector and Scalar Quantities

3.3 Some Properties of Vectors

3.4 Components of a Vector and Unit
Vectors
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When this honeybee gets back to its
hive, it will tell the other bees how to re-
turn to the food it has found. By moving
in a special, very precisely defined pat-
tern, the bee conveys to other workers
the information they need to find a flower
bed. Bees communicate by “speaking in
vectors.” What does the bee have to tell
the other bees in order to specify where
the flower bed is located relative to the
hive? (E. Webber/Visuals Unlimited)
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e often need to work with physical quantities that have both numerical and
directional properties. As noted in Section 2.1, quantities of this nature are

represented by vectors. This chapter is primarily concerned with vector alge-
bra and with some general properties of vector quantities. We discuss the addition
and subtraction of vector quantities, together with some common applications to
physical situations.

Vector quantities are used throughout this text, and it is therefore imperative
that you master both their graphical and their algebraic properties.

COORDINATE SYSTEMS
Many aspects of physics deal in some form or other with locations in space. In
Chapter 2, for example, we saw that the mathematical description of an object’s
motion requires a method for describing the object’s position at various times.
This description is accomplished with the use of coordinates, and in Chapter 2 we
used the cartesian coordinate system, in which horizontal and vertical axes inter-
sect at a point taken to be the origin (Fig. 3.1). Cartesian coordinates are also
called rectangular coordinates.

Sometimes it is more convenient to represent a point in a plane by its plane po-
lar coordinates (r, �), as shown in Figure 3.2a. In this polar coordinate system, r is the
distance from the origin to the point having cartesian coordinates (x, y), and � is
the angle between r and a fixed axis. This fixed axis is usually the positive x axis,
and � is usually measured counterclockwise from it. From the right triangle in Fig-
ure 3.2b, we find that sin � � y/r and that cos � � x/r. (A review of trigonometric
functions is given in Appendix B.4.) Therefore, starting with the plane polar coor-
dinates of any point, we can obtain the cartesian coordinates, using the equations

(3.1)

(3.2)

Furthermore, the definitions of trigonometry tell us that

(3.3)

(3.4)

These four expressions relating the coordinates (x, y) to the coordinates (r, �)
apply only when � is defined, as shown in Figure 3.2a—in other words, when posi-
tive � is an angle measured counterclockwise from the positive x axis. (Some scientific
calculators perform conversions between cartesian and polar coordinates based on
these standard conventions.) If the reference axis for the polar angle � is chosen
to be one other than the positive x axis or if the sense of increasing � is chosen dif-
ferently, then the expressions relating the two sets of coordinates will change.

Would the honeybee at the beginning of the chapter use cartesian or polar coordinates
when specifying the location of the flower? Why? What is the honeybee using as an origin of
coordinates?

Quick Quiz 3.1

 r � √x2 � y2

tan � �
y
x

 

y � r sin � 

x � r cos �

3.1

W

2.2

Q
P

(–3, 4) (5, 3)

(x, y)

y

x
O

O

(x, y)

y

x

r

θ

(a)

θ

(b)

x

r
y

sin θ =
y
r

cos θ = x
r

tan θ = x
y

θ

θ

θ

Figure 3.1 Designation of points
in a cartesian coordinate system.
Every point is labeled with coordi-
nates (x, y).

Figure 3.2 (a) The plane polar
coordinates of a point are repre-
sented by the distance r and the an-
gle �, where � is measured counter-
clockwise from the positive x axis.
(b) The right triangle used to re-
late (x, y) to (r, �).

You may want to read Talking Apes
and Dancing Bees (1997) by Betsy
Wyckoff.
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VECTOR AND SCALAR QUANTITIES
As noted in Chapter 2, some physical quantities are scalar quantities whereas oth-
ers are vector quantities. When you want to know the temperature outside so that
you will know how to dress, the only information you need is a number and the
unit “degrees C” or “degrees F.” Temperature is therefore an example of a scalar
quantity, which is defined as a quantity that is completely specified by a number
and appropriate units. That is,

3.2

Polar CoordinatesEXAMPLE 3.1
The cartesian coordinates of a point in the xy plane are 
(x, y) � (� 3.50, � 2.50) m, as shown in Figure 3.3. Find the
polar coordinates of this point.

A scalar quantity is specified by a single value with an appropriate unit and has
no direction.

A vector quantity has both magnitude and direction.

Solution

Note that you must use the signs of x and y to find that the
point lies in the third quadrant of the coordinate system.
That is, � � 216° and not 35.5°.

216°    � �

tan � �
y

x
�

�2.50 m
�3.50 m

� 0.714 

4.30 m r � √x2 � y2 � √(�3.50 m)2 � (�2.50 m)2 �

Other examples of scalar quantities are volume, mass, and time intervals. The
rules of ordinary arithmetic are used to manipulate scalar quantities.

If you are getting ready to pilot a small plane and need to know the wind ve-
locity, you must know both the speed of the wind and its direction. Because direc-
tion is part of the information it gives, velocity is a vector quantity, which is de-
fined as a physical quantity that is completely specified by a number and
appropriate units plus a direction. That is,

2.3

Figure 3.4 As a particle moves
from � to � along an arbitrary
path represented by the broken
line, its displacement is a vector
quantity shown by the arrow drawn
from � to �.

Figure 3.3 Finding polar coordinates when cartesian coordinates
are given.

x(m)

y(m)

–3.50, –2.50

θ

r

Another example of a vector quantity is displacement, as you know from Chap-
ter 2. Suppose a particle moves from some point � to some point � along a
straight path, as shown in Figure 3.4. We represent this displacement by drawing
an arrow from � to �, with the tip of the arrow pointing away from the starting
point. The direction of the arrowhead represents the direction of the displace-
ment, and the length of the arrow represents the magnitude of the displacement.
If the particle travels along some other path from � to �, such as the broken line
in Figure 3.4, its displacement is still the arrow drawn from � to �.

�

�



3.3 Some Properties of Vectors 61

In this text, we use a boldface letter, such as A, to represent a vector quantity.
Another common method for vector notation that you should be aware of is the
use of an arrow over a letter, such as The magnitude of the vector A is written
either A or The magnitude of a vector has physical units, such as meters for
displacement or meters per second for velocity.

SOME PROPERTIES OF VECTORS

Equality of Two Vectors

For many purposes, two vectors A and B may be defined to be equal if they have
the same magnitude and point in the same direction. That is, A � B only if A � B
and if A and B point in the same direction along parallel lines. For example, all
the vectors in Figure 3.5 are equal even though they have different starting points.
This property allows us to move a vector to a position parallel to itself in a diagram
without affecting the vector.

Adding Vectors

The rules for adding vectors are conveniently described by geometric methods. To
add vector B to vector A, first draw vector A, with its magnitude represented by a
convenient scale, on graph paper and then draw vector B to the same scale with its
tail starting from the tip of A, as shown in Figure 3.6. The resultant vector R �
A � B is the vector drawn from the tail of A to the tip of B. This procedure is
known as the triangle method of addition.

For example, if you walked 3.0 m toward the east and then 4.0 m toward the
north, as shown in Figure 3.7, you would find yourself 5.0 m from where you

3.3

� A �.
A
:

.

Figure 3.5 These four vectors are
equal because they have equal
lengths and point in the same di-
rection.

Figure 3.6 When vector B is
added to vector A, the resultant R
is the vector that runs from the tail
of A to the tip of B.

(a) The number of apples in the basket is one example of a scalar quantity. Can you think of
other examples? (Superstock) (b) Jennifer pointing to the right. A vector quantity is one that must
be specified by both magnitude and direction. (Photo by Ray Serway) (c) An anemometer is a de-
vice meteorologists use in weather forecasting. The cups spin around and reveal the magnitude
of the wind velocity. The pointer indicates the direction. (Courtesy of Peet Bros.Company, 1308 Doris
Avenue, Ocean, NJ 07712)

O

y

x

B

A

R  =  A  +  B

2.4

(a) (b) (c)
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started, measured at an angle of 53° north of east. Your total displacement is the
vector sum of the individual displacements.

A geometric construction can also be used to add more than two vectors. This
is shown in Figure 3.8 for the case of four vectors. The resultant vector R � A �
B � C � D is the vector that completes the polygon. In other words, R is the 
vector drawn from the tail of the first vector to the tip of the last vector.

An alternative graphical procedure for adding two vectors, known as the par-
allelogram rule of addition, is shown in Figure 3.9a. In this construction, the
tails of the two vectors A and B are joined together and the resultant vector R is
the diagonal of a parallelogram formed with A and B as two of its four sides.

When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is im-
portant when vectors are multiplied). This can be seen from the geometric con-
struction in Figure 3.9b and is known as the commutative law of addition:

(3.5)

When three or more vectors are added, their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule

A � B � B � A

4.0 m

3.0 m

|R
| =

   
 (3

.0
 m

)2
 +

 (4
.0

 m
)2

 =
 5

.0
 m

(      )4.0
3.0θ = tan–1θ = 53°

A

B

C

D

R
  =

  A
  +

  B
  +

  C
  +

  D

Figure 3.7 Vector addition. Walk-
ing first 3.0 m due east and then 
4.0 m due north leaves you 
5.0 m from your starting point.

� R � �

Figure 3.8 Geometric con-
struction for summing four vec-
tors. The resultant vector R is by
definition the one that completes
the polygon.

Figure 3.9 (a) In this construc-
tion, the resultant R is the diagonal
of a parallelogram having sides A
and B. (b) This construction shows
that A � B � B � A—in other
words, that vector addition is com-
mutative.

Commutative Law

A

B

A

B

R  =
  B

  +
  A

(b)

A

B

R  =
  A

  +
  B

(a)

Commutative law
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for three vectors is given in Figure 3.10. This is called the associative law of addi-
tion:

(3.6)

In summary, a vector quantity has both magnitude and direction and also
obeys the laws of vector addition as described in Figures 3.6 to 3.10. When two
or more vectors are added together, all of them must have the same units. It would
be meaningless to add a velocity vector (for example, 60 km/h to the east) to a dis-
placement vector (for example, 200 km to the north) because they represent dif-
ferent physical quantities. The same rule also applies to scalars. For example, it
would be meaningless to add time intervals to temperatures.

Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives
zero for the vector sum. That is, A � (� A) � 0. The vectors A and � A have the
same magnitude but point in opposite directions.

Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of
a vector. We define the operation A � B as vector � B added to vector A:

A � B � A � (� B) (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in
Figure 3.11a.

Another way of looking at vector subtraction is to note that the difference 
A � B between two vectors A and B is what you have to add to the second vector
to obtain the first. In this case, the vector A � B points from the tip of the second
vector to the tip of the first, as Figure 3.11b shows.

A � (B � C) � (A � B) � C

Figure 3.10 Geometric construc-
tions for verifying the associative
law of addition.

Figure 3.11 (a) This construc-
tion shows how to subtract vector B
from vector A. The vector � B is
equal in magnitude to vector B and
points in the opposite direction. To
subtract B from A, apply the rule of
vector addition to the combination
of A and � B: Draw A along some
convenient axis, place the tail of
� B at the tip of A, and C is the dif-
ference A � B. (b) A second way
of looking at vector subtraction.
The difference vector C � A � B is
the vector that we must add to B to
obtain A.

Associative law

A

B

B + C

C

A + 
(B

 + 
C)

A

B

A + B

C

(A
 + 
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 C

Associative Law

C = A – B

A

B

C = A – B
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Vector Subtraction

(a) (b)
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Multiplying a Vector by a Scalar

If vector A is multiplied by a positive scalar quantity m, then the product mA is 
a vector that has the same direction as A and magnitude mA. If vector A is 
multiplied by a negative scalar quantity � m, then the product � mA is directed op-
posite A. For example, the vector 5A is five times as long as A and points in the
same direction as A; the vector � A is one-third the length of A and points in the
direction opposite A.

If vector B is added to vector A, under what condition does the resultant vector A � B have
magnitude A � B? Under what conditions is the resultant vector equal to zero?

COMPONENTS OF A VECTOR AND UNIT VECTORS
The geometric method of adding vectors is not recommended whenever great ac-
curacy is required or in three-dimensional problems. In this section, we describe a
method of adding vectors that makes use of the projections of vectors along coordi-
nate axes. These projections are called the components of the vector. Any vector
can be completely described by its components.

Consider a vector A lying in the xy plane and making an arbitrary angle � with
the positive x axis, as shown in Figure 3.13. This vector can be expressed as the

3.4

Quick Quiz 3.2

1
3

2.5

A Vacation TripEXAMPLE 3.2
ing out a calculation, you should sketch the vectors to check
your results.) The displacement R is the resultant when the
two individual displacements A and B are added.

To solve the problem algebraically, we note that the magni-
tude of R can be obtained from the law of cosines as applied
to the triangle (see Appendix B.4). With � � 180° � 60° �
120° and cos �, we find that

�

The direction of R measured from the northerly direction
can be obtained from the law of sines (Appendix B.4):

The resultant displacement of the car is 48.2 km in a direc-
tion 38.9° west of north. This result matches what we found
graphically.

38.9°  � �

sin � �
B
R

 sin � �
35.0 km
48.2 km

 sin 120° � 0.629

 
sin �

B
�

sin �

R
 

48.2 km 

R � √A2 � B2 � 2AB cos� 

R2 � A2 � B2 � 2AB

A car travels 20.0 km due north and then 35.0 km in a direc-
tion 60.0° west of north, as shown in Figure 3.12. Find the
magnitude and direction of the car’s resultant displacement.

Solution In this example, we show two ways to find the re-
sultant of two vectors. We can solve the problem geometri-
cally, using graph paper and a protractor, as shown in Figure
3.12. (In fact, even when you know you are going to be carry-

� √(20.0 km)2 � (35.0 km)2 � 2(20.0 km)(35.0 km)cos 120°

Figure 3.13 Any vector A lying in
the xy plane can be represented by
a vector Ax lying along the x axis
and by a vector Ay lying along the y
axis, where A � Ax � Ay .

Figure 3.12 Graphical method for finding the resultant displace-
ment vector R � A � B.
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sum of two other vectors Ax and Ay . From Figure 3.13, we see that the three vec-
tors form a right triangle and that A � Ax � Ay . (If you cannot see why this equal-
ity holds, go back to Figure 3.9 and review the parallelogram rule.) We shall often
refer to the “components of a vector A,” written Ax and Ay (without the boldface
notation). The component Ax represents the projection of A along the x axis, and
the component Ay represents the projection of A along the y axis. These compo-
nents can be positive or negative. The component Ax is positive if Ax points in the
positive x direction and is negative if Ax points in the negative x direction. The
same is true for the component Ay .

From Figure 3.13 and the definition of sine and cosine, we see that cos � �
Ax/A and that sin � � Ay/A. Hence, the components of A are

(3.8)

(3.9)

These components form two sides of a right triangle with a hypotenuse of length
A. Thus, it follows that the magnitude and direction of A are related to its compo-
nents through the expressions

(3.10)

(3.11)

Note that the signs of the components Ax and Ay depend on the angle �.
For example, if � � 120°, then Ax is negative and Ay is positive. If � � 225°, then
both Ax and Ay are negative. Figure 3.14 summarizes the signs of the components
when A lies in the various quadrants.

When solving problems, you can specify a vector A either with its components
Ax and Ay or with its magnitude and direction A and �.

Can the component of a vector ever be greater than the magnitude of the vector?

Suppose you are working a physics problem that requires resolving a vector
into its components. In many applications it is convenient to express the compo-
nents in a coordinate system having axes that are not horizontal and vertical but are
still perpendicular to each other. If you choose reference axes or an angle other
than the axes and angle shown in Figure 3.13, the components must be modified
accordingly. Suppose a vector B makes an angle �� with the x� axis defined in Fig-
ure 3.15. The components of B along the x� and y� axes are Bx� � B cos �� and 
By� � B sin ��, as specified by Equations 3.8 and 3.9. The magnitude and direction
of B are obtained from expressions equivalent to Equations 3.10 and 3.11. Thus,
we can express the components of a vector in any coordinate system that is conve-
nient for a particular situation.

Unit Vectors

Vector quantities often are expressed in terms of unit vectors. A unit vector is a
dimensionless vector having a magnitude of exactly 1. Unit vectors are used
to specify a given direction and have no other physical significance. They are used
solely as a convenience in describing a direction in space. We shall use the symbols

Quick Quiz 3.3

� � tan�1� Ay

Ax
�

A � √Ax 

2 � Ay 

2 

Ay � A sin�

Ax � A cos�

Figure 3.14 The signs of the
components of a vector A depend
on the quadrant in which the vec-
tor is located.

Components of the vector A

Magnitude of A

Direction of A

Figure 3.15 The component vec-
tors of B in a coordinate system
that is tilted.
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i, j, and k to represent unit vectors pointing in the positive x, y, and z directions,
respectively. The unit vectors i, j, and k form a set of mutually perpendicular vec-
tors in a right-handed coordinate system, as shown in Figure 3.16a. The magnitude
of each unit vector equals 1; that is, 

Consider a vector A lying in the xy plane, as shown in Figure 3.16b. The prod-
uct of the component Ax and the unit vector i is the vector Axi, which lies on the x
axis and has magnitude (The vector Ax i is an alternative representation of
vector Ax .) Likewise, Ay j is a vector of magnitude lying on the y axis. (Again, 
vector Ay j is an alternative representation of vector Ay .) Thus, the unit–vector no-
tation for the vector A is

(3.12)

For example, consider a point lying in the xy plane and having cartesian coordi-
nates (x, y), as in Figure 3.17. The point can be specified by the position vector r,
which in unit–vector form is given by

(3.13)

This notation tells us that the components of r are the lengths x and y.
Now let us see how to use components to add vectors when the geometric

method is not sufficiently accurate. Suppose we wish to add vector B to vector A,
where vector B has components Bx and By . All we do is add the x and y compo-
nents separately. The resultant vector R � A � B is therefore

or

(3.14)

Because R � Rx i � Ry j, we see that the components of the resultant vector are

(3.15)
R y � Ay � By

R x � Ax � Bx

R � (Ax � Bx)i � (Ay � By)j

R � (Ax i � Ay j) � (Bx i � By j)

r � x i � y j

A � Ax i � Ay j

� Ay �
� Ax �.

� i � � � j � � � k � � 1.

Position vector

Figure 3.18 This geometric construction
for the sum of two vectors shows the rela-
tionship between the components of the re-
sultant R and the components of the indi-
vidual vectors.

Figure 3.17 The point whose
cartesian coordinates are (x, y) can
be represented by the position vec-
tor r � xi � y j.

Figure 3.16 (a) The unit vectors
i, j, and k are directed along the x,
y, and z axes, respectively. (b) Vec-
tor A � Axi � Ay j lying in the xy
plane has components Ax and Ay .
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Problem-Solving Hints
Adding Vectors
When you need to add two or more vectors, use this step-by-step procedure:

• Select a coordinate system that is convenient. (Try to reduce the number of
components you need to find by choosing axes that line up with as many
vectors as possible.)

• Draw a labeled sketch of the vectors described in the problem.
• Find the x and y components of all vectors and the resultant components

(the algebraic sum of the components) in the x and y directions.
• If necessary, use the Pythagorean theorem to find the magnitude of the re-

sultant vector and select a suitable trigonometric function to find the angle
that the resultant vector makes with the x axis.

We obtain the magnitude of R and the angle it makes with the x axis from its com-
ponents, using the relationships

(3.16)

(3.17)

We can check this addition by components with a geometric construction, as
shown in Figure 3.18. Remember that you must note the signs of the components
when using either the algebraic or the geometric method.

At times, we need to consider situations involving motion in three compo-
nent directions. The extension of our methods to three-dimensional vectors is
straightforward. If A and B both have x, y, and z components, we express them in
the form

(3.18)

(3.19)

The sum of A and B is

(3.20)

Note that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resultant
vector also has a z component 

If one component of a vector is not zero, can the magnitude of the vector be zero? Explain.

If A � B � 0, what can you say about the components of the two vectors?

Quick Quiz 3.5

Quick Quiz 3.4

R z � Az � Bz .

R � (Ax � Bx)i � (Ay � By)j � (Az � Bz)k

B � Bxi � By j � Bzk

A � Axi � Ay j � Azk

 tan � �
R y

R x
�

Ay � By

Ax � Bx
 

R � √R x 

2 � R y 

2 � √(Ax � Bx)2 � (Ay � By)2

QuickLab
Write an expression for the vector de-
scribing the displacement of a fly that
moves from one corner of the floor
of the room that you are in to the op-
posite corner of the room, near the
ceiling.
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Taking a HikeEXAMPLE 3.5
A hiker begins a trip by first walking 25.0 km southeast from
her car. She stops and sets up her tent for the night. On the sec-
ond day, she walks 40.0 km in a direction 60.0° north of east, at
which point she discovers a forest ranger’s tower. (a) Deter-
mine the components of the hiker’s displacement for each day.

Solution If we denote the displacement vectors on the
first and second days by A and B, respectively, and use the car
as the origin of coordinates, we obtain the vectors shown in
Figure 3.19. Displacement A has a magnitude of 25.0 km and
is directed 45.0° below the positive x axis. From Equations 3.8
and 3.9, its components are

�17.7 kmAy � A sin(�45.0°) � �(25.0 km)(0.707) �

17.7 km Ax � A cos(�45.0°) � (25.0 km)(0.707) �

The Sum of Two VectorsEXAMPLE 3.3
The magnitude of R is given by Equation 3.16:

�

We can find the direction of R from Equation 3.17:

Your calculator likely gives the answer � 27° for � �
tan�1(� 0.50). This answer is correct if we interpret it to
mean 27° clockwise from the x axis. Our standard form has
been to quote the angles measured counterclockwise from 

the � x axis, and that angle for this vector is � � 333°.

tan � �
Ry

Rx
�

�2.0 m

4.0 m
� �0.50

4.5 m

R � √Rx 

2 � Ry 

2 � √(4.0 m)2 � (�2.0 m)2 � √20 m

Find the sum of two vectors A and B lying in the xy plane and
given by

Solution Comparing this expression for A with the gen-
eral expression we see that and
that Likewise, and We
obtain the resultant vector R, using Equation 3.14:

or

Rx � 4.0 m  Ry � �2.0 m

 � (4.0i � 2.0j) m 

R � A � B � (2.0 � 2.0)i m � (2.0 � 4.0)j m

By � �4.0 m.Bx � 2.0 mAy � 2.0 m.
Ax � 2.0 mA � Ax i � Ay j,

A � (2.0i � 2.0j) m  and  B � (2.0i � 4.0j) m

The Resultant DisplacementEXAMPLE 3.4
mathematical calculation keeps track of this motion along
the three perpendicular axes:

The resultant displacement has components cm,
cm, and cm. Its magnitude is

40 cm� √(25 cm)2 � (31 cm)2 � (7.0 cm)2 �

R � √Rx 

2 � Ry 

2 � Rz 

2

Rz � 7.0Ry � 31
Rx � 25

 � (25i � 31j � 7.0k) cm 

 � � (12 � 5.0 � 0)k cm 

 � (15 � 23 � 13)i cm � (30 � 14 � 15)j cm

R � d1 � d2 � d3 

A particle undergoes three consecutive displacements: d1 �
(15i � 30j � 12k) cm, d2 � (23i � 14 j � 5.0k) cm, and 
d3 � (� 13i � 15j) cm. Find the components of the resultant
displacement and its magnitude.

Solution Rather than looking at a sketch on flat paper, vi-
sualize the problem as follows: Start with your fingertip at the
front left corner of your horizontal desktop. Move your fin-
gertip 15 cm to the right, then 30 cm toward the far side of
the desk, then 12 cm vertically upward, then 23 cm to the
right, then 14 cm horizontally toward the front edge of the
desk, then 5.0 cm vertically toward the desk, then 13 cm to
the left, and (finally!) 15 cm toward the back of the desk. The

Figure 3.19 The total displacement of the hiker is the vector 
R � A � B.
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Let’s Fly Away!EXAMPLE 3.6
Displacement b, whose magnitude is 153 km, has the compo-
nents

Finally, displacement c, whose magnitude is 195 km, has the
components

Therefore, the components of the position vector R from the
starting point to city C are

In unit–vector notation, That

is, the airplane can reach city C from the starting point by
first traveling 95.3 km due west and then by traveling 232 km
due north.

Exercise Find the magnitude and direction of R.

Answer 251 km, 22.3° west of north.

R � (�95.3i � 232j) km.

232 km �

R y � ay � by � cy � 87.5 km � 144 km � 0 

�95.3 km  �

R x � ax � bx � cx � 152 km � 52.3 km � 195 km

cy � c sin(180°) � 0 

cx � c cos(180°) � (195 km)(�1) � �195 km

by � b sin(110°) � (153 km)(0.940) � 144 km 

bx � b cos(110°) � (153 km)(�0.342) � �52.3 km

A commuter airplane takes the route shown in Figure 3.20.
First, it flies from the origin of the coordinate system shown
to city A, located 175 km in a direction 30.0° north of east.
Next, it flies 153 km 20.0° west of north to city B. Finally, it
flies 195 km due west to city C. Find the location of city C rel-
ative to the origin.

Solution It is convenient to choose the coordinate system
shown in Figure 3.20, where the x axis points to the east and
the y axis points to the north. Let us denote the three consec-
utive displacements by the vectors a, b, and c. Displacement a
has a magnitude of 175 km and the components

ay � a sin(30.0°) � (175 km)(0.500) � 87.5 km

ax � a cos(30.0°) � (175 km)(0.866) � 152 km

In unit–vector form, we can write the total displacement as 

Exercise Determine the magnitude and direction of the to-
tal displacement.

Answer 41.3 km, 24.1° north of east from the car.

R � (37.7i � 16.9j) km

16.9 kmR y � Ay � By � �17.7 km � 34.6 km �

37.7 km R x � Ax � Bx � 17.7 km � 20.0 km �
The negative value of Ay indicates that the hiker walks in the
negative y direction on the first day. The signs of Ax and Ay
also are evident from Figure 3.19.

The second displacement B has a magnitude of 40.0 km
and is 60.0° north of east. Its components are

(b) Determine the components of the hiker’s resultant
displacement R for the trip. Find an expression for R in
terms of unit vectors.

Solution The resultant displacement for the trip R � A � B
has components given by Equation 3.15:

34.6 kmBy � B sin 60.0° � (40.0 km)(0.866) �

20.0 kmBx � B cos 60.0° � (40.0 km)(0.500) �

Figure 3.20 The airplane starts at the origin, flies first to city A,
then to city B, and finally to city C.
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SUMMARY

Scalar quantities are those that have only magnitude and no associated direc-
tion. Vector quantities have both magnitude and direction and obey the laws of
vector addition. 

We can add two vectors A and B graphically, using either the triangle method
or the parallelogram rule. In the triangle method (Fig. 3.21a), the resultant vector
R � A � B runs from the tail of A to the tip of B. In the parallelogram method
(Fig. 3.21b), R is the diagonal of a parallelogram having A and B as two of its sides.
You should be able to add or subtract vectors, using these graphical methods.

The x component Ax of the vector A is equal to the projection of A along the x
axis of a coordinate system, as shown in Figure 3.22, where Ax � A cos �. The y
component Ay of A is the projection of A along the y axis, where Ay � A sin �. Be
sure you can determine which trigonometric functions you should use in all situa-
tions, especially when � is defined as something other than the counterclockwise
angle from the positive x axis.

If a vector A has an x component Ax and a y component Ay , the vector can be
expressed in unit–vector form as A � Ax i � Ay j. In this notation, i is a unit vector
pointing in the positive x direction, and j is a unit vector pointing in the positive y
direction. Because i and j are unit vectors, 

We can find the resultant of two or more vectors by resolving all vectors into
their x and y components, adding their resultant x and y components, and then
using the Pythagorean theorem to find the magnitude of the resultant vector. We
can find the angle that the resultant vector makes with respect to the x axis by us-
ing a suitable trigonometric function.

� i � � � j � � 1.

QUESTIONS

B is zero, what can you conclude about these two vectors?
6. Can the magnitude of a vector have a negative value? Ex-

plain.
7. Which of the following are vectors and which are not:

force, temperature, volume, ratings of a television show,
height, velocity, age?

8. Under what circumstances would a nonzero vector lying in
the xy plane ever have components that are equal in mag-
nitude?

9. Is it possible to add a vector quantity to a scalar quantity?
Explain.

1. Two vectors have unequal magnitudes. Can their sum be
zero? Explain. 

2. Can the magnitude of a particle’s displacement be greater
than the distance traveled? Explain.

3. The magnitudes of two vectors A and B are A � 5 units
and B � 2 units. Find the largest and smallest values possi-
ble for the resultant vector R � A � B.

4. Vector A lies in the xy plane. For what orientations of vec-
tor A will both of its components be negative? For what
orientations will its components have opposite signs?

5. If the component of vector A along the direction of vector

Figure 3.22 The addition of the
two vectors Ax and Ay gives vector A.
Note that Ax � Axi and Ay � Ay j,
where Ax and Ay are the components of
vector A.

Figure 3.21 (a) Vector addition by the triangle method. (b) Vector addition by the
parallelogram rule.

R = A + B
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PROBLEMS

ative x axis. Using graphical methods, find (a) the vec-
tor sum A � B and (b) the vector difference A � B.

12. A force F1 of magnitude 6.00 units acts at the origin in a
direction 30.0° above the positive x axis. A second force
F2 of magnitude 5.00 units acts at the origin in the di-
rection of the positive y axis. Find graphically the mag-
nitude and direction of the resultant force F1 + F2 .

13. A person walks along a circular path of radius 5.00 m. If
the person walks around one half of the circle, find 
(a) the magnitude of the displacement vector and 
(b) how far the person walked. (c) What is the magni-
tude of the displacement if the person walks all the way
around the circle?

14. A dog searching for a bone walks 3.50 m south, then
8.20 m at an angle 30.0° north of east, and finally 
15.0 m west. Using graphical techniques, find the dog’s
resultant displacement vector.

15. Each of the displacement vectors A and B shown in Fig-
ure P3.15 has a magnitude of 3.00 m. Find graphically
(a) A � B, (b) A � B, (c) B � A, (d) A � 2B. Report
all angles counterclockwise from the positive x axis.

Section 3.1 Coordinate Systems
1. The polar coordinates of a point are r � 5.50 m and 

� � 240°. What are the cartesian coordinates of this
point?

2. Two points in the xy plane have cartesian coordinates
(2.00, � 4.00) m and (� 3.00, 3.00) m. Determine 
(a) the distance between these points and (b) their po-
lar coordinates.

3. If the cartesian coordinates of a point are given by (2, y)
and its polar coordinates are (r, 30°), determine y and r.

4. Two points in a plane have polar coordinates (2.50 m,
30.0°) and (3.80 m, 120.0°). Determine (a) the carte-
sian coordinates of these points and (b) the distance
between them.

5. A fly lands on one wall of a room. The lower left-hand
corner of the wall is selected as the origin of a two-
dimensional cartesian coordinate system. If the fly is lo-
cated at the point having coordinates (2.00, 1.00) m,
(a) how far is it from the corner of the room? (b) what
is its location in polar coordinates?

6. If the polar coordinates of the point (x, y) are (r, �), 
determine the polar coordinates for the points 
(a) (� x, y), (b) (� 2x, � 2y), and (c) (3x, � 3y).

Section 3.2 Vector and Scalar Quantities

Section 3.3 Some Properties of Vectors
7. An airplane flies 200 km due west from city A to city B

and then 300 km in the direction 30.0° north of west
from city B to city C. (a) In straight-line distance, how
far is city C from city A? (b) Relative to city A, in what
direction is city C?

8. A pedestrian moves 6.00 km east and then 13.0 km
north. Using the graphical method, find the magnitude
and direction of the resultant displacement vector. 

9. A surveyor measures the distance across a straight river
by the following method: Starting directly across from a
tree on the opposite bank, she walks 100 m along the
riverbank to establish a baseline. Then she sights across
to the tree. The angle from her baseline to the tree is
35.0°. How wide is the river?

10. A plane flies from base camp to lake A, a distance of
280 km at a direction 20.0° north of east. After drop-
ping off supplies, it flies to lake B, which is 190 km and
30.0° west of north from lake A. Graphically determine
the distance and direction from lake B to the base
camp.

11. Vector A has a magnitude of 8.00 units and makes an
angle of 45.0° with the positive x axis. Vector B also has
a magnitude of 8.00 units and is directed along the neg-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Figure P3.15 Problems 15 and 39.
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16. Arbitrarily define the “instantaneous vector height” of a
person as the displacement vector from the point
halfway between the feet to the top of the head. Make
an order-of-magnitude estimate of the total vector
height of all the people in a city of population 100 000
(a) at 10 a.m. on a Tuesday and (b) at 5 a.m. on a Satur-
day. Explain your reasoning. 

17. A roller coaster moves 200 ft horizontally and then rises
135 ft at an angle of 30.0° above the horizontal. It then
travels 135 ft at an angle of 40.0° downward. What is its
displacement from its starting point? Use graphical
techniques.

18. The driver of a car drives 3.00 km north, 2.00 km north-
east (45.0° east of north), 4.00 km west, and then 

WEB

WEB

WEB
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3.00 km southeast (45.0° east of south). Where does he
end up relative to his starting point? Work out your an-
swer graphically. Check by using components. (The car
is not near the North Pole or the South Pole.)

19. Fox Mulder is trapped in a maze. To find his way out, he
walks 10.0 m, makes a 90.0° right turn, walks 5.00 m,
makes another 90.0° right turn, and walks 7.00 m. What
is his displacement from his initial position?

Section 3.4 Components of a Vector and Unit Vectors
20. Find the horizontal and vertical components of the 100-m

displacement of a superhero who flies from the top of a
tall building following the path shown in Figure P3.20.

lying in an east–west vertical plane. The robot then
moves the object upward along a second arc that forms
one quarter of a circle having a radius of 3.70 cm and
lying in a north–south vertical plane. Find (a) the mag-
nitude of the total displacement of the object and 
(b) the angle the total displacement makes with the 
vertical.

24. Vector B has x, y, and z components of 4.00, 6.00, and
3.00 units, respectively. Calculate the magnitude of B
and the angles that B makes with the coordinate axes.

25. A vector has an x component of � 25.0 units and a y
component of 40.0 units. Find the magnitude and di-
rection of this vector.

26. A map suggests that Atlanta is 730 mi in a direction
5.00° north of east from Dallas. The same map shows
that Chicago is 560 mi in a direction 21.0° west of north
from Atlanta. Assuming that the Earth is flat, use this in-
formation to find the displacement from Dallas to
Chicago.

27. A displacement vector lying in the xy plane has a magni-
tude of 50.0 m and is directed at an angle of 120° to the
positive x axis. Find the x and y components of this vec-
tor and express the vector in unit–vector notation.

28. If A � 2.00i � 6.00j and B � 3.00i � 2.00j, (a) sketch
the vector sum C � A � B and the vector difference 
D � A � B. (b) Find solutions for C and D, first in
terms of unit vectors and then in terms of polar coordi-
nates, with angles measured with respect to the � x axis.

29. Find the magnitude and direction of the resultant of
three displacements having x and y components (3.00,
2.00) m, (� 5.00, 3.00) m, and (6.00, 1.00) m.

30. Vector A has x and y components of � 8.70 cm and 
15.0 cm, respectively; vector B has x and y components
of 13.2 cm and � 6.60 cm, respectively. If A � B �
3C � 0, what are the components of C?

31. Consider two vectors A � 3i � 2j and B � � i � 4j.
Calculate (a) A � B, (b) A � B, (c) 
(d) (e) the directions of A � B and A � B.

32. A boy runs 3.00 blocks north, 4.00 blocks northeast, and
5.00 blocks west. Determine the length and direction of
the displacement vector that goes from the starting
point to his final position.

33. Obtain expressions in component form for the position
vectors having polar coordinates (a) 12.8 m, 150°; 
(b) 3.30 cm, 60.0°; (c) 22.0 in., 215°.

34. Consider the displacement vectors A � (3i � 3j) m, 
B � (i � 4j) m, and C � (� 2i � 5j) m. Use the com-
ponent method to determine (a) the magnitude and di-
rection of the vector D � A � B � C and (b) the mag-
nitude and direction of E � � A � B � C.

35. A particle undergoes the following consecutive displace-
ments: 3.50 m south, 8.20 m northeast, and 15.0 m west.
What is the resultant displacement?

36. In a game of American football, a quarterback takes the
ball from the line of scrimmage, runs backward for 10.0
yards, and then sideways parallel to the line of scrim-
mage for 15.0 yards. At this point, he throws a forward

� A � B �,
� A � B �,

Figure P3.23

Figure P3.20

100 m

x

y

30.0°

21. A person walks 25.0° north of east for 3.10 km. How far
would she have to walk due north and due east to arrive
at the same location?

22. While exploring a cave, a spelunker starts at the en-
trance and moves the following distances: She goes 
75.0 m north, 250 m east, 125 m at an angle 30.0° north
of east, and 150 m south. Find the resultant displace-
ment from the cave entrance.

23. In the assembly operation illustrated in Figure P3.23, a
robot first lifts an object upward along an arc that forms
one quarter of a circle having a radius of 4.80 cm and

WEB
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Figure P3.37

38. A novice golfer on the green takes three strokes to sink
the ball. The successive displacements are 4.00 m to the
north, 2.00 m northeast, and 1.00 m 30.0° west of south.
Starting at the same initial point, an expert golfer could
make the hole in what single displacement?

39. Find the x and y components of the vectors A and B
shown in Figure P3.15; then derive an expression for
the resultant vector A � B in unit–vector notation. 

40. You are standing on the ground at the origin of a coor-
dinate system. An airplane flies over you with constant
velocity parallel to the x axis and at a constant height of
7.60 � 103 m. At t � 0, the airplane is directly above
you, so that the vector from you to it is given by P0 �
(7.60 � 103 m)j. At t � 30.0 s, the position vector lead-
ing from you to the airplane is P30 � (8.04 � 103 m)i �
(7.60 � 103 m)j. Determine the magnitude and orienta-
tion of the airplane’s position vector at t � 45.0 s.

41. A particle undergoes two displacements. The first has a
magnitude of 150 cm and makes an angle of 120° with
the positive x axis. The resultant displacement has a mag-
nitude of 140 cm and is directed at an angle of 35.0° to
the positive x axis. Find the magnitude and direction of
the second displacement.

pass 50.0 yards straight downfield perpendicular to the
line of scrimmage. What is the magnitude of the foot-
ball’s resultant displacement?

37. The helicopter view in Figure P3.37 shows two people
pulling on a stubborn mule. Find (a) the single force
that is equivalent to the two forces shown and (b) the
force that a third person would have to exert on the
mule to make the resultant force equal to zero. The
forces are measured in units of newtons.

42. Vectors A and B have equal magnitudes of 5.00. If the
sum of A and B is the vector 6.00 j, determine the angle
between A and B.

43. The vector A has x, y, and z components of 8.00, 12.0,
and � 4.00 units, respectively. (a) Write a vector expres-
sion for A in unit–vector notation. (b) Obtain a
unit–vector expression for a vector B one-fourth the
length of A pointing in the same direction as A. (c) Ob-
tain a unit–vector expression for a vector C three times
the length of A pointing in the direction opposite the
direction of A.

44. Instructions for finding a buried treasure include the
following: Go 75.0 paces at 240°, turn to 135° and walk
125 paces, then travel 100 paces at 160°. The angles are
measured counterclockwise from an axis pointing to
the east, the � x direction. Determine the resultant dis-
placement from the starting point.

45. Given the displacement vectors A � (3i � 4j � 4k) m
and B � (2i � 3j � 7k) m, find the magnitudes of the
vectors (a) C � A � B and (b) D � 2A � B, also ex-
pressing each in terms of its x, y, and z components.

46. A radar station locates a sinking ship at range 17.3 km
and bearing 136° clockwise from north. From the same
station a rescue plane is at horizontal range 19.6 km,
153° clockwise from north, with elevation 2.20 km. 
(a) Write the vector displacement from plane to ship,
letting i represent east, j north, and k up. (b) How far
apart are the plane and ship? 

47. As it passes over Grand Bahama Island, the eye of a hur-
ricane is moving in a direction 60.0° north of west with
a speed of 41.0 km/h. Three hours later, the course of
the hurricane suddenly shifts due north and its speed
slows to 25.0 km/h. How far from Grand Bahama is the
eye 4.50 h after it passes over the island?

48. (a) Vector E has magnitude 17.0 cm and is directed
27.0° counterclockwise from the � x axis. Express it in
unit–vector notation. (b) Vector F has magnitude 
17.0 cm and is directed 27.0° counterclockwise from the
� y axis. Express it in unit–vector notation. (c) Vector
G has magnitude 17.0 cm and is directed 27.0° clockwise
from the � y axis. Express it in unit–vector notation.

49. Vector A has a negative x component 3.00 units in
length and a positive y component 2.00 units in length.
(a) Determine an expression for A in unit–vector nota-
tion. (b) Determine the magnitude and direction of A.
(c) What vector B, when added to vector A, gives a re-
sultant vector with no x component and a negative y
component 4.00 units in length?

50. An airplane starting from airport A flies 300 km east,
then 350 km at 30.0° west of north, and then 150 km
north to arrive finally at airport B. (a) The next day, an-
other plane flies directly from airport A to airport B in a
straight line. In what direction should the pilot travel in
this direct flight? (b) How far will the pilot travel in this
direct flight? Assume there is no wind during these
flights.

y

x
75.0˚ 60.0˚

F2 =
      80.0 N

F1 =
      120 N



51. Three vectors are oriented as shown in Figure P3.51,
where units, units, and

units. Find (a) the x and y components of
the resultant vector (expressed in unit–vector notation)
and (b) the magnitude and direction of the resultant
vector.

� C � � 30.0
� B � � 40.0� A � � 20.0

origin to the location of the object. Suppose that for a
certain object the position vector is a function of time,
given by P � 4i � 3j � 2t j, where P is in meters and t is
in seconds. Evaluate dP/dt. What does this derivative
represent about the object?

59. A jet airliner, moving initially at 300 mi/h to the east,
suddenly enters a region where the wind is blowing at
100 mi/h in a direction 30.0° north of east. What are
the new speed and direction of the aircraft relative to
the ground?

60. A pirate has buried his treasure on an island with five
trees located at the following points: A(30.0 m, 
� 20.0 m), B(60.0 m, 80.0 m), C(� 10.0 m, � 10.0 m),
D(40.0 m, � 30.0 m), and E(� 70.0 m, 60.0 m). All
points are measured relative to some origin, as in Fig-
ure P3.60. Instructions on the map tell you to start at A
and move toward B, but to cover only one-half the dis-
tance between A and B. Then, move toward C, covering
one-third the distance between your current location
and C. Next, move toward D, covering one-fourth the
distance between where you are and D. Finally, move to-
ward E, covering one-fifth the distance between you and
E, stop, and dig. (a) What are the coordinates of the
point where the pirate’s treasure is buried? (b) Re-
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Figure P3.60

Figure P3.57

Figure P3.51
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52. If A � (6.00i � 8.00j) units, B � (� 8.00i � 3.00j)
units, and C � (26.0i � 19.0j) units, determine a and b
such that aA � bB � C � 0.

ADDITIONAL PROBLEMS

53. Two vectors A and B have precisely equal magnitudes.
For the magnitude of A � B to be 100 times greater
than the magnitude of A � B, what must be the angle
between them?

54. Two vectors A and B have precisely equal magnitudes.
For the magnitude of A � B to be greater than the
magnitude of A � B by the factor n, what must be the
angle between them?

55. A vector is given by R � 2.00i � 1.00j � 3.00k. Find 
(a) the magnitudes of the x, y, and z components, 
(b) the magnitude of R, and (c) the angles between R
and the x, y, and z axes.

56. Find the sum of these four vector forces: 12.0 N to the
right at 35.0° above the horizontal, 31.0 N to the left at
55.0° above the horizontal, 8.40 N to the left at 35.0° be-
low the horizontal, and 24.0 N to the right at 55.0° be-
low the horizontal. (Hint: Make a drawing of this situa-
tion and select the best axes for x and y so that you have
the least number of components. Then add the vectors,
using the component method.)

57. A person going for a walk follows the path shown in Fig-
ure P3.57. The total trip consists of four straight-line
paths. At the end of the walk, what is the person’s resul-
tant displacement measured from the starting point?

58. In general, the instantaneous position of an object is
specified by its position vector P leading from a fixed
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ANSWERS TO QUICK QUIZZES
longer than either side. Problem 61 extends this concept
to three dimensions.

3.4 No. The magnitude of a vector A is equal to 

Therefore, if any component is non-
zero, A cannot be zero. This generalization of the Pythag-
orean theorem is left for you to prove in Problem 61.

3.5 The fact that A � B � 0 tells you that A � � B. There-
fore, the components of the two vectors must have oppo-
site signs and equal magnitudes: 
and Az � �Bz .

Ay � �By ,Ax � �Bx ,

√Ax 

2 � Ay 

2 � Az 

2.

3.1 The honeybee needs to communicate to the other honey-
bees how far it is to the flower and in what direction they
must fly. This is exactly the kind of information that polar
coordinates convey, as long as the origin of the coordi-
nates is the beehive.

3.2 The resultant has magnitude A � B when vector A is ori-
ented in the same direction as vector B. The resultant
vector is A � B � 0 when vector A is oriented in the di-
rection opposite vector B and A � B.

3.3 No. In two dimensions, a vector and its components form
a right triangle. The vector is the hypotenuse and must be

Figure P3.63Figure P3.61

arrange the order of the trees, (for instance, B(30.0 m,
� 20.0 m), A(60.0 m, 80.0 m), E(� 10.0 m, � 10.0 m),
C(40.0 m, � 30.0 m), and D(� 70.0 m, 60.0 m), and re-
peat the calculation to show that the answer does not
depend on the order of the trees.

61. A rectangular parallelepiped has dimensions a, b, and c,
as in Figure P3.61. (a) Obtain a vector expression for
the face diagonal vector R1 . What is the magnitude of
this vector? (b) Obtain a vector expression for the body
diagonal vector R2 . Note that R1 , ck, and R2 make a
right triangle, and prove that the magnitude of R2 is 

√a2 � b2 � c 2.

62. A point lying in the xy plane and having coordinates 
(x, y) can be described by the position vector given by 
r � x i � y j. (a) Show that the displacement vector for a
particle moving from (x1 , y1) to (x2 , y2) is given by 
d � (x2 � x1)i � (y2 � y1)j. (b) Plot the position vec-
tors r1 and r2 and the displacement vector d, and verify
by the graphical method that d � r2 � r1 .

63. A point P is described by the coordinates (x, y) with re-
spect to the normal cartesian coordinate system shown
in Figure P3.63. Show that (x�, y�), the coordinates of
this point in the rotated coordinate system, are related
to (x, y) and the rotation angle 	 by the expressions

y� � �x sin 	 � y cos 	

x� � x cos 	 � y sin 	 
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c h a p t e r

Motion in Two Dimensions

4.1 The Displacement, Velocity, and
Acceleration Vectors

4.2 Two-Dimensional Motion with
Constant Acceleration

4.3 Projectile Motion

4.4 Uniform Circular Motion

4.5 Tangential and Radial Acceleration

4.6 Relative Velocity and Relative 
Acceleration

C h a p t e r  O u t l i n e

This airplane is used by NASA for astro-
naut training. When it flies along a cer-
tain curved path, anything inside the
plane that is not strapped down begins to
float. What causes this strange effect?
(NASA)

web
For more information on microgravity in
general and on this airplane, visit
http://microgravity.msfc.nasa.gov/ 
and http://www.jsc.nasa.gov/coop/
kc135/kc135.html
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4.1 The Displacement, Velocity, and Acceleration Vectors 77

n this chapter we deal with the kinematics of a particle moving in two dimen-
sions. Knowing the basics of two-dimensional motion will allow us to examine—
in future chapters—a wide variety of motions, ranging from the motion of satel-

lites in orbit to the motion of electrons in a uniform electric field. We begin by
studying in greater detail the vector nature of displacement, velocity, and accelera-
tion. As in the case of one-dimensional motion, we derive the kinematic equations
for two-dimensional motion from the fundamental definitions of these three quan-
tities. We then treat projectile motion and uniform circular motion as special cases
of motion in two dimensions. We also discuss the concept of relative motion,
which shows why observers in different frames of reference may measure different
displacements, velocities, and accelerations for a given particle.

THE DISPLACEMENT, VELOCITY, AND
ACCELERATION VECTORS

In Chapter 2 we found that the motion of a particle moving along a straight line is
completely known if its position is known as a function of time. Now let us extend
this idea to motion in the xy plane. We begin by describing the position of a parti-
cle by its position vector r, drawn from the origin of some coordinate system to the
particle located in the xy plane, as in Figure 4.1. At time ti the particle is at point
�, and at some later time tf it is at point �. The path from � to � is not neces-
sarily a straight line. As the particle moves from � to � in the time interval

its position vector changes from ri to rf . As we learned in Chapter 2,
displacement is a vector, and the displacement of the particle is the difference be-
tween its final position and its initial position. We now formally define the dis-
placement vector �r for the particle of Figure 4.1 as being the difference be-
tween its final position vector and its initial position vector:

(4.1)

The direction of �r is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of �r is less than the distance traveled along the curved path followed by
the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the
ratio of a displacement divided by the time interval during which that displace-
ment occurred. In two-dimensional (or three-dimensional) kinematics, everything
is the same as in one-dimensional kinematics except that we must now use vectors
rather than plus and minus signs to indicate the direction of motion.

�r � rf � ri

�t � tf � ti ,

4.1

We define the average velocity of a particle during the time interval �t as the
displacement of the particle divided by that time interval:

(4.2)v �
�r
�t

I

Multiplying or dividing a vector quantity by a scalar quantity changes only the mag-
nitude of the vector, not its direction. Because displacement is a vector quantity
and the time interval is a scalar quantity, we conclude that the average velocity is a
vector quantity directed along �r.

Note that the average velocity between points is independent of the path taken.
This is because average velocity is proportional to displacement, which depends

Path of
particle

x

y

� ti

ri

∆r
� t f

rf

O

Displacement vector

Average velocity

Figure 4.1 A particle moving in
the xy plane is located with the po-
sition vector r drawn from the ori-
gin to the particle. The displace-
ment of the particle as it moves
from � to � in the time interval
�t � t f � ti is equal to the vector 
�r � rf � ri .



only on the initial and final position vectors and not on the path taken. As we did
with one-dimensional motion, we conclude that if a particle starts its motion at
some point and returns to this point via any path, its average velocity is zero for
this trip because its displacement is zero.

Consider again the motion of a particle between two points in the xy plane, as
shown in Figure 4.2. As the time interval over which we observe the motion be-
comes smaller and smaller, the direction of the displacement approaches that of
the line tangent to the path at �.

78 C H A P T E R  4 Motion in Two Dimensions

The instantaneous velocity v is defined as the limit of the average velocity 
�r/�t as �t approaches zero:

(4.3)v � lim
�t:0

 
�r
�t

�
dr
dt

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in a
particle’s path is along a line tangent to the path at that point and in the direction
of motion (Fig. 4.3).

The magnitude of the instantaneous velocity vector is called the speed,
which, as you should remember, is a scalar quantity.

v � � v �

Instantaneous velocity

Figure 4.2 As a particle moves be-
tween two points, its average velocity is
in the direction of the displacement vec-
tor �r. As the end point of the path is
moved from � to �� to ��, the respec-
tive displacements and corresponding
time intervals become smaller and
smaller. In the limit that the end point
approaches �, �t approaches zero, and
the direction of �r approaches that of
the line tangent to the curve at �. By
definition, the instantaneous velocity at
� is in the direction of this tangent
line.

Figure 4.3 A particle moves
from position � to position �.
Its velocity vector changes from
vi to vf . The vector diagrams at
the upper right show two ways
of determining the vector �v
from the initial and final
velocities.
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O

y

x

�

∆r3

∆r2

∆r1

�"

�'

�

x

y

O

� vi

ri

rf

vf

�

–vi

∆v vf

or
vi

∆vvf



4.2 Two-Dimensional Motion with Constant Acceleration 79

The average acceleration of a particle as it moves from one position to an-
other is defined as the change in the instantaneous velocity vector �v divided by
the time �t during which that change occurred:

(4.4)a �
vf � vi

tf � ti
�

�v
�t

The instantaneous acceleration a is defined as the limiting value of the ratio
�v/�t as �t approaches zero:

(4.5)a � lim
�t:0

 
�v
�t

�
dv
dt

Because it is the ratio of a vector quantity �v and a scalar quantity �t, we conclude
that average acceleration is a vector quantity directed along �v. As indicated in
Figure 4.3, the direction of �v is found by adding the vector � vi (the negative of
vi) to the vector vf , because by definition 

When the average acceleration of a particle changes during different time in-
tervals, it is useful to define its instantaneous acceleration a:

�v � vf � vi .

a

In other words, the instantaneous acceleration equals the derivative of the velocity
vector with respect to time.

It is important to recognize that various changes can occur when a particle ac-
celerates. First, the magnitude of the velocity vector (the speed) may change with
time as in straight-line (one-dimensional) motion. Second, the direction of the ve-
locity vector may change with time even if its magnitude (speed) remains constant,
as in curved-path (two-dimensional) motion. Finally, both the magnitude and the
direction of the velocity vector may change simultaneously.

The gas pedal in an automobile is called the accelerator. (a) Are there any other controls in an
automobile that can be considered accelerators? (b) When is the gas pedal not an accelerator?

TWO-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

Let us consider two-dimensional motion during which the acceleration remains
constant in both magnitude and direction.

The position vector for a particle moving in the xy plane can be written

(4.6)

where x, y, and r change with time as the particle moves while i and j remain con-
stant. If the position vector is known, the velocity of the particle can be obtained
from Equations 4.3 and 4.6, which give

(4.7)v � vx i � vy j

r � x i � y j

4.2

Quick Quiz 4.1

3.5

Average acceleration

As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from vi at time ti to vf at time tf . Knowing the veloc-
ity at these points allows us to determine the average acceleration of the particle:

Instantaneous acceleration
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Because a is assumed constant, its components ax and ay also are constants. There-
fore, we can apply the equations of kinematics to the x and y components of the
velocity vector. Substituting and into Equation 4.7 to
determine the final velocity at any time t, we obtain

(4.8)

This result states that the velocity of a particle at some time t equals the vector sum
of its initial velocity vi and the additional velocity at acquired in the time t as a re-
sult of constant acceleration.

Similarly, from Equation 2.11 we know that the x and y coordinates of a parti-
cle moving with constant acceleration are

Substituting these expressions into Equation 4.6 (and labeling the final position
vector rf ) gives

(4.9)

This equation tells us that the displacement vector is the vector sum
of a displacement vit arising from the initial velocity of the particle and a displace-
ment resulting from the uniform acceleration of the particle.

Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.4.
For simplicity in drawing the figure, we have taken ri � 0 in Figure 4.4a. That is,
we assume the particle is at the origin at Note from Figure 4.4a that rf is
generally not along the direction of either vi or a because the relationship be-
tween these quantities is a vector expression. For the same reason, from Figure
4.4b we see that vf is generally not along the direction of vi or a. Finally, note that
vf and rf are generally not in the same direction.

t � ti � 0.

1
2at2

�r � rf � ri

rf � ri � vit � 1
2at2 

 � (x i i � y i j) � (vxi i � vyi j)t � 1
2(ax i � ay j)t2

rf � (x i � vxit � 1
2a xt2)i � (y i � vyit � 1

2a yt2)j

y f � y i � vyit � 1
2ayt2x f � x i � vxit � 1

2axt2

vf � vi � at 

 � (vxi i � vyi j) � (ax i � ay j)t

vf � (vxi � axt)i � (vyi � ayt)j

vy f � vyi � aytvx f � vxi � axt

Figure 4.4 Vector representations and components of (a) the displacement and (b) the veloc-
ity of a particle moving with a uniform acceleration a. To simplify the drawing, we have set ri � 0.
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Because Equations 4.8 and 4.9 are vector expressions, we may write them in
component form:

(4.8a)

(4.9a) 

These components are illustrated in Figure 4.4. The component form of the equa-
tions for vf and rf show us that two-dimensional motion at constant acceleration is
equivalent to two independent motions—one in the x direction and one in the y di-
rection—having constant accelerations ax and ay .

rf � ri � vit � 1
2at2  � x f � x i � vxit � 1

2axt2

y f � y i � vyit � 1
2ayt2

�vxf � vxi � axt
vyf � vyi � ayt 

vf � vi � at 

Motion in a PlaneEXAMPLE 4.1
We could also obtain this result using Equation 4.8 di-

rectly, noting that a � 4.0i m/s2 and vi � (20i � 15j) m/s.
According to this result, the x component of velocity in-
creases while the y component remains constant; this is con-
sistent with what we predicted. After a long time, the x com-
ponent will be so great that the y component will be
negligible. If we were to extend the object’s path in Figure
4.5, eventually it would become nearly parallel to the x axis. It
is always helpful to make comparisons between final answers
and initial stated conditions. 

(b) Calculate the velocity and speed of the particle at t �
5.0 s.

Solution With t � 5.0 s, the result from part (a) gives

This result tells us that at t � 5.0 s, vxf � 40 m/s and vyf �
� 15 m/s. Knowing these two components for this two-
dimensional motion, we can find both the direction and the
magnitude of the velocity vector. To determine the angle �
that v makes with the x axis at t � 5.0 s, we use the fact that
tan � � vyf /vxf :

where the minus sign indicates an angle of 21° below the pos-
itive x axis. The speed is the magnitude of vf :

In looking over our result, we notice that if we calculate vi
from the x and y components of vi , we find that Does
this make sense?

(c) Determine the x and y coordinates of the particle at
any time t and the position vector at this time.

vf � vi .

43 m/svf � �vf � � √vxf  
2 � vyf  

2 � √(40)2 � (�15)2 m/s �

�21°� � tan�1 � vyf

vx f
� � tan�1 � �15 m/s

40 m/s � �

(40i � 15j) m/svf � {[20 � 4.0(5.0)]i � 15j} m/s �

A particle starts from the origin at with an initial veloc-
ity having an x component of 20 m/s and a y component of
� 15 m/s. The particle moves in the xy plane with an x com-
ponent of acceleration only, given by ax � 4.0 m/s2. (a) De-
termine the components of the velocity vector at any time
and the total velocity vector at any time.

Solution After carefully reading the problem, we realize
we can set vxi � 20 m/s, vyi � � 15 m/s, ax � 4.0 m/s2, and
ay � 0. This allows us to sketch a rough motion diagram of
the situation. The x component of velocity starts at 20 m/s
and increases by 4.0 m/s every second. The y component of
velocity never changes from its initial value of � 15 m/s.
From this information we sketch some velocity vectors as
shown in Figure 4.5. Note that the spacing between successive
images increases as time goes on because the velocity is in-
creasing.

The equations of kinematics give

Therefore,

[(20 � 4.0t)i � 15j] m/svf � vx f i � vyf j �

vy f � vyi � ayt � �15 m/s � 0 � �15 m/s

vx f � vxi � axt � (20 � 4.0t) m/s 

t � 0

Figure 4.5 Motion diagram for the particle.
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PROJECTILE MOTION
Anyone who has observed a baseball in motion (or, for that matter, any other ob-
ject thrown into the air) has observed projectile motion. The ball moves in a
curved path, and its motion is simple to analyze if we make two assumptions: 
(1) the free-fall acceleration g is constant over the range of motion and is directed
downward,1 and (2) the effect of air resistance is negligible.2 With these assump-
tions, we find that the path of a projectile, which we call its trajectory, is always a
parabola. We use these assumptions throughout this chapter.

To show that the trajectory of a projectile is a parabola, let us choose our refer-
ence frame such that the y direction is vertical and positive is upward. Because air
resistance is neglected, we know that (as in one-dimensional free fall)
and that Furthermore, let us assume that at t � 0, the projectile leaves the
origin ) with speed vi , as shown in Figure 4.6. The vector vi makes an
angle �i with the horizontal, where �i is the angle at which the projectile leaves the
origin. From the definitions of the cosine and sine functions we have

Therefore, the initial x and y components of velocity are

Substituting the x component into Equation 4.9a with xi � 0 and ax � 0, we find
that

(4.10)

Repeating with the y component and using yi � 0 and ay � � g, we obtain

(4.11)

Next, we solve Equation 4.10 for t � xf/(vi cos �i) and substitute this expression
for t into Equation 4.11; this gives

(4.12)y � (tan �i)x � � g

2vi 

2 cos2 �i
�x2

y f � vyit � 1
2ayt2 � (vi sin �i)t � 1

2gt2

x f � vxit � (vi cos �i)t

vxi � vi cos �i  vyi � vi sin �i

cos �i � vxi/vi  sin �i � vyi/vi

(x i � y i � 0
ax � 0.

ay � �g

4.3

3.5

Solution Because at t � 0, Equation 2.11 gives

Therefore, the position vector at any time t is

[(20t � 2.0t2)i � 15t j] mrf � x f i � y f j �

(�15t) m y f � vyit �

(20t � 2.0t2) mx f � vxit � 1
2axt2 �

x i � y i � 0 (Alternatively, we could obtain rf by applying Equation 4.9 di-
rectly, with m/s and a � 4.0i m/s2. Try it!)
Thus, for example, at t � 5.0 s, x � 150 m, y � � 75 m, and
rf � (150i � 75j) m. The magnitude of the displacement of
the particle from the origin at t � 5.0 s is the magnitude of rf
at this time:

Note that this is not the distance that the particle travels in
this time! Can you determine this distance from the available
data?

rf � � rf � � √(150)2 � (�75)2 m � 170 m

vi � (20i � 15j)

1 This assumption is reasonable as long as the range of motion is small compared with the radius of the
Earth (6.4 	 106 m). In effect, this assumption is equivalent to assuming that the Earth is flat over the
range of motion considered.
2 This assumption is generally not justified, especially at high velocities. In addition, any spin imparted
to a projectile, such as that applied when a pitcher throws a curve ball, can give rise to some very inter-
esting effects associated with aerodynamic forces, which will be discussed in Chapter 15.

Assumptions of projectile motion

Horizontal position component

Vertical position component
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This equation is valid for launch angles in the range We have left
the subscripts off the x and y because the equation is valid for any point (x, y)
along the path of the projectile. The equation is of the form which is
the equation of a parabola that passes through the origin. Thus, we have shown
that the trajectory of a projectile is a parabola. Note that the trajectory is com-
pletely specified if both the initial speed vi and the launch angle �i are known.

The vector expression for the position vector of the projectile as a function of
time follows directly from Equation 4.9, with ri � 0 and a � g:

This expression is plotted in Figure 4.7.

r � vit � 1
2 gt2

y � ax � bx2,

0 
 �i 
 �/2.

x
vxi

vyi v

vxi

θ
vy v

gvxivy = 0

vxi

vy
v

vi

vyi

vxi

y

θ

θiθ

θiθ�

�

�
�

�

Figure 4.6 The parabolic path of a projectile that leaves the origin with a velocity vi . The veloc-
ity vector v changes with time in both magnitude and direction. This change is the result of accel-
eration in the negative y direction. The x component of velocity remains constant in time be-
cause there is no acceleration along the horizontal direction. The y component of velocity is zero
at the peak of the path.

r

x

(x,y)

gt2

vit

O

y

1
2

Figure 4.7 The position vector r of a projectile whose initial velocity at the origin is vi . The vec-
tor vit would be the displacement of the projectile if gravity were absent, and the vector is its
vertical displacement due to its downward gravitational acceleration.

1
2 gt 2

A welder cuts holes through a heavy metal
construction beam with a hot torch. The
sparks generated in the process follow para-
bolic paths.

QuickLab
Place two tennis balls at the edge of a
tabletop. Sharply snap one ball hori-
zontally off the table with one hand
while gently tapping the second ball
off with your other hand. Compare
how long it takes the two to reach the
floor. Explain your results.
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It is interesting to realize that the motion of a particle can be considered the
superposition of the term vit, the displacement if no acceleration were present,
and the term which arises from the acceleration due to gravity. In other
words, if there were no gravitational acceleration, the particle would continue to
move along a straight path in the direction of vi . Therefore, the vertical distance

through which the particle “falls” off the straight-line path is the same dis-
tance that a freely falling body would fall during the same time interval. We con-
clude that projectile motion is the superposition of two motions: (1) con-
stant-velocity motion in the horizontal direction and (2) free-fall motion in
the vertical direction. Except for t, the time of flight, the horizontal and vertical
components of a projectile’s motion are completely independent of each other.

1
2 gt2

1
2 gt2,

Approximating Projectile MotionEXAMPLE 4.2
A ball is thrown in such a way that its initial vertical and hori-
zontal components of velocity are 40 m/s and 20 m/s, re-
spectively. Estimate the total time of flight and the distance
the ball is from its starting point when it lands.

Solution We start by remembering that the two velocity
components are independent of each other. By considering
the vertical motion first, we can determine how long the ball
remains in the air. Then, we can use the time of flight to esti-
mate the horizontal distance covered.

A motion diagram like Figure 4.8 helps us organize what
we know about the problem. The acceleration vectors are all
the same, pointing downward with a magnitude of nearly 
10 m/s2. The velocity vectors change direction. Their hori- Figure 4.8 Motion diagram for a projectile.

Multiflash exposure of a tennis
player executing a forehand swing.
Note that the ball follows a para-
bolic path characteristic of a pro-
jectile. Such photographs can be
used to study the quality of sports
equipment and the performance of
an athlete.
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Horizontal Range and Maximum Height of a Projectile

Let us assume that a projectile is fired from the origin at ti � 0 with a positive vyi com-
ponent, as shown in Figure 4.9. Two points are especially interesting to analyze: the
peak point �, which has cartesian coordinates (R/2, h), and the point �, which has
coordinates (R, 0). The distance R is called the horizontal range of the projectile, and
the distance h is its maximum height. Let us find h and R in terms of vi , �i , and g.

We can determine h by noting that at the peak, vyA � 0. Therefore, we can use
Equation 4.8a to determine the time tA it takes the projectile to reach the peak:

Substituting this expression for tA into the y part of Equation 4.9a and replacing
with h, we obtain an expression for h in terms of the magnitude and direc-

tion of the initial velocity vector: 

(4.13)

The range R is the horizontal distance that the projectile travels in twice the time
it takes to reach its peak, that is, in a time Using the x part of Equation 4.9a,
noting that cos �i , and setting at we find that

Using the identity sin 2� � 2 sin � cos � (see Appendix B.4), we write R in the
more compact form

(4.14)

Keep in mind that Equations 4.13 and 4.14 are useful for calculating h and R
only if vi and �i are known (which means that only vi has to be specified) and if
the projectile lands at the same height from which it started, as it does in Fig-
ure 4.9.

The maximum value of R from Equation 4.14 is This result fol-
lows from the fact that the maximum value of sin 2�i is 1, which occurs when 2�i �
90°. Therefore, R is a maximum when �i � 45°.

R max � vi 

2/g.

R �
vi 

2 sin 2�i

g

 � (vi cos �i) 
2vi sin �i

g
�

2vi 

2 sin �i cos �i

g

R � vxit B � (vi cos �i)2tA 

t � 2tA ,R � xBvxi � vx B � vi

tB � 2tA .

h �
vi 

2 sin2 �i

2g

h � (vi sin �i) 
vi sin �i

g
� 1

2g  � vi sin �i

g �
2

y f � yA

 tA �
v i sin �i

g
 

 0 � vi sin �i � gtA

vy f � vyi � ayt 

zontal components are all the same: 20 m/s. Because the ver-
tical motion is free fall, the vertical components of the veloc-
ity vectors change, second by second, from 40 m/s to roughly
30, 20, and 10 m/s in the upward direction, and then to 
0 m/s. Subsequently, its velocity becomes 10, 20, 30, and 
40 m/s in the downward direction. Thus it takes the ball

Figure 4.9 A projectile fired
from the origin at ti � 0 with an
initial velocity vi . The maximum
height of the projectile is h, and
the horizontal range is R. At �, the
peak of the trajectory, the particle
has coordinates (R/2, h).

Maximum height of projectile

Range of projectile

about 4 s to go up and another 4 s to come back down, for a
total time of flight of approximately 8 s. Because the horizon-
tal component of velocity is 20 m/s, and because the ball
travels at this speed for 8 s, it ends up approximately 160 m
from its starting point.

R

x

y

h

vi

vyA = 0

�

�θ i

O
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Figure 4.10 illustrates various trajectories for a projectile having a given initial
speed but launched at different angles. As you can see, the range is a maximum
for �i � 45°. In addition, for any �i other than 45°, a point having cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of �i ,
such as 75° and 15°. Of course, the maximum height and time of flight for one of
these values of �i are different from the maximum height and time of flight for the
complementary value.

As a projectile moves in its parabolic path, is there any point along the path where the ve-
locity and acceleration vectors are (a) perpendicular to each other? (b) parallel to each
other? (c) Rank the five paths in Figure 4.10 with respect to time of flight, from the shortest
to the longest.

Quick Quiz 4.2

Problem-Solving Hints
Projectile Motion
We suggest that you use the following approach to solving projectile motion
problems:

• Select a coordinate system and resolve the initial velocity vector into x and y
components.

• Follow the techniques for solving constant-velocity problems to analyze the
horizontal motion. Follow the techniques for solving constant-acceleration
problems to analyze the vertical motion. The x and y motions share the
same time of flight t.

Figure 4.10 A projectile fired from the origin with an initial speed of 50 m/s at various angles
of projection. Note that complementary values of �i result in the same value of x (range of the
projectile).

x(m)

50

100

150

y(m)

75°

60°

45°

30°

15°

vi = 50 m/s

50 100 150 200 250

QuickLab
To carry out this investigation, you
need to be outdoors with a small ball,
such as a tennis ball, as well as a wrist-
watch. Throw the ball straight up as
hard as you can and determine the
initial speed of your throw and the
approximate maximum height of the
ball, using only your watch. What
happens when you throw the ball at
some angle � � 90°? Does this
change the time of flight (perhaps
because it is easier to throw)? Can
you still determine the maximum
height and initial speed?
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The Long-JumpEXAMPLE 4.3
takeoff point and label the peak as � and the landing point
as �. The horizontal motion is described by Equation 4.10:

The value of xB can be found if the total time of the jump
is known. We are able to find t B by remembering that

and by using the y part of Equation 4.8a. We also
note that at the top of the jump the vertical component of ve-
locity vyA is zero:

This is the time needed to reach the top of the jump. Be-
cause of the symmetry of the vertical motion, an identical
time interval passes before the jumper returns to the ground.
Therefore, the total time in the air is Sub-
stituting this value into the above expression for xf gives

This is a reasonable distance for a world-class athlete.

(b) What is the maximum height reached?

Solution We find the maximum height reached by using
Equation 4.11:

Treating the long-jumper as a particle is an oversimplifica-
tion. Nevertheless, the values obtained are reasonable. 

Exercise To check these calculations, use Equations 4.13
and 4.14 to find the maximum height and horizontal range.

0.722 m�

  �1
2(9.80 m/s2)(0.384 s)2 

 � (11.0 m/s)(sin 20.0°)(0.384 s) 

ymax � yA � (vi sin � i)t A � 1
2gt A 

2 

7.94 mx f � xB � (11.0 m/s)(cos 20.0°)(0.768 s) �

t B � 2t A � 0.768 s.

  t A � 0.384 s  

  0 � (11.0 m/s) sin 20.0° � (9.80 m/s2)t A

vy f � vyA � vi sin � i � gt A  

ay � �g

x f � xB � (vi cos � i)t B � (11.0 m/s)(cos 20.0°)t B

A long-jumper leaves the ground at an angle of 20.0° above
the horizontal and at a speed of 11.0 m/s. (a) How far does
he jump in the horizontal direction? (Assume his motion is
equivalent to that of a particle.)

Solution Because the initial speed and launch angle are
given, the most direct way of solving this problem is to use
the range formula given by Equation 4.14. However, it is
more instructive to take a more general approach and use
Figure 4.9. As before, we set our origin of coordinates at the

A Bull’s-Eye Every TimeEXAMPLE 4.4
tion First, note from Figure 4.11b that the initial y
coordinate of the target is x T tan �i and that it falls through a
distance in a time t. Therefore, the y coordinate of the
target at any moment after release is 

Now if we use Equation 4.9a to write an expression for the y
coordinate of the projectile at any moment, we obtain

yP � xP tan � i � 1
2gt2

y T � x T tan � i � 1
2gt2

1
2gt2

ay � �g.In a popular lecture demonstration, a projectile is fired at a
target in such a way that the projectile leaves the gun at the
same time the target is dropped from rest, as shown in Figure
4.11. Show that if the gun is initially aimed at the stationary
target, the projectile hits the target.

Solution We can argue that a collision results under the
conditions stated by noting that, as soon as they are released,
the projectile and the target experience the same accelera-

In a long-jump event, 1993 United States champion Mike Powell
can leap horizontal distances of at least 8 m.
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1
2

Target

Line of si
ght

y

x

Point of
collision

gt 
2

xT tan θi

yT

Gun
0

vi

xT

θ

θiθ

(b)

Figure 4.11 (a) Multiflash photograph of projectile– target demonstration. If the gun is aimed directly at the target and is fired at the same
instant the target begins to fall, the projectile will hit the target. Note that the velocity of the projectile (red arrows) changes in direction and
magnitude, while the downward acceleration (violet arrows) remains constant. (Central Scientific Company.) (b) Schematic diagram of the pro-
jectile– target demonstration. Both projectile and target fall through the same vertical distance in a time t because both experience the same
acceleration ay � �g.

Thus, by comparing the two previous equations, we see that
when the y coordinates of the projectile and target are the
same, their x coordinates are the same and a collision results.
That is, when You can obtain the same re-
sult, using expressions for the position vectors for the projec-
tile and target.

yP � y T , xP � x T .

Note that a collision will not always take place owing to a
further restriction: A collision can result only when 
vi sin �i where d is the initial elevation of the target
above the floor. If vi sin �i is less than this value, the projectile
will strike the floor before reaching the target.

 √gd/2,

(a)

That’s Quite an Arm!EXAMPLE 4.5
A stone is thrown from the top of a building upward at an
angle of 30.0° to the horizontal and with an initial speed of
20.0 m/s, as shown in Figure 4.12. If the height of the build-
ing is 45.0 m, (a) how long is it before the stone hits the
ground?

Solution We have indicated the various parameters in Fig-
ure 4.12. When working problems on your own, you should
always make a sketch such as this and label it.

The initial x and y components of the stone’s velocity are

To find t, we can use (Eq. 4.9a) with
m, and m/s (there is a minus

sign on the numerical value of yf because we have chosen the
top of the building as the origin):

Solving the quadratic equation for t gives, for the positive 

root, t � Does the negative root have any physical 4.22 s.

�45.0 m � (10.0 m/s)t � 1
2(9.80 m/s2)t2

vyi � 10.0ay � �g,y f � �45.0
y f � vyit � 1

2ayt2

vyi � vi sin �i � (20.0 m/s)(sin 30.0°) � 10.0 m/s

vxi � vi cos �i � (20.0 m/s)(cos 30.0°) � 17.3 m/s

�

45.0 m

(0, 0)

y

x

vi = 20.0 m/s

θi = 30.0°

yf  = – 45.0 m

xf = ?

xf

Figure 4.12
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meaning? (Can you think of another way of finding t from
the information given?)

(b) What is the speed of the stone just before it strikes the
ground?

Solution We can use Equation 4.8a, , with 
t � 4.22 s to obtain the y component of the velocity just be-
fore the stone strikes the ground:

vy f � vyi � ayt

The Stranded ExplorersEXAMPLE 4.6
velocity is the same as that of the plane when the package is
released: 40.0 m/s. Thus, we have

If we know t, the length of time the package is in the air,
then we can determine xf , the distance the package travels in
the horizontal direction. To find t, we use the equations that
describe the vertical motion of the package. We know that at
the instant the package hits the ground, its y coordinate is

m. We also know that the initial vertical compo-
nent of the package velocity vyi is zero because at the mo-
ment of release, the package had only a horizontal compo-
nent of velocity.

From Equation 4.9a, we have

Substitution of this value for the time of flight into the
equation for the x coordinate gives

The package hits the ground 181 m to the right of the drop
point.

Exercise What are the horizontal and vertical components
of the velocity of the package just before it hits the ground?

Answer

Exercise Where is the plane when the package hits the
ground? (Assume that the plane does not change its speed or
course.)

Answer Directly over the package.

vxf � 40.0 m/s; vy f � �44.3 m/s.

181 mx f � (40.0 m/s)(4.52 s) �

 t � 4.52 s 

�100 m � �1
2(9.80 m/s2)t2

 y f � �1
2gt2 

y f � �100

x f � (40.0 m/s)t

An Alaskan rescue plane drops a package of emergency ra-
tions to a stranded party of explorers, as shown in Figure
4.13. If the plane is traveling horizontally at 40.0 m/s and is
100 m above the ground, where does the package strike the
ground relative to the point at which it was released?

Solution For this problem we choose the coordinate sys-
tem shown in Figure 4.13, in which the origin is at the point
of release of the package. Consider first the horizontal mo-
tion of the package. The only equation available to us for
finding the distance traveled along the horizontal direction is

(Eq. 4.9a). The initial x component of the packagex f � vxit

The negative sign indicates that the stone is moving down-
ward. Because m/s, the required speed is

Exercise Where does the stone strike the ground?

Answer 73.0 m from the base of the building.

35.9 m/svf � √vx f 

2 � vy f  

2 � √(17.3)2 � (�31.4)2 m/s �

vx f � vxi � 17.3

vyf � 10.0 m/s � (9.80 m/s2)(4.22 s) � �31.4 m/s

Figure 4.13

100 m

x

40.0 m/s

y
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The End of the Ski JumpEXAMPLE 4.7
d cos 35.0° and sin 35.0°. Substituting these relation-
ships into (1) and (2), we obtain

(3) d cos 35.0° � (25.0 m/s)t

(4) � d sin 35.0° � m/s2)t2

Solving (3) for t and substituting the result into (4), we find
that d � 109 m. Hence, the x and y coordinates of the point
at which he lands are

Exercise Determine how long the jumper is airborne and
his vertical component of velocity just before he lands.

Answer 3.57 s; � 35.0 m/s.

�62.5 my f � �d sin 35.0° � �(109 m) sin 35.0° �

89.3 m x f � d cos 35.0° � (109 m) cos 35.0° �

�1
2(9.80

y f � �dA ski jumper leaves the ski track moving in the horizontal di-
rection with a speed of 25.0 m/s, as shown in Figure 4.14.
The landing incline below him falls off with a slope of 35.0°. 
Where does he land on the incline?

Solution It is reasonable to expect the skier to be air-
borne for less than 10 s, and so he will not go farther than
250 m horizontally. We should expect the value of d, the dis-
tance traveled along the incline, to be of the same order of
magnitude. It is convenient to select the beginning of the
jump as the origin . Because 
and the x and y component forms of Equation 4.9a
are

(1)

(2)

From the right triangle in Figure 4.14, we see that the
jumper’s x and y coordinates at the landing point are x f �

y f � 1
2ayt2 � �1

2(9.80 m/s2)t2

x f � vxit � (25.0 m/s)t

v yi � 0,
vxi � 25.0 m/s(x i � 0, y i � 0)

Figure 4.14

y d

25.0 m/s

θ

(0, 0)

x

= 35.0°

What would have occurred if the skier in the last example happened to be car-
rying a stone and let go of it while in midair? Because the stone has the same ini-
tial velocity as the skier, it will stay near him as he moves—that is, it floats along-
side him. This is a technique that NASA uses to train astronauts. The plane
pictured at the beginning of the chapter flies in the same type of projectile path
that the skier and stone follow. The passengers and cargo in the plane fall along-
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side each other; that is, they have the same trajectory. An astronaut can release a
piece of equipment and it will float freely alongside her hand. The same thing
happens in the space shuttle. The craft and everything in it are falling as they orbit
the Earth.

UNIFORM CIRCULAR MOTION
Figure 4.16a shows a car moving in a circular path with constant linear speed v.
Such motion is called uniform circular motion. Because the car’s direction of mo-
tion changes, the car has an acceleration, as we learned in Section 4.1. For any mo-
tion, the velocity vector is tangent to the path. Consequently, when an object moves
in a circular path, its velocity vector is perpendicular to the radius of the circle.

We now show that the acceleration vector in uniform circular motion is always
perpendicular to the path and always points toward the center of the circle. An ac-

4.4

3.6

Figure 4.15 This multiflash photo-
graph of two balls released simultane-
ously illustrates both free fall (red ball)
and projectile motion (yellow ball). The
yellow ball was projected horizontally,
while the red ball was released from
rest. (Richard Megna/Fundamental Pho-
tographs)

Figure 4.16 (a) A car moving along a circular path at constant speed experiences uniform cir-
cular motion. (b) As a particle moves from � to �, its velocity vector changes from vi to vf . 
(c) The construction for determining the direction of the change in velocity �v, which is toward
the center of the circle for small �r.

QuickLab
Armed with nothing but a ruler and
the knowledge that the time between
images was 1/30 s, find the horizon-
tal speed of the yellow ball in Figure
4.15. (Hint: Start by analyzing the mo-
tion of the red ball. Because you
know its vertical acceleration, you can
calibrate the distances depicted in
the photograph. Then you can find
the horizontal speed of the yellow
ball.)

(b)

∆r

vi

vf

r∆θr

O

� �

θ

(a)

v
r

O

(c)

∆v∆θθ
vf

vi



92 C H A P T E R  4 Motion in Two Dimensions

celeration of this nature is called a centripetal (center-seeking) acceleration, and
its magnitude is 

(4.15)

where r is the radius of the circle and the notation ar is used to indicate that the
centripetal acceleration is along the radial direction.

To derive Equation 4.15, consider Figure 4.16b, which shows a particle first at
point � and then at point �. The particle is at � at time ti , and its velocity at that
time is vi . It is at � at some later time tf , and its velocity at that time is vf . Let us as-
sume here that vi and vf differ only in direction; their magnitudes (speeds) are the
same (that is, To calculate the acceleration of the particle, let us be-
gin with the defining equation for average acceleration (Eq. 4.4):

This equation indicates that we must subtract vi from vf , being sure to treat them
as vectors, where is the change in the velocity. Because 
we can find the vector �v, using the vector triangle in Figure 4.16c.

Now consider the triangle in Figure 4.16b, which has sides �r and r. This trian-
gle and the one in Figure 4.16c, which has sides �v and v, are similar. This fact en-
ables us to write a relationship between the lengths of the sides:

This equation can be solved for �v and the expression so obtained substituted into
(Eq. 4.4) to give

Now imagine that points � and � in Figure 4.16b are extremely close to-
gether. In this case �v points toward the center of the circular path, and because
the acceleration is in the direction of �v, it too points toward the center. Further-
more, as � and � approach each other, �t approaches zero, and the ratio �r/�t
approaches the speed v. Hence, in the limit �t : 0, the magnitude of the acceler-
ation is

Thus, we conclude that in uniform circular motion, the acceleration is directed to-
ward the center of the circle and has a magnitude given by v2/r, where v is the
speed of the particle and r is the radius of the circle. You should be able to show
that the dimensions of ar are L/T2. We shall return to the discussion of circular
motion in Section 6.1.

TANGENTIAL AND RADIAL ACCELERATION
Now let us consider a particle moving along a curved path where the velocity
changes both in direction and in magnitude, as shown in Figure 4.17. As is always
the case, the velocity vector is tangent to the path, but now the direction of the ac-

4.5

ar �
v2

r

a �
v �r
r �t

a � �v/�t

�v
v

�
�r
r

vi � �v � vf ,�v � vf � vi

a �
vf � vi

tf � ti
�

�v
�t

v i � vf � v).

ar �
v2

r

3.6
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celeration vector a changes from point to point. This vector can be resolved into
two component vectors: a radial component vector ar and a tangential component
vector at . Thus, a can be written as the vector sum of these component vectors:

(4.16)

The tangential acceleration causes the change in the speed of the particle. It
is parallel to the instantaneous velocity, and its magnitude is

(4.17)

The radial acceleration arises from the change in direction of the velocity
vector as described earlier and has an absolute magnitude given by

(4.18)

where r is the radius of curvature of the path at the point in question. Because ar
and at are mutually perpendicular component vectors of a, it follows that 

As in the case of uniform circular motion, ar in nonuniform circu-
lar motion always points toward the center of curvature, as shown in Figure 4.17.
Also, at a given speed, ar is large when the radius of curvature is small (as at points
� and � in Figure 4.17) and small when r is large (such as at point �). The direc-
tion of at is either in the same direction as v (if v is increasing) or opposite v (if v
is decreasing).

In uniform circular motion, where v is constant, at � 0 and the acceleration is
always completely radial, as we described in Section 4.4. (Note: Eq. 4.18 is identical
to Eq. 4.15.) In other words, uniform circular motion is a special case of motion
along a curved path. Furthermore, if the direction of v does not change, then
there is no radial acceleration and the motion is one-dimensional (in this case, 
ar � 0, but at may not be zero).

(a) Draw a motion diagram showing velocity and acceleration vectors for an object moving
with constant speed counterclockwise around a circle. Draw similar diagrams for an object
moving counterclockwise around a circle but (b) slowing down at constant tangential accel-
eration and (c) speeding up at constant tangential acceleration. 

It is convenient to write the acceleration of a particle moving in a circular path
in terms of unit vectors. We do this by defining the unit vectors and shown in�̂r̂

Quick Quiz 4.3

a � √ar 

2 � at 

2
 .

ar �
v2

r

at �
d � v �
dt

a � a r � a t

Figure 4.17 The motion of a particle along an arbitrary curved path lying in the xy plane. If
the velocity vector v (always tangent to the path) changes in direction and magnitude, the com-
ponent vectors of the acceleration a are a tangential component at and a radial component ar .

Total acceleration

Tangential acceleration

Radial acceleration

Path of
particle

at

ar

a

atar

aat

ar a

�

�

�
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Figure 4.18a, where is a unit vector lying along the radius vector and directed ra-
dially outward from the center of the circle and is a unit vector tangent to the
circle. The direction of is in the direction of increasing �, where � is measured
counterclockwise from the positive x axis. Note that both and “move along with
the particle” and so vary in time. Using this notation, we can express the total ac-
celeration as

(4.19)

These vectors are described in Figure 4.18b. The negative sign on the v2/r term in
Equation 4.19 indicates that the radial acceleration is always directed radially in-
ward, opposite

Based on your experience, draw a motion diagram showing the position, velocity, and accel-
eration vectors for a pendulum that, from an initial position 45° to the right of a central ver-
tical line, swings in an arc that carries it to a final position 45° to the left of the central verti-
cal line. The arc is part of a circle, and you should use the center of this circle as the origin
for the position vectors.

Quick Quiz 4.4

r̂.

a � a t � a r �
d� v �
dt

 �̂ �
v2

r
 r̂

�̂r̂
�̂

�̂
r̂

The Swinging BallEXAMPLE 4.8
ure 4.19 lets us take a closer look at the situation. The radial
acceleration is given by Equation 4.18. With m/s and

m, we find that

(b) What is the magnitude of the tangential acceleration
when � � 20°?

4.5 m/s2ar �
v2

r
�

(1.5 m/s)2

0.50 m
�

r � 0.50
v � 1.5

A ball tied to the end of a string 0.50 m in length swings in a
vertical circle under the influence of gravity, as shown in Fig-
ure 4.19. When the string makes an angle � � 20° with the
vertical, the ball has a speed of 1.5 m/s. (a) Find the magni-
tude of the radial component of acceleration at this instant.

Solution The diagram from the answer to Quick Quiz 4.4
(p. 109) applies to this situation, and so we have a good idea
of how the acceleration vector varies during the motion. Fig-

Figure 4.18 (a) Descriptions of the unit vectors and (b) The total acceleration a of a parti-
cle moving along a curved path (which at any instant is part of a circle of radius r) is the sum of
radial and tangential components. The radial component is directed toward the center of curva-
ture. If the tangential component of acceleration becomes zero, the particle follows uniform cir-
cular motion.

�̂.r̂

ˆ

ˆ

θ
x

y

O

r

r

(a)

O

(b)

ar

a

at

a  =  ar  +  at

�
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RELATIVE VELOCITY AND RELATIVE ACCELERATION
In this section, we describe how observations made by different observers in differ-
ent frames of reference are related to each other. We find that observers in differ-
ent frames of reference may measure different displacements, velocities, and accel-
erations for a given particle. That is, two observers moving relative to each other
generally do not agree on the outcome of a measurement.

For example, suppose two cars are moving in the same direction with speeds
of 50 mi/h and 60 mi/h. To a passenger in the slower car, the speed of the faster
car is 10 mi/h. Of course, a stationary observer will measure the speed of the faster
car to be 60 mi/h, not 10 mi/h. Which observer is correct? They both are! This
simple example demonstrates that the velocity of an object depends on the frame
of reference in which it is measured.

Suppose a person riding on a skateboard (observer A) throws a ball in such a
way that it appears in this person’s frame of reference to move first straight upward
and then straight downward along the same vertical line, as shown in Figure 4.20a.
A stationary observer B sees the path of the ball as a parabola, as illustrated in Fig-
ure 4.20b. Relative to observer B, the ball has a vertical component of velocity (re-
sulting from the initial upward velocity and the downward acceleration of gravity)
and a horizontal component.

Another example of this concept that of is a package dropped from an air-
plane flying with a constant velocity; this is the situation we studied in Example
4.6. An observer on the airplane sees the motion of the package as a straight line
toward the Earth. The stranded explorer on the ground, however, sees the trajec-
tory of the package as a parabola. If, once it drops the package, the airplane con-

4.6

3.7

g

θ

r

v  ≠  0

ar

at

a
φ

Figure 4.19 Motion of a ball suspended by a string of length r.
The ball swings with nonuniform circular motion in a vertical plane,
and its acceleration a has a radial component ar and a tangential
component at .

Solution When the ball is at an angle � to the vertical, it
has a tangential acceleration of magnitude g sin � (the com-
ponent of g tangent to the circle). Therefore, at � � 20°,

at � g sin 20° �

(c) Find the magnitude and direction of the total acceler-
ation a at � � 20°.

Solution Because a � ar � at , the magnitude of a at � �
20° is

If � is the angle between a and the string, then

Note that a, at , and ar all change in direction and magni-
tude as the ball swings through the circle. When the ball is at
its lowest elevation (� � 0), at � 0 because there is no tan-
gential component of g at this angle; also, ar is a maximum be-
cause v is a maximum. If the ball has enough speed to reach
its highest position (� � 180°), then at is again zero but ar is a
minimum because v is now a minimum. Finally, in the two

37°� � tan�1 
at

ar
� tan�1 � 3.4 m/s2

4.5 m/s2 � �

5.6 m/s2a � √ar 

2 � at 

2 � √(4.5)2 � (3.4)2 m/s2 �

3.4 m/s2.

horizontal positions (� � 90° and 270°), and ar has a
value between its minimum and maximum values.

� a t � � g



tinues to move horizontally with the same velocity, then the package hits the
ground directly beneath the airplane (if we assume that air resistance is ne-
glected)!

In a more general situation, consider a particle located at point � in Figure
4.21. Imagine that the motion of this particle is being described by two observers,
one in reference frame S, fixed relative to the Earth, and another in reference
frame S�, moving to the right relative to S (and therefore relative to the Earth)
with a constant velocity v0 . (Relative to an observer in S�, S moves to the left with a
velocity � v0 .) Where an observer stands in a reference frame is irrelevant in this
discussion, but for purposes of this discussion let us place each observer at her or
his respective origin.

We label the position of the particle relative to the S frame with the position
vector r and that relative to the S� frame with the position vector r�, both after
some time t. The vectors r and r� are related to each other through the expression
r � r� � v0t, or

(4.20)r� � r � v0t
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(a) (b)

Path seen
by observer B

AA

Path seen
by observer A

B

Figure 4.20 (a) Observer A on a moving vehicle throws a ball upward and sees it rise and fall
in a straight-line path. (b) Stationary observer B sees a parabolic path for the same ball. 

Figure 4.21 A particle located at � is
described by two observers, one in the
fixed frame of reference S, and the other
in the frame S�, which moves to the right
with a constant velocity v0 . The vector r is
the particle’s position vector relative to S,
and r� is its position vector relative to S�.

S

r

r′

v0t

S ′

O ′O
v0

�

Galilean coordinate
transformation
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That is, after a time t, the S� frame is displaced to the right of the S frame by an
amount v0t.

If we differentiate Equation 4.20 with respect to time and note that v0 is con-
stant, we obtain

(4.21)

where v� is the velocity of the particle observed in the S� frame and v is its velocity
observed in the S frame. Equations 4.20 and 4.21 are known as Galilean transfor-
mation equations. They relate the coordinates and velocity of a particle as mea-
sured in a frame fixed relative to the Earth to those measured in a frame moving
with uniform motion relative to the Earth.

Although observers in two frames measure different velocities for the particle,
they measure the same acceleration when v0 is constant. We can verify this by taking
the time derivative of Equation 4.21:

Because v0 is constant, dv0/dt � 0. Therefore, we conclude that a� � a because
and That is, the acceleration of the particle measured

by an observer in the Earth’s frame of reference is the same as that mea-
sured by any other observer moving with constant velocity relative to the
Earth’s frame.

A passenger in a car traveling at 60 mi/h pours a cup of coffee for the tired driver. Describe
the path of the coffee as it moves from a Thermos bottle into a cup as seen by (a) the pas-
senger and (b) someone standing beside the road and looking in the window of the car as
it drives past. (c) What happens if the car accelerates while the coffee is being poured?

Quick Quiz 4.5

a � dv/dt.a� � dv�/dt

dv�

dt
�

dv
dt

�
dv0

dt

  v� � v � v0  

dr�

dt
�

dr
dt

� v0

Galilean velocity transformation

The woman standing on the beltway sees the walking man pass by at a slower speed than the
woman standing on the stationary floor does.



98 C H A P T E R  4 Motion in Two Dimensions

A Boat Crossing a RiverEXAMPLE 4.9
The boat is moving at a speed of 11.2 km/h in the direction
26.6° east of north relative to the Earth.

Exercise If the width of the river is 3.0 km, find the time it
takes the boat to cross it.

Answer 18 min.

A boat heading due north crosses a wide river with a speed of
10.0 km/h relative to the water. The water in the river has a uni-
form speed of 5.00 km/h due east relative to the Earth. Deter-
mine the velocity of the boat relative to an observer standing on
either bank.

Solution We know vbr , the velocity of the boat relative to
the river, and vrE , the velocity of the river relative to the Earth.
What we need to find is vbE , the velocity of the boat relative to
the Earth. The relationship between these three quantities is

The terms in the equation must be manipulated as vector
quantities; the vectors are shown in Figure 4.22. The quantity
vbr is due north, vrE is due east, and the vector sum of the
two, vbE , is at an angle �, as defined in Figure 4.22. Thus, we
can find the speed vbE of the boat relative to the Earth by us-
ing the Pythagorean theorem:

The direction of vbE is

� � tan�1 � v rE

vbr
� � tan�1 � 5.00

10.0 � � 26.6°

11.2 km/h�

vbE � √vbr 

2 � v rE 

2 � √(10.0)2 � (5.00)2 km/h

vbE � vbr � vrE

Which Way Should We Head?EXAMPLE 4.10
If the boat of the preceding example travels with the same
speed of 10.0 km/h relative to the river and is to travel 
due north, as shown in Figure 4.23, what should its heading
be?

Solution As in the previous example, we know vrE and the
magnitude of the vector vbr , and we want vbE to be directed
across the river. Figure 4.23 shows that the boat must head
upstream in order to travel directly northward across the
river. Note the difference between the triangle in Figure 4.22
and the one in Figure 4.23—specifically, that the hypotenuse
in Figure 4.23 is no longer vbE . Therefore, when we use the
Pythagorean theorem to find vbE this time, we obtain

Now that we know the magnitude of vbE , we can find the di-
rection in which the boat is heading:

The boat must steer a course 30.0° west of north.

30.0°� � tan�1 � v rE

vbE
� � tan�1 � 5.00

8.66 � �

vbE � √vbr 

2 � v rE 

2 � √(10.0)2 � (5.00)2 km/h � 8.66 km/h

Figure 4.22

Figure 4.23

E

N

S

W

vrE

vbr

vbE

θ

E

N

S

W

vrE

vbr

vbE

θ

Exercise If the width of the river is 3.0 km, find the time it
takes the boat to cross it.

Answer 21 min.
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SUMMARY

If a particle moves with constant acceleration a and has velocity vi and position ri at
t � 0, its velocity and position vectors at some later time t are

(4.8)

(4.9)

For two-dimensional motion in the xy plane under constant acceleration, each of
these vector expressions is equivalent to two component expressions—one for the
motion in the x direction and one for the motion in the y direction. You should be
able to break the two-dimensional motion of any object into these two compo-
nents.

Projectile motion is one type of two-dimensional motion under constant ac-
celeration, where and It is useful to think of projectile motion as
the superposition of two motions: (1) constant-velocity motion in the x direction
and (2) free-fall motion in the vertical direction subject to a constant downward
acceleration of magnitude g � 9.80 m/s2. You should be able to analyze the mo-
tion in terms of separate horizontal and vertical components of velocity, as shown
in Figure 4.24.

A particle moving in a circle of radius r with constant speed v is in uniform
circular motion. It undergoes a centripetal (or radial) acceleration ar because the
direction of v changes in time. The magnitude of ar is

(4.18)

and its direction is always toward the center of the circle.
If a particle moves along a curved path in such a way that both the magnitude

and the direction of v change in time, then the particle has an acceleration vector
that can be described by two component vectors: (1) a radial component vector ar
that causes the change in direction of v and (2) a tangential component vector 
at that causes the change in magnitude of v. The magnitude of ar is v2/r, and the
magnitude of at is You should be able to sketch motion diagrams for an
object following a curved path and show how the velocity and acceleration vectors
change as the object’s motion varies.

The velocity v of a particle measured in a fixed frame of reference S can be re-
lated to the velocity v� of the same particle measured in a moving frame of refer-
ence S� by

(4.21)

where v0 is the velocity of S� relative to S. You should be able to translate back and
forth between different frames of reference.

v� � v � v0

d � v �/dt.

ar �
v2

r

ay � �g.ax � 0

rf � ri � vit � 1
2 at2

vf � vi � at  

Figure 4.24 Analyzing projectile motion in terms of horizontal and vertical components.

Projectile motion
is equivalent to…

vi

i

(x, y)
y

x x

i

Horizontal
motion at
constant velocity

vy i

Vertical motion
at constant
acceleration

θvxf = vx i = vi cos

θ

and…

y
vy f
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QUESTIONS

and therefore has no acceleration. The professor claims
that the student is wrong because the satellite must have a
centripetal acceleration as it moves in its circular orbit.
What is wrong with the student’s argument?

12. What is the fundamental difference between the unit vec-
tors and and the unit vectors i and j?

13. At the end of its arc, the velocity of a pendulum is zero. Is
its acceleration also zero at this point? 

14. If a rock is dropped from the top of a sailboat’s mast, will
it hit the deck at the same point regardless of whether the
boat is at rest or in motion at constant velocity?

15. A stone is thrown upward from the top of a building.
Does the stone’s displacement depend on the location of
the origin of the coordinate system? Does the stone’s ve-
locity depend on the location of the origin?

16. Is it possible for a vehicle to travel around a curve without
accelerating? Explain.

17. A baseball is thrown with an initial velocity of (10i � 15j)
m/s. When it reaches the top of its trajectory, what are
(a) its velocity and (b) its acceleration? Neglect the effect
of air resistance.

18. An object moves in a circular path with constant speed v.
(a) Is the velocity of the object constant? (b) Is its acceler-
ation constant? Explain.

19. A projectile is fired at some angle to the horizontal with
some initial speed vi , and air resistance is neglected. Is
the projectile a freely falling body? What is its accelera-
tion in the vertical direction? What is its acceleration in
the horizontal direction?

20. A projectile is fired at an angle of 30° from the horizontal
with some initial speed. Firing at what other projectile an-
gle results in the same range if the initial speed is the
same in both cases? Neglect air resistance.

21. A projectile is fired on the Earth with some initial velocity.
Another projectile is fired on the Moon with the same ini-
tial velocity. If air resistance is neglected, which projectile
has the greater range? Which reaches the greater alti-
tude? (Note that the free-fall acceleration on the Moon is
about 1.6 m/s2.)

22. As a projectile moves through its parabolic trajectory,
which of these quantities, if any, remain constant: 
(a) speed, (b) acceleration, (c) horizontal component of
velocity, (d) vertical component of velocity?

23. A passenger on a train that is moving with constant veloc-
ity drops a spoon. What is the acceleration of the spoon
relative to (a) the train and (b) the Earth?

�̂r̂

1. Can an object accelerate if its speed is constant? Can an
object accelerate if its velocity is constant? 

2. If the average velocity of a particle is zero in some time in-
terval, what can you say about the displacement of the
particle for that interval?

3. If you know the position vectors of a particle at two points
along its path and also know the time it took to get from
one point to the other, can you determine the particle’s
instantaneous velocity? Its average velocity? Explain.

4. Describe a situation in which the velocity of a particle is
always perpendicular to the position vector.

5. Explain whether or not the following particles have an ac-
celeration: (a) a particle moving in a straight line with
constant speed and (b) a particle moving around a curve
with constant speed.

6. Correct the following statement: “The racing car rounds
the turn at a constant velocity of 90 mi/h.’’

7. Determine which of the following moving objects have an
approximately parabolic trajectory: (a) a ball thrown in
an arbitrary direction, (b) a jet airplane, (c) a rocket leav-
ing the launching pad, (d) a rocket whose engines fail a
few minutes after launch, (e) a tossed stone moving to
the bottom of a pond.

8. A rock is dropped at the same instant that a ball at the
same initial elevation is thrown horizontally. Which will
have the greater speed when it reaches ground level?

9. A spacecraft drifts through space at a constant velocity.
Suddenly, a gas leak in the side of the spacecraft causes a
constant acceleration of the spacecraft in a direction per-
pendicular to the initial velocity. The orientation of the
spacecraft does not change, and so the acceleration re-
mains perpendicular to the original direction of the ve-
locity. What is the shape of the path followed by the
spacecraft in this situation? 

10. A ball is projected horizontally from the top of a building.
One second later another ball is projected horizontally
from the same point with the same velocity. At what point
in the motion will the balls be closest to each other? Will
the first ball always be traveling faster than the second
ball? How much time passes between the moment the
first ball hits the ground and the moment the second one
hits the ground? Can the horizontal projection velocity of
the second ball be changed so that the balls arrive at the
ground at the same time?

11. A student argues that as a satellite orbits the Earth in a
circular path, the satellite moves with a constant velocity
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PROBLEMS

6. The vector position of a particle varies in time accord-
ing to the expression r � (3.00i � 6.00t 2 j) m. (a) Find
expressions for the velocity and acceleration as func-
tions of time. (b) Determine the particle’s position and
velocity at t � 1.00 s.

7. A fish swimming in a horizontal plane has velocity 
vi � (4.00i � 1.00j) m/s at a point in the ocean whose
displacement from a certain rock is ri � (10.0i � 4.00j)
m. After the fish swims with constant acceleration for
20.0 s, its velocity is v � (20.0i � 5.00j) m/s. (a) What
are the components of the acceleration? (b) What is the
direction of the acceleration with respect to the unit vec-
tor i? (c) Where is the fish at t � 25.0 s if it maintains its
original acceleration and in what direction is it moving?

8. A particle initially located at the origin has an accelera-
tion of a � 3.00j m/s2 and an initial velocity of vi �
5.00i m/s. Find (a) the vector position and velocity at
any time t and (b) the coordinates and speed of the
particle at t � 2.00 s.

Section 4.3 Projectile Motion
(Neglect air resistance in all problems and take g �
9.80 m/s2.)

9. In a local bar, a customer slides an empty beer mug
down the counter for a refill. The bartender is momen-
tarily distracted and does not see the mug, which slides
off the counter and strikes the floor 1.40 m from the
base of the counter. If the height of the counter is 
0.860 m, (a) with what velocity did the mug leave the
counter and (b) what was the direction of the mug’s 
velocity just before it hit the floor?

10. In a local bar, a customer slides an empty beer mug
down the counter for a refill. The bartender is momen-
tarily distracted and does not see the mug, which slides
off the counter and strikes the floor at distance d from
the base of the counter. If the height of the counter is h,
(a) with what velocity did the mug leave the counter
and (b) what was the direction of the mug’s velocity just
before it hit the floor?

11. One strategy in a snowball fight is to throw a first snow-
ball at a high angle over level ground. While your oppo-
nent is watching the first one, you throw a second one
at a low angle and timed to arrive at your opponent be-
fore or at the same time as the first one. Assume both
snowballs are thrown with a speed of 25.0 m/s. The first
one is thrown at an angle of 70.0° with respect to the
horizontal. (a) At what angle should the second (low-
angle) snowball be thrown if it is to land at the same
point as the first? (b) How many seconds later should

Section 4.1 The Displacement, Velocity, and Acceleration
Vectors

1. A motorist drives south at 20.0 m/s for 3.00 min, then
turns west and travels at 25.0 m/s for 2.00 min, and fi-
nally travels northwest at 30.0 m/s for 1.00 min. For this
6.00-min trip, find (a) the total vector displacement,
(b) the average speed, and (c) the average velocity. Use
a coordinate system in which east is the positive x axis.

2. Suppose that the position vector for a particle is given
as with and where

m/s, m, m/s2, and 
m. (a) Calculate the average velocity during the time in-
terval from s to s. (b) Determine the
velocity and the speed at s.

3. A golf ball is hit off a tee at the edge of a cliff. Its x and y
coordinates versus time are given by the following ex-
pressions: 

and

(a) Write a vector expression for the ball’s position as a
function of time, using the unit vectors i and j. By taking
derivatives of your results, write expressions for (b) the
velocity vector as a function of time and (c) the accelera-
tion vector as a function of time. Now use unit vector no-
tation to write expressions for (d) the position, (e) the
velocity, and (f) the acceleration of the ball, all at 
t � 3.00 s.

4. The coordinates of an object moving in the xy plane
vary with time according to the equations

and

where t is in seconds and � has units of seconds�1. 
(a) Determine the components of velocity and compo-
nents of acceleration at t � 0. (b) Write expressions for
the position vector, the velocity vector, and the accelera-
tion vector at any time (c) Describe the path of
the object on an xy graph.

Section 4.2 Two-Dimensional Motion 
with Constant Acceleration

5. At t � 0, a particle moving in the xy plane with constant
acceleration has a velocity of 
when it is at the origin. At t � 3.00 s, the particle’s ve-
locity is v � (9.00i � 7.00 j) m/s. Find (a) the accelera-
tion of the particle and (b) its coordinates at any time t .

vi � (3.00i � 2.00 j) m/s

t � 0.

y � (4.00 m) � (5.00 m)cos �t

x � �(5.00 m) sin �t

y � (4.00 m/s)t �(4.90 m/s2)t2

x � (18.0 m/s)t

t � 2.00
t � 4.00t � 2.00

d � 1.00c � 0.125b � 1.00a � 1.00
y � ct2 � d,x � at � br � x i � y j,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB
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the second snowball be thrown if it is to land at the
same time as the first?

12. A tennis player standing 12.6 m from the net hits the
ball at 3.00° above the horizontal. To clear the net, the
ball must rise at least 0.330 m. If the ball just clears the
net at the apex of its trajectory, how fast was the ball
moving when it left the racket?

13. An artillery shell is fired with an initial velocity of 
300 m/s at 55.0° above the horizontal. It explodes on a
mountainside 42.0 s after firing. What are the x and y
coordinates of the shell where it explodes, relative to its
firing point?

14. An astronaut on a strange planet finds that she can
jump a maximum horizontal distance of 15.0 m if her
initial speed is 3.00 m/s. What is the free-fall accelera-
tion on the planet?

15. A projectile is fired in such a way that its horizontal
range is equal to three times its maximum height. What
is the angle of projection? Give your answer to three sig-
nificant figures.

16. A ball is tossed from an upper-story window of a build-
ing. The ball is given an initial velocity of 8.00 m/s at an
angle of 20.0° below the horizontal. It strikes the
ground 3.00 s later. (a) How far horizontally from the
base of the building does the ball strike the ground? 
(b) Find the height from which the ball was thrown. 
(c) How long does it take the ball to reach a point 
10.0 m below the level of launching?

17. A cannon with a muzzle speed of 1 000 m/s is used to
start an avalanche on a mountain slope. The target is 
2 000 m from the cannon horizontally and 800 m above
the cannon. At what angle, above the horizontal, should
the cannon be fired?

18. Consider a projectile that is launched from the origin of
an xy coordinate system with speed vi at initial angle �i
above the horizontal. Note that at the apex of its trajec-
tory the projectile is moving horizontally, so that the
slope of its path is zero. Use the expression for the tra-
jectory given in Equation 4.12 to find the x coordinate
that corresponds to the maximum height. Use this x co-
ordinate and the symmetry of the trajectory to deter-
mine the horizontal range of the projectile.

19. A placekicker must kick a football from a point 36.0 m
(about 40 yards) from the goal, and half the crowd
hopes the ball will clear the crossbar, which is 3.05 m
high. When kicked, the ball leaves the ground with a
speed of 20.0 m/s at an angle of 53.0° to the horizontal.
(a) By how much does the ball clear or fall short of
clearing the crossbar? (b) Does the ball approach the
crossbar while still rising or while falling?

20. A firefighter 50.0 m away from a burning building di-
rects a stream of water from a fire hose at an angle of
30.0° above the horizontal, as in Figure P4.20. If the
speed of the stream is 40.0 m/s, at what height will the
water strike the building?

21. A firefighter a distance d from a burning building di-
rects a stream of water from a fire hose at angle �i above
the horizontal as in Figure P4.20. If the initial speed of
the stream is vi , at what height h does the water strike
the building?

22. A soccer player kicks a rock horizontally off a cliff 
40.0 m high into a pool of water. If the player hears the
sound of the splash 3.00 s later, what was the initial
speed given to the rock? Assume the speed of sound in
air to be 343 m/s.

vi

d

h

θi

Figure P4.20 Problems 20 and 21. (Frederick McKinney/FPG Interna-
tional)

WEB
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23. A basketball star covers 2.80 m horizontally in a jump to
dunk the ball (Fig. P4.23). His motion through space
can be modeled as that of a particle at a point called his
center of mass (which we shall define in Chapter 9). His
center of mass is at elevation 1.02 m when he leaves the
floor. It reaches a maximum height of 1.85 m above the
floor and is at elevation 0.900 m when he touches down
again. Determine (a) his time of flight (his “hang
time”), (b) his horizontal and (c) vertical velocity com-
ponents at the instant of takeoff, and (d) his takeoff an-
gle. (e) For comparison, determine the hang time of a
whitetail deer making a jump with center-of-mass eleva-
tions m, m, m.y f � 0.700ymax � 2.50y i � 1.20

Section 4.4 Uniform Circular Motion
24. The orbit of the Moon about the Earth is approximately

circular, with a mean radius of 3.84 	 108 m. It takes
27.3 days for the Moon to complete one revolution
about the Earth. Find (a) the mean orbital speed of the
Moon and (b) its centripetal acceleration.

25. The athlete shown in Figure P4.25 rotates a 1.00-kg dis-
cus along a circular path of radius 1.06 m. The maximum
speed of the discus is 20.0 m/s. Determine the magni-
tude of the maximum radial acceleration of the discus.

WEB

Figure P4.23 (Top, Ron Chapple/FPG International;
bottom, Bill Lea/Dembinsky Photo Associates)

Figure P4.25 (Sam Sargent/Liaison International)

26. From information on the endsheets of this book, com-
pute, for a point located on the surface of the Earth at
the equator, the radial acceleration due to the rotation
of the Earth about its axis.

27. A tire 0.500 m in radius rotates at a constant rate of 
200 rev/min. Find the speed and acceleration of a small
stone lodged in the tread of the tire (on its outer edge).
(Hint: In one revolution, the stone travels a distance
equal to the circumference of its path, 2�r.)

28. During liftoff, Space Shuttle astronauts typically feel ac-
celerations up to 1.4g, where g � 9.80 m/s2. In their
training, astronauts ride in a device where they experi-
ence such an acceleration as a centripetal acceleration.
Specifically, the astronaut is fastened securely at the end
of a mechanical arm that then turns at constant speed
in a horizontal circle. Determine the rotation rate, in
revolutions per second, required to give an astronaut a
centripetal acceleration of 1.40g while the astronaut
moves in a circle of radius 10.0 m.

29. Young David who slew Goliath experimented with slings
before tackling the giant. He found that he could re-
volve a sling of length 0.600 m at the rate of 8.00 rev/s.
If he increased the length to 0.900 m, he could revolve
the sling only 6.00 times per second. (a) Which rate of
rotation gives the greater speed for the stone at the end
of the sling? (b) What is the centripetal acceleration of
the stone at 8.00 rev/s? (c) What is the centripetal ac-
celeration at 6.00 rev/s?
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30. The astronaut orbiting the Earth in Figure P4.30 is
preparing to dock with a Westar VI satellite. The satel-
lite is in a circular orbit 600 km above the Earth’s sur-
face, where the free-fall acceleration is 8.21 m/s2. The
radius of the Earth is 6 400 km. Determine the speed of
the satellite and the time required to complete one or-
bit around the Earth.

at a given instant of time. At this instant, find (a) the ra-
dial acceleration, (b) the speed of the particle, and 
(c) its tangential acceleration.

34. A student attaches a ball to the end of a string 0.600 m
in length and then swings the ball in a vertical circle.
The speed of the ball is 4.30 m/s at its highest point
and 6.50 m/s at its lowest point. Find the acceleration
of the ball when the string is vertical and the ball is at
(a) its highest point and (b) its lowest point.

35. A ball swings in a vertical circle at the end of a rope 
1.50 m long. When the ball is 36.9° past the lowest point
and on its way up, its total acceleration is (� 22.5i �
20.2j) m/s2. At that instant, (a) sketch a vector diagram
showing the components of this acceleration, (b) deter-
mine the magnitude of its radial acceleration, and 
(c) determine the speed and velocity of the ball.

Section 4.6 Relative Velocity and Relative Acceleration
36. Heather in her Corvette accelerates at the rate of 

(3.00i � 2.00 j) m/s2, while Jill in her Jaguar accelerates
at (1.00i � 3.00 j) m/s2. They both start from rest at the
origin of an xy coordinate system. After 5.00 s, (a) what
is Heather’s speed with respect to Jill, (b) how far apart
are they, and (c) what is Heather’s acceleration relative
to Jill?

37. A river has a steady speed of 0.500 m/s. A student swims
upstream a distance of 1.00 km and swims back to the
starting point. If the student can swim at a speed of 
1.20 m/s in still water, how long does the trip take?
Compare this with the time the trip would take if the
water were still.

38. How long does it take an automobile traveling in the
left lane at 60.0 km/h to pull alongside a car traveling
in the right lane at 40.0 km/h if the cars’ front bumpers
are initially 100 m apart?

39. The pilot of an airplane notes that the compass indi-
cates a heading due west. The airplane’s speed relative
to the air is 150 km/h. If there is a wind of 30.0 km/h
toward the north, find the velocity of the airplane rela-
tive to the ground. 

40. Two swimmers, Alan and Beth, start at the same point in
a stream that flows with a speed v. Both move at the
same speed c (c � v) relative to the stream. Alan swims
downstream a distance L and then upstream the same
distance. Beth swims such that her motion relative to
the ground is perpendicular to the banks of the stream.
She swims a distance L in this direction and then back.
The result of the motions of Alan and Beth is that they
both return to the starting point. Which swimmer re-
turns first? (Note: First guess at the answer.)

41. A child in danger of drowning in a river is being carried
downstream by a current that has a speed of 2.50 km/h.
The child is 0.600 km from shore and 0.800 km up-
stream of a boat landing when a rescue boat sets out.
(a) If the boat proceeds at its maximum speed of 
20.0 km/h relative to the water, what heading relative to
the shore should the pilot take? (b) What angle does

Figure P4.30 (Courtesy of NASA)

Figure P4.33

30.0°
2.50 m a

v

a  =  15.0 m/s2

Section 4.5 Tangential and Radial Acceleration
31. A train slows down as it rounds a sharp horizontal

curve, slowing from 90.0 km/h to 50.0 km/h in the 
15.0 s that it takes to round the curve. The radius of the
curve is 150 m. Compute the acceleration at the mo-
ment the train speed reaches 50.0 km/h. Assume that
the train slows down at a uniform rate during the 15.0-s 
interval.

32. An automobile whose speed is increasing at a rate of
0.600 m/s2 travels along a circular road of radius 20.0 m.
When the instantaneous speed of the automobile is 4.00
m/s, find (a) the tangential acceleration component,
(b) the radial acceleration component, and (c) the
magnitude and direction of the total acceleration.

33. Figure P4.33 shows the total acceleration and velocity of
a particle moving clockwise in a circle of radius 2.50 m
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the boat velocity make with the shore? (c) How long
does it take the boat to reach the child?

42. A bolt drops from the ceiling of a train car that is accel-
erating northward at a rate of 2.50 m/s2. What is the ac-
celeration of the bolt relative to (a) the train car and
(b) the Earth?

43. A science student is riding on a flatcar of a train travel-
ing along a straight horizontal track at a constant speed
of 10.0 m/s. The student throws a ball into the air along
a path that he judges to make an initial angle of 60.0°
with the horizontal and to be in line with the track. The
student’s professor, who is standing on the ground
nearby, observes the ball to rise vertically. How high
does she see the ball rise?

ADDITIONAL PROBLEMS

44. A ball is thrown with an initial speed vi at an angle �i with
the horizontal. The horizontal range of the ball is R , and
the ball reaches a maximum height R/6. In terms of R
and g, find (a) the time the ball is in motion, (b) the
ball’s speed at the peak of its path, (c) the initial vertical
component of its velocity, (d) its initial speed, and (e) the
angle �i . (f) Suppose the ball is thrown at the same initial
speed found in part (d) but at the angle appropriate for
reaching the maximum height. Find this height. (g) Sup-
pose the ball is thrown at the same initial speed but at the
angle necessary for maximum range. Find this range.

45. As some molten metal splashes, one droplet flies off to
the east with initial speed vi at angle �i above the hori-
zontal, and another droplet flies off to the west with the
same speed at the same angle above the horizontal, as
in Figure P4.45. In terms of vi and �i , find the distance
between the droplets as a function of time.

(b) For what value of �i is d a maximum, and what is
that maximum value of d?

48. A student decides to measure the muzzle velocity of the
pellets from his BB gun. He points the gun horizontally.
On a vertical wall a distance x away from the gun, a tar-
get is placed. The shots hit the target a vertical distance
y below the gun. (a) Show that the vertical displacement
component of the pellets when traveling through the
air is given by where A is a constant. (b) Ex-
press the constant A in terms of the initial velocity and
the free-fall acceleration. (c) If and 

what is the initial speed of the pellets?
49. A home run is hit in such a way that the baseball just

clears a wall 21.0 m high, located 130 m from home
plate. The ball is hit at an angle of 35.0° to the horizon-
tal, and air resistance is negligible. Find (a) the initial
speed of the ball, (b) the time it takes the ball to reach
the wall, and (c) the velocity components and the speed
of the ball when it reaches the wall. (Assume the ball is
hit at a height of 1.00 m above the ground.)

50. An astronaut standing on the Moon fires a gun so that
the bullet leaves the barrel initially moving in a horizon-
tal direction. (a) What must be the muzzle speed of the
bullet so that it travels completely around the Moon and
returns to its original location? (b) How long does this
trip around the Moon take? Assume that the free-fall ac-
celeration on the Moon is one-sixth that on the Earth.

51. A pendulum of length 1.00 m swings in a vertical plane
(Fig. 4.19). When the pendulum is in the two horizontal
positions � � 90° and � � 270°, its speed is 5.00 m/s. 
(a) Find the magnitude of the radial acceleration and
tangential acceleration for these positions. (b) Draw a
vector diagram to determine the direction of the total ac-
celeration for these two positions. (c) Calculate the mag-
nitude and direction of the total acceleration.

52. A basketball player who is 2.00 m tall is standing on the
floor 10.0 m from the basket, as in Figure P4.52. If he
shoots the ball at a 40.0° angle with the horizontal, at
what initial speed must he throw so that it goes through
the hoop without striking the backboard? The basket
height is 3.05 m.

53. A particle has velocity components

Calculate the speed of the particle and the direction 
� � tan�1 (vy/vx) of the velocity vector at t � 2.00 s.

54. When baseball players throw the ball in from the out-
field, they usually allow it to take one bounce before it
reaches the infielder on the theory that the ball arrives

vx � �4 m/s  vy � �(6 m/s2)t � 4 m/s

0.210 m,
y �x � 3.00 m

y � Ax2,

Figure P4.45

Figure P4.47

46. A ball on the end of a string is whirled around in a hori-
zontal circle of radius 0.300 m. The plane of the circle
is 1.20 m above the ground. The string breaks and the
ball lands 2.00 m (horizontally) away from the point on
the ground directly beneath the ball’s location when
the string breaks. Find the radial acceleration of the
ball during its circular motion.

47. A projectile is fired up an incline (incline angle �) with
an initial speed vi at an angle �i with respect to the hori-
zontal (�i � �), as shown in Figure P4.47. (a) Show that
the projectile travels a distance d up the incline, where

d �
2vi 

2 cos �i sin(�i � �)

g cos2 �

θi

vi vi

θi

Path of the projectile

φ

d
vi

θ  i
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sooner that way. Suppose that the angle at which a
bounced ball leaves the ground is the same as the angle
at which the outfielder launched it, as in Figure P4.54,
but that the ball’s speed after the bounce is one half of
what it was before the bounce. (a) Assuming the ball is
always thrown with the same initial speed, at what angle
� should the ball be thrown in order to go the same dis-
tance D with one bounce (blue path) as a ball thrown
upward at 45.0° with no bounce (green path)? (b) De-
termine the ratio of the times for the one-bounce and
no-bounce throws.

58. A quarterback throws a football straight toward a re-
ceiver with an initial speed of 20.0 m/s, at an angle of
30.0° above the horizontal. At that instant, the receiver
is 20.0 m from the quarterback. In what direction and
with what constant speed should the receiver run to
catch the football at the level at which it was thrown?

59. A bomber is flying horizontally over level terrain, with a
speed of 275 m/s relative to the ground, at an altitude
of 3 000 m. Neglect the effects of air resistance. (a) How
far will a bomb travel horizontally between its release
from the plane and its impact on the ground? (b) If the
plane maintains its original course and speed, where
will it be when the bomb hits the ground? (c) At what
angle from the vertical should the telescopic bombsight
be set so that the bomb will hit the target seen in the
sight at the time of release?

60. A person standing at the top of a hemispherical rock of
radius R kicks a ball (initially at rest on the top of the
rock) to give it horizontal velocity vi as in Figure P4.60.
(a) What must be its minimum initial speed if the ball is
never to hit the rock after it is kicked? (b) With this ini-
tial speed, how far from the base of the rock does the
ball hit the ground?

Figure P4.52

3.05 m

40.0°

10.0 m

2.00 m

45.0°
θ

D

θ

Figure P4.54

Figure P4.57

Figure P4.60

55. A boy can throw a ball a maximum horizontal distance
of 40.0 m on a level field. How far can he throw the
same ball vertically upward? Assume that his muscles
give the ball the same speed in each case.

56. A boy can throw a ball a maximum horizontal distance
of R on a level field. How far can he throw the same ball
vertically upward? Assume that his muscles give the ball
the same speed in each case.

57. A stone at the end of a sling is whirled in a vertical cir-
cle of radius 1.20 m at a constant speed vi � 1.50 m/s
as in Figure P4.57. The center of the string is 1.50 m
above the ground. What is the range of the stone if it is
released when the sling is inclined at 30.0° with the hor-
izontal (a) at A? (b) at B? What is the acceleration of
the stone (c) just before it is released at A? (d) just after
it is released at A?

vi

30.0°

A

30.0°

B
1.20 m

vi

R x

vi
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61. A hawk is flying horizontally at 10.0 m/s in a straight
line, 200 m above the ground. A mouse it has been car-
rying struggles free from its grasp. The hawk continues
on its path at the same speed for 2.00 s before attempt-
ing to retrieve its prey. To accomplish the retrieval, it
dives in a straight line at constant speed and recaptures
the mouse 3.00 m above the ground. (a) Assuming no
air resistance, find the diving speed of the hawk. 
(b) What angle did the hawk make with the horizontal
during its descent? (c) For how long did the mouse “en-
joy” free fall?

62. A truck loaded with cannonball watermelons stops sud-
denly to avoid running over the edge of a washed-out
bridge (Fig. P4.62). The quick stop causes a number of
melons to fly off the truck. One melon rolls over the
edge with an initial speed vi � 10.0 m/s in the horizon-
tal direction. A cross-section of the bank has the shape
of the bottom half of a parabola with its vertex at the
edge of the road, and with the equation 
where x and y are measured in meters. What are the x
and y coordinates of the melon when it splatters on the
bank?

y2 � 16x,

65. A car is parked on a steep incline overlooking the
ocean, where the incline makes an angle of 37.0° below
the horizontal. The negligent driver leaves the car in
neutral, and the parking brakes are defective. The car
rolls from rest down the incline with a constant acceler-
ation of 4.00 m/s2, traveling 50.0 m to the edge of a ver-
tical cliff. The cliff is 30.0 m above the ocean. Find 
(a) the speed of the car when it reaches the edge of the
cliff and the time it takes to get there, (b) the velocity of
the car when it lands in the ocean, (c) the total time the
car is in motion, and (d) the position of the car when it
lands in the ocean, relative to the base of the cliff.

66. The determined coyote is out once more to try to cap-
ture the elusive roadrunner. The coyote wears a pair of
Acme jet-powered roller skates, which provide a con-
stant horizontal acceleration of 15.0 m/s2 (Fig. P4.66).
The coyote starts off at rest 70.0 m from the edge of a
cliff at the instant the roadrunner zips past him in the
direction of the cliff. (a) If the roadrunner moves with
constant speed, determine the minimum speed he must
have to reach the cliff before the coyote. At the brink of
the cliff, the roadrunner escapes by making a sudden
turn, while the coyote continues straight ahead. (b) If
the cliff is 100 m above the floor of a canyon, determine
where the coyote lands in the canyon (assume his skates
remain horizontal and continue to operate when he is
in “flight”). (c) Determine the components of the coy-
ote’s impact velocity. 

Figure P4.62

Figure P4.66

67. A skier leaves the ramp of a ski jump with a velocity of
10.0 m/s, 15.0° above the horizontal, as in Figure P4.67.
The slope is inclined at 50.0°, and air resistance is negli-
gible. Find (a) the distance from the ramp to where the
jumper lands and (b) the velocity components just be-
fore the landing. (How do you think the results might
be affected if air resistance were included? Note that
jumpers lean forward in the shape of an airfoil, with
their hands at their sides, to increase their distance.
Why does this work?)

63. A catapult launches a rocket at an angle of 53.0° above
the horizontal with an initial speed of 100 m/s. The
rocket engine immediately starts a burn, and for 3.00 s
the rocket moves along its initial line of motion with an
acceleration of 30.0 m/s2. Then its engine fails, and the
rocket proceeds to move in free fall. Find (a) the maxi-
mum altitude reached by the rocket, (b) its total time of
flight, and (c) its horizontal range.

64. A river flows with a uniform velocity v. A person in a
motorboat travels 1.00 km upstream, at which time she
passes a log floating by. Always with the same throttle
setting, the boater continues to travel upstream for an-
other 60.0 min and then returns downstream to her
starting point, which she reaches just as the same log
does. Find the velocity of the river. (Hint: The time of
travel of the boat after it meets the log equals the time
of travel of the log.) 

vi = 10 m/s

Coyoté
Stupidus

Chicken
Delightus

BEEP

BEEP

WEB
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ANSWERS TO QUICK QUIZZES

it. So, as the angle increases from 0° to 90°, the time of
flight increases. Therefore, the 15° angle gives the short-
est time of flight, and the 75° angle gives the longest.

4.3 (a) Because the object is moving with a constant speed,
the velocity vector is always the same length; because the
motion is circular, this vector is always tangent to the cir-
cle. The only acceleration is that which changes the di-
rection of the velocity vector; it points radially inward.

4.1 (a) Because acceleration occurs whenever the velocity
changes in any way—with an increase or decrease in
speed, a change in direction, or both—the brake pedal
can also be considered an accelerator because it causes
the car to slow down. The steering wheel is also an accel-
erator because it changes the direction of the velocity
vector. (b) When the car is moving with constant speed,
the gas pedal is not causing an acceleration; it is an ac-
celerator only when it causes a change in the speedome-
ter reading.

4.2 (a) At only one point—the peak of the trajectory—are
the velocity and acceleration vectors perpendicular to
each other. (b) If the object is thrown straight up or
down, v and a are parallel to each other throughout the
downward motion. Otherwise, the velocity and accelera-
tion vectors are never parallel to each other. (c) The
greater the maximum height, the longer it takes the pro-
jectile to reach that altitude and then fall back down from

68. Two soccer players, Mary and Jane, begin running from
nearly the same point at the same time. Mary runs in an
easterly direction at 4.00 m/s, while Jane takes off in a
direction 60.0° north of east at 5.40 m/s. (a) How long
is it before they are 25.0 m apart? (b) What is the veloc-
ity of Jane relative to Mary? (c) How far apart are they
after 4.00 s?

69. Do not hurt yourself; do not strike your hand against
anything. Within these limitations, describe what you do
to give your hand a large acceleration. Compute an or-
der-of-magnitude estimate of this acceleration, stating
the quantities you measure or estimate and their values.

70. An enemy ship is on the western side of a mountain is-
land, as shown in Figure P4.70. The enemy ship can ma-
neuver to within 2 500 m of the 1 800-m-high mountain
peak and can shoot projectiles with an initial speed of
250 m/s. If the eastern shoreline is horizontally 300 m
from the peak, what are the distances from the eastern
shore at which a ship can be safe from the bombard-
ment of the enemy ship?

Figure P4.67

Figure P4.70

10.0 m/s

15.0°

50.0°

2500 m 300 m

1800 mvi
vi = 250 m/s

θHθ θLθ

(a)

��

�

�
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(c) Now the tangential component of the acceleration
points in the same direction as the velocity. The object is
speeding up, and so the velocity vectors become longer
and longer.

4.4 The motion diagram is as shown below. Note that each
position vector points from the pivot point at the center
of the circle to the position of the ball.

(b) Now there is a component of the acceleration vector
that is tangent to the circle and points in the direction
opposite the velocity. As a result, the acceleration vector
does not point toward the center. The object is slowing
down, and so the velocity vectors become shorter and
shorter.

(b)

��

�

�

(c)

��

�

�

v

v = 0

a

v = 0

4.5 (a) The passenger sees the coffee pouring nearly verti-
cally into the cup, just as if she were standing on the
ground pouring it. (b) The stationary observer sees the
coffee moving in a parabolic path with a constant hori-
zontal velocity of 60 mi/h ( and a downward
acceleration of � g. If it takes the coffee 0.10 s to reach
the cup, the stationary observer sees the coffee moving
8.8 ft horizontally before it hits the cup! (c) If the car
slows suddenly, the coffee reaches the place where the
cup would have been had there been no change in velocity
and continues falling because the cup has not yet
reached that location. If the car rapidly speeds up, the
coffee falls behind the cup. If the car accelerates side-
ways, the coffee again ends up somewhere other than
the cup.

�88 ft/s)
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The Spirit of Akron is an airship that is
more than 60 m long. When it is parked
at an airport, one person can easily sup-
port it overhead using a single hand.
Nonetheless, it is impossible for even a
very strong adult to move the ship
abruptly. What property of this huge air-
ship makes it very difficult to cause any
sudden changes in its motion? (Cour-

tesy of Edward E. Ogden)

5.1 The Concept of Force

5.2 Newton’s First Law and Inertial
Frames

5.3 Mass

5.4 Newton’s Second Law

5.5 The Force of Gravity and Weight

5.6 Newton’s Third Law

5.7 Some Applications of Newton’s
Laws

5.8 Forces of Friction

C h a p t e r  O u t l i n e

web
For more information about the airship,
visit http://www.goodyear.com/us/blimp/
index.html
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n Chapters 2 and 4, we described motion in terms of displacement, velocity,
and acceleration without considering what might cause that motion. What
might cause one particle to remain at rest and another particle to accelerate? In

this chapter, we investigate what causes changes in motion. The two main factors
we need to consider are the forces acting on an object and the mass of the object.
We discuss the three basic laws of motion, which deal with forces and masses and
were formulated more than three centuries ago by Isaac Newton. Once we under-
stand these laws, we can answer such questions as “What mechanism changes mo-
tion?” and “Why do some objects accelerate more than others?”

THE CONCEPT OF FORCE
Everyone has a basic understanding of the concept of force from everyday experi-
ence. When you push your empty dinner plate away, you exert a force on it. Simi-
larly, you exert a force on a ball when you throw or kick it. In these examples, the
word force is associated with muscular activity and some change in the velocity of an
object. Forces do not always cause motion, however. For example, as you sit read-
ing this book, the force of gravity acts on your body and yet you remain stationary.
As a second example, you can push (in other words, exert a force) on a large boul-
der and not be able to move it.

What force (if any) causes the Moon to orbit the Earth? Newton answered this
and related questions by stating that forces are what cause any change in the veloc-
ity of an object. Therefore, if an object moves with uniform motion (constant ve-
locity), no force is required for the motion to be maintained. The Moon’s velocity
is not constant because it moves in a nearly circular orbit around the Earth. We
now know that this change in velocity is caused by the force exerted on the Moon
by the Earth. Because only a force can cause a change in velocity, we can think of
force as that which causes a body to accelerate. In this chapter, we are concerned with
the relationship between the force exerted on an object and the acceleration of
that object.

What happens when several forces act simultaneously on an object? In this
case, the object accelerates only if the net force acting on it is not equal to zero.
The net force acting on an object is defined as the vector sum of all forces acting
on the object. (We sometimes refer to the net force as the total force, the resultant
force, or the unbalanced force.) If the net force exerted on an object is zero, then
the acceleration of the object is zero and its velocity remains constant. That
is, if the net force acting on the object is zero, then the object either remains at
rest or continues to move with constant velocity. When the velocity of an object is
constant (including the case in which the object remains at rest), the object is said
to be in equilibrium.

When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a
stationary cart is pulled sufficently hard that friction is overcome, as in Figure 5.1b,
the cart moves. When a football is kicked, as in Figure 5.1c, it is both deformed
and set in motion. These situations are all examples of a class of forces called con-
tact forces. That is, they involve physical contact between two objects. Other exam-
ples of contact forces are the force exerted by gas molecules on the walls of a con-
tainer and the force exerted by your feet on the floor.

Another class of forces, known as field forces, do not involve physical contact be-
tween two objects but instead act through empty space. The force of gravitational
attraction between two objects, illustrated in Figure 5.1d, is an example of this
class of force. This gravitational force keeps objects bound to the Earth. The plan-

5.1
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A body accelerates because of an
external force

Definition of equilibrium
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ets of our Solar System are bound to the Sun by the action of gravitational forces.
Another common example of a field force is the electric force that one electric
charge exerts on another, as shown in Figure 5.1e. These charges might be those
of the electron and proton that form a hydrogen atom. A third example of a field
force is the force a bar magnet exerts on a piece of iron, as shown in Figure 5.1f.
The forces holding an atomic nucleus together also are field forces but are very
short in range. They are the dominating interaction for particle separations of the
order of 10�15 m.

Early scientists, including Newton, were uneasy with the idea that a force can
act between two disconnected objects. To overcome this conceptual problem,
Michael Faraday (1791–1867) introduced the concept of a field. According to this
approach, when object 1 is placed at some point P near object 2, we say that object
1 interacts with object 2 by virtue of the gravitational field that exists at P. The
gravitational field at P is created by object 2. Likewise, a gravitational field created
by object 1 exists at the position of object 2. In fact, all objects create a gravita-
tional field in the space around themselves. 

The distinction between contact forces and field forces is not as sharp as you
may have been led to believe by the previous discussion. When examined at the
atomic level, all the forces we classify as contact forces turn out to be caused by

Field forcesContact forces

(d)(a)

(b)

(c)

(e)

(f)

m M

– q + Q

Iron N S

Figure 5.1 Some examples of applied forces. In each case a force is exerted on the object
within the boxed area. Some agent in the environment external to the boxed area exerts a force
on the object.
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electric (field) forces of the type illustrated in Figure 5.1e. Nevertheless, in devel-
oping models for macroscopic phenomena, it is convenient to use both classifica-
tions of forces. The only known fundamental forces in nature are all field forces:
(1) gravitational forces between objects, (2) electromagnetic forces between elec-
tric charges, (3) strong nuclear forces between subatomic particles, and (4) weak
nuclear forces that arise in certain radioactive decay processes. In classical physics,
we are concerned only with gravitational and electromagnetic forces.

Measuring the Strength of a Force

It is convenient to use the deformation of a spring to measure force. Suppose we
apply a vertical force to a spring scale that has a fixed upper end, as shown in Fig-
ure 5.2a. The spring elongates when the force is applied, and a pointer on the
scale reads the value of the applied force. We can calibrate the spring by defining
the unit force F1 as the force that produces a pointer reading of 1.00 cm. (Because
force is a vector quantity, we use the bold-faced symbol F.) If we now apply a differ-
ent downward force F2 whose magnitude is 2 units, as seen in Figure 5.2b, the
pointer moves to 2.00 cm. Figure 5.2c shows that the combined effect of the two
collinear forces is the sum of the effects of the individual forces.

Now suppose the two forces are applied simultaneously with F1 downward and
F2 horizontal, as illustrated in Figure 5.2d. In this case, the pointer reads 

cm. The single force F that would produce this same reading is the
sum of the two vectors F1 and F2 , as described in Figure 5.2d. That is,

units, and its direction is � � tan�1(� 0.500) � � 26.6°.
Because forces are vector quantities, you must use the rules of vector addi-
tion to obtain the net force acting on an object.

� F � � √F1 

2 � F2 

2 � 2.24

√5 cm2 � 2.24

Figure 5.2 The vector nature of a force is tested with a spring scale. (a) A downward force F1
elongates the spring 1 cm. (b) A downward force F2 elongates the spring 2 cm. (c) When F1 and
F2 are applied simultaneously, the spring elongates by 3 cm. (d) When F1 is downward and F2 is 
horizontal, the combination of the two forces elongates the spring √12 � 22 cm � √5 cm.

QuickLab
Find a tennis ball, two drinking
straws, and a friend. Place the ball on
a table. You and your friend can each
apply a force to the ball by blowing
through the straws (held horizontally
a few centimeters above the table) so
that the air rushing out strikes the
ball. Try a variety of configurations:
Blow in opposite directions against
the ball, blow in the same direction,
blow at right angles to each other,
and so forth. Can you verify the vec-
tor nature of the forces?

F2

F1 F

0
1

2
3

4

θ

(d)(a)

0
1
2
3
4

F1

(b)

F2

0
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(c)

0
1
2
3
4

F2

F1
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NEWTON’S FIRST LAW AND INERTIAL FRAMES
Before we state Newton’s first law, consider the following simple experiment. Sup-
pose a book is lying on a table. Obviously, the book remains at rest. Now imagine
that you push the book with a horizontal force great enough to overcome the
force of friction between book and table. (This force you exert, the force of fric-
tion, and any other forces exerted on the book by other objects are referred to as
external forces.) You can keep the book in motion with constant velocity by applying
a force that is just equal in magnitude to the force of friction and acts in the oppo-
site direction. If you then push harder so that the magnitude of your applied force
exceeds the magnitude of the force of friction, the book accelerates. If you stop
pushing, the book stops after moving a short distance because the force of friction
retards its motion. Suppose you now push the book across a smooth, highly waxed
floor. The book again comes to rest after you stop pushing but not as quickly as be-
fore. Now imagine a floor so highly polished that friction is absent; in this case, the
book, once set in motion, moves until it hits a wall.

Before about 1600, scientists felt that the natural state of matter was the state
of rest. Galileo was the first to take a different approach to motion and the natural
state of matter. He devised thought experiments, such as the one we just discussed
for a book on a frictionless surface, and concluded that it is not the nature of an
object to stop once set in motion: rather, it is its nature to resist changes in its motion.
In his words, “Any velocity once imparted to a moving body will be rigidly main-
tained as long as the external causes of retardation are removed.”

This new approach to motion was later formalized by Newton in a form that
has come to be known as Newton’s first law of motion:

5.2

In the absence of external forces, an object at rest remains at rest and an object
in motion continues in motion with a constant velocity (that is, with a constant
speed in a straight line).

In simpler terms, we can say that when no force acts on an object, the accelera-
tion of the object is zero. If nothing acts to change the object’s motion, then its
velocity does not change. From the first law, we conclude that any isolated object
(one that does not interact with its environment) is either at rest or moving with
constant velocity. The tendency of an object to resist any attempt to change its ve-
locity is called the inertia of the object. Figure 5.3 shows one dramatic example of
a consequence of Newton’s first law. 

Another example of uniform (constant-velocity) motion on a nearly frictionless
surface is the motion of a light disk on a film of air (the lubricant), as shown in Fig-
ure 5.4. If the disk is given an initial velocity, it coasts a great distance before stopping.

Finally, consider a spaceship traveling in space and far removed from any plan-
ets or other matter. The spaceship requires some propulsion system to change its
velocity. However, if the propulsion system is turned off when the spaceship
reaches a velocity v, the ship coasts at that constant velocity and the astronauts get
a free ride (that is, no propulsion system is required to keep them moving at the
velocity v).

Inertial Frames

As we saw in Section 4.6, a moving object can be observed from any number of ref-
erence frames. Newton’s first law, sometimes called the law of inertia, defines a spe-
cial set of reference frames called inertial frames. An inertial frame of reference

QuickLab
Use a drinking straw to impart a
strong, short-duration burst of air
against a tennis ball as it rolls along a
tabletop. Make the force perpendicu-
lar to the ball’s path. What happens
to the ball’s motion? What is different
if you apply a continuous force (con-
stant magnitude and direction) that
is directed along the direction of mo-
tion?

Newton’s first law

Definition of inertia

Definition of inertial frame

4.2
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is one that is not accelerating. Because Newton’s first law deals only with objects
that are not accelerating, it holds only in inertial frames. Any reference frame that
moves with constant velocity relative to an inertial frame is itself an inertial frame.
(The Galilean transformations given by Equations 4.20 and 4.21 relate positions
and velocities between two inertial frames.)

A reference frame that moves with constant velocity relative to the distant stars
is the best approximation of an inertial frame, and for our purposes we can con-
sider planet Earth as being such a frame. The Earth is not really an inertial frame
because of its orbital motion around the Sun and its rotational motion about its
own axis. As the Earth travels in its nearly circular orbit around the Sun, it experi-
ences an acceleration of about 4.4 � 10�3 m/s2 directed toward the Sun. In addi-
tion, because the Earth rotates about its own axis once every 24 h, a point on the
equator experiences an additional acceleration of 3.37 � 10�2 m/s2 directed to-
ward the center of the Earth. However, these accelerations are small compared
with g and can often be neglected. For this reason, we assume that the Earth is an
inertial frame, as is any other frame attached to it.

If an object is moving with constant velocity, an observer in one inertial frame
(say, one at rest relative to the object) claims that the acceleration of the object
and the resultant force acting on it are zero. An observer in any other inertial frame
also finds that a � 0 and �F � 0 for the object. According to the first law, a body
at rest and one moving with constant velocity are equivalent. A passenger in a car
moving along a straight road at a constant speed of 100 km/h can easily pour cof-
fee into a cup. But if the driver steps on the gas or brake pedal or turns the steer-
ing wheel while the coffee is being poured, the car accelerates and it is no longer
an inertial frame. The laws of motion do not work as expected, and the coffee
ends up in the passenger’s lap!

Figure 5.3 Unless a net ex-
ternal force acts on it, an ob-
ject at rest remains at rest and
an object in motion continues
in motion with constant veloc-
ity. In this case, the wall of the
building did not exert a force
on the moving train that was
large enough to stop it.

Figure 5.4 Air hockey takes ad-
vantage of Newton’s first law to
make the game more exciting.

v = constant

Air flow

Electric blower

Isaac Newton English physicist
and mathematician (1642 – 1727)
Isaac Newton was one of the most
brilliant scientists in history. Before
the age of 30, he formulated the basic
concepts and laws of mechanics, dis-
covered the law of universal gravita-
tion, and invented the mathematical
methods of calculus. As a conse-
quence of his theories, Newton was
able to explain the motions of the
planets, the ebb and flow of the tides,
and many special features of the mo-
tions of the Moon and the Earth. He
also interpreted many fundamental
observations concerning the nature
of light. His contributions to physical
theories dominated scientific thought
for two centuries and remain impor-
tant today. (Giraudon/Art Resource)
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True or false: (a) It is possible to have motion in the absence of a force. (b) It is possible to
have force in the absence of motion. 

MASS
Imagine playing catch with either a basketball or a bowling ball. Which ball is
more likely to keep moving when you try to catch it? Which ball has the greater
tendency to remain motionless when you try to throw it? Because the bowling ball
is more resistant to changes in its velocity, we say it has greater inertia than the bas-
ketball. As noted in the preceding section, inertia is a measure of how an object re-
sponds to an external force. 

Mass is that property of an object that specifies how much inertia the object
has, and as we learned in Section 1.1, the SI unit of mass is the kilogram. The
greater the mass of an object, the less that object accelerates under the action of
an applied force. For example, if a given force acting on a 3-kg mass produces an
acceleration of 4 m/s2, then the same force applied to a 6-kg mass produces an ac-
celeration of 2 m/s2.

To describe mass quantitatively, we begin by comparing the accelerations a
given force produces on different objects. Suppose a force acting on an object of
mass m1 produces an acceleration a1 , and the same force acting on an object of mass
m2 produces an acceleration a2 . The ratio of the two masses is defined as the in-
verse ratio of the magnitudes of the accelerations produced by the force:

(5.1)

If one object has a known mass, the mass of the other object can be obtained from
acceleration measurements.

Mass is an inherent property of an object and is independent of the ob-
ject’s surroundings and of the method used to measure it. Also, mass is a
scalar quantity and thus obeys the rules of ordinary arithmetic. That is, several
masses can be combined in simple numerical fashion. For example, if you com-
bine a 3-kg mass with a 5-kg mass, their total mass is 8 kg. We can verify this result
experimentally by comparing the acceleration that a known force gives to several
objects separately with the acceleration that the same force gives to the same ob-
jects combined as one unit.

Mass should not be confused with weight. Mass and weight are two different
quantities. As we see later in this chapter, the weight of an object is equal to the mag-
nitude of the gravitational force exerted on the object and varies with location. For
example, a person who weighs 180 lb on the Earth weighs only about 30 lb on the
Moon. On the other hand, the mass of a body is the same everywhere: an object hav-
ing a mass of 2 kg on the Earth also has a mass of 2 kg on the Moon.

NEWTON’S SECOND LAW
Newton’s first law explains what happens to an object when no forces act on it. It
either remains at rest or moves in a straight line with constant speed. Newton’s sec-
ond law answers the question of what happens to an object that has a nonzero re-
sultant force acting on it.

5.4

m1

m 2
�

a2

a1

5.3

Quick Quiz 5.1

4.4

4.3

Definition of mass

Mass and weight are different
quantities
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Imagine pushing a block of ice across a frictionless horizontal surface. When
you exert some horizontal force F, the block moves with some acceleration a. If
you apply a force twice as great, the acceleration doubles. If you increase the ap-
plied force to 3F, the acceleration triples, and so on. From such observations, we
conclude that the acceleration of an object is directly proportional to the re-
sultant force acting on it.

The acceleration of an object also depends on its mass, as stated in the preced-
ing section. We can understand this by considering the following experiment. If
you apply a force F to a block of ice on a frictionless surface, then the block un-
dergoes some acceleration a. If the mass of the block is doubled, then the same
applied force produces an acceleration a/2. If the mass is tripled, then the same
applied force produces an acceleration a/3, and so on. According to this observa-
tion, we conclude that the magnitude of the acceleration of an object is in-
versely proportional to its mass.

These observations are summarized in Newton’s second law:

The acceleration of an object is directly proportional to the net force acting on
it and inversely proportional to its mass.

Newton’s second law

Newton’s second law—
component form

Definition of newton

Thus, we can relate mass and force through the following mathematical statement
of Newton’s second law:1

(5.2)

Note that this equation is a vector expression and hence is equivalent to three
component equations:

(5.3)

Is there any relationship between the net force acting on an object and the direction in
which the object moves?

Unit of Force

The SI unit of force is the newton, which is defined as the force that, when acting
on a 1-kg mass, produces an acceleration of 1 m/s2. From this definition and New-
ton’s second law, we see that the newton can be expressed in terms of the follow-
ing fundamental units of mass, length, and time:

(5.4)

In the British engineering system, the unit of force is the pound, which is 
defined as the force that, when acting on a 1-slug mass,2 produces an acceleration
of 1 ft/s2:

(5.5)

A convenient approximation is that 1 N � lb.1
4

1 lb � 1 slug� ft/s2

1 N � 1 kg�m/s2

Quick Quiz 5.2

�Fx � max  �Fy � may  �Fz � maz

�F � ma

1 Equation 5.2 is valid only when the speed of the object is much less than the speed of light. We treat
the relativistic situation in Chapter 39.
2 The slug is the unit of mass in the British engineering system and is that system’s counterpart of the
SI unit the kilogram. Because most of the calculations in our study of classical mechanics are in SI units,
the slug is seldom used in this text.
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The units of force, mass, and acceleration are summarized in Table 5.1.
We can now understand how a single person can hold up an airship but is not

able to change its motion abruptly, as stated at the beginning of the chapter. The
mass of the blimp is greater than 6 800 kg. In order to make this large mass accel-
erate appreciably, a very large force is required—certainly one much greater than
a human can provide.

An Accelerating Hockey PuckEXAMPLE 5.1
The resultant force in the y direction is

Now we use Newton’s second law in component form to find
the x and y components of acceleration:

The acceleration has a magnitude of

and its direction relative to the positive x axis is

We can graphically add the vectors in Figure 5.5 to check the
reasonableness of our answer. Because the acceleration vec-
tor is along the direction of the resultant force, a drawing
showing the resultant force helps us check the validity of the
answer.

Exercise Determine the components of a third force that,
when applied to the puck, causes it to have zero acceleration.

Answer F3x � �8.7 N, F3y � �5.2 N.

30°� � tan�1 � ay

ax
� � tan�1 � 17

29 � �

34 m/s2a � √(29)2 � (17)2 m/s2 �

ay �
� Fy

m
�

5.2 N
0.30 kg

� 17 m/s2

ax �
� Fx

m
�

8.7 N
0.30 kg

� 29 m/s2 

 � (5.0 N)(�0.342) � (8.0 N)(0.866) � 5.2 N
�Fy � F1y � F2y � F1 sin(�20°) � F2 sin 60°  

A hockey puck having a mass of 0.30 kg slides on the hori-
zontal, frictionless surface of an ice rink. Two forces act on
the puck, as shown in Figure 5.5. The force F1 has a magni-
tude of 5.0 N, and the force F2 has a magnitude of 8.0 N. De-
termine both the magnitude and the direction of the puck’s
acceleration.

Solution The resultant force in the x direction is

 � (5.0 N)(0.940) � (8.0 N)(0.500) � 8.7 N
�Fx � F1x � F2x � F1 cos(�20°) � F2 cos 60°  

TABLE 5.1 Units of Force, Mass, and Accelerationa

System of Units Mass Acceleration Force

SI kg m/s2

British engineering slug ft/s2

a 1 N � 0.225 lb.

lb � slug� ft/s2
N � kg�m/s2

x

y

60°

F2

F2  =  8.0 N
F1  =  5.0 N

20°

F1

Figure 5.5 A hockey puck moving on a frictionless surface acceler-
ates in the direction of the resultant force F1 � F2 .
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THE FORCE OF GRAVITY AND WEIGHT
We are well aware that all objects are attracted to the Earth. The attractive force
exerted by the Earth on an object is called the force of gravity Fg . This force is
directed toward the center of the Earth,3 and its magnitude is called the weight
of the object.

We saw in Section 2.6 that a freely falling object experiences an acceleration g
acting toward the center of the Earth. Applying Newton’s second law �F � ma to a
freely falling object of mass m, with a � g and �F � Fg , we obtain

(5.6)

Thus, the weight of an object, being defined as the magnitude of Fg , is mg. (You
should not confuse the italicized symbol g for gravitational acceleration with the
nonitalicized symbol g used as the abbreviation for “gram.”)

Because it depends on g, weight varies with geographic location. Hence,
weight, unlike mass, is not an inherent property of an object. Because g decreases
with increasing distance from the center of the Earth, bodies weigh less at higher
altitudes than at sea level. For example, a 1 000-kg palette of bricks used in the
construction of the Empire State Building in New York City weighed about 1 N less
by the time it was lifted from sidewalk level to the top of the building. As another
example, suppose an object has a mass of 70.0 kg. Its weight in a location where 
g � 9.80 m/s2 is Fg � mg � 686 N (about 150 lb). At the top of a mountain, how-
ever, where g � 9.77 m/s2, its weight is only 684 N. Therefore, if you want to lose
weight without going on a diet, climb a mountain or weigh yourself at 30 000 ft
during an airplane flight!

Because weight � Fg � mg, we can compare the masses of two objects by mea-
suring their weights on a spring scale. At a given location, the ratio of the weights
of two objects equals the ratio of their masses.

Fg � mg

5.5

The life-support unit strapped to the back
of astronaut Edwin Aldrin weighed 300 lb
on the Earth. During his training, a 50-lb
mock-up was used. Although this effectively
simulated the reduced weight the unit
would have on the Moon, it did not cor-
rectly mimic the unchanging mass. It was
just as difficult to accelerate the unit (per-
haps by jumping or twisting suddenly) on
the Moon as on the Earth.

3 This statement ignores the fact that the mass distribution of the Earth is not perfectly spherical.

QuickLab
Drop a pen and your textbook simul-
taneously from the same height and
watch as they fall. How can they have
the same acceleration when their
weights are so different?

Definition of weight



120 C H A P T E R  5 The Laws of Motion

A baseball of mass m is thrown upward with some initial speed. If air resistance is neglected,
what forces are acting on the ball when it reaches (a) half its maximum height and (b) its
maximum height?

NEWTON’S THIRD LAW
If you press against a corner of this textbook with your fingertip, the book pushes
back and makes a small dent in your skin. If you push harder, the book does the
same and the dent in your skin gets a little larger. This simple experiment illus-
trates a general principle of critical importance known as Newton’s third law:

5.6

Quick Quiz 5.3

If two objects interact, the force F12 exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force F21 exerted by object 2 on 
object 1:

(5.7)F12 � �F21

This law, which is illustrated in Figure 5.6a, states that a force that affects the mo-
tion of an object must come from a second, external, object. The external object, in
turn, is subject to an equal-magnitude but oppositely directed force exerted on it.

4.5

How Much Do You Weigh in an Elevator?CONCEPTUAL EXAMPLE 5.2
Solution No, your weight is unchanged. To provide the
acceleration upward, the floor or scale must exert on your
feet an upward force that is greater in magnitude than your
weight. It is this greater force that you feel, which you inter-
pret as feeling heavier. The scale reads this upward force, not
your weight, and so its reading increases.

You have most likely had the experience of standing in an el-
evator that accelerates upward as it moves toward a higher
floor. In this case, you feel heavier. In fact, if you are standing
on a bathroom scale at the time, the scale measures a force
magnitude that is greater than your weight. Thus, you have
tactile and measured evidence that leads you to believe you
are heavier in this situation. Are you heavier?

2

1

F12 F21

F12  =  –F21

(a)

FnhFhn

(b)

Newton’s third law

Figure 5.6 Newton’s third law. (a) The force F12 exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force F21 exerted by object 2 on object 1. (b) The
force Fhn exerted by the hammer on the nail is equal to and opposite the force Fnh exerted by
the nail on the hammer.
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This is equivalent to stating that a single isolated force cannot exist. The force
that object 1 exerts on object 2 is sometimes called the action force, while the force
object 2 exerts on object 1 is called the reaction force. In reality, either force can be
labeled the action or the reaction force. The action force is equal in magnitude
to the reaction force and opposite in direction. In all cases, the action and
reaction forces act on different objects. For example, the force acting on a
freely falling projectile is Fg � mg, which is the force of gravity exerted by the
Earth on the projectile. The reaction to this force is the force exerted by the pro-
jectile on the Earth, The reaction force accelerates the Earth toward
the projectile just as the action force Fg accelerates the projectile toward the Earth.
However, because the Earth has such a great mass, its acceleration due to this reac-
tion force is negligibly small. 

Another example of Newton’s third law is shown in Figure 5.6b. The force ex-
erted by the hammer on the nail (the action force Fhn) is equal in magnitude and
opposite in direction to the force exerted by the nail on the hammer (the reaction
force Fnh). It is this latter force that causes the hammer to stop its rapid forward
motion when it strikes the nail.

You experience Newton’s third law directly whenever you slam your fist against
a wall or kick a football. You should be able to identify the action and reaction
forces in these cases.

A person steps from a boat toward a dock. Unfortunately, he forgot to tie the boat to the
dock, and the boat scoots away as he steps from it. Analyze this situation in terms of New-
ton’s third law.

The force of gravity Fg was defined as the attractive force the Earth exerts on
an object. If the object is a TV at rest on a table, as shown in Figure 5.7a, why does
the TV not accelerate in the direction of Fg ? The TV does not accelerate because
the table holds it up. What is happening is that the table exerts on the TV an up-
ward force n called the normal force.4 The normal force is a contact force that
prevents the TV from falling through the table and can have any magnitude
needed to balance the downward force Fg , up to the point of breaking the table. If
someone stacks books on the TV, the normal force exerted by the table on the TV
increases. If someone lifts up on the TV, the normal force exerted by the table on
the TV decreases. (The normal force becomes zero if the TV is raised off the table.)

The two forces in an action–reaction pair always act on different objects.
For the hammer-and-nail situation shown in Figure 5.6b, one force of the pair acts
on the hammer and the other acts on the nail. For the unfortunate person step-
ping out of the boat in Quick Quiz 5.4, one force of the pair acts on the person,
and the other acts on the boat. 

For the TV in Figure 5.7, the force of gravity Fg and the normal force n are not
an action–reaction pair because they act on the same body—the TV. The two re-
action forces in this situation— and n�—are exerted on objects other than the
TV. Because the reaction to Fg is the force exerted by the TV on the Earth and
the reaction to n is the force n� exerted by the TV on the table, we conclude that

Fg � �F �g  and  n � �n�

F �g

F �g

Quick Quiz 5.4

F �gF �g � �Fg .

Definition of normal force

4 Normal in this context means perpendicular.

F

Compression of a football as the
force exerted by a player’s foot sets
the ball in motion.
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The forces n and n� have the same magnitude, which is the same as that of Fg until
the table breaks. From the second law, we see that, because the TV is in equilib-
rium (a � 0), it follows5 that 

If a fly collides with the windshield of a fast-moving bus, (a) which experiences the greater im-
pact force: the fly or the bus, or is the same force experienced by both? (b) Which experiences
the greater acceleration: the fly or the bus, or is the same acceleration experienced by both?

Quick Quiz 5.5

Fg � n � mg.

Figure 5.7 When a TV is at rest on a table, the forces acting on the TV are the normal force n
and the force of gravity Fg , as illustrated in part (b). The reaction to n is the force n� exerted by
the TV on the table. The reaction to Fg is the force F�g exerted by the TV on the Earth.

Fg

nn

F ′g

Fg

n′

(a) (b)

5 Technically, we should write this equation in the component form Fgy � ny � mgy . This component
notation is cumbersome, however, and so in situations in which a vector is parallel to a coordinate axis,
we usually do not include the subscript for that axis because there is no other component.

You Push Me and I’ll Push YouCONCEPTUAL EXAMPLE 5.3
Therefore, the boy, having the lesser mass, experiences the
greater acceleration. Both individuals accelerate for the same
amount of time, but the greater acceleration of the boy over
this time interval results in his moving away from the interac-
tion with the higher speed.

(b) Who moves farther while their hands are in contact? 

Solution Because the boy has the greater acceleration, he
moves farther during the interval in which the hands are in
contact.

A large man and a small boy stand facing each other on fric-
tionless ice. They put their hands together and push against
each other so that they move apart. (a) Who moves away with
the higher speed?

Solution This situation is similar to what we saw in Quick
Quiz 5.5. According to Newton’s third law, the force exerted
by the man on the boy and the force exerted by the boy on
the man are an action–reaction pair, and so they must be
equal in magnitude. (A bathroom scale placed between their
hands would read the same, regardless of which way it faced.)
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SOME APPLICATIONS OF NEWTON’S LAWS
In this section we apply Newton’s laws to objects that are either in equilibrium 
(a � 0) or accelerating along a straight line under the action of constant external
forces. We assume that the objects behave as particles so that we need not worry
about rotational motion. We also neglect the effects of friction in those problems
involving motion; this is equivalent to stating that the surfaces are frictionless. Fi-
nally, we usually neglect the mass of any ropes involved. In this approximation, the
magnitude of the force exerted at any point along a rope is the same at all points
along the rope. In problem statements, the synonymous terms light, lightweight, and
of negligible mass are used to indicate that a mass is to be ignored when you work
the problems.

When we apply Newton’s laws to an object, we are interested only in ex-
ternal forces that act on the object. For example, in Figure 5.7 the only external
forces acting on the TV are n and Fg . The reactions to these forces, n� and , act
on the table and on the Earth, respectively, and therefore do not appear in New-
ton’s second law applied to the TV.

When a rope attached to an object is pulling on the object, the rope exerts a
force T on the object, and the magnitude of that force is called the tension in the
rope. Because it is the magnitude of a vector quantity, tension is a scalar quantity.

Consider a crate being pulled to the right on a frictionless, horizontal surface,
as shown in Figure 5.8a. Suppose you are asked to find the acceleration of the
crate and the force the floor exerts on it. First, note that the horizontal force be-
ing applied to the crate acts through the rope. Use the symbol T to denote the
force exerted by the rope on the crate. The magnitude of T is equal to the tension
in the rope. A dotted circle is drawn around the crate in Figure 5.8a to remind you
that you are interested only in the forces acting on the crate. These are illustrated
in Figure 5.8b. In addition to the force T, this force diagram for the crate includes
the force of gravity Fg and the normal force n exerted by the floor on the crate.
Such a force diagram, referred to as a free-body diagram, shows all external
forces acting on the object. The construction of a correct free-body diagram is an
important step in applying Newton’s laws. The reactions to the forces we have
listed—namely, the force exerted by the crate on the rope, the force exerted by
the crate on the Earth, and the force exerted by the crate on the floor—are not in-
cluded in the free-body diagram because they act on other bodies and not on the
crate.

We can now apply Newton’s second law in component form to the crate. The
only force acting in the x direction is T. Applying �Fx � max to the horizontal mo-
tion gives

No acceleration occurs in the y direction. Applying �Fy � may with ay � 0
yields

That is, the normal force has the same magnitude as the force of gravity but is in
the opposite direction.

If T is a constant force, then the acceleration ax � T/m also is constant.
Hence, the constant-acceleration equations of kinematics from Chapter 2 can be
used to obtain the crate’s displacement 	x and velocity vx as functions of time. Be-

n � (�Fg) � 0  or  n � Fg

�  Fx � T � max  or  ax �
T
m

F �g

5.7

Tension

(a)

T

n

Fg

y

x

(b)

Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate. 

4.6
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cause ax � T/m � constant, Equations 2.8 and 2.11 can be written as

In the situation just described, the magnitude of the normal force n is equal to
the magnitude of Fg , but this is not always the case. For example, suppose a book
is lying on a table and you push down on the book with a force F, as shown in Fig-
ure 5.9. Because the book is at rest and therefore not accelerating, �Fy � 0, which
gives or Other examples in which are pre-
sented later.

Consider a lamp suspended from a light chain fastened to the ceiling, as in
Figure 5.10a. The free-body diagram for the lamp (Figure 5.10b) shows that the
forces acting on the lamp are the downward force of gravity Fg and the upward
force T exerted by the chain. If we apply the second law to the lamp, noting that 
a � 0, we see that because there are no forces in the x direction, �Fx � 0 provides
no helpful information. The condition �Fy � may � 0 gives

Again, note that T and Fg are not an action–reaction pair because they act on the
same object—the lamp. The reaction force to T is T�, the downward force exerted
by the lamp on the chain, as shown in Figure 5.10c. The ceiling exerts on the
chain a force T
 that is equal in magnitude to the magnitude of T� and points in
the opposite direction.

�Fy � T � Fg � 0  or  T � Fg

n � Fgn � Fg � F.n � Fg � F � 0,

 	x � vxit � 1
2� T

m �t2

vxf � vxi � � T
m �t 

Figure 5.9 When one object
pushes downward on another ob-
ject with a force F, the normal
force n is greater than the force of
gravity: n � Fg � F.

Figure 5.10 (a) A lamp sus-
pended from a ceiling by a chain of
negligible mass. (b) The forces act-
ing on the lamp are the force of
gravity Fg and the force exerted by
the chain T. (c) The forces acting
on the chain are the force exerted
by the lamp T� and the force ex-
erted by the ceiling T
.

Problem-Solving Hints
Applying Newton’s Laws
The following procedure is recommended when dealing with problems involv-
ing Newton’s laws:

• Draw a simple, neat diagram of the system.
• Isolate the object whose motion is being analyzed. Draw a free-body diagram

for this object. For systems containing more than one object, draw separate
free-body diagrams for each object. Do not include in the free-body diagram
forces exerted by the object on its surroundings. Establish convenient coor-
dinate axes for each object and find the components of the forces along
these axes.

• Apply Newton’s second law, �F � ma, in component form. Check your di-
mensions to make sure that all terms have units of force.

• Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

• Make sure your results are consistent with the free-body diagram. Also check
the predictions of your solutions for extreme values of the variables. By do-
ing so, you can often detect errors in your results.

F

Fg n

(b)

(c)

T

T′

T′′ = T

(a)
Fg
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A Traffic Light at RestEXAMPLE 5.4
(1)

(2)

From (1) we see that the horizontal components of T1 and T2
must be equal in magnitude, and from (2) we see that the
sum of the vertical components of T1 and T2 must balance
the weight of the light. We solve (1) for T2 in terms of T1 to
obtain

This value for T2 is substituted into (2) to yield

This problem is important because it combines what we have
learned about vectors with the new topic of forces. The gen-
eral approach taken here is very powerful, and we will repeat
it many times.

Exercise In what situation does T1 � T2 ?

Answer When the two cables attached to the support make
equal angles with the horizontal.

99.9 NT2 � 1.33T1 �

75.1 NT1 �

T1 sin 37.0° � (1.33T1)(sin 53.0°) � 125 N � 0

T2 � T1� cos 37.0°
cos 53.0° � � 1.33T1

� (�125 N) � 0
�Fy � T1 sin 37.0° � T2 sin 53.0°

�Fx � �T1 cos 37.0° � T2 cos 53.0° � 0A traffic light weighing 125 N hangs from a cable tied to two
other cables fastened to a support. The upper cables make
angles of 37.0° and 53.0° with the horizontal. Find the ten-
sion in the three cables.

Solution Figure 5.11a shows the type of drawing we might
make of this situation. We then construct two free-body dia-
grams—one for the traffic light, shown in Figure 5.11b, and
one for the knot that holds the three cables together, as seen
in Figure 5.11c. This knot is a convenient object to choose be-
cause all the forces we are interested in act through it. Be-
cause the acceleration of the system is zero, we know that the
net force on the light and the net force on the knot are both
zero.

In Figure 5.11b the force T3 exerted by the vertical cable 

supports the light, and so Next, we 

choose the coordinate axes shown in Figure 5.11c and resolve
the forces acting on the knot into their components:

125 N.T3 � Fg �

T2T1

T3

53.0°37.0°

(a)

T3

53.0°37.0° x

T2

T1

yT3

Fg

(b) (c)

Figure 5.11 (a) A traffic light suspended by cables. (b) Free-body diagram for the traf-
fic light. (c) Free-body diagram for the knot where the three cables are joined.

Force x Component y Component

T1 � T1 cos 37.0� T1 sin 37.0�
T2 T2 cos 53.0� T2 sin 53.0�
T3 0 � 125 N

Knowing that the knot is in equilibrium (a � 0) allows us to
write



Forces Between Cars in a TrainCONCEPTUAL EXAMPLE 5.5
the locomotive and the first car must apply enough force to
accelerate all of the remaining cars. As you move back along
the train, each coupler is accelerating less mass behind it.
The last coupler has to accelerate only the caboose, and so it
is under the least tension.

When the brakes are applied, the force again decreases
from front to back. The coupler connecting the locomotive
to the first car must apply a large force to slow down all the
remaining cars. The final coupler must apply a force large
enough to slow down only the caboose.

In a train, the cars are connected by couplers, which are under
tension as the locomotive pulls the train. As you move down
the train from locomotive to caboose, does the tension in the
couplers increase, decrease, or stay the same as the train
speeds up? When the engineer applies the brakes, the cou-
plers are under compression. How does this compression
force vary from locomotive to caboose? (Assume that only the
brakes on the wheels of the engine are applied.)

Solution As the train speeds up, the tension decreases
from the front of the train to the back. The coupler between

Crate on a Frictionless InclineEXAMPLE 5.6
place the force of gravity by a component of magnitude 
mg sin � along the positive x axis and by one of magnitude 
mg cos � along the negative y axis.

Now we apply Newton’s second law in component form,
noting that ay � 0:

(1)

(2)

Solving (1) for ax , we see that the acceleration along the incline
is caused by the component of Fg directed down the incline:

(3)

Note that this acceleration component is independent of the
mass of the crate! It depends only on the angle of inclination
and on g.

From (2) we conclude that the component of Fg perpendic-
ular to the incline is balanced by the normal force; that is, n �
mg cos �. This is one example of a situation in which the nor-
mal force is not equal in magnitude to the weight of the object.

Special Cases Looking over our results, we see that in the
extreme case of � � 90°, ax � g and n � 0. This condition
corresponds to the crate’s being in free fall. When � � 0, 
ax � 0 and n � mg (its maximum value); in this case, the
crate is sitting on a horizontal surface.

(b) Suppose the crate is released from rest at the top of
the incline, and the distance from the front edge of the crate
to the bottom is d. How long does it take the front edge to
reach the bottom, and what is its speed just as it gets there?

Solution Because ax � constant, we can apply Equation
2.11, to analyze the crate’s motion.x f � x i � vxit � 1

2axt2,

ax � g sin �

�Fy � n � mg cos � � 0

�Fx � mg sin � � max

A crate of mass m is placed on a frictionless inclined plane of
angle �. (a) Determine the acceleration of the crate after it is
released.

Solution Because we know the forces acting on the crate,
we can use Newton’s second law to determine its accelera-
tion. (In other words, we have classified the problem; this
gives us a hint as to the approach to take.) We make a sketch
as in Figure 5.12a and then construct the free-body diagram
for the crate, as shown in Figure 5.12b. The only forces acting
on the crate are the normal force n exerted by the inclined
plane, which acts perpendicular to the plane, and the force
of gravity Fg � mg, which acts vertically downward. For prob-
lems involving inclined planes, it is convenient to choose the
coordinate axes with x downward along the incline and y per-
pendicular to it, as shown in Figure 5.12b. (It is possible to
solve the problem with “standard” horizontal and vertical
axes. You may want to try this, just for practice.) Then, we re-

Figure 5.12 (a) A crate of mass m sliding down a frictionless in-
cline. (b) The free-body diagram for the crate. Note that its accelera-
tion along the incline is g sin �.

y

(a) (b)

d x

n

mg

θ

a

mg sin

θmg cos θ

θ
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Figure 5.13

One Block Pushes AnotherEXAMPLE 5.7
Treating the two blocks together as a system simplifies the

solution but does not provide information about internal
forces.

(b) Determine the magnitude of the contact force be-
tween the two blocks.

Solution To solve this part of the problem, we must treat
each block separately with its own free-body diagram, as in
Figures 5.13b and 5.13c. We denote the contact force by P.
From Figure 5.13c, we see that the only horizontal force act-
ing on block 2 is the contact force P (the force exerted by
block 1 on block 2), which is directed to the right. Applying
Newton’s second law to block 2 gives

(2)

Substituting into (2) the value of ax given by (1), we obtain

(3)

From this result, we see that the contact force P exerted by
block 1 on block 2 is less than the applied force F. This is con-
sistent with the fact that the force required to accelerate
block 2 alone must be less than the force required to pro-
duce the same acceleration for the two-block system.

It is instructive to check this expression for P by consider-
ing the forces acting on block 1, shown in Figure 5.13b. The
horizontal forces acting on this block are the applied force F
to the right and the contact force P� to the left (the force ex-
erted by block 2 on block 1). From Newton’s third law, P� is
the reaction to P, so that Applying Newton’s sec-
ond law to block 1 produces

(4) �Fx � F � P  � � F � P � m1ax

� P � � � � P �.

P � m 2ax � � m 2

m1 � m 2
�F

�Fx � P � m 2ax

Two blocks of masses m1 and m2 are placed in contact with
each other on a frictionless horizontal surface. A constant
horizontal force F is applied to the block of mass m1 . (a) De-
termine the magnitude of the acceleration of the two-block
system.

Solution Common sense tells us that both blocks must ex-
perience the same acceleration because they remain in con-
tact with each other. Just as in the preceding example, we
make a labeled sketch and free-body diagrams, which are
shown in Figure 5.13. In Figure 5.13a the dashed line indi-
cates that we treat the two blocks together as a system. Be-
cause F is the only external horizontal force acting on the sys-
tem (the two blocks), we have

(1) ax �
F

m1 � m 2

�Fx(system) � F � (m1 � m 2)ax

With the displacement xf � xi � d and vxi � 0, we obtain

(4)

Using Equation 2.12, with vxi � 0,
we find that

 vxf 

2 � 2axd 

vxf 

2 � vxi 

2 � 2ax(x f � x i),

√ 2d

g sin �
t � √ 2d

ax
�

 d � 1
2axt2 

(5)

We see from equations (4) and (5) that the time t needed to
reach the bottom and the speed vxf , like acceleration, are in-
dependent of the crate’s mass. This suggests a simple method
you can use to measure g , using an inclined air track: Mea-
sure the angle of inclination, some distance traveled by a cart
along the incline, and the time needed to travel that dis-
tance. The value of g can then be calculated from (4).

√2gd sin �vxf � √2axd �

m2
m1

F

(a)

(b)

m1

n1

F P′

m1g

y

x

(c)

P

m2g

n2

m2
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Figure 5.14 Apparent weight versus true weight. (a) When the elevator accelerates upward, the
spring scale reads a value greater than the weight of the fish. (b) When the elevator accelerates down-
ward, the spring scale reads a value less than the weight of the fish.

m g

a

T

a

m g

T

(b)(a)

Observer in
inertial frame

Weighing a Fish in an ElevatorEXAMPLE 5.8
If the elevator moves upward with an acceleration a rela-

tive to an observer standing outside the elevator in an inertial
frame (see Fig. 5.14a), Newton’s second law applied to the
fish gives the net force on the fish:

(1)

where we have chosen upward as the positive direction. Thus,
we conclude from (1) that the scale reading T is greater than 
the weight mg if a is upward, so that ay is positive, and that 
the reading is less than mg if a is downward, so that ay is
negative.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that ay � �2.00 m/s2, the scale reading from (1) is

�Fy � T � mg � may

A person weighs a fish of mass m on a spring scale attached to
the ceiling of an elevator, as illustrated in Figure 5.14. Show
that if the elevator accelerates either upward or downward,
the spring scale gives a reading that is different from the
weight of the fish.

Solution The external forces acting on the fish are the
downward force of gravity Fg � mg and the force T exerted
by the scale. By Newton’s third law, the tension T is also the
reading of the scale. If the elevator is either at rest or moving
at constant velocity, the fish is not accelerating, and so

or (remember that the scalar mg
is the weight of the fish).

T � mg�Fy � T � mg � 0

Substituting into (4) the value of ax from (1), we obtain

This agrees with (3), as it must.

P � F � m1ax � F �
m1F

m1 � m 2
� � m 2

m1 � m 2
�F

Exercise If m1 � 4.00 kg, m2 � 3.00 kg, and F � 9.00 N,
find the magnitude of the acceleration of the system and the
magnitude of the contact force.

Answer ax � 1.29 m/s2; P � 3.86 N.
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Atwood’s MachineEXAMPLE 5.9
vice is sometimes used in the laboratory to measure the free-
fall acceleration. Determine the magnitude of the accelera-
tion of the two objects and the tension in the lightweight
cord.

Solution If we were to define our system as being made
up of both objects, as we did in Example 5.7, we would have
to determine an internal force (tension in the cord). We must
define two systems here—one for each object—and apply
Newton’s second law to each. The free-body diagrams for the
two objects are shown in Figure 5.15b. Two forces act on each
object: the upward force T exerted by the cord and the down-
ward force of gravity. 

We need to be very careful with signs in problems such as
this, in which a string or rope passes over a pulley or some
other structure that causes the string or rope to bend. In Fig-
ure 5.15a, notice that if object 1 accelerates upward, then ob-
ject 2 accelerates downward. Thus, for consistency with signs,
if we define the upward direction as positive for object 1, we
must define the downward direction as positive for object 2.
With this sign convention, both objects accelerate in the
same direction as defined by the choice of sign. With this sign
convention applied to the forces, the y component of the net
force exerted on object 1 is T � m1g, and the y component of
the net force exerted on object 2 is m2g � T. Because the ob-
jects are connected by a cord, their accelerations must be
equal in magnitude. (Otherwise the cord would stretch or
break as the distance between the objects increased.) If we as-
sume m2  m1 , then object 1 must accelerate upward and ob-
ject 2 downward.

When Newton’s second law is applied to object 1, we
obtain

(1)

Similarly, for object 2 we find

(2) �Fy � m2g � T � m2ay

�Fy � T � m1g � m1ay

When two objects of unequal mass are hung vertically over a
frictionless pulley of negligible mass, as shown in Figure
5.15a, the arrangement is called an Atwood machine. The de-

Figure 5.15 Atwood’s machine. (a) Two objects (m2  m1) con-
nected by a cord of negligible mass strung over a frictionless pulley.
(b) Free-body diagrams for the two objects.

(2)

If a is downward so that ay � �2.00 m/s2, then (2) gives us

31.8 N�

T � mg � ay

g
� 1� � (40.0 N) � �2.00 m/s2

9.80 m/s2 � 1� 

48.2 N�

 � (40.0 N) � 2.00 m/s2

9.80 m/s2 � 1�

T � may � mg � mg � ay

g
� 1� 

Hence, if you buy a fish by weight in an elevator, make
sure the fish is weighed while the elevator is either at rest or
accelerating downward! Furthermore, note that from the in-
formation given here one cannot determine the direction of
motion of the elevator. 

Special Cases If the elevator cable breaks, the elevator
falls freely and ay � �g. We see from (2) that the scale read-
ing T is zero in this case; that is, the fish appears to be weight-
less. If the elevator accelerates downward with an accelera-
tion greater than g, the fish (along with the person in the
elevator) eventually hits the ceiling because the acceleration
of fish and person is still that of a freely falling object relative
to an outside observer.

(b)

m1

T

m1g

T

m2g

(a)

m1

m2

a

a

m2
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Acceleration of Two Objects Connected by a CordEXAMPLE 5.10
rection. Applying Newton’s second law in component form to
the block gives

(3)

(4)

In (3) we have replaced ax� with a because that is the accelera-
tion’s only component. In other words, the two objects have ac-
celerations of the same magnitude a, which is what we are trying
to find. Equations (1) and (4) provide no information regard-
ing the acceleration. However, if we solve (2) for T and then
substitute this value for T into (3) and solve for a, we obtain

(5)

When this value for a is substituted into (2), we find

(6) T �
m1m2g(sin � � 1)

m1 � m2

a �
m2g sin � � m1g

m1 � m2

�Fy � � n � m2g cos � � 0

�Fx � � m2g sin � � T � m2ax � � m2a

A ball of mass m1 and a block of mass m2 are attached by a
lightweight cord that passes over a frictionless pulley of negli-
gible mass, as shown in Figure 5.16a. The block lies on a fric-
tionless incline of angle �. Find the magnitude of the acceler-
ation of the two objects and the tension in the cord.

Solution Because the objects are connected by a cord
(which we assume does not stretch), their accelerations have
the same magnitude. The free-body diagrams are shown in
Figures 5.16b and 5.16c. Applying Newton’s second law in
component form to the ball, with the choice of the upward
direction as positive, yields

(1)

(2)

Note that in order for the ball to accelerate upward, it is nec-
essary that T  m1g. In (2) we have replaced ay with a be-
cause the acceleration has only a y component.

For the block it is convenient to choose the positive x � axis
along the incline, as shown in Figure 5.16c. Here we choose
the positive direction to be down the incline, in the � x � di-

�Fy � T � m1g � m1ay � m1a

�Fx � 0

When (2) is added to (1), T drops out and we get

(3)

When (3) is substituted into (1), we obtain

(4)

The result for the acceleration in (3) can be interpreted as

T � � 2m1m2

m1 � m2
�g

ay � � m2 � m1

m1 � m2
�g

 �m1g � m2g � m1ay � m2ay

the ratio of the unbalanced force on the system 
to the total mass of the system as expected from
Newton’s second law. 

Special Cases When m1 � m2 , then ay � 0 and T � m1g,
as we would expect for this balanced case. If m2  m1 , then 
ay � g (a freely falling body) and T � 2m1g.

Exercise Find the magnitude of the acceleration and the
string tension for an Atwood machine in which m1 � 2.00 kg
and m2 � 4.00 kg.

Answer ay � 3.27 m/s2, T � 26.1 N.

(m1 � m2),
(m2g � m1g)

Figure 5.16 (a) Two objects
connected by a lightweight cord
strung over a frictionless pulley.
(b) Free-body diagram for the
ball. (c) Free-body diagram for
the block. (The incline is friction-
less.)
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FORCES OF FRICTION
When a body is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the body interacts with its sur-
roundings. We call such resistance a force of friction. Forces of friction are very
important in our everyday lives. They allow us to walk or run and are necessary for
the motion of wheeled vehicles.

Have you ever tried to move a heavy desk across a rough floor? You push
harder and harder until all of a sudden the desk seems to “break free” and subse-
quently moves relatively easily. It takes a greater force to start the desk moving
than it does to keep it going once it has started sliding. To understand why this
happens, consider a book on a table, as shown in Figure 5.17a. If we apply an ex-
ternal horizontal force F to the book, acting to the right, the book remains station-
ary if F is not too great. The force that counteracts F and keeps the book from
moving acts to the left and is called the frictional force f.

As long as the book is not moving, f � F. Because the book is stationary, we
call this frictional force the force of static friction fs . Experiments show that this
force arises from contacting points that protrude beyond the general level of the
surfaces in contact, even for surfaces that are apparently very smooth, as shown in
the magnified view in Figure 5.17a. (If the surfaces are clean and smooth at the
atomic level, they are likely to weld together when contact is made.) The frictional
force arises in part from one peak’s physically blocking the motion of a peak from
the opposing surface, and in part from chemical bonding of opposing points as
they come into contact. If the surfaces are rough, bouncing is likely to occur, fur-
ther complicating the analysis. Although the details of friction are quite complex
at the atomic level, this force ultimately involves an electrical interaction between
atoms or molecules.

If we increase the magnitude of F, as shown in Figure 5.17b, the magnitude of
fs increases along with it, keeping the book in place. The force fs cannot increase
indefinitely, however. Eventually the surfaces in contact can no longer supply suffi-
cient frictional force to counteract F, and the book accelerates. When it is on the
verge of moving, fs is a maximum, as shown in Figure 5.17c. When F exceeds fs,max ,
the book accelerates to the right. Once the book is in motion, the retarding fric-
tional force becomes less than fs,max (see Fig. 5.17c). When the book is in motion,
we call the retarding force the force of kinetic friction fk . If F � fk , then the
book moves to the right with constant speed. If F  fk , then there is an unbalanced
force F � fk in the positive x direction, and this force accelerates the book to the
right. If the applied force F is removed, then the frictional force fk acting to the
left accelerates the book in the negative x direction and eventually brings it to rest.

Experimentally, we find that, to a good approximation, both fs,max and fk are
proportional to the normal force acting on the book. The following empirical laws
of friction summarize the experimental observations:

5.8

Note that the block accelerates down the incline only if 
m2 sin �  m1 (that is, if a is in the direction we assumed). If 
m1  m2 sin �, then the acceleration is up the incline for the
block and downward for the ball. Also note that the result for
the acceleration (5) can be interpreted as the resultant force
acting on the system divided by the total mass of the system; this
is consistent with Newton’s second law. Finally, if � � 90°, then
the results for a and T are identical to those of Example 5.9.

Exercise If m1 � 10.0 kg, m2 � 5.00 kg, and � � 45.0°, find
the acceleration of each object.

Answer a � � 4.22 m/s2, where the negative sign indicates
that the block accelerates up the incline and the ball acceler-
ates downward.

Force of static friction

Force of kinetic friction
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• The direction of the force of static friction between any two surfaces in contact with
each other is opposite the direction of relative motion and can have values

(5.8)

where the dimensionless constant �s is called the coefficient of static friction
and n is the magnitude of the normal force. The equality in Equation 5.8 holds
when one object is on the verge of moving, that is, when fs � fs,max � �sn. The
inequality holds when the applied force is less than �sn.

• The direction of the force of kinetic friction acting on an object is opposite the
direction of the object’s sliding motion relative to the surface applying the fric-
tional force and is given by

(5.9)

where �k is the coefficient of kinetic friction.
• The values of �k and �s depend on the nature of the surfaces, but �k is generally

less than �s . Typical values range from around 0.03 to 1.0. Table 5.2 lists some
reported values.

fk � �kn

fs � �sn

F

fk =    kn
f s =

 F

0

|f|

fs,max

Static region

(c)

(a) (b)

Kinetic region

µ

mg

n

F

n
Motion

mg

fkfs
F

Figure 5.17 The direction of the force of friction f between a book and a rough surface is op-
posite the direction of the applied force F. Because the two surfaces are both rough, contact is
made only at a few points, as illustrated in the “magnified” view. (a) The magnitude of the force
of static friction equals the magnitude of the applied force. (b) When the magnitude of the ap-
plied force exceeds the magnitude of the force of kinetic friction, the book accelerates to the
right. (c) A graph of frictional force versus applied force. Note that fs,max  fk .
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• The coefficients of friction are nearly independent of the area of contact be-
tween the surfaces. To understand why, we must examine the difference be-
tween the apparent contact area, which is the area we see with our eyes, and the
real contact area, represented by two irregular surfaces touching, as shown in the
magnified view in Figure 5.17a. It seems that increasing the apparent contact
area does not increase the real contact area. When we increase the apparent
area (without changing anything else), there is less force per unit area driving
the jagged points together. This decrease in force counteracts the effect of hav-
ing more points involved. 

Although the coefficient of kinetic friction can vary with speed, we shall usu-
ally neglect any such variations in this text. We can easily demonstrate the approxi-
mate nature of the equations by trying to get a block to slip down an incline at
constant speed. Especially at low speeds, the motion is likely to be characterized by
alternate episodes of sticking and movement.

A crate is sitting in the center of a flatbed truck. The truck accelerates to the right, and the
crate moves with it, not sliding at all. What is the direction of the frictional force exerted by
the truck on the crate? (a) To the left. (b) To the right. (c) No frictional force because the
crate is not sliding.

Quick Quiz 5.6

Why Does the Sled Accelerate?CONCEPTUAL EXAMPLE 5.11
Solution It is important to remember that the forces de-
scribed in Newton’s third law act on different objects—the
horse exerts a force on the sled, and the sled exerts an equal-
magnitude and oppositely directed force on the horse. Be-
cause we are interested only in the motion of the sled, we do
not consider the forces it exerts on the horse. When deter-

A horse pulls a sled along a level, snow-covered road, causing
the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts an equal and opposite
force on the horse. In view of this, how can the sled acceler-
ate? Under what condition does the system (horse plus sled)
move with constant velocity?

If you would like to learn more
about this subject, read the article
“Friction at the Atomic Scale” by J.
Krim in the October 1996 issue of
Scientific American.

QuickLab
Can you apply the ideas of Example
5.12 to determine the coefficients of
static and kinetic friction between the
cover of your book and a quarter?
What should happen to those coeffi-
cients if you make the measurements
between your book and two quarters
taped one on top of the other?

TABLE 5.2 Coefficients of Frictiona

�s �k

Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Rubber on concrete 1.0 0.8
Wood on wood 0.25–0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Ice on ice 0.1 0.03
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.01 0.003

a All values are approximate. In some cases, the coefficient of fric-
tion can exceed 1.0.
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Experimental Determination of �s and �kEXAMPLE 5.12
of slipping but has not yet moved. When we take x to be par-
allel to the plane and y perpendicular to it, Newton’s second
law applied to the block for this balanced situation gives

Static case:

We can eliminate mg by substituting mg � n/cos � from
(2) into (1) to get

When the incline is at the critical angle �c , we know that fs �
fs,max � �sn, and so at this angle, (3) becomes

Static case:

For example, if the block just slips at �c � 20°, then we find
that �s � tan 20° � 0.364.

Once the block starts to move at � � �c , it accelerates
down the incline and the force of friction is fk � �kn. How-
ever, if � is reduced to a value less than �c , it may be possible
to find an angle such that the block moves down the in-
cline with constant speed (ax � 0). In this case, using (1) and
(2) with fs replaced by fk gives

Kinetic case:

where ��c � �c .

�k � tan ��c

��c

�s � tan �c

 �sn � n tan �c

 (3)  fs � mg sin � � � n

cos �
� sin � � n tan �

    (2)  �Fy � n � mg cos � � may � 0

(1)  �Fx � mg sin � � fs � max � 0

The following is a simple method of measuring coefficients of
friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19. The
incline angle is increased until the block starts to move. Let
us show that by measuring the critical angle �c at which this
slipping just occurs, we can obtain �s .

Solution The only forces acting on the block are the force
of gravity mg, the normal force n, and the force of static fric-
tion fs . These forces balance when the block is on the verge

mining the motion of an object, you must add only the forces
on that object. The horizontal forces exerted on the sled are
the forward force T exerted by the horse and the backward
force of friction fsled between sled and snow (see Fig. 5.18b).
When the forward force exceeds the backward force, the sled
accelerates to the right.

The force that accelerates the system (horse plus sled) is
the frictional force fhorse exerted by the Earth on the horse’s
feet. The horizontal forces exerted on the horse are the for-
ward force fhorse exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant of

these two forces causes the horse to accelerate. When fhorse
balances fsled , the system moves with constant velocity.

Exercise Are the normal force exerted by the snow on the
horse and the gravitational force exerted by the Earth on the
horse a third-law pair?

Answer No, because they act on the same object. Third-law
force pairs are equal in magnitude and opposite in direction,
and the forces act on different objects.

(b)

T

fsled

(a) (c)

T

fhorse

Figure 5.18 

Figure 5.19 The external forces exerted on a block lying on a
rough incline are the force of gravity mg, the normal force n, and
the force of friction f. For convenience, the force of gravity is re-
solved into a component along the incline mg sin � and a component
perpendicular to the incline mg cos �.

n

f

y

x

θ

mg sin

mg cos θ

mg

θ
θ
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The Sliding Hockey PuckEXAMPLE 5.13
Defining rightward and upward as our positive directions,

we apply Newton’s second law in component form to the
puck and obtain

(1)

(2)

But fk � �kn, and from (2) we see that n � mg. Therefore,
(1) becomes

The negative sign means the acceleration is to the left; this
means that the puck is slowing down. The acceleration is in-
dependent of the mass of the puck and is constant because
we assume that �k remains constant.

Because the acceleration is constant, we can use Equation
2.12, with xi � 0 and vxf � 0:

Note that �k is dimensionless.

0.177 �k �
(20.0 m/s)2

2(9.80 m/s2)(115 m)
�

 �k �
vxi 

2

2gx f
 

vxi 

2 � 2axf � vxi 

2 � 2�kgx f � 0 

vxf  

2 � vxi 

2 � 2ax(x f � x i),

 ax � ��kg 

��kn � ��kmg � max

�Fy � n � mg � 0  (ay � 0)

�Fx � � f k � max

A hockey puck on a frozen pond is given an initial speed of
20.0 m/s. If the puck always remains on the ice and slides 
115 m before coming to rest, determine the coefficient of ki-
netic friction between the puck and ice.

Solution The forces acting on the puck after it is in mo-
tion are shown in Figure 5.20. If we assume that the force of
kinetic friction fk remains constant, then this force produces
a uniform acceleration of the puck in the direction opposite
its velocity, causing the puck to slow down. First, we find this
acceleration in terms of the coefficient of kinetic friction, us-
ing Newton’s second law. Knowing the acceleration of the
puck and the distance it travels, we can then use the equa-
tions of kinematics to find the coefficient of kinetic friction.

Acceleration of Two Connected Objects When Friction Is PresentEXAMPLE 5.14

Motion of block:

Motion of ball:

Note that because the two objects are connected, we can
equate the magnitudes of the x component of the accelera-
tion of the block and the y component of the acceleration of
the ball. From Equation 5.9 we know that fk � �kn, and from
(2) we know that n � m1g � F sin � (note that in this case n is
not equal to m1g); therefore,

(4)

That is, the frictional force is reduced because of the positive

fk � �k(m1g � F sin �)

(3)  �Fy � T � m2g � m2ay � m2a

�Fx � m2ax � 0

� m1ay � 0

(2)  �Fy � n � F sin � � m1g

� m1a

(1)  �Fx � F cos � � fk � T � m1ax
A block of mass m1 on a rough, horizontal surface is con-
nected to a ball of mass m2 by a lightweight cord over a light-
weight, frictionless pulley, as shown in Figure 5.21a. A force
of magnitude F at an angle � with the horizontal is applied to
the block as shown. The coefficient of kinetic friction be-
tween the block and surface is �k . Determine the magnitude
of the acceleration of the two objects.

Solution We start by drawing free-body diagrams for the
two objects, as shown in Figures 5.21b and 5.21c. (Are you be-
ginning to see the similarities in all these examples?) Next,
we apply Newton’s second law in component form to each
object and use Equation 5.9, Then we can solve for
the acceleration in terms of the parameters given.

The applied force F has x and y components F cos � and 
F sin �, respectively. Applying Newton’s second law to both
objects and assuming the motion of the block is to the right,
we obtain

fk � �kn.

Figure 5.20 After the puck is given an initial velocity to the right,
the only external forces acting on it are the force of gravity mg, the
normal force n, and the force of kinetic friction fk .

Motionn

fk

mg
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Automobile Antilock Braking Systems (ABS)APPLICATION
have developed antilock braking systems (ABS) that very
briefly release the brakes when a wheel is just about to stop
turning. This maintains rolling contact between the tire and
the pavement. When the brakes are released momentarily,
the stopping distance is greater than it would be if the brakes
were being applied continuously. However, through the use
of computer control, the “brake-off ” time is kept to a mini-
mum. As a result, the stopping distance is much less than
what it would be if the wheels were to skid. 

Let us model the stopping of a car by examining real data.
In a recent issue of AutoWeek,7 the braking performance for a
Toyota Corolla was measured. These data correspond to the
braking force acquired by a highly trained, professional dri-
ver. We begin by assuming constant acceleration. (Why do we
need to make this assumption?) The magazine provided the
initial speed and stopping distance in non-SI units. After con-
verting these values to SI we use to deter-vxf 

2 � vxi  

2
 � 2axx

If an automobile tire is rolling and not slipping on a road sur-
face, then the maximum frictional force that the road can ex-
ert on the tire is the force of static friction �sn. One must use
static friction in this situation because at the point of contact
between the tire and the road, no sliding of one surface over
the other occurs if the tire is not skidding. However, if the
tire starts to skid, the frictional force exerted on it is reduced
to the force of kinetic friction �kn. Thus, to maximize the
frictional force and minimize stopping distance, the wheels
must maintain pure rolling motion and not skid. An addi-
tional benefit of maintaining wheel rotation is that direc-
tional control is not lost as it is in skidding.

Unfortunately, in emergency situations drivers typically
press down as hard as they can on the brake pedal, “locking
the brakes.” This stops the wheels from rotating, ensuring a
skid and reducing the frictional force from the static to the
kinetic case. To address this problem, automotive engineers

6 Equation 5 shows that when �km1  m2 , there is a range of values of F for which no motion occurs at
a given angle �.
7 AutoWeek magazine, 48:22–23, 1998.

Figure 5.21 (a) The external force F applied as shown can cause the block to accelerate to the right.
(b) and (c) The free-body diagrams, under the assumption that the block accelerates to the right and the
ball accelerates upward. The magnitude of the force of kinetic friction in this case is given by
fk � �kn � �k(m1g � F sin �).

m 1

m 2

F

θ

(a)

a

a

m 2

m 2g

T

(b)

m 1g

F

T

n
F  sin

F  cosfk

θ

θ

θ

(c)

y

x

y component of F. Substituting (4) and the value of T from
(3) into (1) gives

Solving for a, we obtain

(5)
F(cos � � �k sin �) � g(m2 � �km1)

m1 � m2
a �

F cos � � �k(m1g � F sin �) � m2(a � g) � m1a

Note that the acceleration of the block can be either to
the right or to the left,6 depending on the sign of the numer-
ator in (5). If the motion is to the left, then we must reverse
the sign of fk in (1) because the force of kinetic friction must
oppose the motion. In this case, the value of a is the same as
in (5), with �k replaced by � �k .
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SUMMARY

Newton’s first law states that, in the absence of an external force, a body at rest
remains at rest and a body in uniform motion in a straight line maintains that mo-
tion. An inertial frame is one that is not accelerating.

Newton’s second law states that the acceleration of an object is directly pro-
portional to the net force acting on it and inversely proportional to its mass. The
net force acting on an object equals the product of its mass and its acceleration:
�F � ma. You should be able to apply the x and y component forms of this equa-
tion to describe the acceleration of any object acting under the influence of speci-

Figure 5.22 This plot of vehicle speed versus distance
from where the brakes were applied shows that an antilock
braking system (ABS) approaches the performance of a
trained professional driver.

Initial Speed Stopping Distance Acceleration

(mi/h) (m/s) (ft) (m) (m/s2)

30 13.4 34 10.4 � 8.67
60 26.8 143 43.6 � 8.25
80 35.8 251 76.5 � 8.36

Initial Speed Stopping Distance Stopping distance
(mi/h) no skid (m) skidding (m)

30 10.4 13.9
60 43.6 55.5
80 76.5 98.9

Speed (m/s)
40

20

0
0 50 100 Distance from point

of application of brakes (m)

ABS, amateur driver

Professional driver

Amateur driver

mine the acceleration at different speeds. These do not vary
greatly, and so our assumption of constant acceleration is rea-
sonable.

An ABS keeps the wheels rotating, with the result that the
higher coefficient of static friction is maintained between the
tires and road. This approximates the technique of a profes-
sional driver who is able to maintain the wheels at the point
of maximum frictional force. Let us estimate the ABS perfor-
mance by assuming that the magnitude of the acceleration is
not quite as good as that achieved by the professional driver
but instead is reduced by 5%.

We now plot in Figure 5.22 vehicle speed versus distance
from where the brakes were applied (at an initial speed of 
80 mi/h � 37.5 m/s) for the three cases of amateur driver,
professional driver, and estimated ABS performance (ama-
teur driver). We find that a markedly shorter distance is nec-
essary for stopping without locking the wheels and skidding
and a satisfactory value of stopping distance when the ABS
computer maintains tire rotation.

The purpose of the ABS is to help typical drivers (whose ten-
dency is to lock the wheels in an emergency) to better maintain
control of their automobiles and minimize stopping distance. 

We take an average value of acceleration of � 8.4 m/s2,
which is approximately 0.86g. We then calculate the coeffi-
cient of friction from �F � �smg � ma; this gives �s � 0.86 for
the Toyota. This is lower than the rubber-to-concrete value
given in Table 5.2. Can you think of any reasons for this?

Let us now estimate the stopping distance of the car if the
wheels were skidding. Examining Table 5.2 again, we see that
the difference between the coefficients of static and kinetic
friction for rubber against concrete is about 0.2. Let us there-
fore assume that our coefficients differ by the same amount,
so that �k � 0.66. This allows us to calculate estimated stop-
ping distances for the case in which the wheels are locked
and the car skids across the pavement. The results illustrate
the advantage of not allowing the wheels to skid.
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Figure 5.23 Various systems (left) and the corresponding free-body diagrams (right).
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fied forces. If the object is either stationary or moving with constant velocity, then
the forces must vectorially cancel each other.

The force of gravity exerted on an object is equal to the product of its mass
(a scalar quantity) and the free-fall acceleration: Fg � mg. The weight of an ob-
ject is the magnitude of the force of gravity acting on the object.

Newton’s third law states that if two objects interact, then the force exerted by
object 1 on object 2 is equal in magnitude and opposite in direction to the force ex-
erted by object 2 on object 1. Thus, an isolated force cannot exist in nature. Make
sure you can identify third-law pairs and the two objects upon which they act.

The maximum force of static friction fs,max between an object and a surface
is proportional to the normal force acting on the object. In general, fs � �sn,
where �s is the coefficient of static friction and n is the magnitude of the normal
force. When an object slides over a surface, the direction of the force of kinetic
friction fk is opposite the direction of sliding motion and is also proportional to
the magnitude of the normal force. The magnitude of this force is given by fk �
�kn, where �k is the coefficient of kinetic friction.

More on Free-Body Diagrams

To be successful in applying Newton’s second law to a system, you must be able to
recognize all the forces acting on the system. That is, you must be able to construct
the correct free-body diagram. The importance of constructing the free-body dia-
gram cannot be overemphasized. In Figure 5.23 a number of systems are pre-
sented together with their free-body diagrams. You should examine these carefully
and then construct free-body diagrams for other systems described in the end-of-
chapter problems. When a system contains more than one element, it is important
that you construct a separate free-body diagram for each element.

As usual, F denotes some applied force, Fg � mg is the force of gravity, n de-
notes a normal force, f is the force of friction, and T is the force whose magnitude
is the tension exerted on an object.

QUESTIONS

tions: a man takes a step; a snowball hits a woman in the
back; a baseball player catches a ball; a gust of wind
strikes a window.

6. A ball is held in a person’s hand. (a) Identify all the exter-
nal forces acting on the ball and the reaction to each. 
(b) If the ball is dropped, what force is exerted on it
while it is falling? Identify the reaction force in this case.
(Neglect air resistance.)

7. If a car is traveling westward with a constant speed of 
20 m/s, what is the resultant force acting on it?

8. “When the locomotive in Figure 5.3 broke through the
wall of the train station, the force exerted by the locomo-
tive on the wall was greater than the force the wall could
exert on the locomotive.” Is this statement true or in
need of correction? Explain your answer.

9. A rubber ball is dropped onto the floor. What force
causes the ball to bounce?

10. What is wrong with the statement, “Because the car is at
rest, no forces are acting on it”? How would you correct
this statement?

1. A passenger sitting in the rear of a bus claims that he was
injured when the driver slammed on the brakes, causing
a suitcase to come flying toward the passenger from the
front of the bus. If you were the judge in this case, what
disposition would you make? Why?

2. A space explorer is in a spaceship moving through space
far from any planet or star. She notices a large rock, taken
as a specimen from an alien planet, floating around the
cabin of the spaceship. Should she push it gently toward a
storage compartment or kick it toward the compartment?
Why?

3. A massive metal object on a rough metal surface may un-
dergo contact welding to that surface. Discuss how this af-
fects the frictional force between object and surface.

4. The observer in the elevator of Example 5.8 would claim
that the weight of the fish is T, the scale reading. This
claim is obviously wrong. Why does this observation differ
from that of a person in an inertial frame outside the
elevator?

5. Identify the action–reaction pairs in the following situa-
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11. Suppose you are driving a car along a highway at a high
speed. Why should you avoid slamming on your brakes if
you want to stop in the shortest distance? That is, why
should you keep the wheels turning as you brake?

12. If you have ever taken a ride in an elevator of a high-rise
building, you may have experienced a nauseating sensa-
tion of “heaviness” and “lightness” depending on the di-
rection of the acceleration. Explain these sensations. Are
we truly weightless in free-fall?

13. The driver of a speeding empty truck slams on the brakes
and skids to a stop through a distance d. (a) If the truck
carried a heavy load such that its mass were doubled,
what would be its skidding distance? (b) If the initial
speed of the truck is halved, what would be its skidding
distance?

14. In an attempt to define Newton’s third law, a student states
that the action and reaction forces are equal in magnitude
and opposite in direction to each other. If this is the case,
how can there ever be a net force on an object?

15. What force causes (a) a propeller-driven airplane to
move? (b) a rocket? (c) a person walking?

16. Suppose a large and spirited Freshman team is beating
the Sophomores in a tug-of-war contest. The center of the

rope being tugged is gradually accelerating toward the
Freshman team. State the relationship between the
strengths of these two forces: First, the force the Fresh-
men exert on the Sophomores; and second, the force the
Sophomores exert on the Freshmen.

17. If you push on a heavy box that is at rest, you must exert
some force to start its motion. However, once the box is
sliding, you can apply a smaller force to maintain that
motion. Why?

18. A weight lifter stands on a bathroom scale. He pumps a
barbell up and down. What happens to the reading on
the scale as this is done? Suppose he is strong enough to
actually throw the barbell upward. How does the reading
on the scale vary now?

19. As a rocket is fired from a launching pad, its speed and
acceleration increase with time as its engines continue to
operate. Explain why this occurs even though the force of
the engines exerted on the rocket remains constant.

20. In the motion picture It Happened One Night (Columbia
Pictures, 1934), Clark Gable is standing inside a station-
ary bus in front of Claudette Colbert, who is seated. The
bus suddenly starts moving forward, and Clark falls into
Claudette’s lap. Why did this happen?

PROBLEMS

ity of 32.0 m/s horizontally forward. If the ball starts
from rest, (a) through what distance does the ball accel-
erate before its release? (b) What force does the pitcher
exert on the ball?

7. After uniformly accelerating his arm for a time t, a
pitcher releases a baseball of weight � Fg j with a veloc-
ity vi. If the ball starts from rest, (a) through what dis-
tance does the ball accelerate before its release? 
(b) What force does the pitcher exert on the ball?

8. Define one pound as the weight of an object of mass
0.453 592 37 kg at a location where the acceleration
due to gravity is 32.174 0 ft/s2. Express the pound as
one quantity with one SI unit.

9. A 4.00-kg object has a velocity of 3.00i m/s at one in-
stant. Eight seconds later, its velocity has increased to 
(8.00i � 10.0j) m/s. Assuming the object was subject to
a constant total force, find (a) the components of the
force and (b) its magnitude.

10. The average speed of a nitrogen molecule in air is
about 6.70 � 102 m/s, and its mass is 4.68 � 10�26 kg.
(a) If it takes 3.00 � 10�13 s for a nitrogen molecule to
hit a wall and rebound with the same speed but moving
in the opposite direction, what is the average accelera-
tion of the molecule during this time interval? (b) What
average force does the molecule exert on the wall?

Sections 5.1 through 5.6
1. A force F applied to an object of mass m1 produces an

acceleration of 3.00 m/s2. The same force applied to a
second object of mass m2 produces an acceleration of
1.00 m/s2. (a) What is the value of the ratio m1/m2 ? 
(b) If m1 and m2 are combined, find their acceleration
under the action of the force F.

2. A force of 10.0 N acts on a body of mass 2.00 kg. What
are (a) the body’s acceleration, (b) its weight in new-
tons, and (c) its acceleration if the force is doubled?

3. A 3.00-kg mass undergoes an acceleration given by a �
(2.00i � 5.00j) m/s2. Find the resultant force �F and
its magnitude.

4. A heavy freight train has a mass of 15 000 metric tons. 
If the locomotive can pull with a force of 750 000 N,
how long does it take to increase the speed from 0 to
80.0 km/h?

5. A 5.00-g bullet leaves the muzzle of a rifle with a speed
of 320 m/s. The expanding gases behind it exert what
force on the bullet while it is traveling down the barrel
of the rifle, 0.820 m long? Assume constant acceleration
and negligible friction.

6. After uniformly accelerating his arm for 0.090 0 s, a
pitcher releases a baseball of weight 1.40 N with a veloc-

WEB

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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11. An electron of mass 9.11 � 10�31 kg has an initial speed
of 3.00 � 105 m/s. It travels in a straight line, and its
speed increases to 7.00 � 105 m/s in a distance of 
5.00 cm. Assuming its acceleration is constant, (a) de-
termine the force exerted on the electron and (b) com-
pare this force with the weight of the electron, which we
neglected.

12. A woman weighs 120 lb. Determine (a) her weight in
newtons and (b) her mass in kilograms.

13. If a man weighs 900 N on the Earth, what would he
weigh on Jupiter, where the acceleration due to gravity
is 25.9 m/s2?

14. The distinction between mass and weight was discov-
ered after Jean Richer transported pendulum clocks
from Paris to French Guiana in 1671. He found that
they ran slower there quite systematically. The effect was
reversed when the clocks returned to Paris. How much
weight would you personally lose in traveling from
Paris, where g � 9.809 5 m/s2, to Cayenne, where g �
9.780 8 m/s2? (We shall consider how the free-fall accel-
eration influences the period of a pendulum in Section
13.4.)

15. Two forces F1 and F2 act on a 5.00-kg mass. If F1 �
20.0 N and F2 � 15.0 N, find the accelerations in 
(a) and (b) of Figure P5.15.

ation of the 1 000-kg boat? (b) If it starts from rest, how
far will it move in 10.0 s? (c) What will be its speed at
the end of this time?

20. Three forces, given by F1 � (� 2.00i � 2.00j) N, F2 �
(5.00i � 3.00j) N, and F3 � (� 45.0i) N, act on an ob-
ject to give it an acceleration of magnitude 3.75 m/s2.
(a) What is the direction of the acceleration? (b) What
is the mass of the object? (c) If the object is initially at
rest, what is its speed after 10.0 s? (d) What are the ve-
locity components of the object after 10.0 s?

21. A 15.0-lb block rests on the floor. (a) What force does
the floor exert on the block? (b) If a rope is tied to the
block and run vertically over a pulley, and the other end
is attached to a free-hanging 10.0-lb weight, what is the
force exerted by the floor on the 15.0-lb block? (c) If we
replace the 10.0-lb weight in part (b) with a 20.0-lb
weight, what is the force exerted by the floor on the
15.0-lb block?

Section 5.7 Some Applications of Newton’s Laws
22. A 3.00-kg mass is moving in a plane, with its x and y co-

ordinates given by x � 5t2 � 1 and y � 3t3 � 2, where
x and y are in meters and t is in seconds. Find the mag-
nitude of the net force acting on this mass at t � 2.00 s.

23. The distance between two telephone poles is 50.0 m.
When a 1.00-kg bird lands on the telephone wire mid-
way between the poles, the wire sags 0.200 m. Draw a
free-body diagram of the bird. How much tension does
the bird produce in the wire? Ignore the weight of the
wire.

24. A bag of cement of weight 325 N hangs from three
wires as shown in Figure P5.24. Two of the wires make
angles �1 � 60.0° and �2 � 25.0° with the horizontal. If
the system is in equilibrium, find the tensions T1 , T2 ,
and T3 in the wires.

16. Besides its weight, a 2.80-kg object is subjected to one
other constant force. The object starts from rest and in
1.20 s experiences a displacement of (4.20 m)i �
(3.30 m)j, where the direction of j is the upward vertical
direction. Determine the other force.

17. You stand on the seat of a chair and then hop off. 
(a) During the time you are in flight down to the floor,
the Earth is lurching up toward you with an accelera-
tion of what order of magnitude? In your solution ex-
plain your logic. Visualize the Earth as a perfectly solid
object. (b) The Earth moves up through a distance of
what order of magnitude?

18. Forces of 10.0 N north, 20.0 N east, and 15.0 N south
are simultaneously applied to a 4.00-kg mass as it rests
on an air table. Obtain the object’s acceleration.

19. A boat moves through the water with two horizontal
forces acting on it. One is a 2000-N forward push
caused by the motor; the other is a constant 1800-N re-
sistive force caused by the water. (a) What is the acceler-

(a)

90.0°

F2

F1m

(b)

60.0°

F2

F1m

Figure P5.15

Figure P5.24 Problems 24 and 25.

1θ 2θ

T1 T2

T3
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turns to the fire at the same speed with the bucket now
making an angle of 7.00° with the vertical. What is the
mass of the water in the bucket?

29. A 1.00-kg mass is observed to accelerate at 10.0 m/s2 in
a direction 30.0° north of east (Fig. P5.29). The force
F2 acting on the mass has a magnitude of 5.00 N and is
directed north. Determine the magnitude and direction
of the force F1 acting on the mass.

WEB

30. A simple accelerometer is constructed by suspending a
mass m from a string of length L that is tied to the top
of a cart. As the cart is accelerated the string-mass sys-
tem makes a constant angle � with the vertical. 
(a) Assuming that the string mass is negligible com-
pared with m, derive an expression for the cart’s acceler-
ation in terms of � and show that it is independent of

27. The systems shown in Figure P5.27 are in equilibrium.
If the spring scales are calibrated in newtons, what do
they read? (Neglect the masses of the pulleys and
strings, and assume the incline is frictionless.)

28. A fire helicopter carries a 620-kg bucket of water at the
end of a cable 20.0 m long. As the aircraft flies back
from a fire at a constant speed of 40.0 m/s, the cable
makes an angle of 40.0° with respect to the vertical. 
(a) Determine the force of air resistance on the bucket.
(b) After filling the bucket with sea water, the pilot re-

Figure P5.26

Figure P5.27

Figure P5.29

25. A bag of cement of weight Fg hangs from three wires as
shown in Figure P5.24. Two of the wires make angles �1
and �2 with the horizontal. If the system is in equilib-
rium, show that the tension in the left-hand wire is

26. You are a judge in a children’s kite-flying contest, and
two children will win prizes for the kites that pull most
strongly and least strongly on their strings. To measure
string tensions, you borrow a weight hanger, some slot-
ted weights, and a protractor from your physics teacher
and use the following protocol, illustrated in Figure
P5.26: Wait for a child to get her kite well-controlled,
hook the hanger onto the kite string about 30 cm from
her hand, pile on weights until that section of string is
horizontal, record the mass required, and record the
angle between the horizontal and the string running up
to the kite. (a) Explain how this method works. As you
construct your explanation, imagine that the children’s
parents ask you about your method, that they might
make false assumptions about your ability without con-
crete evidence, and that your explanation is an opportu-
nity to give them confidence in your evaluation tech-
nique. (b) Find the string tension if the mass required
to make the string horizontal is 132 g and the angle of
the kite string is 46.3°.

T1 � Fg cos �2/sin(�1 � �2)

5.00 kg

(a)

5.00 kg

5.00 kg 5.00 kg

(b)

5.00 kg

(c)

30.0°

F1

30.0°

F2

a = 10.0 m/s2

1.00 kg
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the mass m and the length L. (b) Determine the accel-
eration of the cart when � � 23.0°.

31. Two people pull as hard as they can on ropes attached
to a boat that has a mass of 200 kg. If they pull in the
same direction, the boat has an acceleration of 
1.52 m/s2 to the right. If they pull in opposite direc-
tions, the boat has an acceleration of 0.518 m/s2 to the
left. What is the force exerted by each person on the
boat? (Disregard any other forces on the boat.)

32. Draw a free-body diagram for a block that slides down a
frictionless plane having an inclination of � � 15.0°
(Fig. P5.32). If the block starts from rest at the top and
the length of the incline is 2.00 m, find (a) the accelera-
tion of the block and (b) its speed when it reaches the
bottom of the incline.

36. Two masses of 3.00 kg and 5.00 kg are connected by a
light string that passes over a frictionless pulley, as was
shown in Figure 5.15a. Determine (a) the tension in the
string, (b) the acceleration of each mass, and (c) the
distance each mass will move in the first second of mo-
tion if they start from rest.

37. In the system shown in Figure P5.37, a horizontal force
Fx acts on the 8.00-kg mass. The horizontal surface is
frictionless.(a) For what values of Fx does the 2.00-kg
mass accelerate upward? (b) For what values of Fx is the
tension in the cord zero? (c) Plot the acceleration of
the 8.00-kg mass versus Fx . Include values of Fx from
� 100 N to � 100 N.

WEB

38. Mass m1 on a frictionless horizontal table is connected
to mass m2 by means of a very light pulley P1 and a light
fixed pulley P2 as shown in Figure P5.38. (a) If a1 and a2

35. Two masses m1 and m2 situated on a frictionless, hori-
zontal surface are connected by a light string. A force F
is exerted on one of the masses to the right (Fig.
P5.35). Determine the acceleration of the system and
the tension T in the string.

33. A block is given an initial velocity of 5.00 m/s up a fric-
tionless 20.0° incline. How far up the incline does the
block slide before coming to rest?

34. Two masses are connected by a light string that passes
over a frictionless pulley, as in Figure P5.34. If the in-
cline is frictionless and if m1 � 2.00 kg, m2 � 6.00 kg,
and � � 55.0°, find (a) the accelerations of the masses,
(b) the tension in the string, and (c) the speed of each
mass 2.00 s after being released from rest. 

Figure P5.32

Figure P5.34

Figure P5.35 Problems 35 and 51.
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are the accelerations of m1 and m2 , respectively, what is
the relationship between these accelerations? Express
(b) the tensions in the strings and (c) the accelerations
a1 and a2 in terms of the masses m1 and m2 and g.

39. A 72.0-kg man stands on a spring scale in an elevator.
Starting from rest, the elevator ascends, attaining its
maximum speed of 1.20 m/s in 0.800 s. It travels with
this constant speed for the next 5.00 s. The elevator
then undergoes a uniform acceleration in the negative
y direction for 1.50 s and comes to rest. What does the
spring scale register (a) before the elevator starts to
move? (b) during the first 0.800 s? (c) while the eleva-
tor is traveling at constant speed? (d) during the time it
is slowing down?

Section 5.8 Forces of Friction
40. The coefficient of static friction is 0.800 between the

soles of a sprinter’s running shoes and the level track
surface on which she is running. Determine the maxi-
mum acceleration she can achieve. Do you need to
know that her mass is 60.0 kg?

41. A 25.0-kg block is initially at rest on a horizontal sur-
face. A horizontal force of 75.0 N is required to set the
block in motion. After it is in motion, a horizontal force
of 60.0 N is required to keep the block moving with
constant speed. Find the coefficients of static and ki-
netic friction from this information.

42. A racing car accelerates uniformly from 0 to 80.0 mi/h
in 8.00 s. The external force that accelerates the car is
the frictional force between the tires and the road. If
the tires do not slip, determine the minimum coeffi-
cient of friction between the tires and the road.

43. A car is traveling at 50.0 mi/h on a horizontal highway.
(a) If the coefficient of friction between road and tires
on a rainy day is 0.100, what is the minimum distance in
which the car will stop? (b) What is the stopping dis-
tance when the surface is dry and �s � 0.600?

44. A woman at an airport is towing her 20.0-kg suitcase at
constant speed by pulling on a strap at an angle of �
above the horizontal (Fig. P5.44). She pulls on the strap
with a 35.0-N force, and the frictional force on the suit-
case is 20.0 N. Draw a free-body diagram for the suit-
case. (a) What angle does the strap make with the hori-
zontal? (b) What normal force does the ground exert
on the suitcase?

45. A 3.00-kg block starts from rest at the top of a 30.0° in-
cline and slides a distance of 2.00 m down the incline in
1.50 s. Find (a) the magnitude of the acceleration of
the block, (b) the coefficient of kinetic friction between
block and plane, (c) the frictional force acting on the
block, and (d) the speed of the block after it has slid
2.00 m.

46. To determine the coefficients of friction between rub-
ber and various surfaces, a student uses a rubber eraser
and an incline. In one experiment the eraser begins to
slip down the incline when the angle of inclination is

36.0° and then moves down the incline with constant
speed when the angle is reduced to 30.0°. From these
data, determine the coefficients of static and kinetic
friction for this experiment.

47. A boy drags his 60.0-N sled at constant speed up a 15.0°
hill. He does so by pulling with a 25.0-N force on a rope
attached to the sled. If the rope is inclined at 35.0° to
the horizontal, (a) what is the coefficient of kinetic fric-
tion between sled and snow? (b) At the top of the hill,
he jumps on the sled and slides down the hill. What is
the magnitude of his acceleration down the slope?

48. Determine the stopping distance for a skier moving
down a slope with friction with an initial speed of 
20.0 m/s (Fig. P5.48). Assume �k � 0.180 and � � 5.00°.

49. A 9.00-kg hanging weight is connected by a string over a
pulley to a 5.00-kg block that is sliding on a flat table
(Fig. P5.49). If the coefficient of kinetic friction is
0.200, find the tension in the string.

50. Three blocks are connected on a table as shown in Fig-
ure P5.50. The table is rough and has a coefficient of ki-

Figure P5.44

Figure P5.48
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ADDITIONAL PROBLEMS

54. A time-dependent force F � (8.00i � 4.00t j) N (where
t is in seconds) is applied to a 2.00-kg object initially at
rest. (a) At what time will the object be moving with a
speed of 15.0 m/s? (b) How far is the object from its
initial position when its speed is 15.0 m/s? (c) What is
the object’s displacement at the time calculated in (a)?

55. An inventive child named Pat wants to reach an apple
in a tree without climbing the tree. Sitting in a chair
connected to a rope that passes over a frictionless pulley
(Fig. P5.55), Pat pulls on the loose end of the rope with
such a force that the spring scale reads 250 N. Pat’s
weight is 320 N, and the chair weighs 160 N. (a) Draw
free-body diagrams for Pat and the chair considered as
separate systems, and draw another diagram for Pat and
the chair considered as one system. (b) Show that the
acceleration of the system is upward and find its magni-
tude. (c) Find the force Pat exerts on the chair.

56. Three blocks are in contact with each other on a fric-
tionless, horizontal surface, as in Figure P5.56. A hori-
zontal force F is applied to m1 . If m1 � 2.00 kg, m2 �
3.00 kg, m3 � 4.00 kg, and F � 18.0 N, draw a separate
free-body diagram for each block and find (a) the accel-
eration of the blocks, (b) the resultant force on each
block, and (c) the magnitudes of the contact forces be-
tween the blocks.

Figure P5.49

Figure P5.50

Figure P5.52

Figure P5.53

5.00 kg

9.00 kg

1.00 kg

2.00 kg4.00 kg

M

T

x

P

50.0°

netic friction of 0.350. The three masses are 4.00 kg,
1.00 kg, and 2.00 kg, and the pulleys are frictionless.
Draw a free-body diagram for each block. (a) Deter-
mine the magnitude and direction of the acceleration
of each block. (b) Determine the tensions in the two
cords.

51. Two blocks connected by a rope of negligible mass are
being dragged by a horizontal force F (see Fig. P5.35).
Suppose that F � 68.0 N, m1 � 12.0 kg, m2 � 18.0 kg,
and the coefficient of kinetic friction between each
block and the surface is 0.100. (a) Draw a free-body dia-
gram for each block. (b) Determine the tension T and
the magnitude of the acceleration of the system.

52. A block of mass 2.20 kg is accelerated across a rough
surface by a rope passing over a pulley, as shown in Fig-
ure P5.52. The tension in the rope is 10.0 N, and the
pulley is 10.0 cm above the top of the block. The coeffi-
cient of kinetic friction is 0.400. (a) Determine the ac-
celeration of the block when x � 0.400 m. (b) Find the
value of x at which the acceleration becomes zero.

53. A block of mass 3.00 kg is pushed up against a wall by a
force P that makes a 50.0° angle with the horizontal as
shown in Figure P5.53. The coefficient of static friction
between the block and the wall is 0.250. Determine the
possible values for the magnitude of P that allow the
block to remain stationary.
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57. A high diver of mass 70.0 kg jumps off a board 10.0 m
above the water. If his downward motion is stopped 
2.00 s after he enters the water, what average upward
force did the water exert on him?

58. Consider the three connected objects shown in Figure
P5.58. If the inclined plane is frictionless and the 
system is in equilibrium, find (in terms of m, g, and �)
(a) the mass M and (b) the tensions T1 and T2 . If the
value of M is double the value found in part (a), find
(c) the acceleration of each object, and (d) the ten-
sions T1 and T2 . If the coefficient of static friction 
between m and 2m and the inclined plane is �s , and 

the system is in equilibrium, find (e) the minimum
value of M and (f) the maximum value of M. (g) Com-
pare the values of T2 when M has its minimum and
maximum values. 

59. A mass M is held in place by an applied force F and a
pulley system as shown in Figure P5.59. The pulleys are
massless and frictionless. Find (a) the tension in each
section of rope, T1 , T2 , T3 , T4 , and T5 and (b) the mag-
nitude of F. (Hint: Draw a free-body diagram for each
pulley.)

WEB

60. Two forces, given by F1 � (� 6.00i � 4.00j) N and F2 �
(� 3.00i � 7.00j) N, act on a particle of mass 2.00 kg that
is initially at rest at coordinates (� 2.00 m, � 4.00 m). 
(a) What are the components of the particle’s velocity at
t � 10.0 s? (b) In what direction is the particle moving at
t � 10.0 s? (c) What displacement does the particle un-
dergo during the first 10.0 s? (d) What are the coordi-
nates of the particle at t � 10.0 s?

61. A crate of weight Fg is pushed by a force P on a horizon-
tal floor. (a) If the coefficient of static friction is �s and
P is directed at an angle � below the horizontal, show
that the minimum value of P that will move the crate is
given by

(b) Find the minimum value of P that can produce mo-

P � �s Fg sec �(1 � �s tan �)�1

Figure P5.55

Figure P5.56

m1 m2 m3F

Figure P5.58

Figure P5.59
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tion when �s � 0.400, Fg � 100 N, and � � 0°, 15.0°,
30.0°, 45.0°, and 60.0°.

62. Review Problem. A block of mass m � 2.00 kg is re-
leased from rest h � 0.500 m from the surface of a
table, at the top of a � � 30.0° incline as shown in Fig-
ure P5.62. The frictionless incline is fixed on a table of
height H � 2.00 m. (a) Determine the acceleration of
the block as it slides down the incline. (b) What is the
velocity of the block as it leaves the incline? (c) How far
from the table will the block hit the floor? (d) How
much time has elapsed between when the block is re-
leased and when it hits the floor? (e) Does the mass of
the block affect any of the above calculations?

65. A block of mass m � 2.00 kg rests on the left edge of a
block of larger mass M � 8.00 kg. The coefficient of ki-
netic friction between the two blocks is 0.300, and the
surface on which the 8.00-kg block rests is frictionless. A
constant horizontal force of magnitude F � 10.0 N is ap-
plied to the 2.00-kg block, setting it in motion as shown
in Figure P5.65a. If the length L that the leading edge of
the smaller block travels on the larger block is 3.00 m,
(a) how long will it take before this block makes it to the
right side of the 8.00-kg block, as shown in Figure
P5.65b? (Note: Both blocks are set in motion when F is
applied.) (b) How far does the 8.00-kg block move in
the process?

66. A student is asked to measure the acceleration of a cart
on a “frictionless” inclined plane as seen in Figure
P5.32, using an air track, a stopwatch, and a meter stick.
The height of the incline is measured to be 1.774 cm,
and the total length of the incline is measured to be 
d � 127.1 cm. Hence, the angle of inclination � is deter-
mined from the relation sin � � 1.774/127.1. The cart
is released from rest at the top of the incline, and its dis-
placement x along the incline is measured versus time,
where x � 0 refers to the initial position of the cart. For
x values of 10.0 cm, 20.0 cm, 35.0 cm, 50.0 cm, 75.0 cm,
and 100 cm, the measured times to undergo these dis-
placements (averaged over five runs) are 1.02 s, 1.53 s,
2.01 s, 2.64 s, 3.30 s, and 3.75 s, respectively. Construct a
graph of x versus t2, and perform a linear least-squares
fit to the data. Determine the acceleration of the cart
from the slope of this graph, and compare it with the
value you would get using a� � g sin �, where g �
9.80 m/s2.

67. A 2.00-kg block is placed on top of a 5.00-kg block as in
Figure P5.67. The coefficient of kinetic friction between
the 5.00-kg block and the surface is 0.200. A horizontal
force F is applied to the 5.00-kg block. (a) Draw a free-
body diagram for each block. What force accelerates
the 2.00-kg block? (b) Calculate the magnitude of the
force necessary to pull both blocks to the right with an

63. A 1.30-kg toaster is not plugged in. The coefficient of
static friction between the toaster and a horizontal
countertop is 0.350. To make the toaster start moving,
you carelessly pull on its electric cord. (a) For the cord
tension to be as small as possible, you should pull at
what angle above the horizontal? (b) With this angle,
how large must the tension be?

64. A 2.00-kg aluminum block and a 6.00-kg copper block
are connected by a light string over a frictionless pulley.
They sit on a steel surface, as shown in Figure P5.64,
and � � 30.0°. Do they start to move once any holding
mechanism is released? If so, determine (a) their accel-
eration and (b) the tension in the string. If not, deter-
mine the sum of the magnitudes of the forces of friction
acting on the blocks.

Figure P5.62

Figure P5.64

Figure P5.65
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acceleration of 3.00 m/s2. (c) Find the minimum coeffi-
cient of static friction between the blocks such that the
2.00-kg block does not slip under an acceleration of
3.00 m/s2.

68. A 5.00-kg block is placed on top of a 10.0-kg block (Fig.
P5.68). A horizontal force of 45.0 N is applied to the
10.0-kg block, and the 5.00-kg block is tied to the wall.
The coefficient of kinetic friction between all surfaces is
0.200. (a) Draw a free-body diagram for each block and
identify the action–reaction forces between the blocks.
(b) Determine the tension in the string and the magni-
tude of the acceleration of the 10.0-kg block.

70. Initially the system of masses shown in Figure P5.69 is
held motionless. All surfaces, pulley, and wheels are fric-
tionless. Let the force F be zero and assume that m2 can
move only vertically. At the instant after the system of
masses is released, find (a) the tension T in the string,
(b) the acceleration of m2 , (c) the acceleration of M,
and (d) the acceleration of m1 . (Note: The pulley accel-
erates along with the cart.)

71. A block of mass 5.00 kg sits on top of a second block of
mass 15.0 kg, which in turn sits on a horizontal table.
The coefficients of friction between the two blocks are
�s � 0.300 and �k � 0.100. The coefficients of friction
between the lower block and the rough table are �s �
0.500 and �k � 0.400. You apply a constant horizontal
force to the lower block, just large enough to make this
block start sliding out from between the upper block
and the table. (a) Draw a free-body diagram of each
block, naming the forces acting on each. (b) Determine
the magnitude of each force on each block at the in-
stant when you have started pushing but motion has not
yet started. (c) Determine the acceleration you measure
for each block.

72. Two blocks of mass 3.50 kg and 8.00 kg are connected
by a string of negligible mass that passes over a friction-
less pulley (Fig. P5.72). The inclines are frictionless.
Find (a) the magnitude of the acceleration of each
block and (b) the tension in the string.

73. The system shown in Figure P5.72 has an acceleration
of magnitude 1.50 m/s2. Assume the coefficients of ki-
netic friction between block and incline are the same
for both inclines. Find (a) the coefficient of kinetic fric-
tion and (b) the tension in the string.

74. In Figure P5.74, a 500-kg horse pulls a sledge of mass
100 kg. The system (horse plus sledge) has a forward
acceleration of 1.00 m/s2 when the frictional force ex-
erted on the sledge is 500 N. Find (a) the tension in the
connecting rope and (b) the magnitude and direction
of the force of friction exerted on the horse. (c) Verify
that the total forces of friction the ground exerts on the
system will give the system an acceleration of 1.00 m/s2.

75. A van accelerates down a hill (Fig. P5.75), going from
rest to 30.0 m/s in 6.00 s. During the acceleration, a toy
(m � 0.100 kg) hangs by a string from the van’s ceiling.
The acceleration is such that the string remains perpen-
dicular to the ceiling. Determine (a) the angle � and
(b) the tension in the string.

69. What horizontal force must be applied to the cart
shown in Figure P5.69 so that the blocks remain station-
ary relative to the cart? Assume all surfaces, wheels, and
pulley are frictionless. (Hint: Note that the force ex-
erted by the string accelerates m1 .)

Figure P5.67

Figure P5.68

Figure P5.69 Problems 69 and 70.

Figure P5.72 Problems 72 and 73.
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78. An 8.40-kg mass slides down a fixed, frictionless in-
clined plane. Use a computer to determine and tabu-
late the normal force exerted on the mass and its accel-
eration for a series of incline angles (measured from
the horizontal) ranging from 0 to 90° in 5° increments.
Plot a graph of the normal force and the acceleration as
functions of the incline angle. In the limiting cases of 0
and 90°, are your results consistent with the known be-
havior?

terms of �1 , that the sections of string between the out-
side butterflies and the inside butterflies form with the
horizontal. (c) Show that the distance D between the
end points of the string is

77. Before 1960 it was believed that the maximum attain-
able coefficient of static friction for an automobile tire
was less than 1. Then about 1962, three companies in-
dependently developed racing tires with coefficients of
1.6. Since then, tires have improved, as illustrated in
this problem. According to the 1990 Guinness Book of
Records, the fastest time in which a piston-engine car
initially at rest has covered a distance of one-quarter
mile is 4.96 s. This record was set by Shirley Muldowney
in September 1989 (Fig. P5.77). (a) Assuming that the
rear wheels nearly lifted the front wheels off the pave-
ment, what minimum value of �s is necessary to achieve
the record time? (b) Suppose Muldowney were able to
double her engine power, keeping other things equal.
How would this change affect the elapsed time?

D �
L
5

 �2 cos �1 � 2 cos�tan�1 � 1
2

 tan �1�� � 1	

76. A mobile is formed by supporting four metal butterflies
of equal mass m from a string of length L. The points of
support are evenly spaced a distance � apart as shown in
Figure P5.76. The string forms an angle �1 with the ceil-
ing at each end point. The center section of string is
horizontal. (a) Find the tension in each section of
string in terms of �1 , m, and g. (b) Find the angle �2 , in

Figure P5.74

Figure P5.75

Figure P5.76

Figure P5.77

100 kg 500 kg

θ

θ

�

��
�

D

1
2�

m

m

m

m

L = 5�

θ 1θ
θ 2θ

ANSWERS TO QUICK QUIZZES

there is no net force and the object remains stationary.
It also is possible to have a net force and no motion, but
only for an instant. A ball tossed vertically upward stops
at the peak of its path for an infinitesimally short time,
but the force of gravity is still acting on it. Thus, al-

5.1 (a) True. Newton’s first law tells us that motion requires
no force: An object in motion continues to move at con-
stant velocity in the absence of external forces. (b) True.
A stationary object can have several forces acting on it,
but if the vector sum of all these external forces is zero,
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though v � 0 at the peak, the net force acting on the
ball is not zero.

5.2 No. Direction of motion is part of an object’s velocity,
and force determines the direction of acceleration, not
that of velocity.

5.3 (a) Force of gravity. (b) Force of gravity. The only exter-
nal force acting on the ball at all points in its trajectory
is the downward force of gravity. 

5.4 As the person steps out of the boat, he pushes against it
with his foot, expecting the boat to push back on him so
that he accelerates toward the dock. However, because
the boat is untied, the force exerted by the foot causes
the boat to scoot away from the dock. As a result, the
person is not able to exert a very large force on the boat
before it moves out of reach. Therefore, the boat does
not exert a very large reaction force on him, and he

ends up not being accelerated sufficiently to make it to
the dock. Consequently, he falls into the water instead.
If a small dog were to jump from the untied boat toward
the dock, the force exerted by the boat on the dog
would probably be enough to ensure the dog’s success-
ful landing because of the dog’s small mass.

5.5 (a) The same force is experienced by both. The fly and
bus experience forces that are equal in magnitude but
opposite in direction. (b) The fly. Because the fly has
such a small mass, it undergoes a very large acceleration.
The huge mass of the bus means that it more effectively
resists any change in its motion.

5.6 (b) The crate accelerates to the right. Because the only
horizontal force acting on it is the force of static friction
between its bottom surface and the truck bed, that force
must also be directed to the right.
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This sky diver is falling at more than 
50 m/s (120 mi/h), but once her para-
chute opens, her downward velocity will
be greatly reduced. Why does she slow
down rapidly when her chute opens, en-
abling her to fall safely to the ground? If
the chute does not function properly, the
sky diver will almost certainly be seri-
ously injured. What force exerted on 
her limits her maximum speed?
(Guy Savage/Photo Researchers, Inc.)
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Uniform Circular Motion

6.2 Nonuniform Circular Motion

6.3 (Optional) Motion in Accelerated
Frames
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of Resistive Forces
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Particle Dynamics
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n the preceding chapter we introduced Newton’s laws of motion and applied
them to situations involving linear motion. Now we discuss motion that is
slightly more complicated. For example, we shall apply Newton’s laws to objects

traveling in circular paths. Also, we shall discuss motion observed from an acceler-
ating frame of reference and motion in a viscous medium. For the most part, this
chapter is a series of examples selected to illustrate the application of Newton’s
laws to a wide variety of circumstances.

NEWTON’S SECOND LAW APPLIED TO
UNIFORM CIRCULAR MOTION

In Section 4.4 we found that a particle moving with uniform speed v in a circular
path of radius r experiences an acceleration ar that has a magnitude

The acceleration is called the centripetal acceleration because ar is directed toward
the center of the circle. Furthermore, ar is always perpendicular to v. (If there
were a component of acceleration parallel to v, the particle’s speed would be
changing.)

Consider a ball of mass m that is tied to a string of length r and is being
whirled at constant speed in a horizontal circular path, as illustrated in Figure 6.1.
Its weight is supported by a low-friction table. Why does the ball move in a circle?
Because of its inertia, the tendency of the ball is to move in a straight line; how-
ever, the string prevents motion along a straight line by exerting on the ball a
force that makes it follow the circular path. This force is directed along the string
toward the center of the circle, as shown in Figure 6.1. This force can be any one
of our familiar forces causing an object to follow a circular path.

If we apply Newton’s second law along the radial direction, we find that the
value of the net force causing the centripetal acceleration can be evaluated:

(6.1)�Fr � mar � m 
v2

r

ar �
v2

r

6.1
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Force causing centripetal
acceleration

I

4.7

m

Fr

Fr

r

Figure 6.1 Overhead view of a ball moving
in a circular path in a horizontal plane. A
force Fr directed toward the center of the cir-
cle keeps the ball moving in its circular path.
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A force causing a centripetal acceleration acts toward the center of the circular
path and causes a change in the direction of the velocity vector. If that force
should vanish, the object would no longer move in its circular path; instead, it
would move along a straight-line path tangent to the circle. This idea is illustrated
in Figure 6.2 for the ball whirling at the end of a string. If the string breaks at
some instant, the ball moves along the straight-line path tangent to the circle at
the point where the string broke.

Is it possible for a car to move in a circular path in such a way that it has a tangential accel-
eration but no centripetal acceleration?

Quick Quiz 6.1

Forces That Cause Centripetal AccelerationCONCEPTUAL EXAMPLE 6.1
Consider some examples. For the motion of the Earth

around the Sun, the centripetal force is gravity. For an object
sitting on a rotating turntable, the centripetal force is friction.
For a rock whirled on the end of a string, the centripetal
force is the force of tension in the string. For an amusement-
park patron pressed against the inner wall of a rapidly rotat-
ing circular room, the centripetal force is the normal force ex-
erted by the wall. What’s more, the centripetal force could 
be a combination of two or more forces. For example, as a
Ferris-wheel rider passes through the lowest point, the cen-
tripetal force on her is the difference between the normal
force exerted by the seat and her weight.

The force causing centripetal acceleration is sometimes
called a centripetal force. We are familiar with a variety of forces
in nature—friction, gravity, normal forces, tension, and so
forth. Should we add centripetal force to this list?

Solution No; centripetal force should not be added to this
list. This is a pitfall for many students. Giving the force caus-
ing circular motion a name—centripetal force—leads many
students to consider it a new kind of force rather than a new
role for force. A common mistake in force diagrams is to draw
all the usual forces and then to add another vector for the
centripetal force. But it is not a separate force—it is simply
one of our familiar forces acting in the role of a force that causes
a circular motion.

Figure 6.2 When the string breaks, the
ball moves in the direction tangent to the
circle.

r

An athlete in the process of throw-
ing the hammer at the 1996
Olympic Games in Atlanta, Geor-
gia. The force exerted by the chain
is the force causing the circular
motion. Only when the athlete re-
leases the hammer will it move
along a straight-line path tangent to
the circle.
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A ball is following the dotted circular path shown in Figure 6.3 under the influence of a
force. At a certain instant of time, the force on the ball changes abruptly to a new force, and
the ball follows the paths indicated by the solid line with an arrowhead in each of the four
parts of the figure. For each part of the figure, describe the magnitude and direction of the
force required to make the ball move in the solid path. If the dotted line represents the
path of a ball being whirled on the end of a string, which path does the ball follow if 
the string breaks?

Let us consider some examples of uniform circular motion. In each case, be
sure to recognize the external force (or forces) that causes the body to move in its
circular path.

Quick Quiz 6.2

Figure 6.3 A ball that had been moving in a circular path is acted on by various external forces
that change its path.

(a) (b) (c) (d)

QuickLab
Tie a string to a tennis ball, swing it in
a circle, and then, while it is swinging,
let go of the string to verify your an-
swer to the last part of Quick Quiz 6.2.

How Fast Can It Spin?EXAMPLE 6.2
Solving for v, we have

This shows that v increases with T and decreases with larger
m, as we expect to see—for a given v, a large mass requires a
large tension and a small mass needs only a small tension.
The maximum speed the ball can have corresponds to the
maximum tension. Hence, we find

Exercise Calculate the tension in the cord if the speed of
the ball is 5.00 m/s.

Answer 8.33 N.

12.2 m/s�

vmax �  √ Tmaxr
m

�  √ (50.0 N)(1.50 m)
0.500 kg

v �  √ Tr
m

A ball of mass 0.500 kg is attached to the end of a cord 
1.50 m long. The ball is whirled in a horizontal circle as was
shown in Figure 6.1. If the cord can withstand a maximum
tension of 50.0 N, what is the maximum speed the ball can at-
tain before the cord breaks? Assume that the string remains
horizontal during the motion.

Solution It is difficult to know what might be a reasonable
value for the answer. Nonetheless, we know that it cannot be
too large, say 100 m/s, because a person cannot make a ball
move so quickly. It makes sense that the stronger the cord,
the faster the ball can twirl before the cord breaks. Also, we
expect a more massive ball to break the cord at a lower
speed. (Imagine whirling a bowling ball!)

Because the force causing the centripetal acceleration in
this case is the force T exerted by the cord on the ball, Equa-
tion 6.1 yields for �Fr � mar

T � m 
v2

r

The Conical PendulumEXAMPLE 6.3
Solution Let us choose � to represent the angle between
string and vertical. In the free-body diagram shown in Figure
6.4, the force T exerted by the string is resolved into a vertical
component T cos � and a horizontal component T sin � act-
ing toward the center of revolution. Because the object does

A small object of mass m is suspended from a string of length
L . The object revolves with constant speed v in a horizontal
circle of radius r, as shown in Figure 6.4. (Because the string
sweeps out the surface of a cone, the system is known as a
conical pendulum.) Find an expression for v.
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Figure 6.4 The conical pendulum and its free-body diagram.

Figure 6.5 (a) The force of static friction directed toward the cen-
ter of the curve keeps the car moving in a circular path. (b) The free-
body diagram for the car.

Because the force providing the centripetal acceleration in
this example is the component T sin �, we can use Newton’s
second law and Equation 6.1 to obtain

(2)

Dividing (2) by (1) and remembering that sin �/cos � �
tan �, we eliminate T and find that

From the geometry in Figure 6.4, we note that r � L sin �;
therefore,

Note that the speed is independent of the mass of the object.

√Lg sin � tan �v �

 v � √rg tan �

tan � �
v2

rg
 

�Fr � T sin � � mar �
mv2

r

not accelerate in the vertical direction, and
the upward vertical component of T must balance the down-
ward force of gravity. Therefore,

(1) T cos � � mg

may � 0,�Fy �

What Is the Maximum Speed of the Car?EXAMPLE 6.4
A 1 500-kg car moving on a flat, horizontal road negotiates a
curve, as illustrated in Figure 6.5. If the radius of the curve is
35.0 m and the coefficient of static friction between the tires

r

θ

T

mg

T cos θ

θ

T sin θ

mg

L θ

θ

n

mg

(a)

(b)

f s

f s

and dry pavement is 0.500, find the maximum speed the car
can have and still make the turn successfully.

Solution From experience, we should expect a maximum
speed less than 50 m/s. (A convenient mental conversion is
that 1 m/s is roughly 2 mi/h.) In this case, the force that en-
ables the car to remain in its circular path is the force of sta-
tic friction. (Because no slipping occurs at the point of con-
tact between road and tires, the acting force is a force of
static friction directed toward the center of the curve. If this
force of static friction were zero—for example, if the car
were on an icy road—the car would continue in a straight
line and slide off the road.) Hence, from Equation 6.1 we
have

(1)

The maximum speed the car can have around the curve is
the speed at which it is on the verge of skidding outward. At
this point, the friction force has its maximum value

Because the car is on a horizontal road, the mag-
nitude of the normal force equals the weight (n � mg) and
thus Substituting this value for fs into (1), we
find that the maximum speed is

13.1 m/s � √(0.500)(9.80 m/s2)(35.0 m) �

vmax �  √ fs,maxr
m

�  √ �smgr

m
� √�s gr 

fs,max � �smg.

fs,max � �sn.

fs � m 
v2

r
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The Banked Exit RampEXAMPLE 6.5
n sin � pointing toward the center of the curve. Because the
ramp is to be designed so that the force of static friction is
zero, only the component n sin � causes the centripetal accel-
eration. Hence, Newton’s second law written for the radial di-
rection gives

(1)

The car is in equilibrium in the vertical direction. Thus, from 
we have

(2)

Dividing (1) by (2) gives

If a car rounds the curve at a speed less than 13.4 m/s,
friction is needed to keep it from sliding down the bank (to
the left in Fig. 6.6). A driver who attempts to negotiate the
curve at a speed greater than 13.4 m/s has to depend on fric-
tion to keep from sliding up the bank (to the right in Fig.
6.6). The banking angle is independent of the mass of the ve-
hicle negotiating the curve.

Exercise Write Newton’s second law applied to the radial
direction when a frictional force fs is directed down the bank,
toward the center of the curve.

Answer n sin � � fs cos � �
mv  

2

r
  

20.1° � � tan�1 � (13.4 m/s)2

(50.0 m)(9.80 m/s2) � �

tan � �
v2

rg
 

n cos � � mg

�Fy � 0,

�  Fr � n sin � �
mv2

r

A civil engineer wishes to design a curved exit ramp for a
highway in such a way that a car will not have to rely on fric-
tion to round the curve without skidding. In other words, a
car moving at the designated speed can negotiate the curve
even when the road is covered with ice. Such a ramp is usu-
ally banked; this means the roadway is tilted toward the inside
of the curve. Suppose the designated speed for the ramp is to
be 13.4 m/s (30.0 mi/h) and the radius of the curve is 
50.0 m. At what angle should the curve be banked?

Solution On a level (unbanked) road, the force that
causes the centripetal acceleration is the force of static fric-
tion between car and road, as we saw in the previous exam-
ple. However, if the road is banked at an angle �, as shown in
Figure 6.6, the normal force n has a horizontal component 

Satellite MotionEXAMPLE 6.6
masses m1 and m2 and separated by a distance r is attractive
and has a magnitude

Fg � G 
m1m2

r2

This example treats a satellite moving in a circular orbit
around the Earth. To understand this situation, you must
know that the gravitational force between spherical objects
and small objects that can be modeled as particles having

Note that the maximum speed does not depend on the mass
of the car. That is why curved highways do not need multiple
speed limit signs to cover the various masses of vehicles using
the road. 

Exercise On a wet day, the car begins to skid on the curve
when its speed reaches 8.00 m/s. What is the coefficient of
static friction in this case?

Answer 0.187.

θ
m g

n sin θ

n cos θ

m g

θn

Figure 6.6 Car rounding a curve on a road banked at an angle �
to the horizontal. When friction is neglected, the force that causes
the centripetal acceleration and keeps the car moving in its circular
path is the horizontal component of the normal force. Note that n is
the sum of the forces exerted by the road on the wheels.
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h

RE

m
v

Fg

r

Figure 6.7 A satellite of mass m moving around the Earth at a con-
stant speed v in a circular orbit of radius r � RE � h. The force Fg
acting on the satellite that causes the centripetal acceleration is the
gravitational force exerted by the Earth on the satellite.

and keeps the satellite in its circular orbit. Therefore,

From Newton’s second law and Equation 6.1 we obtain

Solving for v and remembering that the distance r from the
center of the Earth to the satellite is we obtain

(1)

If the satellite were orbiting a different planet, its velocity
would increase with the mass of the planet and decrease as
the satellite’s distance from the center of the planet increased.

Exercise A satellite is in a circular orbit around the Earth at
an altitude of 1 000 km. The radius of the Earth is equal to
6.37 � 106 m, and its mass is 5.98 � 1024 kg. Find the speed
of the satellite, and then find the period, which is the time it
needs to make one complete revolution.

Answer 7.36 � 103 m/s; 6.29 � 103 s = 105 min.

√ GME

RE � h
v � √ GME

r
�

r � RE � h,

G 
MEm

r2 � m 
v2

r

Fr � Fg � G 
MEm

r2

where G � 6.673 � 10�11 N� m2/kg2. This is Newton’s law of
gravitation, which we study in Chapter 14.

Consider a satellite of mass m moving in a circular orbit
around the Earth at a constant speed v and at an altitude h
above the Earth’s surface, as illustrated in Figure 6.7. Deter-
mine the speed of the satellite in terms of G, h, RE (the radius
of the Earth), and ME (the mass of the Earth).

Solution The only external force acting on the satellite is
the force of gravity, which acts toward the center of the Earth

Let’s Go Loop-the-Loop!EXAMPLE 6.7
celeration has a magnitude nbot � mg, Newton’s second law
for the radial direction combined with Equation 6.1 gives

Substituting the values given for the speed and radius gives

Hence, the magnitude of the force nbot exerted by the seat
on the pilot is greater than the weight of the pilot by a factor
of 2.91. This means that the pilot experiences an apparent
weight that is greater than his true weight by a factor of 2.91. 

(b) The free-body diagram for the pilot at the top of the
loop is shown in Figure 6.8c. As we noted earlier, both the
gravitational force exerted by the Earth and the force n top ex-
erted by the seat on the pilot act downward, and so the net
downward force that provides the centripetal acceleration has

2.91mgnbot � mg �1 �
(225 m/s)2

(2.70 � 103 m)(9.80 m/s2) � �

nbot � mg � m 
v2

r
� mg �1 �

v2

rg �

�  Fr � nbot � mg � m 
v2

r
 

A pilot of mass m in a jet aircraft executes a loop-the-loop, as
shown in Figure 6.8a. In this maneuver, the aircraft moves in
a vertical circle of radius 2.70 km at a constant speed of 
225 m/s. Determine the force exerted by the seat on the pilot
(a) at the bottom of the loop and (b) at the top of the loop.
Express your answers in terms of the weight of the pilot mg.

Solution We expect the answer for (a) to be greater than
that for (b) because at the bottom of the loop the normal
and gravitational forces act in opposite directions, whereas at
the top of the loop these two forces act in the same direction.
It is the vector sum of these two forces that gives the force of
constant magnitude that keeps the pilot moving in a circular
path. To yield net force vectors with the same magnitude, the
normal force at the bottom (where the normal and gravita-
tional forces are in opposite directions) must be greater than
that at the top (where the normal and gravitational forces are
in the same direction). (a) The free-body diagram for the pi-
lot at the bottom of the loop is shown in Figure 6.8b. The
only forces acting on him are the downward force of gravity
Fg � mg and the upward force nbot exerted by the seat. Be-
cause the net upward force that provides the centripetal ac-
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A bead slides freely along a curved wire at constant speed, as shown in the overhead view of
Figure 6.9. At each of the points �, �, and �, draw the vector representing the force that
the wire exerts on the bead in order to cause it to follow the path of the wire at that point.

NONUNIFORM CIRCULAR MOTION
In Chapter 4 we found that if a particle moves with varying speed in a circular
path, there is, in addition to the centripetal (radial) component of acceleration, a
tangential component having magnitude dv/dt. Therefore, the force acting on the

6.2

Quick Quiz 6.3

In this case, the magnitude of the force exerted by the seat
on the pilot is less than his true weight by a factor of 0.913,
and the pilot feels lighter.

Exercise Determine the magnitude of the radially directed
force exerted on the pilot by the seat when the aircraft is at
point A in Figure 6.8a, midway up the loop.

Answer directed to the right.nA � 1.913mg

nbot

mg

ntop

mg

(b) (c)

Top

Bottom

A

(a)

Figure 6.8 (a) An aircraft exe-
cutes a loop-the-loop maneuver as
it moves in a vertical circle at con-
stant speed. (b) Free-body dia-
gram for the pilot at the bottom
of the loop. In this position the 
pilot experiences an apparent
weight greater than his true
weight. (c) Free-body diagram for
the pilot at the top of the loop.

a magnitude n top � mg. Applying Newton’s second law yields

0.913mgntop � mg � (225 m/s)2

(2.70 � 103 m)(9.80 m/s2)
� 1� �

ntop � m 
v2

r
� mg � mg � v2

rg
� 1� 

�Fr � ntop � mg � m 
v2

r

�

�

�

Figure 6.9

QuickLab
Hold a shoe by the end of its lace and
spin it in a vertical circle. Can you
feel the difference in the tension in
the lace when the shoe is at top of the
circle compared with when the shoe
is at the bottom?
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particle must also have a tangential and a radial component. Because the total accel-
eration is a � ar � at , the total force exerted on the particle is F � Fr � Ft , as
shown in Figure 6.10. The vector Fr is directed toward the center of the circle and is
responsible for the centripetal acceleration. The vector Ft tangent to the circle is re-
sponsible for the tangential acceleration, which represents a change in the speed of
the particle with time. The following example demonstrates this type of motion.

Figure 6.10 When the force acting on a particle mov-
ing in a circular path has a tangential component Ft , the
particle’s speed changes. The total force exerted on the
particle in this case is the vector sum of the radial force
and the tangential force. That is, F � Fr � Ft .

F

Fr

Ft

Keep Your Eye on the BallEXAMPLE 6.8
Solution Unlike the situation in Example 6.7, the speed is
not uniform in this example because, at most points along the
path, a tangential component of acceleration arises from the
gravitational force exerted on the sphere. From the free-body
diagram in Figure 6.11b, we see that the only forces acting on

A small sphere of mass m is attached to the end of a cord of
length R and whirls in a vertical circle about a fixed point O,
as illustrated in Figure 6.11a. Determine the tension in the
cord at any instant when the speed of the sphere is v and the
cord makes an angle � with the vertical.

Some examples of forces acting during circular motion. (Left) As these speed skaters round a
curve, the force exerted by the ice on their skates provides the centripetal acceleration. 
(Right) Passengers on a “corkscrew” roller coaster. What are the origins of the forces in this 
example?
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Optional Section

MOTION IN ACCELERATED FRAMES
When Newton’s laws of motion were introduced in Chapter 5, we emphasized that
they are valid only when observations are made in an inertial frame of reference.
In this section, we analyze how an observer in a noninertial frame of reference
(one that is accelerating) applies Newton’s second law.

6.3

the sphere are the gravitational force Fg � mg exerted by the
Earth and the force T exerted by the cord. Now we resolve Fg
into a tangential component mg sin � and a radial component
mg cos �. Applying Newton’s second law to the forces acting
on the sphere in the tangential direction yields

This tangential component of the acceleration causes v to
change in time because 

Applying Newton’s second law to the forces acting on the
sphere in the radial direction and noting that both T and ar
are directed toward O, we obtain

m � v2

R
� g cos ��  T �

�Fr � T � mg cos � �
mv2

R

at � dv/dt.

 at � g sin � 

�Ft � mg sin � � mat

Special Cases At the top of the path, where � � 180°, we
have cos 180° � � 1, and the tension equation becomes

This is the minimum value of T. Note that at this point at � 0
and therefore the acceleration is purely radial and directed
downward.

At the bottom of the path, where � � 0, we see that, be-
cause cos 0 � 1,

This is the maximum value of T. At this point, at is again 0
and the acceleration is now purely radial and directed up-
ward.

Exercise At what position of the sphere would the cord
most likely break if the average speed were to increase?

Answer At the bottom, where T has its maximum value.

Tbot � m � v2
bot

R
� g�

Ttop � m � v2
top

R
� g�

O

Tbot

Ttop

vbot

mg

mg

vtop

(b)(a)

R

O

T
θ

mg cos
mg sin

mg

θ θ θ
Figure 6.11 (a) Forces acting on a sphere
of mass m connected to a cord of length R and
rotating in a vertical circle centered at O. 
(b) Forces acting on the sphere at the top and
bottom of the circle. The tension is a maxi-
mum at the bottom and a minimum at the top.
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To understand the motion of a system that is noninertial because an object is
moving along a curved path, consider a car traveling along a highway at a high
speed and approaching a curved exit ramp, as shown in Figure 6.12a. As the car
takes the sharp left turn onto the ramp, a person sitting in the passenger seat
slides to the right and hits the door. At that point, the force exerted on her by the
door keeps her from being ejected from the car. What causes her to move toward
the door? A popular, but improper, explanation is that some mysterious force act-
ing from left to right pushes her outward. (This is often called the “centrifugal”
force, but we shall not use this term because it often creates confusion.) The pas-
senger invents this fictitious force to explain what is going on in her accelerated
frame of reference, as shown in Figure 6.12b. (The driver also experiences this ef-
fect but holds on to the steering wheel to keep from sliding to the right.)

The phenomenon is correctly explained as follows. Before the car enters the
ramp, the passenger is moving in a straight-line path. As the car enters the ramp
and travels a curved path, the passenger tends to move along the original straight-
line path. This is in accordance with Newton’s first law: The natural tendency of a
body is to continue moving in a straight line. However, if a sufficiently large force
(toward the center of curvature) acts on the passenger, as in Figure 6.12c, she will
move in a curved path along with the car. The origin of this force is the force of
friction between her and the car seat. If this frictional force is not large enough,
she will slide to the right as the car turns to the left under her. Eventually, she en-
counters the door, which provides a force large enough to enable her to follow the
same curved path as the car. She slides toward the door not because of some mys-
terious outward force but because the force of friction is not sufficiently great
to allow her to travel along the circular path followed by the car.

In general, if a particle moves with an acceleration a relative to an observer in
an inertial frame, that observer may use Newton’s second law and correctly claim
that �F � ma. If another observer in an accelerated frame tries to apply Newton’s
second law to the motion of the particle, the person must introduce fictitious
forces to make Newton’s second law work. These forces “invented” by the observer
in the accelerating frame appear to be real. However, we emphasize that these fic-
titious forces do not exist when the motion is observed in an inertial frame.
Fictitious forces are used only in an accelerating frame and do not represent “real”
forces acting on the particle. (By real forces, we mean the interaction of the parti-
cle with its environment.) If the fictitious forces are properly defined in the accel-
erating frame, the description of motion in this frame is equivalent to the descrip-
tion given by an inertial observer who considers only real forces. Usually, we
analyze motions using inertial reference frames, but there are cases in which it is
more convenient to use an accelerating frame.

Fictitious forces

Figure 6.12 (a) A car approaching a curved exit ramp. What causes a front-seat passenger to
move toward the right-hand door? (b) From the frame of reference of the passenger, a (ficti-
tious) force pushes her toward the right door. (c) Relative to the reference frame of the Earth,
the car seat applies a leftward force to the passenger, causing her to change direction along with
the rest of the car.

(a)

(c)

(b)

QuickLab
Use a string, a small weight, and a
protractor to measure your accelera-
tion as you start sprinting from a
standing position.

4.8
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Fictitious Forces in Linear MotionEXAMPLE 6.9
Because the deflection of the cord from the vertical serves as
a measure of acceleration, a simple pendulum can be used as an
accelerometer.

According to the noninertial observer riding in the car
(Fig. 6.13b), the cord still makes an angle � with the vertical;
however, to her the sphere is at rest and so its acceleration is
zero. Therefore, she introduces a fictitious force to balance
the horizontal component of T and claims that the net force
on the sphere is zero! In this noninertial frame of reference,
Newton’s second law in component form yields

Noninertial observer

If we recognize that Ffictitious � ma inertial � ma, then these ex-
pressions are equivalent to (1) and (2); therefore, the noniner-
tial observer obtains the same mathematical results as the iner-
tial observer does. However, the physical interpretation of the
deflection of the cord differs in the two frames of reference.

��F 
x � T sin � � Ffictitious � 0

�F 
y � T cos � � mg � 0

A small sphere of mass m is hung by a cord from the ceiling
of a boxcar that is accelerating to the right, as shown in Fig-
ure 6.13. According to the inertial observer at rest (Fig.
6.13a), the forces on the sphere are the force T exerted by
the cord and the force of gravity. The inertial observer con-
cludes that the acceleration of the sphere is the same as that
of the boxcar and that this acceleration is provided by the
horizontal component of T. Also, the vertical component of
T balances the force of gravity. Therefore, she writes New-
ton’s second law as �F � T � mg � ma, which in compo-
nent form becomes

Inertial observer

Thus, by solving (1) and (2) simultaneously for a, the inertial
observer can determine the magnitude of the car’s accelera-
tion through the relationship

a � g tan �

�(1)  �Fx � T sin � � ma

(2)  �Fy � T cos � � mg � 0

θT

mg

Inertial
observer

Noninertial
observer

θT

mg

(a)

(b)

F  fictitious

a

Figure 6.13 A small sphere suspended from the ceiling of a boxcar accelerating to the right is de-
flected as shown. (a) An inertial observer at rest outside the car claims that the acceleration of the
sphere is provided by the horizontal component of T. (b) A noninertial observer riding in the car says
that the net force on the sphere is zero and that the deflection of the cord from the vertical is due to a
fictitious force Ffictitious that balances the horizontal component of T.
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MOTION IN THE PRESENCE OF RESISTIVE FORCES
In the preceding chapter we described the force of kinetic friction exerted on an
object moving on some surface. We completely ignored any interaction between
the object and the medium through which it moves. Now let us consider the effect
of that medium, which can be either a liquid or a gas. The medium exerts a resis-
tive force R on the object moving through it. Some examples are the air resis-
tance associated with moving vehicles (sometimes called air drag) and the viscous
forces that act on objects moving through a liquid. The magnitude of R depends
on such factors as the speed of the object, and the direction of R is always opposite
the direction of motion of the object relative to the medium. The magnitude of R
nearly always increases with increasing speed.

The magnitude of the resistive force can depend on speed in a complex way,
and here we consider only two situations. In the first situation, we assume the resis-
tive force is proportional to the speed of the moving object; this assumption is
valid for objects falling slowly through a liquid and for very small objects, such as
dust particles, moving through air. In the second situation, we assume a resistive
force that is proportional to the square of the speed of the moving object; large
objects, such as a skydiver moving through air in free fall, experience such a force.

6.4

Fictitious Force in a Rotating SystemEXAMPLE 6.10
According to a noninertial observer attached to the

turntable, the block is at rest and its acceleration is zero.
Therefore, she must introduce a fictitious outward force of
magnitude mv2/r to balance the inward force exerted by the
string. According to her, the net force on the block is zero,
and she writes Newton’s second law as T � mv2/r � 0.

Suppose a block of mass m lying on a horizontal, frictionless
turntable is connected to a string attached to the center of
the turntable, as shown in Figure 6.14. According to an iner-
tial observer, if the block rotates uniformly, it undergoes an
acceleration of magnitude v2/r, where v is its linear speed.
The inertial observer concludes that this centripetal accelera-
tion is provided by the force T exerted by the string and
writes Newton’s second law as T � mv2/r.

Figure 6.14 A block of mass m connected to a string tied to the center of a rotating turntable. 
(a) The inertial observer claims that the force causing the circular motion is provided by the force T
exerted by the string on the block. (b) The noninertial observer claims that the block is not accelerat-
ing, and therefore she introduces a fictitious force of magnitude mv2/r that acts outward and balances
the force T.

n

T

m g

(a) Inertial observer

n

T

m g

(b)

Noninertial observer

mv 

2

rF  fictitious =

4.9
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Resistive Force Proportional to Object Speed

If we assume that the resistive force acting on an object moving through a liquid
or gas is proportional to the object’s speed, then the magnitude of the resistive
force can be expressed as

(6.2)

where v is the speed of the object and b is a constant whose value depends on the
properties of the medium and on the shape and dimensions of the object. If the
object is a sphere of radius r, then b is proportional to r.

Consider a small sphere of mass m released from rest in a liquid, as in Figure
6.15a. Assuming that the only forces acting on the sphere are the resistive force bv
and the force of gravity Fg , let us describe its motion.1 Applying Newton’s second
law to the vertical motion, choosing the downward direction to be positive, and
noting that we obtain

(6.3)

where the acceleration dv/dt is downward. Solving this expression for the accelera-
tion gives

(6.4)

This equation is called a differential equation, and the methods of solving it may not
be familiar to you as yet. However, note that initially, when v � 0, the resistive
force � bv is also zero and the acceleration dv/dt is simply g. As t increases, the re-
sistive force increases and the acceleration decreases. Eventually, the acceleration
becomes zero when the magnitude of the resistive force equals the sphere’s
weight. At this point, the sphere reaches its terminal speed vt , and from then on

dv
dt

� g �
b
m

 v

mg � bv � ma � m 
dv
dt

�Fy � mg � bv,

R � bv

Terminal speed

1 There is also a buoyant force acting on the submerged object. This force is constant, and its magnitude
is equal to the weight of the displaced liquid. This force changes the apparent weight of the sphere by a
constant factor, so we will ignore the force here. We discuss buoyant forces in Chapter 15.

Figure 6.15 (a) A small sphere falling through a liquid. (b) Motion diagram of the sphere as it
falls. (c) Speed–time graph for the sphere. The sphere reaches a maximum, or terminal, speed
vt , and the time constant � is the time it takes to reach 0.63vt .

(c)

v

vt

0.63vt

t
τ

R

mg

v

(a)

v = vt
a = 0

v = 0
a = g

(b)
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it continues to move at this speed with zero acceleration, as shown in Figure 6.15b.
We can obtain the terminal speed from Equation 6.3 by setting 
This gives

The expression for v that satisfies Equation 6.4 with v � 0 at t � 0 is

(6.5)

This function is plotted in Figure 6.15c. The time constant � � m/b (Greek letter
tau) is the time it takes the sphere to reach 63.2% of its terminal
speed. This can be seen by noting that when t � �, Equation 6.5 yields v � 0.632vt .

We can check that Equation 6.5 is a solution to Equation 6.4 by direct differen-
tiation:

(See Appendix Table B.4 for the derivative of e raised to some power.) Substituting 
into Equation 6.4 both this expression for dv/dt and the expression for v given by
Equation 6.5 shows that our solution satisfies the differential equation.

dv
dt

�
d
dt

 � mg
b

�
mg
b

 e�bt/m� � �
mg
b

 
d
dt

 e�bt/m � ge�bt/m

(� 1 � 1/e)

v �
mg
b

 (1 � e�bt/m) � vt (1 � e�t/�)

mg � bvt � 0  or  vt � mg/b

a � dv/dt � 0.

Sphere Falling in OilEXAMPLE 6.11

Thus, the sphere reaches 90% of its terminal (maximum)
speed in a very short time.

Exercise What is the sphere’s speed through the oil at t �
11.7 ms? Compare this value with the speed the sphere would
have if it were falling in a vacuum and so were influenced
only by gravity. 

Answer 4.50 cm/s in oil versus 11.5 cm/s in free fall.

11.7 ms�

 t � 2.30� � 2.30(5.10 � 10�3 s) � 11.7 � 10�3 s

 �
t
�

� ln(0.100) � �2.30 

 e�t/� � 0.100 

1 � e�t/� � 0.900 

0.900vt � vt(1 � e�t/�)  A small sphere of mass 2.00 g is released from rest in a large
vessel filled with oil, where it experiences a resistive force pro-
portional to its speed. The sphere reaches a terminal speed
of 5.00 cm/s. Determine the time constant � and the time it
takes the sphere to reach 90% of its terminal speed.

Solution Because the terminal speed is given by
the coefficient b is

Therefore, the time constant � is 

The speed of the sphere as a function of time is given by
Equation 6.5. To find the time t it takes the sphere to reach a
speed of 0.900vt , we set v � 0.900vt in Equation 6.5 and solve
for t:

5.10 � 10�3 s� �
m
b

�
2.00 g

392 g/s
�

b �
mg
vt

�
(2.00 g)(980 cm/s2)

5.00 cm/s
� 392 g/s

vt � mg/b,

Air Drag at High Speeds

For objects moving at high speeds through air, such as airplanes, sky divers, cars,
and baseballs, the resistive force is approximately proportional to the square of the
speed. In these situations, the magnitude of the resistive force can be expressed as

(6.6)R � 1
2D�Av2

Aerodynamic car. A streamlined
body reduces air drag and in-
creases fuel efficiency.
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where � is the density of air, A is the cross-sectional area of the falling object mea-
sured in a plane perpendicular to its motion, and D is a dimensionless empirical
quantity called the drag coefficient. The drag coefficient has a value of about 0.5 for
spherical objects but can have a value as great as 2 for irregularly shaped objects.

Let us analyze the motion of an object in free fall subject to an upward air 
resistive force of magnitude Suppose an object of mass m is re-
leased from rest. As Figure 6.16 shows, the object experiences two external forces:
the downward force of gravity Fg � mg and the upward resistive force R. (There is
also an upward buoyant force that we neglect.) Hence, the magnitude of the net
force is

(6.7)

where we have taken downward to be the positive vertical direction. Substituting
�F � ma into Equation 6.7, we find that the object has a downward acceleration of
magnitude

(6.8)

We can calculate the terminal speed vt by using the fact that when the force of
gravity is balanced by the resistive force, the net force on the object is zero and
therefore its acceleration is zero. Setting a � 0 in Equation 6.8 gives

(6.9)

Using this expression, we can determine how the terminal speed depends on the
dimensions of the object. Suppose the object is a sphere of radius r. In this case,

(from A � r2) and (because the mass is proportional to the 
volume of the sphere, which is Therefore, 

Table 6.1 lists the terminal speeds for several objects falling through air.
vt � √r.V � 4

3 r3).
m � r3A � r2

 vt � √ 2mg

D�A

g � � D�A
2m � vt 

2 � 0 

a � g � � D�A
2m

 �v2

�F � mg � 1
2D�Av2

R � 1
2 D�Av2.

v

vt

R

mg

R

mg

Figure 6.16 An object falling
through air experiences a resistive
force R and a gravitational force 
Fg � mg. The object reaches termi-
nal speed (on the right) when the
net force acting on it is zero, that
is, when R � � Fg or R � mg. Be-
fore this occurs, the acceleration
varies with speed according to
Equation 6.8.

The high cost of fuel has prompted many truck owners to install wind deflectors on their cabs to
reduce drag.
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TABLE 6.1 Terminal Speed for Various Objects Falling Through Air

Cross-Sectional Area
Object Mass (kg) (m2) vt (m/s)

Sky diver 75 0.70 60
Baseball (radius 3.7 cm) 0.145 4.2 � 10�3 43
Golf ball (radius 2.1 cm) 0.046 1.4 � 10�3 44
Hailstone (radius 0.50 cm) 4.8 � 10�4 7.9 � 10�5 14
Raindrop (radius 0.20 cm) 3.4 � 10�5 1.3 � 10�5 9.0

A sky surfer takes advantage of the upward force of the air on her
board. (

CONCEPTUAL EXAMPLE 6.12
Consider a sky surfer who jumps from a plane with her feet
attached firmly to her surfboard, does some tricks, and then
opens her parachute. Describe the forces acting on her dur-
ing these maneuvers.

Solution When the surfer first steps out of the plane, she
has no vertical velocity. The downward force of gravity causes
her to accelerate toward the ground. As her downward speed
increases, so does the upward resistive force exerted by the
air on her body and the board. This upward force reduces
their acceleration, and so their speed increases more slowly.
Eventually, they are going so fast that the upward resistive
force matches the downward force of gravity. Now the net
force is zero and they no longer accelerate, but reach their
terminal speed. At some point after reaching terminal speed,
she opens her parachute, resulting in a drastic increase in the
upward resistive force. The net force (and thus the accelera-
tion) is now upward, in the direction opposite the direction
of the velocity. This causes the downward velocity to decrease
rapidly; this means the resistive force on the chute also de-
creases. Eventually the upward resistive force and the down-
ward force of gravity balance each other and a much smaller
terminal speed is reached, permitting a safe landing.

(Contrary to popular belief, the velocity vector of a sky
diver never points upward. You may have seen a videotape 
in which a sky diver appeared to “rocket” upward once the
chute opened. In fact, what happened is that the diver 
slowed down while the person holding the camera contin-
ued falling at high speed.)

Falling Coffee FiltersEXAMPLE 6.13
presents data for these coffee filters as they fall through the
air. The time constant � is small, so that a dropped filter
quickly reaches terminal speed. Each filter has a mass of 
1.64 g. When the filters are nested together, they stack in

The dependence of resistive force on speed is an empirical
relationship. In other words, it is based on observation rather
than on a theoretical model. A series of stacked filters is
dropped, and the terminal speeds are measured. Table 6.2
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Figure 6.17 (a) Relationship between the resistive force acting on falling coffee filters and their ter-
minal speed. The curved line is a second-order polynomial fit. (b) Graph relating the resistive force to
the square of the terminal speed. The fit of the straight line to the data points indicates that the resis-
tive force is proportional to the terminal speed squared. Can you find the proportionality constant?

TABLE 6.2
Terminal Speed for 
Stacked Coffee Filters

Number vt
of Filters (m/s)a

1 1.01
2 1.40
3 1.63
4 2.00
5 2.25
6 2.40
7 2.57
8 2.80
9 3.05

10 3.22

a All values of vt are approximate.
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Pleated coffee filters can be nested together so
that the force of air resistance can be studied.
(

such a way that the front-facing surface area does not in-
crease. Determine the relationship between the resistive force
exerted by the air and the speed of the falling filters.

Solution At terminal speed, the upward resistive force bal-
ances the downward force of gravity. So, a single filter falling
at its terminal speed experiences a resistive force of

R � mg � � 1.64 g
1000 g/kg � (9.80 m/s2) � 0.016 1 N

Two filters nested together experience 0.032 2 N of resistive
force, and so forth. A graph of the resistive force on the fil-
ters as a function of terminal speed is shown in Figure 6.17a.
A straight line would not be a good fit, indicating that the re-
sistive force is not proportional to the speed. The curved line
is for a second-order polynomial, indicating a proportionality
of the resistive force to the square of the speed. This propor-
tionality is more clearly seen in Figure 6.17b, in which the re-
sistive force is plotted as a function of the square of the termi-
nal speed.
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NUMERICAL MODELING IN PARTICLE DYNAMICS2

As we have seen in this and the preceding chapter, the study of the dynamics of a
particle focuses on describing the position, velocity, and acceleration as functions of
time. Cause-and-effect relationships exist among these quantities: Velocity causes
position to change, and acceleration causes velocity to change. Because accelera-
tion is the direct result of applied forces, any analysis of the dynamics of a particle
usually begins with an evaluation of the net force being exerted on the particle.

Up till now, we have used what is called the analytical method to investigate the
position, velocity, and acceleration of a moving particle. Let us review this method
briefly before learning about a second way of approaching problems in dynamics.
(Because we confine our discussion to one-dimensional motion in this section,
boldface notation will not be used for vector quantities.)

If a particle of mass m moves under the influence of a net force �F, Newton’s
second law tells us that the acceleration of the particle is In general, we
apply the analytical method to a dynamics problem using the following procedure:

1. Sum all the forces acting on the particle to get the net force �F.
2. Use this net force to determine the acceleration from the relationship 
3. Use this acceleration to determine the velocity from the relationship 
4. Use this velocity to determine the position from the relationship 

The following straightforward example illustrates this method.

dx/dt � v.
dv/dt � a.
a � �F/m.

a � �F/m.

6.5

Resistive Force Exerted on a BaseballEXAMPLE 6.14

This number has no dimensions. We have kept an extra digit
beyond the two that are significant and will drop it at the end
of our calculation.

We can now use this value for D in Equation 6.6 to find
the magnitude of the resistive force:

1.2 N  �

 � 1
2(0.284)(1.29 kg/m3)(4.2 � 10�3 m2)(40.2 m/s)2

R � 1
2 D�Av2 

� 0.284

D �
2 mg

vt 

2 �A
�

2(0.145 kg)(9.80 m/s2)
(43 m/s)2 (1.29 kg/m3)(4.2 � 10�3 m2)

A pitcher hurls a 0.145-kg baseball past a batter at 40.2 m/s
mi/h). Find the resistive force acting on the ball at this

speed.

Solution We do not expect the air to exert a huge force
on the ball, and so the resistive force we calculate from Equa-
tion 6.6 should not be more than a few newtons. First, we
must determine the drag coefficient D. We do this by imagin-
ing that we drop the baseball and allow it to reach terminal
speed. We solve Equation 6.9 for D and substitute the appro-
priate values for m, vt , and A from Table 6.1. Taking the den-
sity of air as 1.29 kg/m3, we obtain

(�90

2 The authors are most grateful to Colonel James Head of the U.S. Air Force Academy for preparing
this section. See the Student Tools CD-ROM for some assistance with numerical modeling.

An Object Falling in a Vacuum — Analytical MethodEXAMPLE 6.15
Solution The only force acting on the particle is the
downward force of gravity of magnitude Fg , which is also the
net force. Applying Newton’s second law, we set the net force
acting on the particle equal to the mass of the particle times

Consider a particle falling in a vacuum under the influence
of the force of gravity, as shown in Figure 6.18. Use the analyt-
ical method to find the acceleration, velocity, and position of
the particle.
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The analytical method is straightforward for many physical situations. In the
“real world,” however, complications often arise that make analytical solutions dif-
ficult and perhaps beyond the mathematical abilities of most students taking intro-
ductory physics. For example, the net force acting on a particle may depend on
the particle’s position, as in cases where the gravitational acceleration varies with
height. Or the force may vary with velocity, as in cases of resistive forces caused by
motion through a liquid or gas.

Another complication arises because the expressions relating acceleration, ve-
locity, position, and time are differential equations rather than algebraic ones. Dif-
ferential equations are usually solved using integral calculus and other special
techniques that introductory students may not have mastered. 

When such situations arise, scientists often use a procedure called numerical
modeling to study motion. The simplest numerical model is called the Euler
method, after the Swiss mathematician Leonhard Euler (1707–1783).

The Euler Method

In the Euler method for solving differential equations, derivatives are approxi-
mated as ratios of finite differences. Considering a small increment of time �t, we
can approximate the relationship between a particle’s speed and the magnitude of
its acceleration as

Then the speed of the particle at the end of the time interval �t is ap-
proximately equal to the speed v(t) at the beginning of the time interval plus the
magnitude of the acceleration during the interval multiplied by �t:

(6.10)

Because the acceleration is a function of time, this estimate of is accurate
only if the time interval �t is short enough that the change in acceleration during
it is very small (as is discussed later). Of course, Equation 6.10 is exact if the accel-
eration is constant.

v(t � �t)

v(t � �t) � v(t) � a(t)�t

v(t � �t)

a(t) � 
�v
�t

�
v(t � �t) � v(t)

�t

In these expressions, yi and vyi represent the position and
speed of the particle at ti � 0.

its acceleration (taking upward to be the positive y direction):

Thus, which means the acceleration is constant. Be-
cause we see that which may be in-
tegrated to yield

Then, because the position of the particle is ob-
tained from another integration, which yields the well-known
result

y(t) � y i � vyit � 1
2gt2

vy � dy/dt,

vy(t) � vyi � gt

dvy /dt � �g,dvy /dt � ay  ,
ay � �g,

Fg � may � �mg

Figure 6.18 An object falling in vacuum under the influence
of gravity.

mg
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The position of the particle at the end of the interval �t can be
found in the same manner:

(6.11)

You may be tempted to add the term to this result to make it look like
the familiar kinematics equation, but this term is not included in the Euler
method because �t is assumed to be so small that �t2 is nearly zero.

If the acceleration at any instant t is known, the particle’s velocity and position
at a time t � �t can be calculated from Equations 6.10 and 6.11. The calculation
then proceeds in a series of finite steps to determine the velocity and position at
any later time. The acceleration is determined from the net force acting on the
particle, and this force may depend on position, velocity, or time:

(6.12)

It is convenient to set up the numerical solution to this kind of problem by
numbering the steps and entering the calculations in a table, a procedure that is il-
lustrated in Table 6.3.

The equations in the table can be entered into a spreadsheet and the calcula-
tions performed row by row to determine the velocity, position, and acceleration
as functions of time. The calculations can also be carried out by using a program
written in either BASIC, C��, or FORTRAN or by using commercially available
mathematics packages for personal computers. Many small increments can be
taken, and accurate results can usually be obtained with the help of a computer.
Graphs of velocity versus time or position versus time can be displayed to help you
visualize the motion.

One advantage of the Euler method is that the dynamics is not obscured—the
fundamental relationships between acceleration and force, velocity and accelera-
tion, and position and velocity are clearly evident. Indeed, these relationships
form the heart of the calculations. There is no need to use advanced mathematics,
and the basic physics governs the dynamics.

The Euler method is completely reliable for infinitesimally small time incre-
ments, but for practical reasons a finite increment size must be chosen. For the fi-
nite difference approximation of Equation 6.10 to be valid, the time increment
must be small enough that the acceleration can be approximated as being con-
stant during the increment. We can determine an appropriate size for the time in-

a(x, v, t) �
�F(x, v, t)

m

1
2 a(�t)2

 x(t � �t) � x(t) � v(t)�t 

v(t) � 
�x
�t

�
x(t � �t) � x(t)

�t

x(t � �t)

See the spreadsheet file “Baseball
with Drag” on the Student Web
site (address below) for an
example of how this technique can
be applied to find the initial speed
of the baseball described in
Example 6.14. We cannot use our
regular approach because our
kinematics equations assume
constant acceleration. Euler’s
method provides a way to
circumvent this difficulty.

A detailed solution to Problem 41
involving iterative integration
appears in the Student  Solutions
Manual and Study Guide and is
posted on the Web at http:/
www.saunderscollege.com/physics

TABLE 6.3 The Euler Method for Solving Dynamics Problems

Step Time Position Velocity Acceleration

0 t0 x0 v0 a0 � F(x0 , v0 , t0)/m
1 t1 � t0 � �t x1 � x0 � v0 �t v1 � v0 � a0 �t a1 � F(x1 , v1 , t1)/m
2 t2 � t1 � �t x2 � x1 � v1 �t v2 � v1 � a1 �t a2 � F(x2 , v2 , t2)/m
3 t3 � t2 � �t x3 � x2 � v2 �t v3 � v2 � a2 �t a3 � F(x3 , v3 , t3)/m

n tn xn vn an

����
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crement by examining the particular problem being investigated. The criterion for
the size of the time increment may need to be changed during the course of the
motion. In practice, however, we usually choose a time increment appropriate to
the initial conditions and use the same value throughout the calculations.

The size of the time increment influences the accuracy of the result, but un-
fortunately it is not easy to determine the accuracy of an Euler-method solution
without a knowledge of the correct analytical solution. One method of determin-
ing the accuracy of the numerical solution is to repeat the calculations with a
smaller time increment and compare results. If the two calculations agree to a cer-
tain number of significant figures, you can assume that the results are correct to
that precision.

SUMMARY

Newton’s second law applied to a particle moving in uniform circular motion states
that the net force causing the particle to undergo a centripetal acceleration is

(6.1)

You should be able to use this formula in situations where the force providing the
centripetal acceleration could be the force of gravity, a force of friction, a force of
string tension, or a normal force.

A particle moving in nonuniform circular motion has both a centripetal com-
ponent of acceleration and a nonzero tangential component of acceleration. In
the case of a particle rotating in a vertical circle, the force of gravity provides the
tangential component of acceleration and part or all of the centripetal component
of acceleration. Be sure you understand the directions and magnitudes of the ve-
locity and acceleration vectors for nonuniform circular motion.

An observer in a noninertial (accelerating) frame of reference must introduce
fictitious forces when applying Newton’s second law in that frame. If these ficti-
tious forces are properly defined, the description of motion in the noninertial
frame is equivalent to that made by an observer in an inertial frame. However, the
observers in the two frames do not agree on the causes of the motion. You should
be able to distinguish between inertial and noninertial frames and identify the fic-
titious forces acting in a noninertial frame.

A body moving through a liquid or gas experiences a resistive force that is
speed-dependent. This resistive force, which opposes the motion, generally in-
creases with speed. The magnitude of the resistive force depends on the shape of
the body and on the properties of the medium through which the body is moving.
In the limiting case for a falling body, when the magnitude of the resistive force
equals the body’s weight, the body reaches its terminal speed. You should be able
to apply Newton’s laws to analyze the motion of objects moving under the influ-
ence of resistive forces. You may need to apply Euler’s method if the force de-
pends on velocity, as it does for air drag.

�Fr � mar �
mv2

r

QUESTIONS

parent weight of an object be greater at the poles than at
the equator?

2. Explain why the Earth bulges at the equator.

1. Because the Earth rotates about its axis and revolves
around the Sun, it is a noninertial frame of reference. As-
suming the Earth is a uniform sphere, why would the ap-
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PROBLEMS

speed, (b) the period of its revolution, and (c) the grav-
itational force acting on it.

7. Whenever two Apollo astronauts were on the surface of
the Moon, a third astronaut orbited the Moon. Assume
the orbit to be circular and 100 km above the surface of
the Moon. If the mass of the Moon is 7.40 � 1022 kg and
its radius is 1.70 � 106 m, determine (a) the orbiting as-
tronaut’s acceleration, (b) his orbital speed, and (c) the
period of the orbit.

8. The speed of the tip of the minute hand on a town
clock is 1.75 � 10�3 m/s. (a) What is the speed of the
tip of the second hand of the same length? (b) What is
the centripetal acceleration of the tip of the second
hand?

9. A coin placed 30.0 cm from the center of a rotating,
horizontal turntable slips when its speed is 50.0 cm/s.
(a) What provides the force in the radial direction
when the coin is stationary relative to the turntable? 
(b) What is the coefficient of static friction between
coin and turntable?

10. The cornering performance of an automobile is evalu-
ated on a skid pad, where the maximum speed that a
car can maintain around a circular path on a dry, flat
surface is measured. The centripetal acceleration, also
called the lateral acceleration, is then calculated as a
multiple of the free-fall acceleration g. The main factors
affecting the performance are the tire characteristics
and the suspension system of the car. A Dodge Viper
GTS can negotiate a skid pad of radius 61.0 m at 
86.5 km/h. Calculate its maximum lateral acceleration.

11. A crate of eggs is located in the middle of the flatbed of
a pickup truck as the truck negotiates an unbanked

Section 6.1 Newton’s Second Law 
Applied to Uniform Circular Motion

1. A toy car moving at constant speed completes one lap
around a circular track (a distance of 200 m) in 25.0 s.
(a) What is its average speed? (b) If the mass of the car
is 1.50 kg, what is the magnitude of the force that keeps
it in a circle?

2. A 55.0-kg ice skater is moving at 4.00 m/s when she
grabs the loose end of a rope, the opposite end of
which is tied to a pole. She then moves in a circle of ra-
dius 0.800 m around the pole. (a) Determine the force
exerted by the rope on her arms. (b) Compare this
force with her weight.

3. A light string can support a stationary hanging load of
25.0 kg before breaking. A 3.00-kg mass attached to the
string rotates on a horizontal, frictionless table in a cir-
cle of radius 0.800 m. What range of speeds can the
mass have before the string breaks?

4. In the Bohr model of the hydrogen atom, the speed of
the electron is approximately 2.20 � 106 m/s. Find 
(a) the force acting on the electron as it revolves in a
circular orbit of radius 0.530 � 10�10 m and (b) the
centripetal acceleration of the electron.

5. In a cyclotron (one type of particle accelerator), a
deuteron (of atomic mass 2.00 u) reaches a final speed
of 10.0% of the speed of light while moving in a circular
path of radius 0.480 m. The deuteron is maintained in
the circular path by a magnetic force. What magnitude
of force is required?

6. A satellite of mass 300 kg is in a circular orbit around
the Earth at an altitude equal to the Earth’s mean ra-
dius (see Example 6.6). Find (a) the satellite’s orbital

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

3. Why is it that an astronaut in a space capsule orbiting the
Earth experiences a feeling of weightlessness?

4. Why does mud fly off a rapidly turning automobile tire?
5. Imagine that you attach a heavy object to one end of a

spring and then whirl the spring and object in a horizon-
tal circle (by holding the free end of the spring). Does
the spring stretch? If so, why? Discuss this in terms of the
force causing the circular motion.

6. It has been suggested that rotating cylinders about 10 mi
in length and 5 mi in diameter be placed in space and
used as colonies. The purpose of the rotation is to simu-
late gravity for the inhabitants. Explain this concept for
producing an effective gravity.

7. Why does a pilot tend to black out when pulling out of a
steep dive?

8. Describe a situation in which a car driver can have 
a centripetal acceleration but no tangential accel-
eration.

9. Describe the path of a moving object if its acceleration is
constant in magnitude at all times and (a) perpendicular
to the velocity; (b) parallel to the velocity.

10. Analyze the motion of a rock falling through water in
terms of its speed and acceleration as it falls. Assume that
the resistive force acting on the rock increases as the
speed increases.

11. Consider a small raindrop and a large raindrop falling
through the atmosphere. Compare their terminal speeds.
What are their accelerations when they reach terminal
speed?
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curve in the road. The curve may be regarded as an arc
of a circle of radius 35.0 m. If the coefficient of static
friction between crate and truck is 0.600, how fast can
the truck be moving without the crate sliding?

12. A car initially traveling eastward turns north by traveling
in a circular path at uniform speed as in Figure P6.12.
The length of the arc ABC is 235 m, and the car com-
pletes the turn in 36.0 s. (a) What is the acceleration
when the car is at B located at an angle of 35.0°? Ex-
press your answer in terms of the unit vectors i and j.
Determine (b) the car’s average speed and (c) its aver-
age acceleration during the 36.0-s interval.

hump? (b) What must be the speed of the car over the
hump if she is to experience weightlessness? (That is, if
her apparent weight is zero.)

15. Tarzan (m � 85.0 kg) tries to cross a river by swinging
from a vine. The vine is 10.0 m long, and his speed at
the bottom of the swing (as he just clears the water) is
8.00 m/s. Tarzan doesn’t know that the vine has a
breaking strength of 1 000 N. Does he make it safely
across the river?

16. A hawk flies in a horizontal arc of radius 12.0 m at a
constant speed of 4.00 m/s. (a) Find its centripetal ac-
celeration. (b) It continues to fly along the same hori-
zontal arc but steadily increases its speed at the rate of
1.20 m/s2. Find the acceleration (magnitude and direc-
tion) under these conditions.

17. A 40.0-kg child sits in a swing supported by two chains,
each 3.00 m long. If the tension in each chain at the
lowest point is 350 N, find (a) the child’s speed at the
lowest point and (b) the force exerted by the seat on
the child at the lowest point. (Neglect the mass of the
seat.)

18. A child of mass m sits in a swing supported by two
chains, each of length R. If the tension in each chain at
the lowest point is T, find (a) the child’s speed at the
lowest point and (b) the force exerted by the seat on
the child at the lowest point. (Neglect the mass of the
seat.)

19. A pail of water is rotated in a vertical circle of radius
1.00 m. What must be the minimum speed of the pail at
the top of the circle if no water is to spill out?

20. A 0.400-kg object is swung in a vertical circular path on
a string 0.500 m long. If its speed is 4.00 m/s at the top
of the circle, what is the tension in the string there?

21. A roller-coaster car has a mass of 500 kg when fully
loaded with passengers (Fig. P6.21). (a) If the car has a
speed of 20.0 m/s at point A, what is the force exerted
by the track on the car at this point? (b) What is the
maximum speed the car can have at B and still remain
on the track?

WEB

WEB

13. Consider a conical pendulum with an 80.0-kg bob on a
10.0-m wire making an angle of � � 5.00° with the verti-
cal (Fig. P6.13). Determine (a) the horizontal and verti-
cal components of the force exerted by the wire on the
pendulum and (b) the radial acceleration of the bob.

Section 6.2 Nonuniform Circular Motion
14. A car traveling on a straight road at 9.00 m/s goes over

a hump in the road. The hump may be regarded as an
arc of a circle of radius 11.0 m. (a) What is the apparent
weight of a 600-N woman in the car as she rides over the

y

A

O

B

C
x

35.0°

Figure P6.12

Figure P6.13

Figure P6.21

θ

10.0 m
A

15.0 m

B
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(Optional)
Section 6.3 Motion in Accelerated Frames

23. A merry-go-round makes one complete revolution in
12.0 s. If a 45.0-kg child sits on the horizontal floor of
the merry-go-round 3.00 m from the center, find (a) the
child’s acceleration and (b) the horizontal force of fric-
tion that acts on the child. (c) What minimum coeffi-
cient of static friction is necessary to keep the child
from slipping?

25. A 0.500-kg object is suspended from the ceiling of an
accelerating boxcar as was seen in Figure 6.13. If a �
3.00 m/s2, find (a) the angle that the string makes with
the vertical and (b) the tension in the string.

26. The Earth rotates about its axis with a period of 24.0 h.
Imagine that the rotational speed can be increased. If
an object at the equator is to have zero apparent weight,
(a) what must the new period be? (b) By what factor
would the speed of the object be increased when the
planet is rotating at the higher speed? (Hint: See Prob-
lem 53 and note that the apparent weight of the object
becomes zero when the normal force exerted on it is
zero. Also, the distance traveled during one period is
2R, where R is the Earth’s radius.)

27. A person stands on a scale in an elevator. As the elevator
starts, the scale has a constant reading of 591 N. As the
elevator later stops, the scale reading is 391 N. Assume
the magnitude of the acceleration is the same during
starting and stopping, and determine (a) the weight of
the person, (b) the person’s mass, and (c) the accelera-
tion of the elevator.

28. A child on vacation wakes up. She is lying on her back.
The tension in the muscles on both sides of her neck is
55.0 N as she raises her head to look past her toes and
out the motel window. Finally, it is not raining! Ten min-
utes later she is screaming and sliding feet first down a
water slide at a constant speed of 5.70 m/s, riding high
on the outside wall of a horizontal curve of radius 2.40 m
(Fig. P6.28). She raises her head to look forward past
her toes; find the tension in the muscles on both sides
of her neck.

22. A roller coaster at the Six Flags Great America amuse-
ment park in Gurnee, Illinois, incorporates some of the
latest design technology and some basic physics. Each
vertical loop, instead of being circular, is shaped like a
teardrop (Fig. P6.22). The cars ride on the inside of the
loop at the top, and the speeds are high enough to en-
sure that the cars remain on the track. The biggest loop
is 40.0 m high, with a maximum speed of 31.0 m/s
(nearly 70 mi/h) at the bottom. Suppose the speed at
the top is 13.0 m/s and the corresponding centripetal
acceleration is 2g. (a) What is the radius of the arc of
the teardrop at the top? (b) If the total mass of the cars
plus people is M, what force does the rail exert on this
total mass at the top? (c) Suppose the roller coaster had
a loop of radius 20.0 m. If the cars have the same speed,
13.0 m/s at the top, what is the centripetal acceleration
at the top? Comment on the normal force at the top in
this situation.

Figure P6.22 (Frank Cezus/FPG International)

Figure P6.24

5.00 kg

24. A 5.00-kg mass attached to a spring scale rests on a fric-
tionless, horizontal surface as in Figure P6.24. The
spring scale, attached to the front end of a boxcar, reads
18.0 N when the car is in motion. (a) If the spring scale
reads zero when the car is at rest, determine the accel-
eration of the car. (b) What will the spring scale read if
the car moves with constant velocity? (c) Describe the
forces acting on the mass as observed by someone in
the car and by someone at rest outside the car.
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29. A plumb bob does not hang exactly along a line di-
rected to the center of the Earth, because of the Earth’s
rotation. How much does the plumb bob deviate from a
radial line at 35.0° north latitude? Assume that the
Earth is spherical. 

(Optional)
Section 6.4 Motion in the Presence of Resistive Forces

30. A sky diver of mass 80.0 kg jumps from a slow-moving
aircraft and reaches a terminal speed of 50.0 m/s. 
(a) What is the acceleration of the sky diver when her
speed is 30.0 m/s? What is the drag force exerted on
the diver when her speed is (b) 50.0 m/s? (c) 30.0 m/s?

31. A small piece of Styrofoam packing material is dropped
from a height of 2.00 m above the ground. Until it
reaches terminal speed, the magnitude of its accelera-
tion is given by a � g � bv. After falling 0.500 m, the
Styrofoam effectively reaches its terminal speed, and
then takes 5.00 s more to reach the ground. (a) What is
the value of the constant b? (b) What is the acceleration
at t � 0? (c) What is the acceleration when the speed is
0.150 m/s?

32. (a) Estimate the terminal speed of a wooden sphere
(density 0.830 g/cm3) falling through the air if its ra-
dius is 8.00 cm. (b) From what height would a freely
falling object reach this speed in the absence of air 
resistance?

33. Calculate the force required to pull a copper ball of ra-
dius 2.00 cm upward through a fluid at the constant
speed 9.00 cm/s. Take the drag force to be proportional
to the speed, with proportionality constant 0.950 kg/s.
Ignore the buoyant force.

34. A fire helicopter carries a 620-kg bucket at the end of a
cable 20.0 m long as in Figure P6.34. As the helicopter
flies to a fire at a constant speed of 40.0 m/s, the cable
makes an angle of 40.0° with respect to the vertical. The
bucket presents a cross-sectional area of 3.80 m2 in a
plane perpendicular to the air moving past it. Deter-
mine the drag coefficient assuming that the resistive

force is proportional to the square of the bucket’s
speed.

35. A small, spherical bead of mass 3.00 g is released from
rest at t � 0 in a bottle of liquid shampoo. The terminal
speed is observed to be vt � 2.00 cm/s. Find (a) the
value of the constant b in Equation 6.4, (b) the time �
the bead takes to reach 0.632vt , and (c) the value of the
resistive force when the bead reaches terminal speed.

36. The mass of a sports car is 1 200 kg. The shape of the
car is such that the aerodynamic drag coefficient is
0.250 and the frontal area is 2.20 m2. Neglecting all
other sources of friction, calculate the initial accelera-
tion of the car if, after traveling at 100 km/h, it is
shifted into neutral and is allowed to coast.

37. A motorboat cuts its engine when its speed is 10.0 m/s
and coasts to rest. The equation governing the motion
of the motorboat during this period is v � vie�ct, where
v is the speed at time t, vi is the initial speed, and c is a
constant. At t � 20.0 s, the speed is 5.00 m/s. (a) Find
the constant c. (b) What is the speed at t � 40.0 s? 
(c) Differentiate the expression for v(t) and thus show
that the acceleration of the boat is proportional to the
speed at any time.

38. Assume that the resistive force acting on a speed skater
is f � � kmv2, where k is a constant and m is the skater’s
mass. The skater crosses the finish line of a straight-line
race with speed vf and then slows down by coasting on
his skates. Show that the skater’s speed at any time t
after crossing the finish line is v(t) � vf/(1 � ktvf).

39. You can feel a force of air drag on your hand if you
stretch your arm out of the open window of a speeding
car. (Note: Do not get hurt.) What is the order of magni-
tude of this force? In your solution, state the quantities
you measure or estimate and their values.

(Optional)
6.5 Numerical Modeling in Particle Dynamics

40. A 3.00-g leaf is dropped from a height of 2.00 m above
the ground. Assume the net downward force exerted on
the leaf is F � mg � bv, where the drag factor is b �
0.030 0 kg/s. (a) Calculate the terminal speed of the
leaf. (b) Use Euler’s method of numerical analysis to
find the speed and position of the leaf as functions of

WEB

Figure P6.28

Figure P6.34

40.0°

620 kg

20.0 m

40.0 m/s
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time, from the instant it is released until 99% of termi-
nal speed is reached. (Hint: Try �t � 0.005 s.)

41. A hailstone of mass 4.80 � 10�4 kg falls through the air
and experiences a net force given by

where C � 2.50 � 10�5 kg/m. (a) Calculate the termi-
nal speed of the hailstone. (b) Use Euler’s method of
numerical analysis to find the speed and position of the
hailstone at 0.2-s intervals, taking the initial speed to be
zero. Continue the calculation until the hailstone
reaches 99% of terminal speed.

42. A 0.142-kg baseball has a terminal speed of 42.5 m/s
(95 mi/h). (a) If a baseball experiences a drag force of
magnitude R � Cv2, what is the value of the constant C?
(b) What is the magnitude of the drag force when the
speed of the baseball is 36.0 m/s? (c) Use a computer 
to determine the motion of a baseball thrown vertically
upward at an initial speed of 36.0 m/s. What maxi-
mum height does the ball reach? How long is it in 
the air? What is its speed just before it hits the ground?

43. A 50.0-kg parachutist jumps from an airplane and falls
with a drag force proportional to the square of the
speed R � Cv2. Take C � 0.200 kg/m with the para-
chute closed and C � 20.0 kg/m with the chute open.
(a) Determine the terminal speed of the parachutist in
both configurations, before and after the chute is
opened. (b) Set up a numerical analysis of the motion
and compute the speed and position as functions of
time, assuming the jumper begins the descent at 
1 000 m above the ground and is in free fall for 10.0 s
before opening the parachute. (Hint: When the para-
chute opens, a sudden large acceleration takes place; a
smaller time step may be necessary in this region.)

44. Consider a 10.0-kg projectile launched with an initial
speed of 100 m/s, at an angle of 35.0° elevation. The re-
sistive force is R � � bv, where b � 10.0 kg/s. (a) Use a
numerical method to determine the horizontal and ver-
tical positions of the projectile as functions of time. 
(b) What is the range of this projectile? (c) Determine
the elevation angle that gives the maximum range for
the projectile. (Hint: Adjust the elevation angle by trial
and error to find the greatest range.)

45. A professional golfer hits a golf ball of mass 46.0 g with
her 5-iron, and the ball first strikes the ground 155 m
(170 yards) away. The ball experiences a drag force of
magnitude and has a terminal speed of 
44.0 m/s. (a) Calculate the drag constant C for the golf
ball. (b) Use a numerical method to analyze the trajec-
tory of this shot. If the initial velocity of the ball makes
an angle of 31.0° (the loft angle) with the horizontal,
what initial speed must the ball have to reach the 155-m
distance? (c) If the same golfer hits the ball with her 9-
iron (47.0° loft) and it first strikes the ground 119 m
away, what is the initial speed of the ball? Discuss the
differences in trajectories between the two shots.

R � Cv2

F � �mg � Cv2

ADDITIONAL PROBLEMS

46. An 1 800-kg car passes over a bump in a road that fol-
lows the arc of a circle of radius 42.0 m as in Figure
P6.46. (a) What force does the road exert on the car as
the car passes the highest point of the bump if the car
travels at 16.0 m/s? (b) What is the maximum speed the
car can have as it passes this highest point before losing
contact with the road? 

47. A car of mass m passes over a bump in a road that fol-
lows the arc of a circle of radius R as in Figure P6.46.
(a) What force does the road exert on the car as the car
passes the highest point of the bump if the car travels at
a speed v? (b) What is the maximum speed the car can
have as it passes this highest point before losing contact
with the road? 

WEB

48. In one model of a hydrogen atom, the electron in orbit
around the proton experiences an attractive force of
about 8.20 � 10�8 N. If the radius of the orbit is 5.30 �
10�11 m, how many revolutions does the electron make
each second? (This number of revolutions per unit time
is called the frequency of the motion.) See the inside
front cover for additional data.

49. A student builds and calibrates an accelerometer, which
she uses to determine the speed of her car around a
certain unbanked highway curve. The accelerometer is
a plumb bob with a protractor that she attaches to the
roof of her car. A friend riding in the car with her ob-
serves that the plumb bob hangs at an angle of 15.0°
from the vertical when the car has a speed of 23.0 m/s.
(a) What is the centripetal acceleration of the car
rounding the curve? (b) What is the radius of the
curve? (c) What is the speed of the car if the plumb bob
deflection is 9.00° while the car is rounding the same
curve?

50. Suppose the boxcar shown in Figure 6.13 is moving with
constant acceleration a up a hill that makes an angle �
with the horizontal. If the hanging pendulum makes a
constant angle � with the perpendicular to the ceiling,
what is a?

51. An air puck of mass 0.250 kg is tied to a string and al-
lowed to revolve in a circle of radius 1.00 m on a fric-

Figure P6.46 Problems 46 and 47.

v
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tionless horizontal table. The other end of the string
passes through a hole in the center of the table, and a
mass of 1.00 kg is tied to it (Fig. P6.51). The suspended
mass remains in equilibrium while the puck on the
tabletop revolves. What are (a) the tension in the string,
(b) the force exerted by the string on the puck, and 
(c) the speed of the puck?

52. An air puck of mass m1 is tied to a string and allowed 
to revolve in a circle of radius R on a frictionless hori-
zontal table. The other end of the string passes 
through a hole in the center of the table, and a mass 
m2 is tied to it (Fig. P6.51). The suspended mass re-
mains in equilibrium while the puck on the tabletop re-
volves. What are (a) the tension in the string? (b) the
central force exerted on the puck? (c) the speed of the
puck?

that, when the mass sits a distance L up along the slop-
ing side, the speed of the mass must be 

v � (g L sin �)1/2

56. The pilot of an airplane executes a constant-speed loop-
the-loop maneuver. His path is a vertical circle. The
speed of the airplane is 300 mi/h, and the radius of the
circle is 1 200 ft. (a) What is the pilot’s apparent weight
at the lowest point if his true weight is 160 lb? (b) What
is his apparent weight at the highest point? (c) Describe
how the pilot could experience apparent weightlessness
if both the radius and the speed can be varied. (Note:
His apparent weight is equal to the force that the seat
exerts on his body.)

57. For a satellite to move in a stable circular orbit at a con-
stant speed, its centripetal acceleration must be in-
versely proportional to the square of the radius r of the
orbit. (a) Show that the tangential speed of a satellite is
proportional to r�1/2. (b) Show that the time required
to complete one orbit is proportional to r3/2.

58. A penny of mass 3.10 g rests on a small 20.0-g block sup-
ported by a spinning disk (Fig. P6.58). If the coeffi-

53. Because the Earth rotates about its axis, a point on the
equator experiences a centripetal acceleration of 
0.033 7 m/s2, while a point at one of the poles experi-
ences no centripetal acceleration. (a) Show that at the
equator the gravitational force acting on an object (the
true weight) must exceed the object’s apparent weight. 
(b) What is the apparent weight at the equator and at
the poles of a person having a mass of 75.0 kg? (Assume
the Earth is a uniform sphere and take g � 9.800 m/s2.)

54. A string under a tension of 50.0 N is used to whirl a
rock in a horizontal circle of radius 2.50 m at a speed of
20.4 m/s. The string is pulled in and the speed of the
rock increases. When the string is 1.00 m long and the
speed of the rock is 51.0 m/s, the string breaks. What is
the breaking strength (in newtons) of the string?

55. A child’s toy consists of a small wedge that has an acute
angle � (Fig. P6.55). The sloping side of the wedge is
frictionless, and a mass m on it remains at constant
height if the wedge is spun at a certain constant speed.
The wedge is spun by rotating a vertical rod that is
firmly attached to the wedge at the bottom end. Show

Figure P6.51 Problems 51 and 52.

Figure P6.55

Figure P6.58
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cients of friction between block and disk are 0.750 (sta-
tic) and 0.640 (kinetic) while those for the penny and
block are 0.450 (kinetic) and 0.520 (static), what is the
maximum rate of rotation (in revolutions per minute)
that the disk can have before either the block or the
penny starts to slip?

59. Figure P6.59 shows a Ferris wheel that rotates four times
each minute and has a diameter of 18.0 m. (a) What is
the centripetal acceleration of a rider? What force does
the seat exert on a 40.0-kg rider (b) at the lowest point
of the ride and (c) at the highest point of the ride? 
(d) What force (magnitude and direction) does the seat
exert on a rider when the rider is halfway between top
and bottom?

63. An amusement park ride consists of a large vertical
cylinder that spins about its axis fast enough that any
person inside is held up against the wall when the floor
drops away (Fig. P6.63). The coefficient of static fric-
tion between person and wall is �s , and the radius of
the cylinder is R. (a) Show that the maximum period of
revolution necessary to keep the person from falling is
T � (42R�s/g)1/2. (b) Obtain a numerical value for TFigure P6.59 (Color Box/FPG)

Figure P6.61

θ

8.00 m

2.50 m

60. A space station, in the form of a large wheel 120 m in
diameter, rotates to provide an “artificial gravity” of 
3.00 m/s2 for persons situated at the outer rim. Find
the rotational frequency of the wheel (in revolutions
per minute) that will produce this effect.

61. An amusement park ride consists of a rotating circular
platform 8.00 m in diameter from which 10.0-kg seats
are suspended at the end of 2.50-m massless chains
(Fig. P6.61). When the system rotates, the chains make
an angle � � 28.0° with the vertical. (a) What is the
speed of each seat? (b) Draw a free-body diagram of a
40.0-kg child riding in a seat and find the tension in the
chain.

62. A piece of putty is initially located at point A on the rim
of a grinding wheel rotating about a horizontal axis.
The putty is dislodged from point A when the diameter
through A is horizontal. The putty then rises vertically
and returns to A the instant the wheel completes one
revolution. (a) Find the speed of a point on the rim of
the wheel in terms of the acceleration due to gravity
and the radius R of the wheel. (b) If the mass of the
putty is m, what is the magnitude of the force that held
it to the wheel? Figure P6.63
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if R � 4.00 m and �s � 0.400. How many revolutions
per minute does the cylinder make?

64. An example of the Coriolis effect. Suppose air resistance is
negligible for a golf ball. A golfer tees off from a loca-
tion precisely at �i � 35.0° north latitude. He hits the
ball due south, with range 285 m. The ball’s initial ve-
locity is at 48.0° above the horizontal. (a) For what
length of time is the ball in flight? The cup is due south
of the golfer’s location, and he would have a hole-in-
one if the Earth were not rotating. As shown in Figure
P6.64, the Earth’s rotation makes the tee move in a cir-
cle of radius RE cos �i � (6.37 � 106 m) cos 35.0°, com-
pleting one revolution each day. (b) Find the eastward
speed of the tee, relative to the stars. The hole is also
moving eastward, but it is 285 m farther south and thus
at a slightly lower latitude �f . Because the hole moves
eastward in a slightly larger circle, its speed must be
greater than that of the tee. (c) By how much does the
hole’s speed exceed that of the tee? During the time the
ball is in flight, it moves both upward and downward, as
well as southward with the projectile motion you studied
in Chapter 4, but it also moves eastward with the speed
you found in part (b). The hole moves to the east at a
faster speed, however, pulling ahead of the ball with the
relative speed you found in part (c). (d) How far to the
west of the hole does the ball land?

Figure P6.64

Figure P6.67φi

RE cos φφi

Golf ball
trajectory

θ

68. The expression F � arv � br2v2 gives the magnitude of
the resistive force (in newtons) exerted on a sphere of
radius r (in meters) by a stream of air moving at speed
v (in meters per second), where a and b are constants
with appropriate SI units. Their numerical values are 
a � 3.10 � 10�4 and b � 0.870. Using this formula, find
the terminal speed for water droplets falling under
their own weight in air, taking the following values for
the drop radii: (a) 10.0 �m, (b) 100 �m, (c) 1.00 mm.
Note that for (a) and (c) you can obtain accurate an-
swers without solving a quadratic equation, by consider-
ing which of the two contributions to the air resistance
is dominant and ignoring the lesser contribution.

69. A model airplane of mass 0.750 kg flies in a horizontal
circle at the end of a 60.0-m control wire, with a speed
of 35.0 m/s. Compute the tension in the wire if it makes
a constant angle of 20.0° with the horizontal. The forces
exerted on the airplane are the pull of the control wire,

66. A car rounds a banked curve as shown in Figure 6.6.
The radius of curvature of the road is R, the banking
angle is �, and the coefficient of static friction is �s . 
(a) Determine the range of speeds the car can have
without slipping up or down the banked surface. 
(b) Find the minimum value for �s such that the mini-
mum speed is zero. (c) What is the range of speeds pos-
sible if R � 100 m, � � 10.0°, and �s � 0.100 (slippery
conditions)?

67. A single bead can slide with negligible friction on a wire
that is bent into a circle of radius 15.0 cm, as in Figure
P6.67. The circle is always in a vertical plane and rotates
steadily about its vertical diameter with a period of
0.450 s. The position of the bead is described by the an-
gle � that the radial line from the center of the loop to
the bead makes with the vertical. (a) At what angle up
from the lowest point can the bead stay motionless rela-
tive to the turning circle? (b) Repeat the problem if the
period of the circle’s rotation is 0.850 s.

65. A curve in a road forms part of a horizontal circle. As a
car goes around it at constant speed 14.0 m/s, the total
force exerted on the driver has magnitude 130 N. What
are the magnitude and direction of the total force ex-
erted on the driver if the speed is 18.0 m/s instead?
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Figure P6.69

20.0°

20.0°

 T

mg

Flift

stable spread position” versus the time of fall t. (a) Con-
vert the distances in feet into meters. (b) Graph d (in
meters) versus t. (c) Determine the value of the termi-
nal speed vt by finding the slope of the straight portion
of the curve. Use a least-squares fit to determine this
slope.

70. A 9.00-kg object starting from rest falls through a vis-
cous medium and experiences a resistive force R �
� bv, where v is the velocity of the object. If the object’s
speed reaches one-half its terminal speed in 5.54 s, 
(a) determine the terminal speed. (b) At what time is
the speed of the object three-fourths the terminal
speed? (c) How far has the object traveled in the first
5.54 s of motion?

71. Members of a skydiving club were given the following
data to use in planning their jumps. In the table, d is
the distance fallen from rest by a sky diver in a “free-fall

its own weight, and aerodynamic lift, which acts at 20.0°
inward from the vertical as shown in Figure P6.69.

t (s) d (ft)

1 16
2 62
3 138
4 242
5 366
6 504
7 652
8 808
9 971

10 1 138
11 1 309
12 1 483
13 1 657
14 1 831
15 2 005
16 2 179
17 2 353
18 2 527
19 2 701
20 2 875

ANSWERS TO QUICK QUIZZES

fact, if the string breaks and there is no other force act-
ing on the ball, Newton’s first law says the ball will travel
along such a tangent line at constant speed.

6.3 At � the path is along the circumference of the larger
circle. Therefore, the wire must be exerting a force on
the bead directed toward the center of the circle. Be-
cause the speed is constant, there is no tangential force
component. At � the path is not curved, and so the wire
exerts no force on the bead. At � the path is again
curved, and so the wire is again exerting a force on the
bead. This time the force is directed toward the center
of the smaller circle. Because the radius of this circle is
smaller, the magnitude of the force exerted on the bead
is larger here than at �.

6.1 No. The tangential acceleration changes just the speed
part of the velocity vector. For the car to move in a cir-
cle, the direction of its velocity vector must change, and
the only way this can happen is for there to be a cen-
tripetal acceleration.

6.2 (a) The ball travels in a circular path that has a larger ra-
dius than the original circular path, and so there must
be some external force causing the change in the veloc-
ity vector’s direction. The external force must not be as
strong as the original tension in the string because if it
were, the ball would follow the original path. (b) The
ball again travels in an arc, implying some kind of exter-
nal force. As in part (a), the external force is directed to-
ward the center of the new arc and not toward the cen-
ter of the original circular path. (c) The ball undergoes
an abrupt change in velocity—from tangent to the cir-
cle to perpendicular to it—and so must have experi-
enced a large force that had one component opposite
the ball’s velocity (tangent to the circle) and another
component radially outward. (d) The ball travels in a
straight line tangent to the original path. If there is an
external force, it cannot have a component perpendicu-
lar to this line because if it did, the path would curve. In �

�

�
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that the fish must do to get past the dam?
(Daniel J. Cox/Tony Stone Images)
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he concept of energy is one of the most important topics in science and engi-
neering. In everyday life, we think of energy in terms of fuel for transportation

and heating, electricity for lights and appliances, and foods for consumption.
However, these ideas do not really define energy. They merely tell us that fuels are
needed to do a job and that those fuels provide us with something we call energy.

In this chapter, we first introduce the concept of work. Work is done by a force
acting on an object when the point of application of that force moves through
some distance and the force has a component along the line of motion. Next, we
define kinetic energy, which is energy an object possesses because of its motion. In
general, we can think of energy as the capacity that an object has for performing
work. We shall see that the concepts of work and kinetic energy can be applied to
the dynamics of a mechanical system without resorting to Newton’s laws. In a com-
plex situation, in fact, the “energy approach” can often allow a much simpler
analysis than the direct application of Newton’s second law. However, it is impor-
tant to note that the work–energy concepts are based on Newton’s laws and there-
fore allow us to make predictions that are always in agreement with these laws.

This alternative method of describing motion is especially useful when the
force acting on a particle varies with the position of the particle. In this case, the ac-
celeration is not constant, and we cannot apply the kinematic equations developed
in Chapter 2. Often, a particle in nature is subject to a force that varies with the po-
sition of the particle. Such forces include the gravitational force and the force ex-
erted on an object attached to a spring. Although we could analyze situations like
these by applying numerical methods such as those discussed in Section 6.5, utiliz-
ing the ideas of work and energy is often much simpler. We describe techniques for
treating complicated systems with the help of an extremely important theorem
called the work–kinetic energy theorem, which is the central topic of this chapter.

WORK DONE BY A CONSTANT FORCE
Almost all the terms we have used thus far—velocity, acceleration, force, and so
on—convey nearly the same meaning in physics as they do in everyday life. Now,
however, we encounter a term whose meaning in physics is distinctly different
from its everyday meaning. That new term is work.

To understand what work means to the physicist, consider the situation illus-
trated in Figure 7.1. A force is applied to a chalkboard eraser, and the eraser slides
along the tray. If we are interested in how effective the force is in moving the

7.1

T

5.1

Figure 7.1 An eraser being pushed along a chalkboard tray. (Charles D. Winters)

(a) (b) (c)



As an example of the distinction between this definition of work and our
everyday understanding of the word, consider holding a heavy chair at arm’s
length for 3 min. At the end of this time interval, your tired arms may lead you to
think that you have done a considerable amount of work on the chair. According
to our definition, however, you have done no work on it whatsoever.1 You exert a
force to support the chair, but you do not move it. A force does no work on an ob-
ject if the object does not move. This can be seen by noting that if Equation
7.1 gives W � 0—the situation depicted in Figure 7.1c. 

Also note from Equation 7.1 that the work done by a force on a moving object
is zero when the force applied is perpendicular to the object’s displacement. That
is, if � � 90°, then W � 0 because cos 90° � 0. For example, in Figure 7.3, the
work done by the normal force on the object and the work done by the force of
gravity on the object are both zero because both forces are perpendicular to the
displacement and have zero components in the direction of d.

The sign of the work also depends on the direction of F relative to d. The
work done by the applied force is positive when the vector associated with the
component F cos � is in the same direction as the displacement. For example,
when an object is lifted, the work done by the applied force is positive because the
direction of that force is upward, that is, in the same direction as the displace-
ment. When the vector associated with the component F cos � is in the direction
opposite the displacement, W is negative. For example, as an object is lifted, the
work done by the gravitational force on the object is negative. The factor cos � in
the definition of W (Eq. 7.1) automatically takes care of the sign. It is important to
note that work is an energy transfer; if energy is transferred to the system (ob-
ject), W is positive; if energy is transferred from the system, W is negative.

d � 0,
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eraser, we need to consider not only the magnitude of the force but also its direc-
tion. If we assume that the magnitude of the applied force is the same in all three
photographs, it is clear that the push applied in Figure 7.1b does more to move
the eraser than the push in Figure 7.1a. On the other hand, Figure 7.1c shows a
situation in which the applied force does not move the eraser at all, regardless of
how hard it is pushed. (Unless, of course, we apply a force so great that we break
something.) So, in analyzing forces to determine the work they do, we must con-
sider the vector nature of forces. We also need to know how far the eraser moves
along the tray if we want to determine the work required to cause that motion.
Moving the eraser 3 m requires more work than moving it 2 cm.

Let us examine the situation in Figure 7.2, where an object undergoes a dis-
placement d along a straight line while acted on by a constant force F that makes
an angle � with d.

The work W done on an object by an agent exerting a constant force on
the object is the product of the component of the force in the direction of the
displacement and the magnitude of the displacement:

(7.1)W � Fd cos �

Work done by a constant force

5.3

1 Actually, you do work while holding the chair at arm’s length because your muscles are continuously
contracting and relaxing; this means that they are exerting internal forces on your arm. Thus, work is
being done by your body—but internally on itself rather than on the chair.

θ

d

F

F cos θθ

Figure 7.3 When an object is dis-
placed on a frictionless, horizontal,
surface, the normal force n and the
force of gravity mg do no work on
the object. In the situation shown
here, F is the only force doing
work on the object.

Figure 7.2 If an object under-
goes a displacement d under the
action of a constant force F, the
work done by the force is 
(F cos �)d. 

F

θ

n

mg
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If an applied force F acts along the direction of the displacement, then � � 0
and cos 0 � 1. In this case, Equation 7.1 gives

Work is a scalar quantity, and its units are force multiplied by length. There-
fore, the SI unit of work is the newton�meter (N�m). This combination of units is
used so frequently that it has been given a name of its own: the joule (J).

Can the component of a force that gives an object a centripetal acceleration do any work on
the object? (One such force is that exerted by the Sun on the Earth that holds the Earth in
a circular orbit around the Sun.)

In general, a particle may be moving with either a constant or a varying veloc-
ity under the influence of several forces. In these cases, because work is a scalar
quantity, the total work done as the particle undergoes some displacement is the
algebraic sum of the amounts of work done by all the forces.

Quick Quiz 7.1

W � Fd

Mr. CleanEXAMPLE 7.1
A man cleaning a floor pulls a vacuum cleaner with a force of
magnitude F � 50.0 N at an angle of 30.0° with the horizon-
tal (Fig. 7.4a). Calculate the work done by the force on the
vacuum cleaner as the vacuum cleaner is displaced 3.00 m to
the right.

Solution Because they aid us in clarifying which forces are
acting on the object being considered, drawings like Figure
7.4b are helpful when we are gathering information and or-
ganizing a solution. For our analysis, we use the definition of
work (Eq. 7.1):

One thing we should learn from this problem is that the
normal force n, the force of gravity Fg � mg, and the upward
component of the applied force (50.0 N) (sin 30.0°) do no
work on the vacuum cleaner because these forces are perpen-
dicular to its displacement.

Exercise Find the work done by the man on the vacuum
cleaner if he pulls it 3.0 m with a horizontal force of 32 N.

Answer 96 J.

130 J�

  � (50.0 N)(cos 30.0°)(3.00 m) � 130 N�m

W � (F cos �)d  

mg

30.0°

50.0 N

(a)

n

50.0 N

30.0°

n

mg

x

y

(b)

Figure 7.4 (a) A vacuum cleaner being pulled at an angle of 30.0°
with the horizontal. (b) Free-body diagram of the forces acting on
the vacuum cleaner.
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A person lifts a heavy box of mass m a vertical distance h and then walks horizontally a dis-
tance d while holding the box, as shown in Figure 7.5. Determine (a) the work he does on
the box and (b) the work done on the box by the force of gravity.

Quick Quiz  7.2

In general, the scalar product of any two vectors A and B is a scalar quantity
equal to the product of the magnitudes of the two vectors and the cosine of the
angle � between them:

(7.3)A�B � AB cos �

THE SCALAR PRODUCT OF TWO VECTORS
Because of the way the force and displacement vectors are combined in Equation
7.1, it is helpful to use a convenient mathematical tool called the scalar product.
This tool allows us to indicate how F and d interact in a way that depends on how
close to parallel they happen to be. We write this scalar product F�d. (Because of
the dot symbol, the scalar product is often called the dot product.) Thus, we can
express Equation 7.1 as a scalar product:

W � F�d � Fd cos � (7.2)

In other words, F�d (read “F dot d”) is a shorthand notation for Fd cos �.

7.2

2.6

Work expressed as a dot product

Scalar product of any two vectors
A and B

F

mg h

d

Figure 7.5 A person lifts a box of
mass m a vertical distance h and then
walks horizontally a distance d.

This relationship is shown in Figure 7.6. Note that A and B need not have the
same units.

The weightlifter does no work on the weights as he holds them on his shoulders. (If he could rest
the bar on his shoulders and lock his knees, he would be able to support the weights for quite
some time.) Did he do any work when he raised the weights to this height?
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In Figure 7.6, B cos � is the projection of B onto A. Therefore, Equation 7.3
says that A � B is the product of the magnitude of A and the projection of B onto
A.2

From the right-hand side of Equation 7.3 we also see that the scalar product is
commutative.3 That is,

Finally, the scalar product obeys the distributive law of multiplication, so
that

The dot product is simple to evaluate from Equation 7.3 when A is either per-
pendicular or parallel to B. If A is perpendicular to B (� � 90°), then A�B � 0.
(The equality A�B = 0 also holds in the more trivial case when either A or B is
zero.) If vector A is parallel to vector B and the two point in the same direction 
(� � 0), then A�B � AB. If vector A is parallel to vector B but the two point in op-
posite directions (� � 180°), then A�B � � AB. The scalar product is negative
when 90° � � � 180°.

The unit vectors i, j, and k, which were defined in Chapter 3, lie in the posi-
tive x, y, and z directions, respectively, of a right-handed coordinate system. There-
fore, it follows from the definition of that the scalar products of these unit
vectors are

(7.4)

(7.5)

Equations 3.18 and 3.19 state that two vectors A and B can be expressed in
component vector form as

Using the information given in Equations 7.4 and 7.5 shows that the scalar prod-
uct of A and B reduces to

(7.6)

(Details of the derivation are left for you in Problem 7.10.) In the special case in
which A � B, we see that

If the dot product of two vectors is positive, must the vectors have positive rectangular com-
ponents?

Quick Quiz 7.3

A�A � Ax 

2 �  Ay 

2 �  Az 

2 � A2

A�B � Ax  Bx � Ay  By � Az  Bz

B � Bx  i � By   j � Bz  k

A � Ax  i � Ay   j � Az  k

i�j � i�k � j�k � 0

i�i � j�j � k�k � 1

A � B

A�(B � C) � A�B � A�C

A�B � B�A The order of the dot product can
be reversed

Dot products of unit vectors

2 This is equivalent to stating that A�B equals the product of the magnitude of B and the projection of
A onto B.
3 This may seem obvious, but in Chapter 11 you will see another way of combining vectors that proves
useful in physics and is not commutative.

Figure 7.6 The scalar product
A�B equals the magnitude of A
multiplied by B cos �, which is the
projection of B onto A.

B

A

B cos θ

θ

θ

θA . B  =  AB cos
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WORK DONE BY A VARYING FORCE
Consider a particle being displaced along the x axis under the action of a varying
force. The particle is displaced in the direction of increasing x from x � xi to x �
xf . In such a situation, we cannot use W � (F cos �)d to calculate the work done by
the force because this relationship applies only when F is constant in magnitude
and direction. However, if we imagine that the particle undergoes a very small dis-
placement �x, shown in Figure 7.7a, then the x component of the force Fx is ap-
proximately constant over this interval; for this small displacement, we can express
the work done by the force as

This is just the area of the shaded rectangle in Figure 7.7a. If we imagine that the
Fx versus x curve is divided into a large number of such intervals, then the total
work done for the displacement from xi to xf is approximately equal to the sum of
a large number of such terms:

W � �
xf

xi

Fx �x

�W � Fx �x

7.3

The Scalar ProductEXAMPLE 7.2
(b) Find the angle � between A and B.

Solution The magnitudes of A and B are

Using Equation 7.3 and the result from part (a) we find that

60.2° � � cos�1 
4

8.06
�

cos � �
A � B
AB

�
4

√13√5
�

4

√65

B � √Bx 

2 � By 

2 � √(�1)2 � (2)2 � √5

A � √Ax 

2 � Ay 

2 � √(2)2 � (3)2 � √13

The vectors A and B are given by A � 2i � 3j and B � � i �
2j. (a) Determine the scalar product A � B.

Solution

where we have used the facts that i�i � j�j � 1 and i�j � j�i �
0. The same result is obtained when we use Equation 7.6 di-
rectly, where and By � 2.Ax � 2, Ay � 3, Bx � �1,

4 � �2 � 6 �

 � �2(1) � 4(0) � 3(0) � 6(1) 

 � �2i � i � 2i � 2j � 3j � i � 3j � 2j
A�B � (2i � 3j) � (� i � 2j) 

Work Done by a Constant ForceEXAMPLE 7.3
Solution Substituting the expressions for F and d into
Equations 7.4 and 7.5, we obtain

Exercise Calculate the angle between F and d.

Answer 35°.

16 J  � 10 � 0 � 0 � 6 � 16 N�m �

 � 5.0i � 2.0i � 5.0i � 3.0j � 2.0j � 2.0i � 2.0j � 3.0j
W � F�d � (5.0i � 2.0j)�(2.0i � 3.0j) N�m 

A particle moving in the xy plane undergoes a displacement
d � (2.0i � 3.0j) m as a constant force F � (5.0i � 2.0j) N
acts on the particle. (a) Calculate the magnitude of the dis-
placement and that of the force.

Solution

(b) Calculate the work done by F.

5.4 NF � √Fx 

2 � Fy 

2 � √(5.0)2 � (2.0)2 �

3.6 md � √x  

2 � y  

2 � √(2.0)2 � (3.0)2 �

5.2
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If the displacements are allowed to approach zero, then the number of terms in
the sum increases without limit but the value of the sum approaches a definite
value equal to the area bounded by the Fx curve and the x axis:

This definite integral is numerically equal to the area under the Fx -versus-x
curve between xi and xf . Therefore, we can express the work done by Fx as the par-
ticle moves from xi to xf as

(7.7)

This equation reduces to Equation 7.1 when the component Fx � F cos � is con-
stant.

If more than one force acts on a particle, the total work done is just the work
done by the resultant force. If we express the resultant force in the x direction as
�Fx , then the total work, or net work, done as the particle moves from xi to xf is

(7.8)�W � Wnet � �xf

xi
 ��Fx �dx

W � �xf

xi

Fx dx

lim
�x :0

 �
xf

xi

Fx �x � �xf

xi

Fx dx

(a)

Fx

Area  =  ∆A = Fx ∆x

Fx

xxfxi

∆x

(b)

Fx

xxfxi

Work

Calculating Total Work Done from a GraphEXAMPLE 7.4
Solution The work done by the force is equal to the area
under the curve from xA � 0 to xC � 6.0 m. This area is
equal to the area of the rectangular section from � to � plus

A force acting on a particle varies with x, as shown in Figure
7.8. Calculate the work done by the force as the particle
moves from x � 0 to x � 6.0 m.

Figure 7.7 (a) The work done by the force component Fx
for the small displacement �x is Fx �x, which equals the area
of the shaded rectangle. The total work done for the dis-
placement from xi to xf is approximately equal to the sum of
the areas of all the rectangles. (b) The work done by the
component Fx of the varying force as the particle moves from
xi to xf is exactly equal to the area under this curve.

Work done by a varying force
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Work Done by the Sun on a ProbeEXAMPLE 7.5
work is done by the Sun on the probe as the probe–Sun sep-
aration changes from 

Graphical Solution The minus sign in the formula for
the force indicates that the probe is attracted to the Sun. Be-
cause the probe is moving away from the Sun, we expect to
calculate a negative value for the work done on it.

A spreadsheet or other numerical means can be used to
generate a graph like that in Figure 7.9b. Each small square
of the grid corresponds to an area (0.05 N)(0.1 	 1011 m) �
5 	 108 N�m. The work done is equal to the shaded area in
Figure 7.9b. Because there are approximately 60 squares
shaded, the total area (which is negative because it is below
the x axis) is about � 3 	 1010 N�m. This is the work done by
the Sun on the probe.

1.5 	 1011 m to 2.3 	 1011 m.
The interplanetary probe shown in Figure 7.9a is attracted to
the Sun by a force of magnitude

where x is the distance measured outward from the Sun to
the probe. Graphically and analytically determine how much

F � �1.3 	 1022/x  

2

Figure 7.9 (a) An interplanetary probe moves
from a position near the Earth’s orbit radially out-
ward from the Sun, ending up near the orbit of
Mars. (b) Attractive force versus distance for the in-
terplanetary probe.

1 2 3 4 5 6
x(m)0

5

Fx(N)

�

� �

Figure 7.8 The force acting on a particle is constant for the first 4.0 m
of motion and then decreases linearly with x from xB � 4.0 m to xC �

6.0 m. The net work done by this force is the area under the curve.

the area of the triangular section from � to �. The area of
the rectangle is (4.0)(5.0) N�m � 20 J, and the area of the 
triangle is N�m � 5.0 J. Therefore, the total work 

done is 25 J.

1
2(2.0)(5.0)

Mars’s
orbit

Earth’s orbit

Sun

(a)

0.5 1.0 1.5 2.0 2.5 3.0 × 1011

0.0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8

–0.9

–1.0

x(m)

F(N)

(b)
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Work Done by a Spring
A common physical system for which the force varies with position is shown in Fig-
ure 7.10. A block on a horizontal, frictionless surface is connected to a spring. If
the spring is either stretched or compressed a small distance from its unstretched
(equilibrium) configuration, it exerts on the block a force of magnitude

(7.9)

where x is the displacement of the block from its unstretched (x � 0) position and
k is a positive constant called the force constant of the spring. In other words, the
force required to stretch or compress a spring is proportional to the amount of
stretch or compression x. This force law for springs, known as Hooke’s law, is
valid only in the limiting case of small displacements. The value of k is a measure
of the stiffness of the spring. Stiff springs have large k values, and soft springs have
small k values.

What are the units for k, the force constant in Hooke’s law?

The negative sign in Equation 7.9 signifies that the force exerted by the spring
is always directed opposite the displacement. When x 
 0 as in Figure 7.10a, the
spring force is directed to the left, in the negative x direction. When x � 0 as in
Figure 7.10c, the spring force is directed to the right, in the positive x direction.
When x � 0 as in Figure 7.10b, the spring is unstretched and Fs � 0. Because the
spring force always acts toward the equilibrium position (x � 0), it sometimes is
called a restoring force. If the spring is compressed until the block is at the point
� xmax and is then released, the block moves from � xmax through zero to � xmax.
If the spring is instead stretched until the block is at the point xmax and is then re-
leased, the block moves from � xmax through zero to � xmax. It then reverses direc-
tion, returns to � xmax, and continues oscillating back and forth.

Suppose the block has been pushed to the left a distance xmax from equilib-
rium and is then released. Let us calculate the work Ws done by the spring force as
the block moves from xi � � xmax to xf � 0. Applying Equation 7.7 and assuming
the block may be treated as a particle, we obtain

(7.10)Ws � �xf

xi

Fs dx � �0

�x max

 (�kx)dx � 1
2  kx2

max

Quick Quiz 7.4

Fs � �kx

Analytical Solution We can use Equation 7.7 to calcu-
late a more precise value for the work done on the probe by
the Sun. To solve this integral, we use the first formula of
Table B.5 in Appendix B with n � � 2:

 � (�1.3 	 1022)(�x  

�1)�2.3	1011

1.5	1011
 

 � (�1.3 	 1022) �2.3	1011

1.5	1011
x  

�2 dx  

W � �2.3	1011

1.5	1011 � �1.3 	 1022

x  

2 �dx  Exercise Does it matter whether the path of the probe is
not directed along a radial line away from the Sun?

Answer No; the value of W depends only on the initial and
final positions, not on the path taken between these points.

�3.0 	 1010 J  �

 � (�1.3 	 1022)� �1
2.3 	 1011 �

�1
1.5 	 1011 �

Spring force

5.3
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where we have used the indefinite integral with n � 1. The
work done by the spring force is positive because the force is in the same direction
as the displacement (both are to the right). When we consider the work done by
the spring force as the block moves from xi � 0 to xf � xmax, we find that

�x  

ndx � x  

n�1/(n � 1)

(c)

(b)

(a)

x

x = 0

Fs is negative.
  x is positive.

x

x = 0

Fs = 0
 x = 0

x

x = 0
x

x

Fs

x
0

kxmax

xmax Fs = –kx

(d)

Fs is positive.
  x is negative.

Area = – kx2
max

1
2

Figure 7.10 The force exerted by a spring on a block varies with the block’s displacement x
from the equilibrium position x � 0. (a) When x is positive (stretched spring), the spring force is
directed to the left. (b) When x is zero (natural length of the spring), the spring force is zero. 
(c) When x is negative (compressed spring), the spring force is directed to the right. (d) Graph
of Fs versus x for the block–spring system. The work done by the spring force as the block moves
from � xmax to 0 is the area of the shaded triangle, 12  kx 2

max .
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because for this part of the motion the displacement is to the right
and the spring force is to the left. Therefore, the net work done by the spring force
as the block moves from xi � � xmax to xf � xmax is zero.

Figure 7.10d is a plot of Fs versus x. The work calculated in Equation 7.10 is
the area of the shaded triangle, corresponding to the displacement from � xmax to
0. Because the triangle has base xmax and height kxmax, its area is the work
done by the spring as given by Equation 7.10.

If the block undergoes an arbitrary displacement from x � xi to x � xf , the
work done by the spring force is

(7.11)

For example, if the spring has a force constant of 80 N/m and is compressed 
3.0 cm from equilibrium, the work done by the spring force as the block moves
from xi � � 3.0 cm to its unstretched position xf � 0 is 3.6 	 10�2 J. From Equa-
tion 7.11 we also see that the work done by the spring force is zero for any motion
that ends where it began (xi � xf). We shall make use of this important result in
Chapter 8, in which we describe the motion of this system in greater detail.

Equations 7.10 and 7.11 describe the work done by the spring on the block.
Now let us consider the work done on the spring by an external agent that stretches
the spring very slowly from xi � 0 to xf � xmax, as in Figure 7.11. We can calculate
this work by noting that at any value of the displacement, the applied force Fapp is
equal to and opposite the spring force Fs , so that Fapp � � (� kx) � kx. Therefore,
the work done by this applied force (the external agent) is

This work is equal to the negative of the work done by the spring force for this dis-
placement.

WFapp
� �x max

0
 Fapp dx � �x max

0
 kx dx � 1

2 kx   

2
max

Ws � �xf

xi

(�kx)dx � 1
2 kxi  

2 � 1
2 kxf  

2

1
2 kx2

max ,

Ws � �1
2 kx  

2
max

Measuring k for a SpringEXAMPLE 7.6
A common technique used to measure the force constant of
a spring is described in Figure 7.12. The spring is hung verti-
cally, and an object of mass m is attached to its lower end. Un-
der the action of the “load” mg, the spring stretches a dis-
tance d from its equilibrium position. Because the spring
force is upward (opposite the displacement), it must balance
the downward force of gravity mg when the system is at rest.
In this case, we can apply Hooke’s law to give 
or

For example, if a spring is stretched 2.0 cm by a suspended
object having a mass of 0.55 kg, then the force constant is

2.7 	 102 N/mk �
mg
d

�
(0.55 kg)(9.80 m/s2)

2.0 	 10�2 m
�

k �
mg
d

� Fs � � kd � mg,

Work done by a spring

Figure 7.12 Determining the force constant k of a spring. The
elongation d is caused by the attached object, which has a weight mg.
Because the spring force balances the force of gravity, it follows that 
k � mg/d.

Figure 7.11 A block being
pulled from xi � 0 to xf � xmax on
a frictionless surface by a force
Fapp . If the process is carried out
very slowly, the applied force is
equal to and opposite the spring
force at all times.

xi = 0 xf = xmax

Fs Fapp

Fs

mg

d

(c)(b)(a)
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KINETIC ENERGY AND THE
WORK – KINETIC ENERGY THEOREM

It can be difficult to use Newton’s second law to solve motion problems involving
complex forces. An alternative approach is to relate the speed of a moving particle
to its displacement under the influence of some net force. If the work done by the
net force on a particle can be calculated for a given displacement, then the change
in the particle’s speed can be easily evaluated.

Figure 7.13 shows a particle of mass m moving to the right under the action of
a constant net force �F. Because the force is constant, we know from Newton’s sec-
ond law that the particle moves with a constant acceleration a. If the particle is dis-
placed a distance d, the net work done by the total force �F is

(7.12)

In Chapter 2 we found that the following relationships are valid when a particle
undergoes constant acceleration:

where vi is the speed at t � 0 and vf is the speed at time t. Substituting these ex-
pressions into Equation 7.12 gives

(7.13)

The quantity represents the energy associated with the motion of the
particle. This quantity is so important that it has been given a special name—ki-
netic energy. The net work done on a particle by a constant net force �F acting
on it equals the change in kinetic energy of the particle.

In general, the kinetic energy K of a particle of mass m moving with a speed v
is defined as

(7.14)K � 1
2 mv  

2

1
2 mv  

2

�W � 1
2 mvf  

2 � 1
2 mvi 

2   

�W � m  � vf � vi

t � 12 (vi � vf )t

d � 1
2 (vi � vf  )t  a �

vf � vi

t

�W � ��F�d � (ma)d

7.4

Kinetic energy is energy associated
with the motion of a body

5.7

vf

d

ΣF
m

vi

Figure 7.13 A particle undergo-
ing a displacement d and a change
in velocity under the action of a
constant net force �F.

TABLE 7.1 Kinetic Energies for Various Objects

Object Mass (kg) Speed (m/s) Kinetic Energy ( J)

Earth orbiting the Sun 5.98 	 1024 2.98 	 104 2.65 	 1033

Moon orbiting the Earth 7.35 	 1022 1.02 	 103 3.82 	 1028

Rocket moving at escape speeda 500 1.12 	 104 3.14 	 1010

Automobile at 55 mi/h 2 000 25 6.3 	 105

Running athlete 70 10 3.5 	 103

Stone dropped from 10 m 1.0 14 9.8 	 101

Golf ball at terminal speed 0.046 44 4.5 	 101

Raindrop at terminal speed 3.5 	 10�5 9.0 1.4 	 10�3

Oxygen molecule in air 5.3 	 10�26 500 6.6 	 10�21

a Escape speed is the minimum speed an object must attain near the Earth’s surface if it is to escape
the Earth’s gravitational force.
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Kinetic energy is a scalar quantity and has the same units as work. For exam-
ple, a 2.0-kg object moving with a speed of 4.0 m/s has a kinetic energy of 16 J.
Table 7.1 lists the kinetic energies for various objects.

It is often convenient to write Equation 7.13 in the form

(7.15)

That is, 
Equation 7.15 is an important result known as the work–kinetic energy the-

orem. It is important to note that when we use this theorem, we must include all
of the forces that do work on the particle in the calculation of the net work done.
From this theorem, we see that the speed of a particle increases if the net work
done on it is positive because the final kinetic energy is greater than the initial ki-
netic energy. The particle’s speed decreases if the net work done is negative be-
cause the final kinetic energy is less than the initial kinetic energy.

The work–kinetic energy theorem as expressed by Equation 7.15 allows us to
think of kinetic energy as the work a particle can do in coming to rest, or the
amount of energy stored in the particle. For example, suppose a hammer (our
particle) is on the verge of striking a nail, as shown in Figure 7.14. The moving
hammer has kinetic energy and so can do work on the nail. The work done on the
nail is equal to Fd, where F is the average force exerted on the nail by the hammer
and d is the distance the nail is driven into the wall.4

We derived the work–kinetic energy theorem under the assumption of a con-
stant net force, but it also is valid when the force varies. To see this, suppose the
net force acting on a particle in the x direction is �Fx . We can apply Newton’s sec-
ond law, �Fx � max , and use Equation 7.8 to express the net work done as

If the resultant force varies with x, the acceleration and speed also depend on x.
Because we normally consider acceleration as a function of t, we now use the fol-
lowing chain rule to express a in a slightly different way:

Substituting this expression for a into the above equation for �W gives

(7.16)

The limits of the integration were changed from x values to v values because the
variable was changed from x to v. Thus, we conclude that the net work done on a
particle by the net force acting on it is equal to the change in the kinetic energy of
the particle. This is true whether or not the net force is constant.

�W � 1
2 mv  f 

2 � 1
2 mv  i 

2

�W � �xf

xi

mv 
dv
dx

 dx � �vf

vi

mv dv

a �
dv
dt

�
dv
dx

 
dx
dt

� v 
dv
dx

�W � �xf

xi
��Fx �dx � �xf

xi

max dx

Ki � �W � Kf .

�W � Kf � Ki � �K

The net work done on a particle
equals the change in its kinetic
energy

Work–kinetic energy theorem

5.4

4 Note that because the nail and the hammer are systems of particles rather than single particles, part of
the hammer’s kinetic energy goes into warming the hammer and the nail upon impact. Also, as the nail
moves into the wall in response to the impact, the large frictional force between the nail and the wood
results in the continuous transformation of the kinetic energy of the nail into further temperature in-
creases in the nail and the wood, as well as in deformation of the wall. Energy associated with tempera-
ture changes is called internal energy and will be studied in detail in Chapter 20.

Figure 7.14 The moving ham-
mer has kinetic energy and thus
can do work on the nail, driving it
into the wall.



196 C H A P T E R  7 Work and Kinetic Energy

Situations Involving Kinetic Friction

One way to include frictional forces in analyzing the motion of an object sliding
on a horizontal surface is to describe the kinetic energy lost because of friction.
Suppose a book moving on a horizontal surface is given an initial horizontal veloc-
ity vi and slides a distance d before reaching a final velocity vf as shown in Figure
7.15. The external force that causes the book to undergo an acceleration in the
negative x direction is the force of kinetic friction fk acting to the left, opposite the
motion. The initial kinetic energy of the book is and its final kinetic energy
is Applying Newton’s second law to the book can show this. Because the
only force acting on the book in the x direction is the friction force, Newton’s sec-
ond law gives � fk � max . Multiplying both sides of this expression by d and using
Equation 2.12 in the form for motion under constant accelera-
tion give or

(7.17a)

This result specifies that the amount by which the force of kinetic friction changes
the kinetic energy of the book is equal to � fkd. Part of this lost kinetic energy goes
into warming up the book, and the rest goes into warming up the surface over
which the book slides. In effect, the quantity � fkd is equal to the work done by ki-
netic friction on the book plus the work done by kinetic friction on the surface.
(We shall study the relationship between temperature and energy in Part III of this
text.) When friction—as well as other forces—acts on an object, the work–kinetic
energy theorem reads

(7.17b)

Here, �Wother represents the sum of the amounts of work done on the object by
forces other than kinetic friction.

Ki � �Wother � fk  d � Kf

�Kfriction � � fk  d

(max )d � 1
2 mvxf 

2 � 1
2 mvxi 

2� fkd �
vxf 

2 � vxi 

2 � 2ax  d

1
2 mvf 

2
 .

1
2 mvi 

2,

Figure 7.15 A book sliding to
the right on a horizontal surface
slows down in the presence of a
force of kinetic friction acting to
the left. The initial velocity of the
book is vi , and its final velocity is
vf . The normal force and the force
of gravity are not included in the
diagram because they are perpen-
dicular to the direction of motion
and therefore do not influence the
book’s velocity.

Loss in kinetic energy due to
friction

A Block Pulled on a Frictionless SurfaceEXAMPLE 7.7
Solution We have made a drawing of this situation in Fig-
ure 7.16a. We could apply the equations of kinematics to de-
termine the answer, but let us use the energy approach for

A 6.0-kg block initially at rest is pulled to the right along a
horizontal, frictionless surface by a constant horizontal force
of 12 N. Find the speed of the block after it has moved 3.0 m.

d
vi

fk

vf

(a)

n

F

mg
d

vf

(b)

n

F

mg
d

vf

fk

Figure 7.16 A block pulled to the right by a
constant horizontal force. (a) Frictionless surface. 
(b) Rough surface.

Can frictional forces ever increase an object’s kinetic energy?

Quick Quiz 7.5
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Figure 7.17 A refrigerator attached to a
frictionless wheeled dolly is moved up a ramp
at constant speed.

Exercise Find the acceleration of the block and determine
its final speed, using the kinematics equation 

Answer ax � 2.0 m/s2; vf � 3.5 m/s.

vxi 

2 � 2ax  d.
vxf  

2 �

3.5 m/s vf �

vf 

2 �
2W
m

�
2(36 J)
6.0 kg

� 12 m2/s2practice. The normal force balances the force of gravity on
the block, and neither of these vertically acting forces does
work on the block because the displacement is horizontal.
Because there is no friction, the net external force acting on
the block is the 12-N force. The work done by this force is

Using the work–kinetic energy theorem and noting that
the initial kinetic energy is zero, we obtain

 W � Kf � Ki � 1
2 mvf 

2 � 0 

W � Fd � (12 N)(3.0 m) � 36 N�m � 36 J

A Block Pulled on a Rough SurfaceEXAMPLE 7.8

After sliding the 3-m distance on the rough surface, the block
is moving at a speed of 1.8 m/s; in contrast, after covering
the same distance on a frictionless surface (see Example 7.7),
its speed was 3.5 m/s.

Exercise Find the acceleration of the block from Newton’s
second law and determine its final speed, using equations of
kinematics.

Answer ax � 0.53 m/s2; vf � 1.8 m/s.

1.8 m/svf �

vf 

2 � 2(9.5 J)/(6.0 kg) � 3.18 m2/s2

0 � 36 J � 26.5 J � 1
2  (6.0 kg) vf 

2Find the final speed of the block described in Example 7.7 if
the surface is not frictionless but instead has a coefficient of
kinetic friction of 0.15.

Solution The applied force does work just as in Example
7.7:

In this case we must use Equation 7.17a to calculate the ki-
netic energy lost to friction �K friction . The magnitude of the
frictional force is

The change in kinetic energy due to friction is

The final speed of the block follows from Equation 7.17b:
1
2  mvi 

2 � �Wother � fk  d � 1
2  mvf 

2

�Kfriction � � fk  d � �(8.82 N)(3.0 m) � �26.5 J

fk � �k  n � �k  mg � (0.15)(6.0 kg)(9.80 m/s2) � 8.82 N

W � F d  � (12 N)(3.0 m) � 36 J

Does the Ramp Lessen the Work Required?CONCEPTUAL EXAMPLE 7.9
Solution No. Although less force is required with a longer
ramp, that force must act over a greater distance if the same
amount of work is to be done. Suppose the refrigerator is
wheeled on a dolly up the ramp at constant speed. The 

A man wishes to load a refrigerator onto a truck using a
ramp, as shown in Figure 7.17. He claims that less work would
be required to load the truck if the length L of the ramp were
increased. Is his statement valid?

L



Consider the chum salmon attempting to swim upstream in the photograph at
the beginning of this chapter. The “steps” of a fish ladder built around a dam do
not change the total amount of work that must be done by the salmon as they leap
through some vertical distance. However, the ladder allows the fish to perform
that work in a series of smaller jumps, and the net effect is to raise the vertical posi-
tion of the fish by the height of the dam.
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Useful Physics for Safer DrivingCONCEPTUAL EXAMPLE 7.10
same for both speeds. The net force multiplied by the dis-
placement of the car is equal to the initial kinetic energy of
the car (because Kf � 0). If the speed is doubled, as it is in
this example, the kinetic energy is quadrupled. For a given
constant applied force (in this case, the frictional force), the
distance traveled is four times as great when the initial speed is
doubled, and so the estimated distance that the car slides is 4d.

A certain car traveling at an initial speed v slides a distance d
to a halt after its brakes lock. Assuming that the car’s initial
speed is instead 2v at the moment the brakes lock, estimate
the distance it slides.

Solution Let us assume that the force of kinetic friction
between the car and the road surface is constant and the

QuickLab
Attach two paperclips to a ruler so
that one of the clips is twice the dis-
tance from the end as the other.
Place the ruler on a table with two
small wads of paper against the clips,
which act as stops. Sharply swing the
ruler through a small angle, stopping
it abruptly with your finger. The outer
paper wad will have twice the speed
of the inner paper wad as the two
slide on the table away from the ruler.
Compare how far the two wads slide.
How does this relate to the results of
Conceptual Example 7.10?

These cyclists are working hard and expending energy as they pedal uphill in Marin County, CA.

Paperclips

Crumpled wads of paper

normal force exerted by the ramp on the refrigerator is di-
rected 90° to the motion and so does no work on the refriger-
ator. Because �K � 0, the work–kinetic energy theorem gives

The work done by the force of gravity equals the weight of

�W � Wby man � Wby gravity � 0

the refrigerator mg times the vertical height h through which
it is displaced times cos 180°, or W by gravity � � mgh. (The mi-
nus sign arises because the downward force of gravity is oppo-
site the displacement.) Thus, the man must do work mgh on
the refrigerator, regardless of the length of the ramp.
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A Block – Spring SystemEXAMPLE 7.11
Solution Certainly, the answer has to be less than what we
found in part (a) because the frictional force retards the mo-
tion. We use Equation 7.17 to calculate the kinetic energy lost
because of friction and add this negative value to the kinetic
energy found in the absence of friction. The kinetic energy
lost due to friction is

In part (a), the final kinetic energy without this loss was
found to be 0.20 J. Therefore, the final kinetic energy in the
presence of friction is

As expected, this value is somewhat less than the 0.50 m/s we
found in part (a). If the frictional force were greater, then
the value we obtained as our answer would have been even
smaller.

0.39 m/s vf �

 vf 

2 �
0.24 J
1.6 kg

� 0.15 m2/s2 

1
2 (1.6 kg)vf 

2 � 0.12 J 

 Kf � 0.20 J � 0.080 J � 0.12 J � 1
2 mvf 

2

�K � � fk  d � �(4.0 N)(2.0 	 10�2 m) � �0.080 J

A block of mass 1.6 kg is attached to a horizontal spring that
has a force constant of 1.0 	 103 N/m, as shown in Figure
7.10. The spring is compressed 2.0 cm and is then released
from rest. (a) Calculate the speed of the block as it passes
through the equilibrium position x � 0 if the surface is fric-
tionless.

Solution In this situation, the block starts with vi � 0 at
xi � � 2.0 cm, and we want to find vf at xf � 0. We use Equa-
tion 7.10 to find the work done by the spring with xmax �
xi � � 2.0 cm � � 2.0 	 10�2 m:

Using the work–kinetic energy theorem with vi � 0, we ob-
tain the change in kinetic energy of the block due to the
work done on it by the spring:

(b) Calculate the speed of the block as it passes through
the equilibrium position if a constant frictional force of 4.0 N
retards its motion from the moment it is released.

0.50 m/s vf �

 vf 

2 �
0.40 J
1.6 kg

� 0.25 m2/s2

0.20 J � 1
2 (1.6 kg)vf 

2 � 0 

 Ws � 1
2 mvf 

2 � 1
2 mvi 

2 

Ws � 1
2 kx  

2
max � 1

2 (1.0 	 103 N/m)(�2.0 	 10�2 m)2 � 0.20 J

POWER
Imagine two identical models of an automobile: one with a base-priced four-cylin-
der engine; and the other with the highest-priced optional engine, a mighty eight-
cylinder powerplant. Despite the differences in engines, the two cars have the
same mass. Both cars climb a roadway up a hill, but the car with the optional en-
gine takes much less time to reach the top. Both cars have done the same amount
of work against gravity, but in different time periods. From a practical viewpoint, it
is interesting to know not only the work done by the vehicles but also the rate at
which it is done. In taking the ratio of the amount of work done to the time taken
to do it, we have a way of quantifying this concept. The time rate of doing work is
called power.

If an external force is applied to an object (which we assume acts as a parti-
cle), and if the work done by this force in the time interval �t is W, then the aver-
age power expended during this interval is defined as

The work done on the object contributes to the increase in the energy of the ob-
ject. Therefore, a more general definition of power is the time rate of energy transfer.
In a manner similar to how we approached the definition of velocity and accelera-

� �
W
�t

7.5

5.8

Average power



tion, we can define the instantaneous power � as the limiting value of the aver-
age power as �t approaches zero:

where we have represented the increment of work done by dW. We find from
Equation 7.2, letting the displacement be expressed as ds, that 
Therefore, the instantaneous power can be written

(7.18)

where we use the fact that v � ds/dt. 
The SI unit of power is joules per second (J/s), also called the watt (W) (after

James Watt, the inventor of the steam engine):

1 W � 1 J/s � 1 kg�m2/s3

The symbol W (not italic) for watt should not be confused with the symbol W
(italic) for work.

A unit of power in the British engineering system is the horsepower (hp):

1 hp � 746 W

A unit of energy (or work) can now be defined in terms of the unit of power.
One kilowatt hour (kWh) is the energy converted or consumed in 1 h at the con-
stant rate of 1 kW � 1 000 J/s. The numerical value of 1 kWh is

1 kWh � (103 W)(3 600 s) � 3.60 	 106 J

It is important to realize that a kilowatt hour is a unit of energy, not power.
When you pay your electric bill, you pay the power company for the total electrical
energy you used during the billing period. This energy is the power used multi-
plied by the time during which it was used. For example, a 300-W lightbulb run for
12 h would convert (0.300 kW)(12 h) � 3.6 kWh of electrical energy.

Suppose that an old truck and a sports car do the same amount of work as they climb a hill
but that the truck takes much longer to accomplish this work. How would graphs of � ver-
sus t compare for the two vehicles?

Quick Quiz 7.6

� �
dW
dt

� F �
ds
dt

� F � v

dW � F � ds.

� � lim
�t:0

 
W
�t

�
dW
dt
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The kilowatt hour is a unit of
energy

The watt

Instantaneous power

Power Delivered by an Elevator MotorEXAMPLE 7.12
a free-body diagram in Figure 7.18b and have arbitrarily spec-
ified that the upward direction is positive. From Newton’s sec-
ond law we obtain

where M is the total mass of the system (car plus passengers),
equal to 1 800 kg. Therefore,

 � 2.16 	 104 N 

 � 4.00 	 103 N � (1.80 	 103 kg)(9.80 m/s2)

T � f � Mg 

�Fy � T � f � Mg � 0

An elevator car has a mass of 1 000 kg and is carrying passen-
gers having a combined mass of 800 kg. A constant frictional
force of 4 000 N retards its motion upward, as shown in Fig-
ure 7.18a. (a) What must be the minimum power delivered
by the motor to lift the elevator car at a constant speed of 
3.00 m/s?

Solution The motor must supply the force of magnitude
T that pulls the elevator car upward. Reading that the speed
is constant provides the hint that a � 0, and therefore we
know from Newton’s second law that �Fy � 0. We have drawn
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Figure 7.18 (a) The motor exerts an upward force T on the eleva-
tor car. The magnitude of this force is the tension T in the cable con-
necting the car and motor. The downward forces acting on the car
are a frictional force f and the force of gravity Fg � Mg. (b) The
free-body diagram for the elevator car.

Motor

T

f

Mg

+

(a) (b)

Using Equation 7.18 and the fact that T is in the same direc-
tion as v, we find that

(b) What power must the motor deliver at the instant its
speed is v if it is designed to provide an upward acceleration
of 1.00 m/s2?

Solution Now we expect to obtain a value greater than we
did in part (a), where the speed was constant, because the
motor must now perform the additional task of accelerating
the car. The only change in the setup of the problem is that
now a 
 0. Applying Newton’s second law to the car gives

Therefore, using Equation 7.18, we obtain for the required
power

where v is the instantaneous speed of the car in meters per
second. The power is less than that obtained in part (a) as

(2.34 	 104v ) W� � Tv �

 � 2.34 	 104 N 

 � (1.80 	 103 kg)(1.00 � 9.80)m/s2 � 4.00 	 103 N

 T � M(a � g) � f 
�Fy � T � f � Mg � Ma 

6.48 	 104 W � (2.16 	 104 N)(3.00 m/s) �

� � T�v � Tv 

long as the speed is less than 2.77 m/s, but it is
greater when the elevator’s speed exceeds this value.

�/T �  

CONCEPTUAL EXAMPLE 7.13
Solution The work–kinetic energy theorem tells us that
the net force acting on the system multiplied by the displace-
ment is equal to the change in the kinetic energy of the sys-
tem. In our elevator case, the net force is indeed zero (that is,
T � Mg � f � 0), and so W � d � 0. However, the
power from the motor is calculated not from the net force but
rather from the force exerted by the motor acting in the di-
rection of motion, which in this case is T and not zero.

(�Fy)

In part (a) of the preceding example, the motor delivers
power to lift the car, and yet the car moves at constant speed.
A student analyzing this situation notes that the kinetic en-
ergy of the car does not change because its speed does not
change. This student then reasons that, according to the
work–kinetic energy theorem, W � �K � 0. Knowing that 
� � W/t, the student concludes that the power delivered by
the motor also must be zero. How would you explain this ap-
parent paradox?

Optional Section

ENERGY AND THE AUTOMOBILE
Automobiles powered by gasoline engines are very inefficient machines. Even un-
der ideal conditions, less than 15% of the chemical energy in the fuel is used to
power the vehicle. The situation is much worse under stop-and-go driving condi-
tions in a city. In this section, we use the concepts of energy, power, and friction to
analyze automobile fuel consumption.

7.6



Many mechanisms contribute to energy loss in an automobile. About 67% of
the energy available from the fuel is lost in the engine. This energy ends up in the
atmosphere, partly via the exhaust system and partly via the cooling system. (As we
shall see in Chapter 22, the great energy loss from the exhaust and cooling systems
is required by a fundamental law of thermodynamics.) Approximately 10% of the
available energy is lost to friction in the transmission, drive shaft, wheel and axle
bearings, and differential. Friction in other moving parts dissipates approximately
6% of the energy, and 4% of the energy is used to operate fuel and oil pumps and
such accessories as power steering and air conditioning. This leaves a mere 13% of
the available energy to propel the automobile! This energy is used mainly to bal-
ance the energy loss due to flexing of the tires and the friction caused by the air,
which is more commonly referred to as air resistance.

Let us examine the power required to provide a force in the forward direction
that balances the combination of the two frictional forces. The coefficient of
rolling friction � between the tires and the road is about 0.016. For a 1 450-kg car,
the weight is 14 200 N and the force of rolling friction has a magnitude of �n �
�mg � 227 N. As the speed of the car increases, a small reduction in the normal
force occurs as a result of a decrease in atmospheric pressure as air flows over the
top of the car. (This phenomenon is discussed in Chapter 15.) This reduction in
the normal force causes a slight reduction in the force of rolling friction fr with in-
creasing speed, as the data in Table 7.2 indicate.

Now let us consider the effect of the resistive force that results from the move-
ment of air past the car. For large objects, the resistive force fa associated with air
friction is proportional to the square of the speed (in meters per second; see Sec-
tion 6.4) and is given by Equation 6.6:

where D is the drag coefficient, � is the density of air, and A is the cross-sectional
area of the moving object. We can use this expression to calculate the fa values in
Table 7.2, using D � 0.50, � � 1.293 kg/m3, and A � 2 m2.

The magnitude of the total frictional force ft is the sum of the rolling frictional
force and the air resistive force:

At low speeds, road friction is the predominant resistive force, but at high
speeds air drag predominates, as shown in Table 7.2. Road friction can be de-
creased by a reduction in tire flexing (for example, by an increase in the air pres-

ft � fr � fa

fa � 1
2 D�Av2
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TABLE 7.2 Frictional Forces and Power Requirements for a Typical Cara

v (m/s) n (N) fr (N) fa (N) ft (N) � � ftv (kW)

0 14 200 227 0 227 0
8.9 14 100 226 51 277 2.5

17.8 13 900 222 204 426 7.6
26.8 13 600 218 465 683 18.3
35.9 13 200 211 830 1 041 37.3
44.8 12 600 202 1 293 1 495 67.0

a In this table, n is the normal force, fr is road friction, fa is air friction, ft is total friction, and � is
the power delivered to the wheels.
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sure slightly above recommended values) and by the use of radial tires. Air drag
can be reduced through the use of a smaller cross-sectional area and by streamlin-
ing the car. Although driving a car with the windows open increases air drag and
thus results in a 3% decrease in mileage, driving with the windows closed and the
air conditioner running results in a 12% decrease in mileage.

The total power needed to maintain a constant speed v is ftv, and it is this
power that must be delivered to the wheels. For example, from Table 7.2 we see
that at v � 26.8 m/s (60 mi/h) the required power is

This power can be broken down into two parts: (1) the power frv needed to compen-
sate for road friction, and (2) the power fav needed to compensate for air drag. At v �
26.8 m/s, we obtain the values

Note that 
On the other hand, at v � 44.8 m/s (100 mi/h), �r � 9.05 kW, �a � 57.9 kW,

and � � 67.0 kW. This shows the importance of air drag at high speeds.

� � �r � �a .

�a � fa  v � (465 N) �26.8  

m
s � � 12.5 kW

�r � fr  v � (218 N) �26.8  

m
s � � 5.84 kW

� � ft  v � (683 N) �26.8   

m
s � � 18.3 kW

Gas Consumed by a Compact CarEXAMPLE 7.14
would supply 1.3 	 108 J of energy. Because the engine is
only 18% efficient, each gallon delivers only (0.18)(1.3 	
108 J) � 2.3 	 107 J. Hence, the number of gallons used to
accelerate the car is

At cruising speed, this much gasoline is sufficient to propel
the car nearly 0.5 mi. This demonstrates the extreme energy
requirements of stop-and-start driving.

0.013 gal Number of gallons �
2.9 	 105 J
2.3 	 107 J/gal

�

A compact car has a mass of 800 kg, and its efficiency is rated
at 18%. (That is, 18% of the available fuel energy is delivered
to the wheels.) Find the amount of gasoline used to acceler-
ate the car from rest to 27 m/s (60 mi/h). Use the fact that
the energy equivalent of 1 gal of gasoline is 1.3 	 108 J.

Solution The energy required to accelerate the car from
rest to a speed v is its final kinetic energy 

If the engine were 100% efficient, each gallon of gasoline

K � 1
2 mv  

2 � 1
2 (800 kg)(27 m/s)2 � 2.9 	 105 J

1
2 mv  

2:

Power Delivered to WheelsEXAMPLE 7.15

Because 18% of the available power is used to propel the car,
the power delivered to the wheels is (0.18)(62 kW) �

This is 40% less than the 18.3-kW value obtained  

for the 1 450-kg car discussed in the text. Vehicle mass is
clearly an important factor in power-loss mechanisms.

11 kW.

 �
2.2 	 108 J
3.6 	 103 s

� 62 kW 
Suppose the compact car in Example 7.14 gets 35 mi/gal at
60 mi/h. How much power is delivered to the wheels?

Solution By simply canceling units, we determine that the
car consumes Using the
fact that each gallon is equivalent to 1.3 	 108 J, we find that
the total power used is

� �
(1.7 gal/h)(1.3 	 108 J/gal)

3.6 	 103 s/h

60 mi/h  35 mi/gal � 1.7 gal/h.
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KINETIC ENERGY AT HIGH SPEEDS
The laws of Newtonian mechanics are valid only for describing the motion of parti-
cles moving at speeds that are small compared with the speed of light in a vacuum
c When speeds are comparable to c, the equations of Newton-
ian mechanics must be replaced by the more general equations predicted by the
theory of relativity. One consequence of the theory of relativity is that the kinetic
energy of a particle of mass m moving with a speed v is no longer given by

Instead, one must use the relativistic form of the kinetic energy:

(7.19)

According to this expression, speeds greater than c are not allowed because, as
v approaches c, K approaches �. This limitation is consistent with experimental ob-

K � mc2
 � 1

√1 � (v/c )2
� 1�

K � mv  

2/2.

(�3.00 	 108 m/s).

7.7
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Car Accelerating Up a HillEXAMPLE 7.16

1.0 m/s2, and � � 10°, then the various terms in � are calcu-
lated to be

Hence, the total power required is 126 kW, or 

Note that the power requirements for traveling at constant
speed on a horizontal surface are only 20 kW, or 27 hp (the
sum of the last two terms). Furthermore, if the mass were
halved (as in the case of a compact car), then the power re-
quired also is reduced by almost the same factor.

168 hp.

 0.70v  

3 � 0.70(27 m/s)3 � 14 kW � 19 hp 

 218v � 218(27 m/s) � 5.9 kW � 7.9 hp 

 � 67 kW � 89 hp 

mvg sin � � (1450 kg)(27 m/s)(9.80 m/s2)(sin 10°)

 � 39 kW � 52 hp 

 mva � (1450 kg)(27 m/s)(1.0 m/s2) 

Consider a car of mass m that is accelerating up a hill, as
shown in Figure 7.19. An automotive engineer has measured
the magnitude of the total resistive force to be

where v is the speed in meters per second. Determine the
power the engine must deliver to the wheels as a function of
speed.

Solution The forces on the car are shown in Figure 7.19,
in which F is the force of friction from the road that propels
the car; the remaining forces have their usual meaning. Ap-
plying Newton’s second law to the motion along the road sur-
face, we find that

Therefore, the power required to move the car forward is

The term mva represents the power that the engine must de-
liver to accelerate the car. If the car moves at constant speed,
this term is zero and the total power requirement is reduced.
The term mvg sin � is the power required to provide a force
to balance a component of the force of gravity as the car
moves up the incline. This term would be zero for motion on
a horizontal surface. The term 218v is the power required to
provide a force to balance road friction, and the term 0.70v3

is the power needed to do work on the air.
If we take m � 1 450 kg, v � 27 m/s mi/h), a �(�60

� � Fv � mva � mvg sin � � 218v � 0.70v  

3

 � ma � mg sin � � (218 � 0.70v2)

 F � ma � mg sin � � ft 

�Fx � F � ft � mg sin � � ma 

ft � (218 � 0.70v  

2) N

Relativistic kinetic energy

n
F

ft

m g

θ

y

x

Figure 7.19
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servations on subatomic particles, which have shown that no particles travel at
speeds greater than c. (In other words, c is the ultimate speed.) From this relativis-
tic point of view, the work–kinetic energy theorem says that v can only approach c
because it would take an infinite amount of work to attain the speed v � c.

All formulas in the theory of relativity must reduce to those in Newtonian me-
chanics at low particle speeds. It is instructive to show that this is the case for the
kinetic energy relationship by analyzing Equation 7.19 when v is small compared
with c. In this case, we expect K to reduce to the Newtonian expression. We can
check this by using the binomial expansion (Appendix B.5) applied to the quan-
tity [1 � (v/c)2]�1/2, with v/c V 1. If we let x � (v/c)2, the expansion gives

Making use of this expansion in Equation 7.19 gives

Thus, we see that the relativistic kinetic energy expression does indeed reduce to
the Newtonian expression for speeds that are small compared with c. We shall re-
turn to the subject of relativity in Chapter 39.

SUMMARY

The work done by a constant force F acting on a particle is defined as the product
of the component of the force in the direction of the particle’s displacement and
the magnitude of the displacement. Given a force F that makes an angle � with the
displacement vector d of a particle acted on by the force, you should be able to de-
termine the work done by F using the equation

(7.1)

The scalar product (dot product) of two vectors A and B is defined by the re-
lationship

(7.3)

where the result is a scalar quantity and � is the angle between the two vectors. The
scalar product obeys the commutative and distributive laws. 

If a varying force does work on a particle as the particle moves along the x axis
from xi to xf , you must use the expression

(7.7)

where Fx is the component of force in the x direction. If several forces are acting
on the particle, the net work done by all of the forces is the sum of the amounts of
work done by all of the forces.

W � �xf

x i

Fx dx

A�B � AB cos �

W � Fd cos �

   �
1
2

 mv2  for  v
c

V 1   

   �
1
2

 mv2 �
3
8

  m  

v4

c2 � ���   

K � mc2
 �1 �

v2

2c2 �
3
8

  
v4

c4 � ����1�

1
(1 � x)1/2 � 1 �

x
2

�
3
8

  x2 � ���
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The kinetic energy of a particle of mass m moving with a speed v (where v is
small compared with the speed of light) is

(7.14)

The work–kinetic energy theorem states that the net work done on a parti-
cle by external forces equals the change in kinetic energy of the particle:

(7.16)

If a frictional force acts, then the work–kinetic energy theorem can be modified
to give

(7.17b)

The instantaneous power � is defined as the time rate of energy transfer. If
an agent applies a force F to an object moving with a velocity v, the power deliv-
ered by that agent is

(7.18)� �
dW
dt

� F � v

Ki � �Wother � fk  d � Kf

�W � Kf � Ki � 1
2 mvf 

2 � 1
2 mvi 

2

K � 1
2 mv2

QUESTIONS

the ball while his toe is in contact with it? Is he doing 
any work on the ball after it loses contact with his toe?
Are any forces doing work on the ball while it is in 
flight?

10. Discuss the work done by a pitcher throwing a baseball.
What is the approximate distance through which the
force acts as the ball is thrown?

11. Two sharpshooters fire 0.30-caliber rifles using identical
shells. The barrel of rifle A is 2.00 cm longer than that of
rifle B. Which rifle will have the higher muzzle speed?
(Hint: The force of the expanding gases in the barrel ac-
celerates the bullets.)

12. As a simple pendulum swings back and forth, the forces
acting on the suspended mass are the force of gravity, the
tension in the supporting cord, and air resistance. 
(a) Which of these forces, if any, does no work on the
pendulum? (b) Which of these forces does negative work
at all times during its motion? (c) Describe the work done
by the force of gravity while the pendulum is swinging.

13. The kinetic energy of an object depends on the frame of
reference in which its motion is measured. Give an exam-
ple to illustrate this point.

14. An older model car accelerates from 0 to a speed v in 
10 s. A newer, more powerful sports car accelerates from
0 to 2v in the same time period. What is the ratio of pow-
ers expended by the two cars? Consider the energy com-
ing from the engines to appear only as kinetic energy of
the cars.

1. Consider a tug-of-war in which two teams pulling on a
rope are evenly matched so that no motion takes place.
Assume that the rope does not stretch. Is work done on
the rope? On the pullers? On the ground? Is work done
on anything?

2. For what values of � is the scalar product (a) positive and
(b) negative?

3. As the load on a spring hung vertically is increased, one
would not expect the Fs-versus-x curve to always remain
linear, as shown in Figure 7.10d. Explain qualitatively
what you would expect for this curve as m is increased.

4. Can the kinetic energy of an object be negative? Explain.
5. (a) If the speed of a particle is doubled, what happens to

its kinetic energy? (b) If the net work done on a particle
is zero, what can be said about the speed?

6. In Example 7.16, does the required power increase or de-
crease as the force of friction is reduced?

7. An automobile sales representative claims that a “souped-
up” 300-hp engine is a necessary option in a compact car
(instead of a conventional 130-hp engine). Suppose you
intend to drive the car within speed limits (� 55 mi/h)
and on flat terrain. How would you counter this sales
pitch?

8. One bullet has twice the mass of another bullet. If both
bullets are fired so that they have the same speed, which
has the greater kinetic energy? What is the ratio of the ki-
netic energies of the two bullets?

9. When a punter kicks a football, is he doing any work on
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PROBLEMS

9. Vector A extends from the origin to a point having po-
lar coordinates (7, 70°), and vector B extends from the
origin to a point having polar coordinates (4, 130°).
Find A � B.

10. Given two arbitrary vectors A and B, show that A�B �
AxBx � AyBy � AzBz . (Hint: Write A and B in unit vector
form and use Equations 7.4 and 7.5.)

11. A force F � (6i � 2j) N acts on a particle that under-
goes a displacement d � (3i � j)m. Find (a) the work
done by the force on the particle and (b) the angle be-
tween F and d.

12. For A � 3i � j � k, B � � i � 2j � 5k, and C � 2j �
3k, find C�(A � B).

13. Using the definition of the scalar product, find the an-
gles between (a) A � 3i � 2j and B � 4i � 4j; (b) A �
� 2i � 4j and B � 3i � 4j � 2k; (c) A � i � 2j � 2k
and B � 3j � 4k.

14. Find the scalar product of the vectors in Figure P7.14.

Section 7.1 Work Done by a Constant Force
1. A tugboat exerts a constant force of 5 000 N on a ship

moving at constant speed through a harbor. How much
work does the tugboat do on the ship in a distance of
3.00 km?

2. A shopper in a supermarket pushes a cart with a force
of 35.0 N directed at an angle of 25.0° downward from
the horizontal. Find the work done by the shopper as
she moves down an aisle 50.0 m in length.

3. A raindrop (m � 3.35 	 10�5 kg) falls vertically at con-
stant speed under the influence of gravity and air resis-
tance. After the drop has fallen 100 m, what is the work
done (a) by gravity and (b) by air resistance?

4. A sledge loaded with bricks has a total mass of 18.0 kg
and is pulled at constant speed by a rope. The rope is
inclined at 20.0° above the horizontal, and the sledge
moves a distance of 20.0 m on a horizontal surface. The
coefficient of kinetic friction between the sledge and
the surface is 0.500. (a) What is the tension of the rope? 
(b) How much work is done on the sledge by the rope?
(c) What is the energy lost due to friction?

5. A block of mass 2.50 kg is pushed 2.20 m along a fric-
tionless horizontal table by a constant 16.0-N force di-
rected 25.0° below the horizontal. Determine the work
done by (a) the applied force, (b) the normal force ex-
erted by the table, and (c) the force of gravity. (d) De-
termine the total work done on the block.

6. A 15.0-kg block is dragged over a rough, horizontal sur-
face by a 70.0-N force acting at 20.0° above the horizon-
tal. The block is displaced 5.00 m, and the coefficient of
kinetic friction is 0.300. Find the work done by (a) the
70-N force, (b) the normal force, and (c) the force of
gravity. (d) What is the energy loss due to friction? 
(e) Find the total change in the block’s kinetic energy.

7. Batman, whose mass is 80.0 kg, is holding onto the free
end of a 12.0-m rope, the other end of which is fixed to
a tree limb above. He is able to get the rope in motion
as only Batman knows how, eventually getting it to swing
enough so that he can reach a ledge when the rope
makes a 60.0° angle with the vertical. How much work
was done against the force of gravity in this maneuver?

Section 7.2 The Scalar Product of Two Vectors
In Problems 8 to 14, calculate all numerical answers to three
significant figures.

8. Vector A has a magnitude of 5.00 units, and vector B
has a magnitude of 9.00 units. The two vectors make an
angle of 50.0° with each other. Find A � B.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB

118°

132°

y

x

32.8 N

17.3 cm/s

Section 7.3 Work Done by a Varying Force
15. The force acting on a particle varies as shown in Figure

P7.15. Find the work done by the force as the particle
moves (a) from x � 0 to x � 8.00 m, (b) from x � 8.00 m
to x � 10.0 m, and (c) from x � 0 to x � 10.0 m.

16. The force acting on a particle is Fx � (8x � 16) N,
where x is in meters. (a) Make a plot of this force versus
x from x � 0 to x � 3.00 m. (b) From your graph, find
the net work done by this force as the particle moves
from x � 0 to x � 3.00 m.

17. A particle is subject to a force Fx that varies with position
as in Figure P7.17. Find the work done by the force on
the body as it moves (a) from x � 0 to x � 5.00 m, 

Figure P7.14
WEB
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Figure P7.21

Figure P7.17 Problems 17 and 32.

rest 50.0 cm after first contacting the two-spring system,
find the car’s initial speed.

22. A 100-g bullet is fired from a rifle having a barrel 
0.600 m long. Assuming the origin is placed where the
bullet begins to move, the force (in newtons) exerted
on the bullet by the expanding gas is 15 000 �
10 000x � 25 000x2, where x is in meters. (a) Deter-
mine the work done by the gas on the bullet as the bul-
let travels the length of the barrel. (b) If the barrel is
1.00 m long, how much work is done and how does this
value compare with the work calculated in part (a)?

23. If it takes 4.00 J of work to stretch a Hooke’s-law spring
10.0 cm from its unstressed length, determine the extra
work required to stretch it an additional 10.0 cm.

24. If it takes work W to stretch a Hooke’s-law spring a dis-
tance d from its unstressed length, determine the extra
work required to stretch it an additional distance d .

25. A small mass m is pulled to the top of a frictionless half-
cylinder (of radius R) by a cord that passes over the top
of the cylinder, as illustrated in Figure P7.25. (a) If the
mass moves at a constant speed, show that F � mg cos �.
(Hint: If the mass moves at a constant speed, the com-
ponent of its acceleration tangent to the cylinder must
be zero at all times.) (b) By directly integrating

find the work done in moving the mass at
constant speed from the bottom to the top of the half-
W � �F�ds,

(b) from x � 5.00 m to x � 10.0 m, and (c) from x �
10.0 m to x � 15.0 m. (d) What is the total work done
by the force over the distance x � 0 to x � 15.0 m?

18. A force F � (4xi � 3y j) N acts on an object as it moves
in the x direction from the origin to x � 5.00 m. Find
the work done on the object by the force.

19. When a 4.00-kg mass is hung vertically on a certain light
spring that obeys Hooke’s law, the spring stretches 
2.50 cm. If the 4.00-kg mass is removed, (a) how far will
the spring stretch if a 1.50-kg mass is hung on it and 
(b) how much work must an external agent do to
stretch the same spring 4.00 cm from its unstretched
position?

20. An archer pulls her bow string back 0.400 m by exerting
a force that increases uniformly from zero to 230 N. 
(a) What is the equivalent spring constant of the bow?
(b) How much work is done by the archer in pulling
the bow?

21. A 6 000-kg freight car rolls along rails with negligible
friction. The car is brought to rest by a combination of
two coiled springs, as illustrated in Figure P7.21. Both
springs obey Hooke’s law with k1 � 1 600 N/m and 
k2 � 3 400 N/m. After the first spring compresses a dis-
tance of 30.0 cm, the second spring (acting with the
first) increases the force so that additional compression
occurs, as shown in the graph. If the car is brought to

W � �F�dr

Figure P7.15
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cylinder. Here ds represents an incremental displace-
ment of the small mass.

26. Express the unit of the force constant of a spring in
terms of the basic units meter, kilogram, and second.

Section 7.4 Kinetic Energy and the Work – Kinetic Energy
Theorem

27. A 0.600-kg particle has a speed of 2.00 m/s at point A
and kinetic energy of 7.50 J at point B. What is (a) its ki-
netic energy at A? (b) its speed at B? (c) the total work
done on the particle as it moves from A to B?

28. A 0.300-kg ball has a speed of 15.0 m/s. (a) What is its
kinetic energy? (b) If its speed were doubled, what
would be its kinetic energy?

29. A 3.00-kg mass has an initial velocity vi � (6.00i �
2.00j) m/s. (a) What is its kinetic energy at this time?
(b) Find the total work done on the object if its velocity
changes to (8.00i � 4.00j) m/s. (Hint: Remember that
v2 � v � v.)

30. A mechanic pushes a 2 500-kg car, moving it from rest
and making it accelerate from rest to a speed v. He does
5 000 J of work in the process. During this time, the car
moves 25.0 m. If friction between the car and the road
is negligible, (a) what is the final speed v of the car? (b)
What constant horizontal force did he exert on the car?

31. A mechanic pushes a car of mass m, doing work W in
making it accelerate from rest. If friction between the
car and the road is negligible, (a) what is the final
speed of the car? During the time the mechanic pushes
the car, the car moves a distance d. (b) What constant
horizontal force did the mechanic exert on the car?

32. A 4.00-kg particle is subject to a total force that varies
with position, as shown in Figure P7.17. The particle
starts from rest at x � 0. What is its speed at (a) x �
5.00 m, (b) x � 10.0 m, (c) x � 15.0 m?

33. A 40.0-kg box initially at rest is pushed 5.00 m along a
rough, horizontal floor with a constant applied horizon-
tal force of 130 N. If the coefficient of friction between
the box and the floor is 0.300, find (a) the work done
by the applied force, (b) the energy loss due to friction,
(c) the work done by the normal force, (d) the work
done by gravity, (e) the change in kinetic energy of the
box, and (f) the final speed of the box.

34. You can think of the work–kinetic energy theorem as a
second theory of motion, parallel to Newton’s laws in
describing how outside influences affect the motion 
of an object. In this problem, work out parts (a) and
(b) separately from parts (c) and (d) to compare the
predictions of the two theories. In a rifle barrel, a 15.0-g
bullet is accelerated from rest to a speed of 780 m/s. 
(a) Find the work that is done on the bullet. (b) If the
rifle barrel is 72.0 cm long, find the magnitude of the
average total force that acted on it, as F � W/(d cos �).
(c) Find the constant acceleration of a bullet that starts
from rest and gains a speed of 780 m/s over a distance
of 72.0 cm. (d) Find the total force that acted on it as
�F � ma.

35. A crate of mass 10.0 kg is pulled up a rough incline with
an initial speed of 1.50 m/s. The pulling force is 100 N
parallel to the incline, which makes an angle of 20.0°
with the horizontal. The coefficient of kinetic friction is
0.400, and the crate is pulled 5.00 m. (a) How much
work is done by gravity? (b) How much energy is lost
because of friction? (c) How much work is done by the
100-N force? (d) What is the change in kinetic energy of
the crate? (e) What is the speed of the crate after it has
been pulled 5.00 m?

36. A block of mass 12.0 kg slides from rest down a friction-
less 35.0° incline and is stopped by a strong spring with
k � 3.00 	 104 N/m. The block slides 3.00 m from the
point of release to the point where it comes to rest
against the spring. When the block comes to rest, how
far has the spring been compressed?

37. A sled of mass m is given a kick on a frozen pond. The
kick imparts to it an initial speed vi � 2.00 m/s. The co-
efficient of kinetic friction between the sled and the ice
is �k � 0.100. Utilizing energy considerations, find the
distance the sled moves before it stops.

38. A picture tube in a certain television set is 36.0 cm long.
The electrical force accelerates an electron in the tube
from rest to 1.00% of the speed of light over this dis-
tance. Determine (a) the kinetic energy of the electron
as it strikes the screen at the end of the tube, (b) the
magnitude of the average electrical force acting on the
electron over this distance, (c) the magnitude of the av-
erage acceleration of the electron over this distance,
and (d) the time of flight. 

39. A bullet with a mass of 5.00 g and a speed of 600 m/s
penetrates a tree to a depth of 4.00 cm. (a) Use work
and energy considerations to find the average frictional
force that stops the bullet. (b) Assuming that the fric-
tional force is constant, determine how much time
elapsed between the moment the bullet entered the
tree and the moment it stopped.

40. An Atwood’s machine (see Fig. 5.15) supports masses of
0.200 kg and 0.300 kg. The masses are held at rest be-
side each other and then released. Neglecting friction,
what is the speed of each mass the instant it has moved
0.400 m?

Figure P7.25

F
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41. A 2.00-kg block is attached to a spring of force constant
500 N/m, as shown in Figure 7.10. The block is pulled
5.00 cm to the right of equilibrium and is then released
from rest. Find the speed of the block as it passes
through equilibrium if (a) the horizontal surface is fric-
tionless and (b) the coefficient of friction between the
block and the surface is 0.350.

Section 7.5 Power
42. Make an order-of-magnitude estimate of the power a car

engine contributes to speeding up the car to highway
speed. For concreteness, consider your own car (if you
use one). In your solution, state the physical quantities
you take as data and the values you measure or estimate
for them. The mass of the vehicle is given in the
owner’s manual. If you do not wish to consider a car,
think about a bus or truck for which you specify the
necessary physical quantities.

43. A 700-N Marine in basic training climbs a 10.0-m verti-
cal rope at a constant speed in 8.00 s. What is his power
output?

44. If a certain horse can maintain 1.00 hp of output for
2.00 h, how many 70.0-kg bundles of shingles can the
horse hoist (using some pulley arrangement) to the
roof of a house 8.00 m tall, assuming 70.0% efficiency?

45. A certain automobile engine delivers 2.24 	 104 W
(30.0 hp) to its wheels when moving at a constant speed
of 27.0 m/s (� 60 mi/h). What is the resistive force act-
ing on the automobile at that speed?

46. A skier of mass 70.0 kg is pulled up a slope by a motor-
driven cable. (a) How much work is required for him to
be pulled a distance of 60.0 m up a 30.0° slope (assumed
frictionless) at a constant speed of 2.00 m/s? (b) A motor
of what power is required to perform this task?

47. A 650-kg elevator starts from rest. It moves upward for
3.00 s with constant acceleration until it reaches its
cruising speed of 1.75 m/s. (a) What is the average
power of the elevator motor during this period? 
(b) How does this power compare with its power when
it moves at its cruising speed?

48. An energy-efficient lightbulb, taking in 28.0 W of power,
can produce the same level of brightness as a conven-
tional bulb operating at 100-W power. The lifetime of
the energy-efficient bulb is 10 000 h and its purchase
price is $17.0, whereas the conventional bulb has a life-
time of 750 h and costs $0.420 per bulb. Determine the
total savings obtained through the use of one energy-
efficient bulb over its lifetime as opposed to the use of
conventional bulbs over the same time period. Assume
an energy cost of $0.080 0 per kilowatt hour.

(Optional)
Section 7.6 Energy and the Automobile

49. A compact car of mass 900 kg has an overall motor effi-
ciency of 15.0%. (That is, 15.0% of the energy supplied
by the fuel is delivered to the wheels of the car.) (a) If

burning 1 gal of gasoline supplies 1.34 	 108 J of en-
ergy, find the amount of gasoline used by the car in ac-
celerating from rest to 55.0 mi/h. Here you may ignore
the effects of air resistance and rolling resistance. 
(b) How many such accelerations will 1 gal provide? 
(c) The mileage claimed for the car is 38.0 mi/gal at 
55 mi/h. What power is delivered to the wheels (to
overcome frictional effects) when the car is driven at
this speed?

50. Suppose the empty car described in Table 7.2 has a fuel
economy of 6.40 km/L (15 mi/gal) when traveling at
26.8 m/s (60 mi/h). Assuming constant efficiency, de-
termine the fuel economy of the car if the total mass of
the passengers and the driver is 350 kg.

51. When an air conditioner is added to the car described
in Problem 50, the additional output power required to
operate the air conditioner is 1.54 kW. If the fuel econ-
omy of the car is 6.40 km/L without the air conditioner,
what is it when the air conditioner is operating?

(Optional)
Section 7.7 Kinetic Energy at High Speeds

52. An electron moves with a speed of 0.995c. (a) What is its
kinetic energy? (b) If you use the classical expression to
calculate its kinetic energy, what percentage error
results?

53. A proton in a high-energy accelerator moves with a
speed of c/2. Using the work–kinetic energy theorem,
find the work required to increase its speed to 
(a) 0.750c and (b) 0.995c.

54. Find the kinetic energy of a 78.0-kg spacecraft launched
out of the Solar System with a speed of 106 km/s using
(a) the classical equation and (b) the rela-
tivistic equation.

ADDITIONAL PROBLEMS

55. A baseball outfielder throws a 0.150-kg baseball at a
speed of 40.0 m/s and an initial angle of 30.0°. What is
the kinetic energy of the baseball at the highest point of
the trajectory?

56. While running, a person dissipates about 0.600 J of me-
chanical energy per step per kilogram of body mass. If a
60.0-kg runner dissipates a power of 70.0 W during a
race, how fast is the person running? Assume a running
step is 1.50 m in length.

57. A particle of mass m moves with a constant acceleration
a. If the initial position vector and velocity of the parti-
cle are ri and vi , respectively, use energy arguments to
show that its speed vf at any time satisfies the equation

where rf is the position vector of the particle at that
same time.

58. The direction of an arbitrary vector A can be com-
pletely specified with the angles �, �, and � that the vec-

vf
2  � vi 

2 � 2a � (rf � ri  )

K � 1
2 mv2

WEB
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tor makes with the x, y, and z axes, respectively. If A �
Ax i � Ay j � Azk, (a) find expressions for cos �, cos �,
and cos � (known as direction cosines) and (b) show 
that these angles satisfy the relation cos2 � � cos2 � �
cos2 � � 1. (Hint: Take the scalar product of A with i, j,
and k separately.)

59. A 4.00-kg particle moves along the x axis. Its position
varies with time according to x � t � 2.0t3, where x is in
meters and t is in seconds. Find (a) the kinetic energy at
any time t, (b) the acceleration of the particle and the
force acting on it at time t, (c) the power being deliv-
ered to the particle at time t, and (d) the work done on
the particle in the interval t � 0 to t � 2.00 s.

60. A traveler at an airport takes an escalator up one floor
(Fig. P7.60). The moving staircase would itself carry
him upward with vertical velocity component v between
entry and exit points separated by height h. However,
while the escalator is moving, the hurried traveler
climbs the steps of the escalator at a rate of n steps/s.
Assume that the height of each step is hs . (a) Determine
the amount of work done by the traveler during his es-
calator ride, given that his mass is m. (b) Determine the
work the escalator motor does on this person.

calculate the work done by this force when the spring is
stretched 0.100 m.

62. In a control system, an accelerometer consists of a 
4.70-g mass sliding on a low-friction horizontal rail. A
low-mass spring attaches the mass to a flange at one end
of the rail. When subject to a steady acceleration of
0.800g, the mass is to assume a location 0.500 cm away
from its equilibrium position. Find the stiffness constant
required for the spring.

63. A 2 100-kg pile driver is used to drive a steel I-beam into
the ground. The pile driver falls 5.00 m before coming
into contact with the beam, and it drives the beam 
12.0 cm into the ground before coming to rest. Using
energy considerations, calculate the average force the
beam exerts on the pile driver while the pile driver is
brought to rest.

64. A cyclist and her bicycle have a combined mass of 
75.0 kg. She coasts down a road inclined at 2.00° with
the horizontal at 4.00 m/s and down a road inclined at
4.00° at 8.00 m/s. She then holds on to a moving vehi-
cle and coasts on a level road. What power must the ve-
hicle expend to maintain her speed at 3.00 m/s? As-
sume that the force of air resistance is proportional to
her speed and that other frictional forces remain con-
stant. (Warning: You must not attempt this dangerous
maneuver.)

65. A single constant force F acts on a particle of mass m.
The particle starts at rest at t � 0. (a) Show that the in-
stantaneous power delivered by the force at any time t is
(F 2/m)t. (b) If F � 20.0 N and m � 5.00 kg, what is the
power delivered at t � 3.00 s?

66. A particle is attached between two identical springs on a
horizontal frictionless table. Both springs have spring
constant k and are initially unstressed. (a) If the particle
is pulled a distance x along a direction perpendicular to
the initial configuration of the springs, as in Figure
P7.66, show that the force exerted on the particle by the
springs is

(b) Determine the amount of work done by this force
in moving the particle from x � A to x � 0.

F � �2kx  �1 �
L

√x2 � L2 �  i

Figure P7.66

Figure P7.60 (©Ron Chapple/FPG)

61. When a certain spring is stretched beyond its propor-
tional limit, the restoring force satisfies the equation 
F � � kx � �x3. If k � 10.0 N/m and � � 100 N/m3,
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67. Review Problem. Two constant forces act on a 5.00-kg
object moving in the xy plane, as shown in Figure P7.67.
Force F1 is 25.0 N at 35.0°, while  F2 � 42.0 N at 150°.
At time t � 0, the object is at the origin and has velocity
(4.0i � 2.5j) m/s. (a) Express the two forces in
unit–vector notation. Use unit–vector notation for
your other answers. (b) Find the total force on the ob-
ject. (c) Find the object’s acceleration. Now, consider-
ing the instant t � 3.00 s, (d) find the object’s velocity,
(e) its location, (f) its kinetic energy from , and
(g) its kinetic energy from 12 mvi 

2 � �F � d.

1
2 mvf  

2

71. The ball launcher in a pinball machine has a spring that
has a force constant of 1.20 N/cm (Fig. P7.71). The sur-
face on which the ball moves is inclined 10.0° with re-
spect to the horizontal. If the spring is initially com-
pressed 5.00 cm, find the launching speed of a 100-g
ball when the plunger is released. Friction and the mass
of the plunger are negligible.

72. In diatomic molecules, the constituent atoms exert at-
tractive forces on each other at great distances and re-
pulsive forces at short distances. For many molecules,
the Lennard–Jones law is a good approximation to the
magnitude of these forces:

where r is the center-to-center distance between the
atoms in the molecule, � is a length parameter, and F0 is
the force when r � �. For an oxygen molecule, F0 �
9.60 	 10�11 N and � � 3.50 	 10�10 m. Determine
the work done by this force if the atoms are pulled
apart from r � 4.00 	 10�10 m to r � 9.00 	 10�10 m.

73. A horizontal string is attached to a 0.250-kg mass lying
on a rough, horizontal table. The string passes over a
light, frictionless pulley, and a 0.400-kg mass is then at-
tached to its free end. The coefficient of sliding friction
between the 0.250-kg mass and the table is 0.200. Using
the work–kinetic energy theorem, determine (a) the
speed of the masses after each has moved 20.0 m from
rest and (b) the mass that must be added to the 0.250-kg
mass so that, given an initial velocity, the masses con-
tinue to move at a constant speed. (c) What mass must
be removed from the 0.400-kg mass so that the same
outcome as in part (b) is achieved?

74. Suppose a car is modeled as a cylinder moving with a
speed v, as in Figure P7.74. In a time �t, a column of air

F � F0�2� �

r �
13

� � �

r �
7

	

Figure P7.71

Figure P7.67

Figure P7.74

68. When different weights are hung on a spring, the
spring stretches to different lengths as shown in the fol-
lowing table. (a) Make a graph of the applied force ver-
sus the extension of the spring. By least-squares fitting,
determine the straight line that best fits the data. (You
may not want to use all the data points.) (b) From the
slope of the best-fit line, find the spring constant k. 
(c) If the spring is extended to 105 mm, what force
does it exert on the suspended weight?

69. A 200-g block is pressed against a spring of force con-
stant 1.40 kN/m until the block compresses the spring
10.0 cm. The spring rests at the bottom of a ramp in-
clined at 60.0° to the horizontal. Using energy consider-
ations, determine how far up the incline the block
moves before it stops (a) if there is no friction between
the block and the ramp and (b) if the coefficient of ki-
netic friction is 0.400.

70. A 0.400-kg particle slides around a horizontal track. The
track has a smooth, vertical outer wall forming a circle
with a radius of 1.50 m. The particle is given an initial
speed of 8.00 m/s. After one revolution, its speed has
dropped to 6.00 m/s because of friction with the rough
floor of the track. (a) Find the energy loss due to fric-
tion in one revolution. (b) Calculate the coefficient of
kinetic friction. (c) What is the total number of revolu-
tions the particle makes before stopping?

F1
F2

150°

35.0°

y

x

10.0°

A

v

v∆t

F (N) 2.0 4.0 6.0 8.0 10 12 14 16 18
L (mm) 15 32 49 64 79 98 112 126 149

WEB
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ANSWERS TO QUICK QUIZZES

7.4 Force divided by displacement, which in SI units is new-
tons per meter (N/m).

7.5 Yes, whenever the frictional force has a component along
the direction of motion. Consider a crate sitting on the
bed of a truck as the truck accelerates to the east. The
static friction force exerted on the crate by the truck acts
to the east to give the crate the same acceleration as the
truck (assuming that the crate does not slip). Because
the crate accelerates, its kinetic energy must increase.

7.6 Because the two vehicles perform the same amount of
work, the areas under the two graphs are equal. How-
ever, the graph for the low-power truck extends over a
longer time interval and does not extend as high on the
� axis as the graph for the sports car does.

7.1 No. The force does no work on the object because the
force is pointed toward the center of the circle and is
therefore perpendicular to the motion.

7.2 (a) Assuming the person lifts with a force of magnitude
mg, the weight of the box, the work he does during the
vertical displacement is mgh because the force is in the
direction of the displacement. The work he does during
the horizontal displacement is zero because now the
force he exerts on the box is perpendicular to the dis-
placement. The net work he does is mgh � 0 � mgh.
(b) The work done by the gravitational force on the box
as the box is displaced vertically is � mgh because the di-
rection of this force is opposite the direction of the dis-
placement. The work done by the gravitational force is
zero during the horizontal displacement because now
the direction of this force is perpendicular to the direc-
tion of the displacement. The net work done by the
gravitational force � mgh � 0 � � mgh. The total work
done on the box is � mgh � mgh � 0. 

7.3 No. For example, consider the two vectors A � 3i � 2j
and B � 2i � j. Their dot product is A � B � 8, yet both
vectors have negative y components.

Let � be the power of an agent causing motion; w,
the thing moved; d, the distance covered; and t, the
time taken. Then (1) a power equal to � will in a 
period of time equal to t move w/2 a distance 2d; 
or (2) it will move w/2 the given distance d in time
t/2. Also, if (3) the given power � moves the given
object w a distance d/2 in time t/2, then (4) �/2 
will move w/2 the given distance d in the given 
time t.

(a) Show that Aristotle’s proportions are included in
the equation �t � bwd, where b is a proportionality con-
stant. (b) Show that our theory of motion includes this
part of Aristotle’s theory as one special case. In particu-
lar, describe a situation in which it is true, derive the
equation representing Aristotle’s proportions, and de-
termine the proportionality constant.

of mass �m must be moved a distance v �t and, hence,
must be given a kinetic energy Using this
model, show that the power loss due to air resistance is

and that the resistive force is where � is the
density of air.

75. A particle moves along the x axis from x � 12.8 m to 
x � 23.7 m under the influence of a force

where F is in newtons and x is in meters. Using numeri-
cal integration, determine the total work done by this
force during this displacement. Your result should be
accurate to within 2%.

76. More than 2 300 years ago the Greek teacher Aristotle
wrote the first book called Physics. The following pas-
sage, rephrased with more precise terminology, is from
the end of the book’s Section Eta:

F �
375

x3 � 3.75 x

1
2 �Av2,1

2 �Av3

1
2 (�m)v2.

�

t

High-power sports car

Low-power truck
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n Chapter 7 we introduced the concept of kinetic energy, which is the energy
associated with the motion of an object. In this chapter we introduce another
form of energy—potential energy, which is the energy associated with the arrange-

ment of a system of objects that exert forces on each other. Potential energy can
be thought of as stored energy that can either do work or be converted to kinetic
energy. 

The potential energy concept can be used only when dealing with a special
class of forces called conservative forces. When only conservative forces act within an
isolated system, the kinetic energy gained (or lost) by the system as its members
change their relative positions is balanced by an equal loss (or gain) in potential
energy. This balancing of the two forms of energy is known as the principle of conser-
vation of mechanical energy.

Energy is present in the Universe in various forms, including mechanical, elec-
tromagnetic, chemical, and nuclear. Furthermore, one form of energy can be con-
verted to another. For example, when an electric motor is connected to a battery,
the chemical energy in the battery is converted to electrical energy in the motor,
which in turn is converted to mechanical energy as the motor turns some device.
The transformation of energy from one form to another is an essential part of the
study of physics, engineering, chemistry, biology, geology, and astronomy.

When energy is changed from one form to another, the total amount present
does not change. Conservation of energy means that although the form of energy
may change, if an object (or system) loses energy, that same amount of energy ap-
pears in another object or in the object’s surroundings.

POTENTIAL ENERGY
An object that possesses kinetic energy can do work on another object—for exam-
ple, a moving hammer driving a nail into a wall. Now we shall introduce another
form of energy. This energy, called potential energy U, is the energy associated
with a system of objects.

Before we describe specific forms of potential energy, we must first define a
system, which consists of two or more objects that exert forces on one another. If
the arrangement of the system changes, then the potential energy of the
system changes. If the system consists of only two particle-like objects that exert
forces on each other, then the work done by the force acting on one of the objects
causes a transformation of energy between the object’s kinetic energy and other
forms of the system’s energy.

Gravitational Potential Energy

As an object falls toward the Earth, the Earth exerts a gravitational force mg on the
object, with the direction of the force being the same as the direction of the ob-
ject’s motion. The gravitational force does work on the object and thereby in-
creases the object’s kinetic energy. Imagine that a brick is dropped from rest di-
rectly above a nail in a board lying on the ground. When the brick is released, it
falls toward the ground, gaining speed and therefore gaining kinetic energy. The
brick–Earth system has potential energy when the brick is at any distance above
the ground (that is, it has the potential to do work), and this potential energy is
converted to kinetic energy as the brick falls. The conversion from potential en-
ergy to kinetic energy occurs continuously over the entire fall. When the brick
reaches the nail and the board lying on the ground, it does work on the nail,

8.1

I

5.3
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driving it into the board. What determines how much work the brick is able to do
on the nail? It is easy to see that the heavier the brick, the farther in it drives the
nail; also the higher the brick is before it is released, the more work it does when it
strikes the nail.

The product of the magnitude of the gravitational force mg acting on an ob-
ject and the height y of the object is so important in physics that we give it a name:
the gravitational potential energy. The symbol for gravitational potential energy
is Ug , and so the defining equation for gravitational potential energy is

(8.1)

Gravitational potential energy is the potential energy of the object–Earth system.
This potential energy is transformed into kinetic energy of the system by the gravi-
tational force. In this type of system, in which one of the members (the Earth) is
much more massive than the other (the object), the massive object can be mod-
eled as stationary, and the kinetic energy of the system can be represented entirely
by the kinetic energy of the lighter object. Thus, the kinetic energy of the system is
represented by that of the object falling toward the Earth. Also note that Equation
8.1 is valid only for objects near the surface of the Earth, where g is approximately
constant.1

Let us now directly relate the work done on an object by the gravitational
force to the gravitational potential energy of the object–Earth system. To do this,
let us consider a brick of mass m at an initial height yi above the ground, as shown
in Figure 8.1. If we neglect air resistance, then the only force that does work on
the brick as it falls is the gravitational force exerted on the brick mg. The work Wg
done by the gravitational force as the brick undergoes a downward displacement 
d is

where we have used the fact that (Eq. 7.4). If an object undergoes 
both a horizontal and a vertical displacement, so that 
then the work done by the gravitational force is still because

Thus, the work done by the gravitational force depends only
on the change in y and not on any change in the horizontal position x.

We just learned that the quantity mgy is the gravitational potential energy of
the system Ug , and so we have

(8.2)

From this result, we see that the work done on any object by the gravitational force
is equal to the negative of the change in the system’s gravitational potential energy.
Also, this result demonstrates that it is only the difference in the gravitational poten-
tial energy at the initial and final locations that matters. This means that we are
free to place the origin of coordinates in any convenient location. Finally, the work
done by the gravitational force on an object as the object falls to the Earth is the
same as the work done were the object to start at the same point and slide down an
incline to the Earth. Horizontal motion does not affect the value of Wg .

The unit of gravitational potential energy is the same as that of work—the
joule. Potential energy, like work and kinetic energy, is a scalar quantity.

Wg � Ui � Uf � �(Uf � Ui) � ��Ug

�mg j � (xf � xi)i � 0.
mgyi � mgyf

d � (xf � xi)i � (yf � yi)j,
j � j � 1

Wg � (mg) � d � (�mg j) � (yf � yi) j � mgyi � mgyf

Ug � mgy

1 The assumption that the force of gravity is constant is a good one as long as the vertical displacement
is small compared with the Earth’s radius.

Gravitational potential energy

m g

yi

m g

yf

d

Figure 8.1 The work done on
the brick by the gravitational force
as the brick falls from a height yi to
a height yf is equal to mgy i � mgy f .
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Can the gravitational potential energy of a system ever be negative?

Quick Quiz 8.1

The Bowler and the Sore ToeEXAMPLE 8.1
the ball reaches his toe gives (7 kg)
(9.80 m/s2)(0.03 m) � 2.06 J. So, the work done by the gravi-
tational force is We should probably
keep only one digit because of the roughness of our esti-
mates; thus, we estimate that the gravitational force does 30 J
of work on the bowling ball as it falls. The system had 30 J of
gravitational potential energy relative to the top of the toe be-
fore the ball began its fall.

When we use the bowler’s head (which we estimate to be
1.50 m above the floor) as our origin of coordinates, we find
that (7 kg)(9.80 m/s2)(� 1 m) � � 68.6 J and
that (7 kg)(9.80 m/s2)(� 1.47 m) � � 100.8 J.
The work being done by the gravitational force is still 

30 J.Wg � Ui � Uf � 32.24 J �

Uf � mgyf �
Ui � mgyi �

Wg � Ui � Uf � 32.24 J.

Uf � mgyf �A bowling ball held by a careless bowler slips from the
bowler’s hands and drops on the bowler’s toe. Choosing floor
level as the y � 0 point of your coordinate system, estimate
the total work done on the ball by the force of gravity as the
ball falls. Repeat the calculation, using the top of the bowler’s
head as the origin of coordinates.

Solution First, we need to estimate a few values. A bowling
ball has a mass of approximately 7 kg, and the top of a per-
son’s toe is about 0.03 m above the floor. Also, we shall as-
sume the ball falls from a height of 0.5 m. Holding nonsignif-
icant digits until we finish the problem, we calculate the
gravitational potential energy of the ball–Earth system just
before the ball is released to be (7 kg)
(9.80 m/s2)(0.5 m) � 34.3 J. A similar calculation for when

Ui � mgyi �

Elastic Potential Energy

Now consider a system consisting of a block plus a spring, as shown in Figure 8.2.
The force that the spring exerts on the block is given by In the previous
chapter, we learned that the work done by the spring force on a block connected
to the spring is given by Equation 7.11:

(8.3)

In this situation, the initial and final x coordinates of the block are measured from
its equilibrium position, x � 0. Again we see that Ws depends only on the initial
and final x coordinates of the object and is zero for any closed path. The elastic
potential energy function associated with the system is defined by

(8.4)

The elastic potential energy of the system can be thought of as the energy stored
in the deformed spring (one that is either compressed or stretched from its equi-
librium position). To visualize this, consider Figure 8.2, which shows a spring on a
frictionless, horizontal surface. When a block is pushed against the spring (Fig.
8.2b) and the spring is compressed a distance x, the elastic potential energy stored
in the spring is kx2/2. When the block is released from rest, the spring snaps back
to its original length and the stored elastic potential energy is transformed into ki-
netic energy of the block (Fig. 8.2c). The elastic potential energy stored in the
spring is zero whenever the spring is undeformed (x � 0). Energy is stored in the
spring only when the spring is either stretched or compressed. Furthermore, the
elastic potential energy is a maximum when the spring has reached its maximum
compression or extension (that is, when is a maximum). Finally, because the
elastic potential energy is proportional to x2, we see that Us is always positive in a
deformed spring.

� x �

Us � 1
2kx2

Ws � 1
2kxi 

2 � 1
2kxf 

2

Fs � �kx.

Elastic potential energy stored in a
spring
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CONSERVATIVE AND NONCONSERVATIVE FORCES
The work done by the gravitational force does not depend on whether an object
falls vertically or slides down a sloping incline. All that matters is the change in the
object’s elevation. On the other hand, the energy loss due to friction on that in-
cline depends on the distance the object slides. In other words, the path makes no
difference when we consider the work done by the gravitational force, but it does
make a difference when we consider the energy loss due to frictional forces. We
can use this varying dependence on path to classify forces as either conservative or
nonconservative.

Of the two forces just mentioned, the gravitational force is conservative and
the frictional force is nonconservative.

Conservative Forces

Conservative forces have two important properties:

1. A force is conservative if the work it does on a particle moving between any two
points is independent of the path taken by the particle.

2. The work done by a conservative force on a particle moving through any closed
path is zero. (A closed path is one in which the beginning and end points are
identical.)

The gravitational force is one example of a conservative force, and the force
that a spring exerts on any object attached to the spring is another. As we learned
in the preceding section, the work done by the gravitational force on an object
moving between any two points near the Earth’s surface is 
From this equation we see that Wg depends only on the initial and final y coordi-

Wg � mgyi � mgyf .

8.2

Properties of a conservative force

Figure 8.2 (a) An undeformed
spring on a frictionless horizontal
surface. (b) A block of mass m is
pushed against the spring, compress-
ing it a distance x. (c) When the
block is released from rest, the elastic
potential energy stored in the spring
is transferred to the block in the
form of kinetic energy. 

x = 0

x

m

x = 0

v

(c)

(b)

(a)

Us =    kx21
2

Ki = 0

Kf =    mv21
2

Us = 0

m

m



8.3 Conservative Forces and Potential Energy 219

nates of the object and hence is independent of the path. Furthermore, Wg is zero
when the object moves over any closed path (where 

For the case of the object–spring system, the work Ws done by the spring force
is given by (Eq. 8.3). Again, we see that the spring force is con-
servative because Ws depends only on the initial and final x coordinates of the ob-
ject and is zero for any closed path. 

We can associate a potential energy with any conservative force and can do this
only for conservative forces. In the previous section, the potential energy associated
with the gravitational force was defined as In general, the work Wc done
on an object by a conservative force is equal to the initial value of the potential en-
ergy associated with the object minus the final value:

(8.5)

This equation should look familiar to you. It is the general form of the equation
for work done by the gravitational force (Eq. 8.2) and that for the work done by
the spring force (Eq. 8.3).

Nonconservative Forces

A force is nonconservative if it causes a change in mechanical energy E,
which we define as the sum of kinetic and potential energies. For example, if a
book is sent sliding on a horizontal surface that is not frictionless, the force of ki-
netic friction reduces the book’s kinetic energy. As the book slows down, its kinetic
energy decreases. As a result of the frictional force, the temperatures of the book
and surface increase. The type of energy associated with temperature is internal en-
ergy, which we will study in detail in Chapter 20. Experience tells us that this inter-
nal energy cannot be transferred back to the kinetic energy of the book. In other
words, the energy transformation is not reversible. Because the force of kinetic
friction changes the mechanical energy of a system, it is a nonconservative force. 

From the work–kinetic energy theorem, we see that the work done by a con-
servative force on an object causes a change in the kinetic energy of the object.
The change in kinetic energy depends only on the initial and final positions of the
object, and not on the path connecting these points. Let us compare this to the
sliding book example, in which the nonconservative force of friction is acting be-
tween the book and the surface. According to Equation 7.17a, the change in ki-
netic energy of the book due to friction is , where d is the length
of the path over which the friction force acts. Imagine that the book slides from A
to B over the straight-line path of length d in Figure 8.3. The change in kinetic en-
ergy is . Now, suppose the book slides over the semicircular path from A to B.
In this case, the path is longer and, as a result, the change in kinetic energy is
greater in magnitude than that in the straight-line case. For this particular path,
the change in kinetic energy is , since d is the diameter of the semicircle.
Thus, we see that for a nonconservative force, the change in kinetic energy de-
pends on the path followed between the initial and final points. If a potential en-
ergy is involved, then the change in the total mechanical energy depends on the
path followed. We shall return to this point in Section 8.5.

CONSERVATIVE FORCES AND POTENTIAL ENERGY
In the preceding section we found that the work done on a particle by a conserva-
tive force does not depend on the path taken by the particle. The work depends
only on the particle’s initial and final coordinates. As a consequence, we can de-

8.3

�fk� d/2

�fkd

�Kfriction � �fkd

Wc � Ui � Uf � ��U

Ug � mgy.

Ws � 1
2kxi 

2 � 1
2kxf 

2

yi � yf).

Work done by a conservative force

Properties of a nonconservative
force5.3

Figure 8.3 The loss in mechani-
cal energy due to the force of ki-
netic friction depends on the path
taken as the book is moved from A
to B. The loss in mechanical energy
is greater along the red path than
along the blue path. 

A

B
d
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fine a potential energy function U such that the work done by a conservative
force equals the decrease in the potential energy of the system. The work done by
a conservative force F as a particle moves along the x axis is2

(8.6)

where Fx is the component of F in the direction of the displacement. That is, the
work done by a conservative force equals the negative of the change in the
potential energy associated with that force, where the change in the potential
energy is defined as 

We can also express Equation 8.6 as

(8.7)

Therefore, �U is negative when Fx and dx are in the same direction, as when an ob-
ject is lowered in a gravitational field or when a spring pushes an object toward
equilibrium.

The term potential energy implies that the object has the potential, or capability,
of either gaining kinetic energy or doing work when it is released from some point
under the influence of a conservative force exerted on the object by some other
member of the system. It is often convenient to establish some particular location
xi as a reference point and measure all potential energy differences with respect to
it. We can then define the potential energy function as

(8.8)

The value of Ui is often taken to be zero at the reference point. It really does
not matter what value we assign to Ui , because any nonzero value merely shifts
Uf(x) by a constant amount, and only the change in potential energy is physically
meaningful.

If the conservative force is known as a function of position, we can use Equa-
tion 8.8 to calculate the change in potential energy of a system as an object within
the system moves from xi to xf . It is interesting to note that in the case of one-
dimensional displacement, a force is always conservative if it is a function of posi-
tion only. This is not necessarily the case for motion involving two- or three-dimen-
sional displacements.

CONSERVATION OF MECHANICAL ENERGY
An object held at some height h above the floor has no kinetic energy. However, as
we learned earlier, the gravitational potential energy of the object–Earth system is
equal to mgh. If the object is dropped, it falls to the floor; as it falls, its speed and
thus its kinetic energy increase, while the potential energy of the system decreases.
If factors such as air resistance are ignored, whatever potential energy the system
loses as the object moves downward appears as kinetic energy of the object. In
other words, the sum of the kinetic and potential energies—the total mechanical
energy E—remains constant. This is an example of the principle of conservation

8.4

Uf(x) � ��xf

xi

Fx dx � Ui

�U � Uf � Ui � ��xf

xi

Fx dx

�U � Uf � Ui .

Wc � �xf

xi

Fx dx � ��U

2 For a general displacement, the work done in two or three dimensions also equals where

We write this formally as W � �f

i
F � ds � Ui � Uf .U � U(x, y, z).

Ui � Uf ,

5.9
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of mechanical energy. For the case of an object in free fall, this principle tells us
that any increase (or decrease) in potential energy is accompanied by an equal de-
crease (or increase) in kinetic energy. Note that the total mechanical energy of
a system remains constant in any isolated system of objects that interact
only through conservative forces.

Because the total mechanical energy E of a system is defined as the sum of the
kinetic and potential energies, we can write

(8.9)

We can state the principle of conservation of energy as and so we have

(8.10)

It is important to note that Equation 8.10 is valid only when no energy is
added to or removed from the system. Furthermore, there must be no nonconser-
vative forces doing work within the system.

Consider the carnival Ring-the-Bell event illustrated at the beginning of the
chapter. The participant is trying to convert the initial kinetic energy of the ham-
mer into gravitational potential energy associated with a weight that slides on a
vertical track. If the hammer has sufficient kinetic energy, the weight is lifted high
enough to reach the bell at the top of the track. To maximize the hammer’s ki-
netic energy, the player must swing the heavy hammer as rapidly as possible. The
fast-moving hammer does work on the pivoted target, which in turn does work on
the weight. Of course, greasing the track (so as to minimize energy loss due to fric-
tion) would also help but is probably not allowed!

If more than one conservative force acts on an object within a system, a poten-
tial energy function is associated with each force. In such a case, we can apply the
principle of conservation of mechanical energy for the system as

(8.11)

where the number of terms in the sums equals the number of conservative forces
present. For example, if an object connected to a spring oscillates vertically, two
conservative forces act on the object: the spring force and the gravitational force.

Ki � �Ui � Kf � �Uf

Ki � Ui � Kf � Uf

Ei � Ef ,

E � K � U Total mechanical energy

The mechanical energy of an
isolated system remains constant

QuickLab
Dangle a shoe from its lace and use it
as a pendulum. Hold it to the side, re-
lease it, and note how high it swings
at the end of its arc. How does this
height compare with its initial height?
You may want to check Question 8.3
as part of your investigation.

Twin Falls on the Island of Kauai, Hawaii. The gravitational po-
tential energy of the water–Earth system when the water is at
the top of the falls is converted to kinetic energy once that wa-
ter begins falling. How did the water get to the top of the cliff?
In other words, what was the original source of the gravita-
tional potential energy when the water was at the top? (Hint:
This same source powers nearly everything on the planet.)
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A ball is connected to a light spring suspended vertically, as shown in Figure 8.4. When dis-
placed downward from its equilibrium position and released, the ball oscillates up and down.
If air resistance is neglected, is the total mechanical energy of the system (ball plus spring
plus Earth) conserved? How many forms of potential energy are there for this situation?

Quick Quiz 8.2

Ball in Free FallEXAMPLE 8.2
A ball of mass m is dropped from a height h above the
ground, as shown in Figure 8.6. (a) Neglecting air resistance,
determine the speed of the ball when it is at a height y above
the ground.

Solution Because the ball is in free fall, the only force act-
ing on it is the gravitational force. Therefore, we apply the
principle of conservation of mechanical energy to the
ball–Earth system. Initially, the system has potential energy
but no kinetic energy. As the ball falls, the total mechanical
energy remains constant and equal to the initial potential en-
ergy of the system.

At the instant the ball is released, its kinetic energy is
and the potential energy of the system is 

When the ball is at a distance y above the ground, its kinetic
energy is and the potential energy relative to the
ground is Applying Equation 8.10, we obtain

 vf 

2 � 2g(h � y) 

 0 � mgh � 1
2mvf 

2 � mgy

 Ki � Ui � Kf � Uf 

Uf � mgy.
Kf � 1

2mvf 

2

Ui � mgh.Ki � 0

1

3

2

Figure 8.5 Three identical balls are thrown
with the same initial speed from the top of a
building. 

m

Figure 8.4 A ball connected to a
massless spring suspended verti-
cally. What forms of potential en-
ergy are associated with the
ball– spring–Earth system when
the ball is displaced downward?

Three identical balls are thrown from the top of a building, all with the same initial speed.
The first is thrown horizontally, the second at some angle above the horizontal, and the
third at some angle below the horizontal, as shown in Figure 8.5. Neglecting air resistance,
rank the speeds of the balls at the instant each hits the ground.

Quick Quiz 8.3

Figure 8.6 A ball is dropped from a height h above the ground.
Initially, the total energy of the ball–Earth system is potential energy,
equal to mgh relative to the ground. At the elevation y, the total en-
ergy is the sum of the kinetic and potential energies.

h

y
vf

yi = h
Ui = mgh
Ki = 0

y = 0
Ug = 0

yf = y
Uf = mgy
Kf =   mvf

21
2
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The PendulumEXAMPLE 8.3
If we measure the y coordinates of the sphere from the

center of rotation, then and There-
fore, and Applying the prin-
ciple of conservation of mechanical energy to the system gives

(1)

(b) What is the tension TB in the cord at �?

Solution Because the force of tension does no work, we
cannot determine the tension using the energy method. To
find TB , we can apply Newton’s second law to the radial direc-
tion. First, recall that the centripetal acceleration of a particle
moving in a circle is equal to v2/r directed toward the center
of rotation. Because r � L in this example, we obtain

(2)

Substituting (1) into (2) gives the tension at point �:

(3)

From (2) we see that the tension at � is greater than the
weight of the sphere. Furthermore, (3) gives the expected re-
sult that when the initial angle 

Exercise A pendulum of length 2.00 m and mass 0.500 kg
is released from rest when the cord makes an angle of 30.0°
with the vertical. Find the speed of the sphere and the ten-
sion in the cord when the sphere is at its lowest point.

Answer 2.29 m/s; 6.21 N.

�A � 0.TB � mg

mg(3 � 2 cos �A)�

TB � mg � 2 mg(1 � cos �A)

�Fr � TB � mg � mar � m 
vB 

2

L

√2 gL(1 � cos �A)vB �

   0 � mgL cos �A � 1
2mvB 

2 � mgL

   KA � UA � KB � UB   

UB � �mgL.UA � �mgL cos �A

yB � �L.yA � �L cos �A

A pendulum consists of a sphere of mass m attached to a light
cord of length L, as shown in Figure 8.7. The sphere is re-
leased from rest when the cord makes an angle �A with the
vertical, and the pivot at P is frictionless. (a) Find the speed
of the sphere when it is at the lowest point �.

Solution The only force that does work on the sphere is
the gravitational force. (The force of tension is always perpen-
dicular to each element of the displacement and hence does
no work.) Because the gravitational force is conservative, the
total mechanical energy of the pendulum–Earth system is
constant. (In other words, we can classify this as an “energy
conservation” problem.) As the pendulum swings, continuous
transformation between potential and kinetic energy occurs.
At the instant the pendulum is released, the energy of the sys-
tem is entirely potential energy. At point � the pendulum has
kinetic energy, but the system has lost some potential energy.
At � the system has regained its initial potential energy, and
the kinetic energy of the pendulum is again zero.

Figure 8.7 If the sphere is released from rest at the angle �A it will
never swing above this position during its motion. At the start of the
motion, position �, the energy is entirely potential. This initial po-
tential energy is all transformed into kinetic energy at the lowest ele-
vation �. As the sphere continues to move along the arc, the energy
again becomes entirely potential energy at �.

The speed is always positive. If we had been asked to find the
ball’s velocity, we would use the negative value of the square
root as the y component to indicate the downward motion.

(b) Determine the speed of the ball at y if at the instant of
release it already has an initial speed vi at the initial altitude h.

Solution In this case, the initial energy includes kinetic
energy equal to and Equation 8.10 gives

1
2mvi 

2 � mgh � 1
2mvf 

2 � mgy

1
2mvi 

2,

√2g(h � y) vf �

This result is consistent with the expression 
from kinematics, where Further-

more, this result is valid even if the initial velocity is at an an-
gle to the horizontal (the projectile situation) for two rea-
sons: (1) energy is a scalar, and the kinetic energy depends
only on the magnitude of the velocity; and (2) the change in
the gravitational potential energy depends only on the
change in position in the vertical direction.

yi � h.vy i 

2 � 2g(yf � yi)
vy f 

2 �

√vi 

2 � 2g(h � y) vf �

 vf 

2 � vi 

2 � 2g(h � y)

�

�

�

θAL cos θA

L

T

P

m g

θ θ
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WORK DONE BY NONCONSERVATIVE FORCES
As we have seen, if the forces acting on objects within a system are conservative,
then the mechanical energy of the system remains constant. However, if some of
the forces acting on objects within the system are not conservative, then the me-
chanical energy of the system does not remain constant. Let us examine two types
of nonconservative forces: an applied force and the force of kinetic friction.

Work Done by an Applied Force

When you lift a book through some distance by applying a force to it, the force
you apply does work Wapp on the book, while the gravitational force does work Wg
on the book. If we treat the book as a particle, then the net work done on the
book is related to the change in its kinetic energy as described by the work–
kinetic energy theorem given by Equation 7.15:

(8.12)

Because the gravitational force is conservative, we can use Equation 8.2 to express
the work done by the gravitational force in terms of the change in potential en-
ergy, or Substituting this into Equation 8.12 gives

(8.13)

Note that the right side of this equation represents the change in the mechanical
energy of the book–Earth system. This result indicates that your applied force
transfers energy to the system in the form of kinetic energy of the book and gravi-
tational potential energy of the book–Earth system. Thus, we conclude that if an
object is part of a system, then an applied force can transfer energy into or out
of the system.

Situations Involving Kinetic Friction

Kinetic friction is an example of a nonconservative force. If a book is given some
initial velocity on a horizontal surface that is not frictionless, then the force of ki-
netic friction acting on the book opposes its motion and the book slows down and
eventually stops. The force of kinetic friction reduces the kinetic energy of the
book by transforming kinetic energy to internal energy of the book and part of the
horizontal surface. Only part of the book’s kinetic energy is transformed to inter-
nal energy in the book. The rest appears as internal energy in the surface. (When
you trip and fall while running across a gymnasium floor, not only does the skin on
your knees warm up but so does the floor!)

As the book moves through a distance d, the only force that does work is the
force of kinetic friction. This force causes a decrease in the kinetic energy of the
book. This decrease was calculated in Chapter 7, leading to Equation 7.17a, which
we repeat here:

(8.14)

If the book moves on an incline that is not frictionless, a change in the gravita-
tional potential energy of the book–Earth system also occurs, and is the
amount by which the mechanical energy of the system changes because of the
force of kinetic friction. In such cases,

(8.15)

where .Ei � �E � Ef

�E � �K � �U � � fkd

� fkd

�Kfriction � � fkd

Wapp � �K � �U

Wg � ��U.

Wapp � Wg � �K

8.5

QuickLab
Find a friend and play a game of 
racquetball. After a long volley, feel
the ball and note that it is warm. Why
is that?
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Problem-Solving Hints
Conservation of Energy
We can solve many problems in physics using the principle of conservation of
energy. You should incorporate the following procedure when you apply this
principle:

• Define your system, which may include two or more interacting particles, as
well as springs or other systems in which elastic potential energy can be
stored. Choose the initial and final points.

• Identify zero points for potential energy (both gravitational and spring). If
there is more than one conservative force, write an expression for the po-
tential energy associated with each force.

• Determine whether any nonconservative forces are present. Remember that
if friction or air resistance is present, mechanical energy is not conserved.

• If mechanical energy is conserved, you can write the total initial energy
at some point. Then, write an expression for the total final en-

ergy at the final point that is of interest. Because mechanical
energy is conserved, you can equate the two total energies and solve for the
quantity that is unknown.

• If frictional forces are present (and thus mechanical energy is not conserved),
first write expressions for the total initial and total final energies. In this
case, the difference between the total final mechanical energy and the total
initial mechanical energy equals the change in mechanical energy in the sys-
tem due to friction.

Ef � K f � Uf

Ei � K i � Ui

Crate Sliding Down a RampEXAMPLE 8.4
A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in
length and inclined at an angle of 30.0°, as shown in Figure
8.8. The crate starts from rest at the top, experiences a con-
stant frictional force of magnitude 5.00 N, and continues to
move a short distance on the flat floor after it leaves the
ramp. Use energy methods to determine the speed of the
crate at the bottom of the ramp.

Solution Because the initial kinetic energy at the
top of the ramp is zero. If the y coordinate is measured from
the bottom of the ramp (the final position where the poten-
tial energy is zero) with the upward direction being positive,
then m. Therefore, the total mechanical energy of
the crate–Earth system at the top is all potential energy:

 � (3.00 kg)(9.80    m/s2)(0.500 m) � 14.7 J

Ei � Ki � Ui � 0 � Ui � mgyi 

yi � 0.500

vi � 0,

Write down the work–kinetic energy theorem for the general case of two objects that are
connected by a spring and acted upon by gravity and some other external applied force. In-
clude the effects of friction as �Efriction .

Quick Quiz 8.4

30.0°

vf

d = 1.00 m

vi = 0

0.500 m

Figure 8.8 A crate slides down a ramp under the influence of grav-
ity. The potential energy decreases while the kinetic energy increases. 
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Motion on a Curved TrackEXAMPLE 8.5

Note that the result is the same as it would be had the child
fallen vertically through a distance h! In this example,

m, giving

(b) If a force of kinetic friction acts on the child, how
much mechanical energy does the system lose? Assume that

m/s and kg.

Solution In this case, mechanical energy is not conserved,
and so we must use Equation 8.15 to find the loss of mechani-
cal energy due to friction:

Again, �E is negative because friction is reducing mechanical
energy of the system (the final mechanical energy is less than
the initial mechanical energy). Because the slide is curved,
the normal force changes in magnitude and direction during
the motion. Therefore, the frictional force, which is propor-
tional to n, also changes during the motion. Given this chang-
ing frictional force, do you think it is possible to determine
�k from these data?

�302 J�

 � 1
2(20.0 kg)(3.00 m/s)2 � (20.0 kg)(9.80 m/s2)(2.00 m)

 � (1
2mvf 

2 � 0) � (0 � mgh) � 1
2mvf 

2 � mgh 

�E � Ef � Ei � (Kf � Uf) � (Ki � Ui) 

m � 20.0vf � 3.00

6.26 m/svf � √2gh � √2(9.80 m/s2)(2.00 m) �

h � 2.00

  vf � √2gh  

0 � mgh � 1
2mvf 

2 � 0

 Ki � Ui � Kf � Uf A child of mass m rides on an irregularly curved slide of
height as shown in Figure 8.9. The child starts
from rest at the top. (a) Determine his speed at the bottom,
assuming no friction is present.

Solution The normal force n does no work on the child
because this force is always perpendicular to each element of
the displacement. Because there is no friction, the mechani-
cal energy of the child–Earth system is conserved. If we mea-
sure the y coordinate in the upward direction from the bot-
tom of the slide, then and we obtainyi � h, yf � 0,

h � 2.00 m,

Figure 8.9 If the slide is frictionless, the speed of the child at the
bottom depends only on the height of the slide. 

When the crate reaches the bottom of the ramp, the po-
tential energy of the system is zero because the elevation of
the crate is Therefore, the total mechanical energy of
the system when the crate reaches the bottom is all kinetic
energy:

We cannot say that because a nonconservative force
reduces the mechanical energy of the system: the force of ki-
netic friction acting on the crate. In this case, Equation 8.15
gives where d is the displacement along the
ramp. (Remember that the forces normal to the ramp do no
work on the crate because they are perpendicular to the dis-
placement.) With N and m, we have

This result indicates that the system loses some mechanical
energy because of the presence of the nonconservative fric-
tional force. Applying Equation 8.15 gives

�E � � fkd � �(5.00 N)(1.00 m) � �5.00 J

d � 1.00fk � 5.00

�E � � fkd,

Ei � Ef

Ef � Kf � Uf � 1
2mvf 

2 � 0

yf � 0.

Exercise Use Newton’s second law to find the acceleration
of the crate along the ramp, and use the equations of kine-
matics to determine the final speed of the crate.

Answer 3.23 m/s2; 2.54 m/s.

Exercise Assuming the ramp to be frictionless, find the fi-
nal speed of the crate and its acceleration along the ramp. 

Answer 3.13 m/s; 4.90 m/s2.

2.54 m/s  vf �

 vf 

2 �
19.4 J

3.00 kg
� 6.47 m2/s2 

 12mvf 

2 � 14.7 J � 5.00 J � 9.70 J

Ef � Ei � 1
2mvf 

2 � mgyi � � fkd

2.00 m

n

Fg = m g



8.5 Work Done by Nonconservative Forces 227

Let’s Go Skiing!EXAMPLE 8.6
To find the distance the skier travels before coming to

rest, we take With m/s and the frictional
force given by we obtain

Exercise Find the horizontal distance the skier travels be-
fore coming to rest if the incline also has a coefficient of ki-
netic friction equal to 0.210.

Answer 40.3 m.

95.2 m�

 d �
vB 

2

2�kg
�

(19.8 m/s)2

2(0.210)(9.80 m/s2)

 � ��kmgd 

(KC � UC) � (KB � UB) � (0 � 0) � (1
2mvB 

2 � 0) 

 �E � EC � EB � ��kmgd 

fk � �kn � �kmg,
vB � 19.8KC � 0.

A skier starts from rest at the top of a frictionless incline of
height 20.0 m, as shown in Figure 8.10. At the bottom of the
incline, she encounters a horizontal surface where the coeffi-
cient of kinetic friction between the skis and the snow is
0.210. How far does she travel on the horizontal surface be-
fore coming to rest?

Solution First, let us calculate her speed at the bottom of
the incline, which we choose as our zero point of potential
energy. Because the incline is frictionless, the mechanical en-
ergy of the skier–Earth system remains constant, and we find,
as we did in the previous example, that

Now we apply Equation 8.15 as the skier moves along the
rough horizontal surface from � to �. The change in me-
chanical energy along the horizontal is where d is
the horizontal displacement.

�E � � fkd,

vB � √2gh � √2(9.80 m/s2)(20.0 m) � 19.8 m/s

The Spring-Loaded PopgunEXAMPLE 8.7
tional potential energy of the projectile–Earth system to be at
the lowest position of the projectile xA , then the initial gravita-
tional potential energy also is zero. The mechanical energy of
this system is constant because no nonconservative forces are
present.

Initially, the only mechanical energy in the system is the
elastic potential energy stored in the spring of the gun,

where the compression of the spring is
m. The projectile rises to a maximum heightx � 0.120

UsA � kx2/2,

The launching mechanism of a toy gun consists of a spring of
unknown spring constant (Fig. 8.11a). When the spring is
compressed 0.120 m, the gun, when fired vertically, is able to
launch a 35.0-g projectile to a maximum height of 20.0 m
above the position of the projectile before firing. (a) Neglect-
ing all resistive forces, determine the spring constant.

Solution Because the projectile starts from rest, the initial
kinetic energy is zero. If we take the zero point for the gravita-

Figure 8.10 The skier slides down the slope and onto a level surface, stopping after a distance d
from the bottom of the hill.

d

20.0°

20.0 m

x

y

�

� �
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Block – Spring CollisionEXAMPLE 8.8
energy and the spring is uncompressed, so that the elastic po-
tential energy stored in the spring is zero. Thus, the total me-
chanical energy of the system before the collision is just

After the collision, at �, the spring is fully com-
pressed; now the block is at rest and so has zero kinetic en-
ergy, while the energy stored in the spring has its maximum
value where the origin of coordinates is
chosen to be the equilibrium position of the spring and xm is

x � 01
2kx2 � 1

2kxm 

2
 ,

1
2mvA 

2
 .

A block having a mass of 0.80 kg is given an initial velocity
m/s to the right and collides with a spring of negli-

gible mass and force constant N/m, as shown in Fig-
ure 8.12. (a) Assuming the surface to be frictionless, calculate
the maximum compression of the spring after the collision.

Solution Our system in this example consists of the block
and spring. Before the collision, at �, the block has kinetic

k � 50
vA � 1.2

Figure 8.11 A spring-loaded popgun.

m, and so the final gravitational potential en-
ergy when the projectile reaches its peak is mgh. The final ki-
netic energy of the projectile is zero, and the final elastic po-
tential energy stored in the spring is zero. Because the
mechanical energy of the system is constant, we find that

xC � h � 20.0

(b) Find the speed of the projectile as it moves through
the equilibrium position of the spring (where m)
as shown in Figure 8.11b.

Solution As already noted, the only mechanical energy in
the system at � is the elastic potential energy kx2/2. The to-
tal energy of the system as the projectile moves through the
equilibrium position of the spring comprises the kinetic en-
ergy of the projectile mvB

2/2, and the gravitational potential
energy mgxB . Hence, the principle of the conservation of me-
chanical energy in this case gives

Solving for vB gives

You should compare the different examples we have pre-
sented so far in this chapter. Note how breaking the problem
into a sequence of labeled events helps in the analysis.

Exercise What is the speed of the projectile when it is at a
height of 10.0 m?

Answer 14.0 m/s.

19.7 m/s�

 � √ (953 N/m)(0.120 m)2

0.0350 kg
� 2(9.80 m/s2)(0.120 m)

vB � √ kx2

m
� 2gxB

 0 � 0 � 1
2kx2 � 1

2mvB 

2 � mgxB � 0 

KA � UgA � UsA � KB � Ug B � UsB

 EA � EB 

xB � 0.120

953 N/m k �

 12k(0.120 m)2 � (0.0350 kg)(9.80 m/s2)(20.0 m)

 0 � 0 � 1
2kx2 � 0 � mgh � 0 

KA � UgA � UsA � KC � Ug C � UsC 

 EA � EC

(a)

v

(b)

x x
xA = 0

�

�

xB = 0.120 m

xC = 20.0 m�
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Figure 8.12 A block sliding on a smooth, horizontal surface col-
lides with a light spring. (a) Initially the mechanical energy is all ki-
netic energy. (b) The mechanical energy is the sum of the kinetic 
energy of the block and the elastic potential energy in the spring. 
(c) The energy is entirely potential energy. (d) The energy is trans-
formed back to the kinetic energy of the block. The total energy re-
mains constant throughout the motion.

Multiflash photograph of a pole vault event. How
many forms of energy can you identify in this picture?

the maximum compression of the spring, which in this case
happens to be xC . The total mechanical energy of the system
is conserved because no nonconservative forces act on ob-
jects within the system.

Because mechanical energy is conserved, the kinetic en-
ergy of the block before the collision must equal the maxi-
mum potential energy stored in the fully compressed spring:

Note that we have not included Ug terms because no change
in vertical position occurred.

(b) Suppose a constant force of kinetic friction acts be-
tween the block and the surface, with If the speed�k � 0.50.

0.15 m�

 xm � √ m
k

 vA � √ 0.80 kg
50 N/m

 (1.2 m/s)

1
2mvA 

2 � 0 � 0 � 1
2kxm 

2 

 KA � UsA � KC � UsC 

 EA � EC 

of the block at the moment it collides with the spring is 
1.2 m/s, what is the maximum compression in the spring?

Solution In this case, mechanical energy is not conserved
because a frictional force acts on the block. The magnitude
of the frictional force is

Therefore, the change in the block’s mechanical energy due
to friction as the block is displaced from the equilibrium posi-
tion of the spring (where we have set our origin) to xB is

Substituting this into Equation 8.15 gives

Solving the quadratic equation for xB gives m and
m. The physically meaningful root is 

The negative root does not apply to this situation 

because the block must be to the right of the origin (positive
value of x) when it comes to rest. Note that 0.092 m is less
than the distance obtained in the frictionless case of part (a).
This result is what we expect because friction retards the mo-
tion of the system.

0.092 m.

xB �xB � �0.25
xB � 0.092

25xB 

2 � 3.92xB � 0.576 � 0

1
2(50)xB 

2 � 1
2(0.80)(1.2)2 � �3.92xB

�E � Ef � Ei � (0 � 1
2kxB 

2) � (1
2mvA 

2 � 0) � � fkxB

�E � � fkxB � �3.92xB 

fk � �kn � �kmg � 0.50(0.80 kg)(9.80 m/s2) � 3.92 N

vA �

E = – mvA
21

2

x = 0

(a)

(b)

(c)

vC = 0

(d)

xm

�

�

�

�

E = – mvB
2 + – kxB

21
2

1
2

E = – mvD
2 = – mvA

21
2

1
2

E = – kxm
21

2

vA

vB

xB

vD = –vA
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Connected Blocks in MotionEXAMPLE 8.9
where is the change in the system’s gravita-
tional potential energy and is the change in
the system’s elastic potential energy. As the hanging block
falls a distance h, the horizontally moving block moves the
same distance h to the right. Therefore, using Equation 8.15,
we find that the loss in energy due to friction between the
horizontally sliding block and the surface is

(2)

The change in the gravitational potential energy of the sys-
tem is associated with only the falling block because the verti-
cal coordinate of the horizontally sliding block does not
change. Therefore, we obtain

(3)

where the coordinates have been measured from the lowest
position of the falling block. 

The change in the elastic potential energy stored in the
spring is 

(4)

Substituting Equations (2), (3), and (4) into Equation (1)
gives

This setup represents a way of measuring the coefficient of
kinetic friction between an object and some surface. As you
can see from the problem, sometimes it is easier to work with
the changes in the various types of energy rather than the ac-
tual values. For example, if we wanted to calculate the numer-
ical value of the gravitational potential energy associated with
the horizontally sliding block, we would need to specify the
height of the horizontal surface relative to the lowest position
of the falling block. Fortunately, this is not necessary because
the gravitational potential energy associated with the first
block does not change.

m2g � 1
2kh

m1g
    �k �

��km1gh � �m2gh � 1
2kh2

�Us � Us f � Usi � 1
2kh2 � 0

�Ug � Ug f � Ugi � 0 � m2gh

�E � � fkh � ��km1gh

�Us � Usf � Usi

�Ug � Ug f � Ug iTwo blocks are connected by a light string that passes over a
frictionless pulley, as shown in Figure 8.13. The block of mass
m1 lies on a horizontal surface and is connected to a spring of
force constant k. The system is released from rest when the
spring is unstretched. If the hanging block of mass m2 falls a
distance h before coming to rest, calculate the coefficient of
kinetic friction between the block of mass m1 and the surface.

Solution The key word rest appears twice in the problem
statement, telling us that the initial and final velocities and ki-
netic energies are zero. (Also note that because we are con-
cerned only with the beginning and ending points of the mo-
tion, we do not need to label events with circled letters as we
did in the previous two examples. Simply using i and f is suffi-
cient to keep track of the situation.) In this situation, the sys-
tem consists of the two blocks, the spring, and the Earth. We
need to consider two forms of potential energy: gravitational
and elastic. Because the initial and final kinetic energies of
the system are zero, and we can write

(1) �E � �Ug � �Us

�K � 0,

Figure 8.13 As the hanging block moves from its highest eleva-
tion to its lowest, the system loses gravitational potential energy but
gains elastic potential energy in the spring. Some mechanical energy
is lost because of friction between the sliding block and the surface.

A Grand EntranceEXAMPLE 8.10
stage to the floor. Let us call the angle that the actor’s cable
makes with the vertical �. What is the maximum value � can
have before the sandbag lifts off the floor?

Solution We need to draw on several concepts to solve
this problem. First, we use the principle of the conservation
of mechanical energy to find the actor’s speed as he hits the
floor as a function of � and the radius R of the circular path
through which he swings. Next, we apply Newton’s second

You are designing apparatus to support an actor of mass 
65 kg who is to “fly” down to the stage during the perfor-
mance of a play. You decide to attach the actor’s harness to a
130-kg sandbag by means of a lightweight steel cable running
smoothly over two frictionless pulleys, as shown in Figure
8.14a. You need 3.0 m of cable between the harness and the
nearest pulley so that the pulley can be hidden behind a cur-
tain. For the apparatus to work successfully, the sandbag must
never lift above the floor as the actor swings from above the

k

h

m1

m2
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Figure 8.14 (a) An actor uses some clever staging to make his en-
trance. (b) Free-body diagram for actor at the bottom of the circular
path. (c) Free-body diagram for sandbag.

law to the actor at the bottom of his path to find the cable
tension as a function of the given parameters. Finally, we note
that the sandbag lifts off the floor when the upward force ex-
erted on it by the cable exceeds the gravitational force acting
on it; the normal force is zero when this happens.

Applying conservation of energy to the actor–Earth sys-
tem gives 

(1) 0 � mactor gyi � 1
2mactorvf 

2 � 0

 Ki � Ui � Kf � Uf 

where yi is the initial height of the actor above the floor and vf is
the speed of the actor at the instant before he lands. (Note that

because he starts from rest and that because we
set the level of the actor’s harness when he is standing on the
floor as the zero level of potential energy.) From the geometry
in Figure 8.14a, we see that 
Using this relationship in Equation (1), we obtain

(2)

Now we apply Newton’s second law to the actor when he is at
the bottom of the circular path, using the free-body diagram
in Figure 8.14b as a guide:

(3)

A force of the same magnitude as T is transmitted to the
sandbag. If it is to be just lifted off the floor, the normal force
on it becomes zero, and we require that as shown
in Figure 8.14c. Using this condition together with Equations
(2) and (3), we find that

Solving for � and substituting in the given parameters, we ob-
tain

Notice that we did not need to be concerned with the length
R of the cable from the actor’s harness to the leftmost pulley.
The important point to be made from this problem is that it
is sometimes necessary to combine energy considerations
with Newton’s laws of motion.

Exercise If the initial angle � � 40°, find the speed of the
actor and the tension in the cable just before he reaches the
floor. (Hint: You cannot ignore the length R � 3.0 m in this
calculation.)

Answer 3.7 m/s; 940 N.

60°    � �

cos � �
3mactor � mbag

2mactor
�

3(65 kg) � 130 kg
2(65 kg)

�
1
2

mbagg � mactorg � mactor 
2gR(1 � cos �)

R

T � mbagg,

T � mactorg � mactor 
vf

2

R
  

 �Fy � T � mactorg � mactor 
vf

2

R

vf 

2 � 2gR(1 � cos �)

yi � R � R cos � � R(1 � cos �).

Uf � 0Ki � 0

(a)

θR

Actor Sandbag

(b)

mactor

mactorg

T

m bag

m bagg

(c)

T

RELATIONSHIP BETWEEN CONSERVATIVE FORCES
AND POTENTIAL ENERGY

Once again let us consider a particle that is part of a system. Suppose that the par-
ticle moves along the x axis, and assume that a conservative force with an x compo-

8.6
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Relationship between force 
and potential energy

3 In three dimensions, the expression is where and so forth, are 

partial derivatives. In the language of vector calculus, F equals the negative of the gradient of the scalar 
quantity U(x, y, z).

	U
	x

 ,F � � i 
	U
	x

� j 
	U
	y

� k 
	U
	z

 ,

nent Fx acts on the particle. Earlier in this chapter, we showed how to determine
the change in potential energy of a system when we are given the conservative
force. We now show how to find Fx if the potential energy of the system is known.

In Section 8.2 we learned that the work done by the conservative force as its
point of application undergoes a displacement �x equals the negative of the
change in the potential energy associated with that force; that is,

If the point of application of the force undergoes an infinitesi-
mal displacement dx, we can express the infinitesimal change in the potential en-
ergy of the system dU as

Therefore, the conservative force is related to the potential energy function
through the relationship3

(8.16)

That is, any conservative force acting on an object within a system equals the
negative derivative of the potential energy of the system with respect to x.

We can easily check this relationship for the two examples already discussed.
In the case of the deformed spring, and therefore

which corresponds to the restoring force in the spring. Because the gravitational
potential energy function is it follows from Equation 8.16 that

when we differentiate Ug with respect to y instead of x.
We now see that U is an important function because a conservative force can

be derived from it. Furthermore, Equation 8.16 should clarify the fact that adding
a constant to the potential energy is unimportant because the derivative of a con-
stant is zero.

What does the slope of a graph of U(x) versus x represent?

Optional Section

ENERGY DIAGRAMS AND THE
EQUILIBRIUM OF A SYSTEM

The motion of a system can often be understood qualitatively through a graph of
its potential energy versus the separation distance between the objects in the sys-
tem. Consider the potential energy function for a block–spring system, given by

This function is plotted versus x in Figure 8.15a. (A common mistake is
to think that potential energy on the graph represents height. This is clearly not
Us � 1

2kx2.

8.7

Quick Quiz 8.5

Fg � �mg
Ug � mgy,

Fs � �
dUs

dx
� �

d
dx

(1
2kx2) � �kx

Us � 1
2kx2,

Fx � �
dU
dx

dU � �Fx dx

W � Fx �x � ��U.
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the case here, where the block is only moving horizontally.) The force Fs exerted
by the spring on the block is related to Us through Equation 8.16:

As we saw in Quick Quiz 8.5, the force is equal to the negative of the slope of the
U versus x curve. When the block is placed at rest at the equilibrium position of
the spring where it will remain there unless some external force
Fext acts on it. If this external force stretches the spring from equilibrium, x is posi-
tive and the slope dU/dx is positive; therefore, the force Fs exerted by the spring is
negative, and the block accelerates back toward when released. If the exter-
nal force compresses the spring, then x is negative and the slope is negative; there-
fore, Fs is positive, and again the mass accelerates toward upon release.

From this analysis, we conclude that the position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position
results in a force directed back toward In general, positions of stable
equilibrium correspond to points for which U(x) is a minimum.

From Figure 8.15 we see that if the block is given an initial displacement xm
and is released from rest, its total energy initially is the potential energy stored in
the spring As the block starts to move, the system acquires kinetic energy
and loses an equal amount of potential energy. Because the total energy must re-
main constant, the block oscillates (moves back and forth) between the two points

and called the turning points. In fact, because no energy is lost
(no friction), the block will oscillate between � xm and � xm forever. (We discuss
these oscillations further in Chapter 13.) From an energy viewpoint, the energy of
the system cannot exceed therefore, the block must stop at these points
and, because of the spring force, must accelerate toward 

Another simple mechanical system that has a position of stable equilibrium is
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its
lowest position, it tends to return to that position when released.

x � 0.

1
2kxm 

2;

x � �xm ,x � �xm

1
2kxm 

2.

x � 0.

x � 0
x � 0

x � 0

Fs � 0,(x � 0),

Fs � �
dUs

dx
� �kx

Figure 8.15 (a) Potential energy as a
function of x for the block–spring sys-
tem shown in (b). The block oscillates
between the turning points, which have
the coordinates x � 
 xm . Note that the
restoring force exerted by the spring al-
ways acts toward x � 0, the position of
stable equilibrium.

E

–xm 0

Us

x
xm

(a)

xm

(b)

m

x = 0

= – kx21
2

Us
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Now consider a particle moving along the x axis under the influence of a con-
servative force Fx , where the U versus x curve is as shown in Figure 8.16. Once
again, at and so the particle is in equilibrium at this point. However,
this is a position of unstable equilibrium for the following reason: Suppose that
the particle is displaced to the right (x � 0). Because the slope is negative for 
x � 0, is positive and the particle accelerates away from x � 0. If in-
stead the particle is at x � 0 and is displaced to the left (x � 0), the force is nega-
tive because the slope is positive for x � 0, and the particle again accelerates away
from the equilibrium position. The position x � 0 in this situation is one of unsta-
ble equilibrium because for any displacement from this point, the force pushes the
particle farther away from equilibrium. The force pushes the particle toward a posi-
tion of lower potential energy. A pencil balanced on its point is in a position of un-
stable equilibrium. If the pencil is displaced slightly from its absolutely vertical po-
sition and is then released, it will surely fall over. In general, positions of
unstable equilibrium correspond to points for which U(x) is a maximum.

Finally, a situation may arise where U is constant over some region and hence
This is called a position of neutral equilibrium. Small displacements from

this position produce neither restoring nor disrupting forces. A ball lying on a flat
horizontal surface is an example of an object in neutral equilibrium.

Fx � 0.

Fx � �dU/dx

x � 0,Fx � 0

Force and Energy on an Atomic ScaleEXAMPLE 8.11
are at their critical separation, and then increases again as
the atoms move apart. When U(x) is a minimum, the atoms
are in stable equilbrium; this indicates that this is the most
likely separation between them.

(b) Determine Fx(x)—the force that one atom exerts on
the other in the molecule as a function of separation—and
argue that the way this force behaves is physically plausible
when the atoms are close together and far apart.

Solution Because the atoms combine to form a molecule,
we reason that the force must be attractive when the atoms
are far apart. On the other hand, the force must be repulsive
when the two atoms get very close together. Otherwise, the
molecule would collapse in on itself. Thus, the force must
change sign at the critical separation, similar to the way
spring forces switch sign in the change from extension to
compression. Applying Equation 8.16 to the Lennard–Jones
potential energy function gives

This result is graphed in Figure 8.17b. As expected, the force
is positive (repulsive) at small atomic separations, zero when
the atoms are at the position of stable equilibrium [recall
how we found the minimum of U(x)], and negative (attrac-
tive) at greater separations. Note that the force approaches
zero as the separation between the atoms becomes very great.

4� 12�12

x13 �
6�6

x7 �  �

Fx � �
dU(x)

dx
� �4 

d
dx ��

�

x �
12

� � �

x �
6

�

The potential energy associated with the force between two
neutral atoms in a molecule can be modeled by the
Lennard–Jones potential energy function:

where x is the separation of the atoms. The function U(x) con-
tains two parameters � and  that are determined from experi-
ments. Sample values for the interaction between two atoms
in a molecule are � � 0.263 nm and  � 1.51 � 10�22 J. 
(a) Using a spreadsheet or similar tool, graph this function
and find the most likely distance between the two atoms.

Solution We expect to find stable equilibrium when the
two atoms are separated by some equilibrium distance and
the potential energy of the system of two atoms (the mole-
cule) is a minimum. One can minimize the function U(x) by
taking its derivative and setting it equal to zero:

Solving for x—the equilibrium separation of the two atoms
in the molecule—and inserting the given information yield

We graph the Lennard–Jones function on both sides of
this critical value to create our energy diagram, as shown in
Figure 8.17a. Notice how U(x) is extremely large when the
atoms are very close together, is a minimum when the atoms

2.95 � 10�10 m.x �

 � 4� �12�12

x13 �
�6�6

x7 � � 0 

dU(x)
dx

� 4 
d
dx ��

�

x �
12

� � �

x �
6

� � 0

U(x) � 4�� �

x �
12

� � �

x �
6

�

0
x

U

Negative slope
x > 0

Positive slope
x < 0

Figure 8.16 A plot of U versus x
for a particle that has a position of
unstable equilibrium located at x �
0. For any finite displacement of
the particle, the force on the parti-
cle is directed away from x � 0.
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CONSERVATION OF ENERGY IN GENERAL
We have seen that the total mechanical energy of a system is constant when only
conservative forces act within the system. Furthermore, we can associate a poten-
tial energy function with each conservative force. On the other hand, as we saw in
Section 8.5, mechanical energy is lost when nonconservative forces such as friction
are present.

In our study of thermodynamics later in this course, we shall find that me-
chanical energy can be transformed into energy stored inside the various objects
that make up the system. This form of energy is called internal energy. For example,
when a block slides over a rough surface, the mechanical energy lost because of
friction is transformed into internal energy that is stored temporarily inside the
block and inside the surface, as evidenced by a measurable increase in the temper-
ature of both block and surface. We shall see that on a submicroscopic scale, this
internal energy is associated with the vibration of atoms about their equilibrium
positions. Such internal atomic motion involves both kinetic and potential energy.
Therefore, if we include in our energy expression this increase in the internal en-
ergy of the objects that make up the system, then energy is conserved.

This is just one example of how you can analyze an isolated system and al-
ways find that the total amount of energy it contains does not change, as long as
you account for all forms of energy. That is, energy can never be created or
destroyed. Energy may be transformed from one form to another, but the

8.8
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Figure 8.17 (a) Potential energy curve associated with a molecule. The distance x is the separation be-
tween the two atoms making up the molecule. (b) Force exerted on one atom by the other.

Total energy is always conserved
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total energy of an isolated system is always constant. From a universal
point of view, we can say that the total energy of the Universe is constant. If
one part of the Universe gains energy in some form, then another part must
lose an equal amount of energy. No violation of this principle has ever been
found.

Optional Section

MASS – ENERGY EQUIVALENCE
This chapter has been concerned with the important principle of energy conserva-
tion and its application to various physical phenomena. Another important princi-
ple, conservation of mass, states that in any physical or chemical process,
mass is neither created nor destroyed. That is, the mass before the process
equals the mass after the process.

For centuries, scientists believed that energy and mass were two quantities that
were separately conserved. However, in 1905 Einstein made the brilliant discovery
that the mass of any system is a measure of the energy of that system. Hence, en-
ergy and mass are related concepts. The relationship between the two is given by
Einstein’s most famous formula:

(8.17)

where c is the speed of light and ER is the energy equivalent of a mass m. The sub-
script R on the energy refers to the rest energy of an object of mass m—that is,
the energy of the object when its speed is .

The rest energy associated with even a small amount of matter is enormous.
For example, the rest energy of 1 kg of any substance is

This is equivalent to the energy content of about 15 million barrels of crude oil—
about one day’s consumption in the United States! If this energy could easily be re-
leased as useful work, our energy resources would be unlimited.

In reality, only a small fraction of the energy contained in a material sample
can be released through chemical or nuclear processes. The effects are greatest in
nuclear reactions, in which fractional changes in energy, and hence mass, of ap-
proximately 10�3 are routinely observed. A good example is the enormous
amount of energy released when the uranium-235 nucleus splits into two smaller
nuclei. This happens because the sum of the masses of the product nuclei is
slightly less than the mass of the original 235U nucleus. The awesome nature of the
energy released in such reactions is vividly demonstrated in the explosion of a nu-
clear weapon.

Equation 8.17 indicates that energy has mass. Whenever the energy of an object
changes in any way, its mass changes as well. If �E is the change in energy of an ob-
ject, then its change in mass is

(8.18)

Anytime energy �E in any form is supplied to an object, the change in the mass of
the object is However, because c 2 is so large, the changes in mass in
any ordinary mechanical experiment or chemical reaction are too small to be
detected.

�m � �E/c 2.

�m �
�E
c 2

ER � mc 2 � (1 kg)(3 � 108 m/s)2 � 9 � 1016 J

v � 0

ER � mc 2

8.9
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Optional Section

QUANTIZATION OF ENERGY
Certain physical quantities such as electric charge are quantized; that is, the quanti-
ties have discrete values rather than continuous values. The quantized nature of
energy is especially important in the atomic and subatomic world. As an example,
let us consider the energy levels of the hydrogen atom (which consists of an elec-
tron orbiting around a proton). The atom can occupy only certain energy levels,
called quantum states, as shown in Figure 8.18a. The atom cannot have any energy
values lying between these quantum states. The lowest energy level E1 is called the

8.10

Here Comes the SunEXAMPLE 8.12
The Sun radiates uniformly in all directions, and so only a
very tiny fraction of its total output is collected by the Earth.
Nonetheless this amount is sufficient to supply energy to
nearly everything on the Earth. (Nuclear and geothermal en-
ergy are the only alternatives.) Plants absorb solar energy and
convert it to chemical potential energy (energy stored in the
plant’s molecules). When an animal eats the plant, this chem-
ical potential energy can be turned into kinetic and other
forms of energy. You are reading this book with solar-
powered eyes!

The Sun converts an enormous amount of matter to energy.
Each second, 4.19 � 109 kg—approximately the capacity of
400 average-sized cargo ships—is changed to energy. What is
the power output of the Sun?

Solution We find the energy liberated per second by
means of a straightforward conversion:

We then apply the definition of power:

3.77 � 1026 W� �
3.77 � 1026 J

1.00 s
�

ER � (4.19 � 109 kg)(3.00 � 108 m/s)2 � 3.77 � 1026 J

Figure 8.18 Energy-level diagrams: (a) Quantum states of the hydrogen atom. The lowest state
E1 is the ground state. (b) The energy levels of an Earth satellite are also quantized but are so
close together that they cannot be distinguished from one another.
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ground state of the atom. The ground state corresponds to the state that an isolated
atom usually occupies. The atom can move to higher energy states by absorbing
energy from some external source or by colliding with other atoms. The highest
energy on the scale shown in Figure 8.18a, E� , corresponds to the energy of the
atom when the electron is completely removed from the proton. The energy dif-
ference is called the ionization energy. Note that the energy levels get
closer together at the high end of the scale.

Next, consider a satellite in orbit about the Earth. If you were asked to de-
scribe the possible energies that the satellite could have, it would be reasonable
(but incorrect) to say that it could have any arbitrary energy value. Just like that of
the hydrogen atom, however, the energy of the satellite is quantized. If you
were to construct an energy level diagram for the satellite showing its allowed en-
ergies, the levels would be so close to one another, as shown in Figure 8.18b, that it
would be difficult to discern that they were not continuous. In other words, we
have no way of experiencing quantization of energy in the macroscopic world;
hence, we can ignore it in describing everyday experiences.

SUMMARY

If a particle of mass m is at a distance y above the Earth’s surface, the gravita-
tional potential energy of the particle–Earth system is

(8.1)

The elastic potential energy stored in a spring of force constant k is

(8.4)

You should be able to apply these two equations in a variety of situations to deter-
mine the potential an object has to perform work.

A force is conservative if the work it does on a particle moving between two
points is independent of the path the particle takes between the two points. Fur-
thermore, a force is conservative if the work it does on a particle is zero when the
particle moves through an arbitrary closed path and returns to its initial position.
A force that does not meet these criteria is said to be  nonconservative.

A potential energy function U can be associated only with a conservative
force. If a conservative force F acts on a particle that moves along the x axis from
xi to xf , then the change in the potential energy of the system equals the negative
of the work done by that force:

(8.7)

You should be able to use calculus to find the potential energy associated with a
conservative force and vice versa.

The total mechanical energy of a system is defined as the sum of the ki-
netic energy and the potential energy:

(8.9)

If no external forces do work on a system and if no nonconservative forces are
acting on objects inside the system, then the total mechanical energy of the system
is constant:

(8.10)Ki � Ui � Kf � Uf

E � K � U

Uf � Ui � ��xf

x i

Fx dx

Us � 1
2kx2

Ug � mgy

E� � E1
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QUESTIONS

of the student’s nose as in Figure Q8.3. If the student re-
mains stationary, explain why she will not be struck by the
ball on its return swing. Would the student be safe if she
pushed the ball as she released it?

4. One person drops a ball from the top of a building, while
another person at the bottom observes its motion. Will
these two people agree on the value of the potential en-
ergy of the ball–Earth system? on its change in potential
energy? on the kinetic energy of the ball?

5. When a person runs in a track event at constant velocity,
is any work done? (Note: Although the runner moves with
constant velocity, the legs and arms accelerate.) How does
air resistance enter into the picture? Does the center of
mass of the runner move horizontally?

6. Our body muscles exert forces when we lift, push, run,
jump, and so forth. Are these forces conservative?

7. If three conservative forces and one nonconservative
force act on a system, how many potential energy terms
appear in the equation that describes this system?

8. Consider a ball fixed to one end of a rigid rod whose
other end pivots on a horizontal axis so that the rod can
rotate in a vertical plane. What are the positions of stable
and unstable equilibrium?

9. Is it physically possible to have a situation where

10. What would the curve of U versus x look like if a particle
were in a region of neutral equilibrium?

11. Explain the energy transformations that occur during 
(a) the pole vault, (b) the shot put, (c) the high jump.
What is the source of energy in each case?

12. Discuss some of the energy transformations that occur
during the operation of an automobile.

13. If only one external force acts on a particle, does it 
necessarily change the particle’s (a) kinetic energy? 
(b) velocity?

E � U � 0?

1. Many mountain roads are constructed so that they spiral
around a mountain rather than go straight up the slope.
Discuss this design from the viewpoint of energy and
power.

2. A ball is thrown straight up into the air. At what position
is its kinetic energy a maximum? At what position is the
gravitational potential energy a maximum? 

3. A bowling ball is suspended from the ceiling of a lecture
hall by a strong cord. The bowling ball is drawn away from
its equilibrium position and released from rest at the tip

If nonconservative forces (such as friction) act on objects inside a system, then
mechanical energy is not conserved. In these situations, the difference between the
total final mechanical energy and the total initial mechanical energy of the system
equals the energy transferred to or from the system by the nonconservative forces.

Figure Q8.3

PROBLEMS

be the zero level for gravitational potential energy. Find
the potential energy of the roller coaster–Earth system
at points A and B and the change in its potential energy
as the coaster moves. (b) Repeat part (a), setting the
zero reference level at point A.

Section 8.1 Potential Energy
Section 8.2 Conservative and Nonconservative Forces

1. A 1 000-kg roller coaster is initially at the top of a rise, at
point A. It then moves 135 ft, at an angle of 40.0° below
the horizontal, to a lower point B. (a) Choose point B to

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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Figure P8.10

Figure P8.3 Problems 3, 4, and 5.

2. A 40.0-N child is in a swing that is attached to ropes 
2.00 m long. Find the gravitational potential energy of
the child–Earth system relative to the child’s lowest po-
sition when (a) the ropes are horizontal, (b) the ropes
make a 30.0° angle with the vertical, and (c) the child is
at the bottom of the circular arc.

3. A 4.00-kg particle moves from the origin to position C,
which has coordinates x � 5.00 m and y � 5.00 m 
(Fig. P8.3). One force on it is the force of gravity acting
in the negative y direction. Using Equation 7.2, calcu-
late the work done by gravity as the particle moves from
O to C along (a) OAC, (b) OBC, and (c) OC. Your re-
sults should all be identical. Why?

time tf ? (b) If the potential energy of the system at time
tf is 5.00 J, are any nonconservative forces acting on the
particle? Explain.

7. A single conservative force acts on a 5.00-kg particle.
The equation N, where x is in meters, de-
scribes this force. As the particle moves along the x axis
from m to m, calculate (a) the work
done by this force, (b) the change in the potential en-
ergy of the system, and (c) the kinetic energy of the par-
ticle at m if its speed at m is 3.00 m/s.

8. A single constant force N acts on a 
4.00-kg particle. (a) Calculate the work done by this
force if the particle moves from the origin to the point
having the vector position m. Does this
result depend on the path? Explain. (b) What is the
speed of the particle at r if its speed at the origin is 
4.00 m/s? (c) What is the change in the potential
energy of the system?

9. A single conservative force acting on a particle varies as
N, where A and B are constants and

x is in meters. (a) Calculate the potential energy func-
tion U(x) associated with this force, taking at

(b) Find the change in potential energy and
change in kinetic energy as the particle moves from

m to m.
10. A particle of mass 0.500 kg is shot from P as shown in

Figure P8.10. The particle has an initial velocity vi with a
horizontal component of 30.0 m/s. The particle rises to
a maximum height of 20.0 m above P. Using the law of
conservation of energy, determine (a) the vertical com-
ponent of vi , (b) the work done by the gravitational
force on the particle during its motion from P to B, and
(c) the horizontal and the vertical components of the
velocity vector when the particle reaches B.

x � 3.00x � 2.00

x � 0.
U � 0

F � (�Ax � Bx2)i

r � (2i � 3j)

F � (3i � 5j)
x � 1.00x � 5.00

x � 5.00x � 1.00

Fx � (2x � 4)

11. A 3.00-kg mass starts from rest and slides a distance d
down a frictionless 30.0° incline. While sliding, it comes
into contact with an unstressed spring of negligible
mass, as shown in Figure P8.11. The mass slides an addi-
tional 0.200 m as it is brought momentarily to rest by
compression of the spring (k � 400 N/m). Find the ini-
tial separation d between the mass and the spring.

4. (a) Suppose that a constant force acts on an object. The
force does not vary with time, nor with the position or
velocity of the object. Start with the general definition
for work done by a force

and show that the force is conservative. (b) As a special
case, suppose that the force N acts on a
particle that moves from O to C in Figure P8.3. Calcu-
late the work done by F if the particle moves along each
one of the three paths OAC, OBC, and OC. (Your three
answers should be identical.)

5. A force acting on a particle moving in the xy plane is
given by N, where x and y are in me-
ters. The particle moves from the origin to a final posi-
tion having coordinates x � 5.00 m and y � 5.00 m, as
in Figure P8.3. Calculate the work done by F along 
(a) OAC, (b) OBC, (c) OC. (d) Is F conservative or non-
conservative? Explain.

Section 8.3 Conservative Forces and Potential Energy
Section 8.4 Conservation of Mechanical Energy

6. At time ti , the kinetic energy of a particle in a system is
30.0 J and the potential energy of the system is 10.0 J. At
some later time tf , the kinetic energy of the particle is
18.0 J. (a) If only conservative forces act on the particle,
what are the potential energy and the total energy at

F � (2 y i � x2 j)

F � (3i � 4j)

W � �f

i
F � d s

(5.00, 5.00) m
C

B

y

x
AO

20.0 m
θ

60.0 m
g

P

vi

A B

WEB
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Figure P8.15

Figure P8.13

Figure P8.11 Problems 11 and 12.

12. A mass m starts from rest and slides a distance d down a
frictionless incline of angle �. While sliding,  it contacts
an unstressed spring of negligible mass, as shown in Fig-
ure P8.11. The mass slides an additional distance x as it
is brought momentarily to rest by compression of the
spring (of force constant k). Find the initial separation
d between the mass and the spring.

cal spring of constant k � 5 000 N/m and is pushed
downward so that the spring is compressed 0.100 m. Af-
ter the block is released, it travels upward and then
leaves the spring. To what maximum height above the
point of release does it rise?

18. Dave Johnson, the bronze medalist at the 1992 Olympic
decathlon in Barcelona, leaves the ground for his high
jump with a vertical velocity component of 6.00 m/s.
How far up does his center of gravity move as he makes
the jump?

19. A 0.400-kg ball is thrown straight up into the air and
reaches a maximum altitude of 20.0 m. Taking its initial
position as the point of zero potential energy and using
energy methods, find (a) its initial speed, (b) its total
mechanical energy, and (c) the ratio of its kinetic en-
ergy to the potential energy of the ball–Earth system
when the ball is at an altitude of 10.0 m.

20. In the dangerous “sport” of bungee-jumping, a daring
student jumps from a balloon with a specially designed

14. A simple, 2.00-m-long pendulum is released from rest
when the support string is at an angle of 25.0° from the
vertical. What is the speed of the suspended mass at the
bottom of the swing?

15. A bead slides without friction around a loop-the-loop
(Fig. P8.15). If the bead is released from a height h �
3.50R, what is its speed at point A? How great is the nor-
mal force on it if its mass is 5.00 g?

16. A 120-g mass is attached to the bottom end of an un-
stressed spring. The spring is hanging vertically and has
a spring constant of 40.0 N/m. The mass is dropped.
(a) What is its maximum speed? (b) How far does it
drop before coming to rest momentarily?

17. A block of mass 0.250 kg is placed on top of a light verti-

13. A particle of mass m � 5.00 kg is released from point �
and slides on the frictionless track shown in Figure
P8.13. Determine (a) the particle’s speed at points �
and � and (b) the net work done by the force of gravity
in moving the particle from � to �.

m = 3.00 kg

d

k = 400 N/m

θ = 30.0°θ

3.20 m

�

�

�

m

2.00 m

5.00 m

A

R

h

Figure P8.20 Bungee-jumping. (Gamma)
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elastic cord attached to his ankles, as shown in Figure
P8.20. The unstretched length of the cord is 25.0 m, the
student weighs 700 N, and the balloon is 36.0 m above
the surface of a river below. Assuming that Hooke’s law
describes the cord, calculate the required force constant
if the student is to stop safely 4.00 m above the river.

21. Two masses are connected by a light string passing over a
light frictionless pulley, as shown in Figure P8.21. The
5.00-kg mass is released from rest. Using the law of con-
servation of energy, (a) determine the speed of the 3.00-
kg mass just as the 5.00-kg mass hits the ground and (b)
find the maximum height to which the 3.00-kg mass rises.

22. Two masses are connected by a light string passing over
a light frictionless pulley, as shown in Figure P8.21. The
mass m1 (which is greater than m2) is released from rest.
Using the law of conservation of energy, (a) determine
the speed of m2 just as m1 hits the ground in terms of
m1, m2, and h, and (b) find the maximum height to
which m2 rises.

cal circular arc (Fig. P8.25). Suppose a performer with
mass m and holding the bar steps off an elevated plat-
form, starting from rest with the ropes at an angle of �i
with respect to the vertical. Suppose the size of the per-
former’s body is small compared with the length �, that
she does not pump the trapeze to swing higher, and that
air resistance is negligible. (a) Show that when the ropes
make an angle of � with respect to the vertical, the per-
former must exert a force

in order to hang on. (b) Determine the angle �i at which
the force required to hang on at the bottom of the swing
is twice the performer’s weight.

F � mg (3 cos � � 2 cos �i)

Figure P8.25

Figure P8.21 Problems 21 and 22.

23. A 20.0-kg cannon ball is fired from a cannon with a
muzzle speed of 1 000 m/s at an angle of 37.0° with the
horizontal. A second ball is fired at an angle of 90.0°.
Use the law of conservation of mechanical energy to
find (a) the maximum height reached by each ball and
(b) the total mechanical energy at the maximum height
for each ball. Let y � 0 at the cannon.

24. A 2.00-kg ball is attached to the bottom end of a length
of 10-lb (44.5-N) fishing line. The top end of the fishing
line is held stationary. The ball is released from rest
while the line is taut and horizontal (� � 90.0°). At
what angle � (measured from the vertical) will the fish-
ing line break?

25. The circus apparatus known as the trapeze consists of a
bar suspended by two parallel ropes, each of length �.
The trapeze allows circus performers to swing in a verti-

26. After its release at the top of the first rise, a roller-
coaster car moves freely with negligible friction. The
roller coaster shown in Figure P8.26 has a circular loop
of radius 20.0 m. The car barely makes it around the
loop: At the top of the loop, the riders are upside down
and feel weightless. (a) Find the speed of the roller
coaster car at the top of the loop (position 3). Find the
speed of the roller coaster car (b) at position 1 and 
(c) at position 2. (d) Find the difference in height be-
tween positions 1 and 4 if the speed at position 4 is 
10.0 m/s.

27. A light rigid rod is 77.0 cm long. Its top end is pivoted
on a low-friction horizontal axle. The rod hangs straight
down at rest, with a small massive ball attached to its
bottom end. You strike the ball, suddenly giving it a hor-
izontal velocity so that it swings around in a full circle.
What minimum speed at the bottom is required to
make the ball go over the top of the circle?

h � 4.00 mm2 � 3.00 kg

m1 � 5.00 kg

�

θ
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Section 8.5 Work Done by Nonconservative Forces
28. A 70.0-kg diver steps off a 10.0-m tower and drops

straight down into the water. If he comes to rest 5.00 m
beneath the surface of the water, determine the average
resistance force that the water exerts on the diver.

29. A force Fx , shown as a function of distance in Figure
P8.29, acts on a 5.00-kg mass. If the particle starts from
rest at x � 0 m, determine the speed of the particle at 
x � 2.00, 4.00, and 6.00 m.

32. A 2 000-kg car starts from rest and coasts down from the
top of a 5.00-m-long driveway that is sloped at an angle
of 20.0° with the horizontal. If an average friction force
of 4 000 N impedes the motion of the car, find the
speed of the car at the bottom of the driveway.

33. A 5.00-kg block is set into motion up an inclined plane
with an initial speed of 8.00 m/s (Fig. P8.33). The block
comes to rest after traveling 3.00 m along the plane,
which is inclined at an angle of 30.0° to the horizontal.
For this motion determine (a) the change in the block’s
kinetic energy, (b) the change in the potential energy,
and (c) the frictional force exerted on it (assumed to be
constant). (d) What is the coefficient of kinetic friction?

Figure P8.33

Figure P8.31

Figure P8.29

Figure P8.26

34. A boy in a wheelchair (total mass, 47.0 kg) wins a race
with a skateboarder. He has a speed of 1.40 m/s at the
crest of a slope 2.60 m high and 12.4 m long. At the bot-
tom of the slope, his speed is 6.20 m/s. If air resistance
and rolling resistance can be modeled as a constant fric-
tional force of 41.0 N, find the work he did in pushing
forward on his wheels during the downhill ride.

35. A parachutist of mass 50.0 kg jumps out of a balloon at
a height of 1 000 m and lands on the ground with a
speed of 5.00 m/s. How much energy was lost to air fric-
tion during this jump?

36. An 80.0-kg sky diver jumps out of a balloon at an alti-
tude of 1 000 m and opens the parachute at an altitude
of 200.0 m. (a) Assuming that the total retarding force

30. A softball pitcher swings a ball of mass 0.250 kg around
a vertical circular path of radius 60.0 cm before releas-
ing it from her hand. The pitcher maintains a compo-
nent of force on the ball of constant magnitude 30.0 N
in the direction of motion around the complete path.
The speed of the ball at the top of the circle is 15.0 m/s.
If the ball is released at the bottom of the circle, what is
its speed upon release?

31. The coefficient of friction between the 3.00-kg block
and the surface in Figure P8.31 is 0.400. The system
starts from rest. What is the speed of the 5.00-kg ball
when it has fallen 1.50 m?

1

2

3
4

87654321
0 x(m)
1
2
3
4
5

Fx(N)

3.00 kg

5.00 kg

3.00 m
vi = 8.00 m/s

30.0°

WEB
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on the diver is constant at 50.0 N with the parachute
closed and constant at 3 600 N with the parachute open,
what is the speed of the diver when he lands on the
ground? (b) Do you think the sky diver will get hurt? Ex-
plain. (c) At what height should the parachute be opened
so that the final speed of the sky diver when he hits the
ground is 5.00 m/s? (d) How realistic is the assumption
that the total retarding force is constant? Explain.

37. A toy cannon uses a spring to project a 5.30-g soft rub-
ber ball. The spring is originally compressed by 5.00 cm
and has a stiffness constant of 8.00 N/m. When it is
fired, the ball moves 15.0 cm through the barrel of the
cannon, and there is a constant frictional force of 
0.032 0 N between the barrel and the ball. (a) With
what speed does the projectile leave the barrel of the
cannon? (b) At what point does the ball have maximum
speed? (c) What is this maximum speed?

38. A 1.50-kg mass is held 1.20 m above a relaxed, massless
vertical spring with a spring constant of 320 N/m. The
mass is dropped onto the spring. (a) How far does it
compress the spring? (b) How far would it compress the
spring if the same experiment were performed on the
Moon, where g � 1.63 m/s2? (c) Repeat part (a), but
this time assume that a constant air-resistance force of
0.700 N acts on the mass during its motion.

39. A 3.00-kg block starts at a height h � 60.0 cm on a
plane that has an inclination angle of 30.0°, as shown in
Figure P8.39. Upon reaching the bottom, the block
slides along a horizontal surface. If the coefficient of
friction on both surfaces is �k � 0.200, how far does the
block slide on the horizontal surface before coming to
rest? (Hint: Divide the path into two straight-line parts.)

42. A potential energy function for a two-dimensional force
is of the form Find the force that acts at
the point (x, y).

(Optional)
Section 8.7 Energy Diagrams and the Equilibrium of a
System

43. A particle moves along a line where the potential en-
ergy depends on its position r, as graphed in Figure
P8.43. In the limit as r increases without bound, U(r)
approaches � 1 J. (a) Identify each equilibrium position
for this particle. Indicate whether each is a point of sta-
ble, unstable, or neutral equilibrium. (b) The particle
will be bound if its total energy is in what range? Now
suppose the particle has energy � 3 J. Determine 
(c) the range of positions where it can be found, 
(d) its maximum kinetic energy, (e) the location at
which it has maximum kinetic energy, and (f) its bind-
ing energy—that is, the additional energy that it would
have to be given in order for it to move out to r : �.

U � 3x3y � 7x.

Figure P8.43

Figure P8.39

44. A right circular cone can be balanced on a horizontal
surface in three different ways. Sketch these three equi-
librium configurations and identify them as positions of
stable, unstable, or neutral equilibrium.

45. For the potential energy curve shown in Figure P8.45,
(a) determine whether the force Fx is positive, negative,
or zero at the five points indicated. (b) Indicate points
of stable, unstable, and neutral equilibrium. (c) Sketch
the curve for Fx versus x from x � 0 to x � 9.5 m.

46. A hollow pipe has one or two weights attached to its in-
ner surface, as shown in Figure P8.46. Characterize
each configuration as being stable, unstable, or neutral
equilibrium and explain each of your choices (“CM” in-
dicates center of mass).

47. A particle of mass m is attached between two identical
springs on a horizontal frictionless tabletop. The

40. A 75.0-kg sky diver is falling with a terminal speed of
60.0 m/s. Determine the rate at which he is losing me-
chanical energy.

Section 8.6 Relationship Between Conservative 
Forces and Potential Energy

41. The potential energy of a two-particle system separated
by a distance r is given by where A is a con-
stant. Find the radial force Fr that each particle exerts
on the other.

U(r) � A/r,

θ = 30.0°

m = 3.00 kg

h = 60.0 cm

θ

0
r(mm)

+2

U( J)

+4

+6

+2

–2

–4

–6

2 4 6

WEB
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springs have spring constant k, and each is initially un-
stressed. (a) If the mass is pulled a distance x along a di-
rection perpendicular to the initial configuration of the
springs, as in Figure P8.47, show that the potential en-
ergy of the system is

(Hint: See Problem 66 in Chapter 7.) (b) Make a plot of
U(x) versus x and identify all equilibrium points. As-
sume that L � 1.20 m and k � 40.0 N/m. (c) If the
mass is pulled 0.500 m to the right and then released,
what is its speed when it reaches the equilibrium point
x � 0?

U(x) � kx2 � 2kL(L � √x2 � L2)

51. Close to the center of a campus is a tall silo topped with
a hemispherical cap. The cap is frictionless when wet.
Someone has somehow balanced a pumpkin at the
highest point. The line from the center of curvature of
the cap to the pumpkin makes an angle �i � 0° with the
vertical. On a rainy night, a breath of wind makes the
pumpkin start sliding downward from rest. It loses con-
tact with the cap when the line from the center of the
hemisphere to the pumpkin makes a certain angle with
the vertical; what is this angle?

52. A 200-g particle is released from rest at point � along
the horizontal diameter on the inside of a frictionless,
hemispherical bowl of radius cm (Fig. P8.52).
Calculate (a) the gravitational potential energy when
the particle is at point � relative to point �, (b) the ki-
netic energy of the particle at point �, (c) its speed at
point �, and (d) its kinetic energy and the potential
energy at point �.

R � 30.0

Figure P8.50

Figure P8.47

Figure P8.46

Figure P8.45

(Optional)
Section 8.9 Mass – Energy Equivalence

48. Find the energy equivalents of (a) an electron of mass
9.11 � 10�31 kg, (b) a uranium atom with a mass of
4.00 � 10�25 kg, (c) a paper clip of mass 2.00 g, and
(d) the Earth (of mass 5.99 � 1024 kg). 

49. The expression for the kinetic energy of a particle moving
with speed v is given by Equation 7.19, which can be writ-
ten as where 
The term �mc 2 is the total energy of the particle, and the
term mc2 is its rest energy. A proton moves with a speed of
0.990c, where c is the speed of light. Find (a) its rest en-
ergy, (b) its total energy, and (c) its kinetic energy.

ADDITIONAL PROBLEMS

50. A block slides down a curved frictionless track and then
up an inclined plane as in Figure P8.50. The coefficient
of kinetic friction between the block and the incline is
�k . Use energy methods to show that the maximum
height reached by the block is

ymax �
h

1 � �k cot �

� � [1 � (v/c)2]�1/2.K � �mc 2 � mc 2,
8

x(m)
642

0

–2

–4

2

4

6

U (J)

�

�

�

�

�

(b) (c)(a)

CMO ×
CM×

O
CM×

O

Top View

L

L

x m

k

k

x

ymax
θ

h
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53. The particle described in Problem 52 (Fig. P8.52) is re-
leased from rest at �, and the surface of the bowl is
rough. The speed of the particle at � is 1.50 m/s. 
(a) What is its kinetic energy at �? (b) How much en-
ergy is lost owing to friction as the particle moves from
� to �? (c) Is it possible to determine � from these re-
sults in any simple manner? Explain.

54. Review Problem. The mass of a car is 1 500 kg. The
shape of the body is such that its aerodynamic drag co-
efficient is D � 0.330 and the frontal area is 2.50 m2. As-
suming that the drag force is proportional to v2 and ne-
glecting other sources of friction, calculate the power
the car requires to maintain a speed of 100 km/h as it
climbs a long hill sloping at 3.20°.

55. Make an order-of-magnitude estimate of your power
output as you climb stairs. In your solution, state the
physical quantities you take as data and the values you
measure or estimate for them. Do you consider your
peak power or your sustainable power?

56. A child’s pogo stick (Fig. P8.56) stores energy in a
spring (k � 2.50 � 104 N/m). At position � (xA �
� 0.100 m), the spring compression is a maximum and
the child is momentarily at rest. At position � (xB � 0),
the spring is relaxed and the child is moving upward. At
position �, the child is again momentarily at rest at the
top of the jump. Assuming that the combined mass of
the child and the pogo stick is 25.0 kg, (a) calculate the
total energy of the system if both potential energies are
zero at x � 0, (b) determine xC , (c) calculate the speed
of the child at x � 0, (d) determine the value of x for

which the kinetic energy of the system is a maximum,
and (e) calculate the child’s maximum upward speed.

57. A 10.0-kg block is released from point � in Figure
P8.57. The track is frictionless except for the portion
between � and �, which has a length of 6.00 m. The
block travels down the track, hits a spring of force con-
stant k � 2 250 N/m, and compresses the spring 
0.300 m from its equilibrium position before coming to
rest momentarily. Determine the coefficient of kinetic
friction between the block and the rough surface be-
tween � and �.

58. A 2.00-kg block situated on a rough incline is connected
to a spring of negligible mass having a spring constant
of 100 N/m (Fig. P8.58). The pulley is frictionless. The
block is released from rest when the spring is un-
stretched. The block moves 20.0 cm down the incline
before coming to rest. Find the coefficient of kinetic
friction between block and incline.

Figure P8.57

Figure P8.56

Figure P8.52 Problems 52 and 53.

3.00 m

6.00 m

�

� �

xA

xC

�

�

�

2R/3

R

�

�

�
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63. A block of mass 0.500 kg is pushed against a horizontal
spring of negligible mass until the spring is compressed
a distance �x (Fig. P8.63). The spring constant is 
450 N/m. When it is released, the block travels along a
frictionless, horizontal surface to point B, at the bottom
of a vertical circular track of radius m, and
continues to move up the track. The speed of the block
at the bottom of the track is vB � 12.0 m/s, and the
block experiences an average frictional force of 7.00 N
while sliding up the track. (a) What is �x? (b) What
speed do you predict for the block at the top of the
track? (c) Does the block actually reach the top of the
track, or does it fall off before reaching the top?

64. A uniform chain of length 8.00 m initially lies stretched
out on a horizontal table. (a) If the coefficient of static
friction between the chain and the table is 0.600, show
that the chain will begin to slide off the table if at least
3.00 m of it hangs over the edge of the table. (b) Deter-
mine the speed of the chain as all of it leaves the table,
given that the coefficient of kinetic friction between the
chain and the table is 0.400.

R � 1.00

62. A 1.00-kg mass slides to the right on a surface having a
coefficient of friction � � 0.250 (Fig. P8.62). The mass
has a speed of vi � 3.00 m/s when it makes contact with
a light spring that has a spring constant k � 50.0 N/m.
The mass comes to rest after the spring has been com-
pressed a distance d. The mass is then forced toward the

59. Review Problem. Suppose the incline is frictionless for
the system described in Problem 58 (see Fig. P8.58).
The block is released from rest with the spring initially
unstretched. (a) How far does it move down the incline
before coming to rest? (b) What is its acceleration at its
lowest point? Is the acceleration constant? (c) Describe
the energy transformations that occur during the de-
scent.

60. The potential energy function for a system is given by
U(x) � � x3 � 2x2 � 3x. (a) Determine the force Fx as
a function of x. (b) For what values of x is the force
equal to zero? (c) Plot U(x) versus x and Fx versus x, and
indicate points of stable and unstable equilibrium.

61. A 20.0-kg block is connected to a 30.0-kg block by a
string that passes over a frictionless pulley. The 30.0-kg
block is connected to a spring that has negligible mass
and a force constant of 250 N/m, as shown in Figure
P8.61. The spring is unstretched when the system is as
shown in the figure, and the incline is frictionless. The
20.0-kg block is pulled 20.0 cm down the incline (so
that the 30.0-kg block is 40.0 cm above the floor) and is
released from rest. Find the speed of each block when
the 30.0-kg block is 20.0 cm above the floor (that is,
when the spring is unstretched).

left by the spring and continues to move in that direc-
tion beyond the spring’s unstretched position. Finally,
the mass comes to rest at a distance D to the left of the
unstretched spring. Find (a) the distance of compres-
sion d, (b) the speed v of the mass at the unstretched
position when the mass is moving to the left, and 
(c) the distance D between the unstretched spring and
the point at which the mass comes to rest.

Figure P8.62

Figure P8.61

Figure P8.58 Problems 58 and 59.

v

k

vi

d
vf = 0

v = 0

D

m

20.0 kg

40.0°

30.0 kg

20.0 cm

37.0°

2.00 kg

k = 100 N/m
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65. An object of mass m is suspended from a post on top of
a cart by a string of length L as in Figure P8.65a. The
cart and object are initially moving to the right at con-
stant speed vi . The cart comes to rest after colliding and
sticking to a bumper as in Figure P8.65b, and the sus-
pended object swings through an angle �. (a) Show that 
the speed is (b) If L � 1.20 m
and � � 35.0°, find the initial speed of the cart. (Hint:
The force exerted by the string on the object does no
work on the object.)

vi � √2gL(1 � cos �).

Figure P8.68

Figure P8.67

Figure P8.66

Figure P8.65

Figure P8.63

T

vT

vB

B

R

m
k∆x

69. A ball at the end of a string whirls around in a vertical
circle. If the ball’s total energy remains constant, show
that the tension in the string at the bottom is greater

68. A ball is tied to one end of a string. The other end of
the string is fixed. The ball is set in motion around a
vertical circle without friction. At the top of the circle,
the ball has a speed of as shown in Figure
P8.68. At what angle � should the string be cut so that
the ball will travel through the center of the circle?

vi � √Rg,

67. A ball having mass m is connected by a strong string of
length L to a pivot point and held in place in a vertical
position. A wind exerting constant force of magnitude F
is blowing from left to right as in Figure P8.67a. (a) If
the ball is released from rest, show that the maximum
height H it reaches, as measured from its initial height,
is

Check that the above formula is valid both when 
0 � H � L and when L � H � 2L. (Hint: First deter-
mine the potential energy associated with the constant
wind force.) (b) Compute the value of H using the val-
ues m � 2.00 kg, L � 2.00 m, and F � 14.7 N. (c) Using
these same values, determine the equilibrium height of
the ball. (d) Could the equilibrium height ever be
greater than L? Explain.

H �
2L

1 � (mg/F )2

66. A child slides without friction from a height h along a
curved water slide (Fig. P8.66). She is launched from a
height h/5 into the pool. Determine her maximum air-
borne height y in terms of h and �.

(a)

vi

L

m

(b)

θ

h

θ

h/5
y

L

(a)

F

m

L

Pivot

(b)

F

Pivot

H
m

The path
after string
is cut

R

θ
C

m

vi =     Rg
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Figure P8.74

Figure P8.72

Figure P8.71

Figure P8.70

73. A 5.00-kg block free to move on a horizontal, friction-
less surface is attached to one end of a light horizontal
spring. The other end of the spring is fixed. The spring
is compressed 0.100 m from equilibrium and is then re-
leased. The speed of the block is 1.20 m/s when it
passes the equilibrium position of the spring. The same
experiment is now repeated with the frictionless surface
replaced by a surface for which �k � 0.300. Determine
the speed of the block at the equilibrium position of the
spring.

74. A 50.0-kg block and a 100-kg block are connected by a
string as in Figure P8.74. The pulley is frictionless and
of negligible mass. The coefficient of kinetic friction be-
tween the 50.0-kg block and the incline is �k � 0.250.
Determine the change in the kinetic energy of the 
50.0-kg block as it moves from � to �, a distance of
20.0 m.

the other side? (Hint: First determine the potential en-
ergy associated with the wind force.) (b) Once the res-
cue is complete, Tarzan and Jane must swing back
across the river. With what minimum speed must they
begin their swing? Assume that Tarzan has a mass of
80.0 kg.

72. A child starts from rest and slides down the frictionless
slide shown in Figure P8.72. In terms of R and H, at what
height h will he lose contact with the section of radius R?

71. Jane, whose mass is 50.0 kg, needs to swing across a
river (having width D) filled with man-eating crocodiles
to save Tarzan from danger. However, she must swing
into a wind exerting constant horizontal force F on a
vine having length L and initially making an angle �
with the vertical (Fig. P8.71). Taking D � 50.0 m, F �
110 N, L � 40.0 m, and � � 50.0°, (a) with what mini-
mum speed must Jane begin her swing to just make it to

than the tension at the top by a value six times the
weight of the ball.

70. A pendulum comprising a string of length L and a
sphere swings in the vertical plane. The string hits a peg
located a distance d below the point of suspension (Fig.
P8.70). (a) Show that if the sphere is released from a
height below that of the peg, it will return to this height
after striking the peg. (b) Show that if the pendulum is
released from the horizontal position (� � 90°) and is
to swing in a complete circle centered on the peg, then
the minimum value of d must be 3L/5.

dL

Peg

θ

Wind

 θ

L

F

D

φ

Tarzan

Jane

H

R

50.0 kg

100 kg

37.0°
v

�

�
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ANSWERS TO QUICK QUIZZES

Wapp � 0, then the system energy increases. If Wapp � 0,
then the system energy decreases. The effect of friction
is to decrease the total system energy. Equation 8.15
then becomes

You may find it easier to think of this equation with its
terms in a different order, saying

total initial energy � net change � total final energy

8.5 The slope of a U(x)-versus-x graph is by definition
dU(x)/dx. From Equation 8.16, we see that this expres-
sion is equal to the negative of the x component of the
conservative force acting on an object that is part of the
system.

K 1f � K 2f � Ug1f � Ug 2f � Usf

K 1i � K 2i � Ug1i � Ug2i � Usi � Wapp � fkd �

   � [(Ug1f � Ug 2f � Usf) � (Ug1i � Ug 2i � Usi)]

  � [K 1f � K 2f) � (K 1i � K 2i)] 

 � �K � �U 

�E � Wapp � �Efriction 

8.1 Yes, because we are free to choose any point whatsoever
as our origin of coordinates, which is the Ug � 0 point.
If the object is below the origin of coordinates that we
choose, then Ug � 0 for the object–Earth system.

8.2 Yes, the total mechanical energy of the system is con-
served because the only forces acting are conservative:
the force of gravity and the spring force. There are two
forms of potential energy: (1) gravitational potential en-
ergy and (2) elastic potential energy stored in the spring. 

8.3 The first and third balls speed up after they are thrown,
while the second ball initially slows down but then
speeds up after reaching its peak. The paths of all three
balls are parabolas, and the balls take different times to
reach the ground because they have different initial ve-
locities. However, all three balls have the same speed at
the moment they hit the ground because all start with
the same kinetic energy and undergo the same change
in gravitational potential energy. In other words,

is the same for all three balls at the
start of the motion.

8.4 Designate one object as No. 1 and the other as No. 2.
The external force does work Wapp on the system. If 

Etotal � 1
2mv2 � mgh
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Airbags have saved countless lives by
reducing the forces exerted on vehicle
occupants during collisions. How can
airbags change the force needed to
bring a person from a high speed to a
complete stop? Why are they usually
safer than seat belts alone? (Courtesy 

of Saab)
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onsider what happens when a golf ball is struck by a club. The ball is given a
very large initial velocity as a result of the collision; consequently, it is able to
travel more than 100 m through the air. The ball experiences a large accelera-

tion. Furthermore, because the ball experiences this acceleration over a very short
time interval, the average force exerted on it during the collision is very great. Ac-
cording to Newton’s third law, the ball exerts on the club a reaction force that is
equal in magnitude to and opposite in direction to the force exerted by the club
on the ball. This reaction force causes the club to accelerate. Because the club is
much more massive than the ball, however, the acceleration of the club is much
less than the acceleration of the ball.

One of the main objectives of this chapter is to enable you to understand and
analyze such events. As a first step, we introduce the concept of momentum, which is
useful for describing objects in motion and as an alternate and more general
means of applying Newton’s laws. For example, a very massive football player is of-
ten said to have a great deal of momentum as he runs down the field. A much less
massive player, such as a halfback, can have equal or greater momentum if his
speed is greater than that of the more massive player. This follows from the fact
that momentum is defined as the product of mass and velocity. The concept of
momentum leads us to a second conservation law, that of conservation of momen-
tum. This law is especially useful for treating problems that involve collisions be-
tween objects and for analyzing rocket propulsion. The concept of the center of
mass of a system of particles also is introduced, and we shall see that the motion of
a system of particles can be described by the motion of one representative particle
located at the center of mass.

LINEAR MOMENTUM AND ITS CONSERVATION
In the preceding two chapters we studied situations too complex to analyze easily
with Newton’s laws. In fact, Newton himself used a form of his second law slightly
different from (Eq. 5.2)—a form that is considerably easier to apply in
complicated circumstances. Physicists use this form to study everything from sub-
atomic particles to rocket propulsion. In studying situations such as these, it is of-
ten useful to know both something about the object and something about its mo-
tion. We start by defining a new term that incorporates this information:

�F � ma

9.1

The linear momentum of a particle of mass m moving with a velocity v is de-
fined to be the product of the mass and velocity:

(9.1)p � mv

C

Linear momentum is a vector quantity because it equals the product of a scalar
quantity m and a vector quantity v. Its direction is along v, it has dimensions
ML/T, and its SI unit is kg � m/s.

If a particle is moving in an arbitrary direction, p must have three compo-
nents, and Equation 9.1 is equivalent to the component equations

(9.2)

As you can see from its definition, the concept of momentum provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For
example, the momentum of a bowling ball moving at 10 m/s is much greater than
that of a tennis ball moving at the same speed. Newton called the product mv

px � mvx  py � mvy  pz � mvz

Definition of linear momentum of
a particle

6.2
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quantity of motion; this is perhaps a more graphic description than our present-day
word momentum, which comes from the Latin word for movement.

Two objects have equal kinetic energies. How do the magnitudes of their momenta com-
pare? (a) (b) (c) (d) not enough information to tell.

Using Newton’s second law of motion, we can relate the linear momentum of a
particle to the resultant force acting on the particle: The time rate of change of the
linear momentum of a particle is equal to the net force acting on the particle:

(9.3)

In addition to situations in which the velocity vector varies with time, we can
use Equation 9.3 to study phenomena in which the mass changes. The real value
of Equation 9.3 as a tool for analysis, however, stems from the fact that when the
net force acting on a particle is zero, the time derivative of the momentum of the
particle is zero, and therefore its linear momentum1 is constant. Of course, if 
the particle is isolated, then by necessity and p remains unchanged. This
means that p is conserved. Just as the law of conservation of energy is useful in
solving complex motion problems, the law of conservation of momentum can
greatly simplify the analysis of other types of complicated motion.

Conservation of Momentum for a Two-Particle System

Consider two particles 1 and 2 that can interact with each other but are isolated
from their surroundings (Fig. 9.1). That is, the particles may exert a force on each
other, but no external forces are present. It is important to note the impact of
Newton’s third law on this analysis. If an internal force from particle 1 (for exam-
ple, a gravitational force) acts on particle 2, then there must be a second internal
force—equal in magnitude but opposite in direction—that particle 2 exerts on
particle 1.

Suppose that at some instant, the momentum of particle 1 is p1 and that of
particle 2 is p2 . Applying Newton’s second law to each particle, we can write

where F21 is the force exerted by particle 2 on particle 1 and F12 is the force ex-
erted by particle 1 on particle 2. Newton’s third law tells us that F12 and F21 are
equal in magnitude and opposite in direction. That is, they form an action–reac-
tion pair F12 � � F21 . We can express this condition as

or as

dp1

dt
�

dp2

dt
�

d
dt

 (p1 � p2) � 0

F21 � F12 � 0

  F21 �
dp1

dt
        and         F12 �

dp2

dt

�F � 0

�F �
dp
dt

�
d(mv)

dt

p1 � p 2 ,p1 � p 2 ,p1 � p 2 ,

Quick Quiz 9.1

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter
11, we shall use the term angular momentum when dealing with rotational motion.

6.2

Newton’s second law for a particle

p2 = m2v2

m2

m1

F21

F12

p1 = m1v1

Figure 9.1 At some instant, the
momentum of particle 1 is p1 �
m1v1 and the momentum of parti-
cle 2 is p2 � m 2v2 . Note that F12 �
� F21 . The total momentum of the
system ptot is equal to the vector
sum p1 � p2 .
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Because the time derivative of the total momentum ptot � p1 � p2 is zero, we con-
clude that the total momentum of the system must remain constant:

(9.4)

or, equivalently,

(9.5)

where pli and p2i are the initial values and p1f and p2f the final values of the mo-
mentum during the time interval dt over which the reaction pair interacts. Equa-
tion 9.5 in component form demonstrates that the total momenta in the x, y, and z
directions are all independently conserved:

(9.6)

This result, known as the law of conservation of linear momentum, can be ex-
tended to any number of particles in an isolated system. It is considered one of the
most important laws of mechanics. We can state it as follows:

�
system

 pix � �
system

 pf x  �
system

 piy � �
system

 pf y  �
system

 piz � �
system

 pf z

p1i � p2i � p1f � p2f

ptot � �
system

 p � p1 � p2 � constant

Whenever two or more particles in an isolated system interact, the total momen-
tum of the system remains constant.

This law tells us that the total momentum of an isolated system at all times
equals its initial momentum.

Notice that we have made no statement concerning the nature of the forces
acting on the particles of the system. The only requirement is that the forces must
be internal to the system.

Your physical education teacher throws a baseball to you at a certain speed, and you catch
it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass
of the baseball. You are given the following choices: You can have the medicine ball thrown
with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic
energy. Rank these choices from easiest to hardest to catch.

Quick Quiz 9.2

The Floating AstronautEXAMPLE 9.1
A SkyLab astronaut discovered that while concentrating on
writing some notes, he had gradually floated to the middle of
an open area in the spacecraft. Not wanting to wait until he
floated to the opposite side, he asked his colleagues for a
push. Laughing at his predicament, they decided not to help,
and so he had to take off his uniform and throw it in one di-
rection so that he would be propelled in the opposite direc-
tion. Estimate his resulting velocity.

Solution We begin by making some reasonable guesses of
relevant data. Let us assume we have a 70-kg astronaut who
threw his 1-kg uniform at a speed of 20 m/s. For conve-

Conservation of momentum

Figure 9.2 A hapless astronaut has discarded his uniform to get
somewhere.

v2fv1f
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IMPULSE AND MOMENTUM
As we have seen, the momentum of a particle changes if a net force acts on the
particle. Knowing the change in momentum caused by a force is useful in solving
some types of problems. To begin building a better understanding of this impor-
tant concept, let us assume that a single force F acts on a particle and that this
force may vary with time. According to Newton’s second law, or

(9.7)

We can integrate2 this expression to find the change in the momentum of a parti-
cle when the force acts over some time interval. If the momentum of the particle

dp � F dt

F � dp/dt,

9.2

Breakup of a Kaon at RestEXAMPLE 9.2
The important point behind this problem is that even though
it deals with objects that are very different from those in the
preceding example, the physics is identical: Linear momen-
tum is conserved in an isolated system.

One type of nuclear particle, called the neutral kaon (K0),
breaks up into a pair of other particles called pions (�� and
��) that are oppositely charged but equal in mass, as illus-
trated in Figure 9.3. Assuming the kaon is initially at rest,
prove that the two pions must have momenta that are equal
in magnitude and opposite in direction.

Solution The breakup of the kaon can be written

If we let p� be the momentum of the positive pion and p�

the momentum of the negative pion, the final momentum of
the system consisting of the two pions can be written

Because the kaon is at rest before the breakup, we know that
pi � 0. Because momentum is conserved, so that

or
p� � �p�

p� � p� � 0,
pi � pf � 0,

pf � p� � p�

K0 9: �� � ��

6.3
&
6.4

Figure 9.3 A kaon at rest breaks up spontaneously into a pair of
oppositely charged pions. The pions move apart with momenta that
are equal in magnitude but opposite in direction.

nience, we set the positive direction of the x axis to be the di-
rection of the throw (Fig. 9.2). Let us also assume that the x
axis is tangent to the circular path of the spacecraft.

We take the system to consist of the astronaut and the uni-
form. Because of the gravitational force (which keeps the as-
tronaut, his uniform, and the entire spacecraft in orbit), the
system is not really isolated. However, this force is directed
perpendicular to the motion of the system. Therefore, mo-
mentum is constant in the x direction because there are no
external forces in this direction.

The total momentum of the system before the throw is
zero Therefore, the total momentum af-
ter the throw must be zero; that is,

m1v1f � m2v2f � 0

(m1v1i � m2v2i � 0).

With m/s, and kg, solving for
v1f , we find the recoil velocity of the astronaut to be

The negative sign for v1f indicates that the astronaut is mov-
ing to the left after the throw, in the direction opposite the
direction of motion of the uniform, in accordance with New-
ton’s third law. Because the astronaut is much more massive
than his uniform, his acceleration and consequent velocity
are much smaller than the acceleration and velocity of the
uniform.

�0.3i m/sv1f � �
m2

m1
 v2f � �� 1 kg

70 kg �(20i m/s) �

m2 � 1v2f � 20im1 � 70 kg,

Κ
Before
decay

(at rest)

p+p–

π– π+

After decay

π π

0

2Note that here we are integrating force with respect to time. Compare this with our efforts in Chapter 7,
where we integrated force with respect to position to express the work done by the force.
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changes from pi at time ti to pf at time tf , integrating Equation 9.7 gives

(9.8)

To evaluate the integral, we need to know how the force varies with time. The
quantity on the right side of this equation is called the impulse of the force F act-
ing on a particle over the time interval Impulse is a vector defined by

(9.9)I � �tf

ti

 F dt � 	p

	t � tf � ti .

	p � pf � pi � �tf

ti
 F dt

The impulse of the force F acting on a particle equals the change in the mo-
mentum of the particle caused by that force.

This statement, known as the impulse–momentum theorem,3 is equivalent to
Newton’s second law. From this definition, we see that impulse is a vector quantity
having a magnitude equal to the area under the force–time curve, as described in
Figure 9.4a. In this figure, it is assumed that the force varies in time in the general
manner shown and is nonzero in the time interval The direction of
the impulse vector is the same as the direction of the change in momentum. Im-
pulse has the dimensions of momentum—that is, ML/T. Note that impulse is not
a property of a particle; rather, it is a measure of the degree to which an external
force changes the momentum of the particle. Therefore, when we say that an im-
pulse is given to a particle, we mean that momentum is transferred from an exter-
nal agent to that particle.

Because the force imparting an impulse can generally vary in time, it is conve-
nient to define a time-averaged force

(9.10)

where (This is an application of the mean value theorem of calculus.)
Therefore, we can express Equation 9.9 as

(9.11)

This time-averaged force, described in Figure 9.4b, can be thought of as the con-
stant force that would give to the particle in the time interval 	t the same impulse
that the time-varying force gives over this same interval.

In principle, if F is known as a function of time, the impulse can be calculated
from Equation 9.9. The calculation becomes especially simple if the force acting
on the particle is constant. In this case, and Equation 9.11 becomes

(9.12)

In many physical situations, we shall use what is called the impulse approxi-
mation, in which we assume that one of the forces exerted on a particle acts
for a short time but is much greater than any other force present. This ap-
proximation is especially useful in treating collisions in which the duration of the

I � F 	t

F � F

I � F 	t

	t � tf � ti .

F �
1
	t
�tf

t i

 F dt

	t � tf � ti .

Impulse–momentum theorem

Impulse of a force

3Although we assumed that only a single force acts on the particle, the impulse–momentum theorem is
valid when several forces act; in this case, we replace F in Equation 9.9 with �F.

t i t f

t i

F

(a)

t f
t

F

(b)

t

F

Area = F∆t

Figure 9.4 (a) A force acting on
a particle may vary in time. The im-
pulse imparted to the particle by
the force is the area under the
force versus time curve. (b) In the
time interval 	t, the time-averaged
force (horizontal dashed line)
gives the same impulse to a particle
as does the time-varying force de-
scribed in part (a).
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collision is very short. When this approximation is made, we refer to the force as
an impulsive force. For example, when a baseball is struck with a bat, the time of the
collision is about 0.01 s and the average force that the bat exerts on the ball in this
time is typically several thousand newtons. Because this is much greater than the
magnitude of the gravitational force, the impulse approximation justifies our ig-
noring the weight of the ball and bat. When we use this approximation, it is impor-
tant to remember that pi and pf represent the momenta immediately before and af-
ter the collision, respectively. Therefore, in any situation in which it is proper to
use the impulse approximation, the particle moves very little during the collision.

Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2.
When a force is applied to object 1, it accelerates through a distance d. The force is re-
moved from object 1 and is applied to object 2. At the moment when object 2 has acceler-
ated through the same distance d, which statements are true? (a) (b) 
(c) (d) (e) (f) K1 � K2 .K1 � K2 ,K1 � K2 ,p 1 � p 2 ,

p 1 � p 2 ,p 1 � p 2 ,

Quick Quiz 9.3

During the brief time the club is in contact with the ball, the ball gains momentum as a result of
the collision, and the club loses the same amount of momentum.

QuickLab
If you can find someone willing, play
catch with an egg. What is the best
way to move your hands so that the
egg does not break when you change
its momentum to zero?

Teeing OffEXAMPLE 9.3
the club loses contact with the ball as the ball starts on its tra-
jectory, and � to denote its landing. Neglecting air resis-
tance, we can use Equation 4.14 for the range of a projectile:

Let us assume that the launch angle 
B is 45°, the angle that
provides the maximum range for any given launch velocity.
This assumption gives sin 2
B � 1, and the launch velocity of

R � xC �
v B 

2

g
 sin 2
 B

A golf ball of mass 50 g is struck with a club (Fig. 9.5). The
force exerted on the ball by the club varies from zero, at the in-
stant before contact, up to some maximum value (at which the
ball is deformed) and then back to zero when the ball leaves
the club. Thus, the force–time curve is qualitatively described
by Figure 9.4. Assuming that the ball travels 200 m, estimate the
magnitude of the impulse caused by the collision.

Solution Let us use � to denote the moment when the
club first contacts the ball, � to denote the moment when
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How Good Are the Bumpers?EXAMPLE 9.4
The initial and final momenta of the automobile are

Hence, the impulse is

The average force exerted on the automobile is

1.76 � 105i NF �
	p
	t

�
2.64 � 104 i kg�m/s

0.150 s
�

2.64 � 104i kg�m/s I �

  � (�2.25 � 104i kg�m/s) 

I � 	p � pf � pi � 0.39 � 104i kg�m/s

pf � mvf � (1 500 kg)(2.60 i m/s) � 0.39 � 104i kg�m/s 

pi � mvi � (1 500 kg)(�15.0i m/s) � �2.25 � 104i kg�m/s

In a particular crash test, an automobile of mass 1 500 kg col-
lides with a wall, as shown in Figure 9.6. The initial and final
velocities of the automobile are m/s and

m/s, respectively. If the collision lasts for 0.150 s,
find the impulse caused by the collision and the average
force exerted on the automobile.

Solution Let us assume that the force exerted on the car
by the wall is large compared with other forces on the car so
that we can apply the impulse approximation. Furthermore,
we note that the force of gravity and the normal force ex-
erted by the road on the car are perpendicular to the motion
and therefore do not affect the horizontal momentum.

vf � 2.60i
vi � �15.0i

Figure 9.6 (a) This car’s momentum
changes as a result of its collision with
the wall. (b) In a crash test, much of the
car’s initial kinetic energy is transformed
into energy used to damage the car.

Figure 9.5 A golf ball being struck by a club. (© Harold E. Edgerton/
Courtesy of Palm Press, Inc.)

the ball is

Considering the time interval for the collision, 
and for the ball. Hence, the magnitude of the im-
pulse imparted to the ball is

Exercise If the club is in contact with the ball for a time of
4.5 � 10�4 s, estimate the magnitude of the average force ex-
erted by the club on the ball.

Answer 4.9 � 103 N, a value that is extremely large when
compared with the weight of the ball, 0.49 N.

2.2 kg�m/s�

I � 	p � mv B � mvA � (50 � 10�3 kg)(44 m/s) � 0

vf � v B

vi � vA � 0

v B � √xCg � √(200 m)(9.80 m/s2) � 44 m/s

Before

After

2.60 m/s

–15.0 m/s

(a) (b)
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Rank an automobile dashboard, seatbelt, and airbag in terms of (a) the impulse and 
(b) the average force they deliver to a front-seat passenger during a collision.

COLLISIONS
In this section we use the law of conservation of linear momentum to describe
what happens when two particles collide. We use the term collision to represent
the event of two particles’ coming together for a short time and thereby producing
impulsive forces on each other. These forces are assumed to be much greater
than any external forces present.

A collision may entail physical contact between two macroscopic objects, as de-
scribed in Figure 9.7a, but the notion of what we mean by collision must be gener-
alized because “physical contact” on a submicroscopic scale is ill-defined and
hence meaningless. To understand this, consider a collision on an atomic scale
(Fig. 9.7b), such as the collision of a proton with an alpha particle (the nucleus of
a helium atom). Because the particles are both positively charged, they never
come into physical contact with each other; instead, they repel each other because
of the strong electrostatic force between them at close separations. When two par-
ticles 1 and 2 of masses m1 and m2 collide as shown in Figure 9.7, the impulsive
forces may vary in time in complicated ways, one of which is described in Figure
9.8. If F21 is the force exerted by particle 2 on particle 1, and if we assume that no
external forces act on the particles, then the change in momentum of particle 1
due to the collision is given by Equation 9.8:

Likewise, if F12 is the force exerted by particle 1 on particle 2, then the change in
momentum of particle 2 is

From Newton’s third law, we conclude that

Because the total momentum of the system is we conclude that
the change in the momentum of the system due to the collision is zero:

This is precisely what we expect because no external forces are acting on the sys-
tem (see Section 9.2). Because the impulsive forces are internal, they do not
change the total momentum of the system (only external forces can do that).

psystem � p1 � p2 � constant

psystem � p1 � p2 ,

	p1 � 	p2 � 0 

 	p1 � �	p2

	p2 � �tf

ti
 F12 dt

	p1 � �tf

ti
 F21 dt

9.3

Quick Quiz 9.4

signs of the velocities indicated the reversal of directions.
What would the mathematics be describing if both the initial
and final velocities had the same sign?

Note that the magnitude of this force is large compared with
the weight of the car ( N), which justifies
our initial assumption. Of note in this problem is how the

mg � 1.47 � 104

p

+

+ +

He

(b)

m2
m1

(a)

F12F21

4

t

F12

F21

F

Figure 9.8 The impulse force as
a function of time for the two col-
liding particles described in Figure
9.7a. Note that F12 � � F21.

Figure 9.7 (a) The collision be-
tween two objects as the result of
direct contact. (b) The “collision”
between two charged particles.

6.5
&
6.6



As a ball falls toward the Earth, the ball’s momentum increases because its speed increases.
Does this mean that momentum is not conserved in this situation?

A skater is using very low-friction rollerblades. A friend throws a Frisbee straight at her. In
which case does the Frisbee impart the greatest impulse to the skater: (a) she catches the
Frisbee and holds it, (b) she catches it momentarily but drops it, (c) she catches it and at
once throws it back to her friend?

ELASTIC AND INELASTIC COLLISIONS
IN ONE DIMENSION

As we have seen, momentum is conserved in any collision in which external forces
are negligible. In contrast, kinetic energy may or may not be constant, depend-
ing on the type of collision. In fact, whether or not kinetic energy is the same before
and after the collision is used to classify collisions as being either elastic or inelastic.

An elastic collision between two objects is one in which total kinetic energy (as
well as total momentum) is the same before and after the collision. Billiard-ball collisions
and the collisions of air molecules with the walls of a container at ordinary temper-
atures are approximately elastic. Truly elastic collisions do occur, however, between
atomic and subatomic particles. Collisions between certain objects in the macro-
scopic world, such as billiard-ball collisions, are only approximately elastic because
some deformation and loss of kinetic energy take place.

9.4

Quick Quiz 9.6

Quick Quiz 9.5
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Therefore, we conclude that the total momentum of an isolated system just
before a collision equals the total momentum of the system just after the
collision.

Carry Collision Insurance!EXAMPLE 9.5
the entangled cars is

Equating the momentum before to the momentum after
and solving for vf , the final velocity of the entangled cars, we
have

The direction of the final velocity is the same as the velocity
of the initially moving car.

Exercise What would be the final speed if the two cars each
had a mass of 900 kg?

Answer 10.0 m/s.

6.67 m/svf �
pi

m1 � m2
�

1.80 � 104 kg�m/s
2 700 kg

�

pf � (m1 � m2)vf � (2 700 kg)vf

A car of mass 1800 kg stopped at a traffic light is struck from
the rear by a 900-kg car, and the two become entangled. If
the smaller car was moving at 20.0 m/s before the collision,
what is the velocity of the entangled cars after the collision?

Solution We can guess that the final speed is less than
20.0 m/s, the initial speed of the smaller car. The total mo-
mentum of the system (the two cars) before the collision
must equal the total momentum immediately after the colli-
sion because momentum is conserved in any type of collision.
The magnitude of the total momentum before the collision is
equal to that of the smaller car because the larger car is ini-
tially at rest:

After the collision, the magnitude of the momentum of

pi � m1v1i � (900 kg)(20.0 m/s) � 1.80 � 104 kg�m/s

Elastic collision

Momentum is conserved for any
collision

When the bowling ball and pin col-
lide, part of the ball’s momentum
is transferred to the pin. Conse-
quently, the pin acquires momen-
tum and kinetic energy, and the
ball loses momentum and kinetic
energy. However, the total momen-
tum of the system (ball and pin) re-
mains constant.
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Inelastic collision

Figure 9.9 Schematic representa-
tion of a perfectly inelastic head-on
collision between two particles: 
(a) before collision and (b) after
collision.

An inelastic collision is one in which total kinetic energy is not the same before and
after the collision (even though momentum is constant). Inelastic collisions are of two
types. When the colliding objects stick together after the collision, as happens
when a meteorite collides with the Earth, the collision is called perfectly inelastic.
When the colliding objects do not stick together, but some kinetic energy is lost, as
in the case of a rubber ball colliding with a hard surface, the collision is called in-
elastic (with no modifying adverb). For example, when a rubber ball collides with
a hard surface, the collision is inelastic because some of the kinetic energy of the
ball is lost when the ball is deformed while it is in contact with the surface.

In most collisions, kinetic energy is not the same before and after the collision
because some of it is converted to internal energy, to elastic potential energy when
the objects are deformed, and to rotational energy. Elastic and perfectly inelastic
collisions are limiting cases; most collisions fall somewhere between them.

In the remainder of this section, we treat collisions in one dimension and con-
sider the two extreme cases—perfectly inelastic and elastic collisions. The impor-
tant distinction between these two types of collisions is that momentum is con-
stant in all collisions, but kinetic energy is constant only in elastic
collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along a straight line, as shown in Figure 9.9. The two particles collide head-on, 
stick together, and then move with some common velocity vf after the collision. 
Because momentum is conserved in any collision, we can say that the total momen-
tum before the collision equals the total momentum of the composite system after
the collision:

(9.13)

(9.14)

Which is worse, crashing into a brick wall at 40 mi/h or crashing head-on into an oncoming
car that is identical to yours and also moving at 40 mi/h?

Elastic Collisions

Now consider two particles that undergo an elastic head-on collision (Fig. 9.10).
In this case, both momentum and kinetic energy are conserved; therefore, we have

(9.15)

(9.16)

Because all velocities in Figure 9.10 are either to the left or the right, they can be
represented by the corresponding speeds along with algebraic signs indicating di-
rection. We shall indicate v as positive if a particle moves to the right and negative

1
2m1v1i 

2 � 1
2m2v2i 

2 � 1
2m1v1f 

2 � 1
2m2v2f 

2

m1v1i � m2v2i � m1v1f � m2v2f 

Quick Quiz 9.7

 vf �
m1v1i � m2v2i

m1 � m2

m1v1i � m2v2i � (m1 � m2)vf Before collision

(a)

m1 m2
v1i v2i

After collision

(b)

vf
m1 + m2

6.6

QuickLab
Hold a Ping-Pong ball or tennis ball
on top of a basketball. Drop them
both at the same time so that the bas-
ketball hits the floor, bounces up, and
hits the smaller falling ball. What
happens and why?
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if it moves to the left. As has been seen in earlier chapters, it is common practice
to call these values “speed” even though this term technically refers to the magni-
tude of the velocity vector, which does not have an algebraic sign.

In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.15 and 9.16 can be solved simultaneously to find these. An al-
ternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.16—often simplifies this process. To see how, let us cancel the
factor in Equation 9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to get

(9.18)

To obtain our final result, we divide Equation 9.17 by Equation 9.18 and get

(9.19)

This equation, in combination with Equation 9.15, can be used to solve problems
dealing with elastic collisions. According to Equation 9.19, the relative speed of
the two particles before the collision equals the negative of their relative
speed after the collision, 

Suppose that the masses and initial velocities of both particles are known.
Equations 9.15 and 9.19 can be solved for the final speeds in terms of the initial
speeds because there are two equations and two unknowns:

(9.20)

(9.21)

It is important to remember that the appropriate signs for v1i and v2i must be in-
cluded in Equations 9.20 and 9.21. For example, if particle 2 is moving to the left
initially, then v2i is negative.

Let us consider some special cases: If m1 � m2 , then  and 
That is, the particles exchange speeds if they have equal masses. This is approxi-
mately what one observes in head-on billiard ball collisions—the cue ball stops,
and the struck ball moves away from the collision with the same speed that the cue
ball had.

If particle 2 is initially at rest, then and Equations 9.20 and 9.21 be-
come

(9.22)

(9.23)

If m1 is much greater than m2 and , we see from Equations 9.22 and
9.23 that and That is, when a very heavy particle collides head-
on with a very light one that is initially at rest, the heavy particle continues its mo-

v2f � 2v1i .v1f � v1i

v2i � 0

v2f � � 2m1

m1 � m2
�v1i

v1f � � m1 � m2

m1 � m2
�v1i

v2i � 0

v2f � v1i .v1f � v2i

v2f � � 2m1

m1 � m2
�v1i � � m2 � m1

m1 � m2
�v2i

v1f � � m1 � m2

m1 � m2
�v1i � � 2m2

m1 � m2
�v2i

�(v1f � v2f ).
v1i � v2i

v1i � v2i � �(v1f � v2f)

v1i � v1f � v2f � v2i 

m1(v1i � v1f) � m2(v2f � v2i)

m1(v1i � v1f)(v1i � v1f) � m2(v2f � v2i)(v2f � v2i)

m1(v1i 

2 � v1f 

2) � m2(v2f 

2 � v2i 

2)

1
2

Elastic collision: particle 2 initially
at rest

Elastic collision: relationships
between final and initial velocities

Figure 9.10 Schematic represen-
tation of an elastic head-on colli-
sion between two particles: (a) be-
fore collision and (b) after
collision.

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)
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tion unaltered after the collision, and the light particle rebounds with a speed
equal to about twice the initial speed of the heavy particle. An example of such a
collision would be that of a moving heavy atom, such as uranium, with a light
atom, such as hydrogen.

If m2 is much greater than m1 and particle 2 is initially at rest, then 
and That is, when a very light particle collides head-on with a very
heavy particle that is initially at rest, the light particle has its velocity reversed and
the heavy one remains approximately at rest.

v2f � v2i � 0.
v1f � �v1i

The Ballistic PendulumEXAMPLE 9.6
Exercise In a ballistic pendulum experiment, suppose that
h � 5.00 cm, m1 � 5.00 g, and m2 � 1.00 kg. Find (a) the
initial speed of the bullet and (b) the loss in mechanical en-
ergy due to the collision.

Answer 199 m/s; 98.5 J.

The ballistic pendulum (Fig. 9.11) is a system used to mea-
sure the speed of a fast-moving projectile, such as a bullet.
The bullet is fired into a large block of wood suspended from
some light wires. The bullet embeds in the block, and the en-
tire system swings through a height h. The collision is per-
fectly inelastic, and because momentum is conserved, Equa-
tion 9.14 gives the speed of the system right after the
collision, when we assume the impulse approximation. If we
call the bullet particle 1 and the block particle 2, the total ki-
netic energy right after the collision is

(1)

With Equation 9.14 becomes

(2)

Substituting this value of vf into (1) gives

Note that this kinetic energy immediately after the collision is
less than the initial kinetic energy of the bullet. In all the en-
ergy changes that take place after the collision, however, the
total amount of mechanical energy remains constant; thus,
we can say that after the collision, the kinetic energy of the
block and bullet at the bottom is transformed to potential en-
ergy at the height h:

Solving for v1i , we obtain

This expression tells us that it is possible to obtain the initial
speed of the bullet by measuring h and the two masses.

Because the collision is perfectly inelastic, some mechani-
cal energy is converted to internal energy and it would be in-
correct to equate the initial kinetic energy of the incoming 
bullet to the final gravitational potential energy of the
bullet–block combination.

v1i � � m1 � m2

m1
�√2gh

m1 

2v1i 

2

2(m1 � m2)
� (m1 � m2)gh

Kf �
m1 

2v1i 

2

2(m1 � m2)

vf �
m1v1i

m1 � m2

v2i � 0,

Kf � 1
2(m1 � m2)vf 

2

m1
v1i vf

m1 + m2

m2 h

(a)

Figure 9.11 (a) Diagram of a ballistic pendulum. Note that v1i is
the velocity of the bullet just before the collision and vf � v1f � v2f
is the velocity of the bullet � block system just after the perfectly in-
elastic collision. (b) Multiflash photograph of a ballistic pendulum
used in the laboratory.

(b)
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A Two-Body Collision with a SpringEXAMPLE 9.7
Solution To determine the distance that the spring is
compressed, shown as x in Figure 9.12b, we can use the con-
cept of conservation of mechanical energy because no fric-
tion or other nonconservative forces are acting on the system.
Thus, we have

Substituting the given values and the result to part (a) into
this expression gives

It is important to note that we needed to use the principles of
both conservation of momentum and conservation of me-
chanical energy to solve the two parts of this problem.

Exercise Find the velocity of block 1 and the compression
in the spring at the instant that block 2 is at rest.

Answer 0.719 m/s to the right; 0.251 m.

0.173 mx �

1
2m1v1i 

2 � 1
2m2v2i 

2 � 1
2m1v1f 

2 � 1
2m2v2f 

2 � 1
2kx2

A block of mass m1 � 1.60 kg initially moving to the right with
a speed of 4.00 m/s on a frictionless horizontal track collides
with a spring attached to a second block of mass m2 � 2.10 kg
initially moving to the left with a speed of 2.50 m/s, as shown
in Figure 9.12a. The spring constant is 600 N/m. (a) At the in-
stant block 1 is moving to the right with a speed of 3.00 m/s, 
as in Figure 9.12b, determine the velocity of block 2.

Solution First, note that the initial velocity of block 2 is
� 2.50 m/s because its direction is to the left. Because mo-
mentum is conserved for the system of two blocks, we have

The negative value for v2f means that block 2 is still moving to
the left at the instant we are considering.

(b) Determine the distance the spring is compressed at
that instant.

�1.74 m/s  v2f �

 � (1.60 kg)(3.00 m/s) � (2.10 kg)v2f

(1.60 kg)(4.00 m/s) � (2.10 kg)(�2.50 m/s) 

 m1v1i � m2v2i � m1v1f � m2v2f 

Slowing Down Neutrons by CollisionsEXAMPLE 9.8
Solution Let us assume that the moderator nucleus of
mass mm is at rest initially and that a neutron of mass mn and
initial speed vni collides with it head-on. 

Because these are elastic collisions, the first thing we do is
recognize that both momentum and kinetic energy are con-
stant. Therefore, Equations 9.22 and 9.23 can be applied to
the head-on collision of a neutron with a moderator nucleus.
We can represent this process by a drawing such as Figure
9.10.

The initial kinetic energy of the neutron is

In a nuclear reactor, neutrons are produced when a 
atom splits in a process called fission. These neutrons are
moving at about 107 m/s and must be slowed down to about
103 m/s before they take part in another fission event. They
are slowed down by being passed through a solid or liquid
material called a moderator. The slowing-down process involves
elastic collisions. Let us show that a neutron can lose most of
its kinetic energy if it collides elastically with a moderator
containing light nuclei, such as deuterium (in “heavy water,”
D2O) or carbon (in graphite).

 92
235U

x

k

v1f = (3.00i) m/s v2f

m1
m2m1

m2

k

v1i = (4.00i) m/s v2i = (–2.50i) m/s

(a)

(b)

Figure 9.12
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An ingenious device that illustrates conservation of momentum and kinetic energy is shown
in Figure 9.13a. It consists of five identical hard balls supported by strings of equal lengths.
When ball 1 is pulled out and released, after the almost-elastic collision between it and ball
2, ball 5 moves out, as shown in Figure 9.13b. If balls 1 and 2 are pulled out and released,
balls 4 and 5 swing out, and so forth. Is it ever possible that, when ball 1 is released, balls 4
and 5 will swing out on the opposite side and travel with half the speed of ball 1, as in Fig-
ure 9.13c?

Quick Quiz 9.8

Figure 9.13 An executive stress reliever.

Hence, the fraction fm of the initial kinetic energy transferred
to the moderator nucleus is

(2)

Because the total kinetic energy of the system is conserved,
(2) can also be obtained from (1) with the condition that

so that 
Suppose that heavy water is used for the moderator. For

collisions of the neutrons with deuterium nuclei in D2O
and That is, 89% of the

neutron’s kinetic energy is transferred to the deuterium nu-
cleus. In practice, the moderator efficiency is reduced be-
cause head-on collisions are very unlikely.

How do the results differ when graphite (12C, as found in
pencil lead) is used as the moderator?

fm � 8/9.fn � 1/9(mm � 2mn),

fm � 1 � fn .fn � fm � 1,

fm �
Kmf

Kni
�

4mnmm

(mn � mm)2

Kmf � 1
2 mmvmf 

2 �
2mn 

2mm

(mn � mm)2  vni 

2

After the collision, the neutron has kinetic energy 
and we can substitute into this the value for vnf given by 
Equation 9.22:

Therefore, the fraction fn of the initial kinetic energy pos-
sessed by the neutron after the collision is

(1)

From this result, we see that the final kinetic energy of the
neutron is small when mm is close to mn and zero when mn �
mm .

We can use Equation 9.23, which gives the final speed of
the particle that was initially at rest, to calculate the kinetic
energy of the moderator nucleus after the collision:

fn �
Knf

Kni
� � mn � mm

mn � mm
�

2

Knf � 1
2 mnvnf 

2 �
mn

2
 � mn � mm

mn � mm
�

2
vni 

2

1
2 mnvnf 

2,

Kni � 1
2 mnvni 

2

This can happen.

(b)

vv

4 5

2 3 4 5 1 2 3 4

1 5

2 3 4 5 1 2 3

1

v/2v
Can this happen?

(c)

(a)
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TWO-DIMENSIONAL COLLISIONS
In Sections 9.1 and 9.3, we showed that the momentum of a system of two particles
is constant when the system is isolated. For any collision of two particles, this result
implies that the momentum in each of the directions x, y, and z is constant. How-
ever, an important subset of collisions takes place in a plane. The game of billiards
is a familiar example involving multiple collisions of objects moving on a two-
dimensional surface. For such two-dimensional collisions, we obtain two compo-
nent equations for conservation of momentum:

Let us consider a two-dimensional problem in which particle 1 of mass m1 col-
lides with particle 2 of mass m2 , where particle 2 is initially at rest, as shown in Fig-
ure 9.14. After the collision, particle 1 moves at an angle 
 with respect to the hori-
zontal and particle 2 moves at an angle � with respect to the horizontal. This is
called a glancing collision. Applying the law of conservation of momentum in com-
ponent form, and noting that the initial y component of the momentum of the
two-particle system is zero, we obtain

(9.24)

(9.25)

where the minus sign in Equation 9.25 comes from the fact that after the collision,
particle 2 has a y component of velocity that is downward. We now have two inde-
pendent equations. As long as no more than two of the seven quantities in Equa-
tions 9.24 and 9.25 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic
energy), with to give

(9.26)

Knowing the initial speed of particle 1 and both masses, we are left with four un-
knowns . Because we have only three equations, one of the four re-
maining quantities must be given if we are to determine the motion after the colli-
sion from conservation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 9.26
does not apply.

(v1f , v2f , 
, �)

1
2 m1v1i 

2 � 1
2 m1v1f 

2 � 1
2 m2v2f 

2

v2i � 0,

 0 � m1v1f sin 
 � m2v2f sin �

m1v1i � m1v1f cos 
 � m2v2f cos �

m1v1iy � m2v2iy � m1v1fy � m2v2fy

m1v1ix � m2v2ix � m1v1fx � m2v2 fx

9.5

(a) Before the collision

v1i

(b) After the collision

θ

φ
v2f cos

v1f cos

v1f sin

v1f

v2f
–v2f sin

φ

φ

θ

θ

Figure 9.14 An elastic glancing collision between two particles.
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Problem-Solving Hints
Collisions
The following procedure is recommended when dealing with problems involv-
ing collisions between two objects:

• Set up a coordinate system and define your velocities with respect to that sys-
tem. It is usually convenient to have the x axis coincide with one of the ini-
tial velocities.

• In your sketch of the coordinate system, draw and label all velocity vectors
and include all the given information.

• Write expressions for the x and y components of the momentum of each ob-
ject before and after the collision. Remember to include the appropriate
signs for the components of the velocity vectors.

• Write expressions for the total momentum in the x direction before and af-
ter the collision and equate the two. Repeat this procedure for the total mo-
mentum in the y direction. These steps follow from the fact that, because
the momentum of the system is conserved in any collision, the total momen-
tum along any direction must also be constant. Remember, it is the momen-
tum of the system that is constant, not the momenta of the individual objects.

• If the collision is inelastic, kinetic energy is not conserved, and additional in-
formation is probably required. If the collision is perfectly inelastic, the final
velocities of the two objects are equal. Solve the momentum equations for
the unknown quantities.

• If the collision is elastic, kinetic energy is conserved, and you can equate the
total kinetic energy before the collision to the total kinetic energy after the
collision to get an additional relationship between the velocities.

Collision at an IntersectionEXAMPLE 9.9

Similarly, the total initial momentum of the system in the
y direction is that of the van, and the magnitude of this mo-
mentum is (2 500 kg)(20.0 m/s). Applying conservation of

A 1 500-kg car traveling east with a speed of 25.0 m/s collides
at an intersection with a 2 500-kg van traveling north at a
speed of 20.0 m/s, as shown in Figure 9.15. Find the direc-
tion and magnitude of the velocity of the wreckage after the
collision, assuming that the vehicles undergo a perfectly in-
elastic collision (that is, they stick together).

Solution Let us choose east to be along the positive x di-
rection and north to be along the positive y direction. Before
the collision, the only object having momentum in the x di-
rection is the car. Thus, the magnitude of the total initial mo-
mentum of the system (car plus van) in the x direction is

Let us assume that the wreckage moves at an angle 
 and
speed vf after the collision. The magnitude of the total mo-
mentum in the x direction after the collision is

Because the total momentum in the x direction is constant,
we can equate these two equations to obtain

(1) 3.75 � 104 kg�m/s � (4 000 kg)vf cos 


�pxf � (4 000 kg)vf cos 


�pxi � (1 500 kg)(25.0 m/s) � 3.75 � 104 kg�m/s

θ
(25.0i) m/s

y

x

vf

(20.0j) m/s

Figure 9.15 An eastbound car colliding with a northbound van.
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Proton – Proton CollisionEXAMPLE 9.10
Solving these three equations with three unknowns simulta-
neously gives

Note that 
 � � � 90°. This result is not accidental. When-
ever two equal masses collide elastically in a glancing
collision and one of them is initially at rest, their final
velocities are always at right angles to each other. The
next example illustrates this point in more detail.

53.0°  � �

2.11 � 105 m/sv2f �

2.80 � 105 m/sv1f �

Proton 1 collides elastically with proton 2 that is initially at
rest. Proton 1 has an initial speed of 3.50 � 105 m/s and
makes a glancing collision with proton 2, as was shown in Fig-
ure 9.14. After the collision, proton 1 moves at an angle of
37.0° to the horizontal axis, and proton 2 deflects at an angle
� to the same axis. Find the final speeds of the two protons
and the angle �.

Solution Because both particles are protons, we know that
m1 � m2 . We also know that 
 � 37.0° and 

m/s. Equations 9.24, 9.25, and 9.26 become

 v1f 

2 � v2f 

2 � (3.50 � 105 m/s)2

 v1f  sin 37.0° � v2f  sin � � 0 

v1f  cos 37.0° � v2f  cos � � 3.50 � 105 m/s 

105
v1i � 3.50 �

When this angle is substituted into (2), the value of vf is

It might be instructive for you to draw the momentum vectors
of each vehicle before the collision and the two vehicles to-
gether after the collision.

15.6 m/svf �
5.00 � 104 kg�m/s
(4 000 kg)sin 53.1°

�

53.1°  
 �
momentum to the y direction, we have

(2)

If we divide (2) by (1), we get

sin 
 

cos 
 
 �  tan 
 �

5.00 � 104

3.75 � 104 � 1.33 

5.00 � 104 kg�m/s � (4 000 kg)vf sin 


 (2 500 kg)(20.0 m/s) � (4 000 kg)vf sin 


 �pyi � �pyf 

Billiard Ball CollisionEXAMPLE 9.11
In a game of billiards, a player wishes to sink a target ball 2 in
the corner pocket, as shown in Figure 9.16. If the angle to the
corner pocket is 35°, at what angle 
 is the cue ball 1 de-
flected? Assume that friction and rotational motion are unim-
portant and that the collision is elastic.

Solution Because the target ball is initially at rest, conser-
vation of energy (Eq. 9.16) gives

But m1 � m2 , so that

(1)

Applying conservation of momentum to the two-dimensional
collision gives

(2)

Note that because m1 � m2 , the masses also cancel in (2). If
we square both sides of (2) and use the definition of the dot

v1i � v1f � v2f

v1i 

2 � v1f 

2 � v2f 

2

1
2 m1v1i 

2 � 1
2 m1v1f 

2 � 1
2 m2v2f 

2

Cue ball

v2f

v1f

v1i

θ

y

x
35°

Figure 9.16
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THE CENTER OF MASS
In this section we describe the overall motion of a mechanical system in terms of a
special point called the center of mass of the system. The mechanical system can
be either a system of particles, such as a collection of atoms in a container, or an
extended object, such as a gymnast leaping through the air. We shall see that the
center of mass of the system moves as if all the mass of the system were concen-
trated at that point. Furthermore, if the resultant external force on the system is
�Fext and the total mass of the system is M, the center of mass moves with an accel-
eration given by a � �Fext /M. That is, the system moves as if the resultant exter-
nal force were applied to a single particle of mass M located at the center of mass.
This behavior is independent of other motion, such as rotation or vibration of the
system. This result was implicitly assumed in earlier chapters because many exam-
ples referred to the motion of extended objects that were treated as particles.

Consider a mechanical system consisting of a pair of particles that have differ-
ent masses and are connected by a light, rigid rod (Fig. 9.17). One can describe the
position of the center of mass of a system as being the average position of the system’s
mass. The center of mass of the system is located somewhere on the line joining the

9.6

This result shows that whenever two equal masses undergo a
glancing elastic collision and one of them is initially at rest,
they move at right angles to each other after the collision.
The same physics describes two very different situations, pro-
tons in Example 9.10 and billiard balls in this example.

55°
 � 35° � 90°  or  
 �

 0 � cos(
 � 35°) product of two vectors from Section 7.2, we get

Because the angle between v1f and v2f is 
 � 35°,
cos(
 � 35°), and so

(3)

Subtracting (1) from (3) gives

 0 � 2v1f v2f cos(
 � 35°) 

v1i 

2 � v1f 

2 � v2f 

2 � 2v1f v2f cos(
 � 35°)

v1f � v2f � v1f v2f

v1i 

2 � (v1f � v2f) � (v1f � v2f) � v1f 

2 � v2f 

2 � 2v1f � v2f

Figure 9.17 Two particles of un-
equal mass are connected by a
light, rigid rod. (a) The system ro-
tates clockwise when a force is ap-
plied between the less massive par-
ticle and the center of mass. 
(b) The system rotates counter-
clockwise when a force is applied
between the more massive particle
and the center of mass. (c) The sys-
tem moves in the direction of the
force without rotating when a force
is applied at the center of mass.

CM

(a)

(b)

(c)

CM

CM

This multiflash photograph shows that as the acrobat executes a somersault, his center of mass
follows a parabolic path, the same path that a particle would follow.

6.7
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particles and is closer to the particle having the larger mass. If a single force is ap-
plied at some point on the rod somewhere between the center of mass and the less
massive particle, the system rotates clockwise (see Fig. 9.17a). If the force is applied
at a point on the rod somewhere between the center of mass and the more massive
particle, the system rotates counterclockwise (see Fig. 9.17b). If the force is applied
at the center of mass, the system moves in the direction of F without rotating (see
Fig. 9.17c). Thus, the center of mass can be easily located.

The center of mass of the pair of particles described in Figure 9.18 is located
on the x axis and lies somewhere between the particles. Its x coordinate is

(9.27)

For example, if and we find that That is, the
center of mass lies closer to the more massive particle. If the two masses are equal,
the center of mass lies midway between the particles.

We can extend this concept to a system of many particles in three dimensions.
The x coordinate of the center of mass of n particles is defined to be

(9.28)

where xi is the x coordinate of the ith particle. For convenience, we express the to-
tal mass as where the sum runs over all n particles. The y and z coordi-
nates of the center of mass are similarly defined by the equations

(9.29)

The center of mass can also be located by its position vector, rCM . The carte-
sian coordinates of this vector are xCM , yCM , and zC M , defined in Equations 9.28
and 9.29. Therefore,

(9.30)

where ri is the position vector of the ith particle, defined by

Although locating the center of mass for an extended object is somewhat
more cumbersome than locating the center of mass of a system of particles, the ba-
sic ideas we have discussed still apply. We can think of an extended object as a sys-
tem containing a large number of particles (Fig. 9.19). The particle separation is
very small, and so the object can be considered to have a continuous mass distribu-
tion. By dividing the object into elements of mass 	mi , with coordinates xi , yi , zi ,
we see that the x coordinate of the center of mass is approximately

with similar expressions for yCM and zCM . If we let the number of elements n ap-
proach infinity, then xCM is given precisely. In this limit, we replace the sum by an

xCM �
�
i
xi 	mi

M

ri � xi i � yi j � zik

rCM �
�
i
miri

M
 

  �
�
i
mixi i � �

i
miyi j � �

i
mizik

M

rCM � xCMi � yCM j � zCMk 

yCM �
�
i
 miyi

M
  and  zCM �

�
i
 mizi

M

M � �
i
mi ,

xCM �
m1x1 � m2x2 � m3x3 � ��� � mnxn

m1 � m2 � m3 � ��� � mn
�

�
i
mixi

�
i
mi

xCM � 2
3d.m2 � 2m1 ,x2 � d,x1 � 0,

xCM �
m1x1 � m2x2

m1 � m2

Vector position of the center of
mass for a system of particles

Figure 9.18 The center of mass
of two particles of unequal mass on
the x axis is located at xCM , a point
between the particles, closer to the
one having the larger mass.

Figure 9.19 An extended object
can be considered a distribution of
small elements of mass 	mi . The
center of mass is located at the vec-
tor position rCM , which has coordi-
nates xCM , yCM , and zCM .

y

m1

x1

x 2

CM

m 2

x

x CM

y

x

z

ri

∆mi

rCM

CM
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integral and 	mi by the differential element dm:

(9.31)

Likewise, for yCM and zCM we obtain

(9.32)

We can express the vector position of the center of mass of an extended object
in the form

(9.33)

which is equivalent to the three expressions given by Equations 9.31 and 9.32.
The center of mass of any symmetric object lies on an axis of symmetry

and on any plane of symmetry.4 For example, the center of mass of a rod lies in
the rod, midway between its ends. The center of mass of a sphere or a cube lies at
its geometric center.

One can determine the center of mass of an irregularly shaped object by sus-
pending the object first from one point and then from another. In Figure 9.20, a
wrench is hung from point A, and a vertical line AB (which can be established with
a plumb bob) is drawn when the wrench has stopped swinging. The wrench is then
hung from point C, and a second vertical line CD is drawn. The center of mass is
halfway through the thickness of the wrench, under the intersection of these two
lines. In general, if the wrench is hung freely from any point, the vertical line
through this point must pass through the center of mass.

Because an extended object is a continuous distribution of mass, each small
mass element is acted upon by the force of gravity. The net effect of all these
forces is equivalent to the effect of a single force, Mg, acting through a special
point, called the center of gravity. If g is constant over the mass distribution,
then the center of gravity coincides with the center of mass. If an extended object
is pivoted at its center of gravity, it balances in any orientation.

If a baseball bat is cut at the location of its center of mass as shown in Figure 9.21, do the
two pieces have the same mass?

Quick Quiz 9.9

rCM �
1
M

 � r dm

yCM �
1
M

 �y dm  and  zCM �
1
M

 �z dm

xCM � lim
	mi:0

 
�
i
xi 	mi

M
�

1
M

 �x dm

4This statement is valid only for objects that have a uniform mass per unit volume.

A

B

C

A
B

C

D

Center of
mass

Figure 9.20 An experimental
technique for determining the cen-
ter of mass of a wrench. The
wrench is hung freely first from
point A and then from point C.
The intersection of the two lines
AB and CD locates the center of
mass.

Figure 9.21 A baseball bat cut at the location of its center of mass.

QuickLab
Cut a triangle from a piece of card-
board and draw a set of adjacent
strips inside it, parallel to one of the
sides. Put a dot at the approximate lo-
cation of the center of mass of each
strip and then draw a straight line
through the dots and into the angle
opposite your starting side. The cen-
ter of mass for the triangle must lie
on this bisector of the angle. Repeat
these steps for the other two sides.
The three angle bisectors you have
drawn will intersect at the center of
mass of the triangle. If you poke a
hole anywhere in the triangle and
hang the cardboard from a string at-
tached at that hole, the center of
mass will be vertically aligned with the
hole.
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The Center of Mass of Three ParticlesEXAMPLE 9.12
A system consists of three particles located as shown in Figure
9.22a. Find the center of mass of the system.

Solution We set up the problem by labeling the masses of
the particles as shown in the figure, with 
and Using the basic defining equations for the
coordinates of the center of mass and noting that 
we obtain

The position vector to the center of mass measured from the
origin is therefore

We can verify this result graphically by adding together
and dividing the vector sum by M, the

total mass. This is shown in Figure 9.22b.
m1r1 � m2r2 � m3r3

0.75i m � 1.0 j mrCM � xCMi � yCM j �

 �
4.0 kg�m

4.0 kg
� 1.0 m 

 �
(1.0 kg)(0) � (1.0 kg)(0) � (2.0 kg)(2.0 m)

4.0 kg
 

yCM �
�
i
 miyi

M
�

m1y1 � m2y2 � m3y3

m1 � m2 � m3
  

 �
3.0 kg�m

4.0 kg
� 0.75 m 

  �
(1.0 kg)(1.0 m) � (1.0 kg)(2.0 m) � (2.0 kg)(0 m)

1.0 kg � 1.0 kg � 2.0 kg

xCM �
�
i
 mixi

M
�

m1x1 � m2x2 � m3x3

m1 � m2 � m3
  

zCM � 0,
m3 � 2.0 kg.

m1 � m2 � 1.0 kg

The Center of Mass of a RodEXAMPLE 9.13
Because this reduces to

One can also use symmetry arguments to obtain the same re-
sult.

(b) Suppose a rod is nonuniform such that its mass per unit
length varies linearly with x according to the expression � �
�x, where � is a constant. Find the x coordinate of the center
of mass as a fraction of L.

Solution In this case, we replace dm by �dx where � is not
constant. Therefore, xCM is

L
2

xCM �
L2

2M
 � M

L � �

� � M/L,(a) Show that the center of mass of a rod of mass M and
length L lies midway between its ends, assuming the rod has a
uniform mass per unit length.

Solution The rod is shown aligned along the x axis in Fig-
ure 9.23, so that Furthermore, if we call the
mass per unit length � (this quantity is called the linear mass
density), then � � M/L for the uniform rod we assume here.
If we divide the rod into elements of length dx, then the mass
of each element is dm � � dx. For an arbitrary element lo-
cated a distance x from the origin, Equation 9.31 gives

xCM �
1
M

 � x dm �
1
M

 �L

0
 x� dx �

�

M
 
x2

2 �L

0
�

�L2

2M

yCM � zCM � 0.

Figure 9.22 (a) Two 1-kg masses and a single 2-kg mass are lo-
cated as shown. The vector indicates the location of the system’s cen-
ter of mass. (b) The vector sum of m iri .

2

0 21

1

3

y(m)

x(m)3

m1 m2

m3

(a)

rCMm3r3

MrCM

m1r1 m2r2

(b)

rCM
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MOTION OF A SYSTEM OF PARTICLES
We can begin to understand the physical significance and utility of the center of
mass concept by taking the time derivative of the position vector given by Equation
9.30. From Section 4.1 we know that the time derivative of a position vector is by

9.7

The Center of Mass of a Right TriangleEXAMPLE 9.14
With this substitution, xCM becomes

By a similar calculation, we get for the y coordinate of the
center of mass

These values fit our original estimates.

1
3

 byCM �

2
3

 a�

xCM �
2
ab

 �a

0
 x � b

a
 x�dx �

2
a2  �a

0
 x2 dx �

2
a2 � x3

3 �
a

0

An object of mass M is in the shape of a right triangle whose
dimensions are shown in Figure 9.24. Locate the coordinates
of the center of mass, assuming the object has a uniform mass
per unit area.

Solution By inspection we can estimate that the x coordi-
nate of the center of mass must be past the center of the
base, that is, greater than a/2, because the largest part of the
triangle lies beyond that point. A similar argument indicates
that its y coordinate must be less than b/2. To evaluate the x
coordinate, we divide the triangle into narrow strips of width
dx and height y as in Figure 9.24. The mass dm of each strip is

Therefore, the x coordinate of the center of mass is

To evaluate this integral, we must express y in terms of x.
From similar triangles in Figure 9.24, we see that

y
x

�
b
a
  or  y �

b
a

 x

xCM �
1
M

 �x dm �
1
M

 �a

0
 x � 2M

ab �y dx �
2
ab

 �a

0
 xy dx

 �
M

1/2ab
(y dx) � � 2M

ab �y dx

dm �
total mass of object
total area of object

� area of strip

We can eliminate � by noting that the total mass of the rod is
related to � through the relationship

Substituting this into the expression for xCM gives

2
3

LxCM �
�L3

3�L2/2
�

M � �dm � �L

0
 � dx � �L

0
 �x dx �

�L2

2

 �
�

M
 �L

0
 x2 dx �

�L3

3M
 

xCM �
1
M

 � x dm �
1
M

 �L

0
 x� dx �

1
M

 �L

0
 x�x dx

L

x

dm = λdx
y

dx

O
x

λ

Figure 9.24

Figure 9.23 The center of mass of a uniform rod of length L is lo-
cated at xCM � L/2.
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x
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y

c b
y
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6.8
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definition a velocity. Assuming M remains constant for a system of particles, that is,
no particles enter or leave the system, we get the following expression for the ve-
locity of the center of mass of the system:

(9.34)

where vi is the velocity of the ith particle. Rearranging Equation 9.34 gives

(9.35)

Therefore, we conclude that the total linear momentum of the system equals
the total mass multiplied by the velocity of the center of mass. In other words, the
total linear momentum of the system is equal to that of a single particle of mass M
moving with a velocity vCM .

If we now differentiate Equation 9.34 with respect to time, we get the acceler-
ation of the center of mass of the system:

(9.36)

Rearranging this expression and using Newton’s second law, we obtain

(9.37)

where Fi is the net force on particle i.
The forces on any particle in the system may include both external forces

(from outside the system) and internal forces (from within the system). However,
by Newton’s third law, the internal force exerted by particle 1 on particle 2, for ex-
ample, is equal in magnitude and opposite in direction to the internal force ex-
erted by particle 2 on particle 1. Thus, when we sum over all internal forces in
Equation 9.37, they cancel in pairs and the net force on the system is caused only
by external forces. Thus, we can write Equation 9.37 in the form

(9.38)

That is, the resultant external force on a system of particles equals the total mass
of the system multiplied by the acceleration of the center of mass. If we compare
this with Newton’s second law for a single particle, we see that

�Fext � MaCM �
dptot

dt

MaCM � �
i

miai � �
i

Fi

aCM �
dvCM

dt
�

1
M

 �
i

mi 
dvi

dt
�

1
M

 �
i

 miai

MvCM � �
i

mivi � �
i

pi � ptot

vCM �
drCM

dt
�

1
M

 �
i

mi 
dri

dt
�

�
i
mivi

M

The center of mass of a system of particles of combined mass M moves like an
equivalent particle of mass M would move under the influence of the resultant
external force on the system.

Newton’s second law for a system
of particles

Acceleration of the center of mass

Total momentum of a system of
particles

Velocity of the center of mass

Finally, we see that if the resultant external force is zero, then from Equation
9.38 it follows that

dptot

dt
� MaCM � 0
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so that

(9.39)

That is, the total linear momentum of a system of particles is conserved if no net
external force is acting on the system. It follows that for an isolated system of parti-
cles, both the total momentum and the velocity of the center of mass are constant
in time, as shown in Figure 9.25. This is a generalization to a many-particle system
of the law of conservation of momentum discussed in Section 9.1 for a two-particle
system.

Suppose an isolated system consisting of two or more members is at rest. The
center of mass of such a system remains at rest unless acted upon by an external
force. For example, consider a system made up of a swimmer standing on a raft,
with the system initially at rest. When the swimmer dives horizontally off the raft,
the center of mass of the system remains at rest (if we neglect friction between raft
and water). Furthermore, the linear momentum of the diver is equal in magnitude
to that of the raft but opposite in direction.

As another example, suppose an unstable atom initially at rest suddenly breaks
up into two fragments of masses MA and MB , with velocities vA and vB , respectively.
Because the total momentum of the system before the breakup is zero, the total
momentum of the system after the breakup must also be zero. Therefore,

If the velocity of one of the fragments is known, the recoil ve-
locity of the other fragment can be calculated.
MAvA � MBvB � 0.

ptot � MvCM � constant  (when �Fext � 0)

The Sliding BearEXAMPLE 9.15
noting your location. Take off your spiked shoes and pull on
the rope hand over hand. Both you and the bear will slide
over the ice until you meet. From the tape, observe how far
you have slid, xp , and how far the bear has slid, xb . The point
where you meet the bear is the constant location of the cen-
ter of mass of the system (bear plus you), and so you can de-
termine the mass of the bear from (Unfortu-
nately, you cannot get back to your spiked shoes and so are in
big trouble if the bear wakes up!)

mbxb � mpxp .

Suppose you tranquilize a polar bear on a smooth glacier as
part of a research effort. How might you estimate the bear’s
mass using a measuring tape, a rope, and knowledge of your
own mass?

Solution Tie one end of the rope around the bear, and
then lay out the tape measure on the ice with one end at the
bear’s original position, as shown in Figure 9.26. Grab hold
of the free end of the rope and position yourself as shown,

Figure 9.25 Multiflash photograph showing an overhead view of a wrench moving on a hori-
zontal surface. The center of mass of the wrench moves in a straight line as the wrench rotates
about this point, shown by the white dots.
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Figure 9.26 The center of mass of an isolated system remains at rest unless acted on by an external
force. How can you determine the mass of the polar bear?

xp xb

CM

Exploding ProjectileCONCEPTUAL EXAMPLE 9.16
A projectile fired into the air suddenly explodes into several
fragments (Fig. 9.27). What can be said about the motion of

Motion
of center
of mass

the center of mass of the system made up of all the fragments
after the explosion?

Solution Neglecting air resistance, the only external force
on the projectile is the gravitational force. Thus, if the projec-
tile did not explode, it would continue to move along the
parabolic path indicated by the broken line in Figure 9.27.
Because the forces caused by the explosion are internal, they
do not affect the motion of the center of mass. Thus, after
the explosion the center of mass of the system (the frag-
ments) follows the same parabolic path the projectile would
have followed if there had been no explosion.

Figure 9.27 When a projectile explodes into several fragments,
the center of mass of the system made up of all the fragments follows
the same parabolic path the projectile would have taken had there
been no explosion.

The Exploding RocketEXAMPLE 9.17
Solution Let us call the total mass of the rocket M; hence,
the mass of each fragment is M/3. Because the forces of the
explosion are internal to the system and cannot affect its total
momentum, the total momentum pi of the rocket just before
the explosion must equal the total momentum pf of the frag-
ments right after the explosion.

A rocket is fired vertically upward. At the instant it reaches an
altitude of 1 000 m and a speed of 300 m/s, it explodes into
three equal fragments. One fragment continues to move up-
ward with a speed of 450 m/s following the explosion. The
second fragment has a speed of 240 m/s and is moving east
right after the explosion. What is the velocity of the third
fragment right after the explosion?
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Optional Section

ROCKET PROPULSION
When ordinary vehicles, such as automobiles and locomotives, are propelled, the
driving force for the motion is friction. In the case of the automobile, the driving
force is the force exerted by the road on the car. A locomotive “pushes” against the
tracks; hence, the driving force is the force exerted by the tracks on the locomo-
tive. However, a rocket moving in space has no road or tracks to push against.
Therefore, the source of the propulsion of a rocket must be something other than
friction. Figure 9.28 is a dramatic photograph of a spacecraft at liftoff. The opera-
tion of a rocket depends upon the law of conservation of linear momentum
as applied to a system of particles, where the system is the rocket plus its
ejected fuel.

Rocket propulsion can be understood by first considering the mechanical sys-
tem consisting of a machine gun mounted on a cart on wheels. As the gun is fired,

9.8

What does the sum of the momentum vectors for all the frag-
ments look like?

Exercise Find the position of the center of mass of the sys-
tem of fragments relative to the ground 3.00 s after the explo-
sion. Assume the rocket engine is nonoperative after the ex-
plosion.

Answer The x coordinate does not change; yCM � 1.86 km.

(�240i � 450j) m/svf �
Before the explosion:

After the explosion:

where vf is the unknown velocity of the third fragment.
Equating these two expressions (because pi � pf) gives

M
3

 vf � M(80 i) m/s � M(150 j) m/s � M(300 j) m/s

pf �
M
3

 (240 i) m/s �
M
3

 (450 j) m/s �
M
3

 vf

pi � Mvi � M(300 j) m/s

Figure 9.28 Liftoff of the space shuttle
Columbia. Enormous thrust is generated
by the shuttle’s liquid-fuel engines, aided
by the two solid-fuel boosters. Many physi-
cal principles from mechanics, thermody-
namics, and electricity and magnetism are
involved in such a launch.
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each bullet receives a momentum mv in some direction, where v is measured with
respect to a stationary Earth frame. The momentum of the system made up of cart,
gun, and bullets must be conserved. Hence, for each bullet fired, the gun and cart
must receive a compensating momentum in the opposite direction. That is, the re-
action force exerted by the bullet on the gun accelerates the cart and gun, and the
cart moves in the direction opposite that of the bullets. If n is the number of bul-
lets fired each second, then the average force exerted on the gun is Fav � nmv.

In a similar manner, as a rocket moves in free space, its linear momentum
changes when some of its mass is released in the form of ejected gases. Because
the gases are given momentum when they are ejected out of the engine, the
rocket receives a compensating momentum in the opposite direction. There-
fore, the rocket is accelerated as a result of the “push,” or thrust, from the exhaust
gases. In free space, the center of mass of the system (rocket plus expelled gases)
moves uniformly, independent of the propulsion process.5

Suppose that at some time t, the magnitude of the momentum of a rocket plus
its fuel is (M � 	m)v, where v is the speed of the rocket relative to the Earth (Fig.
9.29a). Over a short time interval 	t, the rocket ejects fuel of mass 	m, and so at
the end of this interval the rocket’s speed is where 	v is the change in
speed of the rocket (Fig. 9.29b). If the fuel is ejected with a speed ve relative to the
rocket (the subscript “e” stands for exhaust, and ve is usually called the exhaust
speed), the velocity of the fuel relative to a stationary frame of reference is 
Thus, if we equate the total initial momentum of the system to the total final mo-
mentum, we obtain

where M represents the mass of the rocket and its remaining fuel after an amount
of fuel having mass 	m has been ejected. Simplifying this expression gives

We also could have arrived at this result by considering the system in the cen-
ter-of-mass frame of reference, which is a frame having the same velocity as the
center of mass of the system. In this frame, the total momentum of the system is
zero; therefore, if the rocket gains a momentum M 	v by ejecting some fuel, the
exhausted fuel obtains a momentum ve 	m in the opposite direction, so that M 	v �
ve If we now take the limit as goes to zero, we get and

Futhermore, the increase in the exhaust mass dm corresponds to an
equal decrease in the rocket mass, so that Note that dM is given a neg-
ative sign because it represents a decrease in mass. Using this fact, we obtain

(9.40)

Integrating this equation and taking the initial mass of the rocket plus fuel to be
Mi and the final mass of the rocket plus its remaining fuel to be Mf , we obtain

(9.41)vf � vi � ve ln� Mi

Mf
�

�vf

vi

 dv � �ve �Mf

Mi

 
dM
M

M dv � ve dm � �ve dM

dm � �dM.
	m : dm.

	v : dv	t	m � 0.

M 	v � ve 	m

(M � 	m)v � M(v � 	v) � 	m(v � ve)

v � ve .

v � 	v,

Expression for rocket propulsion

5It is interesting to note that the rocket and machine gun represent cases of the reverse of a perfectly
inelastic collision: Momentum is conserved, but the kinetic energy of the system increases (at the ex-
pense of chemical potential energy in the fuel).

The force from a nitrogen-pro-
pelled, hand-controlled device al-
lows an astronaut to move about
freely in space without restrictive
tethers.

Figure 9.29 Rocket propulsion.
(a) The initial mass of the rocket
plus all its fuel is M � 	m at a time
t, and its speed is v. (b) At a time t
� 	t, the rocket’s mass has been re-
duced to M and an amount of fuel
	m has been ejected. The rocket’s
speed increases by an amount 	v.

(a)

(b)

M + ∆m

pi = (M + ∆m)v

M
∆m

v

v + ∆v
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This is the basic expression of rocket propulsion. First, it tells us that the increase in
rocket speed is proportional to the exhaust speed of the ejected gases, ve . Therefore,
the exhaust speed should be very high. Second, the increase in rocket speed is pro-
portional to the natural logarithm of the ratio Mi/Mf . Therefore, this ratio should
be as large as possible, which means that the mass of the rocket without its fuel
should be as small as possible and the rocket should carry as much fuel as possible.

The thrust on the rocket is the force exerted on it by the ejected exhaust
gases. We can obtain an expression for the thrust from Equation 9.40:

(9.42)

This expression shows us that the thrust increases as the exhaust speed increases
and as the rate of change of mass (called the burn rate) increases.

Thrust � M 
dv
dt

� �ve 
dM
dt �

Firefighters attack a burning house with a hose line.

A Rocket in SpaceEXAMPLE 9.18

(b) What is the thrust on the rocket if it burns fuel at the rate
of 50 kg/s?

Solution

2.5 � 105 N�

Thrust � �ve 
dM
dt � � (5.0 � 103 m/s)(50 kg/s)

6.5 � 103 m/s  �

 � 3.0 � 103 m/s � (5.0 � 103 m/s)ln� Mi

0.5 Mi
�A rocket moving in free space has a speed of 3.0 � 103 m/s

relative to the Earth. Its engines are turned on, and fuel is
ejected in a direction opposite the rocket’s motion at a speed
of 5.0 � 103 m/s relative to the rocket. (a) What is the speed
of the rocket relative to the Earth once the rocket’s mass is re-
duced to one-half its mass before ignition?

Solution We can guess that the speed we are looking for
must be greater than the original speed because the rocket is
accelerating. Applying Equation 9.41, we obtain

vf � vi � ve ln� Mi

Mf
� 

Fighting a FireEXAMPLE 9.19
their hands, the movement of the hose due to the thrust it re-
ceives from the rapidly exiting water could injure the fire-
fighters.

Two firefighters must apply a total force of 600 N to steady a
hose that is discharging water at 3 600 L/min. Estimate the
speed of the water as it exits the nozzle.

Solution The water is exiting at 3 600 L/min, which is 
60 L/s. Knowing that 1 L of water has a mass of 1 kg, we can
say that about 60 kg of water leaves the nozzle every second.
As the water leaves the hose, it exerts on the hose a thrust
that must be counteracted by the 600-N force exerted on the
hose by the firefighters. So, applying Equation 9.42 gives

Firefighting is dangerous work. If the nozzle should slip from

10 m/s  ve �

 600 N � � ve(60 kg/s) �

Thrust � �ve 
dM
dt � 
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SUMMARY

The linear momentum p of a particle of mass m moving with a velocity v is

(9.1)

The law of conservation of linear momentum indicates that the total mo-
mentum of an isolated system is conserved. If two particles form an isolated sys-
tem, their total momentum is conserved regardless of the nature of the force be-
tween them. Therefore, the total momentum of the system at all times equals its
initial total momentum, or

(9.5)

The impulse imparted to a particle by a force F is equal to the change in the
momentum of the particle:

(9.9)

This is known as the impulse–momentum theorem.
Impulsive forces are often very strong compared with other forces on the sys-

tem and usually act for a very short time, as in the case of collisions.
When two particles collide, the total momentum of the system before the colli-

sion always equals the total momentum after the collision, regardless of the nature
of the collision. An inelastic collision is one for which the total kinetic energy is
not conserved. A perfectly inelastic collision is one in which the colliding bodies
stick together after the collision. An elastic collision is one in which kinetic en-
ergy is constant.

In a two- or three-dimensional collision, the components of momentum in
each of the three directions (x, y, and z) are conserved independently.

The position vector of the center of mass of a system of particles is defined as

(9.30)

where is the total mass of the system and ri is the position vector of the
ith particle.

The position vector of the center of mass of a rigid body can be obtained from
the integral expression

(9.33)

The velocity of the center of mass for a system of particles is

(9.34)

The total momentum of a system of particles equals the total mass multiplied
by the velocity of the center of mass.

Newton’s second law applied to a system of particles is

(9.38)

where aCM is the acceleration of the center of mass and the sum is over all external
forces. The center of mass moves like an imaginary particle of mass M under the

�Fext � MaCM �
dptot

dt

vCM �
�
i
mi vi

M

rCM �
1
M

 �r dm

M � �
i
mi

rCM �
�
i
miri

M

I � �tf

ti
 F dt � 	p

p1i � p2i � p1f � p2f

p � mv
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influence of the resultant external force on the system. It follows from Equation
9.38 that the total momentum of the system is conserved if there are no external
forces acting on it.

QUESTIONS

17. Early in this century, Robert Goddard proposed sending a
rocket to the Moon. Critics took the position that in a vac-
uum, such as exists between the Earth and the Moon, the
gases emitted by the rocket would have nothing to push
against to propel the rocket. According to Scientific Ameri-
can ( January 1975), Goddard placed a gun in a vacuum
and fired a blank cartridge from it. (A blank cartridge
fires only the wadding and hot gases of the burning gun-
powder.) What happened when the gun was fired?

18. A pole-vaulter falls from a height of 6.0 m onto a foam
rubber pad. Can you calculate his speed just before he
reaches the pad? Can you estimate the force exerted on
him due to the collision? Explain.

19. Explain how you would use a balloon to demonstrate the
mechanism responsible for rocket propulsion.

20. Does the center of mass of a rocket in free space acceler-
ate? Explain. Can the speed of a rocket exceed the ex-
haust speed of the fuel? Explain.

21. A ball is dropped from a tall building. Identify the system
for which linear momentum is conserved.

22. A bomb, initially at rest, explodes into several pieces. 
(a) Is linear momentum conserved? (b) Is kinetic energy
conserved? Explain.

23. NASA often uses the gravity of a planet to “slingshot” a
probe on its way to a more distant planet. This is actually
a collision where the two objects do not touch. How can
the probe have its speed increased in this manner?

24. The Moon revolves around the Earth. Is the Moon’s lin-
ear momentum conserved? Is its kinetic energy con-
served? Assume that the Moon’s orbit is circular.

25. A raw egg dropped to the floor breaks apart upon impact.
However, a raw egg dropped onto a thick foam rubber
cushion from a height of about 1 m rebounds without
breaking. Why is this possible? (If you try this experi-
ment, be sure to catch the egg after the first bounce.)

26. On the subject of the following positions, state your own
view and argue to support it: (a) The best theory of mo-
tion is that force causes acceleration. (b) The true mea-
sure of a force’s effectiveness is the work it does, and the
best theory of motion is that work on an object changes
its energy. (c) The true measure of a force’s effect is im-
pulse, and the best theory of motion is that impulse 
injected into an object changes its momentum.

1. If the kinetic energy of a particle is zero, what is its linear
momentum? 

2. If the speed of a particle is doubled, by what factor is its
momentum changed? By what factor is its kinetic energy
changed?

3. If two particles have equal kinetic energies, are their mo-
menta necessarily equal? Explain.

4. If two particles have equal momenta, are their kinetic en-
ergies necessarily equal? Explain.

5. An isolated system is initially at rest. Is it possible for parts
of the system to be in motion at some later time? If so, ex-
plain how this might occur.

6. If two objects collide and one is initially at rest, is it possi-
ble for both to be at rest after the collision? Is it possible
for one to be at rest after the collision? Explain.

7. Explain how linear momentum is conserved when a ball
bounces from a floor.

8. Is it possible to have a collision in which all of the kinetic
energy is lost? If so, cite an example.

9. In a perfectly elastic collision between two particles, does
the kinetic energy of each particle change as a result of
the collision?

10. When a ball rolls down an incline, its linear momentum
increases. Does this imply that momentum is not con-
served? Explain.

11. Consider a perfectly inelastic collision between a car and
a large truck. Which vehicle loses more kinetic energy as
a result of the collision?

12. Can the center of mass of a body lie outside the body? If
so, give examples.

13. Three balls are thrown into the air simultaneously. What
is the acceleration of their center of mass while they are
in motion?

14. A meter stick is balanced in a horizontal position with the
index fingers of the right and left hands. If the two fin-
gers are slowly brought together, the stick remains bal-
anced and the two fingers always meet at the 50-cm mark
regardless of their original positions (try it!). Explain.

15. A sharpshooter fires a rifle while standing with the butt of
the gun against his shoulder. If the forward momentum
of a bullet is the same as the backward momentum of the
gun, why is it not as dangerous to be hit by the gun as by
the bullet?

16. A piece of mud is thrown against a brick wall and sticks to
the wall. What happens to the momentum of the mud? Is
momentum conserved? Explain.
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PROBLEMS

7. (a) A particle of mass m moves with momentum p. Show
that the kinetic energy of the particle is given by K �
p2/2m. (b) Express the magnitude of the particle’s mo-
mentum in terms of its kinetic energy and mass.

Section 9.2 Impulse and Momentum
8. A car is stopped for a traffic signal. When the light turns

green, the car accelerates, increasing its speed from
zero to 5.20 m/s in 0.832 s. What linear impulse and av-
erage force does a 70.0-kg passenger in the car experi-
ence?

9. An estimated force–time curve for a baseball struck by
a bat is shown in Figure P9.9. From this curve, deter-
mine (a) the impulse delivered to the ball, (b) the aver-
age force exerted on the ball, and (c) the peak force ex-
erted on the ball.

Section 9.1 Linear Momentum and Its Conservation
1. A 3.00-kg particle has a velocity of (3.00i � 4.00j) m/s.

(a) Find its x and y components of momentum. 
(b) Find the magnitude and direction of its momentum.

2. A 0.100-kg ball is thrown straight up into the air with an
initial speed of 15.0 m/s. Find the momentum of the
ball (a) at its maximum height and (b) halfway up to its
maximum height.

3. A 40.0-kg child standing on a frozen pond throws a
0.500-kg stone to the east with a speed of 5.00 m/s. Ne-
glecting friction between child and ice, find the recoil
velocity of the child.

4. A pitcher claims he can throw a baseball with as much
momentum as a 3.00-g bullet moving with a speed of 
1 500 m/s. A baseball has a mass of 0.145 kg. What must
be its speed if the pitcher’s claim is valid?

5. How fast can you set the Earth moving? In particular,
when you jump straight up as high as you can, you give
the Earth a maximum recoil speed of what order of
magnitude? Model the Earth as a perfectly solid object.
In your solution, state the physical quantities you take as
data and the values you measure or estimate for them.

6. Two blocks of masses M and 3M are placed on a hori-
zontal, frictionless surface. A light spring is attached to
one of them, and the blocks are pushed together with
the spring between them (Fig. P9.6). A cord initially
holding the blocks together is burned; after this, the
block of mass 3M moves to the right with a speed of
2.00 m/s. (a) What is the speed of the block of mass M ?
(b) Find the original elastic energy in the spring if M �
0.350 kg.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

10. A tennis player receives a shot with the ball (0.060 0 kg)
traveling horizontally at 50.0 m/s and returns the shot
with the ball traveling horizontally at 40.0 m/s in the
opposite direction. (a) What is the impulse delivered to
the ball by the racket? (b) What work does the racket
do on the ball?

11. A 3.00-kg steel ball strikes a wall with a speed of 
10.0 m/s at an angle of 60.0° with the surface. It
bounces off with the same speed and angle (Fig. P9.11).
If the ball is in contact with the wall for 0.200 s, what is
the average force exerted on the ball by the wall?

12. In a slow-pitch softball game, a 0.200-kg softball crossed
the plate at 15.0 m/s at an angle of 45.0° below the hor-
izontal. The ball was hit at 40.0 m/s, 30.0° above the
horizontal. (a) Determine the impulse delivered to the
ball. (b) If the force on the ball increased linearly for
4.00 ms, held constant for 20.0 ms, and then decreased
to zero linearly in another 4.00 ms, what was the maxi-
mum force on the ball?

Before

(a)

After

(b)

M

v 2.00 m/s

M 3M

3M

Figure P9.9

Figure P9.6

20 000

15 000

10 000
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F(N)
F  =  18 000 N

WEB



Problems 283

19. A 45.0-kg girl is standing on a plank that has a mass of
150 kg. The plank, originally at rest, is free to slide on a
frozen lake, which is a flat, frictionless supporting sur-
face. The girl begins to walk along the plank at a con-
stant speed of 1.50 m/s relative to the plank. (a) What
is her speed relative to the ice surface? (b) What is the
speed of the plank relative to the ice surface?

20. Gayle runs at a speed of 4.00 m/s and dives on a sled,
which is initially at rest on the top of a frictionless snow-
covered hill. After she has descended a vertical distance
of 5.00 m, her brother, who is initially at rest, hops on
her back and together they continue down the hill.
What is their speed at the bottom of the hill if the total
vertical drop is 15.0 m? Gayle’s mass is 50.0 kg, the sled
has a mass of 5.00 kg and her brother has a mass of 
30.0 kg.

21. A 1 200-kg car traveling initially with a speed of 
25.0 m/s in an easterly direction crashes into the rear
end of a 9 000-kg truck moving in the same direction at
20.0 m/s (Fig. P9.21). The velocity of the car right after
the collision is 18.0 m/s to the east. (a) What is the ve-
locity of the truck right after the collision? (b) How
much mechanical energy is lost in the collision? Ac-
count for this loss in energy.

22. A railroad car of mass 2.50 � 104 kg is moving with a
speed of 4.00 m/s. It collides and couples with three
other coupled railroad cars, each of the same mass as
the single car and moving in the same direction with an
initial speed of 2.00 m/s. (a) What is the speed of the
four cars after the collision? (b) How much energy is
lost in the collision?

inside the block. The speed of the bullet-plus-wood
combination immediately after the collision is measured
as 0.600 m/s. What was the original speed of the bullet?

18. As shown in Figure P9.18, a bullet of mass m and speed
v passes completely through a pendulum bob of mass
M. The bullet emerges with a speed of v/2. The pendu-
lum bob is suspended by a stiff rod of length � and neg-
ligible mass. What is the minimum value of v such that
the pendulum bob will barely swing through a complete
vertical circle?

14. A professional diver performs a dive from a platform 
10 m above the water surface. Estimate the order of
magnitude of the average impact force she experiences
in her collision with the water. State the quantities you
take as data and their values.

Section 9.3 Collisions
Section 9.4 Elastic and Inelastic Collisions 
in One Dimension

15. High-speed stroboscopic photographs show that the
head of a golf club of mass 200 g is traveling at 55.0 m/s
just before it strikes a 46.0-g golf ball at rest on a tee. Af-
ter the collision, the club head travels (in the same di-
rection) at 40.0 m/s. Find the speed of the golf ball just
after impact.

16. A 75.0-kg ice skater, moving at 10.0 m/s, crashes into a
stationary skater of equal mass. After the collision, the
two skaters move as a unit at 5.00 m/s. Suppose the av-
erage force a skater can experience without breaking a
bone is 4 500 N. If the impact time is 0.100 s, does a
bone break?

17. A 10.0-g bullet is fired into a stationary block of wood
(m � 5.00 kg). The relative motion of the bullet stops

13. A garden hose is held in the manner shown in Figure
P9.13. The hose is initially full of motionless water.
What additional force is necessary to hold the nozzle
stationary after the water is turned on if the discharge
rate is 0.600 kg/s with a speed of 25.0 m/s?

Figure P9.18

Figure P9.13

Figure P9.11

60.0˚

x

y

60.0˚

M

�

m

v v/2
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23. Four railroad cars, each of mass 2.50 � 104 kg, are cou-
pled together and coasting along horizontal tracks at a
speed of vi toward the south. A very strong but foolish
movie actor, riding on the second car, uncouples the
front car and gives it a big push, increasing its speed to
4.00 m/s southward. The remaining three cars continue
moving toward the south, now at 2.00 m/s. (a) Find the
initial speed of the cars. (b) How much work did the ac-
tor do? (c) State the relationship between the process
described here and the process in Problem 22.

24. A 7.00-kg bowling ball collides head-on with a 2.00-kg
bowling pin. The pin flies forward with a speed of 
3.00 m/s. If the ball continues forward with a speed of
1.80 m/s, what was the initial speed of the ball? Ignore
rotation of the ball.

25. A neutron in a reactor makes an elastic head-on colli-
sion with the nucleus of a carbon atom initially at rest.
(a) What fraction of the neutron’s kinetic energy is
transferred to the carbon nucleus? (b) If the initial ki-
netic energy of the neutron is 1.60 � 10�13 J, find its fi-
nal kinetic energy and the kinetic energy of the carbon
nucleus after the collision. (The mass of the carbon nu-
cleus is about 12.0 times greater than the mass of the
neutron.)

26. Consider a frictionless track ABC as shown in Figure
P9.26. A block of mass m1 � 5.00 kg is released from A.
It makes a head-on elastic collision at B with a block of
mass m 2 � 10.0 kg that is initially at rest. Calculate the
maximum height to which m 1 rises after the collision.

0.650, what was the speed of the bullet immediately be-
fore impact?

28. A 7.00-g bullet, when fired from a gun into a 1.00-kg
block of wood held in a vise, would penetrate the block
to a depth of 8.00 cm. This block of wood is placed on a
frictionless horizontal surface, and a 7.00-g bullet is
fired from the gun into the block. To what depth will
the bullet penetrate the block in this case?

Section 9.5 Two-Dimensional Collisions
29. A 90.0-kg fullback running east with a speed of 5.00 m/s

is tackled by a 95.0-kg opponent running north with a
speed of 3.00 m/s. If the collision is perfectly inelastic,
(a) calculate the speed and direction of the players just
after the tackle and (b) determine the energy lost as a
result of the collision. Account for the missing energy.

30. The mass of the blue puck in Figure P9.30 is 20.0%
greater than the mass of the green one. Before collid-
ing, the pucks approach each other with equal and op-
posite momenta, and the green puck has an initial
speed of 10.0 m/s. Find the speeds of the pucks after
the collision if half the kinetic energy is lost during the
collision.

WEB

31. Two automobiles of equal mass approach an intersec-
tion. One vehicle is traveling with velocity 13.0 m/s to-
ward the east and the other is traveling north with a
speed of v2i . Neither driver sees the other. The vehicles
collide in the intersection and stick together, leaving
parallel skid marks at an angle of 55.0° north of east.
The speed limit for both roads is 35 mi/h, and the dri-
ver of the northward-moving vehicle claims he was
within the speed limit when the collision occurred. Is
he telling the truth?

27. A 12.0-g bullet is fired into a 100-g wooden block ini-
tially at rest on a horizontal surface. After impact, the
block slides 7.50 m before coming to rest. If the coeffi-
cient of friction between the block and the surface is

Figure P9.30

Figure P9.26

Figure P9.21
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32. A proton, moving with a velocity of vii, collides elasti-
cally with another proton that is initially at rest. If the
two protons have equal speeds after the collision, find
(a) the speed of each proton after the collision in terms
of vi and (b) the direction of the velocity vectors after
the collision.

33. A billiard ball moving at 5.00 m/s strikes a stationary
ball of the same mass. After the collision, the first ball
moves at 4.33 m/s and at an angle of 30.0° with respect
to the original line of motion. Assuming an elastic colli-
sion (and ignoring friction and rotational motion), find
the struck ball’s velocity.

34. A 0.300-kg puck, initially at rest on a horizontal, fric-
tionless surface, is struck by a 0.200-kg puck moving ini-
tially along the x axis with a speed of 2.00 m/s. After the
collision, the 0.200-kg puck has a speed of 1.00 m/s at
an angle of 
 � 53.0° to the positive x axis (see Fig.
9.14). (a) Determine the velocity of the 0.300-kg puck
after the collision. (b) Find the fraction of kinetic en-
ergy lost in the collision.

35. A 3.00-kg mass with an initial velocity of 5.00i m/s col-
lides with and sticks to a 2.00-kg mass with an initial ve-
locity of � 3.00j m/s. Find the final velocity of the com-
posite mass.

36. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed of 5.00 m/s. After
the collision, the orange disk moves along a direction
that makes an angle of 37.0° with its initial direction of
motion, and the velocity of the yellow disk is perpendic-
ular to that of the orange disk (after the collision). De-
termine the final speed of each disk.

37. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed vi . After the colli-
sion, the orange disk moves along a direction that
makes an angle 
 with its initial direction of motion,
and the velocity of the yellow disk is perpendicular to
that of the orange disk (after the collision). Determine
the final speed of each disk.

38. During the battle of Gettysburg, the gunfire was so in-
tense that several bullets collided in midair and fused
together. Assume a 5.00-g Union musket ball was mov-
ing to the right at a speed of 250 m/s, 20.0° above the
horizontal, and that a 3.00-g Confederate ball was mov-
ing to the left at a speed of 280 m/s, 15.0° above the
horizontal. Immediately after they fuse together, what is
their velocity?

39. An unstable nucleus of mass 17.0 � 10�27 kg initially at
rest disintegrates into three particles. One of the parti-
cles, of mass 5.00 � 10�27 kg, moves along the y axis
with a velocity of 6.00 � 106 m/s. Another particle, of
mass 8.40 � 10�27 kg, moves along the x axis with a
speed of 4.00 � 106 m/s. Find (a) the velocity of the

third particle and (b) the total kinetic energy increase
in the process.

Section 9.6 The Center of Mass
40. Four objects are situated along the y axis as follows: A

2.00-kg object is at � 3.00 m, a 3.00-kg object is at
� 2.50 m, a 2.50-kg object is at the origin, and a 4.00-kg
object is at � 0.500 m. Where is the center of mass of
these objects?

41. A uniform piece of sheet steel is shaped as shown in Fig-
ure P9.41. Compute the x and y coordinates of the cen-
ter of mass of the piece.

WEB

42. The mass of the Earth is 5.98 � 1024 kg, and the mass of
the Moon is 7.36 � 1022 kg. The distance of separation,
measured between their centers, is 3.84 � 108 m. Lo-
cate the center of mass of the Earth–Moon system as
measured from the center of the Earth.

43. A water molecule consists of an oxygen atom with two
hydrogen atoms bound to it (Fig. P9.43). The angle be-
tween the two bonds is 106°. If the bonds are 0.100 nm
long, where is the center of mass of the molecule?

Figure P9.43

Figure P9.41
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44. A 0.400-kg mass m1 has position r1 � 12.0j cm. A 0.800-
kg mass m2 has position r2 � � 12.0i cm. Another
0.800-kg mass m3 has position r3 � (12.0i � 12.0j) cm.
Make a drawing of the masses. Start from the origin
and, to the scale 1 cm � 1 kg� cm, construct the vector
m1r1 , then the vector m1r1 � m2r2 , then the vector m1r1
� m2r2 � m3r3 , and at last rCM � (m1r1 � m2r2 �
m3r3)/(m1 � m2 � m3). Observe that the head of the
vector rCM indicates the position of the center of mass.

45. A rod of length 30.0 cm has linear density (mass-per-
length) given by

where x is the distance from one end, measured in me-
ters. (a) What is the mass of the rod? (b) How far from
the x � 0 end is its center of mass?

Section 9.7 Motion of a System of Particles
46. Consider a system of two particles in the xy plane: 

m1 � 2.00 kg is at r1 � (1.00i � 2.00j) m and has ve-
locity (3.00i � 0.500j) m/s; m2 � 3.00 kg is at r2 �
(� 4.00i � 3.00j) m and has velocity (3.00i � 2.00j) m/s.
(a) Plot these particles on a grid or graph paper. Draw
their position vectors and show their velocities. (b) Find
the position of the center of mass of the system and mark
it on the grid. (c) Determine the velocity of the center of
mass and also show it on the diagram. (d) What is the to-
tal linear momentum of the system?

47. Romeo (77.0 kg) entertains Juliet (55.0 kg) by playing
his guitar from the rear of their boat at rest in still wa-
ter, 2.70 m away from Juliet who is in the front of the
boat. After the serenade, Juliet carefully moves to the
rear of the boat (away from shore) to plant a kiss on
Romeo’s cheek. How far does the 80.0-kg boat move to-
ward the shore it is facing?

48. Two masses, 0.600 kg and 0.300 kg, begin uniform mo-
tion at the same speed, 0.800 m/s, from the origin at 
t � 0 and travel in the directions shown in Figure P9.48.
(a) Find the velocity of the center of mass in unit–
vector notation. (b) Find the magnitude and direction

� � 50.0 g/m � 20.0x g/m2

of the velocity of the center of mass. (c) Write the posi-
tion vector of the center of mass as a function of time.

49. A 2.00-kg particle has a velocity of (2.00i � 3.00j) m/s,
and a 3.00-kg particle has a velocity of (1.00i � 6.00j)
m/s. Find (a) the velocity of the center of mass and 
(b) the total momentum of the system.

50. A ball of mass 0.200 kg has a velocity of 1.50i m/s; a ball
of mass 0.300 kg has a velocity of � 0.400i m/s. They
meet in a head-on elastic collision. (a) Find their veloci-
ties after the collision. (b) Find the velocity of their cen-
ter of mass before and after the collision.

(Optional)
Section 9.8 Rocket Propulsion

51. The first stage of a Saturn V space vehicle consumes
fuel and oxidizer at the rate of 1.50 � 104 kg/s, with an
exhaust speed of 2.60 � 103 m/s. (a) Calculate the
thrust produced by these engines. (b) Find the initial
acceleration of the vehicle on the launch pad if its ini-
tial mass is 3.00 � 106 kg. [Hint: You must include the
force of gravity to solve part (b).]

52. A large rocket with an exhaust speed of ve � 3 000 m/s
develops a thrust of 24.0 million newtons. (a) How
much mass is being blasted out of the rocket exhaust
per second? (b) What is the maximum speed the rocket
can attain if it starts from rest in a force-free environ-
ment with ve � 3.00 km/s and if 90.0% of its initial mass
is fuel and oxidizer?

53. A rocket for use in deep space is to have the capability
of boosting a total load (payload plus rocket frame and
engine) of 3.00 metric tons to a speed of 10 000 m/s.
(a) It has an engine and fuel designed to produce an
exhaust speed of 2 000 m/s. How much fuel plus oxi-
dizer is required? (b) If a different fuel and engine de-
sign could give an exhaust speed of 5 000 m/s, what
amount of fuel and oxidizer would be required for the
same task?

54. A rocket car has a mass of 2 000 kg unfueled and a mass
of 5 000 kg when completely fueled. The exhaust veloc-
ity is 2 500 m/s. (a) Calculate the amount of fuel used
to accelerate the completely fueled car from rest to 
225 m/s (about 500 mi/h). (b) If the burn rate is con-
stant at 30.0 kg/s, calculate the time it takes the car to
reach this speed. Neglect friction and air resistance.

ADDITIONAL PROBLEMS

55. Review Problem. A 60.0-kg person running at an ini-
tial speed of 4.00 m/s jumps onto a 120-kg cart initially
at rest (Fig. P9.55). The person slides on the cart’s top
surface and finally comes to rest relative to the cart. The
coefficient of kinetic friction between the person and
the cart is 0.400. Friction between the cart and ground
can be neglected. (a) Find the final velocity of the per-
son and cart relative to the ground. (b) Find the fric-
tional force acting on the person while he is slidingFigure P9.48

0.600 kg 0.300 kg

45.0° 45.0°

y

x

WEB
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across the top surface of the cart. (c) How long does
the frictional force act on the person? (d) Find the
change in momentum of the person and the change in
momentum of the cart. (e) Determine the displace-
ment of the person relative to the ground while he is
sliding on the cart. (f) Determine the displacement of
the cart relative to the ground while the person is slid-
ing. (g) Find the change in kinetic energy of the per-
son. (h) Find the change in kinetic energy of the cart.
(i) Explain why the answers to parts (g) and (h) differ.
(What kind of collision is this, and what accounts for
the loss of mechanical energy?)

58. A bullet of mass m is fired into a block of mass M that is
initially at rest at the edge of a frictionless table of
height h (see Fig. P9.57). The bullet remains in the
block, and after impact the block lands a distance d
from the bottom of the table. Determine the initial
speed of the bullet.

59. An 80.0-kg astronaut is working on the engines of his
ship, which is drifting through space with a constant ve-
locity. The astronaut, wishing to get a better view of the
Universe, pushes against the ship and much later finds
himself 30.0 m behind the ship and at rest with respect
to it. Without a thruster, the only way to return to the
ship is to throw his 0.500-kg wrench directly away from
the ship. If he throws the wrench with a speed of 
20.0 m/s relative to the ship, how long does it take the
astronaut to reach the ship?

60. A small block of mass m1 � 0.500 kg is released from
rest at the top of a curve-shaped frictionless wedge of
mass m2 � 3.00 kg, which sits on a frictionless horizon-
tal surface, as shown in Figure P9.60a. When the block
leaves the wedge, its velocity is measured to be 4.00 m/s
to the right, as in Figure P9.60b. (a) What is the velocity
of the wedge after the block reaches the horizontal sur-
face? (b) What is the height h of the wedge?

56. A golf ball (m � 46.0 g) is struck a blow that makes an
angle of 45.0° with the horizontal. The ball lands 200 m
away on a flat fairway. If the golf club and ball are in
contact for 7.00 ms, what is the average force of impact?
(Neglect air resistance.)

57. An 8.00-g bullet is fired into a 2.50-kg block that is ini-
tially at rest at the edge of a frictionless table of height
1.00 m (Fig. P9.57). The bullet remains in the block,
and after impact the block lands 2.00 m from the bot-
tom of the table. Determine the initial speed of the
bullet. Figure P9.60

Figure P9.57 Problems 57 and 58.

Figure P9.55

60.0 kg 4.00 m/s

120 kg

1.00 m

8.00 g

2.50 kg

2.00 m

m1

(a)

h

(b)

v2
4.00 m/s

m2m2
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61. Tarzan, whose mass is 80.0 kg, swings from a 3.00-m vine
that is horizontal when he starts. At the bottom of his
arc, he picks up 60.0-kg Jane in a perfectly inelastic col-
lision. What is the height of the highest tree limb they
can reach on their upward swing?

62. A jet aircraft is traveling at 500 mi/h (223 m/s) in hori-
zontal flight. The engine takes in air at a rate of 
80.0 kg/s and burns fuel at a rate of 3.00 kg/s. If the ex-
haust gases are ejected at 600 m/s relative to the air-
craft, find the thrust of the jet engine and the delivered
horsepower.

63. A 75.0-kg firefighter slides down a pole while a constant
frictional force of 300 N retards her motion. A horizon-
tal 20.0-kg platform is supported by a spring at the bot-
tom of the pole to cushion the fall. The firefighter starts
from rest 4.00 m above the platform, and the spring
constant is 4 000 N/m. Find (a) the firefighter’s speed
just before she collides with the platform and (b) the
maximum distance the spring is compressed. (Assume
the frictional force acts during the entire motion.)

64. A cannon is rigidly attached to a carriage, which can
move along horizontal rails but is connected to a post
by a large spring, initially unstretched and with force
constant , as shown in Figure
P9.64. The cannon fires a 200-kg projectile at a velocity
of 125 m/s directed 45.0° above the horizontal. (a) If
the mass of the cannon and its carriage is 5 000 kg, find
the recoil speed of the cannon. (b) Determine the max-
imum extension of the spring. (c) Find the maximum
force the spring exerts on the carriage. (d) Consider
the system consisting of the cannon, carriage, and shell.
Is the momentum of this system conserved during the
firing? Why or why not?

k � 2.00 � 104 N/m

66. Two gliders are set in motion on an air track. A spring
of force constant k is attached to the near side of one
glider. The first glider of mass m1 has a velocity of v1 ,
and the second glider of mass m2 has a velocity of v2 , as
shown in Figure P9.66 (v1 � v2). When m1 collides with
the spring attached to m2 and compresses the spring to
its maximum compression xm , the velocity of the gliders
is v. In terms of v1 , v2 , m1 , m2 , and k, find (a) the veloc-
ity v at maximum compression, (b) the maximum com-
pression xm , and (c) the velocities of each glider after
m1 has lost contact with the spring.

Figure P9.66

Figure P9.65

Figure P9.64

67. Sand from a stationary hopper falls onto a moving con-
veyor belt at the rate of 5.00 kg/s, as shown in Figure
P9.67. The conveyor belt is supported by frictionless
rollers and moves at a constant speed of 0.750 m/s un-
der the action of a constant horizontal external force
Fext supplied by the motor that drives the belt. Find 
(a) the sand’s rate of change of momentum in the hori-
zontal direction, (b) the force of friction exerted by the
belt on the sand, (c) the external force Fext, (d) the
work done by Fext in 1 s, and (e) the kinetic energy ac-
quired by the falling sand each second due to the
change in its horizontal motion. (f) Why are the an-
swers to parts (d) and (e) different?

65. A chain of length L and total mass M is released from
rest with its lower end just touching the top of a table,
as shown in Figure P9.65a. Find the force exerted by the
table on the chain after the chain has fallen through a
distance x, as shown in Figure P9.65b. (Assume each
link comes to rest the instant it reaches the table.)

45.0°

L – x

x

L

(a) (b)

v 1

v 2

m 1

m 2
k
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tween the boat and the water, (a) describe the subse-
quent motion of the system (child plus boat). (b) Where
is the child relative to the pier when he reaches the far end
of the boat? (c) Will he catch the turtle? (Assume he can
reach out 1.00 m from the end of the boat.)

70. A student performs a ballistic pendulum experiment,
using an apparatus similar to that shown in Figure
9.11b. She obtains the following average data: h �
8.68 cm, m1 � 68.8 g, and m2 � 263 g. The symbols re-
fer to the quantities in Figure 9.11a. (a) Determine the
initial speed v1i of the projectile. (b) In the second part
of her experiment she is to obtain v1i by firing the same
projectile horizontally (with the pendulum removed
from the path) and measuring its horizontal displace-
ment x and vertical displacement y (Fig. P9.70). Show
that the initial speed of the projectile is related to x and
y through the relationship

What numerical value does she obtain for v1i on the ba-
sis of her measured values of x � 257 cm and y �
85.3 cm? What factors might account for the difference
in this value compared with that obtained in part (a)?

v1i �
x

√2y/g

68. A rocket has total mass Mi � 360 kg, including 330 kg
of fuel and oxidizer. In interstellar space it starts from
rest, turns on its engine at time t � 0, and puts out ex-
haust with a relative speed of ve � 1 500 m/s at the con-
stant rate k � 2.50 kg/s. Although the fuel will last for
an actual burn time of 330 kg/(2.5 kg/s) � 132 s, de-
fine a “projected depletion time” as Tp � Mi/k �
360 kg/(2.5 kg/s) � 144 s. (This would be the burn
time if the rocket could use its payload, fuel tanks, and
even the walls of the combustion chamber as fuel.) 
(a) Show that during the burn the velocity of the rocket
is given as a function of time by

(b) Make a graph of the velocity of the rocket as a func-
tion of time for times running from 0 to 132 s. (c) Show
that the acceleration of the rocket is

(d) Graph the acceleration as a function of time. 
(e) Show that the displacement of the rocket from its
initial position at t  � 0 is

(f) Graph the displacement during the burn.
69. A 40.0-kg child stands at one end of a 70.0-kg boat that

is 4.00 m in length (Fig. P9.69). The boat is initially
3.00 m from the pier. The child notices a turtle on a
rock near the far end of the boat and proceeds to walk
to that end to catch the turtle. Neglecting friction be-

x(t) � ve(Tp � t)ln(1 � t/Tp) � ve t

a(t) � ve/(Tp � t)

v(t) � �ve ln(1 � t/Tp)

Figure P9.70

Figure P9.69

Figure P9.67

0.750 m/s

Fext

4.00 m
3.00 m

y

v1i

x

71. A 5.00-g bullet moving with an initial speed of 400 m/s
is fired into and passes through a 1.00-kg block, as
shown in Figure P9.71. The block, initially at rest on a
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ANSWERS TO QUICK QUIZZES

ball is hardest to catch when it has the same speed as the
baseball.

9.3 (c) and (e). Object 2 has a greater acceleration because
of its smaller mass. Therefore, it takes less time to travel
the distance d. Thus, even though the force applied to
objects 1 and 2 is the same, the change in momentum is
less for object 2 because 	t is smaller. Therefore, be-
cause the initial momenta were the same (both zero), 
p 1 � p 2 . The work W � Fd done on both objects is the
same because both F and d are the same in the two
cases. Therefore, K1 � K2 .

9.4 Because the passenger is brought from the car’s initial
speed to a full stop, the change in momentum (the im-
pulse) is the same regardless of whether the passenger is
stopped by dashboard, seatbelt, or airbag. However, the
dashboard stops the passenger very quickly in a front-
end collision. The seatbelt takes somewhat more time.
Used along with the seatbelt, the airbag can extend the
passenger’s stopping time further, notably for his head,
which would otherwise snap forward. Therefore, the

9.1 (d). Two identical objects (m1 � m2) traveling in the
same direction at the same speed (v1 � v2) have the
same kinetic energies and the same momenta. However,
this is not true if the two objects are moving at the same
speed but in different directions. In the latter case, K1 �
K2 , but the differing velocity directions indicate that

because momentum is a vector quantity.
It also is possible for particular combinations of

masses and velocities to satisfy K1 � K2 but not p 1 � p 2 .
For example, a 1-kg object moving at 2 m/s has the
same kinetic energy as a 4-kg object moving at 1 m/s,
but the two clearly do not have the same momenta.

9.2 (b), (c), (a). The slower the ball, the easier it is to catch.
If the momentum of the medicine ball is the same as the
momentum of the baseball, the speed of the medicine
ball must be 1/10 the speed of the baseball because the
medicine ball has 10 times the mass. If the kinetic ener-
gies are the same, the speed of the medicine ball must
be the speed of the baseball because of the
squared speed term in the formula for K. The medicine

1/√10

p1 � p 2

Figure P9.71

72. Two masses m and 3m are moving toward each other
along the x axis with the same initial speeds vi . Mass m is
traveling to the left, while mass 3m is traveling to the
right. They undergo a head-on elastic collision and
each rebounds along the same line as it approached.
Find the final speeds of the masses.

73. Two masses m and 3m are moving toward each other
along the x axis with the same initial speeds vi . Mass m is
traveling to the left, while mass 3m is traveling to the
right. They undergo an elastic glancing collision such

frictionless, horizontal surface, is connected to a spring
of force constant 900 N/m. If the block moves 5.00 cm
to the right after impact, find (a) the speed at which the
bullet emerges from the block and (b) the energy lost
in the collision.

v5.00 cm

400 m/s

that mass m is moving downward after the collision at
right angles from its initial direction. (a) Find the final
speeds of the two masses. (b) What is the angle 
 at
which the mass 3m is scattered?

74. Review Problem. There are (one can say) three co-
equal theories of motion: Newton’s second law, stating
that the total force on an object causes its acceleration;
the work–kinetic energy theorem, stating that the total
work on an object causes its change in kinetic energy;
and the impulse–momentum theorem, stating that the
total impulse on an object causes its change in momen-
tum. In this problem, you compare predictions of the
three theories in one particular case. A 3.00-kg object
has a velocity of 7.00j m/s. Then, a total force 12.0i N
acts on the object for 5.00 s. (a) Calculate the object’s fi-
nal velocity, using the impulse–momentum theorem.
(b) Calculate its acceleration from a � (vf � vi)/t. 
(c) Calculate its acceleration from a � �F/m. (d) Find
the object’s vector displacement from 
(e) Find the work done on the object from W � F � r.
(f) Find the final kinetic energy from 
(g) Find the final kinetic energy from 

75. A rocket has a total mass of Mi � 360 kg, including 
330 kg of fuel and oxidizer. In interstellar space it starts
from rest. Its engine is turned on at time t � 0, and it
puts out exhaust with a relative speed of ve � 1 500 m/s
at the constant rate 2.50 kg/s. The burn lasts until the
fuel runs out at time 330 kg/(2.5 kg/s) � 132 s. Set up
and carry out a computer analysis of the motion accord-
ing to Euler’s method. Find (a) the final velocity of the
rocket and (b) the distance it travels during the burn.

1
2 mvi 

2 � W.

1
2 mvf 

2 � 1
2 mvf � vf .

r � vit � 1
2a t2.
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dashboard applies the greatest force, the seatbelt an in-
termediate force, and the airbag the least force. Airbags
are designed to work in conjunction with seatbelts.
Make sure you wear your seatbelt at all times while in a
moving vehicle.

9.5 If we define the ball as our system, momentum is not
conserved. The ball’s speed—and hence its momen-
tum—continually increase. This is consistent with the
fact that the gravitational force is external to this cho-
sen system. However, if we define our system as the ball
and the Earth, momentum is conserved, for the Earth
also has momentum because the ball exerts a gravita-
tional force on it. As the ball falls, the Earth moves up
to meet it (although the Earth’s speed is on the order
of 1025 times less than that of the ball!). This upward
movement changes the Earth’s momentum. The
change in the Earth’s momentum is numerically equal
to the change in the ball’s momentum but is in the op-
posite direction. Therefore, the total momentum of the
Earth–ball system is conserved. Because the Earth’s
mass is so great, its upward motion is negligibly small.

9.6 (c). The greatest impulse (greatest change in momen-
tum) is imparted to the Frisbee when the skater reverses
its momentum vector by catching it and throwing it
back. Since this is when the skater imparts the greatest
impulse to the Frisbee, then this also is when the Frisbee
imparts the greatest impulse to her.

9.7 Both are equally bad. Imagine watching the collision
from a safer location alongside the road. As the “crush
zones” of the two cars are compressed, you will see that

the actual point of contact is stationary. You would see
the same thing if your car were to collide with a solid
wall.

9.8 No, such movement can never occur if we assume the
collisions are elastic. The momentum of the system be-
fore the collision is mv, where m is the mass of ball 1 and
v is its speed just before the collision. After the collision,
we would have two balls, each of mass m and moving
with a speed of v/2. Thus, the total momentum of the
system after the collision would be m(v/2) � m(v/2) �
mv. Thus, momentum is conserved. However, the kinetic
energy just before the collision is and that 

after the collision is 
Thus, kinetic energy is not conserved. Both momentum
and kinetic energy are conserved only when one ball
moves out when one ball is released, two balls move out
when two are released, and so on.

9.9 No they will not! The piece with the handle will have less
mass than the piece made up of the end of the bat. To
see why this is so, take the origin of coordinates as the
center of mass before the bat was cut. Replace each cut
piece by a small sphere located at the center of mass for
each piece. The sphere representing the handle piece is
farther from the origin, but the product of lesser mass
and greater distance balances the product of greater
mass and lesser distance for the end piece:

K f � 1
2 m(v/2)2 � 1

2 m(v/2)2 � 1
4mv2.

K i � 1
2 mv2,
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such a strange characteristic be incor-
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player? (George Semple)
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10.1 Angular Displacement, Velocity, and Acceleration 293

hen an extended object, such as a wheel, rotates about its axis, the motion
cannot be analyzed by treating the object as a particle because at any given

time different parts of the object have different linear velocities and linear
accelerations. For this reason, it is convenient to consider an extended object as a
large number of particles, each of which has its own linear velocity and linear
acceleration.

In dealing with a rotating object, analysis is greatly simplified by assuming that
the object is rigid. A rigid object is one that is nondeformable—that is, it is an
object in which the separations between all pairs of particles remain constant. All
real bodies are deformable to some extent; however, our rigid-object model is use-
ful in many situations in which deformation is negligible.

In this chapter, we treat the rotation of a rigid object about a fixed axis, which
is commonly referred to as pure rotational motion.

ANGULAR DISPLACEMENT, VELOCITY,
AND ACCELERATION

Figure 10.1 illustrates a planar (flat), rigid object of arbitrary shape confined to
the xy plane and rotating about a fixed axis through O. The axis is perpendicular
to the plane of the figure, and O is the origin of an xy coordinate system. Let us
look at the motion of only one of the millions of “particles” making up this object.
A particle at P is at a fixed distance r from the origin and rotates about it in a circle
of radius r. (In fact, every particle on the object undergoes circular motion about
O.) It is convenient to represent the position of P with its polar coordinates (r, �),
where r is the distance from the origin to P and � is measured counterclockwise from
some preferred direction—in this case, the positive x axis. In this representation,
the only coordinate that changes in time is the angle �; r remains constant. (In
cartesian coordinates, both x and y vary in time.) As the particle moves along the
circle from the positive x axis (� � 0) to P, it moves through an arc of length s,
which is related to the angular position � through the relationship

(10.1a)

(10.1b)

It is important to note the units of � in Equation 10.1b. Because � is the ratio
of an arc length and the radius of the circle, it is a pure number. However, we com-
monly give � the artificial unit radian (rad), where

� �
s
r

s � r�

10.1

one radian is the angle subtended by an arc length equal to the radius of the
arc.

W

Because the circumference of a circle is 2�r, it follows from Equation 10.1b that
360° corresponds to an angle of 2�r/r rad � 2� rad (one revolution). Hence, 
1 rad � 360°/2� � 57.3°. To convert an angle in degrees to an angle in radians,
we use the fact that 2� rad � 360°:

For example, 60° equals �/3 rad, and 45° equals �/4 rad.

� (rad) �
�

180°
 � (deg)

Radian

Rigid object

Figure 10.1 A rigid object rotat-
ing about a fixed axis through O
perpendicular to the plane of the
figure. (In other words, the axis of
rotation is the z axis.) A particle at
P rotates in a circle of radius r cen-
tered at O.

y

x

P
r

O

θ
s
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As the particle in question on our rigid object travels from position P to position
Q in a time �t as shown in Figure 10.2, the radius vector sweeps out an angle �� � �f
� �i . This quantity �� is defined as the angular displacement of the particle:

(10.2)

We define the average angular speed (omega) as the ratio of this angular dis-
placement to the time interval �t:

(10.3)

In analogy to linear speed, the instantaneous angular speed � is defined as
the limit of the ratio ��/�t as �t approaches zero:

(10.4)

Angular speed has units of radians per second (rad/s), or rather second�1

(s�1) because radians are not dimensional. We take � to be positive when � is in-
creasing (counterclockwise motion) and negative when � is decreasing (clockwise
motion).

If the instantaneous angular speed of an object changes from �i to �f in the
time interval �t, the object has an angular acceleration. The average angular ac-
celeration (alpha) of a rotating object is defined as the ratio of the change in
the angular speed to the time interval �t :

(10.5)� �
�f � �i

tf � ti
�

��

�t

�

� � lim
�t:0

 
��

�t
�

d�

dt

� �
�f � �i

tf � ti
�

��

�t

�

�� � �f � �i

Average angular acceleration

Instantaneous angular speed

Average angular speed

In a short track event, such as a 200-m or
400-m sprint, the runners begin from stag-
gered positions on the track. Why don’t
they all begin from the same line?

x

y

Q ,t f

P, ti
r

θf

θi

O

θ

θ

Figure 10.2 A particle on a rotat-
ing rigid object moves from P to Q
along the arc of a circle. In the
time interval the ra-
dius vector sweeps out an angle
�� � �f � �i .

�t � tf � ti ,
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In analogy to linear acceleration, the instantaneous angular acceleration is
defined as the limit of the ratio ��/�t as �t approaches zero:

(10.6)

Angular acceleration has units of radians per second squared (rad/s2), or just sec-
ond�2 (s�2). Note that � is positive when the rate of counterclockwise rotation is
increasing or when the rate of clockwise rotation is decreasing.

When rotating about a fixed axis, every particle on a rigid object rotates
through the same angle and has the same angular speed and the same an-
gular acceleration. That is, the quantities �, �, and � characterize the rotational
motion of the entire rigid object. Using these quantities, we can greatly simplify
the analysis of rigid-body rotation.

Angular position (�), angular speed (�), and angular acceleration (�) are
analogous to linear position (x), linear speed (v), and linear acceleration (a). The
variables �, �, and � differ dimensionally from the variables x, v, and a only by a
factor having the unit of length.

We have not specified any direction for � and �. Strictly speaking, these
variables are the magnitudes of the angular velocity and the angular accelera-
tion vectors � and �, respectively, and they should always be positive. Because
we are considering rotation about a fixed axis, however, we can indicate the di-
rections of the vectors by assigning a positive or negative sign to � and �, as dis-
cussed earlier with regard to Equations 10.4 and 10.6. For rotation about a fixed
axis, the only direction that uniquely specifies the rotational motion is the di-
rection along the axis of rotation. Therefore, the directions of � and � are
along this axis. If an object rotates in the xy plane as in Figure 10.1, the direc-
tion of � is out of the plane of the diagram when the rotation is counterclock-
wise and into the plane of the diagram when the rotation is clockwise. To illus-
trate this convention, it is convenient to use the right-hand rule demonstrated in
Figure 10.3. When the four fingers of the right hand are wrapped in the direc-
tion of rotation, the extended right thumb points in the direction of �. The di-
rection of � follows from its definition d�/dt. It is the same as the direction of
� if the angular speed is increasing in time, and it is antiparallel to � if the an-
gular speed is decreasing in time.

� � lim
�t:0

 
��

�t
�

d�

dt
Instantaneous angular
acceleration

ω

ω

Figure 10.3 The right-hand rule for deter-
mining the direction of the angular velocity
vector.
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Describe a situation in which � � 0 and � and � are antiparallel.

ROTATIONAL KINEMATICS: ROTATIONAL MOTION
WITH CONSTANT ANGULAR ACCELERATION

In our study of linear motion, we found that the simplest form of accelerated mo-
tion to analyze is motion under constant linear acceleration. Likewise, for rota-
tional motion about a fixed axis, the simplest accelerated motion to analyze is mo-
tion under constant angular acceleration. Therefore, we next develop kinematic
relationships for this type of motion. If we write Equation 10.6 in the form d� �
� dt, and let ti � 0 and tf � t, we can integrate this expression directly:

(for constant �) (10.7)

Substituting Equation 10.7 into Equation 10.4 and integrating once more we
obtain

(for constant �) (10.8)

If we eliminate t from Equations 10.7 and 10.8, we obtain

(for constant �) (10.9)

Notice that these kinematic expressions for rotational motion under constant an-
gular acceleration are of the same form as those for linear motion under constant
linear acceleration with the substitutions x : �, v : �, and a : �. Table 10.1
compares the kinematic equations for rotational and linear motion.

�f 

2 � �i 

2 	 2�(�f � �i)

�f � �i 	 �it 	 1
2�t2

�f � �i 	 �t

10.2

Quick Quiz 10.1

Rotating WheelEXAMPLE 10.1
Solution Because the angular acceleration and the angu-
lar speed are both positive, we can be sure our answer must
be greater than 2.00 rad/s.

We could also obtain this result using Equation 10.9 and the
results of part (a). Try it! You also may want to see if you can
formulate the linear motion analog to this problem.

Exercise Find the angle through which the wheel rotates
between t � 2.00 s and t � 3.00 s.

Answer 10.8 rad.

9.00 rad/s�

�f � �i 	 �t � 2.00 rad/s 	 (3.50 rad/s2)(2.00 s)

A wheel rotates with a constant angular acceleration of 
3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at
ti � 0, (a) through what angle does the wheel rotate in 2.00 s?

Solution We can use Figure 10.2 to represent the wheel,
and so we do not need a new drawing. This is a straightfor-
ward application of an equation from Table 10.1:

(b) What is the angular speed at t � 2.00 s?

1.75 rev    �
630°

360°/rev
�

630°   � 11.0 rad � (11.0 rad)(57.3°/rad) �

	 1
2 (3.50 rad/s2)(2.00 s)2

�f � �i � �it 	 1
2�t2 � (2.00 rad/s)(2.00 s)

Rotational kinematic equations

7.2
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ANGULAR AND LINEAR QUANTITIES
In this section we derive some useful relationships between the angular speed and
acceleration of a rotating rigid object and the linear speed and acceleration of an
arbitrary point in the object. To do so, we must keep in mind that when a rigid ob-
ject rotates about a fixed axis, as in Figure 10.4, every particle of the object moves
in a circle whose center is the axis of rotation.

We can relate the angular speed of the rotating object to the tangential speed
of a point P on the object. Because point P moves in a circle, the linear velocity
vector v is always tangent to the circular path and hence is called tangential velocity.
The magnitude of the tangential velocity of the point P is by definition the tangen-
tial speed v � ds/dt, where s is the distance traveled by this point measured along
the circular path. Recalling that s � r� (Eq. 10.1a) and noting that r is constant,
we obtain

Because d�/dt � � (see Eq. 10.4), we can say

(10.10)

That is, the tangential speed of a point on a rotating rigid object equals the per-
pendicular distance of that point from the axis of rotation multiplied by the angu-
lar speed. Therefore, although every point on the rigid object has the same angu-
lar speed, not every point has the same linear speed because r is not the same for
all points on the object. Equation 10.10 shows that the linear speed of a point on
the rotating object increases as one moves outward from the center of rotation, as
we would intuitively expect. The outer end of a swinging baseball bat moves much
faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tan-
gential acceleration of the point P by taking the time derivative of v:

(10.11)

That is, the tangential component of the linear acceleration of a point on a rotat-
ing rigid object equals the point’s distance from the axis of rotation multiplied by
the angular acceleration.

at � r�

at �
dv
dt

� r  
d�

dt

v � r�

v �
ds
dt

� r  
d�

dt

10.3

Relationship between linear and
angular speed

TABLE 10.1 Kinematic Equations for Rotational and Linear Motion
Under Constant Acceleration

Rotational Motion About a Fixed Axis Linear Motion

�f � �i 	 �t vf � vi 	 at
�f � �i 	 �it 	 �t2 xf � xi 	 vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

1
2

1
2

Relationship between linear and
angular acceleration

y

x

v

P

r

θ

O

Figure 10.4 As a rigid object ro-
tates about the fixed axis through
O, the point P has a linear velocity
v that is always tangent to the circu-
lar path of radius r.

QuickLab
Spin a tennis ball or basketball and
watch it gradually slow down and
stop. Estimate � and at as accurately
as you can.
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In Section 4.4 we found that a point rotating in a circular path undergoes a
centripetal, or radial, acceleration ar of magnitude v2/r directed toward the center
of rotation (Fig. 10.5). Because v � r� for a point P on a rotating object, we can
express the radial acceleration of that point as

(10.12)

The total linear acceleration vector of the point is a � at 	 ar . (at describes
the change in how fast the point is moving, and ar represents the change in its di-
rection of travel.) Because a is a vector having a radial and a tangential compo-
nent, the magnitude of a for the point P on the rotating rigid object is

(10.13)

When a wheel of radius R rotates about a fixed axis, do all points on the wheel have (a) the
same angular speed and (b) the same linear speed? If the angular speed is constant and
equal to �, describe the linear speeds and linear accelerations of the points located at 
(c) r � 0, (d) r � R/2, and (e) r � R, all measured from the center of the wheel.

Quick Quiz 10.2

a � √at 2 	 ar 

2 � √r 2�2 	 r 2�4 � r √�2 	 �4

ar �
v2

r
� r�2

CD PlayerEXAMPLE 10.2

�  5.4 
 102 rev/min

  � (56.5 rad/s)� 1
2�  rev/rad�(60 s/min)

On a compact disc, audio information is stored in a series of
pits and flat areas on the surface of the disc. The information
is stored digitally, and the alternations between pits and flat
areas on the surface represent binary ones and zeroes to be
read by the compact disc player and converted back to sound
waves. The pits and flat areas are detected by a system consist-
ing of a laser and lenses. The length of a certain number of
ones and zeroes is the same everywhere on the disc, whether
the information is near the center of the disc or near its
outer edge. In order that this length of ones and zeroes al-
ways passes by the laser– lens system in the same time period,
the linear speed of the disc surface at the location of the lens
must be constant. This requires, according to Equation 10.10,
that the angular speed vary as the laser– lens system moves ra-
dially along the disc. In a typical compact disc player, the disc
spins counterclockwise (Fig. 10.6), and the constant speed of
the surface at the point of the laser– lens system is 1.3 m/s.
(a) Find the angular speed of the disc in revolutions per
minute when information is being read from the innermost
first track (r � 23 mm) and the outermost final track (r �
58 mm).

Solution Using Equation 10.10, we can find the angular
speed; this will give us the required linear speed at the posi-
tion of the inner track,

�i �
v
ri

�
1.3 m/s

2.3 
 10�2 m
� 56.5 rad/s  

x

y

O

ar

at

P
a

Figure 10.5 As a rigid object ro-
tates about a fixed axis through O,
the point P experiences a tangen-
tial component of linear accelera-
tion at and a radial component of
linear acceleration ar . The total lin-
ear acceleration of this point is a �
at 	 ar .

23 mm

58 mm

Figure 10.6 A compact disc.
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For the outer track,

The player adjusts the angular speed � of the disc within this
range so that information moves past the objective lens at a
constant rate. These angular velocity values are positive be-
cause the direction of rotation is counterclockwise.

(b) The maximum playing time of a standard music CD
is 74 minutes and 33 seconds. How many revolutions does the
disc make during that time?

Solution We know that the angular speed is always de-
creasing, and we assume that it is decreasing steadily, with �
constant. The time interval t is (74 min)(60 s/min) 	
33 s � 4 473 s. We are looking for the angular position �f ,
where we set the initial angular position �i � 0. We can use
Equation 10.3, replacing the average angular speed with its
mathematical equivalent (�i 	 � f )/2:

2.8 
 104 rev  �

    (1 min/60 s)(4 473 s)  

  � 0 	 1
2 (540 rev/min 	 210 rev/min)

�f � �i 	 1
2 (�i 	 �f)t  

�

�  2.1 
 102 rev/min

�f �
v
rf

�
1.3 m/s

5.8 
 10�2 m
� 22.4 rad/s

(c) What total length of track moves past the objective
lens during this time?

Solution Because we know the (constant) linear velocity
and the time interval, this is a straightforward calculation:

More than 3.6 miles of track spins past the objective lens!

(d) What is the angular acceleration of the CD over the 
4 473-s time interval? Assume that � is constant.

Solution We have several choices for approaching this
problem. Let us use the most direct approach by utilizing
Equation 10.5, which is based on the definition of the term
we are seeking. We should obtain a negative number for the
angular acceleration because the disc spins more and more
slowly in the positive direction as time goes on. Our answer
should also be fairly small because it takes such a long time—
more than an hour—for the change in angular speed to be
accomplished:

The disc experiences a very gradual decrease in its rotation
rate, as expected.

�7.6 
 10�3 rad/s2�

� �
�f � �i

t
�

22.4 rad/s � 56.5 rad/s
4 473 s

5.8 
 103 mx f � vit � (1.3 m/s)(4 473 s) �

ROTATIONAL ENERGY
Let us now look at the kinetic energy of a rotating rigid object, considering the ob-
ject as a collection of particles and assuming it rotates about a fixed z axis with an
angular speed � (Fig. 10.7). Each particle has kinetic energy determined by its
mass and linear speed. If the mass of the ith particle is mi and its linear speed is vi ,
its kinetic energy is

To proceed further, we must recall that although every particle in the rigid object
has the same angular speed �, the individual linear speeds depend on the distance
ri from the axis of rotation according to the expression vi � ri� (see Eq. 10.10).
The total kinetic energy of the rotating rigid object is the sum of the kinetic ener-
gies of the individual particles:

We can write this expression in the form

(10.14)

where we have factored �2 from the sum because it is common to every particle.

KR � 1
2��

i
miri 2��2

K R � �
i

K i � �
i

1
2mivi 

2 � 1
2 �

i
miri 

2�2

Ki � 1
2mivi 

2

10.4

7.3

web
If you want to learn more about the physics
of CD players, visit the Special Interest
Group on CD Applications and Technology
at www.sigcat.org

y

x

vi

mi

ri

θ
O

Figure 10.7 A rigid object rotat-
ing about a z axis with angular
speed �. The kinetic energy of 
the particle of mass mi is 
The total kinetic energy of the ob-
ject is called its rotational 
kinetic energy.

1
2m iv i  

2.
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We simplify this expression by defining the quantity in parentheses as the moment
of inertia I:

(10.15)

From the definition of moment of inertia, we see that it has dimensions of ML2

(kg� m2 in SI units).1 With this notation, Equation 10.14 becomes

(10.16)

Although we commonly refer to the quantity I�2 as rotational kinetic energy,
it is not a new form of energy. It is ordinary kinetic energy because it is derived
from a sum over individual kinetic energies of the particles contained in the rigid
object. However, the mathematical form of the kinetic energy given by Equation
10.16 is a convenient one when we are dealing with rotational motion, provided
we know how to calculate I. 

It is important that you recognize the analogy between kinetic energy associ-
ated with linear motion and rotational kinetic energy The quantities I
and � in rotational motion are analogous to m and v in linear motion, respectively.
(In fact, I takes the place of m every time we compare a linear-motion equation
with its rotational counterpart.) The moment of inertia is a measure of the resis-
tance of an object to changes in its rotational motion, just as mass is a measure of
the tendency of an object to resist changes in its linear motion. Note, however,
that mass is an intrinsic property of an object, whereas I depends on the physical
arrangement of that mass. Can you think of a situation in which an object’s mo-
ment of inertia changes even though its mass does not?

1
2 I�2.1

2mv2

1
2

KR � 1
2I�2

I � �
i

miri 2

1 Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such struc-
tures as loaded beams. Hence, it is often useful even in a nonrotational context.

Rotational kinetic energy

Moment of inertia

The Oxygen MoleculeEXAMPLE 10.3

This is a very small number, consistent with the minuscule
masses and distances involved.

(b) If the angular speed of the molecule about the z axis is
4.60 
 1012 rad/s, what is its rotational kinetic energy?

Solution We apply the result we just calculated for the mo-
ment of inertia in the formula for KR :

2.06 
 10�21 J �

  � 1
2(1.95 
 10�46 kg�m2)(4.60 
 1012 rad/s)2

KR � 1
2 I�2  

1.95 
 10�46 kg�m2 �
Consider an oxygen molecule (O2) rotating in the xy plane
about the z axis. The axis passes through the center of the
molecule, perpendicular to its length. The mass of each oxy-
gen atom is 2.66 
 10�26 kg, and at room temperature the
average separation between the two atoms is d � 1.21 

10�10 m (the atoms are treated as point masses). (a) Calcu-
late the moment of inertia of the molecule about the z axis.

Solution This is a straightforward application of the def-
inition of I. Because each atom is a distance d/2 from the z
axis, the moment of inertia about the axis is

  � 1
2(2.66 
 10�26 kg)(1.21 
 10�10 m)2

I � �
i

mi ri 

2 � m � d
2 �

2
	 m � d

2 �
2

� 1
2md 2



10.5 Calculation of Moments of Inertia 301

CALCULATION OF MOMENTS OF INERTIA
We can evaluate the moment of inertia of an extended rigid object by imagining
the object divided into many small volume elements, each of which has mass �m. 
We use the definition and take the limit of this sum as �m : 0. In 

this limit, the sum becomes an integral over the whole object:

(10.17)

It is usually easier to calculate moments of inertia in terms of the volume of
the elements rather than their mass, and we can easily make that change by using
Equation 1.1,  � m/V, where  is the density of the object and V is its volume. We
want this expression in its differential form  � dm/dV because the volumes we
are dealing with are very small. Solving for dm �  dV and substituting the result

I � lim
�mi :0

 �
i

ri 

2 �mi � �r 2 dm

I � �
i

r i 

2 �mi

10.5

Four Rotating MassesEXAMPLE 10.4
Therefore, the rotational kinetic energy about the y axis is

The fact that the two spheres of mass m do not enter into this
result makes sense because they have no motion about the
axis of rotation; hence, they have no rotational kinetic en-
ergy. By similar logic, we expect the moment of inertia about
the x axis to be Ix � 2mb2 with a rotational kinetic energy
about that axis of KR � mb2�2.

(b) Suppose the system rotates in the xy plane about an
axis through O (the z axis). Calculate the moment of inertia
and rotational kinetic energy about this axis.

Solution Because ri in Equation 10.15 is the perpendicular
distance to the axis of rotation, we obtain

Comparing the results for parts (a) and (b), we conclude
that the moment of inertia and therefore the rotational ki-
netic energy associated with a given angular speed depend on
the axis of rotation. In part (b), we expect the result to in-
clude all four spheres and distances because all four spheres
are rotating in the xy plane. Furthermore, the fact that the ro-
tational kinetic energy in part (a) is smaller than that in part
(b) indicates that it would take less effort (work) to set the
system into rotation about the y axis than about the z axis.

(Ma2 	 mb2)�2  KR � 1
2Iz�

2 � 1
2(2Ma2 	 2mb2)� 2 �

2Ma2 	 2mb 2I z � �
i
mi ri 

2 � Ma2 	 Ma2 	 mb2 	 mb2 �

Ma2�2KR � 1
2Iy�

2 � 1
2(2Ma2)�2 �

Four tiny spheres are fastened to the corners of a frame of
negligible mass lying in the xy plane (Fig. 10.8). We shall as-
sume that the spheres’ radii are small compared with the di-
mensions of the frame. (a) If the system rotates about the y
axis with an angular speed �, find the moment of inertia and
the rotational kinetic energy about this axis.

Solution First, note that the two spheres of mass m, which
lie on the y axis, do not contribute to Iy (that is, ri � 0 for
these spheres about this axis). Applying Equation 10.15, we
obtain

2Ma2Iy � �
i

mi ri
2 � Ma2 	 Ma2 �

O

a a

b

b

m

m

M
x

y

M

Figure 10.8 The four spheres are at a fixed separation as shown.
The moment of inertia of the system depends on the axis about
which it is evaluated.

7.5



302 C H A P T E R  1 0 Rotation of a Rigid Object About a Fixed Axis

into Equation 10.17 gives

If the object is homogeneous, then  is constant and the integral can be evaluated
for a known geometry. If  is not constant, then its variation with position must be
known to complete the integration.

The density given by  � m/V sometimes is referred to as volume density for the
obvious reason that it relates to volume. Often we use other ways of expressing
density. For instance, when dealing with a sheet of uniform thickness t, we can de-
fine a surface density � � t, which signifies mass per unit area. Finally, when mass is
distributed along a uniform rod of cross-sectional area A, we sometimes use linear
density � � M/L � A, which is the mass per unit length.

I � �r 2 dV

Uniform HoopEXAMPLE 10.5
Find the moment of inertia of a uniform hoop of mass M and
radius R about an axis perpendicular to the plane of the
hoop and passing through its center (Fig. 10.9).

Solution All mass elements dm are the same distance r �
R from the axis, and so, applying Equation 10.17, we obtain
for the moment of inertia about the z axis through O:

Note that this moment of inertia is the same as that of a sin-
gle particle of mass M located a distance R from the axis of
rotation.

MR 2I z � � r 2 dm � R 2 � dm �

y

x

R
O

dm

Figure 10.9 The mass elements dm of a uniform hoop are all the
same distance from O.

Uniform Rigid RodEXAMPLE 10.6
Substituting this expression for dm into Equation 10.17, with
r � x, we obtain

1
12ML2   �

M
L

 � x3

3 �
L/2

�L/2
�

Iy � � r 2 dm � �L/2

�L/2
 x2 

M
L

 dx �
M
L

 �L/2

�L/2
 x2 dx

Calculate the moment of inertia of a uniform rigid rod of
length L and mass M (Fig. 10.10) about an axis perpendicu-
lar to the rod (the y axis) and passing through its center of
mass.

Solution The shaded length element dx has a mass dm
equal to the mass per unit length � multiplied by dx :

dm � � dx �
M
L

dx

(a) Based on what you have learned from Example 10.5, what do you expect to find for the
moment of inertia of two particles, each of mass M/2, located anywhere on a circle of ra-
dius R around the axis of rotation? (b) How about the moment of inertia of four particles,
each of mass M/4, again located a distance R from the rotation axis?

Quick Quiz 10.3
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Table 10.2 gives the moments of inertia for a number of bodies about specific
axes. The moments of inertia of rigid bodies with simple geometry (high symme-
try) are relatively easy to calculate provided the rotation axis coincides with an axis
of symmetry. The calculation of moments of inertia about an arbitrary axis can be
cumbersome, however, even for a highly symmetric object. Fortunately, use of an
important theorem, called the parallel-axis theorem, often simplifies the calcula-
tion. Suppose the moment of inertia about an axis through the center of mass of
an object is ICM . The parallel-axis theorem states that the moment of inertia about
any axis parallel to and a distance D away from this axis is

(10.18)I � ICM 	 MD2

Uniform Solid CylinderEXAMPLE 10.7
cylindrical shells, each of which has radius r, thickness dr, and
length L, as shown in Figure 10.11. The volume dV of each
shell is its cross-sectional area multiplied by its length: dV �
dA� L � (2�r dr)L. If the mass per unit volume is , then the
mass of this differential volume element is dm � dV �
2�rL dr. Substituting this expression for dm into Equation
10.17, we obtain

Because the total volume of the cylinder is �R 2L, we see that
 � M/V � M/�R 2L. Substituting this value for  into the
above result gives

(1)

Note that this result does not depend on L, the length of the
cylinder. In other words, it applies equally well to a long cylin-
der and a flat disc. Also note that this is exactly half the value
we would expect were all the mass concentrated at the outer
edge of the cylinder or disc. (See Example 10.5.)

1
2MR 2Iz �

I z � � r 2 dm � 2�L �R

0
 r 3 dr � 1

2�LR4

A uniform solid cylinder has a radius R, mass M, and length
L. Calculate its moment of inertia about its central axis (the z
axis in Fig. 10.11).

Solution It is convenient to divide the cylinder into many

L

x

O
x

dx

y′ y

Figure 10.10 A uniform rigid rod of length L. The moment of in-
ertia about the y axis is less than that about the y� axis. The latter axis
is examined in Example 10.8.

L

dr

z

r

R

Figure 10.11 Calculating I about the z axis for a uniform solid
cylinder.

Parallel-axis theorem
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Proof of the Parallel-Axis Theorem (Optional). Suppose that an object rotates
in the xy plane about the z axis, as shown in Figure 10.12, and that the coordinates
of the center of mass are xCM , yCM . Let the mass element dm have coordinates x, y.
Because this element is a distance from the z axis, the moment of in-
ertia about the z axis is

However, we can relate the coordinates x, y of the mass element dm to the coordi-
nates of this same element located in a coordinate system having the object’s cen-
ter of mass as its origin. If the coordinates of the center of mass are xCM , yCM in
the original coordinate system centered on O, then from Figure 10.12a we see that
the relationships between the unprimed and primed coordinates are x � x� 	 xCM

I � � r 2 dm � � (x2 	 y2) dm

r � √x2 	 y2

Hoop or
cylindrical shell
I CM = MR2 R

Solid cylinder
or disk

R
I CM = 1

2
MR2

Long thin rod
with rotation axis
through center

I CM = 1
12

ML2 L

R

Solid sphere

I CM = 2
5

MR 2

Hollow cylinder

R2

Long thin
rod with
rotation axis
through end

L

Thin spherical
shell

I CM = 2
3

MR 

2

R1I CM = 1
2

M(R1
2 + R2

2)

R

Rectangular plate

I CM = 1
12

M(a2 + b2)

b

a

I = 1
3

ML2

TABLE 10.2 Moments of Inertia of Homogeneous Rigid Bodies 
with Different Geometries
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and y � y� 	 yCM . Therefore,

The first integral is, by definition, the moment of inertia about an axis that is par-
allel to the z axis and passes through the center of mass. The second two integrals
are zero because, by definition of the center of mass, The
last integral is simply MD2 because and Therefore,
we conclude that

I � ICM 	 MD2

D2 � xCM 

2 	 yCM 

2.� dm � M
� x� dm � � y� dm � 0.

  � � [(x�)2 	 (y�)2] dm 	 2xCM � x� dm 	 2yCM � y� dm 	 (xCM 

2 	 yCM 

 

2) � dm

I � � [(x� 	 xCM)2 	 (y� 	 yCM)2] dm  

Applying the Parallel-Axis TheoremEXAMPLE 10.8

So, it is four times more difficult to change the rotation of a
rod spinning about its end than it is to change the motion of
one spinning about its center.

Exercise Calculate the moment of inertia of the rod about
a perpendicular axis through the point x � L/4.

Answer I � 7
48 ML2.

1
3 ML2I � ICM 	 MD2 � 1

12 ML2 	 M � L
2 �

2
�

Consider once again the uniform rigid rod of mass M and
length L shown in Figure 10.10. Find the moment of inertia
of the rod about an axis perpendicular to the rod through
one end (the y�axis in Fig. 10.10).

Solution Intuitively, we expect the moment of inertia to
be greater than because it should be more diffi-
cult to change the rotational motion of a rod spinning about
an axis at one end than one that is spinning about its center.
Because the distance between the center-of-mass axis and the
y� axis is D � L/2, the parallel-axis theorem gives

ICM � 1
12ML2

(a)

y

x, y
dm

y′

yCM

O

D

r

y

xCM

x

xCM, yCM

x′

x

CM

(b)

Axis
through
CM

x

y

z

Rotation
axis

O CM

Figure 10.12 (a) The parallel-axis theorem: If the moment of inertia about an axis perpendic-
ular to the figure through the center of mass is ICM , then the moment of inertia about the z axis
is Iz � ICM 	 MD 2. (b) Perspective drawing showing the z axis (the axis of rotation) and the par-
allel axis through the CM.



306 C H A P T E R  1 0 Rotation of a Rigid Object About a Fixed Axis

TORQUE
Why are a door’s doorknob and hinges placed near opposite edges of the door?
This question actually has an answer based on common sense ideas. The harder
we push against the door and the farther we are from the hinges, the more likely
we are to open or close the door. When a force is exerted on a rigid object pivoted
about an axis, the object tends to rotate about that axis. The tendency of a force to
rotate an object about some axis is measured by a vector quantity called torque �
(tau).

Consider the wrench pivoted on the axis through O in Figure 10.13. The ap-
plied force F acts at an angle � to the horizontal. We define the magnitude of the
torque associated with the force F by the expression

(10.19)

where r is the distance between the pivot point and the point of application of F
and d is the perpendicular distance from the pivot point to the line of action of F.
(The line of action of a force is an imaginary line extending out both ends of the
vector representing the force. The dashed line extending from the tail of F in Fig-
ure 10.13 is part of the line of action of F.) From the right triangle in Figure 10.13
that has the wrench as its hypotenuse, we see that d � r sin �. This quantity d is
called the moment arm (or lever arm) of F.

It is very important that you recognize that torque is defined only when a reference
axis is specified. Torque is the product of a force and the moment arm of that force,
and moment arm is defined only in terms of an axis of rotation.

In Figure 10.13, the only component of F that tends to cause rotation is F sin �,
the component perpendicular to r. The horizontal component F cos �, because it
passes through O, has no tendency to produce rotation. From the definition of
torque, we see that the rotating tendency increases as F increases and as d in-
creases. This explains the observation that it is easier to close a door if we push at
the doorknob rather than at a point close to the hinge. We also want to apply our
push as close to perpendicular to the door as we can. Pushing sideways on the
doorknob will not cause the door to rotate.

If two or more forces are acting on a rigid object, as shown in Figure 10.14,
each tends to produce rotation about the pivot at O. In this example, F2 tends to

� � r F sin � � Fd

10.6

Moment arm

Definition of torque

7.6

r

F sin φ
F

F cos φ

d

O
Line of
action

φ

φ

φ

φ O

d2

d1

F2

F1

Figure 10.13 The force F has a
greater rotating tendency about O
as F increases and as the moment
arm d increases. It is the compo-
nent F sin � that tends to rotate the
wrench about O.

Figure 10.14 The force F1 tends
to rotate the object counterclock-
wise about O, and F2 tends to ro-
tate it clockwise.
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rotate the object clockwise, and F1 tends to rotate it counterclockwise. We use the
convention that the sign of the torque resulting from a force is positive if the turn-
ing tendency of the force is counterclockwise and is negative if the turning ten-
dency is clockwise. For example, in Figure 10.14, the torque resulting from F1 ,
which has a moment arm d1 , is positive and equal to 	 F1d1 ; the torque from F2 is
negative and equal to � F2d2 . Hence, the net torque about O is

Torque should not be confused with force. Forces can cause a change in lin-
ear motion, as described by Newton’s second law. Forces can also cause a change
in rotational motion, but the effectiveness of the forces in causing this change de-
pends on both the forces and the moment arms of the forces, in the combination
that we call torque. Torque has units of force times length—newton � meters in SI
units—and should be reported in these units. Do not confuse torque and work,
which have the same units but are very different concepts.

�� � �1 	 �2 � F1d1 � F2d2

The Net Torque on a CylinderEXAMPLE 10.9
Solution The torque due to F1 is � R1F1 (the sign is nega-
tive because the torque tends to produce clockwise rotation).
The torque due to F2 is 	 R2F2 (the sign is positive because
the torque tends to produce counterclockwise rotation).
Therefore, the net torque about the rotation axis is

We can make a quick check by noting that if the two forces
are of equal magnitude, the net torque is negative because 
R1 � R2 . Starting from rest with both forces acting on it, the
cylinder would rotate clockwise because F1 would be more ef-
fective at turning it than would F2 .

(b) Suppose F1 � 5.0 N, R1 � 1.0 m, F2 � 15.0 N, and 
R2 � 0.50 m. What is the net torque about the rotation axis,
and which way does the cylinder rotate from rest?

Because the net torque is positive, if the cylinder starts from
rest, it will commence rotating counterclockwise with increas-
ing angular velocity. (If the cylinder’s initial rotation is clock-
wise, it will slow to a stop and then rotate counterclockwise
with increasing angular speed.)

2.5 N�m�� � �(5.0 N)(1.0 m) 	 (15.0 N)(0.50 m) �

�R 1F1 	 R 2F2�� � �1 	 �2 �

A one-piece cylinder is shaped as shown in Figure 10.15, with
a core section protruding from the larger drum. The cylinder
is free to rotate around the central axis shown in the drawing.
A rope wrapped around the drum, which has radius R1 , ex-
erts a force F1 to the right on the cylinder. A rope wrapped
around the core, which has radius R2 , exerts a force F2 down-
ward on the cylinder. (a) What is the net torque acting on the
cylinder about the rotation axis (which is the z axis in Figure
10.15)?

7.6

RELATIONSHIP BETWEEN TORQUE AND
ANGULAR ACCELERATION

In this section we show that the angular acceleration of a rigid object rotating
about a fixed axis is proportional to the net torque acting about that axis. Before
discussing the more complex case of rigid-body rotation, however, it is instructive

10.7

z

x

y

R 1

R 2

O

F1

F2

Figure 10.15 A solid cylinder pivoted about the z axis through O.
The moment arm of F1 is R1 , and the moment arm of F2 is R2 .
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first to discuss the case of a particle rotating about some fixed point under the in-
fluence of an external force.

Consider a particle of mass m rotating in a circle of radius r under the influ-
ence of a tangential force Ft and a radial force Fr , as shown in Figure 10.16. (As we
learned in Chapter 6, the radial force must be present to keep the particle moving
in its circular path.) The tangential force provides a tangential acceleration at , and

The torque about the center of the circle due to Ft is

Because the tangential acceleration is related to the angular acceleration through
the relationship at � r� (see Eq. 10.11), the torque can be expressed as

Recall from Equation 10.15 that mr 2 is the moment of inertia of the rotating parti-
cle about the z axis passing through the origin, so that

(10.20)

That is, the torque acting on the particle is proportional to its angular accel-
eration, and the proportionality constant is the moment of inertia. It is important
to note that is the rotational analog of Newton’s second law of motion, 
F � ma.

Now let us extend this discussion to a rigid object of arbitrary shape rotating
about a fixed axis, as shown in Figure 10.17. The object can be regarded as an infi-
nite number of mass elements dm of infinitesimal size. If we impose a cartesian co-
ordinate system on the object, then each mass element rotates in a circle about the
origin, and each has a tangential acceleration at produced by an external tangen-
tial force dFt . For any given element, we know from Newton’s second law that

The torque d� associated with the force dFt acts about the origin and is given by

Because at � r�, the expression for d� becomes

It is important to recognize that although each mass element of the rigid ob-
ject may have a different linear acceleration at , they all have the same angular ac-
celeration �. With this in mind, we can integrate the above expression to obtain
the net torque about O due to the external forces:

where � can be taken outside the integral because it is common to all mass ele-
ments. From Equation 10.17, we know that is the moment of inertia of the
object about the rotation axis through O, and so the expression for �� becomes

(10.21)

Note that this is the same relationship we found for a particle rotating in a circle
(see Eq. 10.20). So, again we see that the net torque about the rotation axis is pro-

�� � I�

� r 2 dm

�� � � (r 2 dm)� � � � r 2 dm

d� � (r dm)r� � (r 2 dm)�

d� � r dFt � (r dm)at

dFt � (dm)at

� � I�

� � I�

� � (mr�)r � (mr 2)�

� � Ft r � (mat)r

Ft � mat

Torque is proportional to angular
acceleration

Relationship between torque and
angular acceleration

y

x

d Ft

O

r

dm

Figure 10.17 A rigid object ro-
tating about an axis through O.
Each mass element dm rotates
about O with the same angular ac-
celeration �, and the net torque on
the object is proportional to �.

Figure 10.16 A particle rotating
in a circle under the influence of a
tangential force Ft . A force Fr in
the radial direction also must be
present to maintain the circular
motion.
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Although each point on a rigid object rotating about a fixed axis may not expe-
rience the same force, linear acceleration, or linear speed, each point experi-
ences the same angular acceleration and angular speed at any instant. There-
fore, at any instant the rotating rigid object as a whole is characterized by
specific values for angular acceleration, net torque, and angular speed.

compute the torque on the rod, we can assume that the gravi-
tational force acts at the center of mass of the rod, as shown
in Figure 10.18. The torque due to this force about an axis
through the pivot is

With �� � I�, and I � for this axis of rotation (see
Table 10.2), we obtain

All points on the rod have this angular acceleration.
To find the linear acceleration of the right end of the rod,

we use the relationship (Eq. 10.11), with r � L:

This result—that at � g for the free end of the rod—is
rather interesting. It means that if we place a coin at the tip
of the rod, hold the rod in the horizontal position, and then
release the rod, the tip of the rod falls faster than the coin
does!

Other points on the rod have a linear acceleration that 
is less than For example, the middle of the rod has 
an acceleration of 3

4  g.

3
2  g.

3
2 gat � L� �

at � r�

3g
2L

� �
�

I
�

�g  (L/2)

1�3 �L2
�

1
3   ML2

� � �g � L
2 �

A uniform rod of length L and mass M is attached at one end
to a frictionless pivot and is free to rotate about the pivot in
the vertical plane, as shown in Figure 10.18. The rod is re-
leased from rest in the horizontal position. What is the initial
angular acceleration of the rod and the initial linear accelera-
tion of its right end?

Solution We cannot use our kinematic equations to find �
or a because the torque exerted on the rod varies with its po-
sition, and so neither acceleration is constant. We have
enough information to find the torque, however, which we
can then use in the torque–angular acceleration relationship
(Eq. 10.21) to find � and then a.

The only force contributing to torque about an axis
through the pivot is the gravitational force Mg exerted on
the rod. (The force exerted by the pivot on the rod has zero
torque about the pivot because its moment arm is zero.) To

Every point has the same � and �

QuickLab
Tip over a child’s tall tower of blocks.
Try this several times. Does the tower
“break” at the same place each time?
What affects where the tower comes
apart as it tips? If the tower were
made of toy bricks that snap together,
what would happen? (Refer to Con-
ceptual Example 10.11.)

portional to the angular acceleration of the object, with the proportionality factor
being I, a quantity that depends upon the axis of rotation and upon the size and
shape of the object. In view of the complex nature of the system, it is interesting to
note that the relationship �� � I� is strikingly simple and in complete agreement
with experimental observations. The simplicity of the result lies in the manner in
which the motion is described.

Finally, note that the result �� � I� also applies when the forces acting on the
mass elements have radial components as well as tangential components. This is
because the line of action of all radial components must pass through the axis of
rotation, and hence all radial components produce zero torque about that axis.

Pivot

L/2

Mg

Figure 10.18 The uniform rod is pivoted at the left end.

Rotating RodEXAMPLE 10.10
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Angular Acceleration of a WheelEXAMPLE 10.12
A wheel of radius R, mass M, and moment of inertia I is
mounted on a frictionless, horizontal axle, as shown in Figure
10.20. A light cord wrapped around the wheel supports an
object of mass m. Calculate the angular acceleration of the
wheel, the linear acceleration of the object, and the tension
in the cord.

Solution The torque acting on the wheel about its axis
of rotation is � � TR, where T is the force exerted by the
cord on the rim of the wheel. (The gravitational force ex-
erted by the Earth on the wheel and the normal force ex-
erted by the axle on the wheel both pass through the axis
of rotation and thus produce no torque.) Because �� � I�,
we obtain

(1)

Now let us apply Newton’s second law to the motion of the
object, taking the downward direction to be positive:

(2)

Equations (1) and (2) have three unknowns, �, a,  and T. Be-
cause the object and wheel are connected by a string that
does not slip, the linear acceleration of the suspended object
is equal to the linear acceleration of a point on the rim of the

a �
mg � T

m
  

  �Fy � mg � T � ma

� �
TR
I

  

  �� � I� � TR

Falling Smokestacks and Tumbling BlocksCONCEPTUAL EXAMPLE 10.11 
When a tall smokestack falls over, it often breaks somewhere
along its length before it hits the ground, as shown in Figure
10.19. The same thing happens with a tall tower of children’s
toy blocks. Why does this happen?

Solution As the smokestack rotates around its base, each
higher portion of the smokestack falls with an increasing
tangential acceleration. (The tangential acceleration of a
given point on the smokestack is proportional to the dis-
tance of that portion from the base.) As the acceleration in-
creases, higher portions of the smokestack experience an
acceleration greater than that which could result from 
gravity alone; this is similar to the situation described in 
Example 10.10. This can happen only if these portions are
being pulled downward by a force in addition to the gravi-
tational force. The force that causes this to occur is the
shear force from lower portions of the smokestack. Eventu-
ally the shear force that provides this acceleration is greater
than the smokestack can withstand, and the smokestack
breaks.

M

O

R

T

m g

m

T

Figure 10.19 A falling smokestack.

Figure 10.20 The tension in the cord produces a torque about
the axle passing through O.
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Atwood’s Machine RevisitedEXAMPLE 10.13
Substituting Equation (6) into Equation (5), we have

Because � � a/R, this expression can be simplified to

(7)

This value of a can then be substituted into Equations (1)

(m1 � m2)g

m1 	 m2 	 2 
I

R 2

a �

  (m1 � m2)g � (m1 	 m2)a � 2I 
a

R 2   

[(m1 � m2)g � (m1 	 m2)a]R � 2I�

Two blocks having masses m1 and m2 are connected to each
other by a light cord that passes over two identical, friction-
less pulleys, each having a moment of inertia I and radius R,
as shown in Figure 10.21a. Find the acceleration of each
block and the tensions T1 , T2 , and T3 in the cord. (Assume
no slipping between cord and pulleys.)

Solution We shall define the downward direction as posi-
tive for m1 and upward as the positive direction for m2 . This
allows us to represent the acceleration of both masses by a
single variable a and also enables us to relate a positive a to a
positive (counterclockwise) angular acceleration �. Let us
write Newton’s second law of motion for each block, using
the free-body diagrams for the two blocks as shown in Figure
10.21b:

(1)

(2)

Next, we must include the effect of the pulleys on the mo-
tion. Free-body diagrams for the pulleys are shown in Figure
10.21c. The net torque about the axle for the pulley on the
left is (T1 � T2)R, while the net torque for the pulley on the
right is (T2 � T3)R. Using the relation �� � I� for each pul-
ley and noting that each pulley has the same angular acceler-
ation �, we obtain

(3)

(4)

We now have four equations with four unknowns: a, T1 ,
T2 , and T3 . These can be solved simultaneously. Adding
Equations (3) and (4) gives

(5)

Adding Equations (1) and (2) gives

(6) T1 � T3 � (m1 � m2)g � (m1 	 m2)a

  T3 � T1 	 m1g � m2g � (m1 	 m2)a

(T1 � T3)R � 2I�

(T2 � T3)R � I�

(T1 � T2)R � I�

T3 � m2g � m2a

m1g � T1 � m1a

wheel. Therefore, the angular acceleration of the wheel and
this linear acceleration are related by a � R�. Using this fact
together with Equations (1) and (2), we obtain

(3)

(4)

Substituting Equation (4) into Equation (2), and solving for
a and �, we find that

mg

1 	
mR 2

I

  T �

a � R� �
TR2

I
�

mg � �

m

Exercise The wheel in Figure 10.20 is a solid disk of M �
2.00 kg, R � 30.0 cm, and I � 0.090 0 kg� m2. The suspended
object has a mass of m � 0.500 kg. Find the tension in the
cord and the angular acceleration of the wheel.

Answer 3.27 N; 10.9 rad/s2.

g
R 	 I/mR

� �
a
R

�

g
1 	 I/mR 2a �

T2 T2

T1 T3

T2

T1 T3

m1g

(a)

m2g

(b)

n1

T1 mpg

n2

T3
mpg

(c)

m1

m1

m2

m2

+

+

Figure 10.21 (a) Another look at Atwood’s machine. 
(b) Free-body diagrams for the blocks. (c) Free-body diagrams for
the pulleys, where mpg represents the force of gravity acting on each
pulley.
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WORK, POWER, AND ENERGY
IN ROTATIONAL MOTION

In this section, we consider the relationship between the torque acting on a rigid
object and its resulting rotational motion in order to generate expressions for the
power and a rotational analog to the work–kinetic energy theorem. Consider the
rigid object pivoted at O in Figure 10.22. Suppose a single external force F is ap-
plied at P, where F lies in the plane of the page. The work done by F as the object
rotates through an infinitesimal distance ds � r d� in a time dt is

where F sin � is the tangential component of F, or, in other words, the component
of the force along the displacement. Note that the radial component of F does no work
because it is perpendicular to the displacement.

Because the magnitude of the torque due to F about O is defined as rF sin �
by Equation 10.19, we can write the work done for the infinitesimal rotation as

(10.22)

The rate at which work is being done by F as the object rotates about the fixed axis is

Because dW/dt is the instantaneous power � (see Section 7.5) delivered by the
force, and because d�/dt � �, this expression reduces to

(10.23)

This expression is analogous to in the case of linear motion, and the ex-
pression dW � � d� is analogous to dW � Fx dx.

Work and Energy in Rotational Motion

In studying linear motion, we found the energy concept—and, in particular, the
work–kinetic energy theorem—extremely useful in describing the motion of a
system. The energy concept can be equally useful in describing rotational motion.
From what we learned of linear motion, we expect that when a symmetric object
rotates about a fixed axis, the work done by external forces equals the change in
the rotational energy.

To show that this is in fact the case, let us begin with �� � I�. Using the chain
rule from the calculus, we can express the resultant torque as

�� � I� � I 
d�

dt
� I 

d�

d�
 
d�

dt
� I 

d�

d�
 �

� � Fv

� �
dW
dt

� ��

dW
dt

� � 
d�

dt

dW � � d�

dW � F�ds � (F sin �)r d�

10.8

Power delivered to a rigid object

Figure 10.22 A rigid object ro-
tates about an axis through O un-
der the action of an external force
F applied at P.

and (2) to give T1 and T3 . Finally, T2 can be found from
Equation (3) or Equation (4). Note that if m1 � m 2 , the ac-
celeration is positive; this means that the left block acceler-
ates downward, the right block accelerates upward, and both

pulleys accelerate counterclockwise. If m1 � m 2 , then all the
values are negative and the motions are reversed. If m1 � m 2 ,
then no acceleration occurs at all. You should compare these
results with those found in Example 5.9 on page 129.

O

P

r
d

ds

φ

F

θ
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Rearranging this expression and noting that �� d� � dW, we obtain

Integrating this expression, we get for the total work done by the net external
force acting on a rotating system

(10.24)

where the angular speed changes from �i to �f as the angular position changes
from �i to �f . That is,

�W � ��f

�i

 �� d� � ��f

�i

 I� d� � 1
2I�f 

2 � 1
2I�i 

2

�� d� � dW � I� d�

the net work done by external forces in rotating a symmetric rigid object about
a fixed axis equals the change in the object’s rotational energy.

Work–kinetic energy theorem for
rotational motion

Table 10.3 lists the various equations we have discussed pertaining to rota-
tional motion, together with the analogous expressions for linear motion. The last
two equations in Table 10.3, involving angular momentum L, are discussed in
Chapter 11 and are included here only for the sake of completeness.

For a hoop lying in the xy plane, which of the following requires that more work be done by
an external agent to accelerate the hoop from rest to an angular speed �: (a) rotation
about the z axis through the center of the hoop, or (b) rotation about an axis parallel to z
passing through a point P on the hoop rim?

Quick Quiz 10.4

	 	

TABLE 10.3 Useful Equations in Rotational and Linear Motion

Rotational Motion
About a Fixed Axis Linear Motion

Angular speed � � d�/dt Linear speed v � dx/dt
Angular acceleration � � d�/dt Linear acceleration a � dv/dt
Resultant torque � � I� Resultant force F � ma

If �f � �i 	 �t If vf � vi 	 at
� � constant �f � �i � �it 	 �t2 a � constant xf � xi � vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

Work Work 

Rotational kinetic energy Kinetic energy 
Power Power 
Angular momentum L � I� Linear momentum p � mv
Resultant torque � � dL/dt Resultant force F � dp/dt��

� � Fv� � ��
K � 1

2mv2KR � 1
2I�2

W � �xf

xi 
 Fx dxW � ��f

�i

 � d�

1
2

1
2

��
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Connected CylindersEXAMPLE 10.15
inertia I about its axis of rotation. The string does not slip
on the pulley, and the system is released from rest. Find the
linear speeds of the cylinders after cylinder 2 descends
through a distance h, and the angular speed of the pulley at
this time.

Solution We are now able to account for the effect of a
massive pulley. Because the string does not slip, the pulley ro-
tates. We neglect friction in the axle about which the pulley
rotates for the following reason: Because the axle’s radius is
small relative to that of the pulley, the frictional torque is
much smaller than the torque applied by the two cylinders,
provided that their masses are quite different. Mechanical en-
ergy is constant; hence, the increase in the system’s kinetic en-
ergy (the system being the two cylinders, the pulley, and the
Earth) equals the decrease in its potential energy. Because 
Ki � 0 (the system is initially at rest), we have

where vf is the same for both blocks. Because vf � R�f , this
expression becomes

�K � 1
2�m1 	 m2 	

I
R 2 �vf 

2

�K � K f � K i � (1
2m1vf 

2 	 1
2m2vf 

2 	 1
2I�f 

2) � 0

Consider two cylinders having masses m1 and m2 , where m1 �
m2 , connected by a string passing over a pulley, as shown in
Figure 10.24. The pulley has a radius R and moment of 

Rotating Rod RevisitedEXAMPLE 10.14
energy is entirely rotational energy, where I is the mo-
ment of inertia about the pivot. Because (see Table
10.2) and because mechanical energy is constant, we have 
Ei � Ef or

(b) Determine the linear speed of the center of mass and
the linear speed of the lowest point on the rod when it is in
the vertical position.

Solution These two values can be determined from the re-
lationship between linear and angular speeds. We know �
from part (a), and so the linear speed of the center of mass is

Because r for the lowest point on the rod is twice what it is for
the center of mass, the lowest point has a linear speed equal
to

√3gL2vCM �

1
2 √3gLvCM � r� �

L
2

 � �

√ 3g
L

  � �

1
2  MgL � 1

2  I�2 � 1
2  (1

3  ML2)�2

I � 1
3  ML2

1
2  I�2,A uniform rod of length L and mass M is free to rotate on a

frictionless pin passing through one end (Fig 10.23). The rod
is released from rest in the horizontal position. (a) What is its
angular speed when it reaches its lowest position?

Solution The question can be answered by considering
the mechanical energy of the system. When the rod is hori-
zontal, it has no rotational energy. The potential energy rela-
tive to the lowest position of the center of mass of the rod
(O�) is MgL/2. When the rod reaches its lowest position, the

O ′

O

L/2

Ei = U = MgL/2

Ef  = KR = –1
2

Iω2ω

h

h

m2

m1

R

Figure 10.23 A uniform rigid rod pivoted at O rotates in a vertical
plane under the action of gravity.

Figure 10.24



Summary 315

SUMMARY

If a particle rotates in a circle of radius r through an angle � (measured in radi-
ans), the arc length it moves through is s � r�.

The angular displacement of a particle rotating in a circle or of a rigid ob-
ject rotating about a fixed axis is

(10.2)

The instantaneous angular speed of a particle rotating in a circle or of a
rigid object rotating about a fixed axis is

(10.4)

The instantaneous angular acceleration of a rotating object is

(10.6)

When a rigid object rotates about a fixed axis, every part of the object has the
same angular speed and the same angular acceleration.

If a particle or object rotates about a fixed axis under constant angular accel-
eration, one can apply equations of kinematics that are analogous to those for lin-
ear motion under constant linear acceleration:

(10.7)

(10.8)

(10.9)

A useful technique in solving problems dealing with rotation is to visualize a linear
version of the same problem.

When a rigid object rotates about a fixed axis, the angular position, angular
speed, and angular acceleration are related to the linear position, linear speed,
and linear acceleration through the relationships

(10.1a)

(10.10)

(10.11)at � r�

  v � r�

  s � r u

�f 

2 � �i 

2 	 2�(�f � �i)

  �f � �i 	 �it 	 1
2�t2  

  �f � �i 	 �t  

� �
d�

dt

� �
d�

dt

�� � �f � �i

From Figure 10.24, we see that the system loses potential en-
ergy as cylinder 2 descends and gains potential energy as
cylinder 1 rises. That is, and Ap-
plying the principle of conservation of energy in the form

gives

vf � �
2(m2 � m1)gh

�m1 	 m2 	
I

R 2 � �
1/2

1
2�m1 	 m2 	

I
R 2 �vf 

2 	 m1gh � m2gh � 0

�K 	 �U1 	 �U 2 � 0

�U1 � m1gh.�U 2 � �m2gh

Because the angular speed of the pulley at this in-
stant is

Exercise Repeat the calculation of vf , using �� � I� ap-
plied to the pulley and Newton’s second law applied to the
two cylinders. Use the procedures presented in Examples
10.12 and 10.13.

1
R

 �
2(m2 � m1)gh

�m1 	 m2 	
I

R 2 � �
1/2

�f �
vf

R
�

vf � R�f ,
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You must be able to easily alternate between the linear and rotational variables
that describe a given situation.

The moment of inertia of a system of particles is

(10.15)

If a rigid object rotates about a fixed axis with angular speed �, its rotational
energy can be written

(10.16)

where I is the moment of inertia about the axis of rotation.
The moment of inertia of a rigid object is

(10.17)

where r is the distance from the mass element dm to the axis of rotation. 
The magnitude of the torque associated with a force F acting on an object is

(10.19)

where d is the moment arm of the force, which is the perpendicular distance from
some origin to the line of action of the force. Torque is a measure of the tendency
of the force to change the rotation of the object about some axis. 

If a rigid object free to rotate about a fixed axis has a net external torque act-
ing on it, the object undergoes an angular acceleration �, where

(10.21)

The rate at which work is done by an external force in rotating a rigid object
about a fixed axis, or the power delivered, is

(10.23)

The net work done by external forces in rotating a rigid object about a fixed
axis equals the change in the rotational kinetic energy of the object:

(10.24)�W � 1
2I�f 

2 � 1
2I�i 

2

� � ��

�� � I�

� � Fd

I � �r 2 dm

KR � 1
2I�2

I  � �
i

miri 

2

QUESTIONS

the moment of inertia have the smallest value? the largest
value?

6. Suppose the rod in Figure 10.10 has a nonuniform mass
distribution. In general, would the moment of inertia
about the y axis still equal ML2/12? If not, could the mo-
ment of inertia be calculated without knowledge of the
manner in which the mass is distributed?

7. Suppose that only two external forces act on a rigid body,
and the two forces are equal in magnitude but opposite
in direction. Under what condition does the body rotate?

8. Explain how you might use the apparatus described in
Example 10.12 to determine the moment of inertia of the
wheel. (If the wheel does not have a uniform mass den-
sity, the moment of inertia is not necessarily equal to

.)1
2MR 2

1. What is the angular speed of the second hand of a clock?
What is the direction of � as you view a clock hanging
vertically? What is the magnitude of the angular accelera-
tion vector � of the second hand?

2. A wheel rotates counterclockwise in the xy plane. What is
the direction of �? What is the direction of � if the angu-
lar velocity is decreasing in time?

3. Are the kinematic expressions for �, �, and � valid when
the angular displacement is measured in degrees instead
of in radians?

4. A turntable rotates at a constant rate of 45 rev/min. What
is its angular speed in radians per second? What is the
magnitude of its angular acceleration?

5. Suppose a � b and M � m for the system of particles de-
scribed in Figure 10.8. About what axis (x, y, or z) does
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9. Using the results from Example 10.12, how would you cal-
culate the angular speed of the wheel and the linear
speed of the suspended mass at t � 2 s, if the system is re-
leased from rest at t � 0? Is the expression v � R� valid
in this situation?

10. If a small sphere of mass M were placed at the end of the
rod in Figure 10.23, would the result for � be greater
than, less than, or equal to the value obtained in Example
10.14?

11. Explain why changing the axis of rotation of an object
changes its moment of inertia.

12. Is it possible to change the translational kinetic energy of
an object without changing its rotational energy?

13. Two cylinders having the same dimensions are set into ro-
tation about their long axes with the same angular speed.

One is hollow, and the other is filled with water. Which
cylinder will be easier to stop rotating? Explain your 
answer.

14. Must an object be rotating to have a nonzero moment of
inertia?

15. If you see an object rotating, is there necessarily a net
torque acting on it?

16. Can a (momentarily) stationary object have a nonzero an-
gular acceleration?

17. The polar diameter of the Earth is slightly less than the
equatorial diameter. How would the moment of inertia of
the Earth change if some mass from near the equator
were removed and transferred to the polar regions to
make the Earth a perfect sphere?

PROBLEMS

7. The angular position of a swinging door is described by
� � 5.00 	 10.0t 	 2.00t 2 rad. Determine the angular
position, angular speed, and angular acceleration of the
door (a) at t � 0 and (b) at t � 3.00 s.

8. The tub of a washer goes into its spin cycle, starting
from rest and gaining angular speed steadily for 8.00 s,
when it is turning at 5.00 rev/s. At this point the person
doing the laundry opens the lid, and a safety switch
turns off the washer. The tub smoothly slows to rest in
12.0 s. Through how many revolutions does the tub
turn while it is in motion?

9. A rotating wheel requires 3.00 s to complete 37.0 revo-
lutions. Its angular speed at the end of the 3.00-s inter-
val is 98.0 rad/s. What is the constant angular accelera-
tion of the wheel?

10. (a) Find the angular speed of the Earth’s rotation on its
axis. As the Earth turns toward the east, we see the sky
turning toward the west at this same rate.
(b) The rainy Pleiads wester

And seek beyond the sea
The head that I shall dream of

That shall not dream of me.

A. E. Housman (© Robert E. Symons)

Cambridge, England, is at longitude 0°, and Saskatoon,
Saskatchewan, is at longitude 107° west. How much
time elapses after the Pleiades set in Cambridge until
these stars fall below the western horizon in Saskatoon?

Section 10.3 Angular and Linear Quantities
11. Make an order-of-magnitude estimate of the number of

revolutions through which a typical automobile tire

Section 10.2 Rotational Kinematics: Rotational 
Motion with Constant Angular Acceleration

1. A wheel starts from rest and rotates with constant angu-
lar acceleration and reaches an angular speed of 
12.0 rad/s in 3.00 s. Find (a) the magnitude of the an-
gular acceleration of the wheel and (b) the angle (in
radians) through which it rotates in this time.

2. What is the angular speed in radians per second of 
(a) the Earth in its orbit about the Sun and (b) the
Moon in its orbit about the Earth?

3. An airliner arrives at the terminal, and its engines are
shut off. The rotor of one of the engines has an initial
clockwise angular speed of 2 000 rad/s. The engine’s
rotation slows with an angular acceleration of magni-
tude 80.0 rad/s2. (a) Determine the angular speed after
10.0 s. (b) How long does it take for the rotor to come
to rest?

4. (a) The positions of the hour and minute hand on a
clock face coincide at 12 o’clock. Determine all other
times (up to the second) at which the positions of the
hands coincide. (b) If the clock also has a second hand,
determine all times at which the positions of 
all three hands coincide, given that they all coincide 
at 12 o’clock.

5. An electric motor rotating a grinding wheel at 
100 rev/min is switched off. Assuming constant negative
acceleration of magnitude 2.00 rad/s2, (a) how long
does it take the wheel to stop? (b) Through how many
radians does it turn during the time found in part (a)?

6. A centrifuge in a medical laboratory rotates at a rota-
tional speed of 3 600 rev/min. When switched off, it ro-
tates 50.0 times before coming to rest. Find the constant
angular acceleration of the centrifuge.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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turns in 1 yr. State the quantities you measure or esti-
mate and their values.

12. The diameters of the main rotor and tail rotor of a sin-
gle-engine helicopter are 7.60 m and 1.02 m, respec-
tively. The respective rotational speeds are 450 rev/min
and 4 138 rev/min. Calculate the speeds of the tips of
both rotors. Compare these speeds with the speed of
sound, 343 m/s.

sume the discus moves on the arc of a circle 1.00 m in
radius. (a) Calculate the final angular speed of the dis-
cus. (b) Determine the magnitude of the angular accel-
eration of the discus, assuming it to be constant. 
(c) Calculate the acceleration time.

17. A car accelerates uniformly from rest and reaches a
speed of 22.0 m/s in 9.00 s. If the diameter of a tire is
58.0 cm, find (a) the number of revolutions the tire
makes during this motion, assuming that no slipping oc-
curs. (b) What is the final rotational speed of a tire in
revolutions per second?

18. A 6.00-kg block is released from A on the frictionless
track shown in Figure P10.18. Determine the radial and
tangential components of acceleration for the block 
at P.

WEB

Figure P10.12 (Ross Harrrison Koty/Tony Stone Images)

Figure P10.16 (Bruce Ayers/Tony Stone Images)

Figure P10.18

13. A racing car travels on a circular track with a radius of
250 m. If the car moves with a constant linear speed of
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

14. A car is traveling at 36.0 km/h on a straight road. The
radius of its tires is 25.0 cm. Find the angular speed of
one of the tires, with its axle taken as the axis of rota-
tion.

15. A wheel 2.00 m in diameter lies in a vertical plane 
and rotates with a constant angular acceleration of 
4.00 rad/s2. The wheel starts at rest at t � 0, and the
radius vector of point P on the rim makes an angle of
57.3° with the horizontal at this time. At t � 2.00 s, find
(a) the angular speed of the wheel, (b) the linear speed
and acceleration of the point P, and (c) the angular
position of the point P.

16. A discus thrower accelerates a discus from rest to a
speed of 25.0 m/s by whirling it through 1.25 rev. As-

19. A disc 8.00 cm in radius rotates at a constant rate of 
1 200 rev/min about its central axis. Determine (a) its
angular speed, (b) the linear speed at a point 3.00 cm
from its center, (c) the radial acceleration of a point on
the rim, and (d) the total distance a point on the rim
moves in 2.00 s.

20. A car traveling on a flat (unbanked) circular track accel-
erates uniformly from rest with a tangential acceleration
of 1.70 m/s2. The car makes it one quarter of the way
around the circle before it skids off the track. Deter-
mine the coefficient of static friction between the car
and track from these data.

21. A small object with mass 4.00 kg moves counterclock-
wise with constant speed 4.50 m/s in a circle of radius
3.00 m centered at the origin. (a) It started at the point
with cartesian coordinates (3 m, 0). When its angular
displacement is 9.00 rad, what is its position vector, in
cartesian unit-vector notation? (b) In what quadrant is
the particle located, and what angle does its position
vector make with the positive x axis? (c) What is its ve-
locity vector, in unit–vector notation? (d) In what direc-
tion is it moving? Make a sketch of the position and ve-
locity vectors. (e) What is its acceleration, expressed in
unit–vector notation? (f) What total force acts on the
object? (Express your answer in unit vector notation.)

R  =  2.00 m

P

A

h  =  5.00 m
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WEB

Figure P10.23

Section 10.5 Calculation of Moments of Inertia
28. Three identical thin rods, each of length L and mass m,

are welded perpendicular to each other, as shown in
Figure P10.28. The entire setup is rotated about an axis

27. Two masses M and m are connected by a rigid rod of
length L and of negligible mass, as shown in Figure
P10.27. For an axis perpendicular to the rod, show 
that the system has the minimum moment of inertia
when the axis passes through the center of mass. Show
that this moment of inertia is I � �L2, where � �
mM/(m 	 M).

24. The center of mass of a pitched baseball (3.80-cm ra-
dius) moves at 38.0 m/s. The ball spins about an axis
through its center of mass with an angular speed of 
125 rad/s. Calculate the ratio of the rotational energy
to the translational kinetic energy. Treat the ball as a
uniform sphere.

25. The four particles in Figure P10.25 are connected by
rigid rods of negligible mass. The origin is at the center
of the rectangle. If the system rotates in the xy plane
about the z axis with an angular speed of 6.00 rad/s, cal-
culate (a) the moment of inertia of the system about
the z axis and (b) the rotational energy of the system.

26. The hour hand and the minute hand of Big Ben, the fa-
mous Parliament tower clock in London, are 2.70 m
long and 4.50 m long and have masses of 60.0 kg and
100 kg, respectively. Calculate the total rotational ki-
netic energy of the two hands about the axis of rotation.
(You may model the hands as long thin rods.)

22. A standard cassette tape is placed in a standard cassette
player. Each side plays for 30 min. The two tape wheels
of the cassette fit onto two spindles in the player. Sup-
pose that a motor drives one spindle at a constant angu-
lar speed of 
 1 rad/s and that the other spindle is free
to rotate at any angular speed. Estimate the order of
magnitude of the thickness of the tape.

Section 10.4 Rotational Energy
23. Three small particles are connected by rigid rods of

negligible mass lying along the y axis (Fig. P10.23). If
the system rotates about the x axis with an angular
speed of 2.00 rad/s, find (a) the moment of inertia
about the x axis and the total rotational kinetic energy
evaluated from and (b) the linear speed of each
particle and the total kinetic energy evaluated from 

.�1
2mivi 

2
 

1
2I�2

3.00 kg 2.00 kg

4.00 kg2.00 kg

6.00 m

4.00 m

y(m)

x(m)
O

x
O

y  =  3.00 m4.00 kg

3.00 kg

2.00 kg

y

y  =  –2.00 m

y  =  –4.00 m

Figure P10.25

Figure P10.26 Problems 26 and 74. ( John Lawrence/Tony Stone Images)

Figure P10.27

L

L – xx
M m
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that passes through the end of one rod and is parallel to
another. Determine the moment of inertia of this
arrangement.

29. Figure P10.29 shows a side view of a car tire and its ra-
dial dimensions. The rubber tire has two sidewalls of
uniform thickness 0.635 cm and a tread wall of uniform
thickness 2.50 cm and width 20.0 cm. Suppose its den-
sity is uniform, with the value 1.10 
 103 kg/m3. Find
its moment of inertia about an axis through its center
perpendicular to the plane of the sidewalls.

31. Attention! About face! Compute an order-of-magnitude es-
timate for the moment of inertia of your body as you
stand tall and turn around a vertical axis passing
through the top of your head and the point halfway be-
tween your ankles. In your solution state the quantities
you measure or estimate and their values.

Section 10.6 Torque
32. Find the mass m needed to balance the 1 500-kg truck

on the incline shown in Figure P10.32. Assume all pul-
leys are frictionless and massless.

WEB

34. The fishing pole in Figure P10.34 makes an angle of
20.0° with the horizontal. What is the torque exerted by

33. Find the net torque on the wheel in Figure P10.33
about the axle through O if a � 10.0 cm and b �
25.0 cm.

30. Use the parallel-axis theorem and Table 10.2 to find the
moments of inertia of (a) a solid cylinder about an axis
parallel to the center-of-mass axis and passing through
the edge of the cylinder and (b) a solid sphere about an
axis tangent to its surface.

Figure P10.28

10.0 N

30.0° a

O

b
12.0 N

9.00 N

r

3r

θ = 45°

1500 kg
m

θ

Sidewall

Tread

33.0 cm

30.5 cm

16.5 cm

Axis of
rotation

Figure P10.29

Figure P10.32

Figure P10.33
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the fish about an axis perpendicular to the page and
passing through the fisher’s hand?

35. The tires of a 1 500-kg car are 0.600 m in diameter, and
the coefficients of friction with the road surface are 
�s � 0.800 and �k � 0.600. Assuming that the weight is
evenly distributed on the four wheels, calculate the
maximum torque that can be exerted by the engine on
a driving wheel such that the wheel does not spin. If you
wish, you may suppose that the car is at rest.

36. Suppose that the car in Problem 35 has a disk brake sys-
tem. Each wheel is slowed by the frictional force be-
tween a single brake pad and the disk-shaped rotor. On
this particular car, the brake pad comes into contact
with the rotor at an average distance of 22.0 cm from
the axis. The coefficients of friction between the brake
pad and the disk are �s � 0.600 and �k � 0.500. Calcu-
late the normal force that must be applied to the rotor
such that the car slows as quickly as possible.

Section 10.7 Relationship Between 
Torque and Angular Acceleration

37. A model airplane having a mass of 0.750 kg is tethered
by a wire so that it flies in a circle 30.0 m in radius. The
airplane engine provides a net thrust of 0.800 N per-
pendicular to the tethering wire. (a) Find the torque
the net thrust produces about the center of the circle.
(b) Find the angular acceleration of the airplane when
it is in level flight. (c) Find the linear acceleration of
the airplane tangent to its flight path.

38. The combination of an applied force and a frictional
force produces a constant total torque of 36.0 N� m on a
wheel rotating about a fixed axis. The applied force acts
for 6.00 s; during this time the angular speed of the
wheel increases from 0 to 10.0 rad/s. The applied force
is then removed, and the wheel comes to rest in 60.0 s.
Find (a) the moment of inertia of the wheel, (b) the
magnitude of the frictional torque, and (c) the total
number of revolutions of the wheel.

39. A block of mass m1 � 2.00 kg and a block of mass m2 �
6.00 kg are connected by a massless string over a pulley

in the shape of a disk having radius R � 0.250 m and
mass M � 10.0 kg. These blocks are allowed to move on
a fixed block–wedge of angle � � 30.0°, as shown in
Figure P10.39. The coefficient of kinetic friction for
both blocks is 0.360. Draw free-body diagrams of both
blocks and of the pulley. Determine (a) the acceleration
of the two blocks and (b) the tensions in the string on
both sides of the pulley.

40. A potter’s wheel—a thick stone disk with a radius of
0.500 m and a mass of 100 kg—is freely rotating at 
50.0 rev/min. The potter can stop the wheel in 6.00 s by
pressing a wet rag against the rim and exerting a radi-
ally inward force of 70.0 N. Find the effective coefficient
of kinetic friction between the wheel and the rag.

41. A bicycle wheel has a diameter of 64.0 cm and a mass of
1.80 kg. Assume that the wheel is a hoop with all of its
mass concentrated on the outside radius. The bicycle is
placed on a stationary stand on rollers, and a resistive
force of 120 N is applied tangent to the rim of the tire.
(a) What force must be applied by a chain passing over
a 9.00-cm-diameter sprocket if the wheel is to attain an
acceleration of 4.50 rad/s2? (b) What force is required
if the chain shifts to a 5.60-cm-diameter sprocket?

Section 10.8 Work , Power, and 
Energy in Rotational Motion

42. A cylindrical rod 24.0 cm long with a mass of 1.20 kg
and a radius of 1.50 cm has a ball with a diameter of
8.00 cm and a mass of 2.00 kg attached to one end. The
arrangement is originally vertical and stationary, with
the ball at the top. The apparatus is free to pivot about
the bottom end of the rod. (a) After it falls through 90°,
what is its rotational kinetic energy? (b) What is the an-
gular speed of the rod and ball? (c) What is the linear
speed of the ball? (d) How does this compare with the
speed if the ball had fallen freely through the same dis-
tance of 28 cm?

43. A 15.0-kg mass and a 10.0-kg mass are suspended by a
pulley that has a radius of 10.0 cm and a mass of 3.00 kg
(Fig. P10.43). The cord has a negligible mass and
causes the pulley to rotate without slipping. The pulley

WEB

m1

m2

I, R

θ

100 N

2.00 m

20.0°

20.0°
37.0°

Figure P10.34

Figure P10.39
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rotates without friction. The masses start from rest 
3.00 m apart. Treating the pulley as a uniform disk, de-
termine the speeds of the two masses as they pass each
other.

44. A mass m1 and a mass m2 are suspended by a pulley that
has a radius R and a mass M (see Fig. P10.43). The cord
has a negligible mass and causes the pulley to rotate
without slipping. The pulley rotates without friction.
The masses start from rest a distance d apart. Treating
the pulley as a uniform disk, determine the speeds of
the two masses as they pass each other.

v. Show that the moment of inertia I of the equipment
(including the turntable) is mr 2(2gh/v2 � 1).

48. A bus is designed to draw its power from a rotating
flywheel that is brought up to its maximum rate of rota-
tion (3 000 rev/min) by an electric motor. The flywheel
is a solid cylinder with a mass of 1 000 kg and a diame-
ter of 1.00 m. If the bus requires an average power of 
10.0 kW, how long does the flywheel rotate?

49. (a) A uniform, solid disk of radius R and mass M is free
to rotate on a frictionless pivot through a point on its
rim (Fig. P10.49). If the disk is released from rest in the
position shown by the blue circle, what is the speed of
its center of mass when the disk reaches the position in-
dicated by the dashed circle? (b) What is the speed of
the lowest point on the disk in the dashed position? 
(c) Repeat part (a), using a uniform hoop.

50. A horizontal 800-N merry-go-round is a solid disk of ra-
dius 1.50 m and is started from rest by a constant horizon-
tal force of 50.0 N applied tangentially to the cylinder.
Find the kinetic energy of the solid cylinder after 3.00 s.

ADDITIONAL PROBLEMS

51. Toppling chimneys often break apart in mid-fall (Fig.
P10.51) because the mortar between the bricks cannot

45. A weight of 50.0 N is attached to the free end of a light
string wrapped around a reel with a radius of 0.250 m
and a mass of 3.00 kg. The reel is a solid disk, free to ro-
tate in a vertical plane about the horizontal axis passing
through its center. The weight is released 6.00 m above
the floor. (a) Determine the tension in the string, the
acceleration of the mass, and the speed with which the
weight hits the floor. (b) Find the speed calculated in
part (a), using the principle of conservation of energy.

46. A constant torque of 25.0 N� m is applied to a grind-
stone whose moment of inertia is 0.130 kg� m2. Using
energy principles, find the angular speed after the
grindstone has made 15.0 revolutions. (Neglect fric-
tion.)

47. This problem describes one experimental method of
determining the moment of inertia of an irregularly
shaped object such as the payload for a satellite. Figure
P10.47 shows a mass m suspended by a cord wound
around a spool of radius r, forming part of a turntable
supporting the object. When the mass is released from
rest, it descends through a distance h, acquiring a speed

Pivot R

g

m

M = 3.00 kg
R = 10.0 cm
m1 = 15.0 kg
m2 = 10.0 kg

3.00 m

m1

M
R

m2

Figure P10.43 Problems 43 and 44.

Figure P10.47

Figure P10.49
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withstand much shear stress. As the chimney begins to
fall, shear forces must act on the topmost sections to ac-
celerate them tangentially so that they can keep up with
the rotation of the lower part of the stack. For simplic-
ity, let us model the chimney as a uniform rod of length
� pivoted at the lower end. The rod starts at rest in a
vertical position (with the frictionless pivot at the bot-
tom) and falls over under the influence of gravity. What
fraction of the length of the rod has a tangential accel-
eration greater than g sin �, where � is the angle the
chimney makes with the vertical?

exerts on the wheel. (a) How long does the wheel take
to reach its final rotational speed of 1 200 rev/min? 
(b) Through how many revolutions does it turn while
accelerating?

54. The density of the Earth, at any distance r from its cen-
ter, is approximately

where R is the radius of the Earth. Show that this density
leads to a moment of inertia I � 0.330MR2 about an axis
through the center, where M is the mass of the Earth.

55. A 4.00-m length of light nylon cord is wound around a
uniform cylindrical spool of radius 0.500 m and mass
1.00 kg. The spool is mounted on a frictionless axle and
is initially at rest. The cord is pulled from the spool with
a constant acceleration of magnitude 2.50 m/s2. 
(a) How much work has been done on the spool when
it reaches an angular speed of 8.00 rad/s? (b) Assuming
that there is enough cord on the spool, how long does it
take the spool to reach this angular speed? (c) Is there
enough cord on the spool?

56. A flywheel in the form of a heavy circular disk of diame-
ter 0.600 m and mass 200 kg is mounted on a friction-
less bearing. A motor connected to the flywheel acceler-
ates it from rest to 1 000 rev/min. (a) What is the
moment of inertia of the flywheel? (b) How much work
is done on it during this acceleration? (c) When the an-
gular speed reaches 1 000 rev/min, the motor is disen-
gaged. A friction brake is used to slow the rotational
rate to 500 rev/min. How much energy is dissipated as
internal energy in the friction brake?

57. A shaft is turning at 65.0 rad/s at time zero. Thereafter,
its angular acceleration is given by

where t is the elapsed time. (a) Find its angular speed at
t � 3.00 s. (b) How far does it turn in these 3 s?

58. For any given rotational axis, the radius of gyration K of a
rigid body is defined by the expression K 2 � I/M,
where M is the total mass of the body and I is its mo-
ment of inertia. Thus, the radius of gyration is equal to
the distance between an imaginary point mass M and
the axis of rotation such that I for the point mass about
that axis is the same as that for the rigid body. Find the
radius of gyration of (a) a solid disk of radius R, (b) a
uniform rod of length L, and (c) a solid sphere of ra-
dius R, all three of which are rotating about a central
axis.

59. A long, uniform rod of length L and mass M is pivoted
about a horizontal, frictionless pin passing through one
end. The rod is released from rest in a vertical position,
as shown in Figure P10.59. At the instant the rod is hori-
zontal, find (a) its angular speed, (b) the magnitude of
its angular acceleration, (c) the x and y components of
the acceleration of its center of mass, and (d) the com-
ponents of the reaction force at the pivot.

� � �10 rad/s2 � 5t rad/s3

 � [14.2 � 11.6 r/R] 
 103 kg/m3

52. Review Problem. A mixing beater consists of three
thin rods: Each is 10.0 cm long, diverges from a central
hub, and is separated from the others by 120°. All turn
in the same plane. A ball is attached to the end of each
rod. Each ball has a cross-sectional area of 4.00 cm2 and
is shaped so that it has a drag coefficient of 0.600. Cal-
culate the power input required to spin the beater at 
1 000 rev/min (a) in air and (b) in water.

53. A grinding wheel is in the form of a uniform solid disk
having a radius of 7.00 cm and a mass of 2.00 kg. It
starts from rest and accelerates uniformly under the ac-
tion of the constant torque of 0.600 N� m that the motor

Figure P10.51 A building demolition site in Baltimore,
MD. At the left is a chimney, mostly concealed by the building,
that has broken apart on its way down. Compare with Figure
10.19. ( Jerry Wachter/Photo Researchers, Inc.)
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60. A bicycle is turned upside down while its owner repairs
a flat tire. A friend spins the other wheel, of radius
0.381 m, and observes that drops of water fly off tangen-
tially. She measures the height reached by drops moving
vertically (Fig. P10.60). A drop that breaks loose from
the tire on one turn rises h � 54.0 cm above the tan-
gent point. A drop that breaks loose on the next turn
rises 51.0 cm above the tangent point. The height to
which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

61. A bicycle is turned upside down while its owner repairs
a flat tire. A friend spins the other wheel of radius R
and observes that drops of water fly off tangentially. She
measures the height reached by drops moving vertically
(see Fig. P10.60). A drop that breaks loose from the tire
on one turn rises a distance h1 above the tangent point.

A drop that breaks loose on the next turn rises a dis-
tance h2 � h1 above the tangent point. The height to
which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

62. The top shown in Figure P10.62 has a moment of inertia
of 4.00 
 10�4 kg� m2 and is initially at rest. It is free to
rotate about the stationary axis AA�. A string, wrapped
around a peg along the axis of the top, is pulled in such
a manner that a constant tension of 5.57 N is main-
tained. If the string does not slip while it is unwound
from the peg, what is the angular speed of the top after
80.0 cm of string has been pulled off the peg?

63. A cord is wrapped around a pulley of mass m and of ra-
dius r. The free end of the cord is connected to a block
of mass M. The block starts from rest and then slides
down an incline that makes an angle � with the horizon-
tal. The coefficient of kinetic friction between block
and incline is �. (a) Use energy methods to show that
the block’s speed as a function of displacement d down
the incline is

(b) Find the magnitude of the acceleration of the block
in terms of �, m, M, g, and �.

64. (a) What is the rotational energy of the Earth about its
spin axis? The radius of the Earth is 6 370 km, and its
mass is 5.98 
 1024 kg. Treat the Earth as a sphere of
moment of inertia . (b) The rotational energy of
the Earth is decreasing steadily because of tidal friction.
Estimate the change in one day, given that the rota-
tional period increases by about 10 �s each year.

65. The speed of a moving bullet can be determined by al-
lowing the bullet to pass through two rotating paper
disks mounted a distance d apart on the same axle (Fig.
P10.65). From the angular displacement �� of the two

2
5MR 2

v � [4gdM(m 	 2M)�1(sin � � � cos �)]1/2

F

A′

A

h

xPivot

L

y

Figure P10.59

Figure P10.60 Problems 60 and 61.

Figure P10.62



Problems 325

bullet holes in the disks and the rotational speed of the
disks, we can determine the speed v of the bullet. Find
the bullet speed for the following data: d � 80 cm, 
� � 900 rev/min, and �� � 31.0°.

66. A wheel is formed from a hoop and n equally spaced
spokes extending from the center of the hoop to its
rim. The mass of the hoop is M, and the radius of the
hoop (and hence the length of each spoke) is R. The
mass of each spoke is m. Determine (a) the moment of
inertia of the wheel about an axis through its center
and perpendicular to the plane of the wheel and 
(b) the moment of inertia of the wheel about an axis
through its rim and perpendicular to the plane of the
wheel.

67. A uniform, thin, solid door has a height of 2.20 m, a
width of 0.870 m, and a mass of 23.0 kg. Find its mo-
ment of inertia for rotation on its hinges. Are any of the
data unnecessary?

68. A uniform, hollow, cylindrical spool has inside radius
R/2, outside radius R , and mass M (Fig. P10.68). It is
mounted so that it rotates on a massless horizontal axle.
A mass m is connected to the end of a string wound
around the spool. The mass m falls from rest through a
distance y in time t. Show that the torque due to the
frictional forces between spool and axle is 

69. An electric motor can accelerate a Ferris wheel of
moment of inertia I � 20 000 kg� m2 from rest to 

�f � R[m(g � 2y/t2) � M(5y/4t2)]

10.0 rev/min in 12.0 s. When the motor is turned off,
friction causes the wheel to slow down from 10.0 to 
8.00 rev/min in 10.0 s. Determine (a) the torque gener-
ated by the motor to bring the wheel to 10.0 rev/min
and (b) the power that would be needed to maintain
this rotational speed.

70. The pulley shown in Figure P10.70 has radius R and
moment of inertia I. One end of the mass m is con-
nected to a spring of force constant k, and the other
end is fastened to a cord wrapped around the pulley.
The pulley axle and the incline are frictionless. If the
pulley is wound counterclockwise so that the spring is
stretched a distance d from its unstretched position and
is then released from rest, find (a) the angular speed of
the pulley when the spring is again unstretched and 
(b) a numerical value for the angular speed at this
point if I � 1.00 kg � m2, R � 0.300 m, k � 50.0 N/m, 
m � 0.500 kg, d � 0.200 m, and � � 37.0°.

71. Two blocks, as shown in Figure P10.71, are connected
by a string of negligible mass passing over a pulley of ra-
dius 0.250 m and moment of inertia I. The block on the
frictionless incline is moving upward with a constant ac-
celeration of 2.00 m/s2. (a) Determine T1 and T2 , the
tensions in the two parts of the string. (b) Find the mo-
ment of inertia of the pulley.

72. A common demonstration, illustrated in Figure P10.72,
consists of a ball resting at one end of a uniform board

37.0°

15.0 kg

T1

m1
20.0 kg

T2

2.00 m/s2

m2

m

R

k

θ

M

m
R/2

R/2 y

= 31°
v

d

ω

θ∆

Figure P10.65

Figure P10.68

Figure P10.70

Figure P10.71
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ANSWERS TO QUICK QUIZZES

rotational motion. (b) No, not all points on the wheel
have the same linear speed. (c) 
(d) , (at is zero
at all points because � is constant).(e) .

10.3 (a) I � MR 2. (b) I � MR 2. The moment of inertia of a
system of masses equidistant from an axis of rotation is
always the sum of the masses multiplied by the square of
the distance from the axis.

10.4 (b) Rotation about the axis through point P requires
more work. The moment of inertia of the hoop about
the center axis is ICM � MR 2, whereas, by the parallel-
axis theorem, the moment of inertia about the axis
through point P is IP � ICM 	 MR 2 � MR 2 	 MR 2 �
2MR 2 .

v � R�, a � R�2
a � ar � v2/(R/2) � R�2/2v � R�/2

v � 0, a � 0.
10.1 The fact that � is negative indicates that we are dealing

with an object that is rotating in the clockwise direction.
We also know that when � and � are antiparallel, �
must be decreasing—the object is slowing down. There-
fore, the object is spinning more and more slowly (with
less and less angular speed) in the clockwise, or nega-
tive, direction. This has a linear analogy to a sky diver
opening her parachute. The velocity is negative—down-
ward. When the sky diver opens the parachute, a large
upward force causes an upward acceleration. As a result,
the acceleration and velocity vectors are in opposite di-
rections. Consequently, the parachutist slows down.

10.2 (a) Yes, all points on the wheel have the same angular
speed. This is why we use angular quantities to describe

this limiting angle and the cup is placed at

(c) If a ball is at the end of a 1.00-m stick at this critical
angle, show that the cup must be 18.4 cm from the mov-
ing end.

73. As a result of friction, the angular speed of a wheel
changes with time according to the relationship

where �0 and � are constants. The angular speed
changes from 3.50 rad/s at t � 0 to 2.00 rad/s at 
t � 9.30 s. Use this information to determine � and �0 .
Then, determine (a) the magnitude of the angular ac-
celeration at t � 3.00 s, (b) the number of revolutions
the wheel makes in the first 2.50 s, and (c) the number
of revolutions it makes before coming to rest.

74. The hour hand and the minute hand of Big Ben, the fa-
mous Parliament tower clock in London, are 2.70 m
long and 4.50 m long and have masses of 60.0 kg and
100 kg, respectively (see Fig. P10.26). (a) Determine
the total torque due to the weight of these hands about
the axis of rotation when the time reads (i) 3:00, 
(ii) 5:15, (iii) 6:00, (iv) 8:20, and (v) 9:45. (You may
model the hands as long thin rods.) (b) Determine all
times at which the total torque about the axis of rota-
tion is zero. Determine the times to the nearest second,
solving a transcendental equation numerically.

d�/dt � �0e��t

rc �
2 �

3 cos �

of length �, hinged at the other end, and elevated at an
angle �. A light cup is attached to the board at rc so that
it will catch the ball when the support stick is suddenly

removed. (a) Show that the ball will lag behind the
falling board when � is less than 35.3° ; and that (b) the
ball will fall into the cup when the board is supported at

r c

Cup

�

Hinged end

Support
stick

θ

Figure P10.72





c h a p t e r

Rolling Motion and Angular
Momentum

One of the most popular early bicycles
was the penny – farthing, introduced in
1870. The bicycle was so named because
the size relationship of its two wheels
was about the same as the size relation-
ship of the penny and the farthing, two
English coins. When the rider looks down
at the top of the front wheel, he sees it
moving forward faster than he and the
handlebars are moving. Yet the center of
the wheel does not appear to be moving
at all relative to the handlebars. How can
different parts of the rolling wheel move
at different linear speeds? (© Steve

Lovegrove/Tasmanian Photo Library)
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11.4 Angular Momentum of a
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11.5 Conservation of Angular
Momentum
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Gyroscopes and Tops

11.7 (Optional) Angular Momentum
as a Fundamental Quantity
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n the preceding chapter we learned how to treat a rigid body rotating about a
fixed axis; in the present chapter, we move on to the more general case in
which the axis of rotation is not fixed in space. We begin by describing such mo-

tion, which is called rolling motion. The central topic of this chapter is, however, an-
gular momentum, a quantity that plays a key role in rotational dynamics. In anal-
ogy to the conservation of linear momentum, we find that the angular momentum
of a rigid object is always conserved if no external torques act on the object. Like
the law of conservation of linear momentum, the law of conservation of angular
momentum is a fundamental law of physics, equally valid for relativistic and quan-
tum systems.

ROLLING MOTION OF A RIGID OBJECT
In this section we treat the motion of a rigid object rotating about a moving axis.
In general, such motion is very complex. However, we can simplify matters by re-
stricting our discussion to a homogeneous rigid object having a high degree of
symmetry, such as a cylinder, sphere, or hoop. Furthermore, we assume that the
object undergoes rolling motion along a flat surface. We shall see that if an object
such as a cylinder rolls without slipping on the surface (we call this pure rolling mo-
tion), a simple relationship exists between its rotational and translational motions.

Suppose a cylinder is rolling on a straight path. As Figure 11.1 shows, the cen-
ter of mass moves in a straight line, but a point on the rim moves in a more com-
plex path called a cycloid. This means that the axis of rotation remains parallel to
its initial orientation in space. Consider a uniform cylinder of radius R rolling
without slipping on a horizontal surface (Fig. 11.2). As the cylinder rotates
through an angle �, its center of mass moves a linear distance (see Eq.
10.1a). Therefore, the linear speed of the center of mass for pure rolling motion is
given by

(11.1)

where � is the angular velocity of the cylinder. Equation 11.1 holds whenever a
cylinder or sphere rolls without slipping and is the condition for pure rolling

vCM �
ds
dt

� R 
d�

dt
� R�

s � R�

11.1

I

Figure 11.1 One light source at the center of a rolling cylinder and another at one point on
the rim illustrate the different paths these two points take. The center moves in a straight line
(green line), whereas the point on the rim moves in the path called a cycloid (red curve). (Henry
Leap and Jim Lehman)

7.7
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motion. The magnitude of the linear acceleration of the center of mass for pure
rolling motion is

(11.2)

where � is the angular acceleration of the cylinder.
The linear velocities of the center of mass and of various points on and within

the cylinder are illustrated in Figure 11.3. A short time after the moment shown in
the drawing, the rim point labeled P will have rotated from the six o’clock position
to, say, the seven o’clock position, the point Q will have rotated from the ten 
o’clock position to the eleven o’clock position, and so on. Note that the linear ve-
locity of any point is in a direction perpendicular to the line from that point to the
contact point P. At any instant, the part of the rim that is at point P is at rest rela-
tive to the surface because slipping does not occur.

All points on the cylinder have the same angular speed. Therefore, because
the distance from P � to P is twice the distance from P to the center of mass, P � has
a speed To see why this is so, let us model the rolling motion of the
cylinder in Figure 11.4 as a combination of translational (linear) motion and rota-
tional motion. For the pure translational motion shown in Figure 11.4a, imagine
that the cylinder does not rotate, so that each point on it moves to the right with
speed vCM . For the pure rotational motion shown in Figure 11.4b, imagine that a
rotation axis through the center of mass is stationary, so that each point on the
cylinder has the same rotational speed �. The combination of these two motions
represents the rolling motion shown in Figure 11.4c. Note in Figure 11.4c that the
top of the cylinder has linear speed vCM � R� � vCM � vCM � 2vCM , which is
greater than the linear speed of any other point on the cylinder. As noted earlier,
the center of mass moves with linear speed vCM while the contact point between
the surface and cylinder has a linear speed of zero.

We can express the total kinetic energy of the rolling cylinder as

(11.3)

where IP is the moment of inertia about a rotation axis through P. Applying the
parallel-axis theorem, we can substitute into Equation 11.3 to 
obtain

K � 1
2ICM�2 � 1

2MR2�2

IP � ICM � MR2

K � 1
2IP�2

2vCM � 2R�.

aCM �
dvCM

dt
� R 

d�

dt
� R�

R s
θ

s = Rθ

Figure 11.2 In pure rolling motion, as the
cylinder rotates through an angle �, its center
of mass moves a linear distance s � R�.

P

CM

Q

P ′
2vCM

vCM

Figure 11.3 All points on a
rolling object move in a direction
perpendicular to an axis through
the instantaneous point of contact
P. In other words, all points rotate
about P. The center of mass of the
object moves with a velocity vCM ,
and the point P �moves with a veloc-
ity 2vCM .

7.2
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or, because 

(11.4)

The term represents the rotational kinetic energy of the cylinder about its
center of mass, and the term represents the kinetic energy the cylinder
would have if it were just translating through space without rotating. Thus, we can
say that the total kinetic energy of a rolling object is the sum of the rota-
tional kinetic energy about the center of mass and the translational kinetic
energy of the center of mass.

We can use energy methods to treat a class of problems concerning the rolling
motion of a sphere down a rough incline. (The analysis that follows also applies to
the rolling motion of a cylinder or hoop.) We assume that the sphere in Figure
11.5 rolls without slipping and is released from rest at the top of the incline. Note
that accelerated rolling motion is possible only if a frictional force is present be-
tween the sphere and the incline to produce a net torque about the center of mass.
Despite the presence of friction, no loss of mechanical energy occurs because the
contact point is at rest relative to the surface at any instant. On the other hand, if
the sphere were to slip, mechanical energy would be lost as motion progressed.

Using the fact that vCM � R� for pure rolling motion, we can express Equa-
tion 11.4 as

(11.5)K � 1
2� ICM

R2 � M�vCM 

2

K � 1
2ICM� vCM

R �
2

� 1
2MvCM 

2

1
2MvCM 

2

1
2ICM�2

K � 1
2ICM�2 � 1

2MvCM 

2

vCM � R�,

P ′
vCM

CM vCM

vCM
P

P ′

CM v = 0

P

v = Rω

v = Rω

(a) Pure translation (b) Pure rotation

P ′

CM

P
v = 0

v = vCM

v = vCM + Rω = 2vCM

(c) Combination of translation and rotation

ω

ω

ω

Figure 11.4 The motion of a rolling object can be modeled as a combination of pure transla-
tion and pure rotation.

Total kinetic energy of a rolling
body

h
x

vCM

ω

M

R

θ

Figure 11.5 A sphere rolling
down an incline. Mechanical en-
ergy is conserved if no slipping
occurs.
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By the time the sphere reaches the bottom of the incline, work equal to Mgh has
been done on it by the gravitational field, where h is the height of the incline. Be-
cause the sphere starts from rest at the top, its kinetic energy at the bottom, given
by Equation 11.5, must equal this work done. Therefore, the speed of the center of
mass at the bottom can be obtained by equating these two quantities:

(11.6)

Imagine that you slide your textbook across a gymnasium floor with a certain initial speed.
It quickly stops moving because of friction between it and the floor. Yet, if you were to start
a basketball rolling with the same initial speed, it would probably keep rolling from one end
of the gym to the other. Why does a basketball roll so far? Doesn’t friction affect its motion?

Quick Quiz 11.1

   vCM � � 2gh
1 � ICM/MR2 �

1/2

1
2� ICM

R2 � M�vCM 

2 � Mgh

Sphere Rolling Down an InclineEXAMPLE 11.1
x sin �. Hence, after squaring both sides, we can express the
equation above as

Comparing this with the expression from kinematics,
(see Eq. 2.12), we see that the acceleration of

the center of mass is

These results are quite interesting in that both the speed
and the acceleration of the center of mass are independent of
the mass and the radius of the sphere! That is, all homoge-
neous solid spheres experience the same speed and ac-
celeration on a given incline.

If we repeated the calculations for a hollow sphere, a solid
cylinder, or a hoop, we would obtain similar results in which
only the factor in front of g sin � would differ. The constant
factors that appear in the expressions for vCM and a CM depend
only on the moment of inertia about the center of mass for the
specific body. In all cases, the acceleration of the center of
mass is less than g sin �, the value the acceleration would have if
the incline were frictionless and no rolling occurred.

5
7 g sin �aCM �

vCM 

2 � 2aCMx

vCM 

2 � 10
7  gx sin �

For the solid sphere shown in Figure 11.5, calculate the linear
speed of the center of mass at the bottom of the incline and
the magnitude of the linear acceleration of the center of mass.

Solution The sphere starts from the top of the incline
with potential energy and kinetic energy As
we have seen before, if it fell vertically from that height, it
would have a linear speed of at the moment before it hit
the floor. After rolling down the incline, the linear speed of
the center of mass must be less than this value because some
of the initial potential energy is diverted into rotational ki-
netic energy rather than all being converted into transla-
tional kinetic energy. For a uniform solid sphere, 

(see Table 10.2), and therefore Equation 11.6 gives

which is less than 
To calculate the linear acceleration of the center of mass,

we note that the vertical displacement is related to the dis-
placement x along the incline through the relationship h �

!2gh.

� 10
7

 gh�
1/2

vCM � �
2gh

1 �
2/5MR2

MR2 �
1/2

�

2
5MR2

ICM �

!2gh

K � 0.Ug � Mgh

Another Look at the Rolling SphereEXAMPLE 11.2
(1)

where x is measured along the slanted surface of the incline.
Now let us write an expression for the torque acting on

the sphere. A convenient axis to choose is the one that passes

�Fy � n � Mg cos � � 0 

�Fx � Mg sin � � f � MaCMIn this example, let us use dynamic methods to verify the re-
sults of Example 11.1. The free-body diagram for the sphere
is illustrated in Figure 11.6.

Solution Newton’s second law applied to the center of
mass gives
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Which gets to the bottom first: a ball rolling without sliding down incline A or a box sliding
down a frictionless incline B having the same dimensions as incline A?

THE VECTOR PRODUCT AND TORQUE
Consider a force F acting on a rigid body at the vector position r (Fig. 11.7). The
origin O is assumed to be in an inertial frame, so Newton’s first law is valid
in this case. As we saw in Section 10.6, the magnitude of the torque due to this
force relative to the origin is, by definition, rF sin 	, where 	 is the angle between
r and F. The axis about which F tends to produce rotation is perpendicular to the
plane formed by r and F. If the force lies in the xy plane, as it does in Figure 11.7,
the torque � is represented by a vector parallel to the z axis. The force in Figure
11.7 creates a torque that tends to rotate the body counterclockwise about the z
axis; thus the direction of � is toward increasing z, and � is therefore in the positive
z direction. If we reversed the direction of F in Figure 11.7, then � would be in the
negative z direction.

The torque � involves the two vectors r and F, and its direction is perpendicu-
lar to the plane of r and F. We can establish a mathematical relationship between
�, r, and F, using a new mathematical operation called the vector product, or
cross product:

� � r � F (11.7)

11.2

Quick Quiz 11.2

Torque

QuickLab
Hold a basketball and a tennis ball
side by side at the top of a ramp and
release them at the same time. Which
reaches the bottom first? Does the
outcome depend on the angle of the
ramp? What if the angle were 90°
(that is, if the balls were in free fall)?

1 Although a coordinate system whose origin is at the center of mass of a rolling object is not an iner-
tial frame, the expression 
CM � I� still applies in the center-of-mass frame.

through the center of the sphere and is perpendicular to the
plane of the figure.1 Because n and Mg go through the cen-
ter of mass, they have zero moment arm about this axis and
thus do not contribute to the torque. However, the force of
static friction produces a torque about this axis equal to fR in
the clockwise direction; therefore, because 
 is also in the

clockwise direction,

Because and we obtain

(2)

Substituting Equation (2) into Equation (1) gives

which agrees with the result of Example 11.1.
Note that �F � ma applies only if �F is the net external

force exerted on the sphere and a is the acceleration of its
center of mass. In the case of our sphere rolling down an in-
cline, even though the frictional force does not change the
total kinetic energy of the sphere, it does contribute to �F
and thus decreases the acceleration of the center of mass. As
a result, the final translational kinetic energy is less than it
would be in the absence of friction. As mentioned in Exam-
ple 11.1, some of the initial potential energy is converted to
rotational kinetic energy. 

5
7g sin �aCM �

f �
ICM�

R
� �

2
5MR2

R � 
aCM

R
� 2

5MaCM

� � aCM/R,ICM � 2
5MR2


CM � f R � ICM �

x

y

n

CM

f

Mg  cos

Mg

θ

vCM

θ

Mg  sin θ

Figure 11.6 Free-body diagram for a solid sphere rolling down an
incline.
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We now give a formal definition of the vector product. Given any two vectors A
and B, the vector product A � B is defined as a third vector C, the magnitude of
which is AB sin �, where � is the angle between A and B. That is, if C is given by

C � A � B (11.8)

then its magnitude is

(11.9)

The quantity AB sin � is equal to the area of the parallelogram formed by A and B,
as shown in Figure 11.8. The direction of C is perpendicular to the plane formed by
A and B, and the best way to determine this direction is to use the right-hand rule
illustrated in Figure 11.8. The four fingers of the right hand are pointed along A
and then “wrapped” into B through the angle �. The direction of the erect right
thumb is the direction of A � B � C. Because of the notation, A � B is often read
“A cross B”; hence, the term cross product.

Some properties of the vector product that follow from its definition are as 
follows:

1. Unlike the scalar product, the vector product is not commutative. Instead, the
order in which the two vectors are multiplied in a cross product is important:

A � B � � B � A (11.10)

Therefore, if you change the order of the vectors in a cross product, you must
change the sign. You could easily verify this relationship with the right-hand
rule.

2. If A is parallel to B (� � 0° or 180°), then A � B � 0; therefore, it follows that
A � A � 0.

3. If A is perpendicular to B, then 
4. The vector product obeys the distributive law:

A � (B � C) � A � B � A � C (11.11)

5. The derivative of the cross product with respect to some variable such as t is

(11.12)

where it is important to preserve the multiplicative order of A and B, in view of
Equation 11.10.

It is left as an exercise to show from Equations 11.9 and 11.10 and from the
definition of unit vectors that the cross products of the rectangular unit vectors i,

d
dt

 (A � B) � A �
dB
dt

�
dA
dt

� B

� A � B � � AB.

C � AB sin �
O

r

P

φx
F

y

τ  =  r  ×  F

z

τ

Figure 11.7 The torque vector �
lies in a direction perpendicular to
the plane formed by the position
vector r and the applied force vec-
tor F.

Right-hand rule

– C  =  B  ×  A

C  =  A  ×  B

A

B

θ

Figure 11.8 The vector product 
A � B is a third vector C having a
magnitude AB sin � equal to the area
of the parallelogram shown. The di-
rection of C is perpendicular to the
plane formed by A and B, and this
direction is determined by the right-
hand rule.

Properties of the vector product



ANGULAR MOMENTUM OF A PARTICLE
Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.9). A
skater glides rapidly toward the pole, aiming a little to the side so that she does not
hit it. As she approaches a point beside the pole, she reaches out and grabs the
pole, an action that whips her rapidly into a circular path around the pole. Just as
the idea of linear momentum helps us analyze translational motion, a rotational
analog—angular momentum—helps us describe this skater and other objects un-
dergoing rotational motion.

To analyze the motion of the skater, we need to know her mass and her veloc-
ity, as well as her position relative to the pole. In more general terms, consider a

11.3
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j, and k obey the following rules:

(11.13a)

(11.13b)

(11.13c)

(11.13d)

Signs are interchangeable in cross products. For example, A � (� B) � � A � B
and i � (� j) � � i � j.

The cross product of any two vectors A and B can be expressed in the follow-
ing determinant form:

Expanding these determinants gives the result

(11.14)A � B � (AyBz � AzBy)i � (AxBz � AzBx)j � (AxBy � AyBx)k

A � B � � i
Ax

Bx

j
Ay

By

k
Az

Bz
� � i �Ay

By

Az

Bz
� � j �Ax

Bx

Az

Bz
� � k �Ax

Bx

Ay

By
�

k � i � � i � k � j 

j � k � � k � j � i 

i � j � � j � i � k 

i � i � j � j � k � k � 0

The Cross ProductEXAMPLE 11.3

Therefore, A � B � � B � A.
As an alternative method for finding A � B, we could use

Equation 11.14, with and 

Exercise Use the results to this example and Equation 11.9
to find the angle between A and B.

Answer 60.3°

A � B � (0)i � (0)j � [(2)(2) � (3)(�1)]k � 7k

Bz � 0:By � 2,
Bx � � 1,Az � 0Ay � 3,Ax � 2,

�7k � � i � 3j � 2j � 2i � �3k � 4k �

B � A � (�i � 2j) � (2i � 3j) Two vectors lying in the xy plane are given by the equations 
A � 2i � 3 j and B � � i � 2j. Find A � B and verify that 
A � B � � B � A.

Solution Using Equations 11.13a through 11.13d, we
obtain

(We have omitted the terms containing i � i and j � j be-
cause, as Equation 11.13a shows, they are equal to zero.)

We can show that A � B � � B � A, since

7k � 2i � 2j � 3j � (�i) � 4k � 3k �

A � B � (2i � 3j) � (� i � 2j) 

Cross products of unit vectors

7.8
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The instantaneous angular momentum L of the particle relative to the origin O
is defined as the cross product of the particle’s instantaneous position vector r
and its instantaneous linear momentum p:

(11.15)L � r � p

particle of mass m located at the vector position r and moving with linear velocity v
(Fig. 11.10).

The SI unit of angular momentum is kg� m2/s. It is important to note that both
the magnitude and the direction of L depend on the choice of origin. Following
the right-hand rule, note that the direction of L is perpendicular to the plane
formed by r and p. In Figure 11.10, r and p are in the xy plane, and so L points in
the z direction. Because p � mv, the magnitude of L is

(11.16)

where 	 is the angle between r and p. It follows that L is zero when r is parallel to
p (	 � 0 or 180°). In other words, when the linear velocity of the particle is along
a line that passes through the origin, the particle has zero angular momentum
with respect to the origin. On the other hand, if r is perpendicular to p (	 � 90°),
then L � mvr. At that instant, the particle moves exactly as if it were on the rim of
a wheel rotating about the origin in a plane defined by r and p.

Recall the skater described at the beginning of this section. What would be her angular mo-
mentum relative to the pole if she were skating directly toward it?

In describing linear motion, we found that the net force on a particle equals the
time rate of change of its linear momentum, �F � dp/dt (see Eq. 9.3). We now
show that the net torque acting on a particle equals the time rate of change of its an-
gular momentum. Let us start by writing the net torque on the particle in the form

(11.17)

Now let us differentiate Equation 11.15 with respect to time, using the rule given
by Equation 11.12:

Remember, it is important to adhere to the order of terms because A � B �
� B � A. The last term on the right in the above equation is zero because 
v � dr/dt is parallel to p � mv (property 2 of the vector product). Therefore,

(11.18)

Comparing Equations 11.17 and 11.18, we see that

(11.19)�� �
dL
dt

dL
dt

� r �
dp
dt

dL
dt

�
d
dt

 (r � p) � r �
dp
dt

�
dr
dt

� p

�� � r � �F � r �
dp
dt

Quick Quiz 11.3

L � mvr sin 	

Angular momentum of a particle

Figure 11.9 As the skater passes
the pole, she grabs hold of it. This
causes her to swing around the
pole rapidly in a circular path.

O

z

L  =  r  ×  p

r m p

φ

y

x

Figure 11.10 The angular mo-
mentum L of a particle of mass m
and linear momentum p located at
the vector position r is a vector
given by L � r � p. The value of L
depends on the origin about which
it is measured and is a vector per-
pendicular to both r and p.

The net torque equals time rate of
change of angular momentum
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which is the rotational analog of Newton’s second law, �F � dp/dt. Note that
torque causes the angular momentum L to change just as force causes linear mo-
mentum p to change. This rotational result, Equation 11.19, states that

the net torque acting on a particle is equal to the time rate of change of the
particle’s angular momentum.

It is important to note that Equation 11.19 is valid only if �� and L are measured
about the same origin. (Of course, the same origin must be used in calculating all
of the torques.) Furthermore, the expression is valid for any origin fixed in an
inertial frame.

Angular Momentum of a System of Particles

The total angular momentum of a system of particles about some point is defined
as the vector sum of the angular momenta of the individual particles:

where the vector sum is over all n particles in the system.
Because individual angular momenta can change with time, so can the total

angular momentum. In fact, from Equations 11.18 and 11.19, we find that the
time rate of change of the total angular momentum equals the vector sum of 
all torques acting on the system, both those associated with internal forces 
between particles and those associated with external forces. However, the net
torque associated with all internal forces is zero. To understand this, recall 
that Newton’s third law tells us that internal forces between particles of the sys-
tem are equal in magnitude and opposite in direction. If we assume that these
forces lie along the line of separation of each pair of particles, then the torque
due to each action – reaction force pair is zero. That is, the moment arm d from
O to the line of action of the forces is equal for both particles. In the summa-
tion, therefore, we see that the net internal torque vanishes. We conclude that
the total angular momentum of a system can vary with time only if a net exter-
nal torque is acting on the system, so that we have

(11.20)

That is,

��ext � �
i

dLi

dt
�

d
dt

 �
i

Li �
dL
dt

L � L1 � L2 � ��� � Ln � �
i

Li

the time rate of change of the total angular momentum of a system about some
origin in an inertial frame equals the net external torque acting on the system
about that origin.

Note that Equation 11.20 is the rotational analog of Equation 9.38, ,
for a system of particles.

�Fext � dp/dt
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ANGULAR MOMENTUM OF A
ROTATING RIGID OBJECT

Consider a rigid object rotating about a fixed axis that coincides with the z axis of
a coordinate system, as shown in Figure 11.12. Let us determine the angular mo-
mentum of this object. Each particle of the object rotates in the xy plane about the
z axis with an angular speed �. The magnitude of the angular momentum of a par-
ticle of mass mi about the origin O is miviri . Because vi � ri�, we can express the
magnitude of the angular momentum of this particle as

The vector Li is directed along the z axis, as is the vector �.

Li � miri 

2�

11.4

Circular MotionEXAMPLE 11.4
though the direction of p � mv keeps changing. You can vi-
sualize this by sliding the vector v in Figure 11.11 parallel to
itself until its tail meets the tail of r and by then applying the
right-hand rule. (You can use v to determine the direction of
L � r � p because the direction of p is the same as the direc-
tion of v.) Line up your fingers so that they point along r and
wrap your fingers into the vector v. Your thumb points up-
ward and away from the page; this is the direction of L.
Hence, we can write the vector expression L � (mvr)k. If
the particle were to move clockwise, L would point down-
ward and into the page.

(b) Find the magnitude and direction of L in terms of the
particle’s angular speed �.

Solution Because v � r� for a particle rotating in a circle,
we can express L as

where I is the moment of inertia of the particle about the z
axis through O. Because the rotation is counterclockwise, the
direction of � is along the z axis (see Section 10.1). The di-
rection of L is the same as that of �, and so we can write the
angular momentum as L � I� � I�k.

Exercise A car of mass 1 500 kg moves with a linear speed
of 40 m/s on a circular race track of radius 50 m. What is the
magnitude of its angular momentum relative to the center of
the track?

Answer 3.0 � 106 kg� m2/s

I�L � mvr � mr 2� �

A particle moves in the xy plane in a circular path of radius r,
as shown in Figure 11.11. (a) Find the magnitude and direc-
tion of its angular momentum relative to O when its linear ve-
locity is v.

Solution You might guess that because the linear momen-
tum of the particle is always changing (in direction, not mag-
nitude), the direction of the angular momentum must also
change. In this example, however, this is not the case. The
magnitude of L is given by

(for r perpendicular to v)

This value of L is constant because all three factors on the
right are constant. The direction of L also is constant, even

mvrL � mvr sin 90° �

x

y

m

v

O

r

Figure 11.11 A particle moving in a circle of radius r has an angu-
lar momentum about O that has magnitude mvr. The vector L � r � p
points out of the diagram.
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Equation 11.23 also is valid for a rigid object rotating about a moving axis pro-
vided the moving axis (1) passes through the center of mass and (2) is a symmetry
axis.

You should note that if a symmetrical object rotates about a fixed axis passing
through its center of mass, you can write Equation 11.21 in vector form as L � I�,
where L is the total angular momentum of the object measured with respect to the
axis of rotation. Furthermore, the expression is valid for any object, regardless of
its symmetry, if L stands for the component of angular momentum along the axis
of rotation.2

That is, the net external torque acting on a rigid object rotating about a fixed
axis equals the moment of inertia about the rotation axis multiplied by the ob-
ject’s angular acceleration relative to that axis.

Bowling BallEXAMPLE 11.5
solid sphere. A typical bowling ball might have a mass of 6 kg
and a radius of 12 cm. The moment of inertia of a solid
sphere about an axis through its center is, from Table 10.2,

Therefore, the magnitude of the angular momentum is

I � 2
5MR2 � 2

5(6 kg)(0.12 m)2 � 0.035 kg�m2

Estimate the magnitude of the angular momentum of a bowl-
ing ball spinning at 10 rev/s, as shown in Figure 11.13.

Solution We start by making some estimates of the rele-
vant physical parameters and model the ball as a uniform

2 In general, the expression L � I� is not always valid. If a rigid object rotates about an arbitrary axis,
L and � may point in different directions. In this case, the moment of inertia cannot be treated as a
scalar. Strictly speaking, L � I� applies only to rigid objects of any shape that rotate about one of three
mutually perpendicular axes (called principal axes) through the center of mass. This is discussed in
more advanced texts on mechanics.

Figure 11.12 When a rigid body
rotates about an axis, the angular
momentum L is in the same direc-
tion as the angular velocity �, ac-
cording to the expression L � I�.

y

z

L

ω

r

x

vi
mi

We can now find the angular momentum (which in this situation has only a z
component) of the whole object by taking the sum of Li over all particles:

(11.21)

where I is the moment of inertia of the object about the z axis.
Now let us differentiate Equation 11.21 with respect to time, noting that I is

constant for a rigid body:

(11.22)

where � is the angular acceleration relative to the axis of rotation. Because dLz/dt
is equal to the net external torque (see Eq. 11.20), we can express Equation 11.22
as

(11.23)�  
ext �
dLz

dt
� I�

dLz

dt
� I 

d�

dt
� I�

Lz � I� 

Lz � �
i

miri 

2� � ��
i

miri 

2��
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z

y

L

x

Figure 11.13 A bowling ball that rotates about the z axis in the di-
rection shown has an angular momentum L in the positive z direc-
tion. If the direction of rotation is reversed, L points in the negative
z direction.

Because of the roughness of our estimates, we probably want 

to keep only one significant figure, and so L � 2 kg�m2/s.

� 2.2 kg�m2/s

L � I� � (0.035 kg�m2)(10 rev/s)(2 rad/rev)

Rotating RodEXAMPLE 11.6

The torque due to the force m 2g about the pivot is

(�2 into page)

Hence, the net torque exerted on the system about O is

The direction of ��ext is out of the page if m1 � m2 and is
into the page if m2 � m1 .

To find �, we use �
ext � I�, where I was obtained in part (a):

Note that � is zero when � is /2 or � /2 (vertical position)
and is a maximum when � is 0 or  (horizontal position).

Exercise If m2 � m 1, at what value of � is � a maximum? 

Answer � � �/2.

2(m1 � m2)g cos �

�(M/3 � m1 � m2)
� �

�
ext

I
�

�
ext � 
1 � 
2 � 1
2(m1 � m2)g � cos �


2 � �m2g 
�

2
 cos �

A rigid rod of mass M and length � is pivoted without friction
at its center (Fig. 11.14). Two particles of masses m1 and m 2
are connected to its ends. The combination rotates in a verti-
cal plane with an angular speed �. (a) Find an expression for
the magnitude of the angular momentum of the system.

Solution This is different from the last example in that we
now must account for the motion of more than one object.
The moment of inertia of the system equals the sum of the
moments of inertia of the three components: the rod and the
two particles. Referring to Table 10.2 to obtain the expression
for the moment of inertia of the rod, and using the expres-
sion I � mr 2 for each particle, we find that the total moment
of inertia about the z axis through O is

Therefore, the magnitude of the angular momentum is

(b) Find an expression for the magnitude of the angular
acceleration of the system when the rod makes an angle �
with the horizontal.

Solution If the masses of the two particles are equal, then
the system has no angular acceleration because the net
torque on the system is zero when m1 � m 2 . If the initial an-
gle � is exactly /2 or � /2 (vertical position), then the rod
will be in equilibrium. To find the angular acceleration of the
system at any angle �, we first calculate the net torque on the
system and then use �
ext � I� to obtain an expression for �.

The torque due to the force m1g about the pivot is

(�1 out of page)
1 � m1g 
�

2
 cos �

�2

4 � M
3

� m1 � m2��L � I� �

 �
�2

4 � M
3

� m1 � m2� 

I �
1
12

M�2 � m1� �

2 �
2

� m2� �

2 �
2

�

y

θ

m2g

m1g

x
O

m2

m1

Figure 11.14 Because gravitational forces act on the rotating rod,
there is in general a net nonzero torque about O when m1 � m 2 . This
net torque produces an angular acceleration given by � � �
ext �I.



This follows directly from Equation 11.20, which indicates that if

(11.24)

then
(11.25)

For a system of particles, we write this conservation law as � Ln � constant, where
the index n denotes the nth particle in the system.

L � constant

��ext �
dL
dt

� 0

340 C H A P T E R  1 1 Rolling Motion and Angular Momentum

Two Connected MassesEXAMPLE 11.7
Now let us evaluate the total external torque acting on the

system about the pulley axle. Because it has a moment arm of
zero, the force exerted by the axle on the pulley does not
contribute to the torque. Furthermore, the normal force act-
ing on the block is balanced by the force of gravity m 2g, and
so these forces do not contribute to the torque. The force of
gravity m1g acting on the sphere produces a torque about the
axle equal in magnitude to m1gR, where R is the moment
arm of the force about the axle. (Note that in this situation,
the tension is not equal to m1g.) This is the total external
torque about the pulley axle; that is, �
ext � m1gR. Using this
result, together with Equation (1) and Equation 11.23, we
find

(2)

Because dv/dt � a, we can solve this for a to obtain

a �

You may wonder why we did not include the forces that the
cord exerts on the objects in evaluating the net torque about
the axle. The reason is that these forces are internal to the
system under consideration, and we analyzed the system as a
whole. Only external torques contribute to the change in the
system’s angular momentum.

m1g
(m1 � m2) � I/R2

m1gR � (m1 � m2)R 
dv
dt

�
I
R

 
dv
dt

 

 m1gR �
d
dt �(m1 � m2)Rv � I 

v
R �

�
ext �
dL
dt

 

A sphere of mass m1 and a block of mass m 2 are connected by
a light cord that passes over a pulley, as shown in Figure
11.15. The radius of the pulley is R, and the moment of iner-
tia about its axle is I. The block slides on a frictionless, hori-
zontal surface. Find an expression for the linear acceleration
of the two objects, using the concepts of angular momentum
and torque.

Solution We need to determine the angular momentum
of the system, which consists of the two objects and the pul-
ley. Let us calculate the angular momentum about an axis
that coincides with the axle of the pulley.

At the instant the sphere and block have a common speed
v, the angular momentum of the sphere is m1vR , and that of
the block is m 2vR . At the same instant, the angular momen-
tum of the pulley is I� � Iv/R. Hence, the total angular mo-
mentum of the system is

(1) L � m1vR � m2vR � I 
v
R

The total angular momentum of a system is constant in both magnitude and di-
rection if the resultant external torque acting on the system is zero.

Conservation of angular
momentum

CONSERVATION OF ANGULAR MOMENTUM
In Chapter 9 we found that the total linear momentum of a system of particles re-
mains constant when the resultant external force acting on the system is zero. We
have an analogous conservation law in rotational motion:

11.5

m2

v

v m1

R

Figure 11.15

7.9
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If the mass of an object undergoes redistribution in some way, then the ob-
ject’s moment of inertia changes; hence, its angular speed must change because 
L � I�. In this case we express the conservation of angular momentum in the form

(11.26)

If the system is an object rotating about a fixed axis, such as the z axis, we can
write Lz � I�, where Lz is the component of L along the axis of rotation and I is
the moment of inertia about this axis. In this case, we can express the conservation
of angular momentum as

(11.27)

This expression is valid both for rotation about a fixed axis and for rotation about
an axis through the center of mass of a moving system as long as that axis remains
parallel to itself. We require only that the net external torque be zero.

Although we do not prove it here, there is an important theorem concerning
the angular momentum of an object relative to the object’s center of mass:

I i�i � I f �f � constant

Li � Lf � constant

The resultant torque acting on an object about an axis through the center of
mass equals the time rate of change of angular momentum regardless of the
motion of the center of mass.

This theorem applies even if the center of mass is accelerating, provided � and L
are evaluated relative to the center of mass.

In Equation 11.26 we have a third conservation law to add to our list. We can
now state that the energy, linear momentum, and angular momentum of an iso-
lated system all remain constant:

For an isolated system

There are many examples that demonstrate conservation of angular momen-
tum. You may have observed a figure skater spinning in the finale of a program.
The angular speed of the skater increases when the skater pulls his hands and feet
close to his body, thereby decreasing I. Neglecting friction between skates and ice,
no external torques act on the skater. The change in angular speed is due to the
fact that, because angular momentum is conserved, the product I� remains con-
stant, and a decrease in the moment of inertia of the skater causes an increase in
the angular speed. Similarly, when divers or acrobats wish to make several somer-
saults, they pull their hands and feet close to their bodies to rotate at a higher rate.
In these cases, the external force due to gravity acts through the center of mass
and hence exerts no torque about this point. Therefore, the angular momentum
about the center of mass must be conserved—that is, For example,
when divers wish to double their angular speed, they must reduce their moment of
inertia to one-half its initial value.

A particle moves in a straight line, and you are told that the net torque acting on it is zero
about some unspecified point. Decide whether the following statements are true or false:
(a) The net force on the particle must be zero. (b) The particle’s velocity must be constant.

Quick Quiz 11.4

I i�i � I f �f .

K i � Ui � K f � Uf

pi � pf

 Li � L f

 �

Angular momentum is conserved
as figure skater Todd Eldredge
pulls his arms toward his body. 
(© 1998 David Madison)
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Formation of a Neutron StarEXAMPLE 11.8
of time a point on the star’s equator takes to make one com-
plete circle around the axis of rotation. The angular speed of
a star is given by � � 2/T. Therefore, because I is propor-
tional to r 2, Equation 11.27 gives

Thus, the neutron star rotates about four times each second;
this result is approximately the same as that for a spinning
figure skater.

0.23 s� 2.7 � 10�6 days �

Tf � Ti� rf

ri
�

2
� (30 days)� 3.0 km

1.0 � 104 km �
2

A star rotates with a period of 30 days about an axis through
its center. After the star undergoes a supernova explosion,
the stellar core, which had a radius of 1.0 � 104 km, collapses
into a neutron star of radius 3.0 km. Determine the period of
rotation of the neutron star.

Solution The same physics that makes a skater spin faster
with his arms pulled in describes the motion of the neutron
star. Let us assume that during the collapse of the stellar core,
(1) no torque acts on it, (2) it remains spherical, and (3) its
mass remains constant. Also, let us use the symbol T for the
period, with Ti being the initial period of the star and Tf be-
ing the period of the neutron star. The period is the length

The Merry-Go-RoundEXAMPLE 11.9
Solution The speed change here is similar to the increase
in angular speed of the spinning skater when he pulls his
arms inward. Let us denote the moment of inertia of the plat-
form as Ip and that of the student as Is . Treating the student
as a point mass, we can write the initial moment of inertia Ii
of the system (student plus platform) about the axis of rota-
tion:

I i � Ipi � I si � 1
2MR 2 � mR 2

A horizontal platform in the shape of a circular disk rotates
in a horizontal plane about a frictionless vertical axle (Fig.
11.16). The platform has a mass M � 100 kg and a radius 
R � 2.0 m. A student whose mass is m � 60 kg walks slowly
from the rim of the disk toward its center. If the angular
speed of the system is 2.0 rad/s when the student is at the
rim, what is the angular speed when he has reached a point 
r � 0.50 m from the center?

A color-enhanced, infrared image of Hurricane Mitch, which devastated large areas of Honduras
and Nicaragua in October 1998. The spiral, nonrigid mass of air undergoes rotation and has an-
gular momentum. (Courtesy of NOAA)
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When the student has walked to the position r � R, the mo-
ment of inertia of the system reduces to

Note that we still use the greater radius R when calculating Ipf
because the radius of the platform has not changed. Because
no external torques act on the system about the axis of rotation,
we can apply the law of conservation of angular momentum:

As expected, the angular speed has increased.

Exercise Calculate the initial and final rotational energies
of the system.

Answer K i � 880 J; K f � 1.8 � 103 J.

4.1 rad/s �f � � 200 � 240
200 � 15 �(2.0 rad/s) �

  �f � �
1
2MR2 � mR2

1
2MR2 � mr 2 ��i

�1
2MR2 � mR2��i � (1

2MR2 � mr 2)�f

  I i �i � I f �f  

I f � Ipf � I sf � 1
2MR 2 � mr 2

M

m

R

Figure 11.16 As the student walks toward the center of the rotat-
ing platform, the angular speed of the system increases because the
angular momentum must remain constant.

The Spinning Bicycle WheelEXAMPLE 11.10
stool start rotating. In terms of Li , what are the magnitude
and the direction of L for the student plus stool?

Solution The system consists of the student, the wheel,
and the stool. Initially, the total angular momentum of the
system Li comes entirely from the spinning wheel. As the
wheel is inverted, the student applies a torque to the wheel,
but this torque is internal to the system. No external torque is
acting on the system about the vertical axis. Therefore, the
angular momentum of the system is conserved. Initially, we
have

(upward)

After the wheel is inverted, we have Linverted wheel � � L i . For
angular momentum to be conserved, some other part of the
system has to start rotating so that the total angular momen-
tum remains the initial angular momentum L i . That other
part of the system is the student plus the stool she is sitting
on. So, we can now state that

2LiLstudent�stool �

Lf � Li � Lstudent�stool � Li

Lsystem � Li � Lwheel

In a favorite classroom demonstration, a student holds the
axle of a spinning bicycle wheel while seated on a stool that is
free to rotate (Fig. 11.17). The student and stool are initially
at rest while the wheel is spinning in a horizontal plane with
an initial angular momentum Li that points upward. When
the wheel is inverted about its center by 180°, the student and

L i

Figure 11.17 The wheel is initially spinning when the student is
at rest. What happens when the wheel is inverted?

Note that the rotational energy of the system described in Example 11.9 increases. What ac-
counts for this increase in energy?

Quick Quiz 11.5
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Disk and StickEXAMPLE 11.11
We used the fact that radians are dimensionless to ensure
consistent units for each term.

Finally, the elastic nature of the collision reminds us that
kinetic energy is conserved; in this case, the kinetic energy
consists of translational and rotational forms:

(3)

In solving Equations (1), (2), and (3) simultaneously, we find
that vd f � 2.3 m/s, vs � 1.3 m/s, and � � � 2.0 rad/s. These
values seem reasonable. The disk is moving more slowly than it
was before the collision, and the stick has a small translational
speed. Table 11.1 summarizes the initial and final values of vari-
ables for the disk and the stick and verifies the conservation of
linear momentum, angular momentum, and kinetic energy.

Exercise Verify the values in Table 11.1.

54 m2/s2 � 6.0vd f 

2 � 3.0v s 

2 � (4.0 m2)�2

   � 1
2(1.33 kg�m2/s)�2

  12(2.0 kg)(3.0 m/s)2 � 1
2(2.0 kg)vd f 

2 � 1
2(1.0 kg)v s 

2

  12mdvdi 

2 � 1
2mdvd f 

2 � 1
2msv s 

2 � 1
2I�2  

  K i � K f  

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick that is
lying flat on nearly frictionless ice, as shown in Figure 11.18.
Assume that the collision is elastic. Find the translational
speed of the disk, the translational speed of the stick, and the
rotational speed of the stick after the collision. The moment
of inertia of the stick about its center of mass is 1.33 kg� m2.

Solution Because the disk and stick form an isolated sys-
tem, we can assume that total energy, linear momentum, and
angular momentum are all conserved. We have three un-
knowns, and so we need three equations to solve simultane-
ously. The first comes from the law of the conservation of lin-
ear momentum:

(1)

Now we apply the law of conservation of angular momen-
tum, using the initial position of the center of the stick as our
reference point. We know that the component of angular mo-
mentum of the disk along the axis perpendicular to the plane
of the ice is negative (the right-hand rule shows that Ld points
into the ice).

(2) �9.0 rad/s � (3.0 rad/m)vd f � � 

  � (1.33 kg�m2)�  

  �12 kg�m2/s � �(4.0 kg�m)vd f

  � (1.33 kg�m2)� 

 �(2.0 m)(2.0 kg)(3.0 m/s) � �(2.0 m)(2.0 kg)vd f

 �rmdvdi � �rmdvd f � I� 

 Li � Lf 

6.0 kg�m/s � (2.0 kg)vd f � (1.0 kg)v s 

 (2.0 kg)(3.0 m/s) � (2.0 kg)vd f � (1.0 kg)v s

 mdvdi � mdvd f � msv s 

 pi � pf 

TABLE 11.1 Comparison of Values in Example 11.11 Before and 
After the Collisiona

Ktrans Krot
v (m/s) � (rad/s) p (kg�m/s) L (kg�m2/s) ( J) ( J)

Before
Disk 3.0 — 6.0 � 12 9.0 —
Stick 0 0 0 0 0 0
Total — — 6.0 � 12 9.0 0

After
Disk 2.3 — 4.7 � 9.3 5.4 —
Stick 1.3 � 2.0 1.3 � 2.7 0.9 2.7
Total — — 6.0 � 12 6.3 2.7

a Notice that linear momentum, angular momentum, and total kinetic energy are conserved.

Before After

2.0 m

vdi = 3.0 m/s

ω

vs

vdf

Figure 11.18 Overhead view of a disk striking a stick in an elastic
collision, which causes the stick to rotate.
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Optional Section

THE MOTION OF GYROSCOPES AND TOPS
A very unusual and fascinating type of motion you probably have observed is that
of a top spinning about its axis of symmetry, as shown in Figure 11.19a. If the top
spins very rapidly, the axis rotates about the z axis, sweeping out a cone (see Fig.
11.19b). The motion of the axis about the vertical—known as precessional mo-
tion—is usually slow relative to the spin motion of the top.

It is quite natural to wonder why the top does not fall over. Because the center
of mass is not directly above the pivot point O, a net torque is clearly acting on the
top about O—a torque resulting from the force of gravity Mg. The top would cer-
tainly fall over if it were not spinning. Because it is spinning, however, it has an an-
gular momentum L directed along its symmetry axis. As we shall show, the motion
of this symmetry axis about the z axis (the precessional motion) occurs because
the torque produces a change in the direction of the symmetry axis. This is an 
excellent example of the importance of the directional nature of angular 
momentum.

The two forces acting on the top are the downward force of gravity Mg and
the normal force n acting upward at the pivot point O. The normal force produces
no torque about the pivot because its moment arm through that point is zero.
However, the force of gravity produces a torque � � r � Mg about O, where the
direction of � is perpendicular to the plane formed by r and Mg. By necessity, the
vector � lies in a horizontal xy plane perpendicular to the angular momentum vec-
tor. The net torque and angular momentum of the top are related through Equa-
tion 11.19:

From this expression, we see that the nonzero torque produces a change in angu-
lar momentum dL—a change that is in the same direction as �. Therefore, like
the torque vector, dL must also be at right angles to L. Figure 11.19b illustrates the
resulting precessional motion of the symmetry axis of the top. In a time �t, the
change in angular momentum is Because �L is perpendicu-
lar to L, the magnitude of L does not change Rather, what is chang-
ing is the direction of L. Because the change in angular momentum �L is in the di-
rection of �, which lies in the xy plane, the top undergoes precessional motion.

The essential features of precessional motion can be illustrated by considering
the simple gyroscope shown in Figure 11.20a. This device consists of a wheel free
to spin about an axle that is pivoted at a distance h from the center of mass of the
wheel. When given an angular velocity � about the axle, the wheel has an angular
momentum L � I� directed along the axle as shown. Let us consider the torque
acting on the wheel about the pivot O. Again, the force n exerted by the support
on the axle produces no torque about O, and the force of gravity Mg produces a
torque of magnitude Mgh about O, where the axle is perpendicular to the support.
The direction of this torque is perpendicular to the axle (and perpendicular to L),
as shown in Figure 11.20a. This torque causes the angular momentum to change
in the direction perpendicular to the axle. Hence, the axle moves in the direction
of the torque—that is, in the horizontal plane.

To simplify the description of the system, we must make an assumption: The
total angular momentum of the precessing wheel is the sum of the angular mo-
mentum I� due to the spinning and the angular momentum due to the motion of

(� Li � � � Lf �).
�L � Lf � Li � � �t.

� �
dL
dt

11.6

Precessional motion

L i Lf

L

CM

O
y

z

∆L

τ

Mg

x

n

r

(a)

(b)

Figure 11.19 Precessional mo-
tion of a top spinning about its
symmetry axis. (a) The only exter-
nal forces acting on the top are the
normal force n and the force of
gravity Mg. The direction of the
angular momentum L is along the
axis of symmetry. The right-hand
rule indicates that � � r � F �
r � Mg is in the xy plane. (b). The
direction of �L is parallel to that of 
� in part (a). The fact that Lf �
�L � Li indicates that the top pre-
cesses about the z axis.
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the center of mass about the pivot. In our treatment, we shall neglect the contribu-
tion from the center-of-mass motion and take the total angular momentum to be
just I�. In practice, this is a good approximation if � is made very large.

In a time dt, the torque due to the gravitational force changes the angular mo-
mentum of the system by dL � � dt. When added vectorially to the original total

Li

Lf

ττ

n
h

O

Mg

(a) (b)

Li

LfdL

dφφ

Figure 11.20 (a) The motion of a simple gyroscope pivoted a distance h from its center of
mass. The force of gravity Mg produces a torque about the pivot, and this torque is perpendicu-
lar to the axle. (b) This torque results in a change in angular momentum dL in a direction per-
pendicular to the axle. The axle sweeps out an angle d	 in a time dt.

L

r

n

Mg

τ

This toy gyroscope undergoes precessional motion about the vertical axis as it spins about its axis
of symmetry. The only forces acting on it are the force of gravity Mg and the upward force of the
pivot n. The direction of its angular momentum L is along the axis of symmetry. The torque and
�L are directed into the page. (Courtesy of Central Scientific Company)
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angular momentum I�, this additional angular momentum causes a shift in the di-
rection of the total angular momentum.

The vector diagram in Figure 11.20b shows that in the time dt, the angular
momentum vector rotates through an angle d	, which is also the angle through
which the axle rotates. From the vector triangle formed by the vectors Li , Lf , and
dL, we see that

where we have used the fact that, for small values of any angle �, sin � � �. Divid-
ing through by dt and using the relationship L � I�, we find that the rate at which
the axle rotates about the vertical axis is

(11.28)

The angular speed �p is called the precessional frequency. This result is valid
only when �p V �. Otherwise, a much more complicated motion is involved. As
you can see from Equation 11.28, the condition �p V � is met when I� is great
compared with Mgh. Furthermore, note that the precessional frequency decreases
as � increases—that is, as the wheel spins faster about its axis of symmetry.

How much work is done by the force of gravity when a top precesses through one complete
circle?

Optional Section

ANGULAR MOMENTUM AS A
FUNDAMENTAL QUANTITY

We have seen that the concept of angular momentum is very useful for describing the
motion of macroscopic systems. However, the concept also is valid on a submicro-
scopic scale and has been used extensively in the development of modern theories of
atomic, molecular, and nuclear physics. In these developments, it was found that the
angular momentum of a system is a fundamental quantity. The word fundamental in
this context implies that angular momentum is an intrinsic property of atoms, mole-
cules, and their constituents, a property that is a part of their very nature.

To explain the results of a variety of experiments on atomic and molecular sys-
tems, we rely on the fact that the angular momentum has discrete values. These
discrete values are multiples of the fundamental unit of angular momentum

where h is called Planck’s constant:

Fundamental unit of angular momentum

Let us accept this postulate without proof for the time being and show how it
can be used to estimate the angular speed of a diatomic molecule. Consider the
O2 molecule as a rigid rotor, that is, two atoms separated by a fixed distance d and
rotating about the center of mass (Fig. 11.21). Equating the angular momentum
to the fundamental unit we can estimate the lowest angular speed:

ICM� � �  or  � �
�

ICM

�,

� � � 1.054 � 10�34  kg�m2/s

� � h/2,

11.7

Quick Quiz 11.6

�p �
d	

dt
�

Mgh

I�

sin (d	) � d	 �
dL
L

�
(Mgh)dt

L

Precessional frequency

Figure 11.21 The rigid-rotor
model of a diatomic molecule. The
rotation occurs about the center of
mass in the plane of the page.

d

m m

ω

CM
⊕



348 C H A P T E R  1 1 Rolling Motion and Angular Momentum

In Example 10.3, we found that the moment of inertia of the O2 molecule
about this axis of rotation is 1.95 � 10�46 kg� m2. Therefore,

Actual angular speeds are multiples of this smallest possible value.
This simple example shows that certain classical concepts and models, when

properly modified, might be useful in describing some features of atomic and mo-
lecular systems. A wide variety of phenomena on the submicroscopic scale can be
explained only if we assume discrete values of the angular momentum associated
with a particular type of motion.

The Danish physicist Niels Bohr (1885–1962) accepted and adopted this radi-
cal idea of discrete angular momentum values in developing his theory of the hy-
drogen atom. Strictly classical models were unsuccessful in describing many prop-
erties of the hydrogen atom. Bohr postulated that the electron could occupy only
those circular orbits about the proton for which the orbital angular momentum
was equal to where n is an integer. That is, he made the bold assumption that
orbital angular momentum is quantized. From this simple model, the rotational
frequencies of the electron in the various orbits can be estimated (see Problem 43).

SUMMARY

The total kinetic energy of a rigid object rolling on a rough surface without slip-
ping equals the rotational kinetic energy about its center of mass, plus the
translational kinetic energy of the center of mass, 

(11.4)

The torque � due to a force F about an origin in an inertial frame is defined
to be

(11.7)

Given two vectors A and B, the cross product A � B is a vector C having a
magnitude

(11.9)

where � is the angle between A and B. The direction of the vector C � A � B is
perpendicular to the plane formed by A and B, and this direction is determined
by the right-hand rule.

The angular momentum L of a particle having linear momentum p � mv is

(11.15)

where r is the vector position of the particle relative to an origin in an inertial
frame.

The net external torque acting on a particle or rigid object is equal to the
time rate of change of its angular momentum:

(11.20)

The z component of angular momentum of a rigid object rotating about a
fixed z axis is

(11.21)Lz � I�

��ext �
dL
dt

L � r � p

C � AB sin �

� � r � F

K � 1
2 ICM�2 � 1

2MvCM 

2

1
2MvCM 

2:

1
2 ICM�2,

n�,

� �
�

ICM
�

1.054 � 10�34 kg�m2/s
1.95 � 10�46 kg�m2 � 5.41 � 1011 rad/s
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QUESTIONS

moved away from him for some unknown reason. At this
point, the alarmed bellhop dropped the suitcase and ran
off. What do you suppose might have been in the suit-
case?

11. When a cylinder rolls on a horizontal surface as in Figure
11.3, do any points on the cylinder have only a vertical
component of velocity at some instant? If so, where are
they?

12. Three objects of uniform density—a solid sphere, a solid
cylinder, and a hollow cylinder—are placed at the top of
an incline (Fig. Q11.12). If they all are released from rest
at the same elevation and roll without slipping, which ob-
ject reaches the bottom first? Which reaches it last? You
should try this at home and note that the result is inde-
pendent of the masses and the radii of the objects.

1. Is it possible to calculate the torque acting on a rigid body
without specifying a center of rotation? Is the torque in-
dependent of the location of the center of rotation?

2. Is the triple product defined by a scalar or a
vector quantity? Explain why the operation 
has no meaning.

3. In some motorcycle races, the riders drive over small hills,
and the motorcycles become airborne for a short time. If
a motorcycle racer keeps the throttle open while leaving
the hill and going into the air, the motorcycle tends to
nose upward. Why does this happen?

4. If the torque acting on a particle about a certain origin is
zero, what can you say about its angular momentum
about that origin?

5. Suppose that the velocity vector of a particle is completely
specified. What can you conclude about the direction of
its angular momentum vector with respect to the direc-
tion of motion?

6. If a single force acts on an object, and the torque caused
by that force is nonzero about some point, is there any
other point about which the torque is zero?

7. If a system of particles is in motion, is it possible for the
total angular momentum to be zero about some origin?
Explain.

8. A ball is thrown in such a way that it does not spin about
its own axis. Does this mean that the angular momentum
is zero about an arbitrary origin? Explain.

9. In a tape recorder, the tape is pulled past the read-and-
write heads at a constant speed by the drive mechanism.
Consider the reel from which the tape is pulled—as the
tape is pulled off it, the radius of the roll of remaining
tape decreases. How does the torque on the reel change
with time? How does the angular speed of the reel
change with time? If the tape mechanism is suddenly
turned on so that the tape is quickly pulled with a great
force, is the tape more likely to break when pulled from a
nearly full reel or a nearly empty reel?

10. A scientist at a hotel sought assistance from a bellhop to
carry a mysterious suitcase. When the unaware bellhop
rounded a corner carrying the suitcase, it suddenly

(A � B) � C
A � (B � C)

where I is the moment of inertia of the object about the axis of rotation and � is
its angular speed.

The net external torque acting on a rigid object equals the product of its mo-
ment of inertia about the axis of rotation and its angular acceleration:

(11.23)

If the net external torque acting on a system is zero, then the total angular
momentum of the system is constant. Applying this law of conservation of angu-
lar momentum to a system whose moment of inertia changes gives

(11.27)I i�i � I f �f � constant

�
ext � I�

13. A mouse is initially at rest on a horizontal turntable
mounted on a frictionless vertical axle. If the mouse be-
gins to walk around the perimeter, what happens to the
turntable? Explain.

14. Stars originate as large bodies of slowly rotating gas. Be-
cause of gravity, these regions of gas slowly decrease in
size. What happens to the angular speed of a star as it
shrinks? Explain.

15. Often, when a high diver wants to execute a flip in
midair, she draws her legs up against her chest. Why does
this make her rotate faster? What should she do when she
wants to come out of her flip?

16. As a tether ball winds around a thin pole, what happens
to its angular speed? Explain.

Figure Q11.12 Which object wins the race?
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17. Two solid spheres—a large, massive sphere and a small
sphere with low mass—are rolled down a hill. Which
sphere reaches the bottom of the hill first? Next, a large,
low-density sphere and a small, high-density sphere hav-
ing the same mass are rolled down the hill. Which one
reaches the bottom first in this case?

18. Suppose you are designing a car for a coasting race—the
cars in this race have no engines; they simply coast down
a hill. Do you want to use large wheels or small wheels?
Do you want to use solid, disk-like wheels or hoop-like
wheels? Should the wheels be heavy or light?

19. Why do tightrope walkers carry a long pole to help them-
selves keep their balance?

20. Two balls have the same size and mass. One is hollow,
whereas the other is solid. How would you determine
which is which without breaking them apart?

21. A particle is moving in a circle with constant speed. Lo-
cate one point about which the particle’s angular mo-
mentum is constant and another about which it changes
with time.

22. If global warming occurs over the next century, it is likely
that some polar ice will melt and the water will be distrib-
uted closer to the equator. How would this change the
moment of inertia of the Earth? Would the length of the
day (one revolution) increase or decrease?

PROBLEMS

7. A metal can containing condensed mushroom soup has
a mass of 215 g, a height of 10.8 cm, and a diameter of
6.38 cm. It is placed at rest on its side at the top of a
3.00-m-long incline that is at an angle of 25.0° to the
horizontal and is then released to roll straight down. As-
suming energy conservation, calculate the moment of
inertia of the can if it takes 1.50 s to reach the bottom
of the incline. Which pieces of data, if any, are unneces-
sary for calculating the solution?

8. A tennis ball is a hollow sphere with a thin wall. It is
set rolling without slipping at 4.03 m/s on the hori-
zontal section of a track, as shown in Figure P11.8. 
It rolls around the inside of a vertical circular loop
90.0 cm in diameter and finally leaves the track at a
point 20.0 cm below the horizontal section. (a) Find
the speed of the ball at the top of the loop. Demon-
strate that it will not fall from the track. (b) Find its
speed as it leaves the track. (c) Suppose that static
friction between the ball and the track was negligible,
so that the ball slid instead of rolling. Would its speed

Section 11.1 Rolling Motion of a Rigid Object
1. A cylinder of mass 10.0 kg rolls without slipping on a

horizontal surface. At the instant its center of mass has
a speed of 10.0 m/s, determine (a) the translational ki-
netic energy of its center of mass, (b) the rotational en-
ergy about its center of mass, and (c) its total energy.

2. A bowling ball has a mass of 4.00 kg, a moment of iner-
tia of 1.60 � 10�2 kg� m2, and a radius of 0.100 m. If it
rolls down the lane without slipping at a linear speed of
4.00 m/s, what is its total energy?

3. A bowling ball has a mass M, a radius R, and a moment
of inertia If it starts from rest, how much work
must be done on it to set it rolling without slipping at a
linear speed v? Express the work in terms of M and v.

4. A uniform solid disk and a uniform hoop are placed
side by side at the top of an incline of height h. If they
are released from rest and roll without slipping, deter-
mine their speeds when they reach the bottom. Which
object reaches the bottom first?

5. (a) Determine the acceleration of the center of mass of
a uniform solid disk rolling down an incline making an
angle � with the horizontal. Compare this acceleration
with that of a uniform hoop. (b) What is the minimum
coefficient of friction required to maintain pure rolling
motion for the disk?

6. A ring of mass 2.40 kg, inner radius 6.00 cm, and outer
radius 8.00 cm rolls (without slipping) up an inclined
plane that makes an angle of � � 36.9° (Fig. P11.6). At
the moment the ring is at position x � 2.00 m up the
plane, its speed is 2.80 m/s. The ring continues up the
plane for some additional distance and then rolls back
down. It does not roll off the top end. How far up the
plane does it go?

2
5MR2.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

θ

v

x

Figure P11.6

WEB
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then be higher, lower, or the same at the top of the
loop? Explain.

Section 11.2 The Vector Product and Torque
9. Given M � 6i � 2j � k and N � 2i � j � 3k, calculate

the vector product M � N.
10. The vectors 42.0 cm at 15.0° and 23.0 cm at 65.0° both

start from the origin. Both angles are measured coun-
terclockwise from the x axis. The vectors form two sides
of a parallelogram. (a) Find the area of the parallelo-
gram. (b) Find the length of its longer diagonal.

11. Two vectors are given by A � � 3i � 4j and B � 2i �
3j. Find (a) A � B and (b) the angle between A and B.

12. For the vectors A � � 3i � 7j � 4k and B � 6i � 10j �
9k, evaluate the expressions (a) cos�1 and
(b) sin�1 (c) Which give(s) the angle
between the vectors?

13. A force of F � 2.00i � 3.00j N is applied to an object
that is pivoted about a fixed axis aligned along the z co-
ordinate axis. If the force is applied at the point r �
(4.00i � 5.00j � 0k) m, find (a) the magnitude of the
net torque about the z axis and (b) the direction of the
torque vector �.

14. A student claims that she has found a vector A such that
(2i � 3j � 4k) � A � (4i � 3j � k). Do you believe
this claim? Explain.

15. Vector A is in the negative y direction, and vector B is in
the negative x direction. What are the directions of 
(a) A � B and (b) B � A?

16. A particle is located at the vector position r � (i � 3j) m,
and the force acting on it is F � (3i � 2j) N. What is 
the torque about (a) the origin and (b) the point hav-
ing coordinates (0, 6) m?

17. If what is the angle between A and B?
18. Two forces F1 and F2 act along the two sides of an equi-

lateral triangle, as shown in Figure P11.18. Point O is
the intersection of the altitudes of the triangle. Find a
third force F3 to be applied at B and along BC that will
make the total torque about the point O be zero. Will
the total torque change if F3 is applied not at B, but
rather at any other point along BC?

� A � B � � A � B,

(� A � B �/AB).
(A � B/AB )

Section 11.3 Angular Momentum of a Particle
19. A light, rigid rod 1.00 m in length joins two particles—

with masses 4.00 kg and 3.00 kg—at its ends. The com-
bination rotates in the xy plane about a pivot through
the center of the rod (Fig. P11.19). Determine the an-
gular momentum of the system about the origin when
the speed of each particle is 5.00 m/s.

WEB

Figure P11.18Figure P11.8
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20. A 1.50-kg particle moves in the xy plane with a velocity
of v � (4.20i � 3.60j) m/s. Determine the particle’s 
angular momentum when its position vector is r �
(1.50i � 2.20j) m.

21. The position vector of a particle of mass 2.00 kg is given
as a function of time by r � (6.00i � 5.00t j) m. Deter-
mine the angular momentum of the particle about the
origin as a function of time.

22. A conical pendulum consists of a bob of mass m in mo-
tion in a circular path in a horizontal plane, as shown in
Figure P11.22. During the motion, the supporting wire
of length � maintains the constant angle � with the ver-
tical. Show that the magnitude of the angular momen-

WEB
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tum of the mass about the center of the circle is

L � (m2g �3 sin4 �/cos �)1/2

cle about the origin when the particle is (a) at the ori-
gin, (b) at the highest point of its trajectory, and (c) just
about to hit the ground. (d) What torque causes its an-
gular momentum to change?

26. Heading straight toward the summit of Pike’s Peak, an
airplane of mass 12 000 kg flies over the plains of
Kansas at a nearly constant altitude of 4.30 km and with
a constant velocity of 175 m/s westward. (a) What is the
airplane’s vector angular momentum relative to a wheat
farmer on the ground directly below the airplane? 
(b) Does this value change as the airplane continues its
motion along a straight line? (c) What is its angular mo-
mentum relative to the summit of Pike’s Peak?

27. A ball of mass m is fastened at the end of a flagpole con-
nected to the side of a tall building at point P, as shown
in Figure P11.27. The length of the flagpole is �, and �
is the angle the flagpole makes with the horizontal. Sup-
pose that the ball becomes loose and starts to fall. De-
termine the angular momentum (as a function of time)
of the ball about point P. Neglect air resistance.

Figure P11.23

Figure P11.22

28. A fireman clings to a vertical ladder and directs the noz-
zle of a hose horizontally toward a burning building.
The rate of water flow is 6.31 kg/s, and the nozzle speed
is 12.5 m/s. The hose passes between the fireman’s feet,
which are 1.30 m vertically below the nozzle. Choose
the origin to be inside the hose between the fireman’s

24. A 4.00-kg mass is attached to a light cord that is wound
around a pulley (see Fig. 10.20). The pulley is a uni-
form solid cylinder with a radius of 8.00 cm and a mass
of 2.00 kg. (a) What is the net torque on the system
about the point O? (b) When the mass has a speed v,
the pulley has an angular speed � � v/R. Determine
the total angular momentum of the system about O. 
(c) Using the fact that � � dL/dt and your result from
part (b), calculate the acceleration of the mass.

25. A particle of mass m is shot with an initial velocity vi and
makes an angle � with the horizontal, as shown in Fig-
ure P11.25. The particle moves in the gravitational field
of the Earth. Find the angular momentum of the parti-

23. A particle of mass m moves in a circle of radius R at a
constant speed v, as shown in Figure P11.23. If the mo-
tion begins at point Q, determine the angular momen-
tum of the particle about point P as a function of time.
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the ratio of the final rotational energy to the initial rota-
tional energy.

34. A playground merry-go-round of radius R � 2.00 m has
a moment of inertia of I � 250 kg� m2 and is rotating at
10.0 rev/min about a frictionless vertical axle. Facing
the axle, a 25.0-kg child hops onto the merry-go-round
and manages to sit down on its edge. What is the new
angular speed of the merry-go-round?

35. A student sits on a freely rotating stool holding two
weights, each of which has a mass of 3.00 kg. When his
arms are extended horizontally, the weights are 1.00 m
from the axis of rotation and he rotates with an angular
speed of 0.750 rad/s. The moment of inertia of the stu-
dent plus stool is 3.00 kg� m2 and is assumed to be con-
stant. The student pulls the weights inward horizontally
to a position 0.300 m from the rotation axis. (a) Find
the new angular speed of the student. (b) Find the ki-
netic energy of the rotating system before and after he
pulls the weights inward.

36. A uniform rod with a mass of 100 g and a length of 
50.0 cm rotates in a horizontal plane about a fixed, 
vertical, frictionless pin passing through its center. 
Two small beads, each having a mass 30.0 g, are
mounted on the rod so that they are able to slide with-
out friction along its length. Initially, the beads are held
by catches at positions 10.0 cm on each side of center; 
at this time, the system rotates at an angular speed of
20.0 rad/s. Suddenly, the catches are released, and the
small beads slide outward along the rod. Find (a) the 
angular speed of the system at the instant the beads
reach the ends of the rod and (b) the angular speed of
the rod after the beads fly off the rod’s ends.

37. A 60.0-kg woman stands at the rim of a horizontal
turntable having a moment of inertia of 500 kg� m2 and
a radius of 2.00 m. The turntable is initially at rest and is
free to rotate about a frictionless, vertical axle through
its center. The woman then starts walking around the
rim clockwise (as viewed from above the system) at a
constant speed of 1.50 m/s relative to the Earth. (a) In
what direction and with what angular speed does the
turntable rotate? (b) How much work does the woman
do to set herself and the turntable into motion?

38. A puck with a mass of 80.0 g and a radius of 4.00 cm
slides along an air table at a speed of 1.50 m/s, as
shown in Figure P11.38a. It makes a glancing collision

feet. What torque must the fireman exert on the hose?
That is, what is the rate of change of angular momen-
tum of the water?

Section 11.4 Angular Momentum of a 
Rotating Rigid Object

29. A uniform solid sphere with a radius of 0.500 m and a
mass of 15.0 kg turns counterclockwise about a vertical
axis through its center. Find its vector angular momen-
tum when its angular speed is 3.00 rad/s.

30. A uniform solid disk with a mass of 3.00 kg and a radius
of 0.200 m rotates about a fixed axis perpendicular 
to its face. If the angular speed is 6.00 rad/s, calculate
the angular momentum of the disk when the axis of ro-
tation (a) passes through its center of mass and 
(b) passes through a point midway between the center
and the rim.

31. A particle with a mass of 0.400 kg is attached to the 
100-cm mark of a meter stick with a mass of 0.100 kg. The
meter stick rotates on a horizontal, frictionless table 
with an angular speed of 4.00 rad/s. Calculate the angu-
lar momentum of the system when the stick is pivoted
about an axis (a) perpendicular to the table through 
the 50.0-cm mark and (b) perpendicular to the table
through the 0-cm mark.

32. The hour and minute hands of Big Ben, the famous
Parliament Building tower clock in London, are 2.70 m
and 4.50 m long and have masses of 60.0 kg and 100 kg,
respectively. Calculate the total angular momentum of
these hands about the center point. Treat the hands as
long thin rods.

Section 11.5 Conservation of Angular Momentum
33. A cylinder with a moment of inertia of I1 rotates about a

vertical, frictionless axle with angular velocity �i . A sec-
ond cylinder that has a moment of inertia of I2 and ini-
tially is not rotating drops onto the first cylinder (Fig.
P11.33). Because of friction between the surfaces, the
two eventually reach the same angular speed �f . 
(a) Calculate �f . (b) Show that the kinetic energy of 
the system decreases in this interaction and calculate

Figure P11.38Figure P11.33

(b)(a)

1.50 m/s

I2

ωi
ωf

I1

Before After
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with a second puck having a radius of 6.00 cm and a
mass of 120 g (initially at rest) such that their rims just
touch. Because their rims are coated with instant-acting
glue, the pucks stick together and spin after the colli-
sion (Fig. P11.38b). (a) What is the angular momentum
of the system relative to the center of mass? (b) What is
the angular speed about the center of mass?

39. A wooden block of mass M resting on a frictionless hori-
zontal surface is attached to a rigid rod of length � and
of negligible mass (Fig. P11.39). The rod is pivoted at
the other end. A bullet of mass m traveling parallel to
the horizontal surface and normal to the rod with speed
v hits the block and becomes embedded in it. (a) What
is the angular momentum of the bullet–block system?
(b) What fraction of the original kinetic energy is lost
in the collision?

maximum possible decrease in the angular speed of the
Earth due to this collision? Explain your answer.

(Optional)
Section 11.7 Angular Momentum as a 
Fundamental Quantity

43. In the Bohr model of the hydrogen atom, the electron
moves in a circular orbit of radius 0.529 � 10�10 m
around the proton. Assuming that the orbital angular
momentum of the electron is equal to h/2, calculate
(a) the orbital speed of the electron, (b) the kinetic en-
ergy of the electron, and (c) the angular speed of the
electron’s motion.

ADDITIONAL PROBLEMS

44. Review Problem. A rigid, massless rod has three equal
masses attached to it, as shown in Figure P11.44. The
rod is free to rotate in a vertical plane about a friction-
less axle perpendicular to the rod through the point P,
and it is released from rest in the horizontal position at
t � 0. Assuming m and d are known, find (a) the mo-
ment of inertia of the system about the pivot, (b) the
torque acting on the system at t � 0, (c) the angular ac-
celeration of the system at t � 0, (d) the linear accelera-
tion of the mass labeled “3” at t � 0, (e) the maximum

40. A space station shaped like a giant wheel has a radius of
100 m and a moment of inertia of 5.00 � 108 kg� m2. A
crew of 150 are living on the rim, and the station’s rota-
tion causes the crew to experience an acceleration of 1g
(Fig. P11.40). When 100 people move to the center of
the station for a union meeting, the angular speed
changes. What acceleration is experienced by the man-
agers remaining at the rim? Assume that the average
mass of each inhabitant is 65.0 kg.

41. A wad of sticky clay of mass m and velocity vi is fired at a
solid cylinder of mass M and radius R (Fig. P11.41).
The cylinder is initially at rest and is mounted on a
fixed horizontal axle that runs through the center of
mass. The line of motion of the projectile is perpendic-
ular to the axle and at a distance d, less than R, from the
center. (a) Find the angular speed of the system just af-
ter the clay strikes and sticks to the surface of the cylin-
der. (b) Is mechanical energy conserved in this process?
Explain your answer.

42. Suppose a meteor with a mass of 3.00 � 1013 kg is mov-
ing at 30.0 km/s relative to the center of the Earth and
strikes the Earth. What is the order of magnitude of the

Figure P11.39

MR

vim

dM

�

v

Figure P11.41

Figure P11.40



Problems 355

kinetic energy of the system, (f) the maximum angular
speed attained by the rod, (g) the maximum angular
momentum of the system, and (h) the maximum speed
attained by the mass labeled “2.”

time. (f) Find the work done by the drive motor during
the 440-s motion. (g) Find the work done by the string
brake on the sliding mass. (h) Find the total work done
on the system consisting of the disk and the sliding
mass.

48. Comet Halley moves about the Sun in an elliptical orbit,
with its closest approach to the Sun being about 
0.590 AU and its greatest distance from the Sun being
35.0 AU (1 AU � the average Earth–Sun distance). If
the comet’s speed at its closest approach is 54.0 km/s,

47. A string is wound around a uniform disk of radius R
and mass M. The disk is released from rest when the
string is vertical and its top end is tied to a fixed bar
(Fig. P11.47). Show that (a) the tension in the string is
one-third the weight of the disk, (b) the magnitude of
the acceleration of the center of mass is 2g/3, and 
(c) the speed of the center of mass is (4gh/3)1/2 as the
disk descends. Verify your answer to part (c) using the
energy approach.

46. A 100-kg uniform horizontal disk of radius 5.50 m turns
without friction at 2.50 rev/s on a vertical axis through
its center, as shown in Figure P11.46. A feedback mech-
anism senses the angular speed of the disk, and a drive
motor at A ensures that the angular speed remains con-
stant. While the disk turns, a 1.20-kg mass on top of the
disk slides outward in a radial slot. The 1.20-kg mass
starts at the center of the disk at time t � 0 and moves
outward with a constant speed of 1.25 cm/s relative to
the disk until it reaches the edge at t � 440 s. The slid-
ing mass experiences no friction. Its motion is con-
strained by a brake at B so that its radial speed remains
constant. The constraint produces tension in a light
string tied to the mass. (a) Find the torque as a function
of time that the drive motor must provide while the
mass is sliding. (b) Find the value of this torque at 
t � 440 s, just before the sliding mass finishes its mo-
tion. (c) Find the power that the drive motor must de-
liver as a function of time. (d) Find the value of the
power when the sliding mass is just reaching the end of
the slot. (e) Find the string tension as a function of

45. A uniform solid sphere of radius r is placed on the in-
side surface of a hemispherical bowl having a much
greater radius R. The sphere is released from rest at an
angle � to the vertical and rolls without slipping (Fig.
P11.45). Determine the angular speed of the sphere
when it reaches the bottom of the bowl.

h

M
R

A

B

R
θ

r

d

2d
3 mmm

P

d
1 2 3

Figure P11.44

Figure P11.47

Figure P11.46

Figure P11.45



356 C H A P T E R  1 1 Rolling Motion and Angular Momentum

what is its speed when it is farthest from the Sun? The
angular momentum of the comet about the Sun is con-
served because no torque acts on the comet. The gravi-
tational force exerted by the Sun on the comet has a
moment arm of zero.

49. A constant horizontal force F is applied to a lawn roller
having the form of a uniform solid cylinder of radius R
and mass M (Fig. P11.49). If the roller rolls without slip-
ping on the horizontal surface, show that (a) the accel-
eration of the center of mass is 2F/3M and that (b) the
minimum coefficient of friction necessary to prevent
slipping is F/3Mg. (Hint: Consider the torque with re-
spect to the center of mass.)

The monkey climbs the rope in an attempt to reach the
bananas. (a) Treating the system as consisting of the
monkey, bananas, rope, and pulley, evaluate the net
torque about the pulley axis. (b) Using the results to
part (a), determine the total angular momentum about
the pulley axis and describe the motion of the system.
Will the monkey reach the bananas?

51. A solid sphere of mass m and radius r rolls without slip-
ping along the track shown in Figure P11.51. The
sphere starts from rest with its lowest point at height h
above the bottom of a loop of radius R, which is much
larger than r. (a) What is the minimum value that h can
have (in terms of R) if the sphere is to complete the
loop? (b) What are the force components on the
sphere at point P if h � 3R?

52. A thin rod with a mass of 0.630 kg and a length of 
1.24 m is at rest, hanging vertically from a strong fixed
hinge at its top end. Suddenly, a horizontal impulsive
force (14.7i) N is applied to it. (a) Suppose that the
force acts at the bottom end of the rod. Find the accel-
eration of the rod’s center of mass and the horizontal
force that the hinge exerts. (b) Suppose that the force
acts at the midpoint of the rod. Find the acceleration of
this point and the horizontal hinge reaction. (c) Where
can the impulse be applied so that the hinge exerts no
horizontal force? (This point is called the center of per-
cussion.)

53. At one moment, a bowling ball is both sliding and spin-
ning on a horizontal surface such that its rotational ki-
netic energy equals its translational kinetic energy. Let
vCM represent the ball’s center-of-mass speed relative to
the surface. Let vr represent the speed of the topmost
point on the ball’s surface relative to the center of mass.
Find the ratio vCM/vr .

54. A projectile of mass m moves to the right with speed vi
(Fig. P11.54a). The projectile strikes and sticks to the
end of a stationary rod of mass M and length d that is
pivoted about a frictionless axle through its center (Fig.
P11.54b). (a) Find the angular speed of the system right
after the collision. (b) Determine the fractional loss in
mechanical energy due to the collision.

50. A light rope passes over a light, frictionless pulley. A
bunch of bananas of mass M is fastened at one end, and
a monkey of mass M clings to the other (Fig. P11.50).

Figure P11.50

Figure P11.49
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55. A mass m is attached to a cord passing through a small
hole in a frictionless, horizontal surface (Fig. P11.55).
The mass is initially orbiting with speed vi in a circle of
radius ri . The cord is then slowly pulled from below,
and the radius of the circle decreases to r. (a) What is
the speed of the mass when the radius is r? (b) Find the
tension in the cord as a function of r. (c) How much
work W is done in moving m from ri to r ? (Note: The
tension depends on r.) (d) Obtain numerical values 
for v, T, and W when r � 0.100 m, m � 50.0 g, ri �
0.300 m, and vi � 1.50 m/s.

cal grape at the top of his bald head, which itself has the
shape of a sphere. After all of the children have had
time to giggle, the grape starts from rest and rolls down
your uncle’s head without slipping. It loses contact with
your uncle’s scalp when the radial line joining it to the
center of curvature makes an angle � with the vertical.
What is the measure of angle �?

58. A thin rod of length h and mass M is held vertically with
its lower end resting on a frictionless horizontal surface.
The rod is then released to fall freely. (a) Determine
the speed of its center of mass just before it hits the hor-
izontal surface. (b) Now suppose that the rod has a
fixed pivot at its lower end. Determine the speed of the
rod’s center of mass just before it hits the surface.

59. Two astronauts (Fig. P11.59), each having a mass of
75.0 kg, are connected by a 10.0-m rope of negligible
mass. They are isolated in space, orbiting their center of
mass at speeds of 5.00 m/s. (a) Treating the astronauts
as particles, calculate the magnitude of the angular mo-
mentum and (b) the rotational energy of the system. By
pulling on the rope, one of the astronauts shortens the
distance between them to 5.00 m. (c) What is the new
angular momentum of the system? (d) What are the as-
tronauts’ new speeds? (e) What is the new rotational en-
ergy of the system? (f) How much work is done by the
astronaut in shortening the rope?

60. Two astronauts (see Fig. P11.59), each having a mass M,
are connected by a rope of length d having negligible
mass. They are isolated in space, orbiting their center of
mass at speeds v. Treating the astronauts as particles,
calculate (a) the magnitude of the angular momentum
and (b) the rotational energy of the system. By pulling
on the rope, one of the astronauts shortens the distance
between them to d/2. (c) What is the new angular mo-
mentum of the system? (d) What are the astronauts’
new speeds? (e) What is the new rotational energy of
the system? (f) How much work is done by the astro-
naut in shortening the rope?

WEB

56. A bowler releases a bowling ball with no spin, sending it
sliding straight down the alley toward the pins. The ball
continues to slide for some distance before its motion
becomes rolling without slipping; of what order of mag-
nitude is this distance? State the quantities you take as
data, the values you measure or estimate for them, and
your reasoning.

57. Following Thanksgiving dinner, your uncle falls into a
deep sleep while sitting straight up and facing the televi-
sion set. A naughty grandchild balances a small spheri-
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Figure P11.59 Problems 59 and 60.

Figure P11.55

Figure P11.54

61. A solid cube of wood of side 2a and mass M is resting
on a horizontal surface. The cube is constrained to ro-
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tate about an axis AB (Fig. P11.61). A bullet of mass m
and speed v is shot at the face opposite ABCD at a
height of 4a/3. The bullet becomes embedded in the
cube. Find the minimum value of v required to tip the
cube so that it falls on face ABCD. Assume m V M.

a horizontal surface and released, as shown in Figure
P11.64. (a) What is the angular speed of the disk once
pure rolling takes place? (b) Find the fractional loss in
kinetic energy from the time the disk is released until
the time pure rolling occurs. (Hint: Consider torques
about the center of mass.)

65. Suppose a solid disk of radius R is given an angular
speed �i about an axis through its center and is then
lowered to a horizontal surface and released, as shown
in Problem 64 (see Fig. P11.64). Furthermore, assume
that the coefficient of friction between the disk and the
surface is �. (a) Show that the time it takes for pure
rolling motion to occur is R�i/3�g. (b) Show that the
distance the disk travels before pure rolling occurs is

66. A solid cube of side 2a and mass M is sliding on a fric-
tionless surface with uniform velocity v, as shown in Fig-
ure P11.66a. It hits a small obstacle at the end of the
table; this causes the cube to tilt, as shown in Figure
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64. A uniform solid disk is set into rotation with an angular
speed �i about an axis through its center. While still ro-
tating at this speed, the disk is placed into contact with

62. A large, cylindrical roll of paper of initial radius R lies
on a long, horizontal surface with the open end of the
paper nailed to the surface. The roll is given a slight
shove (vi � 0) and begins to unroll. (a) Determine the
speed of the center of mass of the roll when its radius
has diminished to r. (b) Calculate a numerical value 
for this speed at r � 1.00 mm, assuming R � 6.00 m. 
(c) What happens to the energy of the system when the
paper is completely unrolled? (Hint: Assume that the
roll has a uniform density and apply energy methods.)

63. A spool of wire of mass M and radius R is unwound un-
der a constant force F (Fig. P11.63). Assuming that the
spool is a uniform solid cylinder that does not slip, show
that (a) the acceleration of the center of mass is 
4F/3M and that (b) the force of friction is to the right
and is equal in magnitude to F/3. (c) If the cylinder
starts from rest and rolls without slipping, what is the
speed of its center of mass after it has rolled through a
distance d?

Figure P11.66

Figure P11.64 Problems 64 and 65.

Figure P11.63

Figure P11.61
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69. The spool of wire shown in Figure P11.68 has an inner
radius r and an outer radius R. The angle � between the
applied force and the horizontal can be varied. Show

68. A spool of wire rests on a horizontal surface as in Figure
P11.68. As the wire is pulled, the spool does not slip at
the contact point P. On separate trials, each one of the
forces F1 , F2 , F3 , and F4 is applied to the spool. For
each one of these forces, determine the direction in
which the spool will roll. Note that the line of action of
F2 passes through P.

that the critical angle for which the spool does not slip
and remains stationary is

(Hint: At the critical angle, the line of action of the ap-
plied force passes through the contact point.)

70. In a demonstration that employs a ballistics cart, a ball
is projected vertically upward from a cart moving with
constant velocity along the horizontal direction. The
ball lands in the catching cup of the cart because both
the cart and the ball have the same horizontal compo-
nent of velocity. Now consider a ballistics cart on an in-
cline making an angle � with the horizontal, as shown in
Figure P11.70. The cart (including its wheels) has a
mass M, and the moment of inertia of each of the two
wheels is mR 2/2. (a) Using conservation of energy con-
siderations (assuming that there is no friction between
the cart and the axles) and assuming pure rolling mo-
tion (that is, no slipping), show that the acceleration of
the cart along the incline is

(b) Note that the x component of acceleration of the
ball released by the cart is g sin �. Thus, the x compo-
nent of the cart’s acceleration is smaller than that of the
ball by the factor M/(M � 2m). Use this fact and kine-
matic equations to show that the ball overshoots the
cart by an amount �x, where

and vyi is the initial speed of the ball imparted to it by
the spring in the cart. (c) Show that the distance d that
the ball travels measured along the incline is

d �
2v 2

 yi

g
 

sin �

cos2 �

�x � � 4m
M � 2m �� sin �

cos2 � � 
vyi

2

g

ax � � M
M � 2m �g sin �

cos �c �
r
R

P11.66b. Find the minimum value of v such that the
cube falls off the table. Note that the moment of inertia
of the cube about an axis along one of its edges is
8Ma2/3. (Hint: The cube undergoes an inelastic colli-
sion at the edge.)

67. A plank with a mass M � 6.00 kg rides on top of two
identical solid cylindrical rollers that have R � 5.00 cm
and m � 2.00 kg (Fig. P11.67). The plank is pulled by a
constant horizontal force of magnitude F � 6.00 N ap-
plied to the end of the plank and perpendicular to the
axes of the cylinders (which are parallel). The cylinders
roll without slipping on a flat surface. Also, no slipping
occurs between the cylinders and the plank. (a) Find
the acceleration of the plank and that of the rollers. 
(b) What frictional forces are acting?

Figure P11.70

Figure P11.68 Problems 68 and 69.

Figure P11.67
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ANSWERS TO QUICK QUIZZES

11.4 Both (a) and (b) are false. The net force is not necessar-
ily zero. If the line of action of the net force passes
through the point, then the net torque about an axis
passing through that point is zero even though the net
force is not zero. Because the net force is not necessarily
zero, you cannot conclude that the particle’s velocity is
constant.

11.5 The student does work as he walks from the rim of the
platform toward its center.

11.6 Because it is perpendicular to the precessional motion
of the top, the force of gravity does no work. This is a sit-
uation in which a force causes motion but does no work.

11.1 There is very little resistance to motion that can reduce
the kinetic energy of the rolling ball. Even though there
is friction between the ball and the floor (if there were
not, then no rotation would occur, and the ball would
slide), there is no relative motion of the two surfaces (by
the definition of “rolling”), and so kinetic friction can-
not reduce K. (Air drag and friction associated with de-
formation of the ball eventually stop the ball.)

11.2 The box. Because none of the box’s initial potential en-
ergy is converted to rotational kinetic energy, at any time
t � 0 its translational kinetic energy is greater than that
of the rolling ball.

11.3 Zero. If she were moving directly toward the pole, r and
p would be antiparallel to each other, and the sine of
the angle between them is zero; therefore, L � 0.
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c h a p t e r

Static Equilibrium and Elasticity

This one-bottle wine holder is an inter-
esting example of a mechanical system
that seems to defy gravity. The system
(holder plus bottle) is balanced when its
center of gravity is directly over the low-
est support point. What two conditions
are necessary for an object to exhibit
this kind of stability? (Charles D. Winters)

C h a p t e r  O u t l i n e

12.1 The Conditions for Equilibrium

12.2 More on the Center of Gravity

12.3 Examples of Rigid Objects in
Static Equilibrium

12.4 Elastic Properties of Solids
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n Chapters 10 and 11 we studied the dynamics of rigid objects—that is, objects
whose parts remain at a fixed separation with respect to each other when sub-
jected to external forces. Part of this chapter addresses the conditions under

which a rigid object is in equilibrium. The term equilibrium implies either that the
object is at rest or that its center of mass moves with constant velocity. We deal
here only with the former case, in which the object is described as being in static
equilibrium. Static equilibrium represents a common situation in engineering prac-
tice, and the principles it involves are of special interest to civil engineers, archi-
tects, and mechanical engineers. If you are an engineering student you will un-
doubtedly take an advanced course in statics in the future.

The last section of this chapter deals with how objects deform under load con-
ditions. Such deformations are usually elastic and do not affect the conditions for
equilibrium. An elastic object returns to its original shape when the deforming
forces are removed. Several elastic constants are defined, each corresponding to a
different type of deformation.

THE CONDITIONS FOR EQUILIBRIUM
In Chapter 5 we stated that one necessary condition for equilibrium is that the net
force acting on an object be zero. If the object is treated as a particle, then this is
the only condition that must be satisfied for equilibrium. The situation with real
(extended) objects is more complex, however, because these objects cannot be
treated as particles. For an extended object to be in static equilibrium, a second
condition must be satisfied. This second condition involves the net torque acting
on the extended object. Note that equilibrium does not require the absence of
motion. For example, a rotating object can have constant angular velocity and still
be in equilibrium.

Consider a single force F acting on a rigid object, as shown in Figure 12.1. The
effect of the force depends on its point of application P. If r is the position vector
of this point relative to O, the torque associated with the force F about O is given
by Equation 11.7:

Recall from the discussion of the vector product in Section 11.2 that the vector � is
perpendicular to the plane formed by r and F. You can use the right-hand rule to
determine the direction of � : Curl the fingers of your right hand in the direction
of rotation that F tends to cause about an axis through O : your thumb then points
in the direction of �. Hence, in Figure 12.1 � is directed toward you out of the
page.

As you can see from Figure 12.1, the tendency of F to rotate the object about
an axis through O depends on the moment arm d, as well as on the magnitude of
F. Recall that the magnitude of � is Fd (see Eq. 10.19). Now suppose a rigid object
is acted on first by force F1 and later by force F2 . If the two forces have the same
magnitude, they will produce the same effect on the object only if they have the
same direction and the same line of action. In other words,

� � r � F

12.1

two forces F1 and F2 are equivalent if and only if F1 � F2 and if and only if the
two produce the same torque about any axis.

Equivalent forces

I

F θ P

r d

O

Figure 12.1 A single force F acts
on a rigid object at the point P.

The two forces shown in Figure 12.2 are equal in magnitude and opposite in
direction. They are not equivalent. The force directed to the right tends to rotate
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the object clockwise about an axis perpendicular to the diagram through O,
whereas the force directed to the left tends to rotate it counterclockwise about that
axis.

Suppose an object is pivoted about an axis through its center of mass, as
shown in Figure 12.3. Two forces of equal magnitude act in opposite directions
along parallel lines of action. A pair of forces acting in this manner form what is
called a couple. (The two forces shown in Figure 12.2 also form a couple.) Do not
make the mistake of thinking that the forces in a couple are a result of Newton’s
third law. They cannot be third-law forces because they act on the same object.
Third-law force pairs act on different objects. Because each force produces the
same torque Fd, the net torque has a magnitude of 2Fd. Clearly, the object rotates
clockwise and undergoes an angular acceleration about the axis. With respect to
rotational motion, this is a nonequilibrium situation. The net torque on the ob-
ject gives rise to an angular acceleration � according to the relationship 

(see Eq. 10.21).
In general, an object is in rotational equilibrium only if its angular accelera-

tion � � 0. Because �� � I� for rotation about a fixed axis, our second necessary
condition for equilibrium is that the net torque about any axis must be zero.
We now have two necessary conditions for equilibrium of an object:

1. The resultant external force must equal zero. (12.1)

2. The resultant external torque about any axis must be zero. (12.2)

The first condition is a statement of translational equilibrium; it tells us that the
linear acceleration of the center of mass of the object must be zero when viewed
from an inertial reference frame. The second condition is a statement of rota-
tional equilibrium and tells us that the angular acceleration about any axis must
be zero. In the special case of static equilibrium, which is the main subject of this
chapter, the object is at rest and so has no linear or angular speed (that is, vCM � 0
and � � 0).

(a) Is it possible for a situation to exist in which Equation 12.1 is satisfied while Equation
12.2 is not? (b) Can Equation 12.2 be satisfied while Equation 12.1 is not?

The two vector expressions given by Equations 12.1 and 12.2 are equivalent, in
general, to six scalar equations: three from the first condition for equilibrium, and
three from the second (corresponding to x, y, and z components). Hence, in a
complex system involving several forces acting in various directions, you could be
faced with solving a set of equations with many unknowns. Here, we restrict our
discussion to situations in which all the forces lie in the xy plane. (Forces whose
vector representations are in the same plane are said to be coplanar.) With this re-
striction, we must deal with only three scalar equations. Two of these come from
balancing the forces in the x and y directions. The third comes from the torque
equation—namely, that the net torque about any point in the xy plane must be
zero. Hence, the two conditions of equilibrium provide the equations

(12.3)

where the axis of the torque equation is arbitrary, as we now show.

�Fx � 0  �Fy � 0  ��z � 0

Quick Quiz 12.1

�� � 0

�F � 0

2Fd � I�
�� �

Conditions for equilibrium

F2

F1

O

Figure 12.2 The forces F1 and
F2 are not equivalent because they
do not produce the same torque
about some axis, even though they
are equal in magnitude and oppo-
site in direction.

F
d

d

CM

– F

Figure 12.3 Two forces of equal
magnitude form a couple if their
lines of action are different parallel
lines. In this case, the object rotates
clockwise. The net torque about
any axis is 2Fd.
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Regardless of the number of forces that are acting, if an object is in transla-
tional equilibrium and if the net torque is zero about one axis, then the net torque
must also be zero about any other axis. The point can be inside or outside the
boundaries of the object. Consider an object being acted on by several forces such
that the resultant force Figure 12.4 describes this
situation (for clarity, only four forces are shown). The point of application of F1
relative to O is specified by the position vector r1 . Similarly, the points of applica-
tion of F2 , F3 , . . . are specified by r2 , r3 , . . . (not shown). The net torque
about an axis through O is

Now consider another arbitrary point O� having a position vector r� relative to
O. The point of application of F1 relative to O� is identified by the vector r1 � r�.
Likewise, the point of application of F2 relative to O� is r2 � r�, and so forth.
Therefore, the torque about an axis through O� is

Because the net force is assumed to be zero (given that the object is in transla-
tional equilibrium), the last term vanishes, and we see that the torque about O� is
equal to the torque about O. Hence, if an object is in translational equilibrium
and the net torque is zero about one point, then the net torque must be zero
about any other point.

MORE ON THE CENTER OF GRAVITY
We have seen that the point at which a force is applied can be critical in determin-
ing how an object responds to that force. For example, two equal-magnitude but
oppositely directed forces result in equilibrium if they are applied at the same
point on an object. However, if the point of application of one of the forces is
moved, so that the two forces no longer act along the same line of action, then a
force couple results and the object undergoes an angular acceleration. (This is the
situation shown in Figure 12.3.) 

Whenever we deal with a rigid object, one of the forces we must consider is
the force of gravity acting on it, and we must know the point of application of this
force. As we learned in Section 9.6, on every object is a special point called its cen-
ter of gravity. All the various gravitational forces acting on all the various mass ele-
ments of the object are equivalent to a single gravitational force acting through
this point. Thus, to compute the torque due to the gravitational force on an object
of mass M, we need only consider the force Mg acting at the center of gravity of
the object.

How do we find this special point? As we mentioned in Section 9.6, if 
we assume that g is uniform over the object, then the center of gravity of 
the object coincides with its center of mass. To see that this is so, consider an
object of arbitrary shape lying in the xy plane, as illustrated in Figure 12.5. 
Suppose the object is divided into a large number of particles of masses 
m 1 , m 2 , m 3 , . . . having coordinates (x1 , y1), (x 2 , y 2), (x 3 , y 3), . . . . In

12.2

 � r1 � F1 � r2 � F2 � r3 � F3 � 			 �r� � (F1 � F2 � F3 � 			)

��O � � (r1 � r�) � F1 � (r2 � r�) � F2 � (r3 � r�) � F3 � 			 

��O � r1 � F1 � r2 � F2 � r3 � F3 � 			

�F � F1 � F2 � F3 � 			 � 0.

F2

F1

F3 F4

r 1
r 1 – r ′

r ′
O

O ′

Figure 12.4 Construction show-
ing that if the net torque is zero
about origin O, it is also zero about
any other origin, such as O�.

x1,y1

y

x 2,y 2

x 3,y 3

m1
m2

m 3

CM

O
x

×

Figure 12.5 An object can be di-
vided into many small particles
each having a specific mass and
specific coordinates. These parti-
cles can be used to locate the cen-
ter of mass.



12.3 Examples of Rigid Objects in Static Equilibrium 365

Equation 9.28 we defined the x coordinate of the center of mass of such an ob-
ject to be

We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.

Let us now examine the situation from another point of view by consider-
ing the force of gravity exerted on each particle, as shown in Figure 12.6. 
Each particle contributes a torque about the origin equal in magnitude to the
particle’s weight mg multiplied by its moment arm. For example, the torque due
to the force m1g1 is m1g 1x1 , where g 1 is the magnitude of the gravitational field
at the position of the particle of mass m1. We wish to locate the center of gravity,
the point at which application of the single gravitational force Mg (where M �
m1 � m2 � m3 � . . . is the total mass of the object) has the same effect on rota-
tion as does the combined effect of all the individual gravitational forces mi g i .
Equating the torque resulting from Mg acting at the center of gravity to the
sum of the torques acting on the individual particles gives

This expression accounts for the fact that the gravitational field strength g can in
general vary over the object. If we assume uniform g over the object (as is usually
the case), then the g terms cancel and we obtain

(12.4)

Comparing this result with Equation 9.28, we see that the center of gravity is lo-
cated at the center of mass as long as the object is in a uniform gravita-
tional field.

In several examples presented in the next section, we are concerned with ho-
mogeneous, symmetric objects. The center of gravity for any such object coincides
with its geometric center.

EXAMPLES OF RIGID OBJECTS
IN STATIC EQUILIBRIUM

The photograph of the one-bottle wine holder on the first page of this chapter
shows one example of a balanced mechanical system that seems to defy gravity. For
the system (wine holder plus bottle) to be in equilibrium, the net external force
must be zero (see Eq. 12.1) and the net external torque must be zero (see Eq.
12.2). The second condition can be satisfied only when the center of gravity of the
system is directly over the support point.

In working static equilibrium problems, it is important to recognize all the ex-
ternal forces acting on the object. Failure to do so results in an incorrect analysis.
When analyzing an object in equilibrium under the action of several external
forces, use the following procedure.

12.3

xCG �
m1x1 � m2x2 � m3x3 � 			

m1 � m2 � m3 � 			

(m1g1 � m2g2 � m3g3 � 			)xCG � m1g1x1 � m2g2x2 � m3g3x3 � 			

xCM �
m1x1 � m 2x 2 � m 3x 3 � 			

m1 � m 2 � m 3 � 			
�

�
i
mix i

�
i
mi

m3g

m2g
x1,y1

y

x 2,y 2

x 3,y 3

m1g

CG

O
x

×

Fg = Mg

Figure 12.6 The center of gravity
of an object is located at the center
of mass if g is constant over the
object.

A large balanced rock at the Gar-
den of the Gods in Colorado
Springs, Colorado—an example of
stable equilibrium. 
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The first and second conditions for equilibrium give a set of linear equations con-
taining several unknowns, and these equations can be solved simultaneously.

Problem-Solving Hints
Objects in Static Equilibrium

• Draw a simple, neat diagram of the system.
• Isolate the object being analyzed. Draw a free-body diagram and then show

and label all external forces acting on the object, indicating where those
forces are applied. Do not include forces exerted by the object on its sur-
roundings. (For systems that contain more than one object, draw a separate
free-body diagram for each one.) Try to guess the correct direction for each
force. If the direction you select leads to a negative force, do not be
alarmed; this merely means that the direction of the force is the opposite of
what you guessed.

• Establish a convenient coordinate system for the object and find the compo-
nents of the forces along the two axes. Then apply the first condition for
equilibrium. Remember to keep track of the signs of all force components.

• Choose a convenient axis for calculating the net torque on the object. Re-
member that the choice of origin for the torque equation is arbitrary; there-
fore, choose an origin that simplifies your calculation as much as possible.
Note that a force that acts along a line passing through the point chosen as
the origin gives zero contribution to the torque and thus can be ignored.

The SeesawEXAMPLE 12.1
(b) Determine where the child should sit to balance the

system.

Solution To find this position, we must invoke the second
condition for equilibrium. Taking an axis perpendicular to
the page through the center of gravity of the board as the
axis for our torque equation (this means that the torques

A uniform 40.0-N board supports a father and daughter
weighing 800 N and 350 N, respectively, as shown in Figure
12.7. If the support (called the fulcrum) is under the center of
gravity of the board and if the father is 1.00 m from the cen-
ter, (a) determine the magnitude of the upward force n ex-
erted on the board by the support.

Solution First note that, in addition to n, the external
forces acting on the board are the downward forces exerted
by each person and the force of gravity acting on the board.
We know that the board’s center of gravity is at its geometric
center because we were told the board is uniform. Because
the system is in static equilibrium, the upward force n must
balance all the downward forces. From we have,
once we define upward as the positive y direction,

(The equation also applies, but we do not need
to consider it because no forces act horizontally on the
board.)

�Fx � 0

1 190 Nn �

n � 800 N � 350 N � 40.0 N � 0

�Fy � 0,

1.00 m

n

x

350 N

40.0 N
800 N

Figure 12.7 A balanced system.
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In Example 12.1, if the fulcrum did not lie under the board’s center of gravity, what other
information would you need to solve the problem?

Quick Quiz 12.2

A Weighted HandEXAMPLE 12.2
Solution We simplify the situation by modeling the fore-
arm as a bar as shown in Figure 12.8b, where F is the upward
force exerted by the biceps and R is the downward force ex-
erted by the upper arm at the joint. From the first condition
for equilibrium, we have, with upward as the positive y direc-
tion,

(1)

From the second condition for equilibrium, we know that
the sum of the torques about any point must be zero. With
the joint O as the axis, we have

This value for F can be substituted into Equation (1) to
give R � 533 N. As this example shows, the forces at joints
and in muscles can be extremely large.

Exercise In reality, the biceps makes an angle of 15.0° with
the vertical; thus, F has both a vertical and a horizontal com-
ponent. Find the magnitude of F and the components of R
when you include this fact in your analysis.

Answer F � 604 N, Rx � 156 N, R y � 533 N.

583 N  F �

F(3.00 cm) � (50.0 N)(35.0 cm) � 0 

 Fd � mg� � 0 

�Fy � F � R � 50.0 N � 0

A person holds a 50.0-N sphere in his hand. The forearm is
horizontal, as shown in Figure 12.8a. The biceps muscle is at-
tached 3.00 cm from the joint, and the sphere is 35.0 cm
from the joint. Find the upward force exerted by the biceps
on the forearm and the downward force exerted by the up-
per arm on the forearm and acting at the joint. Neglect the
weight of the forearm.

produced by n and the force of gravity acting on the board
about this axis are zero), we see from that

(c) Repeat part (b) for another axis.

Solution To illustrate that the choice of axis is arbitrary,
let us choose an axis perpendicular to the page and passing

2.29 mx �

(800 N)(1.00 m) � (350 N)x � 0

�� � 0
through the location of the father. Recall that the sign of the
torque associated with a force is positive if that force tends to
rotate the system counterclockwise, while the sign of the
torque is negative if the force tends to rotate the system
clockwise. In this case, yields

From part (a) we know that n � 1 190 N. Thus, we can solve 

for x to find This result is in agreement with 

the one we obtained in part (b).

x � 2.29 m.

n(1.00 m) � (40.0 N)(1.00 m) � (350 N)(1.00 m � x) � 0

�� � 0

�

mg

d

O

mg = 50.0 N
d = 3.00 cm
� = 35.0 cm

O

�

d

R

mg

F
Biceps

Figure 12.8 (a) The biceps muscle pulls upward with a force F
that is essentially at right angles to the forearm. (b) The mechanical
model for the system described in part (a).

Standing on a Horizontal BeamEXAMPLE 12.3
the horizontal (Fig. 12.9a). If a 600-N person stands 2.00 m
from the wall, find the tension in the cable, as well as the magni-
tude and direction of the force exerted by the wall on the beam.

A uniform horizontal beam with a length of 8.00 m and a
weight of 200 N is attached to a wall by a pin connection. Its far
end is supported by a cable that makes an angle of 53.0° with
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Solution First we must identify all the external forces
acting on the beam: They are the 200-N force of gravity, the
force T exerted by the cable, the force R exerted by the
wall at the pivot, and the 600-N force that the person exerts
on the beam. These forces are all indicated in the free-body
diagram for the beam shown in Figure 12.9b. When we con-
sider directions for forces, it sometimes is helpful if we
imagine what would happen if a force were suddenly re-
moved. For example, if the wall were to vanish suddenly,

the left end of the beam would probably move to the left as
it begins to fall. This tells us that the wall is not only hold-
ing the beam up but is also pressing outward against it.
Thus, we draw the vector R as shown in Figure 12.9b. If we
resolve T and R into horizontal and vertical components,
as shown in Figure 12.9c, and apply the first condition for
equilibrium, we obtain

(1)

(2)

where we have chosen rightward and upward as our positive
directions. Because R, T, and 
 are all unknown, we cannot
obtain a solution from these expressions alone. (The number
of simultaneous equations must equal the number of un-
knowns for us to be able to solve for the unknowns.)

Now let us invoke the condition for rotational equilib-
rium. A convenient axis to choose for our torque equation is
the one that passes through the pin connection. The feature
that makes this point so convenient is that the force R and
the horizontal component of T both have a moment arm of
zero; hence, these forces provide no torque about this point.
Recalling our counterclockwise-equals-positive convention for
the sign of the torque about an axis and noting that the mo-
ment arms of the 600-N, 200-N, and T sin 53.0° forces are
2.00 m, 4.00 m, and 8.00 m, respectively, we obtain

Thus, the torque equation with this axis gives us one of the
unknowns directly! We now substitute this value into Equa-
tions (1) and (2) and find that

We divide the second equation by the first and, recalling the
trigonometric identity sin 
/cos 
 � tan 
, we obtain

This positive value indicates that our estimate of the direction
of R was accurate. 

Finally,

If we had selected some other axis for the torque equa-
tion, the solution would have been the same. For example, if

580 NR �
188 N
cos 


�
188 N

cos 71.1�
�

71.1�   
 �

tan 
 �
550 N
188 N

� 2.93

R sin 
 � 550 N

R cos 
 � 188 N

313 N  T �

� (600 N)(2.00 m) � (200 N )(4.00 m) � 0
�� � (T sin 53.0�)(8.00 m)

� 600 N � 200 N � 0
�Fy � R sin 
 � T sin 53.0�

�Fx � R cos 
 � T cos 53.0� � 0 

200 N

600 N

53.0°

8.00 m

(a)

(b)

TR

53.0°

200 N

600 N

4.00 m

2.00 m

R cos θ

R sin θ

T cos 53.0°

T sin 53.0°

θ

θ

θ

Figure 12.9 (a) A uniform beam supported by a cable. (b) The
free-body diagram for the beam. (c) The free-body diagram for the
beam showing the components of R and T.
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Moment Arm
Force Relative to Torque About
Component O (m) O (N	m)

T sin 53.0° 8.00 (8.00)T sin 53.0°
T cos 53.0° 0 0
200 N 4.00 � (4.00)(200)
600 N 2.00 � (2.00)(600)
R sin 
 0 0
R cos 
 0 0

The Leaning LadderEXAMPLE 12.4
for equilibrium to the ladder, we have

From the second equation we see that n � mg � 50 N. Fur-
thermore, when the ladder is on the verge of slipping, the
force of friction must be a maximum, which is given by

(Recall Eq. 5.8: fs � sn.)
Thus, at this angle, P � 20 N.

To find 
min , we must use the second condition for equi-
librium. When we take the torques about an axis through the
origin O at the bottom of the ladder, we have

Because P � 20 N when the ladder is about to slip, and be-
cause mg � 50 N, this expression gives

An alternative approach is to consider the intersection O�
of the lines of action of forces mg and P. Because the torque
about any origin must be zero, the torque about O� must be
zero. This requires that the line of action of R (the resultant
of n and f ) pass through O�. In other words, because the lad-
der is stationary, the three forces acting on it must all pass
through some common point. (We say that such forces are
concurrent.) With this condition, you could then obtain the
angle � that R makes with the horizontal (where � is greater
than 
). Because this approach depends on the length of the
ladder, you would have to know the value of � to obtain a
value for 
min .

Exercise For the angles labeled in Figure 12.10, show that
tan � � 2 tan 
.

51�  
min �

tan 
min �
mg
2P

�
50 N
40 N

� 1.25

��O � P  � sin 
 � mg 
�

2
 cos 
 � 0

fs,max � sn � 0.40(50 N) � 20 N.

�Fy � n � mg � 0

�Fx � f � P � 0 

A uniform ladder of length � and weight mg � 50 N rests
against a smooth, vertical wall (Fig. 12.10a). If the coefficient
of static friction between the ladder and the ground is s �
0.40, find the minimum angle 
min at which the ladder does
not slip.

Solution The free-body diagram showing all the external
forces acting on the ladder is illustrated in Figure 12.10b.
The reaction force R exerted by the ground on the ladder is
the vector sum of a normal force n and the force of static fric-
tion fs . The reaction force P exerted by the wall on the lad-
der is horizontal because the wall is frictionless. Notice how
we have included only forces that act on the ladder. For ex-
ample, the forces exerted by the ladder on the ground and
on the wall are not part of the problem and thus do not ap-
pear in the free-body diagram. Applying the first condition

we had chosen an axis through the center of gravity of the
beam, the torque equation would involve both T and R. How-
ever, this equation, coupled with Equations (1) and (2),
could still be solved for the unknowns. Try it!

When many forces are involved in a problem of this na-
ture, it is convenient to set up a table. For instance, for the
example just given, we could construct the following table.
Setting the sum of the terms in the last column equal to zero
represents the condition of rotational equilibrium.

(a)

θ

�

(b)

θ
φ

mgO f

n R

P

O ′

Figure 12.10 (a) A uniform ladder at rest, leaning against a
smooth wall. The ground is rough. (b) The free-body diagram for
the ladder. Note that the forces R, mg, and P pass through a com-
mon point O�.
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Negotiating a CurbEXAMPLE 12.5
(a) Estimate the magnitude of the force F a person must ap-
ply to a wheelchair’s main wheel to roll up over a sidewalk
curb (Fig. 12.11a). This main wheel, which is the one that
comes in contact with the curb, has a radius r, and the height
of the curb is h.

Solution Normally, the person’s hands supply the re-
quired force to a slightly smaller wheel that is concentric with
the main wheel. We assume that the radius of the smaller
wheel is the same as the radius of the main wheel, and so we
can use r for our radius. Let us estimate a combined weight
of mg � 1 400 N for the person and the wheelchair and
choose a wheel radius of r � 30 cm, as shown in Figure
12.11b. We also pick a curb height of h � 10 cm. We assume
that the wheelchair and occupant are symmetric, and that
each wheel supports a weight of 700 N. We then proceed to
analyze only one of the wheels.

When the wheel is just about to be raised from the street,
the reaction force exerted by the ground on the wheel at
point Q goes to zero. Hence, at this time only three forces act
on the wheel, as shown in Figure 12.11c. However, the force
R, which is the force exerted on the wheel by the curb, acts at
point P, and so if we choose to have our axis of rotation pass
through point P, we do not need to include R in our torque
equation. From the triangle OPQ shown in Figure 12.11b, we
see that the moment arm d of the gravitational force mg act-
ing on the wheel relative to point P is

The moment arm of F relative to point P is 2r � h. There-
fore, the net torque acting on the wheel about point P is

(Notice that we have kept only one digit as significant.) This
result indicates that the force that must be applied to each
wheel is substantial. You may want to estimate the force re-
quired to roll a wheelchair up a typical sidewalk accessibility
ramp for comparison.

(b) Determine the magnitude and direction of R.

Solution We use the first condition for equilibrium to de-
termine the direction:

Dividing the second equation by the first gives

; 70�  
 �tan 
 �
mg
F

�
700 N
300 N

�Fy � R sin 
 � mg � 0

�Fx � F � R cos 
 � 0  

300 N  F �
(700 N)!2(0.3 m)(0.1 m) � (0.1 m)2

2(0.3 m) � 0.1 m
�

  F �
mg !2rh � h2

2r � h
      

mg !2rh � h2 � F(2r � h) � 0     

    mgd � F(2r � h) � 0    

d � !r 2 � (r � h)2
 � !2rh � h2

(d)

R

F

θ

mg

(a)

(c)

F

O
2r – h

P

C

θ

R

mg

F

r – h

d

r
P

Q

h

(b)

O

R

Figure 12.11 (a) A wheelchair and person of total weight mg being
raised over a curb by a force F. (b) Details of the wheel and curb. 
(c) The free-body diagram for the wheel when it is just about to be
raised. Three forces act on the wheel at this instant: F, which is exerted
by the hand; R, which is exerted by the curb; and the gravitational
force mg. (d) The vector sum of the three external forces acting on the
wheel is zero.
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Analysis of a TrussAPPLICATION

Next, we calculate the torque about A, noting that the overall
length of the bridge structure is L � 50 m:

Although we could repeat the torque calculation for the right
end (point E), it should be clear from symmetry arguments
that nA � 3 600 N.

Now let us balance the vertical forces acting on the pin at
point A. If we assume that strut AB is in compression, then
the force FAB that the strut exerts on the pin at point A has a
negative y component. (If the strut is actually in tension, our
calculations will result in a negative value for the magnitude
of the force, still of the correct size):

The positive result shows that our assumption of compression
was correct.

We can now find the forces acting in the strut between A
and C by considering the horizontal forces acting on the pin
at point A. Because point A is not accelerating, we can safely
assume that FAC must point toward the right (Fig. 12.12b);
this indicates that the bar between points A and C is under
tension:

Now let us consider the vertical forces acting on the pin at
point C. We shall assume that strut BC is in tension. (Imagine
the subsequent motion of the pin at point C if strut BC were
to break suddenly.) On the basis of symmetry, we assert that

and that 

Finally, we balance the horizontal forces on B, assuming that
strut BD is in compression:

Thus, the top bar in a bridge of this design must be very
strong.

FBD � 12 000 N

(7 200 N)cos 30� � (7 200 N)cos 30� � FBD � 0
�Fx � FAB cos 30� � FBC cos 30� � FBD � 0

  FBC � 7 200 N  
�Fy � 2 FBC sin 30� � 7 200 N � 0

FAC � FEC :FBC � FDC

  FAC � (7 200 N)cos 30� � 6 200 N
�Fx � FAC � FAB cos 30� � 0  

  FAB � 7 200 N  
�Fy � nA � FAB sin 30� � 0

nE � Fg/2 � 3 600 N  
�� � LnE � (L/2)Fg � 0

nA � nE � 7 200 N  

  �Fy � nA � nE � Fg � 0Roofs, bridges, and other structures that must be both strong
and lightweight often are made of trusses similar to the one
shown in Figure 12.12a. Imagine that this truss structure repre-
sents part of a bridge. To approach this problem, we assume
that the structural components are connected by pin joints. We
also assume that the entire structure is free to slide horizon-
tally because it sits on “rockers” on each end, which allow it to
move back and forth as it undergoes thermal expansion and
contraction. Assuming the mass of the bridge structure is negli-
gible compared with the load, let us calculate the forces of ten-
sion or compression in all the structural components when it is
supporting a 7 200-N load at the center (see Problem 58).

The force notation that we use here is not of our usual for-
mat. Until now, we have used the notation FAB to mean “the
force exerted by A on B.” For this application, however, all
double-letter subscripts on F indicate only the body exerting
the force. The body on which a given force acts is not named
in the subscript. For example, in Figure 12.12, FAB is the force
exerted by strut AB on the pin at A.

First, we apply Newton’s second law to the truss as a whole
in the vertical direction. Internal forces do not enter into this
accounting. We balance the weight of the load with the nor-
mal forces exerted at the two ends by the supports on which
the bridge rests:

We can use the right triangle shown in Figure 12.11d to ob-
tain R :

800 NR � !(mg)2 � F2 � !(700 N)2 � (300 N)2 �

Exercise Solve this problem by noting that the three forces
acting on the wheel are concurrent (that is, that all three pass
through the point C). The three forces form the sides of the
triangle shown in Figure 12.11d.

50 m

30° 30° 30° 30°A E

B D

C

(a)

Load: 7 200 N

Figure 12.12 (a) Truss structure for a bridge. (b) The forces act-
ing on the pins at points A, C, and E. As an exercise, you should dia-
gram the forces acting on the pin at point B.

A E

B D

C30°
FACFAB

nA

FCA FCE

Fg

FBC FDC

FEC

nE

FED

30° 30°

(b)

30°
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ELASTIC PROPERTIES OF SOLIDS
In our study of mechanics thus far, we have assumed that objects remain unde-
formed when external forces act on them. In reality, all objects are deformable.
That is, it is possible to change the shape or the size of an object (or both) by ap-
plying external forces. As these changes take place, however, internal forces in the
object resist the deformation.

We shall discuss the deformation of solids in terms of the concepts of stress
and strain. Stress is a quantity that is proportional to the force causing a deforma-
tion; more specifically, stress is the external force acting on an object per unit
cross-sectional area. Strain is a measure of the degree of deformation. It is found
that, for sufficiently small stresses, strain is proportional to stress; the constant
of proportionality depends on the material being deformed and on the nature of
the deformation. We call this proportionality constant the elastic modulus. The
elastic modulus is therefore the ratio of the stress to the resulting strain:

(12.5)

In a very real sense it is a comparison of what is done to a solid object (a force is
applied) and how that object responds (it deforms to some extent).

Elastic modulus �
stress
strain

12.4

A plastic model of an arch structure under load conditions. The wavy lines indicate regions
where the stresses are greatest. Such models are useful in designing architectural components.
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Young’s Modulus: Elasticity in Length

Consider a long bar of cross-sectional area A and initial length Li that is clamped
at one end, as in Figure 12.13. When an external force is applied perpendicular to
the cross section, internal forces in the bar resist distortion (“stretching”), but the
bar attains an equilibrium in which its length Lf is greater than Li and in which
the external force is exactly balanced by internal forces. In such a situation, the
bar is said to be stressed. We define the tensile stress as the ratio of the magni-
tude of the external force F to the cross-sectional area A. The tensile strain in this
case is defined as the ratio of the change in length �L to the original length Li .
We define Young’s modulus by a combination of these two ratios:

(12.6)

Young’s modulus is typically used to characterize a rod or wire stressed under ei-
ther tension or compression. Note that because strain is a dimensionless quantity,
Y has units of force per unit area. Typical values are given in Table 12.1. Experi-
ments show (a) that for a fixed applied force, the change in length is proportional
to the original length and (b) that the force necessary to produce a given strain is
proportional to the cross-sectional area. Both of these observations are in accord
with Equation 12.6.

The elastic limit of a substance is defined as the maximum stress that can be
applied to the substance before it becomes permanently deformed. It is possible to
exceed the elastic limit of a substance by applying a sufficiently large stress, as seen
in Figure 12.14. Initially, a stress– strain curve is a straight line. As the stress in-
creases, however, the curve is no longer straight. When the stress exceeds the elas-

Y �
tensile stress
tensile strain

�
F/A

�L/Li

We consider three types of deformation and define an elastic modulus for each:

1. Young’s modulus, which measures the resistance of a solid to a change in its
length

2. Shear modulus, which measures the resistance to motion of the planes of a
solid sliding past each other

3. Bulk modulus, which measures the resistance of solids or liquids to changes
in their volume

TABLE 12.1 Typical Values for Elastic Modulus

Young’s Modulus Shear Modulus Bulk Modulus
Substance (N/m2) (N/m2) (N/m2)

Tungsten 35 � 1010 14 � 1010 20 � 1010

Steel 20 � 1010 8.4 � 1010 6 � 1010

Copper 11 � 1010 4.2 � 1010 14 � 1010

Brass 9.1 � 1010 3.5 � 1010 6.1 � 1010

Aluminum 7.0 � 1010 2.5 � 1010 7.0 � 1010

Glass 6.5–7.8 � 1010 2.6–3.2 � 1010 5.0–5.5 � 1010

Quartz 5.6 � 1010 2.6 � 1010 2.7 � 1010

Water — — 0.21 � 1010

Mercury — — 2.8 � 1010

F
A

Li
∆L

Figure 12.13 A long bar
clamped at one end is stretched by
an amount �L under the action of
a force F.

Elastic
limit

Breaking
point

Elastic
behavior

0.002 0.004 0.006 0.008 0.010

100

200

300

400

Stress
(MN/m2)

Strain

Figure 12.14 Stress-versus-strain
curve for an elastic solid.

Young’s modulus
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tic limit, the object is permanently distorted and does not return to its original
shape after the stress is removed. Hence, the shape of the object is permanently
changed. As the stress is increased even further, the material ultimately breaks.

What is Young’s modulus for the elastic solid whose stress– strain curve is depicted in Figure
12.14?

A material is said to be ductile if it can be stressed well beyond its elastic limit without break-
ing. A brittle material is one that breaks soon after the elastic limit is reached. How would
you classify the material in Figure 12.14?

Shear Modulus: Elasticity of Shape

Another type of deformation occurs when an object is subjected to a force tangen-
tial to one of its faces while the opposite face is held fixed by another force (Fig.
12.15a). The stress in this case is called a shear stress. If the object is originally a
rectangular block, a shear stress results in a shape whose cross-section is a parallel-
ogram. A book pushed sideways, as shown in Figure 12.15b, is an example of an
object subjected to a shear stress. To a first approximation (for small distortions),
no change in volume occurs with this deformation.

We define the shear stress as F/A, the ratio of the tangential force to the area
A of the face being sheared. The shear strain is defined as the ratio �x/h, where
�x is the horizontal distance that the sheared face moves and h is the height of the
object. In terms of these quantities, the shear modulus is

(12.7)

Values of the shear modulus for some representative materials are given in
Table 12.1. The unit of shear modulus is force per unit area.

Bulk Modulus: Volume Elasticity

Bulk modulus characterizes the response of a substance to uniform squeezing or
to a reduction in pressure when the object is placed in a partial vacuum. Suppose
that the external forces acting on an object are at right angles to all its faces, as
shown in Figure 12.16, and that they are distributed uniformly over all the faces.
As we shall see in Chapter 15, such a uniform distribution of forces occurs when
an object is immersed in a fluid. An object subject to this type of deformation un-
dergoes a change in volume but no change in shape. The volume stress is de-
fined as the ratio of the magnitude of the normal force F to the area A. The quan-
tity P � F/A is called the pressure. If the pressure on an object changes by an
amount �P � �F/A, then the object will experience a volume change �V. The vol-
ume strain is equal to the change in volume �V divided by the initial volume Vi .
Thus, from Equation 12.5, we can characterize a volume (“bulk”) compression in
terms of the bulk modulus, which is defined as

(12.8)B �
volume stress
volume strain

� �
�F/A
�V/Vi

� �
�P

�V/Vi

S �
shear stress
shear strain

�
F/A
�x/h

Quick Quiz 12.4

Quick Quiz 12.3

Shear modulus

Bulk modulus

QuickLab
Estimate the shear modulus for the
pages of your textbook. Does the
thickness of the book have any effect
on the modulus value?

F

(b)

–F

∆x A
F

Fixed face

h

(a)

fs

Figure 12.15 (a) A shear defor-
mation in which a rectangular
block is distorted by two forces of
equal magnitude but opposite di-
rections applied to two parallel
faces. (b) A book under shear
stress.
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A negative sign is inserted in this defining equation so that B is a positive number.
This maneuver is necessary because an increase in pressure (positive �P) causes a
decrease in volume (negative �V ) and vice versa.

Table 12.1 lists bulk moduli for some materials. If you look up such values in a
different source, you often find that the reciprocal of the bulk modulus is listed.
The reciprocal of the bulk modulus is called the compressibility of the material.

Note from Table 12.1 that both solids and liquids have a bulk modulus. How-
ever, no shear modulus and no Young’s modulus are given for liquids because a
liquid does not sustain a shearing stress or a tensile stress (it flows instead).

Prestressed Concrete

If the stress on a solid object exceeds a certain value, the object fractures. The
maximum stress that can be applied before fracture occurs depends on the nature
of the material and on the type of applied stress. For example, concrete has a ten-
sile strength of about 2 � 106 N/m2, a compressive strength of 20 � 106 N/m2,
and a shear strength of 2 � 106 N/m2. If the applied stress exceeds these values,
the concrete fractures. It is common practice to use large safety factors to prevent
failure in concrete structures.

Concrete is normally very brittle when it is cast in thin sections. Thus, concrete
slabs tend to sag and crack at unsupported areas, as shown in Figure 12.17a. The
slab can be strengthened by the use of steel rods to reinforce the concrete, as illus-
trated in Figure 12.17b. Because concrete is much stronger under compression
(squeezing) than under tension (stretching) or shear, vertical columns of concrete
can support very heavy loads, whereas horizontal beams of concrete tend to sag
and crack. However, a significant increase in shear strength is achieved if the rein-
forced concrete is prestressed, as shown in Figure 12.17c. As the concrete is being
poured, the steel rods are held under tension by external forces. The external

Figure 12.16 When a solid is under uniform pressure, it
undergoes a change in volume but no change in shape.
This cube is compressed on all sides by forces normal to its
six faces.

Vi

F

Vi – ∆V

Load force

Concrete
Cracks

(a)

Steel
reinforcing

rod

(b) (c)

Steel
rod

under
tension

Figure 12.17 (a) A concrete slab with no reinforcement tends to crack under a heavy load.
(b) The strength of the concrete is increased by using steel reinforcement rods. (c) The concrete
is further strengthened by prestressing it with steel rods under tension.

QuickLab
Support a new flat eraser (art gum or
Pink Pearl will do) on two parallel
pencils at least 3 cm apart. Press
down on the middle of the top sur-
face just enough to make the top face
of the eraser curve a bit. Is the top
face under tension or compression?
How about the bottom? Why does a
flat slab of concrete supported at the
ends tend to crack on the bottom
face and not the top?
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forces are released after the concrete cures; this results in a permanent tension in
the steel and hence a compressive stress on the concrete. This enables the con-
crete slab to support a much heavier load.

Squeezing a Brass SphereEXAMPLE 12.7

Because the final pressure is so much greater than the initial
pressure, we can neglect the initial pressure and state that

Therefore,

The negative sign indicates a decrease in volume.

�1.6 � 10�4 m3�V � �
(0.50 m3)(2.0 � 107 N/m2)

6.1 � 1010 N/m2 �

�P � Pf � Pi  � Pf � 2.0 � 107
 N/m2.

�V � �
V i �P

B
A solid brass sphere is initially surrounded by air, and the air
pressure exerted on it is 1.0 � 105 N/m2 (normal atmos-
pheric pressure). The sphere is lowered into the ocean to a
depth at which the pressure is 2.0 � 107 N/m2. The volume
of the sphere in air is 0.50 m3. By how much does this volume
change once the sphere is submerged?

Solution From the definition of bulk modulus, we have

 B � �
�P

�V/Vi

Stage DesignEXAMPLE 12.6
The radius of the wire can be found from 

To provide a large margin of safety, we would probably use a
flexible cable made up of many smaller wires having a total
cross-sectional area substantially greater than our calculated
value.

3.4 mmd � 2r � 2(1.7 mm) �

r �! A

�
�! 9.4 � 10�6 m2

�
� 1.7 � 10�3 m � 1.7 mm

A � �r 2:Recall Example 8.10, in which we analyzed a cable used to
support an actor as he swung onto the stage. The tension in
the cable was 940 N. What diameter should a 10-m-long steel
wire have if we do not want it to stretch more than 0.5 cm un-
der these conditions?

Solution From the definition of Young’s modulus, we can
solve for the required cross-sectional area. Assuming that the
cross section is circular, we can determine the diameter of the
wire. From Equation 12.6, we have

A �
FLi

Y �L
�

(940 N)(10 m)
(20 � 1010 N/m2)(0.005 m)

� 9.4 � 10�6 m2

Y �
F/A

�L/Li
  

SUMMARY

A rigid object is in equilibrium if and only if the resultant external force acting
on it is zero and the resultant external torque on it is zero about any axis:

(12.1)

(12.2)

The first condition is the condition for translational equilibrium, and the second
is the condition for rotational equilibrium. These two equations allow you to ana-
lyze a great variety of problems. Make sure you can identify forces unambiguously,
create a free-body diagram, and then apply Equations 12.1 and 12.2 and solve for
the unknowns.

�� � 0

�F � 0
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The force of gravity exerted on an object can be considered as acting at a sin-
gle point called the center of gravity. The center of gravity of an object coincides
with its center of mass if the object is in a uniform gravitational field.

We can describe the elastic properties of a substance using the concepts of
stress and strain. Stress is a quantity proportional to the force producing a defor-
mation; strain is a measure of the degree of deformation. Strain is proportional to
stress, and the constant of proportionality is the elastic modulus:

(12.5)

Three common types of deformation are (1) the resistance of a solid to elon-
gation under a load, characterized by Young’s modulus Y ; (2) the resistance of a
solid to the motion of internal planes sliding past each other, characterized by the
shear modulus S ; and (3) the resistance of a solid or fluid to a volume change,
characterized by the bulk modulus B.

Elastic modulus �
stress
strain

QUESTIONS

keep the back as vertical as possible, lifting from the
knees, rather than bending over and lifting from the
waist?

10. Give a few examples in which several forces are acting on
a system in such a way that their sum is zero but the sys-
tem is not in equilibrium.

11. If you measure the net torque and the net force on a sys-
tem to be zero, (a) could the system still be rotating with
respect to you? (b) Could it be translating with respect to
you?

12. A ladder is resting inclined against a wall. Would you feel
safer climbing up the ladder if you were told that the
ground is frictionless but the wall is rough or that the wall
is frictionless but the ground is rough? Justify your an-
swer.

13. What kind of deformation does a cube of Jell-O exhibit
when it “jiggles”?

14. Ruins of ancient Greek temples often have intact vertical
columns, but few horizontal slabs of stone are still in
place. Can you think of a reason why this is so?

1. Can a body be in equilibrium if only one external force
acts on it? Explain.

2. Can a body be in equilibrium if it is in motion? Explain.
3. Locate the center of gravity for the following uniform ob-

jects: (a) sphere, (b) cube, (c) right circular cylinder.
4. The center of gravity of an object may be located outside

the object. Give a few examples for which this is the case.
5. You are given an arbitrarily shaped piece of plywood, to-

gether with a hammer, nail, and plumb bob. How could
you use these items to locate the center of gravity of the
plywood? (Hint: Use the nail to suspend the plywood.)

6. For a chair to be balanced on one leg, where must the
center of gravity of the chair be located?

7. Can an object be in equilibrium if the only torques acting
on it produce clockwise rotation?

8. A tall crate and a short crate of equal mass are placed side
by side on an incline (without touching each other). As
the incline angle is increased, which crate will topple
first? Explain.

9. When lifting a heavy object, why is it recommended to

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 12.1 The Conditions for Equilibrium
1. A baseball player holds a 36-oz bat (weight � 10.0 N)

with one hand at the point O (Fig. P12.1). The bat is in
equilibrium. The weight of the bat acts along a line 
60.0 cm to the right of O. Determine the force and the
torque exerted on the bat by the player.

60.0 cm

O

mg

Figure P12.1
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2. Write the necessary conditions of equilibrium for the
body shown in Figure P12.2. Take the origin of the
torque equation at the point O.

Section 12.2 More on the Center of Gravity
5. A 3.00-kg particle is located on the x axis at x �

� 5.00 m, and a 4.00-kg particle is located on the x axis
at x � 3.00 m. Find the center of gravity of this two-
particle system.

6. A circular pizza of radius R has a circular piece of radius
R/2 removed from one side, as shown in Figure P12.6.
Clearly, the center of gravity has moved from C to C�
along the x axis. Show that the distance from C to C� is
R/6. (Assume that the thickness and density of the
pizza are uniform throughout.)

Fg

Fx

Fy

Rx O

θ

Ry

�

12.0 cm

18.0 cm

4.0 cm

4.0 cm

C ′
C

12 m
Tree

0.50 m

F

d

P

x

O

�
2

�

m2m1

CG

8. Pat builds a track for his model car out of wood, as illus-
trated in Figure P12.8. The track is 5.00 cm wide, 
1.00 m high, and 3.00 m long, and it is solid. The run-
way is cut so that it forms a parabola described by the
equation y � (x � 3)2/9. Locate the horizontal position
of the center of gravity of this track.

9. Consider the following mass distribution: 5.00 kg at 
(0, 0) m, 3.00 kg at (0, 4.00) m, and 4.00 kg at 
(3.00, 0) m. Where should a fourth mass of 8.00 kg be
placed so that the center of gravity of the four-mass
arrangement will be at (0, 0)?

7. A carpenter’s square has the shape of an L, as shown in
Figure P12.7. Locate its center of gravity.

4. A student gets his car stuck in a snow drift. Not at a loss,
having studied physics, he attaches one end of a stout
rope to the vehicle and the other end to the trunk of a
nearby tree, allowing for a very small amount of slack.
The student then exerts a force F on the center of the
rope in the direction perpendicular to the car–tree line,
as shown in Figure P12.4. If the rope is inextensible and
if the magnitude of the applied force is 500 N, what is
the force on the car? (Assume equilibrium conditions.)

3. A uniform beam of mass mb and length � supports
blocks of masses m1 and m2 at two positions, as shown in
Figure P12.3. The beam rests on two points. For what
value of x will the beam be balanced at P such that the
normal force at O is zero?

Figure P12.2

Figure P12.3

Figure P12.4

Figure P12.6

Figure P12.7

WEB

WEB
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10. Figure P12.10 shows three uniform objects: a rod, a
right triangle, and a square. Their masses in kilograms
and their coordinates in meters are given. Determine
the center of gravity for the three-object system.

13. A 15.0-m uniform ladder weighing 500 N rests against a
frictionless wall. The ladder makes a 60.0° angle with
the horizontal. (a) Find the horizontal and vertical
forces that the ground exerts on the base of the ladder
when an 800-N firefighter is 4.00 m from the bottom.
(b) If the ladder is just on the verge of slipping when
the firefighter is 9.00 m up, what is the coefficient of
static friction between the ladder and the ground?

14. A uniform ladder of length L and mass m1 rests against a
frictionless wall. The ladder makes an angle 
 with the
horizontal. (a) Find the horizontal and vertical forces that
the ground exerts on the base of the ladder when a fire-
fighter of mass m2 is a distance x from the bottom. (b) If
the ladder is just on the verge of slipping when the fire-
fighter is a distance d from the bottom, what is the coeffi-
cient of static friction between the ladder and the ground?

15. Figure P12.15 shows a claw hammer as it is being used
to pull a nail out of a horizontal surface. If a force of
magnitude 150 N is exerted horizontally as shown, find

y

1.00 m

3.00 m

5.00 cm x

y = (x – 3)2/9

Single point
of contact

5.00 cm

30.0°

30.0 cm

F

15.0°

(4,1)

(2,7)
(8,5)

(9,7)
6.00 kg

5.00 kg
3.00 kg

(–2,2)

(–5,5)

y(m)

x(m)

Section 12.3 Examples of Rigid Objects 
in Static Equilibrium

11. Stephen is pushing his sister Joyce in a wheelbarrow
when it is stopped by a brick 8.00 cm high (Fig.
P12.11). The handles make an angle of 15.0° from the
horizontal. A downward force of 400 N is exerted on
the wheel, which has a radius of 20.0 cm. (a) What force
must Stephen apply along the handles to just start the
wheel over the brick? (b) What is the force (magnitude
and direction) that the brick exerts on the wheel just as
the wheel begins to lift over the brick? Assume in both
parts (a) and (b) that the brick remains fixed and does
not slide along the ground.

12. Two pans of a balance are 50.0 cm apart. The fulcrum of
the balance has been shifted 1.00 cm away from the cen-
ter by a dishonest shopkeeper. By what percentage is the
true weight of the goods being marked up by the shop-
keeper? (Assume that the balance has negligible mass.)

Figure P12.8

Figure P12.10

Figure P12.11

Figure P12.15



380 C H A P T E R  1 2 Static Equilibrium and Elasticity

(a) the force exerted by the hammer claws on the nail
and (b) the force exerted by the surface on the point of
contact with the hammer head. Assume that the force
the hammer exerts on the nail is parallel to the nail.

16. A uniform plank with a length of 6.00 m and a mass of
30.0 kg rests horizontally across two horizontal bars of a
scaffold. The bars are 4.50 m apart, and 1.50 m of the
plank hangs over one side of the scaffold. Draw a free-
body diagram for the plank. How far can a painter with
a mass of 70.0 kg walk on the overhanging part of the
plank before it tips?

17. A 1 500-kg automobile has a wheel base (the distance
between the axles) of 3.00 m. The center of mass of the
automobile is on the center line at a point 1.20 m be-
hind the front axle. Find the force exerted by the
ground on each wheel.

18. A vertical post with a square cross section is 10.0 m tall.
Its bottom end is encased in a base 1.50 m tall that is
precisely square but slightly loose. A force of 5.50 N 
to the right acts on the top of the post. The base main-
tains the post in equilibrium. Find the force that the top
of the right sidewall of the base exerts on the post. Find
the force that the bottom of the left sidewall of the base
exerts on the post.

19. A flexible chain weighing 40.0 N hangs between two
hooks located at the same height (Fig. P12.19). At each
hook, the tangent to the chain makes an angle 
 �
42.0° with the horizontal. Find (a) the magnitude of the
force each hook exerts on the chain and (b) the ten-
sion in the chain at its midpoint. (Hint: For part (b),
make a free-body diagram for half the chain.)

combined with that of his armor and steed is 1 000 kg.
Determine (a) the tension in the cable, as well as 
(b) the horizontal and (c) the vertical force compo-
nents acting on the bridge at the hinge.

22. Two identical, uniform bricks of length L are placed in
a stack over the edge of a horizontal surface such that
the maximum possible overhang without falling is
achieved, as shown in Figure P12.22. Find the dis-
tance x.

x

L

0.75 m
0.25 m

LuLu’s

Boutique

θ

20. A hemispherical sign 1.00 m in diameter and of uni-
form mass density is supported by two strings, as shown
in Figure P12.20. What fraction of the sign’s weight is
supported by each string?

21. Sir Lost-a-Lot dons his armor and sets out from the cas-
tle on his trusty steed in his quest to improve communi-
cation between damsels and dragons (Fig. P12.21). Un-
fortunately, his squire lowered the draw bridge too far
and finally stopped lowering it when it was 20.0° below
the horizontal. Lost-a-Lot and his horse stop when their
combined center of mass is 1.00 m from the end of the
bridge. The bridge is 8.00 m long and has a mass of 
2 000 kg. The lift cable is attached to the bridge 5.00 m
from the hinge at the castle end and to a point on the
castle wall 12.0 m above the bridge. Lost-a-Lot’s mass

Figure P12.19

Figure P12.20

Figure P12.21

Figure P12.22
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23. A vaulter holds a 29.4-N pole in equilibrium by exerting
an upward force U with her leading hand and a down-
ward force D with her trailing hand, as shown in Figure
P12.23. Point C is the center of gravity of the pole.
What are the magnitudes of U and D?

30. Review Problem. A 2.00-m-long cylindrical steel wire
with a cross-sectional diameter of 4.00 mm is placed
over a light frictionless pulley, with one end of the wire
connected to a 5.00-kg mass and the other end con-
nected to a 3.00-kg mass. By how much does the wire
stretch while the masses are in motion?

31. Review Problem. A cylindrical steel wire of length Li
with a cross-sectional diameter d is placed over a light
frictionless pulley, with one end of the wire connected
to a mass m1 and the other end connected to a mass m2 .
By how much does the wire stretch while the masses are
in motion?

32. Calculate the density of sea water at a depth of 1 000 m,
where the water pressure is about 1.00 � 107 N/m2 .
(The density of sea water is 1.030 � 103 kg/m3 at the
surface.)

33. If the shear stress exceeds about 4.00 � 108 N/m2, steel
ruptures. Determine the shearing force necessary (a) to
shear a steel bolt 1.00 cm in diameter and (b) to punch
a 1.00-cm-diameter hole in a steel plate 0.500 cm thick.

34. (a) Find the minimum diameter of a steel wire 18.0 m
long that elongates no more than 9.00 mm when a load
of 380 kg is hung on its lower end. (b) If the elastic
limit for this steel is 3.00 � 108 N/m2, does permanent
deformation occur with this load?

35. When water freezes, it expands by about 9.00%. What
would be the pressure increase inside your automobile’s
engine block if the water in it froze? (The bulk modulus
of ice is 2.00 � 109 N/m2.)

36. For safety in climbing, a mountaineer uses a 50.0-m ny-
lon rope that is 10.0 mm in diameter. When supporting
the 90.0-kg climber on one end, the rope elongates by
1.60 m. Find Young’s modulus for the rope material.

ADDITIONAL PROBLEMS

37. A bridge with a length of 50.0 m and a mass of 8.00 �
104 kg is supported on a smooth pier at each end, as il-
lustrated in Figure P12.37. A truck of mass 3.00 � 104 kg

2.25 m
0.750 m

A

1.50 m

U

D

B

C

Fg

Section 12.4 Elastic Properties of Solids
24. Assume that Young’s modulus for bone is 1.50 �

1010 N/m2 and that a bone will fracture if more than
1.50 � 108 N/m2 is exerted. (a) What is the maximum
force that can be exerted on the femur bone in the leg
if it has a minimum effective diameter of 2.50 cm? 
(b) If a force of this magnitude is applied compres-
sively, by how much does the 25.0-cm-long bone
shorten?

25. A 200-kg load is hung on a wire with a length of 4.00 m,
a cross-sectional area of 0.200 � 10�4 m2, and a Young’s
modulus of 8.00 � 1010 N/m2. What is its increase in
length?

26. A steel wire 1 mm in diameter can support a tension of
0.2 kN. Suppose you need a cable made of these wires
to support a tension of 20 kN. The cable’s diameter
should be of what order of magnitude?

27. A child slides across a floor in a pair of rubber-soled
shoes. The frictional force acting on each foot is 20.0 N.
The footprint area of each shoe’s sole is 14.0 cm2, and
the thickness of each sole is 5.00 mm. Find the horizon-
tal distance by which the upper and lower surfaces of
each sole are offset. The shear modulus of the rubber is
3.00 � 106 N/m2.

28. Review Problem. A 30.0-kg hammer strikes a steel
spike 2.30 cm in diameter while moving with a speed of
20.0 m/s. The hammer rebounds with a speed of 
10.0 m/s after 0.110 s. What is the average strain in the
spike during the impact?

29. If the elastic limit of copper is 1.50 � 108 N/m2, deter-
mine the minimum diameter a copper wire can have
under a load of 10.0 kg if its elastic limit is not to be ex-
ceeded.

Figure P12.23

WEB

A B

15.0 m
50.0 m

Figure P12.37
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is located 15.0 m from one end. What are the forces on
the bridge at the points of support?

38. A frame in the shape of the letter A is formed from two
uniform pieces of metal, each of weight 26.0 N and
length 1.00 m. They are hinged at the top and held to-
gether by a horizontal wire 1.20 m in length (Fig.
P12.38). The structure rests on a frictionless surface. If
the wire is connected at points a distance of 0.650 m
from the top of the frame, determine the tension in the
wire.

lower ends of the ladder rest on frictionless surfaces.
The lower end is fastened to the wall by a horizontal
rope that can support a maximum tension of 110 N. 
(a) Draw a free-body diagram for the ladder. (b) Find
the tension in the rope when the monkey is one third
the way up the ladder. (c) Find the maximum distance
d that the monkey can climb up the ladder before the
rope breaks. Express your answer as a fraction of L.

42. A hungry bear weighing 700 N walks out on a beam in
an attempt to retrieve a basket of food hanging at the
end of the beam (Fig. P12.42). The beam is uniform,
weighs 200 N, and is 6.00 m long; the basket weighs
80.0 N. (a) Draw a free-body diagram for the beam. 
(b) When the bear is at x � 1.00 m, find the tension in
the wire and the components of the force exerted by
the wall on the left end of the beam. (c) If the wire can
withstand a maximum tension of 900 N, what is the
maximum distance that the bear can walk before the
wire breaks?

43. Old MacDonald had a farm, and on that farm he had a
gate (Fig. P12.43). The gate is 3.00 m wide and 1.80 m

39. Refer to Figure 12.17c. A lintel of prestressed rein-
forced concrete is 1.50 m long. The cross-sectional area
of the concrete is 50.0 cm2. The concrete encloses one
steel reinforcing rod with a cross-sectional area of 
1.50 cm2. The rod joins two strong end plates. Young’s
modulus for the concrete is 30.0 � 109 N/m2. After the
concrete cures and the original tension T1 in the rod is
released, the concrete will be under a compressive stress
of 8.00 � 106 N/m2. (a) By what distance will the rod
compress the concrete when the original tension in the
rod is released? (b) Under what tension T2 will the rod
still be? (c) How much longer than its unstressed length
will the rod then be? (d) When the concrete was
poured, the rod should have been stretched by what ex-
tension distance from its unstressed length? (e) Find
the required original tension T1 in the rod.

40. A solid sphere of radius R and mass M is placed in a
trough, as shown in Figure P12.40. The inner surfaces
of the trough are frictionless. Determine the forces ex-
erted by the trough on the sphere at the two contact
points.

41. A 10.0-kg monkey climbs up a 120-N uniform ladder of
length L, as shown in Figure P12.41. The upper and

Figure P12.38

Figure P12.40

Figure P12.41

Figure P12.42

60.0°

x

Goodies

53°

L

α β

1.20 m

0.65 m

0.35 m
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high, with hinges attached to the top and bottom. The
guy wire makes an angle of 30.0° with the top of the
gate and is tightened by a turn buckle to a tension of
200 N. The mass of the gate is 40.0 kg. (a) Determine
the horizontal force exerted on the gate by the bottom
hinge. (b) Find the horizontal force exerted by the up-
per hinge. (c) Determine the combined vertical force
exerted by both hinges. (d) What must the tension in
the guy wire be so that the horizontal force exerted by
the upper hinge is zero?

44. A 1 200-N uniform boom is supported by a cable, as il-
lustrated in Figure P12.44. The boom is pivoted at the
bottom, and a 2 000-N object hangs from its top. Find
the tension in the cable and the components of the re-
action force exerted on the boom by the floor.

46. A crane of mass 3 000 kg supports a load of 10 000 kg as
illustrated in Figure P12.46. The crane is pivoted with a
frictionless pin at A and rests against a smooth support
at B. Find the reaction forces at A and B.

47. A ladder having a uniform density and a mass m rests
against a frictionless vertical wall, making an angle 60.0°
with the horizontal. The lower end rests on a flat sur-
face, where the coefficient of static friction is s �
0.400. A window cleaner having a mass M � 2m at-
tempts to climb the ladder. What fraction of the length
L of the ladder will the worker have reached when the
ladder begins to slip?

48. A uniform ladder weighing 200 N is leaning against a
wall (see Fig. 12.10). The ladder slips when 
 � 60.0°.
Assuming that the coefficients of static friction at the
wall and the ground are the same, obtain a value for s .

49. A 10 000-N shark is supported by a cable attached to a
4.00-m rod that can pivot at its base. Calculate the ten-
sion in the tie-rope between the wall and the rod if it is
holding the system in the position shown in Figure
P12.49. Find the horizontal and vertical forces exerted
on the base of the rod. (Neglect the weight of the rod.)

45. A uniform sign of weight Fg and width 2L hangs from a
light, horizontal beam hinged at the wall and supported
by a cable (Fig. P12.45). Determine (a) the tension in
the cable and (b) the components of the reaction force
exerted by the wall on the beam in terms of Fg , d, L, 
and 
.

Figure P12.43

d

θ

2L

10 000 kg

(3 000 kg)g
B

A

2.00 m

6.00 m

1.00 m

25°

65°

2000 N

�3
4 �

30.0°

3.00 m

1.80 m

Figure P12.44

Figure P12.45

Figure P12.46

WEB



384 C H A P T E R  1 2 Static Equilibrium and Elasticity

50. When a person stands on tiptoe (a strenuous position),
the position of the foot is as shown in Figure P12.50a.
The total weight of the body Fg is supported by the
force n exerted by the floor on the toe. A mechanical
model for the situation is shown in Figure P12.50b,

where T is the force exerted by the Achilles tendon on
the foot and R is the force exerted by the tibia on the
foot. Find the values of T, R, and 
 when Fg � 700 N.

51. A person bends over and lifts a 200-N object as shown in
Figure P12.51a, with his back in a horizontal position (a
terrible way to lift an object). The back muscle attached
at a point two thirds the way up the spine maintains the
position of the back, and the angle between the spine
and this muscle is 12.0°. Using the mechanical model
shown in Figure P12.51b and taking the weight of the
upper body to be 350 N, find the tension in the back
muscle and the compressional force in the spine.

53. A force acts on a rectangular cabinet weighing 400 N, as
illustrated in Figure P12.53. (a) If the cabinet slides
with constant speed when F � 200 N and h � 0.400 m,

52. Two 200-N traffic lights are suspended from a single ca-
ble, as shown in Figure 12.52. Neglecting the cable’s
weight, (a) prove that if 
1 � 
2 , then T1 � T2 . 
(b) Determine the three tensions T1 , T2 , and T3 if 

1 � 
2 � 8.00°.

Figure P12.49

Figure P12.50

Figure P12.51

Figure P12.52

60.0°

10 000 N

20.0°

T3
θ1 θ2

T1 T2

θ θ

Ry

Rx

T 12.0°

200 N

350 N

Pivot

Back muscle

(a) (b)

15.0° R

T

90.0°

25.0 cm

(b)

 θ

18.0 cm

n

Achilles
tendon

Tibia

(a)
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find the coefficient of kinetic friction and the position
of the resultant normal force. (b) If F � 300 N, find the
value of h for which the cabinet just begins to tip.

59. A stepladder of negligible weight is constructed as
shown in Figure P12.59. A painter with a mass of 
70.0 kg stands on the ladder 3.00 m from the bottom.
Assuming that the floor is frictionless, find (a) the ten-
sion in the horizontal bar connecting the two halves of
the ladder, (b) the normal forces at A and B, and 
(c) the components of the reaction force at the single
hinge C that the left half of the ladder exerts on the
right half. (Hint: Treat each half of the ladder sepa-
rately.)

58. Figure P12.58 shows a truss that supports a downward
force of 1 000 N applied at the point B. The truss has
negligible weight. The piers at A and C are smooth. 
(a) Apply the conditions of equilibrium to prove that 
nA � 366 N and that nC � 634 N. (b) Show that, be-
cause forces act on the light truss only at the hinge
joints, each bar of the truss must exert on each hinge
pin only a force along the length of that bar—a force
of tension or compression. (c) Find the force of tension
or compression in each of the three bars.

be suspended from the top before the beam slips. 
(b) Determine the magnitude of the reaction force at
the floor and the magnitude of the force exerted by the
beam on the rope at P in terms of m, M, and s .

56. Review Problem. A cue stick strikes a cue ball and de-
livers a horizontal impulse in such a way that the ball
rolls without slipping as it starts to move. At what height
above the ball’s center (in terms of the radius of the
ball) was the blow struck?

57. A uniform beam of mass m is inclined at an angle 
 to
the horizontal. Its upper end produces a 90° bend in a
very rough rope tied to a wall, and its lower end rests on
a rough floor (Fig. P12.57). (a) If the coefficient of sta-
tic friction between the beam and the floor is s , deter-
mine an expression for the maximum mass M that can

54. Consider the rectangular cabinet of Problem 53, but
with a force F applied horizontally at its upper edge. 
(a) What is the minimum force that must be applied for
the cabinet to start tipping? (b) What is the minimum
coefficient of static friction required to prevent the cabi-
net from sliding with the application of a force of this
magnitude? (c) Find the magnitude and direction of
the minimum force required to tip the cabinet if the
point of application can be chosen anywhere on it.

55. A uniform rod of weight Fg and length L is supported at
its ends by a frictionless trough, as shown in Figure
P12.55. (a) Show that the center of gravity of the rod is
directly over point O when the rod is in equilibrium.
(b) Determine the equilibrium value of the angle 
.

1000 N

B

CA

10.0 m
nCnA

30.0° 45.0°

P

m

θ

M

O

60.0°30.0°

θ

h

37.0°

w = 60 cm

� = 100 cm

F

Figure P12.53 Problems 53 and 54.

Figure P12.55

Figure P12.57

Figure P12.58
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60. A flat dance floor of dimensions 20.0 m by 20.0 m has a
mass of 1 000 kg. Three dance couples, each of mass
125 kg, start in the top left, top right, and bottom left
corners. (a) Where is the initial center of gravity? 
(b) The couple in the bottom left corner moves 10.0 m
to the right. Where is the new center of gravity? 
(c) What was the average velocity of the center of grav-
ity if it took that couple 8.00 s to change position?

61. A shelf bracket is mounted on a vertical wall by a single
screw, as shown in Figure P12.61. Neglecting the weight
of the bracket, find the horizontal component of the
force that the screw exerts on the bracket when an 
80.0-N vertical force is applied as shown. (Hint: Imagine
that the bracket is slightly loose.)

P3

P2

P1

A

P

80.0 N 5.00 cm

3.00 cm

6.00 cm

2.00 m

2.00 m

3.00 m

A 2.00 m B

C

Figure P12.59

Figure P12.61

Figure P12.62

Figure P12.64

65. In Figure P12.65, the scales read Fg1 � 380 N and Fg 2 �
320 N. Neglecting the weight of the supporting plank,

62. Figure P12.62 shows a vertical force applied tangentially
to a uniform cylinder of weight Fg . The coefficient of

static friction between the cylinder and all surfaces is
0.500. In terms of Fg , find the maximum force P that
can be applied that does not cause the cylinder to ro-
tate. (Hint: When the cylinder is on the verge of slip-
ping, both friction forces are at their maximum values.
Why?)

63. Review Problem. A wire of length Li , Young’s modu-
lus Y, and cross-sectional area A is stretched elastically
by an amount �L. According to Hooke’s law, the restor-
ing force is � k �L. (a) Show that k � YA/Li . (b) Show
that the work done in stretching the wire by an amount
�L is W � YA(�L)2/2Li .

64. Two racquetballs are placed in a glass jar, as shown in
Figure P12.64. Their centers and the point A lie on a
straight line. (a) Assuming that the walls are frictionless,
determine P1 , P2 , and P3 . (b) Determine the magni-
tude of the force exerted on the right ball by the left
ball. Assume each ball has a mass of 170 g.

WEB
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how far from the woman’s feet is her center of mass,
given that her height is 2.00 m?

66. A steel cable 3.00 cm2 in cross-sectional area has a mass
of 2.40 kg per meter of length. If 500 m of the cable is
hung over a vertical cliff, how much does the cable
stretch under its own weight? (For Young’s modulus for
steel, refer to Table 12.1.)

67. (a) Estimate the force with which a karate master strikes
a board if the hand’s speed at time of impact is 
10.0 m/s and decreases to 1.00 m/s during a 0.002 00-s
time-of-contact with the board. The mass of coordi-
nated hand-and-arm is 1.00 kg. (b) Estimate the shear
stress if this force is exerted on a 1.00-cm-thick pine
board that is 10.0 cm wide. (c) If the maximum shear
stress a pine board can receive before breaking is 
3.60 � 106 N/m2, will the board break?

68. A bucket is made from thin sheet metal. The bottom
and top of the bucket have radii of 25.0 cm and 
35.0 cm, respectively. The bucket is 30.0 cm high and
filled with water. Where is the center of gravity? (Ignore
the weight of the bucket itself.)

69. Review Problem. A trailer with a loaded weight of Fg is
being pulled by a vehicle with a force P, as illustrated in
Figure P12.69. The trailer is loaded such that its center
of mass is located as shown. Neglect the force of rolling
friction and let a represent the x component of the ac-
celeration of the trailer. (a) Find the vertical compo-
nent of P in terms of the given parameters. (b) If a �
2.00 m/s2 and h � 1.50 m, what must be the value of d

30° 60° 30°A E

B D

C

100 m

60°

40° 40° 40°A E

B D

C

200 m

40°

d

L

×

n

h P

CM

Fg

Fg1 Fg 2

2.00 m

Figure P12.65

Figure P12.69

Figure P12.71

Figure P12.72

72. A 100-m-long bridge truss is supported at its ends so that
it can slide freely (Fig. P12.72). A 1 500-kg car is halfway
between points A and C.  Show that the weight of the car
is evenly distributed between points A and C, and calcu-
late the force in each structural component. Specify
whether each structural component is under tension or
compression. Assume that the structural components are
connected by pin joints and that the masses of the com-
ponents are small compared with the mass of the car.

so that Py � 0 (that is, no vertical load on the vehicle)?
(c) Find the values of Px and Py given that Fg � 1 500 N,
d � 0.800 m, L � 3.00 m, h � 1.50 m, and a �
� 2.00 m/s2.

70. Review Problem. An aluminum wire is 0.850 m long
and has a circular cross section of diameter 0.780 mm.
Fixed at the top end, the wire supports a 1.20-kg mass
that swings in a horizontal circle. Determine the angu-
lar velocity required to produce strain 1.00 � 10�3.

71. A 200-m-long bridge truss extends across a river (Fig.
P12.71). Calculate the force of tension or compression
in each structural component when a 1 360-kg car is at
the center of the bridge.  Assume that the structure is
free to slide horizontally to permit thermal expansion
and contraction, that the structural components are
connected by pin joints, and that the masses of the
structural components are small compared with the
mass of the car.
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ANSWERS TO QUICK QUIZZES

12.3 Young’s modulus is given by the ratio of stress to strain,
which is the slope of the elastic behavior section of the
graph in Figure 12.14. Reading from the graph, we note
that a stress of approximately 3 � 108 N/m2 results in a
strain of 0.003. The slope, and hence Young’s modulus,
are therefore 10 � 1010 N/m2.

12.4 A substantial part of the graph extends beyond the elas-
tic limit, indicating permanent deformation. Thus, the
material is ductile.

12.1 (a) Yes, as Figure 12.3 shows. The unbalanced torques
cause an angular acceleration even though the linear ac-
celeration is zero. (b) Yes, again. This happens when the
lines of action of all the forces intersect at a common
point. If a net force acts on the object, then the object
has a translational acceleration. However, because there
is no net torque on the object, the object has no angular
acceleration. There are other instances in which torques
cancel but the forces do not. You should be able to draw
at least two.

12.2 The location of the board’s center of gravity relative to
the fulcrum.
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Oscillatory Motion

Inside the pocket watch is a small disk
(called a torsional pendulum) that oscil-
lates back and forth at a very precise
rate and controls the watch gears. A
grandfather clock keeps accurate time
because of its pendulum. The tall
wooden case provides the space needed
by the long pendulum as it advances the
clock gears with each swing. In both of
these timepieces, the vibration of a care-
fully shaped component is critical to ac-
curate operation. What properties of os-
cillating objects make them so useful in
timing devices? (Photograph of pocket

watch, George Semple; photograph of grand-

father clock, Charles D. Winters) 

C h a p t e r  O u t l i n e

13.1 Simple Harmonic Motion

13.2 The Block–Spring System
Revisited

13.3 Energy of the Simple Harmonic
Oscillator

13.4 The Pendulum

13.5 Comparing Simple Harmonic
Motion with Uniform Circular
Motion

13.6 (Optional) Damped Oscillations

13.7 (Optional) Forced Oscillations
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very special kind of motion occurs when the force acting on a body is propor-
tional to the displacement of the body from some equilibrium position. If
this force is always directed toward the equilibrium position, repetitive back-

and-forth motion occurs about this position. Such motion is called periodic motion,
harmonic motion, oscillation, or vibration (the four terms are completely equivalent).

You are most likely familiar with several examples of periodic motion, such as
the oscillations of a block attached to a spring, the swinging of a child on a play-
ground swing, the motion of a pendulum, and the vibrations of a stringed musical
instrument. In addition to these everyday examples, numerous other systems ex-
hibit periodic motion. For example, the molecules in a solid oscillate about their
equilibrium positions; electromagnetic waves, such as light waves, radar, and radio
waves, are characterized by oscillating electric and magnetic field vectors; and in
alternating-current electrical circuits, voltage, current, and electrical charge vary
periodically with time.

Most of the material in this chapter deals with simple harmonic motion, in which
an object oscillates such that its position is specified by a sinusoidal function of
time with no loss in mechanical energy. In real mechanical systems, damping (fric-
tional) forces are often present. These forces are considered in optional Section
13.6 at the end of this chapter.

SIMPLE HARMONIC MOTION
Consider a physical system that consists of a block of mass m attached to the end of a
spring, with the block free to move on a horizontal, frictionless surface (Fig. 13.1).
When the spring is neither stretched nor compressed, the block is at the position

called the equilibrium position of the system. We know from experience that
such a system oscillates back and forth if disturbed from its equilibrium position.

We can understand the motion in Figure 13.1 qualitatively by first recalling
that when the block is displaced a small distance x from equilibrium, the spring 
exerts on the block a force that is proportional to the displacement and given by
Hooke’s law (see Section 7.3):

(13.1)

We call this a restoring force because it is is always directed toward the equilib-
rium position and therefore opposite the displacement. That is, when the block is
displaced to the right of in Figure 13.1, then the displacement is positive
and the restoring force is directed to the left. When the block is displaced to the
left of then the displacement is negative and the restoring force is directed
to the right.

Applying Newton’s second law to the motion of the block, together with Equa-
tion 13.1, we obtain

(13.2)

That is, the acceleration is proportional to the displacement of the block, and its
direction is opposite the direction of the displacement. Systems that behave in this
way are said to exhibit simple harmonic motion. An object moves with simple
harmonic motion whenever its acceleration is proportional to its displace-
ment from some equilibrium position and is oppositely directed.

 a � �
k
m

 x 

Fs � �kx � ma

x � 0,

x � 0

Fs � �kx

x � 0,

13.1

A

8.10

Fs

Fs

m

(a)

x

x = 0
x

(b)

x

x = 0

Fs = 0

(c)

x

x = 0
x

m

m

Figure 13.1 A block attached to
a spring moving on a frictionless
surface. (a) When the block is dis-
placed to the right of equilibrium
(x � 0), the force exerted by the
spring acts to the left. (b) When
the block is at its equilibrium posi-
tion (x � 0), the force exerted by
the spring is zero. (c) When the
block is displaced to the left of
equilibrium (x � 0), the force ex-
erted by the spring acts to the
right.
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An experimental arrangement that exhibits simple harmonic motion is illus-
trated in Figure 13.2. A mass oscillating vertically on a spring has a pen attached to
it. While the mass is oscillating, a sheet of paper is moved perpendicular to the di-
rection of motion of the spring, and the pen traces out a wavelike pattern.

In general, a particle moving along the x axis exhibits simple harmonic mo-
tion when x, the particle’s displacement from equilibrium, varies in time according
to the relationship

(13.3)

where A, �, and � are constants. To give physical significance to these constants,
we have labeled a plot of x as a function of t in Figure 13.3a. This is just the pattern
that is observed with the experimental apparatus shown in Figure 13.2. The ampli-
tude A of the motion is the maximum displacement of the particle in either the
positive or negative x direction. The constant � is called the angular frequency of
the motion and has units of radians per second. (We shall discuss the geometric
significance of � in Section 13.2.) The constant angle �, called the phase con-
stant (or phase angle), is determined by the initial displacement and velocity of
the particle. If the particle is at its maximum position at then 
and the curve of x versus t is as shown in Figure 13.3b. If the particle is at some
other position at the constants � and A tell us what the position was at time

The quantity is called the phase of the mo-
tion and is useful in comparing the motions of two oscillators.

Note from Equation 13.3 that the trigonometric function x is periodic and re-
peats itself every time �t increases by 2� rad. The period T of the motion is the
time it takes for the particle to go through one full cycle. We say that the par-
ticle has made one oscillation. This definition of T tells us that the value of x at time
t equals the value of x at time We can show that by using the pre-
ceding observation that the phase increases by 2� rad in a time T :

Hence, or

(13.4)T �
2�

�

�T � 2�,

�t � � � 2� � �(t � T ) � �

(�t � �)
T � 2�/�t � T.

(�t � �)t � 0.
t � 0,

� � 0t � 0,x � A

x � A cos(�t � �)

8.2 
& 
8.3

Displacement versus time for
simple harmonic motion

Motion
of paper

m

Figure 13.2 An experimental apparatus for demonstrating
simple harmonic motion. A pen attached to the oscillating
mass traces out a wavelike pattern on the moving chart paper.

x

A

–A

t

(b)

x
φ/ω

A

–A

t

T

(a)

φ ω

Figure 13.3 (a) An x – t curve for
a particle undergoing simple har-
monic motion. The amplitude of
the motion is A, the period is T,
and the phase constant is �. 
(b) The x – t curve in the special
case in which at and
hence � � 0.

t � 0x � A



392 C H A P T E R  1 3 Oscillatory Motion

The inverse of the period is called the frequency f of the motion. The fre-
quency represents the number of oscillations that the particle makes per
unit time:

(13.5)

The units of f are cycles per second � s�1, or hertz (Hz).
Rearranging Equation 13.5, we obtain the angular frequency:

(13.6)

What would the phase constant � have to be in Equation 13.3 if we were describing an oscil-
lating object that happened to be at the origin at 

An object undergoes simple harmonic motion of amplitude A. Through what total distance
does the object move during one complete cycle of its motion? (a) A/2. (b) A. (c) 2A. (d) 4A.

We can obtain the linear velocity of a particle undergoing simple harmonic mo-
tion by differentiating Equation 13.3 with respect to time:

(13.7)

The acceleration of the particle is

(13.8)

Because we can express Equation 13.8 in the form

(13.9)

From Equation 13.7 we see that, because the sine function oscillates between
	 1, the extreme values of v are 	 �A. Because the cosine function also oscillates
between 	 1, Equation 13.8 tells us that the extreme values of a are 	 �2A. There-
fore, the maximum speed and the magnitude of the maximum acceleration of a
particle moving in simple harmonic motion are

(13.10)

(13.11)

Figure 13.4a represents the displacement versus time for an arbitrary value of
the phase constant. The velocity and acceleration curves are illustrated in Figure
13.4b and c. These curves show that the phase of the velocity differs from the
phase of the displacement by �/2 rad, or 90°. That is, when x is a maximum or a
minimum, the velocity is zero. Likewise, when x is zero, the speed is a maximum.

amax � �2A

vmax � �A 

a � ��2x

x � A cos(�t � �),

a �
dv
dt

� ��2A cos(�t � �)

v �
dx
dt

� ��A sin(�t � �)

Quick Quiz 13.2

t � 0?

Quick Quiz 13.1

� � 2�f �
2�

T

f �
1
T

�
�

2�

Angular frequency

Velocity in simple harmonic
motion

Acceleration in simple harmonic
motion

Maximum values of speed and
acceleration in simple harmonic
motion

Frequency
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Furthermore, note that the phase of the acceleration differs from the phase of the
displacement by � rad, or 180°. That is, when x is a maximum, a is a maximum in
the opposite direction.

The phase constant � is important when we compare the motion of two or
more oscillating objects. Imagine two identical pendulum bobs swinging side by
side in simple harmonic motion, with one having been released later than the
other. The pendulum bobs have different phase constants. Let us show how the
phase constant and the amplitude of any particle moving in simple harmonic mo-
tion can be determined if we know the particle’s initial speed and position and the
angular frequency of its motion.

Suppose that at the initial position of a single oscillator is and its
initial speed is Under these conditions, Equations 13.3 and 13.7 give

(13.12)

(13.13)

Dividing Equation 13.13 by Equation 13.12 eliminates A, giving 
or

(13.14)

Furthermore, if we square Equations 13.12 and 13.13, divide the velocity equation
by �2, and then add terms, we obtain

Using the identity we can solve for A:

(13.15)A � √x i 

2 � � vi

� �
2

sin2 � � cos2 � � 1,

x i 

2 � � vi
� �

2
� A2 cos2 � � A2 sin2 �

tan � � �
vi

�x i

v i/x i � �� tan �,

vi � ��A sin �

x i � A cos � 

v � vi .
x � x it � 0

T

A
tO

x

xi

tO

v

vi

tO

a

vmax = ωA

amax= ω2A

(a)

(b)

(c)

ω

ω

Figure 13.4 Graphical representation of
simple harmonic motion. (a) Displacement
versus time. (b) Velocity versus time. (c) Ac-
celeration versus time. Note that at any speci-
fied time the velocity is 90° out of phase with
the displacement and the acceleration is 180°
out of phase with the displacement.



The following properties of a particle moving in simple harmonic motion are
important:

• The acceleration of the particle is proportional to the displacement but is in the
opposite direction. This is the necessary and sufficient condition for simple harmonic
motion, as opposed to all other kinds of vibration.

• The displacement from the equilibrium position, velocity, and acceleration all
vary sinusoidally with time but are not in phase, as shown in Figure 13.4.

• The frequency and the period of the motion are independent of the amplitude.
(We show this explicitly in the next section.)

Can we use Equations 2.8, 2.10, 2.11, and 2.12 (see pages 35 and 36) to describe the motion
of a simple harmonic oscillator?

Quick Quiz 13.3
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An Oscillating ObjectEXAMPLE 13.1
Solution Noting that the angles in the trigonometric func-
tions are in radians, we obtain, at s,

(d) Determine the maximum speed and maximum accel-
eration of the object.

Solution In the general expressions for v and a found in
part (b), we use the fact that the maximum values of the sine
and cosine functions are unity. Therefore, v varies between
	 4.00� m/s, and a varies between 	 4.00�2 m/s2. Thus,

m/s �

m/s2 �

We obtain the same results using and 
where m and rad/s.

(e) Find the displacement of the object between and
s.t � 1.00

t � 0
� � �A � 4.00

amax � �2A,vmax � �A

39.5 m/s2amax � 4.00�2

12.6 m/svmax � 4.00�

27.9 m/s2� �(4.00�2 m/s2)(�0.707) �

a � �(4.00�2 m/s2) cos � 5�

4 �

8.89 m/s�

v � �(4.00� m/s) sin � 5�

4 � � �(4.00� m/s)(�0.707)

�2.83 m � (4.00 m)(�0.707) �

x � (4.00 m) cos �� �
�

4 � � (4.00 m) cos � 5�

4 � 

t � 1.00
An object oscillates with simple harmonic motion along the x
axis. Its displacement from the origin varies with time accord-
ing to the equation

where t is in seconds and the angles in the parentheses are in
radians. (a) Determine the amplitude, frequency, and period
of the motion.

Solution By comparing this equation with Equation 13.3,
the general equation for simple harmonic motion—

)—we see that m and 
rad/s. Therefore, Hz and

s.
(b) Calculate the velocity and acceleration of the object at

any time t.

Solution

(c) Using the results of part (b), determine the position,
velocity, and acceleration of the object at s.t � 1.00

�(4.00�2 m/s2) cos ��t �
�

4 � �

a �
dv
dt

� �(4.00� m/s) cos ��t �
�

4 � 
d
dt

 (�t)

�(4.00� m/s) sin ��t �
�

4 � �

v �
dx
dt

� �(4.00 m) sin ��t �
�

4 � 
d
dt

 (�t) 

T � 1/f � 2.00
f � �/2� � �/2� � 0.500�

� �A � 4.00x � A cos(�t � �

x � (4.00 m) cos ��t �
�

4 �

Properties of simple harmonic
motion
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Solution The x coordinate at is

In part (c), we found that the x coordinate at s is
� 2.83 m; therefore, the displacement between and

s is

�5.66 m�x � x f � x i � �2.83 m � 2.83 m �

t � 1.00
t � 0

t � 1.00

x i � (4.00 m) cos �0 �
�

4 � � (4.00 m)(0.707) � 2.83 m

t � 0 Because the object’s velocity changes sign during the first
second, the magnitude of �x is not the same as the distance
traveled in the first second. (By the time the first second is
over, the object has been through the point m
once, traveled to m, and come back to

Exercise What is the phase of the motion at s?

Answer 9�/4 rad.

t � 2.00

x � �2.83 m.)
x � �4.00

x � �2.83

THE BLOCK – SPRING SYSTEM REVISITED
Let us return to the block–spring system (Fig. 13.5). Again we assume that the sur-
face is frictionless; hence, when the block is displaced from equilibrium, the only
force acting on it is the restoring force of the spring. As we saw in Equation 13.2,
when the block is displaced a distance x from equilibrium, it experiences an accel-
eration If the block is displaced a maximum distance at some
initial time and then released from rest, its initial acceleration at that instant is
� kA/m (its extreme negative value). When the block passes through the equilib-
rium position , its acceleration is zero. At this instant, its speed is a maxi-
mum. The block then continues to travel to the left of equilibrium and finally
reaches at which time its acceleration is kA/m (maximum positive) and
its speed is again zero. Thus, we see that the block oscillates between the turning
points 

Let us now describe the oscillating motion in a quantitative fashion. Recall
that and so we can express Equation 13.2 as

(13.16)

If we denote the ratio k/m with the symbol �2, this equation becomes

(13.17)

Now we require a solution to Equation 13.17—that is, a function x(t) that sat-
isfies this second-order differential equation. Because Equations 13.17 and 13.9
are equivalent, each solution must be that of simple harmonic motion:

To see this explicitly, assume that x � A cos(�t � �). Then

Comparing the expressions for x and d 2x/dt2, we see that d 2x/dt2 � � �2x, and
Equation 13.17 is satisfied. We conclude that whenever the force acting on a
particle is linearly proportional to the displacement from some equilibrium

d 2x
dt2 � ��A 

d
dt

 sin(�t � �) � ��2A cos(�t � �)

 
dx
dt

� A 
d
dt

 cos(�t � �) � ��A sin(�t � �) 

x � A cos(�t � �)

d 2x
dt2 � ��2x

d 2x
dt2 � �

k
m

 x

a � dv/dt � d 2x/dt2,

x � 	A.

x � �A,

x � 0

x � Aa � �(k/m)x.

13.2

m

m

(a)

x

x = 0

a

x

m

(b)

x

x = 0

a = 0

(c)

x

x = 0

a

x

Figure 13.5 A block of mass m at-
tached to a spring on a frictionless
surface undergoes simple har-
monic motion. (a) When the block
is displaced to the right of equilib-
rium, the displacement is positive
and the acceleration is negative.
(b) At the equilibrium position,

, the acceleration is zero and
the speed is a maximum. (c) When
the block is displaced to the left of
equilibrium, the displacement is
negative and the acceleration is
positive.

x � 0
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position and in the opposite direction (F � � kx), the particle moves in sim-
ple harmonic motion.

Recall that the period of any simple harmonic oscillator is (Eq.
13.4) and that the frequency is the inverse of the period. We know from Equations 

13.16 and 13.17 that , so we can express the period and frequency of the
block–spring system as

(13.18)

(13.19)

That is, the frequency and period depend only on the mass of the block and
on the force constant of the spring. Furthermore, the frequency and period are
independent of the amplitude of the motion. As we might expect, the frequency is
greater for a stiffer spring (the stiffer the spring, the greater the value of k) and
decreases with increasing mass.

Special Case 1. Let us consider a special case to better understand the physi-
cal significance of Equation 13.3, the defining expression for simple harmonic
motion. We shall use this equation to describe the motion of an oscillating
block– spring system. Suppose we pull the block a distance A from equilibrium
and then release it from rest at this stretched position, as shown in Figure 13.6.
Our solution for x must obey the initial conditions that and at

It does if we choose � � 0, which gives cos �t as the solution. To
check this solution, we note that it satisfies the condition that at be-
cause cos Thus, we see that A and � contain the information on initial
conditions.

Now let us investigate the behavior of the velocity and acceleration for this
special case. Because cos �t,

From the velocity expression we see that, because sin at as we
require. The expression for the acceleration tells us that at Physi-
cally, this negative acceleration makes sense because the force acting on the block
is directed to the left when the displacement is positive. In fact, at the extreme po-

t � 0.a � ��2A
t � 0,vi � 00 � 0,

a �
dv
dt

� ��2A cos �t

v �
dx
dt

� ��A sin �t 

x � A

0 � 1.
t � 0x i � A

x � At � 0.
vi � 0x i � A

f �
1
T

�
1

2�
 √ k

m

T �
2�

�
� 2� √ m

k

� � √k/m

T � 2�/�

Period and frequency for a
block–spring system

QuickLab
Hang an object from a rubber band
and start it oscillating. Measure T.
Now tie four identical rubber bands
together, end to end. How should k
for this longer band compare with k
for the single band? Again, time the
oscillations with the same object. Can
you verify Equation 13.19?

A
x = 0

t = 0
xi = A
vi = 0

x = A cos ωtm ω

Figure 13.6 A block–spring system that starts from rest at In this case, � � 0 and thus
cos �t.x � A

x i � A.
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sition shown in Figure 13.6, (to the left) and the initial acceleration is

Another approach to showing that cos �t is the correct solution involves
using the relationship tan (Eq. 13.14). Because at 
tan � � 0 and thus � � 0. (The tangent of � also equals zero, but � � � gives the
wrong value for xi .)

Figure 13.7 is a plot of displacement, velocity, and acceleration versus time for
this special case. Note that the acceleration reaches extreme values of 	 �2A while
the displacement has extreme values of 	 A because the force is maximal at those
positions. Furthermore, the velocity has extreme values of 	 �A, which both occur
at Hence, the quantitative solution agrees with our qualitative description
of this system.

Special Case 2. Now suppose that the block is given an initial velocity vi to the
right at the instant it is at the equilibrium position, so that and at

(Fig. 13.8). The expression for x must now satisfy these initial conditions. Be-
cause the block is moving in the positive x direction at and because at

the expression for x must have the form sin �t.
Applying Equation 13.14 and the initial condition that at we 

find that tan and Hence, Equation 13.3 becomes 
A cos ( which can be written sin �t. Furthermore, from Equa-
tion 13.15 we see that therefore, we can express x as

The velocity and acceleration in this case are

These results are consistent with the facts that (1) the block always has a maximum

a �
dv
dt

� ��vi sin �t

v �
dx
dt

� vi cos �t 

x �
vi

�
 sin �t

A � vi/� ;
x � A�t � �/2),

x �� � ��/2.� � ��
t � 0,x i � 0

x � At � 0,
x i � 0t � 0

t � 0
v � vix i � 0

x � 0.

t � 0,vi � 0� � �vi/�x i

x � A
��2A � �kA/m.

Fs � �kA

x = A cos ωt

T
2

TO ′

x

O
t

3T
2

T
2

TO ′

v

t
3T
2

v = –ωA sin ωt

T
2

TO ′

a

t
3T
2

a = –ω2A cos ωt

O

O

ω ω

ω ω

ω

Figure 13.7 Displacement, velocity, and ac-
celeration versus time for a block–spring sys-
tem like the one shown in Figure 13.6, undergo-
ing simple harmonic motion under the initial
conditions that at , and 
(Special Case 1). The origins at O correspond
to Special Case 2, the block–spring system un-
der the initial conditions shown in Figure 13.8.

v i � 0x i � At � 0

xi = 0
t = 0

v = vi

x = 0

vi

x = A sin ωt

m

ω

Figure 13.8 The block–spring
system starts its motion at the equi-
librium position at . If its ini-
tial velocity is vi to the right, the
block’s x coordinate varies as
x � (v i /�) sin �t.

t � 0
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speed at and (2) the force and acceleration are zero at this position. The
graphs of these functions versus time in Figure 13.7 correspond to the origin at O.

What is the solution for x if the block is initially moving to the left in Figure 13.8?

Quick Quiz 13.4

x � 0

Watch Out for Potholes!EXAMPLE 13.2
Hence, the frequency of vibration is, from Equation 13.19,

Exercise How long does it take the car to execute two com-
plete vibrations?

Answer 1.70 s.

1.18 Hzf �
1

2�
 √ k

m
�

1
2�

 √ 20 000 N/m
365 kg

�

A car with a mass of 1 300 kg is constructed so that its frame
is supported by four springs. Each spring has a force constant
of 20 000 N/m. If two people riding in the car have a com-
bined mass of 160 kg, find the frequency of vibration of the
car after it is driven over a pothole in the road.

Solution We assume that the mass is evenly distributed.
Thus, each spring supports one fourth of the load. The total
mass is 1 460 kg, and therefore each spring supports 365 kg.

A Block – Spring SystemEXAMPLE 13.3
(c) What is the maximum acceleration of the block?

Solution We use Equation 13.11:

(d) Express the displacement, speed, and acceleration as
functions of time.

Solution This situation corresponds to Special Case 1,
where our solution is cos �t. Using this expression and
the results from (a), (b), and (c), we find that

�(1.25 m/s2) cos 5.00ta � �2A cos �t �

�(0.250 m/s) sin 5.00t v � �A sin �t �

(0.050 m) cos 5.00t x � A cos �t �

x � A

1.25 m/s2amax � �2A � (5.00 rad/s)2(5.00 � 10�2 m) �

A block with a mass of 200 g is connected to a light spring for
which the force constant is 5.00 N/m and is free to oscillate
on a horizontal, frictionless surface. The block is displaced
5.00 cm from equilibrium and released from rest, as shown in
Figure 13.6. (a) Find the period of its motion.

Solution From Equations 13.16 and 13.17, we know that
the angular frequency of any block–spring system is

and the period is

(b) Determine the maximum speed of the block.

Solution We use Equation 13.10:

0.250 m/svmax � �A � (5.00 rad/s)(5.00 � 10�2 m) �

1.26 sT �
2�

�
�

2�

5.00 rad/s
�

� � √ k
m

� √ 5.00 N/m
200 � 10�3 kg

� 5.00 rad/s

ENERGY OF THE SIMPLE HARMONIC OSCILLATOR
Let us examine the mechanical energy of the block–spring system illustrated in
Figure 13.6. Because the surface is frictionless, we expect the total mechanical en-
ergy to be constant, as was shown in Chapter 8. We can use Equation 13.7 to ex-

13.3



13.3 Energy of the Simple Harmonic Oscillator 399

press the kinetic energy as

(13.20)

The elastic potential energy stored in the spring for any elongation x is given
by (see Eq. 8.4). Using Equation 13.3, we obtain

(13.21)

We see that K and U are always positive quantities. Because we can ex-
press the total mechanical energy of the simple harmonic oscillator as

From the identity sin2 we see that the quantity in square brackets is
unity. Therefore, this equation reduces to

(13.22)

That is, the total mechanical energy of a simple harmonic oscillator is a con-
stant of the motion and is proportional to the square of the amplitude. Note
that U is small when K is large, and vice versa, because the sum must be constant.
In fact, the total mechanical energy is equal to the maximum potential energy
stored in the spring when because at these points and thus there is
no kinetic energy. At the equilibrium position, where because the to-
tal energy, all in the form of kinetic energy, is again That is,

(at 

Plots of the kinetic and potential energies versus time appear in Figure 13.9a,
where we have taken � � 0. As already mentioned, both K and U are always posi-
tive, and at all times their sum is a constant equal to the total energy of the
system. The variations of K and U with the displacement x of the block are plotted

1
2 kA2,

x � 0)E � 1
2 mv2

max � 1
2 m�2A2 � 1

2 m 
k
m

 A2 � 1
2 kA2

1
2 kA2.

x � 0,U � 0
v � 0x � 	A

E � 1
2 kA2

� � cos2 � � 1,

E � K � U � 1
2 kA2[sin2(�t � �) � cos2(�t � �)]

�2 � k/m,

U � 1
2 kx2 � 1

2 kA2 cos2(�t � �)

1
2 kx2

K � 1
2 mv2 � 1

2 m�2A2 sin2(�t � �) Kinetic energy of a simple
harmonic oscillator

Potential energy of a simple
harmonic oscillator

Total energy of a simple harmonic
oscillator

K , U

1
2 kA2

U

K

U =    kx2

K =    mv2

1
2
1
2

φ = 0

(a)

T
t

T
2

K , U

(b)

A
x

–A O

φ

Figure 13.9 (a) Kinetic energy and potential energy versus time for a simple harmonic oscilla-
tor with � � 0. (b) Kinetic energy and potential energy versus displacement for a simple har-
monic oscillator. In either plot, note that constant.K � U �
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in Figure 13.9b. Energy is continuously being transformed between potential en-
ergy stored in the spring and kinetic energy of the block.

Figure 13.10 illustrates the position, velocity, acceleration, kinetic energy, and
potential energy of the block–spring system for one full period of the motion.
Most of the ideas discussed so far are incorporated in this important figure. Study
it carefully.

Finally, we can use the principle of conservation of energy to obtain the veloc-
ity for an arbitrary displacement by expressing the total energy at some arbitrary
position x as

(13.23)

When we check Equation 13.23 to see whether it agrees with known cases, we find
that it substantiates the fact that the speed is a maximum at and is zero at
the turning points x � 	A.

x � 0

 v � 	√ k
m

 (A2 � x2) � 	�√A2 � x2

E � K � U � 1
2 mv2 � 1

2 kx2 � 1
2 kA2 

Velocity as a function of position
for a simple harmonic oscillator

–A 0 A
x

amax

vmax

amax

vmax

amax

t x v a K U

0 A 0 –ω2A 0

T/4 0 –ωA 0 0

T/2 –A 0 ω2A 0

3T/4 0 ωA 0 0

T A 0 –ω2A 0
1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

θmaxθ

θmaxθ

θmaxθ

ω

ω

ω

ω

ω

Figure 13.10 Simple harmonic motion for a block–spring system and its relationship to the
motion of a simple pendulum. The parameters in the table refer to the block–spring system, as-
suming that at thus, cos �t (see Special Case 1).x � At � 0;x � A
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You may wonder why we are spending so much time studying simple harmonic
oscillators. We do so because they are good models of a wide variety of physical
phenomena. For example, recall the Lennard–Jones potential discussed in Exam-
ple 8.11. This complicated function describes the forces holding atoms together.
Figure 13.11a shows that, for small displacements from the equilibrium position,
the potential energy curve for this function approximates a parabola, which repre-
sents the potential energy function for a simple harmonic oscillator. Thus, we can
approximate the complex atomic binding forces as tiny springs, as depicted in Fig-
ure 13.11b. 

The ideas presented in this chapter apply not only to block–spring systems
and atoms, but also to a wide range of situations that include bungee jumping,
tuning in a television station, and viewing the light emitted by a laser. You will see
more examples of simple harmonic oscillators as you work through this book.

Oscillations on a Horizontal SurfaceEXAMPLE 13.4
(b) What is the velocity of the cube when the displace-

ment is 2.00 cm?

Solution We can apply Equation 13.23 directly:

The positive and negative signs indicate that the cube could
be moving to either the right or the left at this instant.

(c) Compute the kinetic and potential energies of the sys-
tem when the displacement is 2.00 cm.

	0.141 m/s�

  � 	√ 20.0 N/m
0.500 kg

 [(0.030 0 m)2 � (0.020 0 m)2]

v � 	√ k
m

 (A2 � x2) 

A 0.500-kg cube connected to a light spring for which the
force constant is 20.0 N/m oscillates on a horizontal, friction-
less track. (a) Calculate the total energy of the system and the
maximum speed of the cube if the amplitude of the motion is 
3.00 cm.

Solution Using Equation 13.22, we obtain

When the cube is at we know that and
therefore,

0.190 m/s vmax � √ 18.0 � 10�3 J
0.500 kg

�

1
2 mv2

max � 9.00 � 10�3 J 

E � 1
2 mv2

max ;
U � 0x � 0,

9.00 � 10�3 J�

E � K � U � 1
2 kA2 � 1

2 (20.0 N/m) (3.00 � 10�2 m)2

U

r

Figure 13.11 (a) If the atoms in a molecule do not move too far from their equilibrium posi-
tions, a graph of potential energy versus separation distance between atoms is similar to the
graph of potential energy versus position for a simple harmonic oscillator. (b) Tiny springs ap-
proximate the forces holding atoms together.
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THE PENDULUM
The simple pendulum is another mechanical system that exhibits periodic mo-
tion. It consists of a particle-like bob of mass m suspended by a light string of
length L that is fixed at the upper end, as shown in Figure 13.12. The motion oc-
curs in the vertical plane and is driven by the force of gravity. We shall show that,
provided the angle � is small (less than about 10°), the motion is that of a simple
harmonic oscillator.

The forces acting on the bob are the force T exerted by the string and the
gravitational force mg. The tangential component of the gravitational force, 
mg sin �, always acts toward � � 0, opposite the displacement. Therefore, the tan-
gential force is a restoring force, and we can apply Newton’s second law for mo-
tion in the tangential direction:

where s is the bob’s displacement measured along the arc and the minus sign indi-
cates that the tangential force acts toward the equilibrium (vertical) position. Be-
cause (Eq. 10.1a) and L is constant, this equation reduces to

The right side is proportional to sin � rather than to �; hence, with sin �
present, we would not expect simple harmonic motion because this expression is
not of the form of Equation 13.17. However, if we assume that � is small, we can
use the approximation sin � � �; thus the equation of motion for the simple pen-

d 2�

dt2 � �
g
L

 sin �

s � L�

�Ft � �mg sin � � m 
d 2s
dt2

13.4

8.11 
& 

8.12

Solution Using the result of (b), we find that

4.00 � 10�3 JU � 1
2 kx2 � 1

2 (20.0 N/m)(0.020 0 m)2 �

5.00 � 10�3 JK � 1
2 mv2 � 1

2 (0.500 kg)(0.141 m/s)2 �

Note that 

Exercise For what values of x is the speed of the cube 
0.100 m/s?

Answer 	 2.55 cm.

K � U � E.

θ

TL

s

m g sin

m

m g cos

m g

θ
θ

θ

Figure 13.12 When � is small, a
simple pendulum oscillates in sim-
ple harmonic motion about the
equilibrium position � � 0. The
restoring force is mg sin �, the com-
ponent of the gravitational force
tangent to the arc.

The motion of a simple pendulum, captured
with multiflash photography. Is the oscillating
motion simple harmonic in this case? 
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dulum becomes

(13.24)

Now we have an expression of the same form as Equation 13.17, and we conclude
that the motion for small amplitudes of oscillation is simple harmonic motion.
Therefore, � can be written as � � �max cos where �max is the maximum
angular displacement and the angular frequency � is

(13.25)� � √ g
L

(�t � �),

d 2�

dt2 � �
g
L

 �

Angular frequency of motion for a
simple pendulum

The Foucault pendulum at the Franklin Institute in Philadelphia. This type of pendulum was first
used by the French physicist Jean Foucault to verify the Earth’s rotation experimentally. As the
pendulum swings, the vertical plane in which it oscillates appears to rotate as the bob successively
knocks over the indicators arranged in a circle on the floor. In reality, the plane of oscillation is
fixed in space, and the Earth rotating beneath the swinging pendulum moves the indicators into
position to be knocked down, one after the other.

Equation of motion for a simple
pendulum (small �)
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The period of the motion is

(13.26)

In other words, the period and frequency of a simple pendulum depend only
on the length of the string and the acceleration due to gravity. Because the
period is independent of the mass, we conclude that all simple pendulums that are
of equal length and are at the same location (so that g is constant) oscillate with
the same period. The analogy between the motion of a simple pendulum and that
of a block–spring system is illustrated in Figure 13.10.

The simple pendulum can be used as a timekeeper because its period depends
only on its length and the local value of g. It is also a convenient device for making
precise measurements of the free-fall acceleration. Such measurements are impor-
tant because variations in local values of g can provide information on the location
of oil and of other valuable underground resources.

A block of mass m is first allowed to hang from a spring in static equilibrium. It stretches the
spring a distance L beyond the spring’s unstressed length. The block and spring are then
set into oscillation. Is the period of this system less than, equal to, or greater than the pe-
riod of a simple pendulum having a length L and a bob mass m?

Quick Quiz 13.5

T �
2�

�
� 2� √ L

g

QuickLab
Firmly hold a ruler so that about half
of it is over the edge of your desk.
With your other hand, pull down and
then release the free end, watching
how it vibrates. Now slide the ruler so
that only about a quarter of it is free
to vibrate. This time when you release
it, how does the vibrational period
compare with its earlier value? Why?

A Connection Between Length and TimeEXAMPLE 13.5
Thus, the meter’s length would be slightly less than one-
fourth its current length. Note that the number of significant
digits depends only on how precisely we know g because the
time has been defined to be exactly 1 s.

Christian Huygens (1629–1695), the greatest clockmaker in
history, suggested that an international unit of length could
be defined as the length of a simple pendulum having a pe-
riod of exactly 1 s. How much shorter would our length unit
be had his suggestion been followed?

Solution Solving Equation 13.26 for the length gives

0.248 mL �
T 2g
4�2 �

(1 s)2(9.80 m/s2)
4�2 �

Physical Pendulum

Suppose you balance a wire coat hanger so that the hook is supported by your ex-
tended index finger. When you give the hanger a small displacement (with your
other hand) and then release it, it oscillates. If a hanging object oscillates about a
fixed axis that does not pass through its center of mass and the object cannot be
approximated as a point mass, we cannot treat the system as a simple pendulum.
In this case the system is called a physical pendulum.

Consider a rigid body pivoted at a point O that is a distance d from the center
of mass (Fig. 13.13). The force of gravity provides a torque about an axis through
O, and the magnitude of that torque is mgd sin �, where � is as shown in Figure
13.13. Using the law of motion � where I is the moment of inertia about� � I�,

Period of motion for a simple
pendulum
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the axis through O, we obtain

The minus sign indicates that the torque about O tends to decrease �. That is, the
force of gravity produces a restoring torque. Because this equation gives us the
angular acceleration d 2�/dt2 of the pivoted body, we can consider it the equation
of motion for the system. If we again assume that � is small, the approximation 
sin � � � is valid, and the equation of motion reduces to

(13.27)

Because this equation is of the same form as Equation 13.17, the motion is simple
harmonic motion. That is, the solution of Equation 13.27 is � � �max cos(�t � �),
where �max is the maximum angular displacement and

The period is

(13.28)

One can use this result to measure the moment of inertia of a flat rigid body. If
the location of the center of mass—and hence the value of d —are known, the mo-
ment of inertia can be obtained by measuring the period. Finally, note that Equation
13.28 reduces to the period of a simple pendulum (Eq. 13.26) when I � md 2—that
is, when all the mass is concentrated at the center of mass.

T �
2�

�
� 2� √ I

mgd

� � √ mgd
I

d 2�

dt2 � �� mgd
I � � � ��2�

�mgd sin � � I 
d 2�

dt2

Period of motion for a physical
pendulum

Pivot O

θ
d

d sin θ
CM

m g

Figure 13.13 A physical pendu-
lum.

A Swinging RodEXAMPLE 13.6
Exercise Calculate the period of a meter stick that is piv-
oted about one end and is oscillating in a vertical plane.

Answer 1.64 s.

A uniform rod of mass M and length L is pivoted about one
end and oscillates in a vertical plane (Fig. 13.14). Find the
period of oscillation if the amplitude of the motion is small.

Solution In Chapter 10 we found that the moment of in-
ertia of a uniform rod about an axis through one end is

The distance d from the pivot to the center of mass is
L/2. Substituting these quantities into Equation 13.28 gives

Comment In one of the Moon landings, an astronaut walk-
ing on the Moon’s surface had a belt hanging from his space
suit, and the belt oscillated as a physical pendulum. A scien-
tist on the Earth observed this motion on television and used
it to estimate the free-fall acceleration on the Moon. How did
the scientist make this calculation?

2� √ 2L
3g

T � 2� √
1
3 ML2

Mg 
L
2

�

1
3ML2.

Pivot

O

L

CM

Mg

Figure 13.14 A rigid rod oscillating about a pivot through one end
is a physical pendulum with and, from Table 10.2, I � 1

3 ML2.d � L/2
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Torsional Pendulum

Figure 13.15 shows a rigid body suspended by a wire attached at the top to a fixed
support. When the body is twisted through some small angle �, the twisted wire ex-
erts on the body a restoring torque that is proportional to the angular displace-
ment. That is,

where � (kappa) is called the torsion constant of the support wire. The value of �
can be obtained by applying a known torque to twist the wire through a measur-
able angle �. Applying Newton’s second law for rotational motion, we find

(13.29)

Again, this is the equation of motion for a simple harmonic oscillator, with 
and a period

(13.30)

This system is called a torsional pendulum. There is no small-angle restriction in this
situation as long as the elastic limit of the wire is not exceeded. Figure 13.16 shows
the balance wheel of a watch oscillating as a torsional pendulum, energized by the
mainspring.

COMPARING SIMPLE HARMONIC MOTION WITH
UNIFORM CIRCULAR MOTION

We can better understand and visualize many aspects of simple harmonic motion
by studying its relationship to uniform circular motion. Figure 13.17 is an over-
head view of an experimental arrangement that shows this relationship. A ball is
attached to the rim of a turntable of radius A, which is illuminated from the side
by a lamp. The ball casts a shadow on a screen. We find that as the turntable ro-
tates with constant angular speed, the shadow of the ball moves back and forth in
simple harmonic motion.

13.5

T � 2� √ I
�

� � √�/I

d 2�

dt2 � �
�

I
 � 

 � � ��� � I 
d 2�

dt2

� � ���

8.8

Period of motion for a torsional
pendulum

O

P
maxθ

Figure 13.15 A torsional pendu-
lum consists of a rigid body sus-
pended by a wire attached to a
rigid support. The body oscillates
about the line OP with an ampli-
tude �max .

Balance wheel

Figure 13.16 The balance wheel of this antique pocket watch is a torsional pendulum and reg-
ulates the time-keeping mechanism.
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Consider a particle located at point P on the circumference of a circle of ra-
dius A, as shown in Figure 13.18a, with the line OP making an angle � with the x
axis at . We call this circle a reference circle for comparing simple harmonic mo-
tion and uniform circular motion, and we take the position of P at as our ref-
erence position. If the particle moves along the circle with constant angular speed
� until OP makes an angle � with the x axis, as illustrated in Figure 13.18b, then at
some time t � 0, the angle between OP and the x axis is � � �t � �. As the parti-
cle moves along the circle, the projection of P on the x axis, labeled point Q ,
moves back and forth along the x axis, between the limits 

Note that points P and Q always have the same x coordinate. From the right
triangle OPQ , we see that this x coordinate is

(13.31)

This expression shows that the point Q moves with simple harmonic motion along
the x axis. Therefore, we conclude that

x � A cos(�t � �)

x � 	A.

t � 0
t � 0

simple harmonic motion along a straight line can be represented by the projec-
tion of uniform circular motion along a diameter of a reference circle.

We can make a similar argument by noting from Figure 13.18b that the projec-
tion of P along the y axis also exhibits simple harmonic motion. Therefore, uni-
form circular motion can be considered a combination of two simple har-
monic motions, one along the x axis and one along the y axis, with the two
differing in phase by 90°.

This geometric interpretation shows that the time for one complete revolution
of the point P on the reference circle is equal to the period of motion T for simple
harmonic motion between That is, the angular speed � of P is the same
as the angular frequency � of simple harmonic motion along the x axis (this is why
we use the same symbol). The phase constant � for simple harmonic motion cor-
responds to the initial angle that OP makes with the x axis. The radius A of the ref-
erence circle equals the amplitude of the simple harmonic motion.

x � 	A.
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Figure 13.17 An experimental
setup for demonstrating the con-
nection between simple harmonic
motion and uniform circular mo-
tion. As the ball rotates on the
turntable with constant angular
speed, its shadow on the screen
moves back and forth in simple
harmonic motion.

Figure 13.18 Relationship between the uniform circular motion of a point P and the simple
harmonic motion of a point Q. A particle at P moves in a circle of radius A with constant angular
speed �. (a) A reference circle showing the position of P at . (b) The x coordinates of
points P and Q are equal and vary in time as cos(�t � �). (c) The x component of the ve-
locity of P equals the velocity of Q . (d) The x component of the acceleration of P equals the ac-
celeration of Q .

x � A
t � 0
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Because the relationship between linear and angular speed for circular mo-
tion is (see Eq. 10.10), the particle moving on the reference circle of radius
A has a velocity of magnitude �A. From the geometry in Figure 13.18c, we see that
the x component of this velocity is � �A sin(�t � �). By definition, the point Q
has a velocity given by dx/dt. Differentiating Equation 13.31 with respect to time,
we find that the velocity of Q is the same as the x component of the velocity of P.

The acceleration of P on the reference circle is directed radially inward toward
O and has a magnitude From the geometry in Figure 13.18d, we see
that the x component of this acceleration is This value is also
the acceleration of the projected point Q along the x axis, as you can verify by tak-
ing the second derivative of Equation 13.31.

cos(�t � �).��2A
v2/A � �2A.

v � r�

Circular Motion with Constant Angular SpeedEXAMPLE 13.7

Note that � in the cosine function must be in radians.
(b) Find the x components of the particle’s velocity and

acceleration at any time t.

Solution

From these results, we conclude that vmax � 24.0 m/s and
that amax � 192 m/s2. Note that these values also equal the
tangential speed �A and the centripetal acceleration �2A.

�(192 m/s2) cos(8.00t � 0.841) �

ax �
dvx

dt
� (�24.0 m/s)(8.00 rad/s) cos(8.00t � 0.841)

�(24.0 m/s) sin(8.00t � 0.841) �

vx �
dx
dt

� (�3.00 m)(8.00 rad/s) sin(8.00t � 0.841) 

(3.00 m) cos (8.00t � 0.841)x �
A particle rotates counterclockwise in a circle of radius 
3.00 m with a constant angular speed of 8.00 rad/s. At ,
the particle has an x coordinate of 2.00 m and is moving to
the right. (a) Determine the x coordinate as a function of
time.

Solution Because the amplitude of the particle’s motion
equals the radius of the circle and � � 8.00 rad/s, we have

We can evaluate � by using the initial condition that 
2.00 m at 

If we were to take our answer as � � 48.2°, then the coordi-
nate x � (3.00 m) cos (8.00t � 48.2°) would be decreasing at
time t � 0 (that is, moving to the left). Because our particle is
first moving to the right, we must choose � � �48.2° �
�0.841 rad. The x coordinate as a function of time is then

 � � cos�1 � 2.00 m
3.00 m �

2.00 m � (3.00 m) cos(0 � �) 

t � 0:
x �

x � A cos(�t � �) � (3.00 m) cos(8.00t � �)

t � 0

Optional Section

DAMPED OSCILLATIONS
The oscillatory motions we have considered so far have been for ideal systems—
that is, systems that oscillate indefinitely under the action of a linear restoring
force. In many real systems, dissipative forces, such as friction, retard the motion.
Consequently, the mechanical energy of the system diminishes in time, and the
motion is said to be damped.

One common type of retarding force is the one discussed in Section 6.4,
where the force is proportional to the speed of the moving object and acts in the
direction opposite the motion. This retarding force is often observed when an ob-
ject moves through air, for instance. Because the retarding force can be expressed
as R � � bv (where b is a constant called the damping coefficient) and the restoring

13.6
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force of the system is � kx, we can write Newton’s second law as

(13.32)

The solution of this equation requires mathematics that may not be familiar to you
yet; we simply state it here without proof. When the retarding force is small com-
pared with the maximum restoring force—that is, when b is small—the solution
to Equation 13.32 is

(13.33)

where the angular frequency of oscillation is

(13.34)

This result can be verified by substituting Equation 13.33 into Equation 13.32.
Figure 13.19a shows the displacement as a function of time for an object oscil-

lating in the presence of a retarding force, and Figure 13.19b depicts one such sys-
tem: a block attached to a spring and submersed in a viscous liquid. We see that
when the retarding force is much smaller than the restoring force, the oscil-
latory character of the motion is preserved but the amplitude decreases in
time, with the result that the motion ultimately ceases. Any system that be-
haves in this way is known as a damped oscillator. The dashed blue lines in Fig-
ure 13.19a, which define the envelope of the oscillatory curve, represent the expo-
nential factor in Equation 13.33. This envelope shows that the amplitude decays
exponentially with time. For motion with a given spring constant and block
mass, the oscillations dampen more rapidly as the maximum value of the retarding
force approaches the maximum value of the restoring force.

It is convenient to express the angular frequency of a damped oscillator in the
form

where represents the angular frequency in the absence of a retarding
force (the undamped oscillator) and is called the natural frequency of the sys-
tem. When the magnitude of the maximum retarding force 
the system is said to be underdamped. As the value of R approaches kA, the am-
plitudes of the oscillations decrease more and more rapidly. This motion is repre-
sented by the blue curve in Figure 13.20. When b reaches a critical value bc such
that bc/2m � �0 , the system does not oscillate and is said to be critically damped.
In this case the system, once released from rest at some nonequilibrium position,
returns to equilibrium and then stays there. The graph of displacement versus
time for this case is the red curve in Figure 13.20.

If the medium is so viscous that the retarding force is greater than the restor-
ing force—that is, if and —the system is over-
damped. Again, the displaced system, when free to move, does not oscillate but
simply returns to its equilibrium position. As the damping increases, the time it
takes the system to approach equilibrium also increases, as indicated by the black
curve in Figure 13.20.

In any case in which friction is present, whether the system is overdamped or
underdamped, the energy of the oscillator eventually falls to zero. The lost me-
chanical energy dissipates into internal energy in the retarding medium.

b/2m � �0R max � bvmax � kA

R max � bvmax � kA,

�0 � √k/m

� � √�0 

2 � � b
2m �

2

� � √ k
m

� � b
2m �

2

x � Ae� b
2mt cos(�t � �)

�kx � b 
dx
dt

� m 
d 2x
dt2  

 �Fx � �kx � bv � max A

x

0 t

A e

(a)

(b)

m

b
2m

– t

Figure 13.19 (a) Graph of dis-
placement versus time for a
damped oscillator. Note the de-
crease in amplitude with time. 
(b) One example of a damped os-
cillator is a mass attached to a
spring and submersed in a viscous
liquid.

x

a
b

c

t

Figure 13.20 Graphs of dis-
placement versus time for (a) an
underdamped oscillator, (b) a criti-
cally damped oscillator, and (c) an
overdamped oscillator.
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An automotive suspension system consists of a combination of springs and shock absorbers,
as shown in Figure 13.21. If you were an automotive engineer, would you design a suspen-
sion system that was underdamped, critically damped, or overdamped? Discuss each case.

Optional Section

FORCED OSCILLATIONS
It is possible to compensate for energy loss in a damped system by applying an ex-
ternal force that does positive work on the system. At any instant, energy can be
put into the system by an applied force that acts in the direction of motion of the
oscillator. For example, a child on a swing can be kept in motion by appropriately
timed pushes. The amplitude of motion remains constant if the energy input per
cycle exactly equals the energy lost as a result of damping. Any motion of this type
is called forced oscillation.

A common example of a forced oscillator is a damped oscillator driven by an
external force that varies periodically, such as where � is the angu-
lar frequency of the periodic force and Fext is a constant. Adding this driving force
to the left side of Equation 13.32 gives

(13.35)

(As earlier, we present the solution of this equation without proof.) After a suffi-
ciently long period of time, when the energy input per cycle equals the energy lost
per cycle, a steady-state condition is reached in which the oscillations proceed with
constant amplitude. At this time, when the system is in a steady state, the solution
of Equation 13.35 is

(13.36)x � A cos(�t � �)

Fext cos �t � kx � b 
dx
dt

� m 
d 2x
dt2

F � Fext  cos �t,

13.7

Quick Quiz 13.6

Oil or
other viscous
fluid

Piston
with holes

(a)

Shock absorber
Coil spring

(b)

Figure 13.21 (a) A shock absorber consists of a piston oscillating in a chamber filled with oil.
As the piston oscillates, the oil is squeezed through holes between the piston and the chamber,
causing a damping of the piston’s oscillations. (b) One type of automotive suspension system, in
which a shock absorber is placed inside a coil spring at each wheel.

web
To learn more about shock
absorbers, visit
http://www.hdridecontrol.com
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where

(13.37)

and where is the angular frequency of the undamped oscillator 
One could argue that in steady state the oscillator must physically have the same fre-
quency as the driving force, and thus the solution given by Equation 13.36 is ex-
pected. In fact, when this solution is substituted into Equation 13.35, one finds that
it is indeed a solution, provided the amplitude is given by Equation 13.37.

Equation 13.37 shows that, because an external force is driving it, the motion
of the forced oscillator is not damped. The external agent provides the necessary
energy to overcome the losses due to the retarding force. Note that the system os-
cillates at the angular frequency � of the driving force. For small damping, the am-
plitude becomes very large when the frequency of the driving force is near the nat-
ural frequency of oscillation. The dramatic increase in amplitude near the natural
frequency �0 is called resonance, and for this reason �0 is sometimes called the
resonance frequency of the system.

The reason for large-amplitude oscillations at the resonance frequency is that
energy is being transferred to the system under the most favorable conditions. We
can better understand this by taking the first time derivative of x in Equation
13.36, which gives an expression for the velocity of the oscillator. We find that v is
proportional to sin When the applied force F is in phase with the veloc-
ity, the rate at which work is done on the oscillator by F equals the dot product
F � v. Remember that “rate at which work is done” is the definition of power. Be-
cause the product F � v is a maximum when F and v are in phase, we conclude that
at resonance the applied force is in phase with the velocity and that the
power transferred to the oscillator is a maximum.

Figure 13.22 is a graph of amplitude as a function of frequency for a forced os-
cillator with and without damping. Note that the amplitude increases with decreas-
ing damping (b : 0) and that the resonance curve broadens as the damping in-
creases. Under steady-state conditions and at any driving frequency, the energy
transferred into the system equals the energy lost because of the damping force;
hence, the average total energy of the oscillator remains constant. In the absence
of a damping force (b � 0), we see from Equation 13.37 that the steady-state am-
plitude approaches infinity as � : �0 . In other words, if there are no losses in the
system and if we continue to drive an initially motionless oscillator with a periodic
force that is in phase with the velocity, the amplitude of motion builds without
limit (see the red curve in Fig. 13.22). This limitless building does not occur in
practice because some damping is always present.

The behavior of a driven oscillating system after the driving force is removed
depends on b and on how close � was to �0 . This behavior is sometimes quantified
by a parameter called the quality factor Q. The closer a system is to being un-
damped, the greater its Q. The amplitude of oscillation drops by a factor of 
e . . . ) in Q/� cycles.

Later in this book we shall see that resonance appears in other areas of physics.
For example, certain electrical circuits have natural frequencies. A bridge has nat-
ural frequencies that can be set into resonance by an appropriate driving force. A
dramatic example of such resonance occurred in 1940, when the Tacoma Narrows
Bridge in the state of Washington was destroyed by resonant vibrations. Although
the winds were not particularly strong on that occasion, the bridge ultimately col-
lapsed (Fig. 13.23) because the bridge design had no built-in safety features.

(�2.718

(�t � �).

(b � 0).�0 � √k/m

A �
Fext/m

√(�2 � �0 

2)2 � � b�

m �
2

A
b = 0
Undamped

Small b

Large b

ω00
ω

ω

Figure 13.22 Graph of ampli-
tude versus frequency for a
damped oscillator when a periodic
driving force is present. When the
frequency of the driving force
equals the natural frequency �0 ,
resonance occurs. Note that the
shape of the resonance curve de-
pends on the size of the damping
coefficient b.

QuickLab
Tie several objects to strings and sus-
pend them from a horizontal string,
as illustrated in the figure. Make two
of the hanging strings approximately
the same length. If one of this pair,
such as P, is set into sideways motion,
all the others begin to oscillate. But
Q , whose length is the same as that of
P, oscillates with the greatest ampli-
tude. Must all the masses have the
same value?

Q

P
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Many other examples of resonant vibrations can be cited. A resonant vibration
that you may have experienced is the “singing” of telephone wires in the wind. Ma-
chines often break if one vibrating part is at resonance with some other moving
part. Soldiers marching in cadence across a bridge have been known to set up res-
onant vibrations in the structure and thereby cause it to collapse. Whenever any
real physical system is driven near its resonance frequency, you can expect oscilla-
tions of very large amplitudes.

SUMMARY

When the acceleration of an object is proportional to its displacement from some
equilibrium position and is in the direction opposite the displacement, the object
moves with simple harmonic motion. The position x of a simple harmonic oscilla-
tor varies periodically in time according to the expression

(13.3)

where A is the amplitude of the motion, � is the angular frequency, and � is the
phase constant. The value of � depends on the initial position and initial velocity
of the oscillator. You should be able to use this formula to describe the motion of
an object undergoing simple harmonic motion.

The time T needed for one complete oscillation is defined as the period of
the motion:

(13.4)

The inverse of the period is the frequency of the motion, which equals the num-
ber of oscillations per second.

The velocity and acceleration of a simple harmonic oscillator are

(13.7)

(13.8)

(13.23)v � 	�√A2 � x2

a �
dv
dt

� ��2A cos(�t � �)

v �
dx
dt

� ��A sin(�t � �) 

T �
2�

�

x � A cos(�t � �)

Figure 13.23 (a) In 1940 turbulent winds set up torsional vibrations in the Tacoma Narrows
Bridge, causing it to oscillate at a frequency near one of the natural frequencies of the bridge
structure. (b) Once established, this resonance condition led to the bridge’s collapse.

(a) (b)
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Thus, the maximum speed is �A, and the maximum acceleration is �2A. The speed
is zero when the oscillator is at its turning points, and is a maximum when
the oscillator is at the equilibrium position The magnitude of the accelera-
tion is a maximum at the turning points and zero at the equilibrium position. You
should be able to find the velocity and acceleration of an oscillating object at any
time if you know the amplitude, angular frequency, and phase constant.

A block–spring system moves in simple harmonic motion on a frictionless sur-
face, with a period

(13.18)

The kinetic energy and potential energy for a simple harmonic oscillator vary with
time and are given by

(13.20)

(13.21)

These three formulas allow you to analyze a wide variety of situations involving os-
cillations. Be sure you recognize how the mass of the block and the spring con-
stant of the spring enter into the calculations.

The total energy of a simple harmonic oscillator is a constant of the motion
and is given by

(13.22)

The potential energy of the oscillator is a maximum when the oscillator is at its
turning points and is zero when the oscillator is at the equilibrium position. The
kinetic energy is zero at the turning points and a maximum at the equilibrium po-
sition. You should be able to determine the division of energy between potential
and kinetic forms at any time t .

A simple pendulum of length L moves in simple harmonic motion. For small
angular displacements from the vertical, its period is

(13.26)

For small angular displacements from the vertical, a physical pendulum
moves in simple harmonic motion about a pivot that does not go through the cen-
ter of mass.  The period of this motion is

(13.28)

where I is the moment of inertia about an axis through the pivot and d is the dis-
tance from the pivot to the center of mass. You should be able to distinguish when
to use the simple-pendulum formula and when the system must be considered a
physical pendulum.

Uniform circular motion can be considered a combination of two simple har-
monic motions, one along the x axis and the other along the y axis, with the two
differing in phase by 90°.

T � 2� √ I
mgd

T � 2� √ L
g

E � 1
2 kA2

U � 1
2 kx2 � 1

2 kA2 cos2(�t � �)

K � 1
2 mv2 � 1

2 m�2A2 sin2(�t � �)

T �
2�

�
� 2� √ m

k

x � 0.
x � 	A,

QUESTIONS

2. If the coordinate of a particle varies as cos �t,
what is the phase constant in Equation 13.3? At what posi-
tion does the particle begin its motion?

x � �A1. Is a bouncing ball an example of simple harmonic motion?
Is the daily movement of a student from home to school
and back simple harmonic motion? Why or why not?
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PROBLEMS

find (a) the displacement of the particle, (b) its velocity,
and (c) its acceleration. (d) Find the period and ampli-
tude of the motion.

5. A particle moving along the x axis in simple harmonic
motion starts from its equilibrium position, the origin,
at and moves to the right. The amplitude of its
motion is 2.00 cm, and the frequency is 1.50 Hz. 
(a) Show that the displacement of the particle is given
by Determine (b) the maxi-
mum speed and the earliest time (t � 0) at which the
particle has this speed, (c) the maximum acceleration
and the earliest time (t � 0) at which the particle has
this acceleration, and (d) the total distance traveled be-
tween and s.

6. The initial position and initial velocity of an object mov-
ing in simple harmonic motion are xi and vi ; the angular
frequency of oscillation is �. (a) Show that the position
and velocity of the object for all time can be written as

(b) If the amplitude of the motion is A, show that

v2 � ax � vi 

2 � aix i � �2A2

v(t) � �x i� sin �t � vi cos �t

x(t) � x i cos �t � � vi

� � sin �t

t � 1.00t � 0

x � (2.00 cm) sin(3.00�t).

t � 0

Section 13.1 Simple Harmonic Motion
1. The displacement of a particle at s is given by

the expression where x
is in meters and t is in seconds. Determine (a) the fre-
quency and period of the motion, (b) the amplitude of
the motion, (c) the phase constant, and (d) the dis-
placement of the particle at s.

2. A ball dropped from a height of 4.00 m makes a per-
fectly elastic collision with the ground. Assuming that
no energy is lost due to air resistance, (a) show that the
motion is periodic and (b) determine the period of the
motion. (c) Is the motion simple harmonic? Explain.

3. A particle moves in simple harmonic motion with a fre-
quency of 3.00 oscillations/s and an amplitude of 
5.00 cm. (a) Through what total distance does the parti-
cle move during one cycle of its motion? (b) What is its
maximum speed? Where does this occur? (c) Find the
maximum acceleration of the particle. Where in the
motion does the maximum acceleration occur?

4. In an engine, a piston oscillates with simple harmonic
motion so that its displacement varies according to the
expression

where x is in centimeters and t is in seconds. At ,t � 0

x � (5.00 cm) cos(2t � �/6)

t � 0.250

x � (4.00 m) cos(3.00�t � �),
t � 0.250

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

3. Does the displacement of an oscillating particle between
and a later time t necessarily equal the position of

the particle at time t? Explain.
4. Determine whether the following quantities can be in the

same direction for a simple harmonic oscillator: (a) dis-
placement and velocity, (b) velocity and acceleration, 
(c) displacement and acceleration.

5. Can the amplitude A and the phase constant � be deter-
mined for an oscillator if only the position is specified at

? Explain.
6. Describe qualitatively the motion of a mass–spring system

when the mass of the spring is not neglected.
7. Make a graph showing the potential energy of a station-

ary block hanging from a spring, Why is
the lowest part of the graph offset from the origin?

8. A block–spring system undergoes simple harmonic motion
with an amplitude A. Does the total energy change if the
mass is doubled but the amplitude is not changed? Do the
kinetic and potential energies depend on the mass? Explain.

9. What happens to the period of a simple pendulum if the
pendulum’s length is doubled? What happens to the pe-
riod if the mass of the suspended bob is doubled?

10. A simple pendulum is suspended from the ceiling of a sta-
tionary elevator, and the period is determined. Describe
the changes, if any, in the period when the elevator 

U � 1
2 ky2 � mgy.

t � 0

t � 0
(a) accelerates upward, (b) accelerates downward, and
(c) moves with constant velocity.

11. A simple pendulum undergoes simple harmonic motion
when � is small. Is the motion periodic when � is large?
How does the period of motion change as � increases?

12. Will damped oscillations occur for any values of b and k?
Explain.

13. As it possible to have damped oscillations when a system
is at resonance? Explain.

14. At resonance, what does the phase constant � equal in
Equation 13.36? (Hint: Compare this equation with the
expression for the driving force, which must be in phase
with the velocity at resonance.)

15. Some parachutes have holes in them to allow air to move
smoothly through them. Without such holes, sometimes
the air that has gathered beneath the chute as a para-
chutist falls is released from under its edges alternately
and periodically, at one side and then at the other. Why
might this periodic release of air cause a problem?

16. If a grandfather clock were running slowly, how could we
adjust the length of the pendulum to correct the time?

17. A pendulum bob is made from a sphere filled with water.
What would happen to the frequency of vibration of this
pendulum if the sphere had a hole in it that allowed the
water to leak out slowly?
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Section 13.2 The Block – Spring System Revisited
Note: Neglect the mass of the spring in all problems in this
section.

7. A spring stretches by 3.90 cm when a 10.0-g mass is
hung from it. If a 25.0-g mass attached to this spring os-
cillates in simple harmonic motion, calculate the period
of the motion.

8. A simple harmonic oscillator takes 12.0 s to undergo
five complete vibrations. Find (a) the period of its mo-
tion, (b) the frequency in hertz, and (c) the angular
frequency in radians per second.

9. A 0.500-kg mass attached to a spring with a force con-
stant of 8.00 N/m vibrates in simple harmonic motion
with an amplitude of 10.0 cm. Calculate (a) the maxi-
mum value of its speed and acceleration, (b) the speed
and acceleration when the mass is 6.00 cm from the
equilibrium position, and (c) the time it takes the mass
to move from to cm.

10. A 1.00-kg mass attached to a spring with a force con-
stant of 25.0 N/m oscillates on a horizontal, frictionless
track. At , the mass is released from rest at

cm. (That is, the spring is compressed by
3.00 cm.) Find (a) the period of its motion; (b) the
maximum values of its speed and acceleration; and 
(c) the displacement, velocity, and acceleration as func-
tions of time.

11. A 7.00-kg mass is hung from the bottom end of a verti-
cal spring fastened to an overhead beam. The mass is
set into vertical oscillations with a period of 2.60 s. Find
the force constant of the spring.

12. A block of unknown mass is attached to a spring with a
spring constant of 6.50 N/m and undergoes simple har-
monic motion with an amplitude of 10.0 cm. When the
mass is halfway between its equilibrium position and the
end point, its speed is measured to be � 30.0 cm/s. Cal-
culate (a) the mass of the block, (b) the period of the
motion, and (c) the maximum acceleration of the
block.

13. A particle that hangs from a spring oscillates with an an-
gular frequency of 2.00 rad/s. The spring–particle sys-
tem is suspended from the ceiling of an elevator car and
hangs motionless (relative to the elevator car) as the car
descends at a constant speed of 1.50 m/s. The car then
stops suddenly. (a) With what amplitude does the parti-
cle oscillate? (b) What is the equation of motion for the
particle? (Choose upward as the positive direction.)

14. A particle that hangs from a spring oscillates with an an-
gular frequency �. The spring–particle system is sus-
pended from the ceiling of an elevator car and hangs
motionless (relative to the elevator car) as the car de-
scends at a constant speed v. The car then stops sud-
denly. (a) With what amplitude does the particle oscil-
late? (b) What is the equation of motion for the
particle? (Choose upward as the positive direction.)

15. A 1.00-kg mass is attached to a horizontal spring. The
spring is initially stretched by 0.100 m, and the mass is

x � �3.00
t � 0

x � 8.00x � 0

released from rest there. It proceeds to move without
friction. After 0.500 s, the speed of the mass is zero.
What is the maximum speed of the mass?

Section 13.3 Energy of the Simple Harmonic Oscillator
Note: Neglect the mass of the spring in all problems in this
section.

16. A 200-g mass is attached to a spring and undergoes sim-
ple harmonic motion with a period of 0.250 s. If the to-
tal energy of the system is 2.00 J, find (a) the force con-
stant of the spring and (b) the amplitude of the motion.

17. An automobile having a mass of 1 000 kg is driven into
a brick wall in a safety test. The bumper behaves as a
spring of constant 5.00 � 106 N/m and compresses 
3.16 cm as the car is brought to rest. What was the
speed of the car before impact, assuming that no energy
is lost during impact with the wall?

18. A mass–spring system oscillates with an amplitude of
3.50 cm. If the spring constant is 250 N/m and the mass
is 0.500 kg, determine (a) the mechanical energy of the
system, (b) the maximum speed of the mass, and 
(c) the maximum acceleration.

19. A 50.0-g mass connected to a spring with a force con-
stant of 35.0 N/m oscillates on a horizontal, frictionless
surface with an amplitude of 4.00 cm. Find (a) the total
energy of the system and (b) the speed of the mass
when the displacement is 1.00 cm. Find (c) the kinetic
energy and (d) the potential energy when the displace-
ment is 3.00 cm.

20. A 2.00-kg mass is attached to a spring and placed on a
horizontal, smooth surface. A horizontal force of 20.0 N
is required to hold the mass at rest when it is pulled
0.200 m from its equilibrium position (the origin of the
x axis). The mass is now released from rest with an ini-
tial displacement of m, and it subsequently
undergoes simple harmonic oscillations. Find (a) the
force constant of the spring, (b) the frequency of the
oscillations, and (c) the maximum speed of the mass.
Where does this maximum speed occur? (d) Find the
maximum acceleration of the mass. Where does it oc-
cur? (e) Find the total energy of the oscillating system.
Find (f) the speed and (g) the acceleration when the
displacement equals one third of the maximum 
value.

21. A 1.50-kg block at rest on a tabletop is attached to a hor-
izontal spring having force constant of 19.6 N/m. The
spring is initially unstretched. A constant 20.0-N hori-
zontal force is applied to the object, causing the spring
to stretch. (a) Determine the speed of the block after it
has moved 0.300 m from equilibrium, assuming that the
surface between the block and the tabletop is friction-
less. (b) Answer part (a) for a coefficient of kinetic fric-
tion of 0.200 between the block and the tabletop.

22. The amplitude of a system moving in simple harmonic
motion is doubled. Determine the change in (a) the to-
tal energy, (b) the maximum speed, (c) the maximum
acceleration, and (d) the period.

x i � 0.200

WEB
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23. A particle executes simple harmonic motion with an
amplitude of 3.00 cm. At what displacement from the
midpoint of its motion does its speed equal one half of
its maximum speed?

24. A mass on a spring with a constant of 3.24 N/m vi-
brates, with its position given by the equation 

cm) cos(3.60t rad/s). (a) During the first 
cycle, for 0 � t � 1.75 s, when is the potential energy 
of the system changing most rapidly into kinetic energy?
(b) What is the maximum rate of energy transfor-
mation?

Section 13.4 The Pendulum
25. A man enters a tall tower, needing to know its height.

He notes that a long pendulum extends from the ceil-
ing almost to the floor and that its period is 12.0 s. 
(a) How tall is the tower? (b) If this pendulum is taken
to the Moon, where the free-fall acceleration is 
1.67 m/s2, what is its period there?

26. A “seconds” pendulum is one that moves through its
equilibrium position once each second. (The period of
the pendulum is 2.000 s.) The length of a seconds pen-
dulum is 0.992 7 m at Tokyo and 0.994 2 m at Cam-
bridge, England. What is the ratio of the free-fall accel-
erations at these two locations?

27. A rigid steel frame above a street intersection supports
standard traffic lights, each of which is hinged to hang
immediately below the frame. A gust of wind sets a light
swinging in a vertical plane. Find the order of magni-
tude of its period. State the quantities you take as data
and their values.

28. The angular displacement of a pendulum is repre-
sented by the equation � � (0.320 rad)cos �t, where �
is in radians and � � 4.43 rad/s. Determine the period
and length of the pendulum.

29. A simple pendulum has a mass of 0.250 kg and a length
of 1.00 m. It is displaced through an angle of 15.0° and
then released. What are (a) the maximum speed, 
(b) the maximum angular acceleration, and 
(c) the maximum restoring force?

30. A simple pendulum is 5.00 m long. (a) What is the pe-
riod of simple harmonic motion for this pendulum if it
is hanging in an elevator that is accelerating upward at
5.00 m/s2? (b) What is its period if the elevator is accel-
erating downward at 5.00 m/s2? (c) What is the period
of simple harmonic motion for this pendulum if it is
placed in a truck that is accelerating horizontally at 
5.00 m/s2?

31. A particle of mass m slides without friction inside a
hemispherical bowl of radius R . Show that, if it starts
from rest with a small displacement from equilibrium,
the particle moves in simple harmonic motion with an
angular frequency equal to that of a simple pendulum
of length R . That is, 

32. A mass is attached to the end of a string to form a sim-
ple pendulum. The period of its harmonic motion is

� � √g/R .

x � (5.00

measured for small angular displacements and three
lengths; in each case, the motion is clocked with a stop-
watch for 50 oscillations. For lengths of 1.000 m, 
0.750 m, and 0.500 m, total times of 99.8 s, 86.6 s, and
71.1 s, respectively, are measured for the 50 oscillations.
(a) Determine the period of motion for each length.
(b) Determine the mean value of g obtained from these
three independent measurements, and compare it with
the accepted value. (c) Plot T 2 versus L, and obtain a
value for g from the slope of your best-fit straight-line
graph. Compare this value with that obtained in part
(b).

33. A physical pendulum in the form of a planar body
moves in simple harmonic motion with a frequency of
0.450 Hz. If the pendulum has a mass of 2.20 kg and the
pivot is located 0.350 m from the center of mass, deter-
mine the moment of inertia of the pendulum.

34. A very light, rigid rod with a length of 0.500 m extends
straight out from one end of a meter stick. The stick is
suspended from a pivot at the far end of the rod and is
set into oscillation. (a) Determine the period of oscilla-
tion. (b) By what percentage does this differ from a
1.00-m-long simple pendulum?

35. Consider the physical pendulum of Figure 13.13. (a) If
ICM is its moment of inertia about an axis that passes
through its center of mass and is parallel to the axis that
passes through its pivot point, show that its period is

where d is the distance between the pivot point and the
center of mass. (b) Show that the period has a mini-
mum value when d satisfies 

36. A torsional pendulum is formed by attaching a wire to
the center of a meter stick with a mass of 2.00 kg. If the
resulting period is 3.00 min, what is the torsion constant
for the wire?

37. A clock balance wheel has a period of oscillation of
0.250 s. The wheel is constructed so that 20.0 g of mass
is concentrated around a rim of radius 0.500 cm. What
are (a) the wheel’s moment of inertia and (b) the tor-
sion constant of the attached spring?

Section 13.5 Comparing Simple Harmonic 
Motion with Uniform Circular Motion

38. While riding behind a car that is traveling at 3.00 m/s,
you notice that one of the car’s tires has a small hemi-
spherical boss on its rim, as shown in Figure P13.38. 
(a) Explain why the boss, from your viewpoint behind
the car, executes simple harmonic motion. (b) If the 
radius of the car’s tires is 0.300 m, what is the boss’s pe-
riod of oscillation?

39. Consider the simplified single-piston engine shown in
Figure P13.39. If the wheel rotates with constant angu-
lar speed, explain why the piston rod oscillates in sim-
ple harmonic motion.

md 2 � ICM .

T � 2�√ ICM � md 2

mgd

WEB
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riod and (b) the amplitude of the motion. (Hint: As-
sume that there is no damping—that is, that 
b � 0—and use Eq. 13.37.)

45. Considering an undamped, forced oscillator 
show that Equation 13.36 is a solution of Equation
13.35, with an amplitude given by Equation 13.37.

46. A weight of 40.0 N is suspended from a spring that has a
force constant of 200 N/m. The system is undamped
and is subjected to a harmonic force with a frequency of
10.0 Hz, which results in a forced-motion amplitude of
2.00 cm. Determine the maximum value of the force.

47. Damping is negligible for a 0.150-kg mass hanging from
a light 6.30-N/m spring. The system is driven by a force
oscillating with an amplitude of 1.70 N. At what fre-
quency will the force make the mass vibrate with an am-
plitude of 0.440 m?

48. You are a research biologist. Before dining at a fine
restaurant, you set your pager to vibrate instead of
beep, and you place it in the side pocket of your suit
coat. The arm of your chair presses the light cloth
against your body at one spot. Fabric with a length of
8.21 cm hangs freely below that spot, with the pager at
the bottom. A co-worker telephones you. The motion of
the vibrating pager makes the hanging part of your coat
swing back and forth with remarkably large amplitude.
The waiter, maître d’, wine steward, and nearby diners
notice immediately and fall silent. Your daughter pipes
up and says, “Daddy, look! Your cockroaches must have
gotten out again!” Find the frequency at which your
pager vibrates.

ADDITIONAL PROBLEMS

49. A car with bad shock absorbers bounces up and down
with a period of 1.50 s after hitting a bump. The car has
a mass of 1 500 kg and is supported by four springs of
equal force constant k. Determine the value of k.

50. A large passenger with a mass of 150 kg sits in the mid-
dle of the car described in Problem 49. What is the new
period of oscillation?

51. A compact mass M is attached to the end of a uniform
rod, of equal mass M and length L , that is pivoted at the
top (Fig. P13.51). (a) Determine the tensions in the rod

(b � 0),

Piston

A

x = �A x(t )

ω

Boss

Figure P13.38

L

P

y

Pivot

y = 0M

Figure P13.39

(Optional)
Section 13.6 Damped Oscillations

40. Show that the time rate of change of mechanical energy
for a damped, undriven oscillator is given by

and hence is always negative. (Hint: Dif-
ferentiate the expression for the mechanical energy of
an oscillator, and use Eq. 13.32.)

41. A pendulum with a length of 1.00 m is released from an
initial angle of 15.0°. After 1 000 s, its amplitude is re-
duced by friction to 5.50°. What is the value of b/2m ?

42. Show that Equation 13.33 is a solution of Equation
13.32 provided that 

(Optional)
Section 13.7 Forced Oscillations

43. A baby rejoices in the day by crowing and jumping up
and down in her crib. Her mass is 12.5 kg, and the crib
mattress can be modeled as a light spring with a force
constant of 4.30 kN/m. (a) The baby soon learns to
bounce with maximum amplitude and minimum effort
by bending her knees at what frequency? (b) She learns
to use the mattress as a trampoline—losing contact
with it for part of each cycle—when her amplitude ex-
ceeds what value?

44. A 2.00-kg mass attached to a spring is driven by an ex-
ternal force F � (3.00 N) cos(2�t). If the force con-
stant of the spring is 20.0 N/m, determine (a) the pe-

b 2 � 4mk.

E � 1
2 mv2 � 1

2 kx2,

dE/dt � �bv2

Figure P13.51
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at the pivot and at the point P when the system is sta-
tionary. (b) Calculate the period of oscillation for small
displacements from equilibrium, and determine this pe-
riod for L � 2.00 m. (Hint: Assume that the mass at the
end of the rod is a point mass, and use Eq. 13.28.)

52. A mass, m1 � 9.00 kg, is in equilibrium while connected
to a light spring of constant k � 100 N/m that is fas-
tened to a wall, as shown in Figure P13.52a. A second
mass, m2 � 7.00 kg, is slowly pushed up against mass
m1 , compressing the spring by the amount A � 0.200 m
(see Fig. P13.52b). The system is then released, and
both masses start moving to the right on the frictionless
surface. (a) When m1 reaches the equilibrium point, m2
loses contact with m1 (see Fig. P13.52c) and moves to
the right with speed v. Determine the value of v. 
(b) How far apart are the masses when the spring is
fully stretched for the first time (D in Fig. P13.52d)?
(Hint: First determine the period of oscillation and the
amplitude of the m1 – spring system after m2 loses con-
tact with m1 .)

in Figure P13.53, and the coefficient of static friction
between the two is �s � 0.600. What maximum ampli-
tude of oscillation can the system have if block B is not
to slip?

54. A large block P executes horizontal simple harmonic
motion as it slides across a frictionless surface with a fre-
quency f. Block B rests on it, as shown in Figure P13.53,
and the coefficient of static friction between the two is
�s . What maximum amplitude of oscillation can the sys-
tem have if the upper block is not to slip?

55. The mass of the deuterium molecule (D2) is twice 
that of the hydrogen molecule (H2). If the vibrational
frequency of H2 is 1.30 � 1014 Hz, what is the vibra-
tional frequency of D2 ? Assume that the “spring con-
stant’’ of attracting forces is the same for the two 
molecules.

56. A solid sphere (radius � R) rolls without slipping in a
cylindrical trough (radius � 5R), as shown in Figure
P13.56. Show that, for small displacements from equilib-
rium perpendicular to the length of the trough, the
sphere executes simple harmonic motion with a period
T � 2� √28R/5g.

WEB
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57. A light cubical container of volume a3 is initially filled
with a liquid of mass density �. The container is initially
supported by a light string to form a pendulum of
length Li , measured from the center of mass of the
filled container. The liquid is allowed to flow from the
bottom of the container at a constant rate (dM/dt). At
any time t, the level of the liquid in the container is h

53. A large block P executes horizontal simple harmonic
motion as it slides  across a frictionless surface with a
frequency of f � 1.50 Hz. Block B rests on it, as shown

Figure P13.52

Figure P13.53 Problems 53 and 54.

Figure P13.56
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59. A pendulum of length L and mass M has a spring of
force constant k connected to it at a distance h below its
point of suspension (Fig. P13.59). Find the frequency of
vibration of the system for small values of the amplitude
(small �). (Assume that the vertical suspension of
length L is rigid, but neglect its mass.)

60. A horizontal plank of mass m and length L is pivoted at
one end. The plank’s other end is supported by a spring
of force constant k (Fig. P13.60). The moment of iner-
tia of the plank about the pivot is (a) Show that
the plank, after being displaced a small angle � from its
horizontal equilibrium position and released, moves
with simple harmonic motion of angular frequency 

(b) Evaluate the frequency if the mass is
5.00 kg and the spring has a force constant of 100 N/m.
� � √3k/m.

1
3 mL2.

Pivot

θ

k

h
θ

L

k

M

m

(a)

61. One end of a light spring with a force constant of 
100 N/m is attached to a vertical wall. A light string is
tied to the other end of the horizontal spring. The
string changes from horizontal to vertical as it passes
over a 4.00-cm-diameter solid pulley that is free to turn
on a fixed smooth axle. The vertical section of the
string supports a 200-g mass. The string does not slip at
its contact with the pulley. Find the frequency of oscilla-
tion of the mass if the mass of the pulley is (a) negligi-
ble, (b) 250 g, and (c) 750 g.

62. A 2.00-kg block hangs without vibrating at the end of a
spring (k � 500 N/m) that is attached to the ceiling of
an elevator car. The car is rising with an upward acceler-
ation of g/3 when the acceleration suddenly ceases (at

). (a) What is the angular frequency of oscillation
of the block after the acceleration ceases? (b) By what
amount is the spring stretched during the acceleration
of the elevator car? (c) What are the amplitude of the
oscillation and the initial phase angle observed by a
rider in the car? Take the upward direction to be posi-
tive.

63. A simple pendulum with a length of 2.23 m and a mass
of 6.74 kg is given an initial speed of 2.06 m/s at its
equilibrium position. Assume that it undergoes simple
harmonic motion, and determine its (a) period, (b) to-
tal energy, and (c) maximum angular displacement.

t � 0

Figure P13.58 (a) Mass–spring system for Problems 58 and 68.
(b) Bungee-jumping from a bridge. (Telegraph Colour Library/
FPG International)

Figure P13.59

Figure P13.60

(b)

and the length of the pendulum is L (measured relative
to the instantaneous center of mass). (a) Sketch the ap-
paratus and label the dimensions a, h, Li , and L . 
(b) Find the time rate of change of the period as a
function of time t. (c) Find the period as a function of
time.

58. After a thrilling plunge, bungee-jumpers bounce freely
on the bungee cords through many cycles. Your little
brother can make a pest of himself by figuring out the
mass of each person, using a proportion he set up by
solving this problem: A mass m is oscillating freely on a
vertical spring with a period T (Fig. P13.58a). An un-
known mass m on the same spring oscillates with a pe-
riod T . Determine (a) the spring constant k and 
(b) the unknown mass m.
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67. A ball of mass m is connected to two rubber bands of
length L , each under tension T, as in Figure P13.67.
The ball is displaced by a small distance y perpendicular
to the length of the rubber bands. Assuming that the
tension does not change, show that (a) the restoring
force is � (2T/L)y and (b) the system exhibits simple
harmonic motion with an angular frequency
� � √2T/mL .

68. When a mass M, connected to the end of a spring of
mass g and force constant k, is set into simple
harmonic motion, the period of its motion is

A two-part experiment is conducted with the use of vari-
ous masses suspended vertically from the spring, as
shown in Figure P13.58a. (a) Static extensions of 17.0,
29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M
values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respec-
tively. Construct a graph of Mg versus x, and perform a
linear least-squares fit to the data. From the slope of
your graph, determine a value for k for this spring. 
(b) The system is now set into simple harmonic motion,
and periods are measured with a stopwatch. With M �
80.0 g, the total time for 10 oscillations is measured to
be 13.41 s. The experiment is repeated with M values of
70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding
times for 10 oscillations of 12.52, 11.67, 10.67, 9.62, and
7.03 s. Compute the experimental value for T for each
of these measurements. Plot a graph of T 2 versus M,
and determine a value for k from the slope of the linear
least-squares fit through the data points. Compare this
value of k with that obtained in part (a). (c) Obtain a
value for ms from your graph, and compare it with the
given value of 7.40 g.

69. A small, thin disk of radius r and mass m is attached
rigidly to the face of a second thin disk of radius R and
mass M, as shown in Figure P13.69. The center of the
small disk is located at the edge of the large disk. The
large disk is mounted at its center on a frictionless axle.
The assembly is rotated through a small angle � from its
equilibrium position and released. (a) Show that the

T � 2�√ M � (ms/3)
k

ms � 7.40

WEB
R

M

θθ

mv

y

L L

x

dx

M

v

Figure P13.66

Figure P13.67

Figure P13.69

64. People who ride motorcycles and bicycles learn to look
out for bumps in the road and especially for washboard-
ing, which is a condition of many equally spaced ridges
worn into the road. What is so bad about washboarding?
A motorcycle has several springs and shock absorbers in
its suspension, but you can model it as a single spring
supporting a mass. You can estimate the spring constant
by thinking about how far the spring compresses when
a big biker sits down on the seat. A motorcyclist travel-
ing at highway speed must be particularly careful of
washboard bumps that are a certain distance apart.
What is the order of magnitude of their separation dis-
tance? State the quantities you take as data and the val-
ues you estimate or measure for them.

65. A wire is bent into the shape of one cycle of a cosine
curve. It is held in a vertical plane so that the height y
of the wire at any horizontal distance x from the center
is given by rad/m)]. A
bead can slide without friction on the stationary wire.
Show that if its excursion away from is never large,
the bead moves with simple harmonic motion. Deter-
mine its angular frequency. (Hint: cos for
small �.)

66. A block of mass M is connected to a spring of mass m
and oscillates in simple harmonic motion on a horizon-
tal, frictionless track (Fig. P13.66). The force constant
of the spring is k, and the equilibrium length is �. Find
(a) the kinetic energy of the system when the block has
a speed v, and (b) the period of oscillation. (Hint: As-
sume that all portions of the spring oscillate in phase
and that the velocity of a segment dx is proportional to
the distance x from the fixed end; that is, /�]v.
Also, note that the mass of a segment of the spring is

�]dx.)dm � [m/

vx � [x

� � 1 � � 2/2

x � 0

y � 20.0 cm[1 � cos(0.160x
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ANSWERS TO QUICK QUIZZES

13.3 No, because in simple harmonic motion, the accelera-
tion is not constant.

13.4 where 
13.5 From Hooke’s law, the spring constant must be

If we substitute this value for k into Equation
13.18, we find that

This is the same as Equation 13.26, which gives the pe-
riod of a simple pendulum. Thus, when an object
stretches a vertically hung spring, the period of the sys-
tem is the same as that of a simple pendulum having a
length equal to the amount of static extension of the
spring.

T � 2�√ m
k

� 2�√ m
mg/L

� 2�√ L
g

k � mg/L .

A � vi/�.x � �A sin �t,

13.1 Because A can never be zero, � must be any value that
results in the cosine function’s being zero at . In
other words, � � cos�1(0). This is true at � � �/2,
3�/2 or,  more generally, � � 	 n�/2, where n is any
nonzero odd integer. If we want to restrict our choices
of � to values between 0 and 2�, we need to know
whether the object was moving to the right or to the left
at . If it was moving with a positive velocity, then 
� � 3�/2. If vi � 0, then � � �/2.

13.2 (d) 4A. From its maximum positive position to the equi-
librium position, it travels a distance A, by definition of
amplitude. It then goes an equal distance past the equi-
librium position to its maximum negative position. It
then repeats these two motions in the reverse direction
to return to its original position and complete one cycle.

t � 0

t � 0

m

(a)

k1 k2

(b)

k1 k2

m

speed of the center of the small disk as it passes through
the equilibrium position is

(b) Show that the period of the motion is

70. Consider the damped oscillator illustrated in Figure
13.19. Assume that the mass is 375 g, the spring con-
stant is 100 N/m, and kg/s. (a) How long
does it takes for the amplitude to drop to half its initial
value? (b) How long does it take for the mechanical en-
ergy to drop to half its initial value? (c) Show that, in
general, the fractional rate at which the amplitude de-
creases in a damped harmonic oscillator is one-half the
fractional rate at which the mechanical energy de-
creases.

71. A mass m is connected to two springs of force constants
k1 and k2 , as shown in Figure P13.71a and b. In each
case, the mass moves on a frictionless table and is dis-
placed from equilibrium and then released. Show that
in the two cases the mass exhibits simple harmonic mo-
tion with periods

(a)

(b)

72. Consider a simple pendulum of length L � 1.20 m that
is displaced from the vertical by an angle �max and then
released. You are to predict the subsequent angular dis-
placements when �max is small and also when it is large.
Set up and carry out a numerical method to integrate

T � 2�√ m
k1 � k2

T � 2�√ m(k1 � k2)
k1k2

b � 0.100

T � 2� � (M � 2m)R2 � mr 2

2mgR �
1/2

v � 2 � Rg(1 � cos �)
(M/m) � (r/R)2 � 2 �

1/2

the equation of motion for the simple pendulum:

Take the initial conditions to be � � �max and d�/dt � 0
at . On one trial choose �max � 5.00°, and on an-
other trial take �max � 100°. In each case, find the dis-
placement � as a function of time. Using the same val-
ues for �max, compare your results for � with those
obtained from �max cos �t . How does the period for the
large value of �max compare with that for the small value
of �max ? Note: Using the Euler method to solve this dif-
ferential equation, you may find that the amplitude
tends to increase with time. The fourth-order
Runge–Kutta method would be a better choice to solve
the differential equation. However, if you choose �t
small enough, the solution that you obtain using Euler’s
method can still be good.

t � 0

d 2�

dt2 � �
g
L

 sin �

Figure P13.71
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13.6 If your goal is simply to stop the bounce from an ab-
sorbed shock as rapidly as possible, you should critically
damp the suspension. Unfortunately, the stiffness of this
design makes for an uncomfortable ride. If you under-
damp the suspension, the ride is more comfortable but
the car bounces. If you overdamp the suspension, the
wheel is displaced from its equilibrium position longer
than it should be. (For example, after hitting a bump,
the spring stays compressed for a short time and the

wheel does not quickly drop back down into contact
with the road after the wheel is past the bump—a dan-
gerous situation.) Because of all these considerations,
automotive engineers usually design suspensions to be
slightly underdamped. This allows the suspension to ab-
sorb a shock rapidly (minimizing the roughness of the
ride) and then return to equilibrium after only one or
two noticeable oscillations.
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The Law of Gravity

P U Z Z L E R

More than 300 years ago, Isaac Newton
realized that the same gravitational force
that causes apples to fall to the Earth
also holds the Moon in its orbit. In recent
years, scientists have used the Hubble
Space Telescope to collect evidence of
the gravitational force acting even far-
ther away, such as at this protoplanetary
disk in the constellation Taurus. What
properties of an object such as a proto-
planet or the Moon determine the
strength of its gravitational attraction to
another object? (Left, Larry West/FPG

International; right, Courtesy of NASA)
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Force Between an Extended
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14.10 (Optional) The Gravitational
Force Between a Particle and a
Spherical Mass
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For more information about the Hubble,
visit the Space Telescope Science Institute
at http://www.stsci.edu/
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efore 1687, a large amount of data had been collected on the motions of the
Moon and the planets, but a clear understanding of the forces causing these
motions was not available. In that year, Isaac Newton provided the key that

unlocked the secrets of the heavens. He knew, from his first law, that a net force
had to be acting on the Moon because without such a force the Moon would move
in a straight-line path rather than in its almost circular orbit. Newton reasoned
that this force was the gravitational attraction exerted by the Earth on the Moon.
He realized that the forces involved in the Earth–Moon attraction and in the
Sun–planet attraction were not something special to those systems, but rather
were particular cases of a general and universal attraction between objects. In
other words, Newton saw that the same force of attraction that causes the Moon to
follow its path around the Earth also causes an apple to fall from a tree. As he put
it, “I deduced that the forces which keep the planets in their orbs must be recipro-
cally as the squares of their distances from the centers about which they revolve;
and thereby compared the force requisite to keep the Moon in her orb with the
force of gravity at the surface of the Earth; and found them answer pretty nearly.”

In this chapter we study the law of gravity. We place emphasis on describing
the motion of the planets because astronomical data provide an important test of
the validity of the law of gravity. We show that the laws of planetary motion devel-
oped by Johannes Kepler follow from the law of gravity and the concept of conser-
vation of angular momentum. We then derive a general expression for gravita-
tional potential energy and examine the energetics of planetary and satellite
motion. We close by showing how the law of gravity is also used to determine the
force between a particle and an extended object.

NEWTON’S LAW OF UNIVERSAL GRAVITATION
You may have heard the legend that Newton was struck on the head by a falling ap-
ple while napping under a tree. This alleged accident supposedly prompted him
to imagine that perhaps all bodies in the Universe were attracted to each other in
the same way the apple was attracted to the Earth. Newton analyzed astronomical
data on the motion of the Moon around the Earth. From that analysis, he made
the bold assertion that the force law governing the motion of planets was the same
as the force law that attracted a falling apple to the Earth. This was the first time
that “earthly” and “heavenly” motions were unified. We shall look at the mathe-
matical details of Newton’s analysis in Section 14.5.

In 1687 Newton published his work on the law of gravity in his treatise Mathe-
matical Principles of Natural Philosophy. Newton’s law of universal gravitation
states that

14.1

every particle in the Universe attracts every other particle with a force that is di-
rectly proportional to the product of their masses and inversely proportional to
the square of the distance between them.

B

If the particles have masses m1 and m2 and are separated by a distance r, the mag-
nitude of this gravitational force is

(14.1)Fg � G 
m1m2

r 2The law of gravity
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where G is a constant, called the universal gravitational constant, that has been mea-
sured experimentally. As noted in Example 6.6, its value in SI units is

(14.2)

The form of the force law given by Equation 14.1 is often referred to as an in-
verse-square law because the magnitude of the force varies as the inverse square
of the separation of the particles.1 We shall see other examples of this type of force
law in subsequent chapters. We can express this force in vector form by defining a
unit vector (Fig. 14.1). Because this unit vector is directed from particle 1 to
particle 2, the force exerted by particle 1 on particle 2 is

(14.3)

where the minus sign indicates that particle 2 is attracted to particle 1, and hence
the force must be directed toward particle 1. By Newton’s third law, the force ex-
erted by particle 2 on particle 1, designated F21 , is equal in magnitude to F12 and
in the opposite direction. That is, these forces form an action–reaction pair, and

Several features of Equation 14.3 deserve mention. The gravitational force is a
field force that always exists between two particles, regardless of the medium that
separates them. Because the force varies as the inverse square of the distance be-
tween the particles, it decreases rapidly with increasing separation. We can relate
this fact to the geometry of the situation by noting that the intensity of light ema-
nating from a point source drops off in the same 1/r 2 manner, as shown in Figure
14.2.

Another important point about Equation 14.3 is that the gravitational force
exerted by a finite-size, spherically symmetric mass distribution on a parti-
cle outside the distribution is the same as if the entire mass of the distribu-
tion were concentrated at the center. For example, the force exerted by the

F21 � �F12.

F12 � �G 
m1m2

r 2  r̂12

r̂12

G � 6.673 � 10�11 N�m2/kg2

Properties of the gravitational
force

QuickLab
Inflate a balloon just enough to form
a small sphere. Measure its diameter.
Use a marker to color in a 1-cm
square on its surface. Now continue
inflating the balloon until it reaches
twice the original diameter. Measure
the size of the square you have drawn.
Also note how the color of the
marked area has changed. Have you
verified what is shown in Figure 14.2?

1 An inverse relationship between two quantities x and y is one in which where k is a constant.
A direct proportion between x and y exists when y � kx.

y � k/x,

m1

m2
r

r̂

F21

F12

12

Figure 14.1 The gravitational
force between two particles is at-
tractive. The unit vector is di-
rected from particle 1 to particle 2.
Note that F21 � � F12 .

r̂12

r

2r Figure 14.2 Light radiating from a
point source drops off as 1/r2, a relation-
ship that matches the way the gravita-
tional force depends on distance. When
the distance from the light source is dou-
bled, the light has to cover four times the
area and thus is one fourth as bright.
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Earth on a particle of mass m near the Earth’s surface has the magnitude

(14.4)

where ME is the Earth’s mass and RE its radius. This force is directed toward the
center of the Earth.

We have evidence of the fact that the gravitational force acting on an object is
directly proportional to its mass from our observations of falling objects, discussed
in Chapter 2. All objects, regardless of mass, fall in the absence of air resistance at
the same acceleration g near the surface of the Earth. According to Newton’s sec-
ond law, this acceleration is given by where m is the mass of the falling
object. If this ratio is to be the same for all falling objects, then Fg must be directly
proportional to m, so that the mass cancels in the ratio. If we consider the more
general situation of a gravitational force between any two objects with mass, such
as two planets, this same argument can be applied to show that the gravitational
force is proportional to one of the masses. We can choose either of the masses in
the argument, however; thus, the gravitational force must be directly proportional
to both masses, as can be seen in Equation 14.3.

MEASURING THE GRAVITATIONAL CONSTANT
The universal gravitational constant G was measured in an important experiment
by Henry Cavendish (1731–1810) in 1798. The Cavendish apparatus consists of
two small spheres, each of mass m, fixed to the ends of a light horizontal rod sus-
pended by a fine fiber or thin metal wire, as illustrated in Figure 14.3. When two
large spheres, each of mass M, are placed near the smaller ones, the attractive
force between smaller and larger spheres causes the rod to rotate and twist the
wire suspension to a new equilibrium orientation. The angle of rotation is mea-
sured by the deflection of a light beam reflected from a mirror attached to the ver-
tical suspension. The deflection of the light is an effective technique for amplify-
ing the motion. The experiment is carefully repeated with different masses at
various separations. In addition to providing a value for G, the results show experi-
mentally that the force is attractive, proportional to the product mM, and inversely
proportional to the square of the distance r.

14.2

g � Fg/m,

Fg � G 
MEm
R E 

2

Billiards, Anyone?EXAMPLE 14.1
Solution First we calculate separately the individual forces
on the cue ball due to the other two balls, and then we find
the vector sum to get the resultant force. We can see graphi-
cally that this force should point upward and toward the

Three 0.300-kg billiard balls are placed on a table at the cor-
ners of a right triangle, as shown in Figure 14.4. Calculate the
gravitational force on the cue ball (designated m1) resulting
from the other two balls.

Mirror

r
m

M

Light
source

Figure 14.3 Schematic diagram of the Cavendish ap-
paratus for measuring G. As the small spheres of mass m
are attracted to the large spheres of mass M, the rod be-
tween the two small spheres rotates through a small an-
gle. A light beam reflected from a mirror on the rotating
apparatus measures the angle of rotation. The dashed
line represents the original position of the rod.
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FREE-FALL ACCELERATION AND THE
GRAVITATIONAL FORCE

In Chapter 5, when defining mg as the weight of an object of mass m, we referred
to g as the magnitude of the free-fall acceleration. Now we are in a position to ob-
tain a more fundamental description of g. Because the force acting on a freely
falling object of mass m near the Earth’s surface is given by Equation 14.4, we can
equate mg to this force to obtain

(14.5)

Now consider an object of mass m located a distance h above the Earth’s sur-
face or a distance r from the Earth’s center, where The magnitude of
the gravitational force acting on this object is

The gravitational force acting on the object at this position is also where
g� is the value of the free-fall acceleration at the altitude h. Substituting this expres-

Fg � mg�,

Fg � G 
MEm

r 2 � G 
MEm

(R E � h)2

r � R E � h.

 g � G 
ME

R E 

2  

mg � G 
MEm
R E 

2

14.3

right. We locate our coordinate axes as shown in Figure 14.4,
placing our origin at the position of the cue ball.

The force exerted by m2 on the cue ball is directed up-
ward and is given by

F21 � G 
m2m1

r21 

2  j 
This result shows that the gravitational forces between every-
day objects have extremely small magnitudes. The force ex-
erted by m3 on the cue ball is directed to the right:

Therefore, the resultant force on the cue ball is

and the magnitude of this force is

Exercise Find the direction of F.

Answer 29.3° counterclockwise from the positive x axis.

 � 7.65 � 10�11 N

F � √F21 

2 � F31 

2 � √(3.75)2 � (6.67)2 � 10�11

(3.75j � 6.67i) � 10�11 NF � F21 � F31 �

 � 6.67 � 10�11 i N 

 � �6.67 � 10�11 
N�m2

kg2 � 
(0.300 kg)(0.300 kg)

(0.300 m)2  i

F31 � G 
m3m1

r31 

2  i 

 � 3.75 � 10�11 j N 

 � �6.67 � 10�11 
N�m2

kg2 � 
(0.300 kg)(0.300 kg)

(0.400 m)2  j

0.400 m

m2

0.500 m

m1 0.300 m m3

F21
F

F31y

x

Figure 14.4 The resultant gravitational force acting on the cue
ball is the vector sum F21 � F31 .

Free-fall acceleration near the
Earth’s surface
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sion for Fg into the last equation shows that g� is

(14.6)

Thus, it follows that g� decreases with increasing altitude. Because the weight of a
body is mg�, we see that as its weight approaches zero.r : �,

g� �
GME

r 2 �
GME

(R E � h)2

Variation of g with Altitude hEXAMPLE 14.2
The International Space Station is designed to operate at an
altitude of 350 km. When completed, it will have a weight
(measured at the Earth’s surface) of 4.22 � 106 N. What is its
weight when in orbit?

Solution Because the station is above the surface of the
Earth, we expect its weight in orbit to be less than its weight
on Earth, 4.22 � 106 N. Using Equation 14.6 with h �
350 km, we obtain

Because g�/g � 8.83/9.80 � 0.901, we conclude that the
weight of the station at an altitude of 350 km is 90.1% of 
the value at the Earth’s surface. So the station’s weight in or-
bit is 

(0.901)(4.22 � 106 N) �

Values of g� at other altitudes are listed in Table 14.1.

3.80 � 106 N

 � 8.83 m/s2 

 �
(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)

(6.37 � 106 m � 0.350 � 106 m)2

g� �
GME

(R E � h)2  

The Density of the EarthEXAMPLE 14.3
Because this value is about twice the density of most rocks at
the Earth’s surface, we conclude that the inner core of the
Earth has a density much higher than the average value. It is
most amazing that the Cavendish experiment, which deter-
mines G (and can be done on a tabletop), combined with
simple free-fall measurements of g, provides information
about the core of the Earth.

Using the fact that g � 9.80 m/s2 at the Earth’s surface, find
the average density of the Earth.

Solution Using g � 9.80 m/s2 and we
find from Equation 14.5 that From this
result, and using the definition of density from Chapter 1, we
obtain

5.50 � 103 kg/m3�

�	 �

	

V	
�


	
4
3�R E 

3 �
5.96 � 1024 kg

4
3�(6.37 � 106 m)3

ME � 5.96 � 1024 kg.
R E � 6.37 � 106 m,

Variation of g with altitude

web
The official web site for the International
Space Station is www.station.nasa.gov

TABLE 14.1 Free-Fall Acceleration g �
at Various Altitudes
Above the Earth’s Surface

Altitude h (km) g� (m/s2)

1 000 7.33
2 000 5.68
3 000 4.53
4 000 3.70
5 000 3.08
6 000 2.60
7 000 2.23
8 000 1.93
9 000 1.69

10 000 1.49
50 000 0.13

� 0
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KEPLER’S LAWS
People have observed the movements of the planets, stars, and other celestial bod-
ies for thousands of years. In early history, scientists regarded the Earth as the cen-
ter of the Universe. This so-called geocentric model was elaborated and formalized
by the Greek astronomer Claudius Ptolemy (c. 100–c. 170) in the second century
A.D. and was accepted for the next 1 400 years. In 1543 the Polish astronomer
Nicolaus Copernicus (1473–1543) suggested that the Earth and the other planets
revolved in circular orbits around the Sun (the heliocentric model).

The Danish astronomer Tycho Brahe (1546–1601) wanted to determine how
the heavens were constructed, and thus he developed a program to determine the
positions of both stars and planets. It is interesting to note that those observations
of the planets and 777 stars visible to the naked eye were carried out with only a
large sextant and a compass. (The telescope had not yet been invented.)

The German astronomer Johannes Kepler was Brahe’s assistant for a short
while before Brahe’s death, whereupon he acquired his mentor’s astronomical
data and spent 16 years trying to deduce a mathematical model for the motion of
the planets. Such data are difficult to sort out because the Earth is also in motion
around the Sun. After many laborious calculations, Kepler found that Brahe’s data
on the revolution of Mars around the Sun provided the answer.

14.4

Astronauts F. Story Musgrave and Jeffrey A. Hoffman, along with the Hubble Space Telescope
and the space shuttle Endeavor, are all falling around the Earth.

Johannes Kepler German as-
tronomer (1571 – 1630) The German
astronomer Johannes Kepler is best
known for developing the laws of
planetary motion based on the careful
observations of Tycho Brahe. (Art Re-
source)

For more information about Johannes
Kepler, visit our Web site at 
www.saunderscollege.com/physics/



430 C H A P T E R  1 4 The Law of Gravity

Kepler’s analysis first showed that the concept of circular orbits around the
Sun had to be abandoned. He eventually discovered that the orbit of Mars could
be accurately described by an ellipse. Figure 14.5 shows the geometric description
of an ellipse. The longest dimension is called the major axis and is of length 2a,
where a is the semimajor axis. The shortest dimension is the minor axis, of
length 2b, where b is the semiminor axis. On either side of the center is a focal
point, a distance c from the center, where The Sun is located at one
of the focal points of Mars’s orbit. Kepler generalized his analysis to include the
motions of all planets. The complete analysis is summarized in three statements
known as Kepler’s laws:

a2 � b2 � c 2.

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal areas in

equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of

the semimajor axis of the elliptical orbit.

Most of the planetary orbits are close to circular in shape; for example, the
semimajor and semiminor axes of the orbit of Mars differ by only 0.4%. Mercury
and Pluto have the most elliptical orbits of the nine planets. In addition to the
planets, there are many asteroids and comets orbiting the Sun that obey Kepler’s
laws. Comet Halley is such an object; it becomes visible when it is close to the Sun
every 76 years. Its orbit is very elliptical, with a semiminor axis 76% smaller than its
semimajor axis.

Although we do not prove it here, Kepler’s first law is a direct consequence of
the fact that the gravitational force varies as 1/r 2. That is, under an inverse-square
gravitational-force law, the orbit of a planet can be shown mathematically to be an
ellipse with the Sun at one focal point. Indeed, half a century after Kepler devel-
oped his laws, Newton demonstrated that these laws are a consequence of the grav-
itational force that exists between any two masses. Newton’s law of universal gravi-
tation, together with his development of the laws of motion, provides the basis for
a full mathematical solution to the motion of planets and satellites.

THE LAW OF GRAVITY AND
THE MOTION OF PLANETS

In formulating his law of gravity, Newton used the following reasoning, which sup-
ports the assumption that the gravitational force is proportional to the inverse
square of the separation between the two interacting bodies. He compared the ac-
celeration of the Moon in its orbit with the acceleration of an object falling near
the Earth’s surface, such as the legendary apple (Fig. 14.6). Assuming that both ac-
celerations had the same cause—namely, the gravitational attraction of the
Earth—Newton used the inverse-square law to reason that the acceleration of the
Moon toward the Earth (centripetal acceleration) should be proportional to
1/rM

2, where rM is the distance between the centers of the Earth and the Moon.
Furthermore, the acceleration of the apple toward the Earth should be propor-
tional to 1/RE

2, where RE is the radius of the Earth, or the distance between the
centers of the Earth and the apple. Using the values m andrM � 3.84 � 108

14.5

Kepler’s laws

a

c b

F2F1

Figure 14.5 Plot of an ellipse.
The semimajor axis has a length a,
and the semiminor axis has a
length b. The focal points are lo-
cated at a distance c from the cen-
ter, where a2 � b2 � c 2.
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m, Newton predicted that the ratio of the Moon’s acceleration
aM to the apple’s acceleration g would be

Therefore, the centripetal acceleration of the Moon is

Newton also calculated the centripetal acceleration of the Moon from a knowl-
edge of its mean distance from the Earth and its orbital period, days �
2.36 � 106 s. In a time T, the Moon travels a distance 2�rM , which equals the cir-
cumference of its orbit. Therefore, its orbital speed is 2�rM/T and its centripetal
acceleration is

In other words, because the Moon is roughly 60 Earth radii away, the gravitational
acceleration at that distance should be about 1/602 of its value at the Earth’s sur-
face. This is just the acceleration needed to account for the circular motion of the
Moon around the Earth. The nearly perfect agreement between this value and the
value Newton obtained using g provides strong evidence of the inverse-square na-
ture of the gravitational force law.

Although these results must have been very encouraging to Newton, he was
deeply troubled by an assumption he made in the analysis. To evaluate the acceler-
ation of an object at the Earth’s surface, Newton treated the Earth as if its mass
were all concentrated at its center. That is, he assumed that the Earth acted as a
particle as far as its influence on an exterior object was concerned. Several years
later, in 1687, on the basis of his pioneering work in the development of calculus,
Newton proved that this assumption was valid and was a natural consequence of
the law of universal gravitation.

 � 2.72 � 10�3 m/s2 �
9.80 m/s2

602  

aM �
v2

rM
�

(2�rM/T)2

rM
�

4�2rM

T 2 �
4�2(3.84 � 108 m)

(2.36 � 106 s)2

T � 27.32

aM � (2.75 � 10�4)(9.80 m/s2) � 2.70 � 10�3 m/s2

aM

g
�

(1/rM)2

(1/R E)2 � � R E

rM
�

2
� � 6.37 � 106 m

3.84 � 108 m �
2

� 2.75 � 10�4

R E � 6.37 � 106

Acceleration of the Moon

RE

Moon

v

aM

rM

Earth

g Figure 14.6 As it revolves around the
Earth, the Moon experiences a cen-
tripetal acceleration aM directed toward
the Earth. An object near the Earth’s
surface, such as the apple shown here,
experiences an acceleration g. (Dimen-
sions are not to scale.)



432 C H A P T E R  1 4 The Law of Gravity

Kepler’s Third Law

It is informative to show that Kepler’s third law can be predicted from the inverse-
square law for circular orbits.2 Consider a planet of mass Mp moving around the
Sun of mass MS in a circular orbit, as shown in Figure 14.7. Because the gravita-
tional force exerted by the Sun on the planet is a radially directed force that keeps
the planet moving in a circle, we can apply Newton’s second law to the
planet:

Because the orbital speed v of the planet is simply 2�r/T, where T is its period of
revolution, the preceding expression becomes

(14.7)

where KS is a constant given by

Equation 14.7 is Kepler’s third law. It can be shown that the law is also valid
for elliptical orbits if we replace r with the length of the semimajor axis a. Note
that the constant of proportionality KS is independent of the mass of the planet.
Therefore, Equation 14.7 is valid for any planet.3 Table 14.2 contains a collection
of useful planetary data. The last column verifies that T 2/r 3 is a constant. The
small variations in the values in this column reflect uncertainties in the measured
values of the periods and semimajor axes of the planets.

If we were to consider the orbit around the Earth of a satellite such as the
Moon, then the proportionality constant would have a different value, with the
Sun’s mass replaced by the Earth’s mass.

K S �
4�2

GMS
� 2.97 � 10�19 s2/m3

T 2 � � 4�2

GMS
� r 3 � K Sr 3

GMS

r 2 �
(2�r/T)2

r

GMSMp

r 2 �
Mpv2

r

(�F � ma)

The Mass of the SunEXAMPLE 14.4

In Example 14.3, an understanding of gravitational forces en-
abled us to find out something about the density of the
Earth’s core, and now we have used this understanding to de-
termine the mass of the Sun.

1.99 � 1030 kg�
Calculate the mass of the Sun using the fact that the period
of the Earth’s orbit around the Sun is 3.156 � 107 s and its
distance from the Sun is 1.496 � 1011 m.

Solution Using Equation 14.7, we find that

MS �
4�2r 3

GT 2 �
4�2(1.496 � 1011 m)3

(6.67 � 10�11 N�m2/kg2)(3.156 � 107 s)2

2 The orbits of all planets except Mercury and Pluto are very close to being circular; hence, we do not
introduce much error with this assumption. For example, the ratio of the semiminor axis to the semi-
major axis for the Earth’s orbit is 
3 Equation 14.7 is indeed a proportion because the ratio of the two quantities T 2 and r 3 is a constant.
The variables in a proportion are not required to be limited to the first power only.

b/a � 0.999 86.

Kepler’s third law

r

MS

Mp

v

Figure 14.7 A planet of mass Mp
moving in a circular orbit around
the Sun. The orbits of all planets
except Mercury and Pluto are
nearly circular.
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Kepler’s Second Law and Conservation of Angular Momentum

Consider a planet of mass Mp moving around the Sun in an elliptical orbit (Fig.
14.8). The gravitational force acting on the planet is always along the radius vector,
directed toward the Sun, as shown in Figure 14.9a. When a force is directed to-
ward or away from a fixed point and is a function of r only, it is called a central
force. The torque acting on the planet due to this force is clearly zero; that is, be-
cause F is parallel to r,

(You may want to revisit Section 11.2 to refresh your memory on the vector prod-
uct.) Recall from Equation 11.19, however, that torque equals the time rate of
change of angular momentum: Therefore, because the gravitational� � d L/dt.

� � r � F � r � F r̂ � 0

TABLE 14.2 Useful Planetary Data

Mean Period of
Radius Revolution Mean Distance

Body Mass (kg) (m) (s) from Sun (m)

Mercury 3.18 � 1023 2.43 � 106 7.60 � 106 5.79 � 1010 2.97 � 10�19

Venus 4.88 � 1024 6.06 � 106 1.94 � 107 1.08 � 1011 2.99 � 10�19

Earth 5.98 � 1024 6.37 � 106 3.156 � 107 1.496 � 1011 2.97 � 10�19

Mars 6.42 � 1023 3.37 � 106 5.94 � 107 2.28 � 1011 2.98 � 10�19

Jupiter 1.90 � 1027 6.99 � 107 3.74 � 108 7.78 � 1011 2.97 � 10�19

Saturn 5.68 � 1026 5.85 � 107 9.35 � 108 1.43 � 1012 2.99 � 10�19

Uranus 8.68 � 1025 2.33 � 107 2.64 � 109 2.87 � 1012 2.95 � 10�19

Neptune 1.03 � 1026 2.21 � 107 5.22 � 109 4.50 � 1012 2.99 � 10�19

Pluto � 1.4 � 1022 � 1.5 � 106 7.82 � 109 5.91 � 1012 2.96 � 10�19

Moon 7.36 � 1022 1.74 � 106 — — —
Sun 1.991 � 1030 6.96 � 108 — — —

D

C

A

B
S

Sun

Figure 14.8 Kepler’s second law
is called the law of equal areas.
When the time interval required
for a planet to travel from A to B is
equal to the time interval required
for it to go from C to D, the two ar-
eas swept out by the planet’s radius
vector are equal. Note that in order
for this to be true, the planet must
be moving faster between C and D
than between A and B.

Separate views of Jupiter and of Periodic Comet
Shoemaker–Levy 9—both taken with the Hubble
Space Telescope about two months before Jupiter
and the comet collided in July 1994—were put to-
gether with the use of a computer. Their relative
sizes and distances were altered. The black spot
on Jupiter is the shadow of its moon Io.

T 2

r3  (s2/m3)
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It is important to recognize that this result, which is Kepler’s second law, is a con-
sequence of the fact that the force of gravity is a central force, which in turn im-
plies that angular momentum is constant. Therefore, Kepler’s second law applies
to any situation involving a central force, whether inverse-square or not.

force exerted by the Sun on a planet results in no torque on the planet, the
angular momentum L of the planet is constant:

(14.8)

Because L remains constant, the planet’s motion at any instant is restricted to the
plane formed by r and v.

We can relate this result to the following geometric consideration. The radius
vector r in Figure 14.9b sweeps out an area dA in a time dt. This area equals one-
half the area of the parallelogram formed by the vectors r and dr (see
Section 11.2). Because the displacement of the planet in a time dt is we
can say that

(14.9)

where L and Mp are both constants. Thus, we conclude that

dA
dt

�
L

2Mp
� constant

dA � 1
2� r � dr � � 1

2� r � v dt � �
L

2Mp
 dt

dr � vdt,
� r � dr �

L � r � p � r � Mpv � Mpr � v � constant

the radius vector from the Sun to a planet sweeps out equal areas in equal time
intervals.

Motion in an Elliptical OrbitEXAMPLE 14.5
14.10), and the maximum distance is called the apogee (indi-
cated by a). If the speed of the satellite at p is vp , what is its
speed at a?

Solution As the satellite moves from perigee toward
apogee, it is moving farther from the Earth. Thus, a compo-
nent of the gravitational force exerted by the Earth on the
satellite is opposite the velocity vector. Negative work is done
on the satellite, which causes it to slow down, according to
the work–kinetic energy theorem. As a result, we expect the
speed at apogee to be lower than the speed at perigee.

The angular momentum of the satellite relative to the
Earth is At the points a and p, v is perpen-
dicular to r. Therefore, the magnitude of the angular mo-
mentum at these positions is and Be-
cause angular momentum is constant, we see that

rp

ra
 vpva �

mvara � mvprp 

Lp � mvprp .La � mvara

mr � v.r � mv �

A satellite of mass m moves in an elliptical orbit around the
Earth (Fig. 14.10). The minimum distance of the satellite
from the Earth is called the perigee (indicated by p in Fig.

Sun
r

MS

Fg

Mp

v

(a)

Sun

(b)

r

dA

dr = vdt

Figure 14.9 (a) The gravitational
force acting on a planet is directed
toward the Sun, along the radius
vector. (b) As a planet orbits the
Sun, the area swept out by the ra-
dius vector in a time dt is equal to
one-half the area of the parallelo-
gram formed by the vectors r and
d r � vdt.

va

ra

vpp

a

rp

Figure 14.10 As a satellite moves around the Earth in an elliptical or-
bit, its angular momentum is constant. Therefore, 
where the subscripts a and p represent apogee and perigee, respectively.

mvara � mvprp ,
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How would you explain the fact that Saturn and Jupiter have periods much greater than
one year?

THE GRAVITATIONAL FIELD
When Newton published his theory of universal gravitation, it was considered a
success because it satisfactorily explained the motion of the planets. Since 1687
the same theory has been used to account for the motions of comets, the deflec-
tion of a Cavendish balance, the orbits of binary stars, and the rotation of galaxies.
Nevertheless, both Newton’s contemporaries and his successors found it difficult
to accept the concept of a force that acts through a distance, as mentioned in Sec-
tion 5.1. They asked how it was possible for two objects to interact when they were
not in contact with each other. Newton himself could not answer that question.

An approach to describing interactions between objects that are not in contact
came well after Newton’s death, and it enables us to look at the gravitational inter-
action in a different way. As described in Section 5.1, this alternative approach uses
the concept of a gravitational field that exists at every point in space. When a
particle of mass m is placed at a point where the gravitational field is g, the particle
experiences a force In other words, the field exerts a force on the parti-
cle. Hence, the gravitational field g is defined as

(14.10)

That is, the gravitational field at a point in space equals the gravitational force ex-
perienced by a test particle placed at that point divided by the mass of the test parti-
cle. Notice that the presence of the test particle is not necessary for the field to ex-
ist—the Earth creates the gravitational field. We call the object creating the field
the source particle (although the Earth is clearly not a particle; we shall discuss
shortly the fact that we can approximate the Earth as a particle for the purpose of
finding the gravitational field that it creates). We can detect the presence of the
field and measure its strength by placing a test particle in the field and noting the
force exerted on it.

Although the gravitational force is inherently an interaction between two ob-
jects, the concept of a gravitational field allows us to “factor out” the mass of one
of the objects. In essence, we are describing the “effect” that any object (in this
case, the Earth) has on the empty space around itself in terms of the force that
would be present if a second object were somewhere in that space.4

As an example of how the field concept works, consider an object of mass m
near the Earth’s surface. Because the gravitational force acting on the object has a
magnitude GMEm/r 2 (see Eq. 14.4), the field g at a distance r from the center of
the Earth is

(14.11)

where is a unit vector pointing radially outward from the Earth and the minusr̂

g �
Fg

m
� �

GME

r 2  r̂

g � 
Fg

m

Fg � mg.

14.6

Quick Quiz 14.1

Gravitational field

4 We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory of
gravitation in Chapter 39.
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sign indicates that the field points toward the center of the Earth, as illustrated in
Figure 14.11a. Note that the field vectors at different points surrounding the Earth
vary in both direction and magnitude. In a small region near the Earth’s surface,
the downward field g is approximately constant and uniform, as indicated in Fig-
ure 14.11b. Equation 14.11 is valid at all points outside the Earth’s surface, assum-
ing that the Earth is spherical. At the Earth’s surface, where g has a magni-
tude of 9.80 N/kg.

GRAVITATIONAL POTENTIAL ENERGY
In Chapter 8 we introduced the concept of gravitational potential energy, which is
the energy associated with the position of a particle. We emphasized that the gravi-
tational potential energy function is valid only when the particle is near
the Earth’s surface, where the gravitational force is constant. Because the gravita-
tional force between two particles varies as 1/r 2, we expect that a more general po-
tential energy function—one that is valid without the restriction of having to be
near the Earth’s surface—will be significantly different from 

Before we calculate this general form for the gravitational potential energy
function, let us first verify that the gravitational force is conservative. (Recall from Sec-
tion 8.2 that a force is conservative if the work it does on an object moving be-
tween any two points is independent of the path taken by the object.) To do this,
we first note that the gravitational force is a central force. By definition, a central
force is any force that is directed along a radial line to a fixed center and has a
magnitude that depends only on the radial coordinate r. Hence, a central force
can be represented by where is a unit vector directed from the origin to
the particle, as shown in Figure 14.12.

Consider a central force acting on a particle moving along the general path P
to Q in Figure 14.12. The path from P to Q can be approximated by a series of

r̂F(r)r̂,

U � mgy.

U � mgy

14.7

r � R E ,

(a) (b)

Figure 14.11 (a) The gravitational field vectors in the vicinity of a uniform spherical mass such
as the Earth vary in both direction and magnitude. The vectors point in the direction of the ac-
celeration a particle would experience if it were placed in the field. The magnitude of the field
vector at any location is the magnitude of the free-fall acceleration at that location. (b) The gravi-
tational field vectors in a small region near the Earth’s surface are uniform in both direction and
magnitude.
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steps according to the following procedure. In Figure 14.12, we draw several thin
wedges, which are shown as dashed lines. The outer boundary of our set of wedges
is a path consisting of short radial line segments and arcs (gray in the figure). We
select the length of the radial dimension of each wedge such that the short arc at
the wedge’s wide end intersects the actual path of the particle. Then we can ap-
proximate the actual path with a series of zigzag movements that alternate be-
tween moving along an arc and moving along a radial line.

By definition, a central force is always directed along one of the radial seg-
ments; therefore, the work done by F along any radial segment is

You should recall that, by definition, the work done by a force that is perpendicu-
lar to the displacement is zero. Hence, the work done in moving along any arc is
zero because F is perpendicular to the displacement along these segments. There-
fore, the total work done by F is the sum of the contributions along the radial seg-
ments:

where the subscripts i and f refer to the initial and final positions. Because the in-
tegrand is a function only of the radial position, this integral depends only on the
initial and final values of r. Thus, the work done is the same over any path from P
to Q. Because the work done is independent of the path and depends only on the
end points, we conclude that any central force is conservative. We are now assured
that a potential energy function can be obtained once the form of the central
force is specified.

Recall from Equation 8.2 that the change in the gravitational potential energy
associated with a given displacement is defined as the negative of the work done by
the gravitational force during that displacement:

(14.12)

We can use this result to evaluate the gravitational potential energy function. Con-
sider a particle of mass m moving between two points P and Q above the Earth’s
surface (Fig. 14.13). The particle is subject to the gravitational force given by
Equation 14.1. We can express this force as

where the negative sign indicates that the force is attractive. Substituting this ex-
pression for F(r) into Equation 14.12, we can compute the change in the gravita-

F(r) � �
GMEm

r 2  

U � Uf � Ui � ��rf

ri

F(r) dr

W � �rf

ri

F(r) dr

dW � F � dr � F(r) dr

Work done by a central force

O

r i

P

Q

r f

F

r̂

r̂

Radial segment

Arc

Figure 14.12 A particle moves
from P to Q while acted on by a
central force F, which is directed
radially. The path is broken into a
series of radial segments and arcs.
Because the work done along the
arcs is zero, the work done is inde-
pendent of the path and depends
only on rf and ri .

Figure 14.13 As a particle of mass m moves from P to
Q above the Earth’s surface, the gravitational potential
energy changes according to Equation 14.12.
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Fg

Fg Q

m

rf

ri

ME
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tional potential energy function:

(14.13)

As always, the choice of a reference point for the potential energy is completely ar-
bitrary. It is customary to choose the reference point where the force is zero. Tak-
ing at we obtain the important result

(14.14)

This expression applies to the Earth–particle system where the two masses are sep-
arated by a distance r, provided that The result is not valid for particles in-
side the Earth, where (The situation in which is treated in Section
14.10.) Because of our choice of Ui , the function U is always negative (Fig. 14.14).

Although Equation 14.14 was derived for the particle–Earth system, it can be
applied to any two particles. That is, the gravitational potential energy associated
with any pair of particles of masses m1 and m2 separated by a distance r is

(14.15)

This expression shows that the gravitational potential energy for any pair of parti-
cles varies as 1/r, whereas the force between them varies as 1/r 2. Furthermore, the
potential energy is negative because the force is attractive and we have taken the
potential energy as zero when the particle separation is infinite. Because the force
between the particles is attractive, we know that an external agent must do positive
work to increase the separation between them. The work done by the external
agent produces an increase in the potential energy as the two particles are sepa-
rated. That is, U becomes less negative as r increases.

When two particles are at rest and separated by a distance r, an external agent
has to supply an energy at least equal to � Gm1m2/r in order to separate the parti-
cles to an infinite distance. It is therefore convenient to think of the absolute value
of the potential energy as the binding energy of the system. If the external agent
supplies an energy greater than the binding energy, the excess energy of the sys-
tem will be in the form of kinetic energy when the particles are at an infinite sepa-
ration.

We can extend this concept to three or more particles. In this case, the total
potential energy of the system is the sum over all pairs of particles.5 Each pair con-
tributes a term of the form given by Equation 14.15. For example, if the system
contains three particles, as in Figure 14.15, we find that

(14.16)

The absolute value of Utotal represents the work needed to separate the particles by
an infinite distance.

U total � U12 � U13 � U23 � �G � m1m2

r12
�

m1m3

r13
�

m2m3

r23
�

U � �
Gm1m2

r

r � R Er � R E .
r � R E .

U � �
GMEm

r

ri � �,Ui � 0

Uf � Ui � �GMEm� 1
rf

�
1
ri
�

Uf � Ui � GMEm �rf

ri

 
dr
r 2 � GMEm��

1
r �

rf

ri

5 The fact that potential energy terms can be added for all pairs of particles stems from the experimen-
tal fact that gravitational forces obey the superposition principle.

Gravitational potential energy of
the Earth–particle system for
r � R E

Change in gravitational potential
energy

Earth

R E

O

GME m

U

r

R E

ME

–

Figure 14.14 Graph of the gravi-
tational potential energy U versus r
for a particle above the Earth’s sur-
face. The potential energy goes to
zero as r approaches infinity.

1

2

3r 13

r 12 r 23

Figure 14.15 Three interacting
particles.
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ENERGY CONSIDERATIONS IN PLANETARY
AND SATELLITE MOTION

Consider a body of mass m moving with a speed v in the vicinity of a massive body
of mass M, where The system might be a planet moving around the Sun, a
satellite in orbit around the Earth, or a comet making a one-time flyby of the Sun.
If we assume that the body of mass M is at rest in an inertial reference frame, then
the total mechanical energy E of the two-body system when the bodies are sepa-
rated by a distance r is the sum of the kinetic energy of the body of mass m and the
potential energy of the system, given by Equation 14.15:6

(14.17)

This equation shows that E may be positive, negative, or zero, depending on the
value of v. However, for a bound system,7 such as the Earth–Sun system, E is neces-
sarily less than zero because we have chosen the convention that as 

We can easily establish that for the system consisting of a body of mass m
moving in a circular orbit about a body of mass (Fig. 14.16). Newton’s sec-
ond law applied to the body of mass m gives

GMm
r 2 � ma �

mv2

r

M W m
E � 0

r : �.U : 0

E � 1
2mv2 �

GMm
r

E � K � U 

M W m.

14.8

The Change in Potential EnergyEXAMPLE 14.6
If both the initial and final positions of the particle are close
to the Earth’s surface, then and (Re-
call that r is measured from the center of the Earth.) There-
fore, the change in potential energy becomes

where we have used the fact that (Eq. 14.5).
Keep in mind that the reference point is arbitrary because it
is the change in potential energy that is meaningful.

g � GME/R E 

2

U �
GMEm

R E 

2  y � mg y

rir f � R E 

2.rf � ri � y
A particle of mass m is displaced through a small vertical dis-
tance y near the Earth’s surface. Show that in this situation
the general expression for the change in gravitational poten-
tial energy given by Equation 14.13 reduces to the familiar re-
lationship 

Solution We can express Equation 14.13 in the form

U � �GMEm � 1
rf

�
1
ri
� � GMEm � rf � ri

r i r f
�

U � mg y.

6 You might recognize that we have ignored the acceleration and kinetic energy of the larger body. To
see that this simplification is reasonable, consider an object of mass m falling toward the Earth. Because
the center of mass of the object–Earth system is effectively stationary, it follows that Thus,
the Earth acquires a kinetic energy equal to

where K is the kinetic energy of the object. Because this result shows that the kinetic energy
of the Earth is negligible.
7 Of the three examples provided at the beginning of this section, the planet moving around the Sun
and a satellite in orbit around the Earth are bound systems—the Earth will always stay near the Sun,
and the satellite will always stay near the Earth. The one-time comet flyby represents an unbound
system—the comet interacts once with the Sun but is not bound to it. Thus, in theory the comet can
move infinitely far away from the Sun.

ME W m,

1
2ME vE 

2 � 1
2 

m2

ME
 v2 �

m
ME

 K

mv � ME vE .

r

M

m

v

Figure 14.16 A body of mass m
moving in a circular orbit about a
much larger body of mass M.
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Multiplying both sides by r and dividing by 2 gives

(14.18)

Substituting this into Equation 14.17, we obtain

(14.19)

This result clearly shows that the total mechanical energy is negative in the
case of circular orbits. Note that the kinetic energy is positive and equal to
one-half the absolute value of the potential energy. The absolute value of E is
also equal to the binding energy of the system, because this amount of energy
must be provided to the system to move the two masses infinitely far apart.

The total mechanical energy is also negative in the case of elliptical orbits. The
expression for E for elliptical orbits is the same as Equation 14.19 with r replaced
by the semimajor axis length a. Furthermore, the total energy is constant if we as-
sume that the system is isolated. Therefore, as the body of mass m moves from P to
Q in Figure 14.13, the total energy remains constant and Equation 14.17 gives

(14.20)

Combining this statement of energy conservation with our earlier discussion of
conservation of angular momentum, we see that both the total energy and the
total angular momentum of a gravitationally bound, two-body system are
constants of the motion.

E � 1
2mvi 

2 �
GMm

ri
� 1

2mvf 

2 �
GMm

rf

E � �
GMm

2r
  

E �
GMm

2r
�

GMm
r

1
2mv2 �

GMm
2r

Changing the Orbit of a SatelliteEXAMPLE 14.7
We must also determine the initial radius (not the altitude

above the Earth’s surface) of the satellite’s orbit when it was
still in the shuttle’s cargo bay. This is simply

Now, applying Equation 14.19, we obtain, for the total initial
and final energies,

The energy required from the engine to boost the satellite is

1.19 � 1010 J�

� � 1
4.23 � 107 m

�
1

6.65 � 106 m �
 � �

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)(470 kg)
2

Eengine � Ef � Ei � �
GMEm

2
 � 1

R f
�

1
R i

� 

Ei � �
GMEm

2R i
  Ef � �

GMEm
2R f

R E � 280 km � 6.65 � 106 m � R i

The space shuttle releases a 470-kg communications satellite
while in an orbit that is 280 km above the surface of the
Earth. A rocket engine on the satellite boosts it into a geosyn-
chronous orbit, which is an orbit in which the satellite stays
directly over a single location on the Earth. How much en-
ergy did the engine have to provide?

Solution First we must determine the radius of a geosyn-
chronous orbit. Then we can calculate the change in energy
needed to boost the satellite into orbit.

The period of the orbit T must be one day (86 400 s), so
that the satellite travels once around the Earth in the same
time that the Earth spins once on its axis. Knowing the pe-
riod, we can then apply Kepler’s third law (Eq. 14.7) to find
the radius, once we replace KS with 

This is a little more than 26 000 mi above the Earth’s surface. 

 r � √3 T 2

K E
� √3 (86 400 s)2

9.89 � 10�14 s2/m3 � 4.23 � 107 m � R f

T 2 � K Er 3 

9.89 � 10�14 s2/m3:
K E � 4�2/GME �

Total energy for circular orbits
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Escape Speed

Suppose an object of mass m is projected vertically upward from the Earth’s sur-
face with an initial speed vi , as illustrated in Figure 14.17. We can use energy con-
siderations to find the minimum value of the initial speed needed to allow the ob-
ject to escape the Earth’s gravitational field. Equation 14.17 gives the total energy
of the object at any point. At the surface of the Earth, and 
When the object reaches its maximum altitude, and Be-
cause the total energy of the system is constant, substituting these conditions into
Equation 14.20 gives

Solving for gives

(14.21)

Therefore, if the initial speed is known, this expression can be used to calculate
the maximum altitude h because we know that

We are now in a position to calculate escape speed, which is the minimum
speed the object must have at the Earth’s surface in order to escape from the influ-
ence of the Earth’s gravitational field. Traveling at this minimum speed, the object
continues to move farther and farther away from the Earth as its speed asymptoti-
cally approaches zero. Letting in Equation 14.21 and taking , we
obtain

(14.22)

Note that this expression for vesc is independent of the mass of the object. In 
other words, a spacecraft has the same escape speed as a molecule. Further-
more, the result is independent of the direction of the velocity and ignores air 
resistance.

If the object is given an initial speed equal to vesc , its total energy is equal to
zero. This can be seen by noting that when the object’s kinetic energy and
its potential energy are both zero. If vi is greater than vesc , the total energy is
greater than zero and the object has some residual kinetic energy as r : �.

r : �,

vesc � √ 2GME

R E

vi � vescrmax : �

h � rmax � R E

vi 

2 � 2GME � 1
R E

�
1

rmax
�

vi 

2

1
2mvi 

2 �
GMEm

R E
� �

GMEm
rmax

r � rf � rmax .v � vf � 0
r � ri � R E .v � vi

This is the energy equivalent of 89 gal of gasoline. NASA en-
gineers must account for the changing mass of the spacecraft
as it ejects burned fuel, something we have not done here.
Would you expect the calculation that includes the effect of
this changing mass to yield a greater or lesser amount of en-
ergy required from the engine?

If we wish to determine how the energy is distributed 
after the engine is fired, we find from Equation 14.18 
that the change in kinetic energy is 

(a decrease),(GMEm/2)(1/R f � 1/R i) � �1.19 � 1010 J
K �

and the corresponding change in potential energy is
(an increase).

Thus, the change in mechanical energy of the system is
as we already calculated.

The firing of the engine results in an increase in the total me-
chanical energy of the system. Because an increase in poten-
tial energy is accompanied by a decrease in kinetic energy, we
conclude that the speed of an orbiting satellite decreases as
its altitude increases.

1.19 � 1010 J,E � K � U �

U � �GMEm(1/R f � 1/R i) � 2.38 � 1010 J

h

m

v i

rmax

vf = 0

M E

R E

Figure 14.17 An object of mass
m projected upward from the
Earth’s surface with an initial speed
vi reaches a maximum altitude h.

Escape speed
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Equations 14.21 and 14.22 can be applied to objects projected from any
planet. That is, in general, the escape speed from the surface of any planet of mass
M and radius R is

Escape speeds for the planets, the Moon, and the Sun are provided in Table
14.3. Note that the values vary from 1.1 km/s for Pluto to about 618 km/s for the
Sun. These results, together with some ideas from the kinetic theory of gases (see
Chapter 21), explain why some planets have atmospheres and others do not. As we
shall see later, a gas molecule has an average kinetic energy that depends on the
temperature of the gas. Hence, lighter molecules, such as hydrogen and helium,
have a higher average speed than heavier species at the same temperature. When
the average speed of the lighter molecules is not much less than the escape speed
of a planet, a significant fraction of them have a chance to escape from the planet.

This mechanism also explains why the Earth does not retain hydrogen mole-
cules and helium atoms in its atmosphere but does retain heavier molecules, such
as oxygen and nitrogen. On the other hand, the very large escape speed for
Jupiter enables that planet to retain hydrogen, the primary constituent of its at-
mosphere.

If you were a space prospector and discovered gold on an asteroid, it probably would not be
a good idea to jump up and down in excitement over your find. Why?

Figure 14.18 is a drawing by Newton showing the path of a stone thrown from a mountain-
top. He shows the stone landing farther and farther away when thrown at higher and higher
speeds (at points D, E, F, and G), until finally it is thrown all the way around the Earth. Why
didn’t Newton show the stone landing at B and A before it was going fast enough to com-
plete an orbit?

Quick Quiz 14.3

Quick Quiz 14.2

vesc � √ 2GM
R

Escape Speed of a RocketEXAMPLE 14.8

This corresponds to about 25 000 mi/h.
The kinetic energy of the spacecraft is

This is equivalent to about 2 300 gal of gasoline.

3.14 � 1011 J�

K � 1
2mv2

esc � 1
2(5.00 � 103 kg)(1.12 � 104 m/s)2

1.12 � 104 m/s�
Calculate the escape speed from the Earth for a 5 000-kg
spacecraft, and determine the kinetic energy it must have at
the Earth’s surface in order to escape the Earth’s gravita-
tional field.

Solution Using Equation 14.22 gives

 � √ 2(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)
6.37 � 106 m

vesc � √ 2GME

R E
 

TABLE 14.3
Escape Speeds from the
Surfaces of the Planets,
Moon, and Sun

Body vesc (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Moon 2.3
Mars 5.0
Jupiter 60
Saturn 36
Uranus 22
Neptune 24
Pluto 1.1
Sun 618
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Optional Section

THE GRAVITATIONAL FORCE BETWEEN AN
EXTENDED OBJECT AND A PARTICLE

We have emphasized that the law of universal gravitation given by Equation 14.3 is
valid only if the interacting objects are treated as particles. In view of this, how can
we calculate the force between a particle and an object having finite dimensions?
This is accomplished by treating the extended object as a collection of particles
and making use of integral calculus. We first evaluate the potential energy func-
tion, and then calculate the gravitational force from that function.

We obtain the potential energy associated with a system consisting of a particle
of mass m and an extended object of mass M by dividing the object into many ele-
ments, each having a mass Mi (Fig. 14.19). The potential energy associated with
the system consisting of any one element and the particle is 
where ri is the distance from the particle to the element Mi . The total potential
energy of the overall system is obtained by taking the sum over all elements as 
Mi : 0. In this limit, we can express U in integral form as

(14.23)

Once U has been evaluated, we obtain the force exerted by the extended object
on the particle by taking the negative derivative of this scalar function (see Section
8.6). If the extended object has spherical symmetry, the function U depends only
on r, and the force is given by � dU/dr. We treat this situation in Section 14.10. In
principle, one can evaluate U for any geometry; however, the integration can be
cumbersome.

An alternative approach to evaluating the gravitational force between a parti-
cle and an extended object is to perform a vector sum over all mass elements of
the object. Using the procedure outlined in evaluating U and the law of universal
gravitation in the form shown in Equation 14.3, we obtain, for the total force ex-
erted on the particle

(14.24)

where is a unit vector directed from the element dM toward the particle (see Fig.
14.19) and the minus sign indicates that the direction of the force is opposite that
of This procedure is not always recommended because working with a vector
function is more difficult than working with the scalar potential energy function.
However, if the geometry is simple, as in the following example, the evaluation of
F can be straightforward.

r̂.

r̂

Fg � �Gm � 
dM
r 2  r̂

U � �Gm � 
dM
r

U � �Gm Mi/ri ,

14.9

Figure 14.18 “The greater the velocity . . . with which [a
stone] is projected, the farther it goes before it falls to the Earth.
We may therefore suppose the velocity to be so increased, that it
would describe an arc of 1, 2, 5, 10, 100, 1000 miles before it ar-
rived at the Earth, till at last, exceeding the limits of the Earth, it
should pass into space without touching.” Sir Isaac Newton, System
of the World.

M

∆Mi

r i

m

r̂

Figure 14.19 A particle of mass
m interacting with an extended ob-
ject of mass M. The total gravita-
tional force exerted by the object
on the particle can be obtained by
dividing the object into numerous
elements, each having a mass Mi ,
and then taking a vector sum over
the forces exerted by all elements.

Total force exerted on a particle by
an extended object



444 C H A P T E R  1 4 The Law of Gravity

Optional Section

THE GRAVITATIONAL FORCE BETWEEN A
PARTICLE AND A SPHERICAL MASS

We have already stated that a large sphere attracts a particle outside it as if the to-
tal mass of the sphere were concentrated at its center. We now describe the force
acting on a particle when the extended object is either a spherical shell or a solid
sphere, and then apply these facts to some interesting systems.

Spherical Shell

Case 1. If a particle of mass m is located outside a spherical shell of mass M at,
for instance, point P in Figure 14.21a, the shell attracts the particle as though the
mass of the shell were concentrated at its center. We can show this, as Newton did,
with integral calculus. Thus, as far as the gravitational force acting on a particle
outside the shell is concerned, a spherical shell acts no differently from the solid
spherical distributions of mass we have seen.

Case 2. If the particle is located inside the shell (at point P in Fig. 14.21b), the
gravitational force acting on it can be shown to be zero.

We can express these two important results in the following way:

(14.25a)

(14.25b)

The gravitational force as a function of the distance r is plotted in Figure 14.21c. 

Fg � 0  for r � R 

Fg � �
GMm

r 2  r̂  for r � R

14.10

Gravitational Force Between a Particle and a BarEXAMPLE 14.9
of lengths dx/L, and so In this problem, the
variable r in Equation 14.24 is the distance x shown in Figure
14.20, the unit vector is and the force acting on the
particle is to the right; therefore, Equation 14.24 gives us

We see that the force exerted on the particle is in the positive
x direction, which is what we expect because the gravitational
force is attractive.

Note that in the limit L : 0, the force varies as 1/h2,
which is what we expect for the force between two point
masses. Furthermore, if the force also varies as 1/h2.
This can be seen by noting that the denominator of the ex-
pression for Fg can be expressed in the form 
which is approximately equal to h2 when Thus, when
bodies are separated by distances that are great relative to
their characteristic dimensions, they behave like particles.

h W L .
h2(1 �  L/h),

h W L,

GmM
h(h � L)

 i Fg �
GmM

L
 ��

1
x �

h�L

h
 i �

Fg � �Gm �h�L

h
 
Mdx

L
 

1
x2  (� i) � Gm 

M
L

 �h�L

h
 
dx
x2  i

r̂ � � i,r̂

dM � (M/L) dx.The left end of a homogeneous bar of length L and mass M
is at a distance h from a particle of mass m (Fig. 14.20). Calcu-
late the total gravitational force exerted by the bar on the
particle.

Solution The arbitrary segment of the bar of length dx
has a mass dM. Because the mass per unit length is constant,
it follows that the ratio of masses dM/M is equal to the ratio

Force on a particle due to a
spherical shell

x
O

mm

y

h L

dx

x

Figure 14.20 The gravitational force exerted by the bar on the
particle is directed to the right. Note that the bar is not equivalent to
a particle of mass M located at the center of mass of the bar.
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The shell does not act as a gravitational shield, which means that a particle in-
side a shell may experience forces exerted by bodies outside the shell.

Solid Sphere

Case 1. If a particle of mass m is located outside a homogeneous solid sphere of
mass M (at point P in Fig. 14.22), the sphere attracts the particle as though the

(a)

M Q

Q ′

P

m
FQ ′P

FQP

M

P m

FTop, P

FBottom, P

(b)

(c)

O
r

R

Fg

Figure 14.21 (a) The nonradial components of the gravitational forces exerted on a particle of
mass m located at point P outside a spherical shell of mass M cancel out. (b) The spherical shell
can be broken into rings. Even though point P is closer to the top ring than to the bottom ring,
the bottom ring is larger, and the gravitational forces exerted on the particle at P by the matter
in the two rings cancel each other. Thus, for a particle located at any point P inside the shell,
there is no gravitational force exerted on the particle by the mass M of the shell. (c) The magni-
tude of the gravitational force versus the radial distance r from the center of the shell.
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mass of the sphere were concentrated at its center. We have used this notion at sev-
eral places in this chapter already, and we can argue it from Equation 14.25a. A
solid sphere can be considered to be a collection of concentric spherical shells.
The masses of all of the shells can be interpreted as being concentrated at their
common center, and the gravitational force is equivalent to that due to a particle
of mass M located at that center.

Case 2. If a particle of mass m is located inside a homogeneous solid sphere of
mass M (at point Q in Fig. 14.22), the gravitational force acting on it is due only to
the mass M� contained within the sphere of radius shown in Figure 14.22.
In other words,

(14.26a)

(14.26b)

This also follows from spherical-shell Case 1 because the part of the sphere that is

Fg � �
GmM �

r 2  r̂  for r � R

Fg � �
GmM

r 2  r̂  for r � R

r � R,

Force on a particle due to a solid
sphere

m

P

R

M

Q
r

M ′

r

RO

Fg

Fg

Figure 14.22 The gravitational force acting on a particle when it is outside a uniform solid
sphere is GMm/r2 and is directed toward the center of the sphere. The gravitational force acting
on the particle when it is inside such a sphere is proportional to r and goes to zero at the center.
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farther from the center than Q can be treated as a series of concentric spherical
shells that do not exert a net force on the particle because the particle is inside
them. Because the sphere is assumed to have a uniform density, it follows that the
ratio of masses M�/M is equal to the ratio of volumes V �/V, where V is the total vol-
ume of the sphere and V � is the volume within the sphere of radius r only:

Solving this equation for M� and substituting the value obtained into Equation
14.26b, we have

(14.27)

This equation tells us that at the center of the solid sphere, where the gravi-
tational force goes to zero, as we intuitively expect. The force as a function of r is
plotted in Figure 14.22.

Case 3. If a particle is located inside a solid sphere having a density � that is
spherically symmetric but not uniform, then M� in Equation 14.26b is given by an
integral of the form where the integration is taken over the volume
contained within the sphere of radius r in Figure 14.22. We can evaluate this inte-
gral if the radial variation of � is given. In this case, we take the volume element dV
as the volume of a spherical shell of radius r and thickness dr, and thus

For example, if � where A is a constant, it is left to a problem
(Problem 63) to show that 

Hence, we see from Equation 14.26b that F is proportional to r2 in this case and is
zero at the center.

A particle is projected through a small hole into the interior of a spherical shell. Describe

Quick Quiz 14.4

M� � �Ar 4.
� Ar,dV � 4�r 2 dr.

M� � � � dV,

r � 0,

Fg � �
GmM

R3  r r̂  for r � R

M�

M
�

V�

V
�

4
3�r 3

4
3 �R3 �

r 3

R3

A Free Ride, Thanks to GravityEXAMPLE 14.10
The y component of the gravitational force on the object

is balanced by the normal force exerted by the tunnel wall,
and the x component is

Because the x coordinate of the object is we can
write

Applying Newton’s second law to the motion along the x di-
rection gives

Fx � �
GmME

R E 

3  x � max

Fx � �
GmME

R E 

3  x

x � r cos �,

Fx � �
GmME

R E 

3  r cos �

An object of mass m moves in a smooth, straight tunnel dug
between two points on the Earth’s surface (Fig. 14.23). Show
that the object moves with simple harmonic motion, and find
the period of its motion. Assume that the Earth’s density is
uniform.

Solution The gravitational force exerted on the object
acts toward the Earth’s center and is given by Equation 14.27:

We receive our first indication that this force should result in
simple harmonic motion by comparing it to Hooke’s law, first
seen in Section 7.3. Because the gravitational force on the ob-
ject is linearly proportional to the displacement, the object
experiences a Hooke’s law force.

Fg � �
GmM

R3  r r̂
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the motion of the particle inside the shell.

SUMMARY

Newton’s law of universal gravitation states that the gravitational force of at-
traction between any two particles of masses m1 and m2 separated by a distance r
has the magnitude

(14.1)

where is the universal gravitational constant. This
equation enables us to calculate the force of attraction between masses under a
wide variety of circumstances.

An object at a distance h above the Earth’s surface experiences a gravitational
force of magnitude mg�, where g� is the free-fall acceleration at that elevation:

(14.6)g � �
GME

r 2 �
GME

(R E � h)2

G � 6.673 � 10�11 N�m2/kg2

Fg � G 
m1m2

r 2

y

x

θ

x

O

r

mFg

Figure 14.23 An object moves along a tunnel dug through the
Earth. The component of the gravitational force Fg along the x axis is
the driving force for the motion. Note that this component always
acts toward O.

Solving for ax , we obtain

If we use the symbol �2 for the coefficient of x —GME /RE
3 �

— we see that

an expression that matches the mathematical form of Equa-
tion 13.9, which gives the acceleration of a particle in simple
harmonic motion: Therefore, Equation (1),ax � ��2x.

(1)  ax � ��2x

�2

ax � �
GME

R E 

3  x

which we have derived for the acceleration of our object in
the tunnel, is the acceleration equation for simple harmonic
motion at angular speed � with

Thus, the object in the tunnel moves in the same way as a
block hanging from a spring! The period of oscillation is

This period is the same as that of a satellite traveling in a cir-
cular orbit just above the Earth’s surface (ignoring any trees,
buildings, or other objects in the way). Note that the result is
independent of the length of the tunnel.

A proposal has been made to operate a mass-transit system
between any two cities, using the principle described in this
example. A one-way trip would take about 42 min. A more
precise calculation of the motion must account for the fact
that the Earth’s density is not uniform. More important,
there are many practical problems to consider. For instance,
it would be impossible to achieve a frictionless tunnel, and so
some auxiliary power source would be required. Can you
think of other problems?

84.3 min � 5.06 � 103 s �

 � 2� √ (6.37 � 106 m)3

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)

T �
2�

�
� 2� √ R E 

3

GME
 

� � √ GME

R E 

3
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In this expression, ME is the mass of the Earth and RE is its radius. Thus, the weight
of an object decreases as the object moves away from the Earth’s surface.

Kepler’s laws of planetary motion state that

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal areas in

equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of the

semimajor axis of the elliptical orbit.

Kepler’s third law can be expressed as

(14.7)

where MS is the mass of the Sun and r is the orbital radius. For elliptical orbits,
Equation 14.7 is valid if r is replaced by the semimajor axis a. Most planets have
nearly circular orbits around the Sun. 

The gravitational field at a point in space equals the gravitational force expe-
rienced by any test particle located at that point divided by the mass of the test 
particle:

(14.10)

The gravitational force is conservative, and therefore a potential energy func-
tion can be defined. The gravitational potential energy associated with two par-
ticles separated by a distance r is

(14.15)

where U is taken to be zero as The total potential energy for a system of
particles is the sum of energies for all pairs of particles, with each pair represented
by a term of the form given by Equation 14.15.

If an isolated system consists of a particle of mass m moving with a speed v in
the vicinity of a massive body of mass M, the total energy E of the system is the sum
of the kinetic and potential energies:

(14.17)

The total energy is a constant of the motion. If the particle moves in a circular or-
bit of radius r around the massive body and if the total energy of the sys-
tem is

(14.19)

The total energy is negative for any bound system.
The escape speed for an object projected from the surface of the Earth is

(14.22)vesc � √ 2GME

R E

E � �
GMm

2r

M W m,

E � 1
2mv2�

GMm
r

r : �.

U � �
Gm1m2

r

g �
Fg

m

T 2 � � 4�2

GMS
�r 3
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PROBLEMS

mote ones) can the 50.0-kg mass be placed so as to ex-
perience a net force of zero?

3. Three equal masses are located at three corners of a
square of edge length �, as shown in Figure P14.3. Find
the gravitational field g at the fourth corner due to
these masses.

4. Two objects attract each other with a gravitational force
of magnitude 1.00 � 10�8 N when separated by 
20.0 cm. If the total mass of the two objects is 5.00 kg,
what is the mass of each?

5. Three uniform spheres of masses 2.00 kg, 4.00 kg, and
6.00 kg are placed at the corners of a right triangle, as
illustrated in Figure P14.5. Calculate the resultant gravi-

Section 14.1 Newton’s Law of Universal Gravitation
Section 14.2 Measuring the Gravitational Constant
Section 14.3 Free-Fall Acceleration and the 
Gravitational Force

1. Determine the order of magnitude of the gravitational
force that you exert on another person 2 m away. In
your solution, state the quantities that you measure or
estimate and their values.

2. A 200-kg mass and a 500-kg mass are separated by 
0.400 m. (a) Find the net gravitational force exerted by
these masses on a 50.0-kg mass placed midway between
them. (b) At what position (other than infinitely re-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

QUESTIONS

tional force is acting on the planet. What is the net work
done on a planet during each revolution as it moves
around the Sun in an elliptical orbit?

11. Explain why the force exerted on a particle by a uniform
sphere must be directed toward the center of the sphere.
Would this be the case if the mass distribution of the
sphere were not spherically symmetric?

12. Neglecting the density variation of the Earth, what would
be the period of a particle moving in a smooth hole dug
between opposite points on the Earth’s surface, passing
through its center?

13. At what position in its elliptical orbit is the speed of a
planet a maximum? At what position is the speed a mini-
mum?

14. If you were given the mass and radius of planet X, how
would you calculate the free-fall acceleration on the sur-
face of this planet?

15. If a hole could be dug to the center of the Earth, do you
think that the force on a mass m would still obey Equa-
tion 14.1 there? What do you think the force on m would
be at the center of the Earth?

16. In his 1798 experiment, Cavendish was said to have
“weighed the Earth.” Explain this statement.

17. The gravitational force exerted on the Voyager spacecraft
by Jupiter accelerated it toward escape speed from the
Sun. How is this possible?

18. How would you find the mass of the Moon?
19. The Apollo 13 spaceship developed trouble in the oxygen

system about halfway to the Moon. Why did the spaceship
continue on around the Moon and then return home,
rather than immediately turn back to Earth?

1. Use Kepler’s second law to convince yourself that the
Earth must move faster in its orbit during December,
when it is closest to the Sun, than during June, when it is
farthest from the Sun.

2. The gravitational force that the Sun exerts on the Moon
is about twice as great as the gravitational force that the
Earth exerts on the Moon. Why doesn’t the Sun pull the
Moon away from the Earth during a total eclipse of the
Sun?

3. If a system consists of five particles, how many terms ap-
pear in the expression for the total potential energy? How
many terms appear if the system consists of N particles?

4. Is it possible to calculate the potential energy function as-
sociated with a particle and an extended body without
knowing the geometry or mass distribution of the ex-
tended body?

5. Does the escape speed of a rocket depend on its mass?
Explain.

6. Compare the energies required to reach the Moon for a
105-kg spacecraft and a 103-kg satellite.

7. Explain why it takes more fuel for a spacecraft to travel
from the Earth to the Moon than for the return trip. Esti-
mate the difference.

8. Why don’t we put a geosynchronous weather satellite in
orbit around the 45th parallel? Wouldn’t this be more
useful for the United States than such a satellite in orbit
around the equator?

9. Is the potential energy associated with the Earth–Moon
system greater than, less than, or equal to the kinetic en-
ergy of the Moon relative to the Earth?

10. Explain why no work is done on a planet as it moves in a
circular orbit around the Sun, even though a gravita-
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tational force on the 4.00-kg mass, assuming that the
spheres are isolated from the rest of the Universe.

6. The free-fall acceleration on the surface of the Moon is
about one-sixth that on the surface of the Earth. If the
radius of the Moon is about 0.250RE , find the ratio of
their average densities, �Moon/�Earth .

7. During a solar eclipse, the Moon, Earth, and Sun all lie
on the same line, with the Moon between the Earth and
the Sun. (a) What force is exerted by the Sun on the
Moon? (b) What force is exerted by the Earth on the
Moon? (c) What force is exerted by the Sun on the
Earth?

8. The center-to-center distance between the Earth and
the Moon is 384 400 km. The Moon completes an orbit
in 27.3 days. (a) Determine the Moon’s orbital speed.
(b) If gravity were switched off, the Moon would move
along a straight line tangent to its orbit, as described by
Newton’s first law. In its actual orbit in 1.00 s, how far
does the Moon fall below the tangent line and toward
the Earth?

9. When a falling meteoroid is at a distance above the
Earth’s surface of 3.00 times the Earth’s radius, what is
its acceleration due to the Earth’s gravity?

10. Two ocean liners, each with a mass of 40 000 metric
tons, are moving on parallel courses, 100 m apart. What
is the magnitude of the acceleration of one of the liners
toward the other due to their mutual gravitational at-
traction? (Treat the ships as point masses.)

11. A student proposes to measure the gravitational con-
stant G by suspending two spherical masses from the
ceiling of a tall cathedral and measuring the deflection
of the cables from the vertical. Draw a free-body dia-
gram of one of the masses. If two 100.0-kg masses are
suspended at the end of 45.00-m-long cables, and the
cables are attached to the ceiling 1.000 m apart, what is
the separation of the masses?

12. On the way to the Moon, the Apollo astronauts reached
a point where the Moon’s gravitational pull became
stronger than the Earth’s. (a) Determine the distance of
this point from the center of the Earth. (b) What is the
acceleration due to the Earth’s gravity at this point?

Section 14.4 Kepler’s Laws
Section 14.5 The Law of Gravity and the 
Motion of Planets

13. A particle of mass m moves along a straight line with
constant speed in the x direction, a distance b from the
x axis (Fig. P14.13). Show that Kepler’s second law is
satisfied by demonstrating that the two shaded triangles
in the figure have the same area when t4 � t3 � t2 � t1 .

�

O
xm

m�

y

m

y

2.00 kg

F24

(0, 3.00) m

x
O

6.00 kg

(– 4.00, 0) m

F64 4.00 kg

x

t 1 t 2 t 3 t 4

y

b

O

v0

m

Figure P14.3

Figure P14.5

Figure P14.13

14. A communications satellite in geosynchronous orbit re-
mains above a single point on the Earth’s equator as the
planet rotates on its axis. (a) Calculate the radius of its
orbit. (b) The satellite relays a radio signal from a trans-
mitter near the north pole to a receiver, also near the
north pole. Traveling at the speed of light, how long is
the radio wave in transit?

15. Plaskett’s binary system consists of two stars that revolve
in a circular orbit about a center of mass midway be-
tween them. This means that the masses of the two stars
are equal (Fig. P14.15). If the orbital velocity of each
star is 220 km/s and the orbital period of each is 
14.4 days, find the mass M of each star. (For compari-
son, the mass of our Sun is 1.99 � 1030 kg.)

16. Plaskett’s binary system consists of two stars that revolve
in a circular orbit about a center of gravity midway be-
tween them. This means that the masses of the two stars
are equal (see Fig. P14.15). If the orbital speed of each
star is v and the orbital period of each is T, find the
mass M of each star.

WEB



452 C H A P T E R  1 4 The Law of Gravity

17. The Explorer VIII satellite, placed into orbit November 3,
1960, to investigate the ionosphere, had the following
orbit parameters: perigee, 459 km; apogee, 2 289 km
(both distances above the Earth’s surface); and period,
112.7 min. Find the ratio vp /va of the speed at perigee
to that at apogee.

18. Comet Halley (Fig. P14.18) approaches the Sun to
within 0.570 AU, and its orbital period is 75.6 years (AU
is the symbol for astronomical unit, where 1 AU �
1.50 � 1011 m is the mean Earth–Sun distance). How
far from the Sun will Halley’s comet travel before it
starts its return journey?

20. Two planets, X and Y, travel counterclockwise in circular
orbits about a star, as shown in Figure P14.20. The radii
of their orbits are in the ratio 3:1. At some time, they
are aligned as in Figure P14.20a, making a straight line
with the star. During the next five years, the angular dis-
placement of planet X is 90.0°, as shown in Figure
P14.20b. Where is planet Y at this time?

WEB

Figure P14.15 Problems 15 and 16.

21. A synchronous satellite, which always remains above the
same point on a planet’s equator, is put in orbit around
Jupiter so that scientists can study the famous red spot.
Jupiter rotates once every 9.84 h. Use the data in Table
14.2 to find the altitude of the satellite.

22. Neutron stars are extremely dense objects that are
formed from the remnants of supernova explosions.
Many rotate very rapidly. Suppose that the mass of a cer-
tain spherical neutron star is twice the mass of the Sun
and that its radius is 10.0 km. Determine the greatest
possible angular speed it can have for the matter at the
surface of the star on its equator to be just held in orbit
by the gravitational force.

23. The Solar and Heliospheric Observatory (SOHO)
spacecraft has a special orbit, chosen so that its view of
the Sun is never eclipsed and it is always close enough
to the Earth to transmit data easily. It moves in a near-
circle around the Sun that is smaller than the Earth’s
circular orbit. Its period, however, is not less than 1 yr
but is just equal to 1 yr. It is always located between the
Earth and the Sun along the line joining them. Both ob-
jects exert gravitational forces on the observatory. Show
that the spacecraft’s distance from the Earth must be
between 1.47 � 109 m and 1.48 � 109 m. In 1772
Joseph Louis Lagrange determined theoretically the
special location that allows this orbit. The SOHO space-
craft took this position on February 14, 1996. (Hint: Use
data that are precise to four digits. The mass of the
Earth is 5.983 � 1024 kg.)

Section 14.6 The Gravitational Field
24. A spacecraft in the shape of a long cylinder has a length

of 100 m, and its mass with occupants is 1 000 kg. It has

19. Io, a satellite of Jupiter, has an orbital period of 
1.77 days and an orbital radius of 4.22 � 105 km. From
these data, determine the mass of Jupiter.

220 km/s

M

220 km/s

M

CM

Sun

0.570 AU

2a

x

(a)

Y X

Y

X

(b)

Figure P14.18

Figure P14.20
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strayed too close to a 1.0-m-radius black hole having a
mass 100 times that of the Sun (Fig. P14.24). The nose
of the spacecraft is pointing toward the center of the
black hole, and the distance between the nose and the
black hole is 10.0 km. (a) Determine the total force on
the spacecraft. (b) What is the difference in the gravita-
tional fields acting on the occupants in the nose of the
ship and on those in the rear of the ship, farthest from
the black hole?

25. Compute the magnitude and direction of the gravita-
tional field at a point P on the perpendicular bisector of
two equal masses separated by a distance 2a, as shown in
Figure P14.25.

equal to the radius of the Earth. Calculate (a) the aver-
age density of the white dwarf, (b) the acceleration due
to gravity at its surface, and (c) the gravitational poten-
tial energy associated with a 1.00-kg object at its surface.

30. At the Earth’s surface a projectile is launched straight
up at a speed of 10.0 km/s. To what height will it rise?
Ignore air resistance.

31. A system consists of three particles, each of mass 5.00 g,
located at the corners of an equilateral triangle with
sides of 30.0 cm. (a) Calculate the potential energy of
the system. (b) If the particles are released simultane-
ously, where will they collide?

32. How much work is done by the Moon’s gravitational
field as a 1 000-kg meteor comes in from outer space
and impacts the Moon’s surface?

Section 14.8 Energy Considerations in 
Planetary and Satellite Motion

33. A 500-kg satellite is in a circular orbit at an altitude of
500 km above the Earth’s surface. Because of air fric-
tion, the satellite is eventually brought to the Earth’s
surface, and it hits the Earth with a speed of 2.00 km/s.
How much energy was transformed to internal energy
by means of friction?

34. (a) What is the minimum speed, relative to the Sun, that
is necessary for a spacecraft to escape the Solar System if
it starts at the Earth’s orbit? (b) Voyager 1 achieved a max-
imum speed of 125 000 km/h on its way to photograph
Jupiter. Beyond what distance from the Sun is this speed
sufficient for a spacecraft to escape the Solar System?

35. A satellite with a mass of 200 kg is placed in Earth orbit
at a height of 200 km above the surface. (a) Assuming a
circular orbit, how long does the satellite take to com-
plete one orbit? (b) What is the satellite’s speed? 
(c) What is the minimum energy necessary to place this
satellite in orbit (assuming no air friction)?

36. A satellite of mass m is placed in Earth orbit at an altitude
h. (a) Assuming a circular orbit, how long does the satel-
lite take to complete one orbit? (b) What is the satellite’s
speed? (c) What is the minimum energy necessary to
place this satellite in orbit (assuming no air friction)?

37. A spaceship is fired from the Earth’s surface with an ini-
tial speed of 2.00 � 104 m/s. What will its speed be
when it is very far from the Earth? (Neglect friction.)

38. A 1 000-kg satellite orbits the Earth at a constant alti-
tude of 100 km. How much energy must be added to
the system to move the satellite into a circular orbit at
an altitude of 200 km?

39. A “treetop satellite” moves in a circular orbit just above
the surface of a planet, which is assumed to offer no air
resistance. Show that its orbital speed v and the escape
speed from the planet are related by the expression

40. The planet Uranus has a mass about 14 times the
Earth’s mass, and its radius is equal to about 3.7 Earth

vesc � √2v.

WEB

26. Find the gravitational field at a distance r along the axis
of a thin ring of mass M and radius a.

Section 14.7 Gravitational Potential Energy
Note: Assume that as 

27. A satellite of the Earth has a mass of 100 kg and is at an
altitude of 2.00 � 106 m. (a) What is the potential en-
ergy of the satellite–Earth system? (b) What is the mag-
nitude of the gravitational force exerted by the Earth
on the satellite? (c) What force does the satellite exert
on the Earth?

28. How much energy is required to move a 1 000-kg mass
from the Earth’s surface to an altitude twice the Earth’s
radius?

29. After our Sun exhausts its nuclear fuel, its ultimate fate
may be to collapse to a white-dwarf state, in which it has
approximately the same mass it has now but a radius

r : �.U � 0

10.0 km100 m

Black hole

a

M

Pr

M

Figure P14.24

Figure P14.25
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radii. (a) By setting up ratios with the corresponding
Earth values, find the acceleration due to gravity at the
cloud tops of Uranus. (b) Ignoring the rotation of the
planet, find the minimum escape speed from Uranus.

41. Determine the escape velocity for a rocket on the far
side of Ganymede, the largest of Jupiter’s moons. The
radius of Ganymede is 2.64 � 106 m, and its mass is
1.495 � 1023 kg. The mass of Jupiter is 1.90 � 1027 kg,
and the distance between Jupiter and Ganymede is
1.071 � 109 m. Be sure to include the gravitational ef-
fect due to Jupiter, but you may ignore the motions of
Jupiter and Ganymede as they revolve about their cen-
ter of mass (Fig. P14.41).

(Optional)
Section 14.10 The Gravitational Force Between 
a Particle and a Spherical Mass

46. (a) Show that the period calculated in Example 14.10
can be written as

where g is the free-fall acceleration on the surface of the
Earth. (b) What would this period be if tunnels were
made through the Moon? (c) What practical problem
regarding these tunnels on Earth would be removed if
they were built on the Moon?

47. A 500-kg uniform solid sphere has a radius of 0.400 m.
Find the magnitude of the gravitational force exerted
by the sphere on a 50.0-g particle located (a) 1.50 m
from the center of the sphere, (b) at the surface of the
sphere, and (c) 0.200 m from the center of the sphere.

48. A uniform solid sphere of mass m1 and radius R1 is in-
side and concentric with a spherical shell of mass m2
and radius R 2 (Fig. P14.48). Find the gravitational force
exerted by the spheres on a particle of mass m located
at (a) (b) and (c) where r is mea-
sured from the center of the spheres.

r � c,r � b,r � a,

T � 2�√ R E

g

42. In Robert Heinlein’s The Moon is a Harsh Mistress, the
colonial inhabitants of the Moon threaten to launch
rocks down onto the Earth if they are not given inde-
pendence (or at least representation). Assuming that a
rail gun could launch a rock of mass m at twice the lu-
nar escape speed, calculate the speed of the rock as it
enters the Earth’s atmosphere. (By lunar escape speed we
mean the speed required to escape entirely from a sta-
tionary Moon alone in the Universe.)

43. Derive an expression for the work required to move an
Earth satellite of mass m from a circular orbit of radius
2RE to one of radius 3RE .

(Optional)
Section 14.9 The Gravitational Force Between 
an Extended Object and a Particle

44. Consider two identical uniform rods of length L and
mass m lying along the same line and having their clos-
est points separated by a distance d (Fig. P14.44). Show
that the mutual gravitational force between these rods
has a magnitude

45. A uniform rod of mass M is in the shape of a semicircle
of radius R (Fig. P14.45). Calculate the force on a point
mass m placed at the center of the semicircle.

F �
Gm2

L2  ln � (L � d)2

d(2L � d) �

d
LL

mm

Ganymede

v

Jupiter

m 2

c

ba
R 2

R 1

m 1
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M

R

Figure P14.41

Figure P14.44

Figure P14.45

Figure P14.48
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ADDITIONAL PROBLEMS

49. Let gM represent the difference in the gravitational
fields produced by the Moon at the points on the
Earth’s surface nearest to and farthest from the Moon.
Find the fraction gM/g, where g is the Earth’s gravita-
tional field. (This difference is responsible for the oc-
currence of the lunar tides on the Earth.)

50. Two spheres having masses M and 2M and radii R and
3R, respectively, are released from rest when the dis-
tance between their centers is 12R. How fast will each
sphere be moving when they collide? Assume that the
two spheres interact only with each other.

51. In Larry Niven’s science-fiction novel Ringworld, a rigid
ring of material rotates about a star (Fig. P14.51). The
rotational speed of the ring is 1.25 � 106 m/s, and its
radius is 1.53 � 1011 m. (a) Show that the centripetal
acceleration of the inhabitants is 10.2 m/s2. (b) The in-
habitants of this ring world experience a normal con-
tact force n. Acting alone, this normal force would pro-
duce an inward acceleration of 9.90 m/s2. Additionally,
the star at the center of the ring exerts a gravitational
force on the ring and its inhabitants. The difference be-
tween the total acceleration and the acceleration pro-
vided by the normal force is due to the gravitational at-
traction of the central star. Show that the mass of the
star is approximately 1032 kg.

(c) Evaluate this difference for m, a typical
height for a two-story building.

53. A particle of mass m is located inside a uniform solid
sphere of radius R and mass M, at a distance r from its
center. (a) Show that the gravitational potential energy
of the system is 
(b) Write an expression for the amount of work done
by the gravitational force in bringing the particle from
the surface of the sphere to its center.

54. Voyagers 1 and 2 surveyed the surface of Jupiter’s moon
Io and photographed active volcanoes spewing liquid
sulfur to heights of 70 km above the surface of this
moon. Find the speed with which the liquid sulfur left
the volcano. Io’s mass is 8.9 � 1022 kg, and its radius is 
1 820 km.

55. As an astronaut, you observe a small planet to be spheri-
cal. After landing on the planet, you set off, walking al-
ways straight ahead, and find yourself returning to your
spacecraft from the opposite side after completing a lap
of 25.0 km. You hold a hammer and a falcon feather at
a height of 1.40 m, release them, and observe that they
fall together to the surface in 29.2 s. Determine the
mass of the planet.

56. A cylindrical habitat in space, 6.00 km in diameter and
30 km long, was proposed by G. K. O’Neill in 1974.
Such a habitat would have cities, land, and lakes on the
inside surface and air and clouds in the center. All of
these would be held in place by the rotation of the
cylinder about its long axis. How fast would the cylinder
have to rotate to imitate the Earth’s gravitational field at
the walls of the cylinder?

57. In introductory physics laboratories, a typical Cavendish
balance for measuring the gravitational constant G uses
lead spheres with masses of 1.50 kg and 15.0 g whose
centers are separated by about 4.50 cm. Calculate the
gravitational force between these spheres, treating each
as a point mass located at the center of the sphere.

58. Newton’s law of universal gravitation is valid for dis-
tances covering an enormous range, but it is thought to
fail for very small distances, where the structure of space
itself is uncertain. The crossover distance, far less than
the diameter of an atomic nucleus,  is called the Planck
length. It is determined by a combination of the con-
stants G, c, and h, where c is the speed of light in vac-
uum and h is Planck’s constant (introduced briefly in
Chapter 11 and discussed in greater detail in Chapter
40) with units of angular momentum. (a) Use dimen-
sional analysis to find a combination of these three uni-
versal constants that has units of length. (b) Determine
the order of magnitude of the Planck length. (Hint: You
will need to consider noninteger powers of the con-
stants.)

59. Show that the escape speed from the surface of a planet
of uniform density is directly proportional to the radius
of the planet.

60. (a) Suppose that the Earth (or another object) has den-
sity �(r), which can vary with radius but is spherically

U � (GmM/2R3)r 2 � 3GmM/2R.

h � 6.00

WEB

52. (a) Show that the rate of change of the free-fall acceler-
ation with distance above the Earth’s surface is

This rate of change over distance is called a gradient.
(b) If h is small compared to the radius of the Earth,
show that the difference in free-fall acceleration be-
tween two points separated by vertical distance h is
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Figure P14.51
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symmetric. Show that at any particular radius r inside
the Earth, the gravitational field strength g(r) will in-
crease as r increases, if and only if the density there ex-
ceeds 2/3 the average density of the portion of the
Earth inside the radius r. (b) The Earth as a whole has
an average density of 5.5 g/cm3, while the density at the
surface is 1.0 g/cm3 on the oceans and about 3 g/cm3

on land. What can you infer from this?
61. Two hypothetical planets of masses m1 and m2 and radii

r1 and r2 , respectively, are nearly at rest when they are
an infinite distance apart. Because of their gravitational
attraction, they head toward each other on a collision
course. (a) When their center-to-center separation is d,
find expressions for the speed of each planet and their
relative velocity. (b) Find the kinetic energy of each
planet just before they collide, if m1 � 2.00 � 1024 kg,
m2 � 8.00 � 1024 kg, r1 � 3.00 � 106 m, and r2 �
5.00 � 106 m. (Hint: Both energy and momentum are
conserved.)

62. The maximum distance from the Earth to the Sun (at
our aphelion) is 1.521 � 1011 m, and the distance of
closest approach (at perihelion) is 1.471 � 1011 m. If
the Earth’s orbital speed at perihelion is 30.27 km/s,
determine (a) the Earth’s orbital speed at aphelion, 
(b) the kinetic and potential energies at perihelion,
and (c) the kinetic and potential energies at aphelion.
Is the total energy constant? (Neglect the effect of the
Moon and other planets.)

63. A sphere of mass M and radius R has a nonuniform
density that varies with r, the distance from its center,
according to the expression � � Ar, for 0 � r � R. 
(a) What is the constant A in terms of M and R ? 
(b) Determine an expression for the force exerted on a
particle of mass m placed outside the sphere. (c) Deter-
mine an expression for the force exerted on the parti-
cle if it is inside the sphere. (Hint: See Section 14.10
and note that the distribution is spherically symmetric.)

64. (a) Determine the amount of work (in joules) that must
be done on a 100-kg payload to elevate it to a height of
1 000 km above the Earth’s surface. (b) Determine the
amount of additional work that is required to put the
payload into circular orbit at this elevation.

65. X-ray pulses from Cygnus X-1, a celestial x-ray source,
have been recorded during high-altitude rocket flights.
The signals can be interpreted as originating when a
blob of ionized matter orbits a black hole with a period
of 5.0 ms. If the blob is in a circular orbit about a black
hole whose mass is 20MSun , what is the orbital radius?

66. Studies of the relationship of the Sun to its galaxy—the
Milky Way—have revealed that the Sun is located near
the outer edge of the galactic disk, about 30 000
lightyears from the center. Furthermore, it has been
found that the Sun has an orbital speed of approxi-
mately 250 km/s around the galactic center. (a) What is
the period of the Sun’s galactic motion? (b) What is the
order of magnitude of the mass of the Milky Way
galaxy? Suppose that the galaxy is made mostly of stars,

of which the Sun is typical. What is the order of magni-
tude of the number of stars in the Milky Way?

67. The oldest artificial satellite in orbit is Vanguard I,
launched March 3, 1958. Its mass is 1.60 kg. In its initial
orbit, its minimum distance from the center of the
Earth was 7.02 Mm, and its speed at this perigee point
was 8.23 km/s. (a) Find its total energy. (b) Find the
magnitude of its angular momentum. (c) Find its speed
at apogee and its maximum (apogee) distance from the
center of the Earth. (d) Find the semimajor axis of its
orbit. (e) Determine its period.

68. A rocket is given an initial speed vertically upward of
at the surface of the Earth, which has radius R

and surface free-fall acceleration g. The rocket motors are
quickly cut off, and thereafter the rocket coasts under the
action of gravitational forces only. (Ignore atmospheric
friction and the Earth’s rotation.) Derive an expression
for the subsequent speed v as a function of the distance r
from the center of the Earth in terms of g, R, and r.

69. Two stars of masses M and m, separated by a distance d,
revolve in circular orbits about their center of mass
(Fig. P14.69). Show that each star has a period given by

(Hint: Apply Newton’s second law to each star, and note
that the center-of-mass condition requires that

where r1 � r2 � d.)Mr2 � mr1 ,

T 2 �
4�2d3

G(M � m)

vi � 2√Rg

WEB

Figure P14.69

CM v2
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v1
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r2
d

m

70. (a) A 5.00-kg mass is released 1.20 � 107 m from the
center of the Earth. It moves with what acceleration rel-
ative to the Earth? (b) A 2.00 � 1024 kg mass is released
1.20 � 107 m from the center of the Earth. It moves
with what acceleration relative to the Earth? Assume
that the objects behave as pairs of particles, isolated
from the rest of the Universe.

71. The acceleration of an object moving in the gravita-
tional field of the Earth is

a � �
GME

r 3 r



Answers to Quick Quizzes 457

ANSWERS TO QUICK QUIZZES

14.4 The gravitational force is zero inside the shell (Eq.
14.25b). Because the force on it is zero, the particle
moves with constant velocity in the direction of its origi-
nal motion outside the shell until it hits the wall oppo-
site the entry hole. Its path thereafter depends on the
nature of the collision and on the particle’s original di-
rection.

14.1 Kepler’s third law (Eq. 14.7), which applies to all the
planets, tells us that the period of a planet is propor-
tional to r3/2. Because Saturn and Jupiter are farther
from the Sun than the Earth is, they have longer peri-
ods. The Sun’s gravitational field is much weaker at Sat-
urn and Jupiter than it is at the Earth. Thus, these plan-
ets experience much less centripetal acceleration than
the Earth does, and they have correspondingly longer
periods.

14.2 The mass of the asteroid might be so small that you
would be able to exceed escape velocity by leg power
alone. You would jump up, but you would never come
back down!

14.3 Kepler’s first law applies not only to planets orbiting the
Sun but also to any relatively small object orbiting an-
other under the influence of gravity. Any elliptical path
that does not touch the Earth before reaching point G
will continue around the other side to point V in a com-
plete orbit (see figure in next column).

where r is the position vector directed from the center
of the Earth to the object. Choosing the origin at the
center of the Earth and assuming that the small object
is moving in the xy plane, we find that the rectangular
(cartesian) components of its acceleration are

Use a computer to set up and carry out a numerical pre-

ax � �
GMEx

(x2 � y2)3/2   ay � �
GMEy

(x2 � y2)3/2

diction of the motion of the object, according to Euler’s
method. Assume that the initial position of the object is

and where RE is the radius of the Earth.
Give the object an initial velocity of 5 000 m/s in the x
direction. The time increment should be made as small
as practical. Try 5 s. Plot the x and y coordinates of the
object as time goes on. Does the object hit the Earth?
Vary the initial velocity until you find a circular orbit.

y � 2R E ,x � 0
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Fluid Mechanics

Have you ever wondered why a tennis
ball is fuzzy and why a golf ball has dim-
ples? A “spitball” is an illegal baseball
pitch because it makes the ball act too
much like the fuzzy tennis ball or the dim-
pled golf ball. What principles of physics
govern the behavior of these three
pieces of sporting equipment (and also
keep airplanes in the sky)? (George

Semple)

P U Z Z L E RP U Z Z L E R

15.1 Pressure

15.2 Variation of Pressure with Depth

15.3 Pressure Measurements

15.4 Buoyant Forces and
Archimedes’s Principle

15.5 Fluid Dynamics

15.6 Streamlines and the Equation of
Continuity

15.7 Bernoulli’s Equation

15.8 (Optional) Other Applications of
Bernoulli’s Equation

C h a p t e r  O u t l i n e
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atter is normally classified as being in one of three states: solid, liquid, or
gas. From everyday experience, we know that a solid has a definite volume
and shape. A brick maintains its familiar shape and size day in and day out.

We also know that a liquid has a definite volume but no definite shape. Finally, we
know that an unconfined gas has neither a definite volume nor a definite shape.
These definitions help us picture the states of matter, but they are somewhat artifi-
cial. For example, asphalt and plastics are normally considered solids, but over
long periods of time they tend to flow like liquids. Likewise, most substances can
be a solid, a liquid, or a gas (or a combination of any of these), depending on the
temperature and pressure. In general, the time it takes a particular substance to
change its shape in response to an external force determines whether we treat the
substance as a solid, as a liquid, or as a gas.

A fluid is a collection of molecules that are randomly arranged and held to-
gether by weak cohesive forces and by forces exerted by the walls of a container.
Both liquids and gases are fluids.

In our treatment of the mechanics of fluids, we shall see that we do not need
to learn any new physical principles to explain such effects as the buoyant force
acting on a submerged object and the dynamic lift acting on an airplane wing.
First, we consider the mechanics of a fluid at rest—that is, fluid statics—and derive
an expression for the pressure exerted by a fluid as a function of its density and
depth. We then treat the mechanics of fluids in motion—that is, fluid dynamics.
We can describe a fluid in motion by using a model in which we make certain sim-
plifying assumptions. We use this model to analyze some situations of practical im-
portance. An analysis leading to Bernoulli’s equation enables us to determine rela-
tionships between the pressure, density, and velocity at every point in a fluid.

PRESSURE
Fluids do not sustain shearing stresses or tensile stresses; thus, the only stress that
can be exerted on an object submerged in a fluid is one that tends to compress
the object. In other words, the force exerted by a fluid on an object is always per-
pendicular to the surfaces of the object, as shown in Figure 15.1.

The pressure in a fluid can be measured with the device pictured in Figure
15.2. The device consists of an evacuated cylinder that encloses a light piston con-
nected to a spring. As the device is submerged in a fluid, the fluid presses on the
top of the piston and compresses the spring until the inward force exerted by the
fluid is balanced by the outward force exerted by the spring. The fluid pressure
can be measured directly if the spring is calibrated in advance. If F is the magni-
tude of the force exerted on the piston and A is the surface area of the piston,

15.1

M

F

Vacuum

A

Figure 15.1 At any point on the
surface of a submerged object, the
force exerted by the fluid is per-
pendicular to the surface of the ob-
ject. The force exerted by the fluid
on the walls of the container is per-
pendicular to the walls at all points.

Figure 15.2 A simple device for measuring the pressure exerted
by a fluid.
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then the pressure P of the fluid at the level to which the device has been sub-
merged is defined as the ratio F/A:

(15.1)

Note that pressure is a scalar quantity because it is proportional to the magnitude
of the force on the piston.

To define the pressure at a specific point, we consider a fluid acting on the de-
vice shown in Figure 15.2. If the force exerted by the fluid over an infinitesimal
surface element of area dA containing the point in question is dF, then the pres-
sure at that point is

(15.2)

As we shall see in the next section, the pressure exerted by a fluid varies with
depth. Therefore, to calculate the total force exerted on a flat wall of a container,
we must integrate Equation 15.2 over the surface area of the wall.

Because pressure is force per unit area, it has units of newtons per square me-
ter (N/m2) in the SI system. Another name for the SI unit of pressure is pascal
(Pa):

(15.3)

Suppose you are standing directly behind someone who steps back and accidentally stomps
on your foot with the heel of one shoe. Would you be better off if that person were a profes-
sional basketball player wearing sneakers or a petite woman wearing spike-heeled shoes? Ex-
plain.

After a long lecture, the daring physics professor stretches out for a nap on a bed of nails, as
shown in Figure 15.3. How is this possible?

Quick Quiz 15.2

Quick Quiz 15.1

1 Pa � 1 N/m2

P �
dF
dA

P �
F
A

Snowshoes keep you from sinking
into soft snow because they spread
the downward force you exert on
the snow over a large area, reduc-
ing the pressure on the snow’s sur-
face.

Figure 15.3

Definition of pressure

QuickLab
Place a tack between your thumb and
index finger, as shown in the figure.
Now very gently squeeze the tack and
note the sensation. The pointed end
of the tack causes pain, and the blunt
end does not. According to Newton’s
third law, the force exerted by the
tack on the thumb is equal in magni-
tude and opposite in direction to the
force exerted by the tack on the in-
dex finger. However, the pressure at
the pointed end of the tack is much
greater than the pressure at the blunt
end. (Remember that pressure is
force per unit area.)

Tack
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VARIATION OF PRESSURE WITH DEPTH
As divers well know, water pressure increases with depth. Likewise, atmospheric
pressure decreases with increasing altitude; it is for this reason that aircraft flying
at high altitudes must have pressurized cabins.

We now show how the pressure in a liquid increases linearly with depth. As
Equation 1.1 describes, the density of a substance is defined as its mass per unit vol-
ume: Table 15.1 lists the densities of various substances. These values
vary slightly with temperature because the volume of a substance is temperature
dependent (as we shall see in Chapter 19). Note that under standard conditions
(at 0°C and at atmospheric pressure) the densities of gases are about 1/1 000 the
densities of solids and liquids. This difference implies that the average molecular
spacing in a gas under these conditions is about ten times greater than that in a
solid or liquid.

Now let us consider a fluid of density � at rest and open to the atmosphere, as
shown in Figure 15.4. We assume that � is constant; this means that the fluid is in-
compressible. Let us select a sample of the liquid contained within an imaginary
cylinder of cross-sectional area A extending from the surface to a depth h. The

� � m/V.

15.2

The Water BedEXAMPLE 15.1
imately 300 lb.) Because this load is so great, such a water
bed is best placed in the basement or on a sturdy, well-
supported floor.

(b) Find the pressure exerted by the water on the floor
when the bed rests in its normal position. Assume that the en-
tire lower surface of the bed makes contact with the floor.

Solution When the bed is in its normal position, the cross-
sectional area is 4.00 m2 ; thus, from Equation 15.1, we find
that

2.95 � 103 PaP �
1.18 � 104 N

4.00 m2 �

The mattress of a water bed is 2.00 m long by 2.00 m wide
and 30.0 cm deep. (a) Find the weight of the water in the
mattress.

Solution The density of water is 1 000 kg/m3 (Table
15.1), and so the mass of the water is

and its weight is

This is approximately 2 650 lb. (A regular bed weighs approx-

1.18 � 104 NMg � (1.20 � 103 kg)(9.80 m/s2) �

M � �V � (1 000 kg/m3)(1.20 m3) � 1.20 � 103 kg

TABLE 15.1 Densities of Some Common Substances at Standard
Temperature (0°C) and Pressure (Atmospheric)

Substance � (kg/m3) Substance � (kg/m3)

Air 1.29 Ice 0.917 � 103

Aluminum 2.70 � 103 Iron 7.86 � 103

Benzene 0.879 � 103 Lead 11.3 � 103

Copper 8.92 � 103 Mercury 13.6 � 103

Ethyl alcohol 0.806 � 103 Oak 0.710 � 103

Fresh water 1.00 � 103 Oxygen gas 1.43
Glycerine 1.26 � 103 Pine 0.373 � 103

Gold 19.3 � 103 Platinum 21.4 � 103

Helium gas 1.79 � 10�1 Seawater 1.03 � 103

Hydrogen gas 8.99 � 10�2 Silver 10.5 � 103

Mg

PAj

h

P0Aj

Figure 15.4 How pressure varies
with depth in a fluid. The net force
exerted on the volume of water
within the darker region must be
zero.
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pressure exerted by the outside liquid on the bottom face of the cylinder is P, and
the pressure exerted on the top face of the cylinder is the atmospheric pressure P0 .
Therefore, the upward force exerted by the outside fluid on the bottom of the cylin-
der is PA, and the downward force exerted by the atmosphere on the top is P0A. The
mass of liquid in the cylinder is M � �V � �Ah; therefore, the weight of the liquid in
the cylinder is Because the cylinder is in equilibrium, the net force act-
ing on it must be zero. Choosing upward to be the positive y direction, we see that

or

(15.4)

That is, the pressure P at a depth h below the surface of a liquid open to the
atmosphere is greater than atmospheric pressure by an amount �gh. In our
calculations and working of end-of-chapter problems, we usually take atmospheric
pressure to be

Equation 15.4 implies that the pressure is the same at all points having the same
depth, independent of the shape of the container.

In the derivation of Equation 15.4, why were we able to ignore the pressure that the liquid
exerts on the sides of the cylinder?

In view of the fact that the pressure in a fluid depends on depth and on the
value of P0 , any increase in pressure at the surface must be transmitted to every
other point in the fluid. This concept was first recognized by the French scientist
Blaise Pascal (1623–1662) and is called Pascal’s law: A change in the pressure
applied to a fluid is transmitted undiminished to every point of the fluid
and to the walls of the container.

An important application of Pascal’s law is the hydraulic press illustrated in
Figure 15.5a. A force of magnitude F1 is applied to a small piston of surface area
A1 . The pressure is transmitted through a liquid to a larger piston of surface area
A2 . Because the pressure must be the same on both sides, 
Therefore, the force F2 is greater than the force F1 by a factor A2/A1 , which is
called the force-multiplying factor. Because liquid is neither added nor removed, the
volume pushed down on the left as the piston moves down a distance d1 equals the
volume pushed up on the right as the right piston moves up a distance d2 . That is,

thus, the force-multiplying factor can also be written as d1/d2 . Note
that Hydraulic brakes, car lifts, hydraulic jacks, and forklifts all make
use of this principle (Fig. 15.5b).

A grain silo has many bands wrapped around its perimeter (Fig. 15.6). Why is the spacing
between successive bands smaller at the lower portions of the silo, as shown in the photo-
graph?

Quick Quiz 15.4

F1d1 � F2d2 .
A1d1 � A2d2 ;

P � F1/A1 � F2/A2 .

Quick Quiz 15.3

P0 � 1.00 atm � 1.013 � 105 Pa

 P � P0 � �gh

 PA � P0A � �Ahg 

PA � P0A � �Ahg � 0 

�Fy � PA � P0A � Mg � 0

Mg � �Ahg.

Variation of pressure with depth

B C DA

This arrangement of intercon-
nected tubes demonstrates that the
pressure in a liquid is the same at
all points having the same eleva-
tion. For example, the pressure is
the same at points A, B, C, and D.

QuickLab
Poke two holes in the side of a paper
or polystyrene cup—one near the
top and the other near the bottom.
Fill the cup with water and watch the
water flow out of the holes. Why does
water exit from the bottom hole at a
higher speed than it does from the
top hole?
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The Car LiftEXAMPLE 15.2
The air pressure that produces this force is

This pressure is approximately twice atmospheric pressure.
The input work (the work done by F1) is equal to the out-

put work (the work done by F2), in accordance with the prin-
ciple of conservation of energy.

1.88 � 105 PaP �
F1

A1
�

1.48 � 103 N
�(5.00 � 10�2 m)2 �

In a car lift used in a service station, compressed air exerts a
force on a small piston that has a circular cross section and a
radius of 5.00 cm. This pressure is transmitted by a liquid to a
piston that has a radius of 15.0 cm. What force must the com-
pressed air exert to lift a car weighing 13 300 N? What air
pressure produces this force?

Solution Because the pressure exerted by the compressed
air is transmitted undiminished throughout the liquid, we have

 � 1.48 � 103 N 

F1 � � A1

A2
� F2 �

�(5.00 � 10�2 m)2

�(15.0 � 10�2 m)2
 (1.33 � 104 N)

F1

F2

A2A1
d1

d2

(a)

Figure 15.5 (a) Diagram of a hydraulic press. Because the increase in pressure is the same on
the two sides, a small force Fl at the left produces a much greater force F2 at the right. (b) A ve-
hicle undergoing repair is supported by a hydraulic lift in a garage.

Figure 15.6

(b)

A Pain in the EarEXAMPLE 15.3
the eardrum; then, after estimating the eardrum’s surface
area, we can determine the force that the water exerts on it.

The air inside the middle ear is normally at atmospheric
pressure P0 . Therefore, to find the net force on the eardrum,
we must consider the difference between the total pressure at

Estimate the force exerted on your eardrum due to the water
above when you are swimming at the bottom of a pool that is
5.0 m deep.

Solution First, we must find the unbalanced pressure on
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PRESSURE MEASUREMENTS
One simple device for measuring pressure is the open-tube manometer illustrated
in Figure 15.8a. One end of a U-shaped tube containing a liquid is open to the at-
mosphere, and the other end is connected to a system of unknown pressure P.
The difference in pressure is equal to �gh; hence, The pres-
sure P is called the absolute pressure, and the difference is called the
gauge pressure. The latter is the value that normally appears on a pressure
gauge. For example, the pressure you measure in your bicycle tire is the gauge
pressure.

Another instrument used to measure pressure is the common barometer, which
was invented by Evangelista Torricelli (1608–1647). The barometer consists of a

P � P0

P � P0 � �gh.P � P0

15.3

The Force on a DamEXAMPLE 15.4
erted on a narrow horizontal strip at depth h and then inte-
grating the expression to find the total force. Let us imagine
a vertical y axis, with y � 0 at the bottom of the dam and our
strip a distance y above the bottom.

We can use Equation 15.4 to calculate the pressure at the
depth h; we omit atmospheric pressure because it acts on
both sides of the dam:

Using Equation 15.2, we find that the force exerted on the
shaded strip of area is

Therefore, the total force on the dam is

Note that the thickness of the dam shown in Figure 15.7 in-
creases with depth. This design accounts for the greater and
greater pressure that the water exerts on the dam at greater
depths.

Exercise Find an expression for the average pressure on
the dam from the total force exerted by the water on the
dam.

Answer 1
2 �gH.

1
2�gwH 2F � � P dA � �H

0
 �g(H � y)w dy �

dF � P dA � �g(H � y)w dy

dA � w dy

P � �gh � �g(H � y)

Water is filled to a height H behind a dam of width w (Fig.
15.7). Determine the resultant force exerted by the water on
the dam.

Solution Because pressure varies with depth, we cannot
calculate the force simply by multiplying the area by the pres-
sure. We can solve the problem by finding the force dF ex-

the bottom of the pool and atmospheric pressure:

We estimate the surface area of the eardrum to be approxi-
mately 1 cm2 � 1 � 10�4 m2. This means that the force on it

 � 4.9 � 104 Pa 

 � (1.00 � 103 kg/m3)(9.80 m/s2)(5.0 m)

Pbot � P0 � �gh 

is Because a force on the eardrum
of this magnitude is extremely uncomfortable, swimmers of-
ten “pop their ears” while under water, an action that pushes
air from the lungs into the middle ear. Using this technique
equalizes the pressure on the two sides of the eardrum and
relieves the discomfort.

F � (Pbot � P0)A � 5 N.

H

dy

O

h

y
w

Figure 15.7 Because pressure varies with depth, the total force ex-
erted on a dam must be obtained from the expression 
where dA is the area of the dark strip.

F � � P dA,
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long, mercury-filled tube closed at one end and inverted into an open container of
mercury (Fig. 15.8b). The closed end of the tube is nearly a vacuum, and so its
pressure can be taken as zero. Therefore, it follows that where h is the
height of the mercury column.

One atmosphere atm) of pressure is defined as the pressure that
causes the column of mercury in a barometer tube to be exactly 0.760 0 m in
height at 0°C, with At this temperature, mercury has a density
of 13.595 � 103 kg/m3; therefore,

Other than the obvious problem that occurs with freezing, why don’t we use water in a
barometer in the place of mercury?

BUOYANT FORCES AND ARCHIMEDES’S PRINCIPLE
Have you ever tried to push a beach ball under water? This is extremely difficult to
do because of the large upward force exerted by the water on the ball. The upward
force exerted by water on any immersed object is called a buoyant force. We can
determine the magnitude of a buoyant force by applying some logic and Newton’s
second law. Imagine that, instead of air, the beach ball is filled with water. If you
were standing on land, it would be difficult to hold the water-filled ball in your
arms. If you held the ball while standing neck deep in a pool, however, the force
you would need to hold it would almost disappear. In fact, the required force
would be zero if we were to ignore the thin layer of plastic of which the beach ball
is made. Because the water-filled ball is in equilibrium while it is submerged, the
magnitude of the upward buoyant force must equal its weight.

If the submerged ball were filled with air rather than water, then the upward
buoyant force exerted by the surrounding water would still be present. However,
because the weight of the water is now replaced by the much smaller weight of that
volume of air, the net force is upward and quite great; as a result, the ball is
pushed to the surface.

15.4

Quick Quiz 15.5

 � 1.013 � 105 Pa � 1 atm

P0 � �gh � (13.595 � 103 kg/m3)(9.806 65 m/s2)(0.760 0 m)

g � 9.806 65 m/s2.

(P0 � 1

P0 � �gh,

(a)

P

A B

P0

h

P = 0

P0h

(b)

Figure 15.8 Two devices for measuring pressure: (a) an open-tube manometer and (b) a mer-
cury barometer.
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The manner in which buoyant forces act is summarized by Archimedes’s
principle, which states that the magnitude of the buoyant force always equals
the weight of the fluid displaced by the object. The buoyant force acts verti-
cally upward through the point that was the center of gravity of the displaced fluid.

Note that Archimedes’s principle does not refer to the makeup of the object
experiencing the buoyant force. The object’s composition is not a factor in the
buoyant force. We can verify this in the following manner: Suppose we focus our
attention on the indicated cube of liquid in the container illustrated in Figure
15.9. This cube is in equilibrium as it is acted on by two forces. One of these forces
is the gravitational force Fg . What cancels this downward force? Apparently, the
rest of the liquid in the container is holding the cube in equilibrium. Thus, the
magnitude of the buoyant force B exerted on the cube is exactly equal to the mag-
nitude of Fg , which is the weight of the liquid inside the cube:

Now imagine that the cube of liquid is replaced by a cube of steel of the same
dimensions. What is the buoyant force acting on the steel? The liquid surrounding
a cube behaves in the same way no matter what the cube is made of. Therefore,
the buoyant force acting on the steel cube is the same as the buoyant force
acting on a cube of liquid of the same dimensions. In other words, the magni-
tude of the buoyant force is the same as the weight of the liquid cube, not the steel
cube. Although mathematically more complicated, this same principle applies to
submerged objects of any shape, size, or density.

Although we have described the magnitude and direction of the buoyant
force, we still do not know its origin. Why would a fluid exert such a strange force,
almost as if the fluid were trying to expel a foreign body? To understand why, look
again at Figure 15.9. The pressure at the bottom of the cube is greater than the
pressure at the top by an amount �gh, where h is the length of any side of the cube.
The pressure difference �P between the bottom and top faces of the cube is equal
to the buoyant force per unit area of those faces—that is, Therefore,

where V is the volume of the cube. Because the mass
of the fluid in the cube is we see that

(15.5)

where Mg is the weight of the fluid in the cube. Thus, the buoyant force is a result
of the pressure differential on a submerged or partly submerged object.

Before we proceed with a few examples, it is instructive for us to compare the
forces acting on a totally submerged object with those acting on a floating (partly
submerged) object.

Case 1: Totally Submerged Object When an object is totally submerged in a
fluid of density �f , the magnitude of the upward buoyant force is where
Vo is the volume of the object. If the object has a mass M and density �o , its weight
is equal to and the net force on it is 
Hence, if the density of the object is less than the density of the fluid, then the
downward force of gravity is less than the buoyant force, and the unconstrained
object accelerates upward (Fig. 15.10a). If the density of the object is greater than
the density of the fluid, then the upward buoyant force is less than the downward
force of gravity, and the unsupported object sinks (Fig. 15.10b).

Case 2: Floating Object Now consider an object of volume Vo in static equilib-
rium floating on a fluid—that is, an object that is only partially submerged. In this

B � Fg � (�f � �o)Vog.Fg � Mg � �oVog,

B � �fVog,

B � Fg � �Vg � Mg

M � �V,
B � (�P)A � (�gh)A � �gV,

�P � B/A.

B � Fg

Archimedes (c. 287 – 212 B.C.)
Archimedes, a Greek mathematician,
physicist, and engineer, was perhaps
the greatest scientist of antiquity. He
was the first to compute accurately
the ratio of a circle’s circumference
to its diameter, and he showed how to
calculate the volume and surface
area of spheres, cylinders, and other
geometric shapes. He is well known
for discovering the nature of the
buoyant force. 

Archimedes was also a gifted in-
ventor. One of his practical inven-
tions, still in use today, is
Archimedes’s screw – an inclined, ro-
tating, coiled tube originally used to
lift water from the holds of ships. He
also invented the catapult and de-
vised systems of levers, pulleys, and
weights for raising heavy loads. Such
inventions were successfully used to
defend his native city Syracuse dur-
ing a two-year siege by the Romans.

Archimedes’s principle

Fg B

h

Figure 15.9 The external forces
acting on the cube of liquid are the
force of gravity Fg and the buoyant
force B. Under equilibrium condi-
tions, B � F g .
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case, the upward buoyant force is balanced by the downward gravitational force
acting on the object. If Vf is the volume of the fluid displaced by the object (this
volume is the same as the volume of that part of the object that is beneath the
fluid level), the buoyant force has a magnitude Because the weight of
the object is and because we see that or

(15.6)

Under normal conditions, the average density of a fish is slightly greater than
the density of water. It follows that the fish would sink if it did not have some
mechanism for adjusting its density. The fish accomplishes this by internally regu-
lating the size of its air-filled swim bladder to balance the change in the magnitude
of the buoyant force acting on it. In this manner, fish are able to swim to various
depths. Unlike a fish, a scuba diver cannot achieve neutral buoyancy (at which the
buoyant force just balances the weight) by adjusting the magnitude of the buoyant
force B. Instead, the diver adjusts Fg by manipulating lead weights.

Steel is much denser than water. In view of this fact, how do steel ships float?

A glass of water contains a single floating ice cube (Fig. 15.11). When the ice melts, does
the water level go up, go down, or remain the same?

When a person in a rowboat in a small pond throws an anchor overboard, does the water
level of the pond go up, go down, or remain the same?

Quick Quiz 15.8

Quick Quiz 15.7

Quick Quiz 15.6

�o

�f
�

Vf

Vo

�fVf g � �oVog,Fg � B,Fg � Mg � �oVog,
B � �fVf g.

Hot-air balloons. Because hot air is
less dense than cold air, a net up-
ward force acts on the balloons.

B

Fg

(a)

B

(b)

Fg

a
a

Figure 15.10 (a) A totally submerged
object that is less dense than the fluid in
which it is submerged experiences a net
upward force. (b) A totally submerged ob-
ject that is denser than the fluid sinks.

Figure 15.11

Eureka!EXAMPLE 15.5
scale read 7.84 N in air and 6.86 N in water. What should
Archimedes have told the king?

Solution When the crown is suspended in air, the scale

Archimedes supposedly was asked to determine whether a
crown made for the king consisted of pure gold. Legend has
it that he solved this problem by weighing the crown first in
air and then in water, as shown in Figure 15.12. Suppose the
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A Titanic SurpriseEXAMPLE 15.6
ward buoyant force equals the weight of the displaced water:

where Vw , the volume of the displaced water, is
equal to the volume of the ice beneath the water (the shaded
region in Fig. 15.13b) and �w is the density of seawater,

kg/m3. Because the fraction of ice
beneath the water’s surface is

89.0%f �
Vw

Vi
�

�i

�w
�

917 kg/m3

1 030 kg/m3 � 0.890  or  

�iVi g � �wVwg,�w � 1 030

B � �wVwg,
An iceberg floating in seawater, as shown in Figure 15.13a, is
extremely dangerous because much of the ice is below the
surface. This hidden ice can damage a ship that is still a con-
siderable distance from the visible ice. What fraction of the
iceberg lies below the water level?

Solution This problem corresponds to Case 2. The weight
of the iceberg is where kg/m3 and Vi is
the volume of the whole iceberg. The magnitude of the up-

�i � 917Fg i � �iVi g,

Figure 15.12 (a) When the crown is suspended in air, the scale
reads its true weight (the buoyancy of air is negligible). 
(b) When the crown is immersed in water, the buoyant force B
reduces the scale reading to the apparent weight T2 � Fg � B.

T1 � Fg

reads the true weight (neglecting the buoyancy of
air). When it is immersed in water, the buoyant force B
reduces the scale reading to an apparent weight of

Hence, the buoyant force exerted on the crown
is the difference between its weight in air and its weight in
water:

Because this buoyant force is equal in magnitude to the
weight of the displaced water, we have where
Vw is the volume of the displaced water and �w is its density.
Also, the volume of the crown Vc is equal to the volume of the
displaced water because the crown is completely submerged.
Therefore,

Finally, the density of the crown is

From Table 15.1 we see that the density of gold is 19.3 �
103 kg/m3. Thus, Archimedes should have told the king that

 � 8.0 � 103 kg/m3 

�c �
mc

Vc
�

mc g
Vc g

�
7.84 N

(1.0 � 10�4 m3)(9.8 m/s2)

 � 1.0 � 10�4 m3

Vc � Vw �
0.98 N

g�w
�

0.98 N
(9.8 m/s2)(1 000 kg/m3)

�wgVw � 0.98 N,

B � Fg � T2 � 7.84 N � 6.86 N � 0.98 N

T2 � Fg � B.

T1 � Fg he had been cheated. Either the crown was hollow, or it was
not made of pure gold.

T1

T2

(b)(a)

B

Fg

Fg

(a) (b)

Figure 15.13 (a) Much of the vol-
ume of this iceberg is beneath the wa-
ter.
(b) A ship can be damaged even when
it is not near the exposed ice.
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FLUID DYNAMICS
Thus far, our study of fluids has been restricted to fluids at rest. We now turn our
attention to fluids in motion. Instead of trying to study the motion of each particle
of the fluid as a function of time, we describe the properties of a moving fluid at
each point as a function of time.

Flow Characteristics

When fluid is in motion, its flow can be characterized as being one of two main
types. The flow is said to be steady, or laminar, if each particle of the fluid follows
a smooth path, such that the paths of different particles never cross each other, as
shown in Figure 15.14. In steady flow, the velocity of the fluid at any point remains
constant in time.

Above a certain critical speed, fluid flow becomes turbulent; turbulent flow is ir-
regular flow characterized by small whirlpool-like regions, as shown in Figure 15.15.

The term viscosity is commonly used in the description of fluid flow to char-
acterize the degree of internal friction in the fluid. This internal friction, or viscous
force, is associated with the resistance that two adjacent layers of fluid have to mov-
ing relative to each other. Viscosity causes part of the kinetic energy of a fluid to be
converted to internal energy. This mechanism is similar to the one by which an ob-
ject sliding on a rough horizontal surface loses kinetic energy.

Because the motion of real fluids is very complex and not fully understood, we
make some simplifying assumptions in our approach. In our model of an ideal
fluid, we make the following four assumptions:

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected.
An object moving through the fluid experiences no viscous force.

2. The flow is steady. In steady (laminar) flow, the velocity of the fluid at each
point remains constant.

15.5

Figure 15.14 Laminar flow around an automobile in a test wind tunnel.

Figure 15.15 Hot gases from a
cigarette made visible by smoke
particles. The smoke first moves in
laminar flow at the bottom and
then in turbulent flow above.

Properties of an ideal fluid
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3. The fluid is incompressible. The density of an incompressible fluid is constant.
4. The flow is irrotational. In irrotational flow, the fluid has no angular momen-

tum about any point. If a small paddle wheel placed anywhere in the fluid does
not rotate about the wheel’s center of mass, then the flow is irrotational.

STREAMLINES AND THE EQUATION OF CONTINUITY
The path taken by a fluid particle under steady flow is called a streamline. The ve-
locity of the particle is always tangent to the streamline, as shown in Figure 15.16.
A set of streamlines like the ones shown in Figure 15.16 form a tube of flow. Note
that fluid particles cannot flow into or out of the sides of this tube; if they could,
then the streamlines would cross each other.

Consider an ideal fluid flowing through a pipe of nonuniform size, as illus-
trated in Figure 15.17. The particles in the fluid move along streamlines in steady
flow. In a time t, the fluid at the bottom end of the pipe moves a distance

If A1 is the cross-sectional area in this region, then the mass of fluid
contained in the left shaded region in Figure 15.17 is 
where � is the (nonchanging) density of the ideal fluid. Similarly, the fluid that
moves through the upper end of the pipe in the time t has a mass 
However, because mass is conserved and because the flow is steady, the mass that
crosses A1 in a time t must equal the mass that crosses A2 in the time t. That is,

or this means that

(15.7)

This expression is called the equation of continuity. It states that

A1v1 � A2v2 � constant

�A1v1t � �A2v2t ;m1 � m2,

m2 � �A2v2t.

m1 � �A1 �x1 � �A1v1t,
�x1 � v1t.

15.6

the product of the area and the fluid speed at all points along the pipe is a con-
stant for an incompressible fluid.

Equation of continuity

v

P

v1

A1

∆x1

∆x2

A2

v2

Figure 15.17 A fluid moving with steady flow through a
pipe of varying cross-sectional area. The volume of fluid
flowing through area A1 in a time interval t must equal
the volume flowing through area A2 in the same time in-
terval. Therefore, A1v 1 � A2v 2 .

Figure 15.16 A particle in lami-
nar flow follows a streamline, and
at each point along its path the par-
ticle’s velocity is tangent to the
streamline.

This equation tells us that the speed is high where the tube is constricted (small A)
and low where the tube is wide (large A). The product Av, which has the dimen-
sions of volume per unit time, is called either the volume flux or the flow rate. The
condition is equivalent to the statement that the volume of fluid
that enters one end of a tube in a given time interval equals the volume leaving
the other end of the tube in the same time interval if no leaks are present.

Av � constant

As water flows from a faucet, as shown in Figure 15.18, why does the stream of water be-
come narrower as it descends?

Quick Quiz 15.9

Figure 15.18
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BERNOULLI’S EQUATION
When you press your thumb over the end of a garden hose so that the opening be-
comes a small slit, the water comes out at high speed, as shown in Figure 15.19. Is
the water under greater pressure when it is inside the hose or when it is out in the
air? You can answer this question by noting how hard you have to push your
thumb against the water inside the end of the hose. The pressure inside the hose
is definitely greater than atmospheric pressure.

The relationship between fluid speed, pressure, and elevation was first derived
in 1738 by the Swiss physicist Daniel Bernoulli. Consider the flow of an ideal fluid
through a nonuniform pipe in a time t, as illustrated in Figure 15.20. Let us call
the lower shaded part section 1 and the upper shaded part section 2. The force ex-
erted by the fluid in section 1 has a magnitude P1A1 . The work done by this force
in a time t is where V is the volume of section 1. In
a similar manner, the work done by the fluid in section 2 in the same time t is

(The volume that passes through section 1 in a time t
equals the volume that passes through section 2 in the same time.) This work is
negative because the fluid force opposes the displacement. Thus, the net work
done by these forces in the time t is

W � (P1 � P2)V

W2 � �P2A2�x2 � �P2V.

W1 � F1�x1 � P1A1�x1 � P1V,

15.7

Niagara FallsEXAMPLE 15.7
Note that we have kept only one significant figure because
our value for the depth has only one significant figure.

Exercise A barrel floating along in the river plunges over
the Falls. How far from the base of the cliff is the barrel when
it reaches the water 49 m below?

Answer 13 m � 10 m.

Each second, 5 525 m3 of water flows over the 670-m-wide
cliff of the Horseshoe Falls portion of Niagara Falls. The wa-
ter is approximately 2 m deep as it reaches the cliff. What is
its speed at that instant?

Solution The cross-sectional area of the water as it reaches
the edge of the cliff is The
flow rate of 5 525 m3/s is equal to Av. This gives

4 m/sv �
5 525 m3/s

A
�

5 525 m3/s
1 340 m2 �

A � (670 m)(2 m) � 1 340 m2.

∆x1

∆x2

A2

v2

P2

y2

y1

A1P1

v1

Figure 15.19 The speed of water spraying
from the end of a hose increases as the size of
the opening is decreased with the thumb.

Figure 15.20 A fluid in laminar
flow through a constricted pipe.
The volume of the shaded section
on the left is equal to the volume of
the shaded section on the right.

Daniel Bernoulli (1700 – 1782)
Daniel Bernoulli, a Swiss physicist
and mathematician, made important
discoveries in fluid dynamics. Born
into a family of mathematicians, he
was the only member of the family to
make a mark in physics.

Bernoulli’s most famous work, Hy-
drodynamica, was published in 1738;
it is both a theoretical and a practical
study of equilibrium, pressure, and
speed in fluids. He showed that as the
speed of a fluid increases, its pres-
sure decreases.

In Hydrodynamica Bernoulli also
attempted the first explanation of the
behavior of gases with changing
pressure and temperature; this was
the beginning of the kinetic theory of
gases, a topic we study in Chapter 21.
(Corbis – Bettmann)
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Part of this work goes into changing the kinetic energy of the fluid, and part goes
into changing the gravitational potential energy. If m is the mass that enters one
end and leaves the other in a time t, then the change in the kinetic energy of this
mass is

The change in gravitational potential energy is

We can apply Equation 8.13,  , to this volume of fluid to obtain

If we divide each term by V and recall that this expression reduces to

Rearranging terms, we obtain

(15.8)

This is Bernoulli’s equation as applied to an ideal fluid. It is often expressed as

(15.9)

This expression specifies that, in laminar flow, the sum of the pressure (P), kinetic
energy per unit volume and gravitational potential energy per unit volume
(�gy) has the same value at all points along a streamline.

When the fluid is at rest, and Equation 15.8 becomes

This is in agreement with Equation 15.4.

P1 � P2 � �g(y2 � y1) � �gh

v1 � v2 � 0

(1
2�v2),

P � 1
2 �v2 � �g y � constant

P1 � 1
2 �v1 

2 � �g y1 � P2 � 1
2 �v2 

2 � �g y2

P1 � P2 � 1
2 �v2 

2 � 1
2�v1 

2 � �g y2 � �g y1

� � m/V,

(P1 � P2)V � 1
2mv2 

2 � 1
2mv1 

2 � mg y2 � mg y1

W � �K � �U

�U � mg y2 � mg y1

�K � 1
2mv2 

2 � 1
2mv1 

2

The Venturi TubeEXAMPLE 15.8
The horizontal constricted pipe illustrated in Figure 15.21,
known as a Venturi tube, can be used to measure the flow
speed of an incompressible fluid. Let us determine the flow
speed at point 2 if the pressure difference is known.

Solution Because the pipe is horizontal, and ap-
plying Equation 15.8 to points 1 and 2 gives

(1) P1 � 1
2 �v1 

2 � P2 � 1
2 �v2 

2

y1 � y2 ,

P1 � P2

QuickLab
Place two soda cans on their sides ap-
proximately 2 cm apart on a table.
Align your mouth at table level and
with the space between the cans.
Blow a horizontal stream of air
through this space. What do the cans
do? Is this what you expected? Com-
pare this with the force acting on a
car parked close to the edge of a road
when a big truck goes by. How does
the outcome relate to Equation 15.9?

Bernoulli’s equation

P1 P2

A2

A1

�

(a)

v1 v2
�

Figure 15.21 (a) Pressure P1 is greater
than pressure P2 because This de-
vice can be used to measure the speed of
fluid flow. (b) A Venturi tube.

v1 	 v2 .

(b)
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A Good TrickEXAMPLE 15.9
mass of a dime is and its surface area is

How hard are you blowing when the
dime rises and travels into the tumbler?

Solution Figure 15.22b indicates we must calculate the up-
ward force acting on the dime. First, note that a thin station-
ary layer of air is present between the dime and the table.
When you blow across the dime, it deflects most of the mov-
ing air from your breath across its top, so that the air above
the dime has a greater speed than the air beneath it. This
fact, together with Bernoulli’s equation, demonstrates that
the air moving across the top of the dime is at a lower pres-
sure than the air beneath the dime. If we neglect the small
thickness of the dime, we can apply Equation 15.8 to obtain

Because the air beneath the dime is almost stationary, we can
neglect the last term in this expression and write the differ-
ence as If we multiply this pres-
sure difference by the surface area of the dime, we obtain the
upward force acting on the dime. At the very least, this up-
ward force must balance the gravitational force acting on the
dime, and so, taking the density of air from Table 15.1, we
can state that

The air you blow must be moving faster than this if the up-
ward force is to exceed the weight of the dime. Practice this
trick a few times and then impress all your friends!

vabove � 11.7 m/s  

vabove �! 2mg
�A

�! 2(2.24 � 10�3 kg)(9.80 m/s2)
(1.29 kg/m3)(2.50 � 10�4 m2)

Fg � mg � (Pbeneath � Pabove)A � (1
2 �v2

above)A  

Pbeneath � Pabove � 1
2 �v2

above .

Pabove � 1
2 �v2

above � Pbeneath � 1
2 �v2

beneath

A � 2.50 � 10�4 m2.
m � 2.24 g,It is possible to blow a dime off a table and into a tumbler.

Place the dime about 2 cm from the edge of the table. Place
the tumbler on the table horizontally with its open edge
about 2 cm from the dime, as shown in Figure 15.22a. If you
blow forcefully across the top of the dime, it will rise, be
caught in the airstream, and end up in the tumbler. The 

From the equation of continuity, we find that 

(2)

Substituting this expression into equation (1) gives

A1 ! 2(P1 � P2)
�(A1 

2 � A2 

2)
  v2 �

P1 � 1
2 � � A2

A1
�

2
 v2 

2 � P2 � 1
2 �v2 

2

v1 �
A2

A1
 v2

A1v1 � A2v2 , We can use this result and the continuity equation to ob-
tain an expression for v1 . Because Equation (2)
shows us that This result, together with equation
(1), indicates that In other words, the pressure is re-
duced in the constricted part of the pipe. This result is some-
what analogous to the following situation: Consider a very
crowded room in which people are squeezed together. As
soon as a door is opened and people begin to exit, the
squeezing (pressure) is least near the door, where the motion
(flow) is greatest.

P1 
 P2 .
v2 
 v1 .

A2 	 A1 ,

(a)

Fg

(b)

2 cm2 cm

FBernoulli

Figure 15.22
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Optional Section

OTHER APPLICATIONS OF BERNOULLI’S EQUATION
The lift on an aircraft wing can be explained, in part, by the Bernoulli effect. Air-
plane wings are designed so that the air speed above the wing is greater than that
below the wing. As a result, the air pressure above the wing is less than the pres-
sure below, and a net upward force on the wing, called lift, results. 

Another factor influencing the lift on a wing is shown in Figure 15.24. The
wing has a slight upward tilt that causes air molecules striking its bottom to be de-
flected downward. This deflection means that the wing is exerting a downward
force on the air. According to Newton’s third law, the air must exert an equal and
opposite force on the wing. 

Finally, turbulence also has an effect. If the wing is tilted too much, the flow of
air across the upper surface becomes turbulent, and the pressure difference across
the wing is not as great as that predicted by Bernoulli’s equation. In an extreme
case, this turbulence may cause the aircraft to stall.

In general, an object moving through a fluid experiences lift as the result of
any effect that causes the fluid to change its direction as it flows past the object.
Some factors that influence lift are the shape of the object, its orientation with re-
spect to the fluid flow, any spinning motion it might have, and the texture of its
surface. For example, a golf ball struck with a club is given a rapid backspin, as
shown in Figure 15.25a. The dimples on the ball help “entrain” the air to follow
the curvature of the ball’s surface. This effect is most pronounced on the top half
of the ball, where the ball’s surface is moving in the same direction as the air flow.
Figure 15.25b shows a thin layer of air wrapping part way around the ball and be-
ing deflected downward as a result. Because the ball pushes the air down, the air
must push up on the ball. Without the dimples, the air is not as well entrained,

15.8

Torricelli’s LawEXAMPLE 15.10
which the liquid leaves the hole when the liquid’s level is a
distance h above the hole.

Solution Because the liquid is approximately at
rest at the top of the tank, where the pressure is P. Applying
Bernoulli’s equation to points 1 and 2 and noting that at the
hole P1 is equal to atmospheric pressure P0 , we find that

But thus, this expression reduces to

When P is much greater than P0 (so that the term 2gh can
be neglected), the exit speed of the water is mainly a function
of P. If the tank is open to the atmosphere, then and

In other words, for an open tank, the speed of liq-
uid coming out through a hole a distance h below the surface is
equal to that acquired by an object falling freely through a verti-
cal distance h. This phenomenon is known as Torricelli’s law.

v1 � !2gh.
P � P0

! 2(P � P0)

�
� 2ghv1 �

y2 � y1 � h ;

P0 � 1
2 �v1 

2 � �gy1 � P � �gy2

A2 W A1 ,

An enclosed tank containing a liquid of density � has a hole
in its side at a distance y1 from the tank’s bottom (Fig. 15.23).
The hole is open to the atmosphere, and its diameter is much
smaller than the diameter of the tank. The air above the liq-
uid is maintained at a pressure P. Determine the speed at

A2

A1

v 1
P0

h

P

y2

y1

2

1

Figure 15.23 When P is much larger than atmospheric pressure
P0 , the liquid speed as the liquid passes through the hole in the side 

of the container is given approximately by .v1 � !2(P � P0)/�

F

Figure 15.24 Streamline flow
around an airplane wing. The pres-
sure above the wing is less than the
pressure below, and a dynamic lift
upward results.
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and the golf ball does not travel as far. For the same reason, a tennis ball’s fuzz
helps the spinning ball “grab” the air rushing by and helps deflect it.

A number of devices operate by means of the pressure differentials that result
from differences in a fluid’s speed. For example, a stream of air passing over one
end of an open tube, the other end of which is immersed in a liquid, reduces the
pressure above the tube, as illustrated in Figure 15.26. This reduction in pressure
causes the liquid to rise into the air stream. The liquid is then dispersed into a fine
spray of droplets. You might recognize that this so-called atomizer is used in per-
fume bottles and paint sprayers. The same principle is used in the carburetor of a
gasoline engine. In this case, the low-pressure region in the carburetor is pro-
duced by air drawn in by the piston through the air filter. The gasoline vaporizes
in that region, mixes with the air, and enters the cylinder of the engine, where
combustion occurs.

People in buildings threatened by a tornado are often told to open the windows to mini-
mize damage. Why?

Quick Quiz 15.10

QuickLab
You can easily demonstrate the effect
of changing fluid direction by lightly
holding the back of a spoon against a
stream of water coming from a
faucet. You will see the stream “at-
tach” itself to the curvature of the
spoon and be deflected sideways. You
will also feel the third-law force ex-
erted by the water on the spoon.

(a)

(b)

Figure 15.25 (a) A golf ball is made to spin when struck by the club.
(b) The spinning ball experiences a lifting force that allows it to travel

much farther than it would if it were not spinning.

Figure 15.26 A stream of air
passing over a tube dipped into a
liquid causes the liquid to rise in
the tube.
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SUMMARY

The pressure P in a fluid is the force per unit area exerted by the fluid on a sur-
face:

(15.1)

In the SI system, pressure has units of newtons per square meter (N/m2), and 
1 N/m2 � 1 pascal (Pa).

The pressure in a fluid at rest varies with depth h in the fluid according to the
expression

(15.4)

where P0 is atmospheric pressure and � is the density of the
fluid, assumed uniform.

Pascal’s law states that when pressure is applied to an enclosed fluid, the
pressure is transmitted undiminished to every point in the fluid and to every point
on the walls of the container.

When an object is partially or fully submerged in a fluid, the fluid exerts on
the object an upward force called the buoyant force. According to Archimedes’s
principle, the magnitude of the buoyant force is equal to the weight of the fluid
displaced by the object. Be sure you can apply this principle to a wide variety of sit-
uations, including sinking objects, floating ones, and neutrally buoyant ones.

You can understand various aspects of a fluid’s dynamics by assuming that the
fluid is nonviscous and incompressible and that the fluid’s motion is a steady flow
with no rotation.

Two important concepts regarding ideal fluid flow through a pipe of nonuni-
form size are as follows:

1. The flow rate (volume flux) through the pipe is constant; this is equivalent to
stating that the product of the cross-sectional area A and the speed v at any
point is a constant. This result is expressed in the equation of continuity:

(15.7)

You can use this expression to calculate how the velocity of a fluid changes as
the fluid is constricted or as it flows into a more open area.

2. The sum of the pressure, kinetic energy per unit volume, and gravitational po-
tential energy per unit volume has the same value at all points along a stream-
line. This result is summarized in Bernoulli’s equation:

(15.9)P � 1
2�v2 � �gy � constant

A1v1 � A2v2 � constant

(�1.013 � 105 N/m2)

P � P0 � �gh

P �
F
A

QUESTIONS

pressure in your mouth and let the atmosphere move the
liquid. Explain why this is so. Can you use a straw to sip a
drink on the Moon?

4. A helium-filled balloon rises until its density becomes the
same as that of the surrounding air. If a sealed submarine
begins to sink, will it go all the way to the bottom of the
ocean or will it stop when its density becomes the same as
that of the surrounding water?

5. A fish rests on the bottom of a bucket of water while the

1. Two drinking glasses of the same weight but of different
shape and different cross-sectional area are filled to the
same level with water. According to the expression

the pressure at the bottom of both glasses
is the same. In view of this, why does one glass weigh
more than the other?

2. If the top of your head has a surface area of 100 cm2,
what is the weight of the air above your head?

3. When you drink a liquid through a straw, you reduce the

P � P0 � �gh,
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bucket is being weighed. When the fish begins to swim
around, does the weight change?

6. Does a ship ride higher in the water of an inland lake or
in the ocean? Why?

7. Lead has a greater density than iron, and both metals are
denser than water. Is the buoyant force on a lead object
greater than, less than, or equal to the buoyant force on
an iron object of the same volume?

8. The water supply for a city is often provided by reservoirs
built on high ground. Water flows from the reservoir,
through pipes, and into your home when you turn the
tap on your faucet. Why is the flow of water more rapid
out of a faucet on the first floor of a building than it is in
an apartment on a higher floor?

9. Smoke rises in a chimney faster when a breeze is blowing
than when there is no breeze at all. Use Bernoulli’s equa-
tion to explain this phenomenon.

10. If a Ping–Pong ball is above a hair dryer, the ball can be
suspended in the air column emitted by the dryer. 
Explain.

11. When ski jumpers are airborne (Fig. Q15.11), why do
they bend their bodies forward and keep their hands at
their sides?

18. Why do airplane pilots prefer to take off into the wind?
19. If you release a ball while inside a freely falling elevator,

the ball remains in front of you rather than falling to the
floor because the ball, the elevator, and you all experi-
ence the same downward acceleration g. What happens if
you repeat this experiment with a helium-filled balloon?
(This one is tricky.)

20. Two identical ships set out to sea. One is loaded with a
cargo of Styrofoam, and the other is empty. Which ship is
more submerged?

21. A small piece of steel is tied to a block of wood. When the
wood is placed in a tub of water with the steel on top, half
of the block is submerged. If the block is inverted so that
the steel is underwater, does the amount of the block sub-
merged increase, decrease, or remain the same? What
happens to the water level in the tub when the block is in-
verted?

22. Prairie dogs (Fig. Q15.22) ventilate their burrows by
building a mound over one entrance, which is open to a
stream of air. A second entrance at ground level is open
to almost stagnant air. How does this construction create
an air flow through the burrow?

Figure Q15.11

Figure Q15.22

23. An unopened can of diet cola floats when placed in a
tank of water, whereas a can of regular cola of the same
brand sinks in the tank. What do you suppose could ex-
plain this phenomenon?

24. Figure Q15.24 shows a glass cylinder containing four liq-
uids of different densities. From top to bottom, the liq-
uids are oil (orange), water (yellow), salt water (green),
and mercury (silver). The cylinder also contains, from
top to bottom, a Ping–Pong ball, a piece of wood, an egg,
and a steel ball. (a) Which of these liquids has the lowest
density, and which has the greatest? (b) What can you
conclude about the density of each object?

12. Explain why a sealed bottle partially filled with a liquid
can float.

13. When is the buoyant force on a swimmer greater—after
exhaling or after inhaling?

14. A piece of unpainted wood barely floats in a container
partly filled with water. If the container is sealed and then
pressurized above atmospheric pressure, does the wood
rise, sink, or remain at the same level? (Hint: Wood is
porous.)

15. A flat plate is immersed in a liquid at rest. For what
orientation of the plate is the pressure on its flat surface
uniform?

16. Because atmospheric pressure is about 105 N/m2 and the
area of a person’s chest is about 0.13 m2, the force of the
atmosphere on one’s chest is around 13 000 N. In view of
this enormous force, why don’t our bodies collapse?

17. How would you determine the density of an irregularly
shaped rock?
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Section 15.2 Variation of Pressure with Depth
6. (a) Calculate the absolute pressure at an ocean depth of

1 000 m. Assume the density of seawater is 1 024 kg/m3

and that the air above exerts a pressure of 101.3 kPa. 
(b) At this depth, what force must the frame around a
circular submarine porthole having a diameter of 
30.0 cm exert to counterbalance the force exerted by
the water?

7. The spring of the pressure gauge shown in Figure 15.2
has a force constant of 1 000 N/m, and the piston has a
diameter of 2.00 cm. When the gauge is lowered into
water, at what depth does the piston move in by 
0.500 cm?

8. The small piston of a hydraulic lift has a cross-sectional
area of 3.00 cm2, and its large piston has a cross-sec-
tional area of 200 cm2 (see Fig. 15.5a). What force must
be applied to the small piston for it to raise a load of
15.0 kN? (In service stations, this force is usually gener-
ated with the use of compressed air.)

Section 15.1 Pressure
1. Calculate the mass of a solid iron sphere that has a di-

ameter of 3.00 cm.
2. Find the order of magnitude of the density of the

nucleus of an atom. What does this result suggest con-
cerning the structure of matter? (Visualize a nucleus as
protons and neutrons closely packed together. Each has
mass 1.67 � 10�27 kg and radius on the order of 
10�15 m.)

3. A 50.0-kg woman balances on one heel of a pair of high-
heeled shoes. If the heel is circular and has a radius of
0.500 cm, what pressure does she exert on the floor?

4. The four tires of an automobile are inflated to a gauge
pressure of 200 kPa. Each tire has an area of 0.024 0 m2

in contact with the ground. Determine the weight of
the automobile.

5. What is the total mass of the Earth’s atmosphere? (The
radius of the Earth is 6.37 � 106 m, and atmospheric
pressure at the Earth’s surface is 1.013 � 105 N/m2.)

Figure Q15.24

Figure Q15.25

(b) Why is the ball at the left lower than the ball at the
right even though the horizontal tube has the same di-
mensions at these two points?

26. You are a passenger on a spacecraft. For your comfort,
the interior contains air just like that at the surface of the
Earth. The craft is coasting through a very empty region
of space. That is, a nearly perfect vacuum exists just out-
side the wall. Suddenly a meteoroid pokes a hole, smaller
than the palm of your hand, right through the wall next
to your seat. What will happen? Is there anything you can
or should do about it?

25. In Figure Q15.25, an air stream moves from right to left
through a tube that is constricted at the middle. Three
Ping–Pong balls are levitated in equilibrium above the
vertical columns through which the air escapes. (a) Why
is the ball at the right higher than the one in the middle?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems



Problems 479

WEB

15. Review Problem. A solid copper ball with a diameter
of 3.00 m at sea level is placed at the bottom of the
ocean (at a depth of 10.0 km). If the density of seawater
is 1 030 kg/m3, by how much (approximately) does the
diameter of the ball decrease when it reaches bottom?
Take the bulk modulus of copper as 14.0 � 1010 N/m2.

14. The tank shown in Figure P15.14 is filled with water to a
depth of 2.00 m. At the bottom of one of the side walls
is a rectangular hatch 1.00 m high and 2.00 m wide.
The hatch is hinged at its top. (a) Determine the force
that the water exerts on the hatch. (b) Find the torque
exerted about the hinges.

9. What must be the contact area between a suction cup
(completely exhausted) and a ceiling if the cup is to
support the weight of an 80.0-kg student?

10. (a) A very powerful vacuum cleaner has a hose 2.86 cm
in diameter. With no nozzle on the hose, what is the
weight of the heaviest brick that the cleaner can lift
(Fig. P15.10)? (b) A very powerful octopus uses one
sucker of diameter 2.86 cm on each of the two shells of
a clam in an attempt to pull the shells apart. Find the
greatest force that the octopus can exert in salt water
32.3 m in depth. (Caution: Experimental verification
can be interesting, but do not drop a brick on your foot.
Do not overheat the motor of a vacuum cleaner. Do not
get an octopus mad at you.)

11. For the cellar of a new house, a hole with vertical sides
descending 2.40 m is dug in the ground. A concrete
foundation wall is built all the way across the 9.60-m
width of the excavation. This foundation wall is 0.183 m
away from the front of the cellar hole. During a rain-
storm, drainage from the street fills up the space in
front of the concrete wall but not the cellar behind the
wall. The water does not soak into the clay soil. Find the
force that the water causes on the foundation wall. For
comparison, the weight of the water is given by

2.40 m � 9.60 m � 0.183 m � 1 000 kg/m3

� 9.80 m/s2 � 41.3 kN

12. A swimming pool has dimensions 30.0 m � 10.0 m and
a flat bottom. When the pool is filled to a depth of 
2.00 m with fresh water, what is the force caused by the
water on the bottom? On each end? On each side?

13. A sealed spherical shell of diameter d is rigidly attached
to a cart that is moving horizontally with an acceleration
a, as shown in Figure P15.13. The sphere is nearly filled
with a fluid having density � and also contains one small
bubble of air at atmospheric pressure. Find an expres-
sion for the pressure P at the center of the sphere.

(a) (b)

Figure P15.10

a

Figure P15.13

Figure P15.14

2.00 m

2.00 m

1.00 m
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Section 15.3 Pressure Measurements
16. Normal atmospheric pressure is 1.013 � 105 Pa. The

approach of a storm causes the height of a mercury
barometer to drop by 20.0 mm from the normal height.
What is the atmospheric pressure? (The density of mer-
cury is 13.59 g/cm3.)

17. Blaise Pascal duplicated Torricelli’s barometer, using a
red Bordeaux wine, of density 984 kg/m3, as the work-
ing liquid (Fig. P15.17). What was the height h of the
wine column for normal atmospheric pressure? Would
you expect the vacuum above the column to be as good
as that for mercury?

in the right arm of the U-tube. (b) Given that the den-
sity of mercury is 13.6 g/cm3, what distance h does the
mercury rise in the left arm?

19. A U-tube of uniform cross-sectional area and open to
the atmosphere is partially filled with mercury. Water is
then poured into both arms. If the equilibrium configu-
ration of the tube is as shown in Figure P15.19, with

determine the value of h1 .h2 � 1.00 cm,

Section 15.4 Buoyant Forces and 
Archimedes’s Principle

20. (a) A light balloon is filled with 400 m3 of helium. At
0°C, what is the mass of the payload that the balloon
can lift? (b) In Table 15.1, note that the density of hy-
drogen is nearly one-half the density of helium. What
load can the balloon lift if it is filled with hydrogen?

21. A Styrofoam slab has a thickness of 10.0 cm and a den-
sity of 300 kg/m3. When a 75.0-kg swimmer is resting on
it, the slab floats in fresh water with its top at the same
level as the water’s surface. Find the area of the slab.

22. A Styrofoam slab has thickness h and density �S . What is
the area of the slab if it floats with its upper surface just
awash in fresh water, when a swimmer of mass m is on
top?

23. A piece of aluminum with mass 1.00 kg and density 
2 700 kg/m3 is suspended from a string and then com-
pletely immersed in a container of water (Fig. P15.23).
Calculate the tension in the string (a) before and 
(b) after the metal is immersed.

24. A 10.0-kg block of metal measuring 12.0 cm �
10.0 cm � 10.0 cm is suspended from a scale and im-
mersed in water, as shown in Figure P15.23b. The 
12.0-cm dimension is vertical, and the top of the block
is 5.00 cm from the surface of the water. (a) What are
the forces acting on the top and on the bottom of the
block? (Take (b) What is
the reading of the spring scale? (c) Show that the buoy-
ant force equals the difference between the forces at
the top and bottom of the block.

P0 � 1.013 0 � 105 N/m2.)

18. Mercury is poured into a U-tube, as shown in Figure
P15.18a. The left arm of the tube has a cross-sectional
area A1 of 10.0 cm2, and the right arm has a cross-sec-
tional area A2 of 5.00 cm2. One-hundred grams of water
are then poured into the right arm, as shown in Figure
P15.18b. (a) Determine the length of the water column

Figure P15.17

Figure P15.18

Figure P15.19

WEB

h

P0

A1

(a)

A2

Mercury

A1 A2

h

Water

(b)

h2

h1

Water
Mercury
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25. A cube of wood having a side dimension of 20.0 cm and
a density of 650 kg/m3 floats on water. (a) What is the
distance from the horizontal top surface of the cube to
the water level? (b) How much lead weight must be
placed on top of the cube so that its top is just level with
the water?

26. To an order of magnitude, how many helium-filled toy
balloons would be required to lift you? Because helium
is an irreplaceable resource, develop a theoretical an-
swer rather than an experimental answer. In your solu-
tion, state what physical quantities you take as data and
the values you measure or estimate for them.

27. A plastic sphere floats in water with 50.0% of its volume
submerged. This same sphere floats in glycerin with
40.0% of its volume submerged. Determine the densi-
ties of the glycerin and the sphere.

28. A frog in a hemispherical pod finds that he just floats
without sinking into a sea of blue-green ooze having a
density of 1.35 g/cm3 (Fig. P15.28). If the pod has a ra-
dius of 6.00 cm and a negligible mass, what is the mass
of the frog?

maintains a constant volume and that the density of air
decreases with the altitude z according to the expres-
sion where z is in meters and

is the density of air at sea level.
30. Review Problem. A long cylindrical tube of radius r is

weighted on one end so that it floats upright in a fluid
having a density �. It is pushed downward a distance x
from its equilibrium position and then released. Show
that the tube will execute simple harmonic motion if
the resistive effects of the water are neglected, and de-
termine the period of the oscillations.

31. A bathysphere used for deep-sea exploration has a ra-
dius of 1.50 m and a mass of 1.20 � 104 kg. To dive, this
submarine takes on mass in the form of seawater. Deter-
mine the amount of mass that the submarine must take
on if it is to descend at a constant speed of 1.20 m/s,
when the resistive force on it is 1 100 N in the upward
direction. Take 1.03 � 103 kg/m3 as the density of sea-
water.

32. The United States possesses the eight largest warships in
the world—aircraft carriers of the Nimitz class—and it
is building one more. Suppose that one of the ships
bobs up to float 11.0 cm higher in the water when 50
fighters take off from it at a location where 
9.78 m/s2. The planes have an average mass of 
29 000 kg. Find the horizontal area enclosed by the wa-
terline of the ship. (By comparison, its flight deck has
an area of 18 000 m2.) 

Section 15.5 Fluid Dynamics

Section 15.6 Streamlines and the Equation of Continuity

Section 15.7 Bernoulli’s Equation
33. (a) A water hose 2.00 cm in diameter is used to fill a

20.0-L bucket. If it takes 1.00 min to fill the bucket,
what is the speed v at which water moves through the
hose? (Note: 1 L � 1 000 cm3.) (b) If the hose has a noz-
zle 1.00 cm in diameter, find the speed of the water at
the nozzle.

34. A horizontal pipe 10.0 cm in diameter has a smooth re-
duction to a pipe 5.00 cm in diameter. If the pressure of
the water in the larger pipe is 8.00 � 104 Pa and the
pressure in the smaller pipe is 6.00 � 104 Pa, at what
rate does water flow through the pipes?

35. A large storage tank, open at the top and filled with wa-
ter, develops a small hole in its side at a point 16.0 m be-
low the water level. If the rate of flow from the leak is
2.50 � 10�3 m3/min, determine (a) the speed at which
the water leaves the hole and (b) the diameter of the
hole.

36. Through a pipe of diameter 15.0 cm, water is pumped
from the Colorado River up to Grand Canyon Village,
located on the rim of the canyon. The river is at an ele-
vation of 564 m, and the village is at an elevation of 
2 096 m. (a) What is the minimum pressure at which
the water must be pumped if it is to arrive at the village?

g �

�0 � 1.25 kg/m3
�air � �0e�z/8 000,

WEB

29. How many cubic meters of helium are required to lift a
balloon with a 400-kg payload to a height of 8 000 m?
(Take Assume that the balloon�He � 0.180 kg/m3.)

Figure P15.23 Problems 23 and 24.

Figure P15.28

(a)

T2

B

(b)

Mg

T1

Mg

Scale
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(b) If 4 500 m3 are pumped per day, what is the speed
of the water in the pipe? (c) What additional pressure is
necessary to deliver this flow? (Note: You may assume
that the acceleration due to gravity and the density of
air are constant over this range of elevations.)

37. Water flows through a fire hose of diameter 6.35 cm at a
rate of 0.012 0 m3/s. The fire hose ends in a nozzle with
an inner diameter of 2.20 cm. What is the speed at
which the water exits the nozzle?

38. Old Faithful Geyser in Yellowstone National Park erupts
at approximately 1-h intervals, and the height of the wa-
ter column reaches 40.0 m (Fig. P15.38). (a) Consider
the rising stream as a series of separate drops. Analyze
the free-fall motion of one of these drops to determine
the speed at which the water leaves the ground. 
(b) Treating the rising stream as an ideal fluid in
streamline flow, use Bernoulli’s equation to determine
the speed of the water as it leaves ground level. 
(c) What is the pressure (above atmospheric) in the
heated underground chamber if its depth is 175 m? You
may assume that the chamber is large compared with
the geyser’s vent.

air flow. (Assume that the air is stagnant at point A, and
take kg/m3.)

42. An airplane is cruising at an altitude of 10 km. The
pressure outside the craft is 0.287 atm; within the pas-
senger compartment, the pressure is 1.00 atm and the
temperature is 20°C. A small leak occurs in one of the
window seals in the passenger compartment. Model the
air as an ideal fluid to find the speed of the stream of
air flowing through the leak.

43. A siphon is used to drain water from a tank, as illus-
trated in Figure P15.43. The siphon has a uniform di-
ameter. Assume steady flow without friction. (a) If the
distance m, find the speed of outflow at the
end of the siphon. (b) What is the limitation on the
height of the top of the siphon above the water surface?
(For the flow of liquid to be continuous, the pressure
must not drop below the vapor pressure of the liquid.)

h � 1.00

�air � 1.25

WEB

44. A hypodermic syringe contains a medicine with the den-
sity of water (Fig. P15.44). The barrel of the syringe has a
cross-sectional area A � 2.50 � 10�5 m2, and the needle
has a cross-sectional area a � 1.00 � 10�8 m2. In the ab-
sence of a force on the plunger, the pressure everywhere
is 1 atm. A force F of magnitude 2.00 N acts on the
plunger, making the medicine squirt horizontally from
the needle. Determine the speed of the medicine as it
leaves the needle’s tip.

45. A large storage tank is filled to a height h0 . The tank is
punctured at a height h above the bottom of the tank
(Fig. P15.45). Find an expression for how far from the
tank the exiting stream lands.

(Optional)
Section 15.8 Other Applications of Bernoulli’s Equation

39. An airplane has a mass of 1.60 � 104 kg, and each wing
has an area of 40.0 m2. During level flight, the pressure
on the lower wing surface is 7.00 � 104 Pa. Determine
the pressure on the upper wing surface.

40. A Venturi tube may be used as a fluid flow meter (see
Fig. 15.21). If the difference in pressure is

kPa, find the fluid flow rate in cubic me-
ters per second, given that the radius of the outlet tube
is 1.00 cm, the radius of the inlet tube is 2.00 cm, and
the fluid is gasoline ( kg/m3).

41. A Pitot tube can be used to determine the velocity of 
air flow by measuring the difference between the total
pressure and the static pressure (Fig. P15.41). If the
fluid in the tube is mercury, whose density is 
13 600 kg/m3, and if �h � 5.00 cm, find the speed of

�Hg �

� � 700

P1 � P2 � 21.0

Figure P15.38

Figure P15.41

Figure P15.43

Mercury

vair

A

∆h

vh

y

ρ
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46. A hole is punched at a height h in the side of a con-
tainer of height h0 . The container is full of water, as
shown in Figure P15.45. If the water is to shoot as far as
possible horizontally, (a) how far from the bottom of
the container should the hole be punched? 
(b) Neglecting frictional losses, how far (initially) from
the side of the container will the water land?

ADDITIONAL PROBLEMS

47. A Ping–Pong ball has a diameter of 3.80 cm and an av-
erage density of 0.084 0 g/cm3. What force would be re-
quired to hold it completely submerged under water?

48. Figure P15.48 shows a tank of water with a valve at the
bottom. If this valve is opened, what is the maximum
height attained by the water stream exiting the right
side of the tank? Assume that m, m,
and , and that the cross-sectional area at point
A is very large compared with that at point B.

� � 30.0�
L � 2.00h � 10.0

49. A helium-filled balloon is tied to a 2.00-m-long, 
0.050 0-kg uniform string. The balloon is spherical with
a radius of 0.400 m. When released, the balloon lifts a
length h of string and then remains in equilibrium, as
shown in Figure P15.49. Determine the value of h. The
envelope of the balloon has a mass of 0.250 kg.

51. The true weight of an object is measured in a vacuum,
where buoyant forces are absent. An object of volume V
is weighed in air on a balance with the use of weights of
density �. If the density of air is �air and the balance
reads show that the true weight Fg is

52. Evangelista Torricelli was the first to realize that we live
at the bottom of an ocean of air. He correctly surmised
that the pressure of our atmosphere is attributable to
the weight of the air. The density of air at 0°C at the
Earth’s surface is 1.29 kg/m3. The density decreases
with increasing altitude (as the atmosphere thins). On
the other hand, if we assume that the density is constant

Fg � Fg � �V �
Fg

�g
� �airg

Fg,

50. Water is forced out of a fire extinguisher by air pres-
sure, as shown in Figure P15.50. How much gauge air
pressure in the tank (above atmospheric) is required
for the water jet to have a speed of 30.0 m/s when the
water level is 0.500 m below the nozzle?

Figure P15.44

Figure P15.45 Problems 45 and 46.

A

a

F v

h 0
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 θ
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h
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Figure P15.48

Figure P15.49

Figure P15.50
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dam about an axis through O is . Show that the
effective line of action of the total force exerted by the
water is at a distance above O.

58. In about 1657 Otto von Guericke, inventor of the air
pump, evacuated a sphere made of two brass hemi-
spheres. Two teams of eight horses each could pull the
hemispheres apart only on some trials, and then “with
greatest difficulty,” with the resulting sound likened to a
cannon firing (Fig. P15.58). (a) Show that the force F

1
3H

1
6 �gwH 3

55. A 1.00-kg beaker containing 2.00 kg of oil (density �
916.0 kg/m3) rests on a scale. A 2.00-kg block of iron is
suspended from a spring scale and completely sub-
merged in the oil, as shown in Figure P15.55. Deter-
mine the equilibrium readings of both scales.

56. A beaker of mass mb containing oil of mass m0
(density � �0) rests on a scale. A block of iron of mass
mFe is suspended from a spring scale and completely
submerged in the oil, as shown in Figure P15.55. Deter-
mine the equilibrium readings of both scales.

57. Review Problem. With reference to Figure 15.7, show
that the total torque exerted by the water behind the

54. A light spring of constant N/m rests vertically
on a table (Fig. P15.54a). A 2.00-g balloon is filled with
helium (density � 0.180 kg/m3) to a volume of 5.00 m3

and is then connected to the spring, causing it to
stretch as shown in Figure P15.54b. Determine the ex-
tension distance L when the balloon is in equilibrium.

k � 90.0

(1.29 kg/m3) up to some altitude h, and zero above that
altitude, then h would represent the thickness of our at-
mosphere. Use this model to determine the value of h
that gives a pressure of 1.00 atm at the surface of the
Earth. Would the peak of Mt. Everest rise above the sur-
face of such an atmosphere?

53. A wooden dowel has a diameter of 1.20 cm. It floats in
water with 0.400 cm of its diameter above water level
(Fig. P15.53). Determine the density of the dowel.

Figure P15.53

Figure P15.54

Figure P15.55 Problems 55 and 56.

0.400 cm

0.80 cm

k k

(a) (b)

L

RF

P

F

P0

Figure P15.58 The colored engraving, dated 1672, illustrates Otto
von Guericke’s demonstration of the force due to air pressure as per-
formed before Emperor Ferdinand III in 1657. (WEB
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he achieves maximum possible suction. The walls of the
tubular straw do not collapse. (a) Find the maximum
height through which he can lift the water. (b) Still
thirsty, the Man of Steel repeats his attempt on the
Moon, which has no atmosphere. Find the difference
between the water levels inside and outside the straw.

64. Show that the variation of atmospheric pressure with al-
titude is given by where P0 is at-
mospheric pressure at some reference level and
�0 is the atmospheric density at this level. Assume that
the decrease in atmospheric pressure with increasing al-
titude is given by Equation 15.4, so that 
and assume that the density of air is proportional to the
pressure.

65. A cube of ice whose edge measures 20.0 mm is floating
in a glass of ice-cold water with one of its faces parallel
to the water’s surface. (a) How far below the water sur-
face is the bottom face of the block? (b) Ice-cold ethyl
alcohol is gently poured onto the water’s surface to
form a layer 5.00 mm thick above the water. The alco-
hol does not mix with the water. When the ice cube
again attains hydrostatic equilibrium, what is the dis-
tance from the top of the water to the bottom face of
the block? (c) Additional cold ethyl alcohol is poured
onto the water’s surface until the top surface of the al-
cohol coincides with the top surface of the ice cube (in

dP/dy � ��g,

y � 0,
� � �0g /P0 ,P � P0e��h,

62. Review Problem. A uniform disk with a mass of 
10.0 kg and a radius of 0.250 m spins at 300 rev/min on
a low-friction axle. It must be brought to a stop in 
1.00 min by a brake pad that makes contact with the
disk at an average distance of 0.220 m from the axis.
The coefficient of friction between the pad and the disk
is 0.500. A piston in a cylinder with a diameter of 
5.00 cm presses the brake pad against the disk. Find the
pressure that the brake fluid in the cylinder must have.

63. Figure P15.63 shows Superman attempting to drink wa-
ter through a very long straw. With his great strength,

required to pull the evacuated hemispheres apart is
where R is the radius of the hemispheres

and P is the pressure inside the hemispheres, which is
much less than P0 . (b) Determine the force if

and 
59. In 1983 the United States began coining the cent piece

out of copper-clad zinc rather than pure copper. The
mass of the old copper cent is 3.083 g, whereas that of
the new cent is 2.517 g. Calculate the percent of zinc
(by volume) in the new cent. The density of copper is
8.960 g/cm3, and that of zinc is 7.133 g/cm3. The new
and old coins have the same volume.

60. A thin spherical shell with a mass of 4.00 kg and a diam-
eter of 0.200 m is filled with helium (density �
0.180 kg/m3). It is then released from rest on the bot-
tom of a pool of water that is 4.00 m deep. (a) Neglect-
ing frictional effects, show that the shell rises with con-
stant acceleration and determine the value of that
acceleration. (b) How long does it take for the top of
the shell to reach the water’s surface?

61. An incompressible, nonviscous fluid initially rests in the
vertical portion of the pipe shown in Figure P15.61a,
where When the valve is opened, the fluid
flows into the horizontal section of the pipe. What is the
speed of the fluid when all of it is in the horizontal sec-
tion, as in Figure P15.61b? Assume that the cross-sec-
tional area of the entire pipe is constant.

L � 2.00 m.

R � 0.300 m.P � 0.100P0

�R2(P0 � P),

Figure P15.61

Figure P15.63

Valve
closed

L

(a)

Valve
opened

L

v

(b)
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hydrostatic equilibrium). How thick is the required
layer of ethyl alcohol?

66. Review Problem. A light balloon filled with helium
with a density of 0.180 kg/m3 is tied to a light string of
length m. The string is tied to the ground,
forming an “inverted” simple pendulum, as shown in
Figure P15.66a. If the balloon is displaced slightly from
its equilibrium position as shown in Figure P15.66b, 
(a) show that the ensuing motion is simple harmonic
and (b) determine the period of the motion. Take the
density of air to be 1.29 kg/m3 and ignore any energy
loss due to air friction.

L � 3.00

Figure P15.66

Figure P15.68

Figure P15.69

Air Air
He

g g

He

L L
 θ

(a) (b)

67. The water supply of a building is fed through a main
6.00-cm-diameter pipe. A 2.00-cm-diameter faucet tap
located 2.00 m above the main pipe is observed to fill a
25.0-L container in 30.0 s. (a) What is the speed at
which the water leaves the faucet? (b) What is the gauge
pressure in the 6-cm main pipe? (Assume that the
faucet is the only “leak” in the building.)

68. The spirit-in-glass thermometer, invented in Florence, Italy,
around 1654, consists of a tube of liquid (the spirit)
containing a number of submerged glass spheres with
slightly different masses (Fig. P15.68). At sufficiently
low temperatures, all the spheres float, but as the tem-
perature rises, the spheres sink one after the other. The
device is a crude but interesting tool for measuring tem-
perature. Suppose that the tube is filled with ethyl alco-
hol, whose density is 0.789 45 g/cm3 at 20.0°C and de-
creases to 0.780 97 g/cm3 at 30.0°C. (a) If one of the
spheres has a radius of 1.000 cm and is in equilibrium
halfway up the tube at 20.0°C, determine its mass. 
(b) When the temperature increases to 30.0°C, what
mass must a second sphere of the same radius have to
be in equilibrium at the halfway point? (c) At 30.0°C
the first sphere has fallen to the bottom of the tube.
What upward force does the bottom of the tube exert
on this sphere?

69. A U-tube open at both ends is partially filled with water
(Fig. P15.69a). Oil having a density of 750 kg/m3 is
then poured into the right arm and forms a column

cm in height (Fig. P15.69b). (a) DetermineL � 5.00

P0

Water

(a) (b) (c)

h
L

Oil

L

v Shield

the difference h in the heights of the two liquid sur-
faces. (b) The right arm is shielded from any air motion
while air is blown across the top of the left arm until the
surfaces of the two liquids are at the same height (Fig.
P15.69c). Determine the speed of the air being blown
across the left arm. (Take the density of air as 
1.29 kg/m3.)
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ANSWERS TO QUICK QUIZZES

15.5 Because water is so much less dense than mercury, the
column for a water barometer would have to be

m high, and such a column is incon-
veniently tall. 

15.6 The entire hull of a ship is full of air, and the density of
air is about one-thousandth the density of water.
Hence, the total weight of the ship equals the weight of
the volume of water that is displaced by the portion of
the ship that is below sea level.

15.7 Remains the same. In effect, the ice creates a “hole” in
the water, and the weight of the water displaced from
the hole is the same as all the weight of the cube. 
When the cube changes from ice to water, the water
just fills the hole.

15.8 Goes down because the anchor displaces more water
while in the boat than it does in the pond. While it is in
the boat, the anchor can be thought of as a floating ob-
ject that displaces a volume of water weighing as much
as it does. When the anchor is thrown overboard, it
sinks and displaces a volume of water equal to its own
volume. Because the density of the anchor is greater
than that of water, the volume of water that weighs the
same as the anchor is greater than the volume of the
anchor.

15.9 As the water falls, its speed increases. Because the flow
rate Av must remain constant at all cross sections (see
Eq. 15.7), the stream must become narrower as the
speed increases.

15.10 The rapidly moving air characteristic of a tornado is at a
pressure below atmospheric pressure. The stationary air
inside the building remains at atmospheric pressure.
The pressure difference results in an outward force on
the roof and walls, and this force can be great enough
to lift the roof off the building. Opening the windows
helps to equalize the inside and outside pressures.

h � P0/�g � 10.3

15.1 You would be better off with the basketball player. Al-
though weight is distributed over the larger surface area,
equal to about half of the total surface area of the
sneaker sole, the pressure (F/A) that he applies is rela-
tively small. The woman’s lesser weight is distributed
over the very small cross-sectional area of the spiked
heel. Some museums make women in high-heeled shoes
wear slippers or special heel attachments so that they do
not damage the wood floors.

15.2 If the professor were to try to support his entire weight
on a single nail, the pressure exerted on his skin would
be his entire weight divided by the very small surface
area of the nail point. This extremely great pressure
would cause the nail to puncture his skin. However, if
the professor distributes his weight over several hundred
nails, as shown in the photograph, the pressure exerted
on his skin is considerably reduced because the surface
area that supports his weight is now the total surface
area of all the nail points. (Lying on the bed of nails is
much more comfortable than sitting on the bed, and
standing on the bed without shoes is definitely not rec-
ommended. Do not lie on a bed of nails unless you have
been shown how to do so safely.)

15.3 Because the horizontal force exerted by the outside
fluid on an element of the cylinder is equal and oppo-
site the horizontal force exerted by the fluid on another
element diametrically opposite the first, the net force on
the cylinder in the horizontal direction is zero.

15.4 If you think of the grain stored in the silo as a fluid,
then the pressure it exerts on the walls increases with in-
creasing depth. The spacing between bands is smaller at
the lower portions so that the greater outward forces act-
ing on the walls can be overcome. The silo on the right
shows another way of accomplishing the same thing:
double banding at the bottom.
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A simple seismograph can be con-
structed with a spring-suspended pen
that draws a line on a slowly unrolling
strip of paper. The paper is mounted on a
structure attached to the ground. During
an earthquake, the pen remains nearly
stationary while the paper shakes be-
neath it. How can a few jagged lines on a
piece of paper allow scientists at a seis-
mograph station to determine the dis-
tance to the origin of an earthquake?
(Ken M. Johns/Photo Researchers, Inc.)
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ost of us experienced waves as children when we dropped a pebble into a
pond. At the point where the pebble hits the water’s surface, waves are cre-
ated. These waves move outward from the creation point in expanding cir-

cles until they reach the shore. If you were to examine carefully the motion of a
leaf floating on the disturbed water, you would see that the leaf moves up, down,
and sideways about its original position but does not undergo any net displace-
ment away from or toward the point where the pebble hit the water. The water
molecules just beneath the leaf, as well as all the other water molecules on the
pond’s surface, behave in the same way. That is, the water wave moves from the
point of origin to the shore, but the water is not carried with it.

An excerpt from a book by Einstein and Infeld gives the following remarks
concerning wave phenomena:1

A bit of gossip starting in Washington reaches New York [by word of mouth]
very quickly, even though not a single individual who takes part in spreading it
travels between these two cities. There are two quite different motions in-
volved, that of the rumor, Washington to New York, and that of the persons
who spread the rumor. The wind, passing over a field of grain, sets up a wave
which spreads out across the whole field. Here again we must distinguish be-
tween the motion of the wave and the motion of the separate plants, which un-
dergo only small oscillations... The particles constituting the medium perform
only small vibrations, but the whole motion is that of a progressive wave. The
essentially new thing here is that for the first time we consider the motion of
something which is not matter, but energy propagated through matter.

The world is full of waves, the two main types being mechanical waves and elec-
tromagnetic waves. We have already mentioned examples of mechanical waves:
sound waves, water waves, and “grain waves.” In each case, some physical medium
is being disturbed—in our three particular examples, air molecules, water mole-
cules, and stalks of grain. Electromagnetic waves do not require a medium to propa-
gate; some examples of electromagnetic waves are visible light, radio waves, televi-
sion signals, and x-rays. Here, in Part 2 of this book, we study only mechanical waves.

The wave concept is abstract. When we observe what we call a water wave, what
we see is a rearrangement of the water’s surface. Without the water, there would
be no wave. A wave traveling on a string would not exist without the string. Sound
waves could not travel through air if there were no air molecules. With mechanical
waves, what we interpret as a wave corresponds to the propagation of a disturbance
through a medium.

M

1 A. Einstein and L. Infeld, The Evolution of Physics, New York, Simon & Schuster, 1961. Excerpt from
“What Is a Wave?”

Interference patterns produced by outward-
spreading waves from many drops of liquid
falling into a body of water.



492 C H A P T E R  1 6 Wave Motion

The mechanical waves discussed in this chapter require (1) some source of
disturbance, (2) a medium that can be disturbed, and (3) some physical connec-
tion through which adjacent portions of the medium can influence each other. We
shall find that all waves carry energy. The amount of energy transmitted through a
medium and the mechanism responsible for that transport of energy differ from
case to case. For instance, the power of ocean waves during a storm is much
greater than the power of sound waves generated by a single human voice.

BASIC VARIABLES OF WAVE MOTION
Imagine you are floating on a raft in a large lake. You slowly bob up and down as
waves move past you. As you look out over the lake, you may be able to see the in-
dividual waves approaching. The point at which the displacement of the water
from its normal level is highest is called the crest of the wave. The distance from
one crest to the next is called the wavelength � (Greek letter lambda). More gen-
erally, the wavelength is the minimum distance between any two identical
points (such as the crests) on adjacent waves, as shown in Figure 16.1.

If you count the number of seconds between the arrivals of two adjacent
waves, you are measuring the period T of the waves. In general, the period is the
time required for two identical points (such as the crests) of adjacent waves
to pass by a point.

The same information is more often given by the inverse of the period, which
is called the frequency f. In general, the frequency of a periodic wave is the num-
ber of crests (or troughs, or any other point on the wave) that pass a given
point in a unit time interval. The maximum displacement of a particle of the
medium is called the amplitude A of the wave. For our water wave, this represents
the highest distance of a water molecule above the undisturbed surface of the wa-
ter as the wave passes by.

Waves travel with a specific speed, and this speed depends on the properties of
the medium being disturbed. For instance, sound waves travel through room-
temperature air with a speed of about 343 m/s (781 mi/h), whereas they travel
through most solids with a speed greater than 343 m/s.

DIRECTION OF PARTICLE DISPLACEMENT
One way to demonstrate wave motion is to flick one end of a long rope that is un-
der tension and has its opposite end fixed, as shown in Figure 16.2. In this man-
ner, a single wave bump (called a wave pulse) is formed and travels along the rope
with a definite speed. This type of disturbance is called a traveling wave, and Fig-
ure 16.2 represents four consecutive “snapshots” of the creation and propagation
of the traveling wave. The rope is the medium through which the wave travels.
Such a single pulse, in contrast to a train of pulses, has no frequency, no period,
and no wavelength. However, the pulse does have definite amplitude and definite
speed. As we shall see later, the properties of this particular medium that deter-
mine the speed of the wave are the tension in the rope and its mass per unit
length. The shape of the wave pulse changes very little as it travels along the rope.2

As the wave pulse travels, each small segment of the rope, as it is disturbed,
moves in a direction perpendicular to the wave motion. Figure 16.3 illustrates this

16.2

16.1

λ

y

λ

x

Figure 16.1 The wavelength � of
a wave is the distance between adja-
cent crests, adjacent troughs, or
any other comparable adjacent
identical points.

2 Strictly speaking, the pulse changes shape and gradually spreads out during the motion. This effect is
called dispersion and is common to many mechanical waves, as well as to electromagnetic waves. We do
not consider dispersion in this chapter.
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Compare this with another type of wave—one moving down a long, stretched
spring, as shown in Figure 16.4. The left end of the spring is pushed briefly to the
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to
the right in Figure 16.4). The compressed region is followed by a region where the
coils are extended. Notice that the direction of the displacement of the coils is par-
allel to the direction of propagation of the compressed region.

Figure 16.2 A wave pulse traveling
down a stretched rope. The shape of
the pulse is approximately unchanged
as it travels along the rope.

A traveling wave that causes the particles of the disturbed medium to move per-
pendicular to the wave motion is called a transverse wave.

Transverse wave

point for one particular segment, labeled P. Note that no part of the rope ever
moves in the direction of the wave.

Figure 16.3 A pulse traveling on a
stretched rope is a transverse wave. The di-
rection of motion of any element P of the
rope (blue arrows) is perpendicular to the
direction of wave motion (red arrows).

Figure 16.4 A longitudinal wave along a stretched spring. The displacement of the coils is in
the direction of the wave motion. Each compressed region is followed by a stretched region.

Compressed Compressed

StretchedStretched

λ

λ

A traveling wave that causes the particles of the medium to move parallel to the
direction of wave motion is called a longitudinal wave.

Longitudinal wave

Sound waves, which we shall discuss in Chapter 17, are another example of
longitudinal waves. The disturbance in a sound wave is a series of high-pressure
and low-pressure regions that travel through air or any other material medium.

P

P

P

P
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Some waves in nature exhibit a combination of transverse and longitudinal
displacements. Surface water waves are a good example. When a water wave travels
on the surface of deep water, water molecules at the surface move in nearly circu-
lar paths, as shown in Figure 16.5. Note that the disturbance has both transverse
and longitudinal components. The transverse displacement is seen in Figure 16.5
as the variations in vertical position of the water molecules. The longitudinal dis-
placement can be explained as follows: As the wave passes over the water’s surface,
water molecules at the crests move in the direction of propagation of the wave,
whereas molecules at the troughs move in the direction opposite the propagation.
Because the molecule at the labeled crest in Figure 16.5 will be at a trough after
half a period, its movement in the direction of the propagation of the wave will be
canceled by its movement in the opposite direction. This holds for every other wa-
ter molecule disturbed by the wave. Thus, there is no net displacement of any wa-
ter molecule during one complete cycle. Although the molecules experience no net
displacement, the wave propagates along the surface of the water.

The three-dimensional waves that travel out from the point under the Earth’s
surface at which an earthquake occurs are of both types—transverse and longitu-
dinal. The longitudinal waves are the faster of the two, traveling at speeds in the
range of 7 to 8 km/s near the surface. These are called P waves, with “P” standing
for primary because they travel faster than the transverse waves and arrive at a seis-
mograph first. The slower transverse waves, called S waves (with “S” standing for
secondary), travel through the Earth at 4 to 5 km/s near the surface. By recording
the time interval between the arrival of these two sets of waves at a seismograph,
the distance from the seismograph to the point of origin of the waves can be deter-
mined. A single such measurement establishes an imaginary sphere centered on
the seismograph, with the radius of the sphere determined by the difference in ar-
rival times of the P and S waves. The origin of the waves is located somewhere on
that sphere. The imaginary spheres from three or more monitoring stations lo-
cated far apart from each other intersect at one region of the Earth, and this re-
gion is where the earthquake occurred.

(a) In a long line of people waiting to buy tickets, the first person leaves and a pulse of 
motion occurs as people step forward to fill the gap. As each person steps forward, the 
gap moves through the line. Is the propagation of this gap transverse or longitudinal? 
(b) Consider the “wave” at a baseball game: people stand up and shout as the wave arrives
at their location, and the resultant pulse moves around the stadium. Is this wave transverse
or longitudinal?

Quick Quiz 16.1

Figure 16.5 The motion of water molecules on the surface of deep water in which a wave is
propagating is a combination of transverse and longitudinal displacements, with the result that
molecules at the surface move in nearly circular paths. Each molecule is displaced both horizon-
tally and vertically from its equilibrium position.

Trough

Wave motion

Crest

QuickLab
Make a “telephone” by poking a small
hole in the bottom of two paper cups,
threading a string through the holes,
and tying knots in the ends of the
string. If you speak into one cup
while pulling the string taut, a friend
can hear your voice in the other cup.
What kind of wave is present in the
string?
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ONE-DIMENSIONAL TRAVELING WAVES
Consider a wave pulse traveling to the right with constant speed v on a long, taut
string, as shown in Figure 16.6. The pulse moves along the x axis (the axis of the
string), and the transverse (vertical) displacement of the string (the medium) is
measured along the y axis. Figure 16.6a represents the shape and position of the
pulse at time At this time, the shape of the pulse, whatever it may be, can be
represented as That is, y, which is the vertical position of any point on the
string, is some definite function of x. The displacement y, sometimes called the
wave function, depends on both x and t. For this reason, it is often written y(x, t),
which is read “y as a function of x and t.” Consider a particular point P on the
string, identified by a specific value of its x coordinate. Before the pulse arrives at
P, the y coordinate of this point is zero. As the wave passes P, the y coordinate of
this point increases, reaches a maximum, and then decreases to zero. Therefore,
the wave function y represents the y coordinate of any point P of the
medium at any time t.

Because its speed is v, the wave pulse travels to the right a distance vt in a time
t (see Fig. 16.6b). If the shape of the pulse does not change with time, we can rep-
resent the wave function y for all times after Measured in a stationary refer-
ence frame having its origin at O, the wave function is

(16.1)

If the wave pulse travels to the left, the string displacement is

(16.2)

For any given time t, the wave function y as a function of x defines a curve rep-
resenting the shape of the pulse at this time. This curve is equivalent to a “snap-
shot” of the wave at this time. For a pulse that moves without changing shape, the
speed of the pulse is the same as that of any feature along the pulse, such as the
crest shown in Figure 16.6. To find the speed of the pulse, we can calculate how far
the crest moves in a short time and then divide this distance by the time interval.
To follow the motion of the crest, we must substitute some particular value, say x0 ,
in Equation 16.1 for Regardless of how x and t change individually, we must
require that in order to stay with the crest. This expression therefore
represents the equation of motion of the crest. At the crest is at at ax � x0 ;t � 0,

x � vt � x0

x � vt.

y � f(x � vt)

y � f(x � vt)

t � 0.

y � f(x).
t � 0.

16.3

A

y

(a) Pulse at t = 0

O

vt

x

v

O

y

x

v
P

(b) Pulse at time t

P

Figure 16.6 A one-dimensional wave pulse traveling to the right with a speed v. (a) At 
the shape of the pulse is given by (b) At some later time t, the shape remains un-
changed and the vertical displacement of any point P of the medium is given by y � f(x � vt ).

y � f (x).
t � 0,

Wave traveling to the right

Wave traveling to the left
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A Pulse Moving to the RightEXAMPLE 16.1

We now use these expressions to plot the wave function ver-
sus x at these times. For example, let us evaluate at

cm:

Likewise, at cm, cm, and at 
cm, cm. Continuing this procedure for

other values of x yields the wave function shown in Figure
16.7a. In a similar manner, we obtain the graphs of y(x, 1.0)
and y(x, 2.0), shown in Figure 16.7b and c, respectively.
These snapshots show that the wave pulse moves to the right
without changing its shape and that it has a constant speed of
3.0 cm/s.

y(2.0, 0) � 0.402.0
x �y(1.0, 0) � 1.0x � 1.0

y(0.50, 0) �
2

(0.50)2 � 1
� 1.6 cm

x � 0.50
y(x, 0)

y(x, 2.0) �
2

(x � 6.0)2 � 1
  at t � 2.0 s

y(x, 1.0) �
2

(x � 3.0)2 � 1
  at t � 1.0 s

A wave pulse moving to the right along the x axis is repre-
sented by the wave function

where x and y are measured in centimeters and t is measured
in seconds. Plot the wave function at and

s.

Solution First, note that this function is of the form
By inspection, we see that the wave speed is

cm/s. Furthermore, the wave amplitude (the maxi-
mum value of y) is given by cm. (We find the maxi-
mum value of the function representing y by letting

The wave function expressions are

 y(x, 0) �
2

x2 � 1
  at t � 0 

x � 3.0t � 0.)

A � 2.0
v � 3.0
y � f(x � vt).

t � 2.0
t � 1.0 s,t � 0,

y(x, t) �
2

(x � 3.0t)2 � 1

time dt later, the crest is at Therefore, in a time dt, the crest has
moved a distance Hence, the wave speed is

(16.3)v �
dx
dt

dx � (x0 � v dt) � x0 � v dt.
x � x0 � v dt.

y(cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6

y(x, 0)

t = 0

3.0 cm/s

(a)

x(cm)

y(cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6

y(x, 1.0)

t = 1.0 s

3.0 cm/s

(b)

x(cm)

y(cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6

y(x, 2.0)

t = 2.0 s

3.0 cm/s

(c)

x(cm)

7

7 8Figure 16.7 Graphs of the function 
at (a) (b) s, and (c) s.t � 2.0t � 1.0t � 0,

y(x, t) � 2/[(x � 3.0t)2 � 1]
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SUPERPOSITION AND INTERFERENCE
Many interesting wave phenomena in nature cannot be described by a single mov-
ing pulse. Instead, one must analyze complex waves in terms of a combination of
many traveling waves. To analyze such wave combinations, one can make use of
the superposition principle:

16.4

If two or more traveling waves are moving through a medium, the resultant
wave function at any point is the algebraic sum of the wave functions of the in-
dividual waves.

Waves that obey this principle are called linear waves and are generally character-
ized by small amplitudes. Waves that violate the superposition principle are called
nonlinear waves and are often characterized by large amplitudes. In this book, we
deal only with linear waves.

One consequence of the superposition principle is that two traveling waves
can pass through each other without being destroyed or even altered. For in-
stance, when two pebbles are thrown into a pond and hit the surface at different
places, the expanding circular surface waves do not destroy each other but rather
pass through each other. The complex pattern that is observed can be viewed as
two independent sets of expanding circles. Likewise, when sound waves from two
sources move through air, they pass through each other. The resulting sound that
one hears at a given point is the resultant of the two disturbances.

Figure 16.8 is a pictorial representation of superposition. The wave function
for the pulse moving to the right is y1, and the wave function for the pulse moving

Linear waves obey the
superposition principle

(c)

(d)

(b)

(a)

y2 y 1

y 1+ y2

y 1+ y2

y2y 1

Figure 16.8 (a–d) Two wave pulses traveling on a stretched string in opposite directions pass
through each other. When the pulses overlap, as shown in (b) and (c), the net displacement of
the string equals the sum of the displacements produced by each pulse. Because each pulse dis-
places the string in the positive direction, we refer to the superposition of the two pulses as con-
structive interference. (e) Photograph of superposition of two equal, symmetric pulses traveling in
opposite directions on a stretched spring.

(e)
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to the left is y2 . The pulses have the same speed but different shapes. Each pulse is
assumed to be symmetric, and the displacement of the medium is in the positive y
direction for both pulses. (Note, however, that the superposition principle applies
even when the two pulses are not symmetric.) When the waves begin to overlap
(Fig. 16.8b), the wave function for the resulting complex wave is given by y1 � y2 .

Figure 16.9 (a–e) Two wave pulses traveling in opposite directions and having displacements
that are inverted relative to each other. When the two overlap in (c), their displacements partially
cancel each other. (f) Photograph of superposition of two symmetric pulses traveling in opposite 
directions, where one pulse is inverted relative to the other.

Interference of water waves produced
in a ripple tank. The sources of the
waves are two objects that oscillate per-
pendicular to the surface of the tank.

(a)

(b)

(d)

(e)

y 1

y 2

y 1

y 2

y 2

y 1

y 2

y 1

(c)
y 1+ y 2

(f)
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When the crests of the pulses coincide (Fig. 16.8c), the resulting wave given by
is symmetric. The two pulses finally separate and continue moving in their

original directions (Fig. 16.8d). Note that the pulse shapes remain unchanged, as
if the two pulses had never met!

The combination of separate waves in the same region of space to produce a
resultant wave is called interference. For the two pulses shown in Figure 16.8, the
displacement of the medium is in the positive y direction for both pulses, and the
resultant wave (created when the pulses overlap) exhibits a displacement greater
than that of either individual pulse. Because the displacements caused by the two
pulses are in the same direction, we refer to their superposition as constructive
interference.

Now consider two pulses traveling in opposite directions on a taut string
where one pulse is inverted relative to the other, as illustrated in Figure 16.9. In
this case, when the pulses begin to overlap, the resultant wave is given by 
but the values of the function y2 are negative. Again, the two pulses pass through
each other; however, because the displacements caused by the two pulses are in
opposite directions, we refer to their superposition as destructive interference.

Two pulses are traveling toward each other at 10 cm/s on a long string, as shown in Figure
16.10. Sketch the shape of the string at s.t � 0.6

Quick Quiz 16.2

y1 � y2 ,

y1 � y2

1 cm

Figure 16.10 The pulses on this string are traveling at 10 cm/s.

THE SPEED OF WAVES ON STRINGS
In this section, we focus on determining the speed of a transverse pulse traveling
on a taut string. Let us first conceptually argue the parameters that determine the
speed. If a string under tension is pulled sideways and then released, the tension is
responsible for accelerating a particular segment of the string back toward its equi-
librium position. According to Newton’s second law, the acceleration of the seg-
ment increases with increasing tension. If the segment returns to equilibrium
more rapidly due to this increased acceleration, we would intuitively argue that the
wave speed is greater. Thus, we expect the wave speed to increase with increasing
tension.

Likewise, we can argue that the wave speed decreases if the mass per unit
length of the string increases. This is because it is more difficult to accelerate a
massive segment of the string than a light segment. If the tension in the string is T
(not to be confused with the same symbol used for the period) and its mass per

16.5
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unit length is � (Greek letter mu), then, as we shall show, the wave speed is

(16.4)

First, let us verify that this expression is dimensionally correct. The dimensions
of T are ML/T2, and the dimensions of � are M/L. Therefore, the dimensions of
T/� are L2/T2; hence, the dimensions of are L/T—indeed, the dimensions
of speed. No other combination of T and � is dimensionally correct if we assume
that they are the only variables relevant to the situation.

Now let us use a mechanical analysis to derive Equation 16.4. On our string
under tension, consider a pulse moving to the right with a uniform speed v mea-
sured relative to a stationary frame of reference. Instead of staying in this refer-
ence frame, it is more convenient to choose as our reference frame one that
moves along with the pulse with the same speed as the pulse, so that the pulse is at
rest within the frame. This change of reference frame is permitted because New-
ton’s laws are valid in either a stationary frame or one that moves with constant ve-
locity. In our new reference frame, a given segment of the string initially to the
right of the pulse moves to the left, rises up and follows the shape of the pulse, and
then continues to move to the left. Figure 16.11a shows such a segment at the in-
stant it is located at the top of the pulse.

The small segment of the string of length �s shown in Figure 16.11a, and mag-
nified in Figure 16.11b, forms an approximate arc of a circle of radius R. In our
moving frame of reference (which is moving to the right at a speed v along with
the pulse), the shaded segment is moving to the left with a speed v. This segment
has a centripetal acceleration equal to v2/R, which is supplied by components of
the tension T in the string. The force T acts on either side of the segment and tan-
gent to the arc, as shown in Figure 16.11b. The horizontal components of T can-
cel, and each vertical component T sin � acts radially toward the center of the arc.
Hence, the total radial force is 2T sin �. Because the segment is small, � is small,
and we can use the small-angle approximation sin � � �. Therefore, the total ra-
dial force is

The segment has a mass Because the segment forms part of a circle
and subtends an angle 2� at the center, �s � R(2�), and hence

m � ��s � 2�R�

m � ��s.

	Fr � 2T sin � � 2T�

√T/�

v � √ T
�

Speed of a wave on a stretched
string

The strings of this piano vary in both tension and mass per
unit length. These differences in tension and density, in
combination with the different lengths of the strings, allow
the instrument to produce a wide range of sounds.

∆s ar =
v2

R

R

O

(a)

(b)

O

v

θ
∆s

θ

R
Fr

θ

TT

Figure 16.11 (a) To obtain the
speed v of a wave on a stretched
string, it is convenient to describe
the motion of a small segment of
the string in a moving frame of ref-
erence. (b) In the moving frame of
reference, the small segment of
length �s moves to the left with
speed v. The net force on the seg-
ment is in the radial direction be-
cause the horizontal components
of the tension force cancel.
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If we apply Newton’s second law to this segment, the radial component of motion
gives

Solving for v gives Equation 16.4.
Notice that this derivation is based on the assumption that the pulse height is

small relative to the length of the string. Using this assumption, we were able to
use the approximation sin � � �. Furthermore, the model assumes that the ten-
sion T is not affected by the presence of the pulse; thus, T is the same at all points
on the string. Finally, this proof does not assume any particular shape for the pulse.
Therefore, we conclude that a pulse of any shape travels along the string with speed

without any change in pulse shape.v � √T/�

2T� �
2�R�v2

R

	Fr � ma �
mv2

R

The Speed of a Pulse on a CordEXAMPLE 16.2

(This calculation of the tension neglects the small mass of
the cord. Strictly speaking, the cord can never be exactly hor-
izontal, and therefore the tension is not uniform.) The mass
per unit length � of the cord is

Therefore, the wave speed is

Exercise Find the time it takes the pulse to travel from the
wall to the pulley.

Answer 0.253 s.

19.8 m/sv � √ T
�

� √ 19.6 N
0.050 0 kg/m

�

� �
m
�

�
0.300 kg
6.00 m

� 0.050 0 kg/m

T � mg � (2.00 kg)(9.80 m/s2) � 19.6 NA uniform cord has a mass of 0.300 kg and a length of 6.00 m
(Fig. 16.12). The cord passes over a pulley and supports a 2.00-
kg object. Find the speed of a pulse traveling along this cord.

Solution The tension T in the cord is equal to the weight
of the suspended 2.00-kg mass:

5.00 m

2.00 kg

1.00 m

Figure 16.12 The tension T in the cord is maintained by the sus-
pended object. The speed of any wave traveling along the cord is
given by v � √T/�.

Suppose you create a pulse by moving the free end of a taut string up and down once with
your hand. The string is attached at its other end to a distant wall. The pulse reaches the
wall in a time t. Which of the following actions, taken by itself, decreases the time it takes
the pulse to reach the wall? More than one choice may be correct.
(a) Moving your hand more quickly, but still only up and down once by the same amount.
(b) Moving your hand more slowly, but still only up and down once by the same amount.
(c) Moving your hand a greater distance up and down in the same amount of time.
(d) Moving your hand a lesser distance up and down in the same amount of time.
(e) Using a heavier string of the same length and under the same tension.
(f) Using a lighter string of the same length and under the same tension.
(g) Using a string of the same linear mass density but under decreased tension.
(h) Using a string of the same linear mass density but under increased tension.

Quick Quiz 16.3
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REFLECTION AND TRANSMISSION
We have discussed traveling waves moving through a uniform medium. We now
consider how a traveling wave is affected when it encounters a change in the
medium. For example, consider a pulse traveling on a string that is rigidly at-
tached to a support at one end (Fig. 16.13). When the pulse reaches the support,
a severe change in the medium occurs—the string ends. The result of this change
is that the wave undergoes reflection—that is, the pulse moves back along the
string in the opposite direction.

Note that the reflected pulse is inverted. This inversion can be explained as
follows: When the pulse reaches the fixed end of the string, the string produces an
upward force on the support. By Newton’s third law, the support must exert an
equal and opposite (downward) reaction force on the string. This downward force
causes the pulse to invert upon reflection.

Now consider another case: this time, the pulse arrives at the end of a string that
is free to move vertically, as shown in Figure 16.14. The tension at the free end is
maintained because the string is tied to a ring of negligible mass that is free to slide
vertically on a smooth post. Again, the pulse is reflected, but this time it is not in-
verted. When it reaches the post, the pulse exerts a force on the free end of the
string, causing the ring to accelerate upward. The ring overshoots the height of the
incoming pulse, and then the downward component of the tension force pulls 
the ring back down. This movement of the ring produces a reflected pulse that is
not inverted and that has the same amplitude as the incoming pulse.

Finally, we may have a situation in which the boundary is intermediate be-
tween these two extremes. In this case, part of the incident pulse is reflected and
part undergoes transmission—that is, some of the pulse passes through the
boundary. For instance, suppose a light string is attached to a heavier string, as
shown in Figure 16.15. When a pulse traveling on the light string reaches the
boundary between the two, part of the pulse is reflected and inverted and part is
transmitted to the heavier string. The reflected pulse is inverted for the same rea-
sons described earlier in the case of the string rigidly attached to a support.

Note that the reflected pulse has a smaller amplitude than the incident pulse.
In Section 16.8, we shall learn that the energy carried by a wave is related to its am-
plitude. Thus, according to the principle of the conservation of energy, when the
pulse breaks up into a reflected pulse and a transmitted pulse at the boundary, the
sum of the energies of these two pulses must equal the energy of the incident
pulse. Because the reflected pulse contains only part of the energy of the incident
pulse, its amplitude must be smaller.

16.6

(a)

(b)

(c)

(d)

(e) Reflected
pulse

Incident
pulse

Incident
pulse

(a)

(b)

(c)

Reflected
pulse

(d)

Incident
pulse

Transmitted
pulse

Reflected
pulse

(a)

(b)

Figure 16.13 The reflection of a
traveling wave pulse at the fixed
end of a stretched string. The re-
flected pulse is inverted, but its
shape is unchanged.

Figure 16.14 The reflection of a
traveling wave pulse at the free end
of a stretched string. The reflected
pulse is not inverted.

Figure 16.15 (a) A pulse traveling
to the right on a light string attached
to a heavier string. (b) Part of the inci-
dent pulse is reflected (and inverted),
and part is transmitted to the heavier
string.
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When a pulse traveling on a heavy string strikes the boundary between the
heavy string and a lighter one, as shown in Figure 16.16, again part is reflected and
part is transmitted. In this case, the reflected pulse is not inverted.

In either case, the relative heights of the reflected and transmitted pulses de-
pend on the relative densities of the two strings. If the strings are identical, there is
no discontinuity at the boundary and no reflection takes place.

According to Equation 16.4, the speed of a wave on a string increases as the
mass per unit length of the string decreases. In other words, a pulse travels more
slowly on a heavy string than on a light string if both are under the same tension.
The following general rules apply to reflected waves: When a wave pulse travels
from medium A to medium B and vA vB (that is, when B is denser than A),
the pulse is inverted upon reflection. When a wave pulse travels from
medium A to medium B and vA vB (that is, when A is denser than B), the
pulse is not inverted upon reflection.

SINUSOIDAL WAVES
In this section, we introduce an important wave function whose shape is shown in
Figure 16.17. The wave represented by this curve is called a sinusoidal wave be-
cause the curve is the same as that of the function sin � plotted against �. The si-
nusoidal wave is the simplest example of a periodic continuous wave and can be
used to build more complex waves, as we shall see in Section 18.8. The red curve
represents a snapshot of a traveling sinusoidal wave at and the blue curve
represents a snapshot of the wave at some later time t. At the function de-
scribing the positions of the particles of the medium through which the sinusoidal
wave is traveling can be written

(16.5)

where the constant A represents the wave amplitude and the constant � is the
wavelength. Thus, we see that the position of a particle of the medium is the same
whenever x is increased by an integral multiple of �. If the wave moves to the right
with a speed v, then the wave function at some later time t is

(16.6)

That is, the traveling sinusoidal wave moves to the right a distance vt in the time t,
as shown in Figure 16.17. Note that the wave function has the form andf(x � vt)

y � A sin� 2


�
 (x � vt)�

y � A sin� 2


�
 x�

t � 0,
t � 0,

16.7

P

Q

Figure 16.16 (a) A pulse traveling
to the right on a heavy string attached
to a lighter string. (b) The incident
pulse is partially reflected and partially
transmitted, and the reflected pulse is
not inverted.

Incident
pulse

Reflected
pulse

Transmitted
pulse

(a)

(b)

t = 0 t

y

x

v
vt

Figure 16.17 A one-dimensional
sinusoidal wave traveling to the
right with a speed v. The red curve
represents a snapshot of the wave at

and the blue curve represents
a snapshot at some later time t.
t � 0,
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so represents a wave traveling to the right. If the wave were traveling to the left, the
quantity would be replaced by as we learned when we developed
Equations 16.1 and 16.2.

By definition, the wave travels a distance of one wavelength in one per-
iod T. Therefore, the wave speed, wavelength, and period are related by the ex-
pression

(16.7)

Substituting this expression for v into Equation 16.6, we find that

(16.8)

This form of the wave function clearly shows the periodic nature of y. At any given
time t (a snapshot of the wave), y has the same value at the positions x, x � �, 
x � 2�, and so on. Furthermore, at any given position x, the value of y is the same
at times t, t � T, t � 2T, and so on.

We can express the wave function in a convenient form by defining two other
quantities, the angular wave number k and the angular frequency �:

(16.9)

(16.10)

Using these definitions, we see that Equation 16.8 can be written in the more com-
pact form

(16.11)

The frequency of a sinusoidal wave is related to the period by the expression

(16.12)

The most common unit for frequency, as we learned in Chapter 13, is second�1, or
hertz (Hz). The corresponding unit for T is seconds.

Using Equations 16.9, 16.10, and 16.12, we can express the wave speed v origi-
nally given in Equation 16.7 in the alternative forms

(16.13)

(16.14)

The wave function given by Equation 16.11 assumes that the vertical displace-
ment y is zero at and This need not be the case. If it is not, we gener-
ally express the wave function in the form

(16.15)y � A sin(kx � �t � �)

t � 0.x � 0

v � �f

v �
�

k

f �
1
T

y � A sin(kx � �t)

� �
2


T

k �
2


�

y � A sin �2
 � x
�

�
t
T ��

v �
�

T

x � vt,x � vt

Angular wave number

Angular frequency

Wave function for a sinusoidal
wave

Frequency

Speed of a sinusoidal wave

General expression for a
sinusoidal wave
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where � is the phase constant, just as we learned in our study of periodic motion
in Chapter 13. This constant can be determined from the initial conditions.

3 In this arrangement, we are assuming that a string segment always oscillates in a vertical line. The ten-
sion in the string would vary if a segment were allowed to move sideways. Such motion would make the
analysis very complex.

A Traveling Sinusoidal WaveEXAMPLE 16.3

(b) Determine the phase constant �, and write a general
expression for the wave function.

Solution Because cm and because cm
at and substitution into Equation 16.15 gives

or

We may take the principal value rad (or 90°).
Hence, the wave function is of the form

By inspection, we can see that the wave function must have
this form, noting that the cosine function has the same shape
as the sine function displaced by 90°. Substituting the values
for A, k, and � into this expression, we obtain

y � (15.0 cm) cos(0.157x � 50.3t)

y � A sin�kx � �t �



2 � � A cos(kx � �t)

� � 
/2

sin � � 115.0 � (15.0) sin �

t � 0,x � 0
y � 15.0A � 15.0

320 cm/sv � �f � (40.0 cm)(8.00 s�1) �

0.125 s T �
1
f

�
1

8.00 s�1 �

50.3 rad/s � � 2
f � 2
(8.00 s�1) �
A sinusoidal wave traveling in the positive x direction has an
amplitude of 15.0 cm, a wavelength of 40.0 cm, and a fre-
quency of 8.00 Hz. The vertical displacement of the medium
at and is also 15.0 cm, as shown in Figure 16.18.
(a) Find the angular wave number k, period T, angular fre-
quency �, and speed v of the wave.

Solution (a) Using Equations 16.9, 16.10, 16.12, and
16.14, we find the following:

0.157 rad/cm k �
2


�
�

2
 rad
40.0 cm

�

x � 0t � 0

y(cm)

40.0 cm

15.0 cm
x(cm)

Figure 16.18 A sinusoidal wave of wavelength � � 40.0 cm and
amplitude A � 15.0 cm. The wave function can be written in the
form y � A cos(kx � �t).

Sinusoidal Waves on Strings

In Figure 16.2, we demonstrated how to create a pulse by jerking a taut string up
and down once. To create a train of such pulses, normally referred to as a wave train,
or just plain wave, we can replace the hand with an oscillating blade. If the wave con-
sists of a train of identical cycles, whatever their shape, the relationships f � 1/T and
v � f� among speed, frequency, period, and wavelength hold true. We can make
more definite statements about the wave function if the source of the waves vibrates
in simple harmonic motion. Figure 16.19 represents snapshots of the wave created
in this way at intervals of T/4. Note that because the end of the blade oscillates in
simple harmonic motion, each particle of the string, such as that at P, also os-
cillates vertically with simple harmonic motion. This must be the case because
each particle follows the simple harmonic motion of the blade. Therefore, every seg-
ment of the string can be treated as a simple harmonic oscillator vibrating with a fre-
quency equal to the frequency of oscillation of the blade.3 Note that although each
segment oscillates in the y direction, the wave travels in the x direction with a speed
v. Of course, this is the definition of a transverse wave.
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If the wave at is as described in Figure 16.19b, then the wave function
can be written as

We can use this expression to describe the motion of any point on the string. The
point P (or any other point on the string) moves only vertically, and so its x coordi-
nate remains constant. Therefore, the transverse speed vy (not to be confused
with the wave speed v) and the transverse acceleration ay are

(16.16)

(16.17)

In these expressions, we must use partial derivatives (see Section 8.6) because y de-
pends on both x and t. In the operation for example, we take a derivative
with respect to t while holding x constant. The maximum values of the transverse
speed and transverse acceleration are simply the absolute values of the coefficients
of the cosine and sine functions:

(16.18)

(16.19)

The transverse speed and transverse acceleration do not reach their maximum val-
ues simultaneously. The transverse speed reaches its maximum value (�A) when

whereas the transverse acceleration reaches its maximum value (�2A) when
Finally, Equations 16.18 and 16.19 are identical in mathematical form to

the corresponding equations for simple harmonic motion, Equations 13.10 and
13.11.

y � A.
y � 0,

ay, max � �2A

vy, max � �A 

�y/�t,

ay �
dvy

dt �
x  � constant

�
�vy

�t
� ��2A sin(kx � �t)

 vy �
dy
dt �x   � constant

�
�y
�t

� ��A cos(kx � �t) 

y � A sin(kx � �t)

t � 0

P

(a)

A

y

Vibrating
blade

(c)

P

P

P

(b)

(d)

λ

Figure 16.19 One method for producing a train of sinusoidal wave pulses on a string. The left
end of the string is connected to a blade that is set into oscillation. Every segment of the string,
such as the point P, oscillates with simple harmonic motion in the vertical direction.



16.8 Rate of Energy Transfer by Sinusoidal Waves on Strings 507

A sinusoidal wave is moving on a string. If you increase the frequency f of the wave, how do
the transverse speed, wave speed, and wavelength change?

Quick Quiz 16.4

A Sinusoidally Driven StringEXAMPLE 16.4
Because cm � 0.120 m, we have

Exercise Calculate the maximum values for the transverse
speed and transverse acceleration of any point on the string.

Answer 3.77 m/s; 118 m/s2.

y � A sin(kx � �t) � (0.120 m) sin(1.57x � 31.4t)

A � 12.0The string shown in Figure 16.19 is driven at a frequency of
5.00 Hz. The amplitude of the motion is 12.0 cm, and the
wave speed is 20.0 m/s. Determine the angular frequency �
and angular wave number k for this wave, and write an ex-
pression for the wave function.

Solution Using Equations 16.10, 16.12, and 16.13, we find
that

1.57 rad/mk �
�

v
�

31.4 rad/s
20.0 m/s

�

31.4 rad/s� �
2


T
� 2
f � 2
(5.00 Hz) �

RATE OF ENERGY TRANSFER BY SINUSOIDAL
WAVES ON STRINGS

As waves propagate through a medium, they transport energy. We can easily
demonstrate this by hanging an object on a stretched string and then sending a
pulse down the string, as shown in Figure 16.20. When the pulse meets the sus-
pended object, the object is momentarily displaced, as illustrated in Figure 16.20b.
In the process, energy is transferred to the object because work must be done for
it to move upward. This section examines the rate at which energy is transported
along a string. We shall assume a one-dimensional sinusoidal wave in the calcula-
tion of the energy transferred.

Consider a sinusoidal wave traveling on a string (Fig. 16.21). The source of the
energy being transported by the wave is some external agent at the left end of the
string; this agent does work in producing the oscillations. As the external agent
performs work on the string, moving it up and down, energy enters the system of
the string and propagates along its length. Let us focus our attention on a segment
of the string of length �x and mass �m. Each such segment moves vertically with
simple harmonic motion. Furthermore, all segments have the same angular fre-
quency � and the same amplitude A. As we found in Chapter 13, the elastic poten-
tial energy U associated with a particle in simple harmonic motion is 
where the simple harmonic motion is in the y direction. Using the relationship 
�2 � k/m developed in Equations 13.16 and 13.17, we can write this as

U � 1
2ky2,

16.8

m

m

(a)

(b)

Figure 16.20 (a) A pulse travel-
ing to the right on a stretched
string on which an object has been
suspended. (b) Energy is transmit-
ted to the suspended object when
the pulse arrives.

Figure 16.21 A sinusoidal wave
traveling along the x axis on a
stretched string. Every segment
moves vertically, and every segment
has the same total energy.

∆m
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If we apply this equation to the segment of mass �m, we see that the
potential energy of this segment is

Because the mass per unit length of the string is we can express the
potential energy of the segment as

As the length of the segment shrinks to zero, �x : dx, and this expression be-
comes a differential relationship:

We replace the general displacement y of the segment with the wave function for a
sinusoidal wave:

If we take a snapshot of the wave at time then the potential energy in a given
segment is

To obtain the total potential energy in one wavelength, we integrate this expres-
sion over all the string segments in one wavelength:

Because it is in motion, each segment of the string also has kinetic energy.
When we use this procedure to analyze the total kinetic energy in one wavelength
of the string, we obtain the same result:

The total energy in one wavelength of the wave is the sum of the potential and ki-
netic energies:

(16.20)

As the wave moves along the string, this amount of energy passes by a given point
on the string during one period of the oscillation. Thus, the power, or rate of en-
ergy transfer, associated with the wave is

(16.21)

This shows that the rate of energy transfer by a sinusoidal wave on a string is pro-
portional to (a) the wave speed, (b) the square of the frequency, and (c) the
square of the amplitude. In fact: the rate of energy transfer in any sinusoidal
wave is proportional to the square of the angular frequency and to the
square of the amplitude.
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Optional Section

THE LINEAR WAVE EQUATION
In Section 16.3 we introduced the concept of the wave function to represent waves
traveling on a string. All wave functions y(x, t) represent solutions of an equation
called the linear wave equation. This equation gives a complete description of the
wave motion, and from it one can derive an expression for the wave speed. Fur-
thermore, the linear wave equation is basic to many forms of wave motion. In this
section, we derive this equation as applied to waves on strings.

Suppose a traveling wave is propagating along a string that is under a tension
T. Let us consider one small string segment of length �x (Fig. 16.22). The ends of
the segment make small angles �A and �B with the x axis. The net force acting on
the segment in the vertical direction is

Because the angles are small, we can use the small-angle approximation sin � �
tan � to express the net force as

However, the tangents of the angles at A and B are defined as the slopes of the string
segment at these points. Because the slope of a curve is given by we have

(16.22)

We now apply Newton’s second law to the segment, with the mass of the seg-
ment given by 

(16.23)

Combining Equation 16.22 with Equation 16.23, we obtain

(16.24) 
�

T
 

�2y
�t2 �

(�y/�x)B � (�y/�x)A

�x
 

��x � �2y
�t2 � � T �� �y

�x �B
� � �y

�x �A
�

	Fy � may � ��x� �2y
�t2 �

m � ��x :

	Fy � T  �� �y
�x �B

� � �y
�x �A

�
�y/�x,

	Fy � T(tan �B � tan �A)

	Fy � T sin �B � T sin �A � T(sin �B � sin �A)

16.9

Power Supplied to a Vibrating StringEXAMPLE 16.5
oidal waves on the string has the value

Using these values in Equation 16.21 for the power, with
we obtain

512 W  �

 � � (6.00 � 10�2 m)2(40.0 m/s)

 � 1
2(5.00 � 10�2 kg/m)(377 s�1)2

� � 1
2��2A2v 

A � 6.00 � 10�2 m,

� � 2
f � 2
(60.0 Hz) � 377 s�1

A taut string for which is under a ten-
sion of 80.0 N. How much power must be supplied to the
string to generate sinusoidal waves at a frequency of 60.0 Hz
and an amplitude of 6.00 cm?

Solution The wave speed on the string is, from Equation
16.4,

Because Hz, the angular frequency � of the sinus-f � 60.0

v � √ T
�

� √ 80.0 N
5.00 � 10�2 kg/m

� 40.0 m/s

� � 5.00 � 10�2 kg/m

Figure 16.22 A segment of a
string under tension T. The slopes
at points A and B are given by 
tan �A and tan �B , respectively.
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The right side of this equation can be expressed in a different form if we note that
the partial derivative of any function is defined as

If we associate with and f(x) with we see that, in the
limit �x : 0, Equation 16.24 becomes

(16.25)

This is the linear wave equation as it applies to waves on a string.
We now show that the sinusoidal wave function (Eq. 16.11) represents a solu-

tion of the linear wave equation. If we take the sinusoidal wave function to be of
the form sin then the appropriate derivatives are

Substituting these expressions into Equation 16.25, we obtain

This equation must be true for all values of the variables x and t in order for the 
sinusoidal wave function to be a solution of the wave equation. Both sides of the
equation depend on x and t through the same function sin(kx � �t). Because this
function divides out, we do indeed have an identity, provided that

Using the relationship (Eq. 16.13) in this expression, we see that

which is Equation 16.4. This derivation represents another proof of the expression
for the wave speed on a taut string.

The linear wave equation (Eq. 16.25) is often written in the form

(16.26)

This expression applies in general to various types of traveling waves. For waves on
strings, y represents the vertical displacement of the string. For sound waves, y cor-
responds to displacement of air molecules from equilibrium or variations in either
the pressure or the density of the gas through which the sound waves are propa-
gating. In the case of electromagnetic waves, y corresponds to electric or magnetic
field components.

We have shown that the sinusoidal wave function (Eq. 16.11) is one solution of
the linear wave equation (Eq. 16.26). Although we do not prove it here, the linear

�2y
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Linear wave equation in general

Linear wave equation
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wave equation is satisfied by any wave function having the form Fur-
thermore, we have seen that the linear wave equation is a direct consequence of
Newton’s second law applied to any segment of the string.

SUMMARY

A transverse wave is one in which the particles of the medium move in a direc-
tion perpendicular to the direction of the wave velocity. An example is a wave on a
taut string. A longitudinal wave is one in which the particles of the medium move
in a direction parallel to the direction of the wave velocity. Sound waves in fluids
are longitudinal. You should be able to identify examples of both types of waves.

Any one-dimensional wave traveling with a speed v in the x direction can be
represented by a wave function of the form

(16.1, 16.2)

where the positive sign applies to a wave traveling in the negative x direction and the
negative sign applies to a wave traveling in the positive x direction. The shape of the
wave at any instant in time (a snapshot of the wave) is obtained by holding t constant.

The superposition principle specifies that when two or more waves move
through a medium, the resultant wave function equals the algebraic sum of the 
individual wave functions. When two waves combine in space, they interfere to
produce a resultant wave. The interference may be constructive (when the indi-
vidual displacements are in the same direction) or destructive (when the dis-
placements are in opposite directions).

The speed of a wave traveling on a taut string of mass per unit length � and
tension T is

(16.4)

A wave is totally or partially reflected when it reaches the end of the medium in
which it propagates or when it reaches a boundary where its speed changes discon-
tinuously. If a wave pulse traveling on a string meets a fixed end, the pulse is re-
flected and inverted. If the pulse reaches a free end, it is reflected but not inverted.

The wave function for a one-dimensional sinusoidal wave traveling to the
right can be expressed as

(16.6, 16.11)

where A is the amplitude, � is the wavelength, k is the angular wave number,
and � is the angular frequency. If T is the period and f the frequency, v, k and �
can be written

(16.7, 16.14)

(16.9)

(16.10, 16.12)

You should know how to find the equation describing the motion of particles in a
wave from a given set of physical parameters.

The power transmitted by a sinusoidal wave on a stretched string is

(16.21)� � 1
2��2A2v

� �
2


T
� 2
f

k �
2


�
 

v �
�

T
� �f 

y � A sin� 2


�
 (x � vt)� � A sin(kx � �t)

v � √ T
�

y � f(x  vt)

y � f(x  vt).
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QUESTIONS

11. What happens to the wavelength of a wave on a string
when the frequency is doubled? Assume that the tension
in the string remains the same.

12. What happens to the speed of a wave on a taut string
when the frequency is doubled? Assume that the tension
in the string remains the same.

13. How do transverse waves differ from longitudinal waves?
14. When all the strings on a guitar are stretched to the same

tension, will the speed of a wave along the more massive
bass strings be faster or slower than the speed of a wave
on the lighter strings?

15. If you stretch a rubber hose and pluck it, you can observe
a pulse traveling up and down the hose. What happens to
the speed of the pulse if you stretch the hose more
tightly? What happens to the speed if you fill the hose
with water?

16. In a longitudinal wave in a spring, the coils move back
and forth in the direction of wave motion. Does the
speed of the wave depend on the maximum speed of
each coil?

17. When two waves interfere, can the amplitude of the resul-
tant wave be greater than either of the two original waves?
Under what conditions?

18. A solid can transport both longitudinal waves and trans-
verse waves, but a fluid can transport only longitudinal
waves. Why?

1. Why is a wave pulse traveling on a string considered a
transverse wave?

2. How would you set up a longitudinal wave in a stretched
spring? Would it be possible to set up a transverse wave in
a spring?

3. By what factor would you have to increase the tension in a
taut string to double the wave speed?

4. When traveling on a taut string, does a wave pulse always
invert upon reflection? Explain.

5. Can two pulses traveling in opposite directions on the
same string reflect from each other? Explain.

6. Does the vertical speed of a segment of a horizontal, taut
string, through which a wave is traveling, depend on the
wave speed?

7. If you were to shake one end of a taut rope periodically
three times each second, what would be the period of the
sinusoidal waves set up in the rope?

8. A vibrating source generates a sinusoidal wave on a string
under constant tension. If the power delivered to the string
is doubled, by what factor does the amplitude change?
Does the wave speed change under these circumstances?

9. Consider a wave traveling on a taut rope. What is the dif-
ference, if any, between the speed of the wave and the
speed of a small segment of the rope?

10. If a long rope is hung from a ceiling and waves are sent
up the rope from its lower end, they do not ascend with
constant speed. Explain.

PROBLEMS

3. A wave moving along the x axis is described by

where x is in meters and t is in seconds. Determine 
(a) the direction of the wave motion and (b) the speed
of the wave.

y(x, t) � 5.00e�(x�5.00t )2

Section 16.1 Basic Variables of Wave Motion

Section 16.2 Direction of Particle Displacement

Section 16.3 One-Dimensional Traveling Waves

1. At a transverse wave pulse in a wire is described
by the function

where x and y are in meters. Write the function y(x, t)
that describes this wave if it is traveling in the positive x
direction with a speed of 4.50 m/s.

2. Two wave pulses A and B are moving in opposite direc-
tions along a taut string with a speed of 2.00 cm/s. The
amplitude of A is twice the amplitude of B. The pulses
are shown in Figure P16.2 at Sketch the shape of
the string at 1.5, 2, 2.5, and 3 s.t � 1,

t � 0.

y �
6

x2 � 3

t � 0,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

4

y(cm)

2.00 cm/s

–2.00 cm/s

x(cm)

2

2 4 6 8 10 12 14 16 18 20

A
B

Figure P16.2
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WEB

4. Ocean waves with a crest-to-crest distance of 10.0 m can
be described by the equation

where m/s. (a) Sketch y(x, t) at 
(b) Sketch y(x, t) at s. Note how the entire
wave form has shifted 2.40 m in the positive x direction
in this time interval.

5. Two points, A and B, on the surface of the Earth are at
the same longitude and 60.0° apart in latitude. Suppose
that an earthquake at point A sends two waves toward
point B. A transverse wave travels along the surface of
the Earth at 4.50 km/s, and a longitudinal wave travels
straight through the body of the Earth at 7.80 km/s. 
(a) Which wave arrives at point B first? (b) What is the
time difference between the arrivals of the two waves at
point B ? Take the radius of the Earth to be 6 370 km.

6. A seismographic station receives S and P waves from an
earthquake, 17.3 s apart. Suppose that the waves have
traveled over the same path at speeds of 4.50 km/s and
7.80 km/s, respectively. Find the distance from the seis-
mometer to the epicenter of the quake.

Section 16.4 Superposition and Interference
7. Two sinusoidal waves in a string are defined by the func-

tions

and

where y and x are in centimeters and t is in seconds. 
(a) What is the phase difference between these two
waves at the point cm at s? (b) What is
the positive x value closest to the origin for which the
two phases differ by  
 at s? (This is where
the sum of the two waves is zero.)

8. Two waves in one string are described by the wave func-
tions

and

where y and x are in centimeters and t is in seconds.
Find the superposition of the waves at the
points (a) (b) 
(c) (Remember that the arguments of
the trigonometric functions are in radians.)

9. Two pulses traveling on the same string are described by
the functions

and

y2 �
�5

(3x � 4t � 6)2 � 2

y1 �
5

(3x � 4t)2 � 2

t � 0.x � 0.500,
t � 0.500;x � 1.00,t � 1.00;x � 1.00,

y1 � y2

y2 � 4.0 sin(5.0x � 2.0t)

y1 � 3.0 cos(4.0x � 1.6t)

t � 2.00

t � 2.00x � 5.00

y2 � (2.00 cm) sin(25.0x � 40.0t)

y1 � (2.00 cm) sin(20.0x � 32.0t)

t � 2.00
t � 0.v � 1.20

y(x, t) � (0.800 m) sin[0.628(x � vt)]

(a) In which direction does each pulse travel? 
(b) At what time do the two cancel? (c) At what point
do the two waves always cancel?

Section 16.5 The Speed of Waves on Strings
10. A phone cord is 4.00 m long. The cord has a mass of

0.200 kg. A transverse wave pulse is produced by pluck-
ing one end of the taut cord. The pulse makes four trips
down and back along the cord in 0.800 s. What is the
tension in the cord?

11. Transverse waves with a speed of 50.0 m/s are to be pro-
duced in a taut string. A 5.00-m length of string with a
total mass of 0.060 0 kg is used. What is the required
tension?

12. A piano string having a mass per unit length 5.00 �
10�3 kg/m is under a tension of 1 350 N. Find the
speed with which a wave travels on this string.

13. An astronaut on the Moon wishes to measure the local
value of g by timing pulses traveling down a wire that
has a large mass suspended from it. Assume that the
wire has a mass of 4.00 g and a length of 1.60 m, and
that a 3.00-kg mass is suspended from it. A pulse re-
quires 36.1 ms to traverse the length of the wire. Calcu-
late gMoon from these data. (You may neglect the mass
of the wire when calculating the tension in it.)

14. Transverse pulses travel with a speed of 200 m/s along a
taut copper wire whose diameter is 1.50 mm. What is
the tension in the wire? (The density of copper is 
8.92 g/cm3.)

15. Transverse waves travel with a speed of 20.0 m/s in a
string under a tension of 6.00 N. What tension is required
to produce a wave speed of 30.0 m/s in the same string?

16. A simple pendulum consists of a ball of mass M hanging
from a uniform string of mass m and length L, with 
m V M. If the period of oscillation for the pendulum is
T, determine the speed of a transverse wave in the
string when the pendulum hangs at rest.

17. The elastic limit of a piece of steel wire is 2.70 � 109 Pa.
What is the maximum speed at which transverse wave
pulses can propagate along this wire before this stress is
exceeded? (The density of steel is 7.86 � 103 kg/m3.)

18. Review Problem. A light string with a mass per unit
length of 8.00 g/m has its ends tied to two walls sepa-
rated by a distance equal to three-fourths the length of
the string (Fig. P16.18). An object of mass m is sus-

3L/4

L/2L/2

m

Figure P16.18
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pended from the center of the string, putting a tension
in the string. (a) Find an expression for the transverse
wave speed in the string as a function of the hanging
mass. (b) How much mass should be suspended from
the string to produce a wave speed of 60.0 m/s?

19. Review Problem. A light string with a mass of 10.0 g
and a length m has its ends tied to two walls
that are separated by the distance m. Two ob-
jects, each with a mass kg, are suspended
from the string, as shown in Figure P16.19. If a wave
pulse is sent from point A , how long does it take for it
to travel to point B?

20. Review Problem. A light string of mass m and length L
has its ends tied to two walls that are separated by the
distance D. Two objects, each of mass M, are suspended
from the string, as shown in Figure P16.19. If a wave
pulse is sent from point A, how long does it take to
travel to point B?

M � 2.00
D � 2.00

L � 3.00

the period of vibration from this plot and compare your
result with the value found in Example 16.3.

24. For a certain transverse wave, the distance between two
successive crests is 1.20 m, and eight crests pass a given
point along the direction of travel every 12.0 s. Calcu-
late the wave speed.

25. A sinusoidal wave is traveling along a rope. The oscilla-
tor that generates the wave completes 40.0 vibrations in
30.0 s. Also, a given maximum travels 425 cm along the
rope in 10.0 s. What is the wavelength?

26. Consider the sinusoidal wave of Example 16.3, with the
wave function

At a certain instant, let point A be at the origin and
point B be the first point along the x axis where the
wave is 60.0° out of phase with point A. What is the
coordinate of point B?

27. When a particular wire is vibrating with a frequency of
4.00 Hz, a transverse wave of wavelength 60.0 cm is pro-
duced. Determine the speed of wave pulses along the
wire.

28. A sinusoidal wave traveling in the � x direction (to the
left) has an amplitude of 20.0 cm, a wavelength of 
35.0 cm, and a frequency of 12.0 Hz. The displacement
of the wave at is cm; at this same
point, a particle of the medium has a positive velocity.
(a) Sketch the wave at (b) Find the angular wave
number, period, angular frequency, and wave speed of
the wave. (c) Write an expression for the wave function
y(x, t).

29. A sinusoidal wave train is described by the equation

m) sin(0.30x � 40t)

where x and y are in meters and t is in seconds. Deter-
mine for this wave the (a) amplitude, (b) angular fre-
quency, (c) angular wave number, (d) wavelength, 
(e) wave speed, and (f) direction of motion.

30. A transverse wave on a string is described by the expres-
sion

(a) Determine the transverse speed and acceleration of
the string at s for the point on the string lo-
cated at m. (b) What are the wavelength, pe-
riod, and speed of propagation of this wave?

31. (a) Write the expression for y as a function of x and t
for a sinusoidal wave traveling along a rope in the 
negative x direction with the following characteristics:

cm, � � 80.0 cm, Hz, and 
at (b) Write the expression for y as a function of
x and t for the wave in part (a), assuming that

at the point cm.
32. A transverse sinusoidal wave on a string has a period

ms and travels in the negative x direction with
a speed of 30.0 m/s. At a particle on the string att � 0,
T � 25.0

x � 10.0y(x, 0) � 0

t � 0.
y(0, t) � 0f � 3.00A � 8.00

x � 1.60
t � 0.200

y � (0.120 m) sin(
x/8 � 4
t)

y � (0.25

t � 0.

y � �3.00x � 0t � 0,

y � (15.0 cm) cos(0.157x � 50.3t)

WEB

Figure P16.19 Problems 19 and 20.
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21. A 30.0-m steel wire and a 20.0-m copper wire, both with
1.00-mm diameters, are connected end to end and are
stretched to a tension of 150 N. How long does it take a
transverse wave to travel the entire length of the two
wires?

Section 16.6 Reflection and Transmission
22. A series of pulses, each of amplitude 0.150 m, are sent

down a string that is attached to a post at one end. The
pulses are reflected at the post and travel back along
the string without loss of amplitude. What is the dis-
placement at a point on the string where two pulses are
crossing (a) if the string is rigidly attached to the post?
(b) if the end at which reflection occurs is free to slide
up and down?

Section 16.7 Sinusoidal Waves
23. (a) Plot y versus t at for a sinusoidal wave of the

form cm) cos(0.157x � 50.3t) , where x and y
are in centimeters and t is in seconds. (b) Determine

y � (15.0
x � 0

WEB
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has a displacement of 2.00 cm and travels down-
ward with a speed of 2.00 m/s. (a) What is the ampli-
tude of the wave? (b) What is the initial phase angle?
(c) What is the maximum transverse speed of the
string? (d) Write the wave function for the wave.

33. A sinusoidal wave of wavelength 2.00 m and amplitude
0.100 m travels on a string with a speed of 1.00 m/s to
the right. Initially, the left end of the string is at the ori-
gin. Find (a) the frequency and angular frequency, 
(b) the angular wave number, and (c) the wave func-
tion for this wave. Determine the equation of motion
for (d) the left end of the string and (e) the point on
the string at m to the right of the left end. 
(f) What is the maximum speed of any point on the
string?

34. A sinusoidal wave on a string is described by the equa-
tion

where rad/cm and rad/s. How far
does a wave crest move in 10.0 s? Does it move in the
positive or negative x direction?

35. A wave is described by cm) sin
where rad/m, rad/s, x is in meters,
and t is in seconds. Determine the amplitude, wave-
length, frequency, and speed of the wave.

36. A transverse traveling wave on a taut wire has an ampli-
tude of 0.200 mm and a frequency of 500 Hz. It travels
with a speed of 196 m/s. (a) Write an equation in SI
units of the form sin for this wave. 
(b) The mass per unit length of this wire is 4.10 g/m.
Find the tension in the wire.

37. A wave on a string is described by the wave function

(a) Show that a particle in the string at m exe-
cutes simple harmonic motion. (b) Determine the fre-
quency of oscillation of this particular point.

Section 16.8 Rate of Energy Transfer by Sinusoidal
Waves on Strings

38. A taut rope has a mass of 0.180 kg and a length of 
3.60 m. What power must be supplied to the rope to
generate sinusoidal waves having an amplitude of 
0.100 m and a wavelength of 0.500 m and traveling with
a speed of 30.0 m/s?

39. A two-dimensional water wave spreads in circular wave
fronts. Show that the amplitude A at a distance r from
the initial disturbance is proportional to (Hint:
Consider the energy carried by one outward-moving
ripple.)

40. Transverse waves are being generated on a rope under
constant tension. By what factor is the required power
increased or decreased if (a) the length of the rope is
doubled and the angular frequency remains constant,
(b) the amplitude is doubled and the angular fre-

1/√r.

x � 2.00

y � (0.100 m) sin(0.50x � 20t)

(kx � �t)y � A

� � 3.62k � 2.11
(kx � �t),y � (2.00

� � 9.30k � 3.10

y � (0.51 cm) sin(kx � �t)

x � 1.50

x � 0 quency is halved, (c) both the wavelength and the
amplitude are doubled, and (d) both the length of the
rope and the wavelength are halved?

41. Sinusoidal waves 5.00 cm in amplitude are to be trans-
mitted along a string that has a linear mass density of
4.00 � 10�2 kg/m. If the source can deliver a maximum
power of 300 W and the string is under a tension of 
100 N, what is the highest vibrational frequency at
which the source can operate?

42. It is found that a 6.00-m segment of a long string con-
tains four complete waves and has a mass of 180 g. The
string is vibrating sinusoidally with a frequency of 
50.0 Hz and a peak-to-valley displacement of 15.0 cm.
(The “peak-to-valley” distance is the vertical distance
from the farthest positive displacement to the farthest
negative displacement.) (a) Write the function that de-
scribes this wave traveling in the positive x direction.
(b) Determine the power being supplied to the string.

43. A sinusoidal wave on a string is described by the equa-
tion

where x and y are in meters and t is in seconds. If the
mass per unit length of this string is 12.0 g/m, deter-
mine (a) the speed of the wave, (b) the wavelength, 
(c) the frequency, and (d) the power transmitted to the
wave.

44. A horizontal string can transmit a maximum power of 
(without breaking) if a wave with amplitude A and an-
gular frequency � is traveling along it. To increase this
maximum power, a student folds the string and uses the
“double string” as a transmitter. Determine the maxi-
mum power that can be transmitted along the “double
string,” supposing that the tension is constant.

(Optional)
Section 16.9 The Linear Wave Equation

45. (a) Evaluate A in the scalar equality 
(b) Evaluate A, B, and C in the vector equality

Explain how you arrive
at your answers. (c) The functional equality or identity

is true for all values of the variables x and t, which are
measured in meters and in seconds, respectively. Evalu-
ate the constants A, B, C, D, and E. Explain how you ar-
rive at your answers.

46. Show that the wave function is a solution of
the wave equation (Eq. 16.26), where b is a constant.

47. Show that the wave function is a solu-
tion to Equation 16.26, where b is a constant.

48. (a) Show that the function is a solu-
tion to the wave equation. (b) Show that the function
above can be written as and deter-
mine the functional forms for f and g. (c) Repeat parts 
(a) and (b) for the function y(x, t) � sin(x) cos(vt).

f(x � vt) � g(x � vt),

y(x, t) � x2 � v2t2

y � ln[b(x � vt)]

y � e b(x �vt )

A � B cos(Cx � Dt � E) � (7.00 mm) cos(3x � 4t � 2)

7.00 i � 3.00k � A i � B j � Ck.

(7 � 3)4 � A.

�

y � (0.15 m) sin(0.80x � 50t)

WEB
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ADDITIONAL PROBLEMS

49. The “wave” is a particular type of wave pulse that can
sometimes be seen propagating through a large crowd
gathered at a sporting arena to watch a soccer or Ameri-
can football match (Fig. P16.49). The particles of the
medium are the spectators, with zero displacement cor-
responding to their being in the seated position and
maximum displacement corresponding to their being
in the standing position and raising their arms. When a
large fraction of the spectators participate in the wave
motion, a somewhat stable pulse shape can develop.
The wave speed depends on people’s reaction time,
which is typically on the order of 0.1 s. Estimate the or-
der of magnitude, in minutes, of the time required for
such a wave pulse to make one circuit around a large
sports stadium. State the quantities you measure or esti-
mate and their values.

(a) What are the speed and direction of travel of the
wave? (b) What is the vertical displacement of the string
at m? (c) What are the wavelength and
frequency of the wave? (d) What is the maximum mag-
nitude of the transverse speed of the string?

52. Motion picture film is projected at 24.0 frames per sec-
ond. Each frame is a photograph 19.0 mm in height. At
what constant speed does the film pass into the pro-
jector?

53. Review Problem. A block of mass M, supported by a
string, rests on an incline making an angle � with the
horizontal (Fig. P16.53). The string’s length is L, and its
mass is m V M. Derive an expression for the time it
takes a transverse wave to travel from one end of the
string to the other.

x � 0.100t � 0,

WEB

M

m, L

θ

Figure P16.49

50. A traveling wave propagates according to the expression
where x is in centimeters

and t is in seconds. Determine (a) the amplitude, 
(b) the wavelength, (c) the frequency, (d) the period,
and (e) the direction of travel of the wave.

51. The wave function for a traveling wave on a taut string is
(in SI units)

y(x, t) � (0.350 m) sin(10
t � 3
x � 
/4)

y � (4.0 cm) sin(2.0x � 3.0t),

Figure P16.53

54. (a) Determine the speed of transverse waves on a string
under a tension of 80.0 N if the string has a length of
2.00 m and a mass of 5.00 g. (b) Calculate the power re-
quired to generate these waves if they have a wavelength
of 16.0 cm and an amplitude of 4.00 cm.

55. Review Problem. A 2.00-kg block hangs from a rubber
cord. The block is supported so that the cord is not
stretched. The unstretched length of the cord is 
0.500 m, and its mass is 5.00 g. The “spring constant”
for the cord is 100 N/m. The block is released and stops
at the lowest point. (a) Determine the tension in the
cord when the block is at this lowest point. (b) What is
the length of the cord in this “stretched” position? 
(c) Find the speed of a transverse wave in the cord if
the block is held in this lowest position.

56. Review Problem. A block of mass M hangs from a rub-
ber cord. The block is supported so that the cord is not
stretched. The unstretched length of the cord is L0 ,
and its mass is m, much less than M. The “spring con-
stant” for the cord is k. The block is released and stops
at the lowest point. (a) Determine the tension in the
cord when the block is at this lowest point. (b) What is
the length of the cord in this “stretched” position? 
(c) Find the speed of a transverse wave in the cord if
the block is held in this lowest position.
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57. A sinusoidal wave in a rope is described by the wave
function

where x and y are in meters and t is in seconds. The
rope has a linear mass density of 0.250 kg/m. If the ten-
sion in the rope is provided by an arrangement like the
one illustrated in Figure 16.12, what is the value of the
suspended mass?

58. A wire of density � is tapered so that its cross-sectional
area varies with x, according to the equation

(a) If the wire is subject to a tension T, derive a relation-
ship for the speed of a wave as a function of position. 
(b) If the wire is aluminum and is subject to a tension
of 24.0 N, determine the speed at the origin and at

m.
59. A rope of total mass m and length L is suspended verti-

cally. Show that a transverse wave pulse travels the
length of the rope in a time (Hint: First find
an expression for the wave speed at any point a distance
x from the lower end by considering the tension in the
rope as resulting from the weight of the segment below
that point.)

60. If mass M is suspended from the bottom of the rope in
Problem 59, (a) show that the time for a transverse wave
to travel the length of the rope is

(b) Show that this reduces to the result of Problem 59
when (c) Show that for m V M, the expression
in part (a) reduces to

61. It is stated in Problem 59 that a wave pulse travels from
the bottom to the top of a rope of length L in a time

Use this result to answer the following ques-
tions. (It is not necessary to set up any new integra-
tions.) (a) How long does it take for a wave pulse to
travel halfway up the rope? (Give your answer as a frac-
tion of the quantity (b) A pulse starts traveling
up the rope. How far has it traveled after a time 

62. Determine the speed and direction of propagation of
each of the following sinusoidal waves, assuming that x
is measured in meters and t in seconds:
(a)
(b)
(c)
(d) y � 0.20 sin(12t � x/2 � 
)

y � 1.2 sin(15t � 2.0x)
y � 0.40 cos(3.0x � 15t � 2)
y � 0.60 cos(3.0x � 15t � 2)

√L/g ?
2√L/g.)

t � 2√L/g.

t � √ mL
Mg

M � 0.

t � 2√ L
mg

 �√(M � m) � √M�

t � 2√L/g.

x � 10.0

A � (1.0 � 10�3x � 0.010) cm2

y � (0.20 m) sin(0.75
x � 18
t)

63. Review Problem. An aluminum wire under zero ten-
sion at room temperature is clamped at each end. The
tension in the wire is increased by reducing the temper-
ature, which results in a decrease in the wire’s equilib-
rium length. What strain (�L/L) results in a transverse
wave speed of 100 m/s? Take the cross-sectional area of
the wire to be 5.00 � 10�6 m2, the density of the mater-
ial to be 2.70 � 103 kg/m3, and Young’s modulus to be
7.00 � 1010 N/m2 .

64. (a) Show that the speed of longitudinal waves along a
spring of force constant k is where L is the
unstretched length of the spring and � is the mass per
unit length. (b) A spring with a mass of 0.400 kg has an
unstretched length of 2.00 m and a force constant of
100 N/m. Using the result you obtained in (a), deter-
mine the speed of longitudinal waves along this spring.

65. A string of length L consists of two sections: The left
half has mass per unit length whereas the
right half has a mass per unit length 
Tension in the string is T0 . Notice from the data given
that this string has the same total mass as a uniform
string of length L and of mass per unit length �0 . 
(a) Find the speeds v and v� at which transverse wave
pulses travel in the two sections. Express the speeds in
terms of T0 and �0 , and also as multiples of the speed

(b) Find the time required for a pulse
to travel from one end of the string to the other. Give
your result as a multiple of 

66. A wave pulse traveling along a string of linear mass den-
sity � is described by the relationship

where the factor in brackets before the sine function is
said to be the amplitude. (a) What is the power 
carried by this wave at a point x? (b) What is the power
carried by this wave at the origin? (c) Compute the ratio

67. An earthquake on the ocean floor in the Gulf of Alaska
produces a tsunami (sometimes called a “tidal wave”)
that reaches Hilo, Hawaii, 4 450 km away, in a time of 
9 h 30 min. Tsunamis have enormous wavelengths
(100–200 km), and the propagation speed of these 
waves is , where is the average depth of the wa-
ter. From the information given, find the average wave
speed and the average ocean depth between Alaska and
Hawaii. (This method was used in 1856 to estimate the
average depth of the Pacific Ocean long before sound-
ings were made to obtain direct measurements.)

dv � √gd

�(x)/�(0).

�(x)

y � [A0e�bx] sin(kx � �t)

t0 � L/v0 .

v0 � (T0/�0)1/2.

�� � 3� � 3�0/2.
� � �0/2,

v � √kL/�,
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ANSWERS TO QUICK QUIZZES

16.3 Only answers (f) and (h) are correct. (a) and (b) affect
the transverse speed of a particle of the string, but not
the wave speed along the string. (c) and (d) change the
amplitude. (e) and (g) increase the time by decreasing
the wave speed.

16.4 The transverse speed increases because 
The wave speed does not change because it de-

pends only on the tension and mass per length of the
string, neither of which has been modified. The wave-
length must decrease because the wave speed re-
mains constant.

v � �f

2
fA.
vy, max � �A �

16.1 (a) It is longitudinal because the disturbance (the shift
of position) is parallel to the direction in which the wave
travels. (b) It is transverse because the people stand up
and sit down (vertical motion), whereas the wave moves
either to the left or to the right (motion perpendicular
to the disturbance).

16.2 1 cm
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ound waves are the most important example of longitudinal waves. They can
travel through any material medium with a speed that depends on the prop-
erties of the medium. As the waves travel, the particles in the medium vibrate

to produce changes in density and pressure along the direction of motion of the
wave. These changes result in a series of high-pressure and low-pressure regions. If
the source of the sound waves vibrates sinusoidally, the pressure variations are also
sinusoidal. We shall find that the mathematical description of sinusoidal sound
waves is identical to that of sinusoidal string waves, which was discussed in the pre-
vious chapter.

Sound waves are divided into three categories that cover different frequency
ranges. (1) Audible waves are waves that lie within the range of sensitivity of the hu-
man ear. They can be generated in a variety of ways, such as by musical instru-
ments, human vocal cords, and loudspeakers. (2) Infrasonic waves are waves having
frequencies below the audible range. Elephants can use infrasonic waves to com-
municate with each other, even when separated by many kilometers. (3) Ultrasonic
waves are waves having frequencies above the audible range. You may have used a
“silent” whistle to retrieve your dog. The ultrasonic sound it emits is easily heard
by dogs, although humans cannot detect it at all. Ultrasonic waves are also used in
medical imaging.

We begin this chapter by discussing the speed of sound waves and then wave
intensity, which is a function of wave amplitude. We then provide an alternative de-
scription of the intensity of sound waves that compresses the wide range of intensi-
ties to which the ear is sensitive to a smaller range. Finally, we treat effects of the
motion of sources and/or listeners.

SPEED OF SOUND WAVES
Let us describe pictorially the motion of a one-dimensional longitudinal pulse
moving through a long tube containing a compressible gas (Fig. 17.1). A piston at
the left end can be moved to the right to compress the gas and create the pulse.
Before the piston is moved, the gas is undisturbed and of uniform density, as rep-
resented by the uniformly shaded region in Figure 17.1a. When the piston is sud-
denly pushed to the right (Fig. 17.1b), the gas just in front of it is compressed (as
represented by the more heavily shaded region); the pressure and density in this
region are now higher than they were before the piston moved. When the piston
comes to rest (Fig. 17.1c), the compressed region of the gas continues to move to
the right, corresponding to a longitudinal pulse traveling through the tube with

17.1
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S

An ultrasound image of a human fetus in
the womb after 20 weeks of development,
showing the head, body, arms, and legs in
profile.

(d)

v

(c)

v

(b)

Compressed region

(a)

Undisturbed gas

Figure 17.1 Motion of a longitudi-
nal pulse through a compressible gas.
The compression (darker region) is
produced by the moving piston.
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speed v. Note that the piston speed does not equal v. Furthermore, the com-
pressed region does not “stay with” the piston as the piston moves, because the
speed of the wave may be greater than the speed of the piston.

The speed of sound waves depends on the compressibility and inertia of the
medium. If the medium has a bulk modulus B (see Section 12.4) and density �,
the speed of sound waves in that medium is

(17.1)

It is interesting to compare this expression with Equation 16.4 for the speed of 
transverse waves on a string, In both cases, the wave speed depends on
an elastic property of the medium—bulk modulus B or string tension T—and on
an inertial property of the medium—� or �. In fact, the speed of all mechanical
waves follows an expression of the general form

The speed of sound also depends on the temperature of the medium. For
sound traveling through air, the relationship between wave speed and medium
temperature is

where 331 m/s is the speed of sound in air at 0°C, and TC is the temperature in
degrees Celsius. Using this equation, one finds that at 20°C the speed of sound in
air is approximately 343 m/s.

This information provides a convenient way to estimate the distance to a thun-
derstorm, as demonstrated in the QuickLab. During a lightning flash, the temper-
ature of a long channel of air rises rapidly as the bolt passes through it. This tem-
perature increase causes the air in the channel to expand rapidly, and this
expansion creates a sound wave. The channel produces sound throughout its en-
tire length at essentially the same instant. If the orientation of the channel is such
that all of its parts are approximately the same distance from you, sounds from the
different parts reach you at the same time, and you hear a short, intense thunder-
clap. However, if the distances between your ear and different portions of the
channel vary, sounds from different portions arrive at your ears at different times.
If the channel were a straight line, the resulting sound would be a steady roar, but
the zigzag shape of the path produces variations in loudness.

The speed of sound in air is a function of (a) wavelength, (b) frequency, (c) temperature,
(d) amplitude.

As a result of a distant explosion, an observer first senses a ground tremor and then hears
the explosion later. Explain.

Quick Quiz 17.2

Quick Quiz 17.1

v � (331 m/s) !1 �
TC

273�C

v �! elastic property
inertial property

v � !T/�.

v �! B
�

QuickLab
The next time a thunderstorm ap-
proaches, count the seconds between
a flash of lightning (which reaches
you almost instantaneously) and the
following thunderclap. Divide this
time by 3 to determine the approxi-
mate number of kilometers (or by 5
to estimate the miles) to the storm.

Speed of sound

To learn more about lightning, read
E. Williams, “The Electrification of
Thunderstorms” Sci. Am.
259(5):88–89, 1988.
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PERIODIC SOUND WAVES
This section will help you better comprehend the nature of sound waves. You will
learn that pressure variations control what we hear—an important fact for under-
standing how our ears work.

One can produce a one-dimensional periodic sound wave in a long, narrow
tube containing a gas by means of an oscillating piston at one end, as shown in
Figure 17.2. The darker parts of the colored areas in this figure represent re-

17.2

Speed of Sound in a SolidEXAMPLE 17.1
This typical value for the speed of sound in solids is much
greater than the speed of sound in gases, as Table 17.1 shows.
This difference in speeds makes sense because the molecules
of a solid are bound together into a much more rigid struc-
ture than those in a gas and hence respond more rapidly to a
disturbance.

If a solid bar is struck at one end with a hammer, a longitudi-
nal pulse propagates down the bar with a speed ,
where Y is the Young’s modulus for the material (see Section
12.4). Find the speed of sound in an aluminum bar.

Solution From Table 12.1 we obtain 
for aluminum, and from Table 1.5 we obtain 

Therefore,

5.1 km/svAl �! Y
�

�! 7.0 � 1010 N/m2

2.70 � 103 kg/m3 �

2.70 � 103 kg/m3.
� �

Y � 7.0 � 1010 N/m2

v � !Y/�

Speed of Sound in a LiquidEXAMPLE 17.2
(a) Find the speed of sound in water, which has a bulk modu-
lus of 2.1 � 109 N/m2 and a density of 1.00 � 103 kg/m3.

Solution Using Equation 17.1, we find that

In general, sound waves travel more slowly in liquids than in
solids because liquids are more compressible than solids.

(b) Dolphins use sound waves to locate food. Experiments
have shown that a dolphin can detect a 7.5-cm target 110 m
away, even in murky water. For a bit of “dinner” at that dis-
tance, how much time passes between the moment the dol-
phin emits a sound pulse and the moment the dolphin hears
its reflection and thereby detects the distant target?

Solution The total distance covered by the sound wave as
it travels from dolphin to target and back is 2 � 110 m �
220 m. From Equation 2.2, we have 

0.16 s�t �
�x
vx

�
220 m

1 400 m/s
�

1.4 km/svwater �! B
�

�! 2.1 � 109 N/m2

1.00 � 103 kg/m3 �

Bottle-nosed dolphin. (Stuart  Westmoreland/Tony Stone Images)
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gions where the gas is compressed and thus the density and pressure are above
their equilibrium values. A compressed region is formed whenever the piston is
pushed into the tube. This compressed region, called a condensation, moves
through the tube as a pulse, continuously compressing the region just in front
of itself. When the piston is pulled back, the gas in front of it expands, and the
pressure and density in this region fall below their equilibrium values (repre-
sented by the lighter parts of the colored areas in Fig. 17.2). These low-pressure
regions, called rarefactions, also propagate along the tube, following the con-
densations. Both regions move with a speed equal to the speed of sound in the
medium.

As the piston oscillates sinusoidally, regions of condensation and rarefaction
are continuously set up. The distance between two successive condensations (or
two successive rarefactions) equals the wavelength �. As these regions travel
through the tube, any small volume of the medium moves with simple harmonic
motion parallel to the direction of the wave. If s(x, t) is the displacement of a small
volume element from its equilibrium position, we can express this harmonic dis-
placement function as

(17.2)

where smax is the maximum displacement of the medium from equilibrium
(in other words, the displacement amplitude of the wave), k is the angular
wavenumber, and 	 is the angular frequency of the piston. Note that the displace-
ment of the medium is along x, in the direction of motion of the sound wave,
which means we are describing a longitudinal wave.

As we shall demonstrate shortly, the variation in the gas pressure �P, mea-
sured from the equilibrium value, is also periodic and for the displacement func-
tion in Equation 17.2 is given by

(17.3)

where the pressure amplitude �Pmax —which is the maximum change in pres-

�P � �Pmax sin(kx 
 	t)

s(x, t) � s max cos(kx 
 	t)

TABLE 17.1
Speeds of Sound in Various
Media

Medium v (m/s)

Gases
Hydrogen (0°C) 1 286
Helium (0°C) 972
Air (20°C) 343
Air (0°C) 331
Oxygen (0°C) 317

Liquids at 25°C
Glycerol 1 904
Sea water 1 533
Water 1 493
Mercury 1 450
Kerosene 1 324
Methyl alcohol 1 143
Carbon tetrachloride 926

Solids
Diamond 12 000
Pyrex glass 5 640
Iron 5 130
Aluminum 5 100
Brass 4 700
Copper 3 560
Gold 3 240
Lucite 2 680
Lead 1 322
Rubber 1 600

Figure 17.2 A sinusoidal longitudinal wave propagating
through a gas-filled tube. The source of the wave is a sinu-
soidally oscillating piston at the left. The high-pressure and
low-pressure regions are colored darkly and lightly, respec-
tively.

P

λ
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sure from the equilibrium value—is given by

(17.4)

Thus, we see that a sound wave may be considered as either a displacement
wave or a pressure wave. A comparison of Equations 17.2 and 17.3 shows that the
pressure wave is 90° out of phase with the displacement wave. Graphs of
these functions are shown in Figure 17.3. Note that the pressure variation is a max-
imum when the displacement is zero, and the displacement is a maximum when
the pressure variation is zero.

If you blow across the top of an empty soft-drink bottle, a pulse of air travels down the bot-
tle. At the moment the pulse reaches the bottom of the bottle, compare the displacement
of air molecules with the pressure variation.

Derivation of Equation 17.3

From the definition of bulk modulus (see Eq. 12.8), the pressure variation in the
gas is

The volume of gas that has a thickness �x in the horizontal direction and a cross-
sectional area A is �x. The change in volume �V accompanying the pres-
sure change is equal to A �s, where �s is the difference between the value of s at

and the value of s at x. Hence, we can express �P as

As �x approaches zero, the ratio �s/�x becomes (The partial derivative in-
dicates that we are interested in the variation of s with position at a fixed time.)
Therefore,

If the displacement is the simple sinusoidal function given by Equation 17.2, we
find that

Because the bulk modulus is given by (see Eq. 17.1), the pressure varia-
tion reduces to

From Equation 16.13, we can write hence, �P can be expressed as

Because the sine function has a maximum value of 1, we see that the maximum
value of the pressure variation is (see Eq. 17.4), and we arrive at
Equation 17.3:

�P � �Pmax sin(kx 
 	t)

�Pmax � �v	smax

�P � �v	smax sin(kx 
 	t)

k � 	/v ;

�P � �v2ksmax sin(kx 
 	t)

B � �v2

�P � 
B 
�

�x
 [smax cos(kx 
 	t)] � Bksmax sin(kx 
 	t)

�P � 
B 
�s
�x

�s/�x.

�P � 
B 
�V
Vi

� 
B 
A �s
A �x

� 
B 
�s
�x

x � �x

Vi � A

�P � 
B 
�V
Vi

Quick Quiz 17.3

�Pmax � �v	s maxPressure amplitude

s

x

x

(a)

(b)

∆Pmax

∆P

smax

Figure 17.3 (a) Displacement
amplitude versus position and 
(b) pressure amplitude versus posi-
tion for a sinusoidal longitudinal
wave. The displacement wave is 90°
out of phase with the pressure
wave.
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INTENSITY OF PERIODIC SOUND WAVES
In the previous chapter, we showed that a wave traveling on a taut string transports
energy. The same concept applies to sound waves. Consider a volume of air of
mass �m and width �x in front of a piston oscillating with a frequency 	, as shown
in Figure 17.4. The piston transmits energy to this volume of air in the tube, and
the energy is propagated away from the piston by the sound wave.1 To evaluate the
rate of energy transfer for the sound wave, we shall evaluate the kinetic energy of
this volume of air, which is undergoing simple harmonic motion. We shall follow a
procedure similar to that in Section 16.8, in which we evaluated the rate of energy
transfer for a wave on a string. 

As the sound wave propagates away from the piston, the displacement of any
volume of air in front of the piston is given by Equation 17.2. To evaluate the ki-
netic energy of this volume of air, we need to know its speed. We find the speed by
taking the time derivative of Equation 17.2:

Imagine that we take a “snapshot” of the wave at The kinetic energy of a
given volume of air at this time is

where A is the cross-sectional area of the moving air and A �x is its volume. Now,
as in Section 16.8, we integrate this expression over a full wavelength to find the
total kinetic energy in one wavelength. Letting the volume of air shrink to infini-
tesimal thickness, so that �x : dx, we have

As in the case of the string wave in Section 16.8, the total potential energy for one
wavelength has the same value as the total kinetic energy; thus, the total mechani-

 � 1
2�A(	smax)2 �1

2�� � 1
4�A(	smax)2� 

K � � � 

dK � ��

0
 12�A(	smax)2 sin2 kx dx � 1

2�A(	smax)2 ��

0
 sin2 kx dx

 � 1
2�A �x(	smax)2 sin2 kx 

�K � 1
2 �mv2 � 1

2 �m(	smax sin kx)2 � 1
2�A �x(	smax sin kx)2

t � 0.

v(x, t) �
�

�t
 s(x, t) �

�

�t
 [smax cos(kx 
 	t)] � 	smax sin(kx 
 	t)

17.3

Area = A

∆m

∆x

v

Figure 17.4 An oscillating piston transfers energy to the air in the tube, initially causing the
volume of air of width �x and mass �m to oscillate with an amplitude smax .

1 Although it is not proved here, the work done by the piston equals the energy carried away by the
wave. For a detailed mathematical treatment of this concept, see Chapter 4 in Frank S. Crawford, Jr.,
Waves, Berkeley Physics Course, vol. 3, New York, McGraw-Hill Book Company, 1968.



In the present case, therefore, the intensity is

(17.5)

Thus, we see that the intensity of a periodic sound wave is proportional to the
square of the displacement amplitude and to the square of the angular frequency
(as in the case of a periodic string wave). This can also be written in terms of the
pressure amplitude �Pmax ; in this case, we use Equation 17.4 to obtain

(17.6)I �
�P 2

max

2�v

I �
�

A
� 1

2�v(	smax)2
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cal energy is

As the sound wave moves through the air, this amount of energy passes by a given
point during one period of oscillation. Hence, the rate of energy transfer is

where v is the speed of sound in air.

� �
E�

�t
�

1
2�A(	smax)2�

T
� 1

2�A(	smax)2� �

T � � 1
2�Av(	smax)2

E� � K � � U� � 1
2�A(	smax)2�

We define the intensity I of a wave, or the power per unit area, to be the rate at
which the energy being transported by the wave flows through a unit area A
perpendicular to the direction of travel of the wave.

Hearing LimitsEXAMPLE 17.3
tells us that the ear can discern pressure fluctuations as small
as 3 parts in 1010!

We can calculate the corresponding displacement ampli-
tude by using Equation 17.4, recalling that (see Eqs.
16.10 and 16.12):

This is a remarkably small number! If we compare this result
for s max with the diameter of a molecule (about 10
10 m), we
see that the ear is an extremely sensitive detector of sound
waves.

In a similar manner, one finds that the loudest sounds the
human ear can tolerate correspond to a pressure amplitude
of 28.7 N/m2 and a displacement amplitude equal to 

.1.11 � 10
5 m

1.11 � 10
11 m�

smax �
�Pmax

�v	
�

2.87 � 10
5 N/m2

(1.20 kg/m3)(343 m/s)(2� � 1 000 Hz)

	 � 2�f

The faintest sounds the human ear can detect at a frequency
of 1 000 Hz correspond to an intensity of about 1.00 �
10
12 W/m2 —the so-called threshold of hearing. The loudest
sounds the ear can tolerate at this frequency correspond to
an intensity of about 1.00 W/m2 —the threshold of pain. Deter-
mine the pressure amplitude and displacement amplitude as-
sociated with these two limits.

Solution First, consider the faintest sounds. Using Equa-
tion 17.6 and taking v � 343 m/s as the speed of sound
waves in air and � � 1.20 kg/m3 as the density of air, we
obtain

Because atmospheric pressure is about 105 N/m2, this result

2.87 � 10
5 N/m2 �

  � !2(1.20 kg/m3)(343 m/s)(1.00 � 10
12 W/m2)

�Pmax � !2�vI    

Intensity of a sound wave
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Sound Level in Decibels

The example we just worked illustrates the wide range of intensities the human ear
can detect. Because this range is so wide, it is convenient to use a logarithmic
scale, where the sound level  (Greek letter beta) is defined by the equation

(17.7)

The constant I0 is the reference intensity, taken to be at the threshold of hearing
W/m2), and I is the intensity, in watts per square meter, at

the sound level , where  is measured in decibels (dB).2 On this scale, the
threshold of pain W/m2) corresponds to a sound level of  �
10 log[(1 W/m2)/(10
12 W/m2)] � 10 log(1012) � 120 dB, and the threshold
of hearing corresponds to  � 10 log[(10
12 W/m2)/(10
12 W/m2)] � 0 dB.

Prolonged exposure to high sound levels may seriously damage the ear. 
Ear plugs are recommended whenever sound levels exceed 90 dB. Recent evi-
dence suggests that “noise pollution” may be a contributing factor to high blood
pressure, anxiety, and nervousness. Table 17.2 gives some typical sound-level 
values.

(I � 1.00

(I0 � 1.00 � 10
12

 � 10 log � I
I0
�

TABLE 17.2
Sound Levels

Source of Sound � (dB)

Nearby jet airplane 150
Jackhammer; 

machine gun 130
Siren; rock concert 120
Subway; power 

mower 100
Busy traffic 80
Vacuum cleaner 70
Normal conver-

sation 50
Mosquito buzzing 40
Whisper 30
Rustling leaves 10
Threshold of 

hearing 0

Sound LevelsEXAMPLE 17.4
(b) When both machines are operating, the intensity is dou-
bled to 4.0 � 10
7 W/m2; therefore, the sound level now is

From these results, we see that when the intensity is doubled,
the sound level increases by only 3 dB.

56 dB�

2 � 10 log � 4.0 � 10
7 W/m2

1.00 � 10
12 W/m2 � � 10 log(4.0 � 105)

Two identical machines are positioned the same distance
from a worker. The intensity of sound delivered by each ma-
chine at the location of the worker is 2.0 � 10
7 W/m2. Find
the sound level heard by the worker (a) when one machine is
operating and (b) when both machines are operating.

Solution (a) The sound level at the location of the worker
with one machine operating is calculated from Equation
17.7:

53 dB�

1 � 10 log � 2.0 � 10
7 W/m2

1.00 � 10
12 W/m2 � � 10 log(2.0 � 105)

A violin plays a melody line and is then joined by nine other violins, all playing at the same
intensity as the first violin, in a repeat of the same melody. (a) When all of the violins are
playing together, by how many decibels does the sound level increase? (b) If ten more vio-
lins join in, how much has the sound level increased over that for the single violin?

Quick Quiz 17.4

2 The unit bel is named after the inventor of the telephone, Alexander Graham Bell (1847–1922). The
prefix deci- is the SI prefix that stands for 10
1.
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SPHERICAL AND PLANE WAVES
If a spherical body oscillates so that its radius varies sinusoidally with time, a spher-
ical sound wave is produced (Fig. 17.5). The wave moves outward from the source
at a constant speed if the medium is uniform.

Because of this uniformity, we conclude that the energy in a spherical wave
propagates equally in all directions. That is, no one direction is preferred over any
other. If is the average power emitted by the source, then this power at any dis-
tance r from the source must be distributed over a spherical surface of area 4�r 2.
Hence, the wave intensity at a distance r from the source is

(17.8)

Because is the same for any spherical surface centered at the source, we see
that the intensities at distances r1 and r2 are

Therefore, the ratio of intensities on these two spherical surfaces is

This inverse-square law states that the intensity decreases in proportion to the
square of the distance from the source. Equation 17.5 tells us that the intensity is
proportional to Setting the right side of Equation 17.5 equal to the right sides2

max .

I1

I2
�

r2 

2

r1 

2  

I1 �
�av

4�r1 

2   and  I2 �
�av

4�r2 

2

�av

I �
�av

A
�

�av

4�r 2

�av

17.4

r2

r1

Figure 17.5 A spherical sound wave propa-
gating radially outward from an oscillating
spherical body. The intensity of the spherical
wave varies as 1/r 2.

Figure 17.6 Spherical waves emitted by a
point source. The circular arcs represent the
spherical wave fronts that are concentric with
the source. The rays are radial lines pointing
outward from the source, perpendicular to
the wave fronts.

Ray

Source

Wave front

λ
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of Equation 17.8, we conclude that the displacement amplitude smax of a spherical
wave must vary as 1/r. Therefore, we can write the wave function � (Greek letter
psi) for an outgoing spherical wave in the form

(17.9)

where s0 , the displacement amplitude at unit distance from the source, is a con-
stant parameter characterizing the whole wave.

It is useful to represent spherical waves with a series of circular arcs concentric
with the source, as shown in Figure 17.6. Each arc represents a surface over which
the phase of the wave is constant. We call such a surface of constant phase a wave
front. The distance between adjacent wave fronts equals the wavelength �. The ra-
dial lines pointing outward from the source are called rays.

Now consider a small portion of a wave front far from the source, as shown in
Figure 17.7. In this case, the rays passing through the wave front are nearly parallel
to one another, and the wave front is very close to being planar. Therefore, at dis-
tances from the source that are great compared with the wavelength, we can ap-
proximate a wave front with a plane. Any small portion of a spherical wave far
from its source can be considered a plane wave.

Figure 17.8 illustrates a plane wave propagating along the x axis, which means
that the wave fronts are parallel to the yz plane. In this case, the wave function de-
pends only on x and t and has the form

(17.10)

That is, the wave function for a plane wave is identical in form to that for a one-
dimensional traveling wave.

The intensity is the same at all points on a given wave front of a plane wave.

�(x, t) � A sin(kx 
 	t)

�(r, t) �
s0

r
 sin(kr 
 	t)

Representation of a plane wave

Rays

Wave fronts

y

x

z λ

v

Plane
wave front

Figure 17.7 Far away from a point source, the wave
fronts are nearly parallel planes, and the rays are
nearly parallel lines perpendicular to the planes.
Hence, a small segment of a spherical wave front is ap-
proximately a plane wave.

Figure 17.8 A representation of
a plane wave moving in the positive
x direction with a speed v. The
wave fronts are planes parallel to
the yz plane.

Intensity Variations of a Point SourceEXAMPLE 17.5

an intensity that is close to the threshold of pain.
(b) Find the distance at which the sound level is 40 dB.

Solution We can find the intensity at the 40-dB sound
level by using Equation 17.7 with I0 � 1.00 � 10
12 W/m2:

0.707 W/m2I �
�av

4�r 2 �
80.0 W

4�(3.00 m)2 �
A point source emits sound waves with an average power out-
put of 80.0 W. (a) Find the intensity 3.00 m from the source.

Solution A point source emits energy in the form of
spherical waves (see Fig. 17.5). At a distance r from the
source, the power is distributed over the surface area of a
sphere, 4�r 2. Therefore, the intensity at the distance r is
given by Equation 17.8:
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THE DOPPLER EFFECT
Perhaps you have noticed how the sound of a vehicle’s horn changes as the vehicle
moves past you. The frequency of the sound you hear as the vehicle approaches
you is higher than the frequency you hear as it moves away from you (see Quick-
Lab). This is one example of the Doppler effect.3

To see what causes this apparent frequency change, imagine you are in a boat
that is lying at anchor on a gentle sea where the waves have a period of s.
This means that every 3.0 s a crest hits your boat. Figure 17.9a shows this situation,
with the water waves moving toward the left. If you set your watch to just as
one crest hits, the watch reads 3.0 s when the next crest hits, 6.0 s when the third
crest hits, and so on. From these observations you conclude that the wave fre-
quency is Hz. Now suppose you start your motor and head di-
rectly into the oncoming waves, as shown in Figure 17.9b. Again you set your watch
to as a crest hits the front of your boat. Now, however, because you are mov-
ing toward the next wave crest as it moves toward you, it hits you less than 3.0 s af-
ter the first hit. In other words, the period you observe is shorter than the 3.0-s pe-
riod you observed when you were stationary. Because you observe a
higher wave frequency than when you were at rest.

If you turn around and move in the same direction as the waves (see Fig.
17.9c), you observe the opposite effect. You set your watch to as a crest hits
the back of the boat. Because you are now moving away from the next crest, more
than 3.0 s has elapsed on your watch by the time that crest catches you. Thus, you
observe a lower frequency than when you were at rest.

These effects occur because the relative speed between your boat and the
waves depends on the direction of travel and on the speed of your boat. When you
are moving toward the right in Figure 17.9b, this relative speed is higher than that
of the wave speed, which leads to the observation of an increased frequency. When
you turn around and move to the left, the relative speed is lower, as is the observed
frequency of the water waves.

Let us now examine an analogous situation with sound waves, in which the wa-
ter waves become sound waves, the water becomes the air, and the person on the
boat becomes an observer listening to the sound. In this case, an observer O is
moving and a sound source S is stationary. For simplicity, we assume that the air is
also stationary and that the observer moves directly toward the source. The ob-
server moves with a speed vO toward a stationary point source (vS � 0) (Fig.
17.10). In general, at rest means at rest with respect to the medium, air.

t � 0

f � 1/T,

t � 0

f � 1/T � (1/3.0)

t � 0

T � 3.0

17.5

QuickLab
(Before attempting to do this Quick-
Lab, you should check to see whether
it is legal to sound a horn in your
area.) Sound your car horn while dri-
ving toward and away from a friend in
a campus parking lot or on a country
road. Try this at different speeds
while driving toward and past the
friend (not at the friend). Do the fre-
quencies of the sounds your friend
hears agree with what is described in
the text?

3 Named after the Austrian physicist Christian Johann Doppler (1803–1853), who discovered the effect
for light waves.

 I � 1.00 � 10
8 W/m2

 log I � 
8 

 log I � 4 � log 10
12 

log I 
 log I0 �
40
10

� 4 

 10 log � I
I0
� � 40  dB

Using this value for I in Equation 17.8 and solving for r, we
obtain

which equals about 16 miles!

2.52 � 104 m �

r �! �av

4�I
�! 80.0 W

4� � 1.00 � 10
8 W/m2
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We take the frequency of the source to be f , the wavelength to be �, and the
speed of sound to be v. If the observer were also stationary, he or she would detect
f wave fronts per second. (That is, when and the observed fre-
quency equals the source frequency.) When the observer moves toward the source,

vS � 0,vO � 0

(a)

(b)

(c)

vwaves

vwaves

vwaves

Figure 17.9 (a) Waves moving toward a stationary boat. The waves travel to the left, and their
source is far to the right of the boat, out of the frame of the drawing. (b) The boat moving to-
ward the wave source. (c) The boat moving away from the wave source.

Figure 17.10 An observer O (the cyclist) moves with a speed vO toward a stationary point
source S, the horn of a parked car. The observer hears a frequency f � that is greater than the
source frequency.

×

O

vO

S
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the speed of the waves relative to the observer is as in the case of the
boat, but the wavelength � is unchanged. Hence, using Equation 16.14, we
can say that the frequency heard by the observer is increased and is given by

Because we can express f � as

(observer moving toward source) (17.11)

If the observer is moving away from the source, the speed of the wave relative
to the observer is The frequency heard by the observer in this case is
decreased and is given by

(observer moving away from source) (17.12)

In general, whenever an observer moves with a speed vO relative to a stationary
source, the frequency heard by the observer is

(17.13)

where the positive sign is used when the observer moves toward the source and the
negative sign is used when the observer moves away from the source.

Now consider the situation in which the source is in motion and the observer
is at rest. If the source moves directly toward observer A in Figure 17.11a, the wave
fronts heard by the observer are closer together than they would be if the source
were not moving. As a result, the wavelength �� measured by observer A is shorter
than the wavelength � of the source. During each vibration, which lasts for a time
T (the period), the source moves a distance and the wavelength isvST � vS /f

f � � �1 �
vO

v � f

f � � �1 

vO

v � f

v � � v 
 vO .

f � � �1 �
vO

v � f

� � v/f ,

f � �
v �

�
�

v � vO

�

v � �f ,
v � � v � vO ,

Frequency heard with an observer
in motion

λ′λ

(a)

S

vS

Observer B

Observer A

Figure 17.11 (a) A source S moving with a speed vS to-
ward a stationary observer A and away from a stationary
observer B. Observer A hears an increased frequency, and
observer B hears a decreased frequency. (b) The Doppler
effect in water, observed in a ripple tank. A point source is
moving to the right with speed vS .

(b)
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Although the Doppler effect is most typically experienced with sound waves, it
is a phenomenon that is common to all waves. For example, the relative motion of
source and observer produces a frequency shift in light waves. The Doppler effect
is used in police radar systems to measure the speeds of motor vehicles. Likewise,
astronomers use the effect to determine the speeds of stars, galaxies, and other ce-
lestial objects relative to the Earth.

The word toward is associated with an increase in observed frequency. The words
away from are associated with a decrease in observed frequency.

shortened by this amount. Therefore, the observed wavelength �� is

Because the frequency heard by observer A is

(17.14)

That is, the observed frequency is increased whenever the source is moving toward
the observer.

When the source moves away from a stationary observer, as is the case for ob-
server B in Figure 17.11a, the observer measures a wavelength �� that is greater than
� and hears a decreased frequency:

(17.15)

Combining Equations 17.14 and 17.15, we can express the general relationship
for the observed frequency when a source is moving and an observer is at rest as

(17.16)

Finally, if both source and observer are in motion, we find the following gen-
eral relationship for the observed frequency:

(17.17)

In this expression, the upper signs (� vO and 
 vS) refer to motion of one toward
the other, and the lower signs (
 vO and � vS) refer to motion of one away from
the other.

A convenient rule concerning signs for you to remember when working with
all Doppler-effect problems is as follows:

f � � � v � vO

v � vS
� f

f � � � 1

1 �
vS

v
� f

f � � � 1

1 �
vS

v
� f

f � � � 1

1 

vS

v
� f 

f � �
v

��
�

v

� 

vS

f

�
v

v
f



vS

f

� � v/f,

�� � � 
 �� � � 

vS

f

Frequency heard with source in
motion

Frequency heard with observer
and source in motion

“I love hearing that lonesome wail
of the train whistle as the magni-
tude of the frequency of the wave
changes due to the Doppler effect.”
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Shock Waves

Now let us consider what happens when the speed vS of a source exceeds the wave
speed v. This situation is depicted graphically in Figure 17.12a. The circles repre-
sent spherical wave fronts emitted by the source at various times during its motion.
At the source is at S0 , and at a later time t, the source is at Sn . In the time t,t � 0,

The Noisy SirenEXAMPLE 17.6

The change in frequency detected by the person in the car is
475 
 338 � 137 Hz, which is more than 30% of the true fre-
quency.

Exercise Suppose the car is parked on the side of the high-
way as the ambulance speeds by. What frequency does the
person in the car hear as the ambulance (a) approaches and
(b) recedes?

Answer (a) 443 Hz. (b) 364 Hz.

338 Hz�

f � � � v 
 vO

v � vS
� f � � 343 m/s 
 24.6 m/s

343 m/s � 33.5 m/s �(400 Hz)
As an ambulance travels east down a highway at a speed of
33.5 m/s (75 mi/h), its siren emits sound at a frequency of
400 Hz. What frequency is heard by a person in a car traveling
west at 24.6 m/s (55 mi/h) (a) as the car approaches the am-
bulance and (b) as the car moves away from the ambulance?

Solution (a) We can use Equation 17.17 in both cases, tak-
ing the speed of sound in air to be m/s. As the am-
bulance and car approach each other, the person in the car
hears the frequency

(b) As the vehicles recede from each other, the person hears
the frequency

475 Hz�

f � � � v � vO

v 
 vS
� f � � 343 m/s � 24.6 m/s

343 m/s 
 33.5 m/s �(400 Hz)

v � 343

vSt

Sn

vS

Conical
shock front

vt 2

θ

0

S1 S2
S0

1

(a)

S3

S4

Figure 17.12 (a) A representation of a shock wave produced when a source
moves from S0 to Sn with a speed vS , which is greater than the wave speed v in the
medium. The envelope of the wave fronts forms a cone whose apex half-angle is
given by sin (b) A stroboscopic photograph of a bullet moving at super-
sonic speed through the hot air above a candle. Note the shock wave in the vicinity
of the bullet.

� � v/v S .

(b)
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the wave front centered at S0 reaches a radius of vt. In this same amount of time,
the source travels a distance vSt to Sn . At the instant the source is at Sn , waves are
just beginning to be generated at this location, and hence the wave front has zero
radius at this point. The tangent line drawn from Sn to the wave front centered on
S0 is tangent to all other wave fronts generated at intermediate times. Thus, we see
that the envelope of these wave fronts is a cone whose apex half-angle � is given by

The ratio vS/v is referred to as the Mach number, and the conical wave front pro-
duced when vS � v (supersonic speeds) is known as a shock wave. An interesting
analogy to shock waves is the V-shaped wave fronts produced by a boat (the bow
wave) when the boat’s speed exceeds the speed of the surface-water waves (Fig.
17.13).

Jet airplanes traveling at supersonic speeds produce shock waves, which are re-
sponsible for the loud “sonic boom” one hears. The shock wave carries a great deal
of energy concentrated on the surface of the cone, with correspondingly great pres-
sure variations. Such shock waves are unpleasant to hear and can cause damage to
buildings when aircraft fly supersonically at low altitudes. In fact, an airplane flying
at supersonic speeds produces a double boom because two shock fronts are
formed, one from the nose of the plane and one from the tail (Fig. 17.14). People
near the path of the space shuttle as it glides toward its landing point often report
hearing what sounds like two very closely spaced cracks of thunder.

An airplane flying with a constant velocity moves from a cold air mass into a warm air mass.
Does the Mach number increase, decrease, or stay the same?

Suppose that an observer and a source of sound are both at rest and that a strong wind
blows from the source toward the observer. Describe the effect of the wind (if any) on 

Quick Quiz 17.6

Quick Quiz 17.5

sin � �
vt
vSt

�
v
vS

Atmospheric
pressure

Pressure

Figure 17.13 The V-shaped
bow wave of a boat is formed be-
cause the boat speed is greater
than the speed of the water
waves. A bow wave is analogous to
a shock wave formed by an air-
plane traveling faster than sound.

Figure 17.14 The two shock
waves produced by the nose and
tail of a jet airplane traveling at su-
personic speeds.
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(a) the observed frequency of the sound waves, (b) the observed wave speed, and (c) the
observed wavelength.

SUMMARY

Sound waves are longitudinal and travel through a compressible medium with a
speed that depends on the compressibility and inertia of that medium. The speed
of sound in a medium having a bulk modulus B and density � is

(17.1)

With this formula you can determine the speed of a sound wave in many different
materials.

For sinusoidal sound waves, the variation in the displacement is given by

(17.2)

and the variation in pressure from the equilibrium value is

(17.3)

where �Pmax is the pressure amplitude. The pressure wave is 90° out of phase
with the displacement wave. The relationship between smax and �Pmax is given by

(17.4)

The intensity of a periodic sound wave, which is the power per unit area, is

(17.5, 17.6)

The sound level of a sound wave, in decibels, is given by

(17.7)

The constant I0 is a reference intensity, usually taken to be at the threshold of
hearing (1.00 � 10
12 W/m2), and I is the intensity of the sound wave in watts per
square meter.

The intensity of a spherical wave produced by a point source is proportional to
the average power emitted and inversely proportional to the square of the distance
from the source:

(17.8)

The change in frequency heard by an observer whenever there is relative mo-
tion between a source of sound waves and the observer is called the Doppler ef-
fect. The observed frequency is

(17.17)

The upper signs (� vO and 
 vS) are used with motion of one toward the other,
and the lower signs (
 vO and � vS) are used with motion of one away from the
other. You can also use this formula when vO or vS is zero.

f � � � v � vO

v � vS
� f

I �
�av

4�r 2

 � 10 log� I
I0
�

I � 1
2�v(	smax)2 �

�P2
max

2�v

�Pmax � �v	smax

�P � �Pmax sin(kx 
 	t)

s(x, t) � smax cos(kx 
 	t)

v �! B
�
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QUESTIONS

10. A binary star system consists of two stars revolving about
their common center of mass. If we observe the light
reaching us from one of these stars as it makes one com-
plete revolution, what does the Doppler effect predict will
happen to this light?

11. How can an object move with respect to an observer so
that the sound from it is not shifted in frequency?

12. Why is it not possible to use sonar (sound waves) to deter-
mine the speed of an object traveling faster than the
speed of sound in a given medium?

13. Why is it so quiet after a snowfall?
14. Why is the intensity of an echo less than that of the origi-

nal sound?
15. If the wavelength of a sound source is reduced by a factor

of 2, what happens to its frequency? Its speed?
16. In a recent discovery, a nearby star was found to have a

large planet orbiting about it, although the planet could
not be seen. In terms of the concept of a system rotating
about its center of mass and the Doppler shift for light
(which is in many ways similar to that for sound), explain
how an astronomer could determine the presence of the
invisible planet.

17. A friend sitting in her car far down the road waves to you
and beeps her horn at the same time. How far away must
her car be for you to measure the speed of sound to two
significant figures by measuring the time it takes for the
sound to reach you?

1. Why are sound waves characterized as longitudinal?
2. If an alarm clock is placed in a good vacuum and then ac-

tivated, no sound is heard. Explain.
3. A sonic ranger is a device that determines the position of

an object by sending out an ultrasonic sound pulse and
measuring how long it takes for the sound wave to return
after it reflects from the object. Typically, these devices
cannot reliably detect an object that is less than half a me-
ter from the sensor. Why is that?

4. In Example 17.5, we found that a point source with a
power output of 80 W reduces to a sound level of 40 dB
at a distance of about 16 miles. Why do you suppose you
cannot normally hear a rock concert that is going on 16
miles away? (See Table 17.2.)

5. If the distance from a point source is tripled, by what fac-
tor does the intensity decrease?

6. Explain how the Doppler effect is used with microwaves
to determine the speed of an automobile.

7. Explain what happens to the frequency of your echo as
you move in a vehicle toward a canyon wall. What happens
to the frequency as you move away from the wall?

8. Of the following sounds, which is most likely to have a
sound level of 60 dB—a rock concert, the turning of a
page in this text, normal conversation, or a cheering
crowd at a football game?

9. Estimate the decibel level of each of the sounds in the
previous question.

PROBLEMS

You hear the sound in the water 4.50 s before it reaches
you through the air. How wide is the inlet? (Hint: See
Table 17.1. Assume that the air temperature is 20°C.)

5. Another approximation of the temperature depen-
dence of the speed of sound in air (in meters per sec-
ond) is given by the expression

where TC is the Celsius temperature. In dry air the tem-
perature decreases about 1°C for every 150-m rise in
altitude. (a) Assuming that this change is constant up to
an altitude of 9 000 m, how long will it take the sound
from an airplane flying at 9 000 m to reach the ground
on a day when the ground temperature is 30°C? 
(b) Compare this to the time it would take if the air
were at 30°C at all altitudes. Which interval is longer?

6. A bat can detect very small objects, such as an insect
whose length is approximately equal to one wavelength

v � 331.5 � 0.607TC

Section 17.1 Speed of Sound Waves
1. Suppose that you hear a clap of thunder 16.2 s after see-

ing the associated lightning stroke. The speed of sound
waves in air is 343 m/s, and the speed of light in air is
3.00 � 108 m/s. How far are you from the lightning
stroke?

2. Find the speed of sound in mercury, which has a bulk
modulus of approximately 2.80 � 1010 N/m2 and a den-
sity of 13 600 kg/m3.

3. A flower pot is knocked off a balcony 20.0 m above the
sidewalk and falls toward an unsuspecting 1.75-m-tall
man who is standing below. How close to the sidewalk
can the flower pot fall before it is too late for a shouted
warning from the balcony to reach the man in time?
Assume that the man below requires 0.300 s to respond
to the warning.

4. You are watching a pier being constructed on the far
shore of a saltwater inlet when some blasting occurs.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

WEB

of the sound the bat makes. If bats emit a chirp at a fre-
quency of 60.0 kHz, and if the speed of sound in air is
340 m/s, what is the smallest insect a bat can detect?

7. An airplane flies horizontally at a constant speed,
piloted by rescuers who are searching for a disabled
boat. When the plane is directly above the boat, the
boat’s crew blows a loud horn. By the time the plane’s
sound detector receives the horn’s sound, the plane has
traveled a distance equal to one-half its altitude above
the ocean. If it takes the sound 2.00 s to reach the
plane, determine (a) the speed of the plane and 
(b) its altitude. Take the speed of sound to be 343 m/s.

Section 17.2 Periodic Sound Waves
Note: In this section, use the following values as needed, un-
less otherwise specified. The equilibrium density of air is � �
1.20 kg/m3; the speed of sound in air is v � 343 m/s. Pres-
sure variations �P are measured relative to atmospheric pres-
sure, 1.013 � 105 Pa.

8. A sound wave in air has a pressure amplitude equal to
4.00 � 10
3 Pa. Calculate the displacement amplitude
of the wave at a frequency of 10.0 kHz.

9. A sinusoidal sound wave is described by the displace-
ment

(a) Find the amplitude, wavelength, and speed of this
wave. (b) Determine the instantaneous displacement 
of the molecules at the position x � 0.050 0 m at 

ms. (c) Determine the maximum speed of a
molecule’s oscillatory motion.

10. As a sound wave travels through the air, it produces
pressure variations (above and below atmospheric pres-
sure) that are given by sin(�x 
 340�t) in SI
units. Find (a) the amplitude of the pressure variations,
(b) the frequency of the sound wave, (c) its wavelength
in air, and (d) its speed.

11. Write an expression that describes the pressure varia-
tion as a function of position and time for a sinusoidal
sound wave in air, if � � 0.100 m and �Pmax �
0.200 Pa.

12. Write the function that describes the displacement wave
corresponding to the pressure wave in Problem 11.

13. The tensile stress in a thick copper bar is 99.5% of its
elastic breaking point of 13.0 � 1010 N/m2. A 500-Hz
sound wave is transmitted through the material. 
(a) What displacement amplitude will cause the bar to
break? (b) What is the maximum speed of the particles
at this moment?

14. Calculate the pressure amplitude of a 2.00-kHz sound
wave in air if the displacement amplitude is equal to
2.00 � 10
8 m.

15. An experimenter wishes to generate in air a sound wave
that has a displacement amplitude of 5.50 � 10
6 m. The
pressure amplitude is to be limited to 8.40 � 10
1 Pa. What
is the minimum wavelength the sound wave can have?

�P � 1.27

t � 3.00

s(x, t) � (2.00 �m) cos[(15.7 m
1)x 
 (858 s
1)t ]

16. A sound wave in air has a pressure amplitude of 4.00 Pa
and a frequency of 5.00 kHz. Take �P � 0 at the point
x � 0 when . (a) What is �P at x � 0 when t �
2.00 � 10
4 s? (b) What is �P at x � 0.020 0 m when

?

Section 17.3 Intensity of Periodic Sound Waves
17. Calculate the sound level, in decibels, of a sound wave

that has an intensity of 4.00 �W/m2.
18. A vacuum cleaner has a measured sound level of 

70.0 dB. (a) What is the intensity of this sound in watts
per square meter? (b) What is the pressure amplitude
of the sound?

19. The intensity of a sound wave at a fixed distance from a
speaker vibrating at 1.00 kHz is 0.600 W/m2. (a) Deter-
mine the intensity if the frequency is increased to 
2.50 kHz while a constant displacement amplitude is
maintained. (b) Calculate the intensity if the frequency
is reduced to 0.500 kHz and the displacement ampli-
tude is doubled.

20. The intensity of a sound wave at a fixed distance from a
speaker vibrating at a frequency f is I. (a) Determine
the intensity if the frequency is increased to f � while a
constant displacement amplitude is maintained. 
(b) Calculate the intensity if the frequency is reduced
to f/2 and the displacement amplitude is doubled.

21. A family ice show is held in an enclosed arena. The
skaters perform to music with a sound level of 80.0 dB.
This is too loud for your baby, who consequently yells at
a level of 75.0 dB. (a) What total sound intensity engulfs
you? (b) What is the combined sound level?

Section 17.4 Spherical and Plane Waves
22. For sound radiating from a point source, show that the

difference in sound levels, 1 and 2 , at two receivers is
related to the ratio of the distances r1 and r2 from the
source to the receivers by the expression

23. A fireworks charge is detonated many meters above the
ground. At a distance of 400 m from the explosion, the
acoustic pressure reaches a maximum of 10.0 N/m2. As-
sume that the speed of sound is constant at 343 m/s
throughout the atmosphere over the region considered,
that the ground absorbs all the sound falling on it, and
that the air absorbs sound energy as described by the
rate 7.00 dB/km. What is the sound level (in decibels)
at 4.00 km from the explosion?

24. A loudspeaker is placed between two observers who are
110 m apart, along the line connecting them. If one ob-
server records a sound level of 60.0 dB and the other
records a sound level of 80.0 dB, how far is the speaker
from each observer?

2 
 1 � 20 log� r1

r2
�

t � 0

t � 0
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25. Two small speakers emit spherical sound waves of differ-
ent frequencies. Speaker A has an output of 1.00 mW,
and speaker B has an output of 1.50 mW. Determine
the sound level (in decibels) at point C (Fig. P17.25) if 
(a) only speaker A emits sound, (b) only speaker B
emits sound, (c) both speakers emit sound.

radiates uniformly in all horizontal and upward direc-
tions. Find the sound level 1.00 km away.

32. A spherical wave is radiating from a point source and is
described by the wave function

where �P is in pascals, r in meters, and t in seconds. 
(a) What is the pressure amplitude 4.00 m from the
source? (b) Determine the speed of the wave and hence
the material the wave might be traveling through. 
(c) Find the sound level of the wave, in decibels, 
4.00 m from the source. (d) Find the instantaneous
pressure 5.00 m from the source at 0.080 0 s.

Section 17.5 The Doppler Effect
33. A commuter train passes a passenger platform at a con-

stant speed of 40.0 m/s. The train horn is sounded at its
characteristic frequency of 320 Hz. (a) What change in
frequency is detected by a person on the platform as the
train passes? (b) What wavelength is detected by a per-
son on the platform as the train approaches?

34. A driver travels northbound on a highway at a speed of
25.0 m/s. A police car, traveling southbound at a speed
of 40.0 m/s, approaches with its siren sounding at a fre-
quency of 2 500 Hz. (a) What frequency does the driver
observe as the police car approaches? (b) What fre-
quency does the driver detect after the police car passes
him? (c) Repeat parts (a) and (b) for the case in which
the police car is northbound.

35. Standing at a crosswalk, you hear a frequency of 560 Hz
from the siren of an approaching police car. After the
police car passes, the observed frequency of the siren is
480 Hz. Determine the car’s speed from these observa-
tions.

36. Expectant parents are thrilled to hear their unborn
baby’s heartbeat, revealed by an ultrasonic motion
detector. Suppose the fetus’s ventricular wall moves in
simple harmonic motion with an amplitude of 1.80 mm
and a frequency of 115 per minute. (a) Find the maxi-
mum linear speed of the heart wall. Suppose the mo-
tion detector in contact with the mother’s abdomen
produces sound at 2 000 000.0 Hz, which travels
through tissue at 1.50 km/s. (b) Find the maximum
frequency at which sound arrives at the wall of the
baby’s heart. (c) Find the maximum frequency at which
reflected sound is received by the motion detector. (By
electronically “listening” for echoes at a frequency dif-
ferent from the broadcast frequency, the motion detec-
tor can produce beeps of audible sound in synchroniza-
tion with the fetal heartbeat.)

37. A tuning fork vibrating at 512 Hz falls from rest and ac-
celerates at 9.80 m/s2. How far below the point of re-
lease is the tuning fork when waves with a frequency of
485 Hz reach the release point? Take the speed of
sound in air to be 340 m/s.

�P(r, t) � � 25.0
r � sin(1.25r 
 1 870t)

C

3.00 m

2.00 m

4.00 m

A

B

Figure P17.25

26. An experiment requires a sound intensity of 1.20 W/m2

at a distance of 4.00 m from a speaker. What power out-
put is required? Assume that the speaker radiates sound
equally in all directions.

27. A source of sound (1 000 Hz) emits uniformly in all di-
rections. An observer 3.00 m from the source measures
a sound level of 40.0 dB. Calculate the average power
output of the source.

28. A jackhammer, operated continuously at a construction
site, behaves as a point source of spherical sound waves.
A construction supervisor stands 50.0 m due north of
this sound source and begins to walk due west. How far
does she have to walk in order for the amplitude of the
wave function to drop by a factor of 2.00?

29. The sound level at a distance of 3.00 m from a source is
120 dB. At what distances is the sound level (a) 100 dB
and (b) 10.0 dB?

30. A fireworks rocket explodes 100 m above the ground. An
observer directly under the explosion experiences an av-
erage sound intensity of 7.00 � 10
2 W/m2 for 0.200 s.
(a) What is the total sound energy of the explosion? (b)
What sound level, in decibels, is heard by the observer?

31. As the people in a church sing on a summer morning,
the sound level everywhere inside the church is 101 dB.
The massive walls are opaque to sound, but all the win-
dows and doors are open. Their total area is 22.0 m2.
(a) How much sound energy is radiated in 20.0 min?
(b) Suppose the ground is a good reflector and sound

WEB
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38. A block with a speaker bolted to it is connected to a
spring having spring constant N/m, as shown
in Figure P17.38. The total mass of the block and
speaker is 5.00 kg, and the amplitude of this unit’s mo-
tion is 0.500 m. (a) If the speaker emits sound waves of
frequency 440 Hz, determine the highest and lowest fre-
quencies heard by the person to the right of the speaker.
(b) If the maximum sound level heard by the person is
60.0 dB when he is closest to the speaker, 1.00 m away,
what is the minimum sound level heard by the observer?
Assume that the speed of sound is 343 m/s.

k � 20.0
high-speed electrons moving through the water. In a
particular case, the Cerenkov radiation produces a wave
front with an apex half-angle of 53.0°. Calculate the
speed of the electrons in the water. (The speed of light
in water is 2.25 � 108 m/s.)

43. A supersonic jet traveling at Mach 3.00 at an altitude of
20 000 m is directly over a person at time as in
Figure P17.43. (a) How long will it be before the person
encounters the shock wave? (b) Where will the plane be
when it is finally heard? (Assume that the speed of
sound in air is 335 m/s.)

t � 0,
WEB

39. A train is moving parallel to a highway with a constant
speed of 20.0 m/s. A car is traveling in the same direc-
tion as the train with a speed of 40.0 m/s. The car horn
sounds at a frequency of 510 Hz, and the train whistle
sounds at a frequency of 320 Hz. (a) When the car is be-
hind the train, what frequency does an occupant of the
car observe for the train whistle? (b) When the car is in
front of the train, what frequency does a train passenger
observe for the car horn just after the car passes?

40. At the Winter Olympics, an athlete rides her luge down
the track while a bell just above the wall of the chute
rings continuously. When her sled passes the bell, she
hears the frequency of the bell fall by the musical inter-
val called a minor third. That is, the frequency she
hears drops to five sixths of its original value. (a) Find
the speed of sound in air at the ambient temperature

 10.0°C. (b) Find the speed of the athlete.

41. A jet fighter plane travels in horizontal flight at Mach
1.20 (that is, 1.20 times the speed of sound in air). At
the instant an observer on the ground hears the shock
wave, what is the angle her line of sight makes with the
horizontal as she looks at the plane?

42. When high-energy charged particles move through a
transparent medium with a speed greater than the
speed of light in that medium, a shock wave, or bow
wave, of light is produced. This phenomenon is called
the Cerenkov effect and can be observed in the vicinity of
the core of a swimming-pool nuclear reactor due to

44. The tip of a circus ringmaster’s whip travels at Mach
1.38 (that is, What angle does the shock
front make with the direction of the whip’s motion?

ADDITIONAL PROBLEMS

45. A stone is dropped into a deep canyon and is heard to
strike the bottom 10.2 s after release. The speed of
sound waves in air is 343 m/s. How deep is the canyon?
What would be the percentage error in the calculated
depth if the time required for the sound to reach the
canyon rim were ignored?

46. Unoccupied by spectators, a large set of football bleach-
ers has solid seats and risers. You stand on the field in
front of it and fire a starter’s pistol or sharply clap two
wooden boards together once. The sound pulse you
produce has no frequency and no wavelength. You hear
back from the bleachers a sound with definite pitch,
which may remind you of a short toot on a trumpet, or
of a buzzer or a kazoo. Account for this sound. Com-
pute order-of-magnitude estimates for its frequency,
wavelength, and duration on the basis of data that you
specify.

47. Many artists sing very high notes in ornaments and ca-
denzas. The highest note written for a singer in a pub-
lished score was F-sharp above high C, 1.480 kHz, sung

vS/v � 1.38).

x

mk

Figure P17.38

Figure P17.43

(a) (b)

Observer hears
the ‘boom’

h

θ
x

θ

h
t = 0
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by Zerbinetta in the original version of Richard Strauss’s
opera Ariadne auf Naxos. (a) Find the wavelength of this
sound in air. (b) Suppose that the people in the fourth
row of seats hear this note with a level of 81.0 dB. Find
the displacement amplitude of the sound. (c) In re-
sponse to complaints, Strauss later transposed the note
down to F above high C, 1.397 kHz. By what increment
did the wavelength change?

48. A sound wave in a cylinder is described by Equations 
17.2 through 17.4. Show that 

49. On a Saturday morning, pickup trucks carrying garbage
to the town dump form a nearly steady procession on a
country road, all traveling at 19.7 m/s. From this direc-
tion, two trucks arrive at the dump every three minutes.
A bicyclist also is traveling toward the dump at 
4.47 m/s. (a) With what frequency do the trucks pass
him? (b) A hill does not slow the trucks but makes the
out-of-shape cyclist’s speed drop to 1.56 m/s. How often
do the noisy trucks whiz past him now?

50. The ocean floor is underlain by a layer of basalt that
constitutes the crust, or uppermost layer, of the Earth in
that region. Below the crust is found denser peridotite
rock, which forms the Earth’s mantle. The boundary be-
tween these two layers is called the Mohorovicic discon-
tinuity (“Moho” for short). If an explosive charge is set
off at the surface of the basalt, it generates a seismic
wave that is reflected back out at the Moho. If the speed
of the wave in basalt is 6.50 km/s and the two-way travel
time is 1.85 s, what is the thickness of this oceanic crust?

51. A worker strikes a steel pipeline with a hammer, gener-
ating both longitudinal and transverse waves. Reflected
waves return 2.40 s apart. How far away is the reflection
point? (For steel, vlong � 6.20 km/s and vtrans �
3.20 km/s.)

52. For a certain type of steel, stress is proportional to strain
with Young’s modulus as given in Table 12.1. The steel
has the density listed for iron in Table 15.1. It bends per-
manently if subjected to compressive stress greater than
its elastic limit, � � 400 MPa, also called its yield strength.
A rod 80.0 cm long, made of this steel, is projected at
12.0 m/s straight at a hard wall. (a) Find the speed of
compressional waves moving along the rod. (b) After the
front end of the rod hits the wall and stops, the back end
of the rod keeps moving, as described by Newton’s first
law, until it is stopped by the excess pressure in a sound
wave moving back through the rod. How much time
elapses before the back end of the rod gets the message?
(c) How far has the back end of the rod moved in this
time? (d) Find the strain in the rod and (e) the stress.
(f) If it is not to fail, show that the maximum impact
speed a rod can have is given by the expression 

53. To determine her own speed, a sky diver carries a
buzzer that emits a steady tone at 1 800 Hz. A friend at
the landing site on the ground directly below the sky
diver listens to the amplified sound he receives from the
buzzer. Assume that the air is calm and that the speed

�/!�Y .

�P � � �v	!s2
max 
 s2.

of sound is 343 m/s, independent of altitude. While the
sky diver is falling at terminal speed, her friend on the
ground receives waves with a frequency of 2 150 Hz. 
(a) What is the sky diver’s speed of descent? (b) Sup-
pose the sky diver is also carrying sound-receiving equip-
ment that is sensitive enough to detect waves reflected
from the ground. What frequency does she receive?

54. A train whistle Hz) sounds higher or lower in
pitch depending on whether it is approaching or reced-
ing. (a) Prove that the difference in frequency between
the approaching and receding train whistle is

where u is the speed of the train and v is the speed of
sound. (b) Calculate this difference for a train moving
at a speed of 130 km/h. Take the speed of sound in air
to be 340 m/s.

55. A bat, moving at 5.00 m/s, is chasing a flying insect. If
the bat emits a 40.0-kHz chirp and receives back an
echo at 40.4 kHz, at what relative speed is the bat mov-
ing toward or away from the insect? (Take the speed of
sound in air to be m/s.)v � 340

�f �
2(u/v)

1 
 (u2/v2)
 f

( f � 400

56. A supersonic aircraft is flying parallel to the ground.
When the aircraft is directly overhead, an observer on
the ground sees a rocket fired from the aircraft. Ten
seconds later the observer hears the sonic boom, which
is followed 2.80 s later by the sound of the rocket en-
gine. What is the Mach number of the aircraft?

57. A police car is traveling east at 40.0 m/s along a straight
road, overtaking a car that is moving east at 30.0 m/s.
The police car has a malfunctioning siren that is stuck
at 1 000 Hz. (a) Sketch the appearance of the wave
fronts of the sound produced by the siren. Show the

Figure P17.55
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wave fronts both to the east and to the west of the
police car. (b) What would be the wavelength in air of
the siren sound if the police car were at rest? (c) What
is the wavelength in front of the car? (d) What is the
wavelength behind the police car? (e) What frequency
is heard by the driver being chased?

58. A copper bar is given a sharp compressional blow at one
end. The sound of the blow, traveling through air at
0°C, reaches the opposite end of the bar 6.40 ms later
than the sound transmitted through the metal of the
bar. What is the length of the bar? (Refer to Table
17.1.)

59. The power output of a certain public address speaker is
6.00 W. Suppose it broadcasts equally in all directions.
(a) Within what distance from the speaker would the
sound be painful to the ear? (b) At what distance from
the speaker would the sound be barely audible?

60. A jet flies toward higher altitude at a constant speed of
1 963 m/s in a direction that makes an angle � with the
horizontal (Fig. P17.60). An observer on the ground
hears the jet for the first time when it is directly over-
head. Determine the value of � if the speed of sound in
air is 340 m/s.

63. A meteoroid the size of a truck enters the Earth’s atmos-
phere at a speed of 20.0 km/s and is not significantly
slowed before entering the ocean. (a) What is the Mach
angle of the shock wave from the meteoroid in the
atmosphere? (Use 331 m/s as the sound speed.) 
(b) Assuming that the meteoroid survives the impact
with the ocean surface, what is the (initial) Mach angle
of the shock wave that the meteoroid produces in the
water? (Use the wave speed for sea water given in 
Table 17.1.)

64. Consider a longitudinal (compressional) wave of wave-
length � traveling with speed v along the x direction
through a medium of density �. The displacement of the
molecules of the medium from their equilibrium posi-
tion is

Show that the pressure variation in the medium is given
by

65. By proper excitation, it is possible to produce both lon-
gitudinal and transverse waves in a long metal rod. A
particular metal rod is 150 cm long and has a radius of
0.200 cm and a mass of 50.9 g. Young’s modulus for the
material is 6.80 � 1010 N/m2. What must the tension in
the rod be if the ratio of the speed of longitudinal waves
to the speed of transverse waves is 8.00?

66. An interstate highway has been built through a neigh-
borhood in a city. In the afternoon, the sound level in a
rented room is 80.0 dB as 100 cars per minute pass out-
side the window. Late at night, the traffic flow on the
freeway is only five cars per minute. What is the average
late-night sound level in the room?

67. A siren creates a sound level of 60.0 dB at a location 
500 m from the speaker. The siren is powered by a bat-
tery that delivers a total energy of 1.00 kJ. Assuming
that the efficiency of the siren is 30.0% (that is, 30.0%
of the supplied energy is transformed into sound en-
ergy), determine the total time the siren can sound.

68. A siren creates a sound level  at a distance d from the
speaker. The siren is powered by a battery that delivers a
total energy E. Assuming that the efficiency of the siren
is e (that is, e is equal to the output sound energy di-
vided by the supplied energy), determine the total time
the siren can sound.

69. The Doppler equation presented in the text is valid
when the motion between the observer and the source
occurs on a straight line, so that the source and ob-
server are moving either directly toward or directly away
from each other. If this restriction is relaxed, one must
use the more general Doppler equation

f � � � v � vO cos �O

v 
 vS cos �S
� f

�P � 
� 2��v2

�
 smax�

 
cos(kx 
 	t)

s � smax sin(kx 
 	t)

WEB

61. Two ships are moving along a line due east. The trailing
vessel has a speed of 64.0 km/h relative to a land-based
observation point, and the leading ship has a speed of
45.0 km/h relative to that point. The two ships are in a
region of the ocean where the current is moving uni-
formly due west at 10.0 km/h. The trailing ship trans-
mits a sonar signal at a frequency of 1 200.0 Hz. What
frequency is monitored by the leading ship? (Use 
1 520 m/s as the speed of sound in ocean water.)

62. A microwave oven generates a sound with intensity level
40.0 dB everywhere just outside it, when consuming
1.00 kW of power. Find the fraction of this power that 
is converted into the energy of sound waves. Assume 
the dimensions of the oven are 40.0 cm � 40.0 cm �
50.0 cm.

θ

Figure P17.60
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where �O and �S are defined in Figure P17.69a. 
(a) Show that if the observer and source are moving
away from each other, the preceding equation reduces
to Equation 17.17 with lower signs. (b) Use the preced-
ing equation to solve the following problem. A train
moves at a constant speed of 25.0 m/s toward the inter-
section shown in Figure P17.69b. A car is stopped near
the intersection, 30.0 m from the tracks. If the train’s
horn emits a frequency of 500 Hz, what frequency is
heard by the passengers in the car when the train is 
40.0 m from the intersection? Take the speed of sound
to be 343 m/s.

70. Figure 17.5 illustrates that at distance r from a point
source with power , the wave intensity is 

/4�r2. Study Figure 17.11a and prove that at dis-
tance r straight in front of a point source with power

moving with constant speed vS , the wave intensity is

71. Three metal rods are located relative to each other as
shown in Figure P17.71, where The den-L1 � L2 � L3 .

I �
�av

4�r 2  � v 
 vS

v �
�av ,

�av

I ��av 

sity values and Young’s moduli for the three materials
are kg/m3, N/m2;

kg/m3, N/m2;
kg/m3, N/m2. 

(a) If m, what must the ratio L1/L 2 be if a
sound wave is to travel the combined length of rods 
1 and 2 in the same time it takes to travel the length of
rod 3? (b) If the frequency of the source is 4.00 kHz,
determine the phase difference between the wave trav-
eling along rods 1 and 2 and the one traveling along
rod 3.

L3 � 1.50
Y3 � 11.0 � 1010�3 � 8.80 � 103
Y2 � 1.60 � 1010�2 � 11.3 � 103

Y1 � 7.00 � 1010�1 � 2.70 � 103

72. The volume knob on a radio has what is known as a
“logarithmic taper.” The electrical device connected to
the knob (called a potentiometer) has a resistance R
whose logarithm is proportional to the angular position
of the knob: that is, log If the intensity of the
sound I (in watts per square meter) produced by the
speaker is proportional to the resistance R, show that
the sound level  (in decibels) is a linear function of �.

73. The smallest wavelength possible for a sound wave in air
is on the order of the separation distance between air
molecules. Find the order of magnitude of the highest-
frequency sound wave possible in air, assuming a wave
speed of 343 m/s, a density of 1.20 kg/m3, and an aver-
age molecular mass of 4.82 � 10
26 kg.

R � �.

fS
vS

fO
vO

(b)

25.0 m/s

(a)

θOθ

θSθ

Figure P17.69

1 2
3

L3

L2L1

Figure P17.71

ANSWERS TO QUICK QUIZZES

17.3 Because the bottom of the bottle does not allow molecu-
lar motion, the displacement in this region is at its mini-
mum value. Because the pressure variation is a maxi-
mum when the displacement is a minimum, the
pressure variation at the bottom is a maximum.

17.4 (a) 10 dB. If we call the intensity of each violin I, the to-
tal intensity when all the violins are playing is

Therefore, the addition of the nine violins
increases the intensity of the sound over that of one vio-
lin by a factor of 10. From Equation 17.7 we see that an
increase in intensity by a factor of 10 increases the
sound level by 10 dB. (b) 13 dB. The intensity is now in-
creased by a factor of 20 over that of a single violin.

17.5 The Mach number is the ratio of the plane’s speed
(which does not change) to the speed of sound, which is
greater in the warm air than in the cold, as we learned

I � 9I � 10I.

17.1 The only correct answer is (c). Although the speed of a
wave is given by the product of its wavelength and fre-
quency, it is not affected by changes in either one. For
example, if the sound from a musical instrument in-
creases in frequency, the wavelength decreases, and thus

remains constant. The amplitude of a sound
wave determines the size of the oscillations of air mole-
cules but does not affect the speed of the wave through
the air.

17.2 The ground tremor represents a sound wave moving
through the Earth. Sound waves move faster through
the Earth than through air because rock and other
ground materials are much stiffer against compression.
Therefore—the vibration through the ground and the
sound in the air having started together—the vibration
through the ground reaches the observer first.

v � �f
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in Section 17.1 (see Quick Quiz 17.1). The denominator
of this fraction increases while the numerator stays con-
stant. Therefore, the fraction as a whole—the Mach
number—decreases.

17.6 (a) In the reference frame of the air, the observer is
moving toward the source at the wind speed through sta-
tionary air, and the source is moving away from the ob-
server with the same speed. In Equation 17.17, there-
fore, a plus sign is needed in both the numerator and

the denominator:

meaning the observed frequency is the same as if no
wind were blowing. (b) The observer “sees” the sound
waves coming toward him at a higher speed

(c) At this higher speed, he attributes a
greater wavelength to the wave.�� � (v sound � vwind)/f
(v sound � vwind).

f � � � v sound � vwind

v sound � vwind
� f
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c h a p t e r

Superposition and 
Standing Waves

P U Z Z L E R

A speaker for a stereo system operates
even if the wires connecting it to the am-
plifier are reversed, that is, � for � and
� for � (or red for black and black for
red). Nonetheless, the owner’s manual
says that for best performance you
should be careful to connect the two
speakers properly, so that they are “in
phase.” Why is this such an important
consideration for the quality of the sound
you hear? (George Semple)
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18.7 Beats: Interference in Time

18.8 (Optional) Non-Sinusoidal Wave
Patterns
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mportant in the study of waves is the combined effect of two or more waves
traveling in the same medium. For instance, what happens to a string when a
wave traveling along it hits a fixed end and is reflected back on itself ? What is

the air pressure variation at a particular seat in a theater when the instruments of
an orchestra sound together?

When analyzing a linear medium—that is, one in which the restoring force
acting on the particles of the medium is proportional to the displacement of the
particles—we can apply the principle of superposition to determine the resultant
disturbance. In Chapter 16 we discussed this principle as it applies to wave pulses.
In this chapter we study the superposition principle as it applies to sinusoidal
waves. If the sinusoidal waves that combine in a linear medium have the same fre-
quency and wavelength, a stationary pattern—called a standing wave—can be pro-
duced at certain frequencies under certain circumstances. For example, a taut
string fixed at both ends has a discrete set of oscillation patterns, called modes of vi-
bration, that are related to the tension and linear mass density of the string. These
modes of vibration are found in stringed musical instruments. Other musical in-
struments, such as the organ and the flute, make use of the natural frequencies of
sound waves in hollow pipes. Such frequencies are related to the length and shape
of the pipe and depend on whether the pipe is open at both ends or open at one
end and closed at the other.

We also consider the superposition and interference of waves having different
frequencies and wavelengths. When two sound waves having nearly the same fre-
quency interfere, we hear variations in the loudness called beats. The beat fre-
quency corresponds to the rate of alternation between constructive and destruc-
tive interference. Finally, we discuss how any non-sinusoidal periodic wave can be
described as a sum of sine and cosine functions.

SUPERPOSITION AND INTERFERENCE OF
SINUSOIDAL WAVES

Imagine that you are standing in a swimming pool and that a beach ball is floating
a couple of meters away. You use your right hand to send a series of waves toward
the beach ball, causing it to repeatedly move upward by 5 cm, return to its original
position, and then move downward by 5 cm. After the water becomes still, you use
your left hand to send an identical set of waves toward the beach ball and observe
the same behavior. What happens if you use both hands at the same time to send
two waves toward the beach ball? How the beach ball responds to the waves de-
pends on whether the waves work together (that is, both waves make the beach
ball go up at the same time and then down at the same time) or work against each
other (that is, one wave tries to make the beach ball go up, while the other wave
tries to make it go down). Because it is possible to have two or more waves in the
same location at the same time, we have to consider how waves interact with each
other and with their surroundings.

The superposition principle states that when two or more waves move in the
same linear medium, the net displacement of the medium (that is, the resultant
wave) at any point equals the algebraic sum of all the displacements caused by the
individual waves. Let us apply this principle to two sinusoidal waves traveling in the
same direction in a linear medium. If the two waves are traveling to the right and
have the same frequency, wavelength, and amplitude but differ in phase, we can

18.1
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express their individual wave functions as

where, as usual, and � is the phase constant, which we intro-
duced in the context of simple harmonic motion in Chapter 13. Hence, the resul-
tant wave function y is

To simplify this expression, we use the trigonometric identity

If we let and we find that the resultant wave func-
tion y reduces to

This result has several important features. The resultant wave function y also is sinus-
oidal and has the same frequency and wavelength as the individual waves, since the
sine function incorporates the same values of k and � that appear in the original
wave functions. The amplitude of the resultant wave is 2A cos(�/2), and its phase is
�/2. If the phase constant � equals 0, then cos(�/2) � cos 0 � 1, and the ampli-
tude of the resultant wave is 2A—twice the amplitude of either individual wave. In
this case, in which � � 0, the waves are said to be everywhere in phase and thus in-
terfere constructively. That is, the crests and troughs of the individual waves y1 and
y2 occur at the same positions and combine to form the red curve y of amplitude 2A
shown in Figure 18.1a. Because the individual waves are in phase, they are indistin-
guishable in Figure 18.1a, in which they appear as a single blue curve. In general,
constructive interference occurs when cos This is true, for example,
when 2�, 4�, . . . rad—that is, when � is an even multiple of �.

When � is equal to � rad or to any odd multiple of �, then cos(�/2) �
cos(�/2) � 0, and the crests of one wave occur at the same positions as the
troughs of the second wave (Fig. 18.1b). Thus, the resultant wave has zero ampli-
tude everywhere, as a consequence of destructive interference. Finally, when the
phase constant has an arbitrary value other than 0 or other than an integer multi-
ple of � rad (Fig. 18.1c), the resultant wave has an amplitude whose value is some-
where between 0 and 2A.

Interference of Sound Waves

One simple device for demonstrating interference of sound waves is illustrated in
Figure 18.2. Sound from a loudspeaker S is sent into a tube at point P, where there
is a T-shaped junction. Half of the sound power travels in one direction, and half
travels in the opposite direction. Thus, the sound waves that reach the receiver R
can travel along either of the two paths. The distance along any path from speaker
to receiver is called the path length r. The lower path length r1 is fixed, but the
upper path length r2 can be varied by sliding the U-shaped tube, which is similar to
that on a slide trombone. When the difference in the path lengths 
is either zero or some integer multiple of the wavelength � (that is, where

1, 2, 3, . . .), the two waves reaching the receiver at any instant are in
phase and interfere constructively, as shown in Figure 18.1a. For this case, a maxi-
mum in the sound intensity is detected at the receiver. If the path length r2 is ad-

n � 0,
r � n�,
�r � � r2 � r1 �

� � 0,
(�/2) � 	1.

y � 2A cos� �

2 � sin�kx � �t �
�

2 �

b � kx � �t � �,a � kx � �t

sin a � sin b � 2 cos� a � b
2 � sin� a � b

2 �

y � y1 � y2 � A[sin(kx � �t) � sin(kx � �t � �)]

k � 2�/�, � � 2�f,

y1 � A sin(kx � �t)  y2 � A sin(kx � �t � �)

Destructive interference

Constructive interference

Resultant of two traveling
sinusoidal waves
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justed such that the path difference 3�/2, . . . , n�/2(for n odd), the
two waves are exactly � rad, or 180°, out of phase at the receiver and hence cancel
each other. In this case of destructive interference, no sound is detected at the 
receiver. This simple experiment demonstrates that a phase difference may arise
between two waves generated by the same source when they travel along paths of
unequal lengths. This important phenomenon will be indispensable in our investi-
gation of the interference of light waves in Chapter 37.

�r � �/2,

y

= 0°

y
1 and y

2
 are identical

x

y
y

1 y
2 y

x

x

y

(a)

(b)

(c)

φ

y
y

1 y
2

= 180°φ

= 60°φ

y

Figure 18.1 The superposition of two identical waves y1 and y2 (blue) to yield a resultant wave
(red). (a) When y1 and y2 are in phase, the result is constructive interference. (b) When y1 and
y2 are � rad out of phase, the result is destructive interference. (c) When the phase angle has a
value other than 0 or � rad, the resultant wave y falls somewhere between the extremes shown in
(a) and (b).

r 1

r 2

R

Speaker

S

P
Receiver

Figure 18.2 An acoustical system for demon-
strating interference of sound waves. A sound
wave from the speaker (S) propagates into the
tube and splits into two parts at point P. The two
waves, which superimpose at the opposite side,
are detected at the receiver (R). The upper path
length r2 can be varied by sliding the upper sec-
tion.
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It is often useful to express the path difference in terms of the phase angle �
between the two waves. Because a path difference of one wavelength corresponds
to a phase angle of 2� rad, we obtain the ratio or

(18.1)

Using the notion of path difference, we can express our conditions for construc-
tive and destructive interference in a different way. If the path difference is any
even multiple of �/2, then the phase angle where 1, 2, 3, . . . ,
and the interference is constructive. For path differences of odd multiples of �/2,
� � (2n � 1)�, where 1, 2, 3 . . . , and the interference is destructive.
Thus, we have the conditions

and (18.2)

�r � (2n � 1) 
�

2
  for destructive interference 

�r � (2n) 
�

2
   for constructive interference

n � 0,

n � 0,� � 2n�,

�r �
�

2�
 �

�/2� � �r/�,

Two Speakers Driven by the Same SourceEXAMPLE 18.1
these triangles, we find that the path lengths are

and

Hence, the path difference is Because we
require that this path difference be equal to �/2 for the first
minimum, we find that � � 0.26 m.

To obtain the oscillator frequency, we use Equation 16.14,
where v is the speed of sound in air, 343 m/s:

Exercise If the oscillator frequency is adjusted such that
the first location at which a listener hears no sound is at a dis-
tance of 0.75 m from O, what is the new frequency?

Answer 0.63 kHz.

1.3 kHzf �
v
�

�
343 m/s
0.26 m

�

v � �f,

r2 � r1 � 0.13 m.

r2 � √(8.00 m)2 � (1.85 m)2 � 8.21 m

r1 � √(8.00 m)2 � (1.15 m)2 � 8.08 m

A pair of speakers placed 3.00 m apart are driven by the same
oscillator (Fig. 18.3). A listener is originally at point O, which
is located 8.00 m from the center of the line connecting the
two speakers. The listener then walks to point P, which is a
perpendicular distance 0.350 m from O, before reaching the
first minimum in sound intensity. What is the frequency of the
oscillator?

Solution To find the frequency, we need to know the
wavelength of the sound coming from the speakers. With this
information, combined with our knowledge of the speed of
sound, we can calculate the frequency. We can determine the
wavelength from the interference information given. The
first minimum occurs when the two waves reaching the lis-
tener at point P are 180° out of phase—in other words, when
their path difference �r equals �/2. To calculate the path dif-
ference, we must first find the path lengths r1 and r2 . 

Figure 18.3 shows the physical arrangement of the speak-
ers, along with two shaded right triangles that can be drawn
on the basis of the lengths described in the problem. From

8.00 m

r 1

r 2

8.00 m

1.15 m

3.00 m

0.350 m

1.85 m

P

O

Figure 18.3

Relationship between path
difference and phase angle
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You can now understand why the speaker wires in a stereo system should be
connected properly. When connected the wrong way—that is, when the positive
(or red) wire is connected to the negative (or black) terminal—the speakers are
said to be “out of phase” because the sound wave coming from one speaker de-
structively interferes with the wave coming from the other. In this situation, one
speaker cone moves outward while the other moves inward. Along a line midway
between the two, a rarefaction region from one speaker is superposed on a con-
densation region from the other speaker. Although the two sounds probably do
not completely cancel each other (because the left and right stereo signals are
usually not identical), a substantial loss of sound quality still occurs at points along
this line.

STANDING WAVES
The sound waves from the speakers in Example 18.1 left the speakers in the for-
ward direction, and we considered interference at a point in space in front of the
speakers. Suppose that we turn the speakers so that they face each other and then
have them emit sound of the same frequency and amplitude. We now have a situa-
tion in which two identical waves travel in opposite directions in the same
medium. These waves combine in accordance with the superposition principle.

We can analyze such a situation by considering wave functions for two trans-
verse sinusoidal waves having the same amplitude, frequency, and wavelength but
traveling in opposite directions in the same medium:

where y1 represents a wave traveling to the right and y2 represents one traveling to
the left. Adding these two functions gives the resultant wave function y:

When we use the trigonometric identity sin cos sin b, this
expression reduces to

(18.3)

which is the wave function of a standing wave. A standing wave, such as the one
shown in Figure 18.4, is an oscillation pattern with a stationary outline that results
from the superposition of two identical waves traveling in opposite directions.

Notice that Equation 18.3 does not contain a function of Thus, it is
not an expression for a traveling wave. If we observe a standing wave, we have no
sense of motion in the direction of propagation of either of the original waves. If
we compare this equation with Equation 13.3, we see that Equation 18.3 describes
a special kind of simple harmonic motion. Every particle of the medium oscillates
in simple harmonic motion with the same frequency � (according to the cos �t
factor in the equation). However, the amplitude of the simple harmonic motion of
a given particle (given by the factor 2A sin kx, the coefficient of the cosine func-
tion) depends on the location x of the particle in the medium. We need to distin-
guish carefully between the amplitude A of the individual waves and the amplitude
2A sin kx of the simple harmonic motion of the particles of the medium. A given
particle in a standing wave vibrates within the constraints of the envelope function
2A sin kx, where x is the particle’s position in the medium. This is in contrast to
the situation in a traveling sinusoidal wave, in which all particles oscillate with the

kx 	 �t.

y � (2A sin kx) cos �t

b 	 cos a(a 	 b) � sin a

y � y1 � y2 � A sin(kx � �t) � A sin(kx � �t)

y1 � A sin(kx � �t)  y2 � A sin(kx � �t)

18.2

Wave function for a standing wave
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same amplitude and the same frequency and in which the amplitude of the wave is
the same as the amplitude of the simple harmonic motion of the particles.

The maximum displacement of a particle of the medium has a minimum
value of zero when x satisfies the condition sin that is, when

Because these values for kx give

1, 2, 3, . . . (18.4)

These points of zero displacement are called nodes.
The particle with the greatest possible displacement from equilibrium has an

amplitude of 2A, and we define this as the amplitude of the standing wave. The
positions in the medium at which this maximum displacement occurs are called
antinodes. The antinodes are located at positions for which the coordinate x satis-
fies the condition sin that is, when

Thus, the positions of the antinodes are given by

3, 5, . . . (18.5)

In examining Equations 18.4 and 18.5, we note the following important fea-
tures of the locations of nodes and antinodes:

x �
�

4
, 

3�

4
, 

5�

4
, . . . �

n�

4
  n � 1,

kx �
�

2
, 

3�

2
, 

5�

2
, . . .

kx � 	1,

x �
�

2
, �, 

3�

2
, . . . �

n�

2
  n � 0,

k � 2�/� ,

kx � �, 2�, 3�, . . .

kx � 0,

Antinode Antinode

Node

2A sin kx

Node

Figure 18.4 Multiflash photograph of a standing wave on a string. The time behavior of the ver-
tical displacement from equilibrium of an individual particle of the string is given by cos �t. That
is, each particle vibrates at an angular frequency �. The amplitude of the vertical oscillation of any
particle on the string depends on the horizontal position of the particle. Each particle vibrates
within the confines of the envelope function 2A sin kx.

The distance between adjacent antinodes is equal to �/2.
The distance between adjacent nodes is equal to �/2.
The distance between a node and an adjacent antinode is �/4.

Displacement patterns of the particles of the medium produced at various
times by two waves traveling in opposite directions are shown in Figure 18.5. The
blue and green curves are the individual traveling waves, and the red curves are

Position of antinodes

Position of nodes
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the displacement patterns. At (Fig. 18.5a), the two traveling waves are in
phase, giving a displacement pattern in which each particle of the medium is expe-
riencing its maximum displacement from equilibrium. One quarter of a period
later, at (Fig. 18.5b), the traveling waves have moved one quarter of a
wavelength (one to the right and the other to the left). At this time, the traveling
waves are out of phase, and each particle of the medium is passing through the
equilibrium position in its simple harmonic motion. The result is zero displace-
ment for particles at all values of x—that is, the displacement pattern is a straight
line. At (Fig. 18.5c), the traveling waves are again in phase, producing a
displacement pattern that is inverted relative to the pattern. In the standing
wave, the particles of the medium alternate in time between the extremes shown
in Figure 18.5a and c.

Energy in a Standing Wave

It is instructive to describe the energy associated with the particles of a medium in
which a standing wave exists. Consider a standing wave formed on a taut string
fixed at both ends, as shown in Figure 18.6. Except for the nodes, which are always
stationary, all points on the string oscillate vertically with the same frequency but
with different amplitudes of simple harmonic motion. Figure 18.6 represents snap-
shots of the standing wave at various times over one half of a period.

In a traveling wave, energy is transferred along with the wave, as we discussed
in Chapter 16. We can imagine this transfer to be due to work done by one seg-
ment of the string on the next segment. As one segment moves upward, it exerts a
force on the next segment, moving it through a displacement—that is, work is
done. A particle of the string at a node, however, experiences no displacement.
Thus, it cannot do work on the neighboring segment. As a result, no energy is
transmitted along the string across a node, and energy does not propagate in a
standing wave. For this reason, standing waves are often called stationary waves.

The energy of the oscillating string continuously alternates between elastic po-
tential energy, when the string is momentarily stationary (see Fig. 18.6a), and ki-
netic energy, when the string is horizontal and the particles have their maximum
speed (see Fig. 18.6c). At intermediate times (see Fig. 18.6b and d), the string par-
ticles have both potential energy and kinetic energy.

t � 0
t � T/2

t � T/4

t � 0

(a) t = 0

y1

y2

y
N N N N N

AA

(b) t = T/4

y2

y1

y

(c) t = T/2

y1

A A

y2

y
N N N N N

A A

Figure 18.5 Standing-wave patterns produced at various times by two waves of equal amplitude
traveling in opposite directions. For the resultant wave y, the nodes (N) are points of zero dis-
placement, and the antinodes (A) are points of maximum displacement.

Figure 18.6 A standing-wave pat-
tern in a taut string. The five “snap-
shots” were taken at half-cycle in-
tervals. (a) At the string is
momentarily at rest; thus, 
and all the energy is potential en-
ergy U associated with the vertical
displacements of the string parti-
cles. (b) At the string is in
motion, as indicated by the brown
arrows, and the energy is half ki-
netic and half potential. (c) At

the string is moving but
horizontal (undeformed); thus,

and all the energy is kinetic.
(d) The motion continues as indi-
cated. (e) At the string is
again momentarily at rest, but the
crests and troughs of (a) are re-
versed. The cycle continues until
ultimately, when a time interval
equal to T has passed, the configu-
ration shown in (a) is repeated.

t � T/2,

U � 0,

t � T/4,

t � T/8,

K � 0,
t � 0,

NN N
t = 0

(a)

(b) t = T/ 8

t = T/4(c)

t = 3T/ 8(d)

(e) t = T/ 2
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STANDING WAVES IN A STRING
FIXED AT BOTH ENDS

Consider a string of length L fixed at both ends, as shown in Figure 18.7. Standing
waves are set up in the string by a continuous superposition of waves incident on
and reflected from the ends. Note that the ends of the string, because they are
fixed and must necessarily have zero displacement, are nodes by definition. The
string has a number of natural patterns of oscillation, called normal modes, each
of which has a characteristic frequency that is easily calculated.

18.3

A standing wave described by Equation 18.3 is set up on a string. At what points on the
string do the particles move the fastest?

Quick Quiz 18.1

Formation of a Standing WaveEXAMPLE 18.2
and from Equation 18.5 we find that the antinodes are lo-
cated at

3, 5, . . .

(c) What is the amplitude of the simple harmonic motion
of a particle located at an antinode?

Solution According to Equation 18.3, the maximum dis-
placement of a particle at an antinode is the amplitude of the
standing wave, which is twice the amplitude of the individual
traveling waves:

Let us check this result by evaluating the coefficient of our
standing-wave function at the positions we found for the an-
tinodes:

In evaluating this expression, we have used the fact that n is
an odd integer; thus, the sine function is equal to unity.

 � (8.0 cm) sin�n � �

2 � rad� � 8.0 cm

 � (8.0 cm) sin�3.0n � �

6 � rad� 

ymax � (8.0 cm) sin 3.0x �x �n(�/6) 

8.0 cmymax � 2A � 2(4.0 cm) �

n � 1,n � �

6 � cmx � n 
�

4
�

Two waves traveling in opposite directions produce a stand-
ing wave. The individual wave functions 
are

and

where x and y are measured in centimeters. (a) Find the am-
plitude of the simple harmonic motion of the particle of the
medium located at cm.

Solution The standing wave is described by Equation 18.3;
in this problem, we have cm, rad/cm, and 
� � 2.0 rad/s. Thus,

Thus, we obtain the amplitude of the simple harmonic mo-
tion of the particle at the position cm by evaluating
the coefficient of the cosine function at this position:

(b) Find the positions of the nodes and antinodes.

Solution With rad/cm, we see that 
cm. Therefore, from Equation 18.4 we find that the

nodes are located at

1, 2, 3 . . .n � 0,n � �

3 � cmx � n 
�

2
�

2�/3
� �k � 2�/� � 3.0

4.6 cm � (8.0 cm) sin(6.9 rad) �

ymax � (8.0 cm) sin 3.0x �x �2.3 

x � 2.3

y � (2A sin kx) cos �t � [(8.0 cm) sin 3.0x] cos 2.0t

k � 3.0A � 4.0

x � 2.3

y2 � (4.0 cm) sin(3.0x � 2.0t)

y1 � (4.0 cm) sin(3.0x � 2.0t)

y � A sin(kx � �t)

9.9
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In general, the motion of an oscillating string fixed at both ends is described
by the superposition of several normal modes. Exactly which normal modes are
present depends on how the oscillation is started. For example, when a guitar
string is plucked near its middle, the modes shown in Figure 18.7b and d, as well
as other modes not shown, are excited.

In general, we can describe the normal modes of oscillation for the string by im-
posing the requirements that the ends be nodes and that the nodes and antinodes
be separated by one fourth of a wavelength. The first normal mode, shown in Figure
18.7b, has nodes at its ends and one antinode in the middle. This is the longest-
wavelength mode, and this is consistent with our requirements. This first normal
mode occurs when the wavelength �1 is twice the length of the string, that is,

The next normal mode, of wavelength �2 (see Fig. 18.7c), occurs when the
wavelength equals the length of the string, that is, The third normal mode
(see Fig. 18.7d) corresponds to the case in which In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

2, 3, . . . (18.6)

where the index n refers to the nth normal mode of oscillation. These are the pos-
sible modes of oscillation for the string. The actual modes that are excited by a
given pluck of the string are discussed below.

The natural frequencies associated with these modes are obtained from the re-
lationship where the wave speed v is the same for all frequencies. Using
Equation 18.6, we find that the natural frequencies fn of the normal modes are

(18.7)

Because (see Eq. 16.4), where T is the tension in the string and 
 is its
linear mass density, we can also express the natural frequencies of a taut string as

(18.8)fn �
n

2L
 √ T



  n � 1, 2, 3, . . .

v � √T/


fn �
v
�n

� n 
v

2L
  n � 1, 2, 3, . . .

f � v/�,

�n �
2L
n

  n � 1,

�3 � 2L/3.
�2 � L.

�1 � 2L.

Frequencies of normal modes as
functions of wave speed and
length of string

Wavelengths of normal modes

Frequencies of normal modes as
functions of string tension and
linear mass density

L

(a) (c)

(b) (d)

n = 2

n = 3

L = λ2

L = – λ3
3
2

n = 1 L = – λ1
1
2

f1 f3

f2

N

A

N

λ

λλ

Figure 18.7 (a) A string of length L fixed at both ends. The normal modes of vibration form a
harmonic series: (b) the fundamental, or first harmonic; (c) the second harmonic; 
(d) the third harmonic.
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The lowest frequency f1 , which corresponds to is called either the funda-
mental or the fundamental frequency and is given by

(18.9)

The frequencies of the remaining normal modes are integer multiples of the
fundamental frequency. Frequencies of normal modes that exhibit an integer-
multiple relationship such as this form a harmonic series, and the normal modes
are called harmonics. The fundamental frequency f 1 is the frequency of the first
harmonic; the frequency is the frequency of the second harmonic; and
the frequency is the frequency of the nth harmonic. Other oscillating sys-
tems, such as a drumhead, exhibit normal modes, but the frequencies are not re-
lated as integer multiples of a fundamental. Thus, we do not use the term harmonic
in association with these types of systems.

In obtaining Equation 18.6, we used a technique based on the separation dis-
tance between nodes and antinodes. We can obtain this equation in an alternative
manner. Because we require that the string be fixed at and the wave
function y(x, t) given by Equation 18.3 must be zero at these points for all times.
That is, the boundary conditions require that and that for all
values of t. Because the standing wave is described by the
first boundary condition, is automatically satisfied because sin 
at To meet the second boundary condition, we require that 
sin This condition is satisfied when the angle kL equals an integer multiple
of � rad. Therefore, the allowed values of k are given by1

2, 3, . . . (18.10)

Because we find that

which is identical to Equation 18.6.
Let us now examine how these various harmonics are created in a string. If we

wish to excite just a single harmonic, we need to distort the string in such a way
that its distorted shape corresponded to that of the desired harmonic. After being
released, the string vibrates at the frequency of that harmonic. This maneuver is
difficult to perform, however, and it is not how we excite a string of a musical in-

� 2�

�n
�L � n�  or  �n �

2L
n

kn � 2�/�n ,

knL � n�  n � 1,

kL � 0.
y(L, t) � 0,x � 0.

kx � 0y(0, t) � 0,
y � (2A sin kx) cos �t,

y(L, t) � 0y(0, t) � 0

x � L,x � 0

fn � nf1

f2 � 2f1

f1 �
1

2L
 √ T




n � 1,

Fundamental frequency of a taut
string

Multiflash photographs of standing-wave patterns in a cord driven by a vibrator at its left end.
The single-loop pattern represents the first normal mode The double-loop pattern rep-
resents the second normal mode and the triple-loop pattern represents the third nor-
mal mode (n � 3).

(n � 2),
(n � 1).

1 We exclude because this value corresponds to the trivial case in which no wave exists (k � 0).n � 0

QuickLab
Compare the sounds of a guitar string
plucked first near its center and then
near one of its ends. More of the
higher harmonics are present in the
second situation. Can you hear the
difference?
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strument. If the string is distorted such that its distorted shape is not that of just
one harmonic, the resulting vibration includes various harmonics. Such a distor-
tion occurs in musical instruments when the string is plucked (as in a guitar),
bowed (as in a cello), or struck (as in a piano). When the string is distorted into a
non-sinusoidal shape, only waves that satisfy the boundary conditions can persist
on the string. These are the harmonics.

The frequency of a stringed instrument can be varied by changing either the
tension or the string’s length. For example, the tension in guitar and violin strings
is varied by a screw adjustment mechanism or by tuning pegs located on the neck
of the instrument. As the tension is increased, the frequency of the normal modes
increases in accordance with Equation 18.8. Once the instrument is “tuned,” play-
ers vary the frequency by moving their fingers along the neck, thereby changing
the length of the oscillating portion of the string. As the length is shortened, the
frequency increases because, as Equation 18.8 specifies, the normal-mode frequen-
cies are inversely proportional to string length.

Give Me a C Note!EXAMPLE 18.3
Setting up the ratio of these frequencies, we find that

(c) With respect to a real piano, the assumption we made
in (b) is only partially true. The string densities are equal, but
the length of the A string is only 64 percent of the length of
the C string. What is the ratio of their tensions?

Solution Using Equation 18.8 again, we set up the ratio of
frequencies:

1.16 
TA

TC
� (0.64)2� 440

262 �
2

�

f1A

f1C
�

LC

LA
 √ TA

TC
� � 100

64 � √ TA

TC

2.82
TA

TC
� � f1A

f1C
�

2
� � 440

262 �
2

�

f1A

f1C
� √ TA

TC
 

Middle C on a piano has a fundamental frequency of 262 Hz,
and the first A above middle C has a fundamental frequency
of 440 Hz. (a) Calculate the frequencies of the next two har-
monics of the C string.

Solution Knowing that the frequencies of higher harmon-
ics are integer multiples of the fundamental frequency

Hz, we find that

(b) If the A and C strings have the same linear mass den-
sity 
 and length L, determine the ratio of tensions in the two
strings.

Solution Using Equation 18.8 for the two strings vibrating
at their fundamental frequencies gives

f1A �
1

2L
 √ TA



  and  f1C �

1
2L

 √ TC




786 Hzf3 � 3f1 �

524 Hzf2 � 2f1 �

f1 � 262

Guitar BasicsEXAMPLE 18.4
speed of the wave on the string,

Because we have not adjusted the tuning peg, the tension in
the string, and hence the wave speed, remain constant. We
can again use Equation 18.7, this time solving for L and sub-

v �
2L
n

 fn �
2(0.640 m)

1
 (330 Hz) � 422 m/s

The high E string on a guitar measures 64.0 cm in length and
has a fundamental frequency of 330 Hz. By pressing down on
it at the first fret (Fig. 18.8), the string is shortened so that it
plays an F note that has a frequency of 350 Hz. How far is the
fret from the neck end of the string?

Solution Equation 18.7 relates the string’s length to the
fundamental frequency. With we can solve for then � 1,
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Figure 18.8 Playing an F note on a guitar. (Charles D. Winters)

Figure 18.9 Graph of the ampli-
tude (response) versus driving fre-
quency for an oscillating system.
The amplitude is a maximum at
the resonance frequency f0 . Note
that the curve is not symmetric.

stituting the new frequency to find the shortened string
length:

The difference between this length and the measured length
of 64.0 cm is the distance from the fret to the neck end of the 

string, or 3.70 cm.

L � n 
v

2fn
� (1)

422 m/s
2(350 Hz)

� 0.603 m

RESONANCE
We have seen that a system such as a taut string is capable of oscillating in one or
more normal modes of oscillation. If a periodic force is applied to such a sys-
tem, the amplitude of the resulting motion is greater than normal when the
frequency of the applied force is equal to or nearly equal to one of the nat-
ural frequencies of the system. We discussed this phenomenon, known as reso-
nance, briefly in Section 13.7. Although a block–spring system or a simple pendu-
lum has only one natural frequency, standing-wave systems can have a whole set of
natural frequencies. Because an oscillating system exhibits a large amplitude when
driven at any of its natural frequencies, these frequencies are often referred to as
resonance frequencies.

Figure 18.9 shows the response of an oscillating system to various driving fre-
quencies, where one of the resonance frequencies of the system is denoted by f0 .
Note that the amplitude of oscillation of the system is greatest when the frequency
of the driving force equals the resonance frequency. The maximum amplitude is
limited by friction in the system. If a driving force begins to work on an oscillating
system initially at rest, the input energy is used both to increase the amplitude of
the oscillation and to overcome the frictional force. Once maximum amplitude is
reached, the work done by the driving force is used only to overcome friction.

A system is said to be weakly damped when the amount of friction to be over-
come is small. Such a system has a large amplitude of motion when driven at one
of its resonance frequencies, and the oscillations persist for a long time after the
driving force is removed. A system in which considerable friction must be over-
come is said to be strongly damped. For a given driving force applied at a resonance
frequency, the maximum amplitude attained by a strongly damped oscillator is
smaller than that attained by a comparable weakly damped oscillator. Once the
driving force in a strongly damped oscillator is removed, the amplitude decreases
rapidly with time.

Examples of Resonance

A playground swing is a pendulum having a natural frequency that depends on its
length. Whenever we use a series of regular impulses to push a child in a swing,
the swing goes higher if the frequency of the periodic force equals the natural fre-

18.4

A
m

pl
it

ud
e

f0
Frequency of driving force

9.9
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quency of the swing. We can demonstrate a similar effect by suspending pendu-
lums of different lengths from a horizontal support, as shown in Figure 18.10. If
pendulum A is set into oscillation, the other pendulums begin to oscillate as a re-
sult of the longitudinal waves transmitted along the beam. However, pendulum C,
the length of which is close to the length of A, oscillates with a much greater am-
plitude than pendulums B and D, the lengths of which are much different from
that of pendulum A. Pendulum C moves the way it does because its natural fre-
quency is nearly the same as the driving frequency associated with pendulum A.

Next, consider a taut string fixed at one end and connected at the opposite
end to an oscillating blade, as illustrated in Figure 18.11. The fixed end is a node,
and the end connected to the blade is very nearly a node because the amplitude of
the blade’s motion is small compared with that of the string. As the blade oscil-
lates, transverse waves sent down the string are reflected from the fixed end. As we
learned in Section 18.3, the string has natural frequencies that are determined by
its length, tension, and linear mass density (see Eq. 18.8). When the frequency of
the blade equals one of the natural frequencies of the string, standing waves are
produced and the string oscillates with a large amplitude. In this resonance case,
the wave generated by the oscillating blade is in phase with the reflected wave, and
the string absorbs energy from the blade. If the string is driven at a frequency that
is not one of its natural frequencies, then the oscillations are of low amplitude and
exhibit no stable pattern.

Once the amplitude of the standing-wave oscillations is a maximum, the me-
chanical energy delivered by the blade and absorbed by the system is lost because
of the damping forces caused by friction in the system. If the applied frequency
differs from one of the natural frequencies, energy is transferred to the string at
first, but later the phase of the wave becomes such that it forces the blade to re-
ceive energy from the string, thereby reducing the energy in the string.

Some singers can shatter a wine glass by maintaining a certain frequency of their voice for
several seconds. Figure 18.12a shows a side view of a wine glass vibrating because of a sound
wave. Sketch the standing-wave pattern in the rim of the glass as seen from above. If an inte-

Quick Quiz 18.2

Figure 18.10 An example of res-
onance. If pendulum A is set into
oscillation, only pendulum C,
whose length matches that of A,
eventually oscillates with large am-
plitude, or resonates. The arrows
indicate motion perpendicular to
the page.

A

B

C

D

Vibrating
blade

Figure 18.11 Standing waves are
set up in a string when one end is
connected to a vibrating blade.
When the blade vibrates at one of
the natural frequencies of the
string, large-amplitude standing
waves are created.

Figure 18.12 (a) Standing-wave pattern in a vibrating wine glass. The glass shatters if the ampli-
tude of vibration becomes too great.
(b) A wine glass shattered by the amplified sound of a human voice.

(a) (b)
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gral number of waves “fit” around the circumference of the vibrating rim, how many wave-
lengths fit around the rim in Figure 18.12a?

“Rumble strips” (Fig. 18.13) are sometimes placed across a road to warn drivers that they
are approaching a stop sign, or laid along the sides of the road to alert drivers when they
are drifting out of their lane. Why are these sets of small bumps so effective at getting a dri-
ver’s attention?

Quick Quiz 18.3

QuickLab
Snip off pieces at one end of a drink-
ing straw so that the end tapers to a
point. Chew on this end to flatten it,
and you’ll have created a double-reed
instrument! Put your lips around the
tapered end, press them tightly to-
gether, and blow through the straw.
When you hear a steady tone, slowly
snip off pieces of the straw from the
other end. Be careful to maintain a
constant pressure with your lips. How
does the frequency change as the
straw is shortened?

9.9

STANDING WAVES IN AIR COLUMNS
Standing waves can be set up in a tube of air, such as that in an organ pipe, as the
result of interference between longitudinal sound waves traveling in opposite di-
rections. The phase relationship between the incident wave and the wave reflected
from one end of the pipe depends on whether that end is open or closed. This re-
lationship is analogous to the phase relationships between incident and reflected
transverse waves at the end of a string when the end is either fixed or free to move
(see Figs. 16.13 and 16.14).

In a pipe closed at one end, the closed end is a displacement node be-
cause the wall at this end does not allow longitudinal motion of the air mol-
ecules. As a result, at a closed end of a pipe, the reflected sound wave is 180° out
of phase with the incident wave. Furthermore, because the pressure wave is 90° out
of phase with the displacement wave (see Section 17.2), the closed end of an air
column corresponds to a pressure antinode (that is, a point of maximum pres-
sure variation).

The open end of an air column is approximately a displacement anti-
node2 and a pressure node. We can understand why no pressure variation occurs
at an open end by noting that the end of the air column is open to the atmos-
phere; thus, the pressure at this end must remain constant at atmospheric pres-
sure.

18.5

Figure 18.13 Rumble strips along the side of a highway.

2 Strictly speaking, the open end of an air column is not exactly a displacement antinode. A condensa-
tion reaching an open end does not reflect until it passes beyond the end. For a thin-walled tube of 
circular cross section, this end correction is approximately 0.6R , where R is the tube’s radius. Hence,
the effective length of the tube is longer than the true length L. We ignore this end correction in this
discussion.
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You may wonder how a sound wave can reflect from an open end, since there
may not appear to be a change in the medium at this point. It is indeed true that
the medium through which the sound wave moves is air both inside and outside
the pipe. Remember that sound is a pressure wave, however, and a compression re-
gion of the sound wave is constrained by the sides of the pipe as long as 
the region is inside the pipe. As the compression region exits at the open end 
of the pipe, the constraint is removed and the compressed air is free to expand
into the atmosphere. Thus, there is a change in the character of the medium be-
tween the inside of the pipe and the outside even though there is no change in
the material of the medium. This change in character is sufficient to allow some re-
flection.

The first three normal modes of oscillation of a pipe open at both ends are
shown in Figure 18.14a. When air is directed against an edge at the left, longitudi-
nal standing waves are formed, and the pipe resonates at its natural frequencies.
All normal modes are excited simultaneously (although not with the same ampli-
tude). Note that both ends are displacement antinodes (approximately). In the
first normal mode, the standing wave extends between two adjacent antinodes,

L

λ1 = 2L

f1 = — = —v
λ1

v
2L

λ2 = L

f2 = — = 2f1
v
L

λ3 = — L

f3 = — = 3f1
3v
2L

2
3

(a) Open at both ends

λ1 = 4L

f1 = — = —v
λ1

v
4L

λ3 = — L

f3 = — = 3f1
3v
4L

λ5 = — L

f5 = — = 5f1
5v
4L

4
5

4
3

First harmonic

Second harmonic

Third harmonic

First harmonic

Third harmonic

Fifth harmonic

(b) Closed at one end, open at the other
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Figure 18.14 Motion of air molecules in standing longitudinal waves in a pipe, along with
schematic representations of the waves. The graphs represent the displacement amplitudes, not
the pressure amplitudes. (a) In a pipe open at both ends, the harmonic series created consists of
all integer multiples of the fundamental frequency: f1 , 2f1 , 3f1 , . . . . (b) In a pipe closed at
one end and open at the other, the harmonic series created consists of only odd-integer multi-
ples of the fundamental frequency: f1 , 3f1 , 5f1 , . . . .



Because all harmonics are present, and because the fundamental frequency is
given by the same expression as that for a string (see Eq. 18.7), we can express the
natural frequencies of oscillation as

2, 3 . . . (18.11)

Despite the similarity between Equations 18.7 and 18.11, we must remember that v
in Equation 18.7 is the speed of waves on the string, whereas v in Equation 18.11 is
the speed of sound in air.

If a pipe is closed at one end and open at the other, the closed end is a dis-
placement node (see Fig. 18.14b). In this case, the standing wave for the funda-
mental mode extends from an antinode to the adjacent node, which is one fourth
of a wavelength. Hence, the wavelength for the first normal mode is 4L, and the
fundamental frequency is As Figure 18.14b shows, the higher-frequency
waves that satisfy our conditions are those that have a node at the closed end and
an antinode at the open end; this means that the higher harmonics have frequen-
cies  3f1 , 5f1 , . . . :

f1 � v/4L.

  n � 1,fn � n 
v

2L
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We express this result mathematically as

3, 5, . . . (18.12)

It is interesting to investigate what happens to the frequencies of instruments
based on air columns and strings during a concert as the temperature rises. The
sound emitted by a flute, for example, becomes sharp (increases in frequency) as
it warms up because the speed of sound increases in the increasingly warmer air
inside the flute (consider Eq. 18.11). The sound produced by a violin becomes flat
(decreases in frequency) as the strings expand thermally because the expansion
causes their tension to decrease (see Eq. 18.8).

A pipe open at both ends resonates at a fundamental frequency fopen . When one end is cov-
ered and the pipe is again made to resonate, the fundamental frequency is fclosed . Which 
of the following expressions describes how these two resonant frequencies compare? 
(a) (b) (c) (d) fclosed � 3

2 fopenfclosed � 2fopenfclosed � 1
2 fopenfclosed � fopen

Quick Quiz 18.4

  n � 1,fn � n 
v

4L

in a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

In a pipe closed at one end and open at the other, the natural frequencies of os-
cillation form a harmonic series that includes only odd integer multiples of the
fundamental frequency.

Natural frequencies of a pipe
closed at one end and open at the
other

Natural frequencies of a pipe open
at both ends

QuickLab
Blow across the top of an empty soda-
pop bottle. From a measurement of
the height of the bottle, estimate the
frequency of the sound you hear.
Note that the cross-sectional area of
the bottle is not constant; thus, this is
not a perfect model of a cylindrical
air column.

which is a distance of half a wavelength. Thus, the wavelength is twice the length
of the pipe, and the fundamental frequency is As Figure 18.14a shows,
the frequencies of the higher harmonics are 2f1 , 3f1 , . . . . Thus, we can say that

f1 � v/2L.
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Measuring the Frequency of a Tuning ForkEXAMPLE 18.6
of the tuning fork is constant, the next two normal modes 
(see Fig. 18.15b) correspond to lengths of 

and 0.450 m.L � 5�/4 �0.270 m

L � 3�/4 �
A simple apparatus for demonstrating resonance in an air
column is depicted in Figure 18.15. A vertical pipe open at
both ends is partially submerged in water, and a tuning fork
vibrating at an unknown frequency is placed near the top of
the pipe. The length L of the air column can be adjusted by
moving the pipe vertically. The sound waves generated by the
fork are reinforced when L corresponds to one of the reso-
nance frequencies of the pipe.

For a certain tube, the smallest value of L for which a peak
occurs in the sound intensity is 9.00 cm. What are (a) the fre-
quency of the tuning fork and (b) the value of L for the next
two resonance frequencies?

Solution (a) Although the pipe is open at its lower end to
allow the water to enter, the water’s surface acts like a wall at
one end. Therefore, this setup represents a pipe closed at
one end, and so the fundamental frequency is 
Taking m/s for the speed of sound in air and

we obtain

Because the tuning fork causes the air column to resonate at
this frequency, this must be the frequency of the tuning fork.

(b) Because the pipe is closed at one end, we know from
Figure 18.14b that the wavelength of the fundamental mode
is Because the frequency� � 4L � 4(0.090 0 m) � 0.360 m.

953 Hzf1 �
v

4L
�

343 m/s
4(0.090 0 m)

�

L � 0.090 0 m,
v � 343

f1 � v/4L.

Wind in a CulvertEXAMPLE 18.5
In this case, only odd harmonics are present; hence, the next 

two harmonics have frequencies and 

(c) For the culvert open at both ends, how many of the
harmonics present fall within the normal human hearing
range (20 to 17 000 Hz)?

Solution Because all harmonics are present, we can ex-
press the frequency of the highest harmonic heard as 

where n is the number of harmonics that we can hear.
For Hz, we find that the number of harmonics
present in the audible range is

Only the first few harmonics are of sufficient amplitude to be
heard.

122n �
17 000 Hz

139 Hz
�

fn � 17 000
nf1 ,

fn �

349 Hz.f5 � 5f1 �

209 Hzf3 � 3f1 �

A section of drainage culvert 1.23 m in length makes a howl-
ing noise when the wind blows. (a) Determine the frequen-
cies of the first three harmonics of the culvert if it is open at
both ends. Take m/s as the speed of sound in air.

Solution The frequency of the first harmonic of a pipe
open at both ends is

Because both ends are open, all harmonics are present; thus, 

and 

(b) What are the three lowest natural frequencies of the
culvert if it is blocked at one end?

Solution The fundamental frequency of a pipe closed at
one end is

69.7 Hzf1 �
v

4L
�

343 m/s
4(1.23 m)

�

417 Hz.f3 � 3f1 �278 Hzf2 � 2f1 �

139 Hzf1 �
v

2L
�

343 m/s
2(1.23 m)

�

v � 343

L

Water

f = ?

First
resonance

Second
resonance

(third
harmonic) Third

resonance
(fifth

harmonic)

(b)

(a)

λ/4 3λ/4

5λ/4

λ λ

λ

Figure 18.15 (a) Apparatus for demonstrating the resonance of
sound waves in a tube closed at one end. The length L of the air col-
umn is varied by moving the tube vertically while it is partially sub-
merged in water. (b) The first three normal modes of the system
shown in part (a).
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Optional Section

STANDING WAVES IN RODS AND PLATES
Standing waves can also be set up in rods and plates. A rod clamped in the middle
and stroked at one end oscillates, as depicted in Figure 18.16a. The oscillations of
the particles of the rod are longitudinal, and so the broken lines in Figure 18.16
represent longitudinal displacements of various parts of the rod. For clarity, we have
drawn them in the transverse direction, just as we did for air columns. The mid-
point is a displacement node because it is fixed by the clamp, whereas the ends are
displacement antinodes because they are free to oscillate. The oscillations in this
setup are analogous to those in a pipe open at both ends. The broken lines in Fig-
ure 18.16a represent the first normal mode, for which the wavelength is 2L and
the frequency is where v is the speed of longitudinal waves in the rod.
Other normal modes may be excited by clamping the rod at different points. For
example, the second normal mode (Fig. 18.16b) is excited by clamping the rod a
distance L/4 away from one end.

Two-dimensional oscillations can be set up in a flexible membrane stretched
over a circular hoop, such as that in a drumhead. As the membrane is struck at
some point, wave pulses that arrive at the fixed boundary are reflected many times.
The resulting sound is not harmonic because the oscillating drumhead and the
drum’s hollow interior together produce a set of standing waves having frequen-
cies that are not related by integer multiples. Without this relationship, the sound
may be more correctly described as noise than as music. This is in contrast to the
situation in wind and stringed instruments, which produce sounds that we de-
scribe as musical.

Some possible normal modes of oscillation for a two-dimensional circular
membrane are shown in Figure 18.17. The lowest normal mode, which has a fre-
quency f1, contains only one nodal curve; this curve runs around the outer edge of
the membrane. The other possible normal modes show additional nodal curves
that are circles and straight lines across the diameter of the membrane.

f � v/2L,

18.6

NA N A

λ1 = 2L

(a)

L
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(b)

L
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λ2 = L

f2 = – = 2f1
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f1 = – = –v
λ1
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λ

Figure 18.16 Normal-mode longitudinal vibrations of a rod of length L (a) clamped at the
middle to produce the first normal mode and (b) clamped at a distance L/4 from one end to
produce the second normal mode. Note that the dashed lines represent amplitudes parallel to
the rod (longitudinal waves).

The sound from a tuning fork is
produced by the vibrations of each
of its prongs.

Wind chimes are usually de-
signed so that the waves emanat-
ing from the vibrating rods
blend into a harmonious sound.



564 C H A P T E R  1 8 Superposition and Standing Waves

BEATS: INTERFERENCE IN TIME
The interference phenomena with which we have been dealing so far involve the
superposition of two or more waves having the same frequency. Because the resul-
tant wave depends on the coordinates of the disturbed medium, we refer to the
phenomenon as spatial interference. Standing waves in strings and pipes are com-
mon examples of spatial interference.

We now consider another type of interference, one that results from the su-
perposition of two waves having slightly different frequencies. In this case, when the
two waves are observed at the point of superposition, they are periodically in and
out of phase. That is, there is a temporal (time) alternation between constructive
and destructive interference. Thus, we refer to this phenomenon as interference in
time or temporal interference. For example, if two tuning forks of slightly different fre-
quencies are struck, one hears a sound of periodically varying intensity. This phe-
nomenon is called beating:

18.7

Beating is the periodic variation in intensity at a given point due to the superpo-
sition of two waves having slightly different frequencies.

Definition of beating

f1

2.295 f1

3.599 f1 4.230 f1

2.917 f1

1.593 f1

Figure 18.17 Representation of some of the normal modes possible in a circular membrane
fixed at its perimeter. The frequencies of oscillation do not form a harmonic series.



18.7 Beats: Interference in Time 565

The number of intensity maxima one hears per second, or the beat frequency, equals
the difference in frequency between the two sources, as we shall show below. The
maximum beat frequency that the human ear can detect is about 20 beats/s.
When the beat frequency exceeds this value, the beats blend indistinguishably with
the compound sounds producing them.

A piano tuner can use beats to tune a stringed instrument by “beating” a note
against a reference tone of known frequency. The tuner can then adjust the string
tension until the frequency of the sound it emits equals the frequency of the refer-
ence tone. The tuner does this by tightening or loosening the string until the beats
produced by it and the reference source become too infrequent to notice.

Consider two sound waves of equal amplitude traveling through a medium
with slightly different frequencies f1 and f2 . We use equations similar to Equation
16.11 to represent the wave functions for these two waves at a point that we choose
as 

Using the superposition principle, we find that the resultant wave function at this
point is

The trigonometric identity

allows us to write this expression in the form

(18.13)

Graphs of the individual waves and the resultant wave are shown in Figure 18.18.
From the factors in Equation 18.13, we see that the resultant sound for a listener
standing at any given point has an effective frequency equal to the average
frequency and an amplitude given by the expression in the square( f1 � f2)/2

y � �2 A cos 2�� f1 � f2

2 �t� cos 2�� f1 � f2

2 �t

cos a � cos b � 2 cos� a � b
2 � cos� a � b

2 �

y � y1 � y2 � A(cos 2�f1t � cos 2�f2t)

y2 � A cos �2t � A cos 2�f2t

y1 � A cos �1t � A cos 2�f1t

x � 0:

Resultant of two waves of different
frequencies but equal amplitude

y

(a)

(b)

y

t

t

Figure 18.18 Beats are formed by the combination of two waves of slightly different frequen-
cies. (a) The individual waves. (b) The combined wave has an amplitude (broken line) that oscil-
lates in time.
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brackets:

(18.14)

That is, the amplitude and therefore the intensity of the resultant sound vary
in time. The broken blue line in Figure 18.18b is a graphical representation of
Equation 18.14 and is a sine wave varying with frequency 

Note that a maximum in the amplitude of the resultant sound wave is detected
whenever

This means there are two maxima in each period of the resultant wave. Because
the amplitude varies with frequency as the number of beats per sec-
ond, or the beat frequency fb , is twice this value. That is,

(18.15)

For instance, if one tuning fork vibrates at 438 Hz and a second one vibrates at
442 Hz, the resultant sound wave of the combination has a frequency of 440 Hz
(the musical note A) and a beat frequency of 4 Hz. A listener would hear a
440-Hz sound wave go through an intensity maximum four times every second.

Optional Section

NON-SINUSOIDAL WAVE PATTERNS
The sound-wave patterns produced by the majority of musical instruments are
non-sinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a
clarinet, each playing the same note, are shown in Figure 18.19. Each instrument
has its own characteristic pattern. Note, however, that despite the differences in
the patterns, each pattern is periodic. This point is important for our analysis of
these waves, which we now discuss.

We can distinguish the sounds coming from a trumpet and a saxophone even
when they are both playing the same note. On the other hand, we may have diffi-
culty distinguishing a note played on a clarinet from the same note played on an
oboe. We can use the pattern of the sound waves from various sources to explain
these effects.

The wave patterns produced by a musical instrument are the result of the su-
perposition of various harmonics. This superposition results in the corresponding
richness of musical tones. The human perceptive response associated with various
mixtures of harmonics is the quality or timbre of the sound. For instance, the sound
of the trumpet is perceived to have a “brassy” quality (that is, we have learned to
associate the adjective brassy with that sound); this quality enables us to distinguish
the sound of the trumpet from that of the saxophone, whose quality is perceived
as “reedy.” The clarinet and oboe, however, are both straight air columns excited
by reeds; because of this similarity, it is more difficult for the ear to distinguish
them on the basis of their sound quality.

The problem of analyzing non-sinusoidal wave patterns appears at first sight to
be a formidable task. However, if the wave pattern is periodic, it can be repre-
sented as closely as desired by the combination of a sufficiently large number of si-

18.8

fb � � f1 � f2 �

( f1 � f2)/2,

cos 2�� f1 � f2

2 �t � 	1

( f1 � f2)/2.

Aresultant � 2A cos 2�� f1 � f2

2 �t

9.6

Beat frequency

Tuning fork

Flute

Clarinet

(a)

(b)

(c)

t

t

t

Figure 18.19 Sound wave pat-
terns produced by (a) a tuning fork,
(b) a flute, and (c) a clarinet, each
at approximately the same fre-
quency.
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nusoidal waves that form a harmonic series. In fact, we can represent any periodic
function as a series of sine and cosine terms by using a mathematical technique
based on Fourier’s theorem.3 The corresponding sum of terms that represents
the periodic wave pattern is called a Fourier series.

Let y(t) be any function that is periodic in time with period T, such that 
y(t � T ) � y(t). Fourier’s theorem states that this function can be written as

(18.16)

where the lowest frequency is The higher frequencies are integer multi-
ples of the fundamental, and the coefficients An and Bn represent the
amplitudes of the various waves. Figure 18.20 represents a harmonic analysis of the
wave patterns shown in Figure 18.19. Note that a struck tuning fork produces only
one harmonic (the first), whereas the flute and clarinet produce the first and
many higher ones.

Note the variation in relative intensity of the various harmonics for the flute
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f , all having different
intensities.

We have discussed the analysis of a wave pattern using Fourier’s theorem. The
analysis involves determining the coefficients of the harmonics in Equation 18.16
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis,
can also be performed. In this process, the various harmonics are added together
to form a resultant wave pattern. As an example of Fourier synthesis, consider the
building of a square wave, as shown in Figure 18.21. The symmetry of the square
wave results in only odd multiples of the fundamental frequency combining in its
synthesis. In Figure 18.21a, the orange curve shows the combination of f and 3f. In
Figure 18.21b, we have added 5f to the combination and obtained the green
curve. Notice how the general shape of the square wave is approximated, even
though the upper and lower portions are not flat as they should be.

fn � nf1 ,
f1 � 1/T.

y(t) � �
n

(An sin 2�fnt � Bn cos 2�fnt)

3 Developed by Jean Baptiste Joseph Fourier (1786–1830).
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Figure 18.20 Harmonics of the wave patterns shown in Figure 18.19. Note the variations in in-
tensity of the various harmonics.
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Figure 18.21c shows the result of adding odd frequencies up to 9f. This approx-
imation to the square wave (purple curve) is better than the approximations in
parts a and b. To approximate the square wave as closely as possible, we would need
to add all odd multiples of the fundamental frequency, up to infinite frequency.

Using modern technology, we can generate musical sounds electronically by
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical
tones.

SUMMARY

When two traveling waves having equal amplitudes and frequencies superimpose,
the resultant wave has an amplitude that depends on the phase angle � between

(c)

f + 3f + 5f + 7f + 9f

Square wave
f + 3f + 5f + 7f + 9f + ...

(b)

f + 3f + 5f

5f

f

3f

(a)

f
f + 3f

3f

Figure 18.21 Fourier synthesis of a square wave, which is represented by the sum of odd multi-
ples of the first harmonic, which has frequency f. (a) Waves of frequency f and 3f are added. 
(b) One more odd harmonic of frequency 5f is added. (c) The synthesis curve approaches the
square wave when odd frequencies up to 9f are added.

This synthesizer can produce the
characteristic sounds of different
instruments by properly combining
frequencies from electronic oscilla-
tors.
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the two waves. Constructive interference occurs when the two waves are in
phase, corresponding to � � 0, 2�, 4�, . . . rad. Destructive interference
occurs when the two waves are 180° out of phase, corresponding to 
� � �, 3�, 5�, . . . rad. Given two wave functions, you should be able to deter-
mine which if either of these two situations applies.

Standing waves are formed from the superposition of two sinusoidal waves
having the same frequency, amplitude, and wavelength but traveling in opposite
directions. The resultant standing wave is described by the wave function

(18.3)

Hence, the amplitude of the standing wave is 2A, and the amplitude of the simple
harmonic motion of any particle of the medium varies according to its position as
2A sin kx. The points of zero amplitude (called nodes) occur at 
1, 2, 3, . . . ). The maximum amplitude points (called antinodes) occur at

(n � 1, 3, 5, . . . ). Adjacent antinodes are separated by a distance �/2.
Adjacent nodes also are separated by a distance �/2. You should be able to sketch
the standing-wave pattern resulting from the superposition of two traveling waves.

The natural frequencies of vibration of a taut string of length L and fixed at
both ends are

2, 3, . . . (18.8)

where T is the tension in the string and 
 is its linear mass density. The natural fre-
quencies of vibration f1 , 2f1 , 3f1 , . . . form a harmonic series.

An oscillating system is in resonance with some driving force whenever the
frequency of the driving force matches one of the natural frequencies of the sys-
tem. When the system is resonating, it responds by oscillating with a relatively large
amplitude.

Standing waves can be produced in a column of air inside a pipe. If the pipe is
open at both ends, all harmonics are present and the natural frequencies of oscil-
lation are

2, 3, . . . (18.11)

If the pipe is open at one end and closed at the other, only the odd harmonics are
present, and the natural frequencies of oscillation are

3, 5, . . . (18.12)

The phenomenon of beating is the periodic variation in intensity at a given
point due to the superposition of two waves having slightly different frequencies.

fn � n 
v

4L
  n � 1,

fn � n 
v

2L
  n � 1,

fn �
n

2L
 √ T



  n � 1,

x � n�/4

x � n�/2 (n � 0,

y � (2A sin kx) cos �t

QUESTIONS

4. A standing wave is set up on a string, as shown in Figure
18.6. Explain why no energy is transmitted along the
string.

5. What is common to all points (other than the nodes) on
a string supporting a standing wave?

6. What limits the amplitude of motion of a real vibrating
system that is driven at one of its resonant frequencies?

7. In Balboa Park in San Diego, CA, there is a huge outdoor
organ. Does the fundamental frequency of a particular

1. For certain positions of the movable section shown in Fig-
ure 18.2, no sound is detected at the receiver—a situa-
tion corresponding to destructive interference. This sug-
gests that perhaps energy is somehow lost! What happens
to the energy transmitted by the speaker?

2. Does the phenomenon of wave interference apply only to
sinusoidal waves?

3. When two waves interfere constructively or destructively,
is there any gain or loss in energy? Explain.
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PROBLEMS

point as the first, but at a later time. Determine the
minimum possible time interval between the starting
moments of the two waves if the amplitude of the resul-
tant wave is the same as that of each of the two initial
waves.

5. A tuning fork generates sound waves with a frequency
of 246 Hz. The waves travel in opposite directions along
a hallway, are reflected by walls, and return. The hallway
is 47.0 m in length, and the tuning fork is located 
14.0 m from one end. What is the phase difference be-
tween the reflected waves when they meet? The speed
of sound in air is 343 m/s.

6. Two identical speakers 10.0 m apart are driven by the
same oscillator with a frequency of Hz (Fig.
P18.6). (a) Explain why a receiver at point A records a
minimum in sound intensity from the two speakers. 
(b) If the receiver is moved in the plane of the speak-
ers, what path should it take so that the intensity re-
mains at a minimum? That is, determine the relation-
ship between x and y (the coordinates of the receiver)
that causes the receiver to record a minimum in sound
intensity. Take the speed of sound to be 343 m/s.

7. Two speakers are driven by the same oscillator with fre-
quency of 200 Hz. They are located 4.00 m apart on a

f � 21.5

Section 18.1 Superposition and Interference of 
Sinusoidal Waves

1. Two sinusoidal waves are described by the equations

and

where x, y1 , and y2 are in meters and t is in seconds. 
(a) What is the amplitude of the resultant wave? 
(b) What is the frequency of the resultant wave?

2. A sinusoidal wave is described by the equation

where y1 and x are in meters and t is in seconds. Write
an expression for a wave that has the same frequency,
amplitude, and wavelength as y1 but which, when added
to y1 , gives a resultant with an amplitude of cm.

3. Two waves are traveling in the same direction along a
stretched string. The waves are 90.0° out of phase. Each
wave has an amplitude of 4.00 cm. Find the amplitude
of the resultant wave.

4. Two identical sinusoidal waves with wavelengths of 
3.00 m travel in the same direction at a speed of 
2.00 m/s. The second wave originates from the same

8√3

y1 � (0.080 0 m) sin[2�(0.100x � 80.0t)]

y2 � (5.00 m) sin[�(4.00x � 1 200t � 0.250)]

y1 � (5.00 m) sin[�(4.00x � 1 200t)] 

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

pipe of this organ change on hot and cold days? How
about on days with high and low atmospheric pressure?

8. Explain why your voice seems to sound better than usual
when you sing in the shower.

9. What is the purpose of the slide on a trombone or of the
valves on a trumpet?

10. Explain why all harmonics are present in an organ pipe
open at both ends, but only the odd harmonics are
present in a pipe closed at one end.

11. Explain how a musical instrument such as a piano may be
tuned by using the phenomenon of beats.

12. An airplane mechanic notices that the sound from a twin-
engine aircraft rapidly varies in loudness when both en-
gines are running. What could be causing this variation
from loudness to softness?

13. Why does a vibrating guitar string sound louder when
placed on the instrument than it would if it were allowed
to vibrate in the air while off the instrument?

14. When the base of a vibrating tuning fork is placed against
a chalkboard, the sound that it emits becomes louder.
This is due to the fact that the vibrations of the tuning
fork are transmitted to the chalkboard. Because it has a
larger area than that of the tuning fork, the vibrating

chalkboard sets a larger number of air molecules into vi-
bration. Thus, the chalkboard is a better radiator of
sound than the tuning fork. How does this affect the
length of time during which the fork vibrates? Does this
agree with the principle of conservation of energy?

15. To keep animals away from their cars, some people
mount short thin pipes on the front bumpers. The pipes
produce a high-frequency wail when the cars are moving.
How do they create this sound?

16. Guitarists sometimes play a “harmonic” by lightly touch-
ing a string at the exact center and plucking the string.
The result is a clear note one octave higher than the fun-
damental frequency of the string, even though the string
is not pressed to the fingerboard. Why does this happen?

17. If you wet your fingers and lightly run them around the
rim of a fine wine glass, a high-frequency sound is heard.
Why? How could you produce various musical notes with
a set of wine glasses, each of which contains a different
amount of water?

18. Despite a reasonably steady hand, one often spills coffee
when carrying a cup of it from one place to another. Dis-
cuss resonance as a possible cause of this difficulty, and
devise a means for solving the problem.
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WEB

9.00 m

10.0 m

y

(x,y)

A
x

vertical pole. A man walks straight toward the lower
speaker in a direction perpendicular to the pole, as
shown in Figure P18.7. (a) How many times will he hear
a minimum in sound intensity, and (b) how far is he
from the pole at these moments? Take the speed of
sound to be 330 m/s, and ignore any sound reflections
coming off the ground.

8. Two speakers are driven by the same oscillator of fre-
quency f. They are located a distance d from each other
on a vertical pole. A man walks straight toward the
lower speaker in a direction perpendicular to the pole,
as shown in Figure P18.7. (a) How many times will he
hear a minimum in sound intensity, and (b) how far is
he from the pole at these moments? Take the speed of
sound to be v, and ignore any sound reflections coming
off the ground.

Figure P18.6

equation

where x is in meters and t is in seconds. Determine the
wavelength, frequency, and speed of the interfering
waves.

10. Two waves in a long string are described by the equa-
tions

and

where y1 , y2 , and x are in meters and t is in seconds. 
(a) Determine the positions of the nodes of the result-
ing standing wave. (b) What is the maximum displace-
ment at the position 

11. Two speakers are driven by a common oscillator at 
800 Hz and face each other at a distance of 1.25 m. Lo-
cate the points along a line joining the two speakers
where relative minima of sound pressure would be ex-
pected. (Use 

12. Two waves that set up a standing wave in a long string
are given by the expressions

and

Show (a) that the addition of the arbitrary phase angle
changes only the position of the nodes, and (b) that the
distance between the nodes remains constant in time.

13. Two sinusoidal waves combining in a medium are de-
scribed by the equations

and

where x is in centimeters and t is in seconds. Determine
the maximum displacement of the medium at 
(a) (b) and 
(c) (d) Find the three smallest values of 
x corresponding to antinodes.

14. A standing wave is formed by the interference of two
traveling waves, each of which has an amplitude 

cm, angular wave number cm�1, and
angular frequency rad/s. (a) Calculate the dis-
tance between the first two antinodes. (b) What is the
amplitude of the standing wave at cm?

15. Verify by direct substitution that the wave function for a
standing wave given in Equation 18.3,

is a solution of the general lineary � 2A sin kx cos �t,

x � 0.250

� � 10�
k � (�/2)A � �

x � 1.50 cm.
x � 0.500 cm,x � 0.250 cm,

y2 � (3.0 cm) sin �(x � 0.60t)

y1 � (3.0 cm) sin �(x � 0.60t)

y2 � A sin(kx � �t) 

y1 � A sin(kx � �t � �)

v � 343 m/s.)

x � 0.400 m?

y2 � (0.015 0 m) cos� x
2

� 40t�

y1 � (0.015 0 m) cos� x
2

� 40t�

y � (1.50 m) sin(0.400x) cos(200t)

Section 18.2 Standing Waves

9. Two sinusoidal waves traveling in opposite directions in-
terfere to produce a standing wave described by the

dL

Figure P18.7 Problems 7 and 8.
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wave equation, Equation 16.26:

Section 18.3 Standing Waves in a 
String Fixed at Both Ends

16. A 2.00-m-long wire having a mass of 0.100 kg is fixed at
both ends. The tension in the wire is maintained at 
20.0 N. What are the frequencies of the first three al-
lowed modes of vibration? If a node is observed at a
point 0.400 m from one end, in what mode and with
what frequency is it vibrating?

17. Find the fundamental frequency and the next three fre-
quencies that could cause a standing-wave pattern on a
string that is 30.0 m long, has a mass per length of 
9.00 � 10�3 kg/m, and is stretched to a tension of 
20.0 N.

18. A standing wave is established in a 120-cm-long string
fixed at both ends. The string vibrates in four segments
when driven at 120 Hz. (a) Determine the wavelength.
(b) What is the fundamental frequency of the string?

19. A cello A-string vibrates in its first normal mode with a
frequency of 220 vibrations/s. The vibrating segment is
70.0 cm long and has a mass of 1.20 g. (a) Find the ten-
sion in the string. (b) Determine the frequency of vibra-
tion when the string vibrates in three segments.

20. A string of length L, mass per unit length 
, and ten-
sion T is vibrating at its fundamental frequency. De-
scribe the effect that each of the following conditions
has on the fundamental frequency: (a) The length of
the string is doubled, but all other factors are held con-
stant. (b) The mass per unit length is doubled, but all
other factors are held constant. (c) The tension is dou-
bled, but all other factors are held constant.

21. A 60.0-cm guitar string under a tension of 50.0 N has a
mass per unit length of 0.100 g/cm. What is the highest
resonance frequency of the string that can be heard by
a person able to hear frequencies of up to 20 000 Hz?

22. A stretched wire vibrates in its first normal mode at a
frequency of 400 Hz. What would be the fundamental
frequency if the wire were half as long, its diameter
were doubled, and its tension were increased four-fold?

23. A violin string has a length of 0.350 m and is tuned to
concert G, with Where must the violinist
place her finger to play concert A, with If
this position is to remain correct to one-half the width
of a finger (that is, to within 0.600 cm), what is the max-
imum allowable percentage change in the string’s ten-
sion?

24. Review Problem. A sphere of mass M is supported by a
string that passes over a light horizontal rod of length L
(Fig. P18.24). Given that the angle is  and that the fun-
damental frequency of standing waves in the section of
the string above the horizontal rod is f , determine the
mass of this section of the string.

fA � 440 Hz?
fG � 392 Hz.

�2y
�x2 �

1
v2  

�2y
�t2

25. In the arrangement shown in Figure P18.25, a mass can
be hung from a string (with a linear mass density of

kg/m) that passes over a light pulley. The
string is connected to a vibrator (of constant frequency
f ), and the length of the string between point P and the
pulley is m. When the mass m is either 16.0 kg
or 25.0 kg, standing waves are observed; however, no
standing waves are observed with any mass between
these values. (a) What is the frequency of the vibrator?
(Hint: The greater the tension in the string, the smaller
the number of nodes in the standing wave.) (b) What is
the largest mass for which standing waves could be ob-
served?

L � 2.00


 � 0.002 00

26. On a guitar, the fret closest to the bridge is a distance of
21.4 cm from it. The top string, pressed down at this last
fret, produces the highest frequency that can be played
on the guitar, 2 349 Hz. The next lower note has a fre-
quency of 2 217 Hz. How far away from the last fret
should the next fret be?

Section 18.4 Resonance
27. The chains suspending a child’s swing are 2.00 m long.

At what frequency should a big brother push to make
the child swing with greatest amplitude?

28. Standing-wave vibrations are set up in a crystal goblet
with four nodes and four antinodes equally spaced

L

M

θ

Figure P18.24

Figure P18.25

µ

L

P

Vibrator

Pulley

m
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around the 20.0-cm circumference of its rim. If trans-
verse waves move around the glass at 900 m/s, an opera
singer would have to produce a high harmonic with
what frequency to shatter the glass with a resonant vi-
bration?

29. An earthquake can produce a seiche (pronounced “saysh”)
in a lake, in which the water sloshes back and forth from
end to end with a remarkably large amplitude and long
period. Consider a seiche produced in a rectangular farm
pond, as diagrammed in the cross-sectional view of Figure
P18.29 (figure not drawn to scale). Suppose that the
pond is 9.15 m long and of uniform depth. You measure
that a wave pulse produced at one end reaches the other
end in 2.50 s. (a) What is the wave speed? (b) To produce
the seiche, you suggest that several people stand on the
bank at one end and paddle together with snow shovels,
moving them in simple harmonic motion. What must be
the frequency of this motion?

31. Calculate the length of a pipe that has a fundamental
frequency of 240 Hz if the pipe is (a) closed at one end
and (b) open at both ends.

32. A glass tube (open at both ends) of length L is positioned
near an audio speaker of frequency kHz. For
what values of L will the tube resonate with the speaker?

33. The overall length of a piccolo is 32.0 cm. The resonat-
ing air column vibrates as a pipe open at both ends. 
(a) Find the frequency of the lowest note that a piccolo
can play, assuming that the speed of sound in air is 
340 m/s. (b) Opening holes in the side effectively
shortens the length of the resonant column. If the high-
est note that a piccolo can sound is 4 000 Hz, find the
distance between adjacent antinodes for this mode of 
vibration.

34. The fundamental frequency of an open organ pipe cor-
responds to middle C (261.6 Hz on the chromatic musi-
cal scale). The third resonance of a closed organ pipe
has the same frequency. What are the lengths of the two
pipes?

35. Estimate the length of your ear canal, from its opening
at the external ear to the eardrum. (Do not stick any-
thing into your ear!) If you regard the canal as a tube
that is open at one end and closed at the other, at ap-
proximately what fundamental frequency would you ex-
pect your hearing to be most sensitive? Explain why you
can hear especially soft sounds just around this fre-
quency.

36. An open pipe 0.400 m in length is placed vertically in a
cylindrical bucket and nearly touches the bottom of the
bucket, which has an area of 0.100 m2. Water is slowly
poured into the bucket until a sounding tuning fork of
frequency 440 Hz, held over the pipe, produces reso-
nance. Find the mass of water in the bucket at this mo-
ment.

37. A shower stall measures 86.0 cm � 86.0 cm � 210 cm.
If you were singing in this shower, which frequencies
would sound the richest (because of resonance)? As-
sume that the stall acts as a pipe closed at both ends,
with nodes at opposite sides. Assume that the voices of
various singers range from 130 Hz to 2 000 Hz. Let the
speed of sound in the hot shower stall be 355 m/s.

38. When a metal pipe is cut into two pieces, the lowest res-
onance frequency in one piece is 256 Hz and that for
the other is 440 Hz. (a) What resonant frequency would
have been produced by the original length of pipe? 
(b) How long was the original pipe?

39. As shown in Figure P18.39, water is pumped into a long
vertical cylinder at a rate of 18.0 cm3/s. The radius of
the cylinder is 4.00 cm, and at the open top of the cylin-
der is a tuning fork vibrating with a frequency of 
200 Hz. As the water rises, how much time elapses be-
tween successive resonances?

40. As shown in Figure P18.39, water is pumped into a long
vertical cylinder at a volume flow rate R. The radius of

f � 0.680

30. The Bay of Fundy, Nova Scotia, has the highest tides in
the world. Assume that in mid-ocean and at the mouth
of the bay, the Moon’s gravity gradient and the Earth’s
rotation make the water surface oscillate with an ampli-
tude of a few centimeters and a period of 12 h 24 min.
At the head of the bay, the amplitude is several meters.
Argue for or against the proposition that the tide is am-
plified by standing-wave resonance. Suppose that the
bay has a length of 210 km and a depth everywhere of
36.1 m. The speed of long-wavelength water waves is
given by where d is the water’s depth.

Section 18.5 Standing Waves in Air Columns
Note: In this section, assume that the speed of sound in air is 
343 m/s at 20°C and is described by the equation

at any Celsius temperature TC .

v � (331 m/s)√1 �
TC

273�

√gd,

Figure P18.29 WEB
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the cylinder is r , and at the open top of the cylinder is a
tuning fork vibrating with a frequency f. As the water
rises, how much time elapses between successive reso-
nances?

41. A tuning fork with a frequency of 512 Hz is placed near
the top of the tube shown in Figure 18.15a. The water
level is lowered so that the length L slowly increases
from an initial value of 20.0 cm. Determine the next
two values of L that correspond to resonant modes.

42. A student uses an audio oscillator of adjustable fre-
quency to measure the depth of a water well. Two suc-
cessive resonances are heard at 51.5 Hz and 60.0 Hz.
How deep is the well?

43. A glass tube is open at one end and closed at the other
by a movable piston. The tube is filled with air warmer
than that at room temperature, and a 384-Hz tuning
fork is held at the open end. Resonance is heard when
the piston is 22.8 cm from the open end and again
when it is 68.3 cm from the open end. (a) What speed
of sound is implied by these data? (b) How far from the
open end will the piston be when the next resonance is
heard?

44. The longest pipe on an organ that has pedal stops is
often 4.88 m. What is the fundamental frequency 
(at 0.00°C) if the nondriven end of the pipe is 
(a) closed and (b) open? (c) What are the frequencies
at 20.0°C?

45. With a particular fingering, a flute sounds a note with a
frequency of 880 Hz at 20.0°C. The flute is open at both
ends. (a) Find the length of the air column. (b) Find
the frequency it produces during the half-time perfor-
mance at a late-season football game, when the ambient
temperature is � 5.00°C.

(Optional)
Section 18.6 Standing Waves in Rods and Plates

46. An aluminum rod is clamped one quarter of the way
along its length and set into longitudinal vibration by a
variable-frequency driving source. The lowest frequency
that produces resonance is 4 400 Hz. The speed of
sound in aluminum is 5 100 m/s. Determine the length
of the rod.

47. An aluminum rod 1.60 m in length is held at its center.
It is stroked with a rosin-coated cloth to set up a longitu-
dinal vibration. (a) What is the fundamental frequency
of the waves established in the rod? (b) What harmon-
ics are set up in the rod held in this manner? (c) What
would be the fundamental frequency if the rod were
made of copper?

48. A 60.0-cm metal bar that is clamped at one end is struck
with a hammer. If the speed of longitudinal (compres-
sional) waves in the bar is 4 500 m/s, what is the lowest
frequency with which the struck bar resonates?

Section 18.7 Beats: Interference in Time
49. In certain ranges of a piano keyboard, more than one

string is tuned to the same note to provide extra loud-
ness. For example, the note at 110 Hz has two strings
that vibrate at this frequency. If one string slips from its
normal tension of 600 N to 540 N, what beat frequency
is heard when the hammer strikes the two strings simul-
taneously?

50. While attempting to tune the note C at 523 Hz, a piano
tuner hears 2 beats/s between a reference oscillator and
the string. (a) What are the possible frequencies of the
string? (b) When she tightens the string slightly, she
hears 3 beats/s. What is the frequency of the string now?
(c) By what percentage should the piano tuner now
change the tension in the string to bring it into tune?

51. A student holds a tuning fork oscillating at 256 Hz. He
walks toward a wall at a constant speed of 1.33 m/s. 
(a) What beat frequency does he observe between the
tuning fork and its echo? (b) How fast must he walk
away from the wall to observe a beat frequency of 
5.00 Hz?

(Optional)
Section 18.8 Non-Sinusoidal Wave Patterns

52. Suppose that a flutist plays a 523-Hz C note with first
harmonic displacement amplitude nm. From
Figure 18.20b, read, by proportion, the displacement
amplitudes of harmonics 2 through 7. Take these as the
values A2 through A7 in the Fourier analysis of the
sound, and assume that Con-
struct a graph of the waveform of the sound. Your wave-
form will not look exactly like the flute waveform in Fig-
ure 18.19b because you simplify by ignoring cosine
terms; nevertheless, it produces the same sensation to
human hearing.

B1 � B2 � . . . � B7 � 0.

A1 � 100

WEB

18.0 cm3/s

200 Hz

Figure P18.39 Problems 39 and 40.
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53. An A-major chord consists of the notes called A, C�,
and E. It can be played on a piano by simultaneously
striking strings that have fundamental frequencies of 
440.00 Hz, 554.37 Hz, and 659.26 Hz. The rich conso-
nance of the chord is associated with the near equality
of the frequencies of some of the higher harmonics of
the three tones. Consider the first five harmonics of
each string and determine which harmonics show near
equality.

ADDITIONAL PROBLEMS

54. Review Problem. For the arrangement shown in Fig-
ure P18.54, the inclined plane and the small
pulley are frictionless, the string supports the mass M at
the bottom of the plane, and the string has a mass m
that is small compared with M. The system is in equilib-
rium, and the vertical part of the string has a length h.
Standing waves are set up in the vertical section of the
string. Find (a) the tension in the string, (b) the whole
length of the string (ignoring the radius of curvature of
the pulley), (c) the mass per unit length of the string,
(d) the speed of waves on the string, (e) the lowest-fre-
quency standing wave, (f) the period of the standing
wave having three nodes, (g) the wavelength of the
standing wave having three nodes, and (h) the fre-
quency of the beats resulting from the interference of
the sound wave of lowest frequency generated by the
string with another sound wave having a frequency that
is 2.00% greater.

 � 30.0�,

56. On a marimba (Fig. P18.56), the wooden bar that
sounds a tone when it is struck vibrates in a transverse
standing wave having three antinodes and two nodes.
The lowest-frequency note is 87.0 Hz; this note is pro-
duced by a bar 40.0 cm long. (a) Find the speed of
transverse waves on the bar. (b) The loudness of the
emitted sound is enhanced by a resonant pipe sus-
pended vertically below the center of the bar. If the
pipe is open at the top end only and the speed of sound
in air is 340 m/s, what is the length of the pipe required
to resonate with the bar in part (a)?

57. Two train whistles have identical frequencies of 180 Hz.
When one train is at rest in the station and is sounding
its whistle, a beat frequency of 2.00 Hz is heard from a
train moving nearby. What are the two possible speeds
and directions that the moving train can have?

58. A speaker at the front of a room and an identical
speaker at the rear of the room are being driven by the
same oscillator at 456 Hz. A student walks at a uniform
rate of 1.50 m/s along the length of the room. How
many beats does the student hear per second?

59. While Jane waits on a railroad platform, she observes
two trains approaching from the same direction at
equal speeds of 8.00 m/s. Both trains are blowing their
whistles (which have the same frequency), and one
train is some distance behind the other. After the first
train passes Jane, but before the second train passes her,
she hears beats having a frequency of 4.00 Hz. What is
the frequency of the trains’ whistles?

60. A string fixed at both ends and having a mass of 4.80 g,
a length of 2.00 m, and a tension of 48.0 N vibrates in
its second (n � 2) natural mode. What is the wave-
length in air of the sound emitted by this vibrating
string?

55. Two loudspeakers are placed on a wall 2.00 m apart. A
listener stands 3.00 m from the wall directly in front of
one of the speakers. The speakers are being driven by a
single oscillator at a frequency of 300 Hz. (a) What is
the phase difference between the two waves when they
reach the observer? (b) What is the frequency closest to
300 Hz to which the oscillator may be adjusted such
that the observer hears minimal sound?

M
θ

h

Figure P18.54

Figure P18.56 Marimba players in Mexico City. (Murray Greenberg)
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ANSWERS TO QUICK QUIZZES

18.2 For each natural frequency of the glass, the standing
wave must “fit” exactly around the rim. In Figure 18.12a
we see three antinodes on the near side of the glass, and
thus there must be another three on the far side. This

18.1 At the antinodes. All particles have the same period
but a particle at an antinode must travel

through the greatest vertical distance in this amount of
time and therefore must travel fastest.

T � 2�/�,

61. A string 0.400 m in length has a mass per unit length of
9.00 � 10�3 kg/m. What must be the tension in the
string if its second harmonic is to have the same fre-
quency as the second resonance mode of a 1.75-m-long
pipe open at one end?

62. In a major chord on the physical pitch musical scale,
the frequencies are in the ratios 4:5:6:8. A set of pipes,
closed at one end, must be cut so that, when they are
sounded in their first normal mode, they produce a ma-
jor chord. (a) What is the ratio of the lengths of the
pipes? (b) What are the lengths of the pipes needed if
the lowest frequency of the chord is 256 Hz? (c) What
are the frequencies of this chord?

63. Two wires are welded together. The wires are made of
the same material, but the diameter of one wire is twice
that of the other. They are subjected to a tension of 
4.60 N. The thin wire has a length of 40.0 cm and a lin-
ear mass density of 2.00 g/m. The combination is fixed
at both ends and vibrated in such a way that two anti-
nodes are present, with the node between them being
right at the weld. (a) What is the frequency of vibration? 
(b) How long is the thick wire?

64. Two identical strings, each fixed at both ends, are
arranged near each other. If string A starts oscillating in
its first normal mode, string B begins vibrating in its
third (n � 3) natural mode. Determine the ratio of the
tension of string B to the tension of string A.

65. A standing wave is set up in a string of variable length
and tension by a vibrator of variable frequency. When
the vibrator has a frequency f, in a string of length L
and under a tension T, n antinodes are set up in the
string. (a) If the length of the string is doubled, by what
factor should the frequency be changed so that the
same number of antinodes is produced? (b) If the fre-
quency and length are held constant, what tension pro-
duces antinodes? (c) If the frequency is tripled
and the length of the string is halved, by what factor
should the tension be changed so that twice as many an-
tinodes are produced?

66. A 0.010 0-kg, 2.00-m-long wire is fixed at both ends and
vibrates in its simplest mode under a tension of 200 N.
When a tuning fork is placed near the wire, a beat fre-
quency of 5.00 Hz is heard. (a) What could the fre-
quency of the tuning fork be? (b) What should the ten-
sion in the wire be if the beats are to disappear?

67. If two adjacent natural frequencies of an organ pipe are
determined to be 0.550 kHz and 0.650 kHz, calculate

n � 1

the fundamental frequency and length of the pipe.
(Use m/s.)

68. Two waves are described by the equations

and

where x is in meters and t is in seconds. Show that the
resulting wave is sinusoidal, and determine the ampli-
tude and phase of this sinusoidal wave.

69. The wave function for a standing wave is given in Equa-
tion 18.3 as cos �t. (a) Rewrite this wave
function in terms of the wavelength � and the wave
speed v of the wave. (b) Write the wave function of the
simplest standing-wave vibration of a stretched string of
length L. (c) Write the wave function for the second
harmonic. (d) Generalize these results, and write the
wave function for the nth resonance vibration.

70. Review Problem. A 12.0-kg mass hangs in equilibrium
from a string with a total length of m and a
linear mass density of kg/m. The string is
wrapped around two light, frictionless pulleys that are
separated by a distance of m (Fig. P18.70a).
(a) Determine the tension in the string. (b) At what fre-
quency must the string between the pulleys vibrate to
form the standing-wave pattern shown in Figure
P18.70b?

d � 2.00


 � 0.001 00
L � 5.00

y � (2A sin kx)

y2(x, t) � 10 cos(2.0x � 10t)

y1(x, t) � 5.0 sin(2.0x � 10t)

v � 340

m

d

(b)

m

d

(a)

g

Figure P18.70
WEB
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corresponds to three complete waves. In a top view, the
wave pattern looks like this (although we have greatly
exaggerated the amplitude):

18.3 At highway speeds, a car crosses the ridges on the rum-
ble strip at a rate that matches one of the car’s natural
frequencies of oscillation. This causes the car to oscillate
substantially more than when it is traveling over the ran-
domly spaced bumps of regular pavement. This sudden
resonance oscillation alerts the driver that he or she
must pay attention.

18.4 (b). With both ends open, the pipe has a fundamental
frequency given by Equation 18.11: With
one end closed, the pipe has a fundamental frequency
given by Equation 18.12: 

fclosed �
v

4L
�

1
2

 
v

2L
�

1
2

 fopen 

fopen � v/2L.
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After this bottle of champagne was
shaken, the cork was popped off and
champagne spewed everywhere. Con-
trary to common belief, shaking a cham-
pagne bottle before opening it does not
increase the pressure of the carbon
dioxide (CO2) inside. In fact, if you know
the trick, you can open a thoroughly
shaken bottle without spraying a drop.
What’s the secret? And why isn’t the
pressure inside the bottle greater after
the bottle is shaken? (Steve Niedorf/The

Image Bank)
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19.1 Temperature and the Zeroth Law of Thermodynamics 581

n our study of mechanics, we carefully defined such concepts as mass, force,
and kinetic energy to facilitate our quantitative approach. Likewise, a quantita-
tive description of thermal phenomena requires a careful definition of such im-

portant terms as temperature, heat, and internal energy. This chapter begins with a
look at these three entities and with a description of one of the laws of thermody-
namics (the poetically named “zeroth law”). We then discuss the three most com-
mon temperature scales—Celsius, Fahrenheit, and Kelvin.

Next, we consider why the composition of a body is an important factor when
we are dealing with thermal phenomena. For example, gases expand appreciably
when heated, whereas liquids and solids expand only slightly. If a gas is not free to
expand as it is heated, its pressure increases. Certain substances may melt, boil,
burn, or explode when they are heated, depending on their composition and
structure.

This chapter concludes with a study of ideal gases on the macroscopic scale.
Here, we are concerned with the relationships among such quantities as pressure,
volume, and temperature. Later on, in Chapter 21, we shall examine gases on a
microscopic scale, using a model that represents the components of a gas as small
particles.

TEMPERATURE AND THE ZEROTH LAW
OF THERMODYNAMICS

We often associate the concept of temperature with how hot or cold an object feels
when we touch it. Thus, our senses provide us with a qualitative indication of tem-
perature. However, our senses are unreliable and often mislead us. For example, if
we remove a metal ice tray and a cardboard box of frozen vegetables from the
freezer, the ice tray feels colder than the box even though both are at the same
temperature. The two objects feel different because metal is a better thermal con-
ductor than cardboard is. What we need, therefore, is a reliable and reproducible
method for establishing the relative hotness or coldness of bodies. Scientists have
developed a variety of thermometers for making such quantitative measurements.

We are all familiar with the fact that two objects at different initial tempera-
tures eventually reach some intermediate temperature when placed in contact
with each other. For example, when a scoop of ice cream is placed in a room-
temperature glass bowl, the ice cream melts and the temperature of the bowl de-
creases. Likewise, when an ice cube is dropped into a cup of hot coffee, it melts
and the coffee’s temperature decreases.

To understand the concept of temperature, it is useful to define two often-
used phrases: thermal contact and thermal equilibrium. To grasp the meaning of ther-
mal contact, let us imagine that two objects are placed in an insulated container
such that they interact with each other but not with the rest of the world. If the ob-
jects are at different temperatures, energy is exchanged between them, even if
they are initially not in physical contact with each other. Heat is the transfer of
energy from one object to another object as a result of a difference in tem-
perature between the two. We shall examine the concept of heat in greater de-
tail in Chapter 20. For purposes of the current discussion, we assume that two ob-
jects are in thermal contact with each other if energy can be exchanged between
them. Thermal equilibrium is a situation in which two objects in thermal contact
with each other cease to exchange energy by the process of heat.

Let us consider two objects A and B, which are not in thermal contact, and a
third object C, which is our thermometer. We wish to determine whether A and B

19.1

I

QuickLab
Fill three cups with tap water: one
hot, one cold, and one lukewarm.
Dip your left index finger into the
hot water and your right index finger
into the cold water. Slowly count to
20, then quickly dip both fingers into
the lukewarm water. What do you
feel?

Molten lava flowing down a moun-
tain in Kilauea, Hawaii. The tem-
perature of the hot lava flowing
from a central crater decreases un-
til the lava is in thermal equilib-
rium with its surroundings. At that
equilibrium temperature, the lava
has solidified and formed the
mountains.10.3 

& 
10.4
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are in thermal equilibrium with each other. The thermometer (object C) is first
placed in thermal contact with object A until thermal equilibrium is reached.
From that moment on, the thermometer’s reading remains constant, and we
record this reading. The thermometer is then removed from object A and placed
in thermal contact with object B. The reading is again recorded after thermal
equilibrium is reached. If the two readings are the same, then object A and object
B are in thermal equilibrium with each other.

We can summarize these results in a statement known as the zeroth law of
thermodynamics (the law of equilibrium):

If objects A and B are separately in thermal equilibrium with a third object C,
then objects A and B are in thermal equilibrium with each other.

This statement can easily be proved experimentally and is very important because
it enables us to define temperature. We can think of temperature as the property
that determines whether an object is in thermal equilibrium with other objects.
Two objects in thermal equilibrium with each other are at the same tempera-
ture. Conversely, if two objects have different temperatures, then they are not in
thermal equilibrium with each other.

THERMOMETERS AND THE CELSIUS
TEMPERATURE SCALE

Thermometers are devices that are used to define and measure temperatures. All
thermometers are based on the principle that some physical property of a system
changes as the system’s temperature changes. Some physical properties that
change with temperature are (1) the volume of a liquid, (2) the length of a solid,
(3) the pressure of a gas at constant volume, (4) the volume of a gas at constant
pressure, (5) the electric resistance of a conductor, and (6) the color of an object.
For a given substance and a given temperature range, a temperature scale can be
established on the basis of any one of these physical properties.

A common thermometer in everyday use consists of a mass of liquid—usually
mercury or alcohol—that expands into a glass capillary tube when heated (Fig.
19.1). In this case the physical property is the change in volume of a liquid. Any
temperature change can be defined as being proportional to the change in length
of the liquid column. The thermometer can be calibrated by placing it in thermal
contact with some natural systems that remain at constant temperature. One such
system is a mixture of water and ice in thermal equilibrium at atmospheric pres-
sure. On the Celsius temperature scale, this mixture is defined to have a tem-
perature of zero degrees Celsius, which is written as 0°C; this temperature is called
the ice point of water. Another commonly used system is a mixture of water and
steam in thermal equilibrium at atmospheric pressure; its temperature is 100°C,
which is the steam point of water. Once the liquid levels in the thermometer have
been established at these two points, the distance between the two points is di-
vided into 100 equal segments to create the Celsius scale. Thus, each segment de-
notes a change in temperature of one Celsius degree. (This temperature scale
used to be called the centigrade scale because there are 100 gradations between the
ice and steam points of water.)

Thermometers calibrated in this way present problems when extremely accu-
rate readings are needed. For instance, the readings given by an alcohol ther-

19.2

Zeroth law of thermodynamics
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mometer calibrated at the ice and steam points of water might agree with those
given by a mercury thermometer only at the calibration points. Because mercury
and alcohol have different thermal expansion properties, when one thermometer
reads a temperature of, for example, 50°C, the other may indicate a slightly differ-
ent value. The discrepancies between thermometers are especially large when the
temperatures to be measured are far from the calibration points.1

An additional practical problem of any thermometer is the limited range of
temperatures over which it can be used. A mercury thermometer, for example,
cannot be used below the freezing point of mercury, which is � 39°C, and an alco-
hol thermometer is not useful for measuring temperatures above 85°C, the boiling
point of alcohol. To surmount this problem, we need a universal thermometer
whose readings are independent of the substance used in it. The gas thermometer,
discussed in the next section, approaches this requirement.

THE CONSTANT-VOLUME GAS THERMOMETER AND
THE ABSOLUTE TEMPERATURE SCALE

The temperature readings given by a gas thermometer are nearly independent of
the substance used in the thermometer. One version is the constant-volume gas
thermometer shown in Figure 19.2. The physical change exploited in this device is
the variation of pressure of a fixed volume of gas with temperature. When the 
constant-volume gas thermometer was developed, it was calibrated by using the ice

19.3

1 Two thermometers that use the same liquid may also give different readings. This is due in part to dif-
ficulties in constructing uniform-bore glass capillary tubes.

Figure 19.1 As a result of thermal expansion, the level of the mercury in the thermometer
rises as the mercury is heated by water in the test tube.

Scale

Bath or
environment
to be measured Flexible

hose

Mercury
reservoir

A B

h

P
Gas

0

P0 (�j)

Figure 19.2 A constant-volume
gas thermometer measures the
pressure of the gas contained in
the flask immersed in the bath.
The volume of gas in the flask is
kept constant by raising or lower-
ing reservoir B to keep the mer-
cury level in column A constant.
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and steam points of water, as follows (a different calibration procedure, which we
shall discuss shortly, is now used): The flask was immersed in an ice bath, and mer-
cury reservoir B was raised or lowered until the top of the mercury in column A
was at the zero point on the scale. The height h, the difference between the mer-
cury levels in reservoir B and column A, indicated the pressure in the flask at 0°C.

The flask was then immersed in water at the steam point, and reservoir B was
readjusted until the top of the mercury in column A was again at zero on the scale;
this ensured that the gas’s volume was the same as it was when the flask was in the
ice bath (hence, the designation “constant volume”). This adjustment of reservoir
B gave a value for the gas pressure at 100°C. These two pressure and temperature
values were then plotted, as shown in Figure 19.3. The line connecting the two
points serves as a calibration curve for unknown temperatures. If we wanted to
measure the temperature of a substance, we would place the gas flask in thermal
contact with the substance and adjust the height of reservoir B until the top of the
mercury column in A was at zero on the scale. The height of the mercury column
would indicate the pressure of the gas; knowing the pressure, we could find the
temperature of the substance using the graph in Figure 19.3.

Now let us suppose that temperatures are measured with gas thermometers
containing different gases at different initial pressures. Experiments show that the
thermometer readings are nearly independent of the type of gas used, as long as
the gas pressure is low and the temperature is well above the point at which the
gas liquefies (Fig. 19.4). The agreement among thermometers using various gases
improves as the pressure is reduced.

If you extend the curves shown in Figure 19.4 toward negative temperatures,
you find, in every case, that the pressure is zero when the temperature is
� 273.15°C. This significant temperature is used as the basis for the absolute tem-
perature scale, which sets � 273.15°C as its zero point. This temperature is often
referred to as absolute zero. The size of a degree on the absolute temperature
scale is identical to the size of a degree on the Celsius scale. Thus, the conversion
between these temperatures is

(19.1)

where TC is the Celsius temperature and T is the absolute temperature.
Because the ice and steam points are experimentally difficult to duplicate, an

absolute temperature scale based on a single fixed point was adopted in 1954 by
the International Committee on Weights and Measures. From a list of fixed points
associated with various substances (Table 19.1), the triple point of water was cho-
sen as the reference temperature for this new scale. The triple point of water is
the single combination of temperature and pressure at which liquid water, gaseous

TC � T � 273.15

web
For more information about the
temperature standard, visit the National
Institute of Standards and Technology at
http://www.nist.gov

Figure 19.3 A typical graph of
pressure versus temperature taken
with a constant-volume gas ther-
mometer. The two dots represent
known reference temperatures
(the ice and steam points of water).

100°C0°C
T(°C)

P

Gas 2

Gas 3

Gas 1P

200 T(°C)1000–100–200–273.15

Figure 19.4 Pressure versus tempera-
ture for three dilute gases. Note that, for
all gases, the pressure extrapolates to zero
at the temperature � 273.15°C.
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water, and ice (solid water) coexist in equilibrium. This triple point occurs at a
temperature of approximately 0.01°C and a pressure of 4.58 mm of mercury. On
the new scale, which uses the unit kelvin, the temperature of water at the triple
point was set at 273.16 kelvin, abbreviated 273.16 K. (Note: no degree sign “°” is
used with the unit kelvin.) This choice was made so that the old absolute tempera-
ture scale based on the ice and steam points would agree closely with the new scale
based on the triple point. This new absolute temperature scale (also called the
Kelvin scale) employs the SI unit of absolute temperature, the kelvin, which is
defined to be 1/273.16 of the difference between absolute zero and the tem-
perature of the triple point of water.

Figure 19.5 shows the absolute temperature for various physical processes and
structures. The temperature of absolute zero (0 K) cannot be achieved, although lab-
oratory experiments incorporating the laser cooling of atoms have come very close.

What would happen to a gas if its temperature could reach 0 K? As Figure 19.4
indicates, the pressure it exerts on the walls of its container would be zero. In Sec-
tion 19.5 we shall show that the pressure of a gas is proportional to the average ki-
netic energy of its molecules. Thus, according to classical physics, the kinetic en-
ergy of the gas molecules would become zero at absolute zero, and molecular
motion would cease; hence, the molecules would settle out on the bottom of the
container. Quantum theory modifies this model and shows that some residual en-
ergy, called the zero-point energy, would remain at this low temperature.

The Celsius, Fahrenheit, and Kelvin Temperature Scales2

Equation 19.1 shows that the Celsius temperature TC is shifted from the absolute
(Kelvin) temperature T by 273.15°. Because the size of a degree is the same on the

TABLE 19.1 Fixed-Point Temperaturesa

Fixed Point Temperature (°C) Temperature (K)

Triple point of hydrogen � 259.34 13.81
Boiling point of helium � 268.93 4.215
Boiling point of hydrogen � 256.108 17.042

at 33.36 kPa pressure
Boiling point of hydrogen � 252.87 20.28
Triple point of neon � 246.048 27.102
Triple point of oxygen � 218.789 54.361
Boiling point of oxygen � 182.962 90.188
Triple point of water 0.01 273.16
Boiling point of water 100.00 373.15
Freezing point of tin 231.968 1 505.118 1
Freezing point of zinc 419.58 692.73
Freezing point of silver 961.93 1 235.08
Freezing point of gold 1 064.43 1 337.58

a All values are from National Bureau of Standards Special Publication 420; U. S. Department of
Commerce, May 1975. All values are at standard atmospheric pressure except for triple points
and as noted.

Hydrogen bomb
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Interior of the Sun

Solar corona

Surface of the Sun
Copper melts

Water freezes
Liquid nitrogen
Liquid hydrogen

Liquid helium

Lowest temperature
achieved ˜10–7 K

Temperature (K)

Figure 19.5 Absolute tempera-
tures at which various physical
processes occur. Note that the scale
is logarithmic.

2 Named after Anders Celsius (1701–1744), Gabriel Fahrenheit (1686–1736), and William Thomson,
Lord Kelvin (1824–1907), respectively.



THERMAL EXPANSION OF SOLIDS AND LIQUIDS
Our discussion of the liquid thermometer made use of one of the best-known
changes in a substance: As its temperature increases, its volume almost always in-
creases. (As we shall see shortly, in some substances the volume decreases when
the temperature increases.) This phenomenon, known as thermal expansion, has

19.4
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two scales, a temperature difference of 5°C is equal to a temperature difference 
of 5 K. The two scales differ only in the choice of the zero point. Thus, the 
ice-point temperature on the Kelvin scale, 273.15 K, corresponds to 0.00°C, and
the Kelvin-scale steam point, 373.15 K, is equivalent to 100.00°C.

A common temperature scale in everyday use in the United States is the
Fahrenheit scale. This scale sets the temperature of the ice point at 32°F and the
temperature of the steam point at 212°F. The relationship between the Celsius and
Fahrenheit temperature scales is

(19.2)

What is the physical significance of the factor in Equation 19.2? Why is this factor missing
in Equation 19.1?

Extending the ideas considered in Quick Quiz 19.1, we use Equation 19.2 to
find a relationship between changes in temperature on the Celsius, Kelvin, and
Fahrenheit scales:

(19.3)�TC � �T � 5
9 �TF

9
5

Quick Quiz 19.1

TF � 9
5TC � 32�F

Converting TemperaturesEXAMPLE 19.1
From Equation 19.1, we find that

A convenient set of weather-related temperature equivalents
to keep in mind is that 0°C is (literally) freezing at 32°F, 10°C
is cool at 50°F, 30°C is warm at 86°F, and 40°C is a hot day at
104°F.

283 KT � TC � 273.15 � 10�C � 273.15 �

On a day when the temperature reaches 50°F, what is the
temperature in degrees Celsius and in kelvins?

Solution Substituting into Equation 19.2, we
obtain

10�CTC � 5
9(TF � 32) � 5

9(50 � 32) �

TF � 50�F

Heating a Pan of WaterEXAMPLE 19.2

From Equation 19.3, we also find that

99�F�TF � 9
5�TC � 9

5(55�C) �

55 K�T � �TC � 80�C � 25�C � 55�C �
A pan of water is heated from 25°C to 80°C. What is the
change in its temperature on the Kelvin scale and on the
Fahrenheit scale?

Solution From Equation 19.3, we see that the change in
temperature on the Celsius scale equals the change on the
Kelvin scale. Therefore,
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an important role in numerous engineering applications. For example, thermal-
expansion joints, such as those shown in Figure 19.6, must be included in build-
ings, concrete highways, railroad tracks, brick walls, and bridges to compensate for
dimensional changes that occur as the temperature changes.

Thermal expansion is a consequence of the change in the average separation
between the constituent atoms in an object. To understand this, imagine that the
atoms are connected by stiff springs, as shown in Figure 19.7. At ordinary tempera-
tures, the atoms in a solid oscillate about their equilibrium positions with an am-
plitude of approximately 10�11 m and a frequency of approximately 1013 Hz. The
average spacing between the atoms is about 10�10 m. As the temperature of the
solid increases, the atoms oscillate with greater amplitudes; as a result, the average
separation between them increases.3 Consequently, the object expands.

If thermal expansion is sufficiently small relative to an object’s initial dimen-
sions, the change in any dimension is, to a good approximation, proportional to
the first power of the temperature change. Suppose that an object has an initial
length Li along some direction at some temperature and that the length increases
by an amount �L for a change in temperature �T. Because it is convenient to con-
sider the fractional change in length per degree of temperature change, we define
the average coefficient of linear expansion as

Experiments show that � is constant for small changes in temperature. For pur-
poses of calculation, this equation is usually rewritten as

(19.4)

or as
(19.5)Lf � Li � �Li(Tf � Ti)

�L � �Li �T

� �
�L/Li

�T

3 More precisely, thermal expansion arises from the asymmetrical nature of the potential-energy curve
for the atoms in a solid. If the oscillators were truly harmonic, the average atomic separations would
not change regardless of the amplitude of vibration.

Figure 19.6 (a) Thermal-expansion joints are used to separate sections of roadways on bridges.
Without these joints, the surfaces would buckle due to thermal expansion on very hot days or
crack due to contraction on very cold days. (b) The long, vertical joint is filled with a soft mater-
ial that allows the wall to expand and contract as the temperature of the bricks changes.

Figure 19.7 A mechanical model
of the atomic configuration in a
substance. The atoms (spheres) are
imagined to be attached to each
other by springs that reflect the
elastic nature of the interatomic
forces.

Average coefficient of linear
expansion

The change in length of an object
is proportional to the change in
temperature

(a) (b)
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where Lf is the final length, Ti and Tf are the initial and final temperatures, and
the proportionality constant � is the average coefficient of linear expansion for a
given material and has units of °C�1.

It may be helpful to think of thermal expansion as an effective magnification
or as a photographic enlargement of an object. For example, as a metal washer is
heated (Fig. 19.8), all dimensions, including the radius of the hole, increase ac-
cording to Equation 19.4.

Table 19.2 lists the average coefficient of linear expansion for various materi-
als. Note that for these materials � is positive, indicating an increase in length with
increasing temperature. This is not always the case. Some substances—calcite
(CaCO3) is one example—expand along one dimension (positive �) and contract
along another (negative �) as their temperatures are increased.

Because the linear dimensions of an object change with temperature, it fol-
lows that surface area and volume change as well. The change in volume at con-
stant pressure is proportional to the initial volume Vi and to the change in temper-
ature according to the relationship

(19.6)

where � is the average coefficient of volume expansion. For a solid, the average
coefficient of volume expansion is approximately three times the average linear
expansion coefficient: (This assumes that the average coefficient of linear
expansion of the solid is the same in all directions.)

To see that for a solid, consider a box of dimensions �, w, and h. Its
volume at some temperature Ti is If the temperature changes to

its volume changes to where each dimension changes according
to Equation 19.4. Therefore,

 � Vi[1 � 3� �T � 3(� �T )2 � (� �T )3] 

 � �wh(1 � � �T )3 

 � (� � �� �T )(w � �w �T )(h � �h �T )

Vi � �V � (� � ��)(w � �w)(h � �h) 

Vi � �V,Ti � �T,
Vi � �wh.

� � 3�

� � 3�.

�V � �Vi �T
The change in volume of a solid at
constant pressure is proportional
to the change in temperature

a

b

T + ∆T

b + ∆b

a + ∆a

Ti

Ti TABLE 19.2 Average Expansion Coefficients for Some Materials 
Near Room Temperature

Average Average
Linear Expansion Volume Expansion

Coefficient (�) Coefficient (�)
Material (°C)�1 Material (°C)�1

Aluminum 24 � 10�6 Alcohol, ethyl 1.12 � 10�4

Brass and bronze 19 � 10�6 Benzene 1.24 � 10�4

Copper 17 � 10�6 Acetone 1.5 � 10�4

Glass (ordinary) 9 � 10�6 Glycerin 4.85 � 10�4

Glass (Pyrex) 3.2 � 10�6 Mercury 1.82 � 10�4

Lead 29 � 10�6 Turpentine 9.0 � 10�4

Steel 11 � 10�6 Gasoline 9.6 � 10�4

Invar (Ni–Fe alloy) 0.9 � 10�6 Air at 0°C 3.67 � 10�3

Concrete 12 � 10�6 Helium 3.665 � 10�3

Figure 19.8 Thermal expansion
of a homogeneous metal washer. As
the washer is heated, all dimen-
sions increase. (The expansion is
exaggerated in this figure.)
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If we now divide both sides by Vi and then isolate the term �V/Vi , we obtain the
fractional change in volume:

Because for typical values of �T (	 � 100°C), we can neglect the terms
3(� �T)2 and (� �T)3. Upon making this approximation, we see that

Equation 19.6 shows that the right side of this expression is equal to �, and so we
have �, the relationship we set out to prove. In a similar way, you can show
that the change in area of a rectangular plate is given by (see Prob-
lem 53).

As Table 19.2 indicates, each substance has its own characteristic average coef-
ficient of expansion. For example, when the temperatures of a brass rod and a
steel rod of equal length are raised by the same amount from some common ini-
tial value, the brass rod expands more than the steel rod does because brass has a
greater average coefficient of expansion than steel does. A simple mechanism
called a bimetallic strip utilizes this principle and is found in practical devices such
as thermostats. It consists of two thin strips of dissimilar metals bonded together.
As the temperature of the strip increases, the two metals expand by different
amounts and the strip bends, as shown in Figure 19.9.

�A � 2�Ai �T
3� �

3� �
1
Vi

 
�V
�T

�V
Vi

� 3� �T

� �
 V 1

�V
Vi

� 3� �T � 3(� �T )2 � (� �T )3

QuickLab
Tape two plastic straws tightly to-
gether along their entire length but
with a 2-cm offset. Hold them in a
stream of very hot water from a faucet
so that water pours through one but
not through the other. Quickly hold
the straws up and sight along their
length. You should be able to see a
very slight curvature in the tape
caused by the difference in expansion
of the two straws. The effect is small,
so look closely. Running cold water
through the same straw and again
sighting along the length will help
you see the small change in shape
more clearly.

(b)

(a)

Steel

Brass

Room temperature Higher temperature

Bimetallic strip

Off 30°COn 25°C

Figure 19.9 (a) A bimetallic strip bends as the temperature changes because the two metals
have different expansion coefficients. (b) A bimetallic strip used in a thermostat to break or
make electrical contact. (c) The interior of a thermostat, showing the coiled bimetallic strip. Why
do you suppose the strip is coiled?

(c)
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If you quickly plunge a room-temperature thermometer into very hot water, the mercury
level will go down briefly before going up to a final reading. Why?

You are offered a prize for making the most sensitive glass thermometer using the materials
in Table 19.2. Which glass and which working liquid would you choose?

Quick Quiz 19.3

Quick Quiz 19.2

Expansion of a Railroad TrackEXAMPLE 19.3
Solution Making use of Table 19.2 and noting that the
change in temperature is 40.0°C, we find that the increase in
length is

If the track is 30.000 m long at 0.0°C, its length at 40.0°C is 

(b) Suppose that the ends of the rail are rigidly clamped
at 0.0°C so that expansion is prevented. What is the thermal
stress set up in the rail if its temperature is raised to 40.0°C?

Solution From the definition of Young’s modulus for a
solid (see Eq. 12.6), we have

Because Y for steel is 20 � 1010 N/m2 (see Table 12.1), we
have

Exercise If the rail has a cross-sectional area of 30.0 cm2,
what is the force of compression in the rail?

Answer 2.6 � 105 N � 58 000 lb!

8.7 � 107 N/m2F
A

� (20 � 1010 N/m2)� 0.013 m
30.000 m � �

Tensile stress �
F
A

� Y 
�L
Li

30.013 m.

 � 0.013 m

�L � �Li �T � [11 � 10�6(�C)�1](30.000 m)(40.0�C)

A steel railroad track has a length of 30.000 m when the tem-
perature is 0.0°C.  (a) What is its length when the tempera-
ture is 40.0°C?

Thermal expansion: The extreme temperature of a July day in As-
bury Park, NJ, caused these railroad tracks to buckle and derail the
train in the distance. (AP/Wide World Photos)

The Unusual Behavior of Water

Liquids generally increase in volume with increasing temperature and have aver-
age coefficients of volume expansion about ten times greater than those of solids.
Water is an exception to this rule, as we can see from its density-versus-tempera-
ture curve shown in Figure 19.10. As the temperature increases from 0°C to 4°C,
water contracts and thus its density increases. Above 4°C, water expands with in-
creasing temperature, and so its density decreases. In other words, the density of
water reaches a maximum value of 1 000 kg/m3 at 4°C.
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We can use this unusual thermal-expansion behavior of water to explain why a
pond begins freezing at the surface rather than at the bottom. When the atmos-
pheric temperature drops from, for example, 7°C to 6°C, the surface water also
cools and consequently decreases in volume. This means that the surface water is
denser than the water below it, which has not cooled and decreased in volume. As
a result, the surface water sinks, and warmer water from below is forced to the sur-
face to be cooled. When the atmospheric temperature is between 4°C and 0°C,
however, the surface water expands as it cools, becoming less dense than the water
below it. The mixing process stops, and eventually the surface water freezes. As the
water freezes, the ice remains on the surface because ice is less dense than water.
The ice continues to build up at the surface, while water near the bottom remains
at 4°C. If this were not the case, then fish and other forms of marine life would not
survive.

MACROSCOPIC DESCRIPTION OF AN IDEAL GAS
In this section we examine the properties of a gas of mass m confined to a con-
tainer of volume V at a pressure P and a temperature T. It is useful to know how
these quantities are related. In general, the equation that interrelates these quanti-
ties, called the equation of state, is very complicated. However, if the gas is main-
tained at a very low pressure (or low density), the equation of state is quite simple
and can be found experimentally. Such a low-density gas is commonly referred to
as an ideal gas.4

19.5
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Figure 19.10 How the density of water at atmospheric pressure changes with temperature. The
inset at the right shows that the maximum density of water occurs at 4°C.

4 To be more specific, the assumption here is that the temperature of the gas must not be too low (the
gas must not condense into a liquid) or too high, and that the pressure must be low. In reality, an ideal
gas does not exist. However, the concept of an ideal gas is very useful in view of the fact that real gases
at low pressures behave as ideal gases do. The concept of an ideal gas implies that the gas molecules do
not interact except upon collision, and that the molecular volume is negligible compared with the vol-
ume of the container.

10.5
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It is convenient to express the amount of gas in a given volume in terms of the
number of moles n. As we learned in Section 1.3, one mole of any substance is that
amount of the substance that contains Avogadro’s number of
constituent particles (atoms or molecules). The number of moles n of a substance
is related to its mass m through the expression

(19.7)

where M is the molar mass of the substance (see Section 1.3), which is usually ex-
pressed in units of grams per mole (g/mol). For example, the molar mass of oxy-
gen (O2) is 32.0 g/mol. Therefore, the mass of one mole of oxygen is 32.0 g.

Now suppose that an ideal gas is confined to a cylindrical container whose vol-
ume can be varied by means of a movable piston, as shown in Figure 19.11. If we
assume that the cylinder does not leak, the mass (or the number of moles) of the
gas remains constant. For such a system, experiments provide the following infor-
mation: First, when the gas is kept at a constant temperature, its pressure is in-
versely proportional to its volume (Boyle’s law). Second, when the pressure of the
gas is kept constant, its volume is directly proportional to its temperature (the law
of Charles and Gay–Lussac). These observations are summarized by the equation
of state for an ideal gas:

(19.8)

In this expression, known as the ideal gas law, R is a universal constant that is the
same for all gases and T is the absolute temperature in kelvins. Experiments on
numerous gases show that as the pressure approaches zero, the quantity PV/nT ap-
proaches the same value R for all gases. For this reason, R is called the universal
gas constant. In SI units, in which pressure is expressed in pascals (1 Pa �
1 N/m2) and volume in cubic meters, the product PV has units of newton� meters,
or joules, and R has the value

(19.9)

If the pressure is expressed in atmospheres and the volume in liters (1 L �
103 cm3 � 10�3 m3), then R has the value

Using this value of R and Equation 19.8, we find that the volume occupied by 
1 mol of any gas at atmospheric pressure and at 0°C (273 K) is 22.4 L.

Now that we have presented the equation of state, we are ready for a formal
definition of an ideal gas: An ideal gas is one for which PV/nT is constant at
all pressures.

The ideal gas law states that if the volume and temperature of a fixed amount
of gas do not change, then the pressure also remains constant. Consider the bottle
of champagne shown at the beginning of this chapter. Because the temperature of
the bottle and its contents remains constant, so does the pressure, as can be shown
by replacing the cork with a pressure gauge. Shaking the bottle displaces some car-
bon dioxide gas from the “head space” to form bubbles within the liquid, and
these bubbles become attached to the inside of the bottle. (No new gas is gener-
ated by shaking.) When the bottle is opened, the pressure is reduced; this causes
the volume of the bubbles to increase suddenly. If the bubbles are attached to the
bottle (beneath the liquid surface), their rapid expansion expels liquid from the

R � 0.082 14 L�atm/mol�K

R � 8.315 J/mol�K

PV � nRT

n �
m
M

NA � 6.022 � 1023

The universal gas constant

QuickLab
Vigorously shake a can of soda pop
and then thoroughly tap its bottom
and sides to dislodge any bubbles
trapped there. You should be able to
open the can without spraying its
contents all over.

Figure 19.11 An ideal gas con-
fined to a cylinder whose volume
can be varied by means of a mov-
able piston.

Gas
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bottle. If the sides and bottom of the bottle are first tapped until no bubbles re-
main beneath the surface, then when the champagne is opened, the drop in pres-
sure will not force liquid from the bottle. Try the QuickLab, but practice before
demonstrating to a friend!

The ideal gas law is often expressed in terms of the total number of molecules
N. Because the total number of molecules equals the product of the number of
moles n and Avogadro’s number NA , we can write Equation 19.8 as

(19.10)

where kB is Boltzmann’s constant, which has the value

(19.11)

It is common to call quantities such as P, V, and T the thermodynamic vari-
ables of an ideal gas. If the equation of state is known, then one of the variables
can always be expressed as some function of the other two.

kB �
R

NA
� 1.38 � 10�23 J/K

PV � NkBT 

PV � nRT �
N
NA

 RT

Boltzmann’s constant

How Many Gas Molecules in a Container?EXAMPLE 19.4

Exercise How many molecules are in the container?

Answer 2.47 � 1018 molecules.

4.10 � 10�6 moln �
PV
RT

�
(100 Pa)(10�4 m3)

(8.315 J/mol �K)(293 K)
�

An ideal gas occupies a volume of 100 cm3 at 20°C 
and 100 Pa. Find the number of moles of gas in the con-
tainer.

Solution The quantities given are volume, pressure, and
temperature: P � 100 Pa,
and T � 20°C � 293 K. Using Equation 19.8, we find that

V � 100 cm3 � 1.00 � 10�4 m3,

Filling a Scuba TankEXAMPLE 19.5
The initial pressure of the air is 14.7 lb/in.2, its final pressure
is 3 000 lb/in.2, and the air is compressed from an initial vol-
ume of 66 ft3 to a final volume of 0.35 ft3. The initial temper-
ature, converted to SI units, is 295 K. Solving for Tf , we ob-
tain

Exercise What is the air temperature in degrees Celsius
and in degrees Fahrenheit?

Answer 45.9°C; 115°F.

319 K�

Tf � � PfVf

PiVi
�Ti �

(3 000 lb/in.2)(0.35 ft3)
(14.7 lb/in.2)(66 ft3)

 (295 K )

A certain scuba tank is designed to hold 66 ft3 of air when it
is at atmospheric pressure at 22°C. When this volume of air is
compressed to an absolute pressure of 3 000 lb/in.2 and
stored in a 10-L (0.35-ft3) tank, the air becomes so hot that
the tank must be allowed to cool before it can be used. If the
air does not cool, what is its temperature? (Assume that the
air behaves like an ideal gas.)

Solution If no air escapes from the tank during filling,
then the number of moles n remains constant; therefore, us-
ing and with n and R being constant, we obtain
for the initial and final values:

PiVi

Ti
�

PfVf

Tf

PV � nRT,



SUMMARY

Two bodies are in thermal equilibrium with each other if they have the same
temperature.

The zeroth law of thermodynamics states that if objects A and B are sepa-
rately in thermal equilibrium with a third object C, then objects A and B are in
thermal equilibrium with each other.

The SI unit of absolute temperature is the kelvin, which is defined to be the
fraction 1/273.16 of the temperature of the triple point of water.

When the temperature of an object is changed by an amount �T, its length
changes by an amount �L that is proportional to �T and to its initial length 
Li :

(19.4)

where the constant � is the average coefficient of linear expansion. The 
average volume expansion coefficient � for a solid is approximately equal 
to 3�.

An ideal gas is one for which PV/nT is constant at all pressures. An ideal gas
is described by the equation of state,

(19.8)

where n equals the number of moles of the gas, V is its volume, R is the universal
gas constant (8.315 J/mol� K), and T is the absolute temperature. A real gas be-
haves approximately as an ideal gas if it is far from liquefaction.

PV � nRT

�L � �Li �T
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In the previous example we used SI units for the temperature in our calculation step but
not for the pressures or volumes. When working with the ideal gas law, how do you decide
when it is necessary to use SI units and when it is not?

Quick Quiz 19.4

Heating a Spray CanEXAMPLE 19.6

Solving for Pf gives

Obviously, the higher the temperature, the higher the
pressure exerted by the trapped gas. Of course, if the pres-
sure increases high enough, the can will explode. Because of
this possibility, you should never dispose of spray cans in a
fire.

320 kPaPf � � Tf

Ti
�(Pi) � � 468 K

295 K �(202 kPa) �

Pi

Ti
�

Pf

Tf

A spray can containing a propellant gas at twice atmospheric
pressure (202 kPa) and having a volume of 125 cm3 is at
22°C. It is then tossed into an open fire. When the tempera-
ture of the gas in the can reaches 195°C, what is the pressure
inside the can? Assume any change in the volume of the can
is negligible.

Solution We employ the same approach we used in Exam-
ple 19.5, starting with the expression

Because the initial and final volumes of the gas are assumed
to be equal, this expression reduces to

PiVi

Ti
�

PfVf

Tf
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QUESTIONS

contain the same kind of gas and the same number of
moles of gas. If the volume of cylinder A is three times
greater than the volume of cylinder B, what can you say
about the relative pressures in the cylinders?

12. The pendulum of a certain pendulum clock is made of
brass. When the temperature increases, does the clock
run too fast, run too slowly, or remain unchanged? Ex-
plain.

13. An automobile radiator is filled to the brim with water
while the engine is cool. What happens to the water when
the engine is running and the water is heated? What do
modern automobiles have in their cooling systems to pre-
vent the loss of coolants?

14. Metal lids on glass jars can often be loosened by running
them under hot water. How is this possible?

15. When the metal ring and metal sphere shown in Figure
Q19.15 are both at room temperature, the sphere can just
be passed through the ring. After the sphere is heated, it
cannot be passed through the ring. Explain.

1. Is it possible for two objects to be in thermal equilibrium
if they are not in contact with each other? Explain.

2. A piece of copper is dropped into a beaker of water. If the
water’s temperature increases, what happens to the tem-
perature of the copper? Under what conditions are the
water and copper in thermal equilibrium?

3. In principle, any gas can be used in a constant-volume gas
thermometer. Why is it not possible to use oxygen for
temperatures as low as 15 K? What gas would you use?
(Refer to the data in Table 19.1.)

4. Rubber has a negative average coefficient of linear expan-
sion. What happens to the size of a piece of rubber as it is
warmed?

5. Why should the amalgam used in dental fillings have the
same average coefficient of expansion as a tooth? What
would occur if they were mismatched?

6. Explain why the thermal expansion of a spherical shell
made of a homogeneous solid is equivalent to that of a
solid sphere of the same material.

7. A steel ring bearing has an inside diameter that is 0.1 mm
smaller than the diameter of an axle. How can it be made
to fit onto the axle without removing any material?

8. Markings to indicate length are placed on a steel tape in a
room that has a temperature of 22°C. Are measurements
made with the tape on a day when the temperature is
27°C greater than, less than, or the same length as the ob-
ject’s length? Defend your answer.

9. Determine the number of grams in 1 mol of each of the
following gases: (a) hydrogen, (b) helium, and (c) car-
bon monoxide.

10. An inflated rubber balloon filled with air is immersed in a
flask of liquid nitrogen that is at 77 K. Describe what hap-
pens to the balloon, assuming that it remains flexible
while being cooled.

11. Two identical cylinders at the same temperature each Figure Q19.15 (Courtesy of Central Scientific Company)
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body temperature, 98.6°F; (b) the air temperature on a
cold day, � 5.00°F.

2. In a constant-volume gas thermometer, the pressure at
20.0°C is 0.980 atm. (a) What is the pressure at 45.0°C?
(b) What is the temperature if the pressure is 
0.500 atm?

3. A constant-volume gas thermometer is calibrated in
dry ice (that is, carbon dioxide in the solid state, which
has a temperature of � 80.0°C) and in boiling ethyl al-
cohol (78.0°C). The two pressures are 0.900 atm and

Section 19.1 Temperature and the Zeroth Law of 
Thermodynamics
Section 19.2 Thermometers and the Celsius Temperature
Scale
Section 19.3 The Constant-Volume Gas Thermometer and
the Absolute Temperature Scale
Note: A pressure of 1 atm � 1.013 � 105 Pa � 101.3 kPa.

1. Convert the following to equivalent temperatures on
the Celsius and Kelvin scales: (a) the normal human

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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1.635 atm. (a) What Celsius value of absolute zero does
the calibration yield? What is the pressure at (b) the freez-
ing point of water and (c) the boiling point of water?

4. There is a temperature whose numerical value is the
same on both the Celsius and Fahrenheit scales. What is
this temperature?

5. Liquid nitrogen has a boiling point of � 195.81°C at at-
mospheric pressure. Express this temperature in 
(a) degrees Fahrenheit and (b) kelvins.

6. On a Strange temperature scale, the freezing point of
water is � 15.0°S and the boiling point is � 60.0°S.
Develop a linear conversion equation between this tem-
perature scale and the Celsius scale.

7. The temperature difference between the inside and the
outside of an automobile engine is 450°C. Express this
temperature difference on the (a) Fahrenheit scale and
(b) Kelvin scale.

8. The melting point of gold is 1 064°C , and the boiling
point is 2 660°C. (a) Express these temperatures in
kelvins. (b) Compute the difference between these tem-
peratures in Celsius degrees and in kelvins.

Section 19.4 Thermal Expansion of Solids and Liquids
Note: When solving the problems in this section, use the data
in Table 19.2.

9. A copper telephone wire has essentially no sag between
poles 35.0 m apart on a winter day when the tempera-
ture is � 20.0°C. How much longer is the wire on a sum-
mer day when TC � 35.0°C?

10. The concrete sections of a certain superhighway are de-
signed to have a length of 25.0 m. The sections are
poured and cured at 10.0°C. What minimum spacing
should the engineer leave between the sections to elimi-
nate buckling if the concrete is to reach a temperature
of 50.0°C?

11. An aluminum tube is 3.000 0 m long at 20.0°C. What is
its length at (a) 100.0°C and (b) 0.0°C?

12. A brass ring with a diameter of 10.00 cm at 20.0°C is
heated and slipped over an aluminum rod with a diame-
ter of 10.01 cm at 20.0°C. Assume that the average coef-
ficients of linear expansion are constant. (a) To what
temperature must this combination be cooled to sepa-
rate them? Is this temperature attainable? (b) If the alu-
minum rod were 10.02 cm in diameter, what would be
the required temperature?

13. A pair of eyeglass frames is made of epoxy plastic. At
room temperature (20.0°C), the frames have circular
lens holes 2.20 cm in radius. To what temperature must
the frames be heated if lenses 2.21 cm in radius are to
be inserted in them? The average coefficient of linear
expansion for epoxy is 1.30 � 10�4 (°C)�1.

14. The New River Gorge bridge in West Virginia is a steel
arch bridge 518 m in length. How much does its length
change between temperature extremes of � 20.0°C and
35.0°C?

15. A square hole measuring 8.00 cm along each side is cut

in a sheet of copper. (a) Calculate the change in the
area of this hole if the temperature of the sheet is in-
creased by 50.0 K. (b) Does the result represent an in-
crease or a decrease in the area of the hole?

16. The average coefficient of volume expansion for carbon
tetrachloride is 5.81 � 10�4 (°C)�1. If a 50.0-gal steel
container is filled completely with carbon tetrachloride
when the temperature is 10.0°C, how much will spill
over when the temperature rises to 30.0°C?

17. The active element of a certain laser is a glass rod 
30.0 cm long by 1.50 cm in diameter. If the temperature
of the rod increases by 65.0°C, what is the increase in 
(a) its length, (b) its diameter, and (c) its volume? (As-
sume that � � 9.00 � 10�6 (°C)�1.)

18. A volumetric glass flask made of Pyrex is calibrated at
20.0°C. It is filled to the 100-mL mark with 35.0°C ace-
tone with which it immediately comes to thermal equi-
librium. (a) What is the volume of the acetone when it
cools to 20.0°C? (b) How significant is the change in
volume of the flask?

19. A concrete walk is poured on a day when the tempera-
ture is 20.0°C, in such a way that the ends are unable to
move. (a) What is the stress in the cement on a hot day
of 50.0°C? (b) Does the concrete fracture? Take Young’s
modulus for concrete to be 7.00 � 109 N/m2 and the
tensile strength to be 2.00 � 109 N/m2.

20. Figure P19.20 shows a circular steel casting with a gap.
If the casting is heated, (a) does the width of the gap in-
crease or decrease? (b) The gap width is 1.600 cm when
the temperature is 30.0°C. Determine the gap width
when the temperature is 190°C.

21. A steel rod undergoes a stretching force of 500 N. Its
cross-sectional area is 2.00 cm2. Find the change in tem-
perature that would elongate the rod by the same
amount that the 500-N force does. (Hint: Refer to
Tables 12.1 and 19.2.)

22. A steel rod 4.00 cm in diameter is heated so that its tem-
perature increases by 70.0°C. It is then fastened be-
tween two rigid supports. The rod is allowed to cool to
its original temperature. Assuming that Young’s modu-
lus for the steel is 20.6 � 1010 N/m2 and that its average

Figure P19.20
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coefficient of linear expansion is 11.0 � 10�6 (°C)�1,
calculate the tension in the rod.

23. A hollow aluminum cylinder 20.0 cm deep has an inter-
nal capacity of 2.000 L at 20.0°C. It is completely filled
with turpentine and then warmed to 80.0°C. (a) How
much turpentine overflows? (b) If the cylinder is then
cooled back to 20.0°C, how far below the surface of the
cylinder’s rim does the turpentine’s surface recede?

24. At 20.0°C, an aluminum ring has an inner diameter 
of 5.000 0 cm and a brass rod has a diameter of 
5.050 0 cm. (a) To what temperature must the ring be
heated so that it will just slip over the rod? (b) To what
common temperature must the two be heated so that
the ring just slips over the rod? Would this latter process
work?

Section 19.5 Macroscopic Description of an Ideal Gas
25. Gas is contained in an 8.00-L vessel at a temperature of

20.0°C and a pressure of 9.00 atm. (a) Determine the
number of moles of gas in the vessel. (b) How many
molecules of gas are in the vessel?

26. A tank having a volume of 0.100 m3 contains helium gas
at 150 atm. How many balloons can the tank blow up if
each filled balloon is a sphere 0.300 m in diameter at an
absolute pressure of 1.20 atm?

27. An auditorium has dimensions 10.0 m � 20.0 m �
30.0 m. How many molecules of air fill the auditorium
at 20.0°C and a pressure of 101 kPa?

28. Nine grams of water are placed in a 2.00-L pressure
cooker and heated to 500°C. What is the pressure inside
the container if no gas escapes?

29. The mass of a hot-air balloon and its cargo (not includ-
ing the air inside) is 200 kg. The air outside is at 10.0°C
and 101 kPa. The volume of the balloon is 400 m3. To
what temperature must the air in the balloon be heated
before the balloon will lift off? (Air density at 10.0°C is
1.25 kg/m3.)

30. One mole of oxygen gas is at a pressure of 6.00 atm and
a temperature of 27.0°C. (a) If the gas is heated at con-
stant volume until the pressure triples, what is the final
temperature? (b) If the gas is heated until both the
pressure and the volume are doubled, what is the final
temperature?

31. (a) Find the number of moles in 1.00 m3 of an ideal gas
at 20.0°C and atmospheric pressure. (b) For air, Avo-
gadro’s number of molecules has a mass of 28.9 g. Cal-
culate the mass of 1 m3 of air. Compare the result with
the tabulated density of air.

32. A cube 10.0 cm on each edge contains air (with equiva-
lent molar mass 28.9 g/mol) at atmospheric pressure
and temperature 300 K. Find (a) the mass of the gas,
(b) its weight, and (c) the force it exerts on each face of
the cube. (d) Comment on the underlying physical rea-
son why such a small sample can exert such a great force.

33. An automobile tire is inflated with air originally at
10.0°C and normal atmospheric pressure. During the

process, the air is compressed to 28.0% of its original
volume and its temperature is increased to 40.0°C. 
(a) What is the tire pressure? (b) After the car is driven
at high speed, the tire air temperature rises to 85.0°C
and the interior volume of the tire increases by 2.00%.
What is the new tire pressure (absolute) in pascals?

34. A spherical weather balloon is designed to expand to a
maximum radius of 20.0 m when in flight at its working
altitude, where the air pressure is 0.030 0 atm and the
temperature is 200 K. If the balloon is filled at atmos-
pheric pressure and 300 K, what is its radius at liftoff?

35. A room of volume 80.0 m3 contains air having an equiv-
alent molar mass of 28.9 g/mol. If the temperature of
the room is raised from 18.0°C to 25.0°C, what mass of
air (in kilograms) will leave the room? Assume that the
air pressure in the room is maintained at 101 kPa.

36. A room of volume V contains air having equivalent
molar mass M (in g/mol). If the temperature of the
room is raised from T1 to T2 , what mass of air will leave
the room? Assume that the air pressure in the room is
maintained at P0 .

37. At 25.0 m below the surface of the sea (density �
1 025 kg/m3), where the temperature is 5.00°C, a diver
exhales an air bubble having a volume of 1.00 cm3. If
the surface temperature of the sea is 20.0°C, what is the
volume of the bubble right before it breaks the surface?

38. Estimate the mass of the air in your bedroom. State the
quantities you take as data and the value you measure
or estimate for each.

39. The pressure gauge on a tank registers the gauge pres-
sure, which is the difference between the interior and
exterior pressures. When the tank is full of oxygen
(O2), it contains 12.0 kg of the gas at a gauge pressure
of 40.0 atm. Determine the mass of oxygen that has
been withdrawn from the tank when the pressure read-
ing is 25.0 atm. Assume that the temperature of the
tank remains constant.

40. In state-of-the-art vacuum systems, pressures as low as
10�9 Pa are being attained. Calculate the number of
molecules in a 1.00-m3 vessel at this pressure if the tem-
perature is 27°C.

41. Show that 1 mol of any gas (assumed to be ideal) at at-
mospheric pressure (101.3 kPa) and standard tempera-
ture (273 K) occupies a volume of 22.4 L.

42. A diving bell in the shape of a cylinder with a height of
2.50 m is closed at the upper end and open at the lower
end. The bell is lowered from air into sea water (� �
1.025 g/cm3). The air in the bell is initially at 20.0°C.
The bell is lowered to a depth (measured to the bottom
of the bell) of 45.0 fathoms, or 82.3 m. At this depth,
the water temperature is 4.0°C, and the air in the bell is
in thermal equilibrium with the water. (a) How high
does sea water rise in the bell? (b) To what minimum
pressure must the air in the bell be increased for the wa-
ter that entered to be expelled?

WEB
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43. A student measures the length of a brass rod with a steel
tape at 20.0°C. The reading is 95.00 cm. What will the
tape indicate for the length of the rod when the rod
and the tape are at (a) � 15.0°C and (b) 55.0°C?

44. The density of gasoline is 730 kg/m3 at 0°C. Its average
coefficient of volume expansion is 9.60 � 10�4 (°C)�1.
If 1.00 gal of gasoline occupies 0.003 80 m3, how many
extra kilograms of gasoline would you get if you bought
10.0 gal of gasoline at 0°C rather than at 20.0°C from a
pump that is not temperature compensated?

45. A steel ball bearing is 4.000 cm in diameter at 20.0°C. 
A bronze plate has a hole in it that is 3.994 cm in diame-
ter at 20.0°C. What common temperature must they
have so that the ball just squeezes through the hole?

46. Review Problem. An aluminum pipe 0.655 m long at
20.0°C and open at both ends is used as a flute. The
pipe is cooled to a low temperature but is then filled
with air at 20.0°C as soon as it is played. By how much
does its fundamental frequency change as the tempera-
ture of the metal increases from 5.00°C to 20.0°C?

47. A mercury thermometer is constructed as shown in
Figure P19.47. The capillary tube has a diameter of
0.004 00 cm, and the bulb has a diameter of 0.250 cm.
Neglecting the expansion of the glass, find the change
in height of the mercury column that occurs with a tem-
perature change of 30.0°C.

49. A liquid has a density �. (a) Show that the fractional
change in density for a change in temperature �T is
��/� � � � �T. What does the negative sign signify?
(b) Fresh water has a maximum density of 1.000 0 g/cm3

at 4.0°C. At 10.0°C, its density is 0.999 7 g/cm3. What is
� for water over this temperature interval?

50. A cylinder is closed by a piston connected to a spring of
constant 2.00 � 103 N/m (Fig. P19.50). While the
spring is relaxed, the cylinder is filled with 5.00 L of gas
at a pressure of 1.00 atm and a temperature of 20.0°C. 
(a) If the piston has a cross-sectional area of 0.010 0 m2

and a negligible mass, how high will it rise when the
temperature is increased to 250°C? (b) What is the pres-
sure of the gas at 250°C?

WEB

WEB 51. A vertical cylinder of cross-sectional area A is fitted with
a tight-fitting, frictionless piston of mass m (Fig.
P19.51). (a) If n moles of an ideal gas are in the cylin-
der at a temperature of T, what is the height h at which
the piston is in equilibrium under its own weight? 
(b) What is the value for h if n � 0.200 mol, T � 400 K,
A � 0.008 00 m2, and m � 20.0 kg?

48. A liquid with a coefficient of volume expansion � just
fills a spherical shell of volume Vi at a temperature of Ti
(see Fig. P19.47). The shell is made of a material that
has an average coefficient of linear expansion �. The
liquid is free to expand into an open capillary of area A
projecting from the top of the sphere. (a) If the tem-
perature increases by �T, show that the liquid rises in
the capillary by the amount �h given by the equation

�T. (b) For a typical system, such
as a mercury thermometer, why is it a good approxima-
tion to neglect the expansion of the shell?

�h � (Vi/A)(� � 3�)

Ti + ∆T

A

Ti

∆h

Figure P19.47 Problems 47 and 48.

h
20°C

k

250°C

Figure P19.50

Gas
h

m

Figure P19.51
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52. A bimetallic bar is made of two thin strips of dissimilar
metals bonded together. As they are heated, the one
with the greater average coefficient of expansion ex-
pands more than the other, forcing the bar into an arc,
with the outer radius having a greater circumference
(Fig. P19.52). (a) Derive an expression for the angle of
bending  as a function of the initial length of the
strips, their average coefficients of linear expansion, the
change in temperature, and the separation of the cen-
ters of the strips (b) Show that the an-
gle of bending decreases to zero when �T decreases to
zero or when the two average coefficients of expansion
become equal. (c) What happens if the bar is cooled?

(�r � r2 � r1).

55. Review Problem. A clock with a brass pendulum has a
period of 1.000 s at 20.0°C. If the temperature increases
to 30.0°C, (a) by how much does the period change,
and (b) how much time does the clock gain or lose in
one week?

56. Review Problem. Consider an object with any one of
the shapes displayed in Table 10.2. What is the percent-
age increase in the moment of inertia of the object
when it is heated from 0°C to 100°C if it is composed of
(a) copper or (b) aluminum? (See Table 19.2. Assume
that the average linear expansion coefficients do not
vary between 0°C and 100°C.)

57. Review Problem. (a) Derive an expression for the
buoyant force on a spherical balloon that is submerged
in water as a function of the depth below the surface,
the volume (Vi) of the balloon at the surface, the pres-
sure (P0) at the surface, and the density of the water.
(Assume that water temperature does not change with
depth.) (b) Does the buoyant force increase or de-
crease as the balloon is submerged? (c) At what depth is
the buoyant force one-half the surface value?

58. (a) Show that the density of an ideal gas occupying a
volume V is given by where M is the molar
mass. (b) Determine the density of oxygen gas at atmos-
pheric pressure and 20.0°C.

59. Starting with Equation 19.10, show that the total pres-
sure P in a container filled with a mixture of several
ideal gases is where P1 , 
P2 , . . . are the pressures that each gas would exert if
it alone filled the container. (These individual pressures
are called the partial pressures of the respective gases.)
This is known as Dalton’s law of partial pressures.

60. A sample of dry air that has a mass of 100.00 g, col-
lected at sea level, is analyzed and found to consist of
the following gases:

as well as trace amounts of neon, helium, methane, and
other gases. (a) Calculate the partial pressure (see Prob-
lem 59) of each gas when the pressure is 101.3 kPa. 
(b) Determine the volume occupied by the 100-g 
sample at a temperature of 15.00°C and a pressure of
1.013 � 105 Pa. What is the density of the air for these
conditions? (c) What is the effective molar mass of the
air sample?

61. Steel rails for an interurban rapid transit system form a
continuous track that is held rigidly in place in con-
crete. (a) If the track was laid when the temperature
was 0°C, what is the stress in the rails on a warm day
when the temperature is 25.0°C? (b) What fraction of
the yield strength of 52.2 � 107 N/m2 does this stress
represent?

carbon dioxide (CO2) � 0.05 g 

 argon (Ar) � 1.28 g 

 oxygen (O2) � 23.15 g

 nitrogen (N2) � 75.52 g

P � P1 � P2 � P3 � . . . ,

� � PM/RT,

53. The rectangular plate shown in Figure P19.53 has an
area Ai equal to �w. If the temperature increases by �T,
show that the increase in area is where �
is the average coefficient of linear expansion. What ap-
proximation does this expression assume? (Hint: Note
that each dimension increases according to the equa-
tion .)�L � �Li �T

�A � 2�Ai �T,

54. Precise temperature measurements are often made on
the basis of the change in electrical resistance of a metal
with temperature. The resistance varies approximately
according to the expression where
R0 and A are constants. A certain element has a resis-
tance of 50.0 ohms (�) at 0°C and 71.5 � at the freez-
ing point of tin (231.97°C). (a) Determine the con-
stants A and R0 . (b) At what temperature is the
resistance equal to 89.0 �?

R � R 0(1 � ATC),

r 2
r 1

θ

Figure P19.52

Figure P19.53

w w  +  ∆w

�  +  ∆�

�

Ti T + ∆TTi
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62. (a) Use the equation of state for an ideal gas and the
definition of the average coefficient of volume expan-
sion, in the form � � (1/V )dV/dT, to show that the av-
erage coefficient of volume expansion for an ideal gas
at constant pressure is given by � � 1/T, where T is the
absolute temperature. (b) What value does this expres-
sion predict for � at 0°C? Compare this with the experi-
mental values for helium and air in Table 19.2.

63. Two concrete spans of a 250-m-long bridge are placed
end to end so that no room is allowed for expansion
(Fig. P19.63a). If a temperature increase of 20.0°C oc-
curs, what is the height y to which the spans rise when
they buckle (Fig. P19.63b)?

64. Two concrete spans of a bridge of length L are placed
end to end so that no room is allowed for expansion
(see Fig. P19.63a). If a temperature increase of �T oc-
curs, what is the height y to which the spans rise when
they buckle (see Fig. P19.63b)?

when � � 0.0200 (°C)�1 (an unrealistically large value
for comparison).

68. A steel wire and a copper wire, each of diameter 
2.000 mm, are joined end to end. At 40.0°C, each has
an unstretched length of 2.000 m; they are connected
between two fixed supports 4.000 m apart on a tabletop,
so that the steel wire extends from x � � 2.000 m to 
x � 0, the copper wire extends from x � 0 to 
x � 2.000 m, and the tension is negligible. The temper-
ature is then lowered to 20.0°C. At this lower tempera-
ture, what are the tension in the wire and the x coordi-
nate of the junction between the wires? (Refer to Tables
12.1 and 19.2.)

69. Review Problem. A steel guitar string with a diameter
of 1.00 mm is stretched between supports 80.0 cm
apart. The temperature is 0.0°C. (a) Find the mass per
unit length of this string. (Use 7.86 � 103 kg/m3 as the
mass density.) (b) The fundamental frequency of trans-
verse oscillations of the string is 200 Hz. What is the ten-
sion in the string? (c) If the temperature is raised to
30.0°C, find the resulting values of the tension and the
fundamental frequency. (Assume that both the Young’s
modulus [Table 12.1] and the average coefficient of lin-
ear expansion [Table 19.2] have constant values be-
tween 0.0°C and 30.0°C.)

70. A 1.00-km steel railroad rail is fastened securely at both
ends when the temperature is 20.0°C. As the tempera-
ture increases, the rail begins to buckle. If its shape is
an arc of a vertical circle, find the height h of the center
of the buckle when the temperature is 25.0°C. (You will
need to solve a transcendental equation.)

65. A copper rod and a steel rod are heated. At 0°C the
copper rod has length Lc , and the steel rod has length
Ls . When the rods are being heated or cooled, the dif-
ference between their lengths stays constant at 5.00 cm.
Determine the values of Lc and Ls .

66. A cylinder that has a 40.0-cm radius and is 50.0 cm deep
is filled with air at 20.0°C and 1.00 atm (Fig. P19.66a).
A 20.0-kg piston is now lowered into the cylinder, com-
pressing the air trapped inside (Fig. P19.66b). Finally, a
75.0-kg man stands on the piston, further compressing
the air, which remains at 20°C (Fig. P19.66c). (a) How
far down (�h) does the piston move when the man
steps onto it? (b) To what temperature should the gas
be heated to raise the piston and the man back to hi ?

67. The relationship is an approxima-
tion that works when the average coefficient of expan-
sion is small. If � is large, one must integrate the rela-
tionship dL/dT � �L to determine the final length. 
(a) Assuming that the average coefficient of linear ex-
pansion is constant as L varies, determine a general ex-
pression for the final length. (b) Given a rod of length
1.00 m and a temperature change of 100.0 °C, deter-
mine the error caused by the approximation when � �
2.00 � 10�5 (°C)�1 (a typical value for a metal) and

Lf � Li  (1 � ��T)

(a)

T

250 m

T + 20°C

(b)

y

Figure P19.63 Problems 63 and 64.

Figure P19.66

50.0 cm

(a)

(b)

hi

∆h

(c)
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is sufficient to raise the mercury level in the capillary
tube.

19.3 For the glass, choose Pyrex, which has a lower average
coefficient of linear expansion than does ordinary glass.
For the working liquid, choose gasoline, which has the
largest average coefficient of volume expansion.

19.4 You do not have to convert the units for pressure and
volume to SI units as long as the same units appear in
the numerator and the denominator. This is not true for
ratios of temperature units, as you can see by comparing
the ratios 300 K/200 K and 26.85°C/(� 73.15°C). You
must always use absolute (kelvin) temperatures when ap-
plying the ideal gas law. 

19.1 The size of a degree on the Fahrenheit scale is the size
of a degree on the Celsius scale. This is true because the
Fahrenheit range of 32°F to 212°F is equivalent to the
Celsius range of 0°C to 100°C. The factor in Equation
19.2 corrects for this difference. Equation 19.1 does not
need this correction because the size of a Celsius degree
is the same as the size of a kelvin.

19.2 The glass bulb containing most of the mercury warms
up first because it is in direct thermal contact with the
hot water. It expands slightly, and thus its volume in-
creases. This causes the mercury level in the capillary
tube to drop. As the mercury inside the bulb warms 
up, it also expands. Eventually, its increase in volume 

9
5

5
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ntil about 1850, the fields of thermodynamics and mechanics were consid-
ered two distinct branches of science, and the law of conservation of energy
seemed to describe only certain kinds of mechanical systems. However,

mid–19th century experiments performed by the Englishman James Joule and oth-
ers showed that energy may be added to (or removed from) a system either by heat
or by doing work on the system (or having the system do work). Today we know
that internal energy, which we formally define in this chapter, can be transformed to
mechanical energy. Once the concept of energy was broadened to include internal
energy, the law of conservation of energy emerged as a universal law of nature.

This chapter focuses on the concept of internal energy, the processes by which
energy is transferred, the first law of thermodynamics, and some of the important
applications of the first law. The first law of thermodynamics is the law of conserva-
tion of energy. It describes systems in which the only energy change is that of inter-
nal energy, which is due to transfers of energy by heat or work. Furthermore, the
first law makes no distinction between the results of heat and the results of work.
According to the first law, a system’s internal energy can be changed either by an
energy transfer by heat to or from the system or by work done on or by the system.

HEAT AND INTERNAL ENERGY
At the outset, it is important that we make a major distinction between internal en-
ergy and heat. Internal energy is all the energy of a system that is associated
with its microscopic components—atoms and molecules—when viewed
from a reference frame at rest with respect to the object. The last part of this
sentence ensures that any bulk kinetic energy of the system due to its motion
through space is not included in internal energy. Internal energy includes kinetic
energy of translation, rotation, and vibration of molecules, potential energy within
molecules, and potential energy between molecules. It is useful to relate internal
energy to the temperature of an object, but this relationship is limited—we shall
find in Section 20.3 that internal energy changes can also occur in the absence of
temperature changes.

As we shall see in Chapter 21, the internal energy of a monatomic ideal gas is
associated with the translational motion of its atoms. This is the only type of en-
ergy available for the microscopic components of this system. In this special case,
the internal energy is simply the total kinetic energy of the atoms of the gas; the
higher the temperature of the gas, the greater the average kinetic energy of the
atoms and the greater the internal energy of the gas. More generally, in solids, liq-
uids, and molecular gases, internal energy includes other forms of molecular en-
ergy. For example, a diatomic molecule can have rotational kinetic energy, as well
as vibrational kinetic and potential energy.

Heat is defined as the transfer of energy across the boundary of a sys-
tem due to a temperature difference between the system and its surround-
ings. When you heat a substance, you are transferring energy into it by placing it in
contact with surroundings that have a higher temperature. This is the case, for ex-
ample, when you place a pan of cold water on a stove burner—the burner is at a
higher temperature than the water, and so the water gains energy. We shall also
use the term heat to represent the amount of energy transferred by this method.

Scientists used to think of heat as a fluid called caloric, which they believed was
transferred between objects; thus, they defined heat in terms of the temperature
changes produced in an object during heating. Today we recognize the distinct
difference between internal energy and heat. Nevertheless, we refer to quantities

20.1

U

Heat

James Prescott Joule British
physicist (1818 – 1889) Joule re-
ceived some formal education in
mathematics, philosophy, and chem-
istry but was in large part self-
educated. His research led to the
establishment of the principle of
conservation of energy. His study of
the quantitative relationship among
electrical, mechanical, and chemical
effects of heat culminated in his dis-
covery in 1843 of the amount of work
required to produce a unit of energy,
called the mechanical equivalent of
heat. (By kind permission of the Presi-
dent and Council of the Royal Society)

10.3
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using names that do not quite correctly define the quantities but which have be-
come entrenched in physics tradition based on these early ideas. Examples of such
quantities are latent heat and heat capacity.

As an analogy to the distinction between heat and internal energy, consider
the distinction between work and mechanical energy discussed in Chapter 7.
The work done on a system is a measure of the amount of energy transferred to
the system from its surroundings, whereas the mechanical energy of the system
(kinetic or potential, or both) is a consequence of the motion and relative posi-
tions of the members of the system. Thus, when a person does work on a system,
energy is transferred from the person to the system. It makes no sense to talk
about the work of a system—one can refer only to the work done on or by a sys-
tem when some process has occurred in which energy has been transferred to or
from the system. Likewise, it makes no sense to talk about the heat of a system—
one can refer to heat only when energy has been transferred as a result of a tem-
perature difference. Both heat and work are ways of changing the energy of a 
system.

It is also important to recognize that the internal energy of a system can be
changed even when no energy is transferred by heat. For example, when a gas is
compressed by a piston, the gas is warmed and its internal energy increases, but no
transfer of energy by heat from the surroundings to the gas has occurred. If the
gas then expands rapidly, it cools and its internal energy decreases, but no transfer
of energy by heat from it to the surroundings has taken place. The temperature
changes in the gas are due not to a difference in temperature between the gas and
its surroundings but rather to the compression and the expansion. In each case,
energy is transferred to or from the gas by work, and the energy change within the
system is an increase or decrease of internal energy. The changes in internal en-
ergy in these examples are evidenced by corresponding changes in the tempera-
ture of the gas.

Units of Heat

As we have mentioned, early studies of heat focused on the resultant increase in
temperature of a substance, which was often water. The early notions of heat based
on caloric suggested that the flow of this fluid from one body to another caused
changes in temperature. From the name of this mythical fluid, we have an energy
unit related to thermal processes, the calorie (cal), which is defined as the
amount of energy transfer necessary to raise the temperature of 1 g of wa-
ter from 14.5°C to 15.5°C.1 (Note that the “Calorie,” written with a capital “C”
and used in describing the energy content of foods, is actually a kilocalorie.) The
unit of energy in the British system is the British thermal unit (Btu), which is de-
fined as the amount of energy transfer required to raise the temperature of 
1 lb of water from 63°F to 64°F.

Scientists are increasingly using the SI unit of energy, the joule, when describ-
ing thermal processes. In this textbook, heat and internal energy are usually mea-
sured in joules. (Note that both heat and work are measured in energy units. Do
not confuse these two means of energy transfer with energy itself, which is also mea-
sured in joules.)

The calorie

1 Originally, the calorie was defined as the “heat” necessary to raise the temperature of 1 g of water by
1°C. However, careful measurements showed that the amount of energy required to produce a 1°C
change depends somewhat on the initial temperature; hence, a more precise definition evolved.
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The Mechanical Equivalent of Heat

In Chapters 7 and 8, we found that whenever friction is present in a mechanical
system, some mechanical energy is lost—in other words, mechanical energy is not
conserved in the presence of nonconservative forces. Various experiments show
that this lost mechanical energy does not simply disappear but is transformed into
internal energy. We can perform such an experiment at home by simply hammer-
ing a nail into a scrap piece of wood. What happens to all the kinetic energy of the
hammer once we have finished? Some of it is now in the nail as internal energy, as
demonstrated by the fact that the nail is measurably warmer. Although this con-
nection between mechanical and internal energy was first suggested by Benjamin
Thompson, it was Joule who established the equivalence of these two forms of
energy.

A schematic diagram of Joule’s most famous experiment is shown in Figure
20.1. The system of interest is the water in a thermally insulated container. Work is
done on the water by a rotating paddle wheel, which is driven by heavy blocks
falling at a constant speed. The stirred water is warmed due to the friction between
it and the paddles. If the energy lost in the bearings and through the walls is ne-
glected, then the loss in potential energy associated with the blocks equals the work
done by the paddle wheel on the water. If the two blocks fall through a distance h,
the loss in potential energy is 2mgh, where m is the mass of one block; it is this en-
ergy that causes the temperature of the water to increase. By varying the conditions
of the experiment, Joule found that the loss in mechanical energy 2mgh is propor-
tional to the increase in water temperature �T. The proportionality constant was
found to be approximately 4.18 J/g � °C. Hence, 4.18 J of mechanical energy raises
the temperature of 1 g of water by 1°C. More precise measurements taken later
demonstrated the proportionality to be 4.186 J/g � °C when the temperature of the
water was raised from 14.5°C to 15.5°C. We adopt this “15-degree calorie” value:

(20.1)

This equality is known, for purely historical reasons, as the mechanical equiva-
lent of heat.

1 cal � 4.186 J

mm

Thermal
insulator

Benjamin Thompson
(1753–1814).

Figure 20.1 Joule’s experiment for determining the
mechanical equivalent of heat. The falling blocks rotate
the paddles, causing the temperature of the water to in-
crease.

Mechanical equivalent of heat
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HEAT CAPACITY AND SPECIFIC HEAT
When energy is added to a substance and no work is done, the temperature of the
substance usually rises. (An exception to this statement is the case in which a sub-
stance undergoes a change of state—also called a phase transition—as discussed in
the next section.) The quantity of energy required to raise the temperature of a
given mass of a substance by some amount varies from one substance to another.
For example, the quantity of energy required to raise the temperature of 1 kg of
water by 1°C is 4 186 J, but the quantity of energy required to raise the tempera-
ture of 1 kg of copper by 1°C is only 387 J. In the discussion that follows, we shall
use heat as our example of energy transfer, but we shall keep in mind that we
could change the temperature of our system by doing work on it.

The heat capacity C of a particular sample of a substance is defined as the
amount of energy needed to raise the temperature of that sample by 1°C. From
this definition, we see that if heat Q produces a change �T in the temperature of a
substance, then

(20.2)

The specific heat c of a substance is the heat capacity per unit mass. Thus, if
energy Q transferred by heat to mass m of a substance changes the temperature of
the sample by �T, then the specific heat of the substance is

(20.3)

Specific heat is essentially a measure of how thermally insensitive a substance is to
the addition of energy. The greater a material’s specific heat, the more energy
must be added to a given mass of the material to cause a particular temperature
change. Table 20.1 lists representative specific heats.

From this definition, we can express the energy Q transferred by heat between
a sample of mass m of a material and its surroundings for a temperature change
�T as

(20.4)

For example, the energy required to raise the temperature of 0.500 kg of water by
3.00°C is (0.500 kg)(4 186 J/kg � °C)(3.00°C) � 6.28 � 103 J. Note that when the
temperature increases, Q and �T are taken to be positive, and energy flows into

Q � mc�T

c �
Q

m�T

Q � C�T

20.2

Heat capacity

Specific heat

10.3

Losing Weight the Hard WayEXAMPLE 20.1
The work done in lifting the barbell a distance h is equal to
mgh, and the work done in lifting it n times is nmgh. We
equate this to the total work required:

If the student is in good shape and lifts the barbell once every
5 s, it will take him about 12 h to perform this feat. Clearly, it
is much easier for this student to lose weight by dieting.

8.54 � 103 times n �
8.37 � 106 J

(50.0 kg)(9.80 m/s2)(2.00 m)
�

W � nmgh � 8.37 � 106 J 

A student eats a dinner rated at 2 000 Calories. He wishes to
do an equivalent amount of work in the gymnasium by lifting
a 50.0-kg barbell. How many times must he raise the barbell
to expend this much energy? Assume that he raises the bar-
bell 2.00 m each time he lifts it and that he regains no energy
when he drops the barbell to the floor.

Solution Because 1 Calorie � 1.00 � 103 cal, the work re-
quired is 2.00 � 106 cal. Converting this value to joules, we
have for the total work required:

W � (2.00 � 106 cal)(4.186 J/cal) � 8.37 � 106 J
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the system. When the temperature decreases, Q and �T are negative, and energy
flows out of the system.

Specific heat varies with temperature. However, if temperature intervals are
not too great, the temperature variation can be ignored and c can be treated as a
constant.2 For example, the specific heat of water varies by only about 1% from
0°C to 100°C at atmospheric pressure. Unless stated otherwise, we shall neglect
such variations.

Measured values of specific heats are found to depend on the conditions of
the experiment. In general, measurements made at constant pressure are different
from those made at constant volume. For solids and liquids, the difference be-
tween the two values is usually no greater than a few percent and is often ne-
glected. Most of the values given in Table 20.1 were measured at atmospheric pres-
sure and room temperature. As we shall see in Chapter 21, the specific heats for

2 The definition given by Equation 20.3 assumes that the specific heat does not vary with temperature
over the interval In general, if c varies with temperature over the interval, then the cor-
rect expression for Q is

Q � m �Tf

Ti

 c dT

�T � Tf � Ti .

TABLE 20.1 Specific Heats of Some
Substances at 25°C and
Atmospheric Pressure

Specific Heat c

Substance

Elemental Solids
Aluminum 900 0.215
Beryllium 1 830 0.436
Cadmium 230 0.055
Copper 387 0.092 4
Germanium 322 0.077
Gold 129 0.030 8
Iron 448 0.107
Lead 128 0.030 5
Silicon 703 0.168
Silver 234 0.056

Other Solids
Brass 380 0.092
Glass 837 0.200
Ice (� 5°C) 2 090 0.50
Marble 860 0.21
Wood 1 700 0.41

Liquids
Alcohol (ethyl) 2 400 0.58
Mercury 140 0.033
Water (15°C) 4 186 1.00

Gas
Steam (100°C) 2 010 0.48

cal/g��CJ/kg��C
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gases measured at constant pressure are quite different from values measured at
constant volume.

Imagine you have 1 kg each of iron, glass, and water, and that all three samples are at 10°C.
(a) Rank the samples from lowest to highest temperature after 100 J of energy is added to
each. (b) Rank them from least to greatest amount of energy transferred by heat if each in-
creases in temperature by 20°C.

It is interesting to note from Table 20.1 that water has the highest specific heat
of common materials. This high specific heat is responsible, in part, for the mod-
erate temperatures found near large bodies of water. As the temperature of a body
of water decreases during the winter, energy is transferred from the cooling water
to the air by heat, increasing the internal energy of the air. Because of the high
specific heat of water, a relatively large amount of energy is transferred to the air
for even modest temperature changes of the water. The air carries this internal en-
ergy landward when prevailing winds are favorable. For example, the prevailing
winds on the West Coast of the United States are toward the land (eastward).
Hence, the energy liberated by the Pacific Ocean as it cools keeps coastal areas
much warmer than they would otherwise be. This explains why the western coastal
states generally have more favorable winter weather than the eastern coastal states,
where the prevailing winds do not tend to carry the energy toward land.

A difference in specific heats causes the cheese topping on a slice of pizza to
burn you more than a mouthful of crust at the same temperature. Both crust and
cheese undergo the same change in temperature, starting at a high straight-from-
the-oven value and ending at the temperature of the inside of your mouth, which is
about 37°C. Because the cheese is much more likely to burn you, it must release
much more energy as it cools than does the crust. If we assume roughly the same
mass for both cheese and crust, then Equation 20.3 indicates that the specific heat of
the cheese, which is mostly water, is greater than that of the crust, which is mostly air.

Conservation of Energy: Calorimetry

One technique for measuring specific heat involves heating a sample to some
known temperature Tx , placing it in a vessel containing water of known mass and
temperature and measuring the temperature of the water after equilib-
rium has been reached. Because a negligible amount of mechanical work is done
in the process, the law of the conservation of energy requires that the amount of
energy that leaves the sample (of unknown specific heat) equal the amount of en-
ergy that enters the water.3 This technique is called calorimetry, and devices in
which this energy transfer occurs are called calorimeters.

Conservation of energy allows us to write the equation

(20.5)

which simply states that the energy leaving the hot part of the system by heat is
equal to that entering the cold part of the system. The negative sign in the equa-
tion is necessary to maintain consistency with our sign convention for heat. The

Q cold � �Q hot

Tw � Tx ,

Quick Quiz 20.1

3 For precise measurements, the water container should be included in our calculations because it also
exchanges energy with the sample. However, doing so would require a knowledge of its mass and com-
position. If the mass of the water is much greater than that of the container, we can neglect the effects
of the container.

QuickLab
In an open area, such as a parking
lot, use the flame from a match to
pop an air-filled balloon. Now try the
same thing with a water-filled bal-
loon. Why doesn’t the water-filled bal-
loon pop?
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heat Q hot is negative because energy is leaving the hot sample. The negative sign
in the equation ensures that the right-hand side is positive and thus consistent with
the left-hand side, which is positive because energy is entering the cold water.

Suppose mx is the mass of a sample of some substance whose specific heat we
wish to determine. Let us call its specific heat cx and its initial temperature Tx .
Likewise, let mw , cw , and Tw represent corresponding values for the water. If Tf is
the final equilibrium temperature after everything is mixed, then from Equation
20.4, we find that the energy transfer for the water is which is posi-
tive because , and that the energy transfer for the sample of unknown spe-
cific heat is which is negative. Substituting these expressions into
Equation 20.5 gives

Solving for cx gives

cx �
mwcw(Tf � Tw)

mx(Tx � Tf )

mwcw(Tf � Tw) � �mxcx(Tf � Tx)

mxcx(Tf � Tx),
Tf � Tw

mwcw(Tf � Tw),

Cooling a Hot IngotEXAMPLE 20.2
The ingot is most likely iron, as we can see by comparing

this result with the data given in Table 20.1. Note that the
temperature of the ingot is initially above the steam point.
Thus, some of the water may vaporize when we drop the in-
got into the water. We assume that we have a sealed system
and thus that this steam cannot escape. Because the final
equilibrium temperature is lower than the steam point, any
steam that does result recondenses back into water.

Exercise What is the amount of energy transferred to the
water as the ingot is cooled?

Answer 4 020 J.

A 0.050 0-kg ingot of metal is heated to 200.0°C and then
dropped into a beaker containing 0.400 kg of water initially
at 20.0°C. If the final equilibrium temperature of the mixed
system is 22.4°C, find the specific heat of the metal.

Solution According to Equation 20.5, we can write

From this we find that

453 J/kg��Ccx �

�(0.050 0 kg)(cx)(22.4�C � 200.0�C)

(0.400 kg)(4 186 J/kg��C)(22.4�C � 20.0�C) �

mwcw(Tf � Tw) � �mxcx(Tf � Tx)

Fun Time for a CowboyEXAMPLE 20.3
heat from a stove to the bullet. If we imagine this latter
process taking place, we can calculate �T from Equation
20.4. Using 234 J/kg � °C as the specific heat of silver (see
Table 20.1), we obtain

Exercise Suppose that the cowboy runs out of silver bullets
and fires a lead bullet of the same mass and at the same
speed into the wall. What is the temperature change of the
bullet?

Answer 156°C.

85.5�C�T �
Q
mc

�
40.0 J

(2.00 � 10�3 kg)(234 J/kg ��C)
�

A cowboy fires a silver bullet with a mass of 2.00 g and with a
muzzle speed of 200 m/s into the pine wall of a saloon. As-
sume that all the internal energy generated by the impact re-
mains with the bullet. What is the temperature change of the
bullet?

Solution The kinetic energy of the bullet is

Because nothing in the environment is hotter than the bullet,
the bullet gains no energy by heat. Its temperature increases
because the 40.0 J of kinetic energy becomes 40.0 J of extra
internal energy. The temperature change is the same as that
which would take place if 40.0 J of energy were transferred by

1
2mv2 � 1

2(2.00 � 10�3 kg)(200 m/s)2 � 40.0 J
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LATENT HEAT
A substance often undergoes a change in temperature when energy is transferred
between it and its surroundings. There are situations, however, in which the trans-
fer of energy does not result in a change in temperature. This is the case whenever
the physical characteristics of the substance change from one form to another;
such a change is commonly referred to as a phase change. Two common phase
changes are from solid to liquid (melting) and from liquid to gas (boiling); an-
other is a change in the crystalline structure of a solid. All such phase changes in-
volve a change in internal energy but no change in temperature. The increase in
internal energy in boiling, for example, is represented by the breaking of bonds
between molecules in the liquid state; this bond breaking allows the molecules to
move farther apart in the gaseous state, with a corresponding increase in intermol-
ecular potential energy.

As you might expect, different substances respond differently to the addition
or removal of energy as they change phase because their internal molecular
arrangements vary. Also, the amount of energy transferred during a phase change
depends on the amount of substance involved. (It takes less energy to melt an ice
cube than it does to thaw a frozen lake.) If a quantity Q of energy transfer is re-
quired to change the phase of a mass m of a substance, the ratio charac-
terizes an important thermal property of that substance. Because this added or re-
moved energy does not result in a temperature change, the quantity L is called the
latent heat (literally, the “hidden” heat) of the substance. The value of L for a
substance depends on the nature of the phase change, as well as on the properties
of the substance.

From the definition of latent heat, and again choosing heat as our energy
transfer mechanism, we find that the energy required to change the phase of a
given mass m of a pure substance is

(20.6)

Latent heat of fusion Lf is the term used when the phase change is from solid to
liquid (to fuse means “to combine by melting”), and latent heat of vaporization

Q � mL

L � Q /m

20.3

TABLE 20.2 Latent Heats of Fusion and Vaporization

Melting Latent Heat Boiling Latent Heat of
Point of Fusion Point Vaporization

Substance ( °C) ( J/kg) (°C) ( J/kg)

Helium � 269.65 5.23 � 103 � 268.93 2.09 � 104

Nitrogen � 209.97 2.55 � 104 � 195.81 2.01 � 105

Oxygen � 218.79 1.38 � 104 � 182.97 2.13 � 105

Ethyl alcohol � 114 1.04 � 105 78 8.54 � 105

Water 0.00 3.33 � 105 100.00 2.26 � 106

Sulfur 119 3.81 � 104 444.60 3.26 � 105

Lead 327.3 2.45 � 104 1 750 8.70 � 105

Aluminum 660 3.97 � 105 2 450 1.14 � 107

Silver 960.80 8.82 � 104 2 193 2.33 � 106

Gold 1 063.00 6.44 � 104 2 660 1.58 � 106

Copper 1 083 1.34 � 105 1 187 5.06 � 106
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Lv is the term used when the phase change is from liquid to gas (the liquid “vapor-
izes”).4 The latent heats of various substances vary considerably, as data in Table
20.2 show.

Which is more likely to cause a serious burn, 100°C liquid water or an equal mass of 100°C
steam?

To understand the role of latent heat in phase changes, consider the energy
required to convert a 1.00-g block of ice at � 30.0°C to steam at 120.0°C. Figure
20.2 indicates the experimental results obtained when energy is gradually added to
the ice. Let us examine each portion of the red curve.

Part A. On this portion of the curve, the temperature of the ice changes from
� 30.0°C to 0.0°C. Because the specific heat of ice is 2 090 J/kg � °C, we can calcu-
late the amount of energy added by using Equation 20.4:

Part B. When the temperature of the ice reaches 0.0°C, the ice–water mixture
remains at this temperature—even though energy is being added—until all the ice
melts. The energy required to melt 1.00 g of ice at 0.0°C is, from Equation 20.6,

Thus, we have moved to the 396 J (� 62.7 J 	 333 J) mark on the energy axis.

Q � mLf � (1.00 � 10�3 kg)(3.33 � 105 J/kg) � 333 J

Q � mici �T � (1.00 � 10�3 kg)(2 090 J/kg��C)(30.0�C) � 62.7 J

Quick Quiz 20.2

4 When a gas cools, it eventually condenses—that is, it returns to the liquid phase. The energy given up
per unit mass is called the latent heat of condensation and is numerically equal to the latent heat of vapor-
ization. Likewise, when a liquid cools, it eventually solidifies, and the latent heat of solidification is numeri-
cally equal to the latent heat of fusion.
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Figure 20.2 A plot of temperature versus energy added when 1.00 g of ice initially at � 30.0°C
is converted to steam at 120.0°C.
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Part C. Between 0.0°C and 100.0°C, nothing surprising happens. No phase
change occurs, and so all energy added to the water is used to increase its temper-
ature. The amount of energy necessary to increase the temperature from 0.0°C to
100.0°C is

Part D. At 100.0°C, another phase change occurs as the water changes from wa-
ter at 100.0°C to steam at 100.0°C. Similar to the ice–water mixture in part B, the
water–steam mixture remains at 100.0°C—even though energy is being added—
until all of the liquid has been converted to steam. The energy required to convert
1.00 g of water to steam at 100.0°C is

Part E. On this portion of the curve, as in parts A and C, no phase change oc-
curs; thus, all energy added is used to increase the temperature of the steam. The
energy that must be added to raise the temperature of the steam from 100.0°C to
120.0°C is

The total amount of energy that must be added to change 1 g of ice at � 30.0°C to
steam at 120.0°C is the sum of the results from all five parts of the curve, which is
3.11 � 103 J. Conversely, to cool 1 g of steam at 120.0°C to ice at � 30.0°C, we
must remove 3.11 � 103 J of energy.

We can describe phase changes in terms of a rearrangement of molecules
when energy is added to or removed from a substance. (For elemental substances
in which the atoms do not combine to form molecules, the following discussion
should be interpreted in terms of atoms. We use the general term molecules to refer
to both molecular substances and elemental substances.) Consider first the liquid-
to-gas phase change. The molecules in a liquid are close together, and the forces
between them are stronger than those between the more widely separated mole-
cules of a gas. Therefore, work must be done on the liquid against these attractive
molecular forces if the molecules are to separate. The latent heat of vaporization is
the amount of energy per unit mass that must be added to the liquid to accom-
plish this separation.

Similarly, for a solid, we imagine that the addition of energy causes the ampli-
tude of vibration of the molecules about their equilibrium positions to become
greater as the temperature increases. At the melting point of the solid, the ampli-
tude is great enough to break the bonds between molecules and to allow mole-
cules to move to new positions. The molecules in the liquid also are bound to each
other, but less strongly than those in the solid phase. The latent heat of fusion is
equal to the energy required per unit mass to transform the bonds among all mol-
ecules from the solid-type bond to the liquid-type bond.

As you can see from Table 20.2, the latent heat of vaporization for a given sub-
stance is usually somewhat higher than the latent heat of fusion. This is not sur-
prising if we consider that the average distance between molecules in the gas
phase is much greater than that in either the liquid or the solid phase. In the
solid-to-liquid phase change, we transform solid-type bonds between molecules
into liquid-type bonds between molecules, which are only slightly less strong. In
the liquid-to-gas phase change, however, we break liquid-type bonds and create a
situation in which the molecules of the gas essentially are not bonded to each

Q � mscs �T � (1.00 � 10�3 kg)(2.01 � 103 J/kg��C)(20.0�C) � 40.2 J

Q � mLv � (1.00 � 10�3 kg)(2.26 � 106 J/kg) � 2.26 � 103 J

Q � mwcw �T � (1.00 � 10�3 kg)(4.19 � 103 J/kg��C)(100.0�C) � 419 J
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other. Therefore, it is not surprising that more energy is required to vaporize a
given mass of substance than is required to melt it.

Calculate the slopes for the A, C, and E portions of Figure 20.2. Rank the slopes from least
to greatest and explain what this ordering means.

Quick Quiz 20.3

Problem-Solving Hints
Calorimetry Problems
If you are having difficulty in solving calorimetry problems, be sure to con-
sider the following points:

• Units of measure must be consistent. For instance, if you are using specific
heats measured in cal/g � °C, be sure that masses are in grams and tempera-
tures are in Celsius degrees.

• Transfers of energy are given by the equation only for those
processes in which no phase changes occur. Use the equations and

only when phase changes are taking place.
• Often, errors in sign are made when the equation is used.

Make sure that you use the negative sign in the equation, and remember
that �T is always the final temperature minus the initial temperature.

Q cold � �Q hot

Q � mLv

Q � mLf

Q � mc �T

Cooling the SteamEXAMPLE 20.4
Adding the energy transfers in these three stages, we obtain

Now, we turn our attention to the temperature increase of
the water and the glass. Using Equation 20.4, we find that

Using Equation 20.5, we can solve for the unknown mass:

1.09 � 10�2 kg � 10.9 g ms �

� �[�ms(2.53 � 106 J/kg)]2.77 � 104 J

Q cold � �Q hot

 � 2.77 � 104 J 

    	(0.100 kg)(837 J/kg ��C)(30.0�C)

Q cold � (0.200 kg)(4.19 � 103 J/kg��C)(30.0�C)

 � �ms(2.53 � 106 J/kg) 

  	 2.09 � 105 J/kg)

 � �ms(6.03 � 104 J/kg 	 2.26 � 106 J/kg

Q hot � Q 1 	 Q 2 	 Q 3 

What mass of steam initially at 130°C is needed to warm 200 g
of water in a 100-g glass container from 20.0°C to 50.0°C?

Solution The steam loses energy in three stages. In the
first stage, the steam is cooled to 100°C. The energy transfer
in the process is

where ms is the unknown mass of the steam.
In the second stage, the steam is converted to water. To

find the energy transfer during this phase change, we use
where the negative sign indicates that energy is

leaving the steam:

In the third stage, the temperature of the water created
from the steam is reduced to 50.0°C. This change requires an
energy transfer of

 � �ms(2.09 � 105 J/kg)

Q 3 � mscw �T � ms(4.19 � 103 J/kg��C)(�50.0�C)

Q 2 � �ms(2.26 � 106 J/kg)

Q � �mLv ,

 � �ms(6.03 � 104 J/kg)

Q 1 � mscs �T � ms(2.01 � 103 J/kg��C)(�30.0�C)
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WORK AND HEAT IN THERMODYNAMIC PROCESSES
In the macroscopic approach to thermodynamics, we describe the state of a system
using such variables as pressure, volume, temperature, and internal energy. The
number of macroscopic variables needed to characterize a system depends on the
nature of the system. For a homogeneous system, such as a gas containing only
one type of molecule, usually only two variables are needed. However, it is impor-
tant to note that a macroscopic state of an isolated system can be specified only if the
system is in thermal equilibrium internally. In the case of a gas in a container, in-
ternal thermal equilibrium requires that every part of the gas be at the same pres-
sure and temperature.

Consider a gas contained in a cylinder fitted with a movable piston (Fig. 20.3).
At equilibrium, the gas occupies a volume V and exerts a uniform pressure P on
the cylinder’s walls and on the piston. If the piston has a cross-sectional area A, the

20.4

Boiling Liquid HeliumEXAMPLE 20.5
of energy is

Exercise If 10.0 W of power is supplied to 1.00 kg of water
at 100°C, how long does it take for the water to completely
boil away?

Answer 62.8 h.

35 mint �
2.09 � 104 J

10.0 J/s
� 2.09 � 103 s �

Liquid helium has a very low boiling point, 4.2 K, and a very
low latent heat of vaporization, 2.09 � 104 J/kg. If energy is
transferred to a container of boiling liquid helium from an
immersed electric heater at a rate of 10.0 W, how long does it
take to boil away 1.00 kg of the liquid?

Solution Because we must supply
2.09 � 104 J of energy to boil away 1.00 kg. Because 10.0 W �
10.0 J/s, 10.0 J of energy is transferred to the helium each
second. Therefore, the time it takes to transfer 2.09 � 104 J

Lv � 2.09 � 104 J/kg,

10.6

P

A

V
V + dV

dy

(b)(a)

Figure 20.3 Gas contained in a
cylinder at a pressure P does work
on a moving piston as the system
expands from a volume V to a vol-
ume V 	 dV.
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force exerted by the gas on the piston is Now let us assume that the gas ex-
pands quasi-statically, that is, slowly enough to allow the system to remain essen-
tially in thermal equilibrium at all times. As the piston moves up a distance dy, the
work done by the gas on the piston is

Because A dy is the increase in volume of the gas dV, we can express the work done
by the gas as

(20.7)

Because the gas expands, dV is positive, and so the work done by the gas is positive.
If the gas were compressed, dV would be negative, indicating that the work done
by the gas (which can be interpreted as work done on the gas) was negative.

In the thermodynamics problems that we shall solve, we shall identify the sys-
tem of interest as a substance that is exchanging energy with the environment. In
many problems, this will be a gas contained in a vessel; however, we will also con-
sider problems involving liquids and solids. It is an unfortunate fact that, because
of the separate historical development of thermodynamics and mechanics, positive
work for a thermodynamic system is commonly defined as the work done by the
system, rather than that done on the system. This is the reverse of the case for our
study of work in mechanics. Thus, in thermodynamics, positive work repre-
sents a transfer of energy out of the system. We will use this convention to be
consistent with common treatments of thermodynamics.

The total work done by the gas as its volume changes from Vi to Vf is given by
the integral of Equation 20.7:

(20.8)

To evaluate this integral, it is not enough that we know only the initial and final
values of the pressure. We must also know the pressure at every instant during the
expansion; we would know this if we had a functional dependence of P with re-
spect to V. This important point is true for any process—the expansion we are dis-
cussing here, or any other. To fully specify a process, we must know the values of
the thermodynamic variables at every state through which the system passes be-
tween the initial and final states. In the expansion we are considering here, we can
plot the pressure and volume at each instant to create a PV diagram like the one
shown in Figure 20.4. The value of the integral in Equation 20.8 is the area
bounded by such a curve. Thus, we can say that

W � �Vf

Vi

P dV

dW � P dV

dW � F dy � PA dy

F � PA.

i
Pi

P

Work = Area under
   curve

f

V
VfVi

Pf

Figure 20.4 A gas expands quasi-
statically (slowly) from state i to
state f. The work done by the gas
equals the area under the PV
curve.

the work done by a gas in the expansion from an initial state to a final state is
the area under the curve connecting the states in a PV diagram.

As Figure 20.4 shows, the work done in the expansion from the initial state i to
the final state f depends on the path taken between these two states, where the
path on a PV diagram is a description of the thermodynamic process through
which the system is taken. To illustrate this important point, consider several paths
connecting i and f (Fig. 20.5). In the process depicted in Figure 20.5a, the pres-
sure of the gas is first reduced from Pi to Pf by cooling at constant volume Vi . The
gas then expands from Vi to Vf at constant pressure Pf . The value of the work done
along this path is equal to the area of the shaded rectangle, which is equal to

Work equals area under the curve
in a PV diagram.
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In Figure 20.5b, the gas first expands from Vi to Vf at constant pressure
Pi . Then, its pressure is reduced to Pf at constant volume Vf . The value of the work
done along this path is which is greater than that for the process de-
scribed in Figure 20.5a. Finally, for the process described in Figure 20.5c, where
both P and V change continuously, the work done has some value intermediate be-
tween the values obtained in the first two processes. Therefore, we see that the
work done by a system depends on the initial and final states and on the
path followed by the system between these states.

The energy transfer by heat Q into or out of a system also depends on the
process. Consider the situations depicted in Figure 20.6. In each case, the gas has
the same initial volume, temperature, and pressure and is assumed to be ideal. In
Figure 20.6a, the gas is thermally insulated from its surroundings except at the bot-
tom of the gas-filled region, where it is in thermal contact with an energy reservoir.
An energy reservoir is a source of energy that is considered to be so great that a finite
transfer of energy from the reservoir does not change its temperature. The piston
is held at its initial position by an external agent—a hand, for instance. When the
force with which the piston is held is reduced slightly, the piston rises very slowly to
its final position. Because the piston is moving upward, the gas is doing work on

Pi(Vf � Vi),

Pf(Vf � Vi).

Work done depends on the path
between the initial and final states.

Figure 20.5 The work done by a gas as it is taken from an initial state to a final state depends
on the path between these states.

iPi

P

f

V
VfVi

Pf

(a)

i
Pi

P

f

V
VfVi

Pf

(b)

i
Pi

P

f

V
VfVi

Pf

(c)

Energy reservoir
at Ti

Gas at Ti

(a)

Insulating
wall

Final
position

Initial
position

Insulating
wall

Gas at Ti

(b)

Membrane

Vacuum

Figure 20.6 (a) A gas at temperature Ti expands slowly while absorbing energy from a reser-
voir in order to maintain a constant temperature. (b) A gas expands rapidly into an evacuated re-
gion after a membrane is broken.
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the piston. During this expansion to the final volume Vf , just enough energy is trans-
ferred by heat from the reservoir to the gas to maintain a constant temperature Ti .

Now consider the completely thermally insulated system shown in Figure
20.6b. When the membrane is broken, the gas expands rapidly into the vacuum
until it occupies a volume Vf and is at a pressure Pf . In this case, the gas does no
work because there is no movable piston on which the gas applies a force. Further-
more, no energy is transferred by heat through the insulating wall.

The initial and final states of the ideal gas in Figure 20.6a are identical to the
initial and final states in Figure 20.6b, but the paths are different. In the first case,
the gas does work on the piston, and energy is transferred slowly to the gas. In the
second case, no energy is transferred, and the value of the work done is zero.
Therefore, we conclude that energy transfer by heat, like work done, depends
on the initial, final, and intermediate states of the system. In other words, be-
cause heat and work depend on the path, neither quantity is determined solely by
the end points of a thermodynamic process.

THE FIRST LAW OF THERMODYNAMICS
When we introduced the law of conservation of mechanical energy in Chapter 8,
we stated that the mechanical energy of a system is constant in the absence of non-
conservative forces such as friction. That is, we did not include changes in the inter-
nal energy of the system in this mechanical model. The first law of thermodynamics
is a generalization of the law of conservation of energy that encompasses changes in
internal energy. It is a universally valid law that can be applied to many processes
and provides a connection between the microscopic and macroscopic worlds.

We have discussed two ways in which energy can be transferred between a sys-
tem and its surroundings. One is work done by the system, which requires that there
be a macroscopic displacement of the point of application of a force (or pressure).
The other is heat, which occurs through random collisions between the molecules
of the system. Both mechanisms result in a change in the internal energy of the sys-
tem and therefore usually result in measurable changes in the macroscopic variables
of the system, such as the pressure, temperature, and volume of a gas.

To better understand these ideas on a quantitative basis, suppose that a system
undergoes a change from an initial state to a final state. During this change, en-
ergy transfer by heat Q to the system occurs, and work W is done by the system. As
an example, suppose that the system is a gas in which the pressure and volume
change from Pi and Vi to Pf and Vf . If the quantity is measured for various
paths connecting the initial and final equilibrium states, we find that it is the same
for all paths connecting the two states. We conclude that the quantity is de-
termined completely by the initial and final states of the system, and we call this
quantity the change in the internal energy of the system. Although Q and W
both depend on the path, the quantity Q � W is independent of the path. If we
use the sumbol E int to represent the internal energy, then the change in internal
energy �E int can be expressed as5

(20.9)�E int � Q � W

Q � W

Q � W

20.5

Q � W is the change in internal
energy

First-law equation

5 It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is
also the traditional symbol for potential energy, as introduced in Chapter 8. To avoid confusion be-
tween potential energy and internal energy, we use the symbol E int for internal energy in this book. If
you take an advanced course in thermodynamics, however, be prepared to see U used as the symbol for
internal energy.

10.6

This device, called Hero’s engine, was
invented around 150 B.C. by Hero
in Alexandria. When water is
boiled in the flask, which is sus-
pended by a cord, steam exits
through two tubes at the sides (in
opposite directions), creating a
torque that rotates the flask.
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where all quantities must have the same units of measure for energy.6 Equation 20.9
is known as the first-law equation and is a key concept in many applications. As a
reminder, we use the convention that Q is positive when energy enters the system
and negative when energy leaves the system, and that W is positive when the system
does work on the surroundings and negative when work is done on the system.

When a system undergoes an infinitesimal change in state in which a small
amount of energy dQ is transferred by heat and a small amount of work dW is
done, the internal energy changes by a small amount dE int . Thus, for infinitesimal
processes we can express the first-law equation as7

The first-law equation is an energy conservation equation specifying that the
only type of energy that changes in the system is the internal energy E int . Let us
look at some special cases in which this condition exists. 

First, let us consider an isolated system—that is, one that does not interact with
its surroundings. In this case, no energy transfer by heat takes place and the 
value of the work done by the system is zero; hence, the internal energy remains
constant. That is, because it follows that and thus

We conclude that the internal energy Eint of an isolated system
remains constant.

Next, we consider the case of a system (one not isolated from its surround-
ings) that is taken through a cyclic process—that is, a process that starts and
ends at the same state. In this case, the change in the internal energy must again
be zero, and therefore the energy Q added to the system must equal the work W
done by the system during the cycle. That is, in a cyclic process,

On a PV diagram, a cyclic process appears as a closed curve. (The processes de-
scribed in Figure 20.5 are represented by open curves because the initial and final
states differ.) It can be shown that in a cyclic process, the net work done by the
system per cycle equals the area enclosed by the path representing the
process on a PV diagram.

If the value of the work done by the system during some process is zero, then
the change in internal energy �E int equals the energy transfer Q into or out of the
system:

If energy enters the system, then Q is positive and the internal energy increases.
For a gas, we can associate this increase in internal energy with an increase in the
kinetic energy of the molecules. Conversely, if no energy transfer occurs during
some process but work is done by the system, then the change in internal energy
equals the negative value of the work done by the system:

�E int � �W

�E int � Q

�E int � 0  and  Q � W

E int , i � E int , f .
�E int � 0,Q � W � 0,

dE int � dQ � dWFirst-law equation for infinitesimal
changes

Isolated system

Cyclic process

6 For the definition of work from our mechanics studies, the first law would be written as
because energy transfer into the system by either work or heat would increase the inter-

nal energy of the system. Because of the reversal of the definition of positive work discussed in Section
20.4, the first law appears as in Equation 20.9, with a minus sign.
7 Note that dQ and dW are not true differential quantities; however, dE int is. Because dQ and dW are in-
exact differentials, they are often represented by the symbols and . For further details on this
point, see an advanced text on thermodynamics, such as R. P. Bauman, Modern Thermodynamics and Sta-
tistical Mechanics, New York, Macmillan Publishing Co., 1992.

dWdQ

�E int � Q 	 W
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For example, if a gas is compressed by a moving piston in an insulated cylinder, no
energy is transferred by heat and the work done by the gas is negative; thus, the in-
ternal energy increases because kinetic energy is transferred from the moving pis-
ton to the gas molecules.

On a microscopic scale, no distinction exists between the result of heat and
that of work. Both heat and work can produce a change in the internal energy of a
system. Although the macroscopic quantities Q and W are not properties of a sys-
tem, they are related to the change of the internal energy of a system through the
first-law equation. Once we define a process, or path, we can either calculate or
measure Q and W, and we can find the change in the system’s internal energy us-
ing the first-law equation.

One of the important consequences of the first law of thermodynamics is
that there exists a quantity known as internal energy whose value is determined
by the state of the system. The internal energy function is therefore called a state
function.

SOME APPLICATIONS OF THE FIRST LAW
OF THERMODYNAMICS

Before we apply the first law of thermodynamics to specific systems, it is useful for
us to first define some common thermodynamic processes. An adiabatic process
is one during which no energy enters or leaves the system by heat—that is, 
An adiabatic process can be achieved either by thermally insulating the system
from its surroundings (as shown in Fig. 20.6b) or by performing the process
rapidly, so that there is little time for energy to transfer by heat. Applying the first
law of thermodynamics to an adiabatic process, we see that

(20.10)

From this result, we see that if a gas expands adiabatically such that W is positive,
then �E int is negative and the temperature of the gas decreases. Conversely, the
temperature of a gas increases when the gas is compressed adiabatically.

Adiabatic processes are very important in engineering practice. Some com-
mon examples are the expansion of hot gases in an internal combustion engine,
the liquefaction of gases in a cooling system, and the compression stroke in a
diesel engine.

The process described in Figure 20.6b, called an adiabatic free expansion, is
unique. The process is adiabatic because it takes place in an insulated container.
Because the gas expands into a vacuum, it does not apply a force on a piston as
was depicted in Figure 20.6a, so no work is done on or by the gas. Thus, in this adi-
abatic process, both and As a result, for this process, as we
can see from the first law. That is, the initial and final internal energies of a
gas are equal in an adiabatic free expansion. As we shall see in the next chap-
ter, the internal energy of an ideal gas depends only on its temperature. Thus, we
expect no change in temperature during an adiabatic free expansion. This predic-
tion is in accord with the results of experiments performed at low pressures. (Ex-
periments performed at high pressures for real gases show a slight decrease or in-
crease in temperature after the expansion. This change is due to intermolecular
interactions, which represent a deviation from the model of an ideal gas.)

A process that occurs at constant pressure is called an isobaric process. In
such a process, the values of the heat and the work are both usually nonzero. The

�E int � 0W � 0.Q � 0

�E int � �W  (adiabatic process)

Q � 0.

20.6

In an adiabatic process, Q � 0.

First-law equation for an adiabatic
process

In an adiabatic free expansion,
�E int � 0.

In an isobaric process, P remains
constant.
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work done by the gas is simply

(20.11)

where P is the constant pressure.
A process that takes place at constant volume is called an isovolumetric

process. In such a process, the value of the work done is clearly zero because the
volume does not change. Hence, from the first law we see that in an isovolumetric
process, because 

(20.12)

This expression specifies that if energy is added by heat to a system kept at
constant volume, then all of the transferred energy remains in the system as
an increase of the internal energy of the system. For example, when a can of
spray paint is thrown into a fire, energy enters the system (the gas in the can) by
heat through the metal walls of the can. Consequently, the temperature, and thus
the pressure, in the can increases until the can possibly explodes.

A process that occurs at constant temperature is called an isothermal
process. A plot of P versus V at constant temperature for an ideal gas yields a hy-
perbolic curve called an isotherm. The internal energy of an ideal gas is a function
of temperature only. Hence, in an isothermal process involving an ideal gas,

For an isothermal process, then, we conclude from the first law that the
energy transfer Q must be equal to the work done by the gas—that is, Any
energy that enters the system by heat is transferred out of the system by work; as a
result, no change of the internal energy of the system occurs.

In the last three columns of the following table, fill in the boxes with �, 	, or 0. For each
situation, the system to be considered is identified.

Quick Quiz 20.4

Q � W.
�E int � 0.

�E int � Q  (isovolumetric process)

W � 0,

W � P(Vf � Vi)  (isobaric process)

In an isothermal process, T
remains constant.

First-law equation for a constant-
volume process

f

i

V

PV = constant

Isotherm

P

Pi

Pf

Vi Vf

Situation System Q W �E int

(a) Rapidly pumping up Air in the pump
a bicycle tire

(b) Pan of room-temperature Water in the pan
water sitting on a hot stove

(c) Air quickly leaking Air originally in
out of a balloon balloon

Figure 20.7 The PV diagram for
an isothermal expansion of an
ideal gas from an initial state to a fi-
nal state. The curve is a hyperbola.

Isothermal Expansion of an Ideal Gas

Suppose that an ideal gas is allowed to expand quasi-statically at constant tempera-
ture, as described by the PV diagram shown in Figure 20.7. The curve is a hyper-
bola (see Appendix B, Eq. B.23), and the equation of state of an ideal gas with T
constant indicates that the equation of this curve is PV � constant. The isothermal
expansion of the gas can be achieved by placing the gas in thermal contact with an
energy reservoir at the same temperature, as shown in Figure 20.6a.

Let us calculate the work done by the gas in the expansion from state i to state
f. The work done by the gas is given by Equation 20.8. Because the gas is ideal and
the process is quasi-static, we can use the expression for each point onPV � nRT
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An Isothermal ExpansionEXAMPLE 20.6

(b) How much energy transfer by heat occurs with the sur-
roundings in this process?

2.7 � 103 J�

 W � (1.0 mol)(8.31 J/mol �K)(273 K) ln � 10.0
3.0 �A 1.0-mol sample of an ideal gas is kept at 0.0°C during an ex-

pansion from 3.0 L to 10.0 L. (a) How much work is done by
the gas during the expansion?

Solution Substituting the values into Equation 20.13, we
have

W � nRT ln� Vf

Vi
�

Work done by an ideal gas in an
isothermal process

the path. Therefore, we have

Because T is constant in this case, it can be removed from the integral along with
n and R:

To evaluate the integral, we used Evaluating this at the initial and 
final volumes, we have

(20.13)

Numerically, this work W equals the shaded area under the PV curve shown in Fig-
ure 20.7. Because the gas expands, and the value for the work done by the
gas is positive, as we expect. If the gas is compressed, then and the work
done by the gas is negative.

Characterize the paths in Figure 20.8 as isobaric, isovolumetric, isothermal, or adiabatic.
Note that for path B.Q � 0

Quick Quiz 20.5

Vf � Vi ,
Vf � Vi ,

W � nRT ln� Vf

Vi
�

�(dx/x) � lnx.

W � nRT �Vf

Vi

 
dV
V

� nRT ln V �Vf

Vi

W � �Vf

Vi

 P dV � �Vf

Vi

 
nRT

V
 dV

A

B

C

D

V

P

T1

T3

T2

T4
Figure 20.8 Identify the nature of paths
A, B, C, and D.
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Boiling WaterEXAMPLE 20.7
To determine the change in internal energy, we must know
the energy transfer Q needed to vaporize the water. Using
Equation 20.6 and the latent heat of vaporization for water,
we have

Hence, from the first law, the change in internal energy is

The positive value for �E int indicates that the internal energy
of the system increases. We see that most (2 090 J/2 260 J �
93%) of the energy transferred to the liquid goes into
increasing the internal energy of the system. Only 
169 J/2 260 J � 7% leaves the system by work done by the
steam on the surrounding atmosphere.

2.09 kJ�E int � Q � W � 2 260 J � 169 J �

Q � mLv � (1.00 � 10�3 kg)(2.26 � 106 J/kg) � 2 260 J

Suppose 1.00 g of water vaporizes isobarically at atmospheric
pressure (1.013 � 105 Pa). Its volume in the liquid state is

cm3, and its volume in the vapor state is
cm3. Find the work done in the expansion

and the change in internal energy of the system. Ignore any
mixing of the steam and the surrounding air—imagine that
the steam simply pushes the surrounding air out of the way.

Solution Because the expansion takes place at constant
pressure, the work done by the system in pushing away the
surrounding air is, from Equation 20.11,

169 J �

 � (1.013 � 105 Pa)(1 671 � 10�6 m3 � 1.00 � 10�6 m3)

W � P(Vf � Vi) 

Vf � Vvapor � 1 671
Vi � Vliquid � 1.00

Solution From the first law, we find that

(c) If the gas is returned to the original volume by means
of an isobaric process, how much work is done by the gas?

Solution The work done in an isobaric process is given by
Equation 20.11. We are not given the pressure, so we need to
incorporate the ideal gas law:

2.7 � 103 J  Q � W �

0 � Q � W

�E int � Q � W

Notice that we use the initial temperature and volume to de-
termine the value of the constant pressure because we do not
know the final temperature. The work done by the gas is neg-
ative because the gas is being compressed.

�1.6 � 103 J  �

   � (3.0 � 10�3m3 � 10.0 � 10�3m3)

 �
(1.0 mol)(8.31 J/mol �K)(273 K)

10.0 � 10�3 m3

W � P(Vf � Vi) �
nRTi

Vi
 (Vf � Vi) 

Heating a SolidEXAMPLE 20.8

The work done is

(b) What quantity of energy is transferred to the copper
by heat?

Solution Taking the specific heat of copper from Table
20.1 and using Equation 20.4, we find that the energy trans-
ferred by heat is

1.7 � 10�2 J�

W � P�V � (1.013 � 105 N/m2)(1.7 � 10�7 m3)

�V � (1.5 � 10�3)� 1.0 kg
8.92 � 103 kg/m3 � � 1.7 � 10�7 m3

A 1.0-kg bar of copper is heated at atmospheric pressure. If
its temperature increases from 20°C to 50°C, (a) what is the
work done by the copper on the surrounding atmosphere?

Solution Because the process is isobaric, we can find the
work done by the copper using Equation 20.11,

We can calculate the change in volume of
the copper using Equation 19.6. Using the average linear ex-
pansion coefficient for copper given in Table 19.2, and re-
membering that 
 � 3�, we obtain

The volume Vi is equal to m/�, and Table 15.1 indicates that
the density of copper is 8.92 � 103 kg/m3. Hence,

 � [5.1 � 10�5(�C)�1](50�C � 20�C)Vi � 1.5 � 10�3 Vi

�V � 
Vi �T

W � P(Vf � Vi).
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ENERGY TRANSFER MECHANISMS
It is important to understand the rate at which energy is transferred between a sys-
tem and its surroundings and the mechanisms responsible for the transfer. There-
fore, let us now look at three common energy transfer mechanisms that can result
in a change in internal energy of a system.

Thermal Conduction

The energy transfer process that is most clearly associated with a temperature dif-
ference is thermal conduction. In this process, the transfer can be represented
on an atomic scale as an exchange of kinetic energy between microscopic parti-
cles—molecules, atoms, and electrons—in which less energetic particles gain en-
ergy in collisions with more energetic particles. For example, if you hold one end
of a long metal bar and insert the other end into a flame, you will find that the
temperature of the metal in your hand soon increases. The energy reaches your
hand by means of conduction. We can understand the process of conduction by
examining what is happening to the microscopic particles in the metal. Initially,
before the rod is inserted into the flame, the microscopic particles are vibrating
about their equilibrium positions. As the flame heats the rod, those particles near
the flame begin to vibrate with greater and greater amplitudes. These particles, in
turn, collide with their neighbors and transfer some of their energy in the colli-
sions. Slowly, the amplitudes of vibration of metal atoms and electrons farther and
farther from the flame increase until, eventually, those in the metal near your
hand are affected. This increased vibration represents an increase in the tempera-
ture of the metal and of your potentially burned hand.

The rate of thermal conduction depends on the properties of the substance
being heated. For example, it is possible to hold a piece of asbestos in a flame in-
definitely. This implies that very little energy is conducted through the asbestos. In
general, metals are good thermal conductors, and materials such as asbestos, cork,
paper, and fiberglass are poor conductors. Gases also are poor conductors because
the separation distance between the particles is so great. Metals are good thermal
conductors because they contain large numbers of electrons that are relatively free
to move through the metal and so can transport energy over large distances. Thus,
in a good conductor, such as copper, conduction takes place both by means of the
vibration of atoms and by means of the motion of free electrons.

Conduction occurs only if there is a difference in temperature between two
parts of the conducting medium. Consider a slab of material of thickness �x and
cross-sectional area A. One face of the slab is at a temperature T1 , and the other
face is at a temperature (Fig. 20.9). Experimentally, it is found that theT2 � T1

20.7

(c) What is the increase in internal energy of the copper?

Solution From the first law of thermodynamics, we have

1.2 � 104 J�E int � Q � W � 1.2 � 104 J � 1.7 � 10�2 J �

1.2 � 104 JQ � mc�T � (1.0 kg)(387 J/kg ��C)(30�C) �
Note that almost all of the energy transferred into the system
by heat goes into increasing the internal energy. The fraction
of energy used to do work on the surrounding atmosphere is
only about 10�6! Hence, when analyzing the thermal expan-
sion of a solid or a liquid, the small amount of work done by
the system is usually ignored.

Melted snow pattern on a parking
lot surface indicates the presence
of underground hot water pipes
used to aid snow removal. Energy
from the water is conducted from
the pipes to the pavement, where it
causes the snow to melt.
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energy Q transferred in a time �t flows from the hotter face to the colder one. The
rate Q /�t at which this energy flows is found to be proportional to the cross-
sectional area and the temperature difference and inversely pro-
portional to the thickness:

It is convenient to use the symbol for power to represent the rate of energy
transfer: Note that has units of watts when Q is in joules and �t is in
seconds. For a slab of infinitesimal thickness dx and temperature difference dT, we
can write the law of thermal conduction as

(20.14)

where the proportionality constant k is the thermal conductivity of the material
and is the temperature gradient (the variation of temperature with posi-
tion).

Suppose that a long, uniform rod of length L is thermally insulated so that en-
ergy cannot escape by heat from its surface except at the ends, as shown in Figure
20.10. One end is in thermal contact with an energy reservoir at temperature T1 ,
and the other end is in thermal contact with a reservoir at temperature 
When a steady state has been reached, the temperature at each point along the
rod is constant in time. In this case if we assume that k is not a function of temper-
ature, the temperature gradient is the same everywhere along the rod and is

Thus the rate of energy transfer by conduction through the rod is

(20.15)

Substances that are good thermal conductors have large thermal conductivity
values, whereas good thermal insulators have low thermal conductivity values.
Table 20.3 lists thermal conductivities for various substances. Note that metals are
generally better thermal conductors than nonmetals are.

Will an ice cube wrapped in a wool blanket remain frozen for (a) a shorter length of time,
(b) the same length of time, or (c) a longer length of time than an identical ice cube ex-
posed to air at room temperature?

For a compound slab containing several materials of thicknesses L1 , L2 , . . .
and thermal conductivities k1 , k2 , . . . , the rate of energy transfer through the
slab at steady state is

(20.16)� �
A(T2 � T1)


i

(Li/k i)

Quick Quiz 20.6

� � kA 
(T2 � T1)

L

� dT
dx � �

T2 � T1

L

T2 � T1 .

� dT/dx �

� � kA� dT
dx �

�� � Q /�t.
�

Q
�t

� A 
�T
�x

�T � T2 � T1 ,

Law of thermal conduction

T1

Energy flow
for T2 >T1

T2
A

∆x

Figure 20.9 Energy transfer
through a conducting slab with a
cross-sectional area A and a thick-
ness �x. The opposite faces are at
different temperatures T1 and T2 .

T2

Insulation
T2 > T1

T1

L

Energy flow

Figure 20.10 Conduction of en-
ergy through a uniform, insulated
rod of length L. The opposite ends
are in thermal contact with energy
reservoirs at different tempera-
tures.
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where T1 and T2 are the temperatures of the outer surfaces (which are held con-
stant) and the summation is over all slabs. The following example shows how this
equation results from a consideration of two thicknesses of materials.

TABLE 20.3 Thermal Conductivities

Substance Thermal Conductivity (W/m °C)

Metals (at 25°C)
Aluminum 238
Copper 397
Gold 314
Iron 79.5
Lead 34.7
Silver 427

Nonmetals (approximate values)
Asbestos 0.08
Concrete 0.8
Diamond 2 300
Glass 0.8
Ice 2
Rubber 0.2
Water 0.6
Wood 0.08

Gases (at 20°C)
Air 0.023 4
Helium 0.138
Hydrogen 0.172
Nitrogen 0.023 4
Oxygen 0.023 8

�

Energy Transfer Through Two SlabsEXAMPLE 20.9
Two slabs of thickness L1 and L2 and thermal conductivities
k1 and k2 are in thermal contact with each other, as shown in
Figure 20.11. The temperatures of their outer surfaces are T1
and T2 , respectively, and T2 � T1 . Determine the tempera-
ture at the interface and the rate of energy transfer by con-
duction through the slabs in the steady-state condition.

Solution If T is the temperature at the interface, then the
rate at which energy is transferred through slab 1 is

(1)

The rate at which energy is transferred through slab 2 is

(2)

When a steady state is reached, these two rates must be equal;
hence,

�2 �
k2A(T2 � T)

L2

�1 �
k1A(T � T1)

L1

L 2 L 1

T 2 k 2 k 1 T 1

T

Figure 20.11 Energy transfer by conduction through two slabs in
thermal contact with each other. At steady state, the rate of energy
transfer through slab 1 equals the rate of energy transfer through
slab 2.
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Home Insulation

In engineering practice, the term L/k for a particular substance is referred to as
the R value of the material. Thus, Equation 20.16 reduces to

(20.17)

where The R values for a few common building materials are given in
Table 20.4. In the United States, the insulating properties of materials used in
buildings are usually expressed in engineering units, not SI units. Thus, in Table
20.4, measurements of R values are given as a combination of British thermal
units, feet, hours, and degrees Fahrenheit.

At any vertical surface open to the air, a very thin stagnant layer of air adheres
to the surface. One must consider this layer when determining the R value for a
wall. The thickness of this stagnant layer on an outside wall depends on the speed
of the wind. Energy loss from a house on a windy day is greater than the loss on a
day when the air is calm. A representative R value for this stagnant layer of air is
given in Table 20.4.

R i � Li/k i .

� �
A(T2 � T1)


i

R i

TABLE 20.4 R Values for Some Common Building
Materials

Material R value (ft2 °F h/Btu)

Hardwood siding (1 in. thick) 0.91
Wood shingles (lapped) 0.87
Brick (4 in. thick) 4.00
Concrete block (filled cores) 1.93
Fiberglass batting (3.5 in. thick) 10.90
Fiberglass batting (6 in. thick) 18.80
Fiberglass board (1 in. thick) 4.35
Cellulose fiber (1 in. thick) 3.70
Flat glass (0.125 in. thick) 0.89
Insulating glass (0.25-in. space) 1.54
Air space (3.5 in. thick) 1.01
Stagnant air layer 0.17
Drywall (0.5 in. thick) 0.45
Sheathing (0.5 in. thick) 1.32

��

Solving for T gives

(3) T �
k1L2T1 	 k2L1T2

k1L2 	 k2L1

k1A(T � T1)
L1

�
k2A(T2 � T)

L2

Substituting (3) into either (1) or (2), we obtain

Extension of this model to several slabs of materials leads to
Equation 20.16.

� �
A(T2 � T1)

(L1/k1) 	 (L2/k2)

Energy is conducted from the in-
side to the exterior more rapidly
on the part of the roof where the
snow has melted. The dormer ap-
pears to have been added and insu-
lated. The main roof does not ap-
pear to be well insulated.
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Convection

At one time or another, you probably have warmed your hands by holding them
over an open flame. In this situation, the air directly above the flame is heated and
expands. As a result, the density of this air decreases and the air rises. This warmed
mass of air heats your hands as it flows by. Energy transferred by the movement
of a heated substance is said to have been transferred by convection. When
the movement results from differences in density, as with air around a fire, it is re-
ferred to as natural convection. Air flow at a beach is an example of natural convec-
tion, as is the mixing that occurs as surface water in a lake cools and sinks (see

The R Value of a Typical WallEXAMPLE 20.10
Exercise If a layer of fiberglass insulation 3.5 in. thick is
placed inside the wall to replace the air space, as shown in
Figure 20.12b, what is the new total R value? By what factor is
the energy loss reduced?

Answer ft2 � °F � h/Btu; 2.4.R � 17

Calculate the total R value for a wall constructed as shown in
Figure 20.12a. Starting outside the house (toward the front in
the figure) and moving inward, the wall consists of 4-in.
brick, 0.5-in. sheathing, an air space 3.5 in. thick, and 0.5-in.
drywall. Do not forget the stagnant air layers inside and out-
side the house.

Solution Referring to Table 20.4, we find that

7.12 ft2��F�h/Btu�R total

R6 (inside stagnant air layer)  � 0.17 ft2��F�h/Btu

R5 (drywall)  � 0.45 ft2��F�h/Btu

R4 (air space)  � 1.01 ft2��F�h/Btu

R3 (sheathing)  � 1.32 ft2��F�h/Btu

R2 (brick)  � 4.00 ft2��F�h/Btu

R1 (outside stagnant air layer)  � 0.17 ft2��F�h/Btu

Sheathing

Insulation

Brick

Air
space

(a) (b)

Dry wall

Figure 20.12 An exterior house wall containing (a) an air space
and (b) insulation.

This thermogram of a home, made during cold weather, shows colors ranging from white and or-
ange (areas of greatest energy loss) to blue and purple (areas of least energy loss).
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Chapter 19). When the heated substance is forced to move by a fan or pump, as in
some hot-air and hot-water heating systems, the process is called forced convection.

If it were not for convection currents, it would be very difficult to boil water. As
water is heated in a teakettle, the lower layers are warmed first. The heated water
expands and rises to the top because its density is lowered. At the same time, the
denser, cool water at the surface sinks to the bottom of the kettle and is heated.

The same process occurs when a room is heated by a radiator. The hot radia-
tor warms the air in the lower regions of the room. The warm air expands and
rises to the ceiling because of its lower density. The denser, cooler air from above
sinks, and the continuous air current pattern shown in Figure 20.13 is established.

Radiation

The third means of energy transfer that we shall discuss is radiation. All objects
radiate energy continuously in the form of electromagnetic waves (see Chapter
34) produced by thermal vibrations of the molecules. You are likely familiar with
electromagnetic radiation in the form of the orange glow from an electric stove
burner, an electric space heater, or the coils of a toaster.

The rate at which an object radiates energy is proportional to the fourth
power of its absolute temperature. This is known as Stefan’s law and is expressed
in equation form as

(20.18)

where is the power in watts radiated by the object, � is a constant equal to 
5.669 6 � 10�8 W/m2 � K4, A is the surface area of the object in square meters, e is
the emissivity constant, and T is the surface temperature in kelvins. The value of
e can vary between zero and unity, depending on the properties of the surface of
the object. The emissivity is equal to the fraction of the incoming radiation that
the surface absorbs.

Approximately 1 340 J of electromagnetic radiation from the Sun passes per-
pendicularly through each 1 m2 at the top of the Earth’s atmosphere every second.
This radiation is primarily visible and infrared light accompanied by a significant
amount of ultraviolet radiation. We shall study these types of radiation in detail in
Chapter 34. Some of this energy is reflected back into space, and some is absorbed
by the atmosphere. However, enough energy arrives at the surface of the Earth
each day to supply all our energy needs on this planet hundreds of times over—if
only it could be captured and used efficiently. The growth in the number of solar
energy–powered houses built in this country reflects the increasing efforts being
made to use this abundant energy. Radiant energy from the Sun affects our day-to-
day existence in a number of ways. For example, it influences the Earth’s average
temperature, ocean currents, agriculture, and rain patterns.

What happens to the atmospheric temperature at night is another example of
the effects of energy transfer by radiation. If there is a cloud cover above the
Earth, the water vapor in the clouds absorbs part of the infrared radiation emitted
by the Earth and re-emits it back to the surface. Consequently, temperature levels
at the surface remain moderate. In the absence of this cloud cover, there is noth-
ing to prevent this radiation from escaping into space; thus the temperature de-
creases more on a clear night than on a cloudy one.

As an object radiates energy at a rate given by Equation 20.18, it also absorbs
electromagnetic radiation. If the latter process did not occur, an object would
eventually radiate all its energy, and its temperature would reach absolute zero.
The energy an object absorbs comes from its surroundings, which consist of other
objects that radiate energy. If an object is at a temperature T and its surroundings

�

� � �AeT 4Stefan’s law

Figure 20.13 Convection cur-
rents are set up in a room heated
by a radiator.
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are at a temperature T0 , then the net energy gained or lost each second by the ob-
ject as a result of radiation is

(20.19)

When an object is in equilibrium with its surroundings, it radiates and absorbs
energy at the same rate, and so its temperature remains constant. When an object
is hotter than its surroundings, it radiates more energy than it absorbs, and its tem-
perature decreases. An ideal absorber is defined as an object that absorbs all the
energy incident on it, and for such a body, e = 1. Such an object is often referred to
as a black body. An ideal absorber is also an ideal radiator of energy. In contrast,
an object for which absorbs none of the energy incident on it. Such an ob-
ject reflects all the incident energy, and thus is an ideal reflector.

The Dewar Flask

The Dewar flask8 is a container designed to minimize energy losses by conduction,
convection, and radiation. Such a container is used to store either cold or hot liq-
uids for long periods of time. (A Thermos bottle is a common household equiva-
lent of a Dewar flask.) The standard construction (Fig. 20.14) consists of a double-
walled Pyrex glass vessel with silvered walls. The space between the walls is
evacuated to minimize energy transfer by conduction and convection. The silvered
surfaces minimize energy transfer by radiation because silver is a very good reflec-
tor and has very low emissivity. A further reduction in energy loss is obtained by re-
ducing the size of the neck. Dewar flasks are commonly used to store liquid nitro-
gen (boiling point: 77 K) and liquid oxygen (boiling point: 90 K).

To confine liquid helium (boiling point: 4.2 K), which has a very low heat of
vaporization, it is often necessary to use a double Dewar system in which the Dewar
flask containing the liquid is surrounded by a second Dewar flask. The space be-
tween the two flasks is filled with liquid nitrogen.

Newer designs of storage containers use “super insulation” that consists of
many layers of reflecting material separated by fiberglass. All of this is in a vacuum,
and no liquid nitrogen is needed with this design.

e � 0

�net � �Ae(T 4 � T0 

4)

Who Turned Down the Thermostat?EXAMPLE 20.11
(Why is the temperature given in kelvins?) At this rate, the to-
tal energy lost by the skin in 10 min is

Note that the energy radiated by the student is roughly equiv-
alent to that produced by two 60-W light bulbs!

7.5 � 104 JQ � �net � �t � (125 W)(600 s) �

A student is trying to decide what to wear. The surroundings
(his bedroom) are at 20.0°C. If the skin temperature of the
unclothed student is 35°C, what is the net energy loss from
his body in 10.0 min by radiation? Assume that the emissivity
of skin is 0.900 and that the surface area of the student is 
1.50 m2.

Solution Using Equation 20.19, we find that the net rate
of energy loss from the skin is

   �  (0.900)[(308 K)4 � (293 K)4] � 125 W

 � (5.67 � 10�8 W/m2�K4)(1.50 m2)

�net � �Ae(T 4 � T0 

4) 

8 Invented by Sir James Dewar (1842–1923).

Vacuum

Silvered
surfaces

Hot or
cold

substance

Figure 20.14 A cross-sectional
view of a Dewar flask, which is used
to store hot or cold substances.
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SUMMARY

Internal energy is all of a system’s energy that is associated with the system’s mi-
croscopic components. Internal energy includes kinetic energy of translation, rota-
tion, and vibration of molecules, potential energy within molecules, and potential
energy between molecules.

Heat is the transfer of energy across the boundary of a system resulting from a
temperature difference between the system and its surroundings. We use the sym-
bol Q for the amount of energy transferred by this process.

The calorie is the amount of energy necessary to raise the temperature of 1 g
of water from 14.5°C to 15.5°C. The mechanical equivalent of heat is 1 cal �
4.186 J.

The heat capacity C of any sample is the amount of energy needed to raise
the temperature of the sample by 1°C. The energy Q required to change the tem-
perature of a mass m of a substance by an amount �T is

(20.4)

where c is the specific heat of the substance.
The energy required to change the phase of a pure substance of mass m is

(20.6)

where L is the latent heat of the substance and depends on the nature of the
phase change and the properties of the substance.

The work done by a gas as its volume changes from some initial value Vi to
some final value Vf is

(20.8)

where P is the pressure, which may vary during the process. In order to evaluate
W, the process must be fully specified—that is, P and V must be known during
each step. In other words, the work done depends on the path taken between the
initial and final states.

The first law of thermodynamics states that when a system undergoes a
change from one state to another, the change in its internal energy is

(20.9)

where Q is the energy transferred into the system by heat and W is the work done
by the system. Although Q and W both depend on the path taken from the initial
state to the final state, the quantity �E int is path-independent. This central equation
is a statement of conservation of energy that includes changes in internal energy.

In a cyclic process (one that originates and terminates at the same state),
and, therefore, That is, the energy transferred into the system by

heat equals the work done by the system during the process.
In an adiabatic process, no energy is transferred by heat between the system

and its surroundings In this case, the first law gives That is,
the internal energy changes as a consequence of work being done by the system.
In the adiabatic free expansion of a gas, and thus, That
is, the internal energy of the gas does not change in such a process.

An isobaric process is one that occurs at constant pressure. The work done
in such a process is 

An isovolumetric process is one that occurs at constant volume. No work is
done in such a process, so �E int � Q .

W � P(Vf � Vi).

�E int � 0.W � 0;Q � 0

�E int � �W.(Q � 0).

Q � W.�E int � 0

�E int � Q � W

W � �Vf

Vi

 P dV

Q � mL

Q � mc�T
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An isothermal process is one that occurs at constant temperature. The work
done by an ideal gas during an isothermal process is

(20.13)

Energy may be transferred by work, which we addressed in Chapter 7, and by
conduction, convection, or radiation. Conduction can be viewed as an exchange
of kinetic energy between colliding molecules or electrons. The rate at which en-
ergy flows by conduction through a slab of area A is

(20.14)

where k is the thermal conductivity of the material from which the slab is made
and is the temperature gradient. This equation can be used in many sit-
uations in which the rate of transfer of energy through materials is important.

In convection, a heated substance moves from one place to another.
All bodies emit radiation in the form of electromagnetic waves at the rate

(20.18)

A body that is hotter than its surroundings radiates more energy than it absorbs,
whereas a body that is cooler than its surroundings absorbs more energy than it 
radiates.

� � �AeT 4

� dT/dx �

� � kA � dT
dx �

W � nRT ln� Vf

Vi
�

QUESTIONS

10. Figure Q20.10 shows a pattern formed by snow on the
roof of a barn. What causes the alternating pattern of
snowcover and exposed roof?

1. The specific heat of water is about two times that of ethyl
alcohol. Equal masses of alcohol and water are contained
in separate beakers and are supplied with the same
amount of energy. Compare the temperature increases of
the two liquids.

2. Give one reason why coastal regions tend to have a more
moderate climate than inland regions do.

3. A small metal crucible is taken from a 200°C oven and im-
mersed in a tub full of water at room temperature (this
process is often referred to as quenching). What is the ap-
proximate final equilibrium temperature?

4. What is the major problem that arises in measuring spe-
cific heats if a sample with a temperature greater than
100°C is placed in water?

5. In a daring lecture demonstration, an instructor dips his
wetted fingers into molten lead (327°C) and withdraws
them quickly, without getting burned. How is this possi-
ble? (This is a dangerous experiment that you should not
attempt.)

6. The pioneers found that placing a large tub of water in a
storage cellar would prevent their food from freezing on
really cold nights. Explain why.

7. What is wrong with the statement, “Given any two bodies,
the one with the higher temperature contains more heat.”

8. Why is it possible for you to hold a lighted match, even
when it is burned to within a few millimeters of your fin-
gertips?

9. Why is it more comfortable to hold a cup of hot tea by the
handle than by wrapping your hands around the cup itself?

Figure Q20.10 Alternating pattern on a snow-covered roof.

11. Why is a person able to remove a piece of dry aluminum
foil from a hot oven with bare fingers but burns his or her
fingers if there is moisture on the foil?

12. A tile floor in a bathroom may feel uncomfortably cold to
your bare feet, but a carpeted floor in an adjoining room
at the same temperature feels warm. Why?



632 C H A P T E R  2 0 Heat and the First Law of Thermodynamics

13. Why can potatoes be baked more quickly when a metal
skewer has been inserted through them?

14. Explain why a Thermos bottle has silvered walls and a vac-
uum jacket.

15. A piece of paper is wrapped around a rod made half of
wood and half of copper. When held over a flame, the pa-
per in contact with the wood burns but the paper in con-
tact with the metal does not. Explain.

16. Why is it necessary to store liquid nitrogen or liquid oxy-
gen in vessels equipped with either polystyrene insulation
or a double-evacuated wall?

17. Why do heavy draperies hung over the windows help
keep a home warm in the winter and cool in the summer?

18. If you wish to cook a piece of meat thoroughly on an
open fire, why should you not use a high flame? (Note:
Carbon is a good thermal insulator.)

19. When insulating a wood-frame house, is it better to place
the insulation against the cooler, outside wall or against
the warmer, inside wall? (In either case, an air barrier
must be considered.)

20. In an experimental house, polystyrene beads were
pumped into the air space between the panes of glass in
double-pane windows at night in the winter, and they
were pumped out to holding bins during the day. How
would this procedure assist in conserving energy in the
house?

21. Pioneers stored fruits and vegetables in underground cel-
lars. Discuss the advantages of choosing this location as a
storage site.

22. Concrete has a higher specific heat than soil does. Use
this fact to explain (partially) why cities have a higher av-
erage night-time temperature than the surrounding
countryside does. If a city is hotter than the surrounding
countryside, would you expect breezes to blow from city
to country or from country to city? Explain.

23. When camping in a canyon on a still night, a hiker no-

tices that a breeze begins to stir as soon as the Sun strikes
the surrounding peaks. What causes the breeze?

24. Updrafts of air are familiar to all pilots and are used to keep
non-motorized gliders aloft. What causes these currents?

25. If water is a poor thermal conductor, why can it be heated
quickly when placed over a flame?

26. The United States penny is now made of copper-coated
zinc. Can a calorimetric experiment be devised to test for
the metal content in a collection of pennies? If so, de-
scribe such a procedure.

27. If you hold water in a paper cup over a flame, you can
bring the water to a boil without burning the cup. How is
this possible?

28. When a sealed Thermos bottle full of hot coffee is shaken,
what are the changes, if any, in (a) the temperature of the
coffee and (b) the internal energy of the coffee?

29. Using the first law of thermodynamics, explain why the to-
tal energy of an isolated system is always constant.

30. Is it possible to convert internal energy into mechanical
energy? Explain using examples.

31. Suppose that you pour hot coffee for your guests and one
of them chooses to drink the coffee after it has been in
the cup for several minutes. For the coffee to be warmest,
should the person add the cream just after the coffee is
poured or just before drinking it? Explain.

32. Suppose that you fill two identical cups both at room tem-
perature with the same amount of hot coffee. One cup
contains a metal spoon, while the other does not. If you
wait for several minutes, which of the two contains the
warmer coffee? Which energy transfer process accounts
for this result?

33. A warning sign often seen on highways just before a
bridge is “Caution—Bridge Surface Freezes Before Road
Surface.” Which of the three energy transfer processes is
most important in causing a bridge surface to freeze be-
fore a road surface on very cold days?

PROBLEMS

Section 20.2 Heat Capacity and Specific Heat
3. The temperature of a silver bar rises by 10.0°C when it

absorbs 1.23 kJ of energy by heat. The mass of the bar is
525 g. Determine the specific heat of silver.

4. A 50.0-g sample of copper is at 25.0°C. If 1 200 J of energy
is added to it by heat, what is its final temperature?

5. A 1.50-kg iron horseshoe initially at 600°C is dropped
into a bucket containing 20.0 kg of water at 25.0°C.
What is the final temperature? (Neglect the heat capac-
ity of the container and assume that a negligible
amount of water boils away.)

Section 20.1 Heat and Internal Energy
1. Water at the top of Niagara Falls has a temperature of

10.0°C. It falls through a distance of 50.0 m. Assuming
that all of its potential energy goes into warming of the
water, calculate the temperature of the water at the bot-
tom of the Falls.

2. Consider Joule’s apparatus described in Figure 20.1.
Each of the two masses is 1.50 kg, and the tank is filled
with 200 g of water. What is the increase in the tempera-
ture of the water after the masses fall through a distance
of 3.00 m?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB



Problems 633

6. An aluminum cup with a mass of 200 g contains 800 g
of water in thermal equilibrium at 80.0°C. The combi-
nation of cup and water is cooled uniformly so that the
temperature decreases at a rate of 1.50°C/min. At what
rate is energy being removed by heat? Express your an-
swer in watts.

7. An aluminum calorimeter with a mass of 100 g contains
250 g of water. The calorimeter and water are in ther-
mal equilibrium at 10.0°C. Two metallic blocks are
placed into the water. One is a 50.0-g piece of copper at
80.0°C; the other block has a mass of 70.0 g and is origi-
nally at a temperature of 100°C. The entire system stabi-
lizes at a final temperature of 20.0°C. (a) Determine the
specific heat of the unknown sample. (b) Guess the ma-
terial of the unknown, using the data given in Table
20.1.

8. Lake Erie contains roughly 4.00 � 1011 m3 of water. 
(a) How much energy is required to raise the tempera-
ture of this volume of water from 11.0°C to 12.0°C? 
(b) Approximately how many years would it take to sup-
ply this amount of energy with the use of a 1 000-MW
wasted energy output of an electric power plant?

9. A 3.00-g copper penny at 25.0°C drops from a height of
50.0 m to the ground. (a) If 60.0% of the change in po-
tential energy goes into increasing the internal energy,
what is its final temperature? (b) Does the result you ob-
tained in (a) depend on the mass of the penny? Explain.

10. If a mass mh of water at Th is poured into an aluminum
cup of mass mAl containing mass mc of water at Tc ,
where what is the equilibrium temperature of
the system?

11. A water heater is operated by solar power. If the solar
collector has an area of 6.00 m2 and the power deliv-
ered by sunlight is 550 W/m2, how long does it take to
increase the temperature of 1.00 m3 of water from
20.0°C to 60.0°C?

Section 20.3 Latent Heat
12. How much energy is required to change a 40.0-g ice

cube from ice at � 10.0°C to steam at 110°C?
13. A 3.00-g lead bullet at 30.0°C is fired at a speed of 

240 m/s into a large block of ice at 0°C, in which it be-
comes embedded. What quantity of ice melts?

14. Steam at 100°C is added to ice at 0°C. (a) Find the
amount of ice melted and the final temperature when
the mass of steam is 10.0 g and the mass of ice is 50.0 g.
(b) Repeat this calculation, taking the mass of steam as
1.00 g and the mass of ice as 50.0 g.

15. A 1.00-kg block of copper at 20.0°C is dropped into a
large vessel of liquid nitrogen at 77.3 K. How many
kilograms of nitrogen boil away by the time the 
copper reaches 77.3 K? (The specific heat of copper is
0.092 0 cal/g � °C. The latent heat of vaporization of ni-
trogen is 48.0 cal/g.)

16. A 50.0-g copper calorimeter contains 250 g of water at
20.0°C. How much steam must be condensed into the

Th � Tc ,

water if the final temperature of the system is to reach
50.0°C?

17. In an insulated vessel, 250 g of ice at 0°C is added to
600 g of water at 18.0°C. (a) What is the final tempera-
ture of the system? (b) How much ice remains when the
system reaches equilibrium?

18. Review Problem. Two speeding lead bullets, each hav-
ing a mass of 5.00 g, a temperature of 20.0°C, and a
speed of 500 m/s, collide head-on. Assuming a perfectly
inelastic collision and no loss of energy to the atmos-
phere, describe the final state of the two-bullet system.

19. If 90.0 g of molten lead at 327.3°C is poured into a 
300-g casting form made of iron and initially at 20.0°C,
what is the final temperature of the system? (Assume
that no energy loss to the environment occurs.)

Section 20.4 Work and Heat in 
Thermodynamic Processes

20. Gas in a container is at a pressure of 1.50 atm and a
volume of 4.00 m3. What is the work done by the gas 
(a) if it expands at constant pressure to twice its initial
volume? (b) If it is compressed at constant pressure to
one quarter of its initial volume?

21. A sample of ideal gas is expanded to twice its original
volume of 1.00 m3 in a quasi-static process for which

with atm/m6, as shown in Figure
P20.21. How much work is done by the expanding gas?

� � 5.00P � �V 2,

WEB
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Figure P20.22

22. (a) Determine the work done by a fluid that expands
from i to f as indicated in Figure P20.22. (b) How much
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cycle is reversed—that is, if the process follows the path
ACBA—what is the net energy input per cycle by heat?

31. Consider the cyclic process depicted in Figure P20.30. If
Q is negative for the process BC, and if �E int is negative
for the process CA, what are the signs of Q , W, and
�E int that are associated with each process?

32. A sample of an ideal gas goes through the process shown
in Figure P20.32. From A to B, the process is adiabatic;
from B to C, it is isobaric, with 100 kJ of energy flowing
into the system by heat. From C to D, the process is
isothermal; from D to A, it is isobaric, with 150 kJ of en-
ergy flowing out of the system by heat. Determine the
difference in internal energy, E int, B � E int, A .

WEB

Figure P20.27

work is performed by the fluid if it is compressed from 
f to i along the same path?

23. One mole of an ideal gas is heated slowly so that it goes
from PV state (Pi , Vi) to (3Pi , 3Vi) in such a way that the
pressure of the gas is directly proportional to the vol-
ume. (a) How much work is done in the process? 
(b) How is the temperature of the gas related to its vol-
ume during this process?

24. A sample of helium behaves as an ideal gas as energy is
added by heat at constant pressure from 273 K to 373 K.
If the gas does 20.0 J of work, what is the mass of helium
present?

25. An ideal gas is enclosed in a cylinder with a movable
piston on top. The piston has a mass of 8 000 g and an
area of 5.00 cm2 and is free to slide up and down, keep-
ing the pressure of the gas constant. How much work is
done as the temperature of 0.200 mol of the gas is
raised from 20.0°C to 300°C?

26. An ideal gas is enclosed in a cylinder that has a movable
piston on top. The piston has a mass m and an area A
and is free to slide up and down, keeping the pressure
of the gas constant. How much work is done as the tem-
perature of n mol of the gas is raised from T1 to T2 ?

27. A gas expands from I to F along three possible paths, as
indicated in Figure P20.27. Calculate the work in joules
done by the gas along the paths IAF, IF, and IBF.

I A

F
B

P(atm)

4

3

2

1

0 1 42 3
V(liters)

Section 20.5 The First Law of Thermodynamics
28. A gas is compressed from 9.00 L to 2.00 L at a constant

pressure of 0.800 atm. In the process, 400 J of energy
leaves the gas by heat. (a) What is the work done by the
gas? (b) What is the change in its internal energy?

29. A thermodynamic system undergoes a process in which
its internal energy decreases by 500 J. If, at the same
time, 220 J of work is done on the system, what is the
energy transferred to or from it by heat?

30. A gas is taken through the cyclic process described in
Figure P20.30. (a) Find the net energy transferred to
the system by heat during one complete cycle. (b) If the

Section 20.6 Some Applications of the First Law 
of Thermodynamics

33. An ideal gas initially at 300 K undergoes an isobaric
expansion at 2.50 kPa. If the volume increases from
1.00 m3 to 3.00 m3 and if 12.5 kJ of energy is trans-
ferred to the gas by heat, what are (a) the change in its
internal energy and (b) its final temperature?

34. One mole of an ideal gas does 3 000 J of work on its
surroundings as it expands isothermally to a final pres-
sure of 1.00 atm and a volume of 25.0 L. Determine 
(a) the initial volume and (b) the temperature of the
gas.

35. How much work is done by the steam when 1.00 mol of
water at 100°C boils and becomes 1.00 mol of steam at

4

6

2

8
P(kPa)
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C
A

6 8 10
V(m3)

Figure P20.30 Problems 30 and 31.
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How much energy is lost every second by heat when the
steam is at 200°C and the surrounding air is at 20.0°C?
The pipe has a circumference of 20.0 cm and a length
of 50.0 m. Neglect losses through the ends of the pipe.

42. A box with a total surface area of 1.20 m2 and a wall
thickness of 4.00 cm is made of an insulating material.
A 10.0-W electric heater inside the box maintains the in-
side temperature at 15.0°C above the outside tempera-
ture. Find the thermal conductivity k of the insulating
material.

43. A glass window pane has an area of 3.00 m2 and a thick-
ness of 0.600 cm. If the temperature difference between
its surfaces is 25.0°C, what is the rate of energy transfer
by conduction through the window?

44. A thermal window with an area of 6.00 m2 is con-
structed of two layers of glass, each 4.00 mm thick and
separated from each other by an air space of 5.00 mm.
If the inside surface is at 20.0°C and the outside is at
� 30.0°C, what is the rate of energy transfer by conduc-
tion through the window?

45. A bar of gold is in thermal contact with a bar of silver of
the same length and area (Fig. P20.45). One end of the
compound bar is maintained at 80.0°C, while the oppo-
site end is at 30.0°C. When the rate of energy transfer
by conduction reaches steady state, what is the tempera-
ture at the junction?

Problems 635

100°C and at 1.00 atm pressure? Assuming the steam to
be an ideal gas, determine the change in internal en-
ergy of the steam as it vaporizes.

36. A 1.00-kg block of aluminum is heated at atmospheric
pressure such that its temperature increases from
22.0°C to 40.0°C. Find (a) the work done by the
aluminum, (b) the energy added to it by heat, and 
(c) the change in its internal energy.

37. A 2.00-mol sample of helium gas initially at 300 K and
0.400 atm is compressed isothermally to 1.20 atm.
Assuming the behavior of helium to be that of an ideal
gas, find (a) the final volume of the gas, (b) the work
done by the gas, and (c) the energy transferred by heat.

38. One mole of water vapor at a temperature of 373 K
cools down to 283 K. The energy given off from the
cooling vapor by heat is absorbed by 10.0 mol of an
ideal gas, causing it to expand at a constant tempera-
ture of 273 K. If the final volume of the ideal gas is 
20.0 L, what is the initial volume of the ideal gas?

39. An ideal gas is carried through a thermodynamic cycle
consisting of two isobaric and two isothermal processes,
as shown in Figure P20.39. Show that the net work done
in the entire cycle is given by the equation

Wnet � P1(V2 � V1) ln 
P2

P1

46. Two rods of the same length but made of different ma-
terials and having different cross-sectional areas are
placed side by side, as shown in Figure P20.46. Deter-

40. In Figure P20.40, the change in internal energy of a gas
that is taken from A to C is 	 800 J. The work done
along the path ABC is 	 500 J. (a) How much energy
must be added to the system by heat as it goes from A
through B and on to C ? (b) If the pressure at point A is
five times that at point C, what is the work done by the
system in going from C to D ? (c) What is the energy ex-
changed with the surroundings by heat as the gas is
taken from C to A along the green path? (d) If the
change in internal energy in going from point D to
point A is 	 500 J, how much energy must be added to
the system by heat as it goes from point C to point D ?

Section 20.7 Energy Transfer Mechanisms
41. A steam pipe is covered with 1.50-cm-thick insulating ma-

terial with a thermal conductivity of 0.200 cal/cm � °C � s.

Figure P20.39
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mine the rate of energy transfer by conduction in terms
of the thermal conductivity and the area of each rod.
Generalize your result to a system consisting of several
rods.

47. Calculate the R value of (a) a window made of a single
pane of flat glass in. thick; (b) a thermal window
made of two single panes, each in. thick and separated
by a -in. air space. (c) By what factor is the thermal
conduction reduced if the thermal window replaces the
single-pane window?

48. The surface of the Sun has a temperature of about
5 800 K. The radius of the Sun is 6.96 � 108 m. Calcu-
late the total energy radiated by the Sun each second.
(Assume that 

49. A large, hot pizza floats in outer space. What is the or-
der of magnitude (a) of its rate of energy loss? (b) of its
rate of temperature change? List the quantities you esti-
mate and the value you estimate for each.

50. The tungsten filament of a certain 100-W light bulb ra-
diates 2.00 W of light. (The other 98 W is carried away
by convection and conduction.) The filament has a sur-
face area of 0.250 mm2 and an emissivity of 0.950. Find
the filament’s temperature. (The melting point of tung-
sten is 3 683 K.)

51. At high noon, the Sun delivers 1 000 W to each square
meter of a blacktop road. If the hot asphalt loses energy
only by radiation, what is its equilibrium temperature?

52. At our distance from the Sun, the intensity of solar radi-
ation is 1 340 W/m2. The temperature of the Earth is af-
fected by the so-called “greenhouse effect” of the atmos-
phere. This effect makes our planet’s emissivity for
visible light higher than its emissivity for infrared light.
For comparison, consider a spherical object with no at-
mosphere at the same distance from the Sun as the
Earth. Assume that its emissivity is the same for all kinds
of electromagnetic waves and that its temperature is
uniform over its surface. Identify the projected area
over which it absorbs sunlight and the surface area over
which it radiates. Compute its equilibrium temperature.
Chilly, isn’t it? Your calculation applies to (a) the aver-
age temperature of the Moon, (b) astronauts in mortal
danger aboard the crippled Apollo 13 spacecraft, and 
(c) global catastrophe on the Earth if widespread fires
caused a layer of soot to accumulate throughout the up-
per atmosphere so that most of the radiation from the
Sun was absorbed there rather than at the surface below
the atmosphere.

e � 0.965.)
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ADDITIONAL PROBLEMS

53. One hundred grams of liquid nitrogen at 77.3 K is
stirred into a beaker containing 200 g of water at
5.00°C. If the nitrogen leaves the solution as soon as it
turns to gas, how much water freezes? (The latent heat
of vaporization of nitrogen is 48.0 cal/g, and the latent
heat of fusion of water is 79.6 cal/g.)

54. A 75.0-kg cross-country skier moves across the snow
(Fig. P20.54). The coefficient of friction between the
skis and the snow is 0.200. Assume that all the snow be-
neath his skis is at 0°C and that all the internal energy
generated by friction is added to the snow, which sticks
to his skis until it melts. How far would he have to ski to
melt 1.00 kg of snow?

55. An aluminum rod 0.500 m in length and with a cross-
sectional area 2.50 cm2 is inserted into a thermally insu-
lated vessel containing liquid helium at 4.20 K. The rod
is initially at 300 K. (a) If one half of the rod is inserted
into the helium, how many liters of helium boil off by
the time the inserted half cools to 4.20 K? (Assume that
the upper half does not yet cool.) (b) If the upper end
of the rod is maintained at 300 K, what is the approxi-
mate boil-off rate of liquid helium after the lower half
has reached 4.20 K? (Aluminum has thermal conduc-
tivity of 31.0 J/s � cm � K at 4.2 K; ignore its tempera-
ture variation. Aluminum has a specific heat of 
0.210 cal/g � °C and density of 2.70 g/cm3. The density
of liquid helium is 0.125 g/cm3.)

56. On a cold winter day, you buy a hot dog from a street
vendor. Into the pocket of your down parka you put 
the change he gives you: coins consisting of 9.00 g of
copper at � 12.0°C. Your pocket already contains 
14.0 g of silver coins at 30.0°C. A short time later, the
temperature of the copper coins is 4.00°C and is in-
creasing at a rate of 0.500°C/s. At this time (a) what 
is the temperature of the silver coins, and (b) at what
rate is it changing? (Neglect energy transferred to the
surroundings.)

Figure P20.46
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Figure P20.54 A cross-country skier. (Nathan Bilow/Leo de Wys, Inc.)
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64. Water in an electric teakettle is boiling. The power ab-
sorbed by the water is 1.00 kW. Assuming that the pres-
sure of the vapor in the kettle equals atmospheric pres-
sure, determine the speed of effusion of vapor from the
kettle’s spout if the spout has a cross-sectional area of
2.00 cm2.

65. Liquid water evaporates and even boils at temperatures
other than 100°C, depending on the ambient pressure.
Suppose that the latent heat of vaporization in Table
20.2 describes the liquid–vapor transition at all temper-
atures. A chamber contains 1.00 kg of water at 0°C un-
der a piston, which just touches the water’s surface. The
piston is then raised quickly so that part of the water is
vaporized and the other part is frozen (no liquid re-
mains). Assuming that the temperature remains con-

57. A flow calorimeter is an apparatus used to measure the
specific heat of a liquid. The technique of flow calorime-
try involves measuring the temperature difference be-
tween the input and output points of a flowing stream of
the liquid while energy is added by heat at a known rate.
In one particular experiment, a liquid with a density of
0.780 g/cm3 flows through the calorimeter at the rate of
4.00 cm3/s. At steady state, a temperature difference of
4.80°C is established between the input and output
points when energy is supplied by heat at the rate of 
30.0 J/s. What is the specific heat of the liquid?

58. A flow calorimeter is an apparatus used to measure the
specific heat of a liquid. The technique of flow
calorimetry involves measuring the temperature differ-
ence between the input and output points of a flowing
stream of the liquid while energy is added by heat at a
known rate. In one particular experiment, a liquid of
density � flows through the calorimeter with volume
flow rate R. At steady state, a temperature difference
�T is established between the input and output points
when energy is supplied at the rate �. What is the spe-
cific heat of the liquid?

59. One mole of an ideal gas, initially at 300 K, is cooled at
constant volume so that the final pressure is one-fourth
the initial pressure. The gas then expands at constant
pressure until it reaches the initial temperature. Deter-
mine the work done by the gas.

60. One mole of an ideal gas is contained in a cylinder with
a movable piston. The initial pressure, volume, and tem-
perature are Pi , Vi , and Ti , respectively. Find the work
done by the gas for the following processes and show
each process on a PV diagram: (a) An isobaric compres-
sion in which the final volume is one-half the initial vol-
ume. (b) An isothermal compression in which the final
pressure is four times the initial pressure. (c) An isovol-
umetric process in which the final pressure is triple the
initial pressure.

61. An ideal gas initially at Pi , Vi , and Ti is taken through a
cycle as shown in Figure P20.61. (a) Find the net work
done by the gas per cycle. (b) What is the net energy
added by heat to the system per cycle? (c) Obtain a nu-

merical value for the net work done per cycle for 
1.00 mol of gas initially at 0°C.

62. Review Problem. An iron plate is held against an iron
wheel so that a sliding frictional force of 50.0 N acts be-
tween the two pieces of metal. The relative speed at
which the two surfaces slide over each other is 40.0 m/s.
(a) Calculate the rate at which mechanical energy is
converted to internal energy. (b) The plate and the
wheel each have a mass of 5.00 kg, and each receives
50.0% of the internal energy. If the system is run as de-
scribed for 10.0 s and each object is then allowed to
reach a uniform internal temperature, what is the resul-
tant temperature increase?

63. A “solar cooker” consists of a curved reflecting mirror
that focuses sunlight onto the object to be warmed (Fig.
P20.63). The solar power per unit area reaching the
Earth at the location is 600 W/m2, and the cooker has a
diameter of 0.600 m. Assuming that 40.0% of the inci-
dent energy is transferred to the water, how long does it
take to completely boil off 0.500 L of water initially at
20.0°C? (Neglect the heat capacity of the container.)
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stant at 0°C, determine the mass of the ice that forms in
the chamber.

66. A cooking vessel on a slow burner contains 10.0 kg of
water and an unknown mass of ice in equilibrium at 0°C
at time The temperature of the mixture is mea-
sured at various times, and the result is plotted in Fig-
ure P20.66. During the first 50.0 min, the mixture re-
mains at 0°C. From 50.0 min to 60.0 min, the tem-
perature increases to 2.00°C. Neglecting the heat capac-
ity of the vessel, determine the initial mass of the ice.

t � 0.

side temperature is 0.0°C? Disregard radiation and the
energy lost by heat through the ground.

69. A pond of water at 0°C is covered with a layer of ice 
4.00 cm thick. If the air temperature stays constant at
� 10.0°C, how long does it take the ice’s thickness to
increase to 8.00 cm? (Hint: To solve this problem, use
Equation 20.14 in the form

and note that the incremental energy dQ extracted
from the water through the thickness x of ice is the
amount required to freeze a thickness dx of ice. That is,

where � is the density of the ice, A is the
area, and L is the latent heat of fusion.)

70. The inside of a hollow cylinder is maintained at a tem-
perature Ta while the outside is at a lower temperature
Tb (Fig. P20.70). The wall of the cylinder has a thermal
conductivity k. Neglecting end effects, show that the
rate of energy conduction from the inner to the outer
wall in the radial direction is

(Hint: The temperature gradient is dT/dr. Note that a
radial flow of energy occurs through a concentric cylin-
der of area 2�rL.)

dQ
dt

� 2�Lk � Ta � Tb

ln(b/a) �

dQ � L�A dx,

dQ
dt

� kA 
�T
x

67. Review Problem. (a) In air at 0°C, a 1.60-kg copper
block at 0°C is set sliding at 2.50 m/s over a sheet of ice
at 0°C. Friction brings the block to rest. Find the mass
of the ice that melts. To describe the process of slowing
down, identify the energy input Q , the work output W,
the change in internal energy �E int , and the change in
mechanical energy �K for both the block and the ice.
(b) A 1.60-kg block of ice at 0°C is set sliding at 
2.50 m/s over a sheet of copper at 0°C. Friction brings
the block to rest. Find the mass of the ice that melts.
Identify Q , W, �E int , and �K for the block and for the
metal sheet during the process. (c) A thin 1.60-kg slab
of copper at 20°C is set sliding at 2.50 m/s over an iden-
tical stationary slab at the same temperature. Friction
quickly stops the motion. If no energy is lost to the envi-
ronment by heat, find the change in temperature of
both objects. Identify Q , W, �E int , and �K for each ob-
ject during the process.

68. The average thermal conductivity of the walls (includ-
ing the windows) and roof of the house depicted in Fig-
ure P20.68 is 0.480 W/m � °C, and their average thick-
ness is 21.0 cm. The house is heated with natural gas
having a heat of combustion (that is, the energy pro-
vided per cubic meter of gas burned) of 9 300 kcal/m3.
How many cubic meters of gas must be burned each day
to maintain an inside temperature of 25.0°C if the out-

Figure P20.66

Figure P20.68

Figure P20.70
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ANSWERS TO QUICK QUIZZES

(a) Because the pumping is rapid, no energy enters or
leaves the system by heat; thus, Q � 0. Because work is
done on the system, this work is negative. Thus,

must be positive. The air in the pump is
warmer. (b) No work is done either by or on the system,
but energy flows into the water by heat from the hot
burner, making both Q and �E int positive. (c) Because
the leak is rapid, no energy flows into or out of the sys-
tem by heat; hence, Q � 0. The air molecules escaping
from the balloon do work on the surrounding air mole-
cules as they push them out of the way. Thus, W is posi-
tive and �E int is negative. The decrease in internal en-
ergy is evidenced by the fact that the escaping air
becomes cooler.

20.5 A is isovolumetric, B is adiabatic, C is isothermal, and D
is isobaric.

20.6 c. The blanket acts as a thermal insulator, slowing the
transfer of energy by heat from the air into the cube.

�E int � Q � W

20.1 (a) Water, glass, iron. Because water has the highest spe-
cific heat (4 186 J/kg � °C), it has the smallest change in
temperature. Glass is next (837 J/kg � °C), and iron is
last (448 J/kg � °C). (b) Iron, glass, water. For a given
temperature increase, the energy transfer by heat is pro-
portional to the specific heat.

20.2 Steam. According to Table 20.2, a kilogram of 100°C
steam releases 2.26 � 106 J of energy as it condenses to
100°C water. After it releases this much energy into your
skin, it is identical to 100°C water and will continue to
burn you.

20.3 C, A, E. The slope is the ratio of the temperature change
to the amount of energy input. Thus, the slope is pro-
portional to the reciprocal of the specific heat. Water,
which has the highest specific heat, has the least slope.

20.4

71. The passenger section of a jet airliner has the shape of a
cylindrical tube with a length of 35.0 m and an inner
radius of 2.50 m. Its walls are lined with an insulating
material 6.00 cm in thickness and having a thermal
conductivity of 4.00 � 10�5 cal/s � cm � °C. A heater
must maintain the interior temperature at 25.0°C while
the outside temperature is at � 35.0°C. What power
must be supplied to the heater if this temperature dif-
ference is to be maintained? (Use the result you ob-
tained in Problem 70.)

72. A student obtains the following data in a calorimetry ex-
periment designed to measure the specific heat of alu-
minum:

Use these data to determine the specific heat of alu-
minum. Your result should be within 15% of the value
listed in Table 20.1.

Initial temperature of water 70°C
and calorimeter

Mass of water 0.400 kg
Mass of calorimeter 0.040 kg
Specific heat of calorimeter 0.63 kJ/kg � °C
Initial temperature of aluminum 27°C
Mass of aluminum 0.200 kg
Final temperature of mixture 66.3°C

Situation System Q W �E int

(a) Rapidly pumping Air in the pump 0 � 	

up a bicycle tire
(b) Pan of room- Water in the pan 	 0 	

temperature water 
sitting on a hot stove

(c) Air quickly leaking Air originally in 0 	 �

out of a balloon the balloon
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During periods of strenuous exertion, our
bodies generate excess internal energy
that must be released into our surround-
ings. To facilitate this release, humans
perspire. Dogs and other animals pant to
accomplish the same goal. Both actions
involve the evaporation of a liquid. How
does this process help cool the body?
(Photograph of runner by Jim Cummins/FPG

International; photograph of beagle by Renee

Lynn/Photo Researchers, Inc.)
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21.1 Molecular Model of an Ideal Gas 641

n Chapter 19 we discussed the properties of an ideal gas, using such macro-
scopic variables as pressure, volume, and temperature. We shall now show that
such large-scale properties can be described on a microscopic scale, where mat-

ter is treated as a collection of molecules. Newton’s laws of motion applied in a sta-
tistical manner to a collection of particles provide a reasonable description of ther-
modynamic processes. To keep the mathematics relatively simple, we shall
consider molecular behavior of gases only, because in gases the interactions be-
tween molecules are much weaker than they are in liquids or solids. In the current
view of gas behavior, called the kinetic theory, gas molecules move about in a ran-
dom fashion, colliding with the walls of their container and with each other. Per-
haps the most important feature of this theory is that it demonstrates that the ki-
netic energy of molecular motion and the internal energy of a gas system are
equivalent. Furthermore, the kinetic theory provides us with a physical basis for
our understanding of the concept of temperature.

In the simplest model of a gas, each molecule is considered to be a hard
sphere that collides elastically with other molecules and with the container’s walls.
The hard-sphere model assumes that the molecules do not interact with each
other except during collisions and that they are not deformed by collisions. This
description is adequate only for monatomic gases, for which the energy is entirely
translational kinetic energy. One must modify the theory for more complex mole-
cules, such as oxygen (O2) and carbon dioxide (CO2), to include the internal en-
ergy associated with rotations and vibrations of the molecules.

MOLECULAR MODEL OF AN IDEAL GAS
We begin this chapter by developing a microscopic model of an ideal gas. The
model shows that the pressure that a gas exerts on the walls of its container is a
consequence of the collisions of the gas molecules with the walls. As we shall see,
the model is consistent with the macroscopic description of Chapter 19. In devel-
oping this model, we make the following assumptions:

• The number of molecules is large, and the average separation between mole-
cules is great compared with their dimensions. This means that the volume of
the molecules is negligible when compared with the volume of the container.

• The molecules obey Newton’s laws of motion, but as a whole they move ran-
domly. By “randomly” we mean that any molecule can move in any direction
with equal probability. We also assume that the distribution of speeds does not
change in time, despite the collisions between molecules. That is, at any given
moment, a certain percentage of molecules move at high speeds, a certain per-
centage move at low speeds, and a certain percentage move at speeds intermedi-
ate between high and low.

• The molecules undergo elastic collisions with each other and with the walls of
the container. Thus, in the collisions, both kinetic energy and momentum are
constant.

• The forces between molecules are negligible except during a collision. The
forces between molecules are short-range, so the molecules interact with each
other only during collisions.

• The gas under consideration is a pure substance. That is, all of its molecules are
identical.

Although we often picture an ideal gas as consisting of single atoms, we can as-
sume that the behavior of molecular gases approximates that of ideal gases rather

21.1

I

10.5

Assumptions of the molecular
model of an ideal gas



642 C H A P T E R  2 1 The Kinetic Theory of Gases

well at low pressures. Molecular rotations or vibrations have no effect, on the aver-
age, on the motions that we considered here.

Now let us derive an expression for the pressure of an ideal gas consisting of N
molecules in a container of volume V. The container is a cube with edges of length
d (Fig. 21.1). Consider the collision of one molecule moving with a velocity v to-
ward the right-hand face of the box. The molecule has velocity components vx , vy ,
and vz . Previously, we used m to represent the mass of a sample, but throughout
this chapter we shall use m to represent the mass of one molecule. As the molecule
collides with the wall elastically, its x component of velocity is reversed, while its y
and z components of velocity remain unaltered (Fig. 21.2). Because the x compo-
nent of the momentum of the molecule is mvx before the collision and � mvx after
the collision, the change in momentum of the molecule is

Applying the impulse–momentum theorem (Eq. 9.9) to the molecule gives

where F1 is the magnitude of the average force exerted by the wall on the mole-
cule in the time �t. The subscript 1 indicates that we are currently considering
only one molecule. For the molecule to collide twice with the same wall, it must
travel a distance 2d in the x direction. Therefore, the time interval between two
collisions with the same wall is Over a time interval that is long com-
pared with �t, the average force exerted on the molecule for each collision is

(21.1)

According to Newton’s third law, the average force exerted by the molecule on the
wall is equal in magnitude and opposite in direction to the force in Equation 21.1:

Each molecule of the gas exerts a force F1 on the wall. We find the total force F ex-
erted by all the molecules on the wall by adding the forces exerted by the individ-
ual molecules:

In this equation, vx1 is the x component of velocity of molecule 1, vx2 is the x com-
ponent of velocity of molecule 2, and so on. The summation terminates when we
reach N molecules because there are N molecules in the container.

To proceed further, we must note that the average value of the square of the
velocity in the x direction for N molecules is

Thus, the total force exerted on the wall can be written

Now let us focus on one molecule in the container whose velocity components
are vx , vy , and vz . The Pythagorean theorem relates the square of the speed of this

F �
Nm
d

 vx 

2

vx 

2 �
vx1 

2 � vx 2 

2 � ��� � vxN 

2

N

F �
m
d

 (vx1 

2 � vx 2 

2 � ���)

F1, on wall � �F1 � �� �mvx 

2

d � �
mvx 

2

d

F1 �
�2mvx

�t
�

�2mvx

2d/vx
�

�mvx 

2

d

�t � 2d/vx .

F1 �t � �px � �2mvx
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Figure 21.1 A cubical box with
sides of length d containing an
ideal gas. The molecule shown
moves with velocity v.

Figure 21.2 A molecule makes
an elastic collision with the wall of
the container. Its x component of
momentum is reversed, while its y
component remains unchanged. In
this construction, we assume that
the molecule moves in the xy
plane.
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v
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molecule to the squares of these components:

Hence, the average value of v2 for all the molecules in the container is related to
the average values of vx

2, vy
2, and vz

2 according to the expression

Because the motion is completely random, the average values and are
equal to each other. Using this fact and the previous equation, we find that

Thus, the total force exerted on the wall is

Using this expression, we can find the total pressure exerted on the wall:

(21.2)

This result indicates that the pressure is proportional to the number of mole-
cules per unit volume and to the average translational kinetic energy of the
molecules, In deriving this simplified model of an ideal gas, we obtain an
important result that relates the large-scale quantity of pressure to an atomic quan-
tity—the average value of the square of the molecular speed. Thus, we have estab-
lished a key link between the atomic world and the large-scale world.

You should note that Equation 21.2 verifies some features of pressure with
which you are probably familiar. One way to increase the pressure inside a con-
tainer is to increase the number of molecules per unit volume in the container.
This is what you do when you add air to a tire. The pressure in the tire can also be
increased by increasing the average translational kinetic energy of the air mole-
cules in the tire. As we shall soon see, this can be accomplished by increasing the
temperature of that air. It is for this reason that the pressure inside a tire increases
as the tire warms up during long trips. The continuous flexing of the tire as it
moves along the surface of a road results in work done as parts of the tire distort
and in an increase in internal energy of the rubber. The increased temperature of
the rubber results in the transfer of energy by heat into the air inside the tire. This
transfer increases the air’s temperature, and this increase in temperature in turn
produces an increase in pressure.

Molecular Interpretation of Temperature

We can gain some insight into the meaning of temperature by first writing Equa-
tion 21.2 in the more familiar form

Let us now compare this with the equation of state for an ideal gas (Eq. 19.10):

PV � NkBT

PV � 2
3N �1

2mv2�

1
2mv2.

P �
2
3

 � N
V �� 1

2
 mv2�  

P �
F
A

�
F
d2 �

1
3

 � N
d3  mv2� �

1
3

 � N
V �mv2

F �
N
3

 � mv2

d �

v2 � 3vx 
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vz 

2vy 
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2 � vy 
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Ludwig Boltzmann Austrian
theoretical physicist (1844 – 1906)
Boltzmann made many important con-
tributions to the development of the
kinetic theory of gases, electromag-
netism, and thermodynamics. His pio-
neering work in the field of kinetic
theory led to the branch of physics
known as statistical mechanics.
(Courtesy of AIP Niels Bohr Library, Lande
Collection)

Relationship between pressure and
molecular kinetic energy

10.3
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Recall that the equation of state is based on experimental facts concerning the
macroscopic behavior of gases. Equating the right sides of these expressions, we
find that

(21.3)

That is, temperature is a direct measure of average molecular kinetic energy.
By rearranging Equation 21.3, we can relate the translational molecular ki-

netic energy to the temperature:

(21.4)

That is, the average translational kinetic energy per molecule is Because
it follows that

(21.5)

In a similar manner, it follows that the motions in the y and z directions give us

Thus, each translational degree of freedom contributes an equal amount of en-
ergy to the gas, namely, (In general, “degrees of freedom” refers to the num-
ber of independent means by which a molecule can possess energy.) A generaliza-
tion of this result, known as the theorem of equipartition of energy, states that

1
2 kBT.

1
2 mvy 

2 � 1
2 kBT  and  1

2 mvz 

2 � 1
2 kBT

1
2 mvx 

2 � 1
2 kBT

vx 

2 � 1
3 v2,

3
2 kBT.

1
2 mv2 � 3

2 kBT

T �
2

3kB
�1

2 mv 

2�

each degree of freedom contributes to the energy of a system.1
2 kBT

Temperature is proportional to
average kinetic energy

Average kinetic energy per
molecule

Theorem of equipartition of
energy

Total translational kinetic energy
of N molecules

The total translational kinetic energy of N molecules of gas is simply N times
the average energy per molecule, which is given by Equation 21.4:

(21.6)

where we have used for Boltzmann’s constant and for the
number of moles of gas. If we consider a gas for which the only type of energy for
the molecules is translational kinetic energy, we can use Equation 21.6 to express

n � N/NAkB � R/NA

E trans � N �1
2 mv 

2� � 3
2 NkBT � 3

2 nRT

TABLE 21.1 Some rms Speeds

Molar Mass vrms
Gas (g/mol) at 20°C (m/s)

H2 2.02 1904
He 4.00 1352
H2O 18.0 637
Ne 20.2 602
N2 or CO 28.0 511
NO 30.0 494
CO2 44.0 408
SO2 64.1 338
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the internal energy of the gas. This result implies that the internal energy of an
ideal gas depends only on the temperature.

The square root of is called the root-mean-square (rms) speed of the mole-
cules. From Equation 21.4 we obtain, for the rms speed,

(21.7)

where M is the molar mass in kilograms per mole. This expression shows that, at a
given temperature, lighter molecules move faster, on the average, than do heavier
molecules. For example, at a given temperature, hydrogen molecules, whose mo-
lar mass is 2 � 10�3 kg/mol, have an average speed four times that of oxygen mol-
ecules, whose molar mass is 32 � 10�3 kg/mol. Table 21.1 lists the rms speeds for
various molecules at 20°C.

v rms � !v2 �! 3kBT
m

�! 3RT
M

v 

2

At room temperature, the average speed of an air molecule is several hundred meters per
second. A molecule traveling at this speed should travel across a room in a small fraction of
a second. In view of this, why does it take the odor of perfume (or other smells) several
minutes to travel across the room?

MOLAR SPECIFIC HEAT OF AN IDEAL GAS
The energy required to raise the temperature of n moles of gas from Ti to Tf de-
pends on the path taken between the initial and final states. To understand this,
let us consider an ideal gas undergoing several processes such that the change in
temperature is for all processes. The temperature change can be
achieved by taking a variety of paths from one isotherm to another, as shown in
Figure 21.3. Because �T is the same for each path, the change in internal energy
�E int is the same for all paths. However, we know from the first law,

that the heat Q is different for each path because W (the area un-
der the curves) is different for each path. Thus, the heat associated with a given
change in temperature does not have a unique value.

Q � �E int � W,

�T � Tf � Ti

21.2

Quick Quiz 21.1

Root-mean-square speed

A Tank of HeliumEXAMPLE 21.1
Solution Using Equation 21.4, we find that the average ki-
netic energy per molecule is

Exercise Using the fact that the molar mass of helium is
4.00 � 10�3 kg/mol, determine the rms speed of the atoms
at 20.0°C.

Answer 1.35 � 103 m/s.

6.07 � 10�21 J�

1
2 mv2 � 3

2 kBT � 3
2 (1.38 � 10�23 J/K)(293 K)

A tank used for filling helium balloons has a volume of 
0.300 m3 and contains 2.00 mol of helium gas at 20.0°C. Assum-
ing that the helium behaves like an ideal gas, (a) what is the
total translational kinetic energy of the molecules of the gas?

Solution Using Equation 21.6 with mol and 
293 K, we find that

(b) What is the average kinetic energy per molecule?

7.30 � 103 J�

E trans � 3
2 nRT � 3

2(2.00 mol)(8.31 J/mol �K)(293 K)

T �n � 2.00

P

V

Isotherms

i

f

f ′

T + ∆T

f ′′

T

Figure 21.3 An ideal gas is taken
from one isotherm at temperature
T to another at temperature

along three different
paths.
T � �T

10.5
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We can address this difficulty by defining specific heats for two processes that
frequently occur: changes at constant volume and changes at constant pressure.
Because the number of moles is a convenient measure of the amount of gas, we
define the molar specific heats associated with these processes with the following
equations:

(constant volume) (21.8)

(constant pressure) (21.9)

where CV is the molar specific heat at constant volume and CP is the molar
specific heat at constant pressure. When we heat a gas at constant pressure, not
only does the internal energy of the gas increase, but the gas also does work be-
cause of the change in volume. Therefore, the heat Q constant P must account for
both the increase in internal energy and the transfer of energy out of the system
by work, and so Q constant P is greater than Q constant V . Thus, CP is greater than CV .

In the previous section, we found that the temperature of a gas is a measure of
the average translational kinetic energy of the gas molecules. This kinetic energy is
associated with the motion of the center of mass of each molecule. It does not in-
clude the energy associated with the internal motion of the molecule—namely, vi-
brations and rotations about the center of mass. This should not be surprising be-
cause the simple kinetic theory model assumes a structureless molecule.

In view of this, let us first consider the simplest case of an ideal monatomic
gas, that is, a gas containing one atom per molecule, such as helium, neon, or ar-
gon. When energy is added to a monatomic gas in a container of fixed volume (by
heating, for example), all of the added energy goes into increasing the transla-
tional kinetic energy of the atoms. There is no other way to store the energy in a
monatomic gas. Therefore, from Equation 21.6, we see that the total internal en-
ergy E int of N molecules (or n mol) of an ideal monatomic gas is

(21.10)

Note that for a monatomic ideal gas, E int is a function of T only, and the functional
relationship is given by Equation 21.10. In general, the internal energy of an ideal
gas is a function of T only, and the exact relationship depends on the type of gas,
as we shall soon explore.

How does the internal energy of a gas change as its pressure is decreased while its volume is
increased in such a way that the process follows the isotherm labeled T in Figure 21.4? 
(a) E int increases. (b) E int decreases. (c) Eint stays the same. (d) There is not enough infor-
mation to determine �E int .

If energy is transferred by heat to a system at constant volume, then no work is
done by the system. That is, for a constant-volume process. Hence,
from the first law of thermodynamics, we see that

(21.11)

In other words, all of the energy transferred by heat goes into increasing the in-
ternal energy (and temperature) of the system. A constant-volume process from i
to f is described in Figure 21.4, where �T is the temperature difference between
the two isotherms. Substituting the expression for Q given by Equation 21.8 into

Q � �E int

W � �P dV � 0

Quick Quiz 21.2

E int � 3
2 NkBT � 3

2 nRT

Q � nCP �T

Q � nCV �T

Internal energy of an ideal
monatomic gas is proportional to
its temperature
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Equation 21.11, we obtain

(21.12)

If the molar specific heat is constant, we can express the internal energy of a gas as

This equation applies to all ideal gases—to gases having more than one atom per
molecule, as well as to monatomic ideal gases.

In the limit of infinitesimal changes, we can use Equation 21.12 to express the
molar specific heat at constant volume as

(21.13)

Let us now apply the results of this discussion to the monatomic gas that we
have been studying. Substituting the internal energy from Equation 21.10 into
Equation 21.13, we find that

(21.14)

This expression predicts a value of for all monatomic
gases. This is in excellent agreement with measured values of molar specific heats
for such gases as helium, neon, argon, and xenon over a wide range of tempera-
tures (Table 21.2).

Now suppose that the gas is taken along the constant-pressure path i : f �
shown in Figure 21.4. Along this path, the temperature again increases by �T. The
energy that must be transferred by heat to the gas in this process is 
Because the volume increases in this process, the work done by the gas is

where P is the constant pressure at which the process occurs. ApplyingW � P�V,

Q � nCP �T.

CV � 3
2 R � 12.5 J/mol�K

CV � 3
2 R

CV �
1
n

 
dE int

dT

E int � nCVT

�E int � nCV �T
P

V

T + ∆T
T

i

f

f ′

Isotherms

Figure 21.4 Energy is trans-
ferred by heat to an ideal gas in two
ways. For the constant-volume path
i : f, all the energy goes into in-
creasing the internal energy of the
gas because no work is done. Along
the constant-pressure path i : f �,
part of the energy transferred in by
heat is transferred out by work
done by the gas.

TABLE 21.2 Molar Specific Heats of Various Gases

Molar Specific Heat ( J/mol K)a

Gas CP CV CP � CV � � CP/CV

Monatomic Gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic Gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic Gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

a All values except that for water were obtained at 300 K.

�
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the first law to this process, we have

(21.15)

In this case, the energy added to the gas by heat is channeled as follows: Part of it
does external work (that is, it goes into moving a piston), and the remainder in-
creases the internal energy of the gas. But the change in internal energy for the
process i : f � is equal to that for the process i : f because E int depends only on
temperature for an ideal gas and because �T is the same for both processes. In ad-
dition, because we note that for a constant-pressure process,

Substituting this value for P�V into Equation 21.15 with
(Eq. 21.12) gives

(21.16)

This expression applies to any ideal gas. It predicts that the molar specific heat of
an ideal gas at constant pressure is greater than the molar specific heat at constant
volume by an amount R, the universal gas constant (which has the value 
8.31 J/mol � K). This expression is applicable to real gases, as the data in Table 21.2
show.

Because for a monatomic ideal gas, Equation 21.16 predicts a value 
for the molar specific heat of a monatomic gas at con-

stant pressure. The ratio of these heat capacities is a dimensionless quantity �
(Greek letter gamma):

(21.17)

Theoretical values of CP and � are in excellent agreement with experimental val-
ues obtained for monatomic gases, but they are in serious disagreement with the
values for the more complex gases (see Table 21.2). This is not surprising because
the value was derived for a monatomic ideal gas, and we expect some ad-
ditional contribution to the molar specific heat from the internal structure of the
more complex molecules. In Section 21.4, we describe the effect of molecular
structure on the molar specific heat of a gas. We shall find that the internal en-
ergy—and, hence, the molar specific heat—of a complex gas must include con-
tributions from the rotational and the vibrational motions of the molecule.

We have seen that the molar specific heats of gases at constant pressure are
greater than the molar specific heats at constant volume. This difference is a con-
sequence of the fact that in a constant-volume process, no work is done and all of
the energy transferred by heat goes into increasing the internal energy (and tem-
perature) of the gas, whereas in a constant-pressure process, some of the energy
transferred by heat is transferred out as work done by the gas as it expands. In the
case of solids and liquids heated at constant pressure, very little work is done be-
cause the thermal expansion is small. Consequently, CP and CV are approximately
equal for solids and liquids.

CV � 3
2 R

� �
CP

CV
�

(5/2)R
(3/2)R

�
5
3

� 1.67

CP � 5
2 R � 20.8 J/mol�K

CV � 3
2 R

CP � CV � R 

nCV �T � nCP �T � nR�T

�E int � nCV �T
P�V � nR�T.

PV � nRT,

�E int � Q � W � nCP �T � P�V

Heating a Cylinder of HeliumEXAMPLE 21.2
Solution For the constant-volume process, we have

Because J/mol � K for helium and K, we�T � 200CV � 12.5

Q 1 � nCV �T

A cylinder contains 3.00 mol of helium gas at a temperature
of 300 K. (a) If the gas is heated at constant volume, how
much energy must be transferred by heat to the gas for its
temperature to increase to 500 K ?

Ratio of molar specific heats for a
monatomic ideal gas
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ADIABATIC PROCESSES FOR AN IDEAL GAS
As we noted in Section 20.6, an adiabatic process is one in which no energy is
transferred by heat between a system and its surroundings. For example, if a gas is
compressed (or expanded) very rapidly, very little energy is transferred out of (or
into) the system by heat, and so the process is nearly adiabatic. (We must remem-
ber that the temperature of a system changes in an adiabatic process even though
no energy is transferred by heat.) Such processes occur in the cycle of a gasoline
engine, which we discuss in detail in the next chapter.

Another example of an adiabatic process is the very slow expansion of a gas
that is thermally insulated from its surroundings. In general,

21.3

an adiabatic process is one in which no energy is exchanged by heat between
a system and its surroundings.

Let us suppose that an ideal gas undergoes an adiabatic expansion. At any
time during the process, we assume that the gas is in an equilibrium state, so that
the equation of state is valid. As we shall soon see, the pressure and vol-
ume at any time during an adiabatic process are related by the expression

(21.18)

where is assumed to be constant during the process. Thus, we see that
all three variables in the ideal gas law—P, V, and T—change during an adiabatic
process.

Proof That PV � � constant for an Adiabatic Process

When a gas expands adiabatically in a thermally insulated cylinder, no energy is
transferred by heat between the gas and its surroundings; thus, Let us take
the infinitesimal change in volume to be dV and the infinitesimal change in tem-
perature to be dT. The work done by the gas is P dV. Because the internal energy
of an ideal gas depends only on temperature, the change in the internal energy in
an adiabatic expansion is the same as that for an isovolumetric process between
the same temperatures, (Eq. 21.12). Hence, the first law of ther-
modynamics, with becomes

Taking the total differential of the equation of state of an ideal gas, wePV � nRT,

dE int � nCV dT � �P dV

Q � 0,�E int � Q � W,
dE int � nCV dT

Q � 0.

� � CP/CV

PV � � constant

PV � nRT

Definition of an adiabatic process

Relationship between P and V for
an adiabatic process involving an
ideal gas

obtain

(b) How much energy must be transferred by heat to the
gas at constant pressure to raise the temperature to 500 K?

Solution Making use of Table 21.2, we obtain

7.50 � 103 JQ 1 � (3.00 mol)(12.5 J/mol �K)(200 K) �

Exercise What is the work done by the gas in this isobaric
process?

Answer W � Q 2 � Q 1 � 5.00 � 103 J.

12.5 � 103 J�

Q 2 � nCP �T � (3.00 mol)(20.8 J/mol �K)(200 K)
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see that

Eliminating dT from these two equations, we find that

Substituting and dividing by PV, we obtain

Integrating this expression, we have

which is equivalent to Equation 21.18:

The PV diagram for an adiabatic expansion is shown in Figure 21.5. Because
the PV curve is steeper than it would be for an isothermal expansion. By the

definition of an adiabatic process, no energy is transferred by heat into or out of
the system. Hence, from the first law, we see that �E int is negative (the gas does
work, so its internal energy decreases) and so �T also is negative. Thus, we see that
the gas cools during an adiabatic expansion. Conversely, the tempera-
ture increases if the gas is compressed adiabatically. Applying Equation 21.18 to
the initial and final states, we see that

(21.19)

Using the ideal gas law, we can express Equation 21.19 as

(21.20)TiVi 

��1 � TfVf 

��1

PiVi 

� � PfVf 

�

(Tf 	 Ti)

� 
 1,

PV � � constant

ln P � � ln V � constant

dP
P

� � 
dV
V

� 0 

dV
V

�
dP
P

� �� CP � CV

CV
� 

dV
V

� (1 � �) 
dV
V

R � CP � CV

P dV � V dP � �
R
CV

 P dV

P dV � V dP � nR dT

A Diesel Engine CylinderEXAMPLE 21.3
no gas escapes from the cylinder,

The high compression in a diesel engine raises the tempera-
ture of the fuel enough to cause its combustion without the
use of spark plugs.

826 K � 553�C�

Tf �
PfVf

PiVi
 Ti �

(37.6 atm)(60.0 cm3)
(1.00 atm)(800.0 cm3)

 (293 K)

PiVi

Ti
�

PfVf

Tf

Air at 20.0°C in the cylinder of a diesel engine is compressed
from an initial pressure of 1.00 atm and volume of 800.0 cm3

to a volume of 60.0 cm3. Assume that air behaves as an ideal
gas with and that the compression is adiabatic. Find
the final pressure and temperature of the air.

Solution Using Equation 21.19, we find that

Because is valid during any process and becausePV � nRT

37.6 atm�

Pf � Pi � Vi

Vf
�

�

� (1.00 atm)� 800.0 cm3

60.0 cm3 �
1.40

� � 1.40

Adiabatic process

QuickLab
Rapidly pump up a bicycle tire and
then feel the coupling at the end of
the hose. Why is the coupling warm?

Ti
Tf

Isotherms

P

V

Pi

Pf

Vi Vf

Adiabatic process

i

f

Figure 21.5 The PV diagram for
an adiabatic expansion. Note that

in this process.Tf 	 Ti
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THE EQUIPARTITION OF ENERGY
We have found that model predictions based on molar specific heat agree quite
well with the behavior of monatomic gases but not with the behavior of complex
gases (see Table 21.2). Furthermore, the value predicted by the model for the
quantity is the same for all gases. This is not surprising because this
difference is the result of the work done by the gas, which is independent of its
molecular structure.

To clarify the variations in CV and CP in gases more complex than monatomic
gases, let us first explain the origin of molar specific heat. So far, we have assumed
that the sole contribution to the internal energy of a gas is the translational kinetic
energy of the molecules. However, the internal energy of a gas actually includes
contributions from the translational, vibrational, and rotational motion of the
molecules. The rotational and vibrational motions of molecules can be activated
by collisions and therefore are “coupled” to the translational motion of the mole-
cules. The branch of physics known as statistical mechanics has shown that, for a
large number of particles obeying the laws of Newtonian mechanics, the available
energy is, on the average, shared equally by each independent degree of freedom.
Recall from Section 21.1 that the equipartition theorem states that, at equilibrium,
each degree of freedom contributes of energy per molecule.

Let us consider a diatomic gas whose molecules have the shape of a dumbbell
(Fig. 21.6). In this model, the center of mass of the molecule can translate in the
x, y, and z directions (Fig. 21.6a). In addition, the molecule can rotate about three
mutually perpendicular axes (Fig. 21.6b). We can neglect the rotation about the y
axis because the moment of inertia Iy and the rotational energy about this
axis are negligible compared with those associated with the x and z axes. (If the
two atoms are taken to be point masses, then Iy is identically zero.) Thus, there are
five degrees of freedom: three associated with the translational motion and two as-
sociated with the rotational motion. Because each degree of freedom contributes,
on the average, of energy per molecule, the total internal energy for a sys-
tem of N molecules is

We can use this result and Equation 21.13 to find the molar specific heat at con-
stant volume:

From Equations 21.16 and 21.17, we find that

These results agree quite well with most of the data for diatomic molecules
given in Table 21.2. This is rather surprising because we have not yet accounted
for the possible vibrations of the molecule. In the vibratory model, the two atoms
are joined by an imaginary spring (see Fig. 21.6c). The vibrational motion adds
two more degrees of freedom, which correspond to the kinetic energy and the po-
tential energy associated with vibrations along the length of the molecule. Hence,
classical physics and the equipartition theorem predict an internal energy of

E int � 3N(1
2 kBT ) � 2N(1

2 kBT ) � 2N(1
2 kBT ) � 7

2 NkBT � 7
2 nRT

� �
CP

CV
�

7
2R
5
2R

�
7
5

� 1.40

CP � CV � R � 7
2 R 

CV �
1
n

 
dE int

dT
�

1
n

 
d

dT
 � 5

2
 nRT� �

5
2

 R

E int � 3N(1
2 kBT ) � 2N(1

2 kBT ) � 5
2 NkBT � 5

2 nRT

1
2 kBT

1
2 I y�

2

1
2kBT

CP � CV � R

21.4

(a)

x

z

y

yx

z

(b)

yx

z

(c)

Figure 21.6 Possible motions of
a diatomic molecule: (a) transla-
tional motion of the center of
mass, (b) rotational motion about
the various axes, and (c) vibra-
tional motion along the molecular
axis.
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and a molar specific heat at constant volume of

This value is inconsistent with experimental data for molecules such as H2 and N2
(see Table 21.2) and suggests a breakdown of our model based on classical physics.

For molecules consisting of more than two atoms, the number of degrees of
freedom is even larger and the vibrations are more complex. This results in an
even higher predicted molar specific heat, which is in qualitative agreement with
experiment. The more degrees of freedom available to a molecule, the more
“ways” it can store internal energy; this results in a higher molar specific heat.

We have seen that the equipartition theorem is successful in explaining some
features of the molar specific heat of gas molecules with structure. However, the
theorem does not account for the observed temperature variation in molar spe-
cific heats. As an example of such a temperature variation, CV for H2 is from
about 250 K to 750 K and then increases steadily to about well above 750 K
(Fig. 21.7). This suggests that much more significant vibrations occur at very high 
temperatures. At temperatures well below 250 K, CV has a value of about sug-
gesting that the molecule has only translational energy at low temperatures.

A Hint of Energy Quantization

The failure of the equipartition theorem to explain such phenomena is due to the
inadequacy of classical mechanics applied to molecular systems. For a more satisfac-
tory description, it is necessary to use a quantum-mechanical model, in which the
energy of an individual molecule is quantized. The energy separation between adja-
cent vibrational energy levels for a molecule such as H2 is about ten times greater
than the average kinetic energy of the molecule at room temperature. Conse-
quently, collisions between molecules at low temperatures do not provide enough
energy to change the vibrational state of the molecule. It is often stated that such de-
grees of freedom are “frozen out.” This explains why the vibrational energy does not
contribute to the molar specific heats of molecules at low temperatures.

3
2 R,

7
2 R

5
2 R

CV �
1
n

 
dE int

dT
�

1
n
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dT
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2
 nRT� �
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Figure 21.7 The molar specific heat of hydrogen as a function of temperature. The horizontal
scale is logarithmic. Note that hydrogen liquefies at 20 K.
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The rotational energy levels also are quantized, but their spacing at ordinary
temperatures is small compared with k BT. Because the spacing between quantized
energy levels is small compared with the available energy, the system behaves in ac-
cordance with classical mechanics. However, at sufficiently low temperatures (typi-
cally less than 50 K), where kBT is small compared with the spacing between rota-
tional levels, intermolecular collisions may not be sufficiently energetic to alter the
rotational states. This explains why CV reduces to for H2 in the range from 20 K
to approximately 100 K.

The Molar Specific Heat of Solids

The molar specific heats of solids also demonstrate a marked temperature depen-
dence. Solids have molar specific heats that generally decrease in a nonlinear man-
ner with decreasing temperature and approach zero as the temperature ap-
proaches absolute zero. At high temperatures (usually above 300 K), the molar
specific heats approach the value of a result known as the 
DuLong–Petit law. The typical data shown in Figure 21.8 demonstrate the tempera-
ture dependence of the molar specific heats for two semiconducting solids, silicon
and germanium.

We can explain the molar specific heat of a solid at high temperatures using
the equipartition theorem. For small displacements of an atom from its equilib-
rium position, each atom executes simple harmonic motion in the x, y, and z direc-
tions. The energy associated with vibrational motion in the x direction is

The expressions for vibrational motions in the y and z directions are analogous.
Therefore, each atom of the solid has six degrees of freedom. According to the
equipartition theorem, this corresponds to an average vibrational energy of

per atom. Therefore, the total internal energy of a solid consist-
ing of N atoms is

(21.21)

From this result, we find that the molar specific heat of a solid at constant volume
is

(21.22)

This result is in agreement with the empirical DuLong–Petit law. The discrepan-
cies between this model and the experimental data at low temperatures are again
due to the inadequacy of classical physics in describing the microscopic world.

THE BOLTZMANN DISTRIBUTION LAW
Thus far we have neglected the fact that not all molecules in a gas have the same
speed and energy. In reality, their motion is extremely chaotic. Any individual mol-
ecule is colliding with others at an enormous rate—typically, a billion times per
second. Each collision results in a change in the speed and direction of motion of
each of the participant molecules. From Equation 21.7, we see that average molec-
ular speeds increase with increasing temperature. What we would like to know now
is the relative number of molecules that possess some characteristic, such as a cer-
tain percentage of the total energy or speed. The ratio of the number of molecules

21.5
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Figure 21.8 Molar specific heat
of silicon and germanium. As T ap-
proaches zero, the molar specific
heat also approaches zero. (From C.
Kittel, Introduction to Solid State
Physics, New York, Wiley, 1971.)
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that have the desired characteristic to the total number of molecules is the proba-
bility that a particular molecule has that characteristic.

The Exponential Atmosphere

We begin by considering the distribution of molecules in our atmosphere. Let us
determine how the number of molecules per unit volume varies with altitude. Our
model assumes that the atmosphere is at a constant temperature T. (This assump-
tion is not entirely correct because the temperature of our atmosphere decreases
by about 2°C for every 300-m increase in altitude. However, the model does illus-
trate the basic features of the distribution.)

According to the ideal gas law, a gas containing N molecules in thermal equi-
librium obeys the relationship It is convenient to rewrite this equation
in terms of the number density which represents the number of mole-
cules per unit volume of gas. This quantity is important because it can vary from
one point to another. In fact, our goal is to determine how nV changes in our at-
mosphere. We can express the ideal gas law in terms of nV as Thus, if
the number density nV is known, we can find the pressure, and vice versa. The
pressure in the atmosphere decreases with increasing altitude because a given
layer of air must support the weight of all the atmosphere above it—that is, the
greater the altitude, the less the weight of the air above that layer, and the lower
the pressure.

To determine the variation in pressure with altitude, let us consider an atmos-
pheric layer of thickness dy and cross-sectional area A, as shown in Figure 21.9. Be-
cause the air is in static equilibrium, the magnitude PA of the upward force ex-
erted on the bottom of this layer must exceed the magnitude of the downward
force on the top of the layer, by an amount equal to the weight of 
gas in this thin layer. If the mass of a gas molecule in the layer is m, and if a total 
of N molecules are in the layer, then the weight of the layer is given by 

Thus, we see that

This expression reduces to

Because and T is assumed to remain constant, we see that 
Substituting this result into the previous expression for dP and rearrang-

ing terms, we have

Integrating this expression, we find that

(21.23)

where the constant n0 is the number density at y � 0. This result is known as the
law of atmospheres.

According to Equation 21.23, the number density decreases exponentially
with increasing altitude when the temperature is constant. The number density of
our atmosphere at sea level is about molecules/m3. Because the
pressure is we see from Equation 21.23 that the pressure of our atmos-
phere varies with altitude according to the expression

(21.24)P � P0e�mgy/k BT

P � nV kBT,
n0 � 2.69 � 1025

nV(y) � n0e�mgy/k BT

dnV

nV
� �

mg
kBT

 dy

kBT dnV .
dP �P � nV kBT

dP � �mgnVdy

PA � (P � dP)A � mgnVA dy

mgnVV � mgnVAdy.
mgN �

(P � dP)A,

P � nV kBT.

nV � N/V,
PV � NkBT.

Law of atmospheres

A (P + dP)A

PA
Nmg

dy

Figure 21.9 An atmospheric
layer of gas in equilibrium.



21.5 The Boltzmann Distribution Law 655

where A comparison of this model with the actual atmospheric pres-
sure as a function of altitude shows that the exponential form is a reasonable ap-
proximation to the Earth’s atmosphere.

P0 � n0kBT.

High-Flying MoleculesEXAMPLE 21.4
Thus, Equation 21.23 gives

That is, the number density of air at an altitude of 11.0 km is
only 27.8% of the number density at sea level, if we assume
constant temperature. Because the temperature actually de-
creases with altitude, the number density of air is less than
this in reality. 

The pressure at this height is reduced in the same man-
ner. For this reason, high-flying aircraft must have pressur-
ized cabins to ensure passenger comfort and safety.

0.278n0nV � n0e�mgy/kBT � n0e�1.28 �

What is the number density of air at an altitude of 11.0 km
(the cruising altitude of a commercial jetliner) compared
with its number density at sea level? Assume that the air tem-
perature at this height is the same as that at the ground,
20°C.

Solution The number density of our atmosphere de-
creases exponentially with altitude according to the law of at-
mospheres, Equation 21.23. We assume an average molecular
mass of Taking y � 11.0 km, we cal-
culate the power of the exponential in Equation 21.23 to be

mgy
kBT

�
(4.80 � 10�26 kg)(9.80 m/s2)(11 000 m)

(1.38 � 10�23 J/K)(293 K)
� 1.28

28.9 u � 4.80 � 10�26 kg.

Computing Average Values

The exponential function that appears in Equation 21.23 can be inter-
preted as a probability distribution that gives the relative probability of finding a
gas molecule at some height y. Thus, the probability distribution p(y) is propor-
tional to the number density distribution nV(y). This concept enables us to deter-
mine many properties of the atmosphere, such as the fraction of molecules below
a certain height or the average potential energy of a molecule.

As an example, let us determine the average height of a molecule in the at-
mosphere at temperature T. The expression for this average height is

where the height of a molecule can range from 0 to . The numerator in this ex-
pression represents the sum of the heights of the molecules times their number,
while the denominator is the sum of the number of molecules. That is, the denom-
inator is the total number of molecules. After performing the indicated integra-
tions, we find that

This expression states that the average height of a molecule increases as T in-
creases, as expected.

We can use a similar procedure to determine the average potential energy of a
gas molecule. Because the gravitational potential energy of a molecule at height y
is the average potential energy is equal to Because we y � kBT/mg,mgy.U � mgy,

y �
(kBT/mg)2

kBT/mg
�

kBT
mg

y �

�

0
 ynV (y) dy

�

0
 nV (y) dy

 �

�

0
 ye�mgy/k BT dy

�

0
 e�mgy/k BT dy

 

y

e�mgy/k BT
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see that This important result indicates that the average
gravitational potential energy of a molecule depends only on temperature, and
not on m or g.

The Boltzmann Distribution

Because the gravitational potential energy of a molecule at height y is we
can express the law of atmospheres (Eq. 21.23) as

This means that gas molecules in thermal equilibrium are distributed in space with
a probability that depends on gravitational potential energy according to the expo-
nential factor 

This exponential expression describing the distribution of molecules in the at-
mosphere is powerful and applies to any type of energy. In general, the number
density of molecules having energy E is

(21.25)

This equation is known as the Boltzmann distribution law and is important in
describing the statistical mechanics of a large number of molecules. It states that
the probability of finding the molecules in a particular energy state varies
exponentially as the negative of the energy divided by kBT. All the molecules
would fall into the lowest energy level if the thermal agitation at a temperature T
did not excite the molecules to higher energy levels.

nV(E ) � n0e�E/k BT

e�U/k BT.

nV � n0e�U/k BT

U � mgy,

U � mg(kBT/mg) � kBT.

Thermal Excitation of Atomic Energy LevelsEXAMPLE 21.5

This result indicates that at only a small fraction
of the atoms are in the higher energy level. In fact, for every
atom in the higher energy level, there are about 1 000 atoms
in the lower level. The number of atoms in the higher level
increases at even higher temperatures, but the distribution
law specifies that at equilibrium there are always more atoms
in the lower level than in the higher level.

T � 2 500 K,

9.64 � 10�4n(E2)
n(E1)

� e�1.50 eV/0.216 eV � e�6.94 �
As we discussed briefly in Section 8.10, atoms can occupy only
certain discrete energy levels. Consider a gas at a temperature
of 2 500 K whose atoms can occupy only two energy levels
separated by 1.50 eV, where 1 eV (electron volt) is an energy
unit equal to 1.6 � 10�19 J (Fig. 21.10). Determine the ratio
of the number of atoms in the higher energy level to the
number in the lower energy level.

Solution Equation 21.25 gives the relative number of
atoms in a given energy level. In this case, the atom has two
possible energies, E1 and E2 , where E1 is the lower energy
level. Hence, the ratio of the number of atoms in the higher
energy level to the number in the lower energy level is

In this problem, eV, and the denominator of
the exponent is

Therefore, the required ratio is

 � 0.216 eV
kBT � (1.38 � 10�23 J/K)(2 500 K)/1.60 � 10�19 J/eV

E2 � E1 � 1.50

nV (E2)
nV (E1)

�
n0e�E2/k BT

n0e�E1/k BT � e�(E2�E1 )/k BT

Boltzmann distribution law

E1

E2

1.50 eV

Figure 21.10 Energy level diagram for a gas whose atoms can oc-
cupy two energy levels.
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DISTRIBUTION OF MOLECULAR SPEEDS
In 1860 James Clerk Maxwell (1831–1879) derived an expression that describes
the distribution of molecular speeds in a very definite manner. His work and sub-
sequent developments by other scientists were highly controversial because direct
detection of molecules could not be achieved experimentally at that time. How-
ever, about 60 years later, experiments were devised that confirmed Maxwell’s pre-
dictions.

Let us consider a container of gas whose molecules have some distribution of
speeds. Suppose we want to determine how many gas molecules have a speed in
the range from, for example, 400 to 410 m/s. Intuitively, we expect that the speed
distribution depends on temperature. Furthermore, we expect that the distribu-
tion peaks in the vicinity of vrms . That is, few molecules are expected to have
speeds much less than or much greater than vrms because these extreme speeds re-
sult only from an unlikely chain of collisions.

The observed speed distribution of gas molecules in thermal equilibrium is
shown in Figure 21.11. The quantity Nv , called the Maxwell–Boltzmann distri-
bution function, is defined as follows: If N is the total number of molecules, then
the number of molecules with speeds between v and is This
number is also equal to the area of the shaded rectangle in Figure 21.11. Further-
more, the fraction of molecules with speeds between v and is This
fraction is also equal to the probability that a molecule has a speed in the range v
to 

The fundamental expression that describes the distribution of speeds of N gas
molecules is

(21.26)

where m is the mass of a gas molecule, kB is Boltzmann’s constant, and T is the ab-
solute temperature.1 Observe the appearance of the Boltzmann factor with

As indicated in Figure 21.11, the average speed is somewhat lower than the
rms speed. The most probable speed vmp is the speed at which the distribution curve
reaches a peak. Using Equation 21.26, one finds that

(21.27)

(21.28)

(21.29)

The details of these calculations are left for the student (see Problems 41 and 62).
From these equations, we see that

Figure 21.12 represents speed distribution curves for N2 . The curves were ob-
tained by using Equation 21.26 to evaluate the distribution function at various
speeds and at two temperatures. Note that the peak in the curve shifts to the right

v rms 
 v 
 vmp 

 vmp � !2kBT/m � 1.41 !kBT/m

 v � !8kBT/�m � 1.60 !kBT/m 

v rms � !v2 � !3kBT/m � 1.73 !kBT/m

v
E � 1

2mv2.
e�E/k BT

Nv � 4�N � m
2�kBT �

3/2
v2e�mv2/2k BT

v � dv.

Nvdv/N.v � dv

dN � Nvdv.v � dv

21.6

1 For the derivation of this expression, see an advanced textbook on thermodynamics, such as that by
R. P. Bauman, Modern Thermodynamics with Statistical Mechanics, New York, Macmillan Publishing Co.,
1992.

Maxwell speed distribution
function

rms speed

Average speed

Most probable speed

vmp

vrms

Nv

v

v

Nv

Figure 21.11 The speed distribu-
tion of gas molecules at some tem-
perature. The number of mole-
cules having speeds in the range dv
is equal to the area of the shaded
rectangle, The function Nv
approaches zero as v approaches
infinity.

Nvdv.
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as T increases, indicating that the average speed increases with increasing temper-
ature, as expected. The asymmetric shape of the curves is due to the fact that the
lowest speed possible is zero while the upper classical limit of the speed is infinity.

Consider the two curves in Figure 21.12. What is represented by the area under each of the
curves between the 800-m/s and 1 000-m/s marks on the horizontal axis?

Equation 21.26 shows that the distribution of molecular speeds in a gas de-
pends both on mass and on temperature. At a given temperature, the fraction of
molecules with speeds exceeding a fixed value increases as the mass decreases.
This explains why lighter molecules, such as H2 and He, escape more readily from
the Earth’s atmosphere than do heavier molecules, such as N2 and O2 . (See the
discussion of escape speed in Chapter 14. Gas molecules escape even more readily
from the Moon’s surface than from the Earth’s because the escape speed on the
Moon is lower than that on the Earth.)

The speed distribution curves for molecules in a liquid are similar to those
shown in Figure 21.12. We can understand the phenomenon of evaporation of a
liquid from this distribution in speeds, using the fact that some molecules in the
liquid are more energetic than others. Some of the faster-moving molecules in
the liquid penetrate the surface and leave the liquid even at temperatures well be-
low the boiling point. The molecules that escape the liquid by evaporation are
those that have sufficient energy to overcome the attractive forces of the mole-
cules in the liquid phase. Consequently, the molecules left behind in the liquid
phase have a lower average kinetic energy; as a result, the temperature of the liq-
uid decreases. Hence, evaporation is a cooling process. For example, an alcohol-
soaked cloth often is placed on a feverish head to cool and comfort a patient.

Quick Quiz 21.3
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Figure 21.12 The speed distribution function for 105 nitrogen molecules at 300 K and 900 K.
The total area under either curve is equal to the total number of molecules, which in this case
equals 105. Note that v rms 
 v 
 v mp .

QuickLab
Fill one glass with very hot tap water
and another with very cold water. Put
a single drop of food coloring in each
glass. Which drop disperses faster?
Why?

The evaporation process
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Optional Section

MEAN FREE PATH
Most of us are familiar with the fact that the strong odor associated with a gas such
as ammonia may take a fraction of a minute to diffuse throughout a room. How-
ever, because average molecular speeds are typically several hundred meters per
second at room temperature, we might expect a diffusion time much less than 1 s.
But, as we saw in Quick Quiz 21.1, molecules collide with one other because they
are not geometrical points. Therefore, they do not travel from one side of a room
to the other in a straight line. Between collisions, the molecules move with con-
stant speed along straight lines. The average distance between collisions is called
the mean free path. The path of an individual molecule is random and resembles
that shown in Figure 21.13. As we would expect from this description, the mean
free path is related to the diameter of the molecules and the density of the gas.

We now describe how to estimate the mean free path for a gas molecule. For
this calculation, we assume that the molecules are spheres of diameter d. We see
from Figure 21.14a that no two molecules collide unless their centers are less than
a distance d apart as they approach each other. An equivalent way to describe the

21.7

A System of Nine ParticlesEXAMPLE 21.6

Hence, the rms speed is

(c) What is the most probable speed of the particles?

Solution Three of the particles have a speed of 12 m/s,
two have a speed of 14 m/s, and the remaining have different
speeds. Hence, we see that the most probable speed vmp is 

12 m/s.

13.3 m/sv rms � !v2 � !178 m2/s2 �

 � 178 m2/s2

v2 �

(5.002 � 8.002 � 12.02 � 12.02 � 12.02

 � 14.02 � 14.02 � 17.02 � 20.02) m
9

Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0, 14.0,
14.0, 17.0, and 20.0 m/s. (a) Find the particles’ average
speed.

Solution The average speed is the sum of the speeds di-
vided by the total number of particles:

(b) What is the rms speed?

Solution The average value of the square of the speed is

12.7 m/s �

v �

(5.00 � 8.00 � 12.0 � 12.0 � 12.0 � 14.0 � 14.0 � 17.0 � 20.0) m/s
9

Figure 21.13 A molecule moving
through a gas collides with other
molecules in a random fashion.
This behavior is sometimes re-
ferred to as a random-walk process.
The mean free path increases as
the number of molecules per unit
volume decreases. Note that the
motion is not limited to the plane
of the paper.

Figure 21.14 (a) Two spherical molecules, each of diameter d, collide if their centers are
within a distance d of each other. (b) The collision between the two molecules is equivalent to a
point molecule’s colliding with a molecule having an effective diameter of 2d.

(b)

2d

Equivalent
collision

(a)

d

d

Actual
collision
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collisions is to imagine that one of the molecules has a diameter 2d and that the rest
are geometrical points (Fig. 21.14b). Let us choose the large molecule to be one
moving with the average speed In a time t, this molecule travels a distance In
this time interval, the molecule sweeps out a cylinder having a cross-sectional area

and a length (Fig. 21.15). Hence, the volume of the cylinder is If nV is
the number of molecules per unit volume, then the number of point-size molecules
in the cylinder is The molecule of equivalent diameter 2d collides with
every molecule in this cylinder in the time t. Hence, the number of collisions in the
time t is equal to the number of molecules in the cylinder, 

The mean free path � equals the average distance traveled in a time t di-
vided by the number of collisions that occur in that time:

Because the number of collisions in a time t is the number of colli-
sions per unit time, or collision frequency f, is

The inverse of the collision frequency is the average time between collisions,
known as the mean free time.

Our analysis has assumed that molecules in the cylinder are stationary. When
the motion of these molecules is included in the calculation, the correct results are

(21.30)

(21.31)f � !2 �d 2vnV �
v
�

� �
1

!2 �d 2nV

f � �d 2vnV

(�d 2vt)nV ,

� �
vt

(�d 2vt)nV
�

1
�d 2nV

vt
(�d 2vt)nV .

(�d 2vt)nV .

�d 2vt.vt�d 2

vt.v.

Mean free path

Collision frequency

Figure 21.15 In a time t, a mole-
cule of effective diameter 2d
sweeps out a cylinder of length 
where is its average speed. In this
time, it collides with every point
molecule within this cylinder.

v
vt,

2d vt

Bouncing Around in the AirEXAMPLE 21.7
This value is about 103 times greater than the molecular di-
ameter.

(b) On average, how frequently does one molecule collide
with another?

Solution Because the rms speed of a nitrogen molecule at
20.0°C is 511 m/s (see Table 21.1), we know from Equations
21.27 and 21.28 that .
Therefore, the collision frequency is

The molecule collides with other molecules at the average
rate of about two billion times each second!

The mean free path � is not the same as the average sepa-
ration between particles. In fact, the average separation d be-
tween particles is approximately In this example, the
average molecular separation is

d �
1

nV 

1/3 �
1

(2.5 � 1025)1/3 � 3.4 � 10�9 m

nV 

�1/3.

2.10 � 109/sf �
v
�

�
473 m/s

2.25 � 10�7 m
�

v � (1.60/1.73)(511 m/s) � 473 m/s

Approximate the air around you as a collection of nitrogen
molecules, each of which has a diameter of 2.00 � 10�10 m.
(a) How far does a typical molecule move before it collides
with another molecule?

Solution Assuming that the gas is ideal, we can use the
equation to obtain the number of molecules per
unit volume under typical room conditions:

Hence, the mean free path is

2.25 � 10�7 m �

 �
1

!2 �(2.00 � 10�10 m)2(2.50 � 1025 molecules/m3)

� �
1

!2 �d 2nV
 

 � 2.50 � 1025 molecules/m3

nV �
N
V

�
P

kBT
�

1.01 � 105 N/m2

(1.38 � 10�23 J/K)(293 K)

PV � NkBT
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SUMMARY

The pressure of N molecules of an ideal gas contained in a volume V is

(21.2)

The average translational kinetic energy per molecule of a gas, is related
to the temperature T of the gas through the expression

(21.4)

where kB is Boltzmann’s constant. Each translational degree of freedom (x, y, or z)
has of energy associated with it.

The theorem of equipartition of energy states that the energy of a system in
thermal equilibrium is equally divided among all degrees of freedom.

The total energy of N molecules (or n mol) of an ideal monatomic gas is

(21.10)

The change in internal energy for n mol of any ideal gas that undergoes a
change in temperature �T is

(21.12)

where CV is the molar specific heat at constant volume.
The molar specific heat of an ideal monatomic gas at constant volume is

the molar specific heat at constant pressure is The ratio of spe-
cific heats is 

If an ideal gas undergoes an adiabatic expansion or compression, the first law
of thermodynamics, together with the equation of state, shows that

(21.18)

The Boltzmann distribution law describes the distribution of particles
among available energy states. The relative number of particles having energy E is

(21.25)

The Maxwell–Boltzmann distribution function describes the distribution
of speeds of molecules in a gas:

(21.26)

This expression enables us to calculate the root-mean-square speed, the average
speed, and the most probable speed:

(21.27)

(21.28)

(21.29)   vmp � !2kBT/m � 1.41 !kBT/m

   v � !8kBT/�m � 1.60 !kBT/m

v rms � !v2 � !3kBT/m � 1.73 !kBT/m

Nv � 4�N � m
2�kBT �

3/2
v2e�mv2/2k BT

nV(E ) � n0e�E/k BT

PV � � constant

� � CP/CV � 5
3 .

CP � 5
2 R .CV � 3

2 R ;

�E int � nCV �T

E int � 3
2 NkBT � 3

2 nRT

1
2 kBT

1
2mv2 � 3

2 kBT

1
2mv2,

P �
2
3

 
N
V

 � 1
2

 mv2�
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QUESTIONS

8. A gas is compressed at a constant temperature. What hap-
pens to the mean free path of the molecules in the
process?

9. If a helium-filled balloon initially at room temperature is
placed in a freezer, will its volume increase, decrease, or
remain the same?

10. What happens to a helium-filled balloon released into the
air? Will it expand or contract? Will it stop rising at some
height?

11. Which is heavier, dry air or air saturated with water vapor?
Explain.

12. Why does a diatomic gas have a greater energy content
per mole than a monatomic gas at the same temperature?

13. An ideal gas is contained in a vessel at 300 K. If the tem-
perature is increased to 900 K, (a) by what factor does the
rms speed of each molecule change? (b) By what factor
does the pressure in the vessel change?

14. A vessel is filled with gas at some equilibrium pressure
and temperature. Can all gas molecules in the vessel have
the same speed?

15. In our model of the kinetic theory of gases, molecules
were viewed as hard spheres colliding elastically with the
walls of the container. Is this model realistic?

16. In view of the fact that hot air rises, why does it generally
become cooler as you climb a mountain? (Note that air is
a poor thermal conductor.)

1. Dalton’s law of partial pressures states that the total pres-
sure of a mixture of gases is equal to the sum of the par-
tial pressures of gases making up the mixture. Give a con-
vincing argument for this law on the basis of the kinetic
theory of gases.

2. One container is filled with helium gas and another with
argon gas. If both containers are at the same tempera-
ture, which gas molecules have the higher rms speed? Ex-
plain.

3. A gas consists of a mixture of He and N2 molecules. Do
the lighter He molecules travel faster than the N2 mole-
cules? Explain.

4. Although the average speed of gas molecules in thermal
equilibrium at some temperature is greater than zero, the
average velocity is zero. Explain why this statement must
be true.

5. When alcohol is rubbed on your body, your body temper-
ature decreases. Explain this effect.

6. A liquid partially fills a container. Explain why the tem-
perature of the liquid decreases if the container is then
partially evacuated. (Using this technique, one can freeze
water at temperatures above 0°C.)

7. A vessel containing a fixed volume of gas is cooled. Does
the mean free path of the gas molecules increase, de-
crease, or remain constant during the cooling process?
What about the collision frequency?

PROBLEMS

move with a speed of 300 m/s and strike the wall head-
on in perfectly elastic collisions, what is the pressure ex-
erted on the wall? (The mass of one N2 molecule is 
4.68 � 10�26 kg.)

6. A 5.00-L vessel contains 2 mol of oxygen gas at a pres-
sure of 8.00 atm. Find the average translational kinetic
energy of an oxygen molecule under these conditions.

7. A spherical balloon with a volume of 4 000 cm3 contains
helium at an (inside) pressure of 1.20 � 105 Pa. How
many moles of helium are in the balloon if each helium
atom has an average kinetic energy of 3.60 � 10�22 J?

8. The rms speed of a helium atom at a certain tempera-
ture is 1 350 m/s. Find by proportion the rms speed of
an oxygen molecule at this temperature. (The molar
mass of O2 is 32.0 g/mol, and the molar mass of He is
4.00 g/mol.)

9. (a) How many atoms of helium gas fill a balloon of di-
ameter 30.0 cm at 20.0°C and 1.00 atm? (b) What is the
average kinetic energy of the helium atoms? (c) What is
the root-mean-square speed of each helium atom?

Section 21.1 Molecular Model of an Ideal Gas
1. Use the definition of Avogadro’s number to find the

mass of a helium atom.
2. A sealed cubical container 20.0 cm on a side contains

three times Avogadro’s number of molecules at a tem-
perature of 20.0°C. Find the force exerted by the gas on
one of the walls of the container.

3. In a 30.0-s interval, 500 hailstones strike a glass window
with an area of 0.600 m2 at an angle of 45.0° to the win-
dow surface. Each hailstone has a mass of 5.00 g and a
speed of 8.00 m/s. If the collisions are elastic, what are
the average force and pressure on the window?

4. In a time t, N hailstones strike a glass window of area A
at an angle � to the window surface. Each hailstone has
a mass m and a speed v. If the collisions are elastic, what
are the average force and pressure on the window?

5. In a period of 1.00 s, 5.00 � 1023 nitrogen molecules
strike a wall with an area of 8.00 cm2. If the molecules

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

WEB

10. A 5.00-liter vessel contains nitrogen gas at 27.0°C and
3.00 atm. Find (a) the total translational kinetic energy
of the gas molecules and (b) the average kinetic energy
per molecule.

11. A cylinder contains a mixture of helium and argon gas
in equilibrium at 150°C. (a) What is the average kinetic
energy for each type of gas molecule? (b) What is the
root-mean-square speed for each type of molecule?

12. (a) Show that 1 Pa � 1 J/m3. (b) Show that the density
in space of the translational kinetic energy of an ideal
gas is 3P/2.

Section 21.2 Molar Specific Heat of an Ideal Gas
Note: You may use the data given in Table 21.2.

13. Calculate the change in internal energy of 3.00 mol of
helium gas when its temperature is increased by 2.00 K.

14. One mole of air at 300 K and confined in
a cylinder under a heavy piston occupies a volume of
5.00 L. Determine the new volume of the gas if 4.40 kJ
of energy is transferred to the air by heat.

15. One mole of hydrogen gas is heated at constant pres-
sure from 300 K to 420 K. Calculate (a) the energy
transferred by heat to the gas, (b) the increase in its in-
ternal energy, and (c) the work done by the gas.

16. In a constant-volume process, 209 J of energy is trans-
ferred by heat to 1.00 mol of an ideal monatomic gas
initially at 300 K. Find (a) the increase in internal en-
ergy of the gas, (b) the work it does, and (c) its final
temperature.

17. A house has well-insulated walls. It contains a volume of
100 m3 of air at 300 K. (a) Calculate the energy re-
quired to increase the temperature of this air by 1.00°C.
(b) If this energy could be used to lift an object of mass
m through a height of 2.00 m, what is the value of m?

18. A vertical cylinder with a heavy piston contains air at 
300 K. The initial pressure is 200 kPa, and the initial vol-
ume is 0.350 m3. Take the molar mass of air as 
28.9 g/mol and assume that (a) Find the
specific heat of air at constant volume in units of
J/kg � °C. (b) Calculate the mass of the air in the cylin-
der. (c) Suppose the piston is held fixed. Find the en-
ergy input required to raise the temperature of the air to
700 K. (d) Assume again the conditions of the initial
state and that the heavy piston is free to move. Find the
energy input required to raise the temperature to 700 K.

19. A 1-L Thermos bottle is full of tea at 90°C. You pour out
one cup and immediately screw the stopper back on.
Make an order-of-magnitude estimate of the change in
temperature of the tea remaining in the flask that re-
sults from the admission of air at room temperature.
State the quantities you take as data and the values you
measure or estimate for them.

20. For a diatomic ideal gas, One mole of this
gas has pressure P and volume V. When the gas is
heated, its pressure triples and its volume doubles. If
this heating process includes two steps, the first at con-

CV � 5R/2.

CV � 5R/2.

(CV � 5R/2)

stant pressure and the second at constant volume, de-
termine the amount of energy transferred to the gas by
heat.

21. One mole of an ideal monatomic gas is at an initial tem-
perature of 300 K. The gas undergoes an isovolumetric
process, acquiring 500 J of energy by heat. It then un-
dergoes an isobaric process, losing this same amount of
energy by heat. Determine (a) the new temperature of
the gas and (b) the work done on the gas.

22. A container has a mixture of two gases: n1 moles of gas
1, which has a molar specific heat C1 ; and n2 moles of
gas 2, which has a molar specific heat C2 . (a) Find the
molar specific heat of the mixture. (b) What is the mo-
lar specific heat if the mixture has m gases in the
amounts n1 , n2 , n3 , . . . , nm , and molar specific heats
C1 , C2 , C3 , . . . , Cm , respectively?

23. One mole of an ideal diatomic gas with oc-
cupies a volume Vi at a pressure Pi . The gas undergoes a
process in which the pressure is proportional to the vol-
ume. At the end of the process, it is found that the rms
speed of the gas molecules has doubled from its initial
value. Determine the amount of energy transferred to
the gas by heat.

Section 21.3 Adiabatic Processes for an Ideal Gas
24. During the compression stroke of a certain gasoline en-

gine, the pressure increases from 1.00 atm to 20.0 atm.
Assuming that the process is adiabatic and that the gas is
ideal, with (a) by what factor does the volume
change and (b) by what factor does the temperature
change? (c) If the compression starts with 0.016 0 mol of
gas at 27.0°C, find the values of Q , W, and �E int that
characterize the process.

25. Two moles of an ideal gas expands slowly
and adiabatically from a pressure of 5.00 atm and a vol-
ume of 12.0 L to a final volume of 30.0 L. (a) What is
the final pressure of the gas? (b) What are the initial
and final temperatures? (c) Find Q , W, and �E int .

26. Air at 27.0°C and at atmospheric pressure is
drawn into a bicycle pump that has a cylinder with an
inner diameter of 2.50 cm and a length of 50.0 cm. The
down stroke adiabatically compresses the air, which
reaches a gauge pressure of 800 kPa before entering the
tire. Determine (a) the volume of the compressed air
and (b) the temperature of the compressed air. 
(c) The pump is made of steel and has an inner wall
that is 2.00 mm thick. Assume that 4.00 cm of the cylin-
der’s length is allowed to come to thermal equilibrium
with the air. What will be the increase in wall tempera-
ture?

27. Air in a thundercloud expands as it rises. If its initial
temperature was 300 K, and if no energy is lost by ther-
mal conduction on expansion, what is its temperature
when the initial volume has doubled?

28. How much work is required to compress 5.00 mol of air
at 20.0°C and 1.00 atm to one tenth of the original vol-

(� � 1.40)

(� � 1.40)

� � 1.40,

CV � 5R/2
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P21.31), (4) the time involved in the expansion is one-
fourth that of the total cycle, and (5) the mixture be-
haves like an ideal gas, with Find the average
power generated during the expansion.

Section 21.4 The Equipartition of Energy
32. A certain molecule has f degrees of freedom. Show that

a gas consisting of such molecules has the following
properties: (1) its total internal energy is fnRT/2; (2) its
molar specific heat at constant volume is fR/2; (3) its
molar specific heat at constant pressure is 
(4) the ratio 

33. Consider 2.00 mol of an ideal diatomic gas. Find the to-
tal heat capacity at constant volume and at constant
pressure (a) if the molecules rotate but do not vibrate
and (b) if the molecules both rotate and vibrate.

34. Inspecting the magnitudes of CV and CP for the di-
atomic and polyatomic gases in Table 21.2, we find that
the values increase with increasing molecular mass. Give
a qualitative explanation of this observation.

35. In a crude model (Fig. P21.35) of a rotating diatomic
molecule of chlorine (Cl2), the two Cl atoms are 
2.00 � 10�10 m apart and rotate about their center of
mass with angular speed � � 2.00 � 1012 rad/s. What is
the rotational kinetic energy of one molecule of Cl2 ,
which has a molar mass of 70.0 g/mol?

� � CP/CV � ( f � 2)/f.
( f � 2)R/2;

� � 1.40.

WEB

Section 21.5 The Boltzmann Distribution Law
Section 21.6 Distribution of Molecular Speeds

36. One cubic meter of atomic hydrogen at 0°C contains
approximately 2.70 � 1025 atoms at atmospheric pres-
sure. The first excited state of the hydrogen atom has
an energy of 10.2 eV above the lowest energy level,
which is called the ground state. Use the Boltzmann fac-
tor to find the number of atoms in the first excited state
at 0°C and at 10 000°C.

37. If convection currents (weather) did not keep the
Earth’s lower atmosphere stirred up, its chemical com-
position would change somewhat with altitude because
the various molecules have different masses. Use the law
of atmospheres to determine how the equilibrium ratio
of oxygen to nitrogen molecules changes between sea
level and 10.0 km. Assume a uniform temperature of
300 K and take the masses to be 32.0 u for oxygen (O2)
and 28.0 u for nitrogen (N2).

400 cm3

After

50.0 cm3

Before

Figure P21.31

Figure P21.35

Cl

Cl

ume by (a) an isothermal process and (b) an adiabatic
process? (c) What is the final pressure in each of these
two cases?

29. Four liters of a diatomic ideal gas confined
to a cylinder is subject to a closed cycle. Initially, the gas
is at 1.00 atm and at 300 K. First, its pressure is tripled
under constant volume. Then, it expands adiabatically
to its original pressure. Finally, the gas is compressed
isobarically to its original volume. (a) Draw a PV dia-
gram of this cycle. (b) Determine the volume of the gas
at the end of the adiabatic expansion. (c) Find the tem-
perature of the gas at the start of the adiabatic expan-
sion. (d) Find the temperature at the end of the cycle.
(e) What was the net work done for this cycle?

30. A diatomic ideal gas confined to a cylinder is
subjected to a closed cycle. Initially, the gas is at Pi , Vi ,
and Ti . First, its pressure is tripled under constant vol-
ume. Then, it expands adiabatically to its original pres-
sure. Finally, the gas is compressed isobarically to its
original volume. (a) Draw a PV diagram of this cycle.
(b) Determine the volume of the gas at the end of the
adiabatic expansion. (c) Find the temperature of the
gas at the start of the adiabatic expansion. (d) Find the
temperature at the end of the cycle. (e) What was the
net work done for this cycle?

31. During the power stroke in a four-stroke automobile en-
gine, the piston is forced down as the mixture of gas
and air undergoes an adiabatic expansion. Assume that
(1) the engine is running at 2 500 rpm, (2) the gauge
pressure right before the expansion is 20.0 atm, (3) the
volumes of the mixture right before and after the ex-
pansion are 50.0 and 400 cm3, respectively (Fig.

(� � 1.40)

(� � 1.40)
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38. A mixture of two gases diffuses through a filter at rates
proportional to the gases’ rms speeds. (a) Find the ratio
of speeds for the two isotopes of chlorine, 35Cl and 37Cl,
as they diffuse through the air. (b) Which isotope
moves faster?

39. Fifteen identical particles have various speeds: one has 
a speed of 2.00 m/s; two have a speed of 3.00 m/s;
three have a speed of 5.00 m/s; four have a speed of
7.00 m/s; three have a speed of 9.00 m/s; and two have
a speed of 12.0 m/s. Find (a) the average speed, 
(b) the rms speed, and (c) the most probable speed of
these particles.

40. Gaseous helium is in thermal equilibrium with liquid
helium at 4.20 K. Even though it is on the point of con-
densation, model the gas as ideal and determine the
most probable speed of a helium atom (mass �
6.64 � 10�27 kg) in it.

41. From the Maxwell–Boltzmann speed distribution, show
that the most probable speed of a gas molecule is given
by Equation 21.29. Note that the most probable speed
corresponds to the point at which the slope of the
speed distribution curve, dNv/dv, is zero.

42. Review Problem. At what temperature would the aver-
age speed of helium atoms equal (a) the escape speed
from Earth, 1.12 � 104 m/s, and (b) the escape speed
from the Moon, 2.37 � 103 m/s ? (See Chapter 14 for a
discussion of escape speed, and note that the mass of a
helium atom is 6.64 � 10�27 kg.)

43. A gas is at 0°C. If we wish to double the rms speed of
the gas’s molecules, by how much must we raise its tem-
perature?

44. The latent heat of vaporization for water at room tem-
perature is 2 430 J/g. (a) How much kinetic energy
does each water molecule that evaporates possess be-
fore it evaporates? (b) Find the pre-evaporation rms
speed of a water molecule that is evaporating. (c) What
is the effective temperature of these molecules (mod-
eled as if they were already in a thin gas)? Why do these
molecules not burn you?

(Optional)
Section 21.7 Mean Free Path

45. In an ultrahigh vacuum system, the pressure is mea-
sured to be 1.00 � 10�10 torr (where 1 torr � 133 Pa).
Assume that the gas molecules have a molecular diame-
ter of 3.00 � 10�10 m and that the temperature is 
300 K. Find (a) the number of molecules in a volume of
1.00 m3, (b) the mean free path of the molecules, and
(c) the collision frequency, assuming an average speed
of 500 m/s.

46. In deep space it is reported that there is only one parti-
cle per cubic meter. Using the average temperature of
3.00 K and assuming that the particle is H2 (with a di-
ameter of 0.200 nm), (a) determine the mean free path
of the particle and the average time between collisions.

(b) Repeat part (a), assuming that there is only one
particle per cubic centimeter.

47. Show that the mean free path for the molecules of an
ideal gas at temperature T and pressure P is

where d is the molecular diameter.
48. In a tank full of oxygen, how many molecular diameters

d (on average) does an oxygen molecule travel (at 
1.00 atm and 20.0°C) before colliding with another O2
molecule? (The diameter of the O2 molecule is approx-
imately 3.60 � 10�10 m.)

49. Argon gas at atmospheric pressure and 20.0°C is con-
fined in a 1.00-m3 vessel. The effective hard-sphere di-
ameter of the argon atom is 3.10 � 10�10 m. (a) Deter-
mine the mean free path �. (b) Find the pressure when
the mean free path is � � 1.00 m. (c) Find the pressure
when � � 3.10 � 10�10 m.

ADDITIONAL PROBLEMS

50. The dimensions of a room are 4.20 m � 3.00 m �
2.50 m. (a) Find the number of molecules of air in it at
atmospheric pressure and 20.0°C. (b) Find the mass of
this air, assuming that the air consists of diatomic mole-
cules with a molar mass of 28.9 g/mol. (c) Find the av-
erage kinetic energy of a molecule. (d) Find the root-
mean-square molecular speed. (e) On the assumption
that the specific heat is a constant independent of tem-
perature, we have E int � 5nRT/2. Find the internal en-
ergy in the air. (f) Find the internal energy of the air in
the room at 25.0°C.

51. The function E int � 3.50nRT describes the internal en-
ergy of a certain ideal gas. A sample comprising 
2.00 mol of the gas always starts at pressure 100 kPa and
temperature 300 K. For each one of the following
processes, determine the final pressure, volume, and
temperature; the change in internal energy of the gas;
the energy added to the gas by heat; and the work done
by the gas: (a) The gas is heated at constant pressure to
400 K. (b) The gas is heated at constant volume to 
400 K. (c) The gas is compressed at constant tempera-
ture to 120 kPa. (d) The gas is compressed adiabatically
to 120 kPa.

52. Twenty particles, each of mass m and confined to a vol-
ume V, have various speeds: two have speed v; three
have speed 2v; five have speed 3v; four have speed 4v;
three have speed 5v; two have speed 6v; one has speed
7v. Find (a) the average speed, (b) the rms speed, 
(c) the most probable speed, (d) the pressure that the
particles exert on the walls of the vessel, and (e) the av-
erage kinetic energy per particle.

53. A cylinder contains n mol of an ideal gas that undergoes
an adiabatic process. (a) Starting with the expression

� �
kBT

!2�d 2P

WEB
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and using the expression 
show that the work done is

(b) Starting with the first law equation in differential
form, prove that the work done also is equal to

Show that this result is consistent with
the equation given in part (a).

54. A vessel contains 1.00 � 104 oxygen molecules at 500 K.
(a) Make an accurate graph of the Maxwell speed distri-
bution function versus speed with points at speed inter-
vals of 100 m/s. (b) Determine the most probable
speed from this graph. (c) Calculate the average and
rms speeds for the molecules and label these points on
your graph. (d) From the graph, estimate the fraction
of molecules having speeds in the range of 300 m/s to
600 m/s.

55. Review Problem. Oxygen at pressures much greater
than 1 atm is toxic to lung cells. By weight, what ratio of
helium gas (He) to oxygen gas (O2) must be used by a
scuba diver who is to descend to an ocean depth of 
50.0 m?

56. A cylinder with a piston contains 1.20 kg of air at 25.0°C
and 200 kPa. Energy is transferred into the system by
heat as it is allowed to expand, with the pressure rising
to 400 kPa. Throughout the expansion, the relationship
between pressure and volume is given by

where C is a constant. (a) Find the initial volume. 
(b) Find the final volume. (c) Find the final tempera-
ture. (d) Find the work that the air does. (e) Find the
energy transferred by heat. Take 

57. The compressibility � of a substance is defined as the
fractional change in volume of that substance for a
given change in pressure:

(a) Explain why the negative sign in this expression en-
sures that � is always positive. (b) Show that if an ideal
gas is compressed isothermally, its compressibility is
given by (c) Show that if an ideal gas is com-
pressed adiabatically, its compressibility is given by

(d) Determine values for �1 and �2 for a
monatomic ideal gas at a pressure of 2.00 atm.

58. Review Problem. (a) Show that the speed of sound in
an ideal gas is

where M is the molar mass. Use the general expression
for the speed of sound in a fluid from Section 17.1; the
definition of the bulk modulus from Section 12.4; and
the result of Problem 57 in this chapter. As a sound

v �! �RT
M

�2 � 1/�P.

�1 � 1/P.

� � �
1
V

 
dV
dP

M � 28.9 g/mol.

P � CV 1/2

nCV(Ti � Tf).

W � � 1
� � 1 �(PiVi � PfVf)

PV � � constant,W � � P dV wave passes through a gas, the compressions are either
so rapid or so far apart that energy flow by heat is pre-
vented by lack of time or by effective thickness of insula-
tion. The compressions and rarefactions are adiabatic.
(b) Compute the theoretical speed of sound in air at
20°C and compare it with the value given in Table 17.1.
Take M � 28.9 g/mol. (c) Show that the speed of
sound in an ideal gas is

where m is the mass of one molecule. Compare your re-
sult with the most probable, the average, and the rms
molecular speeds.

59. For a Maxwellian gas, use a computer or programmable
calculator to find the numerical value of the ratio

for the following values of v :

Give your results to three significant figures.
60. A pitcher throws a 0.142-kg baseball at 47.2 m/s (Fig.

P21.60). As it travels 19.4 m, the ball slows to 42.5 m/s
because of air resistance. Find the change in tempera-
ture of the air through which it passes. To find the
greatest possible temperature change, you may make
the following assumptions: Air has a molar heat capacity
of and an equivalent molar mass of 
28.9 g/mol. The process is so rapid that the cover of the
baseball acts as thermal insulation, and the temperature
of the ball itself does not change. A change in tempera-
ture happens initially only for the air in a cylinder 
19.4 m in length and 3.70 cm in radius. This air is ini-
tially at 20.0°C.

CP � 7R/2

50vmp .
(vmp/2), vmp , 2vmp , 10vmp ,v � (vmp/50), (vmp/10),

Nv(v)/Nv(vmp)

v �! �kBT
m

WEB

Figure P21.60 Nolan Ryan hurls the baseball
for his 5 000th strikeout. (Joe Patronite/ALLSPORT)
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61. Consider the particles in a gas centrifuge, a device that
separates particles of different mass by whirling them 
in a circular path of radius r at angular speed �. New-
ton’s second law applied to circular motion states that a
force of magnitude equal to m�2r acts on a particle. 
(a) Discuss how a gas centrifuge can be used to separate
particles of different mass. (b) Show that the density of
the particles as a function of r is

62. Verify Equations 21.27 and 21.28 for the rms and aver-
age speeds of the molecules of a gas at a temperature T.
Note that the average value of vn is

and make use of the definite integrals

63. A sample of a monatomic ideal gas occupies 5.00 L at
atmospheric pressure and 300 K (point A in Figure
P21.63). It is heated at constant volume to 3.00 atm
(point B). Then, it is allowed to expand isothermally to
1.00 atm (point C) and at last is compressed isobarically
to its original state. (a) Find the number of moles in the
sample. (b) Find the temperatures at points B and C
and the volume at point C . (c) Assuming that the
specific heat does not depend on temperature, so that
E int � 3nRT/2, find the internal energy at points A, B,

�

0
 x3e�ax 2

 dx �
1

2a2   �

0
 x4e�ax 2

 dx �
3

8a2  ! �

a

vn �
1
N

 �

0
 vnNvdv

n(r) � n0emr2�2/2k BT

and C . (d) Tabulate P, V, T, and E int at the states at
points A, B, and C . (e) Now consider the processes 
A : B, B : C, and C : A. Describe just how to carry
out each process experimentally. (f) Find Q , W, and
�E int for each of the processes. (g) For the whole cycle
A : B : C : A, find Q , W, and �E int .

64. If you can’t walk to outer space, can you walk at least half
way? (a) Show that the fraction of particles below an al-
titude h in the atmosphere is

(b) Use this result to show that half the particles are be-
low the altitude What is the value of
h� for the Earth? (Assume a temperature of 270 K, and
note that the average molar mass for air is 28.9 g/mol.)

65. This problem will help you to think about the size of
molecules. In the city of Beijing, a restaurant keeps a
pot of chicken broth simmering continuously. Every
morning it is topped off to contain 10.0 L of water,
along with a fresh chicken, vegetables, and spices. The
soup is thoroughly stirred. The molar mass of water is 
18.0 g/mol. (a) Find the number of molecules of water
in the pot. (b) During a certain month, 90.0% of the
broth was served each day to people who then emi-
grated immediately. Of the water molecules present 
in the pot on the first day of the month, when was 
the last one likely to have been ladled out of the pot?
(c) The broth has been simmering for centuries,
through wars, earthquakes, and stove repairs. Suppose
that the water that was in the pot long ago has thor-
oughly mixed into the Earth’s hydrosphere, of mass
1.32 � 1021 kg. How many of the water molecules origi-
nally in the pot are likely to be present in it again today?

66. Review Problem. (a) If it has enough kinetic energy, a
molecule at the surface of the Earth can escape the
Earth’s gravitation. Using the principle of conservation
of energy, show that the minimum kinetic energy
needed for escape is mgR, where m is the mass of the
molecule, g is the free-fall acceleration at the surface of
the Earth, and R is the radius of the Earth. (b) Calcu-
late the temperature for which the minimum escape ki-
netic energy is ten times the average kinetic energy of
an oxygen molecule.

67. Using multiple laser beams, physicists have been able to
cool and trap sodium atoms in a small region. In one
experiment, the temperature of the atoms was reduced
to 0.240 mK. (a) Determine the rms speed of the
sodium atoms at this temperature. The atoms can be
trapped for about 1.00 s. The trap has a linear dimen-
sion of roughly 1.00 cm. (b) Approximately how long
would it take an atom to wander out of the trap region
if there were no trapping action?

h� � kBT ln(2)/mg.

f � 1 � e (�mgh/k BT )

Figure P21.63
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ANSWERS TO QUICK QUIZZES

is constant by definition. Therefore, the internal energy
of the gas does not change.

21.3 The area under each curve represents the number of
molecules in that particular velocity range. The T �
900 K curve has many more molecules moving between
800 m/s and 1000 m/s than does the T � 300 K curve.

21.1 Although a molecule moves very rapidly, it does not
travel far before it collides with another molecule. The
collision deflects the molecule from its original path.
Eventually, a perfume molecule will make its way from
one end of the room to the other, but the path it takes is
much longer than the straight-line distance from the
perfume bottle to your nose.

21.2 (c) E int stays the same. According to Equation 21.10, E int
is a function of temperature only. Along an isotherm, T
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The purpose of a refrigerator is to keep
its contents cool. Beyond the attendant
increase in your electricity bill, there is
another good reason you should not try
to cool the kitchen on a hot day by 
leaving the refrigerator door open. 
What might this reason be?
(Charles D. Winters)
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he first law of thermodynamics, which we studied in Chapter 20, is a state-
ment of conservation of energy, generalized to include internal energy. This
law states that a change in internal energy in a system can occur as a result of

energy transfer by heat or by work, or by both. As was stated in Chapter 20, the law
makes no distinction between the results of heat and the results of work—either
heat or work can cause a change in internal energy. However, an important distinc-
tion between the two is not evident from the first law. One manifestation of this
distinction is that it is impossible to convert internal energy completely to mechan-
ical energy by taking a substance through a thermodynamic cycle such as in a heat
engine, a device we study in this chapter.

Although the first law of thermodynamics is very important, it makes no dis-
tinction between processes that occur spontaneously and those that do not. How-
ever, we find that only certain types of energy-conversion and energy-transfer
processes actually take place. The second law of thermodynamics, which we study in
this chapter, establishes which processes do and which do not occur in nature. The
following are examples of processes that proceed in only one direction, governed
by the second law:

• When two objects at different temperatures are placed in thermal contact with
each other, energy always flows by heat from the warmer to the cooler, never
from the cooler to the warmer.

• A rubber ball dropped to the ground bounces several times and eventually
comes to rest, but a ball lying on the ground never begins bouncing on its own.

• An oscillating pendulum eventually comes to rest because of collisions with air
molecules and friction at the point of suspension. The mechanical energy of the
system is converted to internal energy in the air, the pendulum, and the suspen-
sion; the reverse conversion of energy never occurs.

All these processes are irreversible—that is, they are processes that occur natu-
rally in one direction only. No irreversible process has ever been observed to run
backward—if it were to do so, it would violate the second law of thermodynamics.1

From an engineering standpoint, perhaps the most important implication of
the second law is the limited efficiency of heat engines. The second law states that
a machine capable of continuously converting internal energy completely to other
forms of energy in a cyclic process cannot be constructed.

HEAT ENGINES AND THE SECOND LAW
OF THERMODYNAMICS

A heat engine is a device that converts internal energy to mechanical energy. For
instance, in a typical process by which a power plant produces electricity, coal or
some other fuel is burned, and the high-temperature gases produced are used to
convert liquid water to steam. This steam is directed at the blades of a turbine, set-
ting it into rotation. The mechanical energy associated with this rotation is used to
drive an electric generator. Another heat engine—the internal combustion en-
gine in an automobile—uses energy from a burning fuel to perform work that re-
sults in the motion of the automobile.

22.1

T

10.8

1 Although we have never observed a process occurring in the time-reversed sense, it is possible for it to
occur. As we shall see later in the chapter, however, such a process is highly improbable. From this view-
point, we say that processes occur with a vastly greater probability in one direction than in the opposite
direction.
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A heat engine carries some working substance through a cyclic process during
which (1) the working substance absorbs energy from a high-temperature energy
reservoir, (2) work is done by the engine, and (3) energy is expelled by the engine
to a lower-temperature reservoir. As an example, consider the operation of a steam
engine (Fig. 22.1), in which the working substance is water. The water in a boiler
absorbs energy from burning fuel and evaporates to steam, which then does work
by expanding against a piston. After the steam cools and condenses, the liquid wa-
ter produced returns to the boiler and the cycle repeats.

It is useful to represent a heat engine schematically as in Figure 22.2. The en-
gine absorbs a quantity of energy Q h from the hot reservoir, does work W, and
then gives up a quantity of energy Q c to the cold reservoir. Because the working
substance goes through a cycle, its initial and final internal energies are equal, and
so Hence, from the first law of thermodynamics, and
with no change in internal energy, the net work W done by a heat engine is
equal to the net energy Q net flowing through it. As we can see from Figure
22.2, therefore,

(22.1)

In this expression and in many others throughout this chapter, to be consistent
with traditional treatments of heat engines, we take both Q h and Q c to be positive
quantities, even though Q c represents energy leaving the engine. In discussions of
heat engines, we shall describe energy leaving a system with an explicit minus sign,

W � Q h � Q c

Q net � Q h � Q c ;

�E int � Q � W,�E int � 0.

Lord Kelvin British physicist and
mathematician (1824 – 1907) Born
William Thomson in Belfast, Kelvin
was the first to propose the use of an
absolute scale of temperature. The
Kelvin temperature scale is named in
his honor. Kelvin’s work in thermo-
dynamics led to the idea that energy
cannot pass spontaneously from a
colder body to a hotter body. (J. L.
Charmet /SPL /Photo Researchers, Inc.)

Hot reservoir at Th

Q h

Q c

W

Cold reservoir at Tc

Engine

Figure 22.1 This steam-driven locomotive runs from Durango to Silverton, Colorado. It ob-
tains its energy by burning wood or coal. The generated energy vaporizes water into steam, which
powers the locomotive. (This locomotive must take on water from tanks located along the route
to replace steam lost through the funnel.) Modern locomotives use diesel fuel instead of wood or
coal. Whether old-fashioned or modern, such locomotives are heat engines, which extract energy
from a burning fuel and convert a fraction of it to mechanical energy.

Figure 22.2 Schematic represen-
tation of a heat engine. The engine
absorbs energy Q h from the hot
reservoir, expels energy Q c to the
cold reservoir, and does work W.
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as in Equation 22.1. Also note that we model the energy input and output for the
heat engine as heat, as it often is; however, the energy transfer could occur by an-
other mechanism.

The net work done in a cyclic process is the area enclosed by the curve
representing the process on a PV diagram. This is shown for an arbitrary cyclic
process in Figure 22.3.

The thermal efficiency e of a heat engine is defined as the ratio of the net
work done by the engine during one cycle to the energy absorbed at the higher
temperature during the cycle:

(22.2)e �
W
Q h

�
Q h � Q c

Q h
� 1 �

Q c

Q h

We can think of the efficiency as the ratio of what you get (mechanical work)
to what you give (energy transfer at the higher temperature). In practice, we find
that all heat engines expel only a fraction of the absorbed energy as mechanical
work and that consequently the efficiency is less than 100%. For example, a good
automobile engine has an efficiency of about 20%, and diesel engines have effi-
ciencies ranging from 35% to 40%.

Equation 22.2 shows that a heat engine has 100% efficiency (e � 1) only if 
Q c � 0—that is, if no energy is expelled to the cold reservoir. In other words, a
heat engine with perfect efficiency would have to expel all of the absorbed energy
as mechanical work. On the basis of the fact that efficiencies of real engines are
well below 100%, the Kelvin–Planck form of the second law of thermodynam-
ics states the following:

It is impossible to construct a heat engine that, operating in a cycle, produces
no effect other than the absorption of energy from a reservoir and the perfor-
mance of an equal amount of work.

Kelvin–Planck statement of the
second law of thermodynamics

P

V

Area = W

Figure 22.3 PV diagram for an
arbitrary cyclic process. The value
of the net work done equals the
area enclosed by the curve.

This statement of the second law means that, during the operation of a heat en-
gine, W can never be equal to Q h , or, alternatively, that some energy Q c must be

The impossible engine

Q h

Cold reservoir at Tc

Engine

W

Hot reservoir at Th

Figure 22.4 Schematic diagram of a heat engine
that absorbs energy Q h from a hot reservoir and does
an equivalent amount of work. It is impossible to con-
struct such a perfect engine.
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rejected to the environment. Figure 22.4 is a schematic diagram of the impossible
“perfect” heat engine.

The first and second laws of thermodynamics can be summarized as follows:
The first law specifies that we cannot get more energy out of a cyclic process
by work than the amount of energy we put in, and the second law states that
we cannot break even because we must put more energy in, at the higher
temperature, than the net amount of energy we get out by work.

The Efficiency of an EngineEXAMPLE 22.1
Equation 22.2:

or 25%e � 1 �
Q c

Q h
� 1 �

1 500 J
2 000 J

� 0.25,

Find the efficiency of a heat engine that absorbs 2 000 J of
energy from a hot reservoir and exhausts 1 500 J to a cold
reservoir.

Solution To calculate the efficiency of the engine, we use

Refrigerators and Heat Pumps

Refrigerators and heat pumps are heat engines running in reverse. Here, we in-
troduce them briefly for the purposes of developing an alternate statement of the
second law; we shall discuss them more fully in Section 22.5.

In a refrigerator or heat pump, the engine absorbs energy Q c from a cold
reservoir and expels energy Q h to a hot reservoir (Fig. 22.5). This can be accom-
plished only if work is done on the engine. From the first law, we know that the en-
ergy given up to the hot reservoir must equal the sum of the work done and the
energy absorbed from the cold reservoir. Therefore, the refrigerator or heat pump
transfers energy from a colder body (for example, the contents of a kitchen refrig-
erator or the winter air outside a building) to a hotter body (the air in the kitchen
or a room in the building). In practice, it is desirable to carry out this process with
a minimum of work. If it could be accomplished without doing any work, then the
refrigerator or heat pump would be “perfect” (Fig. 22.6). Again, the existence of

Refrigerator

Q h

Q c

Cold reservoir at Tc

Engine

W

Hot reservoir at Th

Impossible refrigerator

Cold reservoir at Tc

Engine

Hot reservoir at Th

Figure 22.5 Schematic diagram of a refrigerator,
which absorbs energy Q c from a cold reservoir and ex-
pels energy Q h to a hot reservoir. Work W is done on the
refrigerator. A heat pump, which can be used to heat or
cool a building, works the same way.

Figure 22.6 Schematic diagram
of an impossible refrigerator or
heat pump—that is, one that ab-
sorbs energy Q c from a cold reser-
voir and expels an equivalent
amount of energy to a hot reservoir
with W � 0.
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such a device would be in violation of the second law of thermodynamics, which in
the form of the Clausius statement2 states:

It is impossible to construct a cyclical machine whose sole effect is the continu-
ous transfer of energy from one object to another object at a higher tempera-
ture without the input of energy by work.

In simpler terms, energy does not flow spontaneously from a cold object to a
hot object. For example, we cool homes in summer using heat pumps called air
conditioners. The air conditioner pumps energy from the cool room in the home to
the warm air outside. This direction of energy transfer requires an input of energy
to the air conditioner, which is supplied by the electric power company.

The Clausius and Kelvin–Planck statements of the second law of thermody-
namics appear, at first sight, to be unrelated, but in fact they are equivalent in all
respects. Although we do not prove so here, if either statement is false, then so is
the other.3

REVERSIBLE AND IRREVERSIBLE PROCESSES
In the next section we discuss a theoretical heat engine that is the most efficient
possible. To understand its nature, we must first examine the meaning of re-
versible and irreversible processes. In a reversible process, the system undergoing
the process can be returned to its initial conditions along the same path shown on
a PV diagram, and every point along this path is an equilibrium state. A process
that does not satisfy these requirements is irreversible.

All natural processes are known to be irreversible. From the endless number
of examples that could be selected, let us examine the adiabatic free expansion of
a gas, which was already discussed in Section 20.6, and show that it cannot be re-
versible. The system that we consider is a gas in a thermally insulated container, as
shown in Figure 22.7. A membrane separates the gas from a vacuum. When the
membrane is punctured, the gas expands freely into the vacuum. As a result of
the puncture, the system has changed because it occupies a greater volume after
the expansion. Because the gas does not exert a force through a distance on the
surroundings, it does no work on the surroundings as it expands. In addition, no
energy is transferred to or from the gas by heat because the container is insulated
from its surroundings. Thus, in this adiabatic process, the system has changed but
the surroundings have not.

For this process to be reversible, we need to be able to return the gas to its
original volume and temperature without changing the surroundings. Imagine
that we try to reverse the process by compressing the gas to its original volume. To
do so, we fit the container with a piston and use an engine to force the piston in-
ward. During this process, the surroundings change because work is being done by
an outside agent on the system. In addition, the system changes because the com-
pression increases the temperature of the gas. We can lower the temperature of
the gas by allowing it to come into contact with an external energy reservoir. Al-
though this step returns the gas to its original conditions, the surroundings are

22.2

Clausius statement of the second
law of thermodynamics

2 First expressed by Rudolf Clausius (1822–1888).
3 See, for example, R. P. Bauman, Modern Thermodynamics and Statistical Mechanics, New York, Macmillan
Publishing Co., 1992.

Insulating
wall

Membrane

Vacuum

Gas at Ti

Figure 22.7 Adiabatic free ex-
pansion of a gas.
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again affected because energy is being added to the surroundings from the gas. If
this energy could somehow be used to drive the engine that we have used to com-
press the gas, then the net energy transfer to the surroundings would be zero. In
this way, the system and its surroundings could be returned to their initial condi-
tions, and we could identify the process as reversible. However, the Kelvin–Planck
statement of the second law specifies that the energy removed from the gas to re-
turn the temperature to its original value cannot be completely converted to me-
chanical energy in the form of the work done by the engine in compressing the
gas. Thus, we must conclude that the process is irreversible.

We could also argue that the adiabatic free expansion is irreversible by relying
on the portion of the definition of a reversible process that refers to equilibrium
states. For example, during the expansion, significant variations in pressure occur
throughout the gas. Thus, there is no well-defined value of the pressure for the en-
tire system at any time between the initial and final states. In fact, the process cannot
even be represented as a path on a PV diagram. The PV diagram for an adiabatic
free expansion would show the initial and final conditions as points, but these points
would not be connected by a path. Thus, because the intermediate conditions be-
tween the initial and final states are not equilibrium states, the process is irreversible.

Although all real processes are always irreversible, some are almost reversible.
If a real process occurs very slowly such that the system is always very nearly in an
equilibrium state, then the process can be approximated as reversible. For exam-
ple, let us imagine that we compress a gas very slowly by dropping some grains of
sand onto a frictionless piston, as shown in Figure 22.8. We make the process
isothermal by placing the gas in thermal contact with an energy reservoir, and we
transfer just enough energy from the gas to the reservoir during the process to
keep the temperature constant. The pressure, volume, and temperature of the gas
are all well defined during the isothermal compression, so each state during the
process is an equilibrium state. Each time we add a grain of sand to the piston, the
volume of the gas decreases slightly while the pressure increases slightly. Each
grain we add represents a change to a new equilibrium state. We can reverse the
process by slowly removing grains from the piston.

A general characteristic of a reversible process is that no dissipative effects
(such as turbulence or friction) that convert mechanical energy to internal energy
can be present. Such effects can be impossible to eliminate completely. Hence, it is
not surprising that real processes in nature are irreversible.

THE CARNOT ENGINE
In 1824 a French engineer named Sadi Carnot described a theoretical engine,
now called a Carnot engine, that is of great importance from both practical and
theoretical viewpoints. He showed that a heat engine operating in an ideal, re-
versible cycle—called a Carnot cycle—between two energy reservoirs is the most
efficient engine possible. Such an ideal engine establishes an upper limit on the
efficiencies of all other engines. That is, the net work done by a working substance
taken through the Carnot cycle is the greatest amount of work possible for a given
amount of energy supplied to the substance at the upper temperature. Carnot’s
theorem can be stated as follows:

22.3

Figure 22.8 A gas in thermal
contact with an energy reservoir is
compressed slowly as individual
grains of sand drop onto the pis-
ton. The compression is isothermal
and reversible.

Energy reservoir

Sand

No real heat engine operating between two energy reservoirs can be more effi-
cient than a Carnot engine operating between the same two reservoirs.

Sadi Carnot French physicist
(1796 – 1832) Carnot was the first to
show the quantitative relationship be-
tween work and heat. In 1824 he pub-
lished his only work — Reflections on
the Motive Power of Heat—which
reviewed the industrial, political, and
economic importance of the steam
engine. In it, he defined work as
“weight lifted through a height.”
(FPG)

10.9
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To argue the validity of this theorem, let us imagine two heat engines operating
between the same energy reservoirs. One is a Carnot engine with efficiency eC , and
the other is an engine with efficiency e, which is greater than eC . We use the more
efficient engine to drive the Carnot engine as a Carnot refrigerator. Thus, the out-
put by work of the more efficient engine is matched to the input by work of the

Cycle

D → A

Adiabatic
compression

Q = 0

(d)

B → C

Adiabatic
expansion

Q = 0

(b)

Energy reservoir at Th

(a)

A → B

Isothermal
expansion

(c)

Energy reservoir at Tc

C → D
Isothermal

compression

Q h

Q c

Figure 22.9 The Carnot cycle. In process A : B, the gas expands isothermally while in contact
with a reservoir at Th . In process B : C, the gas expands adiabatically (Q � 0). In process C : D,
the gas is compressed isothermally while in contact with a reservoir at In process D : A,
the gas is compressed adiabatically. The upward arrows on the piston indicate that weights are be-
ing removed during the expansions, and the downward arrows indicate that weights are being
added during the compressions.

Tc � Th .
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Carnot refrigerator. For the combination of the engine and refrigerator, then, no
exchange by work with the surroundings occurs. Because we have assumed that
the engine is more efficient than the refrigerator, the net result of the combina-
tion is a transfer of energy from the cold to the hot reservoir without work being
done on the combination. According to the Clausius statement of the second law,
this is impossible. Hence, the assumption that must be false. All real en-
gines are less efficient than the Carnot engine because they do not operate
through a reversible cycle. The efficiency of a real engine is further reduced by
such practical difficulties as friction and energy losses by conduction.

To describe the Carnot cycle taking place between temperatures Tc and Th , we
assume that the working substance is an ideal gas contained in a cylinder fitted
with a movable piston at one end. The cylinder’s walls and the piston are ther-
mally nonconducting. Four stages of the Carnot cycle are shown in Figure 22.9,
and the PV diagram for the cycle is shown in Figure 22.10. The Carnot cycle con-
sists of two adiabatic processes and two isothermal processes, all reversible:

1. Process A : B (Fig. 22.9a) is an isothermal expansion at temperature Th . The
gas is placed in thermal contact with an energy reservoir at temperature Th .
During the expansion, the gas absorbs energy Q h from the reservoir through
the base of the cylinder and does work WAB in raising the piston.

2. In process B : C (Fig. 22.9b), the base of the cylinder is replaced by a ther-
mally nonconducting wall, and the gas expands adiabatically —that is, no en-
ergy enters or leaves the system. During the expansion, the temperature of
the gas decreases from Th to Tc and the gas does work WBC in raising the 
piston.

3. In process C : D (Fig. 22.9c), the gas is placed in thermal contact with an en-
ergy reservoir at temperature Tc and is compressed isothermally at temperature
Tc . During this time, the gas expels energy Q c to the reservoir, and the work
done by the piston on the gas is WCD .

4. In the final process D : A (Fig. 22.9d), the base of the cylinder is replaced by a
nonconducting wall, and the gas is compressed adiabatically. The temperature
of the gas increases to Th , and the work done by the piston on the gas is WDA .

The net work done in this reversible, cyclic process is equal to the area en-
closed by the path ABCDA in Figure 22.10. As we demonstrated in Section 22.1,
because the change in internal energy is zero, the net work W done in one cycle
equals the net energy transferred into the system, Q h � Q c . The thermal efficiency
of the engine is given by Equation 22.2:

In Example 22.2, we show that for a Carnot cycle

(22.3)

Hence, the thermal efficiency of a Carnot engine is

(22.4)

This result indicates that all Carnot engines operating between the same two
temperatures have the same efficiency.

eC � 1 �
Tc

Th

Q c

Q h
�

Tc

Th

e �
W
Q h

�
Q h � Q c

Q h
� 1 �

Q c

Q h

e � eC

Ratio of energies for a Carnot
cycle

Efficiency of a Carnot engine

V

P

A

C

B

D

Q c

Q h

Th

Tc

W

Figure 22.10 PV diagram for the
Carnot cycle. The net work done,
W, equals the net energy received
in one cycle, Note that

for the cycle.�E int � 0
Q h � Q c .



678 C H A P T E R  2 2 Heat Engines, Entropy, and the Second Law of Thermodynamics

Efficiency of the Carnot EngineEXAMPLE 22.2
pression for P and substituting into (2), we obtain

which we can write as

where we have absorbed nR into the constant right-hand side.
Applying this result to the adiabatic processes B : C and 
D : A, we obtain

Dividing the first equation by the second, we obtain

(3)

Substituting (3) into (1), we find that the logarithmic terms
cancel, and we obtain the relationship

Using this result and Equation 22.2, we see that the thermal
efficiency of the Carnot engine is

which is Equation 22.4, the one we set out to prove.

eC � 1 �
Q c

Q h
� 1 �

Tc

Th

Q c

Q h
�

Tc

Th

VB

VA
�

VC

VD

(VB /VA)��1 � (VC /VD)��1

ThVA 

��1 � TcVD 

��1

ThVB 

��1 � TcVC 

��1

TV ��1 � constant

nRT
V

 V � � constant

Show that the efficiency of a heat engine operating in a
Carnot cycle using an ideal gas is given by Equation 22.4.

Solution During the isothermal expansion (process A : B
in Figure 22.9), the temperature does not change. Thus, the
internal energy remains constant. The work done by a gas
during an isothermal expansion is given by Equation 20.13.
According to the first law, this work is equal to Q h , the energy
absorbed, so that

In a similar manner, the energy transferred to the cold reser-
voir during the isothermal compression C : D is

We take the absolute value of the work because we are defin-
ing all values of Q for a heat engine as positive, as mentioned
earlier. Dividing the second expression by the first, we find
that

(1)

We now show that the ratio of the logarithmic quantities is
unity by establishing a relationship between the ratio of vol-
umes. For any quasi-static, adiabatic process, the pressure and
volume are related by Equation 21.18:

(2)

During any reversible, quasi-static process, the ideal gas must
also obey the equation of state, PV � nRT. Solving this ex-

PV � � constant

Q c

Q h
�

Tc

Th
 

ln(VC /VD)
ln(VB /VA)

Q c � � WCD � � nRTc ln 
VC

VD

Q h � WAB � nRTh ln 
VB

VA

The Steam EngineEXAMPLE 22.3
Solution Using Equation 22.4, we find that the maximum
thermal efficiency for any engine operating between these
temperatures is

or 40%eC � 1 �
Tc

Th
� 1 �

300 K
500 K

� 0.4,

A steam engine has a boiler that operates at 500 K. The en-
ergy from the burning fuel changes water to steam, and this
steam then drives a piston. The cold reservoir’s temperature
is that of the outside air, approximately 300 K. What is the
maximum thermal efficiency of this steam engine?

Equation 22.4 can be applied to any working substance operating in a Carnot
cycle between two energy reservoirs. According to this equation, the efficiency is
zero if as one would expect. The efficiency increases as Tc is lowered and
as Th is raised. However, the efficiency can be unity (100%) only if K. Such
reservoirs are not available; thus, the maximum efficiency is always less than 100%.
In most practical cases, Tc is near room temperature, which is about 300 K. There-
fore, one usually strives to increase the efficiency by raising Th .

Tc � 0
Tc � Th ,
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GASOLINE AND DIESEL ENGINES
In a gasoline engine, six processes occur in each cycle; five of these are illustrated
in Figure 22.11. In this discussion, we consider the interior of the cylinder above
the piston to be the system that is taken through repeated cycles in the operation
of the engine. For a given cycle, the piston moves up and down twice. This repre-
sents a four-stroke cycle consisting of two upstrokes and two downstrokes. The
processes in the cycle can be approximated by the Otto cycle, a PV diagram of
which is illustrated in Figure 22.12:

1. During the intake stroke O : A (Fig. 22.11a), the piston moves downward, and a
gaseous mixture of air and fuel is drawn into the cylinder at atmospheric pres-
sure. In this process, the volume increases from V2 to V1 . This is the energy in-
put part of the cycle, as energy enters the system (the interior of the cylinder)
as internal energy stored in the fuel. This is energy transfer by mass transfer—
that is, the energy is carried with a substance. It is similar to convection, which
we studied in Chapter 20.

2. During the compression stroke A : B (Fig. 22.11b), the piston moves upward, the
air– fuel mixture is compressed adiabatically from volume V1 to volume V2 , and
the temperature increases from TA to TB . The work done by the gas is negative,
and its value is equal to the area under the curve AB in Figure 22.12.

3. In process B : C, combustion occurs when the spark plug fires (Fig. 22.11c).
This is not one of the strokes of the cycle because it occurs in a very short 
period of time while the piston is at its highest position. The combustion repre-
sents a rapid transformation from internal energy stored in chemical bonds in
the fuel to internal energy associated with molecular motion, which is related
to temperature. During this time, the pressure and temperature in the cylinder
increase rapidly, with the temperature rising from TB to TC . The volume, how-
ever, remains approximately constant because of the short time interval. As a re-
sult, approximately no work is done by the gas. We can model this process in
the PV diagram (Fig. 22.12) as that process in which the energy Q h enters the
system. However, in reality this process is a transformation of energy already in
the cylinder (from process O : A) rather than a transfer.

4. In the power stroke C : D (Fig. 22.11d), the gas expands adiabatically from V2 to

22.4

The Carnot EfficiencyEXAMPLE 22.4

430 KTh �
Tc

1 � eC
�

300 K
1 � 0.30

�

eC � 1 �
Tc

Th
  

The highest theoretical efficiency of a certain engine is 30%.
If this engine uses the atmosphere, which has a temperature
of 300 K, as its cold reservoir, what is the temperature of its
hot reservoir?

Solution We use the Carnot efficiency to find Th :

You should note that this is the highest theoretical efficiency of
the engine. In practice, the efficiency is considerably lower.

Exercise Determine the maximum work that the engine

can perform in each cycle if it absorbs 200 J of energy from
the hot reservoir during each cycle.

Answer 80 J.
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V1 . This expansion causes the temperature to drop from TC to TD . Work is
done by the gas in pushing the piston downward, and the value of this work is
equal to the area under the curve CD.

5. In the process D : A (not shown in Fig. 22.11), an exhaust valve is opened as
the piston reaches the bottom of its travel, and the pressure suddenly drops for
a short time interval. During this interval, the piston is almost stationary and
the volume is approximately constant. Energy is expelled from the interior of
the cylinder and continues to be expelled during the next process.

6. In the final process, the exhaust stroke A : O (Fig. 22.11e), the piston moves up-
ward while the exhaust valve remains open. Residual gases are exhausted at at-
mospheric pressure, and the volume decreases from V1 to V2 . The cycle then 
repeats.

If the air– fuel mixture is assumed to be an ideal gas, then the efficiency of the
Otto cycle is

(22.5)

where � is the ratio of the molar specific heats CP/CV for the fuel–air mixture and
V1 /V2 is the compression ratio. Equation 22.5, which we derive in Example 22.5,
shows that the efficiency increases as the compression ratio increases. For a typical
compression ratio of 8 and with � � 1.4, we predict a theoretical efficiency of 56%
for an engine operating in the idealized Otto cycle. This value is much greater
than that achieved in real engines (15% to 20%) because of such effects as fric-
tion, energy transfer by conduction through the cylinder walls, and incomplete
combustion of the air– fuel mixture.

Diesel engines operate on a cycle similar to the Otto cycle but do not employ a
spark plug. The compression ratio for a diesel engine is much greater than that

e � 1 �
1

(V1 /V2)��1Efficiency of the Otto cycle

Air
and
fuel

Spark plug

Piston

Intake
(a)

Compression
(b)

Spark
(c)

Power
(d)

Exhaust

Exhaust
(e)

Figure 22.11 The four-stroke cycle of a conventional gasoline engine. (a) In the intake 
stroke, air is mixed with fuel. (b) The intake valve is then closed, and the air– fuel mixture is
compressed by the piston. (c) The mixture is ignited by the spark plug, with the result that the
temperature of the mixture increases. (d) In the power stroke, the gas expands against the pis-
ton. (e) Finally, the residual gases are expelled, and the cycle repeats.

P

V
V1V2

A

B
D

C

O

Q h

Q c

Adiabatic
processes

Figure 22.12 PV diagram for the
Otto cycle, which approximately
represents the processes occurring
in an internal combustion engine.
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Efficiency of the Otto CycleEXAMPLE 22.5
and we find that

(2)

(3)

Subtracting (2) from (3) and rearranging, we find that

(4)

Substituting (4) into (1), we obtain for the thermal efficiency

(5)

which is Equation 22.5.
We can also express this efficiency in terms of tempera-

tures by noting from (2) and (3) that

Therefore, (5) becomes

(6)

During the Otto cycle, the lowest temperature is TA and the
highest temperature is TC . Therefore, the efficiency of a
Carnot engine operating between reservoirs at these two
temperatures, which is given by the expression 

is greater than the efficiency of the Otto cycle
given by (6), as expected.
1 � (TA /TC),

eC �

e � 1 �
TA

TB
� 1 �

TD

TC

� V2

V1
�

��1
�

TA

TB
�

TD

TC

e � 1 �
1

(V1 /V2)��1

TD � TA

TC � TB
� � V2

V1
�

��1

TD � TC � V2

V1
�

��1

TDV1 

��1 � TCV2 

��1

TA � TB � V2

V1
�

��1

TAV1 

��1 � TBV2 

��1

VB � VC � V2,VA � VD � V1Show that the thermal efficiency of an engine operating in an
idealized Otto cycle (see Figs. 22.11 and 22.12) is given by
Equation 22.5. Treat the working substance as an ideal gas.

Solution First, let us calculate the work done by the gas
during each cycle. No work is done during processes B : C
and D : A. The work done by the gas during the adiabatic
compression A : B is negative, and the work done by the gas
during the adiabatic expansion C : D is positive. The value
of the net work done equals the area of the shaded region
bounded by the closed curve in Figure 22.12. Because the
change in internal energy for one cycle is zero, we see from
the first law that the net work done during one cycle equals
the net energy flow through the system:

W � Q h � Q c

Because processes B : C and D : A take place at constant
volume, and because the gas is ideal, we find from the defini-
tion of molar specific heat (Eq. 21.8) that

and

Using these expressions together with Equation 22.2, we ob-
tain for the thermal efficiency

(1)

We can simplify this expression by noting that processes 
A : B and C : D are adiabatic and hence obey the relation-
ship which we obtained in Example 22.2.
For the two adiabatic processes, then,

A : B :

C : D :

Using these equations and relying on the fact that

TCVC 

��1 � TDVD 

��1

TAVA 

��1 � TBVB 

��1

TV ��1 � constant,

e �
W
Q h

� 1 �
Q c

Q h
� 1 �

TD � TA

TC � TB

Q c � nCV (TD � TA)Q h � nCV (TC � TB)

for a gasoline engine. Air in the cylinder is compressed to a very small volume,
and, as a consequence, the cylinder temperature at the end of the compression
stroke is very high. At this point, fuel is injected into the cylinder. The temperature
is high enough for the fuel–air mixture to ignite without the assistance of a spark
plug. Diesel engines are more efficient than gasoline engines because of their
greater compression ratios and resulting higher combustion temperatures.

Models of Gasoline and Diesel EnginesAPPLICATION
mixture as the products of combustion expand in the cylinder.
The power of the engine is transferred from the piston to the
crankshaft by the connecting rod. 

Two important quantities of either engine are the displace-
ment volume, which is the volume displaced by the piston as it
moves from the bottom to the top of the cylinder, and the com-

We can use the thermodynamic principles discussed in this
and earlier chapters to model the performance of gasoline
and diesel engines. In both types of engine, a gas is first com-
pressed in the cylinders of the engine and then the fuel–air
mixture is ignited. Work is done on the gas during compres-
sion, but significantly more work is done on the piston by the
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We also know that the difference in volumes is the displace-
ment volume. The 3.00-L rating of the engine is the total 
displacement volume for all six cylinders. Thus, for one 
cylinder,

Solving these two equations simultaneously, we find the initial
and final volumes:

Using the ideal gas law (in the form PV � mRT, because we
are using the universal gas constant in terms of mass rather
than moles), we can find the mass of the air– fuel mixture:

Process A : B (see Fig. 22.12) is an adiabatic compression,
and this means that hence,

Using the ideal gas law, we find that the temperature after the
compression is

In process B : C, the combustion that transforms the in-
ternal energy in chemical bonds into internal energy of mo-
lecular motion occurs at constant volume; thus, VC � VB .
Combustion causes the temperature to increase to TC �
1 350°C � 1 623 K. Using this value and the ideal gas law, we
can calculate PC :

Process C : D is an adiabatic expansion; the pressure after
the expansion is

 � (5.14 � 103 kPa)� 1
9.50 �

1.40
� 220 kPa

PD � PC � VC

VD
�

�

� PC � VB

VA
�

�

� PC � 1
r �

�

 � 5.14 � 103 kPa

 �
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)(1 623 K)

(0.588 � 10�4 m3)

PC �
mRTC

VC

 � 739 K

TB �
PBVB

mR
�

(2.34 � 103 kPa)(0.588 � 10�4 m3)
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)

 � 2.34 � 103 kPa

  PB � PA� VA

VB
�

�

� PA(r)� � (100 kPa)(9.50)1.40

PBVB 

� � PAVA 

�  

PV � � constant;

 � 6.49 � 10�4 kg

m �
PAVA

RTA
�

(100 kPa)(0.559 � 10�3 m3)
(0.287 kPa �m3/kg�K)(300 K)

VA � 0.559 � 10�3 m3  VB � 0.588 � 10�4 m3

VA � VB �
3.00 L

6
�

3.00 � 10�3 m3

6
� 0.500 � 10�3 m3

VA

VB
� r � 9.50

pression ratio r, which is the ratio of the maximum and mini-
mum volumes of the cylinder (see p. 680). In our notation, 
r � VA/VB , or V1/V2 in Eq. 22.5. Most gasoline and diesel en-
gines operate with a four-cycle process (intake, compression,
power, exhaust), in which the net work of the intake and ex-
haust cycles can be considered negligible. Therefore, power
is developed only once for every two revolutions of the crank-
shaft.

In a diesel engine, only air (and no fuel) is present in the
cylinder at the beginning of the compression. In the ideal-
ized diesel cycle of Figure 22.13, air in the cylinder under-
goes an adiabatic compression from A to B. Starting at B, fuel
is injected into the cylinder in such a way that the fuel–air
mixture undergoes a constant-pressure expansion to an inter-
mediate volume VC(B : C ). The high temperature of the
mixture causes combustion, and the power stroke is an adia-
batic expansion back to VD � VA(C : D). The exhaust valve
is opened, and a constant-volume output of energy occurs 
(D : A) as the cylinder empties.

To simplify our calculations, we assume that the mixture
in the cylinder is air modeled as an ideal gas. We use specific
heats c instead of molar specific heats C and assume con-
stant values for air at 300 K. We express the specific heats 
and the universal gas constant in terms of unit masses rather
than moles. Thus, cV � 0.718 kJ/kg � K, cP � 1.005 kJ/kg � K,

and kJ/kg � K �
.

A 3.00-L Gasoline Engine
Let us calculate the power delivered by a six-cylinder gasoline
engine that has a displacement volume of 3.00 L operating at
4 000 rpm and having a compression ratio of r � 9.50. The
air– fuel mixture enters a cylinder at atmospheric pressure
and an ambient temperature of 27°C. During combustion,
the mixture reaches a temperature of 1 350°C.

First, let us calculate the work done by an individual cylin-
der. Using the initial pressure kPa and the initial
temperature K, we calculate the initial volume and
the mass of the air– fuel mixture. We know that the ratio of
the initial and final volumes is the compression ratio,

TA � 300
PA � 100

0.287 kPa�m3/kg�K
0.287R � cP � cV �� � cP/cV � 1.40,

Adiabatic
processes

A

B C

D

P

V

Qh

Qc

V2 = VB VC V1 = VA

Figure 22.13 PV diagram for an ideal diesel engine.
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Process A : B is an adiabatic compression, so con-
stant; thus,

Using the ideal gas law, we find that the temperature of the
air after the compression is

Process B : C is a constant-pressure expansion; thus,
We know from the cutoff ratio of 2.00 that the vol-

ume doubles in this process. According to the ideal gas law, a
doubling of volume in an isobaric process results in a dou-
bling of the temperature, so

Process C : D is an adiabatic expansion; therefore,

We find the temperature at D from the ideal gas law:

Now that we have the temperatures at the beginning and the
end of each process, we can calculate the net energy transfer
by heat and the net work done by each cylinder every two cy-
cles:

The efficiency is 
The net power for the four-cylinder engine operating at 

3 000 rpm is

(3 000 rev/min) (1 min/60 s) (0.396 kJ)

� 39.6 kW � 53 hp

Of course, modern engine design goes beyond this simple
thermodynamic treatment, which uses idealized cycles.

�net � 4� 1
2 rev �

e � Wnet /Q in � 66%.

Wnet � Q in � Q out � 0.396 kJ 

 Q c � Q out � mcV(TD � TA) � 0.205 kJ

 Q h � Q in � mcP(TC � TB) � 0.601 kJ

 � 792 K

TD �
PDVD

mR
�

(264 kPa)(0.500 � 10�3 m3)
(5.81 � 10�4 kg)(0.287 kPa �m3/kg�K)

 � (7.57 � 103 kPa)� 2.00
22.0 �

1.40
� 264 kPa

PD � PC � VC

VD
�

�

� PC � VC

VB
 

VB

VD
�

�

� PC �rc 
1
r �

�

TC � 2TB � 2.06 � 103 K

PC � PB .

 � 1.03 � 103 K

TB �
PBVB

mR
�

(7.57 � 103 kPa)(0.500 � 10�3 m3)� 1
22.0 �

(5.81 � 10�4 kg)(0.287 kPa �m3/kg�K)

 PB � PA� VA

VB
�

�

� (100 kPa)(22.0)1.40 � 7.57 � 103 kPa

PBVB 

� � PAVA 

� 

PV � �

Using the ideal gas law again, we find the final temperature:

Now that we have the temperatures at the beginning and
end of each process of the cycle, we can calculate the net en-
ergy transfer and net work done by each cylinder every two
cycles. From Equation 21.8, we can state

From Equation 22.2, the efficiency is 
(We can also use Equation 22.5 to calculate the efficiency di-
rectly from the compression ratio.)

Recalling that power is delivered every other revolution of
the crankshaft, we find that the net power for the six-cylinder
engine operating at 4 000 rpm is

(4 000 rev/min) (1 min/60 s) (0.244 kJ)

� 49 kW � 66 hp

A 2.00-L Diesel Engine
Let us calculate the power delivered by a four-cylinder diesel
engine that has a displacement volume of 2.00 L and is 
operating at 3 000 rpm. The compression ratio is

, and the cutoff ratio, which is the ratio 
of the volume change during the constant-pressure process

in Figure 22.13, is The air enters
each cylinder at the beginning of the compression cycle at at-
mospheric pressure and at an ambient temperature of 27°C.

Our model of the diesel engine is similar to our model of
the gasoline engine except that now the fuel is injected at
point B and the mixture self-ignites near the end of the com-
pression cycle , when the temperature reaches the igni-
tion temperature. We assume that the energy input occurs in
the constant-pressure process , and that the expansion
process continues from C to D with no further energy transfer
by heat.

Let us calculate the work done by an individual cylinder
that has an initial volume of 

Because the compression ratio is quite
high, we approximate the maximum cylinder volume to be
the displacement volume. Using the initial pressure PA �
100 kPa and initial temperature TA � 300 K, we can calculate
the mass of the air in the cylinder using the ideal gas law:

0.500 � 10�3 m3.
VA � (2.00 � 10�3 m3)/4 �

B : C

A : B

rc � VC /VB � 2.00.B : C

r � VA /VB � 22.0

�net � 6� 1
2 rev �

e � Wnet/Q in � 59%.

 Wnet � Q in � Q out � 0.244 kJ   

 � 0.168 kJ

  � (6.49 � 10�4 kg)(0.718 kJ/kg�K)(660 K � 300 K)

Q c � Q out � mcV(TD � TA)

 � 0.412 kJ

  � (6.49 � 10�4 kg)(0.718 kJ/kg�K)(1 623 K � 739 K)

Q h � Q in � mcV(TC � TB)

 � 660 K

TD �
PDVD

mR
�

(220 kPa)(0.559 � 10�3 m3)
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)

m �
PAVA

RTA
�

(100 kPa)(0.500 � 10�3 m3)
(0.287 kPa �m3/kg�K)(300 K)

� 5.81 � 10�4 kg
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HEAT PUMPS AND REFRIGERATORS
In Section 22.1 we introduced a heat pump as a mechanical device that moves en-
ergy from a region at lower temperature to a region at higher temperature. Heat
pumps have long been used for cooling homes and buildings, and they are now
becoming increasingly popular for heating them as well. The heat pump contains
two sets of metal coils that can exchange energy by heat with the surroundings:
one set on the outside of the building, in contact with the air or buried in the
ground; and the other set in the interior of the building. In the heating mode, a
circulating fluid flowing through the coils absorbs energy from the outside and re-
leases it to the interior of the building from the interior coils. The fluid is cold and
at low pressure when it is in the external coils, where it absorbs energy by heat
from either the air or the ground. The resulting warm fluid is then compressed
and enters the interior coils as a hot, high-pressure fluid, where it releases its
stored energy to the interior air.

An air conditioner is simply a heat pump operating in the cooling mode, with
its exterior and interior coils interchanged. Energy is absorbed into the circulating
fluid in the interior coils; then, after the fluid is compressed, energy leaves the
fluid through the external coils. The air conditioner must have a way to release en-
ergy to the outside. Otherwise, the work done on the air conditioner would repre-
sent energy added to the air inside the house, and the temperature would in-
crease. In the same manner, a refrigerator cannot cool the kitchen if the
refrigerator door is left open. The amount of energy leaving the external coils
(Fig. 22.14) behind or underneath the refrigerator is greater than the amount of
energy removed from the food or from the air in the kitchen if the door is left
open. The difference between the energy out and the energy in is the work done
by the electricity supplied to the refrigerator.

Figure 22.15 is a schematic representation of a heat pump. The cold tempera-
ture is Tc , the hot temperature is Th , and the energy absorbed by the circulating
fluid is Q c . The heat pump does work W on the fluid, and the energy transferred
from the pump to the building in the heating mode is Q h .

The effectiveness of a heat pump is described in terms of a number called the
coefficient of performance (COP). In the heating mode, the COP is defined as
the ratio of the energy transferred to the hot reservoir to the work required to
transfer that energy:

(22.6)

Note that the COP is similar to the thermal efficiency for a heat engine in that it is
a ratio of what you get (energy delivered to the interior of the building) to what
you give (work input). Because Q h is generally greater than W, typical values for the
COP are greater than unity. It is desirable for the COP to be as high as possible, just
as it is desirable for the thermal efficiency of an engine to be as high as possible.

If the outside temperature is 25°F or higher, then the COP for a heat pump is
about 4. That is, the amount of energy transferred to the building is about four
times greater than the work done by the motor in the heat pump. However, as the
outside temperature decreases, it becomes more difficult for the heat pump to ex-
tract sufficient energy from the air, and so the COP decreases. In fact, the COP
can fall below unity for temperatures below the midteens. Thus, the use of heat
pumps that extract energy from the air, while satisfactory in moderate climates, is
not appropriate in areas where winter temperatures are very low. It is possible to

COP (heating mode) �
Energy transferred at high temperature

Work done by pump
�

Q h

W

22.5

Figure 22.14 The coils on the
back of a refrigerator transfer en-
ergy by heat to the air. The second
law of thermodynamics states that
this amount of energy must be
greater than the amount of energy
removed from the contents of the
refrigerator (or from the air in the
kitchen, if the refrigerator door is
left open).
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use heat pumps in colder areas by burying the external coils deep in the ground.
In this case, the energy is extracted from the ground, which tends to be warmer
than the air in the winter.

In an electric heater, electrical energy can be converted to internal energy with an effi-
ciency of 100%. By what percentage does the cost of heating your home change when you
replace your electric heating system with a heat pump that has a COP of 4? Assume that the
motor running the heat pump is 100% efficient.

Theoretically, a Carnot-cycle heat engine run in reverse constitutes the most
effective heat pump possible, and it determines the maximum COP for a given
combination of hot and cold reservoir temperatures. Using Equations 22.1 and
22.3, we see that the maximum COP for a heat pump in its heating mode is

For a heat pump operating in the cooling mode, “what you get” is energy re-
moved from the cold reservoir. The most effective refrigerator or air conditioner is
one that removes the greatest amount of energy from the cold reservoir in ex-
change for the least amount of work. Thus, for these devices we define the COP in
terms of Q c :

(22.7)

A good refrigerator should have a high COP, typically 5 or 6.
The greatest possible COP for a heat pump in the cooling mode is that of a

heat pump whose working substance is carried through a Carnot cycle in reverse:

As the difference between the temperatures of the two reservoirs approaches zero
in this expression, the theoretical COP approaches infinity. In practice, the low
temperature of the cooling coils and the high temperature at the compressor limit
the COP to values below 10.

ENTROPY
The zeroth law of thermodynamics involves the concept of temperature, and the
first law involves the concept of internal energy. Temperature and internal energy
are both state functions—that is, they can be used to describe the thermodynamic
state of a system. Another state function—this one related to the second law of
thermodynamics—is entropy S. In this section we define entropy on a macro-
scopic scale as it was first expressed by Clausius in 1865.

22.6

COPC (cooling mode) �  
Tc

Th � Tc

COP (cooling mode) �
Q c

W

  �
Q h

Q h � Q c
�

1

1 �
Q c

Q h

�
1

1 �
Tc

Th

�
Th

Th � Tc

COPC(heating mode) �
Q h

W
 

Quick Quiz 22.1

10.10 
&

10.11

QuickLab
Estimate the COP of your refrigerator
by making rough temperature mea-
surements of the stored food and of
the exhaust coils (found either on
the back of the unit or behind a
panel on the bottom). Use just your
hand if no thermometer is available.

Hot reservoir at Th

Heat
pump

Q h

Q c

Cold reservoir at Tc

W

Figure 22.15 Schematic diagram
of a heat pump, which absorbs en-
ergy Q c from a cold reservoir and
expels energy Q h to a hot reservoir.
Note that this diagram is the same
as that for the refrigerator shown
in Figure 22.5.
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Consider any infinitesimal process in which a system changes from one equi-
librium state to another. If dQ r is the amount of energy transferred by heat when
the system follows a reversible path between the states, then the change in entropy
dS is equal to this amount of energy for the reversible process divided by the ab-
solute temperature of the system:

(22.8)

We have assumed that the temperature is constant because the process is infinitesi-
mal. Since we have claimed that entropy is a state function, the change in en-
tropy during a process depends only on the end points and therefore is in-
dependent of the actual path followed.

The subscript r on the quantity dQ r is a reminder that the transferred energy is
to be measured along a reversible path, even though the system may actually have
followed some irreversible path. When energy is absorbed by the system, dQ r is
positive and the entropy of the system increases. When energy is expelled by the
system, dQ r is negative and the entropy of the system decreases. Note that Equa-
tion 22.8 defines not entropy but rather the change in entropy. Hence, the mean-
ingful quantity in describing a process is the change in entropy.

Entropy was originally formulated as a useful concept in thermodynamics;
however, its importance grew tremendously as the field of statistical mechanics de-
veloped because the analytical techniques of statistical mechanics provide an alter-
native means of interpreting entropy. In statistical mechanics, the behavior of a
substance is described in terms of the statistical behavior of its atoms and mole-
cules. One of the main results of this treatment is that isolated systems tend to-
ward disorder and that entropy is a measure of this disorder. For example,
consider the molecules of a gas in the air in your room. If half of the gas mole-
cules had velocity vectors of equal magnitude directed toward the left and the
other half had velocity vectors of the same magnitude directed toward the right,
the situation would be very ordered. However, such a situation is extremely un-
likely. If you could actually view the molecules, you would see that they move hap-
hazardly in all directions, bumping into one another, changing speed upon colli-
sion, some going fast and others going slowly. This situation is highly disordered.

The cause of the tendency of an isolated system toward disorder is easily ex-
plained. To do so, we distinguish between microstates and macrostates of a system. A
microstate is a particular description of the properties of the individual molecules
of the system. For example, the description we just gave of the velocity vectors of
the air molecules in your room being very ordered refers to a particular mi-
crostate, and the more likely likely haphazard motion is another microstate—one
that represents disorder. A macrostate is a description of the conditions of the sys-
tem from a macroscopic point of view and makes use of macroscopic variables
such as pressure, density, and temperature. For example, in both of the mi-
crostates described for the air molecules in your room, the air molecules are dis-
tributed uniformly throughout the volume of the room; this uniform density distri-
bution is a macrostate. We could not distinguish between our two microstates by
making a macroscopic measurement—both microstates would appear to be the
same macroscopically, and the two macrostates corresponding to these microstates
are equivalent.

For any given macrostate of the system, a number of microstates are possible,
or accessible. Among these microstates, it is assumed that all are equally probable.
However, when all possible microstates are examined, it is found that far more of
them are disordered than are ordered. Because all of the microstates are equally

dS �
dQ r

T
Clausius definition of change in
entropy
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probable, it is highly likely that the actual macrostate is one resulting from one of
the highly disordered microstates, simply because there are many more of them.
Similarly, the probability of a macrostate’s forming from disordered microstates is
greater than the probability of a macrostate’s forming from ordered microstates. 

All physical processes that take place in a system tend to cause the system and
its surroundings to move toward more probable macrostates. The more probable
macrostate is always one of greater disorder. If we consider a system and its sur-
roundings to include the entire Universe, then the Universe is always moving to-
ward a macrostate corresponding to greater disorder. Because entropy is a mea-
sure of disorder, an alternative way of stating this is the entropy of the Universe
increases in all real processes. This is yet another statement of the second law of
thermodynamics that can be shown to be equivalent to the Kelvin–Planck and
Clausius statements.

To calculate the change in entropy for a finite process, we must recognize that
T is generally not constant. If dQ r is the energy transferred by heat when the sys-
tem is at a temperature T, then the change in entropy in an arbitrary reversible
process between an initial state and a final state is

(reversible path) (22.9)

As with an infinitesimal process, the change in entropy �S of a system going from
one state to another has the same value for all paths connecting the two states.
That is, the finite change in entropy �S of a system depends only on the properties
of the initial and final equilibrium states. Thus, we are free to choose a particular
reversible path over which to evaluate the entropy in place of the actual path, as
long as the initial and final states are the same for both paths.

Which of the following is true for the entropy change of a system that undergoes a re-
versible, adiabatic process? (a) �S � 0. (b) �S � 0. (c) �S � 0.

Let us consider the changes in entropy that occur in a Carnot heat engine op-
erating between the temperatures Tc and Th . In one cycle, the engine absorbs en-
ergy Q h from the hot reservoir and expels energy Q c to the cold reservoir. These
energy transfers occur only during the isothermal portions of the Carnot cycle;
thus, the constant temperature can be brought out in front of the integral sign in
Equation 22.9. The integral then simply has the value of the total amount of en-
ergy transferred by heat. Thus, the total change in entropy for one cycle is

where the negative sign represents the fact that energy Q c is expelled by the sys-
tem, since we continue to define Q c as a positive quantity when referring to heat
engines. In Example 22.2 we showed that, for a Carnot engine,

Using this result in the previous expression for �S, we find that the total change in

Q c

Q h
�

Tc

Th

�S �
Q h

Th
�

Q c

Tc

Quick Quiz 22.2

�S � �f

i
 dS � �f

i
 
dQ r

T

In real processes, the disorder of
the Universe increases

Change in entropy for a finite
process
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entropy for a Carnot engine operating in a cycle is zero:

�S � 0

Now let us consider a system taken through an arbitrary (non-Carnot) re-
versible cycle. Because entropy is a state function—and hence depends only on
the properties of a given equilibrium state—we conclude that �S � 0 for any re-
versible cycle. In general, we can write this condition in the mathematical form

(22.10)

where the symbol indicates that the integration is over a closed path.

Quasi-Static, Reversible Process for an Ideal Gas

Let us suppose that an ideal gas undergoes a quasi-static, reversible process from
an initial state having temperature Ti and volume Vi to a final state described by Tf
and Vf . Let us calculate the change in entropy of the gas for this process.

Writing the first law of thermodynamics in differential form and rearranging
the terms, we have where dW � P dV. For an ideal gas, recall
that (Eq. 21.12), and from the ideal gas law, we have P � nRT/V.
Therefore, we can express the energy transferred by heat in the process as

We cannot integrate this expression as it stands because the last term contains two
variables, T and V. However, if we divide all terms by T, each of the terms on the
right-hand side depends on only one variable:

(22.11)

Assuming that CV is constant over the interval in question, and integrating Equa-
tion 22.11 from the initial state to the final state, we obtain

(22.12)

This expression demonstrates mathematically what we argued earlier—that �S de-
pends only on the initial and final states and is independent of the path between
the states. Also, note in Equation 22.12 that �S can be positive or negative, de-
pending on the values of the initial and final volumes and temperatures. Finally,
for a cyclic process and we see from Equation 22.12 that �S � 0.
This is evidence that entropy is a state function.

Vi � Vf),(Ti � Tf

�S � �f

i
 
dQ r

T
� nCV ln 

Tf

Ti

 nR ln 

Vf

Vi

dQ r

T
� nCV  

dT
T


 nR 
dV
V

dQ r � dE int 
 P dV � nCV dT 
 nRT 
dV
V

dE int � nCV dT
dQ r � dE int 
 dW,

�

� 
dQ r

T
� 0

Change in Entropy — MeltingEXAMPLE 22.6
Making use of Equations 22.9 and that for the latent heat of
fusion (Eq. 20.6), we find that

mLf

Tm
�S � � 

dQ r

T
�

1

Tm
 � dQ �

Q

Tm
�

Q � mLf

A solid that has a latent heat of fusion Lf melts at a tempera-
ture Tm . (a) Calculate the change in entropy of this sub-
stance when a mass m of the substance melts.

Solution Let us assume that the melting occurs so slowly
that it can be considered a reversible process. In this case the
temperature can be regarded as constant and equal to Tm .

The change in entropy for a
Carnot cycle is zero

�S � 0 for any reversible cycle
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ENTROPY CHANGES IN IRREVERSIBLE PROCESSES
By definition, calculation of the change in entropy requires information about a re-
versible path connecting the initial and final equilibrium states. To calculate
changes in entropy for real (irreversible) processes, we must remember that entropy
(like internal energy) depends only on the state of the system. That is, entropy is a
state function. Hence, the change in entropy when a system moves between any two
equilibrium states depends only on the initial and final states. We can show that if
this were not the case, the second law of thermodynamics would be violated.

We now calculate the entropy change in some irreversible process between two
equilibrium states by devising a reversible process (or series of reversible
processes) between the same two states and computing for the re-
versible process. In irreversible processes, it is critically important that we distin-
guish between Q , the actual energy transfer in the process, and Q r , the energy
that would have been transferred by heat along a reversible path. Only Q r is the
correct value to be used in calculating the entropy change.

As we shall see in the following examples, the change in entropy for a system
and its surroundings is always positive for an irreversible process. In general, the
total entropy—and therefore the disorder—always increase in an irreversible
process. Keeping these considerations in mind, we can state the second law of
thermodynamics as follows:

�S � � dQ r /T

22.7

The total entropy of an isolated system that undergoes a change can never de-
crease.

Note that we are able to remove Tm from the integral because
the process is isothermal. Note also that �S is positive. This
means that when a solid melts, its entropy increases because
the molecules are much more disordered in the liquid state
than they are in the solid state. The positive value for �S also
means that the substance in its liquid state does not sponta-
neously transfer energy from itself to the surroundings and
freeze because to do so would involve a spontaneous decrease
in entropy.

(b) Estimate the value of the change in entropy of an ice
cube when it melts.

Solution Let us assume an ice tray makes cubes that are 
about 3 cm on a side. The volume per cube is then (very
roughly) 30 cm3. This much liquid water has a mass of 30 g.
From Table 20.2 we find that the latent heat of fusion of ice is
3.33 � 105 J/kg. Substituting these values into our answer for
part (a), we find that

We retain only one significant figure, in keeping with the na-
ture of our estimations.

4 � 101 J/K�S �
mLf

Tm
�

(0.03 kg)(3.33 � 105 J/kg)

273 K
�

Furthermore, if the process is irreversible, then the total entropy of an iso-
lated system always increases. In a reversible process, the total entropy of
an isolated system remains constant.

When dealing with a system that is not isolated from its surroundings, remem-
ber that the increase in entropy described in the second law is that of the system
and its surroundings. When a system and its surroundings interact in an irre-
versible process, the increase in entropy of one is greater than the decrease in en-
tropy of the other. Hence, we conclude that the change in entropy of the Uni-
verse must be greater than zero for an irreversible process and equal to zero
for a reversible process. Ultimately, the entropy of the Universe should reach a
maximum value. At this value, the Universe will be in a state of uniform tempera-
ture and density. All physical, chemical, and biological processes will cease because
a state of perfect disorder implies that no energy is available for doing work. This
gloomy state of affairs is sometimes referred to as the heat death of the Universe.
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In the presence of sunlight, a tree rearranges an unorganized collection of carbon dioxide
and water molecules into the highly ordered collection of molecules we see as leaves and
branches. True or false: This reduction of entropy in the tree is a violation of the second law
of thermodynamics. Explain your response.

Entropy Change in Thermal Conduction

Let us now consider a system consisting of a hot reservoir and a cold reservoir in
thermal contact with each other and isolated from the rest of the Universe. A
process occurs during which energy Q is transferred by heat from the hot reservoir
at temperature Th to the cold reservoir at temperature Tc . Because the cold reser-
voir absorbs energy Q , its entropy increases by Q /Tc . At the same time, the hot
reservoir loses energy Q , and so its entropy change is � Q /Th . Because ,
the increase in entropy of the cold reservoir is greater than the decrease in en-
tropy of the hot reservoir. Therefore, the change in entropy of the system (and of
the Universe) is greater than zero:

�SU �
Q
Tc



�Q
Th

� 0

Th � Tc 

Quick Quiz 22.3

Which Way Does the Energy Flow?EXAMPLE 22.7
that of our two-object system, which is

This decrease in entropy of the Universe is in violation of the
second law. That is, the spontaneous transfer of energy
from a cold to a hot object cannot occur.

In terms of disorder, let us consider the violation of the
second law if energy were to continue to transfer sponta-
neously from a cold object to a hot object. Before the trans-
fer, a certain degree of order is associated with the different
temperatures of the objects. The hot object’s molecules have
a higher average energy than the cold object’s molecules. If
energy spontaneously flows from the cold object to the hot
object, then, over a period of time, the cold object will be-
come colder and the hot object will become hotter. The dif-
ference in average molecular energy will become even
greater; this would represent an increase in order for the sys-
tem and a violation of the second law.

In comparison, the process that does occur naturally is the
flow of energy from the hot object to the cold object. In this
process, the difference in average molecular energy de-
creases; this represents a more random distribution of energy
and an increase in disorder.

Exercise Suppose that 8.00 J of energy is transferred from a
hot object to a cold one. What is the net entropy change of
the Universe?

Answer 
 0.007 9 J/K.

�SU � �Sc 
 �Sh � �0.007 9 J/K

A large, cold object is at 273 K, and a large, hot object is at
373 K. Show that it is impossible for a small amount of
energy—for example, 8.00 J—to be transferred sponta-
neously from the cold object to the hot one without a de-
crease in the entropy of the Universe and therefore a viola-
tion of the second law.

Solution We assume that, during the energy transfer, the
two objects do not undergo a temperature change. This is
not a necessary assumption; we make it only to avoid using in-
tegral calculus in our calculations. The process as described is
irreversible, and so we must find an equivalent reversible
process. It is sufficient to assume that the objects are con-
nected by a poor thermal conductor whose temperature
spans the range from 273 K to 373 K. This conductor trans-
fers energy slowly, and its state does not change during the
process. Under this assumption, the energy transfer to or
from each object is reversible, and we may set The
entropy change of the hot object is

The cold object loses energy, and its entropy change is

We consider the two objects to be isolated from the rest of
the Universe. Thus, the entropy change of the Universe is just

�Sc �
Q r

Tc
�

�8.00 J
273 K

� �0.029 3 J/K

�Sh �
Q r

Th
�

8.00 J
373 K

� 0.021 4 J/K

Q � Q r .
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Entropy Change in a Free Expansion

Let us again consider the adiabatic free expansion of a gas occupying an initial vol-
ume Vi (Fig. 22.16). A membrane separating the gas from an evacuated region is
broken, and the gas expands (irreversibly) to a volume Vf . Let us find the changes
in entropy of the gas and of the Universe during this process.

The process is clearly neither reversible nor quasi-static. The work done by the
gas against the vacuum is zero, and because the walls are insulating, no energy is
transferred by heat during the expansion. That is, W � 0 and Q � 0. Using the
first law, we see that the change in internal energy is zero. Because the gas is ideal,
E int depends on temperature only, and we conclude that �T � 0 or Ti � Tf .

To apply Equation 22.9, we cannot use Q � 0, the value for the irreversible
process, but must instead find Q r ; that is, we must find an equivalent reversible
path that shares the same initial and final states. A simple choice is an isothermal,
reversible expansion in which the gas pushes slowly against a piston while energy
enters the gas by heat from a reservoir to hold the temperature constant. Because
T is constant in this process, Equation 22.9 gives

For an isothermal process, the first law of thermodynamics specifies that is 
equal to the work done by the gas during the expansion from Vi to Vf , which is given
by Equation 20.13. Using this result, we find that the entropy change for the gas is

(22.13)

Because we conclude that �S is positive. This positive result indicates that
both the entropy and the disorder of the gas increase as a result of the irreversible,
adiabatic expansion.

Because the free expansion takes place in an insulated container, no energy is
transferred by heat from the surroundings. (Remember that the isothermal, re-
versible expansion is only a replacement process that we use to calculate the entropy
change for the gas; it is not the actual process.) Thus, the free expansion has no ef-
fect on the surroundings, and the entropy change of the surroundings is zero. Thus,
the entropy change for the Universe is positive; this is consistent with the second law.

Vf � Vi ,

�S � nR ln 
Vf

Vi

�f
i dQ r

�S � �f

i
 
dQ r

T
�

1
T

 �f

i
 dQ r

Insulating
wall

Membrane

Vacuum

Gas at Ti

Figure 22.16 Adiabatic free ex-
pansion of a gas. When the mem-
brane separating the gas from the
evacuated region is ruptured, the
gas expands freely and irreversibly.
As a result, it occupies a greater fi-
nal volume. The container is ther-
mally insulated from its surround-
ings; thus, Q � 0.

Free Expansion of a GasEXAMPLE 22.8

It is easy to see that the gas is more disordered after the ex-
pansion. Instead of being concentrated in a relatively small
space, the molecules are scattered over a larger region.

18.3 J/K�
Calculate the change in entropy for a process in which 
2.00 mol of an ideal gas undergoes a free expansion to three
times its initial volume.

Solution Using Equation 22.13 with n � 2.00 mol and
we find that

�S � nR ln 
Vf

Vi
� (2.00 mol)(8.31 J/mol �K) (ln 3)

Vf � 3Vi ,

Entropy Change in Calorimetric Processes

A substance of mass m1 , specific heat c1 , and initial temperature T1 is placed in
thermal contact with a second substance of mass m2 , specific heat c2 , and initial
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temperature The two substances are contained in a calorimeter so that
no energy is lost to the surroundings. The system of the two substances is allowed
to reach thermal equilibrium. What is the total entropy change for the system?

First, let us calculate the final equilibrium temperature Tf . Using the tech-
niques of Section 20.2—namely, Equation 20.5, and Equation
20.4, we obtain

Solving for Tf , we have

(22.14)

The process is irreversible because the system goes through a series of non-
equilibrium states. During such a transformation, the temperature of the system at
any time is not well defined because different parts of the system have different
temperatures. However, we can imagine that the hot substance at the initial tem-
perature T2 is slowly cooled to the temperature Tf as it comes into contact with a
series of reservoirs differing infinitesimally in temperature, the first reservoir being
at T2 and the last being at Tf . Such a series of very small changes in temperature
would approximate a reversible process. We imagine doing the same thing for the
cold substance. Applying Equation 22.9 and noting that for an infini-
tesimal change, we have

where we have assumed that the specific heats remain constant. Integrating, we
find that

(22.15)

where Tf is given by Equation 22.14. If Equation 22.14 is substituted into Equation
22.15, we can show that one of the terms in Equation 22.15 is always positive and
the other is always negative. (You may want to verify this for yourself.) The positive
term is always greater than the negative term, and this results in a positive value for
�S. Thus, we conclude that the entropy of the Universe increases in this irre-
versible process.

Finally, you should note that Equation 22.15 is valid only when no mixing of
different substances occurs, because a further entropy increase is associated with
the increase in disorder during the mixing. If the substances are liquids or gases
and mixing occurs, the result applies only if the two fluids are identical, as in the
following example.

�S � m1c1 ln 
Tf

T1

 m2c2 ln 

Tf

T2

�S � �
1
 
dQ cold

T

 �

2
 
dQ hot

T
� m1c1 �Tf

T1

 
dT
T


 m2c2 �Tf

T2

 
dT
T

dQ � mc dT

Tf �
m1c1T1 
 m2c2T2

m1c1 
 m2c2

m1c1(Tf � T1) � �m2c2(Tf � T2)

 m1c1 �T1 � �m2c2 �T2

Q � mc �T,
Q cold � �Q hot ,

T2 � T1 .

Calculating �S for a Calorimetric ProcessEXAMPLE 22.9
Solution We can calculate the change in entropy from
Equation 22.15 using the values 

J/kg �K, K, K, and Tf � 323 K :T2 � 373T1 � 273c2 � 4 186
c1 �m1 � m2 � 1.00 kg,

Suppose that 1.00 kg of water at 0.00°C is mixed with an
equal mass of water at 100°C. After equilibrium is reached,
the mixture has a uniform temperature of 50.0°C. What is the
change in entropy of the system?

Change in entropy for a
calorimetric process
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Optional Section

ENTROPY ON A MICROSCOPIC SCALE4

As we have seen, we can approach entropy by relying on macroscopic concepts
and using parameters such as pressure and temperature. We can also treat entropy
from a microscopic viewpoint through statistical analysis of molecular motions. We
now use a microscopic model to investigate once again the free expansion of an
ideal gas, which was discussed from a macroscopic point of view in the preceding
section.

In the kinetic theory of gases, gas molecules are represented as particles mov-
ing randomly. Let us suppose that the gas is initially confined to a volume Vi , as
shown in Figure 22.17a. When the partition separating Vi from a larger container
is removed, the molecules eventually are distributed throughout the greater vol-
ume Vf (Fig. 22.17b). For a given uniform distribution of gas in the volume, there
are a large number of equivalent microstates, and we can relate the entropy of the
gas to the number of microstates corresponding to a given macrostate.

We count the number of microstates by considering the variety of molecular
locations involved in the free expansion. The instant after the partition is removed
(and before the molecules have had a chance to rush into the other half of the
container), all the molecules are in the initial volume. We assume that each mole-
cule occupies some microscopic volume Vm . The total number of possible loca-
tions of a single molecule in a macroscopic initial volume Vi is the ratio

which is a huge number. We use wi here to represent the number of
ways that the molecule can be placed in the volume, or the number of microstates,
which is equivalent to the number of available locations. We assume that the mole-
cule’s occupying each of these locations is equally probable.

As more molecules are added to the system, the number of possible ways that
the molecules can be positioned in the volume multiplies. For example, in consid-
ering two molecules, for every possible placement of the first, all possible place-
ments of the second are available. Thus, there are w1 ways of locating the first mol-
ecule, and for each of these, there are w2 ways of locating the second molecule.
The total number of ways of locating the two molecules is w1w2 .

Neglecting the very small probability of having two molecules occupy the same
location, each molecule may go into any of the Vi/Vm locations, and so the num-
ber of ways of locating N molecules in the volume becomes 
(Wi is not to be confused with work.) Similarly, when the volume is increased to 
Vf , the number of ways of locating N molecules increases to 
The ratio of the number of ways of placing the molecules in the volume for the

(Vf /Vm)N.Wf � wf 

N �

Wi � wi 

N � (Vi/Vm)N.

wi � Vi/Vm ,

22.8

Figure 22.17 In a free expan-
sion, the gas is allowed to expand
into a region that was previously a
vacuum.

  
 (1.00 kg)(4 186 J/kg�K) ln� 323 K
373 K �

 � (1.00 kg)(4 186 J/kg�K) ln � 323 K
273 K �

�S � m1c1 ln 
Tf

T1

 m2c2 ln 

Tf

T2
 

That is, as a result of this irreversible process, the increase in
entropy of the cold water is greater than the decrease in en-
tropy of the warm water. Consequently, the increase in en-
tropy of the system is 102 J/K.

102 J/K � 704 J/K � 602 J/K �

4 This section was adapted from A. Hudson and R. Nelson, University Physics, Philadelphia, Saunders
College Publishing, 1990.

VacuumVi

(a)

Vf

(b)
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initial and final configurations is

If we now take the natural logarithm of this equation and multiply by Boltz-
mann’s constant, we find that

where we have used the equality We know from Equation 19.11 that
NAkB is the universal gas constant R ; thus, we can write this equation as

(22.16)

From Equation 22.13 we know that when n mol of a gas undergoes a free expan-
sion from Vi to Vf , the change in entropy is

(22.17)

Note that the right-hand sides of Equations 22.16 and 22.17 are identical. Thus, we
make the following important connection between entropy and the number of mi-
crostates for a given macrostate:

(22.18)

The more microstates there are that correspond to a given macrostate, the greater
is the entropy of that macrostate. As we have discussed previously, there are many
more disordered microstates than ordered microstates. Thus, Equation 22.18 indi-
cates mathematically that entropy is a measure of microscopic disorder. Al-
though in our discussion we used the specific example of the free expansion of an
ideal gas, a more rigorous development of the statistical interpretation of entropy
would lead us to the same conclusion.

Imagine the container of gas depicted in Figure 22.18a as having all of its mol-
ecules traveling at speeds greater than the mean value on the left side and all of its
molecules traveling at speeds less than the mean value on the right side (an or-
dered microstate). Compare this with the uniform mixture of fast- and slow-mov-

S � kB ln W

Sf � Si � nR ln� Vf

Vi
�

kB ln Wf � kB ln Wi � nR ln� Vf

Vi
�

N � nNA .

kB ln� Wf

Wi
� � nNAkB ln� Vf

Vi
�

Wf

Wi
�

(Vf /Vm)N

(Vi/Vm)N � � Vf

Vi
�

N

Entropy (microscopic definition)

Nature tends toward
this direction

(b) Disordered

Fast and slow
molecules intermixed

(a) Ordered

Faster
molecules

in this
half

Slower
molecules

in this
half

Figure 22.18 A container of gas in two equally probable states of molecular motion. (a) An or-
dered arrangement, which is one of a few and therefore a collectively unlikely set. (b) A disor-
dered arrangement, which is one of many and therefore a collectively likely set.
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ing molecules in Figure 22.18b (a disordered microstate). You might expect the
ordered microstate to be very unlikely because random motions tend to mix the
slow- and fast-moving molecules uniformly. Yet individually each of these mi-
crostates is equally probable. However, there are far more disordered microstates
than ordered microstates, and so a macrostate corresponding to a large number of
equivalent disordered microstates is much more probable than a macrostate corre-
sponding to a small number of equivalent ordered microstates.

Figure 22.19 shows a real-world example of this concept. There are two possi-
ble macrostates for the carnival game—winning a goldfish and winning a black
fish. Because only one jar in the array of jars contains a black fish, only one possi-
ble microstate corresponds to the macrostate of winning a black fish. A large num-
ber of microstates are described by the coin’s falling into a jar containing a gold-
fish. Thus, for the macrostate of winning a goldfish, there are many equivalent
microstates. As a result, the probability of winning a goldfish is much greater than
the probability of winning a black fish. If there are 24 goldfish and 1 black fish, the
probability of winning the black fish is 1 in 25. This assumes that all microstates
have the same probability, a situation that may not be quite true for the situation
shown in Figure 22.19. If you are an accurate coin tosser and you are aiming for
the edge of the array of jars, then the probability of the coin’s landing in a jar near
the edge is likely to be greater than the probability of its landing in a jar near the
center.

Let us consider a similar type of probability problem for 100 molecules in a
container. At any given moment, the probability of one molecule’s being in the
left part of the container shown in Figure 22.20a as a result of random motion is 
If there are two molecules, as shown in Figure 22.20b, the probability of both be-
ing in the left part is ( )2 or 1 in 4. If there are three molecules (Fig. 22.20c), the
probability of all of them being in the left portion at the same moment is ( )3, or 1
in 8. For 100 independently moving molecules, the probability that the 50 fastest
ones will be found in the left part at any moment is ( )50. Likewise, the probability
that the remaining 50 slower molecules will be found in the right part at any mo-
ment is ( )50. Therefore, the probability of finding this fast-slow separation 
as a result of random motion is the product which corre-
sponds to about 1 in 1030. When this calculation is extrapolated from 100 mole-
cules to the number in 1 mol of gas (6.02 � 1023), the ordered arrangement is
found to be extremely improbable!

(1
2 )50(1

2 )50 � (1
2 )100,

1
2

1
2

1
2

1
2

1
2.

Figure 22.19 By tossing a coin into a jar, the carnival-goer can win the fish in the jar. It is more
likely that the coin will land in a jar containing a goldfish than in the one containing the black
fish.

QuickLab
Roll a pair of dice 100 times and
record the total number of spots ap-
pearing on the dice for each throw.
Which total comes up most fre-
quently? Is this expected?
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Let’s Play Marbles!CONCEPTUAL EXAMPLE 22.11
macrostates for this set of events? What is the most likely
macrostate? What is the least likely macrostate?

Solution Because each marble is returned to the bag be-
fore the next one is drawn, the probability of drawing a red
marble is always the same as the probability of drawing a

Suppose you have a bag of 100 marbles. Fifty of the marbles
are red, and 50 are green. You are allowed to draw four mar-
bles from the bag according to the following rules: Draw one
marble, record its color, and return it to the bag. Then draw
another marble. Continue this process until you have drawn
and returned four marbles. What are the possible

Adiabatic Free Expansion — One Last TimeEXAMPLE 22.10
The number of microstates for all NA molecules in the final
volume is

Thus, the ratio of the number of final microstates to initial
microstates is

Using Equation 22.18, we obtain

The answer is the same as that for part (a), which dealt with
macroscopic parameters.

R ln 4� kB ln(4NA ) � NAkB ln 4 �

�S � kB ln Wf � kB ln Wi � kB ln� Wf

Wi
�

Wf

Wi
� 4NA

Wf � � Vf

Vm
�

NA

� � 4Vi

Vm
�

NA

Vf � 4Vi

Let us verify that the macroscopic and microscopic ap-
proaches to the calculation of entropy lead to the same con-
clusion for the adiabatic free expansion of an ideal gas. Sup-
pose that 1 mol of gas expands to four times its initial
volume. As we have seen for this process, the initial and final
temperatures are the same. (a) Using a macroscopic ap-
proach, calculate the entropy change for the gas. (b) Using
statistical considerations, calculate the change in entropy for
the gas and show that it agrees with the answer you obtained
in part (a).

Solution (a) Using Equation 22.13, we have

(b) The number of microstates available to a single mole-
cule in the initial volume Vi is For 1 mol (NA
molecules), the number of available microstates is

Wi � wi 

NA � � Vi

Vm
�

NA

wi � Vi/Vm .

R ln 4�S � nR ln� Vf

Vi
� � (1)R ln� 4Vi

Vi
� �

(a)

(b)

(c)

Figure 22.20 (a) One molecule in a two-sided container has a 1-in-2 chance of being on the
left side. (b) Two molecules have a 1-in-4 chance of being on the left side at the same time. 
(c) Three molecules have a 1-in-8 chance of being on the left  side at the same time.
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SUMMARY

A heat engine is a device that converts internal energy to other useful forms of
energy. The net work done by a heat engine in carrying a working substance
through a cyclic process is

(22.1)

where Q h is the energy absorbed from a hot reservoir and Q c is the energy ex-
pelled to a cold reservoir.

The thermal efficiency e of a heat engine is

(22.2)

The second law of thermodynamics can be stated in the following two ways:

• It is impossible to construct a heat engine that, operating in a cycle, produces
no effect other than the absorption of energy from a reservoir and the perfor-
mance of an equal amount of work (the Kelvin–Planck statement).

• It is impossible to construct a cyclic machine whose sole effect is the continuous
transfer of energy from one object to another object at a higher temperature
without the input of energy by work (the Clausius statement).

In a reversible process, the system can be returned to its initial conditions
along the same path shown on a PV diagram, and every point along this path is an
equilibrium state. A process that does not satisfy these requirements is irre-
versible. Carnot’s theorem states that no real heat engine operating (irre-
versibly) between the temperatures Tc and Th can be more efficient than an en-
gine operating reversibly in a Carnot cycle between the same two temperatures.

The thermal efficiency of a heat engine operating in the Carnot cycle is

(22.4)eC � 1 �
Tc

Th

e �
W
Q h

� 1 �
Q c

Q h

W � Q h � Q c

(�E int � 0)

TABLE 22.1 Possible Results of Drawing Four Marbles from a Bag

Total Number
Macrostate Possible Microstates of Microstates

All R RRRR 1
1G, 3R RRRG, RRGR, RGRR, GRRR 4
2G, 2R RRGG, RGRG, GRRG, RGGR, 

GRGR, GGRR 6
3G, 1R GGGR, GGRG, GRGG, RGGG 4
All G GGGG 1

green one. All the possible microstates and macrostates are
shown in Table 22.1. As this table indicates, there is only one
way to draw four red marbles, and so there is only one mi-
crostate. However, there are four possible microstates that
correspond to the macrostate of one green marble and three
red marbles; six microstates that correspond to two green
marbles and two red marbles; four microstates that corre-

spond to three green marbles and one red marble; and one
microstate that corresponds to four green marbles. The most
likely macrostate—two red marbles and two green marbles—
corresponds to the most disordered microstates. The least
likely macrostates—four red marbles or four green mar-
bles—correspond to the most ordered microstates.
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You should be able to use this equation (or an equivalent form involving a ratio of
heats) to determine the maximum possible efficiency of any heat engine.

The second law of thermodynamics states that when real (irreversible)
processes occur, the degree of disorder in the system plus the surroundings in-
creases. When a process occurs in an isolated system, the state of the system be-
comes more disordered. The measure of disorder in a system is called entropy S.
Thus, another way in which the second law can be stated is

• The entropy of the Universe increases in all real processes.

The change in entropy dS of a system during a process between two infinitesi-
mally separated equilibrium states is

(22.8)

where dQ r is the energy transfer by heat for a reversible process that connects the
initial and final states. The change in entropy of a system during an arbitrary
process between an initial state and a final state is

(22.9)

The value of �S for the system is the same for all paths connecting the initial and
final states. The change in entropy for a system undergoing any reversible, cyclic
process is zero, and when such a process occurs, the entropy of the Universe re-
mains constant.

From a microscopic viewpoint, entropy is defined as

(22.18)

where kB is Boltzmann’s constant and W is the number of microstates available to
the system for the existing macrostate. Because of the statistical tendency of sys-
tems to proceed toward states of greater probability and greater disorder, all nat-
ural processes are irreversible, and entropy increases. Thus, entropy is a measure
of microscopic disorder.

S � kB ln W

�S � �f

i
 
dQ r

T

dS �
dQ r

T

QUESTIONS

involve an increase in entropy. Be sure to account for all
parts of each system under consideration.

7. Discuss the change in entropy of a gas that expands (a) at
constant temperature and (b) adiabatically.

8. In solar ponds constructed in Israel, the Sun’s energy is
concentrated near the bottom of a salty pond. With the
proper layering of salt in the water, convection is pre-
vented, and temperatures of 100°C may be reached. Can
you estimate the maximum efficiency with which useful
energy can be extracted from the pond?

9. The vortex tube (Fig. Q22.9) is a T-shaped device that
takes in compressed air at 20 atm and 20°C and gives off
air at � 20°C from one flared end and air at 60°C from
the other flared end. Does the operation of this device vi-

1. Is it possible to convert internal energy to mechanical en-
ergy? Describe a process in which such a conversion occurs.

2. What are some factors that affect the efficiency of auto-
mobile engines?

3. In practical heat engines, which are we able to control
more: the temperature of the hot reservoir, or the tem-
perature of the cold reservoir? Explain.

4. A steam-driven turbine is one major component of an
electric power plant. Why is it advantageous to have the
temperature of the steam as high as possible?

5. Is it possible to construct a heat engine that creates no
thermal pollution? What does this tell us about environ-
mental considerations for an industrialized society?

6. Discuss three common examples of natural processes that
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olate the second law of thermodynamics? If not, explain
why not.

10. Why does your automobile burn more gas in winter than
in summer?

11. Can a heat pump have a coefficient of performance
(COP) less than unity? Explain.

12. Give some examples of irreversible processes that occur
in nature.

13. Give an example of a process in nature that is nearly re-
versible.

14. A thermodynamic process occurs in which the entropy of
a system changes by � 8.0 J/K. According to the second
law of thermodynamics, what can you conclude about the
entropy change of the environment?

15. If a supersaturated sugar solution is allowed to evaporate
slowly, sugar crystals form in the container. Hence, sugar
molecules go from a disordered form (in solution) to a
highly ordered crystalline form. Does this process violate
the second law of thermodynamics? Explain.

16. How could you increase the entropy of 1 mol of a metal
that is at room temperature? How could you decrease its
entropy?

17. A heat pump is to be installed in a region where the aver-
age outdoor temperature in the winter months is � 20°C.
In view of this, why would it be advisable to place the out-
door compressor unit deep in the ground? Why are heat
pumps not commonly used for heating in cold climates?

18. Suppose your roommate is “Mr. Clean” and tidies up your
messy room after a big party. That is, your roommate is
increasing order in the room. Does this represent a viola-
tion of the second law of thermodynamics?

19. Discuss the entropy changes that occur when you 
(a) bake a loaf of bread and (b) consume the bread.

20. The device shown in Figure Q22.20, which is called a
thermoelectric converter, uses a series of semiconductor
cells to convert internal energy to electrical energy. In the
photograph on the left, both legs of the device are at the
same temperature and no electrical energy is produced.
However, when one leg is at a higher temperature than
the other, as shown in the photograph on the right, elec-
trical energy is produced as the device extracts energy
from the hot reservoir and drives a small electric motor.
(a) Why does the temperature differential produce elec-
trical energy in this demonstration? (b) In what sense
does this intriguing experiment demonstrate the second
law of thermodynamics?

21. A classmate tells you that it is just as likely for all the air
molecules in the room you are both in to be concentrated
in one corner (with the rest of the room being a vacuum)
as it is for the air molecules to be distributed uniformly
about the room in their current state. Is this true? Why
doesn’t the situation he describes actually happen?

Figure Q22.20 (Courtesy of PASCO Scientific Company)

Figure Q22.9

Compressed
air in

Hot air + 60°C

Ranque-Hilsch vortex tube

Cold air  –20°C
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PROBLEMS

cal maximum efficiency of the engine, using an intake
steam temperature of 100°C. (b) If superheated steam
at 200°C were used instead, what would be the maxi-
mum possible efficiency?

11. An ideal gas is taken through a Carnot cycle. The
isothermal expansion occurs at 250°C, and the isother-
mal compression takes place at 50.0°C. Assuming that
the gas absorbs 1 200 J of energy from the hot reservoir
during the isothermal expansion, find (a) the energy
expelled to the cold reservoir in each cycle and 
(b) the net work done by the gas in each cycle.

12. The exhaust temperature of a Carnot heat engine is
300°C. What is the intake temperature if the efficiency
of the engine is 30.0%?

13. A power plant operates at 32.0% efficiency during the
summer when the sea water for cooling is at 20.0°C.
The plant uses 350°C steam to drive turbines. Assuming
that the plant’s efficiency changes in the same propor-
tion as the ideal efficiency, what would be the plant’s ef-
ficiency in the winter, when the sea water is at 10.0°C?

14. Argon enters a turbine at a rate of 80.0 kg/min, a tem-
perature of 800°C, and a pressure of 1.50 MPa. It ex-
pands adiabatically as it pushes on the turbine blades
and exits at a pressure of 300 kPa. (a) Calculate its tem-
perature at the time of exit. (b) Calculate the (maxi-
mum) power output of the turning turbine. (c) The tur-
bine is one component of a model closed-cycle gas
turbine engine. Calculate the maximum efficiency of
the engine.

15. A power plant that would make use of the temperature
gradient in the ocean has been proposed. The system is
to operate between 5.00°C (water temperature at a
depth of about 1 km) and 20.0°C (surface water temper-
ature). (a) What is the maximum efficiency of such a sys-
tem? (b) If the power output of the plant is 75.0 MW,
how much energy is absorbed per hour? (c) In view of
your answer to part (a), do you think such a system is
worthwhile (considering that there is no charge for
fuel)?

16. A 20.0%-efficient real engine is used to speed up a train
from rest to 5.00 m/s. It is known that an ideal (Carnot)
engine having the same cold and hot reservoirs would
accelerate the same train from rest to a speed of 
6.50 m/s using the same amount of fuel. Assuming that
the engines use air at 300 K as a cold reservoir, find the
temperature of the steam serving as the hot reservoir.

17. A firebox is at 750 K, and the ambient temperature is
300 K. The efficiency of a Carnot engine doing 150 J of
work as it transports energy between these constant-
temperature baths is 60.0%. The Carnot engine must
absorb energy 150 J/0.600 � 250 J from the hot reser-

Section 22.1 Heat Engines and the Second Law of
Thermodynamics
Section 22.2 Reversible and Irreversible Processes

1. A heat engine absorbs 360 J of energy and performs
25.0 J of work in each cycle. Find (a) the efficiency of
the engine and (b) the energy expelled to the cold
reservoir in each cycle.

2. The energy absorbed by an engine is three times
greater than the work it performs. (a) What is its ther-
mal efficiency? (b) What fraction of the energy ab-
sorbed is expelled to the cold reservoir?

3. A particular engine has a power output of 5.00 kW and
an efficiency of 25.0%. Assuming that the engine expels
8 000 J of energy in each cycle, find (a) the energy ab-
sorbed in each cycle and (b) the time for each cycle.

4. A heat engine performs 200 J of work in each cycle and
has an efficiency of 30.0%. For each cycle, how much
energy is (a) absorbed and (b) expelled?

5. An ideal gas is compressed to half its original volume
while its temperature is held constant. (a) If 1 000 J of
energy is removed from the gas during the compres-
sion, how much work is done on the gas? (b) What is
the change in the internal energy of the gas during the
compression?

6. Suppose that a heat engine is connected to two energy
reservoirs, one a pool of molten aluminum (660°C) and
the other a block of solid mercury (� 38.9°C). The en-
gine runs by freezing 1.00 g of aluminum and melting
15.0 g of mercury during each cycle. The heat of fusion
of aluminum is 3.97 � 105 J/kg; the heat of fusion of
mercury is 1.18 � 104 J/kg. What is the efficiency of this
engine?

Section 22.3 The Carnot Engine
7. One of the most efficient engines ever built (actual effi-

ciency 42.0%) operates between 430°C and 1 870°C. 
(a) What is its maximum theoretical efficiency? 
(b) How much power does the engine deliver if it ab-
sorbs 1.40 � 105 J of energy each second from the hot
reservoir?

8. A heat engine operating between 80.0°C and 200°C
achieves 20.0% of the maximum possible efficiency.
What energy input will enable the engine to perform
10.0 kJ of work?

9. A Carnot engine has a power output of 150 kW. The en-
gine operates between two reservoirs at 20.0°C and
500°C. (a) How much energy does it absorb per hour?
(b) How much energy is lost per hour in its exhaust?

10. A steam engine is operated in a cold climate where the
exhaust temperature is 0°C. (a) Calculate the theoreti-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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voir and release 100 J of energy into the environment.
To follow Carnot’s reasoning, suppose that some other
heat engine S could have an efficiency of 70.0%. 
(a) Find the energy input and energy output of engine
S as it does 150 J of work. (b) Let engine S operate as in
part (a) and run the Carnot engine in reverse. Find the
total energy the firebox puts out as both engines oper-
ate together and the total energy absorbed by the envi-
ronment. Show that the Clausius statement of the sec-
ond law of thermodynamics is violated. (c) Find the
energy input and work output of engine S as it exhausts
100 J of energy. (d) Let engine S operate as in (c) and
contribute 150 J of its work output to running the
Carnot engine in reverse. Find the total energy that the
firebox puts out as both engines operate together, the
total work output, and the total energy absorbed by the
environment. Show that the Kelvin–Planck statement
of the second law is violated. Thus, our assumption
about the efficiency of engine S must be false. (e) Let
the engines operate together through one cycle as in
part (d). Find the change in entropy of the Universe.
Show that the entropy statement of the second law is 
violated.

18. At point A in a Carnot cycle, 2.34 mol of a monatomic
ideal gas has a pressure of 1 400 kPa, a volume of 
10.0 L, and a temperature of 720 K. It expands isother-
mally to point B, and then expands adiabatically to
point C, where its volume is 24.0 L. An isothermal com-
pression brings it to point D, where its new volume is
15.0 L. An adiabatic process returns the gas to point A.
(a) Determine all the unknown pressures, volumes, and
temperatures as you fill in the following table:

(c) Identify the energy input Q h , the energy exhaust
Q c , and the net output work W. (d) Calculate the ther-
mal efficiency. (e) Find the number of revolutions per
minute that the crankshaft must complete for a one-
cylinder engine to have an output power of 1.00 kW �
1.34 hp. (Hint: The thermodynamic cycle involves four
piston strokes.)

Section 22.5 Heat Pumps and Refrigerators
23. What is the coefficient of performance of a refrigerator

that operates with Carnot efficiency between the tem-
peratures � 3.00°C and 
 27.0°C?

24. What is the maximum possible coefficient of perfor-
mance of a heat pump that brings energy from out-
doors at � 3.00°C into a 22.0°C house? (Hint: The heat
pump does work W, which is also available to warm up
the house.)

(b) Fill in the following table to track the processes:

(b) Find the energy added by heat, the work done, and
the change in internal energy for each of the following
steps: A : B, B : C, C : D, and D : A. (c) Show that

the Carnot efficiency.

Section 22.4 Gasoline and Diesel Engines
19. In a cylinder of an automobile engine just after combus-

tion, the gas is confined to a volume of 50.0 cm3 and
has an initial pressure of 3.00 � 106 Pa. The piston
moves outward to a final volume of 300 cm3, and the
gas expands without energy loss by heat. (a) If � � 1.40
for the gas, what is the final pressure? (b) How much
work is done by the gas in expanding?

20. A gasoline engine has a compression ratio of 6.00 and
uses a gas for which � � 1.40. (a) What is the efficiency
of the engine if it operates in an idealized Otto cycle? 

Wnet /Q in � 1 � TC /TA ,

(b) If the actual efficiency is 15.0%, what fraction of the
fuel is wasted as a result of friction and energy losses by
heat that could by avoided in a reversible engine? 
(Assume complete combustion of the air– fuel 
mixture.)

21. A 1.60-L gasoline engine with a compression ratio of
6.20 has a power output of 102 hp. Assuming that the
engine operates in an idealized Otto cycle, find the en-
ergy absorbed and exhausted each second. Assume that
the fuel–air mixture behaves like an ideal gas, with 
� � 1.40.

22. The compression ratio of an Otto cycle, as shown in Fig-
ure 22.12, is At the beginning A of the
compression process, 500 cm3 of gas is at 100 kPa and
20.0°C. At the beginning of the adiabatic expansion,
the temperature is 750°C. Model the working
fluid as an ideal gas, with and 
� � 1.40. (a) Fill in the following table to track the
states of the gas:

E int � nCVT � 2.50nRT
TC �

VA/VB � 8.00.

P V T

A 1 400 kPa 10.0 L 720 K
B
C 24.0 L
D 15.0 L

Q W �E int

A : B
B : C
C : D
D : A
ABCDA

T (K) P (kPa) V (cm3) E int

A 293 100 500
B
C 1 023
D
A
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25. An ideal refrigerator or ideal heat pump is equivalent to
a Carnot engine running in reverse. That is, energy Q c
is absorbed from a cold reservoir, and energy Q h is re-
jected to a hot reservoir. (a) Show that the work that
must be supplied to run the refrigerator or heat pump is

(b) Show that the coefficient of performance (COP) of
the ideal refrigerator is

26. A heat pump (Fig. P22.26) is essentially a heat engine
run backward. It extracts energy from colder air outside
and deposits it in a warmer room. Suppose that the ra-
tio of the actual energy entering the room to the work
done by the device’s motor is 10.0% of the theoretical
maximum ratio. Determine the energy entering the
room per joule of work done by the motor when the in-
side temperature is 20.0°C and the outside temperature
is � 5.00°C.

COP �
Tc

Th � Tc

W �  
Th � Tc

Tc
 Q c

to operate the refrigerator? (b) At what rate does the
refrigerator exhaust energy into the room?

Section 22.6 Entropy
31. An ice tray contains 500 g of water at 0°C. Calculate the

change in entropy of the water as it freezes slowly and
completely at 0°C.

32. At a pressure of 1 atm, liquid helium boils at 4.20 K.
The latent heat of vaporization is 20.5 kJ/kg. Determine
the entropy change (per kilogram) of the helium result-
ing from vaporization.

33. Calculate the change in entropy of 250 g of water
heated slowly from 20.0°C to 80.0°C. (Hint: Note that

34. An airtight freezer holds 2.50 mol of air at 25.0°C and
1.00 atm. The air is then cooled to � 18.0°C. (a) What is
the change in entropy of the air if the volume is held
constant? (b) What would the change be if the pressure
were maintained at 1 atm during the cooling?

Section 22.7 Entropy Changes in Irreversible Processes
35. The temperature at the surface of the Sun is approxi-

mately 5 700 K, and the temperature at the surface of
the Earth is approximately 290 K. What entropy change
occurs when 1 000 J of energy is transferred by radia-
tion from the Sun to the Earth?

36. A 1.00-kg iron horseshoe is taken from a furnace at
900°C and dropped into 4.00 kg of water at 10.0°C.
Assuming that no energy is lost by heat to the surround-
ings, determine the total entropy change of the system
(horseshoe and water).

37. A 1 500-kg car is moving at 20.0 m/s. The driver brakes
to a stop. The brakes cool off to the temperature of the
surrounding air, which is nearly constant at 20.0°C.
What is the total entropy change?

38. How fast are you personally making the entropy of the
Universe increase right now? Make an order-of-magni-
tude estimate, stating what quantities you take as data
and the values you measure or estimate for them.

39. One mole of H2 gas is contained in the left-hand side of
the container shown in Figure P22.39, which has equal
volumes left and right. The right-hand side is evacuated.
When the valve is opened, the gas streams into the
right-hand side. What is the final entropy change of the
gas? Does the temperature of the gas change?

dQ � mc dT.)

WEB

WEB 27. How much work does an ideal Carnot refrigerator re-
quire to remove 1.00 J of energy from helium at 4.00 K
and reject this energy to a room-temperature (293-K)
environment?

28. How much work does an ideal Carnot refrigerator re-
quire to remove energy Q from helium at Tc and reject
this energy to a room-temperature environment at Th ?

29. A refrigerator has a coefficient of performance equal to
5.00. Assuming that the refrigerator absorbs 120 J of en-
ergy from a cold reservoir in each cycle, find (a) the
work required in each cycle and (b) the energy ex-
pelled to the hot reservoir.

30. A refrigerator maintains a temperature of 0°C in the
cold compartment with a room temperature of 25.0°C.
It removes energy from the cold compartment at the
rate 8 000 kJ/h. (a) What minimum power is required

Figure P22.26

Figure P22.39

Q h

Inside
Th

Outside
Tc

Q c
Heat
pump

Valve

VacuumH2

40. A rigid tank of small mass contains 40.0 g of argon, ini-
tially at 200°C and 100 kPa. The tank is placed into a
reservoir at 0°C and is allowed to cool to thermal equi-
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librium. Calculate (a) the volume of the tank, (b) the
change in internal energy of the argon, (c) the energy
transferred by heat, (d) the change in entropy of the ar-
gon, and (e) the change in entropy of the constant-tem-
perature bath.

41. A 2.00-L container has a center partition that divides it
into two equal parts, as shown in Figure P22.41. The
left-hand side contains H2 gas, and the right-hand side
contains O2 gas. Both gases are at room temperature
and at atmospheric pressure. The partition is removed,
and the gases are allowed to mix. What is the entropy
increase of the system?

ADDITIONAL PROBLEMS

48. Every second at Niagara Falls, some 5 000 m3 of water
falls a distance of 50.0 m (Fig. P22.48). What is the in-
crease in entropy per second due to the falling water?
(Assume that the mass of the surroundings is so great
that its temperature and that of the water stay nearly
constant at 20.0°C. Suppose that a negligible amount of
water evaporates.)

49. If a 35.0%-efficient Carnot heat engine is run in reverse
so that it functions as a refrigerator, what would be the
engine’s (that is, the refrigerator’s) coefficient of per-
formance (COP)?

50. How much work does an ideal Carnot refrigerator use
to change 0.500 kg of tap water at 10.0°C into ice at
� 20.0°C? Assume that the freezer compartment is held
at � 20.0°C and that the refrigerator exhausts energy
into a room at 20.0°C.

51. A house loses energy through the exterior walls and roof
at a rate of 5 000 J/s � 5.00 kW when the interior temper-
ature is 22.0°C and the outside temperature is � 5.00°C.
Calculate the electric power required to maintain the in-
terior temperature at 22.0°C for the following two cases:
(a) The electric power is used in electric resistance
heaters (which convert all of the electricity supplied into
internal energy). (b) The electric power is used to drive
an electric motor that operates the compressor of a heat
pump (which has a coefficient of performance [COP]
equal to 60.0% of the Carnot-cycle value).

52. A heat engine operates between two reservoirs at T2 �
600 K and T1 � 350 K. It absorbs 1 000 J of energy from
the higher-temperature reservoir and performs 250 J of
work. Find (a) the entropy change of the Universe �SU
for this process and (b) the work W that could have
been done by an ideal Carnot engine operating be-
tween these two reservoirs. (c) Show that the difference
between the work done in parts (a) and (b) is T1�SU .

53. Figure P22.53 represents n mol of an ideal monatomic
gas being taken through a cycle that consists of two
isothermal processes at temperatures 3Ti and Ti and two
constant-volume processes. For each cycle, determine,

42. A 100 000-kg iceberg at � 5.00°C breaks away from the
polar ice shelf and floats away into the ocean, at 5.00°C.
What is the final change in the entropy of the system af-
ter the iceberg has completely melted? (The specific
heat of ice is 2010 J/kg � °C.)

43. One mole of an ideal monatomic gas, initially at a pres-
sure of 1.00 atm and a volume of 0.025 0 m3, is heated
to a final state with a pressure of 2.00 atm and a volume
of 0.040 0 m3. Determine the change in entropy of the
gas for this process.

44. One mole of a diatomic ideal gas, initially having pres-
sure P and volume V, expands so as to have pressure 2P
and volume 2V. Determine the entropy change of the
gas in the process.

(Optional)
Section 22.8 Entropy on a Microscopic Scale

45. If you toss two dice, what is the total number of ways in
which you can obtain (a) a 12 and (b) a 7?

46. Prepare a table like Table 22.1 for the following occur-
rence. You toss four coins into the air simultaneously
and then record the results of your tosses in terms of
the numbers of heads and tails that result. For example,
HHTH and HTHH are two possible ways in which three
heads and one tail can be achieved. (a) On the basis of
your table, what is the most probable result of a toss? In
terms of entropy, (b) what is the most ordered state,
and (c) what is the most disordered?

47. Repeat the procedure used to construct Table 22.1 
(a) for the case in which you draw three marbles from
your bag rather than four and (b) for the case in which
you draw five rather than four.

Figure P22.41 Figure P22.48 Niagara Falls. ( Jan Kopec/Tony Stone Images)

0.044 mol
O2

0.044 mol
H2

WEB

WEB
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59. An athlete whose mass is 70.0 kg drinks 16 oz (453.6 g)
of refrigerated water. The water is at a temperature of
35.0°F. (a) Neglecting the temperature change of her
body that results from the water intake (that is, the body
is regarded as a reservoir that is always at 98.6°F), find
the entropy increase of the entire system. (b) Assume
that the entire body is cooled by the drink and that the
average specific heat of a human is equal to the specific
heat of liquid water. Neglecting any other energy trans-
fers by heat and any metabolic energy release, find the
athlete’s temperature after she drinks the cold water,
given an initial body temperature of 98.6°F. Under these
assumptions, what is the entropy increase of the entire
system? Compare this result with the one you obtained
in part (a).

60. One mole of an ideal monatomic gas is taken through
the cycle shown in Figure P22.60. The process A : B is
a reversible isothermal expansion. Calculate (a) the net
work done by the gas, (b) the energy added to the gas,
(c) the energy expelled by the gas, and (d) the effi-
ciency of the cycle.

61. Calculate the increase in entropy of the Universe when
you add 20.0 g of 5.00°C cream to 200 g of 60.0°C cof-
fee. Assume that the specific heats of cream and coffee
are both 4.20 J/g � °C.

62. In 1993 the federal government instituted a require-
ment that all room air conditioners sold in the
United States must have an energy efficiency ratio
(EER) of 10 or higher. The EER is defined as the ra-
tio of the cooling capacity of the air conditioner,
measured in Btu/h, to its electrical power require-
ment in watts. (a) Convert the EER of 10.0 to dimen-
sionless form, using the conversion 1 Btu � 1 055 J.
(b) What is the appropriate name for this dimension-
less quantity? (c) In the 1970s it was common to find
room air conditioners with EERs of 5 or lower. Com-
pare the operating costs for 10 000-Btu/h air condi-
tioners with EERs of 5.00 and 10.0 if each air condi-
tioner were to operate for 1 500 h during the
summer in a city where electricity costs 10.0¢ per 
kilowatt-hour.

in terms of n, R, and Ti , (a) the net energy transferred
by heat to the gas and (b) the efficiency of an engine
operating in this cycle.

54. A refrigerator has a coefficient of performance (COP)
of 3.00. The ice tray compartment is at � 20.0°C, and
the room temperature is 22.0°C. The refrigerator can
convert 30.0 g of water at 22.0°C to 30.0 g of ice at
� 20.0°C each minute. What input power is required?
Give your answer in watts.

55. An ideal (Carnot) freezer in a kitchen has a constant
temperature of 260 K, while the air in the kitchen has a
constant temperature of 300 K. Suppose that the insula-
tion for the freezer is not perfect, such that some en-
ergy flows into the freezer at a rate of 0.150 W. Deter-
mine the average power that the freezer’s motor needs
to maintain the constant temperature in the freezer.

56. An electric power plant has an overall efficiency of
15.0%. The plant is to deliver 150 MW of power to a
city, and its turbines use coal as the fuel. The burning
coal produces steam, which drives the turbines. The
steam is then condensed to water at 25.0°C as it passes
through cooling coils in contact with river water. 
(a) How many metric tons of coal does the plant con-
sume each day (1 metric ton � 103 kg)? (b) What is the
total cost of the fuel per year if the delivered price is
$8.00/metric ton? (c) If the river water is delivered at
20.0°C, at what minimum rate must it flow over the
cooling coils in order that its temperature not exceed
25.0°C? (Note: The heat of combustion of coal is 
33.0 kJ/g.)

57. A power plant, having a Carnot efficiency, produces 
1 000 MW of electrical power from turbines that take in
steam at 500 K and reject water at 300 K into a flowing
river. Assuming that the water downstream is 6.00 K
warmer due to the output of the power plant, deter-
mine the flow rate of the river.

58. A power plant, having a Carnot efficiency, produces
electric power from turbines that take in energy from
steam at temperature Th and discharge energy at tem-
perature Tc through a heat exchanger into a flowing
river. Assuming that the water downstream is warmer by
�T due to the output of the power plant, determine the
flow rate of the river.

�

Figure P22.53

Figure P22.60
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63. One mole of a monatomic ideal gas is taken through
the cycle shown in Figure P22.63. At point A, the pres-
sure, volume, and temperature are Pi , Vi , and Ti , re-
spectively. In terms of R and Ti , find (a) the total energy
entering the system by heat per cycle, (b) the total en-
ergy leaving the system by heat per cycle, (c) the effi-
ciency of an engine operating in this cycle, and 
(d) the efficiency of an engine operating in a Carnot
cycle between the same temperature extremes.

thermodynamic efficiency of 0.61. She explains that it
operates between energy reservoirs at 4°C and 0°C. It is
a very complicated device, with many pistons, gears, and
pulleys, and the cycle involves freezing and melting.
Does her claim that e � 0.61 warrant serious considera-
tion? Explain.

67. An idealized diesel engine operates in a cycle known as
the air-standard diesel cycle, as shown in Figure 22.13.
Fuel is sprayed into the cylinder at the point of maxi-
mum compression B. Combustion occurs during the ex-
pansion B : C, which is approximated as an isobaric
process. Show that the efficiency of an engine operating
in this idealized diesel cycle is

68. One mole of an ideal gas (� � 1.40) is carried through
the Carnot cycle described in Figure 22.10. At point A,
the pressure is 25.0 atm and the temperature is 600 K.
At point C, the pressure is 1.00 atm and the tempera-
ture is 400 K. (a) Determine the pressures and volumes
at points A, B, C, and D. (b) Calculate the net work
done per cycle. (c) Determine the efficiency of an en-
gine operating in this cycle.

69. A typical human has a mass of 70.0 kg and produces
about 2 000 kcal (2.00 � 106 cal) of metabolic energy
per day. (a) Find the rate of metabolic energy produc-
tion in watts and in calories per hour. (b) If none of the
metabolic energy were transferred out of the body, and
the specific heat of the human body is 1.00 cal/g � °C,
what is the rate at which body temperature would rise?
Give your answer in degrees Celsius per hour and in de-
grees Fahrenheit per hour.

70. Suppose that 1.00 kg of water at 10.0°C is mixed with
1.00 kg of water at 30.0°C at constant pressure. When
the mixture has reached equilibrium, (a) what is the fi-
nal temperature? (b) Take kJ/kg � K for water.
Show that the entropy of the system increases by

(c) Verify numerically that �S � 0. (d) Is the mixing an
irreversible process?

�S � 4.19 ln�� 293
283 � � 293

303 �� kJ/K

cP � 4.19

e � 1 �
1
�

 � TD � TA

TC � TB
�

64. One mole of an ideal gas expands isothermally. (a) If
the gas doubles its volume, show that the work of expan-
sion is W � RT ln 2. (b) Because the internal energy E int
of an ideal gas depends solely on its temperature, no
change in E int occurs during the expansion. It follows
from the first law that the heat input to the gas during
the expansion is equal to the energy output by work.
Why does this conversion not violate the second law?

65. A system consisting of n mol of an ideal gas undergoes a
reversible, isobaric process from a volume Vi to a volume
3Vi . Calculate the change in entropy of the gas. (Hint:
Imagine that the system goes from the initial state to
the final state first along an isotherm and then along an
adiabatic path—no change in entropy occurs along the
adiabatic path.)

66. Suppose you are working in a patent office, and an in-
ventor comes to you with the claim that her heat en-
gine, which employs water as a working substance, has a

Figure P22.63
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ANSWERS TO QUICK QUIZZES

22.3 False. The second law states that the entropy of the Uni-
verse increases in real processes. Although the organiza-
tion of molecules into ordered leaves and branches rep-
resents a decrease in entropy of the tree, this organization
takes place because of a number of processes in which
the tree interacts with its surroundings. If we include the
entropy changes associated with all these processes, the
entropy change of the Universe during the growth of a
tree is still positive.

22.1 The cost of heating your home decreases to 25% of the
original cost. With electric heating, you receive the same
amount of energy for heating your home as enters it by
electricity. The COP of 4 for the heat pump means that
you are receiving four times as much energy as the en-
ergy entering by electricity. With four times as much en-
ergy per unit of energy from electricity, you need only
one-fourth as much electricity.

22.2 (b) Because the process is reversible and adiabatic,
Q r � 0; therefore, �S � 0.
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Soft contact lenses are comfortable to
wear because they attract the proteins in
the wearer’s tears, incorporating the
complex molecules right into the lenses.
They become, in a sense, part of the
wearer. Some types of makeup exploit
this same attractive force to adhere to
the skin. What is the nature of this force?
(Charles D. Winters)
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23.1 Properties of Electric Charges 709

he electromagnetic force between charged particles is one of the fundamen-
tal forces of nature. We begin this chapter by describing some of the basic
properties of electric forces. We then discuss Coulomb’s law, which is the fun-

damental law governing the force between any two charged particles. Next, we in-
troduce the concept of an electric field associated with a charge distribution and
describe its effect on other charged particles. We then show how to use
Coulomb’s law to calculate the electric field for a given charge distribution. We
conclude the chapter with a discussion of the motion of a charged particle in a
uniform electric field.

PROPERTIES OF ELECTRIC CHARGES
A number of simple experiments demonstrate the existence of electric forces and
charges. For example, after running a comb through your hair on a dry day, you
will find that the comb attracts bits of paper. The attractive force is often strong
enough to suspend the paper. The same effect occurs when materials such as glass
or rubber are rubbed with silk or fur.

Another simple experiment is to rub an inflated balloon with wool. The bal-
loon then adheres to a wall, often for hours. When materials behave in this way,
they are said to be electrified, or to have become electrically charged. You can eas-
ily electrify your body by vigorously rubbing your shoes on a wool rug. The electric
charge on your body can be felt and removed by lightly touching (and startling) a
friend. Under the right conditions, you will see a spark when you touch, and both
of you will feel a slight tingle. (Experiments such as these work best on a dry day
because an excessive amount of moisture in the air can cause any charge you build
up to “leak” from your body to the Earth.)

In a series of simple experiments, it is found that there are two kinds of elec-
tric charges, which were given the names positive and negative by Benjamin
Franklin (1706–1790). To verify that this is true, consider a hard rubber rod that
has been rubbed with fur and then suspended by a nonmetallic thread, as shown
in Figure 23.1. When a glass rod that has been rubbed with silk is brought near the
rubber rod, the two attract each other (Fig. 23.1a). On the other hand, if two
charged rubber rods (or two charged glass rods) are brought near each other, as
shown in Figure 23.1b, the two repel each other. This observation shows that the
rubber and glass are in two different states of electrification. On the basis of these
observations, we conclude that like charges repel one another and unlike
charges attract one another.

Using the convention suggested by Franklin, the electric charge on the glass
rod is called positive and that on the rubber rod is called negative. Therefore, any
charged object attracted to a charged rubber rod (or repelled by a charged glass
rod) must have a positive charge, and any charged object repelled by a charged
rubber rod (or attracted to a charged glass rod) must have a negative charge.

Attractive electric forces are responsible for the behavior of a wide variety of
commercial products. For example, the plastic in many contact lenses, etafilcon, is
made up of molecules that electrically attract the protein molecules in human
tears. These protein molecules are absorbed and held by the plastic so that the
lens ends up being primarily composed of the wearer’s tears. Because of this, the
wearer’s eye does not treat the lens as a foreign object, and it can be worn com-
fortably. Many cosmetics also take advantage of electric forces by incorporating
materials that are electrically attracted to skin or hair, causing the pigments or
other chemicals to stay put once they are applied.

23.1

T

11.2

QuickLab
Rub an inflated balloon against your
hair and then hold the balloon near a
thin stream of water running from a
faucet. What happens? (A rubbed
plastic pen or comb will also work.)
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Another important aspect of Franklin’s model of electricity is the implication
that electric charge is always conserved. That is, when one object is rubbed
against another, charge is not created in the process. The electrified state is due to
a transfer of charge from one object to the other. One object gains some amount of
negative charge while the other gains an equal amount of positive charge. For ex-
ample, when a glass rod is rubbed with silk, the silk obtains a negative charge that
is equal in magnitude to the positive charge on the glass rod. We now know from
our understanding of atomic structure that negatively charged electrons are trans-
ferred from the glass to the silk in the rubbing process. Similarly, when rubber is
rubbed with fur, electrons are transferred from the fur to the rubber, giving the
rubber a net negative charge and the fur a net positive charge. This process is con-
sistent with the fact that neutral, uncharged matter contains as many positive
charges (protons within atomic nuclei) as negative charges (electrons).

If you rub an inflated balloon against your hair, the two materials attract each other, as
shown in Figure 23.2. Is the amount of charge present in the balloon and your hair after
rubbing (a) less than, (b) the same as, or (c) more than the amount of charge present be-
fore rubbing?

In 1909, Robert Millikan (1868–1953) discovered that electric charge always
occurs as some integral multiple of a fundamental amount of charge e. In modern
terms, the electric charge q is said to be quantized, where q is the standard symbol
used for charge. That is, electric charge exists as discrete “packets,” and we can
write where N is some integer. Other experiments in the same period
showed that the electron has a charge �e and the proton has a charge of equal
magnitude but opposite sign �e. Some particles, such as the neutron, have no
charge. A neutral atom must contain as many protons as electrons.

Because charge is a conserved quantity, the net charge in a closed region re-
mains the same. If charged particles are created in some process, they are always
created in pairs whose members have equal-magnitude charges of opposite sign.

q � Ne,

Quick Quiz 23.1

Rubber
Rubber

(a)

F F

(b)

F

F

Rubber

– – – – –

– – – – –
–

–

– – – –

+ + + +
+ +

Glass

–

+

Figure 23.1 (a) A negatively charged rubber rod suspended by a thread is attracted to a posi-
tively charged glass rod. (b) A negatively charged rubber rod is repelled by another negatively
charged rubber rod.

Figure 23.2 Rubbing a balloon
against your hair on a dry day
causes the balloon and your hair 
to become charged.

Charge is conserved

Charge is quantized
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From our discussion thus far, we conclude that electric charge has the follow-
ing important properties:

• Two kinds of charges occur in nature, with the property that unlike charges
attract one another and like charges repel one another.

• Charge is conserved.
• Charge is quantized.

Properties of electric charge

INSULATORS AND CONDUCTORS
It is convenient to classify substances in terms of their ability to conduct electric
charge:

23.2

Electrical conductors are materials in which electric charges move freely,
whereas electrical insulators are materials in which electric charges cannot
move freely.

Materials such as glass, rubber, and wood fall into the category of electrical insula-
tors. When such materials are charged by rubbing, only the area rubbed becomes
charged, and the charge is unable to move to other regions of the material.

In contrast, materials such as copper, aluminum, and silver are good electrical
conductors. When such materials are charged in some small region, the charge
readily distributes itself over the entire surface of the material. If you hold a cop-
per rod in your hand and rub it with wool or fur, it will not attract a small piece of
paper. This might suggest that a metal cannot be charged. However, if you attach a
wooden handle to the rod and then hold it by that handle as you rub the rod, the
rod will remain charged and attract the piece of paper. The explanation for this is
as follows: Without the insulating wood, the electric charges produced by rubbing
readily move from the copper through your body and into the Earth. The insulat-
ing wooden handle prevents the flow of charge into your hand.

Semiconductors are a third class of materials, and their electrical properties
are somewhere between those of insulators and those of conductors. Silicon and
germanium are well-known examples of semiconductors commonly used in the
fabrication of a variety of electronic devices, such as transistors and light-emitting
diodes. The electrical properties of semiconductors can be changed over many or-
ders of magnitude by the addition of controlled amounts of certain atoms to the
materials.

When a conductor is connected to the Earth by means of a conducting wire or
pipe, it is said to be grounded. The Earth can then be considered an infinite
“sink” to which electric charges can easily migrate. With this in mind, we can un-
derstand how to charge a conductor by a process known as induction.

To understand induction, consider a neutral (uncharged) conducting sphere
insulated from ground, as shown in Figure 23.3a. When a negatively charged rub-
ber rod is brought near the sphere, the region of the sphere nearest the rod ob-
tains an excess of positive charge while the region farthest from the rod obtains an
equal excess of negative charge, as shown in Figure 23.3b. (That is, electrons in
the region nearest the rod migrate to the opposite side of the sphere. This occurs
even if the rod never actually touches the sphere.) If the same experiment is per-
formed with a conducting wire connected from the sphere to ground (Fig. 23.3c),
some of the electrons in the conductor are so strongly repelled by the presence of

11.3

Metals are good conductors

Charging by induction
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Figure 23.3 Charging a metallic object by induction (that is, the two objects never touch each
other). (a) A neutral metallic sphere, with equal numbers of positive and negative charges. 
(b) The charge on the neutral sphere is redistributed when a charged rubber rod is placed near
the sphere. (c) When the sphere is grounded, some of its electrons leave through the ground
wire. (d) When the ground connection is removed, the sphere has excess positive charge that is
nonuniformly distributed. (e) When the rod is removed, the excess positive charge becomes uni-
formly distributed over the surface of the sphere.
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the negative charge in the rod that they move out of the sphere through the
ground wire and into the Earth. If the wire to ground is then removed (Fig.
23.3d), the conducting sphere contains an excess of induced positive charge. When
the rubber rod is removed from the vicinity of the sphere (Fig. 23.3e), this in-
duced positive charge remains on the ungrounded sphere. Note that the charge
remaining on the sphere is uniformly distributed over its surface because of the re-
pulsive forces among the like charges. Also note that the rubber rod loses none of
its negative charge during this process.

Charging an object by induction requires no contact with the body inducing
the charge. This is in contrast to charging an object by rubbing (that is, by conduc-
tion), which does require contact between the two objects.

A process similar to induction in conductors takes place in insulators. In most
neutral molecules, the center of positive charge coincides with the center of nega-
tive charge. However, in the presence of a charged object, these centers inside
each molecule in an insulator may shift slightly, resulting in more positive charge
on one side of the molecule than on the other. This realignment of charge within
individual molecules produces an induced charge on the surface of the insulator,
as shown in Figure 23.4. Knowing about induction in insulators, you should be
able to explain why a comb that has been rubbed through hair attracts bits of elec-
trically neutral paper and why a balloon that has been rubbed against your cloth-
ing is able to stick to an electrically neutral wall.

Object A is attracted to object B. If object B is known to be positively charged, what can we
say about object A? (a) It is positively charged. (b) It is negatively charged. (c) It is electri-
cally neutral. (d) Not enough information to answer.

COULOMB’S LAW
Charles Coulomb (1736–1806) measured the magnitudes of the electric forces be-
tween charged objects using the torsion balance, which he invented (Fig. 23.5).

23.3

Quick Quiz 23.2

QuickLab
Tear some paper into very small
pieces. Comb your hair and then
bring the comb close to the paper
pieces. Notice that they are acceler-
ated toward the comb. How does the
magnitude of the electric force com-
pare with the magnitude of the gravi-
tational force exerted on the paper?
Keep watching and you might see a
few pieces jump away from the comb.
They don’t just fall away; they are re-
pelled. What causes this?
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+

+

+

+

+

+–

+–

+–

+–

+–

+–

Insulator

Induced
charges

Charged
object

(a)

Figure 23.4 (a) The charged object on the left induces charges on the surface of an insulator.
(b) A charged comb attracts bits of paper because charges are displaced in the paper.

(b)

11.4

Charles Coulomb (1736 – 1806)
Coulomb's major contribution to sci-
ence was in the field of electrostatics
and magnetism. During his lifetime, he
also investigated the strengths of ma-
terials and determined the forces that
affect objects on beams, thereby con-
tributing to the field of structural me-
chanics. In the field of ergonomics,
his research provided a fundamental
understanding of the ways in which
people and animals can best do work.
(Photo courtesy of AIP Niels Bohr
Library/E. Scott Barr Collection)
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Coulomb confirmed that the electric force between two small charged spheres is
proportional to the inverse square of their separation distance r—that is,

The operating principle of the torsion balance is the same as that of the
apparatus used by Cavendish to measure the gravitational constant (see Section
14.2), with the electrically neutral spheres replaced by charged ones. The electric
force between charged spheres A and B in Figure 23.5 causes the spheres to either
attract or repel each other, and the resulting motion causes the suspended fiber to
twist. Because the restoring torque of the twisted fiber is proportional to the angle
through which the fiber rotates, a measurement of this angle provides a quantita-
tive measure of the electric force of attraction or repulsion. Once the spheres are
charged by rubbing, the electric force between them is very large compared with
the gravitational attraction, and so the gravitational force can be neglected.

Coulomb’s experiments showed that the electric force between two stationary
charged particles

• is inversely proportional to the square of the separation r between the particles
and directed along the line joining them;

• is proportional to the product of the charges q1 and q2 on the two particles;
• is attractive if the charges are of opposite sign and repulsive if the charges have

the same sign.

From these observations, we can express Coulomb’s law as an equation giving
the magnitude of the electric force (sometimes called the Coulomb force) between
two point charges:

(23.1)

where ke is a constant called the Coulomb constant. In his experiments, Coulomb
was able to show that the value of the exponent of r was 2 to within an uncertainty
of a few percent. Modern experiments have shown that the exponent is 2 to within
an uncertainty of a few parts in 1016.

The value of the Coulomb constant depends on the choice of units. The SI
unit of charge is the coulomb (C). The Coulomb constant ke in SI units has the
value

This constant is also written in the form

where the constant �0 (lowercase Greek epsilon) is known as the permittivity of free
space and has the value 

The smallest unit of charge known in nature is the charge on an electron or
proton,1 which has an absolute value of

Therefore, 1 C of charge is approximately equal to the charge of 6.24 � 1018 elec-
trons or protons. This number is very small when compared with the number of

� e � � 1.602 19 � 10�19 C

8.854 2 � 10�12 C2/N�m2.

ke �
1

4��0

ke � 8.987 5 � 109 N�m2/C2

Fe � ke 
� q1 �� q2 �

r 2

Fe � 1/r 2.

Coulomb constant

Charge on an electron or proton

1 No unit of charge smaller than e has been detected as a free charge; however, recent theories propose
the existence of particles called quarks having charges e/3 and 2e/3. Although there is considerable ex-
perimental evidence for such particles inside nuclear matter, free quarks have never been detected. We
discuss other properties of quarks in Chapter 46 of the extended version of this text.

Suspension
head

Fiber

B

A

Figure 23.5 Coulomb’s torsion
balance, used to establish the in-
verse-square law for the electric
force between two charges.
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free electrons2 in 1 cm3 of copper, which is of the order of 1023. Still, 1 C is a sub-
stantial amount of charge. In typical experiments in which a rubber or glass rod is
charged by friction, a net charge of the order of 10�6 C is obtained. In other
words, only a very small fraction of the total available charge is transferred be-
tween the rod and the rubbing material.

The charges and masses of the electron, proton, and neutron are given in
Table 23.1.

The Hydrogen AtomEXAMPLE 23.1

The ratio Thus, the gravitational force be-
tween charged atomic particles is negligible when compared
with the electric force. Note the similarity of form of New-
ton’s law of gravitation and Coulomb’s law of electric forces.
Other than magnitude, what is a fundamental difference be-
tween the two forces?

Fe /Fg � 2 � 1039.

3.6 � 10�47 N �

 � �
(9.11 � 10�31 kg)(1.67 � 10�27 kg)

(5.3 � 10�11 m)2

 � �6.7 � 10�11 
N�m2

kg2 � 

Fg � G 
memp

r 2  The electron and proton of a hydrogen atom are separated
(on the average) by a distance of approximately 5.3 �
10�11 m. Find the magnitudes of the electric force and the
gravitational force between the two particles.

Solution From Coulomb’s law, we find that the attractive
electric force has the magnitude

Using Newton’s law of gravitation and Table 23.1 for the
particle masses, we find that the gravitational force has the
magnitude

8.2 � 10�8 N�

Fe � ke 
� e �2

r 2 � �8.99 � 109 
N�m2

C2 � 
(1.60 � 10�19 C)2

(5.3 � 10�11 m)2

When dealing with Coulomb’s law, you must remember that force is a vector
quantity and must be treated accordingly. Thus, the law expressed in vector form
for the electric force exerted by a charge q1 on a second charge q2 , written F12 , is

(23.2)

where is a unit vector directed from q1 to q2 , as shown in Figure 23.6a. Because
the electric force obeys Newton’s third law, the electric force exerted by q2 on q1 is

r̂

F12 � ke 
q 1q 2

r 2  r̂

2 A metal atom, such as copper, contains one or more outer electrons, which are weakly bound to the
nucleus. When many atoms combine to form a metal, the so-called free electrons are these outer elec-
trons, which are not bound to any one atom. These electrons move about the metal in a manner simi-
lar to that of gas molecules moving in a container.

TABLE 23.1 Charge and Mass of the Electron, Proton, and
Neutron

Particle Charge (C) Mass (kg)

Electron (e) � 1.602 191 7 � 10�19 9.109 5 � 10�31

Proton (p) � 1.602 191 7 � 10�19 1.672 61 � 10�27

Neutron (n) 0 1.674 92 � 10�27
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equal in magnitude to the force exerted by q1 on q2 and in the opposite direction;
that is, Finally, from Equation 23.2, we see that if q1 and q2 have the
same sign, as in Figure 23.6a, the product q1q2 is positive and the force is repulsive.
If q1 and q2 are of opposite sign, as shown in Figure 23.6b, the product q1q2 is neg-
ative and the force is attractive. Noting the sign of the product q1q2 is an easy way
of determining the direction of forces acting on the charges.

Object A has a charge of � 2 	C, and object B has a charge of � 6 	C. Which statement is
true?

(a) . (b) . (c) .

When more than two charges are present, the force between any pair of them
is given by Equation 23.2. Therefore, the resultant force on any one of them
equals the vector sum of the forces exerted by the various individual charges. For
example, if four charges are present, then the resultant force exerted by particles
2, 3, and 4 on particle 1 is

F1 � F21 � F31 � F41

3FAB � �FBAFAB � �FBAFAB � �3FBA

Quick Quiz 23.3

F21 � � F12 .

–

+
r

(a)F21

F12

q1

q2

(b)

F21

F12

q1

q2

r̂

+

+

Figure 23.6 Two point charges separated by a distance r ex-
ert a force on each other that is given by Coulomb’s law. The
force F21 exerted by q2 on q1 is equal in magnitude and oppo-
site in direction to the force F12 exerted by q1 on q2 . (a) When
the charges are of the same sign, the force is repulsive. 
(b) When the charges are of opposite signs, the force is
attractive.

Find the Resultant ForceEXAMPLE 23.2
The magnitude of F23 is

Note that because q3 and q2 have opposite signs, F23 is to the
left, as shown in Figure 23.7.

 � 9.0 N 

 � �8.99 � 109 
N�m2

C2 � 
(2.0 � 10�6 C)(5.0 � 10�6 C)

(0.10 m)2

F23 � ke 
� q2 �� q3 �

a2  

Consider three point charges located at the corners of a right
triangle as shown in Figure 23.7, where 

and Find the resultant force ex-
erted on q3 .

Solution First, note the direction of the individual forces
exerted by q1 and q2 on q3 . The force F23 exerted by q2 on q3
is attractive because q2 and q3 have opposite signs. The force
F13 exerted by q1 on q3 is repulsive because both charges are
positive.

a � 0.10 m. q2 � �2.0 	C,
q1 � q3 � 5.0 	C,
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F13

q3

q1

q2

a

a

y

x

–

+

+
F23

2a√

The magnitude of the force exerted by q1 on q3 is

F13 � ke 
� q1 �� q3 �
(!2a)2  

The force F13 is repulsive and makes an angle of 45° with the
x axis. Therefore, the x and y components of F13 are equal,
with magnitude given by F13 cos 45° � 7.9 N.

The force F23 is in the negative x direction. Hence, the x
and y components of the resultant force acting on q3 are

We can also express the resultant force acting on q3 in unit -
vector form as

Exercise Find the magnitude and direction of the resultant
force F3 .

Answer 8.0 N at an angle of 98° with the x axis.

(�1.1i � 7.9j) NF3 �

F3y � F13y � 7.9 N 

F3x � F13x � F23 � 7.9 N � 9.0 N � �1.1 N

 � 11 N 

 � �8.99 � 109 
N�m2

C2 � 
(5.0 � 10�6 C)(5.0 � 10�6 C)

2(0.10 m)2

Figure 23.7 The force exerted by q1 on q3 is F13 . The force ex-
erted by q2 on q3 is F23 . The resultant force F3 exerted on q3 is the
vector sum F13 � F23 .

Where Is the Resultant Force Zero?EXAMPLE 23.3

Solving this quadratic equation for x, we find that 

Why is the negative root not acceptable?x � 0.775 m.

(4.00 � 4.00x � x2)(6.00 � 10�6 C) � x2(15.0 � 10�6 C)

 (2.00 � x)2� q2 � � x2� q1 � Three point charges lie along the x axis as shown in Figure
23.8. The positive charge q1 � 15.0 	C is at x � 2.00 m, the
positive charge q2 � 6.00 	C is at the origin, and the resul-
tant force acting on q3 is zero. What is the x coordinate of q3?

Solution Because q3 is negative and q1 and q2 are positive,
the forces F13 and F23 are both attractive, as indicated in Fig-
ure 23.8. From Coulomb’s law, F13 and F23 have magnitudes

For the resultant force on q3 to be zero, F23 must be equal in
magnitude and opposite in direction to F13 , or

Noting that ke and q3 are common to both sides and so can be
dropped, we solve for x and find that

ke 
� q2 �� q3 �

x2 � ke 
� q1 �� q3 �

(2.00 � x)2

F13 � ke 
� q1 �� q3 �

(2.00 � x)2   F23 � ke 
� q2 �� q3 �

x2

2.00 m

x

q1

x
q3

–
q2

F13F23

2.00 – x

+ +

Figure 23.8 Three point charges are placed along the x axis. If
the net force acting on q3 is zero, then the force F13 exerted by q1 on
q3 must be equal in magnitude and opposite in direction to the force
F23 exerted by q2 on q3 .

Find the Charge on the SpheresEXAMPLE 23.4
we see that sin 
 � a/L . Therefore,

The separation of the spheres is 
The forces acting on the left sphere are shown in Figure

23.9b. Because the sphere is in equilibrium, the forces in the

2a � 0.026 m.

a � L sin 
 � (0.15 m)sin 5.0� � 0.013 m

Two identical small charged spheres, each having a mass of
3.0 � 10�2 kg, hang in equilibrium as shown in Figure 23.9a.
The length of each string is 0.15 m, and the angle 
 is 5.0°.
Find the magnitude of the charge on each sphere.

Solution From the right triangle shown in Figure 23.9a,
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QuickLab
For this experiment you need two 20-cm strips of transparent tape (mass of each � 65 mg). Fold about
1 cm of tape over at one end of each strip to create a handle. Press both pieces of tape side by side onto
a table top, rubbing your finger back and forth across the strips. Quickly pull the strips off the surface
so that they become charged. Hold the tape handles together and the strips will repel each other, form-
ing an inverted “V” shape. Measure the angle between the pieces, and estimate the excess charge on
each strip. Assume that the charges act as if they were located at the center of mass of each strip.

Figure 23.9 (a) Two identical spheres, each carrying the same
charge q , suspended in equilibrium. (b) The free-body diagram for
the sphere on the left.

(a) (b)

mg

LL

θ θ

L = 0.15 m
θ = 5.0°

q
a

q

θT
T cos θ

T sin θ

θ

Fe

θ

θ

θ

THE ELECTRIC FIELD
Two field forces have been introduced into our discussions so far—the gravita-
tional force and the electric force. As pointed out earlier, field forces can act
through space, producing an effect even when no physical contact between the ob-
jects occurs. The gravitational field g at a point in space was defined in Section
14.6 to be equal to the gravitational force Fg acting on a test particle of mass m di-
vided by that mass: A similar approach to electric forces was developed
by Michael Faraday and is of such practical value that we shall devote much atten-
tion to it in the next several chapters. In this approach, an electric field is said to
exist in the region of space around a charged object. When another charged ob-
ject enters this electric field, an electric force acts on it. As an example, consider
Figure 23.10, which shows a small positive test charge q0 placed near a second ob-
ject carrying a much greater positive charge Q. We define the strength (in other
words, the magnitude) of the electric field at the location of the test charge to be
the electric force per unit charge, or to be more specific

g � Fg/m .

23.4

horizontal and vertical directions must separately add up to
zero:

(1)

(2)

From Equation (2), we see that 
; thus, T can beT � mg /cos

�Fy � T cos 
 � mg � 0

�Fx � T sin 
 � Fe � 0

eliminated from Equation (1) if we make this substitution.
This gives a value for the magnitude of the electric force Fe :

(3)

From Coulomb’s law (Eq. 23.1), the magnitude of the elec-
tric force is

where r � 2a � 0.026 m and is the magnitude of the
charge on each sphere. (Note that the term arises here
because the charge is the same on both spheres.) This equa-
tion can be solved for to give

Exercise If the charge on the spheres were negative, how
many electrons would have to be added to them to yield a net
charge of � 4.4 � 10�8 C?

Answer 2.7 � 1011 electrons.

4.4 � 10�8 C � q � �

� q �2 �
Fe r 2

ke
�

(2.6 � 10�2 N)(0.026 m)2

8.99 � 109 N�m2/C2

� q �2

� q �2
� q �

Fe � ke 
� q �2

r 2

 � 2.6 � 10�2 N 

 � (3.0 � 10�2 kg)(9.80 m/s2)tan 5.0�

Fe � mg tan 
 

+

+ +
+ +
+ +

+ +

+ +
+

++

+

Q

q0

E

Figure 23.10 A small positive
test charge q0 placed near an object
carrying a much larger positive
charge Q experiences an electric
field E directed as shown. 

11.5
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This dramatic photograph captures a lightning bolt striking a tree near some rural homes.

the electric field E at a point in space is defined as the electric force Fe acting
on a positive test charge q0 placed at that point divided by the magnitude of the
test charge:

(23.3)E �
Fe

q0

Note that E is the field produced by some charge external to the test charge—it is
not the field produced by the test charge itself. Also, note that the existence of an
electric field is a property of its source. For example, every electron comes with its
own electric field. 

The vector E has the SI units of newtons per coulomb (N/C), and, as Figure
23.10 shows, its direction is the direction of the force a positive test charge experi-
ences when placed in the field. We say that an electric field exists at a point if a
test charge at rest at that point experiences an electric force. Once the mag-
nitude and direction of the electric field are known at some point, the electric
force exerted on any charged particle placed at that point can be calculated from

Definition of electric field
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Equation 23.3. Furthermore, the electric field is said to exist at some point (even
empty space) regardless of whether a test charge is located at that point.
(This is analogous to the gravitational field set up by any object, which is said to
exist at a given point regardless of whether some other object is present at that
point to “feel” the field.) The electric field magnitudes for various field sources
are given in Table 23.2.

When using Equation 23.3, we must assume that the test charge q0 is small
enough that it does not disturb the charge distribution responsible for the electric
field. If a vanishingly small test charge q0 is placed near a uniformly charged metal-
lic sphere, as shown in Figure 23.11a, the charge on the metallic sphere, which
produces the electric field, remains uniformly distributed. If the test charge is
great enough , as shown in Figure 23.11b, the charge on the metallic
sphere is redistributed and the ratio of the force to the test charge is different:

. That is, because of this redistribution of charge on the metallic
sphere, the electric field it sets up is different from the field it sets up in the pres-
ence of the much smaller q0.

To determine the direction of an electric field, consider a point charge q lo-
cated a distance r from a test charge q0 located at a point P, as shown in Figure
23.12. According to Coulomb’s law, the force exerted by q on the test charge is

where is a unit vector directed from q toward q0. Because the electric field at P,
the position of the test charge, is defined by we find that at P, the elec-
tric field created by q is

(23.4)

If q is positive, as it is in Figure 23.12a, the electric field is directed radially outward
from it. If q is negative, as it is in Figure 23.12b, the field is directed toward it.

To calculate the electric field at a point P due to a group of point charges, we
first calculate the electric field vectors at P individually using Equation 23.4 and
then add them vectorially. In other words,

E � ke 
q
r 2  r̂

E � Fe/q0 ,
r̂

Fe � ke 
qq0

r 2  r̂

(F e /q0 � Fe /q0)

(q0 W q0)

at any point P, the total electric field due to a group of charges equals the vec-
tor sum of the electric fields of the individual charges.

TABLE 23.2 Typical Electric Field Values

Source E (N/C)

Fluorescent lighting tube 10
Atmosphere (fair weather) 100
Balloon rubbed on hair 1 000
Atmosphere (under thundercloud) 10 000
Photocopier 100 000
Spark in air � 3 000 000
Near electron in hydrogen atom 5 � 1011

(a) (b)

q0+ q′0>>q0+

–
– –

–

–

––

–
–

–

–
–

– – –
–

–
––

–
–

–
–

–

Figure 23.11 (a) For a small
enough test charge q0 , the charge
distribution on the sphere is undis-
turbed. (b) When the test charge

is greater, the charge distribu-
tion on the sphere is disturbed as
the result of the proximity of q 0 .

q 0

Figure 23.12 A test charge q0 at
point P is a distance r from a point
charge q . (a) If q is positive, then
the electric field at P points radially
outward from q . (b) If q is nega-
tive, then the electric field at P
points radially inward toward q.

(a)

E

q

q0

r
P

r

–
(b)

Eq

q0

P

r̂

ˆ

+

This superposition principle applied to fields follows directly from the superposi-
tion property of electric forces. Thus, the electric field of a group of charges can
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be expressed as

(23.5)

where ri is the distance from the ith charge qi to the point P (the location of the
test charge) and is a unit vector directed from qi toward P.

A charge of � 3 	C is at a point P where the electric field is directed to the right and has a
magnitude of 4 � 106 N/C. If the charge is replaced with a � 3-	C charge, what happens to
the electric field at P ?

Quick Quiz 23.4

r̂i

E � ke �
i

 
qi

ri 

2  r̂i

This metallic sphere is charged by a
generator so that it carries a net elec-
tric charge. The high concentration of
charge on the sphere creates a strong
electric field around the sphere. The
charges then leak through the gas sur-
rounding the sphere, producing a
pink glow.

Electric Field Due to Two ChargesEXAMPLE 23.5
A charge q1 � 7.0 	C is located at the origin, and a second
charge q2 � � 5.0 	C is located on the x axis, 0.30 m from
the origin (Fig. 23.13). Find the electric field at the point P,
which has coordinates (0, 0.40) m.

Solution First, let us find the magnitude of the electric
field at P due to each charge. The fields E1 due to the 7.0-	C
charge and E2 due to the � 5.0-	C charge are shown in Fig-
ure 23.13. Their magnitudes are

The vector E1 has only a y component. The vector E2 has an
x component given by and a negative y compo-
nent given by Hence, we can express the
vectors as

�E2 sin 
 � �4
5E2 .

E2 cos 
 � 3
5E2

 � 1.8 � 105 N/C

E2 � ke 
� q2 �
r2 

2 � �8.99 � 109 
N�m2

C2 � 
(5.0 � 10�6 C)

(0.50 m)2

 � 3.9 � 105 N/C

E1 � ke 
� q1 �
r1 

2 � �8.99 � 109 
N�m2

C2 � 
(7.0 � 10�6 C)

(0.40 m)2
0.40 m

P
θ

E

E2

0.50 m

E1

y

θ
x

q2q1

0.30 m
–

φ

+

Figure 23.13 The total electric field E at P equals the vector sum
where E1 is the field due to the positive charge q 1 and E2 is

the field due to the negative charge q 2 .
E1 � E2 ,
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Electric Field of a DipoleEXAMPLE 23.6
variation in E for the dipole also is obtained for a distant
point along the x axis (see Problem 21) and for any general
distant point.

The electric dipole is a good model of many molecules,
such as hydrochloric acid (HCl). As we shall see in later
chapters, neutral atoms and molecules behave as dipoles
when placed in an external electric field. Furthermore, many
molecules, such as HCl, are permanent dipoles. The effect of
such dipoles on the behavior of materials subjected to elec-
tric fields is discussed in Chapter 26.

An electric dipole is defined as a positive charge q and a
negative charge � q separated by some distance. For the di-
pole shown in Figure 23.14, find the electric field E at P due
to the charges, where P is a distance from the origin.

Solution At P, the fields E1 and E2 due to the two charges
are equal in magnitude because P is equidistant from the
charges. The total field is where

The y components of E1 and E2 cancel each other, and the 
x components add because they are both in the positive 
x direction. Therefore, E is parallel to the x axis and has a
magnitude equal to 2E1 cos 
. From Figure 23.14 we see that 
cos Therefore,

Because we can neglect a2 and write

Thus, we see that, at distances far from a dipole but along the
perpendicular bisector of the line joining the two charges,
the magnitude of the electric field created by the dipole
varies as 1/r 3, whereas the more slowly varying field of a
point charge varies as 1/r 2 (see Eq. 23.4). This is because at
distant points, the fields of the two charges of equal magni-
tude and opposite sign almost cancel each other. The 1/r 3

E � ke 
2qa
y3

y W a,

 � ke 
2qa

(y2 � a2)3/2  

E � 2E1 cos 
 � 2ke 
q

(y2 � a2)
 

a
(y2 � a2)1/2


 � a/r � a/(y2 � a2)1/2.

E1 � E2 � ke 
q
r 2 � ke 

q
y2 � a2

E � E1 � E2 ,

y W a

The resultant field E at P is the superposition of E1 and E2 :

(1.1 � 105 i � 2.5 � 105 j) N/CE � E1 � E2 �

E2 � (1.1 � 105 i � 1.4 � 105 j) N/C

E1 � 3.9 � 105 j N/C From this result, we find that E has a magnitude of 2.7 �
105 N/C and makes an angle � of 66° with the positive x axis.

Exercise Find the electric force exerted on a charge of 
2.0 � 10�8 C located at P.

Answer 5.4 � 10�3 N in the same direction as E.

P E
θ

θ

y

E1

E2
y

r

θ

a
q

θ

a
–q
– x+

Figure 23.14 The total electric field E at P due to two charges of
equal magnitude and opposite sign (an electric dipole) equals the
vector sum The field E1 is due to the positive charge q ,
and E2 is the field due to the negative charge �q .

E1 � E2 .

ELECTRIC FIELD OF A CONTINUOUS
CHARGE DISTRIBUTION

Very often the distances between charges in a group of charges are much smaller
than the distance from the group to some point of interest (for example, a point
where the electric field is to be calculated). In such situations, the system of

23.5
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charges is smeared out, or continuous. That is, the system of closely spaced charges
is equivalent to a total charge that is continuously distributed along some line,
over some surface, or throughout some volume.

To evaluate the electric field created by a continuous charge distribution, we
use the following procedure: First, we divide the charge distribution into small ele-
ments, each of which contains a small charge �q, as shown in Figure 23.15. Next,
we use Equation 23.4 to calculate the electric field due to one of these elements at
a point P. Finally, we evaluate the total field at P due to the charge distribution by
summing the contributions of all the charge elements (that is, by applying the su-
perposition principle).

The electric field at P due to one element carrying charge �q is

where r is the distance from the element to point P and is a unit vector directed
from the charge element toward P. The total electric field at P due to all elements
in the charge distribution is approximately

where the index i refers to the ith element in the distribution. Because the charge
distribution is approximately continuous, the total field at P in the limit is

(23.6)

where the integration is over the entire charge distribution. This is a vector opera-
tion and must be treated appropriately.

We illustrate this type of calculation with several examples, in which we assume
the charge is uniformly distributed on a line, on a surface, or throughout a vol-
ume. When performing such calculations, it is convenient to use the concept of a
charge density along with the following notations:

• If a charge Q is uniformly distributed throughout a volume V, the volume
charge density � is defined by

where � has units of coulombs per cubic meter (C/m3).

• If a charge Q is uniformly distributed on a surface of area A, the surface charge
density � (lowercase Greek sigma) is defined by

where � has units of coulombs per square meter (C/m2).

• If a charge Q is uniformly distributed along a line of length , the linear charge
density � is defined by

where � has units of coulombs per meter (C/m).

� �
Q
�

�

� �
Q
A

� �
Q
V

E � ke lim
�q

i
:0

 �
i

 
�qi

ri 

2  r̂i � ke � 
dq
r 2  r̂

�qi : 0

E � ke �
i

 
�qi

ri 

2  r̂i

r̂

�E � ke 
�q
r 2  r̂

A continuous charge distribution

Electric field of a continuous
charge distribution

Volume charge density

Surface charge density

r

∆q
r̂

P

∆E

Figure 23.15 The electric field
at P due to a continuous charge dis-
tribution is the vector sum of the
fields �E due to all the elements
�q of the charge distribution.

Linear charge density
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• If the charge is nonuniformly distributed over a volume, surface, or line, we
have to express the charge densities as

where dQ is the amount of charge in a small volume, surface, or length element.

� �
dQ
dV

  � �
dQ
dA

  � �
dQ
d�

The Electric Field Due to a Charged RodEXAMPLE 23.7

where we have used the fact that the total charge Q � � .
If P is far from the rod then the in the denomi-

nator can be neglected, and This is just the form
you would expect for a point charge. Therefore, at large val-
ues of a/ , the charge distribution appears to be a point
charge of magnitude Q . The use of the limiting technique

often is a good method for checking a theoretical
formula.
(a/� : �)

�

E � keQ /a2.
�(a W �),

�

keQ
a(� � a)

 � ke � � 1
a

�
1

� � a � �

E � ke � ���a

a
 
dx
x2 � ke ���

1
x 	

��a

a
 

A rod of length � has a uniform positive charge per unit
length � and a total charge Q . Calculate the electric field at a
point P that is located along the long axis of the rod and a
distance a from one end (Fig. 23.16).

Solution Let us assume that the rod is lying along the x
axis, that dx is the length of one small segment, and that dq is
the charge on that segment. Because the rod has a charge
per unit length �, the charge dq on the small segment is

The field d E due to this segment at P is in the negative x
direction (because the source of the field carries a positive
charge Q ), and its magnitude is

Because every other element also produces a field in the neg-
ative x direction, the problem of summing their contribu-
tions is particularly simple in this case. The total field at P
due to all segments of the rod, which are at different dis-
tances from P, is given by Equation 23.6, which in this case
becomes3

where the limits on the integral extend from one end of the
rod to the other The constants ke and �
can be removed from the integral to yield

(x � � � a).(x � a)

E � ���a

a
k e � 

dx
x2

dE � ke 
dq
x2 � ke � 

 dx
x2

dq � � dx.

The Electric Field of a Uniform Ring of ChargeEXAMPLE 23.8

This field has an x component cos 
 along the axis
and a component dE� perpendicular to the axis. As we see in
Figure 23.17b, however, the resultant field at P must lie along
the x axis because the perpendicular components of all the

dEx � dE

dE � ke 
dq
r 2

A ring of radius a carries a uniformly distributed positive total
charge Q . Calculate the electric field due to the ring at a
point P lying a distance x from its center along the central
axis perpendicular to the plane of the ring (Fig. 23.17a).

Solution The magnitude of the electric field at P due to
the segment of charge dq is

3 It is important that you understand how to carry out integrations such as this. First, express the
charge element dq in terms of the other variables in the integral (in this example, there is one variable,
x, and so we made the change The integral must be over scalar quantities; therefore, you
must express the electric field in terms of components, if necessary. (In this example the field has only
an x component, so we do not bother with this detail.) Then, reduce your expression to an integral
over a single variable (or to multiple integrals, each over a single variable). In examples that have
spherical or cylindrical symmetry, the single variable will be a radial coordinate.

dq � � dx).

x

y

�
a

P
x

dx
dq = λdx

dE

λ

Figure 23.16 The electric field at P due to a uniformly charged
rod lying along the x axis. The magnitude of the field at P due to the
segment of charge dq is kedq/x2. The total field at P is the vector sum
over all segments of the rod.
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The Electric Field of a Uniformly Charged DiskEXAMPLE 23.9
butions of all rings making up the disk. By symmetry, the field
at an axial point must be along the central axis.

The ring of radius r and width dr shown in Figure 23.18
has a surface area equal to 2�r dr. The charge dq on this ring
is equal to the area of the ring multiplied by the surface
charge density: Using this result in the equa-
tion given for Ex in Example 23.8 (with a replaced by r), we
have for the field due to the ring

To obtain the total field at P, we integrate this expression
over the limits r � 0 to r � R, noting that x is a constant. This
gives

 � 2�ke � � x
� x �

�
x

(x2 � R2)1/2 �
 � kex�� � (x2 � r 2)�1/2

�1/2 	
R

0
 

 � kex�� �R

0
 (x2 � r 2)�3/2 d(r 2)

E � kex�� �R

0
 

2r dr
(x2 � r 2)3/2  

dE �
kex

(x2 � r 2)3/2  (2��r dr)

dq � 2��r dr.

A disk of radius R has a uniform surface charge density �.
Calculate the electric field at a point P that lies along the cen-
tral perpendicular axis of the disk and a distance x from the
center of the disk (Fig. 23.18).

Solution If we consider the disk as a set of concentric
rings, we can use our result from Example 23.8—which gives
the field created by a ring of radius a—and sum the contri-

various charge segments sum to zero. That is, the perpen-
dicular component of the field created by any charge ele-
ment is canceled by the perpendicular component created by
an element on the opposite side of the ring. Because

and cos 
 � x/r, we find that

All segments of the ring make the same contribution to the
field at P because they are all equidistant from this point.
Thus, we can integrate to obtain the total field at P :

dEx � dE cos 
 � �ke 
dq
r 2 � x

r
�

kex
(x2 � a2)3/2  dq

r � (x2 � a2)1/2

This result shows that the field is zero at x � 0. Does this find-
ing surprise you?

Exercise Show that at great distances from the ring 
the electric field along the axis shown in Figure 23.17 ap-
proaches that of a point charge of magnitude Q .

(x W a)

kex
(x2 � a2)3/2  Q�

Ex � � 
kex

(x2 � a2)3/2  dq �
kex

(x2 � a2)3/2  � dq

(a)

+ +

+

+

+
+

+

+
+ +

++
++

++

θ P dEx

dEdE⊥

x

r

dq

a

(b)

+ +

+

+

+
+

+

+
+

+

++

+
+ +

+

θ

dE2

1

dE1

2

Figure 23.17 A uniformly charged ring of radius a. (a) The field at P on the x axis due to an ele-
ment of charge dq. (b) The total electric field at P is along the x axis. The perpendicular component of
the field at P due to segment 1 is canceled by the perpendicular component due to segment 2.

Figure 23.18 A uniformly charged disk of radius R . The electric
field at an axial point P is directed along the central axis, perpendic-
ular to the plane of the disk.

P
x

r

R

dq

dr
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ELECTRIC FIELD LINES
A convenient way of visualizing electric field patterns is to draw lines that follow
the same direction as the electric field vector at any point. These lines, called elec-
tric field lines, are related to the electric field in any region of space in the fol-
lowing manner:

• The electric field vector E is tangent to the electric field line at each point.
• The number of lines per unit area through a surface perpendicular to the lines

is proportional to the magnitude of the electric field in that region. Thus, E is
great when the field lines are close together and small when they are far apart.

These properties are illustrated in Figure 23.19. The density of lines through
surface A is greater than the density of lines through surface B. Therefore, the
electric field is more intense on surface A than on surface B. Furthermore, the fact
that the lines at different locations point in different directions indicates that the
field is nonuniform.

Representative electric field lines for the field due to a single positive point
charge are shown in Figure 23.20a. Note that in this two-dimensional drawing we
show only the field lines that lie in the plane containing the point charge. The
lines are actually directed radially outward from the charge in all directions; thus,
instead of the flat “wheel” of lines shown, you should picture an entire sphere of
lines. Because a positive test charge placed in this field would be repelled by the
positive point charge, the lines are directed radially away from the positive point

23.6

11.5

This result is valid for all values of x. We can calculate the
field close to the disk along the axis by assuming that ;
thus, the expression in parentheses reduces to unity:

�

2� 0
E � 2�ke � �

R W x
where is the permittivity of free space. As we
shall find in the next chapter, we obtain the same result for
the field created by a uniformly charged infinite sheet.

� 0 � 1/(4�ke)

B
A

Figure 23.19 Electric field lines
penetrating two surfaces. The mag-
nitude of the field is greater on sur-
face A than on surface B.

Figure 23.20 The electric field lines for a point charge. (a) For a positive point charge, the
lines are directed radially outward. (b) For a negative point charge, the lines are directed radially
inward. Note that the figures show only those field lines that lie in the plane containing the
charge. (c) The dark areas are small pieces of thread suspended in oil, which align with the elec-
tric field produced by a small charged conductor at the center.

(a)

+
q

(b)

–
–q

(c)
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Is this visualization of the electric field in terms of field lines consistent with
Equation 23.4, the expression we obtained for E using Coulomb’s law? To answer
this question, consider an imaginary spherical surface of radius r concentric with a
point charge. From symmetry, we see that the magnitude of the electric field is the
same everywhere on the surface of the sphere. The number of lines N that emerge
from the charge is equal to the number that penetrate the spherical surface.
Hence, the number of lines per unit area on the sphere is N/4�r 2 (where the sur-
face area of the sphere is 4�r 2). Because E is proportional to the number of lines
per unit area, we see that E varies as 1/r 2; this finding is consistent with Equation
23.4.

As we have seen, we use electric field lines to qualitatively describe the electric
field. One problem with this model is that we always draw a finite number of lines
from (or to) each charge. Thus, it appears as if the field acts only in certain direc-
tions; this is not true. Instead, the field is continuous—that is, it exists at every
point. Another problem associated with this model is the danger of gaining the
wrong impression from a two-dimensional drawing of field lines being used to de-
scribe a three-dimensional situation. Be aware of these shortcomings every time
you either draw or look at a diagram showing electric field lines.

We choose the number of field lines starting from any positively charged ob-
ject to be Cq and the number of lines ending on any negatively charged object to
be where C is an arbitrary proportionality constant. Once C is chosen, the
number of lines is fixed. For example, if object 1 has charge Q 1 and object 2 has
charge Q 2 , then the ratio of number of lines is 

The electric field lines for two point charges of equal magnitude but opposite
signs (an electric dipole) are shown in Figure 23.21. Because the charges are of
equal magnitude, the number of lines that begin at the positive charge must equal
the number that terminate at the negative charge. At points very near the charges,
the lines are nearly radial. The high density of lines between the charges indicates
a region of strong electric field.

Figure 23.22 shows the electric field lines in the vicinity of two equal positive
point charges. Again, the lines are nearly radial at points close to either charge,
and the same number of lines emerge from each charge because the charges are
equal in magnitude. At great distances from the charges, the field is approximately
equal to that of a single point charge of magnitude 2q.

Finally, in Figure 23.23 we sketch the electric field lines associated with a posi-
tive charge � 2q and a negative charge �q. In this case, the number of lines leav-
ing � 2q is twice the number terminating at �q. Hence, only half of the lines that
leave the positive charge reach the negative charge. The remaining half terminate

N2/N1 � Q 2/Q 1 .

C� q �,

• The lines must begin on a positive charge and terminate on a negative
charge.

• The number of lines drawn leaving a positive charge or approaching a nega-
tive charge is proportional to the magnitude of the charge.

• No two field lines can cross.

charge. The electric field lines representing the field due to a single negative point
charge are directed toward the charge (Fig. 23.20b). In either case, the lines are
along the radial direction and extend all the way to infinity. Note that the lines be-
come closer together as they approach the charge; this indicates that the strength
of the field increases as we move toward the source charge.

The rules for drawing electric field lines are as follows:

Rules for drawing electric field
lines

(a)

–+

Figure 23.21 (a) The electric
field lines for two point charges of
equal magnitude and opposite sign
(an electric dipole). The number
of lines leaving the positive charge
equals the number terminating at
the negative charge. (b) The dark
lines are small pieces of thread sus-
pended in oil, which align with the
electric field of a dipole.

(b)
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on a negative charge we assume to be at infinity. At distances that are much
greater than the charge separation, the electric field lines are equivalent to those
of a single charge �q.

Rank the magnitude of the electric field at points A, B, and C shown in Figure 23.22a
(greatest magnitude first).

MOTION OF CHARGED PARTICLES IN A
UNIFORM ELECTRIC FIELD

When a particle of charge q and mass m is placed in an electric field E, the electric
force exerted on the charge is qE. If this is the only force exerted on the particle,
it must be the net force and so must cause the particle to accelerate. In this case,
Newton’s second law applied to the particle gives

The acceleration of the particle is therefore

(23.7)

If E is uniform (that is, constant in magnitude and direction), then the accelera-
tion is constant. If the particle has a positive charge, then its acceleration is in the
direction of the electric field. If the particle has a negative charge, then its acceler-
ation is in the direction opposite the electric field.

a �
qE
m

Fe � qE � ma

23.7

Quick Quiz 23.5

(a)

+ +
C

A

B

Figure 23.22 (a) The electric field lines for two positive point charges. (The locations A, B,
and C are discussed in Quick Quiz 23.5.) (b) Pieces of thread suspended in oil, which align with
the electric field created by two equal-magnitude positive charges.

Figure 23.23 The electric field
lines for a point charge � 2q and a
second point charge �q . Note that
two lines leave � 2q for every one
that terminates on �q .

+2q + – –q

(b)

An Accelerating Positive ChargeEXAMPLE 23.10
Solution The acceleration is constant and is given by
qE/m. The motion is simple linear motion along the x axis.
Therefore, we can apply the equations of kinematics in one

A positive point charge q of mass m is released from rest in a
uniform electric field E directed along the x axis, as shown in
Figure 23.24. Describe its motion.
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The electric field in the region between two oppositely charged flat metallic
plates is approximately uniform (Fig. 23.25). Suppose an electron of charge �e is
projected horizontally into this field with an initial velocity vi i. Because the electric
field E in Figure 23.25 is in the positive y direction, the acceleration of the elec-
tron is in the negative y direction. That is,

(23.8)

Because the acceleration is constant, we can apply the equations of kinematics in
two dimensions (see Chapter 4) with and After the electron has
been in the electric field for a time t, the components of its velocity are

(23.9)

(23.10)vy � ayt � �
eE
m

 t

vx � vi � constant

vyi � 0.vxi � vi

a � �
eE
m

 j

–

–

–

–

–

–

+

+

+

+

+

+

E

vv = 0

q

x

+ +

Figure 23.24 A positive point charge q in a uniform electric field
E undergoes constant acceleration in the direction of the field.

(0, 0)

�

E

–

(x, y)

–
v

x

y– – – – – – – – – – – –

+ + + + + + + + + + + +

vi i

Figure 23.25 An electron is pro-
jected horizontally into a uniform
electric field produced by two
charged plates. The electron under-
goes a downward acceleration (op-
posite E), and its motion is para-
bolic while it is between the plates.

theorem because the work done by the electric force is
and W � �K .Fex � qEx

dimension (see Chapter 2):

Taking and , we have

The kinetic energy of the charge after it has moved a distance
is

We can also obtain this result from the work–kinetic energy

K � 1
2mv2 � 1

2m � 2qE
m �x � qEx

x � x f � x i

vx f 

2 � 2axx f � � 2qE
m �x f

 vx f � axt �
qE
m

 t 

 x f � 1
2axt2 �

qE
2m

 t2 

vx i � 0x i � 0

vx f 

2
 � vxi 

2 � 2ax(x f � x i)

 vx f � vxi � axt 

 x f � x i � vxit � 1
2axt2 
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Its coordinates after a time t in the field are

(23.11)

(23.12)

Substituting the value from Equation 23.11 into Equation 23.12, we see
that y is proportional to x2. Hence, the trajectory is a parabola. After the electron
leaves the field, it continues to move in a straight line in the direction of v in Fig-
ure 23.25, obeying Newton’s first law, with a speed 

Note that we have neglected the gravitational force acting on the electron.
This is a good approximation when we are dealing with atomic particles. For an
electric field of 104 N/C, the ratio of the magnitude of the electric force eE to the
magnitude of the gravitational force mg is of the order of 1014 for an electron and
of the order of 1011 for a proton.

v � vi .

t � x/vi

 y � 1
2ayt2 � �1

2 
eE
m

 t2

x � vit

An Accelerated ElectronEXAMPLE 23.11

(c) What is the vertical displacement y of the electron
while it is in the field?

Solution Using Equation 23.12 and the results from parts
(a) and (b), we find that

If the separation between the plates is less than this, the elec-
tron will strike the positive plate.

Exercise Find the speed of the electron as it emerges from
the field.

Answer 3.22 � 106 m/s.

�1.95 cm� �0.019 5 m �

y � 1
2ay t2 � 1

2(�3.51 � 1013 m/s2)(3.33 � 10�8 s)2

3.33 � 10�8 st �
�

vi
�

0.100 m
3.00 � 106 m/s

�
An electron enters the region of a uniform electric field as
shown in Figure 23.25, with and

N/C. The horizontal length of the plates is �
0.100 m. (a) Find the acceleration of the electron while it is
in the electric field.

Solution The charge on the electron has an absolute
value of 1.60 � 10�19 C, and There-
fore, Equation 23.8 gives

(b) Find the time it takes the electron to travel through
the field.

Solution The horizontal distance across the field is �
0.100 m. Using Equation 23.11 with x � , we find that the
time spent in the electric field is

�
�

�3.51 � 1013 j m/s2�

a � �
eE
m

 j � �
(1.60 � 10�19 C)(200 N/C)

9.11 � 10�31 kg
 j

m � 9.11 � 10�31 kg.

�E � 200
vi � 3.00 � 106 m/s

The Cathode Ray Tube

The example we just worked describes a portion of a cathode ray tube (CRT). This
tube, illustrated in Figure 23.26, is commonly used to obtain a visual display of
electronic information in oscilloscopes, radar systems, television receivers, and
computer monitors. The CRT is a vacuum tube in which a beam of electrons is ac-
celerated and deflected under the influence of electric or magnetic fields. The
electron beam is produced by an assembly called an electron gun located in the
neck of the tube. These electrons, if left undisturbed, travel in a straight-line path
until they strike the front of the CRT, the “screen,” which is coated with a material
that emits visible light when bombarded with electrons.

In an oscilloscope, the electrons are deflected in various directions by two sets
of plates placed at right angles to each other in the neck of the tube. (A television
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CRT steers the beam with a magnetic field, as discussed in Chapter 29.) An exter-
nal electric circuit is used to control the amount of charge present on the plates.
The placing of positive charge on one horizontal plate and negative charge on the
other creates an electric field between the plates and allows the beam to be
steered from side to side. The vertical deflection plates act in the same way, except
that changing the charge on them deflects the beam vertically.

SUMMARY

Electric charges have the following important properties:

• Unlike charges attract one another, and like charges repel one another.
• Charge is conserved.
• Charge is quantized—that is, it exists in discrete packets that are some integral

multiple of the electronic charge.
Conductors are materials in which charges move freely. Insulators are mate-

rials in which charges do not move freely.
Coulomb’s law states that the electric force exerted by a charge q1 on a sec-

ond charge q2 is

(23.2)

where r is the distance between the two charges and is a unit vector directed
from q1 to q2 . The constant ke , called the Coulomb constant, has the value

The smallest unit of charge known to exist in nature is the charge on an elec-
tron or proton, 

The electric field E at some point in space is defined as the electric force Fe
that acts on a small positive test charge placed at that point divided by the magni-
tude of the test charge q0 :

(23.3)

At a distance r from a point charge q, the electric field due to the charge is given
by

(23.4)

where is a unit vector directed from the charge to the point in question. Ther̂

E � ke 
q
r 2  r̂

E �
Fe

q0

� e � � 1.602 19 � 10�19 C.

ke � 8.99 � 109 N�m2/C2.

r̂

F12 � ke 
q1q2

r 2  r̂

Electron
gun

Vertical
deflection

plates

Horizontal
deflection

plates

Electron
beam

Fluorescent
screen

Horizontal
input

Vertical
input

C A
Figure 23.26 Schematic diagram of a
cathode ray tube. Electrons leaving the
hot cathode C are accelerated to the an-
ode A. In addition to accelerating elec-
trons, the electron gun is also used to fo-
cus the beam of electrons, and the plates
deflect the beam.



732 C H A P T E R  2 3 Electric Fields

electric field is directed radially outward from a positive charge and radially in-
ward toward a negative charge.

The electric field due to a group of point charges can be obtained by using
the superposition principle. That is, the total electric field at some point equals
the vector sum of the electric fields of all the charges:

(23.5)

The electric field at some point of a continuous charge distribution is

(23.6)

where dq is the charge on one element of the charge distribution and r is the dis-
tance from the element to the point in question.

Electric field lines describe an electric field in any region of space. The num-
ber of lines per unit area through a surface perpendicular to the lines is propor-
tional to the magnitude of E in that region.

A charged particle of mass m and charge q moving in an electric field E has an
acceleration

(23.7)a �
qE
m

E � ke � 
dq
r 2  r̂

E � ke �
i

 
qi

r i 

2 
 r̂i

Problem-Solving Hints
Finding the Electric Field

• Units: In calculations using the Coulomb constant charges
must be expressed in coulombs and distances in meters.

• Calculating the electric field of point charges: To find the total electric
field at a given point, first calculate the electric field at the point due to
each individual charge. The resultant field at the point is the vector sum of
the fields due to the individual charges.

• Continuous charge distributions: When you are confronted with prob-
lems that involve a continuous distribution of charge, the vector sums for
evaluating the total electric field at some point must be replaced by vector
integrals. Divide the charge distribution into infinitesimal pieces, and calcu-
late the vector sum by integrating over the entire charge distribution. You
should review Examples 23.7 through 23.9.

• Symmetry: With both distributions of point charges and continuous
charge distributions, take advantage of any symmetry in the system to sim-
plify your calculations.

ke (�1/4��0),

QUESTIONS

clings to a wall. Does this mean that the wall is positively
charged? Why does the balloon eventually fall?

4. A light, uncharged metallic sphere suspended from a
thread is attracted to a charged rubber rod. After touch-
ing the rod, the sphere is repelled by the rod. Explain.

1. Sparks are often observed (or heard) on a dry day when
clothes are removed in the dark. Explain.

2. Explain from an atomic viewpoint why charge is usually
transferred by electrons.

3. A balloon is negatively charged by rubbing and then
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5. Explain what is meant by the term “a neutral atom.”
6. Why do some clothes cling together and to your body af-

ter they are removed from a dryer?
7. A large metallic sphere insulated from ground is charged

with an electrostatic generator while a person standing on
an insulating stool holds the sphere. Why is it safe to do
this? Why wouldn’t it be safe for another person to touch
the sphere after it has been charged?

8. What are the similarities and differences between New-
ton’s law of gravitation, and Coulomb’s
law, 

9. Assume that someone proposes a theory that states 
that people are bound to the Earth by electric forces
rather than by gravity. How could you prove this theory
wrong?

10. How would you experimentally distinguish an electric
field from a gravitational field?

11. Would life be different if the electron were positively
charged and the proton were negatively charged? Does
the choice of signs have any bearing on physical and
chemical interactions? Explain.

12. When defining the electric field, why is it necessary to
specify that the magnitude of the test charge be very
small (that is, why is it necessary to take the limit of Fe /q
as 

13. Two charged conducting spheres, each of radius a, are
separated by a distance r � 2a. Is the force on either
sphere given by Coulomb’s law? Explain. (Hint: Refer to
Chapter 14 on gravitation.)

14. When is it valid to approximate a charge distribution by a
point charge?

15. Is it possible for an electric field to exist in empty space?
Explain.

16. Explain why electric field lines never cross. (Hint: E must
have a unique direction at all points.)

17. A free electron and free proton are placed in an identical

q : 0)?

Fe � keq1q2/r 2?
Fg � Gm1m2/r 2,

electric field. Compare the electric forces on each parti-
cle. Compare their accelerations.

18. Explain what happens to the magnitude of the electric
field of a point charge as r approaches zero.

19. A negative charge is placed in a region of space where the
electric field is directed vertically upward. What is the di-
rection of the electric force experienced by this charge?

20. A charge 4q is a distance r from a charge �q. Compare
the number of electric field lines leaving the charge 4q
with the number entering the charge �q.

21. In Figure 23.23, where do the extra lines leaving the
charge �2q end?

22. Consider two equal point charges separated by some dis-
tance d. At what point (other than �) would a third test
charge experience no net force?

23. A negative point charge �q is placed at the point P near
the positively charged ring shown in Figure 23.17. If

describe the motion of the point charge if it is re-
leased from rest.

24. Explain the differences between linear, surface, and vol-
ume charge densities, and give examples of when each
would be used.

25. If the electron in Figure 23.25 is projected into the elec-
tric field with an arbitrary velocity vi (at an angle to E),
will its trajectory still be parabolic? Explain.

26. It has been reported that in some instances people near
where a lightning bolt strikes the Earth have had their
clothes thrown off. Explain why this might happen.

27. Why should a ground wire be connected to the metallic
support rod for a television antenna?

28. A light strip of aluminum foil is draped over a wooden
rod. When a rod carrying a positive charge is brought
close to the foil, the two parts of the foil stand apart.
Why? What kind of charge is on the foil?

29. Why is it more difficult to charge an object by rubbing on
a humid day than on a dry day?

x V a,

PROBLEMS

force compare with the magnitude of the gravitational
force between the two protons? (c) What must be the
charge-to-mass ratio of a particle if the magnitude of the
gravitational force between two of these particles equals
the magnitude of the electric force between them?

3. Richard Feynman once said that if two persons stood at
arm’s length from each other and each person had 1%
more electrons than protons, the force of repulsion be-
tween them would be enough to lift a “weight” equal 
to that of the entire Earth. Carry out an order-of-
magnitude calculation to substantiate this assertion.

4. Two small silver spheres, each with a mass of 10.0 g, are
separated by 1.00 m. Calculate the fraction of the elec-

Section 23.1 Properties of Electric Charges
Section 23.2 Insulators and Conductors
Section 23.3 Coulomb’s Law

1. (a) Calculate the number of electrons in a small, electri-
cally neutral silver pin that has a mass of 10.0 g. Silver
has 47 electrons per atom, and its molar mass is 
107.87 g/mol. (b) Electrons are added to the pin until
the net negative charge is 1.00 mC. How many electrons
are added for every 109 electrons already present?

2. (a) Two protons in a molecule are separated by a distance
of 3.80 � 10�10 m. Find the electric force exerted by one
proton on the other. (b) How does the magnitude of this

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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trons in one sphere that must be transferred to the
other to produce an attractive force of 1.00 � 104 N
(about 1 ton) between the spheres. (The number of
electrons per atom of silver is 47, and the number of
atoms per gram is Avogadro’s number divided by the
molar mass of silver, 107.87 g/mol.)

5. Suppose that 1.00 g of hydrogen is separated into elec-
trons and protons. Suppose also that the protons are
placed at the Earth’s north pole and the electrons are
placed at the south pole. What is the resulting compres-
sional force on the Earth?

6. Two identical conducting small spheres are placed
with their centers 0.300 m apart. One is given a 
charge of 12.0 nC, and the other is given a charge of
� 18.0 nC. (a) Find the electric force exerted on one
sphere by the other. (b) The spheres are connected by
a conducting wire. Find the electric force between the
two after equilibrium has occurred.

7. Three point charges are located at the corners of an
equilateral triangle, as shown in Figure P23.7. Calculate
the net electric force on the 7.00-	C charge.

14. An airplane is flying through a thundercloud at a
height of 2 000 m. (This is a very dangerous thing to do
because of updrafts, turbulence, and the possibility of
electric discharge.) If there are charge concentrations
of � 40.0 C at a height of 3 000 m within the cloud and
of � 40.0 C at a height of 1 000 m, what is the electric
field E at the aircraft?

Section 23.4 The Electric Field
11. What are the magnitude and direction of the electric

field that will balance the weight of (a) an electron and
(b) a proton? (Use the data in Table 23.1.)

12. An object having a net charge of 24.0 	C is placed in a
uniform electric field of 610 N/C that is directed verti-
cally. What is the mass of this object if it “floats” in the
field?

13. In Figure P23.13, determine the point (other than in-
finity) at which the electric field is zero.

10. Review Problem. Two identical point charges each
having charge �q are fixed in space and separated by a
distance d. A third point charge �Q of mass m is free to
move and lies initially at rest on a perpendicular bisec-
tor of the two fixed charges a distance x from the mid-
point of the two fixed charges (Fig. P23.10). (a) Show
that if x is small compared with d, the motion of �Q is
simple harmonic along the perpendicular bisector. De-
termine the period of that motion. (b) How fast will the
charge �Q be moving when it is at the midpoint be-
tween the two fixed charges, if initially it is released at a
distance from the midpoint?x � a V d

9. Review Problem. In the Bohr theory of the hydrogen
atom, an electron moves in a circular orbit about a pro-
ton, where the radius of the orbit is 0.529 � 10�10 m.
(a) Find the electric force between the two. (b) If this
force causes the centripetal acceleration of the electron,
what is the speed of the electron?

8. Two small beads having positive charges 3q and q are
fixed at the opposite ends of a horizontal insulating rod
extending from the origin to the point x � d. As shown
in Figure P23.8, a third small charged bead is free to
slide on the rod. At what position is the third bead in
equilibrium? Can it be in stable equilibrium?

0.500 m

7.00 µC

2.00 µC –4.00 µC

60.0°
x

y µ

µµ

–+

+

Figure P23.7 Problems 7 and 15.

Figure P23.8

Figure P23.10

d

+3q +q

+q

+q

–Q
x

y

d/2

d/2
x

1.00 m

–2.50 µC 6.00 µCµ µ

Figure P23.13
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15. Three charges are at the corners of an equilateral trian-
gle, as shown in Figure P23.7. (a) Calculate the electric
field at the position of the 2.00-	C charge due to the
7.00-	C and � 4.00-	C charges. (b) Use your answer to
part (a) to determine the force on the 2.00-	C charge.

16. Three point charges are arranged as shown in Figure
P23.16. (a) Find the vector electric field that the 
6.00-nC and � 3.00-nC charges together create at the
origin. (b) Find the vector force on the 5.00-nC charge.

22. Consider n equal positive point charges each of magni-
tude Q /n placed symmetrically around a circle of ra-
dius R . (a) Calculate the magnitude of the electric field
E at a point a distance x on the line passing through the
center of the circle and perpendicular to the plane of
the circle. (b) Explain why this result is identical to the
one obtained in Example 23.8.

23. Consider an infinite number of identical charges (each
of charge q) placed along the x axis at distances a, 2a,
3a, 4a, . . . from the origin. What is the electric field
at the origin due to this distribution? Hint: Use the fact
that

Section 23.5 Electric Field of a Continuous 
Charge Distribution

24. A rod 14.0 cm long is uniformly charged and has a total
charge of � 22.0 	C. Determine the magnitude and di-
rection of the electric field along the axis of the rod at a
point 36.0 cm from its center.

1 �
1
22 �

1
32 �

1
42 � ��� �

�2

6

nents of the electric field at point (x, y) due to this
charge q are

21. Consider the electric dipole shown in Figure P23.21.
Show that the electric field at a distant point along the 
x axis is Ex 
 4keqa/x3.

Ey �
keq(y � y0)

[(x � x0)2 � (y � y0)2]3/2

Ex �
keq(x � x0)

[(x � x0)2 � (y � y0)2]3/2

18. Two 2.00-	C point charges are located on the x axis.
One is at x � 1.00 m, and the other is at x � � 1.00 m.
(a) Determine the electric field on the y axis at y �
0.500 m. (b) Calculate the electric force on a � 3.00-	C
charge placed on the y axis at y � 0.500 m.

19. Four point charges are at the corners of a square of side
a, as shown in Figure P23.19. (a) Determine the magni-
tude and direction of the electric field at the location of
charge q. (b) What is the resultant force on q?

20. A point particle having charge q is located at point 
(x0 , y0) in the xy plane. Show that the x and y compo-

17. Three equal positive charges q are at the corners of an
equilateral triangle of side a, as shown in Figure P23.17.
(a) Assume that the three charges together create an
electric field. Find the location of a point (other than
�) where the electric field is zero. (Hint: Sketch the
field lines in the plane of the charges.) (b) What are
the magnitude and direction of the electric field at P
due to the two charges at the base?

Figure P23.17

Figure P23.19

Figure P23.21

Figure P23.16
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25. A continuous line of charge lies along the x axis, extend-
ing from x � �x0 to positive infinity. The line carries a
uniform linear charge density �0 . What are the magni-
tude and direction of the electric field at the origin?

26. A line of charge starts at x � �x0 and extends to posi-
tive infinity. If the linear charge density is � � �0x0 /x,
determine the electric field at the origin.

27. A uniformly charged ring of radius 10.0 cm has a total
charge of 75.0 	C. Find the electric field on the axis of
the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and
(d) 100 cm from the center of the ring.

28. Show that the maximum field strength Emax along the
axis of a uniformly charged ring occurs at 
(see Fig. 23.17) and has the value 

29. A uniformly charged disk of radius 35.0 cm carries a
charge density of 7.90 � 10�3 C/m2. Calculate the
electric field on the axis of the disk at (a) 5.00 cm, 
(b) 10.0 cm, (c) 50.0 cm, and (d) 200 cm from the cen-
ter of the disk.

30. Example 23.9 derives the exact expression for the elec-
tric field at a point on the axis of a uniformly charged
disk. Consider a disk of radius cm having a
uniformly distributed charge of � 5.20 	C. (a) Using
the result of Example 23.9, compute the electric field at
a point on the axis and 3.00 mm from the center. Com-
pare this answer with the field computed from the near-
field approximation (b) Using the result of
Example 23.9, compute the electric field at a point on
the axis and 30.0 cm from the center of the disk. Com-
pare this result with the electric field obtained by treat-
ing the disk as a � 5.20-	C point charge at a distance of
30.0 cm.

31. The electric field along the axis of a uniformly charged
disk of radius R and total charge Q was calculated in Ex-
ample 23.9. Show that the electric field at distances x
that are great compared with R approaches that of a
point charge (Hint: First show that

and use the bino-
mial expansion when 

32. A piece of Styrofoam having a mass m carries a net
charge of �q and floats above the center of a very large
horizontal sheet of plastic that has a uniform charge
density on its surface. What is the charge per unit area
on the plastic sheet?

33. A uniformly charged insulating rod of length 14.0 cm is
bent into the shape of a semicircle, as shown in Figure
P23.33. The rod has a total charge of � 7.50 	C. Find
the magnitude and direction of the electric field at O,
the center of the semicircle.

34. (a) Consider a uniformly charged right circular cylin-
drical shell having total charge Q , radius R, and height
h. Determine the electric field at a point a distance d
from the right side of the cylinder, as shown in Figure
P23.34. (Hint: Use the result of Example 23.8 and treat
the cylinder as a collection of ring charges.) (b) Con-
sider now a solid cylinder with the same dimensions and

� V 1.)(1 � �)n � 1 � n�
x/(x2 � R 2)1/2 � (1 � R 2/x2)�1/2,

Q � ��R 2.

E � �/2�0 .

R � 3.00

Q /(6!3��0a2).
x � a/!2

WEB

36. Three solid plastic cylinders all have a radius of 2.50 cm
and a length of 6.00 cm. One (a) carries charge with

carrying the same charge, which is uniformly distrib-
uted through its volume. Use the result of Example 23.9
to find the field it creates at the same point.

35. A thin rod of length and uniform charge per unit
length � lies along the x axis, as shown in Figure P23.35.
(a) Show that the electric field at P, a distance y from
the rod, along the perpendicular bisector has no x com-
ponent and is given by (b) Using
your result to part (a), show that the field of a rod of in-
finite length is (Hint: First calculate the
field at P due to an element of length dx, which has a
charge � dx. Then change variables from x to 
, using
the facts that x � y tan 
 and sec2 
 d
, and inte-
grate over 
.)

dx � y

E � 2ke �/y.

E � 2ke � sin 
0/y.

�

O

Figure P23.33

Figure P23.34

Figure P23.35
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uniform density 15.0 nC/m2 everywhere on its surface.
Another (b) carries charge with the same uniform den-
sity on its curved lateral surface only. The third (c) car-
ries charge with uniform density 500 nC/m3 through-
out the plastic. Find the charge of each cylinder.

37. Eight solid plastic cubes, each 3.00 cm on each edge,
are glued together to form each one of the objects (i, ii,
iii, and iv) shown in Figure P23.37. (a) If each object
carries charge with a uniform density of 400 nC/m3

throughout its volume, what is the charge of each ob-
ject? (b) If each object is given charge with a uniform
density of 15.0 nC/m2 everywhere on its exposed sur-
face, what is the charge on each object? (c) If charge is
placed only on the edges where perpendicular surfaces
meet, with a uniform density of 80.0 pC/m, what is the
charge of each object?

Section 23.7 Motion of Charged Particles 
in a Uniform Electric Field

41. An electron and a proton are each placed at rest in an
electric field of 520 N/C. Calculate the speed of each
particle 48.0 ns after being released.

42. A proton is projected in the positive x direction into a 
region of uniform electric field N/C.
The proton travels 7.00 cm before coming to rest. Deter-
mine (a) the acceleration of the proton, (b) its initial
speed, and (c) the time it takes the proton to come to
rest.

43. A proton accelerates from rest in a uniform electric
field of 640 N/C. At some later time, its speed has
reached 1.20 � 106 m/s (nonrelativistic, since v is
much less than the speed of light). (a) Find the acceler-
ation of the proton. (b) How long does it take the pro-
ton to reach this speed? (c) How far has it moved in this
time? (d) What is its kinetic energy at this time?

44. The electrons in a particle beam each have a kinetic en-
ergy of 1.60 � 10�17 J. What are the magnitude and di-
rection of the electric field that stops these electrons in
a distance of 10.0 cm?

45. The electrons in a particle beam each have a kinetic en-
ergy K . What are the magnitude and direction of the
electric field that stops these electrons in a distance d ?

46. A positively charged bead having a mass of 1.00 g falls
from rest in a vacuum from a height of 5.00 m in a
uniform vertical electric field with a magnitude of 
1.00 � 104 N/C. The bead hits the ground at a 
speed of 21.0 m/s. Determine (a) the direction of the
electric field (up or down) and (b) the charge on the
bead.

47. A proton moves at 4.50 � 105 m/s in the horizontal
direction. It enters a uniform vertical electric field with
a magnitude of 9.60 � 103 N/C. Ignoring any gravita-
tional effects, find (a) the time it takes the proton to
travel 5.00 cm horizontally, (b) its vertical displacement
after it has traveled 5.00 cm horizontally, and (c) the
horizontal and vertical components of its velocity after
it has traveled 5.00 cm horizontally.

48. An electron is projected at an angle of 30.0° above the
horizontal at a speed of 8.20 � 105 m/s in a region
where the electric field is N/C. Neglecting
the effects of gravity, find (a) the time it takes the elec-
tron to return to its initial height, (b) the maximum
height it reaches, and (c) its horizontal displacement
when it reaches its maximum height.

49. Protons are projected with an initial speed
m/s into a region where a uniform

electric field N/C is present, as shown in
Figure P23.49. The protons are to hit a target that lies at
a horizontal distance of 1.27 mm from the point where
the protons are launched. Find (a) the two projection
angles 
 that result in a hit and (b) the total time of
flight for each trajectory.

E � (�720 j)
vi � 9.55 � 103

E � 390 j

E � �6.00 � 105 i

WEB

Section 23.6 Electric Field Lines
38. A positively charged disk has a uniform charge per unit

area as described in Example 23.9. Sketch the electric
field lines in a plane perpendicular to the plane of the
disk passing through its center.

39. A negatively charged rod of finite length has a uniform
charge per unit length. Sketch the electric field lines in
a plane containing the rod.

40. Figure P23.40 shows the electric field lines for two point
charges separated by a small distance. (a) Determine
the ratio q1/q2 . (b) What are the signs of q1 and q2 ?

Figure P23.37

Figure P23.40

(i) (ii) (iii) (iv)

q2

q1
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ADDITIONAL PROBLEMS

50. Three point charges are aligned along the x axis as
shown in Figure P23.50. Find the electric field at (a) the
position (2.00, 0) and (b) the position (0, 2.00).

makes a 15.0° angle with the vertical, what is the net
charge on the ball?

53. A charged cork ball of mass 1.00 g is suspended 
on a light string in the presence of a uniform electric
field, as shown in Figure P23.53. When 

N/C, the ball is in equilibrium at 

 � 37.0°. Find (a) the charge on the ball and 
(b) the tension in the string.

54. A charged cork ball of mass m is suspended on a light
string in the presence of a uniform electric field, as
shown in Figure P23.53. When N/C,
where A and B are positive numbers, the ball is in equi-
librium at the angle 
 . Find (a) the charge on the ball
and (b) the tension in the string.

B j)E � (A i �

5.00 j) � 105
E � (3.00 i �

WEB

56. Three identical small Styrofoam balls are
suspended from a fixed point by three nonconducting
threads, each with a length of 50.0 cm and with negligi-

(m � 2.00 g)

55. Four identical point charges are
located on the corners of a rectangle, as shown in
Figure P23.55. The dimensions of the rectangle are

cm and cm. Calculate the magni-
tude and direction of the net electric force exerted on
the charge at the lower left corner by the other three
charges.

W � 15.0L � 60.0

(q � �10.0 	C)

51. A uniform electric field of magnitude 640 N/C exists
between two parallel plates that are 4.00 cm apart. A
proton is released from the positive plate at the same in-
stant that an electron is released from the negative
plate. (a) Determine the distance from the positive
plate at which the two pass each other. (Ignore the elec-
trical attraction between the proton and electron.) 
(b) Repeat part (a) for a sodium ion (Na�) and a chlo-
rine ion (Cl�).

52. A small, 2.00-g plastic ball is suspended by a 20.0-cm-
long string in a uniform electric field, as shown in Fig-
ure P23.52. If the ball is in equilibrium when the string

θvi

1.27 mm

Target

E = (–720 j) N/C

×

Proton
beam

Figure P23.49

Figure P23.50

Figure P23.52

Figure P23.53 Problems 53 and 54.

Figure P23.55
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ble mass. At equilibrium the three balls form an equilat-
eral triangle with sides of 30.0 cm. What is the common
charge q carried by each ball?

57. Two identical metallic blocks resting on a frictionless
horizontal surface are connected by a light metallic
spring having the spring constant N/m and an
unstretched length of 0.300 m, as shown in Figure
P23.57a. A total charge of Q is slowly placed on the sys-
tem, causing the spring to stretch to an equilibrium
length of 0.400 m, as shown in Figure P23.57b. Deter-
mine the value of Q , assuming that all the charge re-
sides on the blocks and that the blocks are like point
charges.

58. Two identical metallic blocks resting on a frictionless
horizontal surface are connected by a light metallic
spring having a spring constant k and an unstretched
length Li , as shown in Figure P23.57a. A total charge of
Q is slowly placed on the system, causing the spring to
stretch to an equilibrium length L , as shown in Figure
P23.57b. Determine the value of Q , assuming that all
the charge resides on the blocks and that the blocks are
like point charges.

k � 100

1 N/C. Will the charged particle remain nonrelativistic
for a shorter or a longer time in a much larger electric
field?

61. A line of positive charge is formed into a semicircle of
radius cm, as shown in Figure P23.61. The
charge per unit length along the semicircle is described
by the expression The total charge on the
semicircle is 12.0 	C. Calculate the total force on a
charge of 3.00 	C placed at the center of curvature.

� � �0 cos 
.

R � 60.0

62. Two small spheres, each of mass 2.00 g, are suspended
by light strings 10.0 cm in length (Fig. P23.62). A uni-
form electric field is applied in the x direction. The
spheres have charges equal to � 5.00 � 10�8 C and
� 5.00 � 10�8 C. Determine the electric field that en-
ables the spheres to be in equilibrium at an angle of

 � 10.0�.

59. Identical thin rods of length 2a carry equal charges,
�Q , uniformly distributed along their lengths. The
rods lie along the x axis with their centers separated by
a distance of (Fig. P23.59). Show that the magni-
tude of the force exerted by the left rod on the right
one is given by

60. A particle is said to be nonrelativistic as long as its speed
is less than one-tenth the speed of light, or less than
3.00 � 107 m/s. (a) How long will an electron remain
nonrelativistic if it starts from rest in a region of an
electric field of 1.00 N/C? (b) How long will a proton
remain nonrelativistic in the same electric field? 
(c) Electric fields are commonly much larger than 

F � � keQ2

4a2 � ln� b2

b2 � 4a2 �

b � 2a

Figure P23.57 Problems 57 and 58.

(a)

(b)

m mk

m mk

b

y

a–a b – a b + a
x

Figure P23.59

Figure P23.61

Figure P23.62
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63. Two small spheres of mass m are suspended from strings
of length that are connected at a common point. One
sphere has charge Q ; the other has charge 2Q . Assume
that the angles 
1 and 
2 that the strings make with the
vertical are small. (a) How are 
1 and 
2 related? 
(b) Show that the distance r between the spheres is

64. Three charges of equal magnitude q are fixed in posi-
tion at the vertices of an equilateral triangle (Fig.
P23.64). A fourth charge Q is free to move along the
positive x axis under the influence of the forces exerted
by the three fixed charges. Find a value for s for which
Q is in equilibrium. You will need to solve a transcen-
dental equation.

r 
 � 4keQ 2�

mg �
1/3

�

66. Review Problem. A 1.00-g cork ball with a charge of
2.00 	C is suspended vertically on a 0.500-m-long light
string in the presence of a uniform, downward-directed
electric field of magnitude N/C. If the
ball is displaced slightly from the vertical, it oscillates
like a simple pendulum. (a) Determine the period of
this oscillation. (b) Should gravity be included in the
calculation for part (a)? Explain.

67. Three charges of equal magnitude q reside at the cor-
ners of an equilateral triangle of side length a (Fig.
P23.67). (a) Find the magnitude and direction of the
electric field at point P, midway between the negative
charges, in terms of ke , q, and a. (b) Where must a � 4q
charge be placed so that any charge located at P experi-
ences no net electric force? In part (b), let P be the ori-
gin and let the distance between the �q charge and P
be 1.00 m.

E � 1.00 � 105

68. Two identical beads each have a mass m and charge q.
When placed in a hemispherical bowl of radius R with
frictionless, nonconducting walls, the beads move, and
at equilibrium they are a distance R apart (Fig. P23.68).
Determine the charge on each bead.

65. Review Problem. Four identical point charges, each
having charge �q, are fixed at the corners of a square
of side L. A fifth point charge �Q lies a distance z along
the line perpendicular to the plane of the square and
passing through the center of the square (Fig. P23.65).
(a) Show that the force exerted on �Q by the other
four charges is

Note that this force is directed toward the center of the
square whether z is positive (� Q above the square) or
negative (�Q below the square). (b) If z is small com-
pared with L, the above expression reduces to

Why does this imply that the mo-
tion of �Q is simple harmonic, and what would be the
period of this motion if the mass of �Q were m?

F � �(constant) zk.

F � �
4keqQ z

�z2 �
L2

2 �
3/2

 k

Figure P23.64

Figure P23.65

Figure P23.67
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This charge distribution, which is essentially that of two
electric dipoles, is called an electric quadrupole. Note that
E varies as r�4 for the quadrupole, compared with varia-
tions of r�3 for the dipole and r�2 for the monopole (a
single charge).

73. Review Problem. A negatively charged particle �q
is placed at the center of a uniformly charged ring,
where the ring has a total positive charge Q , as shown
in Example 23.8. The particle, confined to move along
the x axis, is displaced a small distance x along the axis
(where and released. Show that the particle os-
cillates with simple harmonic motion with a frequency

74. Review Problem. An electric dipole in a uniform elec-
tric field is displaced slightly from its equilibrium posi-
tion, as shown in Figure P23.74, where 
 is small and
the charges are separated by a distance 2a. The moment
of inertia of the dipole is I. If the dipole is released from
this position, show that its angular orientation exhibits
simple harmonic motion with a frequency

f �
1

2�
 ! 2qaE

I

f �
1

2�
 � keqQ

ma3 �
1/2

x V a)

70. Consider the charge distribution shown in Figure
P23.69. (a) Show that the magnitude of the electric
field at the center of any face of the cube has a value of
2.18ke q /s2. (b) What is the direction of the electric
field at the center of the top face of the cube?

71. A line of charge with a uniform density of 35.0 nC/m
lies along the line y � � 15.0 cm, between the points
with coordinates x � 0 and x � 40.0 cm. Find the elec-
tric field it creates at the origin.

72. Three point charges q, � 2q, and q are located along the
x axis, as shown in Figure P23.72. Show that the electric
field at P along the y axis is

E � �ke 
3qa2

y4  j

(y W a)

69. Eight point charges, each of magnitude q, are located
on the corners of a cube of side s, as shown in Figure
P23.69. (a) Determine the x, y, and z components of the
resultant force exerted on the charge located at point A
by the other charges. (b) What are the magnitude and
direction of this resultant force?

Figure P23.68

Figure P23.69 Problems 69 and 70.

Figure P23.72

Figure P23.74
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ANSWERS TO QUICK QUIZZES

23.3 (b). From Newton’s third law, the electric force exerted
by object B on object A is equal in magnitude to the
force exerted by object A on object B and in the oppo-
site direction—that is, 

23.4 Nothing, if we assume that the source charge producing
the field is not disturbed by our actions. Remember that
the electric field is created not by the � 3-	C charge or
by the � 3-	C charge but by the source charge (unseen
in this case).

23.5 A, B, and C . The field is greatest at point A because this
is where the field lines are closest together. The absence
of lines at point C indicates that the electric field there is
zero.

FAB � � FBA .

23.1 (b). The amount of charge present after rubbing is the
same as that before; it is just distributed differently.

23.2 (d). Object A might be negatively charged, but it also
might be electrically neutral with an induced charge
separation, as shown in the following figure:

+

+

+
+

+
+

+
+

+
+
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A
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+
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c h a p t e r

Gauss’s Law

P U Z Z L E R

Some railway companies are planning to
coat the windows of their commuter
trains with a very thin layer of metal.
(The coating is so thin you can see
through it.) They are doing this in re-
sponse to rider complaints about other
passengers’ talking loudly on cellular
telephones. How can a metallic coating
that is only a few hundred nanometers
thick overcome this problem? (Arthur

Tilley/FPG International)

C h a p t e r  O u t l i n e

24.1 Electric Flux

24.2 Gauss’s Law

24.3 Application of Gauss’s Law to
Charged Insulators

24.4 Conductors in Electrostatic
Equilibrium

24.5 (Optional) Experimental
Verification of Gauss’s Law and
Coulomb’s Law

24.6 (Optional) Formal Derivation of
Gauss’s Law

P U Z Z L E R

743
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n the preceding chapter we showed how to use Coulomb’s law to calculate the
electric field generated by a given charge distribution. In this chapter, we de-
scribe Gauss’s law and an alternative procedure for calculating electric fields.

The law is based on the fact that the fundamental electrostatic force between point
charges exhibits an inverse-square behavior. Although a consequence of
Coulomb’s law, Gauss’s law is more convenient for calculating the electric fields of
highly symmetric charge distributions and makes possible useful qualitative rea-
soning when we are dealing with complicated problems.

ELECTRIC FLUX
The concept of electric field lines is described qualitatively in Chapter 23. We now
use the concept of electric flux to treat electric field lines in a more quantitative
way.

Consider an electric field that is uniform in both magnitude and direction, as
shown in Figure 24.1. The field lines penetrate a rectangular surface of area A,
which is perpendicular to the field. Recall from Section 23.6 that the number of
lines per unit area (in other words, the line density) is proportional to the magni-
tude of the electric field. Therefore, the total number of lines penetrating the sur-
face is proportional to the product EA. This product of the magnitude of the elec-
tric field E and surface area A perpendicular to the field is called the electric flux
�E (uppercase Greek phi):

(24.1)

From the SI units of E and A, we see that �E has units of newton–meters squared
per coulomb Electric flux is proportional to the number of elec-
tric field lines penetrating some surface.

(N�m2/C).

�E � EA

24.1

Flux Through a SphereEXAMPLE 24.1
perpendicular to the surface of the sphere. The flux through
the sphere (whose surface area is thus

Exercise What would be the (a) electric field and (b) flux
through the sphere if it had a radius of 0.500 m?

Answer (a) N/C; (b) 1.13 � 105 N�m2/C.3.60 � 104

1.13 � 105 N�m2/C�

�E � EA � (8.99 � 103 N/C)(12.6 m2)

A � 4�r 2 � 12.6 m2)
What is the electric flux through a sphere that has a radius of
1.00 m and carries a charge of � 1.00 �C at its center?

Solution The magnitude of the electric field 1.00 m from
this charge is given by Equation 23.4,

The field points radially outward and is therefore everywhere

 � 8.99 � 103 N/C

E � ke 
q
r 2 � (8.99 � 109 N�m2/C2) 

1.00 � 10�6 C
(1.00 m)2

I

11.6

Area = A

E

Figure 24.1 Field lines repre-
senting a uniform electric field
penetrating a plane of area A per-
pendicular to the field. The electric
flux �E through this area is equal
to EA.

If the surface under consideration is not perpendicular to the field, the flux
through it must be less than that given by Equation 24.1. We can understand this
by considering Figure 24.2, in which the normal to the surface of area A is at an
angle 	 to the uniform electric field. Note that the number of lines that cross this
area A is equal to the number that cross the area A
, which is a projection of area A
aligned perpendicular to the field. From Figure 24.2 we see that the two areas are
related by cos 	. Because the flux through A equals the flux through A
, weA
 � A
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conclude that the flux through A is

(24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (in other words,
when the normal to the surface is parallel to the field, that is, in Figure
24.2); the flux is zero when the surface is parallel to the field (in other words,
when the normal to the surface is perpendicular to the field, that is, 

We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a surface. Therefore, our definition
of flux given by Equation 24.2 has meaning only over a small element of area.
Consider a general surface divided up into a large number of small elements, each
of area �A. The variation in the electric field over one element can be neglected if
the element is sufficiently small. It is convenient to define a vector �A i whose mag-
nitude represents the area of the ith element of the surface and whose direction is
defined to be perpendicular to the surface element, as shown in Figure 24.3. The elec-
tric flux ��E through this element is

where we have used the definition of the scalar product of two vectors
By summing the contributions of all elements, we obtain the

total flux through the surface.1 If we let the area of each element approach zero,
then the number of elements approaches infinity and the sum is replaced by an in-
tegral. Therefore, the general definition of electric flux is

(24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the sur-
face in question. In general, the value of �E depends both on the field pattern and
on the surface.

We are often interested in evaluating the flux through a closed surface, which is
defined as one that divides space into an inside and an outside region, so that one
cannot move from one region to the other without crossing the surface. The sur-
face of a sphere, for example, is a closed surface.

Consider the closed surface in Figure 24.4. The vectors �Ai point in different
directions for the various surface elements, but at each point they are normal to

dA�E � lim
�Ai :0

 � Ei � �Ai � �
surface

E �

(A � B � AB cos 	).

��E � Ei �Ai cos 	 � Ei � � Ai

	 � 90).

	 � 0

�E � EA
 � EA cos 	

QuickLab
Shine a desk lamp onto a playing
card and notice how the size of the
shadow on your desk depends on the
orientation of the card with respect
to the beam of light. Could a formula
like Equation 24.2 be used to de-
scribe how much light was being
blocked by the card?

Definition of electric flux

1 It is important to note that drawings with field lines have their inaccuracies because a small area ele-
ment (depending on its location) may happen to have too many or too few field lines penetrating it.
We stress that the basic definition of electric flux is The use of lines is only an aid for visualiz-
ing the concept.

� E � dA.

A

θ

θ

A′ = A cos θ
E

Normal

θ

Figure 24.2 Field lines representing a
uniform electric field penetrating an
area A that is at an angle 	 to the field.
Because the number of lines that go
through the area A
 is the same as the
number that go through A, the flux
through A
 is equal to the flux through
A and is given by �E � EA cos 	.

∆A i

E i
θ

Figure 24.3 A small element of
surface area �Ai . The electric field
makes an angle 	 with the vector
�Ai , defined as being normal to
the surface element, and the flux
through the element is equal to
E i �Ai cos 	.
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the surface and, by convention, always point outward. At the element labeled �,
the field lines are crossing the surface from the inside to the outside and 
hence, the flux i through this element is positive. For element �,
the field lines graze the surface (perpendicular to the vector �Ai); thus, 
and the flux is zero. For elements such as �, where the field lines are crossing the
surface from outside to inside, and the flux is negative because 
cos 	 is negative. The net flux through the surface is proportional to the net num-
ber of lines leaving the surface, where the net number means the number leaving the
surface minus the number entering the surface. If more lines are leaving than entering,
the net flux is positive. If more lines are entering than leaving, the net flux is nega-
tive. Using the symbol to represent an integral over a closed surface, we can write
the net flux �E through a closed surface as

(24.4)

where En represents the component of the electric field normal to the surface.
Evaluating the net flux through a closed surface can be very cumbersome. How-
ever, if the field is normal to the surface at each point and constant in magnitude,
the calculation is straightforward, as it was in Example 24.1. The next example also
illustrates this point.

�E � � E � dA � � En dA

�

180 � 	 � 90

	 � 90
��E � E � �A

	 � 90;

∆A i

∆A i �
�

�

E

�
�

�

∆A i

E
θ

Eθ

Figure 24.4 A closed surface
in an electric field. The area vec-
tors �Ai are, by convention, nor-
mal to the surface and point out-
ward. The flux through an area
element can be positive (ele-
ment �), zero (element �), or
negative (element �).

Flux Through a CubeEXAMPLE 24.2
faces (�, �, and the unnumbered ones) is zero because E is
perpendicular to dA on these faces.

The net flux through faces � and � is

�E � �
1
 E � dA � �

2
 E � dA

Consider a uniform electric field E oriented in the x direc-
tion. Find the net electric flux through the surface of a cube
of edges �, oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all
faces of the cube. First, note that the flux through four of the

Karl Friedrich Gauss German
mathematician and astronomer
(1777 – 1855)
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GAUSS’S LAW
In this section we describe a general relationship between the net electric flux
through a closed surface (often called a gaussian surface) and the charge enclosed
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.

Let us again consider a positive point charge q located at the center of a
sphere of radius r, as shown in Figure 24.6. From Equation 23.4 we know that the
magnitude of the electric field everywhere on the surface of the sphere is

As noted in Example 24.1, the field lines are directed radially outward
and hence perpendicular to the surface at every point on the surface. That is, at
each surface point, E is parallel to the vector �A i representing a local element of
area �Ai surrounding the surface point. Therefore,

and from Equation 24.4 we find that the net flux through the gaussian surface is

where we have moved E outside of the integral because, by symmetry, E is constant
over the surface and given by Furthermore, because the surface is
spherical, Hence, the net flux through the gaussian surface is

Recalling from Section 23.3 that we can write this equation in the
form

(24.5)

We can verify that this expression for the net flux gives the same result as Example
24.1: / C2/N�m2) � 1.13 � 105 N�m2/C.(8.85 � 10�12�E � (1.00 � 10�6 C)

�E �
q
�0

ke � 1/(4��0),

�E �
keq
r 2  (4�r 2) � 4�keq

� dA � A � 4�r 2.
E � keq /r 2.

�E � � E � dA � � E dA � E � dA

E � �Ai � E �Ai

E � keq /r 2.

24.2

y

z �

�

�
x

E

dA2

dA1

dA3

�

�

�

� dA4

For �, E is constant and directed inward but dA1 is directed
outward thus, the flux through this face is

because the area of each face is 
For �, E is constant and outward and in the same direc-

tion as dA2(	 � 0°); hence, the flux through this face is

Therefore, the net flux over all six faces is

0�E � �E�2 � E�2 � 0 � 0 � 0 � 0 �

�
2
 E � dA � �

2
 E(cos 0)dA � E �

2
 dA � �EA � E �2

A � �2.

�
1

E � dA � �
1
 E(cos 180)dA � �E �

1
 dA � �EA � �E�2

(	 � 180);

Figure 24.5 A closed surface in the shape of a cube in a uniform
electric field oriented parallel to the x axis. The net flux through the
closed surface is zero. Side � is the bottom of the cube, and side �
is opposite side �.

11.6

Gaussian
surface

r

q

dA

E
+ i

Figure 24.6 A spherical gaussian
surface of radius r surrounding a
point charge q. When the charge is
at the center of the sphere, the
electric field is everywhere normal
to the surface and constant in mag-
nitude.
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Note from Equation 24.5 that the net flux through the spherical surface is
proportional to the charge inside. The flux is independent of the radius r because
the area of the spherical surface is proportional to r 2, whereas the electric field is
proportional to 1/r 2. Thus, in the product of area and electric field, the depen-
dence on r cancels.

Now consider several closed surfaces surrounding a charge q, as shown in Fig-
ure 24.7. Surface S1 is spherical, but surfaces S2 and S3 are not. From Equation
24.5, the flux that passes through S1 has the value q/�0 . As we discussed in the pre-
vious section, flux is proportional to the number of electric field lines passing
through a surface. The construction shown in Figure 24.7 shows that the number
of lines through S1 is equal to the number of lines through the nonspherical sur-
faces S2 and S3 . Therefore, we conclude that the net flux through any closed sur-
face is independent of the shape of that surface. The net flux through any
closed surface surrounding a point charge q is given by q/�0 .

Now consider a point charge located outside a closed surface of arbitrary
shape, as shown in Figure 24.8. As you can see from this construction, any electric
field line that enters the surface leaves the surface at another point. The number
of electric field lines entering the surface equals the number leaving the surface.
Therefore, we conclude that the net electric flux through a closed surface that
surrounds no charge is zero. If we apply this result to Example 24.2, we can eas-
ily see that the net flux through the cube is zero because there is no charge inside
the cube.

Suppose that the charge in Example 24.1 is just outside the sphere, 1.01 m from its center.
What is the total flux through the sphere?

Let us extend these arguments to two generalized cases: (1) that of many
point charges and (2) that of a continuous distribution of charge. We once again
use the superposition principle, which states that the electric field due to many
charges is the vector sum of the electric fields produced by the individual
charges. Therefore, we can express the flux through any closed surface as

where E is the total electric field at any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges.

� E � dA � � (E1 � E2 � ���) � dA

Quick Quiz 24.1

The net electric flux through a
closed surface is zero if there is no
charge inside

S3

S2

S1

q

q

Figure 24.7 Closed surfaces of various shapes surround-
ing a charge q. The net electric flux is the same through all
surfaces.

Figure 24.8 A point charge lo-
cated outside a closed surface. The
number of lines entering the sur-
face equals the number leaving the
surface.
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Consider the system of charges shown in Figure 24.9. The surface S surrounds
only one charge, q1 ; hence, the net flux through S is q1/�0 . The flux through S
due to charges q2 and q3 outside it is zero because each electric field line that en-
ters S at one point leaves it at another. The surface S
 surrounds charges q2 and q3 ;
hence, the net flux through it is Finally, the net flux through surface
S � is zero because there is no charge inside this surface. That is, all the electric
field lines that enter S � at one point leave at another.

Gauss’s law, which is a generalization of what we have just described, states
that the net flux through any closed surface is

(24.6)

where q in represents the net charge inside the surface and E represents the elec-
tric field at any point on the surface.

A formal proof of Gauss’s law is presented in Section 24.6. When using Equa-
tion 24.6, you should note that although the charge q in is the net charge inside the
gaussian surface, E represents the total electric field, which includes contributions
from charges both inside and outside the surface.

In principle, Gauss’s law can be solved for E to determine the electric field
due to a system of charges or a continuous distribution of charge. In practice, how-
ever, this type of solution is applicable only in a limited number of highly symmet-
ric situations. As we shall see in the next section, Gauss’s law can be used to evalu-
ate the electric field for charge distributions that have spherical, cylindrical, or
planar symmetry. If one chooses the gaussian surface surrounding the charge dis-
tribution carefully, the integral in Equation 24.6 can be simplified. You should also
note that a gaussian surface is a mathematical construction and need not coincide
with any real physical surface.

For a gaussian surface through which the net flux is zero, the following four statements
could be true. Which of the statements must be true? (a) There are no charges inside the sur-
face. (b) The net charge inside the surface is zero. (c) The electric field is zero everywhere
on the surface. (d) The number of electric field lines entering the surface equals the num-
ber leaving the surface.

Quick Quiz 24.2

�E � � E � dA �
q in

�0

(q2 � q3)/�0.

S

q1

q2

q3 S ′

S ′′

Figure 24.9 The net electric flux
through any closed surface de-
pends only on the charge inside
that surface. The net flux through
surface S is q1/�0 , the net flux
through surface S 
 is 
and the net flux through surface
S � is zero.

(q2 � q3 )/�0 ,

Gauss’s law

Gauss’s law is useful for evaluating
E when the charge distribution has
high symmetry

CONCEPTUAL EXAMPLE 24.3
lines from the charge pass through the sphere, regardless of
its radius.

(c) The flux does not change when the shape of the gauss-
ian surface changes because all electric field lines from the
charge pass through the surface, regardless of its shape.

(d) The flux does not change when the charge is moved
to another location inside that surface because Gauss’s law
refers to the total charge enclosed, regardless of where the
charge is located inside the surface.

A spherical gaussian surface surrounds a point charge q. De-
scribe what happens to the total flux through the surface if
(a) the charge is tripled, (b) the radius of the sphere is dou-
bled, (c) the surface is changed to a cube, and (d) the charge
is moved to another location inside the surface.

Solution (a) The flux through the surface is tripled 
because flux is proportional to the amount of charge inside
the surface.

(b) The flux does not change because all electric field
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APPLICATION OF GAUSS’S LAW TO
CHARGED INSULATORS

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry. The following
examples demonstrate ways of choosing the gaussian surface over which the sur-
face integral given by Equation 24.6 can be simplified and the electric field deter-
mined. In choosing the surface, we should always take advantage of the symmetry
of the charge distribution so that we can remove E from the integral and solve for
it. The goal in this type of calculation is to determine a surface that satisfies one or
more of the following conditions:

1. The value of the electric field can be argued by symmetry to be constant over
the surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic prod-
uct E dA because E and dA are parallel.

3. The dot product in Equation 24.6 is zero because E and dA are perpendicular.
4. The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of
this chapter.

24.3

The Electric Field Due to a Point ChargeEXAMPLE 24.4
Starting with Gauss’s law, calculate the electric field due to an
isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show how
to solve for the electric field with Gauss’s law. We choose a
spherical gaussian surface of radius r centered on the point
charge, as shown in Figure 24.10. The electric field due to a
positive point charge is directed radially outward by symmetry
and is therefore normal to the surface at every point. Thus, as
in condition (2), E is parallel to dA at each point. Therefore,

and Gauss’s law gives

By symmetry, E is constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

� E dA � E � dA � E(4�r 2) �
q
�0

�E � � E � dA � � E dA �
q
�0

E � dA � E dA

Gaussian
surface

r

q

dA

E
+

Figure 24.10 The point charge q is at the center of the spherical
gaussian surface, and E is parallel to d A at every point on the
surface.

where we have used the fact that the surface area of a sphere
is 4�r 2. Now, we solve for the electric field:

This is the familiar electric field due to a point charge that we
developed from Coulomb’s law in Chapter 23.

ke 
q
r 2E �

q
4��0r 2 �

A Spherically Symmetric Charge DistributionEXAMPLE 24.5
Solution Because the charge distribution is spherically
symmetric, we again select a spherical gaussian surface of ra-
dius r, concentric with the sphere, as shown in Figure 24.11a.
For this choice, conditions (1) and (2) are satisfied, as they

An insulating solid sphere of radius a has a uniform volume
charge density � and carries a total positive charge Q (Fig.
24.11). (a) Calculate the magnitude of the electric field at a
point outside the sphere.

11.6
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(a)

Gaussian
sphere

(b)

Gaussian
spherer

a

r

a

Figure 24.11 A uniformly charged insulating sphere of radius a
and total charge Q. (a) The magnitude of the electric field at a point
exterior to the sphere is (b) The magnitude of the electric
field inside the insulating sphere is due only to the charge within the
gaussian sphere defined by the dashed circle and is ke Qr /a3.

ke Q /r 2.

E

a

E =
keQ
r2

r

a

Figure 24.12 A plot of E versus r for a uniformly charged insulat-
ing sphere. The electric field inside the sphere varies linearly
with r. The field outside the sphere is the same as that of a
point charge Q located at r � 0.

(r � a)
(r � a)

were for the point charge in Example 24.4. Following the line
of reasoning given in Example 24.4, we find that

(for 

Note that this result is identical to the one we obtained for a
point charge. Therefore, we conclude that, for a uniformly
charged sphere, the field in the region external to the sphere
is equivalent to that of a point charge located at the center of
the sphere.

(b) Find the magnitude of the electric field at a point in-
side the sphere.

Solution In this case we select a spherical gaussian surface
having radius r � a, concentric with the insulated sphere
(Fig. 24.11b). Let us denote the volume of this smaller
sphere by V 
. To apply Gauss’s law in this situation, it is im-
portant to recognize that the charge q in within the gaussian
surface of volume V 
 is less than Q . To calculate q in , we use
the fact that 

By symmetry, the magnitude of the electric field is constant
everywhere on the spherical gaussian surface and is normal

q in � �V 
 � �(4
3�r 3)

q in � �V 
:

r � a)ke 
Q
r 2E �

to the surface at each point—both conditions (1) and (2)
are satisfied. Therefore, Gauss’s law in the region gives

Solving for E gives

Because by definition and since 
this expression for E can be written as

(for r � a)

Note that this result for E differs from the one we ob-
tained in part (a). It shows that E : 0 as r : 0. Therefore,
the result eliminates the problem that would exist at r � 0 if
E varied as 1/r 2 inside the sphere as it does outside the
sphere. That is, if for r � a, the field would be infi-
nite at r � 0, which is physically impossible. Note also that
the expressions for parts (a) and (b) match when r � a.

A plot of E versus r is shown in Figure 24.12. 

E � 1/r 2

keQ
a3  rE �

Qr
4��0a3 �

ke � 1/(4��0),� � Q /4
3�a3

E �
q in

4��0r 2 �
� 4

3�r 3

4��0r 2 �
�

3�0
 r

� E dA � E � dA � E(4�r 2) �
q in

�0

r � a

The Electric Field Due to a Thin Spherical ShellEXAMPLE 24.6
the shell is equivalent to that due to a point charge Q located
at the center:

(for r � a)

(b) The electric field inside the spherical shell is zero.
This follows from Gauss’s law applied to a spherical surface of
radius r � a concentric with the shell (Fig. 24.13c). Because

ke 
Q
r 2E �

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the electric
field at points (a) outside and (b) inside the shell.

Solution (a) The calculation for the field outside the shell
is identical to that for the solid sphere shown in Example
24.5a. If we construct a spherical gaussian surface of radius 
r � a concentric with the shell (Fig. 24.13b), the charge in-
side this surface is Q . Therefore, the field at a point outside
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A Cylindrically Symmetric Charge DistributionEXAMPLE 24.7
Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit length
� (Fig. 24.14a).

Solution The symmetry of the charge distribution re-
quires that E be perpendicular to the line charge and di-
rected outward, as shown in Figure 24.14a and b. To reflect
the symmetry of the charge distribution, we select a cylindri-
cal gaussian surface of radius r and length � that is coaxial
with the line charge. For the curved part of this surface, E is
constant in magnitude and perpendicular to the surface at
each point—satisfaction of conditions (1) and (2). Further-
more, the flux through the ends of the gaussian cylinder is
zero because E is parallel to these surfaces—the first applica-
tion we have seen of condition (3).

We take the surface integral in Gauss’s law over the entire
gaussian surface. Because of the zero value of for the
ends of the cylinder, however, we can restrict our attention to
only the curved surface of the cylinder.

The total charge inside our gaussian surface is ��. Apply-
ing Gauss’s law and conditions (1) and (2), we find that for
the curved surface

�E � � E � dA � E � dA � EA �
q in

�0
�

��

�0

E � dA

11.7
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r

a

Gaussian
surface

(a) (c)(b)

Ein = 0

r

Figure 24.13 (a) The electric field inside a uniformly charged spherical shell is zero. The field
outside is the same as that due to a point charge Q located at the center of the shell. (b) Gaussian
surface for r � a. (c) Gaussian surface for r � a.

Gaussian
surface

+
+
+

+
+
+

E

dA�

r

(a)

E

(b)

Figure 24.14 (a) An infinite line of charge surrounded by a cylin-
drical gaussian surface concentric with the line. (b) An end view
shows that the electric field at the cylindrical surface is constant in
magnitude and perpendicular to the surface.

of the spherical symmetry of the charge distribution and be-
cause the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s law
shows that E � 0 in the region r � a.

We obtain the same results using Equation 23.6 and inte-
grating over the charge distribution. This calculation is
rather complicated. Gauss’s law allows us to determine these
results in a much simpler way.
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The area of the curved surface is therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically sym-
metric charge distribution varies as 1/r, whereas the field ex-
ternal to a spherically symmetric charge distribution varies as
1/r2. Equation 24.7 was also derived in Chapter 23 (see Prob-
lem 35[b]), by integration of the field of a point charge.

If the line charge in this example were of finite length,
the result for E would not be that given by Equation 24.7. A
finite line charge does not possess sufficient symmetry for us
to make use of Gauss’s law. This is because the magnitude of

2ke 
�

r
E �

�

2��0r
�

E(2�r�) �
��

�0

A � 2�r�;

A Nonconducting Plane of ChargeEXAMPLE 24.8
Because the distance from each flat end of the cylinder to

the plane does not appear in Equation 24.8, we conclude that
E � �/2�0 at any distance from the plane. That is, the field is
uniform everywhere.

An important charge configuration related to this exam-
ple consists of two parallel planes, one positively charged and
the other negatively charged, and each with a surface charge
density � (see Problem 58). In this situation, the electric
fields due to the two planes add in the region between the
planes, resulting in a field of magnitude �/�0 , and cancel
elsewhere to give a field of zero.

Find the electric field due to a nonconducting, infinite plane
of positive charge with uniform surface charge density �.

Solution By symmetry, E must be perpendicular to the
plane and must have the same magnitude at all points
equidistant from the plane. The fact that the direction of E is
away from positive charges indicates that the direction of E
on one side of the plane must be opposite its direction on the
other side, as shown in Figure 24.15. A gaussian surface that
reflects the symmetry is a small cylinder whose axis is perpen-
dicular to the plane and whose ends each have an area A and
are equidistant from the plane. Because E is parallel to the
curved surface—and, therefore, perpendicular to dA every-
where on the surface—condition (3) is satisfied and there is
no contribution to the surface integral from this surface. For
the flat ends of the cylinder, conditions (1) and (2) are satis-
fied. The flux through each end of the cylinder is EA; 
hence, the total flux through the entire gaussian surface is
just that through the ends, 

Noting that the total charge inside the surface is q in � �A,
we use Gauss’s law and find that

(24.8)
�

2�0
E �

�E � 2EA �
q in

�0
�

�A
�0

�E � 2EA.

E
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Figure 24.15 A cylindrical gaussian surface penetrating an infi-
nite plane of charge. The flux is EA through each end of the gauss-
ian surface and zero through its curved surface.

the electric field is no longer constant over the surface of
the gaussian cylinder—the field near the ends of the line
would be different from that far from the ends. Thus, condi-
tion (1) would not be satisfied in this situation. Further-
more, E is not perpendicular to the cylindrical surface at all
points—the field vectors near the ends would have a compo-
nent parallel to the line. Thus, condition (2) would not be
satisfied. When there is insufficient symmetry in the charge
distribution, as in this situation, it is necessary to use Equa-
tion 23.6 to calculate E.

For points close to a finite line charge and far from the
ends, Equation 24.7 gives a good approximation of the value
of the field.

It is left for you to show (see Problem 29) that the electric
field inside a uniformly charged rod of finite radius and infi-
nite length is proportional to r.

CONCEPTUAL EXAMPLE 24.9
Explain why Gauss’s law cannot be used to calculate the electric field near an electric di-
pole, a charged disk, or a triangle with a point charge at each corner.
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CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within
the material. When there is no net motion of charge within a conductor, the con-
ductor is in electrostatic equilibrium. As we shall see, a conductor in electrosta-
tic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. If an isolated conductor carries a charge, the charge resides on its surface.
3. The electric field just outside a charged conductor is perpendicular to the sur-

face of the conductor and has a magnitude �/�0 , where � is the surface charge
density at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at lo-
cations where the radius of curvature of the surface is smallest.

We verify the first three properties in the discussion that follows. The fourth
property is presented here without further discussion so that we have a complete
list of properties for conductors in electrostatic equilibrium.

We can understand the first property by considering a conducting slab placed
in an external field E (Fig. 24.16). We can argue that the electric field inside the
conductor must be zero under the assumption that we have electrostatic equilib-
rium. If the field were not zero, free charges in the conductor would accelerate
under the action of the field. This motion of electrons, however, would mean that
the conductor is not in electrostatic equilibrium. Thus, the existence of electro-
static equilibrium is consistent only with a zero field in the conductor.

Let us investigate how this zero field is accomplished. Before the external field
is applied, free electrons are uniformly distributed throughout the conductor.
When the external field is applied, the free electrons accelerate to the left in Fig-
ure 24.16, causing a plane of negative charge to be present on the left surface. The
movement of electrons to the left results in a plane of positive charge on the right
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge
density increases until the magnitude of the internal field equals that of the exter-
nal field, and the net result is a net field of zero inside the conductor. The time it
takes a good conductor to reach equilibrium is of the order of 10�16 s, which for
most purposes can be considered instantaneous.

We can use Gauss’s law to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian
surface is drawn inside the conductor and can be as close to the conductor’s sur-
face as we wish. As we have just shown, the electric field everywhere inside the con-
ductor is zero when it is in electrostatic equilibrium. Therefore, the electric field
must be zero at every point on the gaussian surface, in accordance with condition
(4) in Section 24.3. Thus, the net flux through this gaussian surface is zero. From
this result and Gauss’s law, we conclude that the net charge inside the gaussian sur-

24.4

Properties of a conductor in
electrostatic equilibrium

Solution The charge distributions of all these configurations do not have sufficient
symmetry to make the use of Gauss’s law practical. We cannot find a closed surface sur-
rounding any of these distributions that satisfies one or more of conditions (1) through
(4) listed at the beginning of this section.

+
+
+
+
+
+
+
+

–
–
–
–
–
–
–
–

E E

Figure 24.17 A conductor of ar-
bitrary shape. The broken line rep-
resents a gaussian surface just in-
side the conductor.

Figure 24.16 A conducting slab
in an external electric field E. The
charges induced on the two sur-
faces of the slab produce an elec-
tric field that opposes the external
field, giving a resultant field of zero
inside the slab.

Gaussian
surface
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face is zero. Because there can be no net charge inside the gaussian surface (which
is arbitrarily close to the conductor’s surface), any net charge on the conductor
must reside on its surface. Gauss’s law does not indicate how this excess charge
is distributed on the conductor’s surface.

We can also use Gauss’s law to verify the third property. We draw a gaussian
surface in the shape of a small cylinder whose end faces are parallel to the surface
of the conductor (Fig. 24.18). Part of the cylinder is just outside the conductor,
and part is inside. The field is normal to the conductor’s surface from the condi-
tion of electrostatic equilibrium. (If E had a component parallel to the conduc-
tor’s surface, the free charges would move along the surface; in such a case, the
conductor would not be in equilibrium.) Thus, we satisfy condition (3) in Section
24.3 for the curved part of the cylindrical gaussian surface—there is no flux
through this part of the gaussian surface because E is parallel to the surface.
There is no flux through the flat face of the cylinder inside the conductor because
here E � 0—satisfaction of condition (4). Hence, the net flux through the gauss-
ian surface is that through only the flat face outside the conductor, where the field
is perpendicular to the gaussian surface. Using conditions (1) and (2) for this
face, the flux is EA, where E is the electric field just outside the conductor and A is
the area of the cylinder’s face. Applying Gauss’s law to this surface, we obtain

where we have used the fact that q in � �A. Solving for E gives

(24.9)E �
�

�0

�E � � E dA � EA �
q in

�0
�

�A
�0

Electric field just outside a
charged conductor

A
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Figure 24.18 A gaussian surface
in the shape of a small cylinder is
used to calculate the electric field
just outside a charged conductor.
The flux through the gaussian sur-
face is EnA . Remember that E is
zero inside the conductor.

Electric field pattern surrounding a charged conducting
plate placed near an oppositely charged conducting cylin-
der. Small pieces of thread suspended in oil align with the
electric field lines. Note that (1) the field lines are perpen-
dicular to both conductors and (2) there are no lines inside
the cylinder (E � 0).

A Sphere Inside a Spherical ShellEXAMPLE 24.10
Solution First note that the charge distributions on both
the sphere and the shell are characterized by spherical sym-
metry around their common center. To determine the elec-
tric field at various distances r from this center, we construct a
spherical gaussian surface for each of the four regions of in-
terest. Such a surface for region � is shown in Figure 24.19.

To find E inside the solid sphere (region �), consider a

A solid conducting sphere of radius a carries a net positive
charge 2Q . A conducting spherical shell of inner radius b
and outer radius c is concentric with the solid sphere and car-
ries a net charge �Q . Using Gauss’s law, find the electric
field in the regions labeled �, �, �, and � in Figure 24.19
and the charge distribution on the shell when the entire sys-
tem is in electrostatic equilibrium.
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How would the electric flux through a gaussian surface surrounding the shell in Example
24.10 change if the solid sphere were off-center but still inside the shell?

Optional Section

EXPERIMENTAL VERIFICATION OF
GAUSS’S LAW AND COULOMB’S LAW

When a net charge is placed on a conductor, the charge distributes itself on the
surface in such a way that the electric field inside the conductor is zero. Gauss’s
law shows that there can be no net charge inside the conductor in this situation. In
this section, we investigate an experimental verification of the absence of this
charge.

We have seen that Gauss’s law is equivalent to Equation 23.6, the expression
for the electric field of a distribution of charge. Because this equation arises
from Coulomb’s law, we can claim theoretically that Gauss’s law and Coulomb’s
law are equivalent. Hence, it is possible to test the validity of both laws by at-
tempting to detect a net charge inside a conductor or, equivalently, a nonzero
electric field inside the conductor. If a nonzero field is detected within the con-
ductor, Gauss’s law and Coulomb’s law are invalid. Many experiments, including

24.5

Quick Quiz 24.3

–Q

r
a

b

c

2Q

�

��

�

Figure 24.19 A solid conducting sphere of radius a and carrying a
charge 2Q surrounded by a conducting spherical shell carrying a
charge �Q.

gaussian surface of radius r � a. Because there can be no
charge inside a conductor in electrostatic equilibrium, we see
that q in � 0; thus, on the basis of Gauss’s law and symmetry,

for r � a.
In region �—between the surface of the solid sphere and

the inner surface of the shell—we construct a spherical
gaussian surface of radius r where a � r � b and note that the
charge inside this surface is � 2Q (the charge on the solid
sphere). Because of the spherical symmetry, the electric field

E1 � 0

lines must be directed radially outward and be constant in
magnitude on the gaussian surface. Following Example 24.4
and using Gauss’s law, we find that

(for a � r � b)

In region �, where r � c, the spherical gaussian surface
we construct surrounds a total charge of 

Therefore, application of Gauss’s law to
this surface gives

(for r � c)

In region �, the electric field must be zero because the
spherical shell is also a conductor in equilibrium. If we con-
struct a gaussian surface of radius r where b � r � c, we see
that q in must be zero because From this argument, we
conclude that the charge on the inner surface of the spheri-
cal shell must be � 2Q to cancel the charge � 2Q on the solid
sphere. Because the net charge on the shell is � Q , we con-
clude that its outer surface must carry a charge � Q .

E3 � 0.

keQ
r 2E4 �

2Q � (�Q ) � Q.
q in �

2keQ
r 2 E2 �

2Q
4��0r 2 �

E2A � E2(4�r 2) �
q in

�0
�

2Q
�0
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early work by Faraday, Cavendish, and Maxwell, have been performed to detect
the field inside a conductor. In all reported cases, no electric field could be de-
tected inside a conductor.

Here is one of the experiments that can be performed.2 A positively charged
metal ball at the end of a silk thread is lowered through a small opening into an
uncharged hollow conductor that is insulated from ground (Fig. 24.20a). The pos-
itively charged ball induces a negative charge on the inner wall of the hollow con-
ductor, leaving an equal positive charge on the outer wall (Fig. 24.20b). The pres-
ence of positive charge on the outer wall is indicated by the deflection of the
needle of an electrometer (a device used to measure charge and that measures
charge only on the outer surface of the conductor). The ball is then lowered and
allowed to touch the inner surface of the hollow conductor (Fig. 24.20c). Charge
is transferred between the ball and the inner surface so that neither is charged af-
ter contact is made. The needle deflection remains unchanged while this happens,
indicating that the charge on the outer surface is unaffected. When the ball is re-
moved, the electrometer reading remains the same (Fig. 24.20d). Furthermore,
the ball is found to be uncharged; this verifies that charge was transferred between
the ball and the inner surface of the hollow conductor. The overall effect is 
that the charge that was originally on the ball now appears on the hollow conduc-
tor. The fact that the deflection of the needle on the electrometer measuring the
charge on the outer surface remained unchanged regardless of what was happen-
ing inside the hollow conductor indicates that the net charge on the system always
resided on the outer surface of the conductor.

If we now apply another positive charge to the metal ball and place it near the
outside of the conductor, it is repelled by the conductor. This demonstrates that

outside the conductor, a finding consistent with the fact that the conductor
carries a net charge. If the charged metal ball is now lowered into the interior of
the charged hollow conductor, it exhibits no evidence of an electric force. This
shows that E � 0 inside the hollow conductor.

This experiment verifies the predictions of Gauss’s law and therefore verifies
Coulomb’s law. The equivalence of Gauss’s law and Coulomb’s law is due to the
inverse-square behavior of the electric force. Thus, we can interpret this experi-
ment as verifying the exponent of 2 in the 1/r 2 behavior of the electric force. Ex-
periments by Williams, Faller, and Hill in 1971 showed that the exponent of r in
Coulomb’s law is (2 � �), where 

In the experiment we have described, the charged ball hanging in the hollow
conductor would show no deflection even in the case in which an external electric
field is applied to the entire system. The field inside the conductor is still zero.
This ability of conductors to “block” external electric fields is utilized in many
places, from electromagnetic shielding for computer components to thin metal
coatings on the glass in airport control towers to keep radar originating outside
the tower from disrupting the electronics inside. Cellular telephone users riding
trains like the one pictured at the beginning of the chapter have to speak loudly to
be heard above the noise of the train. In response to complaints from other pas-
sengers, the train companies are considering coating the windows with a thin
metallic conductor. This coating, combined with the metal frame of the train car,
blocks cellular telephone transmissions into and out of the train.

� � (2.7 � 3.1) � 10�16!

E � 0

2 The experiment is often referred to as Faraday’s ice-pail experiment because Faraday, the first to perform
it, used an ice pail for the hollow conductor.
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Figure 24.20 An experiment
showing that any charge trans-
ferred to a conductor resides on its
surface in electrostatic equilibrium.
The hollow conductor is insulated
from ground, and the small metal
ball is supported by an insulating
thread.

QuickLab
Wrap a radio or cordless telephone in
aluminum foil and see if it still works.
Does it matter if the foil touches the
antenna?
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Optional Section

FORMAL DERIVATION OF GAUSS’S LAW
One way of deriving Gauss’s law involves solid angles. Consider a spherical surface
of radius r containing an area element �A. The solid angle �� (uppercase Greek
omega) subtended at the center of the sphere by this element is defined to be

From this equation, we see that has no dimensions because �A and r2 both have
dimensions L2. The dimensionless unit of a solid angle is the steradian. (You may
want to compare this equation to Equation 10.1b, the definition of the radian.) Be-
cause the surface area of a sphere is 4�r2, the total solid angle subtended by the
sphere is

Now consider a point charge q surrounded by a closed surface of arbitrary
shape (Fig. 24.21). The total electric flux through this surface can be obtained by
evaluating for each small area element �A and summing over all elements.
The flux through each element is

where r is the distance from the charge to the area element, 	 is the angle between
the electric field E and �A for the element, and for a point charge. In
Figure 24.22, we see that the projection of the area element perpendicular to the
radius vector is �A cos 	. Thus, the quantity �A cos 	/r2 is equal to the solid angle
�� that the surface element �A subtends at the charge q. We also see that �� is
equal to the solid angle subtended by the area element of a spherical surface of ra-
dius r. Because the total solid angle at a point is 4� steradians, the total flux

E � keq /r 2

��E � E � �A � E �A cos 	 � keq 
�A cos 	

r 2

E � �A

� �
4�r 2

r 2 � 4� steradians

��

�� �
�A
r 2

24.6

θ

∆A

∆Ω
q

E

∆Ω
q

r

∆A

∆A

θ
E

∆A cos θ

θ

Figure 24.21 A closed surface of
arbitrary shape surrounds a point
charge q. The net electric flux
through the surface is independent
of the shape of the surface.

Figure 24.22 The area element �A subtends a solid angle at the 
charge q.

�� � (�A cos 	)/r 2
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through the closed surface is

Thus we have derived Gauss’s law, Equation 24.6. Note that this result is indepen-
dent of the shape of the closed surface and independent of the position of the
charge within the surface.

SUMMARY

Electric flux is proportional to the number of electric field lines that penetrate a
surface. If the electric field is uniform and makes an angle 	 with the normal to a
surface of area A, the electric flux through the surface is

(24.2)

In general, the electric flux through a surface is

(24.3)

You need to be able to apply Equations 24.2 and 24.3 in a variety of situations, par-
ticularly those in which symmetry simplifies the calculation.

Gauss’s law says that the net electric flux �E through any closed gaussian sur-
face is equal to the net charge inside the surface divided by �0 :

(24.6)

Using Gauss’s law, you can calculate the electric field due to various symmetric
charge distributions. Table 24.1 lists some typical results.

�E � � E � dA �
q in

�0

�E � �
surface

E � dA

�E � EA cos 	

�E � keq � 
dA cos 	

r 2 � keq �d� � 4�keq �
q
�0

TABLE 24.1 Typical Electric Field Calculations Using Gauss’s Law

Charge Distribution Electric Field Location

Insulating sphere of radius
R, uniform charge density,
and total charge Q

Thin spherical shell of radius
R and total charge Q

Line charge of infinite length Outside the
and charge per unit length � line

Nonconducting, infinite Everywhere
charged plane having outside
surface charge density � the plane

Conductor having surface Just outside
charge density � the conductor

Inside the
conductor

ke 
Q
R3  r

ke 
Q
r 2

r � R

r � R

0

ke 
Q
r 2

r � R

r � R�

0

�

�0

�

2�0

2ke 
�

r

�

�
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A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. Any net charge on the conductor resides entirely on its surface.
3. The electric field just outside the conductor is perpendicular to its surface and

has a magnitude �/�0 , where � is the surface charge density at that point.
4. On an irregularly shaped conductor, the surface charge density is greatest

where the radius of curvature of the surface is the smallest.

Problem-Solving Hints
Gauss’s law, as we have seen, is very powerful in solving problems involving
highly symmetric charge distributions. In this chapter, you encountered three
kinds of symmetry: planar, cylindrical, and spherical. It is important to review
Examples 24.4 through 24.10 and to adhere to the following procedure when
using Gauss’s law:

• Select a gaussian surface that has a symmetry to match that of the charge
distribution and satisfies one or more of the conditions listed in Section
24.3. For point charges or spherically symmetric charge distributions, the
gaussian surface should be a sphere centered on the charge as in Examples
24.4, 24.5, 24.6, and 24.10. For uniform line charges or uniformly charged
cylinders, your gaussian surface should be a cylindrical surface that is coax-
ial with the line charge or cylinder as in Example 24.7. For planes of charge,
a useful choice is a cylindrical gaussian surface that straddles the plane, as
shown in Example 24.8. These choices enable you to simplify the surface in-
tegral that appears in Gauss’s law and represents the total electric flux
through that surface.

• Evaluate the q in/�0 term in Gauss’s law, which amounts to calculating the to-
tal electric charge q in inside the gaussian surface. If the charge density is
uniform (that is, if �, �, or � is constant), simply multiply that charge density
by the length, area, or volume enclosed by the gaussian surface. If the
charge distribution is nonuniform, integrate the charge density over the re-
gion enclosed by the gaussian surface. For example, if the charge is distrib-
uted along a line, integrate the expression where dq is the charge
on an infinitesimal length element dx. For a plane of charge, integrate

where dA is an infinitesimal element of area. For a volume of
charge, integrate where dV is an infinitesimal element of volume.

• Once the terms in Gauss’s law have been evaluated, solve for the electric
field on the gaussian surface if the charge distribution is given in the prob-
lem. Conversely, if the electric field is known, calculate the charge distribu-
tion that produces the field.

dq � � dV,
dq � � dA,

dq � � dx,

QUESTIONS

3. If more electric field lines are leaving a gaussian surface
than entering, what can you conclude about the net
charge enclosed by that surface?

4. A uniform electric field exists in a region of space in
which there are no charges. What can you conclude
about the net electric flux through a gaussian surface
placed in this region of space?

1. The Sun is lower in the sky during the winter than it is in
the summer. How does this change the flux of sunlight
hitting a given area on the surface of the Earth? How
does this affect the weather?

2. If the electric field in a region of space is zero, can you
conclude no electric charges are in that region? 
Explain.
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5. If the total charge inside a closed surface is known but
the distribution of the charge is unspecified, can you use
Gauss’s law to find the electric field? Explain.

6. Explain why the electric flux through a closed surface
with a given enclosed charge is independent of the size or
shape of the surface.

7. Consider the electric field due to a nonconducting infi-
nite plane having a uniform charge density. Explain why
the electric field does not depend on the distance from
the plane in terms of the spacing of the electric field
lines.

8. Use Gauss’s law to explain why electric field lines must be-
gin or end on electric charges. (Hint: Change the size of
the gaussian surface.)

9. On the basis of the repulsive nature of the force between
like charges and the freedom of motion of charge within
the conductor, explain why excess charge on an isolated
conductor must reside on its surface.

10. A person is placed in a large, hollow metallic sphere that
is insulated from ground. If a large charge is placed on
the sphere, will the person be harmed upon touching the
inside of the sphere? Explain what will happen if the per-

son also has an initial charge whose sign is opposite that
of the charge on the sphere.

11. How would the observations described in Figure 24.20
differ if the hollow conductor were grounded? How
would they differ if the small charged ball were an insula-
tor rather than a conductor?

12. What other experiment might be performed on the ball
in Figure 24.20 to show that its charge was transferred to
the hollow conductor?

13. What would happen to the electrometer reading if the
charged ball in Figure 24.20 touched the inner wall of the
conductor? the outer wall?

14. You may have heard that one of the safer places to be dur-
ing a lightning storm is inside a car. Why would this be
the case?

15. Two solid spheres, both of radius R , carry identical total
charges Q . One sphere is a good conductor, while the
other is an insulator. If the charge on the insulating
sphere is uniformly distributed throughout its interior
volume, how do the electric fields outside these two
spheres compare? Are the fields identical inside the two
spheres?

PROBLEMS

6. A uniform electric field intersects a surface of
area A. What is the flux through this area if the surface
lies (a) in the yz plane? (b) in the xz plane? (c) in the xy
plane?

7. A point charge q is located at the center of a uniform
ring having linear charge density � and radius a, as
shown in Figure P24.7. Determine the total electric flux

a i � b j

Section 24.1 Electric Flux
1. An electric field with a magnitude of 3.50 kN/C is ap-

plied along the x axis. Calculate the electric flux
through a rectangular plane 0.350 m wide and 0.700 m
long if (a) the plane is parallel to the yz plane; (b) the
plane is parallel to the xy plane; and (c) the plane con-
tains the y axis, and its normal makes an angle of 40.0°
with the x axis.

2. A vertical electric field of magnitude 2.00 � 104 N/C
exists above the Earth’s surface on a day when a thun-
derstorm is brewing. A car with a rectangular size of ap-
proximately 6.00 m by 3.00 m is traveling along a road-
way sloping downward at 10.0°. Determine the electric
flux through the bottom of the car.

3. A 40.0-cm-diameter loop is rotated in a uniform electric
field until the position of maximum electric flux is
found. The flux in this position is measured to be 
5.20 � 105 N� m2/C. What is the magnitude of the elec-
tric field?

4. A spherical shell is placed in a uniform electric field.
Find the total electric flux through the shell.

5. Consider a closed triangular box resting within a hori-
zontal electric field of magnitude N/C,
as shown in Figure P24.5. Calculate the electric flux
through (a) the vertical rectangular surface, (b) the
slanted surface, and (c) the entire surface of the box.

E � 7.80 � 104

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

30.0 cm

60.0°10.0 cm

E

Figure P24.5

Figure P24.7

R

q a

λ
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WEB

through a sphere centered at the point charge and hav-
ing radius R , where 

8. A pyramid with a 6.00-m-square base and height of 
4.00 m is placed in a vertical electric field of 52.0 N/C.
Calculate the total electric flux through the pyramid’s
four slanted surfaces.

9. A cone with base radius R and height h is located on a
horizontal table. A horizontal uniform field E pene-
trates the cone, as shown in Figure P24.9. Determine
the electric flux that enters the left-hand side of the
cone.

R � a.
located a very small distance from the center of a very
large square on the line perpendicular to the square and
going through its center. Determine the approximate
electric flux through the square due to the point
charge. (c) Explain why the answers to parts (a) and
(b) are identical.

14. Calculate the total electric flux through the parabo-
loidal surface due to a constant electric field of magni-
tude E 0 in the direction shown in Figure P24.14.

16. A point charge of 12.0 �C is placed at the center of a
spherical shell of radius 22.0 cm. What is the total elec-
tric flux through (a) the surface of the shell and 
(b) any hemispherical surface of the shell? (c) Do the
results depend on the radius? Explain.

17. A point charge of 0.046 2 �C is inside a pyramid. Deter-
mine the total electric flux through the surface of the
pyramid.

18. An infinitely long line charge having a uniform charge
per unit length � lies a distance d from point O, as
shown in Figure P24.18. Determine the total electric
flux through the surface of a sphere of radius 
R centered at O resulting from this line charge. 
(Hint: Consider both cases: when and when
R � d.)

R � d,

15. A point charge Q is located just above the center of the
flat face of a hemisphere of radius R , as shown in Figure
P24.15. What is the electric flux (a) through the curved
surface and (b) through the flat face?

13. (a) A point charge q is located a distance d from an infi-
nite plane. Determine the electric flux through the
plane due to the point charge. (b) A point charge q is

Section 24.2 Gauss’s Law
10. The electric field everywhere on the surface of a thin

spherical shell of radius 0.750 m is measured to be
equal to 890 N/C and points radially toward the center
of the sphere. (a) What is the net charge within the
sphere’s surface? (b) What can you conclude about the
nature and distribution of the charge inside the spheri-
cal shell?

11. The following charges are located inside a submarine:
and (a) Calcu-

late the net electric flux through the submarine. 
(b) Is the number of electric field lines leaving the sub-
marine greater than, equal to, or less than the number
entering it?

12. Four closed surfaces, S1 through S4 , together with the
charges � 2Q , Q , and �Q are sketched in Figure
P24.12. Find the electric flux through each surface.

�84.0 �C.27.0 �C,5.00 �C, �9.00 �C,

h

R

E

Figure P24.9

Figure P24.12

Figure P24.14

Figure P24.15

–Q

+Q

–2Q

S2

S3

S1

S4

d

r

E0

Q
0

R

δ
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19. A point charge is located at the center of a
cube of side In addition, six other identi-
cal point charges having are positioned
symmetrically around Q , as shown in Figure P24.19. De-
termine the electric flux through one face of the cube.

20. A point charge Q is located at the center of a cube of
side L . In addition, six other identical negative point
charges are positioned symmetrically around Q , as
shown in Figure P24.19. Determine the electric flux
through one face of the cube.

q � �1.00 �C
L � 0.100 m.

Q � 5.00 �C

23. A charge of 170 �C is at the center of a cube of side
80.0 cm. (a) Find the total flux through each face of the
cube. (b) Find the flux through the whole surface of
the cube. (c) Would your answers to parts (a) or 
(b) change if the charge were not at the center? Ex-
plain.

24. The total electric flux through a closed surface in the
shape of a cylinder is (a) What is
the net charge within the cylinder? (b) From the infor-
mation given, what can you say about the charge within
the cylinder? (c) How would your answers to parts 
(a) and (b) change if the net flux were

25. The line ag is a diagonal of a cube (Fig. P24.25). A
point charge q is located on the extension of line ag ,
very close to vertex a of the cube. Determine the elec-
tric flux through each of the sides of the cube that meet
at the point a.

�8.60 � 104 N�m2/C?

8.60 � 104 N�m2/C.

WEB

Section 24.3 Application of Gauss’s Law to 
Charged Insulators

26. Determine the magnitude of the electric field at the sur-
face of a lead-208 nucleus, which contains 82 protons
and 126 neutrons. Assume that the lead nucleus has a
volume 208 times that of one proton, and consider a
proton to be a sphere of radius 1.20 � 10�15 m.

27. A solid sphere of radius 40.0 cm has a total positive
charge of 26.0 �C uniformly distributed throughout its
volume. Calculate the magnitude of the electric field
(a) 0 cm, (b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm
from the center of the sphere.

28. A cylindrical shell of radius 7.00 cm and length 240 cm
has its charge uniformly distributed on its curved surface.
The magnitude of the electric field at a point 19.0 cm ra-
dially outward from its axis (measured from the midpoint
of the shell) is 36.0 kN/C. Use approximate relationships
to find (a) the net charge on the shell and (b) the electric
field at a point 4.00 cm from the axis, measured radially
outward from the midpoint of the shell.

29. Consider a long cylindrical charge distribution of radius
R with a uniform charge density �. Find the electric
field at distance r from the axis where r � R .

21. Consider an infinitely long line charge having uniform
charge per unit length �. Determine the total electric
flux through a closed right circular cylinder of length L
and radius R that is parallel to the line charge, if the dis-
tance between the axis of the cylinder and the line
charge is d. (Hint: Consider both cases: when 
and when 

22. A 10.0-�C charge located at the origin of a cartesian co-
ordinate system is surrounded by a nonconducting hol-
low sphere of radius 10.0 cm. A drill with a radius of
1.00 mm is aligned along the z axis, and a hole is drilled
in the sphere. Calculate the electric flux through the
hole.

R � d.)
R � d,

Figure P24.18

d

R
O

λ

Figure P24.19 Problems 19 and 20.

Figure P24.25
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30. A nonconducting wall carries a uniform charge density
of 8.60 �C/cm2. What is the electric field 7.00 cm in
front of the wall? Does your result change as the dis-
tance from the wall is varied?

31. Consider a thin spherical shell of radius 14.0 cm with a
total charge of 32.0 �C distributed uniformly on its sur-
face. Find the electric field (a) 10.0 cm and (b) 20.0 cm
from the center of the charge distribution.

32. In nuclear fission, a nucleus of uranium-238, which con-
tains 92 protons, divides into two smaller spheres, each
having 46 protons and a radius of 5.90 � 10�15 m. What
is the magnitude of the repulsive electric force pushing
the two spheres apart?

33. Fill two rubber balloons with air. Suspend both of them
from the same point on strings of equal length. Rub
each with wool or your hair, so that they hang apart with
a noticeable separation between them. Make order-of-
magnitude estimates of (a) the force on each, (b) the
charge on each, (c) the field each creates at the center
of the other, and (d) the total flux of electric field cre-
ated by each balloon. In your solution, state the quanti-
ties you take as data and the values you measure or esti-
mate for them.

34. An insulating sphere is 8.00 cm in diameter and carries
a 5.70-�C charge uniformly distributed throughout its
interior volume. Calculate the charge enclosed by a
concentric spherical surface with radius (a) r � 2.00 cm
and (b) r � 6.00 cm.

35. A uniformly charged, straight filament 7.00 m in length
has a total positive charge of 2.00 �C. An uncharged
cardboard cylinder 2.00 cm in length and 10.0 cm in ra-
dius surrounds the filament at its center, with the fila-
ment as the axis of the cylinder. Using reasonable ap-
proximations, find (a) the electric field at the surface of
the cylinder and (b) the total electric flux through the
cylinder.

36. The charge per unit length on a long, straight filament
is � 90.0 �C/m. Find the electric field (a) 10.0 cm, 
(b) 20.0 cm, and (c) 100 cm from the filament, where
distances are measured perpendicular to the length of
the filament.

37. A large flat sheet of charge has a charge per unit area of
9.00 �C/m2. Find the electric field just above the sur-
face of the sheet, measured from its midpoint.

Section 24.4 Conductors in Electrostatic Equilibrium
38. On a clear, sunny day, a vertical electrical field of about

130 N/C points down over flat ground. What is the sur-
face charge density on the ground for these conditions?

39. A long, straight metal rod has a radius of 5.00 cm and a
charge per unit length of 30.0 nC/m. Find the electric
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the
axis of the rod, where distances are measured perpen-
dicular to the rod.

40. A very large, thin, flat plate of aluminum of area A has a
total charge Q uniformly distributed over its surfaces. If

the same charge is spread uniformly over the upper
surface of an otherwise identical glass plate, compare
the electric fields just above the center of the upper sur-
face of each plate.

41. A square plate of copper with 50.0-cm sides has no net
charge and is placed in a region of uniform electric
field of 80.0 kN/C directed perpendicularly to the
plate. Find (a) the charge density of each face of the
plate and (b) the total charge on each face.

42. A hollow conducting sphere is surrounded by a larger
concentric, spherical, conducting shell. The inner
sphere has a charge � Q , and the outer sphere has a
charge 3Q. The charges are in electrostatic equilibrium.
Using Gauss’s law, find the charges and the electric
fields everywhere.

43. Two identical conducting spheres each having a radius
of 0.500 cm are connected by a light 2.00-m-long con-
ducting wire. Determine the tension in the wire if 
60.0 �C is placed on one of the conductors. (Hint: As-
sume that the surface distribution of charge on each
sphere is uniform.)

44. The electric field on the surface of an irregularly
shaped conductor varies from 56.0 kN/C to 28.0 kN/C.
Calculate the local surface charge density at the point
on the surface where the radius of curvature of the sur-
face is (a) greatest and (b) smallest.

45. A long, straight wire is surrounded by a hollow metal
cylinder whose axis coincides with that of the wire. The
wire has a charge per unit length of �, and the cylinder
has a net charge per unit length of 2�. From this infor-
mation, use Gauss’s law to find (a) the charge per unit
length on the inner and outer surfaces of the cylinder
and (b) the electric field outside the cylinder, a distance
r from the axis.

46. A conducting spherical shell of radius 15.0 cm carries a
net charge of � 6.40 �C uniformly distributed on its
surface. Find the electric field at points (a) just outside
the shell and (b) inside the shell.

47. A thin conducting plate 50.0 cm on a side lies in the xy
plane. If a total charge of 4.00 � 10�8 C is placed on
the plate, find (a) the charge density on the plate, 
(b) the electric field just above the plate, and (c) the
electric field just below the plate.

48. A conducting spherical shell having an inner radius of 
a and an outer radius of b carries a net charge Q . If a
point charge q is placed at the center of this shell, 
determine the surface charge density on (a) the inner
surface of the shell and (b) the outer surface of the
shell.

49. A solid conducting sphere of radius 2.00 cm has a
charge 8.00 �C. A conducting spherical shell of inner
radius 4.00 cm and outer radius 5.00 cm is concentric
with the solid sphere and has a charge � 4.00 �C. Find
the electric field at (a) r � 1.00 cm, (b) r � 3.00 cm,
(c) r � 4.50 cm, and (d) r � 7.00 cm from the center of
this charge configuration.

WEB
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50. A positive point charge is at a distance of R/2 from the
center of an uncharged thin conducting spherical shell
of radius R. Sketch the electric field lines set up by this
arrangement both inside and outside the shell.

(Optional)
Section 24.5 Experimental Verification of 
Gauss’s Law and Coulomb’s Law

Section 24.6 Formal Derivation of Gauss’s Law
51. A sphere of radius R surrounds a point charge Q , lo-

cated at its center. (a) Show that the electric flux
through a circular cap of half-angle 	 (Fig. P24.51) is

What is the flux for (b) 	 � 90° and (c) 	 � 180°?

�E �
Q

2�0
 (1 � cos 	)

net charge enclosed by this surface, as a function of r.
Note that the charge inside this surface is less than 3Q .
(i) Find the electric field in the region r � a. ( j) Deter-
mine the charge on the inner surface of the conducting
shell. (k) Determine the charge on the outer surface of
the conducting shell. (l) Make a plot of the magnitude
of the electric field versus r.

54. Consider two identical conducting spheres whose sur-
faces are separated by a small distance. One sphere is
given a large net positive charge, while the other is
given a small net positive charge. It is found that the
force between them is attractive even though both
spheres have net charges of the same sign. Explain how
this is possible.

55. A solid, insulating sphere of radius a has a uniform
charge density � and a total charge Q . Concentric with
this sphere is an uncharged, conducting hollow sphere
whose inner and outer radii are b and c, as shown in Fig-
ure P24.55. (a) Find the magnitude of the electric field
in the regions and r � c. 
(b) Determine the induced charge per unit area on the
inner and outer surfaces of the hollow sphere.

b � r � c,r � a, a � r � b,

WEB

56. For the configuration shown in Figure P24.55, suppose
that a � 5.00 cm, b � 20.0 cm, and c � 25.0 cm.
Furthermore, suppose that the electric field at a point
10.0 cm from the center is 3.60 � 103 N/C radially in-
ward, while the electric field at a point 50.0 cm from the
center is 2.00 � 102 N/C radially outward. From this in-
formation, find (a) the charge on the insulating sphere,

ADDITIONAL PROBLEMS

52. A nonuniform electric field is given by the expression
where a, b, and c are constants.

Determine the electric flux through a rectangular sur-
face in the xy plane, extending from x � 0 to x � w and
from y � 0 to y � h.

53. A solid insulating sphere of radius a carries a net positive
charge 3Q , uniformly distributed throughout its vol-
ume. Concentric with this sphere is a conducting spheri-
cal shell with inner radius b and outer radius c, and hav-
ing a net charge �Q , as shown in Figure P24.53. 
(a) Construct a spherical gaussian surface of radius 
r � c and find the net charge enclosed by this surface. 
(b) What is the direction of the electric field at r � c?
(c) Find the electric field at r � c. (d) Find the electric
field in the region with radius r where c � r � b. 
(e) Construct a spherical gaussian surface of radius r ,
where c � r � b, and find the net charge enclosed by
this surface. (f) Construct a spherical gaussian surface
of radius r, where b � r � a, and find the net charge en-
closed by this surface. (g) Find the electric field in the
region b � r � a. (h) Construct a spherical gaussian
surface of radius r � a, and find an expression for the

E � ay i � bz j � cxk,

Figure P24.51

Figure P24.53

Figure P24.55 Problems 55 and 56.
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(b) the net charge on the hollow conducting sphere,
and (c) the total charge on the inner and outer surfaces
of the hollow conducting sphere.

57. An infinitely long cylindrical insulating shell of inner ra-
dius a and outer radius b has a uniform volume charge
density � (C/m3). A line of charge density � (C/m) is
placed along the axis of the shell. Determine the elec-
tric field intensity everywhere.

58. Two infinite, nonconducting sheets of charge are paral-
lel to each other, as shown in Figure P24.58. The sheet
on the left has a uniform surface charge density �, and
the one on the right has a uniform charge density � �.
Calculate the value of the electric field at points (a) to
the left of, (b) in between, and (c) to the right of the
two sheets. (Hint: See Example 24.8.)

the size of the cavity with a uniform negative charge
density � �.)

61. Review Problem. An early (incorrect) model of the
hydrogen atom, suggested by J. J. Thomson, proposed
that a positive cloud of charge �e was uniformly distrib-
uted throughout the volume of a sphere of radius R ,
with the electron an equal-magnitude negative point
charge �e at the center. (a) Using Gauss’s law, show
that the electron would be in equilibrium at the center
and, if displaced from the center a distance 
would experience a restoring force of the form

where K is a constant. (b) Show that
(c) Find an expression for the frequency f

of simple harmonic oscillations that an electron of mass
me would undergo if displaced a short distance (� R )
from the center and released. (d) Calculate a numerical
value for R that would result in a frequency of electron
vibration of 2.47 � 1015 Hz, the frequency of the light
in the most intense line in the hydrogen spectrum.

62. A closed surface with dimensions and
is located as shown in Figure P24.62. The

electric field throughout the region is nonuniform and
given by N/C, where x is in meters.
Calculate the net electric flux leaving the closed sur-
face. What net charge is enclosed by the surface?

E � (3.0 � 2.0x2) i

c � 0.600 m
a � b � 0.400 m

K � ke e2/R3.
F � �Kr,

r � R ,

59. Repeat the calculations for Problem 58 when both
sheets have positive uniform surface charge densities of
value �.

60. A sphere of radius 2a is made of a nonconducting mate-
rial that has a uniform volume charge density �. (As-
sume that the material does not affect the electric
field.) A spherical cavity of radius a is now removed
from the sphere, as shown in Figure P24.60. Show that
the electric field within the cavity is uniform and is
given by and (Hint: The field
within the cavity is the superposition of the field due to
the original uncut sphere, plus the field due to a sphere

Ey � �a/3�0 .Ex � 0

Figure P24.58

Figure P24.60

Figure P24.62

σ

–σ

y

x

2a

a

a
y

c

x

z

b

E

a

63. A solid insulating sphere of radius R has a nonuniform
charge density that varies with r according to the expres-
sion where A is a constant and is meas-
ured from the center of the sphere. (a) Show that the
electric field outside the sphere is

(b) Show that the electric field inside
the sphere is (Hint: Note that the

total charge Q on the sphere is equal to the integral of 
� dV, where r extends from 0 to R ; also note that the
charge q within a radius r � R is less than Q. To evaluate
the integrals, note that the volume element dV for a
spherical shell of radius r and thickness dr is equal to

64. A point charge Q is located on the axis of a disk of ra-
dius R at a distance b from the plane of the disk (Fig.
P24.64). Show that if one fourth of the electric flux
from the charge passes through the disk, then R � !3b.

4�r 2 dr.)

E � Ar 3/5�0 .(r � R)
E � AR5/5�0r 2.

(r � R )

r � R� � Ar 2,

WEB



Answers to Quick Quizzes 767

ANSWERS TO QUICK QUIZZES

24.3 Any gaussian surface surrounding the system encloses
the same amount of charge, regardless of how the com-
ponents of the system are moved. Thus, the flux
through the gaussian surface would be the same as it is
when the sphere and shell are concentric.

24.1 Zero, because there is no net charge within the surface.
24.2 (b) and (d). Statement (a) is not necessarily true be-

cause an equal number of positive and negative charges
could be present inside the surface. Statement (c) is not
necessarily true, as can be seen from Figure 24.8: A
nonzero electric field exists everywhere on the surface,
but the charge is not enclosed within the surface; thus,
the net flux is zero.

a frequency described by the expression

f �
1

2�
 ! �e

me �0

Figure P24.64

Figure P24.67 Problems 67 and 68.

65. A spherically symmetric charge distribution has a
charge density given by where a is constant.
Find the electric field as a function of r. (Hint: Note that
the charge within a sphere of radius R is equal to the in-
tegral of � dV, where r extends from 0 to R . To evaluate
the integral, note that the volume element dV for a
spherical shell of radius r and thickness dr is equal to

66. An infinitely long insulating cylinder of radius R has a
volume charge density that varies with the radius as

where �0 , a, and b are positive constants and r is the dis-
tance from the axis of the cylinder. Use Gauss’s law to
determine the magnitude of the electric field at radial
distances (a) r � R and (b) r � R.

67. Review Problem. A slab of insulating material (infi-
nite in two of its three dimensions) has a uniform posi-
tive charge density �. An edge view of the slab is shown
in Figure P24.67. (a) Show that the magnitude of the
electric field a distance x from its center and inside the
slab is (b) Suppose that an electron of
charge �e and mass me is placed inside the slab. If it is
released from rest at a distance x from the center, show
that the electron exhibits simple harmonic motion with

E � �x/�0 .

� � �0�a �
r
b �

4�r 2 dr.)

� � a/r,

R

Q

b

x

y

O

d

68. A slab of insulating material has a nonuniform positive
charge density where x is measured from the
center of the slab, as shown in Figure P24.67, and C is a
constant. The slab is infinite in the y and z directions.
Derive expressions for the electric field in (a) the exte-
rior regions and (b) the interior region of the slab

69. (a) Using the mathematical similarity between
Coulomb’s law and Newton’s law of universal gravita-
tion, show that Gauss’s law for gravitation can be written
as

where m in is the mass inside the gaussian surface and
represents the gravitational field at any point

on the gaussian surface. (b) Determine the gravita-
tional field at a distance r from the center of the Earth
where r � R E , assuming that the Earth’s mass density is
uniform.

g � Fg /m

�g � dA � �4�Gm in

(�d/2 � x � d/2).

� � Cx2,
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Jennifer is holding on to an electrically
charged sphere that reaches an electric
potential of about 100 000 V. The device
that generates this high electric potential
is called a Van de Graaff generator. What
causes Jennifer’s hair to stand on end
like the needles of a porcupine? Why is
she safe in this situation in view of the
fact that 110 V from a wall outlet can kill
you? (Henry Leap and Jim Lehman)
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25.1 Potential Difference and Electric Potential 769

he concept of potential energy was introduced in Chapter 8 in connection
with such conservative forces as the force of gravity and the elastic force exerted
by a spring. By using the law of conservation of energy, we were able to avoid

working directly with forces when solving various problems in mechanics. In this
chapter we see that the concept of potential energy is also of great value in the
study of electricity. Because the electrostatic force given by Coulomb’s law is con-
servative, electrostatic phenomena can be conveniently described in terms of an
electric potential energy. This idea enables us to define a scalar quantity known as
electric potential. Because the electric potential at any point in an electric field is a
scalar function, we can use it to describe electrostatic phenomena more simply
than if we were to rely only on the concepts of the electric field and electric forces.
In later chapters we shall see that the concept of electric potential is of great prac-
tical value.

POTENTIAL DIFFERENCE AND ELECTRIC POTENTIAL
When a test charge q0 is placed in an electric field E created by some other
charged object, the electric force acting on the test charge is q0E. (If the field is
produced by more than one charged object, this force acting on the test charge is
the vector sum of the individual forces exerted on it by the various other charged
objects.) The force q 0E is conservative because the individual forces described by
Coulomb’s law are conservative. When the test charge is moved in the field by
some external agent, the work done by the field on the charge is equal to the neg-
ative of the work done by the external agent causing the displacement. For an in-
finitesimal displacement ds, the work done by the electric field on the charge is

As this amount of work is done by the field, the potential energy
of the charge–field system is decreased by an amount For a finite
displacement of the charge from a point A to a point B, the change in potential
energy of the system is

(25.1)

The integration is performed along the path that q0 follows as it moves from A to
B, and the integral is called either a path integral or a line integral (the two terms are
synonymous). Because the force q0E is conservative, this line integral does not
depend on the path taken from A to B.

If the path between A and B does not make any difference in Equation 25.1, why don’t we
just use the expression where d is the straight-line distance between A and B?

The potential energy per unit charge U/q0 is independent of the value of q0
and has a unique value at every point in an electric field. This quantity U/q0 is
called the electric potential (or simply the potential) V. Thus, the electric poten-
tial at any point in an electric field is

(25.2)V �
U
q0

�U � �q0Ed,

Quick Quiz 25.1

�U � �q0 �B

A
 E � ds

�U � UB � UA

dU � �q0E � ds.
F � ds � q0E � ds.

25.1

T

Change in potential energy

11.8



The fact that potential energy is a scalar quantity means that electric potential also
is a scalar quantity.

The potential difference between any two points A and B in an
electric field is defined as the change in potential energy of the system divided by
the test charge q0 :

(25.3)

Potential difference should not be confused with difference in potential energy.
The potential difference is proportional to the change in potential energy, and we
see from Equation 25.3 that the two are related by 

Electric potential is a scalar characteristic of an electric field, indepen-
dent of the charges that may be placed in the field. However, when we speak
of potential energy, we are referring to the charge–field system. Because we
are usually interested in knowing the electric potential at the location of a charge
and the potential energy resulting from the interaction of the charge with the
field, we follow the common convention of speaking of the potential energy as if it
belonged to the charge.

Because the change in potential energy of a charge is the negative of the work
done by the electric field on the charge (as noted in Equation 25.1), the potential
difference �V between points A and B equals the work per unit charge that an ex-
ternal agent must perform to move a test charge from A to B without changing the
kinetic energy of the test charge.

Just as with potential energy, only differences in electric potential are meaning-
ful. To avoid having to work with potential differences, however, we often take the
value of the electric potential to be zero at some convenient point in an electric
field. This is what we do here: arbitrarily establish the electric potential to be zero
at a point that is infinitely remote from the charges producing the field. Having
made this choice, we can state that the electric potential at an arbitrary point
in an electric field equals the work required per unit charge to bring a posi-
tive test charge from infinity to that point. Thus, if we take point A in Equation
25.3 to be at infinity, the electric potential at any point P is

(25.4)

In reality, VP represents the potential difference �V between the point P and a
point at infinity. (Eq. 25.4 is a special case of Eq. 25.3.)

Because electric potential is a measure of potential energy per unit charge, the
SI unit of both electric potential and potential difference is joules per coulomb,
which is defined as a volt (V):

That is, 1 J of work must be done to move a 1-C charge through a potential differ-
ence of 1 V.

Equation 25.3 shows that potential difference also has units of electric field
times distance. From this, it follows that the SI unit of electric field (N/C) can also
be expressed in volts per meter:

1 
N
C

� 1 
V
m

1 V � 1 
J
C

VP � ��P

�
 E � ds

�U � q0�V.

�V �
�U
q0

� ��B

A
 E � ds

�V � VB � VA
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25.2 Potential Differences in a Uniform Electric Field 771

A unit of energy commonly used in atomic and nuclear physics is the electron
volt (eV), which is defined as the energy an electron (or proton) gains or loses
by moving through a potential difference of 1 V. Because 1 V � 1 J/C and be-
cause the fundamental charge is approximately the electron volt is
related to the joule as follows:

(25.5)

For instance, an electron in the beam of a typical television picture tube may have
a speed of 3.5 � 107 m/s. This corresponds to a kinetic energy of 5.6 � 10�16 J,
which is equivalent to 3.5 � 103 eV. Such an electron has to be accelerated from
rest through a potential difference of 3.5 kV to reach this speed.

POTENTIAL DIFFERENCES IN A
UNIFORM ELECTRIC FIELD

Equations 25.1 and 25.3 hold in all electric fields, whether uniform or varying, but
they can be simplified for a uniform field. First, consider a uniform electric field
directed along the negative y axis, as shown in Figure 25.1a. Let us calculate the
potential difference between two points A and B separated by a distance d, where
d is measured parallel to the field lines. Equation 25.3 gives

Because E is constant, we can remove it from the integral sign; this gives

(25.6)

The minus sign indicates that point B is at a lower electric potential than point A;
that is, Electric field lines always point in the direction of decreas-
ing electric potential, as shown in Figure 25.1a.

Now suppose that a test charge q0 moves from A to B. We can calculate the
change in its potential energy from Equations 25.3 and 25.6:

(25.7)�U � q0 �V � �q0Ed

VB � VA .

�V � �E �B

A
 ds � �Ed

VB � VA � �V � ��B

A
 E � ds � ��B

A
 E cos 0� ds � ��B

A
 E ds

25.2

1 eV � 1.60 � 10�19 C�V � 1.60 � 10�19 J

1.60 � 10�19 C,

d

B

A

q

E

(a) (b)

g

d

B

A

m
Figure 25.1 (a) When the
electric field E is directed down-
ward, point B is at a lower elec-
tric potential than point A. A
positive test charge that moves
from point A to point B loses
electric potential energy. (b) A
mass m moving downward in the
direction of the gravitational
field g loses gravitational poten-
tial energy.

The electron volt

Potential difference in a uniform
electric field
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From this result, we see that if q0 is positive, then �U is negative. We conclude that
a positive charge loses electric potential energy when it moves in the direc-
tion of the electric field. This means that an electric field does work on a positive
charge when the charge moves in the direction of the electric field. (This is analo-
gous to the work done by the gravitational field on a falling mass, as shown in Fig-
ure 25.1b.) If a positive test charge is released from rest in this electric field, it ex-
periences an electric force q0E in the direction of E (downward in Fig. 25.1a).
Therefore, it accelerates downward, gaining kinetic energy. As the charged parti-
cle gains kinetic energy, it loses an equal amount of potential energy.

If q0 is negative, then �U is positive and the situation is reversed: A negative
charge gains electric potential energy when it moves in the direction of the
electric field. If a negative charge is released from rest in the field E, it acceler-
ates in a direction opposite the direction of the field.

Now consider the more general case of a charged particle that is free to move
between any two points in a uniform electric field directed along the x axis, as
shown in Figure 25.2. (In this situation, the charge is not being moved by an exter-
nal agent as before.) If s represents the displacement vector between points A and
B, Equation 25.3 gives

(25.8)

where again we are able to remove E from the integral because it is constant. The
change in potential energy of the charge is

(25.9)

Finally, we conclude from Equation 25.8 that all points in a plane perpendicu-
lar to a uniform electric field are at the same electric potential. We can see this in
Figure 25.2, where the potential difference is equal to the potential differ-
ence (Prove this to yourself by working out the dot product for

where the angle 	 between E and s is arbitrary as shown in Figure 25.2, and
the dot product for where 	 � 0.) Therefore, The name equipo-
tential surface is given to any surface consisting of a continuous distribu-
tion of points having the same electric potential.

Note that because no work is done in moving a test charge be-
tween any two points on an equipotential surface. The equipotential surfaces of a
uniform electric field consist of a family of planes that are all perpendicular to the
field. Equipotential surfaces for fields with other symmetries are described in later
sections.

The labeled points in Figure 25.3 are on a series of equipotential surfaces associated with an
electric field. Rank (from greatest to least) the work done by the electric field on a posi-
tively charged particle that moves from A to B; from B to C ; from C to D; from D to E.

Quick Quiz 25.2

�U � q0�V,

VB � VC . sA:C ,
sA:B ,

E � sVC � VA .
VB � VA

�U � q0 �V � �q0 E � s

�V � �  �B

A
 E � ds � � E ��B

A
 ds � � E � s

An equipotential surface

11.9

QuickLab
It takes an electric field of about 
30 000 V/cm to cause a spark in dry
air. Shuffle across a rug and reach to-
ward a doorknob. By estimating the
length of the spark, determine the
electric potential difference between
your finger and the doorknob after
shuffling your feet but before touch-
ing the knob. (If it is very humid on
the day you attempt this, it may not
work. Why?)

E

B

CA

s

Figure 25.2 A uniform electric
field directed along the positive x
axis. Point B is at a lower electric
potential than point A. Points B
and C are at the same electric po-
tential.

A

B

C

E
D

9 V

8 V

7 V

6 V Figure 25.3 Four equipotential surfaces.
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The Electric Field Between Two Parallel Plates of Opposite ChargeEXAMPLE 25.1
A battery produces a specified potential difference between
conductors attached to the battery terminals. A 12-V battery
is connected between two parallel plates, as shown in Figure
25.4. The separation between the plates is d � 0.30 cm, and
we assume the electric field between the plates to be uniform.

1 The electric field vanishes within a conductor in electrostatic equilibrium; thus, the path integral
between any two points in the conductor must be zero. A more complete discussion of this

point is given in Section 25.6.
� E � ds

+ –
12 V

A

B

d

Figure 25.4 A 12-V battery connected to two parallel plates. The
electric field between the plates has a magnitude given by the poten-
tial difference �V divided by the plate separation d.

(This assumption is reasonable if the plate separation is small
relative to the plate dimensions and if we do not consider
points near the plate edges.) Find the magnitude of the elec-
tric field between the plates.

Solution The electric field is directed from the positive
plate (A) to the negative one (B ), and the positive plate is at
a higher electric potential than the negative plate is. The po-
tential difference between the plates must equal the potential
difference between the battery terminals. We can understand
this by noting that all points on a conductor in equilibrium
are at the same electric potential1; no potential difference ex-
ists between a terminal and any portion of the plate to which
it is connected. Therefore, the magnitude of the electric field
between the plates is, from Equation 25.6,

This configuration, which is shown in Figure 25.4 and
called a parallel-plate capacitor, is examined in greater detail in
Chapter 26.

4.0 � 103 V/mE �
� VB � VA �

d
�

12 V
0.30 � 10�2 m

�

Motion of a Proton in a Uniform Electric FieldEXAMPLE 25.2
From Equation 25.6, we have

(b) Find the change in potential energy of the proton for
this displacement.

Solution

The negative sign means the potential energy of the proton
decreases as it moves in the direction of the electric field. As
the proton accelerates in the direction of the field, it gains ki-
netic energy and at the same time loses electric potential en-
ergy (because energy is conserved).

Exercise Use the concept of conservation of energy to find
the speed of the proton at point B.

Answer 2.77 � 106 m/s.

�6.4 � 10�15 J �

 � (1.6 � 10�19 C)(�4.0 � 104 V)

�U � q0 �V � e �V 

�4.0 � 104 V�

�V � �Ed � �(8.0 � 104 V/m)(0.50 m)

A proton is released from rest in a uniform electric field that
has a magnitude of 8.0 � 104 V/m and is directed along the
positive x axis (Fig. 25.5). The proton undergoes a displace-
ment of 0.50 m in the direction of E. (a) Find the change in
electric potential between points A and B.

Solution Because the proton (which, as you remember,
carries a positive charge) moves in the direction of the field,
we expect it to move to a position of lower electric potential.

d

B
A

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

vBvA = 0

E

Figure 25.5 A proton accelerates from A to B in the direction of
the electric field.
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ELECTRIC POTENTIAL AND POTENTIAL ENERGY
DUE TO POINT CHARGES

Consider an isolated positive point charge q. Recall that such a charge produces an
electric field that is directed radially outward from the charge. To find the electric
potential at a point located a distance r from the charge, we begin with the gen-
eral expression for potential difference:

where A and B are the two arbitrary points shown in Figure 25.6. At any field
point, the electric field due to the point charge is (Eq. 23.4), where 
is a unit vector directed from the charge toward the field point. The quantity 
can be expressed as

Because the magnitude of is 1, the dot product where 	 is 
the angle between and ds. Furthermore, ds cos 	 is the projection of ds
onto r; thus, ds cos 	 � dr. That is, any displacement ds along the path from
point A to point B produces a change dr in the magnitude of r, the radial 
distance to the charge creating the field. Making these substitutions, we find 
that hence, the expression for the potential difference be-
comes

(25.10)

The integral of is independent of the path between points A and B—as it must
be because the electric field of a point charge is conservative. Furthermore, Equa-
tion 25.10 expresses the important result that the potential difference between any
two points A and B in a field created by a point charge depends only on the radial
coordinates rA and rB . It is customary to choose the reference of electric potential
to be zero at With this reference, the electric potential created by a point
charge at any distance r from the charge is

(25.11)

Electric potential is graphed in Figure 25.7 as a function of r, the radial dis-
tance from a positive charge in the xy plane. Consider the following analogy to
gravitational potential: Imagine trying to roll a marble toward the top of a hill
shaped like Figure 25.7a. The gravitational force experienced by the marble is
analogous to the repulsive force experienced by a positively charged object as it
approaches another positively charged object. Similarly, the electric potential
graph of the region surrounding a negative charge is analogous to a “hole” with
respect to any approaching positively charged objects. A charged object must be
infinitely distant from another charge before the surface is “flat” and has an elec-
tric potential of zero.

V � ke 
q
r

rA � �.

E � ds

VB � VA � keq � 1
rB

�
1
rA
� 

VB � VA � �  � Er dr � �keq �rB

rA

 
dr
r 2 �

keq
r �

rB

rA

E � ds � (keq/r 2)dr ;

r̂
r̂ � ds � ds cos 	,r̂

E � ds � ke 
q
r 2  r̂ � ds

E � ds
r̂E � ke q r̂/r 2

VB � VA � ��B

A
 E � ds

25.3

dr ds
θ

r

A

rB

B

q

r
rA

ˆ

Figure 25.6 The potential differ-
ence between points A and B due
to a point charge q depends only on
the initial and final radial coordi-
nates rA and rB . The two dashed cir-
cles represent cross-sections of
spherical equipotential surfaces.

Electric potential created by a
point charge
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Figure 25.7 (a) The electric potential in the plane around a single positive charge is plotted
on the vertical axis. (The electric potential function for a negative charge would look like a hole
instead of a hill.) The red line shows the 1/r nature of the electric potential, as given by Equation
25.11. (b) View looking straight down the vertical axis of the graph in part (a), showing concen-
tric circles where the electric potential is constant. These circles are cross sections of equipoten-
tial spheres having the charge at the center.
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A spherical balloon contains a positively charged object at its center. As the balloon is in-
flated to a greater volume while the charged object remains at the center, does the electric
potential at the surface of the balloon increase, decrease, or remain the same? How about
the magnitude of the electric field? The electric flux?

We obtain the electric potential resulting from two or more point charges by
applying the superposition principle. That is, the total electric potential at some
point P due to several point charges is the sum of the potentials due to the individ-
ual charges. For a group of point charges, we can write the total electric potential
at P in the form

(25.12)

where the potential is again taken to be zero at infinity and ri is the distance from
the point P to the charge qi . Note that the sum in Equation 25.12 is an algebraic
sum of scalars rather than a vector sum (which we use to calculate the electric field
of a group of charges). Thus, it is often much easier to evaluate V than to evaluate
E. The electric potential around a dipole is illustrated in Figure 25.8.

We now consider the potential energy of a system of two charged particles. If
V1 is the electric potential at a point P due to charge q1 ,  then the work an external
agent must do to bring a second charge q2 from infinity to P without acceleration
is q2V1. By definition, this work equals the potential energy U of the two-particle
system when the particles are separated by a distance r 12 (Fig. 25.9). Therefore, we
can express the potential energy as2

(25.13)

Note that if the charges are of the same sign, U is positive. This is consistent with
the fact that positive work must be done by an external agent on the system to
bring the two charges near one another (because like charges repel). If the
charges are of opposite sign, U is negative; this means that negative work must be
done against the attractive force between the unlike charges for them to be
brought near each other.

If more than two charged particles are in the system, we can obtain the total
potential energy by calculating U for every pair of charges and summing the terms
algebraically. As an example, the total potential energy of the system of three
charges shown in Figure 25.10 is

(25.14)

Physically, we can interpret this as follows: Imagine that q1 is fixed at the position
shown in Figure 25.10 but that q2 and q3 are at infinity. The work an external
agent must do to bring q2 from infinity to its position near q1 is which
is the first term in Equation 25.14. The last two terms represent the work required
to bring q3 from infinity to its position near q1 and q2 . (The result is independent
of the order in which the charges are transported.)

keq1q2/r12 ,

U � ke � q1q2

r12
�

q1q3

r13
�

q2q3

r23
�

U � ke 
q1q2

r12

V � ke �
i

q i

r i

Quick Quiz 25.3

2 The expression for the electric potential energy of a system made up of two point charges, Equation
25.13, is of the same form as the equation for the gravitational potential energy of a system made up of
two point masses, Gm1m2/r (see Chapter 14). The similarity is not surprising in view of the fact that
both expressions are derived from an inverse-square force law.

Electric potential due to several
point charges

Electric potential energy due to
two charges
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Figure 25.8 (a) The electric potential in the plane containing a dipole. (b) Top view of the
function graphed in part (a).

q1

q2r12

q2

q1

q3

r13

r12

r23

Figure 25. 9 If two point charges
are separated by a distance r12 , the
potential energy of the pair of
charges is given by keq1q2/r 12 .

Figure 25.10 Three point
charges are fixed at the positions
shown. The potential energy of this
system of charges is given by Equa-
tion 25.14.
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The Electric Potential Due to Two Point ChargesEXAMPLE 25.3
Solution When the charge is at infinity, , and when
the charge is at P, ; therefore,

Therefore, because , positive work would have to
be done by an external agent to remove the charge from
point P back to infinity.

Exercise Find the total potential energy of the system illus-
trated in Figure 25.11b.

Answer � 5.48 � 10�2 J.

W � ��U

�18.9 � 10�3 J�

�U � q3VP � 0 � (3.00 � 10�6 C)(�6.29 � 103 V)

Uf � q3VP

Ui � 0A charge q1 � 2.00 C is located at the origin, and a charge
q2 � � 6.00 C is located at (0, 3.00) m, as shown in Figure
25.11a. (a) Find the total electric potential due to these
charges at the point P, whose coordinates are (4.00, 0) m.

Solution For two charges, the sum in Equation 25.12 gives

(b) Find the change in potential energy of a 3.00-C
charge as it moves from infinity to point P (Fig. 25.11b).

�6.29 � 103 V�

VP � ke � q1

r1
�

q2

r2
� 

OBTAINING THE VALUE OF THE ELECTRIC FIELD
FROM THE ELECTRIC POTENTIAL

The electric field E and the electric potential V are related as shown in Equation
25.3. We now show how to calculate the value of the electric field if the electric po-
tential is known in a certain region.

From Equation 25.3 we can express the potential difference dV between two
points a distance ds apart as

(25.15)

If the electric field has only one component Ex , then Therefore,
Equation 25.15 becomes or

(25.16)Ex � �
dV
dx

dV � �Ex dx,
E � ds � Ex dx.

dV � � E � ds

25.4

(a)

3.00 m

4.00 m

P
x

–6.00 µC

y

2.00 µC

(b)

3.00 m

4.00 m
x

–6.00 µC

y

2.00 µC 3.00 µC

µ

µ µ µ

µ

Figure 25.11 (a) The electric potential at P due to the two charges is the algebraic sum of the poten-
tials due to the individual charges. (b) What is the potential energy of the three-charge system?

� 8.99 � 109 
N�m2

C2  � 2.00 � 10�6 C
4.00 m

�
�6.00 � 10�6 C

5.00 m �
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That is, the magnitude of the electric field in the direction of some coordinate is
equal to the negative of the derivative of the electric potential with respect to that
coordinate. Recall from the discussion following Equation 25.8 that the electric
potential does not change for any displacement perpendicular to an electric field.
This is consistent with the notion, developed in Section 25.2, that equipotential
surfaces are perpendicular to the field, as shown in Figure 25.12. A small positive
charge placed at rest on an electric field line begins to move along the direction of
E because that is the direction of the force exerted on the charge by the charge
distribution creating the electric field (and hence is the direction of a). Because
the charge starts with zero velocity, it moves in the direction of the change in ve-
locity—that is, in the direction of a. In Figures 25.12a and 25.12b, a charge placed
at rest in the field will move in a straight line because its acceleration vector is al-
ways parallel to its velocity vector. The magnitude of v increases, but its direction
does not change. The situation is different in Figure 25.12c. A positive charge
placed at some point near the dipole first moves in a direction parallel to E at that
point. Because the direction of the electric field is different at different locations,
however, the force acting on the charge changes direction, and a is no longer par-
allel to v. This causes the moving charge to change direction and speed, but it
does not necessarily follow the electric field lines. Recall that it is not the velocity
vector but rather the acceleration vector that is proportional to force.

If the charge distribution creating an electric field has spherical symmetry
such that the volume charge density depends only on the radial distance r, then
the electric field is radial. In this case, and thus we can express dV
in the form dV Therefore,

(25.17)

For example, the electric potential of a point charge is Because V is a
function of r only, the potential function has spherical symmetry. Applying Equa-
tion 25.17, we find that the electric field due to the point charge is a
familiar result. Note that the potential changes only in the radial direction, not in

Er � keq/r 2,

V � keq/r.

Er � �
dV
dr

� �Er dr.
E � ds � Er dr,

(a)

E

(b)

q

(c)

+

Figure 25.12 Equipotential surfaces (dashed blue lines) and electric field lines (red lines) for
(a) a uniform electric field produced by an infinite sheet of charge, (b) a point charge, and 
(c) an electric dipole. In all cases, the equipotential surfaces are perpendicular to the electric field
lines at every point. Compare these drawings with Figures 25.2, 25.7b, and 25.8b.
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any direction perpendicular to r. Thus, V (like Er) is a function only of r. Again,
this is consistent with the idea that equipotential surfaces are perpendicular to
field lines. In this case the equipotential surfaces are a family of spheres concen-
tric with the spherically symmetric charge distribution (Fig. 25.12b).

The equipotential surfaces for an electric dipole are sketched in Figure
25.12c. When a test charge undergoes a displacement ds along an equipotential
surface, then because the potential is constant along an equipotential sur-
face. From Equation 25.15, then, ; thus, E must be perpendicu-
lar to the displacement along the equipotential surface. This shows that the
equipotential surfaces must always be perpendicular to the electric field lines.

In general, the electric potential is a function of all three spatial coordinates.
If V(r) is given in terms of the cartesian coordinates, the electric field components
Ex , Ey , and Ez can readily be found from V(x, y, z) as the partial derivatives3

For example, if then

�V
�x

�
�

�x
 (3x2y � y2 � yz) �

�

�x
 (3x2y) � 3y 

d
dx

 (x2) � 6xy

V � 3x2y � y2 � yz,

Ex � �
�V
�x

  Ey � �
�V
�y

  Ez � �
�V
�z

dV � �E � ds � 0
dV � 0

The Electric Potential Due to a DipoleEXAMPLE 25.4
(How would this result change if point P happened to be lo-
cated to the left of the negative charge?)

(b) Calculate V and Ex at a point far from the dipole.

Solution If point P is far from the dipole, such that 
then a2 can be neglected in the term and V becomes

Using Equation 25.16 and this result, we can calculate the
electric field at a point far from the dipole:

( )

(c) Calculate V and Ex if point P is located anywhere be-
tween the two charges.

Solution

Ex � �
dV
dx

� �
d
dx

 ��
2keqx

x2 � a2 � � 2keq � �x2 � a2

(x2 � a2)2 �

V � ke �
qi

r i
� ke � q

a � x
�

q
x � a � � �

2keqx
x2 � a2

x W a
4keqa

x 3Ex � �
dV
dx

�

(x W a)
2keqa

x 2V �

x2 � a2,
x W a,

An electric dipole consists of two charges of equal magnitude
and opposite sign separated by a distance 2a, as shown in Fig-
ure 25.13. The dipole is along the x axis and is centered at
the origin. (a) Calculate the electric potential at point P.

Solution For point P in Figure 25.13,

2keqa
x2 � a2�V � ke �

qi

r i
� ke � q

x � a
�

q
x � a �

3 In vector notation, E is often written 

where � is called the gradient operator.

E � ��V � �� i 
�

�x
� j 

�

�y
� k 

�

�z �V

Equipotential surfaces are
perpendicular to the electric field
lines

aa

q

P

x

x

y

–q

Figure 25.13 An electric dipole located on the x axis.
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ELECTRIC POTENTIAL DUE TO CONTINUOUS CHARGE
DISTRIBUTIONS

We can calculate the electric potential due to a continuous charge distribution in
two ways. If the charge distribution is known, we can start with Equation 25.11 for
the electric potential of a point charge. We then consider the potential due to a
small charge element dq, treating this element as a point charge (Fig. 25.14). The
electric potential dV at some point P due to the charge element dq is

(25.18)

where r is the distance from the charge element to point P. To obtain the total po-
tential at point P, we integrate Equation 25.18 to include contributions from all el-
ements of the charge distribution. Because each element is, in general, a different
distance from point P and because ke is constant, we can express V as

(25.19)

In effect, we have replaced the sum in Equation 25.12 with an integral. Note that
this expression for V uses a particular reference: The electric potential is taken to
be zero when point P is infinitely far from the charge distribution.

If the electric field is already known from other considerations, such as Gauss’s
law, we can calculate the electric potential due to a continuous charge distribution
using Equation 25.3. If the charge distribution is highly symmetric, we first evalu-
ate E at any point using Gauss’s law and then substitute the value obtained into
Equation 25.3 to determine the potential difference �V between any two points.
We then choose the electric potential V to be zero at some convenient point.

We illustrate both methods with several examples.

V � ke � 
dq
r

dV � ke 
dq
r

25.5

Electric Potential Due to a Uniformly Charged RingEXAMPLE 25.5
we can remove from the integral, and V reduces to

(25.20)

The only variable in this expression for V is x. This is not sur-
prising because our calculation is valid only for points along
the x axis, where y and z are both zero.

(b) Find an expression for the magnitude of the electric
field at point P.

Solution From symmetry, we see that along the x axis E
can have only an x component. Therefore, we can use Equa-

keQ

!x2 � a2
V �

ke

!x 2 � a2
 � dq �

!x2 � a2(a) Find an expression for the electric potential at a point P
located on the perpendicular central axis of a uniformly
charged ring of radius a and total charge Q.

Solution Let us orient the ring so that its plane is perpen-
dicular to an x axis and its center is at the origin. We can then
take point P to be at a distance x from the center of the ring,
as shown in Figure 25.15. The charge element dq is at a dis-
tance from point P. Hence, we can express V as

Because each element dq is at the same distance from point P,

V � ke � 
dq
r

� ke � 
dq

!x2 � a2

!x2 � a2

We can check these results by considering the situation at 
the center of the dipole, where x � 0, V � 0, and 
�2keq/a2.

Ex �
Exercise Verify the electric field result in part (c) by calcu-
lating the sum of the individual electric field vectors at the
origin due to the two charges.

r

P

dq

Figure 25.14 The electric poten-
tial at the point P due to a continu-
ous charge distribution can be cal-
culated by dividing the charged
body into segments of charge dq
and summing the electric potential
contributions over all segments.



782 C H A P T E R  2 5 Electric Potential

P
x

√x2 + a2

dq

a

Figure 25.15 A uniformly charged ring of radius a lies in a plane
perpendicular to the x axis. All segments dq of the ring are the same
distance from any point P lying on the x axis.

tion 25.16:

(25.21)

This result agrees with that obtained by direct integration
(see Example 23.8). Note that at x � 0 (the center of
the ring). Could you have guessed this from Coulomb’s law?

Exercise What is the electric potential at the center of the
ring? What does the value of the field at the center tell you
about the value of V at the center?

Answer Because at the cen-Ex � �dV/dx � 0V � keQ /a.

Ex � 0

keQx
(x2 � a2)3/2 �

 � �keQ(�1
2 )(x2 � a2)�3/2(2x) 

Ex � �
dV
dx

� �keQ 
d
dx

 (x2 � a2)�1/2

ter, V has either a maximum or minimum value; it is, in fact,
a maximum.

Electric Potential Due to a Uniformly Charged DiskEXAMPLE 25.6
from the definition of surface charge density (see Section
23.5), we know that the charge on the ring is 

Hence, the potential at the point P due to
this ring is

To find the total electric potential at P, we sum over all rings
making up the disk. That is, we integrate dV from r � 0 to 
r � a:

This integral is of the form un du and has the value
where and This gives

(25.22)

(b) As in Example 25.5, we can find the electric field at
any axial point from

(25.23)

The calculation of V and E for an arbitrary point off the axis
is more difficult to perform, and we do not treat this situation
in this text.

2�ke � �1 �
x

!x2 � a2�Ex � �
dV
dx

�

2�ke �[(x2 � a2)1/2 � x]V �

u � r 2 � x2.n � �1
2un�1/(n � 1),

V � �ke ��a

0
 

2r dr

!r 2 � x2
� �ke ��a

0
 (r 2 � x2)�1/2 2r dr

dV �
ke dq

!r 2 � x2
�

ke �2�r dr

!r 2 � x2

� dA � �2�r dr.
dq �

Find (a) the electric potential and (b) the magnitude of the
electric field along the perpendicular central axis of a uni-
formly charged disk of radius a and surface charge density �.

Solution (a) Again, we choose the point P to be at a dis-
tance x from the center of the disk and take the plane of the
disk to be perpendicular to the x axis. We can simplify the
problem by dividing the disk into a series of charged rings.
The electric potential of each ring is given by Equation 25.20.
Consider one such ring of radius r and width dr, as indicated
in Figure 25.16. The surface area of the ring is dA � 2�r dr ;

Figure 25.16 A uniformly charged disk of radius a lies in a plane
perpendicular to the x axis. The calculation of the electric potential
at any point P on the x axis is simplified by dividing the disk into
many rings each of area 2�r dr.

dr

dA = 2πrdr

√ r 2 + x 2

x P

r
a

π
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Electric Potential Due to a Finite Line of ChargeEXAMPLE 25.7
Evaluating V, we find that

(25.24)
keQ

�
 ln� � � !�2 � a2

a �V �

A rod of length located along the x axis has a total charge
Q and a uniform linear charge density � � Q / . Find the
electric potential at a point P located on the y axis a distance
a from the origin (Fig. 25.17).

Solution The length element dx has a charge dq � � dx.
Because this element is a distance from point P,
we can express the potential at point P due to this element 
as

To obtain the total potential at P, we integrate this expression
over the limits x � 0 to x � . Noting that ke and � are con-
stants, we find that

This integral has the following value (see Appendix B):

� 
dx

!x2 � a2
� ln(x � !x2 � a2)

V � ke � ��

0
 

dx

!x2 � a2
� ke 

Q
�

 ��

0
 

dx

!x2 � a2

�

dV � ke 
dq
r

� ke 
� dx

!x 2 � a 2

r � !x2 � a2

�
�

Electric Potential Due to a Uniformly Charged SphereEXAMPLE 25.8
Because the potential must be continuous at r � R , we

can use this expression to obtain the potential at the surface
of the sphere. That is, the potential at a point such as C
shown in Figure 25.18 is

(for 

(b) Find the potential at a point inside the sphere, that is,
for r � R .

r � R )VC � ke 
Q
R

An insulating solid sphere of radius R has a uniform positive
volume charge density and total charge Q. (a) Find the elec-
tric potential at a point outside the sphere, that is, for 
Take the potential to be zero at 

Solution In Example 24.5, we found that the magnitude
of the electric field outside a uniformly charged sphere of ra-
dius R is

(for 

where the field is directed radially outward when Q is posi-
tive. In this case, to obtain the electric potential at an exterior
point, such as B in Figure 25.18, we use Equation 25.4 and
the expression for Er given above:

(for 

Note that the result is identical to the expression for the elec-
tric potential due to a point charge (Eq. 25.11).

r � R )VB � ke 
Q
r

VB � ��r

�
 Er dr � �keQ �r

�
 

dr
r 2

r � R )Er � ke 
Q
r 2

r � �.
r � R.

dx

�

x
x

0

dq

ra

P

y

Figure 25.17 A uniform line charge of length located along 
the x axis. To calculate the electric potential at P, the line charge is
divided into segments each of length dx and each carrying a charge
dq � � dx.

�

R

r
Q

D
C

B

Figure 25.18 A uniformly charged insulating sphere of radius R
and total charge Q . The electric potentials at points B and C are
equivalent to those produced by a point charge Q located at the cen-
ter of the sphere, but this is not true for point D.



ELECTRIC POTENTIAL DUE TO A
CHARGED CONDUCTOR

In Section 24.4 we found that when a solid conductor in equilibrium carries a net
charge, the charge resides on the outer surface of the conductor. Furthermore, we
showed that the electric field just outside the conductor is perpendicular to the
surface and that the field inside is zero.

We now show that every point on the surface of a charged conductor in
equilibrium is at the same electric potential. Consider two points A and B on
the surface of a charged conductor, as shown in Figure 25.20. Along a surface path
connecting these points, E is always perpendicular to the displacement ds; there-

25.6
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Solution In Example 24.5 we found that the electric field
inside an insulating uniformly charged sphere is

(for 

We can use this result and Equation 25.3 to evaluate the po-
tential difference at some interior point D:

Substituting into this expression and solving for
VD , we obtain

(for (25.25)

At r � R , this expression gives a result that agrees with that
for the potential at the surface, that is, VC . A plot of V versus
r for this charge distribution is given in Figure 25.19.

Exercise What are the magnitude of the electric field and
the electric potential at the center of the sphere?

r � R )VD �
keQ
2R

 �3 �
r 2

R2 �

VC � keQ /R

VD � VC � ��r

R
 Er dr � �

keQ
R3  �r

R
 r dr �

keQ
2R3  (R2 � r 2)

VD � VC

r � R )Er �
keQ
R3 r

Answer V0 � 3keQ /2R .E � 0;

V

V0

V0
2
3

R r

VB =
keQ

r

VD =
keQ
2R

(3 –
r 2

R2 )

V0 =
3keQ
2R

Figure 25.19 A plot of electric potential V versus distance r from
the center of a uniformly charged insulating sphere of radius R . The
curve for VD inside the sphere is parabolic and joins smoothly with
the curve for VB outside the sphere, which is a hyperbola. The poten-
tial has a maximum value V0 at the center of the sphere. We could
make this graph three dimensional (similar to Figures 25.7a and
25.8a) by spinning it around the vertical axis.

+
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+
+
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+++

+
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+
+

+
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+
+

+
+
+++ + +++

+
+

+
+
+ Figure 25.20 An arbitrarily shaped conductor carrying a posi-

tive charge. When the conductor is in electrostatic equilibrium,
all of the charge resides at the surface, E � 0 inside the conduc-
tor, and the direction of E just outside the conductor is perpen-
dicular to the surface. The electric potential is constant inside
the conductor and is equal to the potential at the surface. Note
from the spacing of the plus signs that the surface charge density
is nonuniform.
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the surface of any charged conductor in electrostatic equilibrium is an equipo-
tential surface. Furthermore, because the electric field is zero inside the con-
ductor, we conclude from the relationship that the electric poten-
tial is constant everywhere inside the conductor and equal to its value at the
surface.

Er � �dV/dr

fore Using this result and Equation 25.3, we conclude that the potential
difference between A and B is necessarily zero:

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

VB � VA � ��B

A
 E � ds � 0

E � ds � 0.

(a) + +
+ +

+ +
+ ++

+ +
+ +

+ ++

R

V

keQ
R

keQ
r

(b)

r

E
keQ

r 2

r
R

(c)

Figure 25.21 (a) The excess
charge on a conducting sphere of
radius R is uniformly distributed on
its surface. (b) Electric potential
versus distance r from the center of
the charged conducting sphere. 
(c) Electric field magnitude versus
distance r from the center of the
charged conducting sphere.

Electric field pattern of a charged conducting plate
placed near an oppositely charged pointed conductor.
Small pieces of thread suspended in oil align with the
electric field lines. The field surrounding the pointed
conductor is most intense near the pointed end and at
other places where the radius of curvature is small.

Because this is true about the electric potential, no work is required to move a test
charge from the interior of a charged conductor to its surface.

Consider a solid metal conducting sphere of radius R and total positive charge
Q , as shown in Figure 25.21a. The electric field outside the sphere is keQ /r2 and
points radially outward. From Example 25.8, we know that the electric potential at
the interior and surface of the sphere must be keQ /R relative to infinity. The po-
tential outside the sphere is keQ /r. Figure 25.21b is a plot of the electric potential
as a function of r, and Figure 25.21c shows how the electric field varies with r.

When a net charge is placed on a spherical conductor, the surface charge den-
sity is uniform, as indicated in Figure 25.21a. However, if the conductor is non-
spherical, as in Figure 25.20, the surface charge density is high where the radius of
curvature is small and the surface is convex (as noted in Section 24.4), and it is low
where the radius of curvature is small and the surface is concave. Because the elec-
tric field just outside the conductor is proportional to the surface charge density,
we see that the electric field is large near convex points having small radii of
curvature and reaches very high values at sharp points.

Figure 25.22 shows the electric field lines around two spherical conductors:
one carrying a net charge Q , and a larger one carrying zero net charge. In this
case, the surface charge density is not uniform on either conductor. The sphere
having zero net charge has negative charges induced on its side that faces the

The surface of a charged
conductor is an equipotential
surface
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charged sphere and positive charges induced on its side opposite the charged
sphere. The blue curves in the figure represent the cross-sections of the equipo-
tential surfaces for this charge configuration. As usual, the field lines are perpen-
dicular to the conducting surfaces at all points, and the equipotential surfaces are
perpendicular to the field lines everywhere. Trying to move a positive charge in
the region of these conductors would be like moving a marble on a hill that is flat
on top (representing the conductor on the left) and has another flat area partway
down the side of the hill (representing the conductor on the right).

Two Connected Charged SpheresEXAMPLE 25.9
Two spherical conductors of radii r 1 and r 2 are separated by a
distance much greater than the radius of either sphere. The
spheres are connected by a conducting wire, as shown in Fig-
ure 25.23. The charges on the spheres in equilibrium are q1
and q2 , respectively, and they are uniformly charged. Find
the ratio of the magnitudes of the electric fields at the sur-
faces of the spheres.

Solution Because the spheres are connected by a conduct-
ing wire, they must both be at the same electric potential:

Therefore, the ratio of charges is

V � ke 
q1

r1
� ke 

q2

r2

Q Q = 0––
––

–

––
––

+

+

+

+
+
+
+

+
+

++++
++
++++

+++++++++

+++++++

++++++

Figure 25.22 The electric field lines (in red) around two spherical conductors. The smaller
sphere has a net charge Q , and the larger one has zero net charge. The blue curves are cross-
sections of equipotential surfaces.

r1

r2

q1

q2

Figure 25.23 Two charged spherical conductors connected by a
conducting wire. The spheres are at the same electric potential V.
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A Cavity Within a Conductor

Now consider a conductor of arbitrary shape containing a cavity as shown in Fig-
ure 25.24. Let us assume that no charges are inside the cavity. In this case, the
electric field inside the cavity must be zero regardless of the charge distribu-
tion on the outside surface of the conductor. Furthermore, the field in the cavity is
zero even if an electric field exists outside the conductor.

To prove this point, we use the fact that every point on the conductor is at the
same electric potential, and therefore any two points A and B on the surface of the
cavity must be at the same potential. Now imagine that a field E exists in the cavity
and evaluate the potential difference defined by Equation 25.3:

If E is nonzero, we can always find a path between A and B for which is a
positive number; thus, the integral must be positive. However, because

the integral of must be zero for all paths between any two
points on the conductor, which implies that E is zero everywhere. This contradic-
tion can be reconciled only if E is zero inside the cavity. Thus, we conclude that a
cavity surrounded by conducting walls is a field-free region as long as no charges
are inside the cavity.

Corona Discharge

A phenomenon known as corona discharge is often observed near a conductor
such as a high-voltage power line. When the electric field in the vicinity of the con-
ductor is sufficiently strong, electrons are stripped from air molecules. This causes
the molecules to be ionized, thereby increasing the air’s ability to conduct. The
observed glow (or corona discharge) results from the recombination of free elec-
trons with the ionized air molecules. If a conductor has an irregular shape, the
electric field can be very high near sharp points or edges of the conductor; conse-
quently, the ionization process and corona discharge are most likely to occur
around such points.

(a) Is it possible for the magnitude of the electric field to be zero at a location where the
electric potential is not zero? (b) Can the electric potential be zero where the electric field
is nonzero?

Quick Quiz 25.4

E � dsVB � VA � 0,

E � ds

VB � VA � ��B

A
 E � ds

VB � VA

(1)

Because the spheres are very far apart and their surfaces uni-
formly charged, we can express the magnitude of the electric
fields at their surfaces as

and E2 � ke 
q2

r2 

2E1 � ke 
q1

r1 

2

q1

q2
�

r1

r2

Taking the ratio of these two fields and making use of Equa-
tion (1), we find that

Hence, the field is more intense in the vicinity of the smaller
sphere even though the electric potentials of both spheres
are the same.

E1

E2
�

r2

r1

A

B

Figure 25.24 A conductor in
electrostatic equilibrium contain-
ing a cavity. The electric field in the
cavity is zero, regardless of the
charge on the conductor.
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Optional Section

THE MILLIKAN OIL-DROP EXPERIMENT
During the period from 1909 to 1913, Robert Millikan performed a brilliant set of
experiments in which he measured e, the elementary charge on an electron, and
demonstrated the quantized nature of this charge. His apparatus, diagrammed in
Figure 25.25, contains two parallel metallic plates. Charged oil droplets from an at-
omizer are allowed to pass through a small hole in the upper plate. A horizontally
directed light beam (not shown in the diagram) is used to illuminate the oil
droplets, which are viewed through a telescope whose long axis is at right angles to
the light beam. When the droplets are viewed in this manner, they appear as shin-
ing stars against a dark background, and the rate at which individual drops fall can
be determined.4

Let us assume that a single drop having a mass m and carrying a charge q is be-
ing viewed and that its charge is negative. If no electric field is present between the
plates, the two forces acting on the charge are the force of gravity mg acting down-
ward and a viscous drag force FD acting upward as indicated in Figure 25.26a. The
drag force is proportional to the drop’s speed. When the drop reaches its terminal
speed v, the two forces balance each other (mg � FD).

Now suppose that a battery connected to the plates sets up an electric field be-
tween the plates such that the upper plate is at the higher electric potential. In this
case, a third force qE acts on the charged drop. Because q is negative and E is di-
rected downward, this electric force is directed upward, as shown in Figure 25.26b.
If this force is sufficiently great, the drop moves upward and the drag force acts
downward. When the upward electric force q E balances the sum of the gravita-
tional force and the downward drag force the drop reaches a new terminal
speed v� in the upward direction.

With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is
comparable. Hence, one can follow a single droplet for hours, alternately rising
and falling, by simply turning the electric field on and off.

F�D ,

F�D

25.7

4 At one time, the oil droplets were termed “Millikan’s Shining Stars.” Perhaps this description has lost
its popularity because of the generations of physics students who have experienced hallucinations, near
blindness, migraine headaches, and so forth, while repeating Millikan’s experiment!

q

v

– +

Battery

Switch

Charged plate

Charged plate

Telescope

Atomizer

Oil droplets

Pin hole

FD

FD

qE

mg

E
v ′

(b) Field on

v

mg

q

(a) Field off

′

Figure 25.25 Schematic drawing of the Millikan oil-drop apparatus.

Figure 25.26 The forces acting
on a negatively charged oil droplet
in the Millikan experiment.
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After recording measurements on thousands of droplets, Millikan and his co-
workers found that all droplets, to within about 1% precision, had a charge equal
to some integer multiple of the elementary charge e :

� 1, � 2, � 3, . . .

where Millikan’s experiment yields conclusive evidence that
charge is quantized. For this work, he was awarded the Nobel Prize in Physics in
1923.

Optional Section

APPLICATIONS OF ELECTROSTATICS
The practical application of electrostatics is represented by such devices as light-
ning rods and electrostatic precipitators and by such processes as xerography and
the painting of automobiles. Scientific devices based on the principles of electro-
statics include electrostatic generators, the field-ion microscope, and ion-drive
rocket engines.

The Van de Graaff Generator

In Section 24.5 we described an experiment that demonstrates a method for trans-
ferring charge to a hollow conductor (the Faraday ice-pail experiment). When a
charged conductor is placed in contact with the inside of a hollow conductor, all
of the charge of the charged conductor is transferred to the hollow conductor. In
principle, the charge on the hollow conductor and its electric potential can be in-
creased without limit by repetition of the process.

In 1929 Robert J. Van de Graaff (1901–1967) used this principle to design and
build an electrostatic generator. This type of generator is used extensively in nu-
clear physics research. A schematic representation of the generator is given in Fig-
ure 25.27. Charge is delivered continuously to a high-potential electrode by means
of a moving belt of insulating material. The high-voltage electrode is a hollow con-
ductor mounted on an insulating column. The belt is charged at point A by means
of a corona discharge between comb-like metallic needles and a grounded grid.
The needles are maintained at a positive electric potential of typically 104 V. The
positive charge on the moving belt is transferred to the hollow conductor by a sec-
ond comb of needles at point B. Because the electric field inside the hollow con-
ductor is negligible, the positive charge on the belt is easily transferred to the con-
ductor regardless of its potential. In practice, it is possible to increase the electric
potential of the hollow conductor until electrical discharge occurs through the air.
Because the “breakdown” electric field in air is about 3 � 106 V/m, a sphere 1 m
in radius can be raised to a maximum potential of 3 � 106 V. The potential can be
increased further by increasing the radius of the hollow conductor and by placing
the entire system in a container filled with high-pressure gas.

Van de Graaff generators can produce potential differences as large as 20 mil-
lion volts. Protons accelerated through such large potential differences receive
enough energy to initiate nuclear reactions between themselves and various target
nuclei. Smaller generators are often seen in science classrooms and museums. If a
person insulated from the ground touches the sphere of a Van de Graaff genera-
tor, his or her body can be brought to a high electric potential. The hair acquires a
net positive charge, and each strand is repelled by all the others. The result is a

25.8

e � 1.60 � 10�19 C.

q � ne  n � 0,

11.10
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Figure 25.27 Schematic diagram
of a Van de Graaff generator.
Charge is transferred to the hollow
conductor at the top by means of a
moving belt. The charge is de-
posited on the belt at point A and
transferred to the hollow conduc-
tor at point B.
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scene such as that depicted in the photograph at the beginning of this chapter. In
addition to being insulated from ground, the person holding the sphere is safe in
this demonstration because the total charge on the sphere is very small (on the or-
der of 1 C). If this amount of charge accidentally passed from the sphere
through the person to ground, the corresponding current would do no harm.

The Electrostatic Precipitator

One important application of electrical discharge in gases is the electrostatic precipi-
tator. This device removes particulate matter from combustion gases, thereby re-
ducing air pollution. Precipitators are especially useful in coal-burning power
plants and in industrial operations that generate large quantities of smoke. Cur-
rent systems are able to eliminate more than 99% of the ash from smoke.

Figure 25.28a shows a schematic diagram of an electrostatic precipitator. A
high potential difference (typically 40 to 100 kV) is maintained between a wire
running down the center of a duct and the walls of the duct, which are grounded.
The wire is maintained at a negative electric potential with respect to the walls, so
the electric field is directed toward the wire. The values of the field near the wire
become high enough to cause a corona discharge around the wire; the discharge
ionizes some air molecules to form positive ions, electrons, and such negative ions
as O2

�. The air to be cleaned enters the duct and moves near the wire. As the elec-
trons and negative ions created by the discharge are accelerated toward the outer
wall by the electric field, the dirt particles in the air become charged by collisions
and ion capture. Because most of the charged dirt particles are negative, they too
are drawn to the duct walls by the electric field. When the duct is periodically
shaken, the particles break loose and are collected at the bottom.

Insulator

Clean air
out

Weight
Dirty
air in

Dirt out

(a) (c)(b)

Figure 25.28 (a) Schematic diagram of an electrostatic precipitator. The high negative electric
potential maintained on the central coiled wire creates an electrical discharge in the vicinity of
the wire. Compare the air pollution when the electrostatic precipitator is (b) operating and 
(c) turned off. 

QuickLab
Sprinkle some salt and pepper on an
open dish and mix the two together.
Now pull a comb through your hair
several times and bring the comb to
within 1 cm of the salt and pepper.
What happens? How is what happens
here related to the operation of an
electrostatic precipitator?
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In addition to reducing the level of particulate matter in the atmosphere
(compare Figs. 25.28b and c), the electrostatic precipitator recovers valuable mate-
rials in the form of metal oxides.

Xerography and Laser Printers

The basic idea of xerography5 was developed by Chester Carlson, who was granted
a patent for the xerographic process in 1940. The one feature of this process that
makes it unique is the use of a photoconductive material to form an image. (A pho-
toconductor is a material that is a poor electrical conductor in the dark but that be-
comes a good electrical conductor when exposed to light.)

The xerographic process is illustrated in Figure 25.29a to d. First, the surface 
of a plate or drum that has been coated with a thin film of photoconductive mater-
ial (usually selenium or some compound of selenium) is given a positive electrosta-
tic charge in the dark. An image of the page to be copied is then focused by a lens
onto the charged surface. The photoconducting surface becomes conducting only
in areas where light strikes it. In these areas, the light produces charge carriers in
the photoconductor that move the positive charge off the drum. However, positive

5 The prefix xero - is from the Greek word meaning “dry.” Note that no liquid ink is used anywhere in 
xerography.

Selenium-coated
drum

(a) Charging the drum (b) Imaging the document

(d) Transferring the
       toner to the paper

Laser
beam

Interlaced pattern
of laser lines

(e) Laser printer drum

Negatively
charged

toner
(c) Applying the toner

Lens

Light causes some areas
of drum to become
electrically conducting,
removing positive charge

Figure 25.29 The xerographic process: (a) The photoconductive surface of the drum is posi-
tively charged. (b) Through the use of a light source and lens, an image is formed on the surface
in the form of positive charges. (c) The surface containing the image is covered with a negatively
charged powder, which adheres only to the image area. (d) A piece of paper is placed over the
surface and given a positive charge. This transfers the image to the paper as the negatively
charged powder particles migrate to the paper. The paper is then heat-treated to “fix” the pow-
der. (e) A laser printer operates similarly except the image is produced by turning a laser beam
on and off as it sweeps across the selenium-coated drum.
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charges remain on those areas of the photoconductor not exposed to light, 
leaving a latent image of the object in the form of a positive surface charge dis-
tribution.

Next, a negatively charged powder called a toner is dusted onto the photocon-
ducting surface. The charged powder adheres only to those areas of the surface
that contain the positively charged image. At this point, the image becomes visible.
The toner (and hence the image) are then transferred to the surface of a sheet of
positively charged paper.

Finally, the toner is “fixed” to the surface of the paper as the toner melts while
passing through high-temperature rollers. This results in a permanent copy of the
original.

A laser printer (Fig. 25.29e) operates by the same principle, with the excep-
tion that a computer-directed laser beam is used to illuminate the photoconductor
instead of a lens.

SUMMARY

When a positive test charge q0 is moved between points A and B in an electric field
E, the change in the potential energy is

(25.1)

The electric potential is a scalar quantity and has units of joules per
coulomb ( J/C), where 

The potential difference �V between points A and B in an electric field E is
defined as

(25.3)

The potential difference between two points A and B in a uniform electric
field E is

(25.6)

where d is the magnitude of the displacement in the direction parallel to E.
An equipotential surface is one on which all points are at the same electric

potential. Equipotential surfaces are perpendicular to electric field lines. 
If we define at the electric potential due to a point charge at

any distance r from the charge is

(25.11)

We can obtain the electric potential associated with a group of point charges by
summing the potentials due to the individual charges.

The potential energy associated with a pair of point charges separated by
a distance r 12 is

(25.13)

This energy represents the work required to bring the charges from an infinite
separation to the separation r12 . We obtain the potential energy of a distribution
of point charges by summing terms like Equation 25.13 over all pairs of particles.

U � ke 
q1q2

r12

V � ke 
q
r

rA � �,V � 0

�V � �Ed

�V �
�U
q0

� ��B

A
 E � ds

1 J/C � 1 V.
V � U/q0

�U � �q0 �B

A
 E � ds
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If we know the electric potential as a function of coordinates x, y, z, we can ob-
tain the components of the electric field by taking the negative derivative of the
electric potential with respect to the coordinates. For example, the x component
of the electric field is

(25.16)

The electric potential due to a continuous charge distribution is

(25.19)

Every point on the surface of a charged conductor in electrostatic equilibrium
is at the same electric potential. The potential is constant everywhere inside the
conductor and equal to its value at the surface.

Table 25.1 lists electric potentials due to several charge distributions.

V � ke � 
dq
r

Ex � �
dV
dx

Problem-Solving Hints
Calculating Electric Potential

• Remember that electric potential is a scalar quantity, so components need
not be considered. Therefore, when using the superposition principle to
evaluate the electric potential at a point due to a system of point charges,
simply take the algebraic sum of the potentials due to the various charges.
However, you must keep track of signs. The potential is positive for positive
charges, and it is negative for negative charges.

• Just as with gravitational potential energy in mechanics, only changes in elec-
tric potential are significant; hence, the point where you choose the poten-

TABLE 25.1 Electric Potential Due to Various Charge Distributions

Charge Distribution Electric Potential Location

Uniformly charged Along perpendicular central
ring of radius a axis of ring, distance x

from ring center

Uniformly charged Along perpendicular central
disk of radius a axis of disk, distance x

from disk center

Uniformly charged,
insulating solid
sphere of radius R
and total charge Q

Isolated conducting
sphere of radius R
and total charge Q

V � ke 
Q
R

V � ke 
Q
r

r � R

r � R

V � ke 
Q

!x2 � a2

V �
keQ
2R

 �3 �
r 2

R2 �
V � ke 

Q
r	

	

V � 2�ke �[(x2 � a2)1/2 � x]

r � R

r � R
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tial to be zero is arbitrary. When dealing with point charges or a charge dis-
tribution of finite size, we usually define V � 0 to be at a point infinitely far
from the charges.

• You can evaluate the electric potential at some point P due to a continuous
distribution of charge by dividing the charge distribution into infinitesimal
elements of charge dq located at a distance r from P. Then, treat one charge
element as a point charge, such that the potential at P due to the element is

Obtain the total potential at P by integrating dV over the en-
tire charge distribution. In performing the integration for most problems,
you must express dq and r in terms of a single variable. To simplify the inte-
gration, consider the geometry involved in the problem carefully. Review Ex-
amples 25.5 through 25.7 for guidance.

• Another method that you can use to obtain the electric potential due to a fi-
nite continuous charge distribution is to start with the definition of poten-
tial difference given by Equation 25.3. If you know or can easily obtain E
(from Gauss’s law), then you can evaluate the line integral of An ex-
ample of this method is given in Example 25.8.

• Once you know the electric potential at a point, you can obtain the electric
field at that point by remembering that the electric field component in 
a specified direction is equal to the negative of the derivative of the electric
potential in that direction. Example 25.4 illustrates this procedure.

E � ds.

dV � kedq/r.

QUESTIONS

sphere is zero. Does this imply that the potential is zero
inside the sphere? Explain.

9. The potential of a point charge is defined to be zero at an
infinite distance. Why can we not define the potential of
an infinite line of charge to be zero at 

10. Two charged conducting spheres of different radii are
connected by a conducting wire, as shown in Figure
25.23. Which sphere has the greater charge density?

11. What determines the maximum potential to which the
dome of a Van de Graaff generator can be raised?

12. Explain the origin of the glow sometimes observed
around the cables of a high-voltage power line.

13. Why is it important to avoid sharp edges or points on con-
ductors used in high-voltage equipment?

14. How would you shield an electronic circuit or laboratory
from stray electric fields? Why does this work?

15. Why is it relatively safe to stay in an automobile with a
metal body during a severe thunderstorm?

16. Walking across a carpet and then touching someone can
result in a shock. Explain why this occurs.

r � � ?

1. Distinguish between electric potential and electric poten-
tial energy.

2. A negative charge moves in the direction of a uniform
electric field. Does the potential energy of the charge in-
crease or decrease? Does it move to a position of higher
or lower potential?

3. Give a physical explanation of the fact that the poten-
tial energy of a pair of like charges is positive whereas 
the potential energy of a pair of unlike charges is nega-
tive.

4. A uniform electric field is parallel to the x axis. In what
direction can a charge be displaced in this field without
any external work being done on the charge?

5. Explain why equipotential surfaces are always perpendic-
ular to electric field lines.

6. Describe the equipotential surfaces for (a) an infinite line
of charge and (b) a uniformly charged sphere.

7. Explain why, under static conditions, all points in a con-
ductor must be at the same electric potential.

8. The electric field inside a hollow, uniformly charged
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PROBLEMS

11. A 4.00-kg block carrying a charge Q � 50.0 C is con-
nected to a spring for which k � 100 N/m. The block
lies on a frictionless horizontal track, and the system is
immersed in a uniform electric field of magnitude E �
5.00 � 105 V/m, directed as shown in Figure P25.11. If
the block is released from rest when the spring is un-
stretched (at x � 0), (a) by what maximum amount
does the spring expand? (b) What is the equilibrium
position of the block? (c) Show that the block’s motion
is simple harmonic, and determine its period. 
(d) Repeat part (a) if the coefficient of kinetic friction
between block and surface is 0.200.

12. A block having mass m and charge Q is connected to a
spring having constant k . The block lies on a frictionless
horizontal track, and the system is immersed in a uni-
form electric field of magnitude E, directed as shown in
Figure P25.11. If the block is released from rest when
the spring is unstretched (at x � 0), (a) by what maxi-
mum amount does the spring expand? (b) What is the
equilibrium position of the block? (c) Show that the
block’s motion is simple harmonic, and determine its
period.(d) Repeat part (a) if the coefficient of kinetic
friction between block and surface is k .

Section 25.1 Potential Difference and Electric Potential
1. How much work is done (by a battery, generator, or

some other source of electrical energy) in moving Avo-
gadro’s number of electrons from an initial point where
the electric potential is 9.00 V to a point where the po-
tential is � 5.00 V ? (The potential in each case is mea-
sured relative to a common reference point.)

2. An ion accelerated through a potential difference of
115 V experiences an increase in kinetic energy of 
7.37 � 10�17 J. Calculate the charge on the ion.

3. (a) Calculate the speed of a proton that is accelerated
from rest through a potential difference of 120 V. 
(b) Calculate the speed of an electron that is acceler-
ated through the same potential difference.

4. Review Problem. Through what potential difference
would an electron need to be accelerated for it to
achieve a speed of 40.0% of the speed of light, starting
from rest? The speed of light is c � 3.00 � 108 m/s; 
review Section 7.7.

5. What potential difference is needed to stop an electron
having an initial speed of 4.20 � 105 m/s?

Section 25.2 Potential Differences in a 
Uniform Electric Field

6. A uniform electric field of magnitude 250 V/m is 
directed in the positive x direction. A � 12.0-C 
charge moves from the origin to the point (x, y) �
(20.0 cm, 50.0 cm). (a) What was the change in the 
potential energy of this charge? (b) Through what po-
tential difference did the charge move?

7. The difference in potential between the accelerating
plates of a TV set is about 25 000 V. If the distance be-
tween these plates is 1.50 cm, find the magnitude of the
uniform electric field in this region.

8. Suppose an electron is released from rest in a uniform
electric field whose magnitude is 5.90 � 103 V/m. 
(a) Through what potential difference will it have
passed after moving 1.00 cm? (b) How fast will the elec-
tron be moving after it has traveled 1.00 cm?

9. An electron moving parallel to the x axis has an initial
speed of 3.70 � 106 m/s at the origin. Its speed is re-
duced to 1.40 � 105 m/s at the point x � 2.00 cm. Cal-
culate the potential difference between the origin and
that point. Which point is at the higher potential?

10. A uniform electric field of magnitude 325 V/m is 
directed in the negative y direction as shown in 
Figure P25.10. The coordinates of point A are 
(� 0.200, � 0.300) m, and those of point B are 
(0.400, 0.500) m. Calculate the potential difference

using the blue path.VB � VA ,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

y

B

x

E

A

Figure P25.10

Figure P25.11 Problems 11 and 12.

k
m, Q

E

x = 0

WEB
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13. On planet Tehar, the acceleration due to gravity is the
same as that on Earth but there is also a strong down-
ward electric field with the field being uniform close to
the planet’s surface. A 2.00-kg ball having a charge of 
5.00 C is thrown upward at a speed of 20.1 m/s and it
hits the ground after an interval of 4.10 s. What is the
potential difference between the starting point and the
top point of the trajectory?

14. An insulating rod having linear charge density � �
40.0 C/m and linear mass density  � 0.100 kg/m is
released from rest in a uniform electric field E �
100 V/m directed perpendicular to the rod (Fig.
P25.14). (a) Determine the speed of the rod after it has
traveled 2.00 m. (b) How does your answer to part (a)
change if the electric field is not perpendicular to the
rod? Explain.

18. A charge � q is at the origin. A charge � 2q is at x �
2.00 m on the x axis. For what finite value(s) of x is 
(a) the electric field zero? (b) the electric potential zero?

19. The Bohr model of the hydrogen atom states that the
single electron can exist only in certain allowed orbits
around the proton. The radius of each Bohr orbit is r �
n2 (0.052 9 nm) where n � 1, 2, 3, . . . . Calculate
the electric potential energy of a hydrogen atom when
the electron is in the (a) first allowed orbit, n � 1; 
(b) second allowed orbit, n � 2; and (c) when the elec-
tron has escaped from the atom Express your
answers in electron volts.

20. Two point charges nC and 
are separated by 35.0 cm. (a) What is the potential en-
ergy of the pair? What is the significance of the alge-
braic sign of your answer? (b) What is the electric po-
tential at a point midway between the charges?

21. The three charges in Figure P25.21 are at the vertices of
an isosceles triangle. Calculate the electric potential at
the midpoint of the base, taking q � 7.00 C.

22. Compare this problem with Problem 55 in Chapter 23. Four
identical point charges (q � � 10.0 C) are located on
the corners of a rectangle, as shown in Figure P23.55.
The dimensions of the rectangle are L � 60.0 cm and
W � 15.0 cm. Calculate the electric potential energy of
the charge at the lower left corner due to the other
three charges.

Q 2 � �3.00 nCQ 1 � �5.00

(r � �).

string makes an angle 	 � 60.0° with a uniform electric
field of magnitude E � 300 V/m. Determine the speed
of the particle when the string is parallel to the electric
field (point a in Fig. P25.15).

Section 25.3 Electric Potential and Potential Energy 
Due to Point Charges
Note: Unless stated otherwise, assume a reference level of po-
tential at 

16. (a) Find the potential at a distance of 1.00 cm from a
proton. (b) What is the potential difference between
two points that are 1.00 cm and 2.00 cm from a proton?
(c) Repeat parts (a) and (b) for an electron.

17. Given two 2.00-C charges, as shown in Figure P25.17,
and a positive test charge � 10�18 C at the ori-
gin, (a) what is the net force exerted on q by the two
2.00-C charges? (b) What is the electric field at the ori-
gin due to the two 2.00-C charges? (c) What is the
electric potential at the origin due to the two 2.00-C
charges?

q � 1.28

r � �.V � 0

15. A particle having charge C and mass m �
0.010 0 kg is connected to a string that is L � 1.50 m
long and is tied to the pivot point P in Figure P25.15.
The particle, string, and pivot point all lie on a horizon-
tal table. The particle is released from rest when the

q � �2.00

2.00
y

q

0 x = 0.800 mx = –0.800 m
x

C Cµ 2.00 µ

θ

Top View

E
P

a

m
q

L

λ, µ

EE

,

Figure P25.14

Figure P25.15

Figure P25.17
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collide? (Hint: Consider conservation of energy and
conservation of linear momentum.) (b) If the spheres
were conductors, would the speeds be greater or less
than those calculated in part (a)?

29. A small spherical object carries a charge of 8.00 nC. At
what distance from the center of the object is the poten-
tial equal to 100 V ? 50.0 V ? 25.0 V ? Is the spacing of the
equipotentials proportional to the change in potential?

30. Two point charges of equal magnitude are located
along the y axis equal distances above and below the 
x axis, as shown in Figure P25.30. (a) Plot a graph of
the potential at points along the x axis over the interval

You should plot the potential in units of
keQ /a. (b) Let the charge located at �a be negative
and plot the potential along the y axis over the interval
� 4a � y � 4a.

�3a � x � 3a.

31. In Rutherford’s famous scattering experiments that led
to the planetary model of the atom, alpha particles
(charge � 2e, mass � 6.64 � 10�27 kg) were fired at 
a gold nucleus (charge � 79e). An alpha particle, ini-
tially very far from the gold nucleus, is fired with a ve-
locity of 2.00 � 107 m/s directly toward the center of
the nucleus. How close does the alpha particle get to
this center before turning around? Assume the gold nu-
cleus remains stationary.

32. An electron starts from rest 3.00 cm from the center of
a uniformly charged insulating sphere of radius 2.00 cm
and total charge 1.00 nC. What is the speed of the elec-
tron when it reaches the surface of the sphere?

33. Calculate the energy required to assemble the array of
charges shown in Figure P25.33, where a � 0.200 m, 
b � 0.400 m, and q � 6.00 C.

34. Four identical particles each have charge q and mass m.
They are released from rest at the vertices of a square of
side L . How fast is each charge moving when their dis-
tance from the center of the square doubles?

23. Show that the amount of work required to assemble
four identical point charges of magnitude Q at the cor-
ners of a square of side s is 5.41keQ2/s.

24. Compare this problem with Problem 18 in Chapter 23. Two
point charges each of magnitude 2.00 C are located
on the x axis. One is at x � 1.00 m, and the other is at 
x � � 1.00 m. (a) Determine the electric potential on
the y axis at y � 0.500 m. (b) Calculate the electric po-
tential energy of a third charge, of � 3.00 C, placed on
the y axis at y � 0.500 m.

25. Compare this problem with Problem 22 in Chapter 23. Five
equal negative point charges �q are placed symmetri-
cally around a circle of radius R. Calculate the electric
potential at the center of the circle.

26. Compare this problem with Problem 17 in Chapter 23.
Three equal positive charges q are at the corners of an
equilateral triangle of side a, as shown in Figure P23.17.
(a) At what point, if any, in the plane of the charges is
the electric potential zero? (b) What is the electric po-
tential at the point P due to the two charges at the base
of the triangle?

27. Review Problem. Two insulating spheres having radii
0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg,
and charges � 2.00 C and 3.00 C are released from
rest when their centers are separated by 1.00 m. 
(a) How fast will each be moving when they collide?
(Hint: Consider conservation of energy and linear mo-
mentum.) (b) If the spheres were conductors would the
speeds be larger or smaller than those calculated in part
(a)? Explain.

28. Review Problem. Two insulating spheres having radii
r 1 and r 2 , masses m 1 and m 2 , and charges �q1 and q2
are released from rest when their centers are separated
by a distance d. (a) How fast is each moving when they

2.00 cm

4.00 cm

q

–q –q

Figure P25.21

a

a

x

y

Q >O

Q

Figure P25.30
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35. How much work is required to assemble eight identical
point charges, each of magnitude q, at the corners of a
cube of side s?

Section 25.4 Obtaining the Value of the Electric Field
from the Electric Potential

36. The potential in a region between x � 0 and x �
6.00 m is where a � 10.0 V and b �
� 7.00 V/m. Determine (a) the potential at x �
0, 3.00 m, and 6.00 m and (b) the magnitude and 
direction of the electric field at x � 0, 3.00 m, and 
6.00 m.

37. Over a certain region of space, the electric potential is
Find the expressions for the x, y,

and z components of the electric field over this region.
What is the magnitude of the field at the point P, which
has coordinates (1, 0, � 2) m?

38. The electric potential inside a charged spherical
conductor of radius R is given by V � ke Q /R and
outside the conductor is given by V � ke Q /r. Using

derive the electric field (a) inside and
(b) outside this charge distribution.

39. It is shown in Example 25.7 that the potential at a point
P a distance a above one end of a uniformly charged
rod of length lying along the x axis is

Use this result to derive an expression for the y compo-
nent of the electric field at P. (Hint: Replace a with y.)

40. When an uncharged conducting sphere of radius a is
placed at the origin of an xyz coordinate system that lies
in an initially uniform electric field the result-
ing electric potential is 

for points outside the sphere, where V0 is the (constant)
electric potential on the conductor. Use this equation to
determine the x, y, and z components of the resulting
electric field.

V(x, y, z) � V0 � E0z �
E0a3z

(x2 � y2 � z2)3/2

E � E0k,

V �
keQ

�
 ln� � � !�2 � a2

a �
�

Er � �dV/dr,

V � 5x � 3x2y � 2yz2.

V � a � bx

Section 25.5 Electric Potential Due to Continuous 
Charge Distributions

41. Consider a ring of radius R with the total charge Q
spread uniformly over its perimeter. What is the poten-
tial difference between the point at the center of the
ring and a point on its axis a distance 2R from the 
center?

42. Compare this problem with Problem 33 in Chapter 23. A
uniformly charged insulating rod of length 14.0 cm is
bent into the shape of a semicircle, as shown in Figure
P23.33. If the rod has a total charge of � 7.50 C, find
the electric potential at O, the center of the semicircle.

43. A rod of length L (Fig. P25.43) lies along the x axis with
its left end at the origin and has a nonuniform charge
density � � �x (where � is a positive constant). 
(a) What are the units of �? (b) Calculate the electric
potential at A.

46. A wire of finite length that has a uniform linear charge
density � is bent into the shape shown in Figure P25.46.
Find the electric potential at point O.

44. For the arrangement described in the previous prob-
lem, calculate the electric potential at point B that lies
on the perpendicular bisector of the rod a distance 
b above the x axis.

45. Calculate the electric potential at point P on the axis of
the annulus shown in Figure P25.45, which has a uni-
form charge density �.

a
b

x
P

b

B
y

x

L

d

A

q –2q

2q 3q
b

a

Figure P25.33

Figure P25.43 Problems 43 and 44.

Figure P25.45
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Section 25.6 Electric Potential Due to a 
Charged Conductor

47. How many electrons should be removed from an ini-
tially uncharged spherical conductor of radius 0.300 m
to produce a potential of 7.50 kV at the surface?

48. Two charged spherical conductors are connected by a
long conducting wire, and a charge of 20.0 C is placed
on the combination. (a) If one sphere has a radius of
4.00 cm and the other has a radius of 6.00 cm, what is
the electric field near the surface of each sphere? 
(b) What is the electric potential of each sphere?

49. A spherical conductor has a radius of 14.0 cm and
charge of 26.0 C. Calculate the electric field and the
electric potential at (a) r � 10.0 cm, (b) r � 20.0 cm,
and (c) r � 14.0 cm from the center.

50. Two concentric spherical conducting shells of radii a �
0.400 m and b � 0.500 m are connected by a thin wire,
as shown in Figure P25.50. If a total charge Q �
10.0 C is placed on the system, how much charge
settles on each sphere?

ADDITIONAL PROBLEMS

53. The liquid-drop model of the nucleus suggests that
high-energy oscillations of certain nuclei can split the
nucleus into two unequal fragments plus a few neu-
trons. The fragments acquire kinetic energy from their
mutual Coulomb repulsion. Calculate the electric po-
tential energy (in electron volts) of two spherical frag-
ments from a uranium nucleus having the following
charges and radii: 38e and 5.50 � 10�15 m; 54e and 
6.20 � 10�15 m. Assume that the charge is distributed
uniformly throughout the volume of each spherical
fragment and that their surfaces are initially in contact
at rest. (The electrons surrounding the nucleus can be
neglected.)

54. On a dry winter day you scuff your leather-soled shoes
across a carpet and get a shock when you extend the tip
of one finger toward a metal doorknob. In a dark room
you see a spark perhaps 5 mm long. Make order-of-
magnitude estimates of (a) your electric potential and
(b) the charge on your body before you touch the door-
knob. Explain your reasoning.

55. The charge distribution shown in Figure P25.55 is re-
ferred to as a linear quadrupole. (a) Show that the po-
tential at a point on the x axis where x � a is

(b) Show that the expression obtained in part (a) when
reduces to

V �
2keQa2

x3

x W a

V �
2keQa2

x3 � xa2

WEB

56. (a) Use the exact result from Problem 55 to find the
electric field at any point along the axis of the linear
quadrupole for (b) Evaluate E at x � 3a if a �
2.00 mm and Q � 3.00 C.

57. At a certain distance from a point charge, the magni-
tude of the electric field is 500 V/m and the electric po-
tential is � 3.00 kV. (a) What is the distance to the
charge? (b) What is the magnitude of the charge?

58. An electron is released from rest on the axis of a uni-
form positively charged ring, 0.100 m from the ring’s

x � a.

(Optional)
Section 25.7 The Millikan Oil-Drop Experiment
(Optional)
Section 25.8 Applications of Electrostatics

51. Consider a Van de Graaff generator with a 30.0-cm-
diameter dome operating in dry air. (a) What is the
maximum potential of the dome? (b) What is the maxi-
mum charge on the dome?

52. The spherical dome of a Van de Graaff generator can
be raised to a maximum potential of 600 kV; then addi-
tional charge leaks off in sparks, by producing break-
down of the surrounding dry air. Determine (a) the
charge on the dome and (b) the radius of the dome.

+Q –2Q +Q

x

y

(a, 0)(–a, 0)

Quadrupole

a

b

q 1

q 2

Wire

2R 2R
O

R

Figure P25.46

Figure P25.50

Figure P25.55
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center. If the linear charge density of the ring is 
� 0.100 C/m and the radius of the ring is 0.200 m,
how fast will the electron be moving when it reaches the
center of the ring?

59. (a) Consider a uniformly charged cylindrical shell hav-
ing total charge Q , radius R , and height h. Determine
the electrostatic potential at a point a distance d from
the right side of the cylinder, as shown in Figure P25.59.
(Hint: Use the result of Example 25.5 by treating the
cylinder as a collection of ring charges.) (b) Use the re-
sult of Example 25.6 to solve the same problem for a
solid cylinder.

63. From Gauss’s law, the electric field set up by a uniform
line of charge is

where is a unit vector pointing radially away from the
line and � is the charge per unit length along the line.
Derive an expression for the potential difference be-
tween and 

64. A point charge q is located at x � �R , and a point
charge � 2q is located at the origin. Prove that the
equipotential surface that has zero potential is a sphere
centered at (� 4R/3, 0, 0) and having a radius r �
2R/3.

65. Consider two thin, conducting, spherical shells as
shown in cross-section in Figure P25.65. The inner shell
has a radius r 1 � 15.0 cm and a charge of 10.0 nC. The
outer shell has a radius r 2 � 30.0 cm and a charge of
� 15.0 nC. Find (a) the electric field E and (b) the
electric potential V in regions A, B, and C, with V � 0 at
r � �.

r � r2 .r � r1

r̂

E � � �

2��0r � r̂

WEB

66. The x axis is the symmetry axis of a uniformly charged
ring of radius R and charge Q (Fig. P25.66). A point
charge Q of mass M is located at the center of the ring.
When it is displaced slightly, the point charge acceler-

60. Two parallel plates having charges of equal magnitude
but opposite sign are separated by 12.0 cm. Each plate
has a surface charge density of 36.0 nC/m2. A proton is
released from rest at the positive plate. Determine 
(a) the potential difference between the plates, (b) the
energy of the proton when it reaches the negative plate,
(c) the speed of the proton just before it strikes the neg-
ative plate, (d) the acceleration of the proton, and 
(e) the force on the proton. (f) From the force, find
the magnitude of the electric field and show that it is
equal to that found from the charge densities on the
plates.

61. Calculate the work that must be done to charge a spher-
ical shell of radius R to a total charge Q.

62. A Geiger–Müller counter is a radiation detector that es-
sentially consists of a hollow cylinder (the cathode) of
inner radius ra and a coaxial cylindrical wire (the an-
ode) of radius rb (Fig. P25.62). The charge per unit
length on the anode is �, while the charge per unit
length on the cathode is � �. (a) Show that the magni-
tude of the potential difference between the wire and
the cylinder in the sensitive region of the detector is

(b) Show that the magnitude of the electric field over
that region is given by

where r is the distance from the center of the anode to
the point where the field is to be calculated.

E �
�V

ln(ra/rb)
 � 1

r �

�V � 2ke � ln� ra

rb
�

d

R

h

Figure P25.59

rb
λ

ra –λ

Cathode

Anode

λ

C

B

A

r1

r2

Figure P25.62

Figure P25.65
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ates along the x axis to infinity. Show that the ultimate
speed of the point charge is

v � � 2keQ2

MR �
1/2

R
Q

v

x

Uniformly
charged ring

Q

Figure P25.66

Figure P25.68

Figure P25.69

Figure P25.70

(b) For the dipole arrangement shown, express V in
terms of cartesian coordinates using r � (x2 + y2)1/2

and

Using these results and taking calculate the field
components Ex and Ey .

70. Figure P25.70 shows several equipotential lines each la-
beled by its potential in volts. The distance between the
lines of the square grid represents 1.00 cm. (a) Is the
magnitude of the field bigger at A or at B? Why? 
(b) What is E at B? (c) Represent what the field looks
like by drawing at least eight field lines.

r W a,

cos 	 �
y

(x2 � y2)1/2

69. A dipole is located along the y axis as shown in Figure
P25.69. (a) At a point P, which is far from the dipole

the electric potential is

where p � 2qa. Calculate the radial component Er and
the perpendicular component E	 of the associated elec-
tric field. Note that Do these re-
sults seem reasonable for 	 � 90° and 0°? for r � 0? 

E	 � �(1/r)(�V/�	).

V � ke 
p cos 	

r 2

(r W a),

67. An infinite sheet of charge that has a surface charge
density of 25.0 nC/m2 lies in the yz plane, passes
through the origin, and is at a potential of 1.00 kV at
the point . A long wire having a linear
charge density of 80.0 nC/m lies parallel to the y axis
and intersects the x axis at x � 3.00 m. (a) Determine,
as a function of x, the potential along the x axis between
wire and sheet. (b) What is the potential energy of a
2.00-nC charge placed at x � 0.800 m?

68. The thin, uniformly charged rod shown in Figure
P25.68 has a linear charge density �. Find an expression
for the electric potential at P.

y � 0, z � 0

a

–q

a

+q

r 1

r 2

r

θ
x

y
P

Er

Eθθ

b

a L

x

P

y

71. A disk of radius R has a nonuniform surface charge
density � � Cr, where C is a constant and r is measured
from the center of the disk (Fig. P25.71). Find (by di-
rect integration) the potential at P.

×

B

×0
2

4
6
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ANSWERS TO QUICK QUIZZES

electric potential is zero at the center of the dipole, but
the magnitude of the field at that point is not zero. (The
two charges in a dipole are by definition of opposite
sign; thus, the electric field lines created by the two
charges extend from the positive to the negative charge
and do not cancel anywhere.) This is the situation we
presented in Example 25.4c, in which the equations we
obtained give and .Ex � 0V � 0

25.1 We do if the electric field is uniform. (This is precisely
what we do in the next section.) In general, however, an
electric field changes from one place to another.

25.2 B : C, C : D, A : B, D : E. Moving from B to C de-
creases the electric potential by 2 V, so the electric field
performs 2 J of work on each coulomb of charge that
moves. Moving from C to D decreases the electric poten-
tial by 1 V, so 1 J of work is done by the field. It takes no
work to move the charge from A to B because the elec-
tric potential does not change. Moving from D to E in-
creases the electric potential by 1 V, and thus the field
does � 1 J of work, just as raising a mass to a higher ele-
vation causes the gravitational field to do negative work
on the mass.

25.3 The electric potential decreases in inverse proportion to
the radius (see Eq. 25.11). The electric field magnitude
decreases as the reciprocal of the radius squared (see
Eq. 23.4). Because the surface area increases as r 2 while
the electric field magnitude decreases as 1/r 2, the elec-
tric flux through the surface remains constant (see 
Eq. 24.1).

25.4 (a) Yes. Consider four equal charges placed at the cor-
ners of a square. The electric potential graph for this sit-
uation is shown in the figure. At the center of the
square, the electric field is zero because the individual
fields from the four charges cancel, but the potential is
not zero. This is also the situation inside a charged con-
ductor. (b) Yes again. In Figure 25.8, for instance, the

Figure P25.71

electric potential energy. (Hint: Imagine that the sphere
is constructed by adding successive layers of concentric
shells of charge and use 

73. The results of Problem 62 apply also to an electrostatic
precipitator (see Figs. 25.28a and P25.62). An applied
voltage is to produce an elec-
tric field of magnitude 5.50 MV/m at the surface of the
central wire. The outer cylindrical wall has uniform ra-
dius ra � 0.850 m. (a) What should be the radius rb of
the central wire? You will need to solve a transcendental
equation. (b) What is the magnitude of the electric
field at the outer wall?

�V � Va � Vb � 50.0 kV

dU � V dq.)dq � (4�r 2 dr)�
R
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x

x
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72. A solid sphere of radius R has a uniform charge density
� and total charge Q. Derive an expression for its total
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n this chapter, we discuss capacitors—devices that store electric charge. Capaci-
tors are commonly used in a variety of electric circuits. For instance, they are
used to tune the frequency of radio receivers, as filters in power supplies, to

eliminate sparking in automobile ignition systems, and as energy-storing devices in
electronic flash units.

A capacitor consists of two conductors separated by an insulator. We shall see
that the capacitance of a given capacitor depends on its geometry and on the ma-
terial—called a dielectric—that separates the conductors.

DEFINITION OF CAPACITANCE
Consider two conductors carrying charges of equal magnitude but of opposite
sign, as shown in Figure 26.1. Such a combination of two conductors is called a ca-
pacitor. The conductors are called plates. A potential difference �V exists between
the conductors due to the presence of the charges. Because the unit of potential
difference is the volt, a potential difference is often called a voltage. We shall use
this term to describe the potential difference across a circuit element or between
two points in space.

What determines how much charge is on the plates of a capacitor for a given
voltage? In other words, what is the capacity of the device for storing charge at a
particular value of �V ? Experiments show that the quantity of charge Q on a ca-
pacitor1 is linearly proportional to the potential difference between the conduc-
tors; that is, The proportionality constant depends on the shape and sepa-
ration of the conductors.2 We can write this relationship as if we define
capacitance as follows:

Q � C �V
Q � �V.

26.1

The capacitance C of a capacitor is the ratio of the magnitude of the charge on
either conductor to the magnitude of the potential difference between them:

(26.1)C �
Q

�V

I

Note that by definition capacitance is always a positive quantity. Furthermore, the po-
tential difference �V is always expressed in Equation 26.1 as a positive quantity. Be-
cause the potential difference increases linearly with the stored charge, the ratio
Q /�V is constant for a given capacitor. Therefore, capacitance is a measure of a
capacitor’s ability to store charge and electric potential energy.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt.
The SI unit of capacitance is the farad (F), which was named in honor of Michael
Faraday:

The farad is a very large unit of capacitance. In practice, typical devices have ca-
pacitances ranging from microfarads (10�6 F) to picofarads (10�12 F). For practi-
cal purposes, capacitors often are labeled “mF” for microfarads and “mmF” for mi-
cromicrofarads or, equivalently, “pF” for picofarads.

1 F � 1 C/V

Definition of capacitance

1 Although the total charge on the capacitor is zero (because there is as much excess positive charge
on one conductor as there is excess negative charge on the other), it is common practice to refer to the
magnitude of the charge on either conductor as “the charge on the capacitor.”
2 The proportionality between �V and Q can be proved from Coulomb’s law or by experiment.

13.5

–Q

+Q

Figure 26.1 A capacitor consists
of two conductors carrying charges
of equal magnitude but opposite
sign.
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Let us consider a capacitor formed from a pair of parallel plates, as shown in
Figure 26.2. Each plate is connected to one terminal of a battery (not shown in
Fig. 26.2), which acts as a source of potential difference. If the capacitor is initially
uncharged, the battery establishes an electric field in the connecting wires when
the connections are made. Let us focus on the plate connected to the negative ter-
minal of the battery. The electric field applies a force on electrons in the wire just
outside this plate; this force causes the electrons to move onto the plate. This
movement continues until the plate, the wire, and the terminal are all at the same
electric potential. Once this equilibrium point is attained, a potential difference
no longer exists between the terminal and the plate, and as a result no electric
field is present in the wire, and the movement of electrons stops. The plate now
carries a negative charge. A similar process occurs at the other capacitor plate,
with electrons moving from the plate to the wire, leaving the plate positively
charged. In this final configuration, the potential difference across the capacitor
plates is the same as that between the terminals of the battery.

Suppose that we have a capacitor rated at 4 pF. This rating means that the ca-
pacitor can store 4 pC of charge for each volt of potential difference between the
two conductors. If a 9-V battery is connected across this capacitor, one of the con-
ductors ends up with a net charge of � 36 pC and the other ends up with a net
charge of � 36 pC.

CALCULATING CAPACITANCE
We can calculate the capacitance of a pair of oppositely charged conductors in the
following manner: We assume a charge of magnitude Q , and we calculate the po-
tential difference using the techniques described in the preceding chapter. We
then use the expression to evaluate the capacitance. As we might ex-
pect, we can perform this calculation relatively easily if the geometry of the capaci-
tor is simple.

We can calculate the capacitance of an isolated spherical conductor of radius
R and charge Q if we assume that the second conductor making up the capacitor is
a concentric hollow sphere of infinite radius. The electric potential of the sphere
of radius R is simply keQ /R, and setting at infinity as usual, we have

(26.2)

This expression shows that the capacitance of an isolated charged sphere is pro-
portional to its radius and is independent of both the charge on the sphere and
the potential difference.

C �
Q
�V

�
Q

keQ /R
�

R
ke

� 4��0R

V � 0

C � Q /�V

26.2

QuickLab
Roll some socks into balls and stuff
them into a shoebox. What deter-
mines how many socks fit in the box?
Relate how hard you push on the
socks to �V for a capacitor. How does
the size of the box influence its “sock
capacity”?

A collection of capacitors used in a variety of applica-
tions. 

d

–Q
+Q

Area = A

Figure 26.2 A parallel-plate ca-
pacitor consists of two parallel con-
ducting plates, each of area A, sepa-
rated by a distance d. When the
capacitor is charged, the plates
carry equal amounts of charge.
One plate carries positive charge,
and the other carries negative
charge.



806 C H A P T E R  2 6 Capacitance and Dielectrics

The capacitance of a pair of conductors depends on the geometry of the con-
ductors. Let us illustrate this with three familiar geometries, namely, parallel
plates, concentric cylinders, and concentric spheres. In these examples, we assume
that the charged conductors are separated by a vacuum. The effect of a dielectric
material placed between the conductors is treated in Section 26.5.

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown
in Figure 26.2. One plate carries a charge Q , and the other carries a charge �Q .
Let us consider how the geometry of these conductors influences the capacity of
the combination to store charge. Recall that charges of like sign repel one an-
other. As a capacitor is being charged by a battery, electrons flow into the negative
plate and out of the positive plate. If the capacitor plates are large, the accumu-
lated charges are able to distribute themselves over a substantial area, and the
amount of charge that can be stored on a plate for a given potential difference in-
creases as the plate area is increased. Thus, we expect the capacitance to be pro-
portional to the plate area A.

Now let us consider the region that separates the plates. If the battery has a
constant potential difference between its terminals, then the electric field between
the plates must increase as d is decreased. Let us imagine that we move the plates
closer together and consider the situation before any charges have had a chance
to move in response to this change. Because no charges have moved, the electric
field between the plates has the same value but extends over a shorter distance.
Thus, the magnitude of the potential difference between the plates (Eq.
25.6) is now smaller. The difference between this new capacitor voltage and the
terminal voltage of the battery now exists as a potential difference across the wires
connecting the battery to the capacitor. This potential difference results in an elec-
tric field in the wires that drives more charge onto the plates, increasing the po-
tential difference between the plates. When the potential difference between the
plates again matches that of the battery, the potential difference across the wires
falls back to zero, and the flow of charge stops. Thus, moving the plates closer to-
gether causes the charge on the capacitor to increase. If d is increased, the charge
decreases. As a result, we expect the device’s capacitance to be inversely propor-
tional to d.

�V � Ed

Figure 26.3 (a) The electric field between the plates of a parallel-plate capacitor is uniform
near the center but nonuniform near the edges. (b) Electric field pattern of two oppositely
charged conducting parallel plates. Small pieces of thread on an oil surface align with the elec-
tric field.

+Q

–Q

(a) (b)
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We can verify these physical arguments with the following derivation. The sur-
face charge density on either plate is If the plates are very close to-
gether (in comparison with their length and width), we can assume that the elec-
tric field is uniform between the plates and is zero elsewhere. According to the last
paragraph of Example 24.8, the value of the electric field between the plates is

Because the field between the plates is uniform, the magnitude of the potential
difference between the plates equals Ed (see Eq. 25.6); therefore,

Substituting this result into Equation 26.1, we find that the capacitance is

(26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the
area of its plates and inversely proportional to the plate separation, just as
we expect from our conceptual argument.

A careful inspection of the electric field lines for a parallel-plate capacitor re-
veals that the field is uniform in the central region between the plates, as shown in
Figure 26.3a. However, the field is nonuniform at the edges of the plates. Figure
26.3b is a photograph of the electric field pattern of a parallel-plate capacitor.
Note the nonuniform nature of the electric field at the ends of the plates. Such
end effects can be neglected if the plate separation is small compared with the
length of the plates.

Many computer keyboard buttons are constructed of capacitors, as shown in Figure 26.4.
When a key is pushed down, the soft insulator between the movable plate and the fixed
plate is compressed. When the key is pressed, the capacitance (a) increases, (b) decreases,
or (c) changes in a way that we cannot determine because the complicated electric circuit
connected to the keyboard button may cause a change in �V.

Quick Quiz 26.1

C �
�0A
d

C �
Q
�V

�
Q

Qd/�0A

�V � Ed �
Qd
�0A

E �
�

�0
�

Q
�0A

� � Q /A.

Key

Movable
plate

Soft
insulator

Fixed
plate

B

Parallel-Plate CapacitorEXAMPLE 26.1

Exercise What is the capacitance for a plate separation of
3.00 mm?

Answer 0.590 pF.

1.77 pF � 1.77 	 10�12 F �
A parallel-plate capacitor has an area 
and a plate separation mm. Find its capacitance.

Solution From Equation 26.3, we find that

C � �0 
A
d

� (8.85 	 10�12 C2/N
m2)� 2.00 	 10�4 m2

1.00 	 10�3 m �

d � 1.00
A � 2.00 	 10�4 m2

Figure 26.4 One type of com-
puter keyboard button.
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The Cylindrical CapacitorEXAMPLE 26.2
by (b/a), a positive quantity. As
predicted, the capacitance is proportional to the length of
the cylinders. As we might expect, the capacitance also de-
pends on the radii of the two cylindrical conductors. From
Equation 26.4, we see that the capacitance per unit length of
a combination of concentric cylindrical conductors is

(26.5)

An example of this type of geometric arrangement is a coaxial
cable, which consists of two concentric cylindrical conductors
separated by an insulator. The cable carries electrical signals
in the inner and outer conductors. Such a geometry is espe-
cially useful for shielding the signals from any possible exter-
nal influences.

C
�

�
1

2ke ln� b
a �

�V � � Vb � Va � � 2ke � lnA solid cylindrical conductor of radius a and charge Q is
coaxial with a cylindrical shell of negligible thickness, radius

and charge �Q (Fig. 26.5a). Find the capacitance of
this cylindrical capacitor if its length is �.

Solution It is difficult to apply physical arguments to this
configuration, although we can reasonably expect the capaci-
tance to be proportional to the cylinder length � for the same
reason that parallel-plate capacitance is proportional to plate
area: Stored charges have more room in which to be distrib-
uted. If we assume that � is much greater than a and b, we can
neglect end effects. In this case, the electric field is perpen-
dicular to the long axis of the cylinders and is confined to the
region between them (Fig. 26.5b). We must first calculate the
potential difference between the two cylinders, which is given
in general by

where E is the electric field in the region In Chap-
ter 24, we showed using Gauss’s law that the magnitude of the
electric field of a cylindrical charge distribution having linear
charge density � is (Eq. 24.7). The same result
applies here because, according to Gauss’s law, the charge on
the outer cylinder does not contribute to the electric field in-
side it. Using this result and noting from Figure 26.5b that E
is along r, we find that

Substituting this result into Equation 26.1 and using the fact
that we obtain

(26.4)

where �V is the magnitude of the potential difference, given

�

2ke ln� b
a �

C �
Q

�V
�

Q

2keQ
�

 ln� b
a �

�

� � Q /�,

Vb � Va � ��b

a
 Er dr � �2ke � �b

a
 
dr
r

� �2ke � ln� b
a �

Er � 2ke �/r

a � r � b.

Vb � Va � ��b

a
 E � ds

b  a,

The Spherical CapacitorEXAMPLE 26.3
Solution As we showed in Chapter 24, the field outside
a spherically symmetric charge distribution is radial and
given by the expression In this case, this result ap-
plies to the field between the spheres From(a � r � b).

keQ /r 2.

A spherical capacitor consists of a spherical conducting shell
of radius b and charge �Q concentric with a smaller conduct-
ing sphere of radius a and charge Q (Fig. 26.6). Find the ca-
pacitance of this device.

b
a

�

(a) (b)

Gaussian
surface

–Q
a

Q

b

r

Figure 26.5 (a) A cylindrical capacitor consists of a solid cylindri-
cal conductor of radius a and length � surrounded by a coaxial cylin-
drical shell of radius b. (b) End view. The dashed line represents the
end of the cylindrical gaussian surface of radius r and length �.

Cylindrical and Spherical Capacitors

From the definition of capacitance, we can, in principle, find the capacitance of
any geometric arrangement of conductors. The following examples demonstrate
the use of this definition to calculate the capacitance of the other familiar geome-
tries that we mentioned: cylinders and spheres.
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What is the magnitude of the electric field in the region outside the spherical capacitor de-
scribed in Example 26.3?

COMBINATIONS OF CAPACITORS
Two or more capacitors often are combined in electric circuits. We can calculate
the equivalent capacitance of certain combinations using methods described in
this section. The circuit symbols for capacitors and batteries, as well as the color
codes used for them in this text, are given in Figure 26.7. The symbol for the ca-
pacitor reflects the geometry of the most common model for a capacitor—a pair
of parallel plates. The positive terminal of the battery is at the higher potential
and is represented in the circuit symbol by the longer vertical line.

Parallel Combination

Two capacitors connected as shown in Figure 26.8a are known as a parallel combina-
tion of capacitors. Figure 26.8b shows a circuit diagram for this combination of ca-
pacitors. The left plates of the capacitors are connected by a conducting wire to
the positive terminal of the battery and are therefore both at the same electric po-
tential as the positive terminal. Likewise, the right plates are connected to the neg-
ative terminal and are therefore both at the same potential as the negative termi-
nal. Thus, the individual potential differences across capacitors connected in
parallel are all the same and are equal to the potential difference applied
across the combination.

In a circuit such as that shown in Figure 26.8, the voltage applied across the
combination is the terminal voltage of the battery. Situations can occur in which

26.3

Quick Quiz 26.2

Figure 26.6 A spherical capacitor consists of an inner sphere of
radius a surrounded by a concentric spherical shell of radius b. The
electric field between the spheres is directed radially outward when
the inner sphere is positively charged.

a

b

– Q

+Q

Exercise Show that as the radius b of the outer sphere ap-
proaches infinity, the capacitance approaches the value
a/ke � 4��0a .

Figure 26.7 Circuit symbols for
capacitors, batteries, and switches.
Note that capacitors are in blue
and batteries and switches are in
red.

Capacitor
symbol

Battery
symbol +–

Switch
symbol

13.5

Gauss’s law we see that only the inner sphere contributes 
to this field. Thus, the potential difference between the
spheres is

The magnitude of the potential difference is

Substituting this value for �V into Equation 26.1, we obtain

(26.6)
ab

ke(b � a)
C �

Q
�V

�

�V � � Vb � Va � � keQ 
(b � a)

ab

 � keQ � 1
b

�
1
a �

Vb � Va � ��b

a
 Er dr � �keQ �b

a
 
dr
r 2 � keQ � 1

r �
b

a
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the parallel combination is in a circuit with other circuit elements; in such situa-
tions, we must determine the potential difference across the combination by ana-
lyzing the entire circuit.

When the capacitors are first connected in the circuit shown in Figure 26.8,
electrons are transferred between the wires and the plates; this transfer leaves the
left plates positively charged and the right plates negatively charged. The energy
source for this charge transfer is the internal chemical energy stored in the bat-
tery, which is converted to electric potential energy associated with the charge sep-
aration. The flow of charge ceases when the voltage across the capacitors is equal
to that across the battery terminals. The capacitors reach their maximum charge
when the flow of charge ceases. Let us call the maximum charges on the two ca-
pacitors Q 1 and Q 2 . The total charge Q stored by the two capacitors is

(26.7)

That is, the total charge on capacitors connected in parallel is the sum of the
charges on the individual capacitors. Because the voltages across the capacitors
are the same, the charges that they carry are

Suppose that we wish to replace these two capacitors by one equivalent capacitor
having a capacitance Ceq , as shown in Figure 26.8c. The effect this equivalent ca-
pacitor has on the circuit must be exactly the same as the effect of the combina-
tion of the two individual capacitors. That is, the equivalent capacitor must store Q
units of charge when connected to the battery. We can see from Figure 26.8c that
the voltage across the equivalent capacitor also is �V because the equivalent capac-

Q 1 � C1 �V  Q 2 � C2 �V

Q � Q 1 � Q 2

(a)

+ –

C2

+ –

C1

+ –

(b)

∆V

+ –

Q2

C2

Q1

C1

∆V1 = ∆V2 = ∆V

∆V

+ –

Ceq = C1 + C2

(c)

∆V

Figure 26.8 (a) A parallel combination of two capacitors in an electric circuit in which the po-
tential difference across the battery terminals is �V. (b) The circuit diagram for the parallel com-
bination. (c) The equivalent capacitance is C eq � C 1 � C 2 .
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itor is connected directly across the battery terminals. Thus, for the equivalent ca-
pacitor,

Substituting these three relationships for charge into Equation 26.7, we have

If we extend this treatment to three or more capacitors connected in parallel,
we find the equivalent capacitance to be

(26.8)

Thus, the equivalent capacitance of a parallel combination of capacitors is
greater than any of the individual capacitances. This makes sense because we
are essentially combining the areas of all the capacitor plates when we connect
them with conducting wire.

Series Combination

Two capacitors connected as shown in Figure 26.9a are known as a series combina-
tion of capacitors. The left plate of capacitor 1 and the right plate of capacitor 2
are connected to the terminals of a battery. The other two plates are connected to
each other and to nothing else; hence, they form an isolated conductor that is ini-
tially uncharged and must continue to have zero net charge. To analyze this com-
bination, let us begin by considering the uncharged capacitors and follow what
happens just after a battery is connected to the circuit. When the battery is con-

Ceq � C1 � C2 � C3 � 


  (parallel combination)

Ceq � C1 � C2  �parallel
combination�

Ceq �V � C1 �V � C2 �V 

Q � Ceq �V

(a)

+ –

C2

∆V

C1
∆V1 ∆V2

+Q –Q +Q –Q

(b)

+ –

∆V

Ceq

Figure 26.9 (a) A series combination of two capacitors. The charges on the two capacitors are
the same. (b) The capacitors replaced by a single equivalent capacitor. The equivalent capaci-
tance can be calculated from the relationship

1
C eq

�
1

C 1
�

1
C 2
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nected, electrons are transferred out of the left plate of C1 and into the right plate
of C2 . As this negative charge accumulates on the right plate of C2 , an equivalent
amount of negative charge is forced off the left plate of C2 , and this left plate
therefore has an excess positive charge. The negative charge leaving the left plate
of C2 travels through the connecting wire and accumulates on the right plate of
C1 . As a result, all the right plates end up with a charge �Q , and all the left plates
end up with a charge �Q. Thus, the charges on capacitors connected in series
are the same.

From Figure 26.9a, we see that the voltage �V across the battery terminals is
split between the two capacitors:

(26.9)

where �V1 and �V2 are the potential differences across capacitors C1 and C2 , re-
spectively. In general, the total potential difference across any number of ca-
pacitors connected in series is the sum of the potential differences across
the individual capacitors.

Suppose that an equivalent capacitor has the same effect on the circuit as the
series combination. After it is fully charged, the equivalent capacitor must have a
charge of �Q on its right plate and a charge of �Q on its left plate. Applying the
definition of capacitance to the circuit in Figure 26.9b, we have

Because we can apply the expression to each capacitor shown in Figure
26.9a, the potential difference across each is

Substituting these expressions into Equation 26.9 and noting that 
we have

Canceling Q , we arrive at the relationship

When this analysis is applied to three or more capacitors connected in series, the
relationship for the equivalent capacitance is

(26.10)

This demonstrates that the equivalent capacitance of a series combination is
always less than any individual capacitance in the combination.

1
Ceq

�
1

C1
�

1
C2

�
1

C3
� 


  �series

combination�

1
Ceq

�
1

C1
�

1
C2

  �series
combination�

Q
Ceq

�
Q
C1

�
Q
C2

�V � Q /Ceq ,

�V1 �
Q
C1

  �V2 �
Q
C2

Q � C �V

�V �
Q

Ceq

�V � �V1 � �V2

Equivalent CapacitanceEXAMPLE 26.4
Solution Using Equations 26.8 and 26.10, we reduce the
combination step by step as indicated in the figure. The 
1.0-�F and 3.0-�F capacitors are in parallel and combine ac-

Find the equivalent capacitance between a and b for the com-
bination of capacitors shown in Figure 26.10a. All capaci-
tances are in microfarads.
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ENERGY STORED IN A CHARGED CAPACITOR
Almost everyone who works with electronic equipment has at some time verified
that a capacitor can store energy. If the plates of a charged capacitor are con-
nected by a conductor, such as a wire, charge moves between the plates and the
connecting wire until the capacitor is uncharged. The discharge can often be ob-
served as a visible spark. If you should accidentally touch the opposite plates of a
charged capacitor, your fingers act as a pathway for discharge, and the result is an
electric shock. The degree of shock you receive depends on the capacitance and
on the voltage applied to the capacitor. Such a shock could be fatal if high voltages
are present, such as in the power supply of a television set. Because the charges
can be stored in a capacitor even when the set is turned off, unplugging the televi-
sion does not make it safe to open the case and touch the components inside.

Consider a parallel-plate capacitor that is initially uncharged, such that the ini-
tial potential difference across the plates is zero. Now imagine that the capacitor is
connected to a battery and develops a maximum charge Q. (We assume that the
capacitor is charged slowly so that the problem can be considered as an electrosta-
tic system.) When the capacitor is connected to the battery, electrons in the wire
just outside the plate connected to the negative terminal move into the plate to
give it a negative charge. Electrons in the plate connected to the positive terminal
move out of the plate into the wire to give the plate a positive charge. Thus,
charges move only a small distance in the wires. 

To calculate the energy of the capacitor, we shall assume a different process—
one that does not actually occur but gives the same final result. We can make this

26.4

cording to the expression �F. The 
2.0-�F and 6.0-�F capacitors also are in parallel and have an
equivalent capacitance of 8.0 �F. Thus, the upper branch in
Figure 26.10b consists of two 4.0-�F capacitors in series,
which combine as follows:

Ceq �
1

1/2.0 �F
� 2.0 �F 

1
Ceq

�
1

C1
�

1
C2

�
1

4.0 �F
�

1
4.0 �F

�
1

2.0 �F

Ceq � C1 � C2 � 4.0 The lower branch in Figure 26.10b consists of two 8.0-�F ca-
pacitors in series, which combine to yield an equivalent ca-
pacitance of 4.0 �F. Finally, the 2.0-�F and 4.0-�F capacitors
in Figure 26.10c are in parallel and thus have an equivalent
capacitance of 6.0 �F.

Exercise Consider three capacitors having capacitances of
3.0 �F, 6.0 �F, and 12 �F. Find their equivalent capacitance
when they are connected (a) in parallel and (b) in series.

Answer (a) 21 �F; (b) 1.7 �F.

4.0
4.0

8.0
8.0

ba

(b)

4.0

ba

(c)

2.0

6.0 ba

(d)

4.0

8.0

ba

(a)

2.0

6.0

3.0

1.0

Figure 26.10 To find the equivalent capacitance of the capacitors in part (a), we
reduce the various combinations in steps as indicated in parts (b), (c), and (d), using
the series and parallel rules described in the text.

13.5
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assumption because the energy in the final configuration does not depend on the
actual charge-transfer process. We imagine that we reach in and grab a small
amount of positive charge on the plate connected to the negative terminal and ap-
ply a force that causes this positive charge to move over to the plate connected to
the positive terminal. Thus, we do work on the charge as we transfer it from one
plate to the other. At first, no work is required to transfer a small amount of
charge dq from one plate to the other.3 However, once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work
must be done to move additional charge through this potential difference. As
more and more charge is transferred from one plate to the other, the potential dif-
ference increases in proportion, and more work is required.

Suppose that q is the charge on the capacitor at some instant during the
charging process. At the same instant, the potential difference across the capacitor
is �V � q/C . From Section 25.2, we know that the work necessary to transfer an in-
crement of charge dq from the plate carrying charge �q to the plate carrying
charge q (which is at the higher electric potential) is

This is illustrated in Figure 26.11. The total work required to charge the capacitor
from to some final charge is

The work done in charging the capacitor appears as electric potential energy U
stored in the capacitor. Therefore, we can express the potential energy stored in a
charged capacitor in the following forms:

(26.11)

This result applies to any capacitor, regardless of its geometry. We see that for a
given capacitance, the stored energy increases as the charge increases and as the
potential difference increases. In practice, there is a limit to the maximum energy

U �
Q2

2C
� 1

2Q �V � 1
2C(�V )2

W � �Q

0
 

q
C

 dq �
1
C

 �Q

0
 q dq �

Q2

2C

q � Qq � 0

dW � �V dq �
q
C

 dq

Energy stored in a charged
capacitor

QuickLab
Here’s how to find out whether your
calculator has a capacitor to protect
values or programs during battery
changes: Store a number in your cal-
culator’s memory, remove the calcu-
lator battery for a moment, and then
quickly replace it. Was the number
that you stored preserved while the
battery was out of the calculator?
(You may want to write down any crit-
ical numbers or programs that are
stored in the calculator before trying
this!)

3 We shall use lowercase q for the varying charge on the capacitor while it is charging, to distinguish it
from uppercase Q , which is the total charge on the capacitor after it is completely charged.

V

dq

q

∆

Figure 26.11 A plot of potential difference versus charge for
a capacitor is a straight line having a slope 1/C. The work re-
quired to move charge dq through the potential difference �V
across the capacitor plates is given by the area of the shaded
rectangle. The total work required to charge the capacitor to a
final charge Q is the triangular area under the straight line,

. (Don’t forget that J/C; hence, the unit
for the area is the joule.)

1 V � 1W � 1
2Q �V
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(or charge) that can be stored because, at a sufficiently great value of �V, dis-
charge ultimately occurs between the plates. For this reason, capacitors are usually
labeled with a maximum operating voltage.

You have three capacitors and a battery. How should you combine the capacitors and the
battery in one circuit so that the capacitors will store the maximum possible energy?

We can consider the energy stored in a capacitor as being stored in the elec-
tric field created between the plates as the capacitor is charged. This description is
reasonable in view of the fact that the electric field is proportional to the charge
on the capacitor. For a parallel-plate capacitor, the potential difference is related
to the electric field through the relationship �V � Ed. Furthermore, its capaci-
tance is (Eq. 26.3). Substituting these expressions into Equation 26.11,
we obtain

(26.12)

Because the volume V (volume, not voltage!) occupied by the electric field is Ad,
the energy per unit volume known as the energy density, is

(26.13)

Although Equation 26.13 was derived for a parallel-plate capacitor, the expression
is generally valid. That is, the energy density in any electric field is propor-
tional to the square of the magnitude of the electric field at a given point.

uE � 1
2�0E2

uE � U/V � U/Ad,

U �
1
2

 
�0A

d
 (E2d2) �

1
2

 (�0Ad)E2

C � �0A/d

Quick Quiz 26.3

Energy stored in a parallel-plate
capacitor

Energy density in an electric field

This bank of capacitors stores electrical en-
ergy for use in the particle accelerator at
FermiLab, located outside Chicago. Be-
cause the electric utility company cannot
provide a large enough burst of energy to
operate the equipment, these capacitors
are slowly charged up, and then the energy
is rapidly “dumped” into the accelerator. In
this sense, the setup is much like a fire-
protection water tank on top of a building.
The tank collects water and stores it for sit-
uations in which a lot of water is needed in
a short time. 
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Rewiring Two Charged CapacitorsEXAMPLE 26.5

As noted earlier, 
To express �Vf in terms of the given quantities and

we substitute the value of Q from Equation (1) to obtain

(b) Find the total energy stored in the capacitors before
and after the switches are closed and the ratio of the final en-
ergy to the initial energy.

Solution Before the switches are closed, the total energy
stored in the capacitors is

After the switches are closed, the total energy stored in the
capacitors is

Using Equation (1), we can express this as

Therefore, the ratio of the final energy stored to the initial
energy stored is

� C1 � C2

C1 � C2
�

2Uf

Ui
�

1
2

 
(C1 � C2)2(�Vi)2

(C1 � C2)

1
2

 (C1 � C2)(�Vi)2
�

1
2

 
(C1 � C2)2(�Vi)2

(C1 � C2)
Uf �

1
2

 
Q2

(C1 � C2)
�  

 �
1
2

 (C1 � C2)� Q
C1 � C2

�
2

�
1
2

 
Q2

C1 � C2
 

Uf � 1
2C1(�Vf)2 � 1

2C2(�Vf)2 � 1
2 (C1 � C2)(�Vf)2

1
2 (C1 � C2)(�Vi)2Ui � 1

2C1(�Vi)2 � 1
2C2(�Vi)2 �

�Vf � � C1 � C2

C1 � C2
� �Vi

�Vi ,
C1, C2,

�V1f � �V2 f � �Vf .

�V2 f �
Q 2 f

C2
�

Q � C2

C1 � C2
�

C2
�

Q

C1 � C2

Two capacitors C1 and C2 (where are charged to
the same initial potential difference �Vi , but with opposite
polarity. The charged capacitors are removed from the bat-
tery, and their plates are connected as shown in Figure
26.12a. The switches S1 and S2 are then closed, as shown in
Figure 26.12b. (a) Find the final potential difference �Vf be-
tween a and b after the switches are closed.

Solution Let us identify the left-hand plates of the capaci-
tors as an isolated system because they are not connected to
the right-hand plates by conductors. The charges on the left-
hand plates before the switches are closed are

The negative sign for Q 2i is necessary because the charge on
the left plate of capacitor C2 is negative. The total charge Q
in the system is

(1)

After the switches are closed, the total charge in the system
remains the same:

(2)

The charges redistribute until the entire system is at the same
potential �Vf . Thus, the final potential difference across C1
must be the same as the final potential difference across C2 .
To satisfy this requirement, the charges on the capacitors af-
ter the switches are closed are

Dividing the first equation by the second, we have

(3)

Combining Equations (2) and (3), we obtain

Using Equation (3) to find Q 1 f in terms of Q , we have

Finally, using Equation 26.1 to find the voltage across each ca-
pacitor, we find that

�V1f �
Q 1f

C1
�

Q � C1

C1 � C2
�

C1
�

Q

C1 � C2

Q 1f �
C1

C2
 Q 2f �

C1

C2
 Q � C2

C1 � C2
� � Q � C1

C1 � C2
�

 Q 2 f � Q � C2

C1 � C2
�

Q � Q 1f � Q 2 f �
C1

C2
 Q 2f � Q 2f � Q 2f �1 �

C1

C2
�

Q 1f �
C1

C2
 Q 2f

Q 1f

Q 2f
�

C1 �Vf

C2 �Vf
�

C1

C2
 

Q 1f � C1 �Vf  and  Q 2f � C2 �Vf

Q � Q 1f � Q 2f

Q � Q 1i � Q 2i � (C1 � C2)�Vi

Q 1i � C1 �Vi  and  Q 2i � �C2 �Vi

C1  C2)

+ –

Q1i
+

ba

(a)

–
C1

Q 2i
– +

C2

S1 S2

+

ba

(b)

–

S1 S2

Q1f
C1

Q 2f C2

Figure 26.12
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You charge a parallel-plate capacitor, remove it from the battery, and prevent the wires con-
nected to the plates from touching each other. When you pull the plates apart, do the fol-
lowing quantities increase, decrease, or stay the same? (a) C ; (b) Q ; (c) E between the
plates; (d) �V ; (e) energy stored in the capacitor.

Repeat Quick Quiz 26.4, but this time answer the questions for the situation in which the
battery remains connected to the capacitor while you pull the plates apart.

One device in which capacitors have an important role is the defibrillator (Fig.
26.13). Up to 360 J is stored in the electric field of a large capacitor in a defibrilla-
tor when it is fully charged. The defibrillator can deliver all this energy to a patient
in about 2 ms. (This is roughly equivalent to 3 000 times the power output of a 
60-W lightbulb!) The sudden electric shock stops the fibrillation (random contrac-
tions) of the heart that often accompanies heart attacks and helps to restore the
correct rhythm.

A camera’s flash unit also uses a capacitor, although the total amount of en-
ergy stored is much less than that stored in a defibrillator. After the flash unit’s ca-
pacitor is charged, tripping the camera’s shutter causes the stored energy to be
sent through a special lightbulb that briefly illuminates the subject being pho-
tographed.

Quick Quiz 26.5

Quick Quiz 26.4

web
To learn more about defibrillators, visit
www.physiocontrol.com

This ratio is less than unity, indicating that the final energy 
is less than the initial energy. At first, you might think that
the law of energy conservation has been violated, but this 

is not the case. The “missing” energy is radiated away in 
the form of electromagnetic waves, as we shall see in Chap-
ter 34.

Figure 26.13 In a hospital
or at an emergency scene, you
might see a patient being re-
vived with a defibrillator. The
defibrillator’s paddles are ap-
plied to the patient’s chest,
and an electric shock is sent
through the chest cavity. The
aim of this technique is to re-
store the heart’s normal
rhythm pattern.
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CAPACITORS WITH DIELECTRICS
A dielectric is a nonconducting material, such as rubber, glass, or waxed paper.
When a dielectric is inserted between the plates of a capacitor, the capacitance in-
creases. If the dielectric completely fills the space between the plates, the capaci-
tance increases by a dimensionless factor �, which is called the dielectric con-
stant. The dielectric constant is a property of a material and varies from one
material to another. In this section, we analyze this change in capacitance in terms
of electrical parameters such as electric charge, electric field, and potential differ-
ence; in Section 26.7, we shall discuss the microscopic origin of these changes.

We can perform the following experiment to illustrate the effect of a dielectric
in a capacitor: Consider a parallel-plate capacitor that without a dielectric has a
charge Q 0 and a capacitance C 0 . The potential difference across the capacitor is

Figure 26.14a illustrates this situation. The potential difference is
measured by a voltmeter, which we shall study in greater detail in Chapter 28. Note
that no battery is shown in the figure; also, we must assume that no charge can
flow through an ideal voltmeter, as we shall learn in Section 28.5. Hence, there is
no path by which charge can flow and alter the charge on the capacitor. If a dielec-
tric is now inserted between the plates, as shown in Figure 26.14b, the voltmeter
indicates that the voltage between the plates decreases to a value �V. The voltages
with and without the dielectric are related by the factor � as follows:

Because �V � �V0 , we see that 
Because the charge Q 0 on the capacitor does not change, we conclude that

the capacitance must change to the value

(26.14)

That is, the capacitance increases by the factor � when the dielectric completely fills
the region between the plates.4 For a parallel-plate capacitor, where 
(Eq. 26.3), we can express the capacitance when the capacitor is filled with a di-
electric as

(26.15)

From Equations 26.3 and 26.15, it would appear that we could make the ca-
pacitance very large by decreasing d, the distance between the plates. In practice,
the lowest value of d is limited by the electric discharge that could occur through
the dielectric medium separating the plates. For any given separation d, the maxi-
mum voltage that can be applied to a capacitor without causing a discharge de-
pends on the dielectric strength (maximum electric field) of the dielectric. If the
magnitude of the electric field in the dielectric exceeds the dielectric strength,
then the insulating properties break down and the dielectric begins to conduct.
Insulating materials have values of � greater than unity and dielectric strengths

C � � 
�0A
d

C0 � �0A/d

C � �C0

C �
Q 0

�V
�

Q 0

�V0/�
� � 

Q 0

�V0

�  1.

�V �
�V0

�

�V0 � Q 0/C0 .

26.5

The capacitance of a filled
capacitor is greater than that of an
empty one by a factor �.

4 If the dielectric is introduced while the potential difference is being maintained constant by a battery,
the charge increases to a value Q � �Q 0 . The additional charge is supplied by the battery, and the ca-
pacitance again increases by the factor �.
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greater than that of air, as Table 26.1 indicates. Thus, we see that a dielectric pro-
vides the following advantages:

• Increase in capacitance
• Increase in maximum operating voltage
• Possible mechanical support between the plates, which allows the plates to be

close together without touching, thereby decreasing d and increasing C

C0 Q 0

+
–

C Q 0

Dielectric

∆V∆V0

+
–

(a) (b)

Figure 26.14 A charged capacitor (a) before and (b) after insertion of a dielectric between the
plates. The charge on the plates remains unchanged, but the potential difference decreases from
�V0 to �V � �V0/�. Thus, the capacitance increases from C0 to �C0 .

TABLE 26.1 Dielectric Constants and Dielectric Strengths
of Various Materials at Room Temperature

Dielectric Dielectric
Material Constant � Strengtha (V/m)

Air (dry) 1.000 59 3 	 106

Bakelite 4.9 24 	 106

Fused quartz 3.78 8 	 106

Neoprene rubber 6.7 12 	 106

Nylon 3.4 14 	 106

Paper 3.7 16 	 106

Polystyrene 2.56 24 	 106

Polyvinyl chloride 3.4 40 	 106

Porcelain 6 12 	 106

Pyrex glass 5.6 14 	 106

Silicone oil 2.5 15 	 106

Strontium titanate 233 8 	 106

Teflon 2.1 60 	 106

Vacuum 1.000 00 —
Water 80 —

a The dielectric strength equals the maximum electric field that can exist in a
dielectric without electrical breakdown. Note that these values depend
strongly on the presence of impurities and flaws in the materials.
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Types of Capacitors

Commercial capacitors are often made from metallic foil interlaced with thin
sheets of either paraffin-impregnated paper or Mylar as the dielectric material.
These alternate layers of metallic foil and dielectric are rolled into a cylinder to
form a small package (Fig. 26.15a). High-voltage capacitors commonly consist of a
number of interwoven metallic plates immersed in silicone oil (Fig. 26.15b). Small
capacitors are often constructed from ceramic materials. Variable capacitors (typi-
cally 10 to 500 pF) usually consist of two interwoven sets of metallic plates, one
fixed and the other movable, and contain air as the dielectric.

Often, an electrolytic capacitor is used to store large amounts of charge at rela-
tively low voltages. This device, shown in Figure 26.15c, consists of a metallic foil in
contact with an electrolyte—a solution that conducts electricity by virtue of the mo-
tion of ions contained in the solution. When a voltage is applied between the foil
and the electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil,

(a) Kirlian photograph created by dropping a steel ball into a high-energy electric field. Kirlian
photography is also known as electrophotography. (b) Sparks from static electricity discharge be-
tween a fork and four electrodes. Many sparks were used to create this image because only one
spark forms for a given discharge. Note that the bottom prong discharges to both electrodes at
the bottom right. The light of each spark is created by the excitation of gas atoms along its path.

(a) (b)

Metal foil

Paper

Plates

Oil

Electrolyte

Case

Metallic foil + oxide layer

Contacts

(a) (b) (c)

Figure 26.15 Three commercial capacitor designs. (a) A tubular capacitor, whose plates are
separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of
many parallel plates separated by insulating oil. (c) An electrolytic capacitor.
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A Paper-Filled CapacitorEXAMPLE 26.6
the paper is 1.0 mm, the maximum voltage that can be ap-
plied before breakdown is

Hence, the maximum charge is

Exercise What is the maximum energy that can be stored
in the capacitor?

Answer 2.6 	 10�3 J.

0.32 �CQ max � C �Vmax � (20 	 10�12 F)(16 	 103 V) �

 � 16 	 103 V

�Vmax � Emaxd � (16 	 106 V/m)(1.0 	 10�3 m)

A parallel-plate capacitor has plates of dimensions 2.0 cm by
3.0 cm separated by a 1.0-mm thickness of paper. (a) Find its
capacitance.

Solution Because � � 3.7 for paper (see Table 26.1), we
have

(b) What is the maximum charge that can be placed on
the capacitor?

Solution From Table 26.1 we see that the dielectric
strength of paper is 16 	 106 V/m. Because the thickness of

20 pF � 20 	 10�12 F �

C � � 
�0A

d
� 3.7(8.85 	 10�12 C2/N
m2)� 6.0 	 10�4 m2

1.0 	 10�3 m �

and this layer serves as the dielectric. Very large values of capacitance can be ob-
tained in an electrolytic capacitor because the dielectric layer is very thin, and thus
the plate separation is very small.

Electrolytic capacitors are not reversible as are many other capacitors—they
have a polarity, which is indicated by positive and negative signs marked on the de-
vice. When electrolytic capacitors are used in circuits, the polarity must be aligned
properly. If the polarity of the applied voltage is opposite that which is intended,
the oxide layer is removed and the capacitor conducts electricity instead of storing
charge.

If you have ever tried to hang a picture, you know it can be difficult to locate a wooden stud
in which to anchor your nail or screw. A carpenter’s stud-finder is basically a capacitor with
its plates arranged side by side instead of facing one another, as shown in Figure 26.16.
When the device is moved over a stud, does the capacitance increase or decrease?

Quick Quiz 26.6

Capacitor
plates

Stud-finder

Wall board

Stud

(b)(a)

Figure 26.16 A stud-finder. (a)The materials between the plates of the capacitor are the wall-
board and air. (b) When the capacitor moves across a stud in the wall, the materials between the
plates are the wallboard and the wood. The change in the dielectric constant causes a signal light
to illuminate.
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Energy Stored Before and AfterEXAMPLE 26.7
Exercise Suppose that the capacitance in the absence of a
dielectric is 8.50 pF and that the capacitor is charged to a po-
tential difference of 12.0 V. If the battery is disconnected and
a slab of polystyrene is inserted between the plates, what is

Answer 373 pJ.

U0 � U  ?

A parallel-plate capacitor is charged with a battery to a charge
Q 0 , as shown in Figure 26.17a. The battery is then removed,
and a slab of material that has a dielectric constant � is in-
serted between the plates, as shown in Figure 26.17b. Find
the energy stored in the capacitor before and after the dielec-
tric is inserted.

Solution The energy stored in the absence of the dielec-
tric is (see Eq. 26.11):

After the battery is removed and the dielectric inserted, the
charge on the capacitor remains the same. Hence, the energy
stored in the presence of the dielectric is

But the capacitance in the presence of the dielectric is
so U becomes

Because �  1, the final energy is less than the initial energy.
We can account for the “missing” energy by noting that the
dielectric, when inserted, gets pulled into the device (see the
following discussion and Figure 26.18). An external agent
must do negative work to keep the dielectric from accelerat-
ing. This work is simply the difference (Alternatively,
the positive work done by the system on the external agent is
U0 � U.)

U � U0 .

U �
Q 0 

2

2�C0
�

U0

�

C � �C0 ,

U �
Q 0 

2

2C

U0 �
Q 0 

2

2C0

As we have seen, the energy of a capacitor not connected to a battery is low-
ered when a dielectric is inserted between the plates; this means that negative
work is done on the dielectric by the external agent inserting the dielectric into
the capacitor. This, in turn, implies that a force that draws it into the capacitor
must be acting on the dielectric. This force originates from the nonuniform na-
ture of the electric field of the capacitor near its edges, as indicated in Figure
26.18. The horizontal component of this fringe field acts on the induced charges on
the surface of the dielectric, producing a net horizontal force directed into the
space between the capacitor plates.

A fully charged parallel-plate capacitor remains connected to a battery while you slide a di-
electric between the plates. Do the following quantities increase, decrease, or stay the same?
(a) C ; (b) Q ; (c) E between the plates; (d) �V ; (e) energy stored in the capacitor.

Quick Quiz 26.7

Figure 26.17

–+

Q 0
C 0

∆V 0

(a)

Dielectric

–+
Q 0

(b)
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Optional Section

ELECTRIC DIPOLE IN AN ELECTRIC FIELD
We have discussed the effect on the capacitance of placing a dielectric between the
plates of a capacitor. In Section 26.7, we shall describe the microscopic origin of
this effect. Before we can do so, however, we need to expand upon the discussion
of the electric dipole that we began in Section 23.4 (see Example 23.6). The elec-
tric dipole consists of two charges of equal magnitude but opposite sign separated
by a distance 2a, as shown in Figure 26.19. The electric dipole moment of this
configuration is defined as the vector p directed from �q to � q along the line
joining the charges and having magnitude 2aq:

(26.16)

Now suppose that an electric dipole is placed in a uniform electric field E, as
shown in Figure 26.20. We identify E as the field external to the dipole, distin-
guishing it from the field due to the dipole, which we discussed in Section 23.4.
The field E is established by some other charge distribution, and we place the di-
pole into this field. Let us imagine that the dipole moment makes an angle �
with the field. 

The electric forces acting on the two charges are equal in magnitude but op-
posite in direction as shown in Figure 26.20 (each has a magnitude Thus,
the net force on the dipole is zero. However, the two forces produce a net torque
on the dipole; as a result, the dipole rotates in the direction that brings the dipole
moment vector into greater alignment with the field. The torque due to the force
on the positive charge about an axis through O in Figure 26.20 is Fa sin �, where 
a sin � is the moment arm of F about O. This force tends to produce a clockwise
rotation. The torque about O on the negative charge also is Fa sin �; here again,
the force tends to produce a clockwise rotation. Thus, the net torque about O is

Because and we can express � as

(26.17)� � 2aqE sin � � pE sin �

p � 2aq,F � qE

� � 2Fa sin �

F � qE).

p � 2aq

26.6

+Q

–Q

+

–

+

–

+

–

+

–

+

–

+

–

+

–

Figure 26.18 The nonuniform electric field near the edges of a parallel-plate capacitor causes
a dielectric to be pulled into the capacitor. Note that the field acts on the induced surface
charges on the dielectric, which are nonuniformly distributed.

+ q

θ

– q

F

E
– F

O

+

–

Figure 26.20 An electric dipole
in a uniform external electric field.
The dipole moment p is at an an-
gle � to the field, causing the di-
pole to experience a torque.

+ q

– q

2a

p–

+

Figure 26.19 An electric dipole
consists of two charges of equal
magnitude but opposite sign sepa-
rated by a distance of 2a . The elec-
tric dipole moment p is directed
from �q to �q .
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It is convenient to express the torque in vector form as the cross product of the
vectors p and E:

(26.18)

We can determine the potential energy of the system of an electric dipole in
an external electric field as a function of the orientation of the dipole with respect
to the field. To do this, we recognize that work must be done by an external agent
to rotate the dipole through an angle so as to cause the dipole moment vector to
become less aligned with the field. The work done is then stored as potential en-
ergy in the system of the dipole and the external field. The work dW required to
rotate the dipole through an angle d� is (Eq. 10.22). Because

and because the work is transformed into potential energy U, we find
that, for a rotation from �i to �f , the change in potential energy is

The term that contains cos �i is a constant that depends on the initial orienta-
tion of the dipole. It is convenient for us to choose so that cos 
90° � 0. Furthermore, let us choose at as our reference of poten-
tial energy. Hence, we can express a general value of as

(26.19)

We can write this expression for the potential energy of a dipole in an electric field
as the dot product of the vectors p and E:

(26.20)

To develop a conceptual understanding of Equation 26.19, let us compare this
expression with the expression for the potential energy of an object in the gravita-
tional field of the Earth, (see Chapter 8). The gravitational expression in-
cludes a parameter associated with the object we place in the field—its mass m.
Likewise, Equation 26.19 includes a parameter of the object in the electric field—
its dipole moment p. The gravitational expression includes the magnitude of the
gravitational field g. Similarly, Equation 26.19 includes the magnitude of the elec-
tric field E . So far, these two contributions to the potential energy expressions ap-
pear analogous. However, the final contribution is somewhat different in the two
cases. In the gravitational expression, the potential energy depends on how high
we lift the object, measured by h. In Equation 26.19, the potential energy depends
on the angle � through which we rotate the dipole. In both cases, we are making a
change in the system. In the gravitational case, the change involves moving an ob-
ject in a translational sense, whereas in the electrical case, the change involves mov-
ing an object in a rotational sense. In both cases, however, once the change is
made, the system tends to return to the original configuration when the object is
released: the object of mass m falls back to the ground, and the dipole begins to
rotate back toward the configuration in which it was aligned with the field. Thus,
apart from the type of motion, the expressions for potential energy in these two
cases are similar.

U � mgh

U � �p � E

U � �pE cos �

U � Uf

�i � 90�Ui � 0
�i � cos�i � 90�,

 � pE ��cos ���f

�i

� pE(cos �i � cos �f)

Uf � Ui � ��f

�i

 � d� � ��f

�i

 p� sin � d� � pE ��f

�i

 sin � d�

� � pE sin �
dW � � d�

� � p � ETorque on an electric dipole in an
external electric field

Potential energy of a dipole in an
electric field
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Molecules are said to be polarized when a separation exists between the average
position of the negative charges and the average position of the positive charges in
the molecule. In some molecules, such as water, this condition is always present—
such molecules are called polar molecules. Molecules that do not possess a per-
manent polarization are called nonpolar molecules.

We can understand the permanent polarization of water by inspecting the
geometry of the water molecule. In the water molecule, the oxygen atom is
bonded to the hydrogen atoms such that an angle of 105° is formed between the
two bonds (Fig. 26.21). The center of the negative charge distribution is near the
oxygen atom, and the center of the positive charge distribution lies at a point mid-
way along the line joining the hydrogen atoms (the point labeled 	 in Fig. 26.21).
We can model the water molecule and other polar molecules as dipoles because
the average positions of the positive and negative charges act as point charges. As a
result, we can apply our discussion of dipoles to the behavior of polar molecules.

Microwave ovens take advantage of the polar nature of the water molecule.
When in operation, microwave ovens generate a rapidly changing electric field
that causes the polar molecules to swing back and forth, absorbing energy from
the field in the process. Because the jostling molecules collide with each other, the
energy they absorb from the field is converted to internal energy, which corre-
sponds to an increase in temperature of the food.

Another household scenario in which the dipole structure of water is ex-
ploited is washing with soap and water. Grease and oil are made up of nonpolar
molecules, which are generally not attracted to water. Plain water is not very useful
for removing this type of grime. Soap contains long molecules called surfactants. In
a long molecule, the polarity characteristics of one end of the molecule can be dif-
ferent from those at the other end. In a surfactant molecule, one end acts like a
nonpolar molecule and the other acts like a polar molecule. The nonpolar end
can attach to a grease or oil molecule, and the polar end can attach to a water mol-
ecule. Thus, the soap serves as a chain, linking the dirt and water molecules to-
gether. When the water is rinsed away, the grease and oil go with it.

A symmetric molecule (Fig. 26.22a) has no permanent polarization, but polar-
ization can be induced by placing the molecule in an electric field. A field directed
to the left, as shown in Figure 26.22b, would cause the center of the positive
charge distribution to shift to the left from its initial position and the center of the
negative charge distribution to shift to the right. This induced polarization is the ef-
fect that predominates in most materials used as dielectrics in capacitors.

The H2O MoleculeEXAMPLE 26.8
obtain

Because there are 1021 molecules in the sample, the total
work required is

1.6 	 10�3 JWtotal � (1021)(1.6 	 10�24 J) �

 � 1.6 	 10�24 J 

 � pE � (6.3 	 10�30 C 
m)(2.5 	 105 N/C)

W � U90 � U0 � (�pE cos 90�) � (�pE cos 0�) 

The water (H2O) molecule has an electric dipole moment of
6.3 	 10�30 C 
 m. A sample contains 1021 water molecules,
with the dipole moments all oriented in the direction of an
electric field of magnitude 2.5 	 105 N/C. How much work
is required to rotate the dipoles from this orientation

to one in which all the dipole moments are perpen-
dicular to the field 

Solution The work required to rotate one molecule 90° is
equal to the difference in potential energy between the 90°
orientation and the 0° orientation. Using Equation 26.19, we

(� � 90�)?
(� � 0�)

O

HH 105°

−−

+ +	

E

(a)

(b)

++ −

−+ − +

Figure 26.21 The water mole-
cule, H2O, has a permanent polar-
ization resulting from its bent
geometry. The center of the posi-
tive charge distribution is at the
point 	.

Figure 26.22 (a) A symmetric
molecule has no permanent polar-
ization. (b) An external electric
field induces a polarization in the
molecule.
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Optional Section

AN ATOMIC DESCRIPTION OF DIELECTRICS
In Section 26.5 we found that the potential difference �V0 between the plates of a
capacitor is reduced to V0/� when a dielectric is introduced. Because the poten-
tial difference between the plates equals the product of the electric field and the
separation d, the electric field is also reduced. Thus, if E0 is the electric field with-
out the dielectric, the field in the presence of a dielectric is

(26.21)

Let us first consider a dielectric made up of polar molecules placed in the
electric field between the plates of a capacitor. The dipoles (that is, the polar mol-
ecules making up the dielectric) are randomly oriented in the absence of an elec-
tric field, as shown in Figure 26.23a. When an external field E0 due to charges on
the capacitor plates is applied, a torque is exerted on the dipoles, causing them to
partially align with the field, as shown in Figure 26.23b. We can now describe the
dielectric as being polarized. The degree of alignment of the molecules with the
electric field depends on temperature and on the magnitude of the field. In gen-
eral, the alignment increases with decreasing temperature and with increasing
electric field.

If the molecules of the dielectric are nonpolar, then the electric field due to
the plates produces some charge separation and an induced dipole moment. These
induced dipole moments tend to align with the external field, and the dielectric is
polarized. Thus, we can polarize a dielectric with an external field regardless of
whether the molecules are polar or nonpolar.

With these ideas in mind, consider a slab of dielectric material placed between
the plates of a capacitor so that it is in a uniform electric field E0 , as shown in Fig-
ure 26.24a. The electric field due to the plates is directed to the right and polar-
izes the dielectric. The net effect on the dielectric is the formation of an induced
positive surface charge density �ind on the right face and an equal negative surface
charge density � �ind on the left face, as shown in Figure 26.24b. These induced
surface charges on the dielectric give rise to an induced electric field Eind in the
direction opposite the external field E0 . Therefore, the net electric field E in the

E �
E0

�

�

26.7
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Figure 26.23 (a) Polar mole-
cules are randomly oriented in the
absence of an external electric
field. (b) When an external field is
applied, the molecules partially
align with the field.

Figure 26.24 (a) When a dielectric is polarized, the dipole moments of the molecules in the
dielectric are partially aligned with the external field E0 . (b) This polarization causes an induced
negative surface charge on one side of the dielectric and an equal induced positive surface
charge on the opposite side. This separation of charge results in a reduction in the net electric
field within the dielectric.
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dielectric has a magnitude

(26.22)

In the parallel-plate capacitor shown in Figure 26.25, the external field E0 is
related to the charge density � on the plates through the relationship 
The induced electric field in the dielectric is related to the induced charge density
�ind through the relationship Because substitu-
tion into Equation 26.22 gives

(26.23)

Because this expression shows that the charge density �ind induced on the
dielectric is less than the charge density � on the plates. For instance, if we
see that the induced charge density is two-thirds the charge density on the plates.
If no dielectric is present, then and as expected. However, if the di-
electric is replaced by an electrical conductor, for which then Equation
26.22 indicates that this corresponds to That is, the surface
charge induced on the conductor is equal in magnitude but opposite in sign to
that on the plates, resulting in a net electric field of zero in the conductor.

�ind � �.E0 � E ind ;
E � 0,

�ind � 0� � 1

� � 3,
�  1,

�ind � � � � 1
� � �

�

��0
�

�

�0
�

�ind

�0

E � E0/� � �/��0 ,E ind � �ind/�0 .

E0 � �/�0 .

E � E0 � E ind

Effect of a Metallic SlabEXAMPLE 26.9
Solution In the result for part (a), we let a : 0:

which is the original capacitance.

C � lim
a :0

 
�0A

d � a
�

�0A
d

A parallel-plate capacitor has a plate separation d and plate
area A. An uncharged metallic slab of thickness a is inserted
midway between the plates. (a) Find the capacitance of the
device.

Solution We can solve this problem by noting that any
charge that appears on one plate of the capacitor must in-
duce a charge of equal magnitude but opposite sign on the
near side of the slab, as shown in Figure 26.26a. Conse-
quently, the net charge on the slab remains zero, and the
electric field inside the slab is zero. Hence, the capacitor is
equivalent to two capacitors in series, each having a plate sep-
aration as shown in Figure 26.26b.

Using the rule for adding two capacitors in series (Eq.
26.10), we obtain

Note that C approaches infinity as a approaches d. Why?

(b) Show that the capacitance is unaffected if the metallic
slab is infinitesimally thin.

C �
�0A

d � a

1
C

�
1

C1
�

1
C2

�
1

�0A
(d � a)/2

�
1

�0A
(d � a)/2

(d � a)/2,

+

+

+

+

+

+

+
+

+
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Figure 26.25 Induced charge on
a dielectric placed between the
plates of a charged capacitor. Note
that the induced charge density on
the dielectric is less than the charge
density on the plates.

(b)

(d – a)/2

(d – a)/2

(a)

d a

(d – a)/2

(d – a)/2
σ
–

σ

–– – – – –

– – – – –

+ + + + +

+ + + + +

σ

σ

Figure 26.26 (a) A parallel-plate capacitor of plate separation d
partially filled with a metallic slab of thickness a. (b) The equivalent
circuit of the device in part (a) consists of two capacitors in series,
each having a plate separation (d � a)/2.



828 C H A P T E R  2 6 Capacitance and Dielectrics

A Partially Filled CapacitorEXAMPLE 26.10
Solution In Example 26.9, we found that we could insert a
metallic slab between the plates of a capacitor and consider
the combination as two capacitors in series. The resulting ca-
pacitance was independent of the location of the slab. Fur-
thermore, if the thickness of the slab approaches zero, then
the capacitance of the system approaches the capacitance
when the slab is absent. From this, we conclude that we can
insert an infinitesimally thin metallic slab anywhere between
the plates of a capacitor without affecting the capacitance.
Thus, let us imagine sliding an infinitesimally thin metallic
slab along the bottom face of the dielectric shown in Figure
26.27a. We can then consider this system to be the series com-
bination of the two capacitors shown in Figure 26.27b: one
having a plate separation d/3 and filled with a dielectric, and
the other having a plate separation 2d/3 and air between its
plates.

From Equations 26.15 and 26.3, the two capacitances are

Using Equation 26.10 for two capacitors combined in series,
we have

Because the capacitance without the dielectric is 
we see that

C � � 3�

2� � 1 � C0

C0 � �0A/d,

C � � 3�

2� � 1 � 
�0A

d
 

�
d

3�0A
 � 1

�
� 2� �

d
3�0A

 � 1 � 2�

� �

1
C

�
1

C1
�

1
C2

�
d/3

��0A
�

2d/3
�0A

C1 �
��0A
d/3

  and  C2 �
�0A

2d/3

A parallel-plate capacitor with a plate separation d has a ca-
pacitance C0 in the absence of a dielectric. What is the capac-
itance when a slab of dielectric material of dielectric constant
� and thickness is inserted between the plates (Fig.
26.27a)?

1
3d

(c) Show that the answer to part (a) does not depend on
where the slab is inserted.

Solution Let us imagine that the slab in Figure 26.26a is
moved upward so that the distance between the upper edge
of the slab and the upper plate is b. Then, the distance be-
tween the lower edge of the slab and the lower plate is

As in part (a), we find the total capacitance of the
series combination:
d � b � a.

This is the same result as in part (a). It is independent of the
value of b, so it does not matter where the slab is located.

C �
�0A

d � a
 

 �
b

�0A
�

d � b � a
�0A

�
d � a
�0A

1
C

�
1

C1
�

1
C2

�
1

�0A
b

�
1

�0A
d � b � a

1
3
– d

2
3
– d d

(a)

κ

(b)

C 1

C 2

1
3
– d

2
3
– d

κ

Figure 26.27 (a) A parallel-plate capacitor of plate separation d
partially filled with a dielectric of thickness d/3. (b) The equivalent
circuit of the capacitor consists of two capacitors connected in series.
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SUMMARY

A capacitor consists of two conductors carrying charges of equal magnitude but
opposite sign. The capacitance C of any capacitor is the ratio of the charge Q on
either conductor to the potential difference �V between them:

(26.1)

This relationship can be used in situations in which any two of the three variables
are known. It is important to remember that this ratio is constant for a given con-
figuration of conductors because the capacitance depends only on the geometry
of the conductors and not on an external source of charge or potential difference.

The SI unit of capacitance is coulombs per volt, or the farad (F), and

Capacitance expressions for various geometries are summarized in Table 26.2. 
If two or more capacitors are connected in parallel, then the potential differ-

ence is the same across all of them. The equivalent capacitance of a parallel com-
bination of capacitors is

(26.8)

If two or more capacitors are connected in series, the charge is the same on all
of them, and the equivalent capacitance of the series combination is given by

(26.10)

These two equations enable you to simplify many electric circuits by replacing mul-
tiple capacitors with a single equivalent capacitance.

Work is required to charge a capacitor because the charging process is equiva-
lent to the transfer of charges from one conductor at a lower electric potential to
another conductor at a higher potential. The work done in charging the capacitor
to a charge Q equals the electric potential energy U stored in the capacitor, where

(26.11)U �
Q2

2C
� 1

2Q �V � 1
2C(�V )2

1
Ceq

�
1

C1
�

1
C2

�
1

C3
� 




Ceq � C1 � C2 � C3 � 




1 F � 1 C/V.

C �
Q

�V

TABLE 26.2 Capacitance and Geometry

Geometry Capacitance Equation

Isolated charged sphere of radius
R (second charged conductor 26.2
assumed at infinity)

Parallel-plate capacitor of plate
area A and plate separation d

26.3

Cylindrical capacitor of length
� and inner and outer radii 26.4
a and b, respectively

Spherical capacitor with inner 
and outer radii a and b, 26.6
respectively

C �
ab

ke (b � a)

C � 4��0R

C �
�

2ke ln� b
a �

C � �0 
A
d
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When a dielectric material is inserted between the plates of a capacitor, the ca-
pacitance increases by a dimensionless factor �, called the dielectric constant:

(26.14)

where C 0 is the capacitance in the absence of the dielectric. The increase in capac-
itance is due to a decrease in the magnitude of the electric field in the presence of
the dielectric and to a corresponding decrease in the potential difference between
the plates—if we assume that the charging battery is removed from the circuit be-
fore the dielectric is inserted. The decrease in the magnitude of E arises from an
internal electric field produced by aligned dipoles in the dielectric. This internal
field produced by the dipoles opposes the applied field due to the capacitor
plates, and the result is a reduction in the net electric field.

The electric dipole moment p of an electric dipole has a magnitude

(26.16)

The direction of the electric dipole moment vector is from the negative charge to-
ward the positive charge.

The torque acting on an electric dipole in a uniform electric field E is

(26.18)

The potential energy of an electric dipole in a uniform external electric field
E is

(26.20)U � � p � E

� � p � E

p � 2aq

C � �C0

Problem-Solving Hints
Capacitors

• Be careful with units. When you calculate capacitance in farads, make sure
that distances are expressed in meters and that you use the SI value of �0 .
When checking consistency of units, remember that the unit for electric
fields can be either N/C or V/m.

• When two or more capacitors are connected in parallel, the potential differ-
ence across each is the same. The charge on each capacitor is proportional
to its capacitance; hence, the capacitances can be added directly to give the
equivalent capacitance of the parallel combination. The equivalent capaci-
tance is always larger than the individual capacitances.

• When two or more capacitors are connected in series, they carry the same
charge, and the sum of the potential differences equals the total potential
difference applied to the combination. The sum of the reciprocals of the ca-
pacitances equals the reciprocal of the equivalent capacitance, which is al-
ways less than the capacitance of the smallest individual capacitor.

• A dielectric increases the capacitance of a capacitor by a factor � (the dielec-
tric constant) over its capacitance when air is between the plates.

• For problems in which a battery is being connected or disconnected, note
whether modifications to the capacitor are made while it is connected to the
battery or after it has been disconnected. If the capacitor remains con-
nected to the battery, the voltage across the capacitor remains unchanged
(equal to the battery voltage), and the charge is proportional to the capaci-
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tance, although it may be modified (for instance, by the insertion of a di-
electric). If you disconnect the capacitor from the battery before making
any modifications to the capacitor, then its charge remains fixed. In this
case, as you vary the capacitance, the voltage across the plates changes ac-
cording to the expression �V � Q /C .

QUESTIONS

10. Explain why the work needed to move a charge Q
through a potential difference �V is whereas 
the energy stored in a charged capacitor is 
Where does the factor come from?

11. If the potential difference across a capacitor is doubled,
by what factor does the stored energy change?

12. Why is it dangerous to touch the terminals of a high-
voltage capacitor even after the applied voltage has been
turned off? What can be done to make the capacitor safe
to handle after the voltage source has been removed?

13. Describe how you can increase the maximum operating
voltage of a parallel-plate capacitor for a fixed plate sepa-
ration.

14. An air-filled capacitor is charged, disconnected from the
power supply, and, finally, connected to a voltmeter. Ex-
plain how and why the voltage reading changes when a
dielectric is inserted between the plates of the capacitor.

15. Using the polar molecule description of a dielectric, ex-
plain how a dielectric affects the electric field inside a ca-
pacitor.

16. Explain why a dielectric increases the maximum operat-
ing voltage of a capacitor even though the physical size of
the capacitor does not change.

17. What is the difference between dielectric strength and
the dielectric constant?

18. Explain why a water molecule is permanently polarized.
What type of molecule has no permanent polarization?

19. If a dielectric-filled capacitor is heated, how does its ca-
pacitance change? (Neglect thermal expansion and as-
sume that the dipole orientations are temperature depen-
dent.)

1
2

U � 1
2Q �V.

W � Q �V,
1. If you were asked to design a capacitor in a situation for

which small size and large capacitance were required,
what factors would be important in your design?

2. The plates of a capacitor are connected to a battery. What
happens to the charge on the plates if the connecting
wires are removed from the battery? What happens to the
charge if the wires are removed from the battery and con-
nected to each other?

3. A farad is a very large unit of capacitance. Calculate the
length of one side of a square, air-filled capacitor that has
a plate separation of 1 m. Assume that it has a capaci-
tance of 1 F.

4. A pair of capacitors are connected in parallel, while an
identical pair are connected in series. Which pair would
be more dangerous to handle after being connected to
the same voltage source? Explain.

5. If you are given three different capacitors C1 , C2 , C3 ,
how many different combinations of capacitance can you
produce?

6. What advantage might there be in using two identical ca-
pacitors in parallel connected in series with another iden-
tical parallel pair rather than a single capacitor?

7. Is it always possible to reduce a combination of capacitors
to one equivalent capacitor with the rules we have devel-
oped? Explain.

8. Because the net charge in a capacitor is always zero, what
does a capacitor store?

9. Because the charges on the plates of a parallel-plate ca-
pacitor are of opposite sign, they attract each other.
Hence, it would take positive work to increase the plate
separation. What happens to the external work done in
this process?

PROBLEMS

2. Two conductors having net charges of � 10.0 �C and
� 10.0 �C have a potential difference of 10.0 V. Deter-
mine (a) the capacitance of the system and (b) the poten-
tial difference between the two conductors if the charges
on each are increased to � 100 �C and � 100 �C.

Section 26.1 Definition of Capacitance
1. (a) How much charge is on each plate of a 4.00-�F ca-

pacitor when it is connected to a 12.0-V battery? 
(b) If this same capacitor is connected to a 1.50-V bat-
tery, what charge is stored?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

WEB

Section 26.2 Calculating Capacitance
3. An isolated charged conducting sphere of radius 

12.0 cm creates an electric field of 4.90 	 104 N/C at a
distance 21.0 cm from its center. (a) What is its surface
charge density? (b) What is its capacitance?

4. (a) If a drop of liquid has capacitance 1.00 pF, what is
its radius? (b) If another drop has radius 2.00 mm, what
is its capacitance? (c) What is the charge on the smaller
drop if its potential is 100 V?

5. Two conducting spheres with diameters of 0.400 m and
1.00 m are separated by a distance that is large com-
pared with the diameters. The spheres are connected by
a thin wire and are charged to 7.00 �C. (a) How is this
total charge shared between the spheres? (Neglect any
charge on the wire.) (b) What is the potential of the sys-
tem of spheres when the reference potential is taken to
be at 

6. Regarding the Earth and a cloud layer 800 m above the
Earth as the “plates” of a capacitor, calculate the capaci-
tance if the cloud layer has an area of 1.00 km2. Assume
that the air between the cloud and the ground is pure
and dry. Assume that charge builds up on the cloud and 
on the ground until a uniform electric field with a mag-
nitude of 3.00 	 106 N/C throughout the space be-
tween them makes the air break down and conduct
electricity as a lightning bolt. What is the maximum
charge the cloud can hold?

7. An air-filled capacitor consists of two parallel plates,
each with an area of 7.60 cm2, separated by a distance
of 1.80 mm. If a 20.0-V potential difference is applied to
these plates, calculate (a) the electric field between the
plates, (b) the surface charge density, (c) the capaci-
tance, and (d) the charge on each plate.

8. A 1-megabit computer memory chip contains many
60.0-fF capacitors. Each capacitor has a plate area of
21.0 	 10�12 m2. Determine the plate separation of
such a capacitor (assume a parallel-plate configura-
tion). The characteristic atomic diameter is 10�10 m �
0.100 nm. Express the plate separation in nanometers.

9. When a potential difference of 150 V is applied to the
plates of a parallel-plate capacitor, the plates carry a sur-
face charge density of 30.0 nC/cm2. What is the spacing
between the plates?

10. A variable air capacitor used in tuning circuits is made
of N semicircular plates each of radius R and positioned
a distance d from each other. As shown in Figure
P26.10, a second identical set of plates is enmeshed with
its plates halfway between those of the first set. The sec-
ond set can rotate as a unit. Determine the capacitance
as a function of the angle of rotation �, where 
corresponds to the maximum capacitance.

11. A 50.0-m length of coaxial cable has an inner conductor
that has a diameter of 2.58 mm and carries a charge of
8.10 �C. The surrounding conductor has an inner di-
ameter of 7.27 mm and a charge of � 8.10 �C. 
(a) What is the capacitance of this cable? (b) What is

� � 0

r � � ?V � 0

the potential difference between the two conductors?
Assume the region between the conductors is air.

12. A 20.0-�F spherical capacitor is composed of two metal-
lic spheres, one having a radius twice as large as the
other. If the region between the spheres is a vacuum,
determine the volume of this region.

13. A small object with a mass of 350 mg carries a charge of
30.0 nC and is suspended by a thread between the verti-
cal plates of a parallel-plate capacitor. The plates are
separated by 4.00 cm. If the thread makes an angle of
15.0° with the vertical, what is the potential difference
between the plates?

14. A small object of mass m carries a charge q and is sus-
pended by a thread between the vertical plates of a
parallel-plate capacitor. The plate separation is d. If the
thread makes an angle � with the vertical, what is the
potential difference between the plates?

15. An air-filled spherical capacitor is constructed with in-
ner and outer shell radii of 7.00 and 14.0 cm, respec-
tively. (a) Calculate the capacitance of the device. 
(b) What potential difference between the spheres re-
sults in a charge of 4.00 �C on the capacitor?

16. Find the capacitance of the Earth. (Hint: The outer
conductor of the “spherical capacitor” may be consid-
ered as a conducting sphere at infinity where V ap-
proaches zero.)

Section 26.3 Combinations of Capacitors
17. Two capacitors and C2 � 12.0 �F are con-

nected in parallel, and the resulting combination is con-
nected to a 9.00-V battery. (a) What is the value of the
equivalent capacitance of the combination? What are
(b) the potential difference across each capacitor and
(c) the charge stored on each capacitor?

18. The two capacitors of Problem 17 are now connected in
series and to a 9.00-V battery. Find (a) the value of the
equivalent capacitance of the combination, (b) the volt-
age across each capacitor, and (c) the charge on each
capacitor.

19. Two capacitors when connected in parallel give an
equivalent capacitance of 9.00 pF and an equivalent ca-

C1 � 5.00 �F

R

d

�

Figure P26.10
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pacitance of 2.00 pF when connected in series. What is
the capacitance of each capacitor?

20. Two capacitors when connected in parallel give an
equivalent capacitance of Cp and an equivalent capaci-
tance of Cs when connected in series. What is the capac-
itance of each capacitor?

21. Four capacitors are connected as shown in Figure
P26.21. (a) Find the equivalent capacitance between
points a and b. (b) Calculate the charge on each capaci-
tor if �Vab � 15.0 V.

24. According to its design specification, the timer circuit
delaying the closing of an elevator door is to have a ca-
pacitance of 32.0 �F between two points A and B. 
(a) When one circuit is being constructed, the inexpen-
sive capacitor installed between these two points is
found to have capacitance 34.8 �F. To meet the specifi-
cation, one additional capacitor can be placed between
the two points. Should it be in series or in parallel with
the 34.8-�F capacitor? What should be its capacitance?
(b) The next circuit comes down the assembly line with
capacitance 29.8 �F between A and B. What additional
capacitor should be installed in series or in parallel in
that circuit, to meet the specification?

25. The circuit in Figure P26.25 consists of two identical
parallel metallic plates connected by identical metallic
springs to a 100-V battery. With the switch open, the
plates are uncharged, are separated by a distance

and have a capacitance 
When the switch is closed, the distance between the
plates decreases by a factor of 0.500. (a) How much
charge collects on each plate and (b) what is the spring
constant for each spring? (Hint: Use the result of Prob-
lem 35.)

C � 2.00 �F.d � 8.00 mm,

WEB

26. Figure P26.26 shows six concentric conducting spheres,
A, B, C, D, E, and F having radii R, 2R, 3R, 4R, 5R, and
6R, respectively. Spheres B and C are connected by a
conducting wire, as are spheres D and E. Determine the
equivalent capacitance of this system.

27. A group of identical capacitors is connected first in se-
ries and then in parallel. The combined capacitance in
parallel is 100 times larger than for the series connec-
tion. How many capacitors are in the group?

28. Find the equivalent capacitance between points a and b
for the group of capacitors connected as shown in Fig-
ure P26.28 if and

29. For the network described in the previous problem if
the potential difference between points a and b is 
60.0 V, what charge is stored on C3 ?

C3 � 2.00 �F.
C2 � 10.0 �F,C1 � 5.00 �F,

23. Consider the circuit shown in Figure P26.23, where
and Capaci-

tor C1 is first charged by the closing of switch S1 . Switch
S1 is then opened, and the charged capacitor is con-
nected to the uncharged capacitor by the closing of S2 .
Calculate the initial charge acquired by C1 and the final
charge on each.

�V � 20.0 V.C2 � 3.00 �F,C1 � 6.00 �F,

22. Evaluate the equivalent capacitance of the configura-
tion shown in Figure P26.22. All the capacitors are iden-
tical, and each has capacitance C.

6.00 µF

20.0 µF

3.00 µF15.0 µF

a b

µ µ

µ

µ

+ –

kk

d

∆V

S

C1 C2

S2S1

∆V

CC

C

C CC

Figure P26.21

Figure P26.22

Figure P26.23

Figure P26.25
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30. Find the equivalent capacitance between points a and b
in the combination of capacitors shown in Figure
P26.30.

energy stored in the two capacitors. (b) What potential
difference would be required across the same two ca-
pacitors connected in series so that the combination
stores the same energy as in part (a)? Draw a circuit dia-
gram of this circuit.

33. A parallel-plate capacitor is charged and then discon-
nected from a battery. By what fraction does the stored
energy change (increase or decrease) when the plate
separation is doubled?

34. A uniform electric field exists within a
certain region. What volume of space contains an en-
ergy equal to 1.00 	 10�7 J ? Express your answer in cu-
bic meters and in liters.

35. A parallel-plate capacitor has a charge Q and plates of
area A. Show that the force exerted on each plate by the
other is (Hint: Let for an arbi-
trary plate separation x ; then require that the work
done in separating the two charged plates be

36. Plate a of a parallel-plate, air-filled capacitor is con-
nected to a spring having force constant k , and plate b is
fixed. They rest on a table top as shown (top view) in
Figure P26.36. If a charge � Q is placed on plate a and a
charge �Q is placed on plate b, by how much does the
spring expand?

W � � F dx.)

C � �0A/xF � Q2/2�0A.

E � 3 000 V/m

WEB

37. Review Problem. A certain storm cloud has a potential
difference of 1.00 	 108 V relative to a tree. If, during a
lightning storm, 50.0 C of charge is transferred through
this potential difference and 1.00% of the energy is ab-
sorbed by the tree, how much water (sap in the tree)
initially at 30.0°C can be boiled away? Water has a spe-
cific heat of 4 186 J/kg 
 °C, a boiling point of 100°C,
and a heat of vaporization of 2.26 	 106 J/kg.

38. Show that the energy associated with a conducting
sphere of radius R and charge Q surrounded by a vac-
uum is 

39. Einstein said that energy is associated with mass accord-
ing to the famous relationship Estimate the ra-
dius of an electron, assuming that its charge is distrib-
uted uniformly over the surface of a sphere of radius R
and that the mass–energy of the electron is equal to the
total energy stored in the resulting nonzero electric
field between R and infinity. (See Problem 38. Experi-
mentally, an electron nevertheless appears to be a point
particle. The electric field close to the electron must be
described by quantum electrodynamics, rather than the
classical electrodynamics that we study.)

E � mc 2.

U � keQ2/2R.

Section 26.4 Energy Stored in a Charged Capacitor
31. (a) A 3.00-�F capacitor is connected to a 12.0-V battery.

How much energy is stored in the capacitor? (b) If the
capacitor had been connected to a 6.00-V battery, how
much energy would have been stored?

32. Two capacitors and are con-
nected in parallel and charged with a 100-V power sup-
ply. (a) Draw a circuit diagram and calculate the total

C2 � 5.00 �FC1 � 25.0 �F

ba

6.0 µF

5.0 µF

7.0 µF

4.0 µFµ

µ

µ

µ

C2 C2

C1 C1

C2 C2

C3

b

a

k

a b

A
B

C
D

E
F

Figure P26.26

Figure P26.28 Problems 28 and 29.

Figure P26.30

Figure P26.36
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Section 26.5 Capacitors with Dielectrics
40. Find the capacitance of a parallel-plate capacitor that

uses Bakelite as a dielectric, if each of the plates has an
area of 5.00 cm2 and the plate separation is 2.00 mm.

41. Determine (a) the capacitance and (b) the maximum
voltage that can be applied to a Teflon-filled parallel-
plate capacitor having a plate area of 1.75 cm2 and plate
separation of 0.040 0 mm.

42. (a) How much charge can be placed on a capacitor with
air between the plates before it breaks down, if the area
of each of the plates is 5.00 cm2? (b) Find the maxi-
mum charge if polystyrene is used between the plates
instead of air.

43. A commercial capacitor is constructed as shown in Fig-
ure 26.15a. This particular capacitor is rolled from two
strips of aluminum separated by two strips of paraffin-
coated paper. Each strip of foil and paper is 7.00 cm
wide. The foil is 0.004 00 mm thick, and the paper is
0.025 0 mm thick and has a dielectric constant of 
3.70. What length should the strips be if a capacitance
of 9.50 	 10�8 F is desired? (Use the parallel-plate
formula.)

44. The supermarket sells rolls of aluminum foil, plastic
wrap, and waxed paper. Describe a capacitor made from
supermarket materials. Compute order-of-magnitude es-
timates for its capacitance and its breakdown voltage.

45. A capacitor that has air between its plates is connected
across a potential difference of 12.0 V and stores 
48.0 �C of charge. It is then disconnected from the
source while still charged. (a) Find the capacitance of
the capacitor. (b) A piece of Teflon is inserted between
the plates. Find its new capacitance. (c) Find the voltage
and charge now on the capacitor.

46. A parallel-plate capacitor in air has a plate separation of
1.50 cm and a plate area of 25.0 cm2. The plates are
charged to a potential difference of 250 V and discon-
nected from the source. The capacitor is then im-
mersed in distilled water. Determine (a) the charge on
the plates before and after immersion, (b) the capaci-
tance and voltage after immersion, and (c) the change
in energy of the capacitor. Neglect the conductance of
the liquid.

47. A conducting spherical shell has inner radius a and
outer radius c . The space between these two surfaces is
filled with a dielectric for which the dielectric constant
is �1 between a and b, and �2 between b and c (Fig.
P26.47). Determine the capacitance of this system.

48. A wafer of titanium dioxide has an area of
1.00 cm2 and a thickness of 0.100 mm. Aluminum is
evaporated on the parallel faces to form a parallel-plate
capacitor. (a) Calculate the capacitance. (b) When the
capacitor is charged with a 12.0-V battery, what is the
magnitude of charge delivered to each plate? (c) For
the situation in part (b), what are the free and induced
surface charge densities? (d) What is the magnitude E
of the electric field?

(� � 173)

49. Each capacitor in the combination shown in Figure
P26.49 has a breakdown voltage of 15.0 V. What is the
breakdown voltage of the combination?

(Optional)
Section 26.6 Electric Dipole in an Electric Field

50. A small rigid object carries positive and negative 3.50-nC
charges. It is oriented so that the positive charge is at the
point (� 1.20 mm, 1.10 mm) and the negative charge is
at the point (1.40 mm, � 1.30 mm). (a) Find the electric
dipole moment of the object. The object is placed in an
electric field E � (7 800i � 4 900j) N/C. (b) Find the
torque acting on the object. (c) Find the potential en-
ergy of the object in this orientation. (d) If the orienta-
tion of the object can change, find the difference be-
tween its maximum and its minimum potential energies.

51. A small object with electric dipole moment p is placed
in a nonuniform electric field That is, the
field is in the x direction, and its magnitude depends on
the coordinate x . Let � represent the angle between the
dipole moment and the x direction. (a) Prove that the
dipole experiences a net force cos � in
the direction toward which the field increases. (b) Con-
sider the field created by a spherical balloon centered
at the origin. The balloon has a radius of 15.0 cm and
carries a charge of 2.00 �C. Evaluate dE/dx at the point
(16 cm, 0, 0). Assume that a water droplet at this point
has an induced dipole moment of (6.30i) nC 
 m. Find
the force on it.

(Optional)
Section 26.7 An Atomic Description of Dielectrics

52. A detector of radiation called a Geiger–Muller counter
consists of a closed, hollow, conducting cylinder with a

F � p(dE/dx)

E � E(x) i.

20.0 µF

10.0 µF

20.0 µF

20.0 µF

20.0 µF

µ

µ

µ

µ

µ

a

b

c

–Q

+Q
κ2

κ1

Figure P26.47

Figure P26.49
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fine wire along its axis. Suppose that the internal diame-
ter of the cylinder is 2.50 cm and that the wire along the
axis has a diameter of 0.200 mm. If the dielectric
strength of the gas between the central wire and the
cylinder is 1.20 	 106 V/m, calculate the maximum
voltage that can be applied between the wire and the
cylinder before breakdown occurs in the gas.

53. The general form of Gauss’s law describes how a charge
creates an electric field in a material, as well as in a vac-
uum. It is

where is the permittivity of the material. 
(a) A sheet with charge Q uniformly distributed over 
its area A is surrounded by a dielectric. Show that the
sheet creates a uniform electric field with magnitude

at nearby points. (b) Two large sheets of
area A carrying opposite charges of equal magnitude Q
are a small distance d apart. Show that they create a uni-
form electric field of magnitude between
them. (c) Assume that the negative plate is at zero po-
tential. Show that the positive plate is at a potential
Qd /A�. (d) Show that the capacitance of the pair of
plates is 

ADDITIONAL PROBLEMS

54. For the system of capacitors shown in Figure P26.54,
find (a) the equivalent capacitance of the system, 
(b) the potential difference across each capacitor, 
(c) the charge on each capacitor, and (d) the total 
energy stored by the group.

A�/d � �A�0/d .

E � Q /A�

E � Q /2A�

� � ��0

� E � dA �
q
�

56. A 2.00-nF parallel-plate capacitor is charged to an initial
potential difference and then isolated. The
dielectric material between the plates is mica (� �
5.00). (a) How much work is required to withdraw the
mica sheet? (b) What is the potential difference of the
capacitor after the mica is withdrawn?

57. A parallel-plate capacitor is constructed using a dielec-
tric material whose dielectric constant is 3.00 and whose
dielectric strength is 2.00 	 108 V/m. The desired ca-
pacitance is 0.250 �F, and the capacitor must withstand
a maximum potential difference of 4 000 V. Find the
minimum area of the capacitor plates.

58. A parallel-plate capacitor is constructed using three
dielectric materials, as shown in Figure P26.58. You may
assume that � d. (a) Find an expression for the ca-
pacitance of the device in terms of the plate area A and
d , �1 , �2 , and �3 . (b) Calculate the capacitance using
the values cm2, mm, �1 � 4.90, �2 �
5.60, and �3 � 2.10.

d � 2.00A � 1.00

W

�Vi � 100 V

60. (a) Two spheres have radii a and b and their centers are
a distance d apart. Show that the capacitance of this sys-
tem is

provided that d is large compared with a and b. (Hint:
Because the spheres are far apart, assume that the

C 	
4��0

1
a

�
1
b

�
2
d

59. A conducting slab of thickness d and area A is inserted
into the space between the plates of a parallel-plate ca-
pacitor with spacing s and surface area A, as shown in
Figure P26.59. The slab is not necessarily halfway be-
tween the capacitor plates. What is the capacitance of
the system?

55. Consider two long, parallel, and oppositely charged
wires of radius d with their centers separated by a dis-
tance D. Assuming the charge is distributed uniformly
on the surface of each wire, show that the capacitance
per unit length of this pair of wires is

C
�

�
��0

ln� D � d
d �

A

A

ds

d
d/2

�/2

�

κ2

κ3

κ1

κ

κ

κ

4.00 µF2.00 µF

6.00 µF3.00 µF

90.0 V

µ µ

µ µ

Figure P26.54

Figure P26.58

Figure P26.59

WEB
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68. It is possible to obtain large potential differences by first
charging a group of capacitors connected in parallel
and then activating a switch arrangement that in effect
disconnects the capacitors from the charging source
and from each other and reconnects them in a series
arrangement. The group of charged capacitors is then
discharged in series. What is the maximum potential
difference that can be obtained in this manner by using
ten capacitors each of 500 �F and a charging source of
800 V?

69. A parallel-plate capacitor of plate separation d is
charged to a potential difference �V0 . A dielectric slab

64. When considering the energy supply for an automobile,
the energy per unit mass of the energy source is an im-
portant parameter. Using the following data, compare
the energy per unit mass ( J/kg) for gasoline, lead–acid
batteries, and capacitors. (The ampere A will be intro-
duced in Chapter 27 and is the SI unit of electric cur-
rent. 1 A � 1 C/s.)

Gasoline: 126 000 Btu/gal; density � 670 kg/m3

Lead–acid battery: 12.0 V; 100 A 
 h; mass � 16.0 kg
Capacitor: potential difference at full charge �

12.0 V; capacitance � 0.100 F; mass � 0.100 kg

65. An isolated capacitor of unknown capacitance has been
charged to a potential difference of 100 V. When the
charged capacitor is then connected in parallel to an
uncharged 10.0-�F capacitor, the voltage across the
combination is 30.0 V. Calculate the unknown capaci-
tance.

66. A certain electronic circuit calls for a capacitor having a
capacitance of 1.20 pF and a breakdown potential of 
1 000 V. If you have a supply of 6.00-pF capacitors, each
having a breakdown potential of 200 V, how could you
meet this circuit requirement?

67. In the arrangement shown in Figure P26.67, a potential
difference �V is applied, and C1 is adjusted so that the
voltmeter between points b and d reads zero. This “bal-
ance” occurs when If and

calculate the value of C2 .C4 � 12.0 �F,
C3 � 9.00 �FC1 � 4.00 �F.

63. A capacitor is constructed from two square plates of
sides � and separation d, as suggested in Figure P26.62.
You may assume that d is much less than �. The plates
carry charges �Q 0 and �Q 0 . A block of metal has a
width �, a length �, and a thickness slightly less than d. It
is inserted a distance x into the capacitor. The charges
on the plates are not disturbed as the block slides in. 
In a static situation, a metal prevents an electric field
from penetrating it. The metal can be thought of as a
perfect dielectric, with � : �. (a) Calculate the stored
energy as a function of x. (b) Find the direction and
magnitude of the force that acts on the metallic block. 
(c) The area of the advancing front face of the block is
essentially equal to �d. Considering the force on the
block as acting on this face, find the stress (force per
area) on it. (d) For comparison, express the energy
density in the electric field between the capacitor plates
in terms of Q 0 , �, d, and �0 .

charge on one sphere does not perturb the charge dis-
tribution on the other sphere. Thus, the potential of
each sphere is expressed as that of a symmetric charge
distribution, , and the total potential at each
sphere is the sum of the potentials due to each sphere.
(b) Show that as d approaches infinity the above result
reduces to that of two isolated spheres in series.

61. When a certain air-filled parallel-plate capacitor is con-
nected across a battery, it acquires a charge (on each
plate) of q0 . While the battery connection is main-
tained, a dielectric slab is inserted into and fills the re-
gion between the plates. This results in the accumula-
tion of an additional charge q on each plate. What is the
dielectric constant of the slab?

62. A capacitor is constructed from two square plates of
sides � and separation d. A material of dielectric con-
stant � is inserted a distance x into the capacitor, as
shown in Figure P26.62. (a) Find the equivalent capaci-
tance of the device. (b) Calculate the energy stored in
the capacitor if the potential difference is �V. (c) Find
the direction and magnitude of the force exerted on
the dielectric, assuming a constant potential difference
�V. Neglect friction. (d) Obtain a numerical value for
the force assuming that �V � 2 000 V,

and the dielectric is glass (� � 4.50).
(Hint: The system can be considered as two capacitors
connected in parallel.)

d � 2.00 mm,
� � 5.00 cm,

V � keQ /r

C 1

C 2

C 4

C 3

a

b

c

d∆V V

x
d

�

κ

Figure P26.62 Problems 62 and 63.

Figure P26.67
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76. Determine the effective capacitance of the combination
shown in Figure P26.76. (Hint: Consider the symmetry
involved!)

pacitors are disconnected from the battery and from
each other. They are then connected positive plate to
negative plate and negative plate to positive plate. Cal-
culate the resulting charge on each capacitor.

73. The inner conductor of a coaxial cable has a radius of
0.800 mm, and the outer conductor’s inside radius is
3.00 mm. The space between the conductors is filled
with polyethylene, which has a dielectric constant of
2.30 and a dielectric strength of 18.0 	 106 V/m. What
is the maximum potential difference that this cable can
withstand?

74. You are optimizing coaxial cable design for a major
manufacturer. Show that for a given outer conductor ra-
dius b, maximum potential difference capability is at-
tained when the radius of the inner conductor is

where e is the base of natural logarithms.
75. Calculate the equivalent capacitance between the points

a and b in Figure P26.75. Note that this is not a simple
series or parallel combination. (Hint: Assume a poten-
tial difference �V between points a and b. Write expres-
sions for �Vab in terms of the charges and capacitances
for the various possible pathways from a to b, and re-
quire conservation of charge for those capacitor plates
that are connected to each other.)

a � b/e

72. Capacitors and are charged
as a parallel combination across a 250-V battery. The ca-

C2 � 2.00 �FC1 � 6.00 �F

71. A vertical parallel-plate capacitor is half filled with a di-
electric for which the dielectric constant is 2.00 (Fig.
P26.71a). When this capacitor is positioned horizon-
tally, what fraction of it should be filled with the same
dielectric (Fig. P26.71b) so that the two capacitors have
equal capacitance?

of thickness d and dielectric constant � is introduced
between the plates while the battery remains connected to the
plates. (a) Show that the ratio of energy stored after the
dielectric is introduced to the energy stored in the
empty capacitor is Give a physical explana-
tion for this increase in stored energy. (b) What hap-
pens to the charge on the capacitor? (Note that this sit-
uation is not the same as Example 26.7, in which the
battery was removed from the circuit before the dielec-
tric was introduced.)

70. A parallel-plate capacitor with plates of area A and plate
separation d has the region between the plates filled
with two dielectric materials as in Figure P26.70. As-
sume that and that (a) Determine the
capacitance and (b) show that when �1 � �2 � � your
result becomes the same as that for a capacitor contain-
ing a single dielectric, C � ��0A/d.

d V W.d V L

U/U0 � �.

C

C

3C

2C

2C

a

b2.00 µF

4.00 µF

2.00 µF 4.00 µF8.00 µF

µ

µ µ

µ

µ

(b)(a)

d
κ1

κ2

L
W

Figure P26.70

Figure P26.71

Figure P26.76

Figure P26.75
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ANSWERS TO QUICK QUIZZES

crease. (c) E decreases because the charge density on
the plates decreases. (d) �V remains constant because
of the presence of the battery. (e) The energy stored in
the capacitor decreases (Eq. 26.11).

26.6 It increases. The dielectric constant of wood (and of all
other insulating materials, for that matter) is greater
than 1; therefore, the capacitance increases (Eq. 26.14).
This increase is sensed by the stud-finder’s special cir-
cuitry, which causes an indicator on the device to light
up.

26.7 (a) C increases (Eq. 26.14). (b) Q increases. Because
the battery maintains a constant �V, Q must increase if
C increases. (c) E between the plates remains
constant because �V � Ed and neither �V nor d
changes. The electric field due to the charges on the
plates increases because more charge has flowed onto
the plates. The induced surface charges on the dielec-
tric create a field that opposes the increase in the field
caused by the greater number of charges on the plates.
(d) The battery maintains a constant �V. (e) The energy
stored in the capacitor increases (Eq. 26.11). You would
have to push the dielectric into the capacitor, just as you
would have to do positive work to raise a mass and in-
crease its gravitational potential energy.

(�Q /�V )

26.1 (a) because the plate separation is decreased. Capaci-
tance depends only on how a capacitor is constructed
and not on the external circuit.

26.2 Zero. If you construct a spherical gaussian surface out-
side and concentric with the capacitor, the net charge
inside the surface is zero. Applying Gauss’s law to this
configuration, we find that at points outside the
capacitor.

26.3 For a given voltage, the energy stored in a capacitor is
proportional to C : . Thus, you want to
maximize the equivalent capacitance. You do this by
connecting the three capacitors in parallel, so that the
capacitances add.

26.4 (a) C decreases (Eq. 26.3). (b) Q stays the same because
there is no place for the charge to flow. (c) E remains
constant (see Eq. 24.8 and the paragraph following it). 
(d) �V increases because �V � Q /C , Q is constant
(part b), and C decreases (part a). (e) The energy
stored in the capacitor is proportional to both Q and 
�V (Eq. 26.11) and thus increases. The additional en-
ergy comes from the work you do in pulling the two
plates apart.

26.5 (a) C decreases (Eq. 26.3). (b) Q decreases. The battery
supplies a constant potential difference �V ; thus, charge
must flow out of the capacitor if is to de-C � Q /�V

U � C(�V )2/2

E � 0
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Electrical workers restoring power to the
eastern Ontario town of St. Isadore,
which was without power for several
days in January 1998 because of a se-
vere ice storm. It is very dangerous to
touch fallen power transmission lines be-
cause of their high electric potential,
which might be hundreds of thousands of
volts relative to the ground. Why is such
a high potential difference used in power
transmission if it is so dangerous, and
why aren’t birds that perch on the wires
electrocuted? (AP/Wide World

Photos/Fred Chartrand)
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27.1 Electric Current 841

hus far our treatment of electrical phenomena has been confined to the study
of charges at rest, or electrostatics. We now consider situations involving electric
charges in motion. We use the term electric current, or simply current, to describe

the rate of flow of charge through some region of space. Most practical applica-
tions of electricity deal with electric currents. For example, the battery in a flash-
light supplies current to the filament of the bulb when the switch is turned on. A
variety of home appliances operate on alternating current. In these common situa-
tions, the charges flow through a conductor, such as a copper wire. It also is possi-
ble for currents to exist outside a conductor. For instance, a beam of electrons in a
television picture tube constitutes a current.

This chapter begins with the definitions of current and current density. A mi-
croscopic description of current is given, and some of the factors that contribute
to the resistance to the flow of charge in conductors are discussed. A classical
model is used to describe electrical conduction in metals, and some of the limita-
tions of this model are cited.

ELECTRIC CURRENT
It is instructive to draw an analogy between water flow and current. In many locali-
ties it is common practice to install low-flow showerheads in homes as a water-
conservation measure. We quantify the flow of water from these and similar de-
vices by specifying the amount of water that emerges during a given time interval,
which is often measured in liters per minute. On a grander scale, we can charac-
terize a river current by describing the rate at which the water flows past a particu-
lar location. For example, the flow over the brink at Niagara Falls is maintained at
rates between 1 400 m3/s and 2 800 m3/s.

Now consider a system of electric charges in motion. Whenever there is a net
flow of charge through some region, a current is said to exist. To define current
more precisely, suppose that the charges are moving perpendicular to a surface of
area A, as shown in Figure 27.1. (This area could be the cross-sectional area of a wire,
for example.) The current is the rate at which charge flows through this sur-
face. If �Q is the amount of charge that passes through this area in a time interval �t,
the average current Iav is equal to the charge that passes through A per unit time:

(27.1)

If the rate at which charge flows varies in time, then the current varies in time; we
define the instantaneous current I as the differential limit of average current:

(27.2)

The SI unit of current is the ampere (A):

(27.3)

That is, 1 A of current is equivalent to 1 C of charge passing through the surface
area in 1 s.

The charges passing through the surface in Figure 27.1 can be positive or neg-
ative, or both. It is conventional to assign to the current the same direction
as the flow of positive charge. In electrical conductors, such as copper or alu-

1 A �
1 C
1 s

I �
dQ
dt

Iav �
�Q
�t

27.1

T

Electric current

13.2

A

I

+

+

+
+

+

Figure 27.1 Charges in motion
through an area A. The time rate at
which charge flows through the
area is defined as the current I.
The direction of the current is the
direction in which positive charges
flow when free to do so.

The direction of the current
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minum, the current is due to the motion of negatively charged electrons. There-
fore, when we speak of current in an ordinary conductor, the direction of the
current is opposite the direction of flow of electrons. However, if we are con-
sidering a beam of positively charged protons in an accelerator, the current is in
the direction of motion of the protons. In some cases—such as those involving
gases and electrolytes, for instance—the current is the result of the flow of both
positive and negative charges.

If the ends of a conducting wire are connected to form a loop, all points on
the loop are at the same electric potential, and hence the electric field is zero
within and at the surface of the conductor. Because the electric field is zero, there
is no net transport of charge through the wire, and therefore there is no current.
The current in the conductor is zero even if the conductor has an excess of charge
on it. However, if the ends of the conducting wire are connected to a battery, all
points on the loop are not at the same potential. The battery sets up a potential
difference between the ends of the loop, creating an electric field within the wire.
The electric field exerts forces on the conduction electrons in the wire, causing
them to move around the loop and thus creating a current.

It is common to refer to a moving charge (positive or negative) as a mobile
charge carrier. For example, the mobile charge carriers in a metal are electrons.

Microscopic Model of Current

We can relate current to the motion of the charge carriers by describing a micro-
scopic model of conduction in a metal. Consider the current in a conductor of
cross-sectional area A (Fig. 27.2). The volume of a section of the conductor of
length �x (the gray region shown in Fig. 27.2) is A �x. If n represents the number
of mobile charge carriers per unit volume (in other words, the charge carrier den-
sity), the number of carriers in the gray section is nA �x. Therefore, the charge
�Q in this section is

�Q � number of carriers in section � charge per carrier � (nA �x)q

where q is the charge on each carrier. If the carriers move with a speed vd , the dis-
tance they move in a time �t is �x � vd �t. Therefore, we can write �Q in the
form

If we divide both sides of this equation by �t , we see that the average current in
the conductor is

(27.4)

The speed of the charge carriers vd is an average speed called the drift speed.
To understand the meaning of drift speed, consider a conductor in which the
charge carriers are free electrons. If the conductor is isolated—that is, the poten-
tial difference across it is zero—then these electrons undergo random motion
that is analogous to the motion of gas molecules. As we discussed earlier, when a
potential difference is applied across the conductor (for example, by means of a
battery), an electric field is set up in the conductor; this field exerts an electric
force on the electrons, producing a current. However, the electrons do not move
in straight lines along the conductor. Instead, they collide repeatedly with the
metal atoms, and their resultant motion is complicated and zigzag (Fig. 27.3). De-
spite the collisions, the electrons move slowly along the conductor (in a direction
opposite that of E) at the drift velocity vd .

Iav �
�Q
�t

� nqvdA

�Q � (nAvd �t)q

Average current in a conductor

∆x

A
q

vd

vd∆t

Figure 27.2 A section of a uni-
form conductor of cross-sectional
area A. The mobile charge carriers
move with a speed vd , and the dis-
tance they travel in a time �t is
�x � vd �t . The number of carriers
in the section of length �x is 
nAvd �t, where n is the number of
carriers per unit volume.



We can think of the atom–electron collisions in a conductor as an effective inter-
nal friction (or drag force) similar to that experienced by the molecules of a liquid
flowing through a pipe stuffed with steel wool. The energy transferred from the elec-
trons to the metal atoms during collision causes an increase in the vibrational energy
of the atoms and a corresponding increase in the temperature of the conductor.

Consider positive and negative charges moving horizontally through the four regions shown
in Figure 27.4. Rank the current in these four regions, from lowest to highest.

Quick Quiz 27.1
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–

–

vd

E

Figure 27.3 A schematic representation of the zigzag
motion of an electron in a conductor. The changes in di-
rection are the result of collisions between the electron
and atoms in the conductor. Note that the net motion of
the electron is opposite the direction of the electric field.
Each section of the zigzag path is a parabolic segment.
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–

+
+
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+
+

+
+

+
+

–
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(b) (c) (d) Figure 27.4

Drift Speed in a Copper WireEXAMPLE 27.1
From Equation 27.4, we find that the drift speed is

where q is the absolute value of the charge on each electron.
Thus,

Exercise If a copper wire carries a current of 80.0 mA, how
many electrons flow past a given cross-section of the wire in
10.0 min?

Answer 3.0 � 1020 electrons.

2.22 � 10�4 m/s �

 �
10.0 C/s

(8.49 � 1028 m�3)(1.60 � 10�19 C)(3.31 � 10�6 m2)

vd �
I

nqA
 

vd �
I

nqA

The 12-gauge copper wire in a typical residential building has
a cross-sectional area of 3.31 � 10�6 m2. If it carries a current
of 10.0 A, what is the drift speed of the electrons? Assume
that each copper atom contributes one free electron to the
current. The density of copper is 8.95 g/cm3.

Solution From the periodic table of the elements in
Appendix C, we find that the molar mass of copper is 
63.5 g/mol. Recall that 1 mol of any substance contains Avo-
gadro’s number of atoms (6.02 � 1023). Knowing the density
of copper, we can calculate the volume occupied by 63.5 g

of copper:

Because each copper atom contributes one free electron
to the current, we have

 � 8.49 � 1028 electrons/m3

n �
6.02 � 1023 electrons

7.09 cm3 
 (1.00 � 106 cm3/m3)

V �
m
�

�
63.5 g

8.95 g/cm3 � 7.09 cm3

(�1 mol)
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for many materials (including most metals), the ratio of the current density to
the electric field is a constant � that is independent of the electric field produc-
ing the current.

1 Do not confuse conductivity � with surface charge density, for which the same symbol is used.

Current density

Ohm’s law

13.3

Example 27.1 shows that typical drift speeds are very low. For instance, elec-
trons traveling with a speed of 2.46 � 10�4 m/s would take about 68 min to travel
1 m! In view of this, you might wonder why a light turns on almost instantaneously
when a switch is thrown. In a conductor, the electric field that drives the free elec-
trons travels through the conductor with a speed close to that of light. Thus, when
you flip on a light switch, the message for the electrons to start moving through
the wire (the electric field) reaches them at a speed on the order of 108 m/s.

RESISTANCE AND OHM’S LAW
In Chapter 24 we found that no electric field can exist inside a conductor. How-
ever, this statement is true only if the conductor is in static equilibrium. The pur-
pose of this section is to describe what happens when the charges in the conductor
are allowed to move.

Charges moving in a conductor produce a current under the action of an elec-
tric field, which is maintained by the connection of a battery across the conductor.
An electric field can exist in the conductor because the charges in this situation
are in motion—that is, this is a nonelectrostatic situation.

Consider a conductor of cross-sectional area A carrying a current I. The cur-
rent density J in the conductor is defined as the current per unit area. Because
the current the current density is

(27.5)

where J has SI units of A/m2. This expression is valid only if the current density is
uniform and only if the surface of cross-sectional area A is perpendicular to the di-
rection of the current. In general, the current density is a vector quantity:

(27.6)

From this equation, we see that current density, like current, is in the direction of
charge motion for positive charge carriers and opposite the direction of motion
for negative charge carriers.

A current density J and an electric field E are established in a conductor
whenever a potential difference is maintained across the conductor. If the
potential difference is constant, then the current also is constant. In some materi-
als, the current density is proportional to the electric field:

(27.7)

where the constant of proportionality � is called the conductivity of the con-
ductor.1 Materials that obey Equation 27.7 are said to follow Ohm’s law, named af-
ter Georg Simon Ohm (1787–1854). More specifically, Ohm’s law states that

J � �E

J � nqvd

J �
I
A

� nqvd

I � nqvdA,

27.2

Materials that obey Ohm’s law and hence demonstrate this simple relationship be-
tween E and J are said to be ohmic. Experimentally, it is found that not all materials
have this property, however, and materials that do not obey Ohm’s law are said to
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be nonohmic. Ohm’s law is not a fundamental law of nature but rather an empirical
relationship valid only for certain materials.

Suppose that a current-carrying ohmic metal wire has a cross-sectional area that gradually
becomes smaller from one end of the wire to the other. How do drift velocity, current den-
sity, and electric field vary along the wire? Note that the current must have the same value
everywhere in the wire so that charge does not accumulate at any one point.

We can obtain a form of Ohm’s law useful in practical applications by consid-
ering a segment of straight wire of uniform cross-sectional area A and length , as
shown in Figure 27.5. A potential difference is maintained across
the wire, creating in the wire an electric field and a current. If the field is assumed
to be uniform, the potential difference is related to the field through the relation-
ship2

Therefore, we can express the magnitude of the current density in the wire as

Because we can write the potential difference as

The quantity /�A is called the resistance R of the conductor. We can define the
resistance as the ratio of the potential difference across a conductor to the current
through the conductor:

(27.8)

From this result we see that resistance has SI units of volts per ampere. One volt
per ampere is defined to be 1 ohm (�):

(27.9)1 � �
1 V
1 A

R �
�

�A
�

�V
I

�

�V �
�

�
 J � � �

�A �I

J � I/A,

J � �E � � 
�V
�

�V � E�

�V � Vb � Va

�

Quick Quiz 27.2

2 This result follows from the definition of potential difference:

Vb � Va � ��b

a
 E � ds � E ��

0
 dx � E�

�

E

Vb Va

IA

Figure 27.5 A uniform conductor of length 
and cross-sectional area A. A potential difference
�V � Vb � Va maintained across the conductor
sets up an electric field E, and this field produces
a current I that is proportional to the potential
difference.

�

Resistance of a conductor
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Resistance of a uniform conductor

This expression shows that if a potential difference of 1 V across a conductor
causes a current of 1 A, the resistance of the conductor is 1 �. For example, if an
electrical appliance connected to a 120-V source of potential difference carries a
current of 6 A, its resistance is 20 �. 

Equation 27.8 solved for potential difference (�V ) explains part of the
chapter-opening puzzler: How can a bird perch on a high-voltage power line without
being electrocuted? Even though the potential difference between the ground and
the wire might be hundreds of thousands of volts, that between the bird’s feet (which
is what determines how much current flows through the bird) is very small.

The inverse of conductivity is resistivity3 �:

(27.10)

where � has the units ohm-meters (� � m). We can use this definition and Equation
27.8 to express the resistance of a uniform block of material as

(27.11)

Every ohmic material has a characteristic resistivity that depends on the properties
of the material and on temperature. Additionally, as you can see from Equation
27.11, the resistance of a sample depends on geometry as well as on resistivity.
Table 27.1 gives the resistivities of a variety of materials at 20°C. Note the enor-
mous range, from very low values for good conductors such as copper and silver,
to very high values for good insulators such as glass and rubber. An ideal conduc-
tor would have zero resistivity, and an ideal insulator would have infinite resistivity.

Equation 27.11 shows that the resistance of a given cylindrical conductor is
proportional to its length and inversely proportional to its cross-sectional area. If
the length of a wire is doubled, then its resistance doubles. If its cross-sectional
area is doubled, then its resistance decreases by one half. The situation is analo-
gous to the flow of a liquid through a pipe. As the pipe’s length is increased, the

R � � 
�

A

� �
1
�

� I�/�A

Resistivity

3 Do not confuse resistivity with mass density or charge density, for which the same symbol is used.

An assortment of resistors used in electric circuits.
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resistance to flow increases. As the pipe’s cross-sectional area is increased, more
liquid crosses a given cross-section of the pipe per unit time. Thus, more liquid
flows for the same pressure differential applied to the pipe, and the resistance to
flow decreases.

Most electric circuits use devices called resistors to control the current level
in the various parts of the circuit. Two common types of resistors are the composi-
tion resistor, which contains carbon, and the wire-wound resistor, which consists of a
coil of wire. Resistors’ values in ohms are normally indicated by color-coding, as
shown in Figure 27.6 and Table 27.2.

Ohmic materials have a linear current–potential difference relationship over
a broad range of applied potential differences (Fig. 27.7a). The slope of the 
I -versus-�V curve in the linear region yields a value for 1/R . Nonohmic materials

TABLE 27.1 Resistivities and Temperature Coefficients of
Resistivity for Various Materials

Resistivity a Temperature
Material (� m) Coefficient �[(�C)�1]

Silver 1.59 � 10�8 3.8 � 10�3

Copper 1.7 � 10�8 3.9 � 10�3

Gold 2.44 � 10�8 3.4 � 10�3

Aluminum 2.82 � 10�8 3.9 � 10�3

Tungsten 5.6 � 10�8 4.5 � 10�3

Iron 10 � 10�8 5.0 � 10�3

Platinum 11 � 10�8 3.92 � 10�3

Lead 22 � 10�8 3.9 � 10�3

Nichromeb 1.50 � 10�6 0.4 � 10�3

Carbon 3.5 � 10�5 � 0.5 � 10�3

Germanium 0.46 � 48 � 10�3

Silicon 640 � 75 � 10�3

Glass 1010 to 1014

Hard rubber � 1013

Sulfur 1015

Quartz (fused) 75 � 1016

a All values at 20°C.
b A nickel–chromium alloy commonly used in heating elements.

�

Figure 27.6 The colored bands on a re-
sistor represent a code for determining re-
sistance. The first two colors give the first
two digits in the resistance value. The third
color represents the power of ten for the
multiplier of the resistance value. The last
color is the tolerance of the resistance
value. As an example, the four colors on
the circled resistors are red black

orange and gold 
and so the resistance value is 20 � 103 � �
20 k� with a tolerance value of 5% � 1 k�.
(The values for the colors are from Table
27.2.)

(� 5%),(� 103),(� 0),
(� 2),



848 C H A P T E R  2 7 Current and Resistance

have a nonlinear current–potential difference relationship. One common semi-
conducting device that has nonlinear I -versus-�V characteristics is the junction
diode (Fig. 27.7b). The resistance of this device is low for currents in one direction
(positive �V ) and high for currents in the reverse direction (negative �V ). In fact,
most modern electronic devices, such as transistors, have nonlinear current–
potential difference relationships; their proper operation depends on the particu-
lar way in which they violate Ohm’s law.

What does the slope of the curved line in Figure 27.7b represent?

Your boss asks you to design an automobile battery jumper cable that has a low resistance.
In view of Equation 27.11, what factors would you consider in your design?

Quick Quiz 27.4

Quick Quiz 27.3

TABLE 27.2 Color Coding for Resistors

Color Number Multiplier Tolerance

Black 0 1
Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold 10�1 5%
Silver 10�2 10%
Colorless 20%

Figure 27.7 (a) The current–potential difference curve for an ohmic material. The curve is
linear, and the slope is equal to the inverse of the resistance of the conductor. (b) A nonlinear
current–potential difference curve for a semiconducting diode. This device does not obey
Ohm’s law.

(a)

I

Slope = 1
R

�V

(b)

I

�V
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The Resistance of a ConductorEXAMPLE 27.2
ties, the resistance of identically shaped cylinders of alu-
minum and glass differ widely. The resistance of the glass
cylinder is 18 orders of magnitude greater than that of the
aluminum cylinder.

Calculate the resistance of an aluminum cylinder that is 
10.0 cm long and has a cross-sectional area of 2.00 � 10�4 m2.
Repeat the calculation for a cylinder of the same dimensions
and made of glass having a resistivity of 

Solution From Equation 27.11 and Table 27.1, we can cal-
culate the resistance of the aluminum cylinder as follows:

Similarly, for glass we find that

As you might guess from the large difference in resistivi-

1.5 � 1013 ��

R � � 
�

A
� (3.0 � 1010 ��m) � 0.100 m

2.00 � 10�4 m2 �

1.41 � 10�5 ��

R � � 
�

A
� (2.82 � 10�8 ��m) � 0.100 m

2.00 � 10�4 m2 �

3.0 � 1010 ��m.

Electrical insulators on telephone poles are often made of glass because
of its low electrical conductivity. 

The Resistance of Nichrome WireEXAMPLE 27.3
Note from Table 27.1 that the resistivity of Nichrome wire

is about 100 times that of copper. A copper wire of the same
radius would have a resistance per unit length of only 
0.052 �/m. A 1.0-m length of copper wire of the same radius
would carry the same current (2.2 A) with an applied poten-
tial difference of only 0.11 V.

Because of its high resistivity and its resistance to oxida-
tion, Nichrome is often used for heating elements in toasters,
irons, and electric heaters.

Exercise What is the resistance of a 6.0-m length of 22-
gauge Nichrome wire? How much current does the wire carry
when connected to a 120-V source of potential difference?

Answer 28 �; 4.3 A.

Exercise Calculate the current density and electric field in
the wire when it carries a current of 2.2 A.

Answer 6.8 � 106 A/m2; 10 N/C.

(a) Calculate the resistance per unit length of a 22-gauge
Nichrome wire, which has a radius of 0.321 mm.

Solution The cross-sectional area of this wire is

The resistivity of Nichrome is (see Table
27.1). Thus, we can use Equation 27.11 to find the resistance
per unit length:

(b) If a potential difference of 10 V is maintained across a
1.0-m length of the Nichrome wire, what is the current in the
wire?

Solution Because a 1.0-m length of this wire has a resis-
tance of 4.6 �, Equation 27.8 gives

2.2 AI �
�V
R

�
10 V
4.6 �

�

4.6 �/m
R
�

�
�

A
�

1.5 � 10�6 ��m
3.24 � 10�7 m2 �

1.5 � 10�6 ��m

A � 	r 2 � 	(0.321 � 10�3 m)2 � 3.24 � 10�7 m2

The Radial Resistance of a Coaxial CableEXAMPLE 27.4
completely filled with silicon, as shown in Figure 27.8a, and
current leakage through the silicon is unwanted. (The cable
is designed to conduct current along its length.) The radius

Coaxial cables are used extensively for cable television and
other electronic applications. A coaxial cable consists of two
cylindrical conductors. The gap between the conductors is
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of the inner conductor is the radius of the
outer one is and the length of the cable is

Calculate the resistance of the silicon between
the two conductors.

Solution In this type of problem, we must divide the ob-
ject whose resistance we are calculating into concentric ele-
ments of infinitesimal thickness dr (Fig. 27.8b). We start by
using the differential form of Equation 27.11, replacing 
with r for the distance variable: where dR is the
resistance of an element of silicon of thickness dr and surface
area A. In this example, we take as our representative concen-
tric element a hollow silicon cylinder of radius r, thickness dr,
and length L, as shown in Figure 27.8. Any current that
passes from the inner conductor to the outer one must pass
radially through this concentric element, and the area
through which this current passes is (This is the
curved surface area—circumference multiplied by length—
of our hollow silicon cylinder of thickness dr .) Hence, we can
write the resistance of our hollow cylinder of silicon as

A � 2	rL .

dR � � dr/A,
�

L � 15.0 cm.
b � 1.75 cm,

a � 0.500 cm,

Because we wish to know the total resistance across the entire
thickness of the silicon, we must integrate this expression
from to 

Substituting in the values given, and using � � 640 � � m for
silicon, we obtain

Exercise If a potential difference of 12.0 V is applied be-
tween the inner and outer conductors, what is the value of
the total current that passes between them?

Answer 14.1 mA.

851 �R �
640 ��m

2	(0.150 m)
 ln� 1.75 cm

0.500 cm � �

R � �b

a
 dR �

�

2	L
 �b

a
 
dr
r

�
�

2	L
 ln� b

a �
r � b :r � a

dR �
�

2	rL
 dr

(a)

L

Outer
conductor

Inner
conductor

Silicon

a

b

Current
direction

End view

(b)

dr

r

Figure 27.8 A coaxial cable. (a) Silicon fills the gap between the two conductors. 
(b) End view, showing current leakage.

A MODEL FOR ELECTRICAL CONDUCTION
In this section we describe a classical model of electrical conduction in metals that
was first proposed by Paul Drude in 1900. This model leads to Ohm’s law and
shows that resistivity can be related to the motion of electrons in metals. Although
the Drude model described here does have limitations, it nevertheless introduces
concepts that are still applied in more elaborate treatments.

Consider a conductor as a regular array of atoms plus a collection of free elec-
trons, which are sometimes called conduction electrons. The conduction electrons,
although bound to their respective atoms when the atoms are not part of a solid,
gain mobility when the free atoms condense into a solid. In the absence of an elec-
tric field, the conduction electrons move in random directions through the con-

27.3
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ductor with average speeds of the order of 106 m/s. The situation is similar to the
motion of gas molecules confined in a vessel. In fact, some scientists refer to con-
duction electrons in a metal as an electron gas. There is no current through the con-
ductor in the absence of an electric field because the drift velocity of the free elec-
trons is zero. That is, on the average, just as many electrons move in one direction
as in the opposite direction, and so there is no net flow of charge.

This situation changes when an electric field is applied. Now, in addition to
undergoing the random motion just described, the free electrons drift slowly in a
direction opposite that of the electric field, with an average drift speed vd that is
much smaller (typically 10�4 m/s) than their average speed between collisions
(typically 106 m/s).

Figure 27.9 provides a crude description of the motion of free electrons in a
conductor. In the absence of an electric field, there is no net displacement after
many collisions (Fig. 27.9a). An electric field E modifies the random motion and
causes the electrons to drift in a direction opposite that of E (Fig. 27.9b). The
slight curvature in the paths shown in Figure 27.9b results from the acceleration of
the electrons between collisions, which is caused by the applied field.

In our model, we assume that the motion of an electron after a collision is in-
dependent of its motion before the collision. We also assume that the excess en-
ergy acquired by the electrons in the electric field is lost to the atoms of the con-
ductor when the electrons and atoms collide. The energy given up to the atoms
increases their vibrational energy, and this causes the temperature of the conduc-
tor to increase. The temperature increase of a conductor due to resistance is uti-
lized in electric toasters and other familiar appliances.

We are now in a position to derive an expression for the drift velocity. When a
free electron of mass me and charge is subjected to an electric field E, it
experiences a force Because we conclude that the acceleration
of the electron is

(27.12)

This acceleration, which occurs for only a short time between collisions, enables
the electron to acquire a small drift velocity. If t is the time since the last collision
and vi is the electron’s initial velocity the instant after that collision, then the veloc-
ity of the electron after a time t is

(27.13)

We now take the average value of vf over all possible times t and all possible values
of vi . If we assume that the initial velocities are randomly distributed over all possi-
ble values, we see that the average value of vi is zero. The term is the ve-
locity added by the field during one trip between atoms. If the electron starts with
zero velocity, then the average value of the second term of Equation 27.13 is

where 
 is the average time interval between successive collisions. Because the
average value of vf is equal to the drift velocity,4 we have

(27.14)vf � vd �
qE
me

 


(qE/me)
,

(qE/me)t

vf � vi � at � vi �
qE
me

 t

a �
qE
me

�F � mea,F � qE.
q (��e)

4 Because the collision process is random, each collision event is independent of what happened earlier.
This is analogous to the random process of throwing a die. The probability of rolling a particular num-
ber on one throw is independent of the result of the previous throw. On average, the particular num-
ber comes up every sixth throw, starting at any arbitrary time.

–

–

–

–

E

(a)

(b)

–

–

––

Figure 27.9 (a) A schematic dia-
gram of the random motion of two
charge carriers in a conductor in
the absence of an electric field.
The drift velocity is zero. (b) The
motion of the charge carriers in a
conductor in the presence of an
electric field. Note that the random
motion is modified by the field,
and the charge carriers have a drift
velocity.

Drift velocity
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Although this classical model of conduction is consistent with Ohm’s law, it is
not satisfactory for explaining some important phenomena. For example, classical
values for calculated on the basis of an ideal-gas model (see Section 21.6) are
smaller than the true values by about a factor of ten. Furthermore, if we substitute

/ for 
 in Equation 27.17 and rearrange terms so that appears in the numera-
tor, we find that the resistivity � is proportional to . According to the ideal-gas 
model, is proportional to hence, it should also be true that . This is in
disagreement with the fact that, for pure metals, resistivity depends linearly on
temperature. We are able to account for the linear dependence only by using a
quantum mechanical model, which we now describe briefly.

�  !T!T ;v
v

vv�

v

Electron Collisions in a WireEXAMPLE 27.5

(b) Assuming that the average speed for free electrons in
copper is 1.6 � 106 m/s and using the result from part (a),
calculate the mean free path for electrons in copper.

Solution

which is equivalent to 40 nm (compared with atomic spacings
of about 0.2 nm). Thus, although the time between collisions
is very short, an electron in the wire travels about 200 atomic
spacings between collisions.

4.0 � 10�8 m�

� � v 
 � (1.6 � 106 m/s)(2.5 � 10�14 s)

2.5 � 10�14 s �
(a) Using the data and results from Example 27.1 and the
classical model of electron conduction, estimate the average
time between collisions for electrons in household copper
wiring.

Solution From Equation 27.17, we see that

where for copper and the carrier den-
sity is n � 8.49 � 1028 electrons/m3 for the wire described in
Example 27.1. Substitution of these values into the expres-
sion above gives


 �
(9.11 � 10�31 kg)

(8.49 � 1028 m�3)(1.6 � 10�19 C)2(1.7 � 10�8 ��m)

� � 1.7 � 10�8 ��m


 �
me

nq2�

Conductivity

Resistivity

We can relate this expression for drift velocity to the current in the conductor.
Substituting Equation 27.14 into Equation 27.6, we find that the magnitude of the
current density is

(27.15)

where n is the number of charge carriers per unit volume. Comparing this expres-
sion with Ohm’s law, we obtain the following relationships for conductivity
and resistivity:

(27.16)

(27.17)

According to this classical model, conductivity and resistivity do not depend on the
strength of the electric field. This feature is characteristic of a conductor obeying
Ohm’s law.

The average time between collisions 
 is related to the average distance be-
tween collisions (that is, the mean free path; see Section 21.7) and the average
speed through the expression

(27.18)
 �
�

v

v
�

� �
1
�

�
me

nq 2


� �
nq2


me
 

J � �E,

J � nqvd �
nq 2E

me
 
Current density
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According to quantum mechanics, electrons have wave-like properties. If the
array of atoms in a conductor is regularly spaced (that is, it is periodic), then the
wave-like character of the electrons enables them to move freely through the con-
ductor, and a collision with an atom is unlikely. For an idealized conductor, no col-
lisions would occur, the mean free path would be infinite, and the resistivity would
be zero. Electron waves are scattered only if the atomic arrangement is irregular
(not periodic) as a result of, for example, structural defects or impurities. At low
temperatures, the resistivity of metals is dominated by scattering caused by colli-
sions between electrons and defects or impurities. At high temperatures, the resis-
tivity is dominated by scattering caused by collisions between electrons and atoms
of the conductor, which are continuously displaced from the regularly spaced ar-
ray as a result of thermal agitation. The thermal motion of the atoms causes the
structure to be irregular (compared with an atomic array at rest), thereby reduc-
ing the electron’s mean free path.

RESISTANCE AND TEMPERATURE
Over a limited temperature range, the resistivity of a metal varies approximately
linearly with temperature according to the expression

(27.19)

where � is the resistivity at some temperature T (in degrees Celsius), �0 is the resis-
tivity at some reference temperature T0 (usually taken to be 20°C), and � is the
temperature coefficient of resistivity. From Equation 27.19, we see that the tem-
perature coefficient of resistivity can be expressed as

(27.20)

where is the change in resistivity in the temperature interval

The temperature coefficients of resistivity for various materials are given in
Table 27.1. Note that the unit for � is degrees Celsius�1 [(°C)�1]. Because resis-
tance is proportional to resistivity (Eq. 27.11), we can write the variation of resis-
tance as

(27.21)

Use of this property enables us to make precise temperature measurements, as
shown in the following example.

R � R 0[1 � �(T � T0)]

�T � T � T0 .
�� � � � �0

� �
1
�0

 
��

�T

� � �0[1 � �(T � T0)]

27.4

A Platinum Resistance ThermometerEXAMPLE 27.6
value for platinum given in Table 27.1, we obtain

Because we find that T, the temperature of the 

melting indium sample, is 157�C.

T0 � 20.0°C,

�T �
R � R0

�R0
�

76.8 � � 50.0 �
[3.92 � 10�3 (�C)�1](50.0 �)

� 137�C

A resistance thermometer, which measures temperature by
measuring the change in resistance of a conductor, is made
from platinum and has a resistance of 50.0 � at 20.0°C.
When immersed in a vessel containing melting indium, its re-
sistance increases to 76.8 �. Calculate the melting point of
the indium.

Solution Solving Equation 27.21 for �T and using the �

Variation of � with temperature

Temperature coefficient of
resistivity
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For metals like copper, resistivity is nearly proportional to temperature, as
shown in Figure 27.10. However, a nonlinear region always exists at very low tem-
peratures, and the resistivity usually approaches some finite value as the tempera-
ture nears absolute zero. This residual resistivity near absolute zero is caused pri-
marily by the collision of electrons with impurities and imperfections in the metal.
In contrast, high-temperature resistivity (the linear region) is predominantly char-
acterized by collisions between electrons and metal atoms.

Notice that three of the � values in Table 27.1 are negative; this indicates that
the resistivity of these materials decreases with increasing temperature (Fig.
27.11). This behavior is due to an increase in the density of charge carriers at
higher temperatures. 

Because the charge carriers in a semiconductor are often associated with im-
purity atoms, the resistivity of these materials is very sensitive to the type and con-
centration of such impurities. We shall return to the study of semiconductors in
Chapter 43 of the extended version of this text.

When does a lightbulb carry more current—just after it is turned on and the glow of the
metal filament is increasing, or after it has been on for a few milliseconds and the glow is
steady?

Optional Section

SUPERCONDUCTORS
There is a class of metals and compounds whose resistance decreases to zero when
they are below a certain temperature Tc , known as the critical temperature. These
materials are known as superconductors. The resistance–temperature graph for
a superconductor follows that of a normal metal at temperatures above Tc (Fig.
27.12). When the temperature is at or below Tc , the resistivity drops suddenly to
zero. This phenomenon was discovered in 1911 by the Dutch physicist Heike
Kamerlingh-Onnes (1853–1926) as he worked with mercury, which is a supercon-
ductor below 4.2 K. Recent measurements have shown that the resistivities of su-
perconductors below their Tc values are less than m—around 1017

times smaller than the resistivity of copper and in practice considered to be zero.
Today thousands of superconductors are known, and as Figure 27.13 illus-

trates, the critical temperatures of recently discovered superconductors are sub-
stantially higher than initially thought possible. Two kinds of superconductors are
recognized. The more recently identified ones, such as YBa2Cu3O7 , are essentially
ceramics with high critical temperatures, whereas superconducting materials such

4 � 10�25 ��

27.5

Quick Quiz 27.5

T

ρ

0

T
ρ0

0

ρ

ρ

ρ

T Figure 27.11 Resistivity versus temperature for a pure
semiconductor, such as silicon or germanium.

Figure 27.10 Resistivity versus
temperature for a metal such as
copper. The curve is linear over a
wide range of temperatures, and �
increases with increasing tempera-
ture. As T approaches absolute
zero (inset), the resistivity ap-
proaches a finite value �0 .
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as those observed by Kamerlingh-Onnes are metals. If a room-temperature super-
conductor is ever identified, its impact on technology could be tremendous. 

The value of Tc is sensitive to chemical composition, pressure, and molecular
structure. It is interesting to note that copper, silver, and gold, which are excellent
conductors, do not exhibit superconductivity.

Hg
0.125

0.10

0.075

0.05

0.025

4.44.34.24.14.0
T(K)

0.15
R(Ω)

Tc

0.00
Figure 27.12 Resistance versus temperature for a sample
of mercury (Hg). The graph follows that of a normal metal
above the critical temperature Tc . The resistance drops to
zero at Tc , which is 4.2 K for mercury.
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Figure 27.13 Evolution of the superconducting critical temperature since the discovery of the
phenomenon.

A small permanent magnet levi-
tated above a disk of the supercon-
ductor Y Ba2Cu3O7 , which is at 
77 K.
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One of the truly remarkable features of superconductors is that once a current
is set up in them, it persists without any applied potential difference (because R � 0).
Steady currents have been observed to persist in superconducting loops for several
years with no apparent decay!

An important and useful application of superconductivity is in the develop-
ment of superconducting magnets, in which the magnitudes of the magnetic field
are about ten times greater than those produced by the best normal electromag-
nets. Such superconducting magnets are being considered as a means of storing en-
ergy. Superconducting magnets are currently used in medical magnetic resonance
imaging (MRI) units, which produce high-quality images of internal organs without
the need for excessive exposure of patients to x-rays or other harmful radiation.

For further information on superconductivity, see Section 43.8.

ELECTRICAL ENERGY AND POWER
If a battery is used to establish an electric current in a conductor, the chemical en-
ergy stored in the battery is continuously transformed into kinetic energy of the
charge carriers. In the conductor, this kinetic energy is quickly lost as a result of
collisions between the charge carriers and the atoms making up the conductor,
and this leads to an increase in the temperature of the conductor. In other words,
the chemical energy stored in the battery is continuously transformed to internal
energy associated with the temperature of the conductor.

Consider a simple circuit consisting of a battery whose terminals are con-
nected to a resistor, as shown in Figure 27.14. (Resistors are designated by the sym-
bol .) Now imagine following a positive quantity of charge �Q that is
moving clockwise around the circuit from point a through the battery and resistor
back to point a. Points a and d are grounded (ground is designated by the symbol

); that is, we take the electric potential at these two points to be zero. As the

charge moves from a to b through the battery, its electric potential energy U
increases by an amount �V �Q (where �V is the potential difference between b and
a), while the chemical potential energy in the battery decreases by the same
amount. (Recall from Eq. 25.9 that However, as the charge moves
from c to d through the resistor, it loses this electric potential energy as it collides
with atoms in the resistor, thereby producing internal energy. If we neglect the re-
sistance of the connecting wires, no loss in energy occurs for paths bc and da.
When the charge arrives at point a, it must have the same electric potential energy
(zero) that it had at the start.5 Note that because charge cannot build up at any
point, the current is the same everywhere in the circuit.

The rate at which the charge �Q loses potential energy in going through the
resistor is

where I is the current in the circuit. In contrast, the charge regains this energy
when it passes through the battery. Because the rate at which the charge loses en-
ergy equals the power delivered to the resistor (which appears as internal en-
ergy), we have

(27.22)� � I �V

�

�U
�t

�
�Q
�t

 �V � I �V

�U � q �V.)

27.6

Power

13.3

b

a

c

d

R

I

∆V
+

–

Figure 27.14 A circuit consisting
of a resistor of resistance R and a
battery having a potential differ-
ence �V across its terminals. Posi-
tive charge flows in the clockwise
direction. Points a and d are
grounded.

5 Note that once the current reaches its steady-state value, there is no change in the kinetic energy of
the charge carriers creating the current.
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In this case, the power is supplied to a resistor by a battery. However, we can use
Equation 27.22 to determine the power transferred to any device carrying a cur-
rent I and having a potential difference �V between its terminals.

Using Equation 27.22 and the fact that �V � IR for a resistor, we can express
the power delivered to the resistor in the alternative forms

(27.23)

When I is expressed in amperes, �V in volts, and R in ohms, the SI unit of power
is the watt, as it was in Chapter 7 in our discussion of mechanical power. The
power lost as internal energy in a conductor of resistance R is called joule heating 6;
this transformation is also often referred to as an I 2R loss.

A battery, a device that supplies electrical energy, is called either a source of elec-
tromotive force or, more commonly, an emf source. The concept of emf is discussed in
greater detail in Chapter 28. (The phrase electromotive force is an unfortunate
choice because it describes not a force but rather a potential difference in volts.)
When the internal resistance of the battery is neglected, the potential differ-
ence between points a and b in Figure 27.14 is equal to the emf � of the bat-
tery—that is, This being true, we can state that the current in
the circuit is Because �V � , the power supplied by the emf
source can be expressed as which equals the power delivered to the resis-
tor, I 2R.

When transporting electrical energy through power lines, such as those shown
in Figure 27.15, utility companies seek to minimize the power transformed to in-
ternal energy in the lines and maximize the energy delivered to the consumer. Be-
cause the same amount of power can be transported either at high cur-
rents and low potential differences or at low currents and high potential
differences. Utility companies choose to transport electrical energy at low currents
and high potential differences primarily for economic reasons. Copper wire is very
expensive, and so it is cheaper to use high-resistance wire (that is, wire having a
small cross-sectional area; see Eq. 27.11). Thus, in the expression for the power de-
livered to a resistor, , the resistance of the wire is fixed at a relatively high
value for economic considerations. The loss can be reduced by keeping the
current I as low as possible. In some instances, power is transported at potential
differences as great as 765 kV. Once the electricity reaches your city, the potential
difference is usually reduced to 4 kV by a device called a transformer. Another trans-
former drops the potential difference to 240 V before the electricity finally reaches
your home. Of course, each time the potential difference decreases, the current
increases by the same factor, and the power remains the same. We shall discuss
transformers in greater detail in Chapter 33.

The same potential difference is applied to the two lightbulbs shown in Figure 27.16. Which
one of the following statements is true?
(a) The 30-W bulb carries the greater current and has the higher resistance.
(b) The 30-W bulb carries the greater current, but the 60-W bulb has the higher resistance.

Quick Quiz 27.6

I 
2R

� � I 
2R

� � I �V,

� � I�,
�I � �V/R � �/R .

�V � Vb � Va � �.

� � I 2R �
(�V )2

R

QuickLab
If you have access to an ohmmeter,
verify your answer to Quick Quiz 27.6
by testing the resistance of a few light-
bulbs.

6 It is called joule heating even though the process of heat does not occur. This is another example of in-
correct usage of the word heat that has become entrenched in our language.

Power delivered to a resistor

Figure 27.15 Power companies
transfer electrical energy at high
potential differences.
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(c) The 30-W bulb has the higher resistance, but the 60-W bulb carries the greater current.
(d) The 60-W bulb carries the greater current and has the higher resistance.

For the two lightbulbs shown in Figure 27.17, rank the current values at points a through f ,
from greatest to least.

Quick Quiz 27.7

Power in an Electric HeaterEXAMPLE 27.7
We can find the power rating using the expression 

If we doubled the applied potential difference, the current
would double but the power would quadruple because
� � (�V )2/R .

1.80 kW� � I 2R � (15.0 A)2(8.00 �) �

� � I 2R :An electric heater is constructed by applying a potential dif-
ference of 120 V to a Nichrome wire that has a total resis-
tance of 8.00 �. Find the current carried by the wire and the
power rating of the heater.

Solution Because �V � IR , we have

15.0 AI �
�V
R

�
120 V
8.00 �

�

QuickLab
From the labels on household appli-
ances such as hair dryers, televisions,
and stereos, estimate the annual cost
of operating them. 

Figure 27.16 These light-
bulbs operate at their rated
power only when they are con-
nected to a 120-V source. 

∆V

30 W

60 W

e f

c d

a b
Figure 27.17 Two lightbulbs connected across the same poten-
tial difference. The bulbs operate at their rated power only if they
are connected to a 120-V battery.
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Current in an Electron BeamEXAMPLE 27.9

(b) What is the average current per pulse delivered by the
accelerator?

Solution Average current is given by Equation 27.1,
Because the time interval between pulses is

4.00 ms, and because we know the charge per pulse from part
(a), we obtain

This represents only 0.005% of the peak current, which is 
250 mA.

12.5 �AIav �
Q pulse

�t
�

5.00 � 10�8 C
4.00 � 10�3 s

�

Iav � �Q /�t.

3.13 � 1011 electrons/pulse �

Electrons per pulse �
5.00 � 10�8 C/pulse

1.60 � 10�19 C/electron

In a certain particle accelerator, electrons emerge with an en-
ergy of 40.0 MeV (1 MeV � 1.60 � 10�13 J). The electrons
emerge not in a steady stream but rather in pulses at the rate
of 250 pulses/s. This corresponds to a time between pulses of
4.00 ms (Fig. 27.18). Each pulse has a duration of 200 ns, and
the electrons in the pulse constitute a current of 250 mA.
The current is zero between pulses. (a) How many electrons
are delivered by the accelerator per pulse?

Solution We use Equation 27.2 in the form and
integrate to find the charge per pulse. While the pulse is on,
the current is constant; thus,

Dividing this quantity of charge per pulse by the electronic
charge gives the number of electrons per pulse:

 � 5.00 � 10�8 C

Q pulse � I � dt � I�t � (250 � 10�3 A)(200 � 10�9 s)

dQ � I dt

The Cost of Making DinnerEXAMPLE 27.8
Demands on our dwindling energy supplies have made it nec-
essary for us to be aware of the energy requirements of our
electrical devices. Every electrical appliance carries a label
that contains the information you need to calculate the appli-
ance’s power requirements. In many cases, the power con-
sumption in watts is stated directly, as it is on a lightbulb. In
other cases, the amount of current used by the device and
the potential difference at which it operates are given. This
information and Equation 27.22 are sufficient for calculating
the operating cost of any electrical device.

Exercise What does it cost to operate a 100-W lightbulb for 
24 h if the power company charges $0.08/kWh?

Answer $0.19.

Estimate the cost of cooking a turkey for 4 h in an oven that
operates continuously at 20.0 A and 240 V.

Solution The power used by the oven is

Because the energy consumed equals power � time, the
amount of energy for which you must pay is

If the energy is purchased at an estimated price of 8.00¢ per
kilowatt hour, the cost is

$1.54Cost � (19.2 kWh)($0.080/kWh) �

Energy � �t � (4.80 kW)(4 h) � 19.2 kWh

� � I �V � (20.0 A)(240 V) � 4 800 W � 4.80 kW

I 2.00 × 10–7 s

t (s)

4.00 ms

Figure 27.18 Current versus time for a pulsed beam of
electrons.



860 C H A P T E R  2 7 Current and Resistance

SUMMARY

The electric current I in a conductor is defined as

(27.2)

where dQ is the charge that passes through a cross-section of the conductor in a
time dt. The SI unit of current is the ampere (A), where 1 A � 1 C/s.

The average current in a conductor is related to the motion of the charge car-
riers through the relationship

(27.4)

where n is the density of charge carriers, q is the charge on each carrier, vd is the
drift speed, and A is the cross-sectional area of the conductor.

The magnitude of the current density J in a conductor is the current per
unit area:

(27.5)

The current density in a conductor is proportional to the electric field accord-
ing to the expression

(27.7)

The proportionality constant � is called the conductivity of the material of which
the conductor is made. The inverse of � is known as resistivity � (� � 1/�). Equa-
tion 27.7 is known as Ohm’s law, and a material is said to obey this law if the ratio
of its current density J to its applied electric field E is a constant that is indepen-
dent of the applied field.

The resistance R of a conductor is defined either in terms of the length of
the conductor or in terms of the potential difference across it:

(27.8)

where is the length of the conductor, � is the conductivity of the material of
which it is made, A is its cross-sectional area, �V is the potential difference across
it, and I is the current it carries.

�

R �
�

�A
�

�V
I

J � �E

J �
I
A

� nqvd

Iav � nqvd A

I �
dQ
dt

(c) What is the maximum power delivered by the electron
beam?

Solution By definition, power is energy delivered per unit
time. Thus, the maximum power is equal to the energy deliv-
ered by a pulse divided by the pulse duration:

 �
(3.13 � 1011 electrons/pulse)(40.0 MeV/electron)

2.00 � 10�7 s/pulse

� �
E
�t

 

We could also compute this power directly. We assume that
each electron had zero energy before being accelerated.
Thus, by definition, each electron must have gone through a
potential difference of 40.0 MV to acquire a final energy of
40.0 MeV. Hence, we have

10.0 MW� � I �V � (250 � 10�3 A)(40.0 � 106 V) �

10.0 MW � 1.00 � 107 W �

 � (6.26 � 1019 MeV/s)(1.60 � 10�13 J/MeV )
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The SI unit of resistance is volts per ampere, which is defined to be 1 ohm
(�); that is, 1 � � 1 V/A. If the resistance is independent of the applied potential
difference, the conductor obeys Ohm’s law.

In a classical model of electrical conduction in metals, the electrons are
treated as molecules of a gas. In the absence of an electric field, the average veloc-
ity of the electrons is zero. When an electric field is applied, the electrons move
(on the average) with a drift velocity vd that is opposite the electric field and
given by the expression

(27.14)

where 
 is the average time between electron–atom collisions, me is the mass of the
electron, and q is its charge. According to this model, the resistivity of the metal is

(27.17)

where n is the number of free electrons per unit volume.
The resistivity of a conductor varies approximately linearly with temperature

according to the expression

(27.19)

where � is the temperature coefficient of resistivity and �0 is the resistivity at
some reference temperature T0 .

If a potential difference �V is maintained across a resistor, the power, or rate
at which energy is supplied to the resistor, is

(27.22)

Because the potential difference across a resistor is given by �V � IR , we can ex-
press the power delivered to a resistor in the form

(27.23)

The electrical energy supplied to a resistor appears in the form of internal energy
in the resistor.

� � I 
2R �

(�V )2

R

� � I �V

� � �0[1 � �(T � T0)]

� �
me

nq2


vd �
qE
me

 


QUESTIONS

7. In the water analogy of an electric circuit, what corre-
sponds to the power supply, resistor, charge, and poten-
tial difference?

8. Why might a “good” electrical conductor also be a “good”
thermal conductor?

9. On the basis of the atomic theory of matter, explain why
the resistance of a material should increase as its tempera-
ture increases.

10. How does the resistance for copper and silicon change
with temperature? Why are the behaviors of these two ma-
terials different?

11. Explain how a current can persist in a superconductor in
the absence of any applied voltage.

12. What single experimental requirement makes supercon-
ducting devices expensive to operate? In principle, can
this limitation be overcome?

1. Newspaper articles often contain statements such as 
“10 000 volts of electricity surged through the victim’s
body.” What is wrong with this statement?

2. What is the difference between resistance and resistivity?
3. Two wires A and B of circular cross-section are made of

the same metal and have equal lengths, but the resistance
of wire A is three times greater than that of wire B. What
is the ratio of their cross-sectional areas? How do their
radii compare?

4. What is required in order to maintain a steady current in
a conductor?

5. Do all conductors obey Ohm’s law? Give examples to jus-
tify your answer.

6. When the voltage across a certain conductor is doubled,
the current is observed to increase by a factor of three.
What can you conclude about the conductor?
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PROBLEMS

6. A small sphere that carries a charge q is whirled in a cir-
cle at the end of an insulating string. The angular fre-
quency of rotation is �. What average current does this
rotating charge represent?

7. The quantity of charge q (in coulombs) passing
through a surface of area 2.00 cm2 varies with time ac-
cording to the equation 
where t is in seconds. (a) What is the instantaneous cur-
rent through the surface at (b) What is the
value of the current density?

8. An electric current is given by the expression 
sin(120	t), where I is in amperes and t is in sec-

onds. What is the total charge carried by the current
from to 

9. Figure P27.9 represents a section of a circular conduc-
tor of nonuniform diameter carrying a current of 
5.00 A. The radius of cross-section A1 is 0.400 cm. 
(a) What is the magnitude of the current density across
A1 ? (b) If the current density across A2 is one-fourth the
value across A1 , what is the radius of the conductor at
A2 ?

t � 1/240 s?t � 0

100
I(t) �

t � 1.00 s?

q � 4.00t3 � 5.00t � 6.00,

Section 27.1 Electric Current
1. In a particular cathode ray tube, the measured beam

current is 30.0 �A. How many electrons strike the tube
screen every 40.0 s?

2. A teapot with a surface area of 700 cm2 is to be silver
plated. It is attached to the negative electrode of an
electrolytic cell containing silver nitrate (Ag�NO3

�). If
the cell is powered by a 12.0-V battery and has a resis-
tance of 1.80 �, how long does it take for a 0.133-mm
layer of silver to build up on the teapot? (The density of
silver is 10.5 � 103 kg/m3.)

3. Suppose that the current through a conductor de-
creases exponentially with time according to the expres-
sion where I0 is the initial current (at

and 
 is a constant having dimensions of time.
Consider a fixed observation point within the conduc-
tor. (a) How much charge passes this point between

and (b) How much charge passes this
point between and (c) How much
charge passes this point between and 

4. In the Bohr model of the hydrogen atom, an electron
in the lowest energy state follows a circular path at a dis-
tance of 5.29 � 10�11 m from the proton. (a) Show that
the speed of the electron is 2.19 � 106 m/s. (b) What is
the effective current associated with this orbiting elec-
tron?

5. A small sphere that carries a charge of 8.00 nC is
whirled in a circle at the end of an insulating string.
The angular frequency of rotation is 100	 rad/s. What
average current does this rotating charge represent?

t � � ?t � 0
t � 10
 ?t � 0

t � 
 ?t � 0

t � 0)
I(t) � I0e�t/
,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

13. What would happen to the drift velocity of the electrons
in a wire and to the current in the wire if the electrons
could move freely without resistance through the wire?

14. If charges flow very slowly through a metal, why does it
not require several hours for a light to turn on when you
throw a switch?

15. In a conductor, the electric field that drives the electrons
through the conductor propagates with a speed that is al-
most the same as the speed of light, even though the drift
velocity of the electrons is very small. Explain how these
can both be true. Does a given electron move from one
end of the conductor to the other?

16. Two conductors of the same length and radius are con-
nected across the same potential difference. One conduc-
tor has twice the resistance of the other. To which con-
ductor is more power delivered?

17. Car batteries are often rated in ampere-hours. Does this
designate the amount of current, power, energy, or
charge that can be drawn from the battery?

18. If you were to design an electric heater using Nichrome
wire as the heating element, what parameters of the wire
could you vary to meet a specific power output, such as 
1 000 W ?

19. Consider the following typical monthly utility rate struc-
ture: $2.00 for the first 16 kWh, 8.00¢/kWh for the next
34 kWh, 6.50¢/kWh for the next 50 kWh, 5.00¢/kWh for
the next 100 kWh, 4.00¢/kWh for the next 200 kWh, and
3.50¢/kWh for all kilowatt-hours in excess of 400 kWh.
On the basis of these rates, determine the amount
charged for 327 kWh.

A1

A2

I

Figure P27.9
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Figure P27.24

10. A Van de Graaff generator produces a beam of 
2.00-MeV deuterons, which are heavy hydrogen nuclei
containing a proton and a neutron. (a) If the beam
current is 10.0 �A, how far apart are the deuterons? 
(b) Is their electrostatic repulsion a factor in beam sta-
bility? Explain.

11. The electron beam emerging from a certain high-
energy electron accelerator has a circular cross-section
of radius 1.00 mm. (a) If the beam current is 8.00 �A,
what is the current density in the beam, assuming that it
is uniform throughout? (b) The speed of the electrons
is so close to the speed of light that their speed can be
taken as with negligible error. Find
the electron density in the beam. (c) How long does it
take for Avogadro’s number of electrons to emerge
from the accelerator?

12. An aluminum wire having a cross-sectional area of 
4.00 � 10�6 m2 carries a current of 5.00 A. Find the
drift speed of the electrons in the wire. The density of
aluminum is 2.70 g/cm3. (Assume that one electron is
supplied by each atom.)

Section 27.2 Resistance and Ohm’s Law
13. A lightbulb has a resistance of 240 � when operating at

a voltage of 120 V. What is the current through the
lightbulb?

14. A resistor is constructed of a carbon rod that has a uni-
form cross-sectional area of 5.00 mm2. When a potential
difference of 15.0 V is applied across the ends of the
rod, there is a current of 4.00 � 10�3 A in the rod. Find
(a) the resistance of the rod and (b) the rod’s length.

15. A 0.900-V potential difference is maintained across a
1.50-m length of tungsten wire that has a cross-sectional
area of 0.600 mm2. What is the current in the wire?

16. A conductor of uniform radius 1.20 cm carries a cur-
rent of 3.00 A produced by an electric field of 120 V/m.
What is the resistivity of the material?

17. Suppose that you wish to fabricate a uniform wire out 
of 1.00 g of copper. If the wire is to have a resistance of 
R � 0.500 �, and if all of the copper is to be used, what
will be (a) the length and (b) the diameter of this wire?

18. (a) Make an order-of-magnitude estimate of the resis-
tance between the ends of a rubber band. (b) Make an
order-of-magnitude estimate of the resistance between
the ‘heads’ and ‘tails’ sides of a penny. In each case,
state what quantities you take as data and the values you
measure or estimate for them. (c) What would be the
order of magnitude of the current that each carries if it
were connected across a 120-V power supply? 
(WARNING! Do not try this at home!)

19. A solid cube of silver (density � 10.5 g/cm3) has a mass
of 90.0 g. (a) What is the resistance between opposite
faces of the cube? (b) If there is one conduction elec-
tron for each silver atom, what is the average drift speed
of electrons when a potential difference of 
1.00 � 10�5 V is applied to opposite faces? (The 

c � 3.00 � 108 m/s

Section 27.3 A Model for Electrical Conduction
25. If the drift velocity of free electrons in a copper wire is

7.84 � 10�4 m/s, what is the electric field in the con-
ductor?

26. If the current carried by a conductor is doubled, what
happens to the (a) charge carrier density? (b) current
density? (c) electron drift velocity? (d) average time be-
tween collisions?

27. Use data from Example 27.1 to calculate the collision
mean free path of electrons in copper, assuming that
the average thermal speed of conduction electrons is
8.60 � 105 m/s.

Section 27.4 Resistance and Temperature
28. While taking photographs in Death Valley on a day when

the temperature is 58.0°C, Bill Hiker finds that a certain
voltage applied to a copper wire produces a current of
1.000 A. Bill then travels to Antarctica and applies the
same voltage to the same wire. What current does he
register there if the temperature is � 88.0°C? Assume
that no change occurs in the wire’s shape and size.

29. A certain lightbulb has a tungsten filament with a resis-
tance of 19.0 � when cold and of 140 � when hot. As-
suming that Equation 27.21 can be used over the large

atomic number of silver is 47, and its molar mass is
107.87 g/mol.)

20. A metal wire of resistance R is cut into three equal
pieces that are then connected side by side to form a
new wire whose length is equal to one-third the original
length. What is the resistance of this new wire?

21. A wire with a resistance R is lengthened to 1.25 times its
original length by being pulled through a small hole.
Find the resistance of the wire after it has been stretched.

22. Aluminum and copper wires of equal length are found
to have the same resistance. What is the ratio of their
radii?

23. A current density of 6.00 � 10�13 A/m2 exists in the at-
mosphere where the electric field (due to charged
thunderclouds in the vicinity) is 100 V/m. Calculate the
electrical conductivity of the Earth’s atmosphere in this
region.

24. The rod in Figure P27.24 (not drawn to scale) is made
of two materials. Both have a square cross section of
3.00 mm on a side. The first material has a resistivity of
4.00 � 10�3 � � m and is 25.0 cm long, while the second
material has a resistivity of 6.00 � 10�3 � � m and is 
40.0 cm long. What is the resistance between the ends
of the rod?

25.0 cm 40.0 cm

WEB
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temperature range involved here, find the temperature
of the filament when hot. (Assume an initial tempera-
ture of 20.0°C.)

30. A carbon wire and a Nichrome wire are connected in
series. If the combination has a resistance of 10.0 k� at
0°C, what is the resistance of each wire at 0°C such that
the resistance of the combination does not change with
temperature? (Note that the equivalent resistance of
two resistors in series is the sum of their resistances.)

31. An aluminum wire with a diameter of 0.100 mm has a
uniform electric field with a magnitude of 0.200 V/m
imposed along its entire length. The temperature of the
wire is 50.0°C. Assume one free electron per atom. 
(a) Using the information given in Table 27.1, deter-
mine the resistivity. (b) What is the current density in
the wire? (c) What is the total current in the wire? 
(d) What is the drift speed of the conduction electrons?
(e) What potential difference must exist between the
ends of a 2.00-m length of the wire if the stated electric
field is to be produced?

32. Review Problem. An aluminum rod has a resistance of
1.234 � at 20.0°C. Calculate the resistance of the rod at
120°C by accounting for the changes in both the resis-
tivity and the dimensions of the rod.

33. What is the fractional change in the resistance of an
iron filament when its temperature changes from
25.0°C to 50.0°C?

34. The resistance of a platinum wire is to be calibrated for
low-temperature measurements. A platinum wire with a
resistance of 1.00 � at 20.0°C is immersed in liquid ni-
trogen at 77 K (� 196°C). If the temperature response
of the platinum wire is linear, what is the expected resis-
tance of the platinum wire at � 196°C?

35. The temperature of a tungsten sample is raised while a
copper sample is maintained at 20°C. At what tempera-
ture will the resistivity of the tungsten sample be four
times that of the copper sample?

36. A segment of Nichrome wire is initially at 20.0°C. Using
the data from Table 27.1, calculate the temperature to
which the wire must be heated if its resistance is to be
doubled.

Section 27.6 Electrical Energy and Power
37. A toaster is rated at 600 W when connected to a 120-V

source. What current does the toaster carry, and what is
its resistance?

38. In a hydroelectric installation, a turbine delivers 
1 500 hp to a generator, which in turn converts 80.0%
of the mechanical energy into electrical energy. Under
these conditions, what current does the generator de-
liver at a terminal potential difference of 2 000 V ?

39. Review Problem. What is the required resistance of an
immersion heater that increases the temperature of
1.50 kg of water from 10.0°C to 50.0°C in 10.0 min
while operating at 110 V ?

(�platinum � 3.92 � 10�3/°C)

40. Review Problem. What is the required resistance of an
immersion heater that increases the temperature of a
mass m of liquid water from T1 to T2 in a time t while
operating at a voltage �V ?

41. Suppose that a voltage surge produces 140 V for a mo-
ment. By what percentage does the power output of a
120-V, 100-W lightbulb increase? (Assume that its resis-
tance does not change.)

42. A 500-W heating coil designed to operate from 110 V is
made of Nichrome wire 0.500 mm in diameter. (a) As-
suming that the resistivity of the Nichrome remains con-
stant at its 20.0°C value, find the length of wire used.
(b) Now consider the variation of resistivity with tem-
perature. What power does the coil of part (a) actually
deliver when it is heated to 1 200°C?

43. A coil of Nichrome wire is 25.0 m long. The wire has a
diameter of 0.400 mm and is at 20.0°C. If it carries a
current of 0.500 A, what are (a) the magnitude of the
electric field in the wire and (b) the power delivered to
it? (c) If the temperature is increased to 340°C and the
potential difference across the wire remains constant,
what is the power delivered?

44. Batteries are rated in terms of ampere-hours (A � h): For
example, a battery that can produce a current of 2.00 A
for 3.00 h is rated at 6.00 A � h. (a) What is the total en-
ergy, in kilowatt-hours, stored in a 12.0-V battery rated
at 55.0 A � h? (b) At a rate of $0.060 0 per kilowatt-hour,
what is the value of the electricity produced by this bat-
tery?

45. A 10.0-V battery is connected to a 120-� resistor. Ne-
glecting the internal resistance of the battery, calculate
the power delivered to the resistor.

46. It is estimated that each person in the United States
(population � 270 million) has one electric clock, and
that each clock uses energy at a rate of 2.50 W. To sup-
ply this energy, about how many metric tons of coal are
burned per hour in coal-fired electricity generating
plants that are, on average, 25.0% efficient? (The heat
of combustion for coal is 33.0 MJ/kg.)

47. Compute the cost per day of operating a lamp that
draws 1.70 A from a 110-V line if the cost of electrical
energy is $0.060 0/kWh.

48. Review Problem. The heating element of a coffee-
maker operates at 120 V and carries a current of 2.00 A.
Assuming that all of the energy transferred from the
heating element is absorbed by the water, calculate how
long it takes to heat 0.500 kg of water from room tem-
perature (23.0°C) to the boiling point.

49. A certain toaster has a heating element made of
Nichrome resistance wire. When the toaster is first con-
nected to a 120-V source of potential difference (and
the wire is at a temperature of 20.0°C), the initial cur-
rent is 1.80 A. However, the current begins to decrease
as the resistive element warms up. When the toaster has
reached its final operating temperature, the current has
dropped to 1.53 A. (a) Find the power the toaster con-

WEB
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sumes when it is at its operating temperature. (b) What
is the final temperature of the heating element?

50. To heat a room having ceilings 8.0 ft high, about 10.0 W
of electric power are required per square foot. At a cost
of $0.080 0/kWh, how much does it cost per day to use
electricity to heat a room measuring 10.0 ft � 15.0 ft?

51. Estimate the cost of one person’s routine use of a hair
dryer for 1 yr. If you do not use a blow dryer yourself,
observe or interview someone who does. State the quan-
tities you estimate and their values.

ADDITIONAL PROBLEMS

52. One lightbulb is marked “25 W 120 V,” and another
“100 W 120 V”; this means that each bulb converts its
respective power when plugged into a constant 120-V
potential difference. (a) Find the resistance of each
bulb. (b) How long does it take for 1.00 C to pass
through the dim bulb? How is this charge different at
the time of its exit compared with the time of its entry?
(c) How long does it take for 1.00 J to pass through the
dim bulb? How is this energy different at the time of its
exit compared with the time of its entry? (d) Find the
cost of running the dim bulb continuously for 30.0 days
if the electric company sells its product at $0.070 0 per
kWh. What product does the electric company sell? What
is its price for one SI unit of this quantity?

53. A high-voltage transmission line with a diameter of 
2.00 cm and a length of 200 km carries a steady current
of 1 000 A. If the conductor is copper wire with a free
charge density of 8.00 � 1028 electrons/m3, how long
does it take one electron to travel the full length of the
cable?

54. A high-voltage transmission line carries 1 000 A starting
at 700 kV for a distance of 100 mi. If the resistance in
the wire is 0.500 �/mi, what is the power loss due to re-
sistive losses?

55. A more general definition of the temperature coeffi-
cient of resistivity is

where � is the resistivity at temperature T. (a) Assuming
that � is constant, show that

where �0 is the resistivity at temperature T0 . (b) Using
the series expansion ( for show that
the resistivity is given approximately by the expression

for 
56. A copper cable is to be designed to carry a current of

300 A with a power loss of only 2.00 W/m. What is the
required radius of the copper cable?

57. An experiment is conducted to measure the electrical
resistivity of Nichrome in the form of wires with differ-
ent lengths and cross-sectional areas. For one set of

�(T � T0) V 1.� � �0[1 � �(T � T0)]

x V 1),ex � 1 � x

� � �0e�(T�T0 )

� �
1
�

 
d�

dT

measurements, a student uses 30-gauge wire, which has
a cross-sectional area of 7.30 � 10�8 m2. The student
measures the potential difference across the wire and
the current in the wire with a voltmeter and ammeter,
respectively. For each of the measurements given in the
table taken on wires of three different lengths, calculate
the resistance of the wires and the corresponding values
of the resistivity. What is the average value of the resistiv-
ity, and how does this value compare with the value
given in Table 27.1?

WEB

58. An electric utility company supplies a customer’s house
from the main power lines (120 V) with two copper
wires, each of which is 50.0 m long and has a resistance
of 0.108 � per 300 m. (a) Find the voltage at the cus-
tomer’s house for a load current of 110 A. For this load
current, find (b) the power that the customer is receiv-
ing and (c) the power lost in the copper wires.

59. A straight cylindrical wire lying along the x axis has a
length of 0.500 m and a diameter of 0.200 mm. It is
made of a material described by Ohm’s law with a resis-
tivity of Assume that a potential
of 4.00 V is maintained at and that at

Find (a) the electric field E in the wire,
(b) the resistance of the wire, (c) the electric current in
the wire, and (d) the current density J in the wire. Ex-
press vectors in vector notation. (e) Show that 

60. A straight cylindrical wire lying along the x axis has a
length L and a diameter d . It is made of a material de-
scribed by Ohm’s law with a resistivity �. Assume that a
potential V is maintained at and that at

In terms of L, d, V, �, and physical constants, de-
rive expressions for (a) the electric field in the wire, 
(b) the resistance of the wire, (c) the electric current in
the wire, and (d) the current density in the wire. Ex-
press vectors in vector notation. (e) Show that 

61. The potential difference across the filament of a lamp is
maintained at a constant level while equilibrium tem-
perature is being reached. It is observed that the steady-
state current in the lamp is only one tenth of the cur-
rent drawn by the lamp when it is first turned on. If the
temperature coefficient of resistivity for the lamp at
20.0°C is 0.004 50 (°C)�1, and if the resistance increases
linearly with increasing temperature, what is the final
operating temperature of the filament?

62. The current in a resistor decreases by 3.00 A when the
potential difference applied across the resistor de-
creases from 12.0 V to 6.00 V. Find the resistance of the
resistor.

E � �J.

x � L .
V � 0x � 0,

E � � J.

x � 0.500 m.
V � 0x � 0,

� � 4.00 � 10�8 ��m.

L (m) �V (V) I (A) R (�) � (��m)

0.540 5.22 0.500
1.028 5.82 0.276
1.543 5.94 0.187
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63. An electric car is designed to run off a bank of 12.0-V
batteries with a total energy storage of 2.00 � 107 J. 
(a) If the electric motor draws 8.00 kW, what is the cur-
rent delivered to the motor? (b) If the electric motor
draws 8.00 kW as the car moves at a steady speed of 
20.0 m/s, how far will the car travel before it is “out of
juice”?

64. Review Problem. When a straight wire is heated, 
its resistance is given by the expression 

according to Equation 27.21, 
where � is the temperature coefficient of resistivity. 
(a) Show that a more precise result, one that accounts
for the fact that the length and area of the wire change
when heated, is

where �� is the coefficient of linear expansion (see
Chapter 19). (b) Compare these two results for a 
2.00-m-long copper wire of radius 0.100 mm, first at
20.0°C and then heated to 100.0°C.

65. The temperature coefficients of resistivity in Table 
27.1 were determined at a temperature of 20°C. What
would they be at 0°C? (Hint: The temperature coeffi-
cient of resistivity at 20°C satisfies the expression 

where �0 is the resistivity of
the material at The temperature coefficient
of resistivity �� at 0°C must satisfy the expression

where is the resistivity of the mate-
rial at 0°C.)

66. A resistor is constructed by shaping a material of resis-
tivity � into a hollow cylinder of length L and with inner
and outer radii ra and rb , respectively (Fig. P27.66). In
use, the application of a potential difference between
the ends of the cylinder produces a current parallel to
the axis. (a) Find a general expression for the resistance
of such a device in terms of L, �, ra , and rb . (b) Obtain 
a numerical value for R when 

and 
(c) Now suppose that the potential difference is applied
between the inner and outer surfaces so that the result-
ing current flows radially outward. Find a general ex-
pression for the resistance of the device in terms of L, �,

105 ��m.� � 3.50 �rb � 1.20 cm,0.500 cm,
ra �L � 4.00 cm,

��0� � ��0[1 � ��T ],

T0 � 20�C.
�0[1 � �(T � T0)],

� �

R �
R 0[1 � �(T � T0)][1 � ��(T � T0)]

[1 � 2��(T � T0)]

R 0[1 � �(T � T0)]
R �

ra , and rb . (d) Calculate the value of R , using the para-
meter values given in part (b).

67. In a certain stereo system, each speaker has a resistance
of 4.00 �. The system is rated at 60.0 W in each chan-
nel, and each speaker circuit includes a fuse rated at
4.00 A. Is this system adequately protected against over-
load? Explain your reasoning.

68. A close analogy exists between the flow of energy due to
a temperature difference (see Section 20.7) and the
flow of electric charge due to a potential difference.
The energy dQ and the electric charge dq are both
transported by free electrons in the conducting mater-
ial. Consequently, a good electrical conductor is usually
a good thermal conductor as well. Consider a thin con-
ducting slab of thickness dx, area A, and electrical con-
ductivity �, with a potential difference dV between op-
posite faces. Show that the current is given by
the equation on the left:

Charge Analogous thermal
conduction conduction

(Eq. 20.14)

In the analogous thermal conduction equation on the
right, the rate of energy flow dQ /dt (in SI units of
joules per second) is due to a temperature gradient
dT/dx in a material of thermal conductivity k. State
analogous rules relating the direction of the electric
current to the change in potential and relating the di-
rection of energy flow to the change in temperature.

69. Material with uniform resistivity � is formed into a
wedge, as shown in Figure P27.69. Show that the resis-
tance between face A and face B of this wedge is

R � � 
L

w(y2 � y1)
 ln� y2

y1
�

dQ
dt

� kA � dT
dx �dq

dt
� �A � dV

dx �

I � dq/dt

Figure P27.69

Figure P27.66
70. A material of resistivity � is formed into the shape of a

truncated cone of altitude h, as shown in Figure P27.70.

Face A

Face B

L

w

y 1

y 2

ra

L

r b
ρ
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The bottom end has a radius b, and the top end has a
radius a. Assuming that the current is distributed uni-
formly over any particular cross-section of the cone so
that the current density is not a function of radial posi-
tion (although it does vary with position along the axis

of the cone), show that the resistance between the two
ends is given by the expression

71. The current–voltage characteristic curve for a semicon-
ductor diode as a function of temperature T is given by
the equation

Here, the first symbol e represents the base of the nat-
ural logarithm. The second e is the charge on the elec-
tron. The kB is Boltzmann’s constant, and T is the ab-
solute temperature. Set up a spreadsheet to calculate I
and R � (�V )/I for �V � 0.400 V to 0.600 V in incre-
ments of 0.005 V. Assume that Plot R ver-
sus �V for 300 K, and 320 K.T � 280 K,

I0 � 1.00 nA.

I � I0(e e�V/k BT � 1)

R �
�

	
 � h

ab �

Figure P27.70

a

h

b

ANSWERS TO QUICK QUIZZES

terial with a low resistivity �. Referring to Table 27.1, you
should probably choose copper or aluminum because
the only two materials in the table that have lower � val-
ues—silver and gold—are prohibitively expensive for
your purposes.

27.5 Just after it is turned on. When the filament is at room
temperature, its resistance is low, and hence the current
is relatively large As the filament warms up,
its resistance increases, and the current decreases. Older
lightbulbs often fail just as they are turned on because
this large initial current “spike” produces rapid tempera-
ture increase and stress on the filament.

27.6 (c). Because the potential difference �V is the same
across the two bulbs and because the power delivered to
a conductor is the 60-W bulb, with its higher
power rating, must carry the greater current. The 30-W
bulb has the higher resistance because it draws less cur-
rent at the same potential difference.

27.7 The current Ia leaves the
positive terminal of the battery and then splits to flow
through the two bulbs; thus, From Quick
Quiz 27.6, we know that the current in the 60-W bulb is
greater than that in the 30-W bulb. (Note that all the
current does not follow the “path of least resistance,”
which in this case is through the 60-W bulb.) Because
charge does not build up in the bulbs, we know that all
the charge flowing into a bulb from the left must flow
out on the right; consequently, and The
two currents leaving the bulbs recombine to form the
current back into the battery, I f � Id � I b .

I e � I f .Ic � Id 

Ia � I c � I e .

Ia � I b � I c � Id � I e � I f .

� � I �V,

(I � �V/R).

27.1 d, b � c, a. The current in part (d) is equivalent to two
positive charges moving to the left. Parts (b) and (c)
each represent four positive charges moving in the same
direction because negative charges moving to the left
are equivalent to positive charges moving to the right.
The current in part (a) is equivalent to five positive
charges moving to the right.

27.2 Every portion of the wire carries the same current even
though the wire constricts. As the cross-sectional area
decreases, the drift velocity must increase in order for
the constant current to be maintained, in accordance
with Equation 27.4. Equations 27.5 and 27.6 indicate
that the current density also increases. An increasing
electric field must be causing the increasing current
density, as indicated by Equation 27.7. If you were to
draw this situation, you would show the electric field
lines being compressed into the smaller area, indicating
increasing magnitude of the electric field.

27.3 The curvature of the line indicates that the device is
nonohmic (that is, its resistance varies with potential dif-
ference). Being the definition of resistance, Equation
27.8 still applies, giving different values for R at differ-
ent points on the curve. The slope of the tangent to the
graph line at a point is the reciprocal of the “dynamic
resistance” at that point. Note that the resistance of the
device (as measured by an ohmmeter) is the reciprocal
of the slope of a secant line joining the origin to a par-
ticular point on the curve.

27.4 The cable should be as short as possible but still able to
reach from one vehicle to another (small ), it should
be quite thick (large A), and it should be made of a ma-

�
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If all these appliances were operating at
one time, a circuit breaker would proba-
bly be tripped, preventing a potentially
dangerous situation. What causes a cir-
cuit breaker to trip when too many elec-
trical devices are plugged into one cir-
cuit? (George Semple)
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28.3 Kirchhoff’s Rules

28.4 RC Circuits

28.5 (Optional) Electrical Instruments

28.6 (Optional) Household Wiring and
Electrical Safety
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his chapter is concerned with the analysis of some simple electric circuits that
contain batteries, resistors, and capacitors in various combinations. The analysis
of these circuits is simplified by the use of two rules known as Kirchhoff ’s rules,

which follow from the laws of conservation of energy and conservation of electric
charge. Most of the circuits analyzed are assumed to be in steady state, which means
that the currents are constant in magnitude and direction. In Section 28.4 we dis-
cuss circuits in which the current varies with time. Finally, we describe a variety of
common electrical devices and techniques for measuring current, potential differ-
ence, resistance, and emf.

ELECTROMOTIVE FORCE
In Section 27.6 we found that a constant current can be maintained in a closed cir-
cuit through the use of a source of emf, which is a device (such as a battery or gen-
erator) that produces an electric field and thus may cause charges to move around
a circuit. One can think of a source of emf as a “charge pump.” When an electric
potential difference exists between two points, the source moves charges “uphill”
from the lower potential to the higher. The emf � describes the work done per
unit charge, and hence the SI unit of emf is the volt.

Consider the circuit shown in Figure 28.1, consisting of a battery connected to
a resistor. We assume that the connecting wires have no resistance. The positive
terminal of the battery is at a higher potential than the negative terminal. If we ne-
glect the internal resistance of the battery, the potential difference across it (called
the terminal voltage) equals its emf. However, because a real battery always has some
internal resistance r, the terminal voltage is not equal to the emf for a battery in a
circuit in which there is a current. To understand why this is so, consider the cir-
cuit diagram in Figure 28.2a, where the battery of Figure 28.1 is represented by
the dashed rectangle containing an emf � in series with an internal resistance r.
Now imagine moving through the battery clockwise from a to b and measuring the
electric potential at various locations. As we pass from the negative terminal to the
positive terminal, the potential increases by an amount �. However, as we move
through the resistance r, the potential decreases by an amount Ir, where I is the cur-
rent in the circuit. Thus, the terminal voltage of the battery is1�V � Vb � Va

28.1

T

1 The terminal voltage in this case is less than the emf by an amount Ir. In some situations, the terminal
voltage may exceed the emf by an amount Ir. This happens when the direction of the current is opposite
that of the emf, as in the case of charging a battery with another source of emf.

+

Resistor

Battery
–

Figure 28.1 A circuit consisting of a resistor con-
nected to the terminals of a battery.



(28.1)

From this expression, note that � is equivalent to the open-circuit voltage—that
is, the terminal voltage when the current is zero. The emf is the voltage labeled on a
battery—for example, the emf of a D cell is 1.5 V. The actual potential difference
between the terminals of the battery depends on the current through the battery,
as described by Equation 28.1.

Figure 28.2b is a graphical representation of the changes in electric potential
as the circuit is traversed in the clockwise direction. By inspecting Figure 28.2a, we
see that the terminal voltage �V must equal the potential difference across the ex-
ternal resistance R , often called the load resistance. The load resistor might be a
simple resistive circuit element, as in Figure 28.1, or it could be the resistance of
some electrical device (such as a toaster, an electric heater, or a lightbulb) con-
nected to the battery (or, in the case of household devices, to the wall outlet). The
resistor represents a load on the battery because the battery must supply energy to
operate the device. The potential difference across the load resistance is 
Combining this expression with Equation 28.1, we see that

(28.2)

Solving for the current gives

(28.3)

This equation shows that the current in this simple circuit depends on both the
load resistance R external to the battery and the internal resistance r. If R is much
greater than r, as it is in many real-world circuits, we can neglect r.

If we multiply Equation 28.2 by the current I, we obtain

(28.4)

This equation indicates that, because power (see Eq. 27.22), the total
power output I� of the battery is delivered to the external load resistance in the
amount I 2R and to the internal resistance in the amount I 2r. Again, if then
most of the power delivered by the battery is transferred to the load resistance.

r V R ,

� � I �V

I� � I 2R � I 2r

I �
�

R � r

� � IR � Ir

�V � IR .

�V � � � Ir
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Terminal Voltage of a BatteryEXAMPLE 28.1
(b) Calculate the power delivered to the load resistor, the

power delivered to the internal resistance of the battery, and
the power delivered by the battery.

Solution The power delivered to the load resistor is

The power delivered to the internal resistance is

Hence, the power delivered by the battery is the sum of these
quantities, or 47.1 W. You should check this result, using the
expression � � I�.

0.772 W�r � I 2r � (3.93 A)2 (0.05 �) �

46.3 W�R � I 2R � (3.93 A)2 (3.00 �) �

A battery has an emf of 12.0 V and an internal resistance of
0.05 �. Its terminals are connected to a load resistance of
3.00 �. (a) Find the current in the circuit and the terminal
voltage of the battery.

Solution Using first Equation 28.3 and then Equation
28.1, we obtain

To check this result, we can calculate the voltage across the
load resistance R :

�V � IR � (3.93 A)(3.00 �) � 11.8 V

11.8 V�V � � � Ir � 12.0 V � (3.93 A)(0.05 �) �

3.93 A I �
�

R � r
�

12.0 V
3.05 �

�

a c

(b)

Rr

db

V

IR
Ir

ε

ε

ε
a

d R

I

br
– +

c

(a)

I

Figure 28.2 (a) Circuit diagram
of a source of emf � (in this case, a
battery), of internal resistance r,
connected to an external resistor of
resistance R . (b) Graphical repre-
sentation showing how the electric
potential changes as the circuit in
part (a) is traversed clockwise.
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Matching the LoadEXAMPLE 28.2
Show that the maximum power delivered to the load resis-
tance R in Figure 28.2a occurs when the load resistance
matches the internal resistance—that is, when R � r .

Solution The power delivered to the load resistance is
equal to I 2R , where I is given by Equation 28.3:

When is plotted versus R as in Figure 28.3, we find that 
reaches a maximum value of at We can also
prove this by differentiating with respect to R , setting the
result equal to zero, and solving for R . The details are left as
a problem for you to solve (Problem 57).

�
R � r.�2/4r

��

� � I 2R �
�2R

(R � r)2

r 2r 3r
R

�max

�

Figure 28.3 Graph of the power delivered by a battery to a load
resistor of resistance R as a function of R . The power delivered to the
resistor is a maximum when the load resistance equals the internal
resistance of the battery.

�

RESISTORS IN SERIES AND IN PARALLEL
Suppose that you and your friends are at a crowded basketball game in a sports
arena and decide to leave early. You have two choices: (1) your whole group can
exit through a single door and walk down a long hallway containing several con-
cession stands, each surrounded by a large crowd of people waiting to buy food or
souvenirs; or (b) each member of your group can exit through a separate door in
the main hall of the arena, where each will have to push his or her way through a
single group of people standing by the door. In which scenario will less time be re-
quired for your group to leave the arena?

It should be clear that your group will be able to leave faster through the separate
doors than down the hallway where each of you has to push through several groups of
people. We could describe the groups of people in the hallway as acting in series, be-
cause each of you must push your way through all of the groups. The groups of peo-
ple around the doors in the arena can be described as acting in parallel. Each member
of your group must push through only one group of people, and each member
pushes through a different group of people. This simple analogy will help us under-
stand the behavior of currents in electric circuits containing more than one resistor.

When two or more resistors are connected together as are the lightbulbs in
Figure 28.4a, they are said to be in series. Figure 28.4b is the circuit diagram for the
lightbulbs, which are shown as resistors, and the battery. In a series connection, all
the charges moving through one resistor must also pass through the second resis-
tor. (This is analogous to all members of your group pushing through the crowds
in the single hallway of the sports arena.) Otherwise, charge would accumulate be-
tween the resistors. Thus,

28.2

for a series combination of resistors, the currents in the two resistors are the
same because any charge that passes through R1 must also pass through R2 .

The potential difference applied across the series combination of resistors will di-
vide between the resistors. In Figure 28.4b, because the voltage drop2 from a to b

2 The term voltage drop is synonymous with a decrease in electric potential across a resistor and is used
often by individuals working with electric circuits.
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equals IR1 and the voltage drop from b to c equals IR2 , the voltage drop from a to
c is

Therefore, we can replace the two resistors in series with a single resistor having an
equivalent resistance Req , where

(28.5)

The resistance Req is equivalent to the series combination in the sense
that the circuit current is unchanged when R eq replaces 

The equivalent resistance of three or more resistors connected in series is

(28.6)

This relationship indicates that the equivalent resistance of a series connec-
tion of resistors is always greater than any individual resistance.

If a piece of wire is used to connect points b and c in Figure 28.4b, does the brightness of
bulb R1 increase, decrease, or stay the same? What happens to the brightness of bulb R2 ?

Now consider two resistors connected in parallel, as shown in Figure 28.5.
When the current I reaches point a in Figure 28.5b, called a junction, it splits into
two parts, with I1 going through R1 and I2 going through R2 . A junction is any
point in a circuit where a current can split ( just as your group might split up and
leave the arena through several doors, as described earlier.) This split results in
less current in each individual resistor than the current leaving the battery. Be-
cause charge must be conserved, the current I that enters point a must equal the
total current leaving that point:

I � I1 � I2

Quick Quiz 28.1

R eq � R 1 � R 2 � R 3 � ���

R 1 � R 2 .
R 1 � R 2

R eq � R 1 � R 2

�V � IR 1 � IR 2 � I(R 1 � R 2)

+ –

(a) (b)

I

R1 R2

I

∆V
+ –

a b c

Battery

R1 R2

(c)

Req

I

∆V
+ –

a c

Figure 28.4 (a) A series connection of two resistors R1 and R2 . The current in R1 is the same
as that in R2 . (b) Circuit diagram for the two-resistor circuit. (c) The resistors replaced with a sin-
gle resistor having an equivalent resistance R eq � R 1 � R 2 .

A series connection of three light-
bulbs, all rated at 120 V but having
power ratings of 60 W, 75 W, and
200 W. Why are the intensities of
the bulbs different? Which bulb
has the greatest resistance? How
would their relative intensities dif-
fer if they were connected in paral-
lel?
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As can be seen from Figure 28.5, both resistors are connected directly across
the terminals of the battery. Thus,

when resistors are connected in parallel, the potential differences across them
are the same.

Because the potential differences across the resistors are the same, the expression
gives

From this result, we see that the equivalent resistance of two resistors in parallel is
given by

(28.7)

or

An extension of this analysis to three or more resistors in parallel gives

(28.8)
1

R eq
�

1
R 1

�
1

R 2
�

1
R 3

� ���

R eq �
1

1
R 1

�
1

R 2

1
R eq

�
1

R 1
�

1
R 2

I � I1 � I2 �
�V
R 1

�
�V
R 2

� �V � 1
R 1

�
1

R 2
� �

�V
R eq

�V � IR

b

(c)

Req

I

∆V
+ –

+ –

(a)

R1

R2

Battery

(b)

I1

R1

R2

∆V
+ –

a

I
I2

Figure 28.5 (a) A parallel connection of two resistors R1 and R2 . The potential difference
across R1 is the same as that across R2 . (b) Circuit diagram for the two-resistor circuit. (c) The
resistors replaced with a single resistor having an equivalent resistance R eq � (R 1 

�1 � R 2 

�1 )�1.

Straws in series

Straws in parallel

The equivalent resistance of
several resistors in parallel

QuickLab
Tape one pair of drinking straws end
to end, and tape a second pair side by
side. Which pair is easier to blow
through? What would happen if you
were comparing three straws taped
end to end with three taped side by
side?
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We can see from this expression that the equivalent resistance of two or more
resistors connected in parallel is always less than the least resistance in the
group.

Household circuits are always wired such that the appliances are connected in
parallel. Each device operates independently of the others so that if one is
switched off, the others remain on. In addition, the devices operate on the same
voltage.

Assume that the battery of Figure 28.1 has zero internal resistance. If we add a second resis-
tor in series with the first, does the current in the battery increase, decrease, or stay the
same? How about the potential difference across the battery terminals? Would your answers
change if the second resistor were connected in parallel to the first one?

Are automobile headlights wired in series or in parallel? How can you tell?

Quick Quiz 28.3

Quick Quiz 28.2

Find the Equivalent ResistanceEXAMPLE 28.3
We could have guessed this at the start by noting

that the current through the 3.0-� resistor has to be twice that
through the 6.0-� resistor, in view of their relative resistances
and the fact that the same voltage is applied to each of them.

As a final check of our results, note that 
and therefore,

as it must.�Vac � �Vab � �Vbc � 42 V,
�Vab � (12 �)I � 36 V;(3.0 �)I2 � 6.0 V

�Vbc � (6.0 �)I1 �

I2 � 2.0 A.Four resistors are connected as shown in Figure 28.6a. 
(a) Find the equivalent resistance between points a and c.

Solution The combination of resistors can be reduced in
steps, as shown in Figure 28.6. The 8.0-� and 4.0-� resistors
are in series; thus, the equivalent resistance between a and b
is 12 � (see Eq. 28.5). The 6.0-� and 3.0-� resistors are in
parallel, so from Equation 28.7 we find that the equivalent re-
sistance from b to c is 2.0 �. Hence, the equivalent resistance 

from a to c is 

(b) What is the current in each resistor if a potential dif-
ference of 42 V is maintained between a and c?

Solution The currents in the 8.0-� and 4.0-� resistors are
the same because they are in series. In addition, this is the
same as the current that would exist in the 14-� equivalent
resistor subject to the 42-V potential difference. Therefore,
using Equation 27.8 and the results from part
(a), we obtain

This is the current in the 8.0-� and 4.0-� resistors. When this
3.0-A current enters the junction at b , however, it splits, with
part passing through the 6.0-� resistor (I1) and part through
the 3.0-� resistor (I2). Because the potential difference is �Vbc
across each of these resistors (since they are in parallel), we see
that (6.0 �) or Using this result and
the fact that we find that andI1 � 1.0 AI1 � I2 � 3.0 A,

I2 � 2I1 .I1 � (3.0 �)I2 ,

I �
�Vac

R eq
�

42 V
14 �

� 3.0 A

(R � �V/I )

14 �.

Three lightbulbs having power rat-
ings of 25 W, 75 W, and 150 W,
connected in parallel to a voltage
source of about 100 V. All bulbs are
rated at the same voltage. Why do
the intensities differ? Which bulb
draws the most current? Which has
the least resistance?

6.0 Ω

3.0 Ω

c
b

I1

I2

4.0 Ω8.0 Ω

a

c

2.0 Ω12 Ω

ba

14 Ω

ca

(a)

(b)

(c)

I

Figure 28.6
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Three Resistors in ParallelEXAMPLE 28.4
(c) Calculate the equivalent resistance of the circuit.

Solution We can use Equation 28.8 to find Req :

Exercise Use Req to calculate the total power delivered by
the battery.

Answer 200 W.

1.6 �R eq �
18 �
11

�

 �
6

18 �
�

3
18 �

�
2

18 �
�

11
18 �

1
R eq

�
1

3.0 �
�

1
6.0 �

�
1

9.0 �

Three resistors are connected in parallel as shown in Figure
28.7. A potential difference of 18 V is maintained between
points a and b. (a) Find the current in each resistor.

Solution The resistors are in parallel, and so the potential
difference across each must be 18 V. Applying the relation-
ship to each resistor gives

(b) Calculate the power delivered to each resistor and the
total power delivered to the combination of resistors.

Solution We apply the relationship to each
resistor and obtain

This shows that the smallest resistor receives the most power.
Summing the three quantities gives a total power of 200 W.

36 W �3 �
�V 2

R 3
�

(18 V)2

9.0 �
�

54 W �2 �
�V 2

R 2
�

(18 V)2

6.0 �
�

110 W�1 �
�V 2

R 1
�

(18 V)2

3.0 �
�

� � (�V )2/R

2.0 AI3 �
�V
R 3

�
18 V
9.0 �

�

3.0 AI2 �
�V
R 2

�
18 V
6.0 �

�

6.0 AI1 �
�V
R 1

�
18 V
3.0 �

�

�V � IR

Finding Req by Symmetry ArgumentsEXAMPLE 28.5
Solution In this type of problem, it is convenient to as-
sume a current entering junction a and then apply symmetry

Consider five resistors connected as shown in Figure 28.8a.
Find the equivalent resistance between points a and b.

(c)

1/2 Ω

ba c,d

1/2 Ω

(a)

1 Ω1 Ω

1 Ω1 Ω

5 Ω
ba

c

d

1 Ω

5 Ω

1 Ω
ba c,d

1 Ω

1 Ω

(b) (d)

1 Ω

ba

Figure 28.7 Three resistors connected in parallel. The voltage
across each resistor is 18 V.

3.0 Ω 6.0 Ω 9.0 Ω18 V

b

a

I1 I2 I3

I

Figure 28.8 Because of the symmetry in this circuit, the 5-� resistor does not contribute to the resistance between points a
and b and therefore can be disregarded when we calculate the equivalent resistance.
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Operation of a Three-Way LightbulbCONCEPTUAL EXAMPLE 28.6
Exercise Determine the resistances of the two filaments
and their parallel equivalent resistance.

Answer 144 �, 192 �, 82.3 �.

Figure 28.9 illustrates how a three-way lightbulb is con-
structed to provide three levels of light intensity. The socket
of the lamp is equipped with a three-way switch for selecting
different light intensities. The bulb contains two filaments.
When the lamp is connected to a 120-V source, one filament
receives 100 W of power, and the other receives 75 W. Ex-
plain how the two filaments are used to provide three differ-
ent light intensities.

Solution The three light intensities are made possible by
applying the 120 V to one filament alone, to the other fila-
ment alone, or to the two filaments in parallel. When switch
S1 is closed and switch S2 is opened, current passes only
through the 75-W filament. When switch S1 is open and
switch S2 is closed, current passes only through the 100-W fil-
ament. When both switches are closed, current passes
through both filaments, and the total power is 175 W.

If the filaments were connected in series and one of them
were to break, no current could pass through the bulb, and
the bulb would give no illumination, regardless of the switch
position. However, with the filaments connected in parallel, if
one of them (for example, the 75-W filament) breaks, the
bulb will still operate in two of the switch positions as current
passes through the other (100-W) filament.

120 V

100-W filament

75-W filament

S1

S2

arguments. Because of the symmetry in the circuit (all 1-� re-
sistors in the outside loop), the currents in branches ac and
ad must be equal; hence, the electric potentials at points c
and d must be equal. This means that and, as a re-
sult, points c and d may be connected together without affect-
ing the circuit, as in Figure 28.8b. Thus, the 5-� resistor may

�Vcd � 0

be removed from the circuit and the remaining circuit then
reduced as in Figures 28.8c and d. From this reduction we see
that the equivalent resistance of the combination is 1 �. Note
that the result is 1 � regardless of the value of the resistor
connected between c and d .

Figure 28.9 A three-way lightbulb.

Strings of LightsAPPLICATION
In a parallel-wired string, each bulb operates at 120 V. By

design, the bulbs are brighter and hotter than those on a
series-wired string. As a result, these bulbs are inherently
more dangerous (more likely to start a fire, for instance), but
if one bulb in a parallel-wired string fails or is removed, the
rest of the bulbs continue to glow. (A 25-bulb string of 4-W
bulbs results in a power of 100 W; the total power becomes
substantial when several strings are used.)

A new design was developed for so-called “miniature”
lights wired in series, to prevent the failure of one bulb from
extinguishing the entire string. The solution is to create a
connection (called a jumper) across the filament after it fails.
(If an alternate connection existed across the filament before

Strings of lights are used for many ornamental purposes,
such as decorating Christmas trees. Over the years, both par-
allel and series connections have been used for multilight
strings powered by 120 V.3 Series-wired bulbs are safer than
parallel-wired bulbs for indoor Christmas-tree use because 
series-wired bulbs operate with less light per bulb and at a
lower temperature. However, if the filament of a single bulb
fails (or if the bulb is removed from its socket), all the lights
on the string are extinguished. The popularity of series-wired
light strings diminished because troubleshooting a failed
bulb was a tedious, time-consuming chore that involved trial-
and-error substitution of a good bulb in each socket along
the string until the defective bulb was found.

3 These and other household devices, such as the three-way lightbulb in Conceptual Example 28.6 and
the kitchen appliances shown in this chapter’s Puzzler, actually operate on alternating current (ac), to
be introduced in Chapter 33.



28.3 Kirchhoff’s Rules 877

KIRCHHOFF’S RULES
As we saw in the preceding section, we can analyze simple circuits using the ex-
pression �V � IR and the rules for series and parallel combinations of resistors.
Very often, however, it is not possible to reduce a circuit to a single loop. The pro-
cedure for analyzing more complex circuits is greatly simplified if we use two prin-
ciples called Kirchhoff ’s rules:

28.3

Suppose that all the bulbs in a 50-bulb miniature-light
string are operating. A 2.4-V potential drop occurs across each
bulb because the bulbs are in series. The power input to this
style of bulb is 0.34 W, so the total power supplied to the
string is only 17 W. We calculate the filament resistance at 
the operating temperature to be (2.4 V)2/(0.34 W) � 17 �.
When the bulb fails, the resistance across its terminals is re-
duced to zero because of the alternate jumper connection
mentioned in the preceding paragraph. All the other bulbs
not only stay on but glow more brightly because the total resis-
tance of the string is reduced and consequently the current in
each bulb increases.

Let us assume that the operating resistance of a bulb re-
mains at 17 � even though its temperature rises as a result of
the increased current. If one bulb fails, the potential drop
across each of the remaining bulbs increases to 2.45 V, the
current increases from 0.142 A to 0.145 A, and the power in-
creases to 0.354 W. As more lights fail, the current keeps ris-
ing, the filament of each bulb operates at a higher tempera-
ture, and the lifetime of the bulb is reduced. It is therefore a
good idea to check for failed (nonglowing) bulbs in such a
series-wired string and replace them as soon as possible, in or-
der to maximize the lifetimes of all the bulbs.

it failed, each bulb would represent a parallel circuit; in this
circuit, the current would flow through the alternate connec-
tion, forming a short circuit, and the bulb would not glow.)
When the filament breaks in one of these miniature light-
bulbs, 120 V appears across the bulb because no current is
present in the bulb and therefore no drop in potential occurs
across the other bulbs. Inside the lightbulb, a small loop cov-
ered by an insulating material is wrapped around the fila-
ment leads. An arc burns the insulation and connects the fila-
ment leads when 120 V appears across the bulb—that is,
when the filament fails. This “short” now completes the cir-
cuit through the bulb even though the filament is no longer
active (Fig. 28.10).

Filament

Jumper

Glass insulator

(a)

Figure 28.10 (a) Schematic diagram of
a modern “miniature” holiday lightbulb,
with a jumper connection to provide a cur-
rent path if the filament breaks. (b) A
Christmas-tree lightbulb.

(b)

13.4

1. The sum of the currents entering any junction in a circuit must equal the
sum of the currents leaving that junction:

(28.9)�I in � �Iout



Kirchhoff’s first rule is a statement of conservation of electric charge. All cur-
rent that enters a given point in a circuit must leave that point because charge can-
not build up at a point. If we apply this rule to the junction shown in Figure
28.11a, we obtain

Figure 28.11b represents a mechanical analog of this situation, in which water
flows through a branched pipe having no leaks. The flow rate into the pipe equals
the total flow rate out of the two branches on the right.

Kirchhoff’s second rule follows from the law of conservation of energy. Let us
imagine moving a charge around the loop. When the charge returns to the start-
ing point, the charge–circuit system must have the same energy as when the
charge started from it. The sum of the increases in energy in some circuit ele-
ments must equal the sum of the decreases in energy in other elements. The po-
tential energy decreases whenever the charge moves through a potential drop �IR
across a resistor or whenever it moves in the reverse direction through a source of
emf. The potential energy increases whenever the charge passes through a battery
from the negative terminal to the positive terminal. Kirchhoff’s second rule ap-
plies only for circuits in which an electric potential is defined at each point; this
criterion may not be satisfied if changing electromagnetic fields are present, as we
shall see in Chapter 31.

In justifying our claim that Kirchhoff’s second rule is a statement of conserva-
tion of energy, we imagined carrying a charge around a loop. When applying this
rule, we imagine traveling around the loop and consider changes in electric potential,
rather than the changes in potential energy described in the previous paragraph.
You should note the following sign conventions when using the second rule:

• Because charges move from the high-potential end of a resistor to the low-
potential end, if a resistor is traversed in the direction of the current, the
change in potential �V across the resistor is �IR (Fig. 28.12a).

• If a resistor is traversed in the direction opposite the current, the change in po-
tential �V across the resistor is � IR (Fig. 28.12b).

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction of the emf (from � to �), the change in potential �V is �� (Fig.
28.12c). The emf of the battery increases the electric potential as we move
through it in this direction.

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction opposite the emf (from � to �), the change in potential �V is ��
(Fig. 28.12d). In this case the emf of the battery reduces the electric potential as
we move through it.

Limitations exist on the numbers of times you can usefully apply Kirchhoff’s
rules in analyzing a given circuit. You can use the junction rule as often as you
need, so long as each time you write an equation you include in it a current that
has not been used in a preceding junction-rule equation. In general, the number
of times you can use the junction rule is one fewer than the number of junction

I1 � I2 � I3
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2. The sum of the potential differences across all elements around any closed
circuit loop must be zero:

(28.10)�
closed
loop

 �V � 0

QuickLab
Draw an arbitrarily shaped closed
loop that does not cross over itself.
Label five points on the loop a, b, c, d,
and e, and assign a random number
to each point. Now start at a and
work your way around the loop, cal-
culating the difference between each
pair of adjacent numbers. Some of
these differences will be positive, and
some will be negative. Add the differ-
ences together, making sure you accu-
rately keep track of the algebraic
signs. What is the sum of the differ-
ences all the way around the loop?

Gustav Kirchhoff (1824– 1887)
Kirchhoff, a professor at Heidelberg,
Germany, and Robert Bunsen in-
vented the spectroscope and founded
the science of spectroscopy, which
we shall study in Chapter 40. They
discovered the elements cesium and
rubidium and invented astronomical
spectroscopy. Kirchhoff formulated
another Kirchhoff’s rule, namely, “a
cool substance will absorb light of the
same wavelengths that it emits when
hot.” (AIP ESVA/W. F. Meggers Collection)
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points in the circuit. You can apply the loop rule as often as needed, so long as a
new circuit element (resistor or battery) or a new current appears in each new
equation. In general, in order to solve a particular circuit problem, the num-
ber of independent equations you need to obtain from the two rules equals
the number of unknown currents.

Complex networks containing many loops and junctions generate great num-
bers of independent linear equations and a correspondingly great number of un-
knowns. Such situations can be handled formally through the use of matrix alge-
bra. Computer programs can also be written to solve for the unknowns.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is
assumed that the circuits have reached steady-state conditions—that is, the cur-
rents in the various branches are constant. Any capacitor acts as an open circuit;
that is, the current in the branch containing the capacitor is zero under steady-
state conditions.

(a)

I1

I2

I3

(b)

Flow in

Flow out

(a)

I

a b∆V =  –IR

(b)

I

a b∆V =  +IR

(c)

ε
a b

∆V =  +ε
– +

(d)
a b

∆V =  –ε
–+

ε

ε

ε

Figure 28.11 (a) Kirchhoff’s
junction rule. Conservation of
charge requires that all current en-
tering a junction must leave that
junction. Therefore, 
(b) A mechanical analog of the
junction rule: the amount of water
flowing out of the branches on the
right must equal the amount flow-
ing into the single branch on the
left.

I 1 � I 2 � I 3 .
Figure 28.12 Rules for determin-
ing the potential changes across a
resistor and a battery. (The battery
is assumed to have no internal re-
sistance.) Each circuit element is
traversed from left to right.

Problem-Solving Hints
Kirchhoff’s Rules
• Draw a circuit diagram, and label all the known and unknown quantities.

You must assign a direction to the current in each branch of the circuit. Do
not be alarmed if you guess the direction of a current incorrectly; your re-
sult will be negative, but its magnitude will be correct. Although the assignment
of current directions is arbitrary, you must adhere rigorously to the assigned
directions when applying Kirchhoff’s rules.

• Apply the junction rule to any junctions in the circuit that provide new rela-
tionships among the various currents.
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A Single-Loop CircuitEXAMPLE 28.7

Solving for I and using the values given in Figure 28.13, we
obtain

The negative sign for I indicates that the direction of the cur-
rent is opposite the assumed direction.

(b) What power is delivered to each resistor? What power
is delivered by the 12-V battery?

Solution

Hence, the total power delivered to the resistors is

The 12-V battery delivers power Half of this
power is delivered to the two resistors, as we just calculated.
The other half is delivered to the 6-V battery, which is being
charged by the 12-V battery. If we had included the internal
resistances of the batteries in our analysis, some of the power
would appear as internal energy in the batteries; as a result,
we would have found that less power was being delivered to
the 6-V battery.

I�2 � 4.0 W.
�1 � �2 � 2.0 W.

1.1 W�2 � I 2R 2 � (0.33 A)2(10 �) �

0.87 W�1 � I 2R 1 � (0.33 A)2(8.0 �) �

�0.33 AI �
�1 � �2

R 1 � R 2
�

6.0 V � 12 V
8.0 � � 10 �

�

�1 � IR 1 � �2 � IR 2 � 0

 �  �V � 0A single-loop circuit contains two resistors and two batteries,
as shown in Figure 28.13. (Neglect the internal resistances of
the batteries.) (a) Find the current in the circuit.

Solution We do not need Kirchhoff’s rules to analyze this
simple circuit, but let us use them anyway just to see how they
are applied. There are no junctions in this single-loop circuit;
thus, the current is the same in all elements. Let us assume
that the current is clockwise, as shown in Figure 28.13. Tra-
versing the circuit in the clockwise direction, starting at a, we
see that a : b represents a potential change of ��1 , b : c
represents a potential change of �IR1 , c : d represents a po-
tential change of ��2 , and d : a represents a potential
change of �IR2 . Applying Kirchhoff’s loop rule gives

Applying Kirchhoff’s RulesEXAMPLE 28.8
We now have one equation with three unknowns— I1 , I2 , and
I3 . There are three loops in the circuit—abcda, befcb, and
aefda. We therefore need only two loop equations to deter-
mine the unknown currents. (The third loop equation would
give no new information.) Applying Kirchhoff’s loop rule to
loops abcda and befcb and traversing these loops clockwise, we
obtain the expressions

(2) abcda 10 V � (6 �)I1 � (2 �)I3 � 0

(3) befcb � 14 V � (6 �)I1 � 10 V � (4 �)I2 � 0

Find the currents I1 , I2 , and I3 in the circuit shown in Figure
28.14.

Solution Notice that we cannot reduce this circuit to a
simpler form by means of the rules of adding resistances in
series and in parallel. We must use Kirchhoff’s rules to ana-
lyze this circuit. We arbitrarily choose the directions of the
currents as labeled in Figure 28.14. Applying Kirchhoff’s
junction rule to junction c gives

(1) I1 � I2 � I3

• Apply the loop rule to as many loops in the circuit as are needed to solve for
the unknowns. To apply this rule, you must correctly identify the change in
potential as you imagine crossing each element in traversing the closed loop
(either clockwise or counterclockwise). Watch out for errors in sign!

• Solve the equations simultaneously for the unknown quantities.

a b
I

cd

  1 = 6.0 V

+–

R 1 = 8.0 ΩR 2 = 10 Ω

  2 = 12 V

+–
ε

ε

Figure 28.13 A series circuit containing two batteries and two re-
sistors, where the polarities of the batteries are in opposition.
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14 V
e

b

4 Ω

– +

10 V 6 Ω

–+ f

I2

c

I3

I1

2 Ω
da

Figure 28.14 A circuit containing three loops.

A Multiloop CircuitEXAMPLE 28.9

Because our value for I2 is negative, we conclude that the di-
rection of I2 is from c to f through the 3.00-� resistor. Despite

�0.364 AI2 � �
4.00 V
11.0 �

�
(a) Under steady-state conditions, find the unknown currents
I1 , I2 , and I3 in the multiloop circuit shown in Figure 28.15.

Solution First note that because the capacitor represents
an open circuit, there is no current between g and b along
path ghab under steady-state conditions. Therefore, when the
charges associated with I1 reach point g, they all go through
the 8.00-V battery to point b ; hence, Labeling the
currents as shown in Figure 28.15 and applying Equation 28.9
to junction c, we obtain

(1)

Equation 28.10 applied to loops defcd and cfgbc, traversed
clockwise, gives

(2) defcd 4.00 V � (3.00 �)I2 � (5.00 �)I3 � 0

(3) cfgbc (3.00 �)I2 � (5.00 �)I1 � 8.00 V � 0

From Equation (1) we see that which, when
substituted into Equation (3), gives

(4) (8.00 �)I2 � (5.00 �)I3 � 8.00 V � 0

Subtracting Equation (4) from Equation (2), we eliminate I3
and find that

I1 � I3 � I2 ,

I1 � I2 � I3

I gb � I1 .

Note that in loop befcb we obtain a positive value when travers-
ing the 6-� resistor because our direction of travel is opposite
the assumed direction of I1 .

Expressions (1), (2), and (3) represent three independent
equations with three unknowns. Substituting Equation (1)
into Equation (2) gives

(4) 10 V � (8 �)I1 � (2 �)I2

Dividing each term in Equation (3) by 2 and rearranging
gives

10 V � (6 �)I1 � (2 �) (I1 � I2) � 0

(5)

Subtracting Equation (5) from Equation (4) eliminates I2 ,
giving

Using this value of I1 in Equation (5) gives a value for I2 :

Finally,

The fact that I2 and I3 are both negative indicates only that
the currents are opposite the direction we chose for them.
However, the numerical values are correct. What would have
happened had we left the current directions as labeled in Fig-
ure 28.14 but traversed the loops in the opposite direction?

Exercise Find the potential difference between points b
and c .

Answer 2 V.

�1 AI3 � I1 � I2 �

�3 A I2 �

(2 �)I2 � (3 �)I1 � 12 V � (3 �) (2 A) � 12 V � �6 V

2 A I1 �

22 V � (11 �)I1

�12 V � �(3 �)I1 � (2 �)I2

4.00 V

d

c

5.00 Ω

–+

8.00 V

3.00 Ω

– + e

I3

f

I1

I2
5.00 Ω

ha

g

– +

3.00 V

–+

6.00   F

I = 0

b

I3

I1

µ

Figure 28.15 A multiloop circuit. Kirchhoff’s loop rule can be ap-
plied to any closed loop, including the one containing the capacitor.
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4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

RC CIRCUITS
So far we have been analyzing steady-state circuits, in which the current is con-
stant. In circuits containing capacitors, the current may vary in time. A circuit con-
taining a series combination of a resistor and a capacitor is called an RC circuit.

Charging a Capacitor

Let us assume that the capacitor in Figure 28.16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to charge.4 Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential

� �
q
C

� IR � 0

t � 0,

28.4

this interpretation of the direction, however, we must con-
tinue to use this negative value for I2 in subsequent calcula-
tions because our equations were established with our origi-
nal choice of direction.

Using in Equations (3) and (1) gives

(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the po-
tential difference �Vcap across the capacitor. We enter this po-
tential difference in the equation without reference to a sign
convention because the charge on the capacitor depends
only on the magnitude of the potential difference. Moving
clockwise around this loop, we obtain

 �Vcap � 11.0 V

�8.00 V � �Vcap � 3.00 V � 0 

1.02 AI3 �1.38 AI1 �

I2 � �0.364 A

Because (see Eq. 26.1), the charge on the capac-
itor is

Why is the left side of the capacitor positively charged?

Exercise Find the voltage across the capacitor by traversing
any other loop.

Answer 11.0 V.

Exercise Reverse the direction of the 3.00-V battery and an-
swer parts (a) and (b) again.

Answer (a) 
(b) 30 	C.

I3 � 1.02 A;I2 � �0.364 A,I1 � 1.38 A,

66.0 	CQ � (6.00 	F)(11.0 V) �

Q � C �Vcap
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on � and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:

dq
dt

�
C�
RC

�
q

RC
� �

q � C�
RC

dq
dt

�
�
R

�
q

RC

I � dq /dt

Q � C�
I � 0

t � 0)I0 �
�
R

(t � 0),

Maximum current

Maximum charge on the capacitor

+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t 
 0,
t � 0,
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Now we multiply by dt and divide by q � C� to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C� as t : �. The current has its maximum value at and decays ex-
ponentially to zero as t : �. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant  of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time , In a time 2, and so forth. Like-
wise, in a time , the charge increases from zero to 

The following dimensional analysis shows that  has the units of time:

[] � [RC] � � �V
I

�
Q
�V � � � Q

Q /�t � � [�t] � T

C� (1 � e�1) � 0.632C�.
I � e�2I0 � 0.135I0 ,I � e�1I0 � 0.368I0 .

t � 0I0 � �/R
t � 0

I(t ) �
�
R

 e�t /RC

I � dq /dt,

C� � Q

q(t ) � C� (1 � e�t/RC) � Q(1 � e�t /RC )

ln� q � C�
�C� � � �

t
RC

 

 �q

0
 

dq
q � C� � �

1
RC

 �t

0
 dt

t � 0q � 0

dq
q � C� � �

1
RC

 dt

Charge versus time for a capacitor
being charged

Current versus time for a charging
capacitor

q

=RC

τ t

C

0.632

(a)

I

τ t

0.368I0

(b)

I0 I0 =
R

ε

Cε τ

ε

Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant  has passed, the charge is 63.2% of the maximum
value C�. The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant  has passed, the current is 36.8% of its initial value.

t � 0
I 0 � �/R
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Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf �
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant  � RC .

Q /RC � I0

I(t) �
dq
dt

�
d
dt

 (Qe�t /RC ) � �
Q

RC
 e�t /RC

q(t ) � Qe�t /RC

ln� q
Q � � �

t
RC

 

 �q

Q
 
dq
q

� �
1

RC
 �t

0
 dt

t � 0,q � Q

 
dq
q

� �
1

RC
 dt

�R 
dq
dt

�
q
C

 

I � dq /dt

�
q
C

� IR � 0

t � 0,
I � 0.

1
2Q� � 1

2C�2,
Q� � C�2.

 � RC

Charge versus time for a
discharging capacitor

Current versus time for a
discharging capacitor

(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)

t > 0

Figure 28.18 (a) A charged ca-
pacitor connected to a resistor and
a switch, which is open at 
(b) After the switch is closed, a cur-
rent that decreases in magnitude
with time is set up in the direction
shown, and the charge on the ca-
pacitor decreases exponentially
with time.

t � 0.
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Intermittent Windshield WipersCONCEPTUAL EXAMPLE 28.10
through a multiposition switch. As it increases with time, the
voltage across the capacitor reaches a point at which it trig-
gers the wipers and discharges, ready to begin another charg-
ing cycle. The time interval between the individual sweeps of
the wipers is determined by the value of the time constant.

Many automobiles are equipped with windshield wipers that
can operate intermittently during a light rainfall. How does
the operation of such wipers depend on the charging and dis-
charging of a capacitor?

Solution The wipers are part of an RC circuit whose time
constant can be varied by selecting different values of R

Charging a Capacitor in an RC CircuitEXAMPLE 28.11
Exercise Calculate the charge on the capacitor and the cur-
rent in the circuit after one time constant has elapsed.

Answer 37.9 	C, 5.52 	A.

An uncharged capacitor and a resistor are connected in se-
ries to a battery, as shown in Figure 28.19. If 

and find the time constant
of the circuit, the maximum charge on the capacitor, the
maximum current in the circuit, and the charge and current
as functions of time.

Solution The time constant of the circuit is 
The maximum

charge on the capacitor is 
The maximum current in the circuit is

Using these
values and Equations 28.14 and 28.15, we find that

Graphs of these functions are provided in Figure 28.20.

(15.0 	A) e�t/4.00 sI(t) �

(60.0 	C)(1 � e�t/4.00 s )q(t) �

I0 � �/R � (12.0 V)/(8.00 � 105 �) � 15.0 	A.
60.0 	C.

(12.0 V) �Q � C� � (5.00 	F)
(8.00 � 105 �)(5.00 � 10�6 F) � 4.00 s.

 � RC �

R � 8.00 � 105 �,C � 5.00 	F,
� � 12.0 V,

R

ε
C

+ – S

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

q(µC)

Q = 60.0 µC

t(s)

0 1 2 3 4 5 6 7
0

5

10

15

I(µA)

I 0 = 15.0 µA

t(s)

(a)

(b)

t   = τ

µ

µ

µ

µ

τ

t   = ττ

Figure 28.19 The switch of this series RC circuit, open for times
is closed at t � 0.t � 0,

Figure 28.20 Plots of (a) charge versus time and (b) current ver-
sus time for the RC circuit shown in Figure 28.19, with 

, and C � 5.00 	F.R � 8.00 � 105 �
� � 12.0 V,

Discharging a Capacitor in an RC CircuitEXAMPLE 28.12
Solution The charge on the capacitor varies with time ac-
cording to Equation 28.17, To find the time
it takes q to drop to one-fourth its initial value, we substitute

into this expression and solve for t :q(t) � Q /4

q(t) � Qe�t /RC.
Consider a capacitor of capacitance C that is being dis-
charged through a resistor of resistance R , as shown in Figure
28.18. (a) After how many time constants is the charge on the
capacitor one-fourth its initial value?
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Taking logarithms of both sides, we find

(b) The energy stored in the capacitor decreases with
time as the capacitor discharges. After how many time con-
stants is this stored energy one-fourth its initial value?

Solution Using Equations 26.11 and 28.17,
we can express the energy stored in the capacitor at any time
t as

(U � Q2/2C)

1.39 t � RC(ln 4) � 1.39RC �

�ln 4 � �
t

RC
 

 14 � e�t /RC 

Q
4

� Qe�t /RC

where is the initial energy stored in the capaci-
tor. As in part (a), we now set and solve for t :

Again, taking logarithms of both sides and solving for t gives

Exercise After how many time constants is the current in
the circuit one-half its initial value?

Answer 0.693RC � 0.693.

0.693t � 1
2RC(ln 4) � 0.693RC �

 14 � e�2t /RC 

U0

4
� U0e�2t /RC

U � U0/4
U0 � Q2/2C

U �
q 2

2C
�

(Q e�t /RC)2

2C
�

Q2

2C
 e�2t /RC � U0e�2t /RC

Energy Delivered to a ResistorEXAMPLE 28.13

To evaluate this integral, we note that the initial current is
equal to and that all parameters except t are constant.
Thus, we find

(1)

This integral has a value of RC/2; hence, we find

which agrees with the result we obtained using the simpler
approach, as it must. Note that we can use this second ap-
proach to find the total energy delivered to the resistor at any
time after the switch is closed by simply replacing the upper
limit in the integral with that specific value of t.

Exercise Show that the integral in Equation (1) has the
value RC/2.

Energy � 1
2C�2

Energy �
�2

R
 ��

0
 e�2t/RC dt

�/R
I0

Energy � ��

0
 I 2R dt � ��

0
 (I0e�t /RC)2 R dt

A 5.00-	F capacitor is charged to a potential difference of
800 V and then discharged through a 25.0-k� resistor. How
much energy is delivered to the resistor in the time it takes to
fully discharge the capacitor?

Solution We shall solve this problem in two ways. The first
way is to note that the initial energy in the circuit equals the
energy stored in the capacitor, C�2/2 (see Eq. 26.11). Once
the capacitor is fully discharged, the energy stored in it is
zero. Because energy is conserved, the initial energy stored in
the capacitor is transformed into internal energy in the resis-
tor. Using the given values of C and �, we find

The second way, which is more difficult but perhaps more
instructive, is to note that as the capacitor discharges through
the resistor, the rate at which energy is delivered to the resis-
tor is given by I 2R, where I is the instantaneous current given
by Equation 28.18. Because power is defined as the time rate
of change of energy, we conclude that the energy delivered to
the resistor must equal the time integral of I 2R dt:

1.60 JEnergy � 1
2 C�2 � 1

2(5.00 � 10�6 F)(800 V)2 �

Optional Section

ELECTRICAL INSTRUMENTS

The Ammeter

A device that measures current is called an ammeter. The current to be measured
must pass directly through the ammeter, so the ammeter must be connected in se-

28.5



ries with other elements in the circuit, as shown in Figure 28.21. When using an
ammeter to measure direct currents, you must be sure to connect it so that current
enters the instrument at the positive terminal and exits at the negative terminal.

Ideally, an ammeter should have zero resistance so that the current be-
ing measured is not altered. In the circuit shown in Figure 28.21, this condition
requires that the resistance of the ammeter be much less than Because
any ammeter always has some internal resistance, the presence of the ammeter in
the circuit slightly reduces the current from the value it would have in the meter’s
absence.

The Voltmeter

A device that measures potential difference is called a voltmeter. The potential
difference between any two points in a circuit can be measured by attaching the
terminals of the voltmeter between these points without breaking the circuit, as
shown in Figure 28.22. The potential difference across resistor R2 is measured by
connecting the voltmeter in parallel with R2 . Again, it is necessary to observe the
polarity of the instrument. The positive terminal of the voltmeter must be con-
nected to the end of the resistor that is at the higher potential, and the negative
terminal to the end of the resistor at the lower potential.

An ideal voltmeter has infinite resistance so that no current passes
through it. In Figure 28.22, this condition requires that the voltmeter have a resis-
tance much greater than R2 . In practice, if this condition is not met, corrections
should be made for the known resistance of the voltmeter.

The Galvanometer

The galvanometer is the main component in analog ammeters and voltmeters.
Figure 28.23a illustrates the essential features of a common type called the 
D’Arsonval galvanometer. It consists of a coil of wire mounted so that it is free to ro-
tate on a pivot in a magnetic field provided by a permanent magnet. The basic op-

R 1 � R 2 .
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R1

ε

–

+

R2

A

R1

ε

V

R2

Figure 28.21 Current can be
measured with an ammeter con-
nected in series with the resistor
and battery of a circuit. An ideal
ammeter has zero resistance.

Figure 28.22 The potential dif-
ference across a resistor can be
measured with a voltmeter con-
nected in parallel with the resistor.
An ideal voltmeter has infinite re-
sistance.

Spring

S

Coil

Scale

N

(a)

Figure 28.23 (a) The principal components of a D’Arsonval galvanometer. When the coil situ-
ated in a magnetic field carries a current, the magnetic torque causes the coil to twist. The angle
through which the coil rotates is proportional to the current in the coil because of the counter-
acting torque of the spring. (b) A large-scale model of a galvanometer movement. Why does the
coil rotate about the vertical axis after the switch is closed?

(b)
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eration of the galvanometer makes use of the fact that a torque acts on a current
loop in the presence of a magnetic field (Chapter 29). The torque experienced by
the coil is proportional to the current through it: the larger the current, the
greater the torque and the more the coil rotates before the spring tightens
enough to stop the rotation. Hence, the deflection of a needle attached to the coil
is proportional to the current. Once the instrument is properly calibrated, it can
be used in conjunction with other circuit elements to measure either currents or
potential differences.

A typical off-the-shelf galvanometer is often not suitable for use as an ammeter,
primarily because it has a resistance of about 60 �. An ammeter resistance this
great considerably alters the current in a circuit. You can understand this by con-
sidering the following example: The current in a simple series circuit containing a
3-V battery and a 3-� resistor is 1 A. If you insert a 60-� galvanometer in this cir-
cuit to measure the current, the total resistance becomes 63 � and the current is
reduced to 0.048 A!

A second factor that limits the use of a galvanometer as an ammeter is the fact
that a typical galvanometer gives a full-scale deflection for currents of the order of
1 mA or less. Consequently, such a galvanometer cannot be used directly to mea-
sure currents greater than this value. However, it can be converted to a useful am-
meter by placing a shunt resistor Rp in parallel with the galvanometer, as shown in
Figure 28.24a. The value of Rp must be much less than the galvanometer resis-
tance so that most of the current to be measured passes through the shunt resistor.

A galvanometer can also be used as a voltmeter by adding an external resistor
Rs in series with it, as shown in Figure 28.24b. In this case, the external resistor
must have a value much greater than the resistance of the galvanometer to ensure
that the galvanometer does not significantly alter the voltage being measured.

The Wheatstone Bridge

An unknown resistance value can be accurately measured using a circuit known as
a Wheatstone bridge (Fig. 28.25). This circuit consists of the unknown resistance
Rx , three known resistances R1 , R2 , and R3 (where R1 is a calibrated variable resis-
tor), a galvanometer, and a battery. The known resistor R1 is varied until the gal-
vanometer reading is zero—that is, until there is no current from a to b. Under
this condition the bridge is said to be balanced. Because the electric potential at

60 Ω

Rp

Galvanometer

(a)

60 Ω

Galvanometer

Rs

(b)

Figure 28.24 (a) When a galvanometer is to be used as an ammeter, a shunt resistor Rp is con-
nected in parallel with the galvanometer. (b) When the galvanometer is used as a voltmeter, a re-
sistor Rs is connected in series with the galvanometer.

Figure 28.25 Circuit diagram for
a Wheatstone bridge, an instru-
ment used to measure an unknown
resistance Rx in terms of known re-
sistances R1 , R2 , and R3 . When the
bridge is balanced, no current is
present in the galvanometer. The
arrow superimposed on the circuit
symbol for resistor R1 indicates that
the value of this resistor can be var-
ied by the person operating the
bridge.

G

R1 R2

R3 Rx

+

–
a b

I1 I2
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point a must equal the potential at point b when the bridge is balanced, the poten-
tial difference across R1 must equal the potential difference across R2 . Likewise,
the potential difference across R3 must equal the potential difference across Rx .
From these considerations we see that

(1)

(2)

Dividing Equation (1) by Equation (2) eliminates the currents, and solving for R x ,
we find that

(28.19)

A number of similar devices also operate on the principle of null measure-
ment (that is, adjustment of one circuit element to make the galvanometer read
zero). One example is the capacitance bridge used to measure unknown capaci-
tances. These devices do not require calibrated meters and can be used with any
voltage source.

Wheatstone bridges are not useful for resistances above 105 �, but modern
electronic instruments can measure resistances as high as 1012 �. Such instru-
ments have an extremely high resistance between their input terminals. For exam-
ple, input resistances of 1010 � are common in most digital multimeters, which are
devices that are used to measure voltage, current, and resistance (Fig. 28.26).

The Potentiometer

A potentiometer is a circuit that is used to measure an unknown emf �x by com-
parison with a known emf. In Figure 28.27, point d represents a sliding contact
that is used to vary the resistance (and hence the potential difference) between
points a and d. The other required components are a galvanometer, a battery of
known emf �0 , and a battery of unknown emf �x .

With the currents in the directions shown in Figure 28.27, we see from Kirch-
hoff’s junction rule that the current in the resistor Rx is where I is the cur-
rent in the left branch (through the battery of emf �0) and Ix is the current in the
right branch. Kirchhoff’s loop rule applied to loop abcda traversed clockwise gives

Because current Ix passes through it, the galvanometer displays a nonzero reading.
The sliding contact at d is now adjusted until the galvanometer reads zero (indicat-
ing a balanced circuit and that the potentiometer is another null-measurement de-
vice). Under this condition, the current in the galvanometer is zero, and the po-
tential difference between a and d must equal the unknown emf �x :

Next, the battery of unknown emf is replaced by a standard battery of known
emf �s , and the procedure is repeated. If Rs is the resistance between a and d
when balance is achieved this time, then

where it is assumed that I remains the same. Combining this expression with the
preceding one, we see that

(28.20)�x �
R x

R s
 �s

�s � IR s

�x � IR x

��x � (I � Ix)R x � 0

I � Ix ,

R x �
R 2R 3

R 1

I1R 3 � I2R x

I1R 1 � I2R 2

The strain gauge, a device used for
experimental stress analysis, con-
sists of a thin coiled wire bonded to
a flexible plastic backing. The
gauge measures stresses by detect-
ing changes in the resistance of the
coil as the strip bends. Resistance
measurements are made with this
device as one element of a Wheat-
stone bridge. Strain gauges are
commonly used in modern elec-
tronic balances to measure the
masses of objects.

Figure 28.26 Voltages, currents,
and resistances are frequently mea-
sured with digital multimeters like
this one.
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If the resistor is a wire of resistivity �, its resistance can be varied by using the
sliding contact to vary the length L, indicating how much of the wire is part of the
circuit. With the substitutions and Equation 28.20 be-
comes

(28.21)

where Lx is the resistor length when the battery of unknown emf �x is in the cir-
cuit and Ls is the resistor length when the standard battery is in the circuit.

The sliding-wire circuit of Figure 28.27 without the unknown emf and the 
galvanometer is sometimes called a voltage divider. This circuit makes it possible to
tap into any desired smaller portion of the emf �0 by adjusting the length of the
resistor.

Optional Section

HOUSEHOLD WIRING AND ELECTRICAL SAFETY
Household circuits represent a practical application of some of the ideas pre-
sented in this chapter. In our world of electrical appliances, it is useful to under-
stand the power requirements and limitations of conventional electrical systems
and the safety measures that prevent accidents. 

In a conventional installation, the utility company distributes electric power to
individual homes by means of a pair of wires, with each home connected in paral-
lel to these wires. One wire is called the live wire,5 as illustrated in Figure 28.28, and
the other is called the neutral wire. The potential difference between these two
wires is about 120 V. This voltage alternates in time, with the neutral wire con-
nected to ground and the potential of the live wire oscillating relative to ground.
Much of what we have learned so far for the constant-emf situation (direct cur-
rent) can also be applied to the alternating current that power companies supply
to businesses and households. (Alternating voltage and current are discussed in
Chapter 33.)

A meter is connected in series with the live wire entering the house to record
the household’s usage of electricity. After the meter, the wire splits so that there
are several separate circuits in parallel distributed throughout the house. Each cir-
cuit contains a circuit breaker (or, in older installations, a fuse). The wire and cir-
cuit breaker for each circuit are carefully selected to meet the current demands
for that circuit. If a circuit is to carry currents as large as 30 A, a heavy wire and an
appropriate circuit breaker must be selected to handle this current. A circuit used
to power only lamps and small appliances often requires only 15 A. Each circuit
has its own circuit breaker to accommodate various load conditions.

As an example, consider a circuit in which a toaster oven, a microwave oven,
and a coffee maker are connected (corresponding to R1 , R2 , and R 3 in Figure
28.28 and as shown in the chapter-opening photograph). We can calculate the cur-
rent drawn by each appliance by using the expression The toaster oven,
rated at 1 000 W, draws a current of 1 000 W/120 V � 8.33 A. The microwave
oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated at 800 W, draws
6.67 A. If the three appliances are operated simultaneously, they draw a total cur-

� � I �V.

28.6

�x �
Lx

Ls
 �s

R x � �Lx /A,R s � �Ls /A

G

x

a b

d
c

ε0
Rx

I – Ix

I Ix

ε ε

Figure 28.27 Circuit diagram for
a potentiometer. The circuit is used
to measure an unknown emf �x .

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Meter

R3

Figure 28.28 Wiring diagram for
a household circuit. The resistances
represent appliances or other elec-
trical devices that operate with an
applied voltage of 120 V.

5 Live wire is a common expression for a conductor whose electric potential is above or below ground
potential.
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rent of 25.8 A. Therefore, the circuit should be wired to handle at least this much
current. If the rating of the circuit breaker protecting the circuit is too small—say,
20 A—the breaker will be tripped when the third appliance is turned on, prevent-
ing all three appliances from operating. To avoid this situation, the toaster oven
and coffee maker can be operated on one 20-A circuit and the microwave oven on
a separate 20-A circuit.

Many heavy-duty appliances, such as electric ranges and clothes dryers, require
240 V for their operation (Fig. 28.29). The power company supplies this voltage by
providing a third wire that is 120 V below ground potential. The potential differ-
ence between this live wire and the other live wire (which is 120 V above ground
potential) is 240 V. An appliance that operates from a 240-V line requires half the
current of one operating from a 120-V line; therefore, smaller wires can be used in
the higher-voltage circuit without overheating.

Electrical Safety

When the live wire of an electrical outlet is connected directly to ground, the cir-
cuit is completed and a short-circuit condition exists. A short circuit occurs when al-
most zero resistance exists between two points at different potentials; this results in
a very large current. When this happens accidentally, a properly operating circuit
breaker opens the circuit and no damage is done. However, a person in contact
with ground can be electrocuted by touching the live wire of a frayed cord or
other exposed conductor. An exceptionally good (although very dangerous)
ground contact is made when the person either touches a water pipe (normally at
ground potential) or stands on the ground with wet feet. The latter situation rep-
resents a good ground because normal, nondistilled water is a conductor because
it contains a large number of ions associated with impurities. This situation should
be avoided at all cost.

Electric shock can result in fatal burns, or it can cause the muscles of vital or-
gans, such as the heart, to malfunction. The degree of damage to the body de-
pends on the magnitude of the current, the length of time it acts, the part of the
body touched by the live wire, and the part of the body through which the current
passes. Currents of 5 mA or less cause a sensation of shock but ordinarily do little
or no damage. If the current is larger than about 10 mA, the muscles contract and
the person may be unable to release the live wire. If a current of about 100 mA
passes through the body for only a few seconds, the result can be fatal. Such a
large current paralyzes the respiratory muscles and prevents breathing. In some
cases, currents of about 1 A through the body can produce serious (and some-
times fatal) burns. In practice, no contact with live wires is regarded as safe when-
ever the voltage is greater than 24 V.

Many 120-V outlets are designed to accept a three-pronged power cord such as
the one shown in Figure 28.30. (This feature is required in all new electrical instal-
lations.) One of these prongs is the live wire at a nominal potential of 120 V. The
second, called the “neutral,” is nominally at 0 V and carries current to ground.
The third, round prong is a safety ground wire that normally carries no current
but is both grounded and connected directly to the casing of the appliance. If the
live wire is accidentally shorted to the casing (which can occur if the wire insula-
tion wears off), most of the current takes the low-resistance path through the ap-
pliance to ground. In contrast, if the casing of the appliance is not properly
grounded and a short occurs, anyone in contact with the appliance experiences an
electric shock because the body provides a low-resistance path to ground.

Figure 28.29 A power connec-
tion for a 240-V appliance. 

Figure 28.30 A three-pronged
power cord for a 120-V appliance.
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Special power outlets called ground-fault interrupters (GFIs) are now being used
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of
new homes. These devices are designed to protect persons from electric shock by
sensing small currents (� 5 mA) leaking to ground. (The principle of their opera-
tion is described in Chapter 31.) When an excessive leakage current is detected,
the current is shut off in less than 1 ms.

Is a circuit breaker wired in series or in parallel with the device it is protecting?

SUMMARY

The emf of a battery is equal to the voltage across its terminals when the current is
zero. That is, the emf is equivalent to the open-circuit voltage of the battery.

The equivalent resistance of a set of resistors connected in series is

(28.6)

The equivalent resistance of a set of resistors connected in parallel is 

(28.8)

If it is possible to combine resistors into series or parallel equivalents, the preced-
ing two equations make it easy to determine how the resistors influence the rest of
the circuit.

Circuits involving more than one loop are conveniently analyzed with the use
of Kirchhoff ’s rules:

1. The sum of the currents entering any junction in an electric circuit must equal
the sum of the currents leaving that junction:

(28.9)

2. The sum of the potential differences across all elements around any circuit
loop must be zero:

(28.10)

The first rule is a statement of conservation of charge; the second is equivalent to
a statement of conservation of energy.

When a resistor is traversed in the direction of the current, the change in po-
tential �V across the resistor is �IR . When a resistor is traversed in the direction
opposite the current, When a source of emf is traversed in the direc-
tion of the emf (negative terminal to positive terminal), the change in potential is
��. When a source of emf is traversed opposite the emf (positive to negative),
the change in potential is ��. The use of these rules together with Equations 28.9
and 28.10 allows you to analyze electric circuits.

If a capacitor is charged with a battery through a resistor of resistance R , the
charge on the capacitor and the current in the circuit vary in time according to

�V � �IR .

�
closed
loop

 �V � 0

�I in � �Iout

1
R eq

�
1

R 1
�

1
R 2

�
1

R 3
� ���

R eq � R 1 � R 2 � R 3 � ���

Quick Quiz 28.4
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the expressions

(28.14)

(28.15)

where is the maximum charge on the capacitor. The product RC is called
the time constant  of the circuit. If a charged capacitor is discharged through a
resistor of resistance R , the charge and current decrease exponentially in time ac-
cording to the expressions

(28.17)

(28.18)

where Q is the initial charge on the capacitor and is the initial current
in the circuit. Equations 28.14, 28.15, 28.17, and 28.18 permit you to analyze the
current and potential differences in an RC circuit and the charge stored in the cir-
cuit’s capacitor.

Q /RC � I0

I(t) � �
Q

RC
 e�t/RC

q(t) � Qe�t/RC 

Q � C�

I(t) �
�
R

 e�t /RC 

q(t) � Q(1 � e�t /RC)

QUESTIONS

13. Describe what happens to the lightbulb shown in Figure
Q28.13 after the switch is closed. Assume that the capaci-
tor has a large capacitance and is initially uncharged, and
assume that the light illuminates when connected directly
across the battery terminals.

1. Explain the difference between load resistance in a cir-
cuit and internal resistance in a battery.

2. Under what condition does the potential difference
across the terminals of a battery equal its emf ? Can the
terminal voltage ever exceed the emf ? Explain.

3. Is the direction of current through a battery always from
the negative terminal to the positive one? Explain.

4. How would you connect resistors so that the equivalent
resistance is greater than the greatest individual resis-
tance? Give an example involving three resistors.

5. How would you connect resistors so that the equivalent
resistance is less than the least individual resistance? Give
an example involving three resistors.

6. Given three lightbulbs and a battery, sketch as many dif-
ferent electric circuits as you can.

7. Which of the following are the same for each resistor in a
series connection—potential difference, current, power?

8. Which of the following are the same for each resistor in a
parallel connection—potential difference, current,
power?

9. What advantage might there be in using two identical re-
sistors in parallel connected in series with another identi-
cal parallel pair, rather than just using a single resistor?

10. An incandescent lamp connected to a 120-V source with a
short extension cord provides more illumination than the
same lamp connected to the same source with a very long
extension cord. Explain why.

11. When can the potential difference across a resistor be
positive?

12. In Figure 28.15, suppose the wire between points g and h
is replaced by a 10-� resistor. Explain why this change
does not affect the currents calculated in Example 28.9.

14. What are the internal resistances of an ideal ammeter? of
an ideal voltmeter? Do real meters ever attain these
ideals?

15. Although the internal resistances of all sources of emf
were neglected in the treatment of the potentiometer
(Section 28.5), it is really not necessary to make this as-
sumption. Explain why internal resistances play no role in
the measurement of �x .

Switch
Battery
+ –

C

Figure Q28.13
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16. Why is it dangerous to turn on a light when you are in the
bathtub?

17. Suppose you fall from a building, and on your way down
you grab a high-voltage wire. Assuming that you are hang-
ing from the wire, will you be electrocuted? If the wire
then breaks, should you continue to hold onto an end of
the wire as you fall?

18. What advantage does 120-V operation offer over 240 V ?
What are its disadvantages compared with 240 V?

19. When electricians work with potentially live wires, they of-
ten use the backs of their hands or fingers to move the
wires. Why do you suppose they employ this technique?

20. What procedure would you use to try to save a person
who is “frozen” to a live high-voltage wire without endan-
gering your own life?

21. If it is the current through the body that determines the
seriousness of a shock, why do we see warnings of high
voltage rather than high current near electrical equipment?

22. Suppose you are flying a kite when it strikes a high-
voltage wire. What factors determine how great a shock
you receive?

23. A series circuit consists of three identical lamps that are
connected to a battery as shown in Figure Q28.23. When
switch S is closed, what happens (a) to the intensities of
lamps A and B, (b) to the intensity of lamp C, (c) to the
current in the circuit, and (d) to the voltage across the
three lamps? (e) Does the power delivered to the circuit
increase, decrease, or remain the same?

24. If your car’s headlights are on when you start the igni-
tion, why do they dim while the car is starting?

25. A ski resort consists of a few chair lifts and several inter-
connected downhill runs on the side of a mountain, with
a lodge at the bottom. The lifts are analogous to batteries,
and the runs are analogous to resistors. Describe how two
runs can be in series. Describe how three runs can be in
parallel. Sketch a junction of one lift and two runs. State
Kirchhoff’s junction rule for ski resorts. One of the skiers,
who happens to be carrying an altimeter, stops to warm
up her toes each time she passes the lodge. State Kirch-
hoff’s loop rule for altitude.

Figure Q28.23

A

S

B C

ε

PROBLEMS

4. An automobile battery has an emf of 12.6 V and an in-
ternal resistance of 0.080 0 �. The headlights have a to-
tal resistance of 5.00 � (assumed constant). What is the
potential difference across the headlight bulbs (a) when
they are the only load on the battery and (b) when the
starter motor, which takes an additional 35.0 A from the
battery, is operated?

Section 28.2 Resistors in Series and in Parallel
5. The current in a loop circuit that has a resistance of R1

is 2.00 A. The current is reduced to 1.60 A when an ad-
ditional resistor is added in series with R1 .
What is the value of R1 ?

6. (a) Find the equivalent resistance between points a and
b in Figure P28.6. (b) Calculate the current in each re-
sistor if a potential difference of 34.0 V is applied be-
tween points a and b.

7. A television repairman needs a 100-� resistor to repair
a malfunctioning set. He is temporarily out of resistors

R 2 � 3.00 �

Section 28.1 Electromotive Force
1. A battery has an emf of 15.0 V. The terminal voltage of

the battery is 11.6 V when it is delivering 20.0 W of
power to an external load resistor R. (a) What is the
value of R? (b) What is the internal resistance of the
battery?

2. (a) What is the current in a 5.60-� resistor connected to
a battery that has a 0.200-� internal resistance if the ter-
minal voltage of the battery is 10.0 V ? (b) What is the
emf of the battery?

3. Two 1.50-V batteries—with their positive terminals in
the same direction—are inserted in series into the bar-
rel of a flashlight. One battery has an internal resistance
of 0.255 �, the other an internal resistance of 0.153 �.
When the switch is closed, a current of 600 mA occurs
in the lamp. (a) What is the lamp’s resistance? (b) What
percentage of the power from the batteries appears in
the batteries themselves, as represented by an increase
in temperature?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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WEB

16. Two resistors connected in series have an equivalent re-
sistance of 690 �. When they are connected in parallel,
their equivalent resistance is 150 �. Find the resistance
of each resistor.

17. In Figures 28.4 and 28.5, let �, let 
and let the battery have a terminal voltage of

33.0 V. (a) In the parallel circuit shown in Figure 28.5,
which resistor uses more power? (b) Verify that the sum
of the power (I 2R) used by each resistor equals the
power supplied by the battery (I �V ). (c) In the series
circuit, which resistor uses more power? (d) Verify that
the sum of the power (I 2R) used by each resistor equals

22.0 �,
R 2 �R 1 � 11.0

15. Calculate the power delivered to each resistor in the cir-
cuit shown in Figure P28.15.

10. Four copper wires of equal length are connected in se-
ries. Their cross-sectional areas are 1.00 cm2, 2.00 cm2,
3.00 cm2, and 5.00 cm2. If a voltage of 120 V is applied
to the arrangement, what is the voltage across the 
2.00-cm2 wire?

11. Three 100-� resistors are connected as shown in Figure
P28.11. The maximum power that can safely be deliv-
ered to any one resistor is 25.0 W. (a) What is the maxi-
mum voltage that can be applied to the terminals a and
b? (b) For the voltage determined in part (a), what is

of this value. All he has in his toolbox are a 500-� resis-
tor and two 250-� resistors. How can he obtain the de-
sired resistance using the resistors he has on hand?

8. A lightbulb marked “75 W [at] 120 V” is screwed into a
socket at one end of a long extension cord in which
each of the two conductors has a resistance of 0.800 �.
The other end of the extension cord is plugged into a
120-V outlet. Draw a circuit diagram, and find the actual
power delivered to the bulb in this circuit.

9. Consider the circuit shown in Figure P28.9. Find (a) the
current in the 20.0-� resistor and (b) the potential dif-
ference between points a and b.

the power delivered to each resistor? What is the total
power delivered?

12. Using only three resistors—2.00 �, 3.00 �, and 
4.00 �—find 17 resistance values that can be obtained
with various combinations of one or more resistors. Tab-
ulate the combinations in order of increasing resistance.

13. The current in a circuit is tripled by connecting a 500-�
resistor in parallel with the resistance of the circuit. De-
termine the resistance of the circuit in the absence of
the 500-� resistor.

14. The power delivered to the top part of the circuit shown
in Figure P28.14 does not depend on whether the switch
is opened or closed. If R � 1.00 �, what is R �? Neglect
the internal resistance of the voltage source.

9.00 Ω4.00 Ω

10.0 Ω

7.00 Ω

ba

2.00 Ω

18.0 V
3.00 Ω

4.00 Ω

1.00 Ω

ε

S R ′

R

R ′

a

100 Ω

100 Ω

100 Ω

b

20.0 Ω

a 10.0 Ω

10.0 Ω 25.0 V

5.00 Ω

b

5.00 Ω

Figure P28.6

Figure P28.9

Figure P28.11

Figure P28.14

Figure P28.15
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the power supplied by the battery 
(e) Which circuit configuration uses more power?

Section 28.3 Kirchhoff’s Rules
Note: The currents are not necessarily in the direction shown
for some circuits.

18. The ammeter shown in Figure P28.18 reads 2.00 A.
Find I 1 , I 2 , and �.

(� � I �V ). 22. (a) Using Kirchhoff’s rules, find the current in each re-
sistor shown in Figure P28.22 and (b) find the potential
difference between points c and f. Which point is at the
higher potential?

WEB

25. A dead battery is charged by connecting it to the live
battery of another car with jumper cables (Fig. P28.25).
Determine the current in the starter and in the dead
battery.

24. In the circuit of Figure P28.24, determine the current
in each resistor and the voltage across the 200-� resis-
tor.

23. If and in Figure P28.23, deter-
mine the direction and magnitude of the current in the
horizontal wire between a and e.

� � 250 VR � 1.00 k�

20. In Figure P28.19, show how to add just enough amme-
ters to measure every different current that is flowing.
Show how to add just enough voltmeters to measure the
potential difference across each resistor and across each
battery.

21. The circuit considered in Problem 19 and shown in Fig-
ure P28.19 is connected for 2.00 min. (a) Find the en-
ergy supplied by each battery. (b) Find the energy deliv-
ered to each resistor. (c) Find the total amount of
energy converted from chemical energy in the battery
to internal energy in the circuit resistance.

19. Determine the current in each branch of the circuit
shown in Figure P28.19.

80 Ω200 Ω 20 Ω 70 Ω

40 V 360 V 80 V

ε

R

a

b
2R

3R4R

c d

e

+
–

+
– ε2

60.0 V70.0 V 80.0 V

R2

a f e

R3

3.00 kΩ

2.00 kΩ

4.00 kΩcb d

ε1ε ε2ε ε3ε

R1

3.00 Ω

1.00 Ω

5.00 Ω

1.00 Ω

4.00 V
+

8.00 Ω

12.0 V
+

�

�

7.00 Ω 15.0 V

5.00 Ω

2.00 Ω ε
I2

I1

A

Figure P28.18

Figure P28.19 Problems 19, 20, and 21.

Figure P28.22

Figure P28.23

Figure P28.24
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26. For the network shown in Figure P28.26, show that the
resistance R ab � 27

17 �.

Section 28.4 RC Circuits
29. Consider a series RC circuit (see Fig. 28.16) for which

and Find 
(a) the time constant of the circuit and (b) the maxi-
mum charge on the capacitor after the switch is closed.
(c) If the switch is closed at find the current in
the resistor 10.0 s later.

30. A 2.00-nF capacitor with an initial charge of 5.10 	C is
discharged through a 1.30-k� resistor. (a) Calculate the
current through the resistor 9.00 	s after the resistor is
connected across the terminals of the capacitor. 
(b) What charge remains on the capacitor after 8.00 	s?
(c) What is the maximum current in the resistor?

31. A fully charged capacitor stores energy U0 . How much
energy remains when its charge has decreased to half its
original value?

32. In the circuit of Figure P28.32, switch S has been open
for a long time. It is then suddenly closed. Determine
the time constant (a) before the switch is closed and
(b) after the switch is closed. (c) If the switch is closed
at , determine the current through it as a function
of time.

t � 0

t � 0,

� � 30.0 V.C � 5.00 	F,R � 1.00 M�,
WEB

34. A 4.00-M� resistor and a 3.00-	F capacitor are con-
nected in series with a 12.0-V power supply. (a) What is
the time constant for the circuit? (b) Express the cur-
rent in the circuit and the charge on the capacitor as
functions of time.

33. The circuit shown in Figure P28.33 has been connected
for a long time. (a) What is the voltage across the capac-
itor? (b) If the battery is disconnected, how long does it
take the capacitor to discharge to one-tenth its initial
voltage?

28. Calculate the power delivered to each of the resistors
shown in Figure P28.28.

27. For the circuit shown in Figure P28.27, calculate (a) the
current in the 2.00-� resistor and (b) the potential dif-
ference between points a and b.

10.0 V

1.00 Ω 8.00 Ω

2.00 Ω4.00 Ω

1.00 µFµ

50.0 kΩ

100 kΩ

10.0 V
S

10.0 Fµ

2.0 Ω

20 V50 V

2.0 Ω

4.0 Ω 4.0 Ω

4.00 Ω

b

a

2.00 Ω

6.00 Ω8.00 V

12.0 V

0.01 Ω

Live
battery

+

–

+

–

1.00 Ω
0.06 Ω
Starter

Dead
battery

12 V 10 V

1.0 Ω

1.0 Ω 1.0 Ω

5.0 Ω3.0 Ω

a b

Figure P28.25

Figure P28.26

Figure P28.27

Figure P28.28

Figure P28.32

Figure P28.33
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35. Dielectric materials used in the manufacture of capaci-
tors are characterized by conductivities that are small
but not zero. Therefore, a charged capacitor slowly
loses its charge by “leaking” across the dielectric. If a
certain 3.60-	F capacitor leaks charge such that the po-
tential difference decreases to half its initial value in
4.00 s, what is the equivalent resistance of the dielectric?

36. Dielectric materials used in the manufacture of capaci-
tors are characterized by conductivities that are small
but not zero. Therefore, a charged capacitor slowly
loses its charge by “leaking” across the dielectric. If a ca-
pacitor having capacitance C leaks charge such that the
potential difference decreases to half its initial value in
a time t, what is the equivalent resistance of the dielec-
tric?

37. A capacitor in an RC circuit is charged to 60.0% of its
maximum value in 0.900 s. What is the time constant of
the circuit?

(Optional)
Section 28.5 Electrical Instruments

38. A typical galvanometer, which requires a current of 
1.50 mA for full-scale deflection and has a resistance of
75.0 �, can be used to measure currents of much
greater values. A relatively small shunt resistor is wired
in parallel with the galvanometer (refer to Fig. 28.24a)
so that an operator can measure large currents without
causing damage to the galvanometer. Most of the cur-
rent then flows through the shunt resistor. Calculate the
value of the shunt resistor that enables the galvanome-
ter to be used to measure a current of 1.00 A at full-
scale deflection. (Hint: Use Kirchhoff’s rules.)

39. The galvanometer described in the preceding problem
can be used to measure voltages. In this case a large re-
sistor is wired in series with the galvanometer in a way
similar to that shown in Figure 28.24b. This arrange-
ment, in effect, limits the current that flows through the
galvanometer when large voltages are applied. Most of
the potential drop occurs across the resistor placed in
series. Calculate the value of the resistor that enables
the galvanometer to measure an applied voltage of 
25.0 V at full-scale deflection.

40. A galvanometer with a full-scale sensitivity of 1.00 mA
requires a 900-� series resistor to make a voltmeter
reading full scale when 1.00 V is measured across the
terminals. What series resistor is required to make the
same galvanometer into a 50.0-V (full-scale) voltmeter?

41. Assume that a galvanometer has an internal resistance
of 60.0 � and requires a current of 0.500 mA to pro-
duce full-scale deflection. What resistance must be con-
nected in parallel with the galvanometer if the combina-
tion is to serve as an ammeter that has a full-scale
deflection for a current of 0.100 A?

42. A Wheatstone bridge of the type shown in Figure 28.25
is used to make a precise measurement of the resistance
of a wire connector. If and the bridge is
balanced by adjusting R1 such that what is
Rx ?

43. Consider the case in which the Wheatstone bridge
shown in Figure 28.25 is unbalanced. Calculate the cur-
rent through the galvanometer when 

and Assume that the
voltage across the bridge is 70.0 V, and neglect the gal-
vanometer’s resistance.

44. Review Problem. A Wheatstone bridge can be used to
measure the strain of a wire (see Section 12.4),
where Li is the length before stretching, L is the length
after stretching, and Let 
Show that the resistance is for
any length, where Assume that the resistiv-
ity and volume of the wire stay constant.

45. Consider the potentiometer circuit shown in Figure
28.27. If a standard battery with an emf of 1.018 6 V is
used in the circuit and the resistance between a and d is
36.0 �, the galvanometer reads zero. If the standard
battery is replaced by an unknown emf, the galvanome-
ter reads zero when the resistance is adjusted to 48.0 �.
What is the value of the emf ?

46. Meter loading. Work this problem to five-digit precision.
Refer to Figure P28.46. (a) When a 180.00-� resistor is
put across a battery with an emf of 6.000 0 V and an in-
ternal resistance of 20.000 �, what current flows in the
resistor? What will be the potential difference across 
it? (b) Suppose now that an ammeter with a resistance
of 0.500 00 � and a voltmeter with a resistance of 

R i � �Li/Ai .
R � R i(1 � 2� � �2)

� � �L/Li .�L � L � Li .

(�L/Li)

R 1 � 14.0 �.R 2 � 21.0 �,7.00 �,
R x � R 3 �

R 1 � 2.50R 2 ,
R 3 � 1.00 k�

(a)

180.00 Ω

20.000 Ω
6.000 0 V

(b)

AV

(c)

AV

Figure P28.46
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20 000 � are added to the circuit, as shown in Figure
P28.46b. Find the reading of each. (c) One terminal of
one wire is moved, as shown in Figure P28.46c. Find the
new meter readings.

(Optional)
Section 28.6 Household Wiring and Electrical Safety

47. An electric heater is rated at 1 500 W, a toaster at 
750 W, and an electric grill at 1 000 W. The three appli-
ances are connected to a common 120-V circuit. 
(a) How much current does each draw? (b) Is a 25.0-A
circuit breaker sufficient in this situation? Explain your
answer.

48. An 8.00-ft extension cord has two 18-gauge copper
wires, each with a diameter of 1.024 mm. What is the
I 2R loss in this cord when it carries a current of 
(a) 1.00 A? (b) 10.0 A?

49. Sometimes aluminum wiring has been used instead of
copper for economic reasons. According to the Na-
tional Electrical Code, the maximum allowable current
for 12-gauge copper wire with rubber insulation is 20 A.
What should be the maximum allowable current in a
12-gauge aluminum wire if it is to have the same I 2R
loss per unit length as the copper wire?

50. Turn on your desk lamp. Pick up the cord with your
thumb and index finger spanning its width. (a) Com-
pute an order-of-magnitude estimate for the current
that flows through your hand. You may assume that at a
typical instant the conductor inside the lamp cord next
to your thumb is at potential and that the con-
ductor next to your index finger is at ground potential
(0 V). The resistance of your hand depends strongly on
the thickness and moisture content of the outer layers
of your skin. Assume that the resistance of your hand
between fingertip and thumb tip is  . You may
model the cord as having rubber insulation. State the
other quantities you measure or estimate and their val-
ues. Explain your reasoning. (b) Suppose that your
body is isolated from any other charges or currents. In
order-of-magnitude terms, describe the potential of
your thumb where it contacts the cord and the potential
of your finger where it touches the cord.

ADDITIONAL PROBLEMS

51. Four 1.50-V AA batteries in series are used to power a
transistor radio. If the batteries can provide a total
charge of 240 C, how long will they last if the radio has
a resistance of 200 �?

52. A battery has an emf of 9.20 V and an internal resis-
tance of 1.20 �. (a) What resistance across the battery
will extract from it a power of 12.8 W? (b) a power of
21.2 W ?

53. Calculate the potential difference between points a and
b in Figure P28.53, and identify which point is at the
higher potential.

�104 �

�102 V

54. A 10.0-	F capacitor is charged by a 10.0-V battery
through a resistance R . The capacitor reaches a poten-
tial difference of 4.00 V at a time 3.00 s after charging
begins. Find R .

55. When two unknown resistors are connected in series
with a battery, 225 W is delivered to the combination
with a total current of 5.00 A. For the same total cur-
rent, 50.0 W is delivered when the resistors are con-
nected in parallel. Determine the values of the two resis-
tors.

56. When two unknown resistors are connected in series
with a battery, a total power is delivered to the com-
bination with a total current of I. For the same total cur-
rent, a total power is delivered when the resistors are
connected in parallel. Determine the values of the two
resistors.

57. A battery has an emf � and internal resistance r. A vari-
able resistor R is connected across the terminals of the
battery. Determine the value of R such that (a) the po-
tential difference across the terminals is a maximum,
(b) the current in the circuit is a maximum, (c) the
power delivered to the resistor is a maximum.

58. A power supply has an open-circuit voltage of 40.0 V
and an internal resistance of 2.00 �. It is used to charge
two storage batteries connected in series, each having
an emf of 6.00 V and internal resistance of 0.300 �. If
the charging current is to be 4.00 A, (a) what additional
resistance should be added in series? (b) Find the
power delivered to the internal resistance of the supply,
the I 2R loss in the batteries, and the power delivered to
the added series resistance. (c) At what rate is the chem-
ical energy in the batteries increasing?

59. The value of a resistor R is to be determined using the
ammeter-voltmeter setup shown in Figure P28.59. The
ammeter has a resistance of 0.500 �, and the voltmeter
has a resistance of 20 000 �. Within what range of ac-
tual values of R will the measured values be correct, to
within 5.00%, if the measurement is made using (a) the
circuit shown in Figure P28.59a? (b) the circuit shown
in Figure P28.59b?

�p

�s

2.00 Ω

4.00 Ω

10.0 Ω

4.00 V

12.0 V

a

b

WEB

Figure P28.53
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64. Design a multirange voltmeter capable of full-scale de-
flection for 20.0 V, 50.0 V, and 100 V. Assume that the
meter movement is a galvanometer that has a resistance
of 60.0 � and gives a full-scale deflection for a current
of 1.00 mA.

65. Design a multirange ammeter capable of full-scale de-
flection for 25.0 mA, 50.0 mA, and 100 mA. Assume
that the meter movement is a galvanometer that has a
resistance of 25.0 � and gives a full-scale deflection for
1.00 mA.

66. A particular galvanometer serves as a 2.00-V full-scale
voltmeter when a 2 500-� resistor is connected in series
with it. It serves as a 0.500-A full-scale ammeter when a
0.220-� resistor is connected in parallel with it. Deter-
mine the internal resistance of the galvanometer and
the current required to produce full-scale deflection.

67. In Figure P28.67, suppose that the switch has been
closed for a length of time sufficiently long for the ca-
pacitor to become fully charged. (a) Find the steady-
state current in each resistor. (b) Find the charge Q on
the capacitor. (c) The switch is opened at Write
an equation for the current in R2 as a function of
time, and (d) find the time that it takes for the charge
on the capacitor to fall to one-fifth its initial value.

IR 2

t � 0.

63. Three 60.0-W, 120-V lightbulbs are connected across a
120-V power source, as shown in Figure P28.63. Find 
(a) the total power delivered to the three bulbs and 
(b) the voltage across each. Assume that the resistance
of each bulb conforms to Ohm’s law (even though in
reality the resistance increases markedly with current).

60. A battery is used to charge a capacitor through a resis-
tor, as shown in Figure 28.16. Show that half the energy
supplied by the battery appears as internal energy in the
resistor and that half is stored in the capacitor.

61. The values of the components in a simple series RC cir-
cuit containing a switch (Fig. 28.16) are 

and At the instant 10.0 s
after the switch is closed, calculate (a) the charge on
the capacitor, (b) the current in the resistor, (c) the
rate at which energy is being stored in the capacitor,
and (d) the rate at which energy is being delivered by
the battery.

62. The switch in Figure P28.62a closes when 
and opens when The voltmeter reads a
voltage as plotted in Figure P28.62b. What is the period
T of the waveform in terms of RA , RB , and C ?

�Vc � �V/3.
�Vc 
 2�V/3

� � 10.0 V.R � 2.00 � 106 �,
C � 1.00 	F,

3.00 kΩ

S

R2 =15.0 kΩ

12.0 kΩ

10.0 µF

9.00 V

µ

R1

120 V R2 R3

�V
3

2�V
3

Voltage–
controlled
switch

(a)

�V

RA

RB

T

�Vc(t

�V

t

(b)

C �VcV

(a)

V

R
A

V

A
R

(b)

Figure P28.59

Figure P28.62

Figure P28.63

Figure P28.67
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72. The circuit in Figure P28.72 contains two resistors,
and and two capacitors,
and connected to a battery

with emf If no charges exist on the capaci-
tors before switch S is closed, determine the charges q1
and q2 on capacitors C1 and C2 , respectively, after the
switch is closed. (Hint: First reconstruct the circuit so
that it becomes a simple RC circuit containing a single
resistor and single capacitor in series, connected to the
battery, and then determine the total charge q stored in
the equivalent circuit.)

� � 120 V.
C2 � 3.00 	F,C1 � 2.00 	F
R 2 � 3.00 k�,R 1 � 2.00 k�

71. Three 2.00-� resistors are connected as shown in Figure
P28.71. Each can withstand a maximum power of 
32.0 W without becoming excessively hot. Determine
the maximum power that can be delivered to the com-
bination of resistors.

70. The student engineer of a campus radio station wishes
to verify the effectiveness of the lightning rod on the an-

69. (a) Using symmetry arguments, show that the current
through any resistor in the configuration of Figure
P28.69 is either I/3 or I/6. All resistors have the same
resistance r. (b) Show that the equivalent resistance be-
tween points a and b is (5/6)r.

68. The circuit shown in Figure P28.68 is set up in the labo-
ratory to measure an unknown capacitance C with the
use of a voltmeter of resistance and a bat-
tery whose emf is 6.19 V. The data given in the table be-
low are the measured voltages across the capacitor as a
function of time, where represents the time at
which the switch is opened. (a) Construct a graph of
ln(�/�V ) versus t , and perform a linear least-squares
fit to the data. (b) From the slope of your graph, obtain
a value for the time constant of the circuit and a value
for the capacitance.

t � 0

R � 10.0 M�

tenna mast (Fig. P28.70). The unknown resistance R x is
between points C and E . Point E is a true ground but is
inaccessible for direct measurement since this stratum is
several meters below the Earth’s surface. Two identical
rods are driven into the ground at A and B, introducing
an unknown resistance Ry . The procedure is as follows.
Measure resistance R1 between points A and B, then
connect A and B with a heavy conducting wire and mea-
sure resistance R2 between points A and C . (a) Derive a
formula for Rx in terms of the observable resistances R1
and R2 . (b) A satisfactory ground resistance would be

Is the grounding of the station adequate if
measurements give and R 2 � 6.00 �?R 1 � 13.0 �
R x � 2.00 �.

2.00 Ω

2.00 Ω

2.00 Ω

Ry Rx

A BC

Ry

E

b I

aI

S

C

R

Voltmeter

ε

Figure P28.68

Figure P28.69

Figure P28.70

Figure P28.71

�V (V) t (s) ln(�/�V )

6.19 0
5.55 4.87
4.93 11.1
4.34 19.4
3.72 30.8
3.09 46.6
2.47 67.3
1.83 102.2
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ANSWERS TO QUICK QUIZZES

If the second resistor were connected in parallel, the
total resistance of the circuit would decrease, and an in-
crease in current through the battery would result. The
potential difference across the terminals would decrease
because the increased current results in a greater volt-
age decrease across the internal resistance.

28.3 They must be in parallel because if one burns out, the
other continues to operate. If they were in series, one
failed headlamp would interrupt the current through-
out the entire circuit, including the other headlamp.

28.4 Because the circuit breaker trips and opens the circuit
when the current in that circuit exceeds a certain preset
value, it must be in series to sense the appropriate cur-
rent (see Fig. 28.28).

28.1 Bulb R1 becomes brighter. Connecting b to c “shorts
out” bulb R2 and changes the total resistance of the cir-
cuit from to just R1 . Because the resistance has
decreased (and the potential difference supplied by the
battery does not change), the current through the bat-
tery increases. This means that the current through bulb
R1 increases, and bulb R1 glows more brightly. Bulb R2
goes out because the new piece of wire provides an al-
most resistance-free path for the current; hence, essen-
tially zero current exists in bulb R2 .

28.2 Adding another series resistor increases the total resis-
tance of the circuit and thus reduces the current in the
battery. The potential difference across the battery ter-
minals would increase because the reduced current re-
sults in a smaller voltage decrease across the internal re-
sistance. 

R 1 � R 2

73. Assume that you have a battery of emf � and three
identical lightbulbs, each having constant resistance R .
What is the total power from the battery if the bulbs are
connected (a) in series? (b) in parallel? (c) For which
connection do the bulbs shine the brightest?

ε
+    –

R2

R1 C1

C2

a

b c

f

S

d e

Figure P28.72
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Magnetic Fields

P U Z Z L E R

Aurora Borealis, the Northern Lights,
photographed near Fairbanks, Alaska.
Such beautiful auroral displays are a
common sight in far northern or southern
latitudes, but they are quite rare in the
middle latitudes. What causes these
shimmering curtains of light, and why are
they usually visible only near the Earth’s
North and South poles? (George

Lepp/Tony Stone Images)
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29.1 The Magnetic Field

29.2 Magnetic Force Acting on a
Current-Carrying Conductor

29.3 Torque on a Current Loop in a
Uniform Magnetic Field

29.4 Motion of a Charged Particle in a
Uniform Magnetic Field

29.5 (Optional) Applications Involving
Charged Particles Moving in a
Magnetic Field

29.6 (Optional) The Hall Effect
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any historians of science believe that the compass, which uses a magnetic
needle, was used in China as early as the 13th century B.C., its invention be-
ing of Arabic or Indian origin. The early Greeks knew about magnetism as

early as 800 B.C. They discovered that the stone magnetite (Fe3O4) attracts pieces
of iron. Legend ascribes the name magnetite to the shepherd Magnes, the nails of
whose shoes and the tip of whose staff stuck fast to chunks of magnetite while he
pastured his flocks.

In 1269 a Frenchman named Pierre de Maricourt mapped out the directions
taken by a needle placed at various points on the surface of a spherical natural
magnet. He found that the directions formed lines that encircled the sphere and
passed through two points diametrically opposite each other, which he called the
poles of the magnet. Subsequent experiments showed that every magnet, regardless
of its shape, has two poles, called north and south poles, that exert forces on other
magnetic poles just as electric charges exert forces on one another. That is, like
poles repel each other, and unlike poles attract each other.

The poles received their names because of the way a magnet behaves in the
presence of the Earth’s magnetic field. If a bar magnet is suspended from its mid-
point and can swing freely in a horizontal plane, it will rotate until its north pole
points to the Earth’s geographic North Pole and its south pole points to the
Earth’s geographic South Pole.1 (The same idea is used in the construction of a
simple compass.)

In 1600 William Gilbert (1540–1603) extended de Maricourt’s experiments to
a variety of materials. Using the fact that a compass needle orients in preferred di-
rections, he suggested that the Earth itself is a large permanent magnet. In 1750
experimenters used a torsion balance to show that magnetic poles exert attractive
or repulsive forces on each other and that these forces vary as the inverse square
of the distance between interacting poles. Although the force between two mag-
netic poles is similar to the force between two electric charges, there is an impor-
tant difference. Electric charges can be isolated (witness the electron and proton),
whereas a single magnetic pole has never been isolated. That is, magnetic
poles are always found in pairs. All attempts thus far to detect an isolated mag-
netic pole have been unsuccessful. No matter how many times a permanent mag-
net is cut in two, each piece always has a north and a south pole. (There is some
theoretical basis for speculating that magnetic monopoles—isolated north or south
poles—may exist in nature, and attempts to detect them currently make up an ac-
tive experimental field of investigation.)

The relationship between magnetism and electricity was discovered in 1819
when, during a lecture demonstration, the Danish scientist Hans Christian Oer-
sted found that an electric current in a wire deflected a nearby compass needle.2

Shortly thereafter, André Ampère (1775–1836) formulated quantitative laws for
calculating the magnetic force exerted by one current-carrying electrical conduc-
tor on another. He also suggested that on the atomic level, electric current loops
are responsible for all magnetic phenomena.

In the 1820s, further connections between electricity and magnetism were
demonstrated by Faraday and independently by Joseph Henry (1797–1878). They

M

1 Note that the Earth’s geographic North Pole is magnetically a south pole, whereas its geographic
South Pole is magnetically a north pole. Because opposite magnetic poles attract each other, the pole on
a magnet that is attracted to the Earth’s geographic North Pole is the magnet’s north pole and the pole
attracted to the Earth’s geographic South Pole is the magnet’s south pole.
2 The same discovery was reported in 1802 by an Italian jurist, Gian Dominico Romognosi, but was
overlooked, probably because it was published in the newspaper Gazetta de Trentino rather than in a
scholarly journal.

Hans Christian Oersted
Danish physicist (1777– 1851)
(North Wind Picture Archives)

An electromagnet is used to move
tons of scrap metal.
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12.2

QuickLab
If iron or steel is left in a weak mag-
netic field (such as that due to the
Earth) long enough, it can become
magnetized. Use a compass to see if
you can detect a magnetic field near
a steel file cabinet, cast iron radiator,
or some other piece of ferrous metal
that has been in one position for sev-
eral years.

showed that an electric current can be produced in a circuit either by moving a
magnet near the circuit or by changing the current in a nearby circuit. These ob-
servations demonstrate that a changing magnetic field creates an electric field.
Years later, theoretical work by Maxwell showed that the reverse is also true: A
changing electric field creates a magnetic field.

A similarity between electric and magnetic effects has provided methods of
making permanent magnets. In Chapter 23 we learned that when rubber and wool
are rubbed together, both become charged—one positively and the other nega-
tively. In an analogous fashion, one can magnetize an unmagnetized piece of iron
by stroking it with a magnet. Magnetism can also be induced in iron (and other
materials) by other means. For example, if a piece of unmagnetized iron is placed
near (but not touching) a strong magnet, the unmagnetized piece eventually be-
comes magnetized.

This chapter examines the forces that act on moving charges and on current-
carrying wires in the presence of a magnetic field. The source of the magnetic
field itself is described in Chapter 30.

THE MAGNETIC FIELD
In our study of electricity, we described the interactions between charged objects
in terms of electric fields. Recall that an electric field surrounds any stationary or
moving electric charge. In addition to an electric field, the region of space sur-
rounding any moving electric charge also contains a magnetic field, as we shall see
in Chapter 30. A magnetic field also surrounds any magnetic substance.

Historically, the symbol B has been used to represent a magnetic field, and
this is the notation we use in this text. The direction of the magnetic field B at any
location is the direction in which a compass needle points at that location. Figure
29.1 shows how the magnetic field of a bar magnet can be traced with the aid of a
compass. Note that the magnetic field lines outside the magnet point away from
north poles and toward south poles. One can display magnetic field patterns of a
bar magnet using small iron filings, as shown in Figure 29.2.

We can define a magnetic field B at some point in space in terms of the mag-
netic force FB that the field exerts on a test object, for which we use a charged par-
ticle moving with a velocity v. For the time being, let us assume that no electric or
gravitational fields are present at the location of the test object. Experiments on
various charged particles moving in a magnetic field give the following results:

• The magnitude FB of the magnetic force exerted on the particle is proportional
to the charge q and to the speed v of the particle.

29.1

N S

Figure 29.1 Compass needles can be used to
trace the magnetic field lines of a bar magnet.

These refrigerator magnets are sim-
ilar to a series of very short bar
magnets placed end to end. If you
slide the back of one refrigerator
magnet in a circular path across
the back of another one, you can
feel a vibration as the two series of
north and south poles move across
each other.
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• The magnitude and direction of FB depend on the velocity of the particle and
on the magnitude and direction of the magnetic field B.

• When a charged particle moves parallel to the magnetic field vector, the mag-
netic force acting on the particle is zero.

• When the particle’s velocity vector makes any angle with the magnetic
field, the magnetic force acts in a direction perpendicular to both v and B; that
is, FB is perpendicular to the plane formed by v and B (Fig. 29.3a).

� � 0

Properties of the magnetic force
on a charge moving in a magnetic
field B

Figure 29.2 (a) Magnetic field pattern surrounding a bar magnet as displayed with iron filings.
(b) Magnetic field pattern between unlike poles of two bar magnets. (c) Magnetic field pattern
between like poles of two bar magnets.

(a) (b) (c)

(a)

B

+ q

v

θ

(b)

B
–

v

v

+

FB

FB

FB

Figure 29.3 The direction of the magnetic force FB acting on a charged particle moving with a
velocity v in the presence of a magnetic field B. (a) The magnetic force is perpendicular to both
v and B. (b) Oppositely directed magnetic forces FB are exerted on two oppositely charged parti-
cles moving at the same velocity in a magnetic field.
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• The magnetic force exerted on a positive charge is in the direction opposite the
direction of the magnetic force exerted on a negative charge moving in the
same direction (Fig. 29.3b).

• The magnitude of the magnetic force exerted on the moving particle is propor-
tional to sin �, where � is the angle the particle’s velocity vector makes with the
direction of B.

We can summarize these observations by writing the magnetic force in the
form

(29.1)

where the direction of FB is in the direction of if q is positive, which by defi-
nition of the cross product (see Section 11.2) is perpendicular to both v and B.
We can regard this equation as an operational definition of the magnetic field at
some point in space. That is, the magnetic field is defined in terms of the force
acting on a moving charged particle.

Figure 29.4 reviews the right-hand rule for determining the direction of the
cross product You point the four fingers of your right hand along the direc-
tion of v with the palm facing B and curl them toward B. The extended thumb,
which is at a right angle to the fingers, points in the direction of Becausev � B.

v � B.

v � B

FB � qv � B

(b)

–

B

FB

v

(a)

+

FB

B

v

θ θ

Figure 29.4 The right-hand rule
for determining the direction of the
magnetic force acting
on a particle with charge q moving
with a velocity v in a magnetic field B.
The direction of is the direc-
tion in which the thumb points. (a) If
q is positive, FB is upward. (b) If q is
negative, FB is downward, antiparallel
to the direction in which the thumb
points.

v � B

FB � qv � B

The blue-white arc in this photograph indi-
cates the circular path followed by an elec-
tron beam moving in a magnetic field. The
vessel contains gas at very low pressure, and
the beam is made visible as the electrons
collide with the gas atoms, which then emit
visible light. The magnetic field is pro-
duced by two coils (not shown). The appa-
ratus can be used to measure the ratio e/me
for the electron.
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is in the direction of if q is positive (Fig. 29.4a) and opposite
the direction of if q is negative (Fig. 29.4b). (If you need more help under-
standing the cross product, you should review pages 333 to 334, including Fig. 11.8.)

The magnitude of the magnetic force is

(29.2)

where � is the smaller angle between v and B. From this expression, we see that F
is zero when v is parallel or antiparallel to B or 180°) and maximum

when v is perpendicular to B

What is the maximum work that a constant magnetic field B can perform on a charge q
moving through the field with velocity v?

There are several important differences between electric and magnetic forces:

• The electric force acts in the direction of the electric field, whereas the mag-
netic force acts perpendicular to the magnetic field.

• The electric force acts on a charged particle regardless of whether the particle is
moving, whereas the magnetic force acts on a charged particle only when the
particle is in motion.

• The electric force does work in displacing a charged particle, whereas the mag-
netic force associated with a steady magnetic field does no work when a particle
is displaced.

From the last statement and on the basis of the work–kinetic energy theorem,
we conclude that the kinetic energy of a charged particle moving through a mag-
netic field cannot be altered by the magnetic field alone. In other words,

Quick Quiz 29.1

(� � 90�).(FB, max � � q �vB)
(� � 0

FB � � q �vB sin �

v � B
v � BFB � qv � B, FB

when a charged particle moves with a velocity v through a magnetic field, the
field can alter the direction of the velocity vector but cannot change the speed
or kinetic energy of the particle.

From Equation 29.2, we see that the SI unit of magnetic field is the newton
per coulomb-meter per second, which is called the tesla (T):

Because a coulomb per second is defined to be an ampere, we see that

A non-SI magnetic-field unit in common use, called the gauss (G), is related to
the tesla through the conversion Table 29.1 shows some typical values
of magnetic fields.

The north-pole end of a bar magnet is held near a positively charged piece of plastic. Is the
plastic attracted, repelled, or unaffected by the magnet?

Quick Quiz 29.2

1 T � 104 G.

1 T � 1 
N

A�m

1 T �
N

C�m/s

Magnitude of the magnetic force
on a charged particle moving in a
magnetic field

Differences between electric and
magnetic forces

A magnetic field cannot change
the speed of a particle
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MAGNETIC FORCE ACTING ON A
CURRENT-CARRYING CONDUCTOR

If a magnetic force is exerted on a single charged particle when the particle moves
through a magnetic field, it should not surprise you that a current-carrying wire
also experiences a force when placed in a magnetic field. This follows from the
fact that the current is a collection of many charged particles in motion; hence,
the resultant force exerted by the field on the wire is the vector sum of the individ-
ual forces exerted on all the charged particles making up the current. The force
exerted on the particles is transmitted to the wire when the particles collide with
the atoms making up the wire.

Before we continue our discussion, some explanation of the notation used in
this book is in order. To indicate the direction of B in illustrations, we sometimes
present perspective views, such as those in Figures 29.5, 29.6a, and 29.7. In flat il-

29.2

12.3

TABLE 29.1 Some Approximate Magnetic Field Magnitudes

Source of Field Field Magnitude (T)

Strong superconducting laboratory magnet 30
Strong conventional laboratory magnet 2
Medical MRI unit 1.5
Bar magnet 10�2

Surface of the Sun 10�2

Surface of the Earth 0.5 � 10�4

Inside human brain (due to nerve impulses) 10�13

An Electron Moving in a Magnetic FieldEXAMPLE 29.1

in the negative z direction.

3.1 � 1016 m/s2a �
FB

me
�

2.8 � 10�14 N
9.11 � 10�31 kg

�
An electron in a television picture tube moves toward the
front of the tube with a speed of 8.0 � 106 m/s along the x
axis (Fig. 29.5). Surrounding the neck of the tube are coils of
wire that create a magnetic field of magnitude 0.025 T, di-
rected at an angle of 60° to the x axis and lying in the xy
plane. Calculate the magnetic force on and acceleration of
the electron.

Solution Using Equation 29.2, we can find the magnitude
of the magnetic force:

Because is in the positive z direction (from the right-
hand rule) and the charge is negative, FB is in the negative z
direction.

The mass of the electron is 9.11 � 10�31 kg, and so its ac-
celeration is

v � B

2.8 � 10�14 N  �

 � (1.6 � 10�19 C)(8.0 � 106 m/s)(0.025 T )(sin 60�)

FB � � q �vB sin � 

z

B

v

y

x

FB

60°

–e

Figure 29.5 The magnetic force FB acting on the electron is in
the negative z direction when v and B lie in the xy plane.
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lustrations, such as in Figure 29.6b to d, we depict a magnetic field directed into
the page with blue crosses, which represent the tails of arrows shot perpendicularly
and away from you. In this case, we call the field Bin , where the subscript “in” indi-
cates “into the page.” If B is perpendicular and directed out of the page, we use a
series of blue dots, which represent the tips of arrows coming toward you (see Fig.
P29.56). In this case, we call the field Bout . If B lies in the plane of the page, we
use a series of blue field lines with arrowheads, as shown in Figure 29.8.

One can demonstrate the magnetic force acting on a current-carrying conduc-
tor by hanging a wire between the poles of a magnet, as shown in Figure 29.6a. For
ease in visualization, part of the horseshoe magnet in part (a) is removed to show
the end face of the south pole in parts (b), (c), and (d) of Figure 29.6. The mag-
netic field is directed into the page and covers the region within the shaded cir-
cles. When the current in the wire is zero, the wire remains vertical, as shown in
Figure 29.6b. However, when a current directed upward flows in the wire, as shown
in Figure 29.6c, the wire deflects to the left. If we reverse the current, as shown in
Figure 29.6d, the wire deflects to the right.

Let us quantify this discussion by considering a straight segment of wire of
length L and cross-sectional area A, carrying a current I in a uniform magnetic
field B, as shown in Figure 29.7. The magnetic force exerted on a charge q moving
with a drift velocity vd is To find the total force acting on the wire, we
multiply the force exerted on one charge by the number of charges in
the segment. Because the volume of the segment is AL , the number of charges in
the segment is nAL , where n is the number of charges per unit volume. Hence,
the total magnetic force on the wire of length L is

We can write this expression in a more convenient form by noting that, from Equa-
tion 27.4, the current in the wire is Therefore,

(29.3)FB � I L � B

I � nqvdA.

FB � (q vd � B)nAL

q vd � B
q vd � B.

(b)

Bin

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×
×

I = 0

Bin

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×
×

I

Bin

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×
×

I

(c) (d)(a)

Figure 29.6 (a) A wire suspended vertically between the poles of a magnet. (b) The setup
shown in part (a) as seen looking at the south pole of the magnet, so that the magnetic field
(blue crosses) is directed into the page. When there is no current in the wire, it remains vertical.
(c) When the current is upward, the wire deflects to the left. (d) When the current is downward,
the wire deflects to the right.

L

q
vd

A

B

+

FB

Figure 29.7 A segment of a cur-
rent-carrying wire located in a mag-
netic field B. The magnetic force
exerted on each charge making up
the current is and the net
force on the segment of length L is
I L � B.

qvd � B,

Force on a segment of a wire in a
uniform magnetic field
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where L is a vector that points in the direction of the current I and has a magni-
tude equal to the length L of the segment. Note that this expression applies only
to a straight segment of wire in a uniform magnetic field.

Now let us consider an arbitrarily shaped wire segment of uniform cross-
section in a magnetic field, as shown in Figure 29.8. It follows from Equation 29.3
that the magnetic force exerted on a small segment of vector length ds in the pres-
ence of a field B is

(29.4)

where d FB is directed out of the page for the directions assumed in Figure 29.8.
We can consider Equation 29.4 as an alternative definition of B. That is, we can de-
fine the magnetic field B in terms of a measurable force exerted on a current ele-
ment, where the force is a maximum when B is perpendicular to the element and
zero when B is parallel to the element.

To calculate the total force FB acting on the wire shown in Figure 29.8, we in-
tegrate Equation 29.4 over the length of the wire:

(29.5)

where a and b represent the end points of the wire. When this integration is car-
ried out, the magnitude of the magnetic field and the direction the field makes
with the vector ds (in other words, with the orientation of the element) may differ
at different points.

Now let us consider two special cases involving Equation 29.5. In both cases,
the magnetic field is taken to be constant in magnitude and direction.

Case 1 A curved wire carries a current I and is located in a uniform magnetic
field B, as shown in Figure 29.9a. Because the field is uniform, we can take B out-
side the integral in Equation 29.5, and we obtain

(29.6)FB � I ��b

a
 ds� � B

FB � I �b

a
 ds � B

dFB � I ds � B

B
ds

I

Figure 29.8 A wire segment of
arbitrary shape carrying a current I
in a magnetic field B experiences a
magnetic force. The force on any
segment ds is I ds � B and is di-
rected out of the page. You should
use the right-hand rule to confirm
this force direction.

(b)

d s

B

I

I

b

a

d s

L′

B

(a)

Figure 29.9 (a) A curved wire carrying a current I in a uniform magnetic field. The total mag-
netic force acting on the wire is equivalent to the force on a straight wire of length L	 running be-
tween the ends of the curved wire. (b) A current-carrying loop of arbitrary shape in a uniform
magnetic field. The net magnetic force on the loop is zero.
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But the quantity represents the vector sum of all the length elements from a to
b. From the law of vector addition, the sum equals the vector L	, directed from a to
b. Therefore, Equation 29.6 reduces to

(29.7)

Case 2 An arbitrarily shaped closed loop carrying a current I is placed in a uni-
form magnetic field, as shown in Figure 29.9b. We can again express the force act-
ing on the loop in the form of Equation 29.6, but this time we must take the vector
sum of the length elements ds over the entire loop:

Because the set of length elements forms a closed polygon, the vector sum must be
zero. This follows from the graphical procedure for adding vectors by the polygon
method. Because we conclude that FB � 0:� ds � 0,

FB � I �� ds� � B

FB � I L	 � B

�b
a ds

The net magnetic force acting on any closed current loop in a uniform mag-
netic field is zero.

Force on a Semicircular ConductorEXAMPLE 29.2
curved wire must also be into the page. Integrating our ex-
pression for dF2 over the limits to (that is, the
entire semicircle) gives

Because , with a magnitude of , is directed into the
page and because , with a magnitude of , is directed
out of the page, the net force on the closed loop is zero. This
result is consistent with Case 2 described earlier.

2IRBF1

2IRBF2

 � �IRB(cos 
 � cos 0) � �IRB(�1 � 1) � 2IRB

F2 � IRB �


0
 sin � d� � IRB ��cos ��




0
 

� � 
� � 0
A wire bent into a semicircle of radius R forms a closed cir-
cuit and carries a current I. The wire lies in the xy plane, and
a uniform magnetic field is directed along the positive y axis,
as shown in Figure 29.10. Find the magnitude and direction
of the magnetic force acting on the straight portion of the
wire and on the curved portion.

Solution The force F1 acting on the straight portion has a
magnitude because and the wire is
oriented perpendicular to B. The direction of F1 is out of the
page because is along the positive z axis. (That is, L is
to the right, in the direction of the current; thus, according
to the rule of cross products, is out of the page in Fig.
29.10.)

To find the force F2 acting on the curved part, we first
write an expression for the force dF2 on the length element
ds shown in Figure 29.10. If � is the angle between B and ds,
then the magnitude of dF2 is

To integrate this expression, we must express ds in terms of �.
Because we have and we can make this
substitution for dF2 :

To obtain the total force F2 acting on the curved portion,
we can integrate this expression to account for contributions
from all elements ds. Note that the direction of the force on
every element is the same: into the page (because is
into the page). Therefore, the resultant force F2 on the

ds � B

dF2 � IRB sin � d�

ds � R d�,s � R�,

dF2 � I � ds � B � � IB sin � ds

L � B

L � B

L � 2RF1 � ILB � 2IRB

R

I

θ
d

ds

θ

B

θ

Figure 29.10 The net force acting on a closed current loop in a
uniform magnetic field is zero. In the setup shown here, the force on
the straight portion of the loop is 2IRB and directed out of the page,
and the force on the curved portion is 2IRB directed into the page.
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The four wires shown in Figure 29.11 all carry the same current from point A to point B
through the same magnetic field. Rank the wires according to the magnitude of the mag-
netic force exerted on them, from greatest to least.

Quick Quiz 29.3

A

B

0 4m3m2m1m
(a)

A

B

0 4m3m2m1m
(b)

A B

0 4m3m2m1m
(c)

A

B

0 4m3m2m1m
(d)

Figure 29.11 Which wire experiences the greatest magnetic force?

(a)

b

a

I

B

(b)

B

F2

O

F4

b
2

�

�

� �

� �×

Figure 29. 12 (a) Overhead view
of a rectangular current loop in a
uniform magnetic field. No forces
are acting on sides � and � be-
cause these sides are parallel to B.
Forces are acting on sides � and
�, however. (b) Edge view of the
loop sighting down sides � and �
shows that the forces F2 and F4 ex-
erted on these sides create a torque
that tends to twist the loop clock-
wise. The purple dot in the left cir-
cle represents current in wire �
coming toward you; the purple
cross in the right circle represents
current in wire � moving away
from you.

TORQUE ON A CURRENT LOOP IN A
UNIFORM MAGNETIC FIELD

In the previous section, we showed how a force is exerted on a current-carrying
conductor placed in a magnetic field. With this as a starting point, we now show
that a torque is exerted on any current loop placed in a magnetic field. The results
of this analysis will be of great value when we discuss motors in Chapter 31.

Consider a rectangular loop carrying a current I in the presence of a uniform
magnetic field directed parallel to the plane of the loop, as shown in Figure
29.12a. No magnetic forces act on sides � and � because these wires are parallel
to the field; hence, for these sides. However, magnetic forces do act on
sides � and � because these sides are oriented perpendicular to the field. The
magnitude of these forces is, from Equation 29.3,

The direction of F2 , the force exerted on wire � is out of the page in the view
shown in Figure 29.12a, and that of F4 , the force exerted on wire �, is into the
page in the same view. If we view the loop from side � and sight along sides �
and �, we see the view shown in Figure 29.12b, and the two forces F2 and F4 are
directed as shown. Note that the two forces point in opposite directions but are
not directed along the same line of action. If the loop is pivoted so that it can ro-
tate about point O, these two forces produce about O a torque that rotates the
loop clockwise. The magnitude of this torque �max is

where the moment arm about O is b/2 for each force. Because the area enclosed
by the loop is A � ab, we can express the maximum torque as

(29.8)

Remember that this maximum-torque result is valid only when the magnetic field
is parallel to the plane of the loop. The sense of the rotation is clockwise when
viewed from side �, as indicated in Figure 29.12b. If the current direction were re-

�max � IAB

�max � F2 
b
2

� F4 
b
2

� (IaB) 
b
2

� (IaB) 
b
2

� IabB

F2 � F4 � IaB

L � B � 0

29.3
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versed, the force directions would also reverse, and the rotational tendency would
be counterclockwise.

Now let us suppose that the uniform magnetic field makes an angle �  90°
with a line perpendicular to the plane of the loop, as shown in Figure 29.13a. For
convenience, we assume that B is perpendicular to sides � and �. In this case, the
magnetic forces F2 and F4 exerted on sides � and � cancel each other and pro-
duce no torque because they pass through a common origin. However, the forces
acting on sides � and �, F1 and F3 , form a couple and hence produce a torque
about any point. Referring to the end view shown in Figure 29.13b, we note that
the moment arm of F1 about the point O is equal to (a/2) sin �. Likewise, the mo-
ment arm of F3 about O is also (a/2) sin �. Because the net torque
about O has the magnitude

where is the area of the loop. This result shows that the torque has its maxi-
mum value IAB when the field is perpendicular to the normal to the plane of the
loop as we saw when discussing Figure 29.12, and that it is zero when
the field is parallel to the normal to the plane of the loop As we see in
Figure 29.13, the loop tends to rotate in the direction of decreasing values of �
(that is, such that the area vector A rotates toward the direction of the magnetic
field).

(� � 0).
(� � 90�),

A � ab

 � IAB sin � 

 � IbB� a
2

 sin �� � IbB� a
2

 sin �� � IabB sin �

� � F1 
a
2

 sin � � F3 
a
2

 sin � 

F1 � F3 � IbB,

(a)

F1

b

O

F4

F3

a

F2
I B

θ

A

(b)

F1

F3

O
B

A

µ

a
2
– sin θ

a
2
–

θ θ

θ

�

�

�

�

�

�×

Figure 29.13 (a) A rectangular current loop in a uniform magnetic field. The area vector A
perpendicular to the plane of the loop makes an angle � with the field. The magnetic forces ex-
erted on sides � and � cancel, but the forces exerted on sides � and � create a torque on the
loop. (b) Edge view of the loop sighting down sides � and �.
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Describe the forces on the rectangular current loop shown in Figure 29.13 if the magnetic
field is directed as shown but increases in magnitude going from left to right.

A convenient expression for the torque exerted on a loop placed in a uniform
magnetic field B is

(29.9)

where A, the vector shown in Figure 29.13, is perpendicular to the plane of the
loop and has a magnitude equal to the area of the loop. We determine the direc-
tion of A using the right-hand rule described in Figure 29.14. When you curl the
fingers of your right hand in the direction of the current in the loop, your thumb
points in the direction of A. The product I A is defined to be the magnetic dipole
moment � (often simply called the “magnetic moment”) of the loop:

(29.10)

The SI unit of magnetic dipole moment is ampere–meter2 (A � m2). Using this de-
finition, we can express the torque exerted on a current-carrying loop in a mag-
netic field B as

(29.11)

Note that this result is analogous to Equation 26.18, for the torque ex-
erted on an electric dipole in the presence of an electric field E, where p is the
electric dipole moment.

Although we obtained the torque for a particular orientation of B with respect
to the loop, the equation is valid for any orientation. Furthermore, al-
though we derived the torque expression for a rectangular loop, the result is valid
for a loop of any shape.

If a coil consists of N turns of wire, each carrying the same current and enclos-
ing the same area, the total magnetic dipole moment of the coil is N times the
magnetic dipole moment for one turn. The torque on an N-turn coil is N times
that on a one-turn coil. Thus, we write � � N�loop � B � �coil � B.

In Section 26.6, we found that the potential energy of an electric dipole in an
electric field is given by This energy depends on the orientation of
the dipole in the electric field. Likewise, the potential energy of a magnetic dipole
in a magnetic field depends on the orientation of the dipole in the magnetic field
and is given by

(29.12)

From this expression, we see that a magnetic dipole has its lowest energy
when � points in the same direction as B. The dipole has its highest

energy when � points in the direction opposite B.

Rank the magnitude of the torques acting on the rectangular loops shown in Figure 29.15,
from highest to lowest. All loops are identical and carry the same current.

Quick Quiz 29.5

Umax � ��B
Umin � ��B

U � �� � B

U � � p � E.

� � � � B

� � p � E,

� � � � B

� � IA

� � IA � B

Quick Quiz 29.4

A

I

µ

Figure 29.14 Right-hand rule for
determining the direction of the
vector A. The direction of the mag-
netic moment � is the same as the
direction of A.

Torque on a current loop

Magnetic dipole moment of a
current loop
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(a) (b) (c)

×
×

××

Figure 29.15 Which current loop (seen edge-on) experiences the greatest torque?

The Magnetic Dipole Moment of a CoilEXAMPLE 29.3
Solution Because B is perpendicular to �coil , Equation
29.11 gives

Exercise Show that the units A � m2 � T reduce to the torque
units N � m.

Exercise Calculate the magnitude of the torque on the coil
when the field makes an angle of (a) 60° and (b) 0° with �.

Answer (a) 5.21 � 10�4 N � m; (b) zero.

6.02 � 10�4 N�m�

� � � coilB � (1.72 � 10�3 A�m2)(0.350 T)

A rectangular coil of dimensions 5.40 cm � 8.50 cm consists
of 25 turns of wire and carries a current of 15.0 mA. A 0.350-T
magnetic field is applied parallel to the plane of the loop. 
(a) Calculate the magnitude of its magnetic dipole moment.

Solution Because the coil has 25 turns, we modify Equa-
tion 29.10 to obtain

(b) What is the magnitude of the torque acting on the
loop?

1.72 � 10�3 A �m2 �

�coil � NIA � (25)(15.0 � 10�3 A)(0.054 0 m)(0.085 0 m)

Satellite Attitude ControlEXAMPLE 29.4
dipole moment of the torquer is perpendicular to the Earth’s
magnetic field:

Exercise If the torquer requires 1.3 W of power at a poten-
tial difference of 28 V, how much current does it draw when
it operates?

Answer 46 mA.

7.5 � 10�3 N�m�

�max � �B � (250 A �m2)(3.0 � 10�5 T)

Many satellites use coils called torquers to adjust their orienta-
tion. These devices interact with the Earth’s magnetic field to
create a torque on the spacecraft in the x, y, or z direction.
The major advantage of this type of attitude-control system is
that it uses solar-generated electricity and so does not con-
sume any thruster fuel.

If a typical device has a magnetic dipole moment of 
250 A � m2, what is the maximum torque applied to a satellite
when its torquer is turned on at an altitude where the magni-
tude of the Earth’s magnetic field is 3.0 � 10�5 T?

Solution We once again apply Equation 29.11, recogniz-
ing that the maximum torque is obtained when the magnetic

web
For more information on torquers, visit the
Web site of a company that supplies these
devices to NASA:
http://www.smad.com
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MOTION OF A CHARGED PARTICLE IN A
UNIFORM MAGNETIC FIELD

In Section 29.1 we found that the magnetic force acting on a charged particle
moving in a magnetic field is perpendicular to the velocity of the particle and that
consequently the work done on the particle by the magnetic force is zero. Let us
now consider the special case of a positively charged particle moving in a uniform
magnetic field with the initial velocity vector of the particle perpendicular to the
field. Let us assume that the direction of the magnetic field is into the page. Fig-
ure 29.17 shows that the particle moves in a circle in a plane perpendicular to the
magnetic field.

The particle moves in this way because the magnetic force FB is at right angles
to v and B and has a constant magnitude qvB. As the force deflects the particle,
the directions of v and FB change continuously, as Figure 29.17 shows. Because FB
always points toward the center of the circle, it changes only the direction of v
and not its magnitude. As Figure 29.17 illustrates, the rotation is counterclock-
wise for a positive charge. If q were negative, the rotation would be clockwise. We
can use Equation 6.1 to equate this magnetic force to the radial force required to

29.4

The D’Arsonval GalvanometerEXAMPLE 29.5
We can substitute this expression for � in Equation (1) to ob-
tain

Thus, the angle of deflection of the pointer is directly pro-
portional to the current in the loop. The factor NAB/� tells
us that deflection also depends on the design of the meter.

NAB
�

 I � �

(NIA)B � �� � 0 

An end view of a D’Arsonval galvanometer (see Section 28.5)
is shown in Figure 29.16. When the turns of wire making up
the coil carry a current, the magnetic field created by the
magnet exerts on the coil a torque that turns it (along with its
attached pointer) against the spring. Let us show that the an-
gle of deflection of the pointer is directly proportional to the
current in the coil.

Solution We can use Equation 29.11 to find the torque �m
the magnetic field exerts on the coil. If we assume that the
magnetic field through the coil is perpendicular to the nor-
mal to the plane of the coil, Equation 29.11 becomes

(This is a reasonable assumption because the circular cross
section of the magnet ensures radial magnetic field lines.)
This magnetic torque is opposed by the torque due to the
spring, which is given by the rotational version of Hooke’s
law, where � is the torsional spring constant and �
is the angle through which the spring turns. Because the coil
does not have an angular acceleration when the pointer is at
rest, the sum of these torques must be zero:

(1)

Equation 29.10 allows us to relate the magnetic moment of
the N turns of wire to the current through them:

� � NIA

�m � �s � �B � �� � 0

�s � ���,

�m � �B

12.3
QuickLab
Move a bar magnet across the screen
of a black-and-white television and
watch what happens to the picture.
The electrons are deflected by the
magnetic field as they approach 
the screen, causing distortion.
(WARNING: Do not attempt to do
this with a color television or com-
puter monitor. These devices typically
contain a metallic plate that can be-
come magnetized by the bar magnet.
If this happens, a repair shop will
need to “degauss” the screen.)

S

Coil

N

Figure 29.16 End view of a moving-coil galvanometer.
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keep the charge moving in a circle:

(29.13)

That is, the radius of the path is proportional to the linear momentum mv of the
particle and inversely proportional to the magnitude of the charge on the particle
and to the magnitude of the magnetic field. The angular speed of the particle
(from Eq. 10.10) is

(29.14)

The period of the motion (the time that the particle takes to complete one revolu-
tion) is equal to the circumference of the circle divided by the linear speed of the
particle:

(29.15)

These results show that the angular speed of the particle and the period of the cir-
cular motion do not depend on the linear speed of the particle or on the radius of
the orbit. The angular speed � is often referred to as the cyclotron frequency be-
cause charged particles circulate at this angular speed in the type of accelerator
called a cyclotron, which is discussed in Section 29.5.

If a charged particle moves in a uniform magnetic field with its velocity at
some arbitrary angle with respect to B, its path is a helix. For example, if the field
is directed in the x direction, as shown in Figure 29.18, there is no component of
force in the x direction. As a result, and the x component of velocity re-
mains constant. However, the magnetic force causes the components vy
and vz to change in time, and the resulting motion is a helix whose axis is parallel
to the magnetic field. The projection of the path onto the yz plane (viewed along
the x axis) is a circle. (The projections of the path onto the xy and xz planes are si-
nusoids!) Equations 29.13 to 29.15 still apply provided that v is replaced by 
v! � "vy 

2 � vz 

2.
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2
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Figure 29.17 When the velocity
of a charged particle is perpendicu-
lar to a uniform magnetic field, the
particle moves in a circular path in
a plane perpendicular to B. The
magnetic force FB acting on the
charge is always directed toward
the center of the circle.

Figure 29.18 A charged particle
having a velocity vector that has a
component parallel to a uniform
magnetic field moves in a helical
path.

Helical
path

B

x
+qz

y

+

A Proton Moving Perpendicular to a Uniform Magnetic FieldEXAMPLE 29.6
Exercise If an electron moves in a direction perpendicular
to the same magnetic field with this same linear speed, what
is the radius of its circular orbit?

Answer 7.6 � 10�5 m.

A proton is moving in a circular orbit of radius 14 cm in a
uniform 0.35-T magnetic field perpendicular to the velocity
of the proton. Find the linear speed of the proton.

Solution From Equation 29.13, we have

4.7 � 106 m/s�

v �
qBr
mp

�
(1.60 � 10�19 C)(0.35 T )(14 � 10�2 m)

1.67 � 10�27 kg
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When charged particles move in a nonuniform magnetic field, the motion is
complex. For example, in a magnetic field that is strong at the ends and weak in
the middle, such as that shown in Figure 29.20, the particles can oscillate back and
forth between the end points. A charged particle starting at one end spirals along
the field lines until it reaches the other end, where it reverses its path and spirals
back. This configuration is known as a magnetic bottle because charged particles can
be trapped within it. The magnetic bottle has been used to confine a plasma, a gas
consisting of ions and electrons. Such a plasma-confinement scheme could fulfill a
crucial role in the control of nuclear fusion, a process that could supply us with an
almost endless source of energy. Unfortunately, the magnetic bottle has its prob-
lems. If a large number of particles are trapped, collisions between them cause the
particles to eventually leak from the system.

The Van Allen radiation belts consist of charged particles (mostly electrons
and protons) surrounding the Earth in doughnut-shaped regions (Fig. 29.21).
The particles, trapped by the Earth’s nonuniform magnetic field, spiral around
the field lines from pole to pole, covering the distance in just a few seconds. These
particles originate mainly from the Sun, but some come from stars and other heav-
enly objects. For this reason, the particles are called cosmic rays. Most cosmic rays
are deflected by the Earth’s magnetic field and never reach the atmosphere. How-
ever, some of the particles become trapped; it is these particles that make up the
Van Allen belts. When the particles are located over the poles, they sometimes col-
lide with atoms in the atmosphere, causing the atoms to emit visible light. Such
collisions are the origin of the beautiful Aurora Borealis, or Northern Lights, in
the northern hemisphere and the Aurora Australis in the southern hemisphere.

Bending an Electron BeamEXAMPLE 29.7
(b) What is the angular speed of the electrons?

Solution Using Equation 29.14, we find that

Exercise What is the period of revolution of the electrons?

Answer 43 ns.

1.5 � 108 rad/s� �
v
r

�
1.11 � 107 m/s

0.075 m
�

In an experiment designed to measure the magnitude of a
uniform magnetic field, electrons are accelerated from rest
through a potential difference of 350 V. The electrons travel
along a curved path because of the magnetic force exerted
on them, and the radius of the path is measured to be 
7.5 cm. (Fig. 29.19 shows such a curved beam of electrons.) If
the magnetic field is perpendicular to the beam, (a) what is
the magnitude of the field?

Solution First we must calculate the speed of the elec-
trons. We can use the fact that the increase in their kinetic
energy must equal the decrease in their potential energy

(because of conservation of energy). Then we can use
Equation 29.13 to find the magnitude of the magnetic field.
Because and we have

8.4 � 10�4 T�

B �
mev
� e �r

�
(9.11 � 10�31 kg)(1.11 � 107 m/s)

(1.60 � 10�19 C)(0.075 m)

 � 1.11 � 107 m/s 

 v �" 2� e ��V
me

�" 2(1.60 � 10�19 C)(350 V)
9.11 � 10�31 kg

1
2mev2 � � e ��V 

K f � mev2/2,K i � 0

� e ��V

Figure 29.19 The bending of an electron beam in a magnetic
field.

Path of
particle

+

Figure 29.20 A charged particle
moving in a nonuniform magnetic
field (a magnetic bottle) spirals
about the field (red path) and os-
cillates between the end points.
The magnetic force exerted on the
particle near either end of the bot-
tle has a component that causes the
particle to spiral back toward the
center.
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12.1 
&

12.11

Figure 29.21 The Van Allen belts are made up of charged particles trapped by the Earth’s
nonuniform magnetic field. The magnetic field lines are in blue and the particle paths in red.

This color-enhanced photograph, taken at CERN, the particle physics laboratory outside Geneva,
Switzerland, shows a collection of tracks left by subatomic particles in a bubble chamber. A bubble
chamber is a container filled with liquid hydrogen that is superheated, that is, momentarily raised
above its normal boiling point by a sudden drop in pressure in the container. Any charged particle
passing through the liquid in this state leaves behind a trail of tiny bubbles as the liquid boils in its
wake. These bubbles are seen as fine tracks, showing the characteristic paths of different types of
particles. The paths are curved because there is an intense applied magnetic field. The tightly
wound spiral tracks are due to electrons and positrons.

S

N

Auroras are usually confined to the polar regions because it is here that the Van
Allen belts are nearest the Earth’s surface. Occasionally, though, solar activity
causes larger numbers of charged particles to enter the belts and significantly dis-
tort the normal magnetic field lines associated with the Earth. In these situations
an aurora can sometimes be seen at lower latitudes.



922 C H A P T E R  2 9 Magnetic Fields

Optional Section

APPLICATIONS INVOLVING CHARGED PARTICLES
MOVING IN A MAGNETIC FIELD

A charge moving with a velocity v in the presence of both an electric field E and a
magnetic field B experiences both an electric force qE and a magnetic force

The total force (called the Lorentz force) acting on the charge is

(29.16)

Velocity Selector

In many experiments involving moving charged particles, it is important that the
particles all move with essentially the same velocity. This can be achieved by apply-
ing a combination of an electric field and a magnetic field oriented as shown in
Figure 29.22. A uniform electric field is directed vertically downward (in the plane
of the page in Fig. 29.22a), and a uniform magnetic field is applied in the direc-
tion perpendicular to the electric field (into the page in Fig. 29.22a). For q posi-
tive, the magnetic force is upward and the electric force qE is downward.
When the magnitudes of the two fields are chosen so that the particle
moves in a straight horizontal line through the region of the fields. From the ex-
pression we find that

(29.17)

Only those particles having speed v pass undeflected through the mutually perpen-
dicular electric and magnetic fields. The magnetic force exerted on particles moving
at speeds greater than this is stronger than the electric force, and the particles are
deflected upward. Those moving at speeds less than this are deflected downward.

The Mass Spectrometer

A mass spectrometer separates ions according to their mass-to-charge ratio. In
one version of this device, known as the Bainbridge mass spectrometer, a beam of ions
first passes through a velocity selector and then enters a second uniform magnetic
field B0 that has the same direction as the magnetic field in the selector (Fig.
29.23). Upon entering the second magnetic field, the ions move in a semicircle of

v �
E
B

qE � qvB,

qE � qvB,
qv � B

� F � qE � qv � B

qv � B.

29.5

Lorentz force

Bin

+

E

Source

Slit
–

(a)

++++++

––––––

v

(b)

+ q

qv ×× B

qE

× × × × × × ×

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

Figure 29.22 (a) A velocity selector. When a positively charged particle is in the presence of a
magnetic field directed into the page and an electric field directed downward, it experiences a
downward electric force qE and an upward magnetic force (b) When these forces bal-
ance, the particle moves in a horizontal line through the fields.

qv � B.
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radius r before striking a photographic plate at P. If the ions are positively
charged, the beam deflects upward, as Figure 29.23 shows. If the ions are nega-
tively charged, the beam would deflect downward. From Equation 29.13, we can
express the ratio m/q as

Using Equation 29.17, we find that

(29.18)

Therefore, we can determine m/q by measuring the radius of curvature and know-
ing the field magnitudes B, B0 , and E. In practice, one usually measures the
masses of various isotopes of a given ion, with the ions all carrying the same charge
q. In this way, the mass ratios can be determined even if q is unknown.

A variation of this technique was used by J. J. Thomson (1856–1940) in 1897
to measure the ratio e/me for electrons. Figure 29.24a shows the basic apparatus he
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Figure 29.23 A mass spectrom-
eter. Positively charged particles
are sent first through a velocity
selector and then into a region
where the magnetic field B0
causes the particles to move in a
semicircular path and strike a
photographic film at P.

Fluorescent
coating

–

SlitsCathode

–

+

+

+

Deflection
plates

Magnetic field coil

Deflected electron beam

Undeflected
electron
beam

Figure 29.24 (a) Thomson’s apparatus for measuring e/me . Electrons are accelerated from the
cathode, pass through two slits, and are deflected by both an electric field and a magnetic field
(directed perpendicular to the electric field). The beam of electrons then strikes a fluorescent
screen. (b) J. J. Thomson (left) in the Cavendish Laboratory, University of Cambridge. It is inter-
esting to note that the man on the right, Frank Baldwin Jewett, is a distant relative of John W.
Jewett, Jr., contributing author of this text.

(a) (b)
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used. Electrons are accelerated from the cathode and pass through two slits. They
then drift into a region of perpendicular electric and magnetic fields. The magni-
tudes of the two fields are first adjusted to produce an undeflected beam. When
the magnetic field is turned off, the electric field produces a measurable beam de-
flection that is recorded on the fluorescent screen. From the size of the deflection
and the measured values of E and B, the charge-to-mass ratio can be determined.
The results of this crucial experiment represent the discovery of the electron as a
fundamental particle of nature.

When a photographic plate from a mass spectrometer like the one shown in Figure 29.23 is
developed, the three patterns shown in Figure 29.25 are observed. Rank the particles that
caused the patterns by speed and m /q ratio.

Quick Quiz 29.6

cba

Gap for particles
from velocity

selector

Figure 29.25

The Cyclotron

A cyclotron can accelerate charged particles to very high speeds. Both electric and
magnetic forces have a key role. The energetic particles produced are used to
bombard atomic nuclei and thereby produce nuclear reactions of interest to re-
searchers. A number of hospitals use cyclotron facilities to produce radioactive
substances for diagnosis and treatment.

A schematic drawing of a cyclotron is shown in Figure 29.26. The charges
move inside two semicircular containers D1 and D2 , referred to as dees. A high-
frequency alternating potential difference is applied to the dees, and a uniform
magnetic field is directed perpendicular to them. A positive ion released at P near
the center of the magnet in one dee moves in a semicircular path (indicated by
the dashed red line in the drawing) and arrives back at the gap in a time T/2,
where T is the time needed to make one complete trip around the two dees, given
by Equation 29.15. The frequency of the applied potential difference is adjusted so
that the polarity of the dees is reversed in the same time it takes the ion to travel
around one dee. If the applied potential difference is adjusted such that D2 is at a
lower electric potential than D1 by an amount �V, the ion accelerates across the
gap to D2 and its kinetic energy increases by an amount q�V. It then moves
around D2 in a semicircular path of greater radius (because its speed has in-
creased). After a time T/2, it again arrives at the gap between the dees. By this
time, the polarity across the dees is again reversed, and the ion is given another
“kick” across the gap. The motion continues so that for each half-circle trip
around one dee, the ion gains additional kinetic energy equal to q �V. When the
radius of its path is nearly that of the dees, the energetic ion leaves the system
through the exit slit. It is important to note that the operation of the cyclotron is
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based on the fact that T is independent of the speed of the ion and of the radius
of the circular path.

We can obtain an expression for the kinetic energy of the ion when it exits the
cyclotron in terms of the radius R of the dees. From Equation 29.13 we know that

Hence, the kinetic energy is

(29.19)

When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic
effects come into play. (Such effects are discussed in Chapter 39.) We observe that
T increases and that the moving ions do not remain in phase with the applied po-
tential difference. Some accelerators overcome this problem by modifying the pe-
riod of the applied potential difference so that it remains in phase with the mov-
ing ions.

Optional Section

THE HALL EFFECT
When a current-carrying conductor is placed in a magnetic field, a potential differ-
ence is generated in a direction perpendicular to both the current and the mag-
netic field. This phenomenon, first observed by Edwin Hall (1855–1938) in 1879,
is known as the Hall effect. It arises from the deflection of charge carriers to one
side of the conductor as a result of the magnetic force they experience. The Hall
effect gives information regarding the sign of the charge carriers and their density;
it can also be used to measure the magnitude of magnetic fields.

The arrangement for observing the Hall effect consists of a flat conductor car-
rying a current I in the x direction, as shown in Figure 29.27. A uniform magnetic
field B is applied in the y direction. If the charge carriers are electrons moving in
the negative x direction with a drift velocity vd , they experience an upward mag-

29.6

K � 1
2mv2 �

q2B 2R2

2m

v � qBR/m.

web
More information on these accelerators is
available at
http://www.fnal.gov or
http://www.CERN.ch
The CERN site also discusses the creation
of the World Wide Web there by physicists in
the mid-1990s.

B

P

D1

D2

(a)

North pole of magnet

Particle exits here

Alternating ∆V

Figure 29.26 (a) A cyclotron consists of an ion source at P, two dees D1 and D2 across which
an alternating potential difference is applied, and a uniform magnetic field. (The south pole of
the magnet is not shown.) The red dashed curved lines represent the path of the particles. 
(b) The first cyclotron, invented by E.O. Lawrence and M.S. Livingston in 1934.

(b)
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netic force are deflected upward, and accumulate at the upper
edge of the flat conductor, leaving an excess of positive charge at the lower edge
(Fig. 29.28a). This accumulation of charge at the edges increases until the electric
force resulting from the charge separation balances the magnetic force acting on
the carriers. When this equilibrium condition is reached, the electrons are no
longer deflected upward. A sensitive voltmeter or potentiometer connected across
the sample, as shown in Figure 29.28, can measure the potential difference—
known as the Hall voltage �VH —generated across the conductor.

If the charge carriers are positive and hence move in the positive x direction,
as shown in Figures 29.27 and 29.28b, they also experience an upward magnetic
force This produces a buildup of positive charge on the upper edge and
leaves an excess of negative charge on the lower edge. Hence, the sign of the Hall
voltage generated in the sample is opposite the sign of the Hall voltage resulting
from the deflection of electrons. The sign of the charge carriers can therefore be
determined from a measurement of the polarity of the Hall voltage.

In deriving an expression for the Hall voltage, we first note that the magnetic
force exerted on the carriers has magnitude qvdB. In equilibrium, this force is bal-
anced by the electric force qEH , where EH is the magnitude of the electric field
due to the charge separation (sometimes referred to as the Hall field). Therefore,

 EH � vdB

qvdB � qEH

q vd � B.

FB � q vd � B,

vd

y

vd

x

z

a

I

t

d

c
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–
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B
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F

F
Figure 29.27 To observe the Hall ef-
fect, a magnetic field is applied to a cur-
rent-carrying conductor. When I is in the
x direction and B in the y direction, both
positive and negative charge carriers are
deflected upward in the magnetic field.
The Hall voltage is measured between
points a and c.
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+ ∆VH

Figure 29.28 (a) When the charge carriers in a Hall effect apparatus are negative, the upper
edge of the conductor becomes negatively charged, and c is at a lower electric potential than a.
(b) When the charge carriers are positive, the upper edge becomes positively charged, and c is at
a higher potential than a. In either case, the charge carriers are no longer deflected when the
edges become fully charged, that is, when there is a balance between the electrostatic force qEH
and the magnetic deflection force qvB.
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If d is the width of the conductor, the Hall voltage is

(29.20)

Thus, the measured Hall voltage gives a value for the drift speed of the charge car-
riers if d and B are known.

We can obtain the charge carrier density n by measuring the current in the
sample. From Equation 27.4, we can express the drift speed as

(29.21)

where A is the cross-sectional area of the conductor. Substituting Equation 29.21
into Equation 29.20, we obtain

(29.22)

Because where t is the thickness of the conductor, we can also express
Equation 29.22 as

(29.23)

where is the Hall coefficient. This relationship shows that a properly
calibrated conductor can be used to measure the magnitude of an unknown mag-
netic field.

Because all quantities in Equation 29.23 other than nq can be measured, a
value for the Hall coefficient is readily obtainable. The sign and magnitude of R H
give the sign of the charge carriers and their number density. In most metals, the
charge carriers are electrons, and the charge carrier density determined from
Hall-effect measurements is in good agreement with calculated values for such
metals as lithium (Li), sodium (Na), copper (Cu), and silver (Ag), whose atoms
each give up one electron to act as a current carrier. In this case, n is approxi-
mately equal to the number of conducting electrons per unit volume. However,
this classical model is not valid for metals such as iron (Fe), bismuth (Bi), and cad-
mium (Cd) or for semiconductors. These discrepancies can be explained only by
using a model based on the quantum nature of solids.

R H � 1/nq

�VH �
IB
nqt

�
R HIB

t

A � td,

�VH �
IBd
nqA

vd �
I

nqA

�VH � EHd � vdBd

The Hall Effect for CopperEXAMPLE 29.8

Such an extremely small Hall voltage is expected in good
conductors. (Note that the width of the conductor is not
needed in this calculation.)

In semiconductors, n is much smaller than it is in metals
that contribute one electron per atom to the current; hence,
the Hall voltage is usually greater because it varies as the in-
verse of n. Currents of the order of 0.1 mA are generally used
for such materials. Consider a piece of silicon that has the
same dimensions as the copper strip in this example and
whose value for Taking

and we find that A
potential difference of this magnitude is readily measured.

�VH � 7.5 mV.I � 0.10 mA,B � 1.2 T
n � 1.0 � 1020 electrons/m3.

0.44 �V�VH �
A rectangular copper strip 1.5 cm wide and 0.10 cm thick 
carries a current of 5.0 A. Find the Hall voltage for a 1.2-T
magnetic field applied in a direction perpendicular to the
strip.

Solution If we assume that one electron per atom is avail-
able for conduction, we can take the charge carrier density to
be electrons/m3 (see Example 27.1). Substi-
tuting this value and the given data into Equation 29.23 gives

�
(5.0 A)(1.2 T )

(8.49 � 1028 m�3)(1.6 � 10�19 C)(0.001 0 m)

�VH �
IB
nqt

n � 8.49 � 1028

The Hall voltage

web
In 1980, Klaus von Klitzing discovered that
the Hall voltage is quantized. He won the
Nobel Prize for this discovery in 1985. For a
discussion of the quantum Hall effect and
some of its consequences, visit our Web
site at
http://www.saunderscollege.com/physics/



928 C H A P T E R  2 9 Magnetic Fields

SUMMARY

The magnetic force that acts on a charge q moving with a velocity v in a magnetic
field B is

(29.1)

The direction of this magnetic force is perpendicular both to the velocity of the
particle and to the magnetic field. The magnitude of this force is

(29.2)

where � is the smaller angle between v and B. The SI unit of B is the tesla (T),
where 1 T � 1 N/A � m.

When a charged particle moves in a magnetic field, the work done by the mag-
netic force on the particle is zero because the displacement is always perpendicu-
lar to the direction of the force. The magnetic field can alter the direction of the
particle’s velocity vector, but it cannot change its speed.

If a straight conductor of length L carries a current I, the force exerted on
that conductor when it is placed in a uniform magnetic field B is

(29.3)

where the direction of L is in the direction of the current and 
If an arbitrarily shaped wire carrying a current I is placed in a magnetic field,

the magnetic force exerted on a very small segment ds is

(29.4)

To determine the total magnetic force on the wire, one must integrate Equation
29.4, keeping in mind that both B and ds may vary at each point. Integration gives
for the force exerted on a current-carrying conductor of arbitrary shape in a uni-
form magnetic field

(29.7)

where L	 is a vector directed from one end of the conductor to the opposite end.
Because integration of Equation 29.4 for a closed loop yields a zero result, the net
magnetic force on any closed loop carrying a current in a uniform magnetic field
is zero.

The magnetic dipole moment � of a loop carrying a current I is

(29.10)

where the area vector A is perpendicular to the plane of the loop and is equal
to the area of the loop. The SI unit of � is A � m2.

The torque � on a current loop placed in a uniform magnetic field B is

(29.11)

and the potential energy of a magnetic dipole in a magnetic field is

(29.12)

If a charged particle moves in a uniform magnetic field so that its initial veloc-
ity is perpendicular to the field, the particle moves in a circle, the plane of which is
perpendicular to the magnetic field. The radius of the circular path is

(29.13)r �
mv
qB

U � �� � B

� � � � B

� A �

� � IA

FB � I L	 � B

dFB � I ds � B

� L � � L .

FB � I L � B

FB � � q �vB sin �

FB � qv � B
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QUESTIONS

17. The bubble chamber is a device used for observing tracks of
particles that pass through the chamber, which is immersed
in a magnetic field. If some of the tracks are spirals and oth-
ers are straight lines, what can you say about the particles?

18. Can a constant magnetic field set into motion an electron
initially at rest? Explain your answer.

19. You are designing a magnetic probe that uses the Hall ef-
fect to measure magnetic fields. Assume that you are re-
stricted to using a given material and that you have al-
ready made the probe as thin as possible. What, if
anything, can be done to increase the Hall voltage pro-
duced for a given magnetic field?

20. The electron beam shown in Figure Q29.20 is projected
to the right. The beam deflects downward in the presence
of a magnetic field produced by a pair of current-carrying
coils. (a) What is the direction of the magnetic field? 
(b) What would happen to the beam if the current in the
coils were reversed?

1. At a given instant, a proton moves in the positive x direc-
tion in a region where a magnetic field is directed in the
negative z direction. What is the direction of the mag-
netic force? Does the proton continue to move in the pos-
itive x direction? Explain.

2. Two charged particles are projected into a region where a
magnetic field is directed perpendicular to their veloci-
ties. If the charges are deflected in opposite directions,
what can be said about them?

3. If a charged particle moves in a straight line through
some region of space, can one say that the magnetic field
in that region is zero?

4. Suppose an electron is chasing a proton up this page
when suddenly a magnetic field directed perpendicular
into the page is turned on. What happens to the particles?

5. How can the motion of a moving charged particle be used
to distinguish between a magnetic field and an electric
field? Give a specific example to justify your argument.

6. List several similarities and differences between electric
and magnetic forces.

7. Justify the following statement: “It is impossible for a con-
stant (in other words, a time-independent) magnetic field
to alter the speed of a charged particle.”

8. In view of the preceding statement, what is the role of a
magnetic field in a cyclotron?

9. A current-carrying conductor experiences no magnetic
force when placed in a certain manner in a uniform mag-
netic field. Explain.

10. Is it possible to orient a current loop in a uniform magnetic
field such that the loop does not tend to rotate? Explain.

11. How can a current loop be used to determine the pres-
ence of a magnetic field in a given region of space?

12. What is the net force acting on a compass needle in a uni-
form magnetic field?

13. What type of magnetic field is required to exert a resul-
tant force on a magnetic dipole? What is the direction of
the resultant force?

14. A proton moving horizontally enters a region where a
uniform magnetic field is directed perpendicular to the
proton’s velocity, as shown in Figure Q29.14. Describe the
subsequent motion of the proton. How would an electron
behave under the same circumstances?

15. In a magnetic bottle, what causes the direction of the ve-
locity of the confined charged particles to reverse? (Hint:
Find the direction of the magnetic force acting on the
particles in a region where the field lines converge.)

16. In the cyclotron, why do particles of different velocities
take the same amount of time to complete one half-circle
trip around one dee?

where m is the mass of the particle and q is its charge. The angular speed of the
charged particle is

(29.14)� �
qB
m

v
+

× × ×

× × ×

× × ×

× × ×

× ××

Figure Q29.14

Figure Q29.20
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PROBLEMS

6.00 � 106 m/s directed to the east in this environ-
ment.

8. A 30.0-g metal ball having net charge is
thrown out of a window horizontally at a speed

The window is at a height 
above the ground. A uniform horizontal magnetic field
of magnitude is perpendicular to the
plane of the ball’s trajectory. Find the magnetic force
acting on the ball just before it hits the ground.

9. A proton moving at 4.00 � 106 m/s through a magnetic
field of 1.70 T experiences a magnetic force of magni-
tude 8.20 � 10�13 N. What is the angle between the
proton’s velocity and the field?

10. An electron has a velocity of 1.20 km/s (in the positive
x direction) and an acceleration of 2.00 � 1012 m/s2

(in the positive z direction) in uniform electric and
magnetic fields. If the electric field has a magnitude of
20.0 N/C (in the positive z direction), what can you de-
termine about the magnetic field in the region? What
can you not determine?

11. A proton moves with a velocity of m/s
in a region in which the magnetic field is 

What is the magnitude of the magnetic force this
charge experiences?

12. An electron is projected into a uniform magnetic field
T. Find the vector expression 

for the force on the electron when its velocity is 

Section 29.2 Magnetic Force Acting on a 
Current-Carrying Conductor

13. A wire having a mass per unit length of 0.500 g/cm car-
ries a 2.00-A current horizontally to the south. What are
the direction and magnitude of the minimum magnetic
field needed to lift this wire vertically upward?

14. A wire carries a steady current of 2.40 A. A straight sec-
tion of the wire is 0.750 m long and lies along the x axis
within a uniform magnetic field of magnitude

in the positive z direction. If the current is in
the � x direction, what is the magnetic force on the sec-
tion of wire?

15. A wire 2.80 m in length carries a current of 5.00 A in a
region where a uniform magnetic field has a magnitude
of 0.390 T. Calculate the magnitude of the magnetic
force on the wire if the angle between the magnetic
field and the current is (a) 60.0°, (b) 90.0°, (c) 120°.

16. A conductor suspended by two flexible wires as shown in
Figure P29.16 has a mass per unit length of 0.040 0 kg/m.
What current must exist in the conductor for the tension
in the supporting wires to be zero when the magnetic

B � 1.60 T

3.70 � 105 j m/s.
v �

B � (1.40 i � 2.10 j)

3k) T.
B � ( i � 2 j �

v � (2 i � 4 j � k)

B � 0.010 0 T

h � 20.0 mv � 20.0 m/s.

Q � 5.00 �C

Section 29.1 The Magnetic Field
1. Determine the initial direction of the deflection of

charged particles as they enter the magnetic fields, as
shown in Figure P29.1.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB

2. Consider an electron near the Earth’s equator. In which
direction does it tend to deflect if its velocity is directed
(a) downward, (b) northward, (c) westward, or 
(d) southeastward?

3. An electron moving along the positive x axis perpendic-
ular to a magnetic field experiences a magnetic deflec-
tion in the negative y direction. What is the direction of
the magnetic field?

4. A proton travels with a speed of 3.00 � 106 m/s at an
angle of 37.0° with the direction of a magnetic field of
0.300 T in the � y direction. What are (a) the magni-
tude of the magnetic force on the proton and (b) its ac-
celeration?

5. A proton moves in a direction perpendicular to a uni-
form magnetic field B at 1.00 � 107 m/s and experi-
ences an acceleration of 2.00 � 1013 m/s2 in the � x di-
rection when its velocity is in the � z direction.
Determine the magnitude and direction of the field.

6. An electron is accelerated through 2 400 V from rest
and then enters a region where there is a uniform 
1.70-T magnetic field. What are (a) the maximum and 
(b) the minimum values of the magnetic force this
charge can experience?

7. At the equator, near the surface of the Earth, the mag-
netic field is approximately 50.0 �T northward, and the
electric field is about 100 N/C downward in fair
weather. Find the gravitational, electric, and magnetic
forces on an electron with an instantaneous velocity of

(a)

+

+

–

+

(c)

(b)

(d)

××××
××××
××××
××××

45°

Bin

Bright

Bup

Bat 45°

Figure P29.1
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field is 3.60 T into the page? What is the required direc-
tion for the current?

17. Imagine a very long, uniform wire with a linear mass
density of 1.00 g/m that encircles the Earth at its mag-
netic equator. Suppose that the planet’s magnetic field
is 50.0 �T horizontally north throughout this region.
What are the magnitude and direction of the current in
the wire that keep it levitated just above the ground?

18. In Figure P29.18, the cube is 40.0 cm on each edge.
Four straight segments of wire—ab, bc, cd, and da—
form a closed loop that carries a current in
the direction shown. A uniform magnetic field of mag-
nitude is in the positive y direction. De-
termine the magnitude and direction of the magnetic
force on each segment.

B � 0.020 0 T

I � 5.00 A,

21. A nonuniform magnetic field exerts a net force on a magnetic
dipole. A strong magnet is placed under a horizontal
conducting ring of radius r that carries current I, as
shown in Figure P29.21. If the magnetic field B makes
an angle � with the vertical at the ring’s location, what
are the magnitude and direction of the resultant force
on the ring?

WEB

22. Assume that in Atlanta, Georgia, the Earth’s magnetic
field is 52.0 �T northward at 60.0° below the horizontal.
A tube in a neon sign carries a current of 35.0 mA be-
tween two diagonally opposite corners of a shop win-
dow, which lies in a north–south vertical plane. The
current enters the tube at the bottom south corner of
the window. It exits at the opposite corner, which is 
1.40 m farther north and 0.850 m higher up. Between
these two points, the glowing tube spells out DONUTS.
Use the theorem proved as “Case 1” in the text to deter-
mine the total vector magnetic force on the tube.

Section 29.3 Torque on a Current Loop in a 
Uniform Magnetic Field

23. A current of 17.0 mA is maintained in a single circular
loop with a circumference of 2.00 m. A magnetic field

19. Review Problem. A rod with a mass of 0.720 kg and a
radius of 6.00 cm rests on two parallel rails (Fig.
P29.19) that are apart and 
long. The rod carries a current of (in the di-
rection shown) and rolls along the rails without slip-
ping. If it starts from rest, what is the speed of the rod as
it leaves the rails if a uniform magnetic field of magni-
tude 0.240 T is directed perpendicular to the rod and
the rails?

20. Review Problem. A rod of mass m and radius R rests
on two parallel rails (Fig. P29.19) that are a distance d
apart and have a length L . The rod carries a current I
(in the direction shown) and rolls along the rails with-
out slipping. If it starts from rest, what is the speed of
the rod as it leaves the rails if a uniform magnetic field
B is directed perpendicular to the rod and the rails?

I � 48.0 A
L � 45.0 cmd � 12.0 cm

d

L

I B

I

N

r

B

θ θ

y

x

I

a

B

b

cz

d

Bin

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure P29.16

Figure P29.18

Figure P29.19 Problems 19 and 20.

Figure P29.21
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of 0.800 T is directed parallel to the plane of the loop.
(a) Calculate the magnetic moment of the loop. 
(b) What is the magnitude of the torque exerted on the
loop by the magnetic field?

24. A small bar magnet is suspended in a uniform 0.250-T
magnetic field. The maximum torque experienced by
the bar magnet is 4.60 � 10�3 N � m. Calculate the mag-
netic moment of the bar magnet.

25. A rectangular loop consists of closely wrapped
turns and has dimensions and

The loop is hinged along the y axis, and its
plane makes an angle � � 30.0° with the x axis (Fig.
P29.25). What is the magnitude of the torque exerted
on the loop by a uniform magnetic field di-
rected along the x axis when the current is in
the direction shown? What is the expected direction of
rotation of the loop?

I � 1.20 A
B � 0.800 T

b � 0.300 m.
a � 0.400 m

N � 100

needle has minimum potential energy and maximum
potential energy. (b) How much work must be done on
the needle for it to move from the former to the latter
orientation?

30. A wire is formed into a circle having a diameter of 
10.0 cm and is placed in a uniform magnetic field of
3.00 mT. A current of 5.00 A passes through the wire.
Find (a) the maximum torque on the wire and (b) the
range of potential energy of the wire in the field for dif-
ferent orientations of the circle.

Section 29.4 Motion of a Charged Particle 
in a Uniform Magnetic Field

31. The magnetic field of the Earth at a certain location is
directed vertically downward and has a magnitude of
50.0 �T. A proton is moving horizontally toward the
west in this field with a speed of 6.20 � 106 m/s. 
(a) What are the direction and magnitude of the mag-
netic force that the field exerts on this charge? 
(b) What is the radius of the circular arc followed by
this proton?

32. A singly charged positive ion has a mass of 3.20 �
10�26 kg. After being accelerated from rest through a
potential difference of 833 V, the ion enters a magnetic
field of 0.920 T along a direction perpendicular to the
direction of the field. Calculate the radius of the path of
the ion in the field.

33. Review Problem. One electron collides elastically with
a second electron initially at rest. After the collision, the
radii of their trajectories are 1.00 cm and 2.40 cm. The
trajectories are perpendicular to a uniform magnetic
field of magnitude 0.044 0 T. Determine the energy (in
keV) of the incident electron.

34. A proton moving in a circular path perpendicular to a
constant magnetic field takes 1.00 �s to complete one
revolution. Determine the magnitude of the magnetic
field.

35. A proton (charge �e, mass mp), a deuteron (charge �e,
mass 2mp), and an alpha particle (charge � 2e, mass
4mp) are accelerated through a common potential dif-
ference �V. The particles enter a uniform magnetic
field B with a velocity in a direction perpendicular to B.
The proton moves in a circular path of radius rp . Deter-
mine the values of the radii of the circular orbits for the
deuteron rd and the alpha particle r � in terms of rp .

36. Review Problem. An electron moves in a circular path
perpendicular to a constant magnetic field with a
magnitude of 1.00 mT. If the angular momentum 
of the electron about the center of the circle is 4.00 �
10�25 J� s, determine (a) the radius of the circular path
and (b) the speed of the electron.

37. Calculate the cyclotron frequency of a proton in a mag-
netic field with a magnitude of 5.20 T.

38. A singly charged ion of mass m is accelerated from rest
by a potential difference �V. It is then deflected by a
uniform magnetic field (perpendicular to the ion’s ve-
locity) into a semicircle of radius R . Now a doubly

WEB

26. A long piece of wire of mass 0.100 kg and total length 
of 4.00 m is used to make a square coil with a side of
0.100 m. The coil is hinged along a horizontal side, car-
ries a 3.40-A current, and is placed in a vertical mag-
netic field with a magnitude of 0.010 0 T. (a) Determine
the angle that the plane of the coil makes with the verti-
cal when the coil is in equilibrium. (b) Find the torque
acting on the coil due to the magnetic force at equilib-
rium.

27. A 40.0-cm length of wire carries a current of 20.0 A. It is
bent into a loop and placed with its normal perpendicu-
lar to a magnetic field with a strength of 0.520 T. What
is the torque on the loop if it is bent into (a) an equilat-
eral triangle, (b) a square, (c) a circle? (d) Which
torque is greatest?

28. A current loop with dipole moment � is placed in a uni-
form magnetic field B. Prove that its potential energy is

You may imitate the discussion of the po-
tential energy of an electric dipole in an electric field
given in Chapter 26.

29. The needle of a magnetic compass has a magnetic mo-
ment of 9.70 mA � m2. At its location, the Earth’s mag-
netic field is 55.0 �T north at 48.0° below the horizon-
tal. (a) Identify the orientations at which the compass

U � �� � B.

y

x
z

0.300 m

30.0°

I = 1.20 A

0.400 m

Figure P29.25
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charged ion of mass m	 is accelerated through the same
potential difference and deflected by the same mag-
netic field into a semicircle of radius What is
the ratio of the ions’ masses?

39. A cosmic-ray proton in interstellar space has an energy
of 10.0 MeV and executes a circular orbit having a ra-
dius equal to that of Mercury’s orbit around the Sun
(5.80 � 1010 m). What is the magnetic field in that re-
gion of space?

40. A singly charged positive ion moving at 4.60 � 105 m/s
leaves a circular track of radius 7.94 mm along a direc-
tion perpendicular to the 1.80-T magnetic field of a
bubble chamber. Compute the mass (in atomic mass
units) of this ion, and identify it from that value.

(Optional)
Section 29.5 Applications Involving Charged 
Particles Moving in a Magnetic Field

41. A velocity selector consists of magnetic and electric
fields described by the expressions and 
If find the value of E such that a 750-eV
electron moving along the positive x axis is undeflected.

42. (a) Singly charged uranium-238 ions are accelerated
through a potential difference of 2.00 kV and enter a
uniform magnetic field of 1.20 T directed perpendicu-
lar to their velocities. Determine the radius of their cir-
cular path. (b) Repeat for uranium-235 ions. How does
the ratio of these path radii depend on the accelerating
voltage and the magnetic field strength?

43. Consider the mass spectrometer shown schematically in
Figure 29.23. The electric field between the plates of
the velocity selector is 2 500 V/m, and the magnetic
field in both the velocity selector and the deflection
chamber has a magnitude of 0.035 0 T. Calculate the ra-
dius of the path for a singly charged ion having a mass

44. What is the required radius of a cyclotron designed to
accelerate protons to energies of 34.0 MeV using a mag-
netic field of 5.20 T?

45. A cyclotron designed to accelerate protons has a mag-
netic field with a magnitude of 0.450 T over a region of
radius 1.20 m. What are (a) the cyclotron frequency
and (b) the maximum speed acquired by the protons?

46. At the Fermilab accelerator in Batavia, Illinois, protons
having momentum 4.80 � 10�16 kg � m/s are held in a
circular orbit of radius 1.00 km by an upward magnetic
field. What is the magnitude of this field?

47. The picture tube in a television uses magnetic deflec-
tion coils rather than electric deflection plates. Suppose
an electron beam is accelerated through a 50.0-kV po-
tential difference and then travels through a region of
uniform magnetic field 1.00 cm wide. The screen is lo-
cated 10.0 cm from the center of the coils and is 
50.0 cm wide. When the field is turned off, the electron
beam hits the center of the screen. What field magni-
tude is necessary to deflect the beam to the side of the
screen? Ignore relativistic corrections.

m � 2.18 � 10�26 kg.

B � 0.015 0 T,
B � B j.E � Ek

R 	 � 2R .

49. A section of conductor 0.400 cm thick is used in a Hall-
effect measurement. A Hall voltage of 35.0 �V is 
measured for a current of 21.0 A in a magnetic field of
1.80 T. Calculate the Hall coefficient for the conductor.

50. A flat copper ribbon 0.330 mm thick carries a steady
current of 50.0 A and is located in a uniform 1.30-T
magnetic field directed perpendicular to the plane of
the ribbon. If a Hall voltage of 9.60 �V is measured
across the ribbon, what is the charge density of the free
electrons? What effective number of free electrons per
atom does this result indicate?

51. In an experiment designed to measure the Earth’s mag-
netic field using the Hall effect, a copper bar 0.500 cm
thick is positioned along an east–west direction. If a
current of 8.00 A in the conductor results in a Hall volt-
age of 5.10 pV, what is the magnitude of the Earth’s
magnetic field? (Assume that elec-
trons/m3 and that the plane of the bar is rotated to be
perpendicular to the direction of B.)

52. A Hall-effect probe operates with a 120-mA current.
When the probe is placed in a uniform magnetic field
with a magnitude of 0.080 0 T, it produces a Hall volt-
age of 0.700 �V. (a) When it is measuring an unknown
magnetic field, the Hall voltage is 0.330 �V. What is the
unknown magnitude of the field? (b) If the thickness of
the probe in the direction of B is 2.00 mm, find the
charge-carrier density (each of charge e).

ADDITIONAL PROBLEMS

53. An electron enters a region of magnetic field of magni-
tude 0.100 T, traveling perpendicular to the linear
boundary of the region. The direction of the field is
perpendicular to the velocity of the electron. (a) Deter-
mine the time it takes for the electron to leave the
“field-filled” region, noting that its path is a semicircle.
(b) Find the kinetic energy of the electron if the maxi-
mum depth of penetration in the field is 2.00 cm.

n � 8.48 � 1028

Ag

B

I

t

d

WEB

Figure P29.48

(Optional)
Section 29.6 The Hall Effect

48. A flat ribbon of silver having a thickness 
is used in a Hall-effect measurement of a uniform
magnetic field perpendicular to the ribbon, as shown 
in Figure P29.48. The Hall coefficient for silver is

(a) What is the density of
charge carriers in silver? (b) If a current pro-
duces a Hall voltage what is the magni-
tude of the applied magnetic field?

�VH � 15.0 �V,
I � 20.0 A

R H � 0.840 � 10�10 m3/C.

t � 0.200 mm
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54. A 0.200-kg metal rod carrying a current of 10.0 A glides
on two horizontal rails 0.500 m apart. What vertical
magnetic field is required to keep the rod moving at a
constant speed if the coefficient of kinetic friction be-
tween the rod and rails is 0.100?

55. Sodium melts at 99°C. Liquid sodium, an excellent ther-
mal conductor, is used in some nuclear reactors to cool
the reactor core. The liquid sodium is moved through
pipes by pumps that exploit the force on a moving
charge in a magnetic field. The principle is as follows:
Assume that the liquid metal is in an electrically insulat-
ing pipe having a rectangular cross-section of width w
and height h. A uniform magnetic field perpendicular
to the pipe affects a section of length L (Fig. P29.55).
An electric current directed perpendicular to the pipe
and to the magnetic field produces a current density J
in the liquid sodium. (a) Explain why this arrangement
produces on the liquid a force that is directed along the
length of the pipe. (b) Show that the section of liquid
in the magnetic field experiences a pressure increase
JLB.

(c) What would be the force on an electron
in the same field moving with velocity 

58. Review Problem. A wire having a linear mass density
of 1.00 g/cm is placed on a horizontal surface that has a
coefficient of friction of 0.200. The wire carries a cur-
rent of 1.50 A toward the east and slides horizontally to
the north. What are the magnitude and direction of the
smallest magnetic field that enables the wire to move in
this fashion?

59. A positive charge moves with a
velocity through a region
where both a uniform magnetic field and a uniform
electric field exist. (a) What is the total force on the
moving charge (in unit–vector notation) if 

and 
(b) What angle does the force vector make with the
positive x axis?

60. A cosmic-ray proton traveling at half the speed of light
is heading directly toward the center of the Earth in the
plane of the Earth’s equator. Will it hit the Earth? As-
sume that the Earth’s magnetic field is uniform over the
planet’s equatorial plane with a magnitude of 50.0 �T,
extending out 1.30 � 107 m from the surface of the
Earth. Assume that the field is zero at greater distances.
Calculate the radius of curvature of the proton’s path in
the magnetic field. Ignore relativistic effects.

61. The circuit in Figure P29.61 consists of wires at the top
and bottom and identical metal springs as the left and
right sides. The wire at the bottom has a mass of 10.0 g
and is 5.00 cm long. The springs stretch 0.500 cm un-
der the weight of the wire, and the circuit has a total re-
sistance of 12.0 �. When a magnetic field is turned on,
directed out of the page, the springs stretch an addi-
tional 0.300 cm. What is the magnitude of the magnetic
field? (The upper portion of the circuit is fixed.)

E � (4 i � 1 j � 2k) V/m?(2 i � 4 j � 1k) T
B �

v � (2 i � 3 j � 1k) m/s
q � 3.20 � 10�19 C

v � vi i?
v � �vi i?

62. A hand-held electric mixer contains an electric motor.
Model the motor as a single flat compact circular coil
carrying electric current in a region where a magnetic
field is produced by an external permanent magnet.
You need consider only one instant in the operation of
the motor. (We will consider motors again in Chapter
31.) The coil moves because the magnetic field exerts
torque on the coil, as described in Section 29.3. Make

56. Protons having a kinetic energy of 5.00 MeV are moving
in the positive x direction and enter a magnetic field

directed out of the plane of the page
and extending from to as shown in
Figure P29.56. (a) Calculate the y component of the
protons’ momentum as they leave the magnetic field.
(b) Find the angle � between the initial velocity vector
of the proton beam and the velocity vector after the
beam emerges from the field. (Hint: Neglect relativistic
effects and note that 1 eV � 1.60 � 10�19 J.)

x � 1.00 m,x � 0
B � (0.050 0 k) T

24.0 V

5.00 cm

J

B

L

w

h

Figure P29.55

Figure P29.56

Figure P29.61

57. (a) A proton moving in the � x direction with velocity
experiences a magnetic force Explain

what you can and cannot infer about B from this infor-
mation. (b) In terms of Fi , what would be the force on a
proton in the same field moving with velocity

F � Fi j.v � vi i
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70. Table P29.70 shows measurements of a Hall voltage and
corresponding magnetic field for a probe used to mea-
sure magnetic fields. (a) Plot these data, and deduce a
relationship between the two variables. (b) If the mea-

65. A cyclotron is sometimes used for carbon dating, which
we consider in Section 44.6. Carbon-14 and carbon-12
ions are obtained from a sample of the material to be
dated and accelerated in the cyclotron. If the cyclotron
has a magnetic field of magnitude 2.40 T, what is the
difference in cyclotron frequencies for the two ions?

66. A uniform magnetic field of magnitude 0.150 T is di-
rected along the positive x axis. A positron moving at
5.00 � 106 m/s enters the field along a direction that
makes an angle of 85.0° with the x axis (Fig. P29.66).

order-of-magnitude estimates of the magnetic field, the
torque on the coil, the current in it, its area, and the
number of turns in the coil, so that they are related ac-
cording to Equation 29.11. Note that the input power to
the motor is electric, given by and the useful
output power is mechanical, given by 

63. A metal rod having a mass per unit length of 
0.010 0 kg/m carries a current of The rod
hangs from two wires in a uniform vertical magnetic
field, as shown in Figure P29.63. If the wires make an
angle with the vertical when in equilibrium,
determine the magnitude of the magnetic field.

64. A metal rod having a mass per unit length � carries a
current I . The rod hangs from two wires in a uniform
vertical magnetic field, as shown in Figure P29.63. If the
wires make an angle � with the vertical when in equilib-
rium, determine the magnitude of the magnetic field.

� � 45.0�

I � 5.00 A.

� � ��.
� � I �V,

The motion of the particle is expected to be a helix, as
described in Section 29.4. Calculate (a) the pitch p and
(b) the radius r of the trajectory.

67. Consider an electron orbiting a proton and maintained
in a fixed circular path of radius by
the Coulomb force. Treating the orbiting charge as a
current loop, calculate the resulting torque when the
system is in a magnetic field of 0.400 T directed perpen-
dicular to the magnetic moment of the electron.

68. A singly charged ion completes five revolutions in a uni-
form magnetic field of magnitude 5.00 � 10�2 T in 
1.50 ms. Calculate the mass of the ion in kilograms.

69. A proton moving in the plane of the page has a kinetic
energy of 6.00 MeV. It enters a magnetic field of magni-
tude directed into the page, moving at an an-
gle of � � 45.0° with the straight linear boundary of the
field, as shown in Figure P29.69. (a) Find the distance x
from the point of entry to where the proton leaves the
field. (b) Determine the angle �	 between the boundary
and the proton’s velocity vector as it leaves the field.

B � 1.00 T

R � 5.29 � 10�11 m

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

v

r

x

y

z

85°

B

p

θ

B

I

g
θ

Figure P29.63 Problems 63 and 64.

Figure P29.66

Figure P29.69

TABLE P29.70

�VH(�V) B(T)

0 0.00
11 0.10
19 0.20
28 0.30
42 0.40
50 0.50
61 0.60
68 0.70
79 0.80
90 0.90

102 1.00
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ANSWERS TO QUICK QUIZZES

rected out of the page, but this force is canceled by an
oppositely directed force acting on the current as it
moves from 4 m to 2 m.

29.4 Because it is in the region of the stronger magnetic
field, side � experiences a greater force than side �:

Therefore, in addition to the torque resulting
from the two forces, a net force is exerted downward on
the loop.

29.5 (c), (b), (a). Because all loops enclose the same area
and carry the same current, the magnitude of � is the
same for all. For (c), � points upward and is perpendic-
ular to the magnetic field and This is the maxi-
mum torque possible. The next largest cross product of
� and B is for (b), in which � points toward the upper
right (as illustrated in Fig. 29.13b). Finally, � for the
loop in (a) points along the direction of B; thus, the
torque is zero.

29.6 The velocity selector ensures that all three types of parti-
cles have the same speed. We cannot determine individ-
ual masses or charges, but we can rank the particles by
m/q ratio. Equation 29.18 indicates that those particles
traveling through the circle of greatest radius have the
greatest m/q ratio. Thus, the m/q ranking, from greatest
to least value, is c, b, a.

� � �B.

F3 � F1 .

29.1 Zero. Because the magnetic force exerted by the field
on the charge is always perpendicular to the velocity of
the charge, the field can never do any work on the
charge: Work requires a
component of force along the direction of motion. 

29.2 Unaffected. The magnetic force exerted by a magnetic
field on a charge is proportional to the charge’s velocity
relative to the field. If the charge is stationary, as in this
situation, there is no magnetic force.

29.3 (c), (b), (a), (d). As Example 29.2 shows, we need to be
concerned only with the “effective length” of wire per-
pendicular to the magnetic field or, stated another way,
the length of the “magnetic field shadow” cast by the
wire. For (c), 4 m of wire is perpendicular to the field.
The short vertical pieces experience no magnetic force
because their currents are parallel to the field. When
the wire in (b) is broken into many short vertical and
horizontal segments alternately parallel and perpendicu-
lar to the field, we find a total of 3.5 m of horizontal seg-
ments perpendicular to the field and therefore experi-
encing a force. Next comes (a), with 3 m of wire
effectively perpendicular to the field. Only 2 m of the
wire in (d) experiences a force. The portion carrying
current from 2 m to 4 m does experience a force di-

W � FB � ds � (FB � v)dt � 0.

A+

To potentiometer

Blood
flow

Electrodes B–

S

Artery

N
h

+

v

B

Figure P29.71 Figure P29.72

that electrode A is positive, as shown. Does the sign of
the emf depend on whether the mobile ions in the
blood are predominantly positively or negatively
charged? Explain.

72. As illustrated in Figure P29.72, a particle of mass m hav-
ing positive charge q is initially traveling upward with
velocity v j. At the origin of coordinates it enters a re-
gion between and containing a uniform
magnetic field Bk directed perpendicular out of the
page. (a) What is the critical value of v such that the
particle just reaches Describe the path of the
particle under this condition, and predict its final veloc-
ity. (b) Specify the path of the particle and its final ve-
locity if v is less than the critical value. (c) Specify the
path of the particle and its final velocity if v is greater
than the critical value.

y � h ?

y � hy � 0

surements were taken with a current of 0.200 A and the
sample is made from a material having a charge-carrier
density of 1.00 � 1026/m3, what is the thickness of the
sample?

71. A heart surgeon monitors the flow rate of blood
through an artery using an electromagnetic flowmeter
(Fig. P29.71). Electrodes A and B make contact with
the outer surface of the blood vessel, which has interior
diameter 3.00 mm. (a) For a magnetic field magnitude
of 0.040 0 T, an emf of 160 �V appears between the
electrodes. Calculate the speed of the blood. (b) Verify
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All three of these commonplace items
use magnetism to store information. The
cassette can store more than an hour of
music, the floppy disk can hold the equiv-
alent of hundreds of pages of informa-
tion, and many hours of television pro-
gramming can be recorded on the
videotape. How do these devices work?
(George Semple)

C h a p t e r  O u t l i n e

30.1 The Biot–Savart Law

30.2 The Magnetic Force Between
Two Parallel Conductors

30.3 Ampère’s Law

30.4 The Magnetic Field of a Solenoid

30.5 Magnetic Flux

30.6 Gauss’s Law in Magnetism

30.7 Displacement Current and the
General Form of Ampère’s Law

30.8 (Optional) Magnetism in Matter

30.9 (Optional) The Magnetic Field of
the Earth
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n the preceding chapter, we discussed the magnetic force exerted on a charged
particle moving in a magnetic field. To complete the description of the mag-
netic interaction, this chapter deals with the origin of the magnetic field—mov-

ing charges. We begin by showing how to use the law of Biot and Savart to calcu-
late the magnetic field produced at some point in space by a small current
element. Using this formalism and the principle of superposition, we then calcu-
late the total magnetic field due to various current distributions. Next, we show
how to determine the force between two current-carrying conductors, which leads
to the definition of the ampere. We also introduce Ampère’s law, which is useful in
calculating the magnetic field of a highly symmetric configuration carrying a
steady current.

This chapter is also concerned with the complex processes that occur in mag-
netic materials. All magnetic effects in matter can be explained on the basis of
atomic magnetic moments, which arise both from the orbital motion of the elec-
trons and from an intrinsic property of the electrons known as spin.

THE BIOT – SAVART LAW
Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a
current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart
(1791–1841) performed quantitative experiments on the force exerted by an elec-
tric current on a nearby magnet. From their experimental results, Biot and Savart
arrived at a mathematical expression that gives the magnetic field at some point in
space in terms of the current that produces the field. That expression is based on
the following experimental observations for the magnetic field dB at a point P as-
sociated with a length element ds of a wire carrying a steady current I (Fig. 30.1):

• The vector dB is perpendicular both to ds (which points in the direction of the
current) and to the unit vector directed from ds to P.

• The magnitude of dB is inversely proportional to r 2, where r is the distance
from ds to P.

• The magnitude of dB is proportional to the current and to the magnitude ds of
the length element ds.

• The magnitude of dB is proportional to sin �, where � is the angle between the
vectors ds and .r̂

r̂

30.1

I

Properties of the magnetic field
created by an electric current

(a)

PdBout

r

θ

ds
P ′

dBin

I

×

r̂

(b)

P

ds

r̂

(c)

ds

P ′r̂

Figure 30.1 (a) The magnetic field dB at point P due to the current I through a length ele-
ment ds is given by the Biot–Savart law. The direction of the field is out of the page at P and into
the page at P�. (b) The cross product points out of the page when points toward P. 
(c) The cross product points into the page when points toward P�.r̂d s � r̂

r̂d s � r̂
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These observations are summarized in the mathematical formula known today as
the Biot–Savart law:

(30.1)

where �0 is a constant called the permeability of free space:

(30.2)

It is important to note that the field d B in Equation 30.1 is the field created by
the current in only a small length element ds of the conductor. To find the total
magnetic field B created at some point by a current of finite size, we must sum up
contributions from all current elements Ids that make up the current. That is, we
must evaluate B by integrating Equation 30.1:

(30.3)

where the integral is taken over the entire current distribution. This expression
must be handled with special care because the integrand is a cross product and
therefore a vector quantity. We shall see one case of such an integration in Exam-
ple 30.1.

Although we developed the Biot–Savart law for a current-carrying wire, it is
also valid for a current consisting of charges flowing through space, such as the
electron beam in a television set. In that case, ds represents the length of a small
segment of space in which the charges flow.

Interesting similarities exist between the Biot–Savart law for magnetism 
and Coulomb’s law for electrostatics. The current element produces a magnetic
field, whereas a point charge produces an electric field. Furthermore, the magni-
tude of the magnetic field varies as the inverse square of the distance from the 
current element, as does the electric field due to a point charge. However, the 
directions of the two fields are quite different. The electric field created by a 
point charge is radial, but the magnetic field created by a current element is per-
pendicular to both the length element ds and the unit vector , as described by
the cross product in Equation 30.1. Hence, if the conductor lies in the plane of
the page, as shown in Figure 30.1, dB points out of the page at P and into the page
at P �.

Another difference between electric and magnetic fields is related to the
source of the field. An electric field is established by an isolated electric charge.
The Biot–Savart law gives the magnetic field of an isolated current element at
some point, but such an isolated current element cannot exist the way an isolated
electric charge can. A current element must be part of an extended current distrib-
ution because we must have a complete circuit in order for charges to flow. Thus,
the Biot–Savart law is only the first step in a calculation of a magnetic field; it must
be followed by an integration over the current distribution.

In the examples that follow, it is important to recognize that the magnetic
field determined in these calculations is the field created by a current-carry-
ing conductor. This field is not to be confused with any additional fields that may
be present outside the conductor due to other sources, such as a bar magnet
placed nearby.

r̂

B �
�0I
4�

 � ds � r̂
r 2

�0 � 4� � 10�7 T�m/A

d B �
�0

4�
 
I ds � r̂

r 2 Biot–Savart law

Permeability of free space
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Magnetic Field Surrounding a Thin, Straight ConductorEXAMPLE 30.1
an expression in which the only variable is �. We can now ob-
tain the magnitude of the magnetic field at point P by inte-
grating Equation (4) over all elements, subtending angles
ranging from �1 to �2 as defined in Figure 30.2b:

(30.4)

We can use this result to find the magnetic field of any
straight current-carrying wire if we know the geometry and
hence the angles �1 and �2 . Consider the special case of an
infinitely long, straight wire. If we let the wire in Figure 30.2b
become infinitely long, we see that �1 � 0 and �2 � � for
length elements ranging between positions x � � 	 and x �

 	. Because (cos �1 � cos �2) � (cos 0 � cos �) � 2, Equa-
tion 30.4 becomes

(30.5)

Equations 30.4 and 30.5 both show that the magnitude of

B �
�0I
2�a

B �
�0I
4�a

 ��2

�1

 sin � d� �
�0I
4�a

 (cos �1 � cos �2)

Consider a thin, straight wire carrying a constant current I
and placed along the x axis as shown in Figure 30.2. Deter-
mine the magnitude and direction of the magnetic field at
point P due to this current.

Solution From the Biot–Savart law, we expect that the
magnitude of the field is proportional to the current in the
wire and decreases as the distance a from the wire to point P
increases. We start by considering a length element ds lo-
cated a distance r from P. The direction of the magnetic field
at point P due to the current in this element is out of the
page because ds � is out of the page. In fact, since all of
the current elements I ds lie in the plane of the page, they all
produce a magnetic field directed out of the page at point P.
Thus, we have the direction of the magnetic field at point P,
and we need only find the magnitude.

Taking the origin at O and letting point P be along the
positive y axis, with k being a unit vector pointing out of the
page, we see that

where, from Chapter 3, represents the magnitude of
ds � Because is a unit vector, the unit of the cross prod-
uct is simply the unit of ds, which is length. Substitution into
Equation 30.1 gives

Because all current elements produce a magnetic field in the
k direction, let us restrict our attention to the magnitude of
the field due to one current element, which is

(1)

To integrate this expression, we must relate the variables �, x,
and r. One approach is to express x and r in terms of �. From
the geometry in Figure 30.2a, we have

(2)

Because tan from the right triangle in Figure
30.2a (the negative sign is necessary because ds is located at a
negative value of x), we have

Taking the derivative of this expression gives 

(3)

Substitution of Equations (2) and (3) into Equation (1) gives

(4) dB �
�0I
4�

 
a csc2 � sin � d�

a2 csc2 �
�

�0I
4�a

 sin � d�

dx � a csc2 � d�

x � �a cot �

� � a/(�x)

r �
a

sin �
� a csc �

dB �
�0I
4�

 
dx sin �

r 2

dB � (dB)k �
�0 I
4�

 
dx sin �

r 2  k

r̂r̂.
�ds � r̂ �

ds � r̂ � k � ds � r̂ � � k(dx sin �)

r̂

(a)

O
x

ds

I

θ
r̂

r a

Pds  = dx

x

(b)

θ1

P

θ2θ
θ

y

Figure 30.2 (a) A thin, straight wire carrying a current I. The
magnetic field at point P due to the current in each element ds of
the wire is out of the page, so the net field at point P is also out of
the page. (b) The angles �1 and �2 , used for determining the net
field. When the wire is infinitely long, �1 � 0 and �2 � 180°.
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The result of Example 30.1 is important because a current in the form of a
long, straight wire occurs often. Figure 30.3 is a three-dimensional view of the
magnetic field surrounding a long, straight current-carrying wire. Because of the
symmetry of the wire, the magnetic field lines are circles concentric with the wire
and lie in planes perpendicular to the wire. The magnitude of B is constant on any
circle of radius a and is given by Equation 30.5. A convenient rule for determining
the direction of B is to grasp the wire with the right hand, positioning the thumb
along the direction of the current. The four fingers wrap in the direction of the
magnetic field.

the magnetic field is proportional to the current and de-
creases with increasing distance from the wire, as we ex-
pected. Notice that Equation 30.5 has the same mathematical
form as the expression for the magnitude of the electric field
due to a long charged wire (see Eq. 24.7).

Exercise Calculate the magnitude of the magnetic field 
4.0 cm from an infinitely long, straight wire carrying a cur-
rent of 5.0 A.

Answer 2.5 � 10�5 T.

a

I

Figure 30.3 The right-hand rule for determining the di-
rection of the magnetic field surrounding a long, straight
wire carrying a current. Note that the magnetic field lines
form circles around the wire.

Magnetic Field Due to a Curved Wire SegmentEXAMPLE 30.2
Calculate the magnetic field at point O for the current-carry-
ing wire segment shown in Figure 30.4. The wire consists of
two straight portions and a circular arc of radius R , which
subtends an angle �. The arrowheads on the wire indicate the
direction of the current.

Solution The magnetic field at O due to the current in
the straight segments AA� and CC� is zero because ds is paral-
lel to along these paths; this means that ds � Each
length element ds along path AC is at the same distance R
from O, and the current in each contributes a field element
dB directed into the page at O. Furthermore, at every point
on AC , ds is perpendicular to hence, Using
this information and Equation 30.1, we can find the magni-
tude of the field at O due to the current in an element of
length ds:

dB �
�0 I
4�

 
ds
R2

� ds � r̂ � � ds.r̂;

r̂ � 0.r̂
ds

θO

A

r̂

C

I
C ′

A ′

R

R

Figure 30.4 The magnetic field at O due to the current in the
curved segment AC is into the page. The contribution to the field at
O due to the current in the two straight segments is zero.
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Magnetic Field on the Axis of a Circular Current LoopEXAMPLE 30.3

(at x � 0) (30.8)

which is consistent with the result of the exercise in Example
30.2.

It is also interesting to determine the behavior of the mag-
netic field far from the loop—that is, when x is much greater
than R . In this case, we can neglect the term R 2 in the de-
nominator of Equation 30.7 and obtain

(for (30.9)

Because the magnitude of the magnetic moment � of the
loop is defined as the product of current and loop area (see
Eq. 29.10)—� � I(�R 2) for our circular loop—we can ex-
press Equation 30.9 as

(30.10)

This result is similar in form to the expression for the electric
field due to an electric dipole, (see ExampleE � ke(2qa/y3)

B �
�0

2�
 

�

x3

x W R)B �
�0IR2

2x3

B �
�0I
2R

Consider a circular wire loop of radius R located in the yz
plane and carrying a steady current I, as shown in Figure
30.5. Calculate the magnetic field at an axial point P a dis-
tance x from the center of the loop.

Solution In this situation, note that every length element
ds is perpendicular to the vector at the location of the ele-
ment. Thus, for any element, sin 90° � ds.
Furthermore, all length elements around the loop are at the
same distance r from P, where Hence, the mag-
nitude of dB due to the current in any length element ds is

The direction of dB is perpendicular to the plane formed by
and ds, as shown in Figure 30.5. We can resolve this vector

into a component dBx along the x axis and a component dBy
perpendicular to the x axis. When the components dBy are
summed over all elements around the loop, the resultant
component is zero. That is, by symmetry the current in any
element on one side of the loop sets up a perpendicular com-
ponent of dB that cancels the perpendicular component set
up by the current through the element diametrically opposite
it. Therefore, the resultant field at P must be along the x axis and
we can find it by integrating the components 
That is, where

and we must take the integral over the entire loop. Because �,
x, and R are constants for all elements of the loop and be-
cause cos we obtain

(30.7)

where we have used the fact that (the circumfer-
ence of the loop).

To find the magnetic field at the center of the loop, we set
x � 0 in Equation 30.7. At this special point, therefore,

ds � 2�R�

�0IR2

2(x2 
 R2)3/2Bx �
�0IR

4�(x2 
 R2)3/2  �ds �

� � R /(x2 
 R2)1/2,

Bx � � dB cos � �
�0I
4�

 � 
ds cos �
x2 
 R2

B � Bx i,
dBx � dB cos �.

r̂

dB �
�0I
4�

 
� ds � r̂ �

r 2 �
�0I
4�

 
ds

(x2 
 R2)

r 2 � x2 
 R2.

ds � r̂ � (ds)(1)
r̂

Because I and R are constants, we can easily integrate this ex-
pression over the curved path AC :

(30.6)

where we have used the fact that with � measured ins � R�

�0I
4�R

 �B �
�0I

4�R2  � ds �
�0I

4�R2  s �

radians. The direction of B is into the page at O because
is into the page for every length element.

Exercise A circular wire loop of radius R carries a current I.
What is the magnitude of the magnetic field at its center?

Answer �0I/2R .

ds � r̂

O

R

θ

ds

y

z

I

I

r̂

r

x
θ

P
xdBx

dBy
dB

Figure 30.5 Geometry for calculating the magnetic field at a
point P lying on the axis of a current loop. By symmetry, the total
field B is along this axis.
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(a) (b) (c)

S

N

I
S

N

Figure 30.6 (a) Magnetic field lines surrounding a current loop. (b) Magnetic field lines surrounding a current loop, displayed with iron
filings (Education Development Center, Newton, MA). (c) Magnetic field lines surrounding a bar magnet. Note the similarity between this line
pattern and that of a current loop.

23.6), where is the electric dipole moment as de-
fined in Equation 26.16.

The pattern of the magnetic field lines for a circular cur-
rent loop is shown in Figure 30.6a. For clarity, the lines are

2qa � p drawn for only one plane—one that contains the axis of the
loop. Note that the field-line pattern is axially symmetric and
looks like the pattern around a bar magnet, shown in Figure
30.6c.

2

1

B2

�

a

I1

I2

F1

a

THE MAGNETIC FORCE BETWEEN TWO
PARALLEL CONDUCTORS

In Chapter 29 we described the magnetic force that acts on a current-carrying con-
ductor placed in an external magnetic field. Because a current in a conductor sets
up its own magnetic field, it is easy to understand that two current-carrying con-
ductors exert magnetic forces on each other. As we shall see, such forces can be
used as the basis for defining the ampere and the coulomb.

Consider two long, straight, parallel wires separated by a distance a and carry-
ing currents I1 and I2 in the same direction, as illustrated in Figure 30.7. We can
determine the force exerted on one wire due to the magnetic field set up by the
other wire. Wire 2, which carries a current I2 , creates a magnetic field B2 at the lo-
cation of wire 1. The direction of B2 is perpendicular to wire 1, as shown in Figure
30.7. According to Equation 29.3, the magnetic force on a length � of wire 1 is

� Because � is perpendicular to B2 in this situation, the magnitude
of F1 is Because the magnitude of B2 is given by Equation 30.5, we see
that

(30.11)

The direction of F1 is toward wire 2 because � � B2 is in that direction. If the field
set up at wire 2 by wire 1 is calculated, the force F2 acting on wire 2 is found to be
equal in magnitude and opposite in direction to F1 . This is what we expect be-

F1 � I1�B2 � I1�� �0I2

2�a � �
�0I1I2

2�a
 �

F1 � I1�B 2 .
� B2.F1 � I1

30.2

Figure 30.7 Two parallel wires
that each carry a steady current ex-
ert a force on each other. The field
B2 due to the current in wire 2 ex-
erts a force of magnitude

on wire 1. The force is
attractive if the currents are paral-
lel (as shown) and repulsive if the
currents are antiparallel.

F 1 � I 1 �B2 



In deriving Equations 30.11 and 30.12, we assumed that both wires are long
compared with their separation distance. In fact, only one wire needs to be long.
The equations accurately describe the forces exerted on each other by a long wire
and a straight parallel wire of limited length .

For and in Figure 30.7, which is true: (a) (b) or 
(c) 

A loose spiral spring is hung from the ceiling, and a large current is sent through it. Do the
coils move closer together or farther apart?

Quick Quiz 30.2

F1 � F2 ?
F1 � F2/3,F1 � 3F2 ,I2 � 6 AI1 � 2 A

Quick Quiz 30.1

�
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cause Newton’s third law must be obeyed.1 When the currents are in opposite di-
rections (that is, when one of the currents is reversed in Fig. 30.7), the forces are
reversed and the wires repel each other. Hence, we find that parallel conductors
carrying currents in the same direction attract each other, and parallel con-
ductors carrying currents in opposite directions repel each other.

Because the magnitudes of the forces are the same on both wires, we denote
the magnitude of the magnetic force between the wires as simply FB . We can
rewrite this magnitude in terms of the force per unit length:

(30.12)

The force between two parallel wires is used to define the ampere as follows:

FB

�
�

�0I1I2

2�a

When the magnitude of the force per unit length between two long, parallel
wires that carry identical currents and are separated by 1 m is 2 � 10�7 N/m,
the current in each wire is defined to be 1 A.

The value 2 � 10�7 N/m is obtained from Equation 30.12 with and
m. Because this definition is based on a force, a mechanical measurement

can be used to standardize the ampere. For instance, the National Institute of
Standards and Technology uses an instrument called a current balance for primary
current measurements. The results are then used to standardize other, more con-
ventional instruments, such as ammeters.

The SI unit of charge, the coulomb, is defined in terms of the ampere:

a � 1
I1 � I2 � 1 A

When a conductor carries a steady current of 1 A, the quantity of charge that
flows through a cross-section of the conductor in 1 s is 1 C.

1 Although the total force exerted on wire 1 is equal in magnitude and opposite in direction to the to-
tal force exerted on wire 2, Newton’s third law does not apply when one considers two small elements
of the wires that are not exactly opposite each other. This apparent violation of Newton’s third law and
of the law of conservation of momentum is described in more advanced treatments on electricity and
magnetism.

Definition of the ampere

Definition of the coulomb

web
Visit http://physics.nist.gov/cuu/Units/
ampere.html for more information.
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12.4

AMPÈRE’S LAW
Oersted’s 1819 discovery about deflected compass needles demonstrates that a
current-carrying conductor produces a magnetic field. Figure 30.8a shows how this
effect can be demonstrated in the classroom. Several compass needles are placed
in a horizontal plane near a long vertical wire. When no current is present in the
wire, all the needles point in the same direction (that of the Earth’s magnetic
field), as expected. When the wire carries a strong, steady current, the needles all
deflect in a direction tangent to the circle, as shown in Figure 30.8b. These obser-
vations demonstrate that the direction of the magnetic field produced by the cur-
rent in the wire is consistent with the right-hand rule described in Figure 30.3.
When the current is reversed, the needles in Figure 30.8b also reverse.

Because the compass needles point in the direction of B, we conclude that the
lines of B form circles around the wire, as discussed in the preceding section. By
symmetry, the magnitude of B is the same everywhere on a circular path centered
on the wire and lying in a plane perpendicular to the wire. By varying the current
and distance a from the wire, we find that B is proportional to the current and in-
versely proportional to the distance from the wire, as Equation 30.5 describes.

Now let us evaluate the product B � ds for a small length element ds on the cir-
cular path defined by the compass needles, and sum the products for all elements
over the closed circular path. Along this path, the vectors ds and B are parallel at
each point (see Fig. 30.8b), so B � ds � B ds. Furthermore, the magnitude of B is
constant on this circle and is given by Equation 30.5. Therefore, the sum of the
products B ds over the closed path, which is equivalent to the line integral of
B � ds, is

where is the circumference of the circular path. Although this result
was calculated for the special case of a circular path surrounding a wire, it holds

�ds � 2�r

�B � ds � B �ds �
�0I
2�r

 (2�r) � �0I

30.3

Andre-Marie Ampère
(1775– 1836) Ampère, a Frenchman,
is credited with the discovery of elec-
tromagnetism — the relationship be-
tween electric currents and magnetic
fields. Ampère’s genius, particularly in
mathematics, became evident by the
time he was 12 years old; his personal
life, however, was filled with tragedy.
His father, a wealthy city official, was
guillotined during the French Revolu-
tion, and his wife died young, in 1803.
Ampère died at the age of 61 of pneu-
monia. His judgment of his life is clear
from the epitaph he chose for his
gravestone: Tandem Felix (Happy at
Last). (AIP Emilio Segre Visual Archive)

(a) (b)

I  =  0

I

ds

B

Figure 30.8 (a) When no current is present in the wire, all compass needles point in the same
direction (toward the Earth’s north pole). (b) When the wire carries a strong current, the com-
pass needles deflect in a direction tangent to the circle, which is the direction of the magnetic
field created by the current. (c) Circular magnetic field lines surrounding a current-carrying con-
ductor, displayed with iron filings.

(c)
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for a closed path of any shape surrounding a current that exists in an unbroken cir-
cuit. The general case, known as Ampère’s law, can be stated as follows:

The line integral of B �ds around any closed path equals �0I, where I is the total
continuous current passing through any surface bounded by the closed path.

(30.13)�B � ds � �0IAmpère’s law

Ampère’s law describes the creation of magnetic fields by all continuous cur-
rent configurations, but at our mathematical level it is useful only for calculating
the magnetic field of current configurations having a high degree of symmetry. Its
use is similar to that of Gauss’s law in calculating electric fields for highly symmet-
ric charge distributions.

Rank the magnitudes of for the closed paths in Figure 30.9, from least to greatest.�B � ds

Quick Quiz 30.3

Rank the magnitudes of for the closed paths in Figure 30.10, from least to greatest.�B � ds

Quick Quiz 30.4

×

1 A
5 A

b

a

d

c

2 A

a

b

c

d

Figure 30.9 Four closed paths around three current-
carrying wires.

Figure 30.10 Several closed paths near a single 
current-carrying wire.
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The Magnetic Field Created by a Long Current-Carrying WireEXAMPLE 30.4
by circle 2 must equal the ratio of the area �r 2 enclosed by
circle 2 to the cross-sectional area �R 2 of the wire:2

Following the same procedure as for circle 1, we apply Am-
père’s law to circle 2:

(for r � R) (30.15)

This result is similar in form to the expression for the electric
field inside a uniformly charged sphere (see Example 24.5).
The magnitude of the magnetic field versus r for this configu-
ration is plotted in Figure 30.12. Note that inside the wire, 
B : 0 as r : 0. Note also that Equations 30.14 and 30.15 give
the same value of the magnetic field at r � R , demonstrating
that the magnetic field is continuous at the surface of the
wire.

B � � �0 I0

2�R 2 �r

�B � ds � B(2�r) � �0 I � �0� r 2

R 2  I0�

 I �
r 2

R 2  I0

I
I0

�
�r 2

�R 2

A long, straight wire of radius R carries a steady current I0
that is uniformly distributed through the cross-section of the
wire (Fig. 30.11). Calculate the magnetic field a distance r
from the center of the wire in the regions and 

Solution For the case, we should get the same result
we obtained in Example 30.1, in which we applied the
Biot–Savart law to the same situation. Let us choose for our
path of integration circle 1 in Figure 30.11. From symmetry,
B must be constant in magnitude and parallel to ds at every
point on this circle. Because the total current passing
through the plane of the circle is I0, Ampère’s law gives

(for r � R) (30.14)

which is identical in form to Equation 30.5. Note how much
easier it is to use Ampère’s law than to use the Biot–Savart
law. This is often the case in highly symmetric situations.

Now consider the interior of the wire, where r � R. Here
the current I passing through the plane of circle 2 is less than
the total current I0 . Because the current is uniform over the
cross-section of the wire, the fraction of the current enclosed

B �
�0 I0

2�r

�B � ds � B�ds � B(2�r) � �0 I0

r � R

r � R.r � R

2 Another way to look at this problem is to see that the current enclosed by circle 2 must equal the
product of the current density and the area �r 2 of this circle.J � I0/�R 2

2
R

r

1 I0

ds R
r

B ∝ 1/r

B ∝ r

B

Figure 30.11 A long, straight wire of radius R carrying a steady
current I0 uniformly distributed across the cross-section of the wire.
The magnetic field at any point can be calculated from Ampère’s law
using a circular path of radius r, concentric with the wire.

Figure 30.12 Magnitude of the magnetic field versus r for the
wire shown in Figure 30.11. The field is proportional to r inside the
wire and varies as 1/r outside the wire.

The Magnetic Field Created by a ToroidEXAMPLE 30.5
ing N closely spaced turns of wire, calculate the magnetic
field in the region occupied by the torus, a distance r from
the center.

A device called a toroid (Fig. 30.13) is often used to create an
almost uniform magnetic field in some enclosed area. The
device consists of a conducting wire wrapped around a ring
(a torus) made of a nonconducting material. For a toroid hav-
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Magnetic Field Created by an Infinite Current SheetEXAMPLE 30.6
the electric field due to an infinite sheet of charge does not
depend on distance from the sheet. Thus, we might expect a
similar result here for the magnetic field.

To evaluate the line integral in Ampère’s law, let us take a
rectangular path through the sheet, as shown in Figure 30.14.
The rectangle has dimensions � and w , with the sides of
length � parallel to the sheet surface. The net current passing
through the plane of the rectangle is Js�. We apply Ampère’s
law over the rectangle and note that the two sides of length w
do not contribute to the line integral because the component
of B along the direction of these paths is zero. By symmetry,
we can argue that the magnetic field is constant over the
sides of length � because every point on the infinitely large
sheet is equivalent, and hence the field should not vary from
point to point. The only choices of field direction that are
reasonable for the symmetry are perpendicular or parallel to
the sheet, and a perpendicular field would pass through the
current, which is inconsistent with the Biot–Savart law. As-
suming a field that is constant in magnitude and parallel to
the plane of the sheet, we obtain

This result shows that the magnetic field is independent of distance
from the current sheet, as we suspected.

B � �0 
Js

2

 2B� � �0 Js � 

�B � ds � �0 I � �0 Js �

So far we have imagined currents through wires of small
cross-section. Let us now consider an example in which a cur-
rent exists in an extended object. A thin, infinitely large sheet
lying in the yz plane carries a current of linear current density
Js . The current is in the y direction, and Js represents the cur-
rent per unit length measured along the z axis. Find the mag-
netic field near the sheet.

Solution This situation brings to mind similar calculations
involving Gauss’s law (see Example 24.8). You may recall that

Solution To calculate this field, we must evaluate 
over the circle of radius r in Figure 30.13. By symmetry, we
see that the magnitude of the field is constant on this circle
and tangent to it, so Furthermore, note thatB � ds � B ds.

�B � ds the circular closed path surrounds N loops of wire, each of
which carries a current I. Therefore, the right side of Equa-
tion 30.13 is �0NI in this case.

Ampère’s law applied to the circle gives

(30.16)

This result shows that B varies as 1/r and hence is nonuni-
form in the region occupied by the torus. However, if r is very
large compared with the cross-sectional radius of the torus,
then the field is approximately uniform inside the torus.

For an ideal toroid, in which the turns are closely spaced,
the external magnetic field is zero. This can be seen by not-
ing that the net current passing through any circular path ly-
ing outside the toroid (including the region of the “hole in
the doughnut”) is zero. Therefore, from Ampère’s law we
find that in the regions exterior to the torus.B � 0

B �
�0NI
2�r

�B � ds � B �ds � B(2�r) � �0NI

�

w

x

z

Js(out of page)

B

B

B

r

a

ds

I

I

Figure 30.13 A toroid consisting of many turns of wire. If the
turns are closely spaced, the magnetic field in the interior of the
torus (the gold-shaded region) is tangent to the dashed circle and
varies as 1/r. The field outside the toroid is zero. The dimension a is
the cross-sectional radius of the torus.

Figure 30.14 End view of an infinite current sheet lying in the yz
plane, where the current is in the y direction (out of the page). This
view shows the direction of B on both sides of the sheet.
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Is a net force acting on the current loop in Example 30.7? A net torque?

THE MAGNETIC FIELD OF A SOLENOID
A solenoid is a long wire wound in the form of a helix. With this configuration, a
reasonably uniform magnetic field can be produced in the space surrounded by
the turns of wire—which we shall call the interior of the solenoid—when the sole-
noid carries a current. When the turns are closely spaced, each can be approxi-
mated as a circular loop, and the net magnetic field is the vector sum of the fields
resulting from all the turns.

Figure 30.16 shows the magnetic field lines surrounding a loosely wound sole-
noid. Note that the field lines in the interior are nearly parallel to one another, are
uniformly distributed, and are close together, indicating that the field in this space
is uniform and strong. The field lines between current elements on two adjacent
turns tend to cancel each other because the field vectors from the two elements
are in opposite directions. The field at exterior points such as P is weak because
the field due to current elements on the right-hand portion of a turn tends to can-
cel the field due to current elements on the left-hand portion.

30.4

Quick Quiz 30.5

The Magnetic Force on a Current SegmentEXAMPLE 30.7
consider the force exerted by wire 1 on a small segment ds of
wire 2 by using Equation 29.4. This force is given by

where and B is the magnetic field cre-
ated by the current in wire 1 at the position of ds. From Am-
père’s law, the field at a distance x from wire 1 (see Eq.
30.14) is

where the unit vector � k is used to indicate that the field 
at ds points into the page. Because wire 2 is along the x axis,
ds � dx i, and we find that

Integrating over the limits x � a to x � a 
 b gives

The force points in the positive y direction, as indicated by
the unit vector j and as shown in Figure 30.15.

Exercise What are the magnitude and direction of the
force exerted on the bottom wire of length b?

Answer The force has the same magnitude as the force on
wire 2 but is directed downward.

�0 I1I2

2�
 ln�1 


b
a � jFB �

�0 I1I2

2�
 ln x�

a

a
b
 j �

dFB �
�0 I1I2

2�x
 [ i � (� k)]dx �

�0 I1I2

2�
 
dx
x

 j

B �
�0 I1

2�x
 (� k)

I � I2dFB � I ds � B,

Wire 1 in Figure 30.15 is oriented along the y axis and carries
a steady current I1 . A rectangular loop located to the right of
the wire and in the xy plane carries a current I2 . Find the
magnetic force exerted by wire 1 on the top wire of length b
in the loop, labeled “Wire 2” in the figure.

Solution You may be tempted to use Equation 30.12 to
obtain the force exerted on a small segment of length dx of
wire 2. However, this equation applies only to two parallel
wires and cannot be used here. The correct approach is to

Wire 1 Wire 2

×

y

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

I1 x

I2

ds

ba

FB

Figure 30.15

P

Exterior

Interior

Figure 30.16 The magnetic field
lines for a loosely wound solenoid.
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If the turns are closely spaced and the solenoid is of finite length, the mag-
netic field lines are as shown in Figure 30.17a. This field line distribution is similar
to that surrounding a bar magnet (see Fig. 30.17b). Hence, one end of the sole-
noid behaves like the north pole of a magnet, and the opposite end behaves like
the south pole. As the length of the solenoid increases, the interior field becomes
more uniform and the exterior field becomes weaker. An ideal solenoid is ap-
proached when the turns are closely spaced and the length is much greater than
the radius of the turns. In this case, the external field is zero, and the interior field
is uniform over a great volume.

S

N

Figure 30.17 (a) Magnetic field lines for a tightly wound solenoid of finite length, carrying a
steady current. The field in the interior space is nearly uniform and strong. Note that the field
lines resemble those of a bar magnet, meaning that the solenoid effectively has north and south
poles. (b) The magnetic field pattern of a bar magnet, displayed with small iron filings on a sheet
of paper.

3

2

4

1 �

w

B

×
×
×
×
×
×
×
×
×
×
×

Figure 30.18 Cross-sectional view of an ideal solenoid,
where the interior magnetic field is uniform and the ex-
terior field is zero. Ampère’s law applied to the red
dashed path can be used to calculate the magnitude of
the interior field.

A technician studies the scan of a
patient’s head. The scan was ob-
tained using a medical diagnostic
technique known as magnetic reso-
nance imaging (MRI). This instru-
ment makes use of strong magnetic
fields produced by superconduct-
ing solenoids.

(a) (b)
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We can use Ampère’s law to obtain an expression for the interior magnetic
field in an ideal solenoid. Figure 30.18 shows a longitudinal cross-section of part of
such a solenoid carrying a current I. Because the solenoid is ideal, B in the inte-
rior space is uniform and parallel to the axis, and B in the exterior space is zero.
Consider the rectangular path of length � and width w shown in Figure 30.18. We
can apply Ampère’s law to this path by evaluating the integral of over each
side of the rectangle. The contribution along side 3 is zero because in this
region. The contributions from sides 2 and 4 are both zero because B is perpen-
dicular to ds along these paths. Side 1 gives a contribution B� to the integral be-
cause along this path B is uniform and parallel to ds. The integral over the closed
rectangular path is therefore

The right side of Ampère’s law involves the total current passing through the
area bounded by the path of integration. In this case, the total current through
the rectangular path equals the current through each turn multiplied by the num-
ber of turns. If N is the number of turns in the length �, the total current through
the rectangle is NI. Therefore, Ampère’s law applied to this path gives

(30.17)

where is the number of turns per unit length.
We also could obtain this result by reconsidering the magnetic field of a toroid

(see Example 30.5). If the radius r of the torus in Figure 30.13 containing N turns
is much greater than the toroid’s cross-sectional radius a, a short section of the
toroid approximates a solenoid for which In this limit, Equation 30.16
agrees with Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the
ends) of a very long solenoid. As you might expect, the field near each end is
smaller than the value given by Equation 30.17. At the very end of a long solenoid,
the magnitude of the field is one-half the magnitude at the center.

MAGNETIC FLUX
The flux associated with a magnetic field is defined in a manner similar to that
used to define electric flux (see Eq. 24.3). Consider an element of area dA on an
arbitrarily shaped surface, as shown in Figure 30.19. If the magnetic field at this el-
ement is B, the magnetic flux through the element is where dA is a vector
that is perpendicular to the surface and has a magnitude equal to the area dA.
Hence, the total magnetic flux B through the surface is

(30.18)B � �B � dA

B � dA,

30.5

n � N/2�r.

n � N/�

B � �0 
N
�

 I � �0nI

�B � ds � B� � �0NI

�B � ds � �
path 1

B � ds � B �
path 1

ds � B�

B � 0
B � ds

Magnetic field inside a solenoid

Definition of magnetic flux

web
For a more detailed discussion of the
magnetic field along the axis of a solenoid,
visit www.saunderscollege.com/physics/

12.5

QuickLab
Wrap a few turns of wire around a
compass, essentially putting the com-
pass inside a solenoid. Hold the ends
of the wire to the two terminals of a
flashlight battery. What happens to
the compass? Is the effect as strong
when the compass is outside the turns
of wire?
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Consider the special case of a plane of area A in a uniform field B that makes
an angle � with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.20a, then � � 90° and
the flux is zero. If the field is perpendicular to the plane, as in Figure 30.20b, then
� � 0 and the flux is BA (the maximum value).

The unit of flux is the which is defined as a weber (Wb); 1 
1 T �m2.

Wb �T�m2,

B � BA cos �

Magnetic Flux Through a Rectangular LoopEXAMPLE 30.8

The factor 1/r indicates that the field varies over the loop,
and Figure 30.21 shows that the field is directed into the
page. Because B is parallel to dA at any point within the loop,
the magnetic flux through an area element dA is

(Because B is not uniform but depends on r, it cannot be re-
moved from the integral.)

To integrate, we first express the area element (the tan re-
gion in Fig. 30.21) as Because r is now the only
variable in the integral, we have

Exercise Apply the series expansion formula for ln(1 
 x)
(see Appendix B.5) to this equation to show that it gives a
reasonable result when the loop is far from the wire relative
to the loop dimensions (in other words, when 

Answer B : 0.

c W a).

�0 Ib
2�

 ln�1 

a
c � �

�0 Ib
2�

 ln� a 
 c
c � �

B �
�0 Ib
2�

 �a
c

c
 
dr
r

�
�0 Ib
2�

 ln r �
c

a
c

dA � b dr.

B � �B dA � � �0 I
2�r

 dA

B �
�0 I
2�r

A rectangular loop of width a and length b is located near a
long wire carrying a current I (Fig. 30.21). The distance be-
tween the wire and the closest side of the loop is c . The wire
is parallel to the long side of the loop. Find the total mag-
netic flux through the loop due to the current in the wire.

Solution From Equation 30.14, we know that the magni-
tude of the magnetic field created by the wire at a distance r
from the wire is

Figure 30.19 The magnetic flux
through an area element dA is

cos �, where dA is a
vector perpendicular to the sur-
face.

B � d A � BdA

B

d A θ

(a) (b)

B

dA

B

dA

Figure 30.20 Magnetic flux through a plane lying in a magnetic field. (a) The flux through
the plane is zero when the magnetic field is parallel to the plane surface. (b) The flux through
the plane is a maximum when the magnetic field is perpendicular to the plane.

b
rI

c a

dr
× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

Figure 30.21 The magnetic field due to the wire carrying a cur-
rent I is not uniform over the rectangular loop.
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This statement is based on the experimental fact, mentioned in the opening of
Chapter 29, that isolated magnetic poles (monopoles) have never been de-
tected and perhaps do not exist. Nonetheless, scientists continue the search be-

GAUSS’S LAW IN MAGNETISM
In Chapter 24 we found that the electric flux through a closed surface surround-
ing a net charge is proportional to that charge (Gauss’s law). In other words, the
number of electric field lines leaving the surface depends only on the net charge
within it. This property is based on the fact that electric field lines originate and
terminate on electric charges.

The situation is quite different for magnetic fields, which are continuous and
form closed loops. In other words, magnetic field lines do not begin or end at any
point—as illustrated by the magnetic field lines of the bar magnet in Figure 30.22.
Note that for any closed surface, such as the one outlined by the dashed red line
in Figure 30.22, the number of lines entering the surface equals the number leav-
ing the surface; thus, the net magnetic flux is zero. In contrast, for a closed surface
surrounding one charge of an electric dipole (Fig. 30.23), the net electric flux is
not zero.

Gauss’s law in magnetism states that

30.6

the net magnetic flux through any closed surface is always zero:

(30.20)�B � dA � 0 Gauss’s law for magnetism

12.5

N

S

–

+

Figure 30.22 The magnetic field
lines of a bar magnet form closed
loops. Note that the net magnetic
flux through the closed surface
(dashed red line) surrounding one
of the poles (or any other closed
surface) is zero.

Figure 30.23 The electric field
lines surrounding an electric di-
pole begin on the positive charge
and terminate on the negative
charge. The electric flux through a
closed surface surrounding one of
the charges is not zero.
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cause certain theories that are otherwise successful in explaining fundamental
physical behavior suggest the possible existence of monopoles.

DISPLACEMENT CURRENT AND THE GENERAL
FORM OF AMPÈRE’S LAW

We have seen that charges in motion produce magnetic fields. When a current-
carrying conductor has high symmetry, we can use Ampère’s law to calculate the mag-
netic field it creates. In Equation 30.13, the line integral is over any
closed path through which the conduction current passes, and the conduction cur-
rent is defined by the expression (In this section we use the term conduc-
tion current to refer to the current carried by the wire, to distinguish it from a new type
of current that we shall introduce shortly.) We now show that Ampère’s law in this
form is valid only if any electric fields present are constant in time. Maxwell
recognized this limitation and modified Ampère’s law to include time-varying electric
fields.

We can understand the problem by considering a capacitor that is being
charged as illustrated in Figure 30.24. When a conduction current is present, the
charge on the positive plate changes but no conduction current passes across the gap be-
tween the plates. Now consider the two surfaces S1 and S2 in Figure 30.24, bounded
by the same path P. Ampère’s law states that around this path must equal
�0I, where I is the total current through any surface bounded by the path P.

When the path P is considered as bounding S1 , is �0I because the con-
duction current passes through S1 . When the path is considered as bounding S2 ,
however, because no conduction current passes through S2 . Thus, we ar-
rive at a contradictory situation that arises from the discontinuity of the current! Max-
well solved this problem by postulating an additional term on the right side of Equa-
tion 30.13, which includes a factor called the displacement current Id , defined as3

(30.21)

where �0 is the permittivity of free space (see Section 23.3) and is the
electric flux (see Eq. 24.3).

As the capacitor is being charged (or discharged), the changing electric field
between the plates may be considered equivalent to a current that acts as a contin-
uation of the conduction current in the wire. When the expression for the dis-
placement current given by Equation 30.21 is added to the conduction current on
the right side of Ampère’s law, the difficulty represented in Figure 30.24 is re-
solved. No matter which surface bounded by the path P is chosen, either conduc-
tion current or displacement current passes through it. With this new term Id , 
we can express the general form of Ampère’s law (sometimes called the
Ampère–Maxwell law) as4

(30.22)�B � d s � �0(I 
 Id) � �0I 
 �0�0 
dE

dt

E � �E � dA

Id � �0 
dE

dt

�B � ds � 0

�B � ds

�B � ds

I � dq/dt.

�B � ds � �0I,

30.7

Ampère–Maxwell law

3 Displacement in this context does not have the meaning it does in Chapter 2. Despite the inaccurate
implications, the word is historically entrenched in the language of physics, so we continue to use it.
4 Strictly speaking, this expression is valid only in a vacuum. If a magnetic material is present, one must
change �0 and �0 on the right-hand side of Equation 30.22 to the permeability �m and permittivity �
characteristic of the material. Alternatively, one may include a magnetizing current Im on the righthand
side of Equation 30.22 to make Ampère’s law fully general. On a microscopic scale, Im is as real as I.

Displacement current

12.9

Path P

A

–Q

S1

S2

Q

I

Figure 30.24 Two surfaces S1
and S2 near the plate of a capacitor
are bounded by the same path P.
The conduction current in the 
wire passes only through S1 . 
This leads to a contradiction in
Ampère’s law that is resolved 
only if one postulates a displace-
ment current through S2 .
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We can understand the meaning of this expression by referring to Figure 30.25.
The electric flux through surface S2 is where A is the area of
the capacitor plates and E is the magnitude of the uniform electric field between
the plates. If Q is the charge on the plates at any instant, then (see
Section 26.2). Therefore, the electric flux through S2 is simply

Hence, the displacement current through S2 is

(30.23)

That is, the displacement current through S2 is precisely equal to the conduction
current I through S1 !

By considering surface S2 , we can identify the displacement current as the
source of the magnetic field on the surface boundary. The displacement current
has its physical origin in the time-varying electric field. The central point of this
formalism, then, is that

Id � �0 
dE

dt
�

dQ
dt

E � EA �
Q
�0

E � Q /�0A

E � �E � dA � EA,

magnetic fields are produced both by conduction currents and by time-varying
electric fields.

Displacement Current in a CapacitorEXAMPLE 30.9
the capacitor is to find the displacement current:

The displacement current varies sinusoidally with time and
has a maximum value of 4.52 A.

(4.52 A) cos(1.88 � 104t) �

 � (8.00 � 10�6  F) 
d
dt

 [(30.0 V) sin(1.88 � 104t)]

Id �
dQ
dt

�
d
dt

 (C �V ) � C 
d
dt

 (�V ) 

Q � C �VA sinusoidally varying voltage is applied across an 8.00-�F ca-
pacitor. The frequency of the voltage is 3.00 kHz, and the
voltage amplitude is 30.0 V. Find the displacement current
between the plates of the capacitor.

Solution The angular frequency of the source, from Equa-
tion 13.6, is � � 2�f � 2�(3.00 � 103 Hz) � 1.88 � 104 s�1.
Hence, the voltage across the capacitor in terms of t is

We can use Equation 30.23 and the fact that the charge on

�V � �Vmax sin �t � (30.0 V) sin(1.88 � 104t)

This result was a remarkable example of theoretical work by Maxwell, and it con-
tributed to major advances in the understanding of electromagnetism.

What is the displacement current for a fully charged 3-�F capacitor?

Quick Quiz 30.6

E–Q

S2
S1

Q

II

Figure 30.25 Because it exists only in the
wires attached to the capacitor plates, the
conduction current passes
through S1 but not through S2 . Only the dis-
placement current passes
through S2 . The two currents must be equal
for continuity.

I d � �0 d E /dt

I � dQ /dt
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Optional Section

MAGNETISM IN MATTER
The magnetic field produced by a current in a coil of wire gives us a hint as to
what causes certain materials to exhibit strong magnetic properties. Earlier we
found that a coil like the one shown in Figure 30.17 has a north pole and a south
pole. In general, any current loop has a magnetic field and thus has a magnetic di-
pole moment, including the atomic-level current loops described in some models
of the atom. Thus, the magnetic moments in a magnetized substance may be de-
scribed as arising from these atomic-level current loops. For the Bohr model of the
atom, these current loops are associated with the movement of electrons around
the nucleus in circular orbits. In addition, a magnetic moment is intrinsic to elec-
trons, protons, neutrons, and other particles; it arises from a property called spin.

The Magnetic Moments of Atoms

It is instructive to begin our discussion with a classical model of the atom in which
electrons move in circular orbits around the much more massive nucleus. In this
model, an orbiting electron constitutes a tiny current loop (because it is a moving
charge), and the magnetic moment of the electron is associated with this orbital mo-
tion. Although this model has many deficiencies, its predictions are in good agree-
ment with the correct theory, which is expressed in terms of quantum physics.

Consider an electron moving with constant speed v in a circular orbit of radius
r about the nucleus, as shown in Figure 30.26. Because the electron travels a dis-
tance of 2�r (the circumference of the circle) in a time T, its orbital speed is

The current I associated with this orbiting electron is its charge e di-
vided by T. Using and we have

The magnetic moment associated with this current loop is where 
is the area enclosed by the orbit. Therefore,

(30.24)

Because the magnitude of the orbital angular momentum of the electron is
(Eq. 11.16 with � � 90°), the magnetic moment can be written as

(30.25)

This result demonstrates that the magnetic moment of the electron is propor-
tional to its orbital angular momentum. Note that because the electron is nega-
tively charged, the vectors � and L point in opposite directions. Both vectors are
perpendicular to the plane of the orbit, as indicated in Figure 30.26.

A fundamental outcome of quantum physics is that orbital angular momen-
tum is quantized and is equal to multiples of where
h is Planck’s constant. The smallest nonzero value of the electron’s magnetic mo-
ment resulting from its orbital motion is

(30.26)

We shall see in Chapter 42 how expressions such as Equation 30.26 arise.

� � !2 
e

2me
 �

� � h/2� � 1.05 � 10�34 J �s,

� � � e
2me

�L

L � mevr

� � IA � � ev
2�r ��r 2 � 1

2evr

A � �r 2� � IA,

I �
e
T

�
e�

2�
�

ev
2�r

� � v/r,T � 2�/�
v � 2�r /T.

30.8

Orbital magnetic moment

Angular momentum is quantized

r

µ

L

Figure 30.26 An electron mov-
ing in a circular orbit of radius r
has an angular momentum L in
one direction and a magnetic mo-
ment � in the opposite direction.
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Because all substances contain electrons, you may wonder why not all sub-
stances are magnetic. The main reason is that in most substances, the magnetic
moment of one electron in an atom is canceled by that of another electron orbit-
ing in the opposite direction. The net result is that, for most materials, the mag-
netic effect produced by the orbital motion of the electrons is either zero or
very small.

In addition to its orbital magnetic moment, an electron has an intrinsic prop-
erty called spin that also contributes to its magnetic moment. In this regard, the
electron can be viewed as spinning about its axis while it orbits the nucleus, as
shown in Figure 30.27. (Warning: This classical description should not be taken lit-
erally because spin arises from relativistic dynamics that must be incorporated into
a quantum-mechanical analysis.) The magnitude of the angular momentum S as-
sociated with spin is of the same order of magnitude as the angular momentum L
due to the orbital motion. The magnitude of the spin angular momentum pre-
dicted by quantum theory is

The magnetic moment characteristically associated with the spin of an electron has
the value

(30.27)

This combination of constants is called the Bohr magneton:

(30.28)

Thus, atomic magnetic moments can be expressed as multiples of the Bohr mag-
neton. (Note that 1 J/T � 1 A � m2.)

In atoms containing many electrons, the electrons usually pair up with their
spins opposite each other; thus, the spin magnetic moments cancel. However,
atoms containing an odd number of electrons must have at least one unpaired
electron and therefore some spin magnetic moment. The total magnetic moment
of an atom is the vector sum of the orbital and spin magnetic moments, and a few
examples are given in Table 30.1. Note that helium and neon have zero moments
because their individual spin and orbital moments cancel.

The nucleus of an atom also has a magnetic moment associated with its con-
stituent protons and neutrons. However, the magnetic moment of a proton or
neutron is much smaller than that of an electron and can usually be neglected. We
can understand this by inspecting Equation 30.28 and replacing the mass of the
electron with the mass of a proton or a neutron. Because the masses of the proton
and neutron are much greater than that of the electron, their magnetic moments
are on the order of 103 times smaller than that of the electron.

Magnetization Vector and Magnetic Field Strength

The magnetic state of a substance is described by a quantity called the magnetiza-
tion vector M. The magnitude of this vector is defined as the magnetic mo-
ment per unit volume of the substance. As you might expect, the total magnetic
field B at a point within a substance depends on both the applied (external) field
B0 and the magnetization of the substance. 

To understand the problems involved in measuring the total magnetic field B
in such situations, consider this: Scientists use small probes that utilize the Hall ef-

�B �
e�

2me
� 9.27 � 10�24 J/T

� spin �
e�

2me

S �
!3
2

 �
Spin angular momentum

Bohr magneton

TABLE 30.1
Magnetic Moments of Some
Atoms and Ions

Atom Magnetic Moment
or Ion (10�24 J/T)

H 9.27
He 0
Ne 0
Ce3
 19.8
Yb3
 37.1

spinµµ

Figure 30.27 Classical model of
a spinning electron. This model
gives an incorrect magnitude for
the magnetic moment, incorrect
quantum numbers, and too many
degrees of freedom.

Magnetization vector M
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fect (see Section 29.6) to measure magnetic fields. What would such a probe read
if it were positioned inside the solenoid mentioned in the QuickLab on page 951
when you inserted the compass? Because the compass is a magnetic material, the
probe would measure a total magnetic field B that is the sum of the solenoid (ex-
ternal) field B0 and the (magnetization) field Bm due to the compass. This tells us
that we need a way to distinguish between magnetic fields originating from cur-
rents and those originating from magnetic materials. Consider a region in which a
magnetic field B0 is produced by a current-carrying conductor. If we now fill that
region with a magnetic substance, the total magnetic field B in the region is

where Bm is the field produced by the magnetic substance. We can
express this contribution in terms of the magnetization vector of the substance as

hence, the total magnetic field in the region becomes

(30.29)

When analyzing magnetic fields that arise from magnetization, it is convenient
to introduce a field quantity, called the magnetic field strength H within the
substance. The magnetic field strength represents the effect of the conduction
currents in wires on a substance. To emphasize the distinction between the field
strength H and the field B, the latter is often called the magnetic flux density or the
magnetic induction. The magnetic field strength is a vector defined by the relation-
ship Thus, Equation 30.29 can be written

(30.30)

The quantities H and M have the same units. In SI units, because M is magnetic
moment per unit volume, the units are (ampere)(meter)2/(meter)3, or amperes
per meter.

To better understand these expressions, consider the torus region of a toroid
that carries a current I. If this region is a vacuum, M � 0 (because no magnetic
material is present), the total magnetic field is that arising from the current alone,
and Because in the torus region, where n is the num-
ber of turns per unit length of the toroid, or

(30.31)

In this case, the magnetic field B in the torus region is due only to the current in
the windings of the toroid.

If the torus is now made of some substance and the current I is kept constant, H
in the torus region remains unchanged (because it depends on the current only)
and has magnitude nI. The total field B, however, is different from that when the
torus region was a vacuum. From Equation 30.30, we see that part of B arises from
the term �0H associated with the current in the toroid, and part arises from the
term �0M due to the magnetization of the substance of which the torus is made.

Classification of Magnetic Substances

Substances can be classified as belonging to one of three categories, depending on
their magnetic properties. Paramagnetic and ferromagnetic materials are those
made of atoms that have permanent magnetic moments. Diamagnetic materials
are those made of atoms that do not have permanent magnetic moments.

For paramagnetic and diamagnetic substances, the magnetization vector M is
proportional to the magnetic field strength H. For these substances placed in an
external magnetic field, we can write

(30.32)M � �H

H � nI

H � B0/�0 � �0nI/�0 ,
B0 � �0nIB � B0 � �0H.

B � �0(H 
 M)

H � B0/�0 � (B/�0) � M.

B � B0 
 �0M

Bm � �0M;

B � B0 
 Bm ,

Oxygen, a paramagnetic substance,
is attracted to a magnetic field. The
liquid oxygen in this photograph is
suspended between the poles of
the magnet.

Magnetic field strength H
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where � (Greek letter chi) is a dimensionless factor called the magnetic suscepti-
bility. For paramagnetic substances, � is positive and M is in the same direction 
as H. For diamagnetic substances, � is negative and M is opposite H. (It is im-
portant to note that this linear relationship between M and H does not apply to
ferromagnetic substances.) The susceptibilities of some substances are given in
Table 30.2.

Substituting Equation 30.32 for M into Equation 30.30 gives

or

(30.33)

where the constant �m is called the magnetic permeability of the substance and
is related to the susceptibility by

(30.34)

Substances may be classified in terms of how their magnetic permeability �m
compares with �0 (the permeability of free space), as follows:

Because � is very small for paramagnetic and diamagnetic substances (see Table
30.2), �m is nearly equal to �0 for these substances. For ferromagnetic substances,
however, �m is typically several thousand times greater than �0 (meaning that � is
very great for ferromagnetic substances). 

Although Equation 30.33 provides a simple relationship between B and H, we
must interpret it with care when dealing with ferromagnetic substances. As men-
tioned earlier, M is not a linear function of H for ferromagnetic substances. This is
because the value of �m is not only a characteristic of the ferromagnetic substance
but also depends on the previous state of the substance and on the process it un-
derwent as it moved from its previous state to its present one. We shall investigate
this more deeply after the following example.

 Diamagnetic  �m � �0

Paramagnetic  �m � �0

�m � �0(1 
 �)

B � �mH

B � �0(H 
 M) � �0(H 
 �H) � �0(1 
 �)H

TABLE 30.2 Magnetic Susceptibilities of Some Paramagnetic and
Diamagnetic Substances at 300 K

Paramagnetic Diamagnetic
Substance � Substance �

Aluminum 2.3 � 10�5 Bismuth � 1.66 � 10�5

Calcium 1.9 � 10�5 Copper � 9.8 � 10�6

Chromium 2.7 � 10�4 Diamond � 2.2 � 10�5

Lithium 2.1 � 10�5 Gold � 3.6 � 10�5

Magnesium 1.2 � 10�5 Lead � 1.7 � 10�5

Niobium 2.6 � 10�4 Mercury � 2.9 � 10�5

Oxygen 2.1 � 10�6 Nitrogen � 5.0 � 10�9

Platinum 2.9 � 10�4 Silver � 2.6 � 10�5

Tungsten 6.8 � 10�5 Silicon � 4.2 � 10�6

Magnetic susceptibility �

Magnetic permeability �m
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A current in a solenoid having air in the interior creates a magnetic field De-
scribe qualitatively what happens to the magnitude of B as (a) aluminum, (b) copper, and
(c) iron are placed in the interior.

Ferromagnetism

A small number of crystalline substances in which the atoms have permanent mag-
netic moments exhibit strong magnetic effects called ferromagnetism. Some ex-
amples of ferromagnetic substances are iron, cobalt, nickel, gadolinium, and dys-
prosium. These substances contain atomic magnetic moments that tend to align
parallel to each other even in a weak external magnetic field. Once the moments
are aligned, the substance remains magnetized after the external field is removed.
This permanent alignment is due to a strong coupling between neighboring mo-
ments, a coupling that can be understood only in quantum-mechanical terms.

All ferromagnetic materials are made up of microscopic regions called do-
mains, regions within which all magnetic moments are aligned. These domains
have volumes of about 10�12 to 10�8 m3 and contain 1017 to 1021 atoms. The
boundaries between the various domains having different orientations are called
domain walls. In an unmagnetized sample, the domains are randomly oriented
so that the net magnetic moment is zero, as shown in Figure 30.28a. When the
sample is placed in an external magnetic field, the magnetic moments of the
atoms tend to align with the field, which results in a magnetized sample, as in Fig-
ure 30.28b. Observations show that domains initially oriented along the external
field grow larger at the expense of the less favorably oriented domains. When the
external field is removed, the sample may retain a net magnetization in the direc-
tion of the original field. At ordinary temperatures, thermal agitation is not suffi-
cient to disrupt this preferred orientation of magnetic moments.

A typical experimental arrangement that is used to measure the magnetic
properties of a ferromagnetic material consists of a torus made of the material
wound with N turns of wire, as shown in Figure 30.29, where the windings are rep-
resented in black and are referred to as the primary coil . This apparatus is some-
times referred to as a Rowland ring. A secondary coil (the red wires in Fig. 30.29)
connected to a galvanometer is used to measure the total magnetic flux through
the torus. The magnetic field B in the torus is measured by increasing the current
in the toroid from zero to I . As the current changes, the magnetic flux through

B � �0H.

Quick Quiz 30.7

An Iron-Filled ToroidEXAMPLE 30.10

This value of B is 5 000 times the value in the absence of iron!

Exercise Determine the magnitude of the magnetization
vector inside the iron torus.

Answer .M � 1.5 � 106 A/m

1.88 T � 5 000�4� � 10�7 
T �m

A ��300 
A � turns

m � �

B � �m H � 5 000�0H A toroid wound with 60.0 turns/m of wire carries a current of
5.00 A. The torus is iron, which has a magnetic permeability
of �m � 5 000�0 under the given conditions. Find H and B
inside the iron.

Solution Using Equations 30.31 and 30.33, we obtain

300 
A � turns

m
H � nI � �60.0 

turns
m �(5.00 A) �

(b)
B0

(a)

Figure 30.28 (a) Random orien-
tation of atomic magnetic moments
in an unmagnetized substance. 
(b) When an external field B0 is
applied, the atomic magnetic mo-
ments tend to align with the field,
giving the sample a net magnetiza-
tion vector M.
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the secondary coil changes by an amount BA, where A is the cross-sectional area of
the toroid. As we shall find in Chapter 31, because of this changing flux, an emf
that is proportional to the rate of change in magnetic flux is induced in the sec-
ondary coil. If the galvanometer is properly calibrated, a value for B correspond-
ing to any value of the current in the primary coil can be obtained. The magnetic
field B is measured first in the absence of the torus and then with the torus in
place. The magnetic properties of the torus material are then obtained from a
comparison of the two measurements.

Now consider a torus made of unmagnetized iron. If the current in the pri-
mary coil is increased from zero to some value I, the magnitude of the magnetic
field strength H increases linearly with I according to the expression Fur-
thermore, the magnitude of the total field B also increases with increasing current,
as shown by the curve from point O to point a in Figure 30.30. At point O, the do-
mains in the iron are randomly oriented, corresponding to As the increas-
ing current in the primary coil causes the external field B0 to increase, the do-
mains become more aligned until all of them are nearly aligned at point a. At this
point the iron core is approaching saturation, which is the condition in which all
domains in the iron are aligned.

Next, suppose that the current is reduced to zero, and the external field is
consequently eliminated. The B versus H curve, called a magnetization curve,
now follows the path ab in Figure 30.30. Note that at point b, B is not zero even
though the external field is The reason is that the iron is now magnetized
due to the alignment of a large number of its domains (that is, B � Bm). At this
point, the iron is said to have a remanent magnetization.

If the current in the primary coil is reversed so that the direction of the exter-
nal magnetic field is reversed, the domains reorient until the sample is again un-
magnetized at point c, where B � 0. An increase in the reverse current causes the
iron to be magnetized in the opposite direction, approaching saturation at point d
in Figure 30.30. A similar sequence of events occurs as the current is reduced to
zero and then increased in the original (positive) direction. In this case the mag-
netization curve follows the path def. If the current is increased sufficiently, the
magnetization curve returns to point a, where the sample again has its maximum
magnetization.

The effect just described, called magnetic hysteresis, shows that the magneti-
zation of a ferromagnetic substance depends on the history of the substance as
well as on the magnitude of the applied field. (The word hysteresis means “lagging
behind.”) It is often said that a ferromagnetic substance has a “memory” because it
remains magnetized after the external field is removed. The closed loop in Figure
30.30 is referred to as a hysteresis loop. Its shape and size depend on the proper-

B0 � 0.

Bm � 0.

H � nI.

QuickLab
You’ve probably done this experi-
ment before. Magnetize a nail by re-
peatedly dragging it across a bar mag-
net. Test the strength of the nail’s
magnetic field by picking up some pa-
per clips. Now hit the nail several
times with a hammer, and again test
the strength of its magnetism. Ex-
plain what happens in terms of do-
mains in the steel of the nail.

R

G

Sε

B

H

a

b

c

d

e

fO

Figure 30.29 A toroidal winding
arrangement used to measure the
magnetic properties of a material.
The torus is made of the material
under study, and the circuit con-
taining the galvanometer measures
the magnetic flux.

Figure 30.30 Magnetization curve for a ferromagnetic
material.
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ties of the ferromagnetic substance and on the strength of the maximum applied
field. The hysteresis loop for “hard” ferromagnetic materials is characteristically
wide like the one shown in Figure 30.31a, corresponding to a large remanent mag-
netization. Such materials cannot be easily demagnetized by an external field.
“Soft” ferromagnetic materials, such as iron, have a very narrow hysteresis loop
and a small remanent magnetization (Fig. 30.31b.) Such materials are easily mag-
netized and demagnetized. An ideal soft ferromagnet would exhibit no hysteresis
and hence would have no remanent magnetization. A ferromagnetic substance
can be demagnetized by being carried through successive hysteresis loops, due to a
decreasing applied magnetic field, as shown in Figure 30.32.

Which material would make a better permanent magnet, one whose hysteresis loop looks
like Figure 30.31a or one whose loop looks like Figure 30.31b?

The magnetization curve is useful for another reason: The area enclosed by
the magnetization curve represents the work required to take the material
through the hysteresis cycle. The energy acquired by the material in the magne-
tization process originates from the source of the external field—that is, the emf
in the circuit of the toroidal coil. When the magnetization cycle is repeated, dissi-
pative processes within the material due to realignment of the domains result in a
transformation of magnetic energy into internal energy, which is evidenced by an
increase in the temperature of the substance. For this reason, devices subjected to
alternating fields (such as ac adapters for cell phones, power tools, and so on) use
cores made of soft ferromagnetic substances, which have narrow hysteresis loops
and correspondingly little energy loss per cycle.

Magnetic computer disks store information by alternating the direction of B
for portions of a thin layer of ferromagnetic material. Floppy disks have the layer
on a circular sheet of plastic. Hard disks have several rigid platters with magnetic
coatings on each side. Audio tapes and videotapes work the same way as floppy
disks except that the ferromagnetic material is on a very long strip of plastic. Tiny
coils of wire in a recording head are placed close to the magnetic material (which
is moving rapidly past the head). Varying the current through the coils creates a
magnetic field that magnetizes the recording material. To retrieve the informa-
tion, the magnetized material is moved past a playback coil. The changing magnet-
ism of the material induces a current in the coil, as we shall discuss in Chapter 31.
This current is then amplified by audio or video equipment, or it is processed by
computer circuitry.

Quick Quiz 30.8

B

H

(a)

B

H

(b)

B

H

Figure 30.31 Hysteresis loops for (a) a hard ferromagnetic material and (b) a soft ferromag-
netic material.

Figure 30.32 Demagnetizing a
ferromagnetic material by carrying
it through successive hysteresis
loops.
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Paramagnetism

Paramagnetic substances have a small but positive magnetic susceptibility
resulting from the presence of atoms (or ions) that have permanent

magnetic moments. These moments interact only weakly with each other and are
randomly oriented in the absence of an external magnetic field. When a paramag-
netic substance is placed in an external magnetic field, its atomic moments tend to
line up with the field. However, this alignment process must compete with thermal
motion, which tends to randomize the magnetic moment orientations.

Pierre Curie (1859–1906) and others since him have found experimentally
that, under a wide range of conditions, the magnetization of a paramagnetic sub-
stance is proportional to the applied magnetic field and inversely proportional to
the absolute temperature:

(30.35)

This relationship is known as Curie’s law after its discoverer, and the constant C
is called Curie’s constant. The law shows that when B0 � 0, the magnetization is
zero, corresponding to a random orientation of magnetic moments. As the ratio of
magnetic field to temperature becomes great, the magnetization approaches its
saturation value, corresponding to a complete alignment of its moments, and
Equation 30.35 is no longer valid.

When the temperature of a ferromagnetic substance reaches or exceeds a 
critical temperature called the Curie temperature, the substance loses its resid-
ual magnetization and becomes paramagnetic (Fig. 30.33). Below the Curie tem-
perature, the magnetic moments are aligned and the substance is ferromag-
netic. Above the Curie temperature, the thermal agitation is great enough to 
cause a random orientation of the moments, and the substance becomes para-
magnetic. Curie temperatures for several ferromagnetic substances are given in
Table 30.3.

Diamagnetism

When an external magnetic field is applied to a diamagnetic substance, a weak
magnetic moment is induced in the direction opposite the applied field. This
causes diamagnetic substances to be weakly repelled by a magnet. Although dia-
magnetism is present in all matter, its effects are much smaller than those of para-
magnetism or ferromagnetism, and are evident only when those other effects do
not exist.

We can attain some understanding of diamagnetism by considering a classical
model of two atomic electrons orbiting the nucleus in opposite directions but with
the same speed. The electrons remain in their circular orbits because of the attrac-
tive electrostatic force exerted by the positively charged nucleus. Because the mag-
netic moments of the two electrons are equal in magnitude and opposite in direc-
tion, they cancel each other, and the magnetic moment of the atom is zero. When
an external magnetic field is applied, the electrons experience an additional force

This added force combines with the electrostatic force to increase the or-
bital speed of the electron whose magnetic moment is antiparallel to the field and
to decrease the speed of the electron whose magnetic moment is parallel to the
field. As a result, the two magnetic moments of the electrons no longer cancel,
and the substance acquires a net magnetic moment that is opposite the applied
field.

qv � B.

M � C 
B0

T

(0 � � V 1)

web
Visit www.exploratorium.edu/snacks/
diamagnetism_www/index.html for an
experiment showing that grapes are
repelled by magnets!

TABLE 30.3
Curie Temperatures for
Several Ferromagnetic
Substances

Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893

Paramagnetic

Ferromagnetic

M

T
TCurie

Ms

0

Figure 30.33 Magnetization ver-
sus absolute temperature for a fer-
romagnetic substance. The mag-
netic moments are aligned below
the Curie temperature TCurie ,
where the substance is ferromag-
netic. The substance becomes para-
magnetic (magnetic moments un-
aligned) above TCurie .
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As you recall from Chapter 27, a superconductor is a substance in which the
electrical resistance is zero below some critical temperature. Certain types of su-
perconductors also exhibit perfect diamagnetism in the superconducting state. As
a result, an applied magnetic field is expelled by the superconductor so that the
field is zero in its interior. This phenomenon of flux expulsion is known as the
Meissner effect. If a permanent magnet is brought near a superconductor, 
the two objects repel each other. This is illustrated in Figure 30.34, which shows a
small permanent magnet levitated above a superconductor maintained at 77 K.

Saturation MagnetizationEXAMPLE 30.11
each atom contributes one Bohr magneton (due to one un-
paired spin) to the magnetic moment, we obtain

This is about one-half the experimentally determined satura-
tion magnetization for iron, which indicates that actually two
unpaired electron spins are present per atom.

8.0 � 105 A/m�

Ms � �8.6 � 1028 
atoms

m3 ��9.27 � 10�24 
A�m2

atom �

Estimate the saturation magnetization in a long cylinder of
iron, assuming one unpaired electron spin per atom.

Solution The saturation magnetization is obtained when
all the magnetic moments in the sample are aligned. If the
sample contains n atoms per unit volume, then the saturation
magnetization Ms has the value

where � is the magnetic moment per atom. Because the mo-
lar mass of iron is 55 g/mol and its density is 7.9 g/cm3, the
value of n for iron is 8.6 � 1028 atoms/m3. Assuming that

Ms � n�

Optional Section

THE MAGNETIC FIELD OF THE EARTH
When we speak of a compass magnet having a north pole and a south pole, we
should say more properly that it has a “north-seeking” pole and a “south-seeking”
pole. By this we mean that one pole of the magnet seeks, or points to, the north
geographic pole of the Earth. Because the north pole of a magnet is attracted to-
ward the north geographic pole of the Earth, we conclude that the Earth’s south
magnetic pole is located near the north geographic pole, and the Earth’s
north magnetic pole is located near the south geographic pole. In fact, the
configuration of the Earth’s magnetic field, pictured in Figure 30.35, is very much
like the one that would be achieved by burying a gigantic bar magnet deep in the
interior of the Earth.

30.9

web
For a more detailed description of the
unusual properties of superconductors,
visit www.saunderscollege.com/physics/

Figure 30.34 A small permanent mag-
net levitated above a disk of the supercon-
ductor YBa2Cu3O7 cooled to liquid nitro-
gen temperature (77 K).
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If a compass needle is suspended in bearings that allow it to rotate in the verti-
cal plane as well as in the horizontal plane, the needle is horizontal with respect to
the Earth’s surface only near the equator. As the compass is moved northward, the
needle rotates so that it points more and more toward the surface of the Earth. Fi-
nally, at a point near Hudson Bay in Canada, the north pole of the needle points
directly downward. This site, first found in 1832, is considered to be the location
of the south magnetic pole of the Earth. It is approximately 1 300 mi from the
Earth’s geographic North Pole, and its exact position varies slowly with time. Simi-
larly, the north magnetic pole of the Earth is about 1 200 mi away from the Earth’s
geographic South Pole.

Because of this distance between the north geographic and south magnetic
poles, it is only approximately correct to say that a compass needle points north.
The difference between true north, defined as the geographic North Pole, and
north indicated by a compass varies from point to point on the Earth, and the dif-
ference is referred to as magnetic declination. For example, along a line through
Florida and the Great Lakes, a compass indicates true north, whereas in Washing-
ton state, it aligns 25° east of true north.

QuickLab
A gold ring is very weakly repelled by
a magnet. To see this, suspend a 14-
or 18-karat gold ring on a long loop
of thread, as shown in (a). Gently tap
the ring and estimate its period of os-
cillation. Now bring the ring to rest,
letting it hang for a few moments so
that you can verify that it is not mov-
ing. Quickly bring a very strong mag-
net to within a few millimeters of the
ring, taking care not to bump it, as
shown in (b). Now pull the magnet
away. Repeat this action many times,
matching the oscillation period you
estimated earlier. This is just like
pushing a child on a swing. A small
force applied at the resonant fre-
quency results in a large-amplitude
oscillation. If you have a platinum
ring, you will be able to see a similar
effect except that platinum is weakly
attracted to a magnet because it is
paramagnetic.

(a) (b)

North
geographic

pole

South
magnetic

pole

Geographic
equator

South
geographic

pole

North
magnetic

pole

N

S

Magnetic equator

Figure 30.35 The Earth’s magnetic field lines. Note that a south magnetic pole is near the
north geographic pole, and a north magnetic pole is near the south geographic pole.

The north end of a compass needle points
to the south magnetic pole of the Earth.
The “north” compass direction varies from
true geographic north depending on the
magnetic declination at that point on the
Earth’s surface.
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If we wanted to cancel the Earth’s magnetic field by running an enormous current loop
around the equator, which way would the current have to flow: east to west or west to east?

Although the magnetic field pattern of the Earth is similar to the one that
would be set up by a bar magnet deep within the Earth, it is easy to understand
why the source of the Earth’s magnetic field cannot be large masses of perma-
nently magnetized material. The Earth does have large deposits of iron ore deep
beneath its surface, but the high temperatures in the Earth’s core prevent the iron
from retaining any permanent magnetization. Scientists consider it more likely
that the true source of the Earth’s magnetic field is charge-carrying convection
currents in the Earth’s core. Charged ions or electrons circulating in the liquid in-
terior could produce a magnetic field just as a current loop does. There is also
strong evidence that the magnitude of a planet’s magnetic field is related to the
planet’s rate of rotation. For example, Jupiter rotates faster than the Earth, and
space probes indicate that Jupiter’s magnetic field is stronger than ours. Venus, on
the other hand, rotates more slowly than the Earth, and its magnetic field is found
to be weaker. Investigation into the cause of the Earth’s magnetism is ongoing.

There is an interesting sidelight concerning the Earth’s magnetic field. It has
been found that the direction of the field has been reversed several times during
the last million years. Evidence for this is provided by basalt, a type of rock that
contains iron and that forms from material spewed forth by volcanic activity on the
ocean floor. As the lava cools, it solidifies and retains a picture of the Earth’s mag-
netic field direction. The rocks are dated by other means to provide a timeline for
these periodic reversals of the magnetic field.

SUMMARY

The Biot–Savart law says that the magnetic field dB at a point P due to a length
element ds that carries a steady current I is

(30.1)

where is the permeability of free space, r is the dis-
tance from the element to the point P , and r̂ is a unit vector pointing from ds to
point P. We find the total field at P by integrating this expression over the entire
current distribution.

The magnetic field at a distance a from a long, straight wire carrying an elec-
tric current I is

(30.5)

The field lines are circles concentric with the wire.
The magnetic force per unit length between two parallel wires separated by a

distance a and carrying currents I1 and I2 has a magnitude

(30.12)

The force is attractive if the currents are in the same direction and repulsive if
they are in opposite directions.

FB

�
�

�0I1I2

2�a

B �
�0I
2�a

�0 � 4� � 10�7 T�m/A

dB �
�0

4�
 
I ds � r̂

r 2

Quick Quiz 30.9
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Ampère’s law says that the line integral of around any closed path
equals �0I, where I is the total steady current passing through any surface
bounded by the closed path:

(30.13)

Using Ampère’s law, one finds that the fields inside a toroid and solenoid are

(30.16)

(30.17)

where N is the total number of turns.
The magnetic flux �B through a surface is defined by the surface integral

(30.18)

Gauss’s law of magnetism states that the net magnetic flux through any
closed surface is zero.

The general form of Ampère’s law, which is also called the Ampère-Maxwell
law, is

(30.22)

This law describes the fact that magnetic fields are produced both by conduction
currents and by changing electric fields.

�B � ds � �0I 
 �0�0 
dE

dt

B � �B � dA

B � �0 
N
�

 I � �0nI  (solenoid)

B �
�0NI
2�r

  (toroid) 

�B � ds � �0I

B � ds

QUESTIONS

8. Is the magnetic field inside a toroid uniform? Explain.
9. Describe the similarities between Ampère’s law in mag-

netism and Gauss’s law in electrostatics.
10. A hollow copper tube carries a current along its length.

Why does B = 0 inside the tube? Is B nonzero outside the
tube?

11. Why is B nonzero outside a solenoid? Why does B � 0
outside a toroid? (Remember that the lines of B must
form closed paths.)

12. Describe the change in the magnetic field in the interior
of a solenoid carrying a steady current I (a) if the length
of the solenoid is doubled but the number of turns re-
mains the same and (b) if the number of turns is doubled
but the length remains the same.

13. A flat conducting loop is positioned in a uniform mag-
netic field directed along the x axis. For what orientation
of the loop is the flux through it a maximum? A mini-
mum?

14. What new concept does Maxwell’s general form of Am-
père’s law include?

15. Many loops of wire are wrapped around a nail and then
connected to a battery. Identify the source of M, of H,
and of B.

1. Is the magnetic field created by a current loop uniform?
Explain.

2. A current in a conductor produces a magnetic field that
can be calculated using the Biot–Savart law. Because cur-
rent is defined as the rate of flow of charge, what can you
conclude about the magnetic field produced by stationary
charges? What about that produced by moving charges?

3. Two parallel wires carry currents in opposite directions.
Describe the nature of the magnetic field created by the
two wires at points (a) between the wires and (b) outside
the wires, in a plane containing them.

4. Explain why two parallel wires carrying currents in oppo-
site directions repel each other.

5. When an electric circuit is being assembled, a common
practice is to twist together two wires carrying equal cur-
rents in opposite directions. Why does this technique re-
duce stray magnetic fields?

6. Is Ampère’s law valid for all closed paths surrounding a
conductor? Why is it not useful for calculating B for all
such paths?

7. Compare Ampère’s law with the Biot–Savart law. Which 
is more generally useful for calculating B for a current-
carrying conductor?
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16. A magnet attracts a piece of iron. The iron can then at-
tract another piece of iron. On the basis of domain align-
ment, explain what happens in each piece of iron.

17. You are stranded on a planet that does not have a mag-
netic field, with no test equipment. You have two bars of
iron in your possession; one is magnetized, and one is
not. How can you determine which is which?

18. Why does hitting a magnet with a hammer cause the mag-
netism to be reduced?

19. Is a nail attracted to either pole of a magnet? Explain
what is happening inside the nail when it is placed near
the magnet.

20. A Hindu ruler once suggested that he be entombed in a
magnetic coffin with the polarity arranged so that he
would be forever suspended between heaven and Earth.
Is such magnetic levitation possible? Discuss.

21. Why does M � 0 in a vacuum? What is the relationship
between B and H in a vacuum?

22. Explain why some atoms have permanent magnetic mo-
ments and others do not.

23. What factors contribute to the total magnetic moment of
an atom?

24. Why is the magnetic susceptibility of a diamagnetic sub-
stance negative?

25. Why can the effect of diamagnetism be neglected in a
paramagnetic substance?

26. Explain the significance of the Curie temperature for a
ferromagnetic substance.

27. Discuss the differences among ferromagnetic, paramag-
netic, and diamagnetic substances.

28. What is the difference between hard and soft ferromag-
netic materials?

29. Should the surface of a computer disk be made from a
hard or a soft ferromagnetic substance?

30. Explain why it is desirable to use hard ferromagnetic ma-
terials to make permanent magnets.

31. Would you expect the tape from a tape recorder to be at-
tracted to a magnet? (Try it, but not with a recording you
wish to save.)

32. Given only a strong magnet and a screwdriver, how would
you first magnetize and then demagnetize the screwdriver?

33. Figure Q30.33 shows two permanent magnets, each hav-
ing a hole through its center. Note that the upper magnet
is levitated above the lower one. (a) How does this occur?
(b) What purpose does the pencil serve? (c) What can
you say about the poles of the magnets on the basis of this
observation? (d) What do you suppose would happen if
the upper magnet were inverted?

Figure Q30.33 Magnetic levitation using two ceramic mag-
nets.

PROBLEMS

field at the center of the square. (b) If this conductor is
formed into a single circular turn and carries the same
current, what is the value of the magnetic field at the
center?

Section 30.1 The Biot – Savart Law
1. In Niels Bohr’s 1913 model of the hydrogen atom, 

an electron circles the proton at a distance of 
5.29 � 10�11 m with a speed of 2.19 � 106 m/s. Com-
pute the magnitude of the magnetic field that this mo-
tion produces at the location of the proton.

2. A current path shaped as shown in Figure P30.2 pro-
duces a magnetic field at P, the center of the arc. If the
arc subtends an angle of 30.0° and the radius of the arc
is 0.600 m, what are the magnitude and direction of the
field produced at P if the current is 3.00 A?

3. (a) A conductor in the shape of a square of edge length
� � 0.400 m carries a current I � 10.0 A (Fig. P30.3).
Calculate the magnitude and direction of the magnetic

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

I

P
30.0°

Figure P30.2
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4. Calculate the magnitude of the magnetic field at a point
100 cm from a long, thin conductor carrying a current
of 1.00 A.

5. Determine the magnetic field at a point P located a dis-
tance x from the corner of an infinitely long wire bent
at a right angle, as shown in Figure P30.5. The wire car-
ries a steady current I.

10. Consider a flat, circular current loop of radius R carry-
ing current I. Choose the x axis to be along the axis 
of the loop, with the origin at the center of the loop.
Graph the ratio of the magnitude of the magnetic 
field at coordinate x to that at the origin, for x � 0 to 
x � 5R . It may be helpful to use a programmable calcu-
lator or a computer to solve this problem.

11. Consider the current-carrying loop shown in Figure
P30.11, formed of radial lines and segments of circles
whose centers are at point P. Find the magnitude and
direction of B at P.

WEB

I

�

Figure P30.3

x

P

I

I

6. A wire carrying a current of 5.00 A is to be formed into
a circular loop of one turn. If the required value of the
magnetic field at the center of the loop is 10.0 �T, what
is the required radius?

7. A conductor consists of a circular loop of radius R �
0.100 m and two straight, long sections, as shown in Fig-
ure P30.7. The wire lies in the plane of the paper and
carries a current of I � 7.00 A. Determine the magni-
tude and direction of the magnetic field at the center of
the loop.

8. A conductor consists of a circular loop of radius R and
two straight, long sections, as shown in Figure P30.7.
The wire lies in the plane of the paper and carries a cur-
rent I. Determine the magnitude and direction of the
magnetic field at the center of the loop.

9. The segment of wire in Figure P30.9 carries a current of
I � 5.00 A, where the radius of the circular arc is R �
3.00 cm. Determine the magnitude and direction of the
magnetic field at the origin.

12. Determine the magnetic field (in terms of I, a, and d)
at the origin due to the current loop shown in Figure
P30.12.

13. The loop in Figure P30.13 carries a current I. Determine
the magnetic field at point A in terms of I, R, and L .

14. Three long, parallel conductors carry currents of I �
2.00 A. Figure P30.14 is an end view of the conductors,
with each current coming out of the page. If a �
1.00 cm, determine the magnitude and direction of the
magnetic field at points A, B, and C .

15. Two long, parallel conductors carry currents I1 �
3.00 A and I2 � 3.00 A, both directed into the page in

Figure P30.5

Figure P30.7 Problems 7 and 8.

Figure P30.9

Figure P30.11

I = 7.00 A

I

R

60°

b

a
P

I
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Figure P30.15. Determine the magnitude and direction
of the resultant magnetic field at P.

Section 30.2 The Magnetic Force Between 
Two Parallel Conductors

16. Two long, parallel conductors separated by 10.0 cm
carry currents in the same direction. The first wire car-
ries current I1 � 5.00 A, and the second carries I2 �
8.00 A. (a) What is the magnitude of the magnetic field
created by I1 and acting on I2 ? (b) What is the force per
unit length exerted on I2 by I1 ? (c) What is the magni-
tude of the magnetic field created by I2 at the location
of I1 ? (d) What is the force per unit length exerted by
I2 on I1 ?

17. In Figure P30.17, the current in the long, straight wire
is I1 � 5.00 A, and the wire lies in the plane of the rec-
tangular loop, which carries 10.0 A. The dimensions are
c � 0.100 m, a � 0.150 m, and � � 0.450 m. Find the
magnitude and direction of the net force exerted on
the loop by the magnetic field created by the wire.

18. The unit of magnetic flux is named for Wilhelm Weber.
The practical-size unit of magnetic field is named for
Johann Karl Friedrich Gauss. Both were scientists at
Göttingen, Germany. In addition to their individual ac-
complishments, they built a telegraph together in 1833.
It consisted of a battery and switch that were positioned
at one end of a transmission line 3 km long and oper-
ated an electromagnet at the other end. (Andre 
Ampère suggested electrical signaling in 1821; Samuel
Morse built a telegraph line between Baltimore and
Washington in 1844.) Suppose that Weber and Gauss’s
transmission line was as diagrammed in Figure P30.18.
Two long, parallel wires, each having a mass per unit
length of 40.0 g/m, are supported in a horizontal plane
by strings 6.00 cm long. When both wires carry the same
current I, the wires repel each other so that the angle �

Figure P30.12

Figure P30.13
I1

�

c a

I2

13.0 cm

5.00 cm

12.0 cm

I2

I1

P

×

×

I

I

aa

a

a

a
B

A
C

I

A

I

R

L
2
–

L
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d

I

I

y

x

Figure P30.14

Figure P30.15

Figure P30.17
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between the supporting strings is 16.0°. (a) Are the cur-
rents in the same direction or in opposite directions?
(b) Find the magnitude of the current.

2.00-A currents in opposite directions. The two wires
are 3.00 mm apart. Find the magnetic field 40.0 cm
away from the middle of the straight cord, in the plane
of the two wires. (c) At what distance is it one-tenth as
large? (d) The center wire in a coaxial cable carries cur-
rent 2.00 A in one direction, and the sheath around it
carries current 2.00 A in the opposite direction. What
magnetic field does the cable create at points outside?

23. The magnetic coils of a tokamak fusion reactor are 
in the shape of a toroid having an inner radius of 
0.700 m and an outer radius of 1.30 m. If the toroid has
900 turns of large-diameter wire, each of which carries a
current of 14.0 kA, find the magnitude of the magnetic
field inside the toroid (a) along the inner radius and
(b) along the outer radius.

24. A cylindrical conductor of radius carries a
current of along its length; this current is
uniformly distributed throughout the cross-section of
the conductor. (a) Calculate the magnetic field midway
along the radius of the wire (that is, at 
(b) Find the distance beyond the surface of the conduc-
tor at which the magnitude of the magnetic field has
the same value as the magnitude of the field at 

25. A packed bundle of 100 long, straight, insulated wires
forms a cylinder of radius R � 0.500 cm. (a) If each
wire carries 2.00 A, what are the magnitude and direc-
tion of the magnetic force per unit length acting on a
wire located 0.200 cm from the center of the bundle?
(b) Would a wire on the outer edge of the bundle expe-
rience a force greater or less than the value calculated
in part (a)?

26. Niobium metal becomes a superconductor when cooled
below 9 K. If superconductivity is destroyed when the
surface magnetic field exceeds 0.100 T, determine the
maximum current a 2.00-mm-diameter niobium wire
can carry and remain superconducting, in the absence
of any external magnetic field.

27. A long, cylindrical conductor of radius R carries a cur-
rent I, as shown in Figure P30.27. The current density J,
however, is not uniform over the cross-section of the

r � R/2.

r � R/2).

I � 2.50 A
R � 2.50 cm

WEB

WEB

20. A long, straight wire lies on a horizontal table and car-
ries a current of 1.20 �A. In a vacuum, a proton moves
parallel to the wire (opposite the current) with a con-
stant velocity of 2.30 � 104 m/s at a distance d above
the wire. Determine the value of d. You may ignore the
magnetic field due to the Earth.

21. Figure P30.21 is a cross-sectional view of a coaxial cable.
The center conductor is surrounded by a rubber layer,
which is surrounded by an outer conductor, which is
surrounded by another rubber layer. In a particular ap-
plication, the current in the inner conductor is 1.00 A
out of the page, and the current in the outer conductor
is 3.00 A into the page. Determine the magnitude and
direction of the magnetic field at points a and b.

22. The magnetic field 40.0 cm away from a long, straight
wire carrying current 2.00 A is 1.00 �T. (a) At what dis-
tance is it 0.100 �T? (b) At one instant, the two con-
ductors in a long household extension cord carry equal

Section 30.3 Ampère’s Law

19. Four long, parallel conductors carry equal currents of 
I � 5.00 A. Figure P30.19 is an end view of the conduc-
tors. The direction of the current is into the page at
points A and B (indicated by the crosses) and out of the
page at C and D (indicated by the dots). Calculate the
magnitude and direction of the magnetic field at point
P, located at the center of the square with an edge
length of 0.200 m.

ba
1.00 A

1 mm 1 mm 1 mm

3.00 A

. .

×
×

×

×
×

×

×

×

0.200 m

0.200 m

A

B

C

P

D

×

××

16.0°

x

6.00 cm

z

y

θ

Figure P30.18

Figure P30.19

Figure P30.21
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conductor but is a function of the radius according to
where b is a constant. Find an expression for the

magnetic field B (a) at a distance and (b) at a
distance measured from the axis.

28. In Figure P30.28, both currents are in the negative x di-
rection. (a) Sketch the magnetic field pattern in the yz
plane. (b) At what distance d along the z axis is the
magnetic field a maximum?

r2 � R ,
r1 � R

J � br,

Section 30.5 Magnetic Flux
33. A cube of edge length � � 2.50 cm is positioned as

shown in Figure P30.33. A uniform magnetic field given
by exists throughout
the region. (a) Calculate the flux through the shaded
face. (b) What is the total flux through the six faces?

B � (5.00 i 
 4.00 j 
 3.00k) T

34. A solenoid 2.50 cm in diameter and 30.0 cm long has
300 turns and carries 12.0 A. (a) Calculate the flux
through the surface of a disk of radius 5.00 cm that is
positioned perpendicular to and centered on the axis of
the solenoid, as in Figure P30.34a. (b) Figure P30.34b
shows an enlarged end view of the same solenoid. Cal-
culate the flux through the blue area, which is defined
by an annulus that has an inner radius of 0.400 cm and
outer radius of 0.800 cm.

Section 30.4 The Magnetic Field of a Solenoid
29. What current is required in the windings of a long sole-

noid that has 1 000 turns uniformly distributed over a
length of 0.400 m, to produce at the center of the sole-
noid a magnetic field of magnitude 1.00 � 10�4 T?

30. A superconducting solenoid is meant to generate a
magnetic field of 10.0 T. (a) If the solenoid winding has
2 000 turns/m, what current is required? (b) What
force per unit length is exerted on the windings by this
magnetic field?

31. A solenoid of radius is made of a long
piece of wire of radius r � 2.00 mm, length � � 10.0 m

and resistivity � � 1.70 � 10�8 � � m. Find the
magnetic field at the center of the solenoid if the wire is
connected to a battery having an emf 

32. A single-turn square loop of wire with an edge length of
2.00 cm carries a clockwise current of 0.200 A. The loop
is inside a solenoid, with the plane of the loop perpen-
dicular to the magnetic field of the solenoid. The sole-
noid has 30 turns/cm and carries a clockwise current of
15.0 A. Find the force on each side of the loop and the
torque acting on the loop.

� � 20.0 V.

(� W R)

R � 5.00 cm

R
r1

I

r2

x
y

a

a

I

I

z

Figure P30.27

Figure P30.28

Figure P30.33
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35. Consider the hemispherical closed surface in Figure
P30.35. If the hemisphere is in a uniform magnetic field
that makes an angle � with the vertical, calculate the
magnetic flux (a) through the flat surface S1 and 
(b) through the hemispherical surface S2 .

quired if there are 470 turns of wire in the winding?
The thickness of the iron ring is small compared to 
10 cm, so the field in the material is nearly uniform.

41. A coil of 500 turns is wound on an iron ring (�m �
750�0) with a 20.0-cm mean radius and an 8.00-cm2

cross-sectional area. Calculate the magnetic flux B
in this Rowland ring when the current in the coil is
0.500 A.

42. A uniform ring with a radius of 2.00 cm and a total
charge of 6.00 �C rotates with a constant angular speed
of 4.00 rad/s around an axis perpendicular to the plane
of the ring and passing through its center. What is the
magnetic moment of the rotating ring?

43. Calculate the magnetic field strength H of a magnetized
substance in which the magnetization is 880 kA/m and
the magnetic field has a magnitude of 4.40 T.

44. At saturation, the alignment of spins in iron can con-
tribute as much as 2.00 T to the total magnetic field B .
If each electron contributes a magnetic moment of 
9.27 � 10�24 A � m2 (one Bohr magneton), how many
electrons per atom contribute to the saturated field of
iron? (Hint: Iron contains 8.50 � 1028 atoms/m3.)

45. (a) Show that Curie’s law can be stated in the following
way: The magnetic susceptibility of a paramagnetic sub-
stance is inversely proportional to the absolute tempera-
ture, according to � � C�0/T, where C is Curie’s con-
stant. (b) Evaluate Curie’s constant for chromium. 

(Optional)
Section 30.9 The Magnetic Field of the Earth

46. A circular coil of 5 turns and a diameter of 30.0 cm is
oriented in a vertical plane with its axis perpendicular
to the horizontal component of the Earth’s magnetic
field. A horizontal compass placed at the center of the
coil is made to deflect 45.0° from magnetic north by a
current of 0.600 A in the coil. (a) What is the horizontal
component of the Earth’s magnetic field? (b) The cur-
rent in the coil is switched off. A “dip needle” is a mag-
netic compass mounted so that it can rotate in a vert-
ical north-south plane. At this location a dip needle
makes an angle of 13.0° from the vertical. What is the
total magnitude of the Earth’s magnetic field at this 
location?

47. The magnetic moment of the Earth is approximately
8.00 � 1022 A � m2. (a) If this were caused by the com-
plete magnetization of a huge iron deposit, how many
unpaired electrons would this correspond to? (b) At
two unpaired electrons per iron atom, how many kilo-
grams of iron would this correspond to? (Iron has a
density of 7 900 kg/m3 and approximately 8.50 � 1028

atoms/m3.)

ADDITIONAL PROBLEMS

48. A lightning bolt may carry a current of 1.00 � 104 A for
a short period of time. What is the resultant magnetic

Section 30.6 Gauss’s Law in Magnetism
Section 30.7 Displacement Current and the 
General Form of Ampère’s Law

36. A 0.200-A current is charging a capacitor that has circu-
lar plates 10.0 cm in radius. If the plate separation is
4.00 mm, (a) what is the time rate of increase of electric
field between the plates? (b) What is the magnetic field
between the plates 5.00 cm from the center?

37. A 0.100-A current is charging a capacitor that has
square plates 5.00 cm on each side. If the plate separa-
tion is 4.00 mm, find (a) the time rate of change of
electric flux between the plates and (b) the displace-
ment current between the plates.

(Optional)
Section 30.8 Magnetism in Matter

38. In Bohr’s 1913 model of the hydrogen atom, the elec-
tron is in a circular orbit of radius 5.29 � 10�11 m, and
its speed is 2.19 � 106 m/s. (a) What is the magnitude
of the magnetic moment due to the electron’s motion?
(b) If the electron orbits counterclockwise in a horizon-
tal circle, what is the direction of this magnetic moment
vector?

39. A toroid with a mean radius of 20.0 cm and 630 turns
(see Fig. 30.29) is filled with powdered steel whose mag-
netic susceptibility � is 100. If the current in the wind-
ings is 3.00 A, find B (assumed uniform) inside the
toroid.

40. A magnetic field of 1.30 T is to be set up in an iron-core
toroid. The toroid has a mean radius of 10.0 cm and
magnetic permeability of 5 000�0 . What current is re-

Figure P30.35
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R
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field 100 m from the bolt? Suppose that the bolt ex-
tends far above and below the point of observation.

49. The magnitude of the Earth’s magnetic field at either
pole is approximately 7.00 � 10�5 T. Suppose that the
field fades away, before its next reversal. Scouts, sailors,
and wire merchants around the world join together in a
program to replace the field. One plan is to use a cur-
rent loop around the equator, without relying on mag-
netization of any materials inside the Earth. Determine
the current that would generate such a field if this plan
were carried out. (Take the radius of the Earth as

50. Two parallel conductors carry current in opposite direc-
tions, as shown in Figure P30.50. One conductor carries a
current of 10.0 A. Point A is at the midpoint between the
wires, and point C is a distance d/2 to the right of the
10.0-A current. If cm and I is adjusted so that
the magnetic field at C is zero, find (a) the value of the
current I and (b) the value of the magnetic field at A.

d � 18.0

R E � 6.37 � 106 m.)

in the plane of the strip at a distance b away from the
strip.

54. For a research project, a student needs a solenoid that
produces an interior magnetic field of 0.030 0 T. She
decides to use a current of 1.00 A and a wire 0.500 mm
in diameter. She winds the solenoid in layers on an insu-
lating form 1.00 cm in diameter and 10.0 cm long. De-
termine the number of layers of wire she needs and the
total length of the wire.

55. A nonconducting ring with a radius of 10.0 cm is
uniformly charged with a total positive charge of 
10.0 �C. The ring rotates at a constant angular speed of
20.0 rad/s about an axis through its center, perpendicu-
lar to the plane of the ring. What is the magnitude of
the magnetic field on the axis of the ring, 5.00 cm from
its center?

56. A nonconducting ring of radius R is uniformly charged
with a total positive charge q. The ring rotates at a con-
stant angular speed � about an axis through its center,
perpendicular to the plane of the ring. What is the mag-
nitude of the magnetic field on the axis of the ring a
distance R/2 from its center?

57. Two circular coils of radius R are each perpendicular to
a common axis. The coil centers are a distance R apart,
and a steady current I flows in the same direction
around each coil, as shown in Figure P30.57. (a) Show
that the magnetic field on the axis at a distance x from
the center of one coil is

(b) Show that dB/dx and d 2B/dx2 are both zero at a
point midway between the coils. This means that the
magnetic field in the region midway between the coils is
uniform. Coils in this configuration are called
Helmholtz coils.

58. Two identical, flat, circular coils of wire each have 100
turns and a radius of 0.500 m. The coils are arranged as

B �
�0 IR2

2
 	 1

(R2 
 x2)3/2 

1

(2R2 
 x2 � 2Rx)3/2 �

51. Suppose you install a compass on the center of the
dashboard of a car. Compute an order-of-magnitude es-
timate for the magnetic field that is produced at this lo-
cation by the current when you switch on the head-
lights. How does your estimate compare with the Earth’s
magnetic field? You may suppose the dashboard is made
mostly of plastic.

52. Imagine a long, cylindrical wire of radius R that has a
current density for r � R and 
J(r) � 0 for r � R, where r is the distance from the axis
of the wire. (a) Find the resulting magnetic field inside 
(r � R) and outside (r � R) the wire. (b) Plot the mag-
nitude of the magnetic field as a function of r. (c) Find
the location where the magnitude of the magnetic field
is a maximum, and the value of that maximum field.

53. A very long, thin strip of metal of width w carries a cur-
rent I along its length, as shown in Figure P30.53. Find
the magnetic field at point P in the diagram. Point P is

J(r) � J0(1 � r 2/R2)

P
y

w

I

x

z

0

b

I 10.0 A

A C

d

Figure P30.50

Figure P30.53

WEB
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a set of Helmholtz coils (see Fig. P30.57), parallel and
with a separation of 0.500 m. If each coil carries a cur-
rent of 10.0 A, determine the magnitude of the mag-
netic field at a point on the common axis of the coils
and halfway between them.

59. Two circular loops are parallel, coaxial, and almost in
contact, 1.00 mm apart (Fig. P30.59). Each loop is 
10.0 cm in radius. The top loop carries a clockwise cur-
rent of 140 A. The bottom loop carries a counterclock-
wise current of 140 A. (a) Calculate the magnetic force
that the bottom loop exerts on the top loop. (b) The
upper loop has a mass of 0.021 0 kg. Calculate its accel-
eration, assuming that the only forces acting on it are the
force in part (a) and its weight. (Hint: Think about how
one loop looks to a bug perched on the other loop.)

to the side of a proton moving at 2.00 � 107 m/s. 
(c) Find the magnetic force on a second proton at this
point, moving with the same speed in the opposite 
direction. (d) Find the electric force on the second 
proton.

61. Rail guns have been suggested for launching projectiles
into space without chemical rockets, and for ground-to-
air antimissile weapons of war. A tabletop model rail
gun (Fig. P30.61) consists of two long parallel horizon-
tal rails 3.50 cm apart, bridged by a bar BD of mass 
3.00 g. The bar is originally at rest at the midpoint of
the rails and is free to slide without friction. When the
switch is closed, electric current is very quickly estab-
lished in the circuit ABCDEA. The rails and bar have low
electrical resistance, and the current is limited to a con-
stant 24.0 A by the power supply. (a) Find the magni-
tude of the magnetic field 1.75 cm from a single very
long, straight wire carrying current 24.0 A. (b) Find the
vector magnetic field at point C in the diagram, the
midpoint of the bar, immediately after the switch is
closed. (Hint: Consider what conclusions you can draw
from the Biot–Savart law.) (c) At other points along the
bar BD, the field is in the same direction as at point C ,
but greater in magnitude. Assume that the average ef-
fective magnetic field along BD is five times larger than
the field at C . With this assumption, find the vector
force on the bar. (d) Find the vector acceleration with
which the bar starts to move. (e) Does the bar move
with constant acceleration? (f) Find the velocity of the
bar after it has traveled 130 cm to the end of the rails.

62. Two long, parallel conductors carry currents in the
same direction, as shown in Figure P30.62. Conductor A
carries a current of 150 A and is held firmly in position.
Conductor B carries a current IB and is allowed to slide
freely up and down (parallel to A) between a set of non-
conducting guides. If the mass per unit length of con-
ductor B is 0.100 g/cm, what value of current IB will re-
sult in equilibrium when the distance between the two
conductors is 2.50 cm?

63. Charge is sprayed onto a large nonconducting belt
above the left-hand roller in Figure P30.63. The belt
carries the charge, with a uniform surface charge den-
sity �, as it moves with a speed v between the rollers as
shown. The charge is removed by a wiper at the right-
hand roller. Consider a point just above the surface of
the moving belt. (a) Find an expression for the magni-

60. What objects experience a force in an electric field?
Chapter 23 gives the answer: any electric charge, sta-
tionary or moving, other than the charge that created
the field. What creates an electric field? Any electric
charge, stationary or moving, also as discussed in Chap-
ter 23. What objects experience a force in a magnetic
field? An electric current or a moving electric charge
other than the current or charge that created the field,
as discovered in Chapter 29. What creates a magnetic
field? An electric current, as you found in Section 30.11,
or a moving electric charge, as in this problem. (a) To
display how a moving charge creates a magnetic field,
consider a charge q moving with velocity v. Define the
unit vector to point from the charge to some lo-
cation. Show that the magnetic field at that location is

(b) Find the magnitude of the magnetic field 1.00 mm

B �
�0

4�
 
qv � r̂

r 2

r̂ � r/r

B

C

DE

A
y

x

z

140 A

140 A

R

I
I

R

R

Figure P30.57 Problems 57 and 58.

Figure P30.59

Figure P30.61
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tude of the magnetic field B at this point. (b) If the belt
is positively charged, what is the direction of B? (Note
that the belt may be considered as an infinite sheet.)

64. A particular paramagnetic substance achieves 10.0% of
its saturation magnetization when placed in a magnetic
field of 5.00 T at a temperature of 4.00 K. The density of
magnetic atoms in the sample is 8.00 � 1027 atoms/m3,
and the magnetic moment per atom is 5.00 Bohr magne-
tons. Calculate the Curie constant for this substance.

65. A bar magnet (mass � 39.4 g, magnetic moment �
7.65 J/T, length � 10.0 cm) is connected to the ceiling
by a string. A uniform external magnetic field is applied
horizontally, as shown in Figure P30.65. The magnet is
in equilibrium, making an angle � with the horizontal.
If � � 5.00°, determine the magnitude of the applied
magnetic field.

68. Measurements of the magnetic field of a large tornado
were made at the Geophysical Observatory in Tulsa, 
Oklahoma, in 1962. If the tornado’s field was B �
15.0 nT pointing north when the tornado was 9.00 km
east of the observatory, what current was carried up or
down the funnel of the tornado, modeled as a long
straight wire?

67. A wire is bent into the shape shown in Figure P30.67a,
and the magnetic field is measured at P1 when the cur-
rent in the wire is I. The same wire is then formed into
the shape shown in Figure P30.67b, and the magnetic
field is measured at point P2 when the current is again I.
If the total length of wire is the same in each case, what
is the ratio of B1/B2 ?

66. An infinitely long, straight wire carrying a current I1 is
partially surrounded by a loop, as shown in Figure
P30.66. The loop has a length L and a radius R and car-
ries a current I2 . The axis of the loop coincides with the
wire. Calculate the force exerted on the loop.

(b)

P2 ��

(a)

�P1

��

�

2�

R

L
I 1 I 2

v

+ + ++ + +
+ + ++ + +

+ + ++ + +
+ + ++ + +

+ + ++ + +
+ + ++ + +

N
θ

S
B

IA

IB

A

B

Figure P30.62

Figure P30.63

Figure P30.65

Figure P30.66

Figure P30.67
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74. Review Problem. A sphere of radius R has a constant
volume charge density �. Determine the magnetic di-

73. Review Problem. A sphere of radius R has a constant
volume charge density �. Determine the magnetic field
at the center of the sphere when it rotates as a rigid
body with angular velocity � about an axis through its
center (Fig. P30.73).

Thus, in this case tan � � 1, and � � �/4.
Therefore, the angle between ds and is � � � �
3�/4. Also,

72. Table P30.72 contains data taken for a ferromagnetic
material. (a) Construct a magnetization curve from the
data. Remember that (b) Determine
the ratio B/B0 for each pair of values of B and B0 , and
construct a graph of B/B0 versus B0 . (The fraction
B/B0 is called the relative permeability and is a measure
of the induced magnetic field.)

B � B0 
 �0M.

ds �
dr

sin �/4
� !2 dr

r̂
r � e�,

70. The force on a magnetic dipole � aligned with a
nonuniform magnetic field in the x direction is given
by Suppose that two flat loops of wire
each have radius R and carry current I. (a) If the loops
are arranged coaxially and separated by variable dis-
tance x, which is great compared to R , show that the
magnetic force between them varies as 1/x4. (b) Evalu-
ate the magnitude of this force if 

and x � 5.00 cm.
71. A wire carrying a current I is bent into the shape of an

exponential spiral from � � 0 to � � 2�, as in
Figure P30.71. To complete a loop, the ends of the spi-
ral are connected by a straight wire along the x axis.
Find the magnitude and direction of B at the origin.
Hints: Use the Biot–Savart law. The angle � between a
radial line and its tangent line at any point on the curve

is related to the function in the following way:

tan � �
r

dr/d�

r � f (�)

r � e�

R � 0.500 cm,
I � 10.0 A,

Fx � � � � dB/dx.

69. A wire is formed into a square of edge length L (Fig.
P30.69). Show that when the current in the loop is I,
the magnetic field at point P, a distance x from the cen-
ter of the square along its axis, is

B �
�0 IL2

2�(x2 
 L2/4)!x2 
 L2/2

R

�

r = eθ

y

x

r
dr

d s

θ

r̂

   =   /4πβ

x

PI

L

L

Figure P30.69

Figure P30.71

Figure P30.73 Problems 73 and 74.

TABLE P30.72

B(T) B0 (T)

0.2 4.8 � 10�5

0.4 7.0 � 10�5

0.6 8.8 � 10�5

0.8 1.2 � 10�4

1.0 1.8 � 10�4

1.2 3.1 � 10�4

1.4 8.7 � 10�4

1.6 3.4 � 10�3

1.8 1.2 � 10�1
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ANSWERS TO QUICK QUIZZES

forces on all four sides of the loop lie in the plane of the
loop, there is no net torque.

30.6 Zero; no charges flow into a fully charged capacitor, so
no change occurs in the amount of charge on the plates,
and the electric field between the plates is constant. It is
only when the electric field is changing that a displace-
ment current exists.

30.7 (a) Increases slightly; (b) decreases slightly; (c) in-
creases greatly. Equations 30.33 and 30.34 indicate 
that, when each metal is in place, the total field is

Table 30.2 indicates that 
is slightly greater than �0H for aluminum and slightly
less for copper. For iron, the field can be made thou-
sands of times stronger, as we saw in Example 30.10.

30.8 One whose loop looks like Figure 30.31a because the re-
manent magnetization at the point corresponding to
point b in Figure 30.30 is greater.

30.9 West to east. The lines of the Earth’s magnetic field en-
ter the planet in Hudson Bay and emerge from Antarc-
tica; thus, the field lines resulting from the current
would have to go in the opposite direction. Compare
Figure 30.6a with Figure 30.35.

�0(1 
 �)HB � �0(1 
 �)H.

30.1 (c) F1 � F2 because of Newton’s third law. Another way
to arrive at this answer is to realize that Equation 30.11
gives the same result whether the multiplication of cur-
rents is (2 A)(6 A) or (6 A)(2 A).

30.2 Closer together; the coils act like wires carrying parallel
currents and hence attract one another.

30.3 b, d, a, c. Equation 30.13 indicates that the value of the
line integral depends only on the net current through
each closed path. Path b encloses 1 A, path d encloses 
3 A, path a encloses 4 A, and path c encloses 6 A.

30.4 b, then Paths a, c, and d all give the same
nonzero value �0I because the size and shape of the
paths do not matter. Path b does not enclose the cur-
rent, and hence its line integral is zero.

30.5 Net force, yes; net torque, no. The forces on the top and
bottom of the loop cancel because they are equal in
magnitude but opposite in direction. The current in the
left side of the loop is parallel to I1 , and hence the force
FL exerted by I1 on this side is attractive. The current in
the right side of the loop is antiparallel to I1 , and hence
the force FR exerted by I1 on this side of the loop is re-
pulsive. Because the left side is closer to wire 1, 
and a net force is directed toward wire 1. Because the

FL � FR

a � c � d.

pole moment of the sphere when it rotates as a rigid
body with angular velocity � about an axis through its
center (see Fig. P30.73).

75. A long, cylindrical conductor of radius a has two cylin-
drical cavities of diameter a through its entire length, as
shown in cross-section in Figure P30.75. A current I is
directed out of the page and is uniform through a cross
section of the conductor. Find the magnitude and direc-
tion of the magnetic field in terms of �0 , I, r, and a
(a) at point P1 and (b) at point P2 .

P1

P2

r

r

a

a

Figure P30.75
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Before this vending machine will deliver
its product, it conducts several tests on
the coins being inserted. How can it de-
termine what material the coins are
made of without damaging them and
without making the customer wait a long
time for the results? (George Semple)
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he focus of our studies in electricity and magnetism so far has been the elec-
tric fields produced by stationary charges and the magnetic fields produced by
moving charges. This chapter deals with electric fields produced by changing

magnetic fields.
Experiments conducted by Michael Faraday in England in 1831 and indepen-

dently by Joseph Henry in the United States that same year showed that an emf
can be induced in a circuit by a changing magnetic field. As we shall see, an emf
(and therefore a current as well) can be induced in many ways—for instance, by
moving a closed loop of wire into a region where a magnetic field exists. The re-
sults of these experiments led to a very basic and important law of electromagnet-
ism known as Faraday’s law of induction. This law states that the magnitude of the
emf induced in a circuit equals the time rate of change of the magnetic flux
through the circuit.

With the treatment of Faraday’s law, we complete our introduction to the fun-
damental laws of electromagnetism. These laws can be summarized in a set of four
equations called Maxwell’s equations. Together with the Lorentz force law, which we
discuss briefly, they represent a complete theory for describing the interaction of
charged objects. Maxwell’s equations relate electric and magnetic fields to each
other and to their ultimate source, namely, electric charges.

FARADAY’S LAW OF INDUCTION
To see how an emf can be induced by a changing magnetic field, let us consider a
loop of wire connected to a galvanometer, as illustrated in Figure 31.1. When a
magnet is moved toward the loop, the galvanometer needle deflects in one direc-
tion, arbitrarily shown to the right in Figure 31.1a. When the magnet is moved
away from the loop, the needle deflects in the opposite direction, as shown in Fig-
ure 31.1c. When the magnet is held stationary relative to the loop (Fig. 31.1b), no
deflection is observed. Finally, if the magnet is held stationary and the loop is
moved either toward or away from it, the needle deflects. From these observations,
we conclude that the loop “knows” that the magnet is moving relative to it because
it experiences a change in magnetic field. Thus, it seems that a relationship exists
between current and changing magnetic field.

These results are quite remarkable in view of the fact that a current is set up
even though no batteries are present in the circuit! We call such a current an
induced current and say that it is produced by an induced emf.

Now let us describe an experiment conducted by Faraday1 and illustrated in
Figure 31.2. A primary coil is connected to a switch and a battery. The coil is
wrapped around a ring, and a current in the coil produces a magnetic field when
the switch is closed. A secondary coil also is wrapped around the ring and is con-
nected to a galvanometer. No battery is present in the secondary circuit, and the
secondary coil is not connected to the primary coil. Any current detected in the
secondary circuit must be induced by some external agent.

Initially, you might guess that no current is ever detected in the secondary cir-
cuit. However, something quite amazing happens when the switch in the primary

31.1

T

1 A physicist named J. D. Colladon was the first to perform the moving-magnet experiment. To mini-
mize the effect of the changing magnetic field on his galvanometer, he placed the meter in an adjacent
room. Thus, as he moved the magnet in the loop, he could not see the meter needle deflecting. By the
time he returned next door to read the galvanometer, the needle was back to zero because he had
stopped moving the magnet. Unfortunately for Colladon, there must be relative motion between the
loop and the magnet for an induced emf and a corresponding induced current to be observed. Thus,
physics students learn Faraday’s law of induction rather than “Colladon’s law of induction.”

12.6
&

12.7

A demonstration of electromag-
netic induction. A changing poten-
tial difference is applied to the
lower coil. An emf is induced in the
upper coil as indicated by the illu-
minated lamp. What happens to
the lamp’s intensity as the upper
coil is moved over the vertical tube?
(Courtesy of Central Scientific Company)
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circuit is either suddenly closed or suddenly opened. At the instant the switch is
closed, the galvanometer needle deflects in one direction and then returns to
zero. At the instant the switch is opened, the needle deflects in the opposite direc-
tion and again returns to zero. Finally, the galvanometer reads zero when there is
either a steady current or no current in the primary circuit. The key to under-

0

Galvanometer

(b)

0

Galvanometer

(a)

N S

0

Galvanometer

(c)

N S

N S

Galvanometer

0

Secondary
coil

Primary
coil

Switch

+ –

Battery

Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a galvanometer,
the galvanometer deflects as shown, indicating that a current is induced in the loop. (b) When
the magnet is held stationary, there is no induced current in the loop, even when the magnet is
inside the loop. (c) When the magnet is moved away from the loop, the galvanometer deflects in
the opposite direction, indicating that the induced current is opposite that shown in part (a).
Changing the direction of the magnet’s motion changes the direction of the current induced by
that motion.

Figure 31.2 Faraday’s experiment. When the switch in the primary circuit is closed, the gal-
vanometer in the secondary circuit deflects momentarily. The emf induced in the secondary cir-
cuit is caused by the changing magnetic field through the secondary coil.

Michael Faraday (1791 – 1867)
Faraday, a British physicist and
chemist, is often regarded as the
greatest experimental scientist of the
1800s. His many contributions to the
study of electricity include the inven-
tion of the electric motor, electric
generator, and transformer, as well as
the discovery of electromagnetic in-
duction and the laws of electrolysis.
Greatly influenced by religion, he re-
fused to work on the development of
poison gas for the British military.
(By kind permission of the President and
Council of the Royal Society)
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standing what happens in this experiment is to first note that when the switch is
closed, the current in the primary circuit produces a magnetic field in the region
of the circuit, and it is this magnetic field that penetrates the secondary circuit.
Furthermore, when the switch is closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time,
and it is this changing field that induces a current in the secondary circuit.

As a result of these observations, Faraday concluded that an electric current
can be induced in a circuit (the secondary circuit in our setup) by a chang-
ing magnetic field. The induced current exists for only a short time while the
magnetic field through the secondary coil is changing. Once the magnetic field
reaches a steady value, the current in the secondary coil disappears. In effect, the
secondary circuit behaves as though a source of emf were connected to it for a
short time. It is customary to say that an induced emf is produced in the sec-
ondary circuit by the changing magnetic field.

The experiments shown in Figures 31.1 and 31.2 have one thing in common:
In each case, an emf is induced in the circuit when the magnetic flux through the
circuit changes with time. In general,

the emf induced in a circuit is directly proportional to the time rate of change
of the magnetic flux through the circuit.

This statement, known as Faraday’s law of induction, can be written

(31.1)

where is the magnetic flux through the circuit (see Section 30.5).
If the circuit is a coil consisting of N loops all of the same area and if �B is the

flux through one loop, an emf is induced in every loop; thus, the total induced
emf in the coil is given by the expression

(31.2)

The negative sign in Equations 31.1 and 31.2 is of important physical significance,
which we shall discuss in Section 31.3.

Suppose that a loop enclosing an area A lies in a uniform magnetic field B, as
shown in Figure 31.3. The magnetic flux through the loop is equal to BA cos �;

� � �N 
d �B

dt

�B � �B � dA

� � �
d �B

dt
Faraday’s law

B

A  θ

Figure 31.3 A conducting loop that encloses an area
A in the presence of a uniform magnetic field B. The
angle between B and the normal to the loop is �.



31.1 Faraday’s Law of Induction 983

hence, the induced emf can be expressed as

(31.3)

From this expression, we see that an emf can be induced in the circuit in several
ways:

• The magnitude of B can change with time.
• The area enclosed by the loop can change with time.
• The angle � between B and the normal to the loop can change with time.
• Any combination of the above can occur.

Equation 31.3 can be used to calculate the emf induced when the north pole of a magnet is
moved toward a loop of wire, along the axis perpendicular to the plane of the loop passing
through its center. What changes are necessary in the equation when the south pole is
moved toward the loop?

Some Applications of Faraday’s Law

The ground fault interrupter (GFI) is an interesting safety device that protects
users of electrical appliances against electric shock. Its operation makes use of
Faraday’s law. In the GFI shown in Figure 31.4, wire 1 leads from the wall outlet to
the appliance to be protected, and wire 2 leads from the appliance back to the wall
outlet. An iron ring surrounds the two wires, and a sensing coil is wrapped around
part of the ring. Because the currents in the wires are in opposite directions, the
net magnetic flux through the sensing coil due to the currents is zero. However, if
the return current in wire 2 changes, the net magnetic flux through the sensing
coil is no longer zero. (This can happen, for example, if the appliance gets wet,
enabling current to leak to ground.) Because household current is alternating
(meaning that its direction keeps reversing), the magnetic flux through the sens-
ing coil changes with time, inducing an emf in the coil. This induced emf is used
to trigger a circuit breaker, which stops the current before it is able to reach a
harmful level.

Another interesting application of Faraday’s law is the production of sound in
an electric guitar (Fig. 31.5). The coil in this case, called the pickup coil , is placed
near the vibrating guitar string, which is made of a metal that can be magnetized.
A permanent magnet inside the coil magnetizes the portion of the string nearest

Quick Quiz 31.1

� � �
d
dt

 (BA cos �)

This electric range cooks food on
the basis of the principle of induc-
tion. An oscillating current is
passed through a coil placed below
the cooking surface, which is made
of a special glass. The current pro-
duces an oscillating magnetic field,
which induces a current in the
cooking utensil. Because the cook-
ing utensil has some electrical resis-
tance, the electrical energy associ-
ated with the induced current is
transformed to internal energy,
causing the utensil and its contents
to become hot. (Courtesy of Corning,
Inc.)

Circuit
breaker

Sensing
coil

Alternating
current

Iron
ring

1

2 Figure 31.4 Essential components of a
ground fault interrupter.

QuickLab
A cassette tape is made up of tiny par-
ticles of metal oxide attached to a
long plastic strip. A current in a small
conducting loop magnetizes the par-
ticles in a pattern related to the music
being recorded. During playback, the
tape is moved past a second small
loop (inside the playback head) and
induces a current that is then ampli-
fied. Pull a strip of tape out of a cas-
sette (one that you don’t mind
recording over) and see if it is at-
tracted or repelled by a refrigerator
magnet. If you don’t have a cassette,
try this with an old floppy disk you
are ready to trash.
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the coil. When the string vibrates at some frequency, its magnetized segment pro-
duces a changing magnetic flux through the coil. The changing flux induces an
emf in the coil that is fed to an amplifier. The output of the amplifier is sent to the
loudspeakers, which produce the sound waves we hear.

One Way to Induce an emf in a CoilEXAMPLE 31.1
is, from Equation 31.2,

You should be able to show that 1 T � m2/s � 1 V.

Exercise What is the magnitude of the induced current in
the coil while the field is changing?

Answer 2.0 A.

4.1 V�� 4.1 T�m2/s

�� � �
N ��B

�t
�

200(0.016 2 T �m2 � 0 T�m2)
0.80 s

A coil consists of 200 turns of wire having a total resistance of
2.0 �. Each turn is a square of side 18 cm, and a uniform
magnetic field directed perpendicular to the plane of the coil
is turned on. If the field changes linearly from 0 to 0.50 T in
0.80 s, what is the magnitude of the induced emf in the coil
while the field is changing?

Solution The area of one turn of the coil is (0.18 m)2 �
0.032 4 m2. The magnetic flux through the coil at t � 0 is
zero because B � 0 at that time. At t � 0.80 s, the magnetic
flux through one turn is �B � BA � (0.50 T)(0.032 4 m2) �
0.016 2 T � m2. Therefore, the magnitude of the induced emf

An Exponentially Decaying B FieldEXAMPLE 31.2
tially (Fig. 31.6). Find the induced emf in the loop as a func-
tion of time.

Solution Because B is perpendicular to the plane of the
loop, the magnetic flux through the loop at time t 	 0 is

A loop of wire enclosing an area A is placed in a region where
the magnetic field is perpendicular to the plane of the loop.
The magnitude of B varies in time according to the expres-
sion B � Bmaxe�at, where a is some constant. That is, at t � 0
the field is Bmax , and for t 	 0, the field decreases exponen-

Pickup
coil Magnet

Magnetized
portion of

string

Guitar string

To amplifier

N S
N S

(a)

Figure 31.5 (a) In an electric guitar, a vibrating string induces an emf in a pickup coil. 
(b) The circles beneath the metallic strings of this electric guitar detect the notes being played
and send this information through an amplifier and into speakers. (A switch on the guitar allows
the musician to select which set of six is used.) How does a guitar “pickup” sense what music is
being played? (b, Charles D. Winters)

(b)
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MOTIONAL EMF
In Examples 31.1 and 31.2, we considered cases in which an emf is induced in a
stationary circuit placed in a magnetic field when the field changes with time. In
this section we describe what is called motional emf, which is the emf induced in
a conductor moving through a constant magnetic field.

The straight conductor of length � shown in Figure 31.8 is moving through a
uniform magnetic field directed into the page. For simplicity, we assume that the
conductor is moving in a direction perpendicular to the field with constant veloc-

31.2

What Is Connected to What?CONCEPTUAL EXAMPLE 31.3
now the only resistance in the loop. As a result, the current in
bulb 1 is greater than when bulb 2 was also in the loop.

Once the switch is closed, bulb 2 is in the loop consisting
of the wires attached to it and those connected to the switch.
There is no changing magnetic flux through this loop and
hence no induced emf.

Exercise What would happen if the switch were in a wire lo-
cated to the left of bulb 1?

Answer Bulb 1 would go out, and bulb 2 would glow
brighter.

Two bulbs are connected to opposite sides of a loop of wire,
as shown in Figure 31.7. A decreasing magnetic field (con-
fined to the circular area shown in the figure) induces an
emf in the loop that causes the two bulbs to light. What hap-
pens to the brightness of the bulbs when the switch is closed?

Solution Bulb 1 glows brighter, and bulb 2 goes out. Once
the switch is closed, bulb 1 is in the large loop consisting of
the wire to which it is attached and the wire connected to the
switch. Because the changing magnetic flux is completely en-
closed within this loop, a current exists in bulb 1. Bulb 1 now
glows brighter than before the switch was closed because it is

t

B

Bmax
Because ABmax and a are constants, the induced emf calcu-
lated from Equation 31.1 is

This expression indicates that the induced emf decays expo-
nentially in time. Note that the maximum emf occurs at t �
0, where The plot of versus t is similar to
the B-versus-t curve shown in Figure 31.6.

��max � aABmax .

aABmaxe�at� � �
d�B

dt
� �ABmax 

d
dt

 e�at �

�B � BA cos 0 � ABmaxe�at

Figure 31.6 Exponential decrease in the magnitude of the mag-
netic field with time. The induced emf and induced current vary with
time in the same way.
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× × × × × ×
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× × × × × ×
× × × × × ×

×
×
×
×
×

×
×

×
×
×
×
× Switch

Bulb 2

Bulb 1

Figure 31.7
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ity under the influence of some external agent. The electrons in the conductor ex-
perience a force that is directed along the length �, perpendicular to
both v and B (Eq. 29.1). Under the influence of this force, the electrons move to
the lower end of the conductor and accumulate there, leaving a net positive
charge at the upper end. As a result of this charge separation, an electric field is
produced inside the conductor. The charges accumulate at both ends until the
downward magnetic force qvB is balanced by the upward electric force q E. At this
point, electrons stop moving. The condition for equilibrium requires that

The electric field produced in the conductor (once the electrons stop moving and
E is constant) is related to the potential difference across the ends of the conduc-
tor according to the relationship (Eq. 25.6). Thus,

(31.4)

where the upper end is at a higher electric potential than the lower end. Thus, a
potential difference is maintained between the ends of the conductor as
long as the conductor continues to move through the uniform magnetic
field. If the direction of the motion is reversed, the polarity of the potential differ-
ence also is reversed.

A more interesting situation occurs when the moving conductor is part of a
closed conducting path. This situation is particularly useful for illustrating how a
changing magnetic flux causes an induced current in a closed circuit. Consider a
circuit consisting of a conducting bar of length � sliding along two fixed parallel
conducting rails, as shown in Figure 31.9a.

For simplicity, we assume that the bar has zero resistance and that the station-
ary part of the circuit has a resistance R . A uniform and constant magnetic field B
is applied perpendicular to the plane of the circuit. As the bar is pulled to the
right with a velocity v, under the influence of an applied force Fapp , free charges
in the bar experience a magnetic force directed along the length of the bar. This
force sets up an induced current because the charges are free to move in the
closed conducting path. In this case, the rate of change of magnetic flux through
the loop and the corresponding induced motional emf across the moving bar are
proportional to the change in area of the loop. As we shall see, if the bar is pulled
to the right with a constant velocity, the work done by the applied force appears as
internal energy in the resistor R (see Section 27.6).

Because the area enclosed by the circuit at any instant is �x , where x is the
width of the circuit at any instant, the magnetic flux through that area is

Using Faraday’s law, and noting that x changes with time at a rate we
find that the induced motional emf is

(31.5)

Because the resistance of the circuit is R , the magnitude of the induced current is

(31.6)

The equivalent circuit diagram for this example is shown in Figure 31.9b.

I �
�� �
R

�
B�v
R

� � �B�v

� � �
d �B

dt
� �

d
dt

 (B�x) � �B� 
dx
dt

dx/dt � v,

�B � B�x

�V � E� � B�v

�V � E�

q E � q vB  or  E � vB

FB � q v � B

Motional emf

v

Bin
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

�

+
+

−
−

–
×

×

×

×

FB

Figure 31.8 A straight electrical
conductor of length � moving with
a velocity v through a uniform
magnetic field B directed perpen-
dicular to v. A potential difference
�V � B�v is maintained between
the ends of the conductor.
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Let us examine the system using energy considerations. Because no battery is
in the circuit, we might wonder about the origin of the induced current and the
electrical energy in the system. We can understand the source of this current and
energy by noting that the applied force does work on the conducting bar, thereby
moving charges through a magnetic field. Their movement through the field
causes the charges to move along the bar with some average drift velocity, and
hence a current is established. Because energy must be conserved, the work done
by the applied force on the bar during some time interval must equal the electrical
energy supplied by the induced emf during that same interval. Furthermore, if the
bar moves with constant speed, the work done on it must equal the energy deliv-
ered to the resistor during this time interval.

As it moves through the uniform magnetic field B, the bar experiences a mag-
netic force FB of magnitude I �B (see Section 29.2). The direction of this force is
opposite the motion of the bar, to the left in Figure 31.9a. Because the bar moves
with constant velocity, the applied force must be equal in magnitude and opposite
in direction to the magnetic force, or to the right in Figure 31.9a. (If FB acted in
the direction of motion, it would cause the bar to accelerate. Such a situation
would violate the principle of conservation of energy.) Using Equation 31.6 and
the fact that we find that the power delivered by the applied force is

(31.7)

From Equation 27.23, we see that this power is equal to the rate at which energy is
delivered to the resistor I 2R, as we would expect. It is also equal to the power 
supplied by the motional emf. This example is a clear demonstration of the con-
version of mechanical energy first to electrical energy and finally to internal en-
ergy in the resistor.

As an airplane flies from Los Angeles to Seattle, it passes through the Earth’s magnetic
field. As a result, a motional emf is developed between the wingtips. Which wingtip is posi-
tively charged?

Quick Quiz 31.2

I�

� � Fappv � (I�B)v �
B 2�2v2

R
�

�2

R

Fapp � I�B,

Motional emf Induced in a Rotating BarEXAMPLE 31.4
A conducting bar of length � rotates with a constant angular
speed 
 about a pivot at one end. A uniform magnetic field B
is directed perpendicular to the plane of rotation, as shown
in Figure 31.10. Find the motional emf induced between the
ends of the bar.

Solution Consider a segment of the bar of length dr hav-
ing a velocity v. According to Equation 31.5, the magnitude
of the emf induced in this segment is

Because every segment of the bar is moving perpendicular 
to B, an emf of the same form is generated across 
each. Summing the emfs induced across all segments, which
are in series, gives the total emf between the ends of 

d�

d� � Bv dr

  

(b)

R

�B vε =

I

R FB

(a)

x

Fapp

v

Bin

�

× × ×

× × ×

× × ×

× × ×

× × ×

×
I

×

×

×

×

×

×

Figure 31.9 (a) A conducting
bar sliding with a velocity v along
two conducting rails under the ac-
tion of an applied force Fapp . The
magnetic force FB opposes the mo-
tion, and a counterclockwise cur-
rent I is induced in the loop. 
(b) The equivalent circuit diagram
for the setup shown in part (a).
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Figure 31.10 A conducting bar rotating around a pivot at one
end in a uniform magnetic field that is perpendicular to the plane of
rotation. A motional emf is induced across the ends of the bar.
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LENZ’S LAW
Faraday’s law (Eq. 31.1) indicates that the induced emf and the change in flux
have opposite algebraic signs. This has a very real physical interpretation that has
come to be known as Lenz’s law2:

31.3

the bar:

To integrate this expression, we must note that the linear
speed of an element is related to the angular speed 


� � �Bv dr

through the relationship Therefore, because B and 

are constants, we find that

1
2B
�2� � B �v dr � B
 ��

0
r dr �

v � r
.

Magnetic Force Acting on a Sliding BarEXAMPLE 31.5
that the velocity can be expressed in the exponential form

This expression indicates that the velocity of the bar de-
creases exponentially with time under the action of the mag-
netic retarding force.

Exercise Find expressions for the induced current and the
magnitude of the induced emf as functions of time for the
bar in this example.

Answer (They both de-

crease exponentially with time.)

� � B�vi e�t /�.I �
B�vi

R
 e�t /� ;

v � vie�t /�

The conducting bar illustrated in Figure 31.11, of mass m and
length �, moves on two frictionless parallel rails in the pres-
ence of a uniform magnetic field directed into the page. The
bar is given an initial velocity vi to the right and is released at
t � 0. Find the velocity of the bar as a function of time.

Solution The induced current is counterclockwise, and
the magnetic force is where the negative sign de-
notes that the force is to the left and retards the motion. This
is the only horizontal force acting on the bar, and hence New-
ton’s second law applied to motion in the horizontal direc-
tion gives

From Equation 31.6, we know that and so we can
write this expression as

Integrating this equation using the initial condition that
at t � 0, we find that

where the constant From this result, we see� � mR/B2�2.

 ln� v
vi
� � �� B2�2

mR � t � �
t
�

�v

vi

dv
v

�
�B2�2

mR
 �t

0
dt 

v � vi

 
dv
v

� �� B2�2

mR �dt

m 
dv
dt

� �
B2�2

R
 v 

I � B�v/R ,

Fx � ma � m 
dv
dt

� �I�B

FB � �I�B,
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Figure 31.11 A conducting bar of length � sliding on two fixed
conducting rails is given an initial velocity vi to the right.

2 Developed by the German physicist Heinrich Lenz (1804–1865).

12.7
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That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. As we shall see, this law is a consequence of the law of con-
servation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field that we shall
refer to as the external magnetic field (Fig. 31.12a). As the bar moves to the right,
the magnetic flux through the area enclosed by the circuit increases with time be-
cause the area increases. Lenz’s law states that the induced current must be di-
rected so that the magnetic flux it produces opposes the change in the external
magnetic flux. Because the external magnetic flux is increasing into the page, the
induced current, if it is to oppose this change, must produce a flux directed out of
the page. Hence, the induced current must be directed counterclockwise when
the bar moves to the right. (Use the right-hand rule to verify this direction.) If the
bar is moving to the left, as shown in Figure 31.12b, the external magnetic flux
through the area enclosed by the loop decreases with time. Because the flux is di-
rected into the page, the direction of the induced current must be clockwise if it is
to produce a flux that also is directed into the page. In either case, the induced
current tends to maintain the original flux through the area enclosed by the cur-
rent loop.

Let us examine this situation from the viewpoint of energy considerations.
Suppose that the bar is given a slight push to the right. In the preceding analysis,
we found that this motion sets up a counterclockwise current in the loop. Let us
see what happens if we assume that the current is clockwise, such that the direc-
tion of the magnetic force exerted on the bar is to the right. This force would ac-
celerate the rod and increase its velocity. This, in turn, would cause the area en-
closed by the loop to increase more rapidly; this would result in an increase in the
induced current, which would cause an increase in the force, which would pro-
duce an increase in the current, and so on. In effect, the system would acquire en-
ergy with no additional input of energy. This is clearly inconsistent with all experi-
ence and with the law of conservation of energy. Thus, we are forced to conclude
that the current must be counterclockwise.

Let us consider another situation, one in which a bar magnet moves toward a
stationary metal loop, as shown in Figure 31.13a. As the magnet moves to the right
toward the loop, the external magnetic flux through the loop increases with time.
To counteract this increase in flux to the right, the induced current produces a
flux to the left, as illustrated in Figure 31.13b; hence, the induced current is in the
direction shown. Note that the magnetic field lines associated with the induced
current oppose the motion of the magnet. Knowing that like magnetic poles repel
each other, we conclude that the left face of the current loop is in essence a north
pole and that the right face is a south pole.

If the magnet moves to the left, as shown in Figure 31.13c, its flux through the
area enclosed by the loop, which is directed to the right, decreases in time. Now
the induced current in the loop is in the direction shown in Figure 31.13d because
this current direction produces a magnetic flux in the same direction as the exter-
nal flux. In this case, the left face of the loop is a south pole and the right face is a
north pole.

The polarity of the induced emf is such that it tends to produce a current that
creates a magnetic flux to oppose the change in magnetic flux through the area
enclosed by the current loop.
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Figure 31.12 (a) As the conduct-
ing bar slides on the two fixed con-
ducting rails, the magnetic flux
through the area enclosed by the
loop increases in time. By Lenz’s law,
the induced current must be coun-
terclockwise so as to produce a coun-
teracting magnetic flux directed out
of the page. (b) When the bar
moves to the left, the induced cur-
rent must be clockwise. Why?

QuickLab
This experiment takes steady hands, a
dime, and a strong magnet. After ver-
ifying that a dime is not attracted to
the magnet, carefully balance the
coin on its edge. (This won’t work
with other coins because they require
too much force to topple them.)
Hold one pole of the magnet within a
millimeter of the face of the dime,
but don’t bump it. Now very rapidly
pull the magnet straight back away
from the coin. Which way does the
dime tip? Does the coin fall the same
way most of the time? Explain what is
going on in terms of Lenz’s law. You
may want to refer to Figure 31.13.
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Figure 31.14 shows a magnet being moved in the vicinity of a solenoid connected to a gal-
vanometer. The south pole of the magnet is the pole nearest the solenoid, and the gal-

Quick Quiz 31.3

Figure 31.13 (a) When the magnet is moved toward the stationary conducting loop, a current
is induced in the direction shown. (b) This induced current produces its own magnetic flux that
is directed to the left and so counteracts the increasing external flux to the right. (c) When the
magnet is moved away from the stationary conducting loop, a current is induced in the direction
shown. (d) This induced current produces a magnetic flux that is directed to the right and so
counteracts the decreasing external flux to the right.
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Figure 31.14 When a magnet is moved
toward or away from a solenoid attached to
a galvanometer, an electric current is in-
duced, indicated by the momentary deflec-
tion of the galvanometer needle. (Richard
Megna/Fundamental Photographs)
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vanometer indicates a clockwise (viewed from above) current in the solenoid. Is the person
inserting the magnet or pulling it out?

Application of Lenz’s LawCONCEPTUAL EXAMPLE 31.6
rection produces a magnetic field that is directed right to left
and so counteracts the decrease in the field produced by the
solenoid.

A metal ring is placed near a solenoid, as shown in Figure
31.15a. Find the direction of the induced current in the ring
(a) at the instant the switch in the circuit containing the sole-
noid is thrown closed, (b) after the switch has been closed
for several seconds, and (c) at the instant the switch is thrown
open.

Solution (a) At the instant the switch is thrown closed, the
situation changes from one in which no magnetic flux passes
through the ring to one in which flux passes through in the
direction shown in Figure 31.15b. To counteract this change
in the flux, the current induced in the ring must set up a
magnetic field directed from left to right in Figure 31.15b.
This requires a current directed as shown.

(b) After the switch has been closed for several seconds,
no change in the magnetic flux through the loop occurs;
hence, the induced current in the ring is zero.

(c) Opening the switch changes the situation from one in
which magnetic flux passes through the ring to one in which
there is no magnetic flux. The direction of the induced cur-
rent is as shown in Figure 31.15c because current in this di-

ε
(c)

(a) (b)
ε εSwitch

Figure 31.15

A Loop Moving Through a Magnetic FieldCONCEPTUAL EXAMPLE 31.7
netic force experienced by charges in the right side of the
loop. When the loop is entirely in the field, the change in
magnetic flux is zero, and hence the motional emf vanishes.
This happens because, once the left side of the loop enters
the field, the motional emf induced in it cancels the motional
emf present in the right side of the loop. As the right side of
the loop leaves the field, the flux inward begins to decrease, a
clockwise current is induced, and the induced emf is B�v. As
soon as the left side leaves the field, the emf decreases to
zero.

(c) The external force that must be applied to the loop to
maintain this motion is plotted in Figure 31.16d. Before the
loop enters the field, no magnetic force acts on it; hence, the
applied force must be zero if v is constant. When the right
side of the loop enters the field, the applied force necessary
to maintain constant speed must be equal in magnitude and
opposite in direction to the magnetic force exerted on that
side: When the loop is entirely in
the field, the flux through the loop is not changing with
time. Hence, the net emf induced in the loop is zero, and the
current also is zero. Therefore, no external force is needed to
maintain the motion. Finally, as the right side leaves the field,
the applied force must be equal in magnitude and opposite

FB � �I�B � �B2�2v/R .

A rectangular metallic loop of dimensions � and w and resis-
tance R moves with constant speed v to the right, as shown in
Figure 31.16a, passing through a uniform magnetic field B
directed into the page and extending a distance 3w along the
x axis. Defining x as the position of the right side of the loop
along the x axis, plot as functions of x (a) the magnetic flux
through the area enclosed by the loop, (b) the induced mo-
tional emf, and (c) the external applied force necessary to
counter the magnetic force and keep v constant.

Solution (a) Figure 31.16b shows the flux through the
area enclosed by the loop as a function x . Before the loop en-
ters the field, the flux is zero. As the loop enters the field, the
flux increases linearly with position until the left edge of the
loop is just inside the field. Finally, the flux through the loop
decreases linearly to zero as the loop leaves the field.

(b) Before the loop enters the field, no motional emf is
induced in it because no field is present (Fig. 31.16c). As 
the right side of the loop enters the field, the magnetic 
flux directed into the page increases. Hence, according to
Lenz’s law, the induced current is counterclockwise because
it must produce a magnetic field directed out of the page.
The motional emf �B�v (from Eq. 31.5) arises from the mag-
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INDUCED EMF AND ELECTRIC FIELDS
We have seen that a changing magnetic flux induces an emf and a current in a
conducting loop. Therefore, we must conclude that an electric field is created
in the conductor as a result of the changing magnetic flux. However, this in-
duced electric field has two important properties that distinguish it from the elec-
trostatic field produced by stationary charges: The induced field is nonconserva-
tive and can vary in time.

We can illustrate this point by considering a conducting loop of radius r situ-
ated in a uniform magnetic field that is perpendicular to the plane of the loop, as
shown in Figure 31.17. If the magnetic field changes with time, then, according to
Faraday’s law (Eq. 31.1), an emf is induced in the loop. The induc-
tion of a current in the loop implies the presence of an induced electric field E,
which must be tangent to the loop because all points on the loop are equivalent.
The work done in moving a test charge q once around the loop is equal to Be-
cause the electric force acting on the charge is the work done by this force in
moving the charge once around the loop is where 2�r is the circumfer-
ence of the loop. These two expressions for the work must be equal; therefore, we
see that

Using this result, along with Equation 31.1 and the fact that for a�B � BA � �r 2B

 E �
�

2�r
 

q� � qE(2�r)

qE(2�r),
q E,

q�.

� � �d�B/dt

31.4

12.8

Figure 31.16 (a) A conducting rectangular loop of width
w and length � moving with a velocity v through a uniform
magnetic field extending a distance 3w. (b) Magnetic flux
through the area enclosed by the loop as a function of loop
position. (c) Induced emf as a function of loop position. 
(d) Applied force required for constant velocity as a function
of loop position.

ΦB

0 w 3w 4w x

(b)

B�w

(a)

3w

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

v
Bin

w

�

0 x

(d)

0 w 3w 4w x

Fx

B 2�2v

R

(c)

ε

x

B�v

– B�v

in direction to the magnetic force acting on the left side of
the loop.

From this analysis, we conclude that power is supplied
only when the loop is either entering or leaving the field.

Furthermore, this example shows that the motional emf in-
duced in the loop can be zero even when there is motion
through the field! A motional emf is induced only when the
magnetic flux through the loop changes in time.
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Figure 31.17 A conducting loop
of radius r in a uniform magnetic
field perpendicular to the plane of
the loop. If B changes in time, an
electric field is induced in a direc-
tion tangent to the circumference
of the loop.



31.4 Induced EMF and Electric Fields 993

circular loop, we find that the induced electric field can be expressed as

(31.8)

If the time variation of the magnetic field is specified, we can easily calculate the
induced electric field from Equation 31.8. The negative sign indicates that the in-
duced electric field opposes the change in the magnetic field.

The emf for any closed path can be expressed as the line integral of over 
that path: In more general cases, E may not be constant, and the path
may not be a circle. Hence, Faraday’s law of induction, can be writ-
ten in the general form

(31.9)

It is important to recognize that the induced electric field E in Equation
31.9 is a nonconservative field that is generated by a changing magnetic
field. The field E that satisfies Equation 31.9 cannot possibly be an electrostatic
field for the following reason: If the field were electrostatic, and hence conserva-
tive, the line integral of over a closed loop would be zero; this would be in
contradiction to Equation 31.9.

E � ds

�E � ds � �
d�B

dt

� � �d�B /dt,
� � �E � ds.

E � ds

E � �
1

2�r
 
d�B

dt
� �

r
2

 
dB
dt

Electric Field Induced by a Changing Magnetic Field in a SolenoidEXAMPLE 31.8
metry we see that the magnitude of E is constant on this path
and that E is tangent to it. The magnetic flux through the
area enclosed by this path is hence, Equation
31.9 gives

(1)

The magnetic field inside a long solenoid is given by Equa-
tion 30.17, When we substitute cos 
t into
this equation and then substitute the result into Equation (1),
we find that

(2) (for r 	 R)

Hence, the electric field varies sinusoidally with time and its
amplitude falls off as 1/r outside the solenoid.

(b) What is the magnitude of the induced electric field in-
side the solenoid, a distance r from its axis?

Solution For an interior point (r  R), the flux threading
an integration loop is given by B�r 2. Using the same proce-

E �
�0nImax
R 2

2r
 sin 
t

E(2�r) � ��R 2�0nImax 
d
dt

(cos 
t) � �R 2�0nImax
 sin 
t

I � ImaxB � �0nI.

�E � ds � E(2�r) � ��R2 
dB
dt

 

�E � ds � �
d
dt

 (B�R2) � ��R2 
dB
dt

BA � B�R2;

A long solenoid of radius R has n turns of wire per unit
length and carries a time-varying current that varies si-
nusoidally as cos 
t, where Imax is the maximum cur-
rent and 
 is the angular frequency of the alternating current
source (Fig. 31.18). (a) Determine the magnitude of the in-
duced electric field outside the solenoid, a distance r 	 R
from its long central axis.

Solution First let us consider an external point and take
the path for our line integral to be a circle of radius r cen-
tered on the solenoid, as illustrated in Figure 31.18. By sym-

I � Imax

Faraday’s law in general form

Path of
integration

R

r

Imax cos    tω

Figure 31.18 A long solenoid carrying a time-varying current
given by cos 
t. An electric field is induced both inside and
outside the solenoid.

I � I0
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Optional Section

GENERATORS AND MOTORS
Electric generators are used to produce electrical energy. To understand how they
work, let us consider the alternating current (ac) generator, a device that con-
verts mechanical energy to electrical energy. In its simplest form, it consists of a
loop of wire rotated by some external means in a magnetic field (Fig. 31.19a).

In commercial power plants, the energy required to rotate the loop can be de-
rived from a variety of sources. For example, in a hydroelectric plant, falling water
directed against the blades of a turbine produces the rotary motion; in a coal-fired
plant, the energy released by burning coal is used to convert water to steam, and
this steam is directed against the turbine blades. As a loop rotates in a magnetic
field, the magnetic flux through the area enclosed by the loop changes with time;
this induces an emf and a current in the loop according to Faraday’s law. The ends
of the loop are connected to slip rings that rotate with the loop. Connections from
these slip rings, which act as output terminals of the generator, to the external cir-
cuit are made by stationary brushes in contact with the slip rings.

31.5

dure as in part (a), we find that

(3) (for r  R)

This shows that the amplitude of the electric field induced in-
side the solenoid by the changing magnetic flux through the
solenoid increases linearly with r and varies sinusoidally with
time.

E �
�0nImax


2
 r sin 
t

E(2�r) � ��r 2 
dB
dt

� �r 2�0nImax
 sin 
t

Exercise Show that Equations (2) and (3) for the exterior
and interior regions of the solenoid match at the boundary, 
r � R .

Exercise Would the electric field be different if the sole-
noid had an iron core?

Answer Yes, it could be much stronger because the maxi-
mum magnetic field (and thus the change in flux) through
the solenoid could be thousands of times larger. (See Exam-
ple 30.10.)

Figure 31.19 (a) Schematic diagram of an ac generator. An emf is induced in a loop that ro-
tates in a magnetic field. (b) The alternating emf induced in the loop plotted as a function of
time.

Turbines turn generators at a hy-
droelectric power plant. (Luis Cas-
taneda/The Image Bank)
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Suppose that, instead of a single turn, the loop has N turns (a more practical
situation), all of the same area A, and rotates in a magnetic field with a constant
angular speed 
. If � is the angle between the magnetic field and the normal to
the plane of the loop, as shown in Figure 31.20, then the magnetic flux through
the loop at any time t is

where we have used the relationship � � 
t between angular displacement and an-
gular speed (see Eq. 10.3). (We have set the clock so that t � 0 when � � 0.)
Hence, the induced emf in the coil is

(31.10)

This result shows that the emf varies sinusoidally with time, as was plotted in Fig-
ure 31.19b. From Equation 31.10 we see that the maximum emf has the value

(31.11)

which occurs when 
t � 90° or 270°. In other words, when the mag-
netic field is in the plane of the coil and the time rate of change of flux is a 
maximum. Furthermore, the emf is zero when 
t � 0 or 180°, that is, when B
is perpendicular to the plane of the coil and the time rate of change of flux is
zero.

The frequency for commercial generators in the United States and Canada is
60 Hz, whereas in some European countries it is 50 Hz. (Recall that 
 � 2�f,
where f is the frequency in hertz.)

� � �max

�max � NAB


� � �N 
d�B

dt
� �NAB 

d
dt

 (cos 
t) � NAB
 sin 
t

�B � BA cos � � BA cos 
t

emf Induced in a GeneratorEXAMPLE 31.9
Solution From Equation 27.8 and the results to part (a),
we have

Exercise Determine how the induced emf and induced cur-
rent vary with time.

Answer
377t.
t � (11.3 A)sinImax sinI �

� � �max sin 
t � (136 V)sin 377t ;

11.3 AImax �
�max

R
�

136 V
12.0 �

�

An ac generator consists of 8 turns of wire, each of area A �
0.090 0 m2, and the total resistance of the wire is 12.0 �. The
loop rotates in a 0.500-T magnetic field at a constant fre-
quency of 60.0 Hz. (a) Find the maximum induced emf.

Solution First, we note that 
Thus, Equation 31.11 gives

(b) What is the maximum induced current when the out-
put terminals are connected to a low-resistance conductor?

136 V�max � NAB
 � 8(0.090 0 m2)(0.500 T)(377 s�1) �

377 s�1.

 � 2�f � 2�(60.0 Hz) �

Normal

θ

B

Figure 31.20 A loop enclosing
an area A and containing N turns,
rotating with constant angular
speed 
 in a magnetic field. The
emf induced in the loop varies si-
nusoidally in time.

The direct current (dc) generator is illustrated in Figure 31.21a. Such gener-
ators are used, for instance, in older cars to charge the storage batteries used. The
components are essentially the same as those of the ac generator except that the
contacts to the rotating loop are made using a split ring called a commutator.

In this configuration, the output voltage always has the same polarity and pul-
sates with time, as shown in Figure 31.21b. We can understand the reason for this
by noting that the contacts to the split ring reverse their roles every half cycle. At
the same time, the polarity of the induced emf reverses; hence, the polarity of the
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split ring (which is the same as the polarity of the output voltage) remains the
same.

A pulsating dc current is not suitable for most applications. To obtain a more
steady dc current, commercial dc generators use many coils and commutators dis-
tributed so that the sinusoidal pulses from the various coils are out of phase. When
these pulses are superimposed, the dc output is almost free of fluctuations.

Motors are devices that convert electrical energy to mechanical energy. Essen-
tially, a motor is a generator operating in reverse. Instead of generating a current
by rotating a loop, a current is supplied to the loop by a battery, and the torque
acting on the current-carrying loop causes it to rotate.

Useful mechanical work can be done by attaching the rotating armature to
some external device. However, as the loop rotates in a magnetic field, the chang-
ing magnetic flux induces an emf in the loop; this induced emf always acts to re-
duce the current in the loop. If this were not the case, Lenz’s law would be vio-
lated. The back emf increases in magnitude as the rotational speed of the
armature increases. (The phrase back emf is used to indicate an emf that tends to
reduce the supplied current.) Because the voltage available to supply current
equals the difference between the supply voltage and the back emf, the current in
the rotating coil is limited by the back emf.

When a motor is turned on, there is initially no back emf; thus, the current is
very large because it is limited only by the resistance of the coils. As the coils begin
to rotate, the induced back emf opposes the applied voltage, and the current in
the coils is reduced. If the mechanical load increases, the motor slows down; this
causes the back emf to decrease. This reduction in the back emf increases the cur-
rent in the coils and therefore also increases the power needed from the external
voltage source. For this reason, the power requirements for starting a motor and
for running it are greater for heavy loads than for light ones. If the motor is al-
lowed to run under no mechanical load, the back emf reduces the current to a
value just large enough to overcome energy losses due to internal energy and fric-
tion. If a very heavy load jams the motor so that it cannot rotate, the lack of a back
emf can lead to dangerously high current in the motor’s wire. If the problem is
not corrected, a fire could result.

t

ε

(b)

Commutator

(a)

Brush N

S

Armature

Figure 31.21 (a) Schematic diagram of a dc generator. (b) The magnitude of the emf varies in
time but the polarity never changes.
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Optional Section

EDDY CURRENTS
As we have seen, an emf and a current are induced in a circuit by a changing mag-
netic flux. In the same manner, circulating currents called eddy currents are in-
duced in bulk pieces of metal moving through a magnetic field. This can easily be
demonstrated by allowing a flat copper or aluminum plate attached at the end of a
rigid bar to swing back and forth through a magnetic field (Fig. 31.22). As the
plate enters the field, the changing magnetic flux induces an emf in the plate,
which in turn causes the free electrons in the plate to move, producing the
swirling eddy currents. According to Lenz’s law, the direction of the eddy currents
must oppose the change that causes them. For this reason, the eddy currents must
produce effective magnetic poles on the plate, which are repelled by the poles of
the magnet; this gives rise to a repulsive force that opposes the motion of the
plate. (If the opposite were true, the plate would accelerate and its energy would

31.6

Figure 31.22 Formation of eddy currents in a conducting
plate moving through a magnetic field. As the plate enters or
leaves the field, the changing magnetic flux induces an emf,
which causes eddy currents in the plate.

The Induced Current in a MotorEXAMPLE 31.10
(b) At the maximum speed, the back emf has its maxi-

mum value. Thus, the effective supply voltage is that of the
external source minus the back emf. Hence, the current is re-
duced to

Exercise If the current in the motor is 8.0 A at some in-
stant, what is the back emf at this time?

Answer 40 V.

5.0 AI �
���back

R
�

120 V � 70 V
10 �

�
50 V
10 �

�

Assume that a motor in which the coils have a total resistance
of 10 � is supplied by a voltage of 120 V. When the motor is
running at its maximum speed, the back emf is 70 V. Find the
current in the coils (a) when the motor is turned on and 
(b) when it has reached maximum speed.

Solution (a) When the motor is turned on, the back emf
is zero (because the coils are motionless). Thus, the current
in the coils is a maximum and equal to

12 AI �
�
R

�
120 V
10 �

�

v

Pivot

S

N

QuickLab
Hang a strong magnet from two
strings so that it swings back and
forth in a plane. Start it oscillating
and determine approximately how
much time passes before it stops
swinging. Start it oscillating again and
quickly bring the flat surface of an
aluminum cooking sheet up to within
a millimeter of the plane of oscilla-
tion, taking care not to touch the
magnet. How long does it take the os-
cillating magnet to stop now?
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increase after each swing, in violation of the law of conservation of energy.) As you
may have noticed while carrying out the QuickLab on page 997, you can “feel” the
retarding force by pulling a copper or aluminum sheet through the field of a
strong magnet.

As indicated in Figure 31.23, with B directed into the page, the induced eddy
current is counterclockwise as the swinging plate enters the field at position 1.
This is because the external magnetic flux into the page through the plate is in-
creasing, and hence by Lenz’s law the induced current must provide a magnetic
flux out of the page. The opposite is true as the plate leaves the field at position 2,
where the current is clockwise. Because the induced eddy current always produces
a magnetic retarding force FB when the plate enters or leaves the field, the swing-
ing plate eventually comes to rest.

If slots are cut in the plate, as shown in Figure 31.24, the eddy currents and the
corresponding retarding force are greatly reduced. We can understand this by real-
izing that the cuts in the plate prevent the formation of any large current loops.

The braking systems on many subway and rapid-transit cars make use of elec-
tromagnetic induction and eddy currents. An electromagnet attached to the train
is positioned near the steel rails. (An electromagnet is essentially a solenoid with
an iron core.) The braking action occurs when a large current is passed through
the electromagnet. The relative motion of the magnet and rails induces eddy cur-
rents in the rails, and the direction of these currents produces a drag force on the
moving train. The loss in mechanical energy of the train is transformed to internal
energy in the rails and wheels. Because the eddy currents decrease steadily in mag-
nitude as the train slows down, the braking effect is quite smooth. Eddy-
current brakes are also used in some mechanical balances and in various ma-
chines. Some power tools use eddy currents to stop rapidly spinning blades once
the device is turned off.

Figure 31.23 As the conducting
plate enters the field (position 1),
the eddy currents are counterclock-
wise. As the plate leaves the field
(position 2), the currents are clock-
wise. In either case, the force on
the plate is opposite the velocity,
and eventually the plate comes to
rest.
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Figure 31.24 When slots are cut
in the conducting plate, the eddy
currents are reduced and the plate
swings more freely through the
magnetic field.

Figure 31.25 As the coin enters the vending machine, a potential difference is applied across
the coin at A, and its resistance is measured. If the resistance is acceptable, the holder drops
down, releasing the coin and allowing it to roll along the inlet track. Two magnets induce eddy
currents in the coin, and magnetic forces control its speed. If the speed sensors indicate that the
coin has the correct speed, gate B swings up to allow the coin to be accepted. If the coin is not
moving at the correct speed, gate C opens to allow the coin to follow the reject path.
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Eddy currents are often undesirable because they represent a transformation
of mechanical energy to internal energy. To reduce this energy loss, moving con-
ducting parts are often laminated—that is, they are built up in thin layers sepa-
rated by a nonconducting material such as lacquer or a metal oxide. This layered
structure increases the resistance of the possible paths of the eddy currents and ef-
fectively confines the currents to individual layers. Such a laminated structure is
used in transformer cores and motors to minimize eddy currents and thereby in-
crease the efficiency of these devices.

Even a task as simple as buying a candy bar from a vending machine involves
eddy currents, as shown in Figure 31.25. After entering the slot, a coin is stopped
momentarily while its electrical resistance is checked. If its resistance falls within
an acceptable range, the coin is allowed to continue down a ramp and through a
magnetic field. As it moves through the field, eddy currents are produced in the
coin, and magnetic forces slow it down slightly. How much it is slowed down de-
pends on its metallic composition. Sensors measure the coin’s speed after it moves
past the magnets, and this speed is compared with expected values. If the coin is
legal and passes these tests, a gate is opened and the coin is accepted; otherwise, a
second gate moves it into the reject path.

MAXWELL’S WONDERFUL EQUATIONS
We conclude this chapter by presenting four equations that are regarded as the ba-
sis of all electrical and magnetic phenomena. These equations, developed by
James Clerk Maxwell, are as fundamental to electromagnetic phenomena as New-
ton’s laws are to mechanical phenomena. In fact, the theory that Maxwell devel-
oped was more far-reaching than even he imagined because it turned out to be in
agreement with the special theory of relativity, as Einstein showed in 1905.

Maxwell’s equations represent the laws of electricity and magnetism that we
have already discussed, but they have additional important consequences. In
Chapter 34 we shall show that these equations predict the existence of electromag-
netic waves (traveling patterns of electric and magnetic fields), which travel with a
speed the speed of light. Furthermore, the theory
shows that such waves are radiated by accelerating charges.

For simplicity, we present Maxwell’s equations as applied to free space, that
is, in the absence of any dielectric or magnetic material. The four equations are

(31.12)

(31.13)

(31.14)

(31.15)�B � ds � �0I � �0�0 
d�E

dt

�E � ds � �
d�B

dt

�
S

B � dA � 0

�
S

E � dA �
Q
�0

c � 1/!�0�0 � 3.00 � 108 m/s,

31.7

12.10

Gauss’s law

Gauss’s law in magnetism

Faraday’s law

Ampère–Maxwell law
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Equation 31.12 is Gauss’s law: The total electric flux through any closed
surface equals the net charge inside that surface divided by �0 . This law re-
lates an electric field to the charge distribution that creates it.

Equation 31.13, which can be considered Gauss’s law in magnetism, states that
the net magnetic flux through a closed surface is zero. That is, the number of
magnetic field lines that enter a closed volume must equal the number that leave
that volume. This implies that magnetic field lines cannot begin or end at any
point. If they did, it would mean that isolated magnetic monopoles existed at
those points. The fact that isolated magnetic monopoles have not been observed
in nature can be taken as a confirmation of Equation 31.13.

Equation 31.14 is Faraday’s law of induction, which describes the creation of
an electric field by a changing magnetic flux. This law states that the emf, which
is the line integral of the electric field around any closed path, equals the
rate of change of magnetic flux through any surface area bounded by that
path. One consequence of Faraday’s law is the current induced in a conducting
loop placed in a time-varying magnetic field.

Equation 31.15, usually called the Ampère–Maxwell law, is the generalized
form of Ampère’s law, which describes the creation of a magnetic field by an elec-
tric field and electric currents: The line integral of the magnetic field around
any closed path is the sum of �0 times the net current through that path
and �0�0 times the rate of change of electric flux through any surface
bounded by that path.

Once the electric and magnetic fields are known at some point in space, the
force acting on a particle of charge q can be calculated from the expression

(31.16)

This relationship is called the Lorentz force law. (We saw this relationship earlier
as Equation 29.16.) Maxwell’s equations, together with this force law, completely
describe all classical electromagnetic interactions.

It is interesting to note the symmetry of Maxwell’s equations. Equations 31.12
and 31.13 are symmetric, apart from the absence of the term for magnetic mono-
poles in Equation 31.13. Furthermore, Equations 31.14 and 31.15 are symmetric in
that the line integrals of E and B around a closed path are related to the rate of
change of magnetic flux and electric flux, respectively. “Maxwell’s wonderful equa-
tions,” as they were called by John R. Pierce,3 are of fundamental importance not
only to electromagnetism but to all of science. Heinrich Hertz once wrote, “One
cannot escape the feeling that these mathematical formulas have an independent
existence and an intelligence of their own, that they are wiser than we are, wiser
even than their discoverers, that we get more out of them than we put into them.”

SUMMARY

Faraday’s law of induction states that the emf induced in a circuit is directly pro-
portional to the time rate of change of magnetic flux through the circuit:

(31.1)

where is the magnetic flux.�B � �B � dA

� � �
d�B

dt

F � q E � q v � BLorentz force law

3 John R. Pierce, Electrons and Waves, New York, Doubleday Science Study Series, 1964. Chapter 6 of this
interesting book is recommended as supplemental reading.
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When a conducting bar of length � moves at a velocity v through a magnetic
field B, where B is perpendicular to the bar and to v, the motional emf induced
in the bar is

(31.5)

Lenz’s law states that the induced current and induced emf in a conductor
are in such a direction as to oppose the change that produced them.

A general form of Faraday’s law of induction is

(31.9)

where E is the nonconservative electric field that is produced by the changing
magnetic flux.

When used with the Lorentz force law, Maxwell’s equa-
tions describe all electromagnetic phenomena:

(31.12)

(31.13)

(31.14)

(31.15)

The Ampère–Maxwell law (Eq. 31.15) describes how a magnetic field can be pro-
duced by both a conduction current and a changing electric flux.

�B � ds � �0I � �0�0 
d�E

dt

�E � ds � �
d�B

dt

�
S

B � dA � 0

�
S

E � dA �
Q
�0

F � qE � q v � B,

� � �E � ds � �
d�B

dt

� � �B�v

QUESTIONS

the magnet remains horizontal as it falls, describe the emf
induced in the loop. How is the situation altered if the
axis of the magnet remains vertical as it falls?

1. A loop of wire is placed in a uniform magnetic field. For
what orientation of the loop is the magnetic flux a maxi-
mum? For what orientation is the flux zero? Draw pic-
tures of these two situations.

2. As the conducting bar shown in Figure Q31.2 moves to
the right, an electric field directed downward is set up in
the bar. Explain why the electric field would be upward if
the bar were to move to the left.

3. As the bar shown in Figure Q31.2 moves in a direction
perpendicular to the field, is an applied force required to
keep it moving with constant speed? Explain.

4. The bar shown in Figure Q31.4 moves on rails to the
right with a velocity v, and the uniform, constant mag-
netic field is directed out of the page. Why is the induced
current clockwise? If the bar were moving to the left, what
would be the direction of the induced current?

5. Explain why an applied force is necessary to keep the bar
shown in Figure Q31.4 moving with a constant speed.

6. A large circular loop of wire lies in the horizontal plane.
A bar magnet is dropped through the loop. If the axis of
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Figure Q31.2 (Questions 2 and 3).
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PROBLEMS

3. A 25-turn circular coil of wire has a diameter of 1.00 m.
It is placed with its axis along the direction of the
Earth’s magnetic field of 50.0 �T, and then in 0.200 s it
is flipped 180°. An average emf of what magnitude is
generated in the coil?

4. A rectangular loop of area A is placed in a region where
the magnetic field is perpendicular to the plane of the
loop. The magnitude of the field is allowed to vary in
time according to the expression where
Bmax and � are constants. The field has the constant
value Bmax for t  0. (a) Use Faraday’s law to show that
the emf induced in the loop is given by

(b) Obtain a numerical value for at t � 4.00 s when �
� � (ABmax/�)e�t/�

B � Bmaxe�t/�,

Section 31.1 Faraday’s Law of Induction

Section 31.2 Motional emf

Section 31.3 Lenz’s Law
1. A 50-turn rectangular coil of dimensions 5.00 cm �

10.0 cm is allowed to fall from a position where B � 0 to
a new position where B � 0.500 T and is directed per-
pendicular to the plane of the coil. Calculate the magni-
tude of the average emf induced in the coil if the dis-
placement occurs in 0.250 s.

2. A flat loop of wire consisting of a single turn of cross-
sectional area 8.00 cm2 is perpendicular to a magnetic
field that increases uniformly in magnitude from 
0.500 T to 2.50 T in 1.00 s. What is the resulting in-
duced current if the loop has a resistance of 2.00 �?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Figure Q31.4 (Questions 4 and 5).

Figure Q31.13 (Questions 13 and 14). (Photo courtesy of Central Scien-
tific Company)

v

Bout

7. When a small magnet is moved toward a solenoid, an emf
is induced in the coil. However, if the magnet is moved
around inside a toroid, no emf is induced. Explain.

8. Will dropping a magnet down a long copper tube pro-
duce a current in the walls of the tube? Explain.

9. How is electrical energy produced in dams (that is, how is
the energy of motion of the water converted to alternat-
ing current electricity)?

10. In a beam–balance scale, an aluminum plate is some-
times used to slow the oscillations of the beam near equi-
librium. The plate is mounted at the end of the beam and
moves between the poles of a small horseshoe magnet at-
tached to the frame. Why are the oscillations strongly
damped near equilibrium?

11. What happens when the rotational speed of a generator
coil is increased?

12. Could a current be induced in a coil by the rotation of a
magnet inside the coil? If so, how?

13. When the switch shown in Figure Q31.13a is closed, a cur-

14. Assume that the battery shown in Figure Q31.13a is re-
placed by an alternating current source and that the
switch is held closed. If held down, the metal ring on top
of the solenoid becomes hot. Why?

15. Do Maxwell’s equations allow for the existence of mag-
netic monopoles? Explain.

rent is set up in the coil, and the metal ring springs up-
ward (Fig. Q31.13b). Explain this behavior.

(a)

Iron core
Metal ring

S

(b)
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A � 0.160 m2, Bmax � 0.350 T, and � � 2.00 s. (c) For
the values of A, Bmax , and � given in part (b), what is
the maximum value of 

5. A strong electromagnet produces a uniform field of
1.60 T over a cross-sectional area of 0.200 m2. A coil hav-
ing 200 turns and a total resistance of 20.0 � is placed
around the electromagnet. The current in the electro-
magnet is then smoothly decreased until it reaches zero
in 20.0 ms. What is the current induced in the coil?

6. A magnetic field of 0.200 T exists within a solenoid of
500 turns and a diameter of 10.0 cm. How rapidly (that
is, within what period of time) must the field be re-
duced to zero if the average induced emf within the coil
during this time interval is to be 10.0 kV?

7. An aluminum ring with a radius of 5.00 cm and a resis-
tance of 3.00 � 10�4 � is placed on top of a long air-
core solenoid with 1 000 turns per meter and a radius
of 3.00 cm, as shown in Figure P31.7. Assume that the
axial component of the field produced by the solenoid
over the area of the end of the solenoid is one-half as
strong as at the center of the solenoid. Assume that the
solenoid produces negligible field outside its cross-
sectional area. (a) If the current in the solenoid is in-
creasing at a rate of 270 A/s, what is the induced cur-
rent in the ring? (b) At the center of the ring, what is
the magnetic field produced by the induced current in
the ring? (c) What is the direction of this field?

8. An aluminum ring of radius r 1 and resistance R is
placed on top of a long air-core solenoid with n turns
per meter and smaller radius r2 , as shown in Figure
P31.7. Assume that the axial component of the field
produced by the solenoid over the area of the end of
the solenoid is one-half as strong as at the center of the
solenoid. Assume that the solenoid produces negligible
field outside its cross-sectional area. (a) If the current in
the solenoid is increasing at a rate of �I/�t , what is the
induced current in the ring? (b) At the center of the
ring, what is the magnetic field produced by the in-
duced current in the ring? (c) What is the direction of
this field?

9. A loop of wire in the shape of a rectangle of width w
and length L and a long, straight wire carrying a cur-
rent I lie on a tabletop as shown in Figure P31.9. 
(a) Determine the magnetic flux through the loop due
to the current I. (b) Suppose that the current is chang-
ing with time according to where a and b
are constants. Determine the induced emf in the loop if 
b � 10.0 A/s, h � 1.00 cm, and L �
100 cm. What is the direction of the induced current in
the rectangle?

10. A coil of 15 turns and radius 10.0 cm surrounds a long
solenoid of radius 2.00 cm and 1.00 � 103 turns per me-
ter (Fig. P31.10). If the current in the solenoid changes
as I � (5.00 A) sin(120t), find the induced emf in the
15-turn coil as a function of time.

w � 10.0 cm,

I � a � bt ,

�?

11. Find the current through section PQ of length a �
65.0 cm shown in Figure P31.11. The circuit is located
in a magnetic field whose magnitude varies with time
according to the expression B � (1.00 � 10�3 T/s)t . 
Assume that the resistance per length of the wire is
0.100 �/m.

WEB

WEB

I

15-turn coil

4.00 Ω

R

I

w

h

L

5.00 cm

3.00 cm

I

I

Figure P31.7 Problems 7 and 8.

Figure P31.9 Problems 9 and 73.

Figure P31.10
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12. A 30-turn circular coil of radius 4.00 cm and resistance
1.00 � is placed in a magnetic field directed perpendic-
ular to the plane of the coil. The magnitude of the mag-
netic field varies in time according to the expression 
B � 0.010 0t � 0.040 0t2, where t is in seconds and B is
in tesla. Calculate the induced emf in the coil at 
t � 5.00 s.

13. A long solenoid has 400 turns per meter and carries a
current I � (30.0 A)(1 � e�1.60t). Inside the solenoid
and coaxial with it is a coil that has a radius of 6.00 cm
and consists of a total of 250 turns of fine wire (Fig.
P31.13). What emf is induced in the coil by the chang-
ing current?

14. A long solenoid has n turns per meter and carries a cur-
rent Inside the solenoid and coaxial
with it is a coil that has a radius R and consists of a total
of N turns of fine wire (see Fig. P31.13). What emf is in-
duced in the coil by the changing current?

I � Imax(1 � e��t).

17. A toroid having a rectangular cross-section (a �
2.00 cm by b � 3.00 cm) and inner radius R � 4.00 cm
consists of 500 turns of wire that carries a current

sin 
t, with Imax � 50.0 A and a frequency
60.0 Hz. A coil that consists of 20 turns of

wire links with the toroid, as shown in Figure P31.17.
Determine the emf induced in the coil as a function of
time.

f � 
/2� �
I � Imax

19. A circular coil enclosing an area of 100 cm2 is made of
200 turns of copper wire, as shown in Figure P31.19. Ini-

18. A single-turn, circular loop of radius R is coaxial with a
long solenoid of radius r and length � and having N
turns (Fig. P31.18). The variable resistor is changed so
that the solenoid current decreases linearly from I1 to I2
in an interval �t. Find the induced emf in the loop.

15. A coil formed by wrapping 50 turns of wire in the shape
of a square is positioned in a magnetic field so that the
normal to the plane of the coil makes an angle of 30.0°
with the direction of the field. When the magnetic field
is increased uniformly from 200 �T to 600 �T in 
0.400 s, an emf of magnitude 80.0 mV is induced in the
coil. What is the total length of the wire?

16. A closed loop of wire is given the shape of a circle with a
radius of 0.500 m. It lies in a plane perpendicular to a
uniform magnetic field of magnitude 0.400 T. If in
0.100 s the wire loop is reshaped into a square but re-
mains in the same plane, what is the magnitude of the
average induced emf in the wire during this time?

Bi = 1.10 T (upward)

R

R
I
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Figure P31.11

Figure P31.13 Problems 13 and 14.

Figure P31.17

Figure P31.18

Figure P31.19
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tially, a 1.10-T uniform magnetic field points in a per-
pendicular direction upward through the plane of the
coil. The direction of the field then reverses. During the
time the field is changing its direction, how much
charge flows through the coil if R � 5.00 �?

20. Consider the arrangement shown in Figure P31.20. 
Assume that R � 6.00 �, � � 1.20 m, and a uniform
2.50-T magnetic field is directed into the page. At what
speed should the bar be moved to produce a current of
0.500 A in the resistor?

0.100-T magnetic field directed perpendicular into the
plane of the paper. The loop, which is hinged at each
corner, is pulled as shown until the separation between
points A and B is 3.00 m. If this process takes 0.100 s,
what is the average current generated in the loop? What
is the direction of the current?

25. A helicopter has blades with a length of 3.00 m extending
outward from a central hub and rotating at 2.00 rev/s. If
the vertical component of the Earth’s magnetic field is
50.0 �T, what is the emf induced between the blade tip
and the center hub?

26. Use Lenz’s law to answer the following questions con-
cerning the direction of induced currents: (a) What is
the direction of the induced current in resistor R shown
in Figure P31.26a when the bar magnet is moved to the
left? (b) What is the direction of the current induced in
the resistor R right after the switch S in Figure P31.26b
is closed? (c) What is the direction of the induced cur-
rent in R when the current I in Figure P31.26c decreases
rapidly to zero? (d) A copper bar is moved to the right
while its axis is maintained in a direction perpendicular
to a magnetic field, as shown in Figure P31.26d. If the
top of the bar becomes positive relative to the bottom,
what is the direction of the magnetic field?

27. A rectangular coil with resistance R has N turns, each of
length � and width w as shown in Figure P31.27. The coil
moves into a uniform magnetic field B with a velocity v.
What are the magnitude and direction of the resultant
force on the coil (a) as it enters the magnetic field, (b) as
it moves within the field, and (c) as it leaves the field?

21. Figure P31.20 shows a top view of a bar that can slide
without friction. The resistor is 6.00 � and a 2.50-T
magnetic field is directed perpendicularly downward,
into the paper. Let � � 1.20 m. (a) Calculate the ap-
plied force required to move the bar to the right at a
constant speed of 2.00 m/s. (b) At what rate is energy
delivered to the resistor?

22. A conducting rod of length � moves on two horizontal,
frictionless rails, as shown in Figure P31.20. If a constant
force of 1.00 N moves the bar at 2.00 m/s through a mag-
netic field B that is directed into the page, (a) what is the
current through an 8.00-� resistor R ? (b) What is the
rate at which energy is delivered to the resistor? (c) What
is the mechanical power delivered by the force Fapp?

23. A Boeing-747 jet with a wing span of 60.0 m is flying
horizontally at a speed of 300 m/s over Phoenix, Ari-
zona, at a location where the Earth’s magnetic field is
50.0 �T at 58.0° below the horizontal. What voltage is
generated between the wingtips?

24. The square loop in Figure P31.24 is made of wires with
total series resistance 10.0 �. It is placed in a uniform

v

R

S N

R

S

(a) (b)

I

(c)

R

(d)

v
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+
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3.00 m
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B
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Figure P31.20 Problems 20, 21, and 22.

Figure P31.24

Figure P31.26
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28. In 1832 Faraday proposed that the apparatus shown in
Figure P31.28 could be used to generate electric cur-
rent from the water flowing in the Thames River.4 Two
conducting plates of lengths a and widths b are placed
facing each other on opposite sides of the river, a dis-
tance w apart, and are immersed entirely. The flow ve-
locity of the river is v and the vertical component of the
Earth’s magnetic field is B. (a) Show that the current in
the load resistor R is

where � is the electrical resistivity of the water. (b) Cal-
culate the short-circuit current (R � 0) if a � 100 m, 
b � 5.00 m, v � 3.00 m/s, B � 50.0 �T, and � �
100 � � m.

I �
abvB

� � abR/w

31. Two parallel rails with negligible resistance are 10.0 cm
apart and are connected by a 5.00-� resistor. The circuit
also contains two metal rods having resistances of 
10.0 � and 15.0 � sliding along the rails (Fig. P31.31).
The rods are pulled away from the resistor at constant
speeds 4.00 m/s and 2.00 m/s, respectively. A uniform
magnetic field of magnitude 0.010 0 T is applied per-
pendicular to the plane of the rails. Determine the cur-
rent in the 5.00-� resistor.

Section 31.4 Induced emf and Electric Fields
32. For the situation described in Figure P31.32, the mag-

netic field changes with time according to the expres-
sion B � (2.00t 3 � 4.00t 2 � 0.800) T, and r 2 � 2R �
5.00 cm. (a) Calculate the magnitude and direction of29. In Figure P31.29, the bar magnet is moved toward the

loop. Is positive, negative, or zero? Explain.
30. A metal bar spins at a constant rate in the magnetic

field of the Earth as in Figure 31.10. The rotation oc-
curs in a region where the component of the Earth’s
magnetic field perpendicular to the plane of rotation is
3.30 � 10�5 T. If the bar is 1.00 m in length and its an-
gular speed is 5.00 � rad/s, what potential difference is
developed between its ends?
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Figure P31.27

Figure P31.28

Figure P31.29

Figure P31.31

Figure P31.32 Problems 32 and 33.

4 The idea for this problem and Figure P31.28 is from Oleg D. Jefi-
menko, Electricity and Magnetism: An Introduction to the Theory of Electric
and Magnetic Fields. Star City, WV, Electret Scientific Co., 1989.
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the force exerted on an electron located at point P2
when t � 2.00 s. (b) At what time is this force equal to
zero?

33. A magnetic field directed into the page changes with
time according to B � (0.030 0t 2 � 1.40) T, where t is
in seconds. The field has a circular cross-section of ra-
dius R � 2.50 cm (see Fig. P31.32). What are the mag-
nitude and direction of the electric field at point P1
when t � 3.00 s and r 1 � 0.020 0 m?

34. A solenoid has a radius of 2.00 cm and 1 000 turns per
meter. Over a certain time interval the current varies
with time according to the expression I � 3e0.2t, where I
is in amperes and t is in seconds. Calculate the electric
field 5.00 cm from the axis of the solenoid at t � 10.0 s.

35. A long solenoid with 1 000 turns per meter and 
radius 2.00 cm carries an oscillating current I �
(5.00 A) sin(100�t). (a) What is the electric field induced
at a radius r � 1.00 cm from the axis of the solenoid?
(b) What is the direction of this electric field when the
current is increasing counterclockwise in the coil?

(Optional)
Section 31.5 Generators and Motors

36. In a 250-turn automobile alternator, the magnetic flux
in each turn is �B � (2.50 � 10�4 T � m2) cos(
t),
where 
 is the angular speed of the alternator. The al-
ternator is geared to rotate three times for each engine
revolution. When the engine is running at an angular
speed of 1 000 rev/min, determine (a) the induced emf
in the alternator as a function of time and (b) the maxi-
mum emf in the alternator.

37. A coil of area 0.100 m2 is rotating at 60.0 rev/s with the
axis of rotation perpendicular to a 0.200-T magnetic
field. (a) If there are 1 000 turns on the coil, what is the
maximum voltage induced in it? (b) What is the orien-
tation of the coil with respect to the magnetic field
when the maximum induced voltage occurs?

38. A square coil (20.0 cm � 20.0 cm) that consists of 
100 turns of wire rotates about a vertical axis at 
1 500 rev/min, as indicated in Figure P31.38. The hori-
zontal component of the Earth’s magnetic field at the
location of the coil is 2.00 � 10�5 T. Calculate the maxi-
mum emf induced in the coil by this field.

39. A long solenoid, with its axis along the x axis, consists 
of 200 turns per meter of wire that carries a steady cur-
rent of 15.0 A. A coil is formed by wrapping 30 turns of
thin wire around a circular frame that has a radius of
8.00 cm. The coil is placed inside the solenoid and
mounted on an axis that is a diameter of the coil and
coincides with the y axis. The coil is then rotated with
an angular speed of 4.00� rad/s. (The plane of the coil
is in the yz plane at t � 0.) Determine the emf devel-
oped in the coil as a function of time.

40. A bar magnet is spun at constant angular speed 

around an axis, as shown in Figure P31.40. A flat rectan-
gular conducting loop surrounds the magnet, and at 
t � 0, the magnet is oriented as shown. Make a qualita-
tive graph of the induced current in the loop as a func-
tion of time, plotting counterclockwise currents as posi-
tive and clockwise currents as negative.

41. (a) What is the maximum torque delivered by an elec-
tric motor if it has 80 turns of wire wrapped on a rectan-
gular coil of dimensions 2.50 cm by 4.00 cm? Assume
that the motor uses 10.0 A of current and that a uni-
form 0.800-T magnetic field exists within the motor. 
(b) If the motor rotates at 3 600 rev/min, what is the
peak power produced by the motor?

42. A semicircular conductor of radius R � 0.250 m is
rotated about the axis AC at a constant rate of 
120 rev/min (Fig. P31.42). A uniform magnetic field in
all of the lower half of the figure is directed out of the
plane of rotation and has a magnitude of 1.30 T. 
(a) Calculate the maximum value of the emf induced in
the conductor. (b) What is the value of the average in-
duced emf for each complete rotation? (c) How would
the answers to parts (a) and (b) change if B were al-
lowed to extend a distance R above the axis of rotation?
Sketch the emf versus time (d) when the field is as
drawn in Figure P31.42 and (e) when the field is ex-
tended as described in part (c).

S
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ω

20.0 cm

20.0 cm
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43. The rotating loop in an ac generator is a square 10.0 cm
on a side. It is rotated at 60.0 Hz in a uniform field of
0.800 T. Calculate (a) the flux through the loop as a
function of time, (b) the emf induced in the loop, 
(c) the current induced in the loop for a loop resis-
tance of 1.00 �, (d) the power in the resistance of the
loop, and (e) the torque that must be exerted to rotate
the loop.

(Optional)
Section 31.6 Eddy Currents

44. A 0.150-kg wire in the shape of a closed rectangle 
1.00 m wide and 1.50 m long has a total resistance of
0.750 �. The rectangle is allowed to fall through a mag-
netic field directed perpendicular to the direction of
motion of the rectangle (Fig. P31.44). The rectangle ac-
celerates downward as it approaches a terminal speed of
2.00 m/s, with its top not yet in the region of the field.
Calculate the magnitude of B.

nal speed vt . (a) Show that

(b) Why is vt proportional to R ? (c) Why is it inversely
proportional to B2?

46. Figure P31.46 represents an electromagnetic brake that
utilizes eddy currents. An electromagnet hangs from a
railroad car near one rail. To stop the car, a large steady
current is sent through the coils of the electromagnet.
The moving electromagnet induces eddy currents in
the rails, whose fields oppose the change in the field of
the electromagnet. The magnetic fields of the eddy cur-
rents exert force on the current in the electromagnet,
thereby slowing the car. The direction of the car’s mo-
tion and the direction of the current in the electromag-
net are shown correctly in the picture. Determine which
of the eddy currents shown on the rails is correct. Ex-
plain your answer.

vt �
MgR
B2w2

Section 31.7 Maxwell’s Wonderful Equations
47. A proton moves through a uniform electric field 

E � 50.0 j V/m and a uniform magnetic field B �
(0.200i � 0.300 j � 0.400k) T. Determine the accelera-
tion of the proton when it has a velocity v � 200 i m/s.

48. An electron moves through a uniform electric field E �
(2.50 i � 5.00 j) V/m and a uniform magnetic field B �
0.400k T. Determine the acceleration of the electron
when it has a velocity v � 10.0 i m/s.

ADDITIONAL PROBLEMS

49. A steel guitar string vibrates (see Fig. 31.5). The compo-
nent of the magnetic field perpendicular to the area of

45. A conducting rectangular loop of mass M , resistance R ,
and dimensions w by � falls from rest into a magnetic
field B as in Figure P31.44. The loop approaches termi-
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Figure P31.42

Figure P31.44 Problems 44 and 45.

Figure P31.46
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a pickup coil nearby is given by

The circular pickup coil has 30 turns and radius 
2.70 mm. Find the emf induced in the coil as a function
of time.

50. Figure P31.50 is a graph of the induced emf versus time
for a coil of N turns rotating with angular velocity 
 in a
uniform magnetic field directed perpendicular to the
axis of rotation of the coil. Copy this graph (on a larger
scale), and on the same set of axes show the graph of
emf versus t (a) if the number of turns in the coil is
doubled, (b) if instead the angular velocity is doubled,
and (c) if the angular velocity is doubled while the
number of turns in the coil is halved.

B � 50.0 mT � (3.20 mT) sin (2�523 t/s)

tude of B inside each is the same and is increasing at
the rate of 100 T/s. What is the current in each resistor?

53. A conducting rod of length � � 35.0 cm is free to slide
on two parallel conducting bars, as shown in Figure
P31.53. Two resistors R1 � 2.00 � and R2 � 5.00 � are
connected across the ends of the bars to form a loop. A
constant magnetic field B � 2.50 T is directed perpen-
dicular into the page. An external agent pulls the rod to
the left with a constant speed of v � 8.00 m/s. Find 
(a) the currents in both resistors, (b) the total power
delivered to the resistance of the circuit, and (c) the
magnitude of the applied force that is needed to move
the rod with this constant velocity.

54. Suppose you wrap wire onto the core from a roll of cel-
lophane tape to make a coil. Describe how you can use
a bar magnet to produce an induced voltage in the coil.
What is the order of magnitude of the emf you gener-
ate? State the quantities you take as data and their val-
ues.

55. A bar of mass m , length d , and resistance R slides with-
out friction on parallel rails, as shown in Figure P31.55.
A battery that maintains a constant emf is connected
between the rails, and a constant magnetic field B is di-
rected perpendicular to the plane of the page. If the
bar starts from rest, show that at time t it moves with a
speed

v �
�
Bd

 (1 � e�B 2d 2t /mR)

�

56. An automobile has a vertical radio antenna 1.20 m long.
The automobile travels at 65.0 km/h on a horizontal
road where the Earth’s magnetic field is 50.0 �T di-
rected toward the north and downward at an angle of
65.0° below the horizontal. (a) Specify the direction
that the automobile should move to generate the maxi-

51. A technician wearing a brass bracelet enclosing an area
of 0.005 00 m2 places her hand in a solenoid whose
magnetic field is 5.00 T directed perpendicular to the
plane of the bracelet. The electrical resistance around
the circumference of the bracelet is 0.020 0 �. An unex-
pected power failure causes the field to drop to 1.50 T
in a time of 20.0 ms. Find (a) the current induced in
the bracelet and (b) the power delivered to the resis-
tance of the bracelet. (Note: As this problem implies,
you should not wear any metallic objects when working
in regions of strong magnetic fields.)

52. Two infinitely long solenoids (seen in cross-section)
thread a circuit as shown in Figure P31.52. The magni-
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mum motional emf in the antenna, with the top of the
antenna positive relative to the bottom. (b) Calculate
the magnitude of this induced emf.

57. The plane of a square loop of wire with edge length 
a � 0.200 m is perpendicular to the Earth’s magnetic
field at a point where B � 15.0 �T, as shown in Figure
P31.57. The total resistance of the loop and the wires
connecting it to the galvanometer is 0.500 �. If the loop
is suddenly collapsed by horizontal forces as shown,
what total charge passes through the galvanometer?

axle rolling at constant speed? (c) Which end of the re-
sistor, a or b, is at the higher electric potential? (d) After
the axle rolls past the resistor, does the current in R re-
verse direction? Explain your answer.

60. A conducting rod moves with a constant velocity v per-
pendicular to a long, straight wire carrying a current I
as shown in Figure P31.60. Show that the magnitude of
the emf generated between the ends of the rod is

In this case, note that the emf decreases with increasing
r, as you might expect.

�� � �
�0vI
2�r

 �

61. A circular loop of wire of radius r is in a uniform mag-
netic field, with the plane of the loop perpendicular to
the direction of the field (Fig. P31.61). The magnetic
field varies with time according to where
a and b are constants. (a) Calculate the magnetic flux
through the loop at t � 0. (b) Calculate the emf in-
duced in the loop. (c) If the resistance of the loop is R ,
what is the induced current? (d) At what rate is electri-
cal energy being delivered to the resistance of the loop?

62. In Figure P31.62, a uniform magnetic field decreases at
a constant rate where K is a positive con-
stant. A circular loop of wire of radius a containing a re-

dB/dt � �K,

B(t) � a � bt ,

58. Magnetic field values are often determined by using a
device known as a search coil. This technique depends on
the measurement of the total charge passing through a
coil in a time interval during which the magnetic flux
linking the windings changes either because of the mo-
tion of the coil or because of a change in the value of B.
(a) Show that as the flux through the coil changes from
�1 to �2 , the charge transferred through the coil will
be given by (�2 � �1)/R , where R is the resis-
tance of the coil and associated circuitry (galvanome-
ter) and N is the number of turns. (b) As a specific ex-
ample, calculate B when a 100-turn coil of resistance
200 � and cross-sectional area 40.0 cm2 produces the
following results. A total charge of 5.00 � 10�4 C passes
through the coil when it is rotated in a uniform field
from a position where the plane of the coil is perpen-
dicular to the field to a position where the coil’s plane is
parallel to the field.

59. In Figure P31.59, the rolling axle, 1.50 m long, is
pushed along horizontal rails at a constant speed 
v � 3.00 m/s. A resistor R � 0.400 � is connected to
the rails at points a and b, directly opposite each other.
(The wheels make good electrical contact with the rails,
and so the axle, rails, and R form a closed-loop circuit.
The only significant resistance in the circuit is R.) There
is a uniform magnetic field B � 0.080 0 T vertically
downward. (a) Find the induced current I in the resis-
tor. (b) What horizontal force F is required to keep the

Q � N

r

I

�
v

B

v

R

a

b

G

a
F F

a

Figure P31.57

Figure P31.59

Figure P31.60
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67. A rectangular loop of dimensions � and w moves with a
constant velocity v away from a long wire that carries a
current I in the plane of the loop (Fig. P31.67). The to-

emf in the washer from the time it is released to the mo-
ment it hits the tabletop? Assume that the magnetic
field is nearly constant over the area of the washer and
equal to the magnetic field at the center of the washer.
(b) What is the direction of the induced current in the
washer?

65. To monitor the breathing of a hospital patient, a thin
belt is wrapped around the patient’s chest. The belt is a
200-turn coil. When the patient inhales, the area encir-
cled by the coil increases by 39.0 cm2. The magnitude
of the Earth’s magnetic field is 50.0 �T and makes an
angle of 28.0° with the plane of the coil. If a patient
takes 1.80 s to inhale, find the average induced emf in
the coil during this time.

66. A conducting rod of length � moves with velocity v par-
allel to a long wire carrying a steady current I. The axis
of the rod is maintained perpendicular to the wire with
the near end a distance r away, as shown in Figure
P31.66. Show that the magnitude of the emf induced in
the rod is

�� � �
�0I
2�

 v ln�1 �
�

r �

vI
R

r w

�

r

v

I

�

h

I

R C

Bin

× × × ×

× × × ×

× × × ×

× × × ×

sistance R and a capacitance C is placed with its plane
normal to the field. (a) Find the charge Q on the capac-
itor when it is fully charged. (b) Which plate is at the
higher potential? (c) Discuss the force that causes the
separation of charges.

63. A rectangular coil of 60 turns, dimensions 0.100 m by
0.200 m and total resistance 10.0 �, rotates with angu-
lar speed 30.0 rad/s about the y axis in a region where a
1.00-T magnetic field is directed along the x axis. The
rotation is initiated so that the plane of the coil is per-
pendicular to the direction of B at t � 0. Calculate 
(a) the maximum induced emf in the coil, (b) the max-
imum rate of change of magnetic flux through the coil,
(c) the induced emf at t � 0.050 0 s, and (d) the torque
exerted on the coil by the magnetic field at the instant
when the emf is a maximum.

64. A small circular washer of radius 0.500 cm is held di-
rectly below a long, straight wire carrying a current of
10.0 A. The washer is located 0.500 m above the top of
the table (Fig. P31.64). (a) If the washer is dropped
from rest, what is the magnitude of the average induced

B

Figure P31.61

Figure P31.62

Figure P31.64

Figure P31.66

Figure P31.67
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tal resistance of the loop is R . Derive an expression that
gives the current in the loop at the instant the near side
is a distance r from the wire.

68. A horizontal wire is free to slide on the vertical rails of a
conducting frame, as shown in Figure P31.68. The wire
has mass m and length �, and the resistance of the cir-
cuit is R . If a uniform magnetic field is directed perpen-
dicular to the frame, what is the terminal speed of the
wire as it falls under the force of gravity?

tal speed of the bar as a function of time, assuming that
the suspended mass is released with the bar at rest at 
t � 0. Assume no friction between rails and bar.

71. A solenoid wound with 2 000 turns/m is supplied 
with current that varies in time according to I �
4 sin(120�t), where I is in A and t is in s. A small coax-
ial circular coil of 40 turns and radius r � 5.00 cm is lo-
cated inside the solenoid near its center. (a) Derive an
expression that describes the manner in which the emf
in the small coil varies in time. (b) At what average rate
is energy transformed into internal energy in the small
coil if the windings have a total resistance of 8.00 �?

72. A wire 30.0 cm long is held parallel to and 80.0 cm
above a long wire carrying 200 A and resting on the
floor (Fig. P31.72). The 30.0-cm wire is released and
falls, remaining parallel with the current-carrying wire
as it falls. Assume that the falling wire accelerates at 
9.80 m/s2 and derive an equation for the emf induced
in it. Express your result as a function of the time t after
the wire is dropped. What is the induced emf 0.300 s af-
ter the wire is released?

73. A long, straight wire carries a current sin(
t �
�) and lies in the plane of a rectangular coil of N turns
of wire, as shown in Figure P31.9. The quantities Imax ,

, and � are all constants. Determine the emf induced
in the coil by the magnetic field created by the current
in the straight wire. Assume Imax � 50.0 A, 
 �
200� s�1, N � 100, h � w � 5.00 cm, and L � 20.0 cm.

74. A dime is suspended from a thread and hung between
the poles of a strong horseshoe magnet as shown in Fig-
ure P31.74. The dime rotates at constant angular speed

 about a vertical axis. Letting � represent the angle be-
tween the direction of B and the normal to the face of
the dime, sketch a graph of the torque due to induced
currents as a function of � for 0  �  2�.

75. The wire shown in Figure P31.75 is bent in the shape of
a tent, with � � 60.0° and L � 1.50 m, and is placed in
a uniform magnetic field of magnitude 0.300 T perpen-
dicular to the tabletop. The wire is rigid but hinged at
points a and b. If the “tent” is flattened out on the table
in 0.100 s, what is the average induced emf in the wire
during this time?

I � Imax

69. The magnetic flux threading a metal ring varies with
time t according to �B � 3(at3 � bt2) T � m2, with 
a � 2.00 s�3 and b � 6.00 s�2. The resistance of the
ring is 3.00 �. Determine the maximum current in-
duced in the ring during the interval from t � 0 to 
t � 2.00 s.

70. Review Problem. The bar of mass m shown in Figure
P31.70 is pulled horizontally across parallel rails by a
massless string that passes over an ideal pulley and is at-
tached to a suspended mass M. The uniform magnetic
field has a magnitude B, and the distance between the
rails is �. The rails are connected at one end by a load
resistor R . Derive an expression that gives the horizon-

30.0 cm

80.0 cm

I = 200 A

R

M

m

B
�

Bout

�

m

R

Figure P31.68

Figure P31.70

Figure P31.72

WEB
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ANSWERS TO QUICK QUIZZES

31.3 Inserting. Because the south pole of the magnet is near-
est the solenoid, the field lines created by the magnet
point upward in Figure 31.14. Because the current in-
duced in the solenoid is clockwise when viewed from
above, the magnetic field lines produced by this current
point downward in Figure 31.14. If the magnet were be-
ing withdrawn, it would create a decreasing upward flux.
The induced current would counteract this decrease by
producing its own upward flux. This would require a
counterclockwise current in the solenoid, contrary to
what is observed.

31.1 Because the magnetic field now points in the opposite
direction, you must replace � with � � �. Because 
cos(� � �) � � cos �, the sign of the induced emf is 
reversed.

31.2 The one on the west side of the plane. As we saw in Sec-
tion 30.9, the Earth’s magnetic field has a downward
component in the northern hemisphere. As the plane
flies north, the right-hand rule illustrated in Figure 29.4
indicates that positive charge experiences a force di-
rected toward the west. Thus, the left wingtip becomes
positively charged and the right wingtip negatively
charged.

B

B

L

L
a

b

 θ  θ

ω

N

S

Figure P31.74

Figure P31.75
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The marks in the pavement are part of a
sensor that controls the traffic lights at
this intersection. What are these marks,
and how do they detect when a car is
waiting at the light? (© David R. Frazier)
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32.1 Self-Inductance 1015

n Chapter 31, we saw that emfs and currents are induced in a circuit when the
magnetic flux through the area enclosed by the circuit changes with time. This
electromagnetic induction has some practical consequences, which we describe

in this chapter. First, we describe an effect known as self-induction, in which a time-
varying current in a circuit produces in the circuit an induced emf that opposes
the emf that initially set up the time-varying current. Self-induction is the basis of
the inductor, an electrical element that has an important role in circuits that use
time-varying currents. We discuss the energy stored in the magnetic field of an in-
ductor and the energy density associated with the magnetic field.

Next, we study how an emf is induced in a circuit as a result of a changing
magnetic flux produced by a second circuit; this is the basic principle of mutual in-
duction. Finally, we examine the characteristics of circuits that contain inductors,
resistors, and capacitors in various combinations.

SELF-INDUCTANCE
In this chapter, we need to distinguish carefully between emfs and currents that
are caused by batteries or other sources and those that are induced by changing
magnetic fields. We use the adjective source (as in the terms source emf and source
current) to describe the parameters associated with a physical source, and we use
the adjective induced to describe those emfs and currents caused by a changing
magnetic field.

Consider a circuit consisting of a switch, a resistor, and a source of emf, as
shown in Figure 32.1. When the switch is thrown to its closed position, the source
current does not immediately jump from zero to its maximum value Fara-
day’s law of electromagnetic induction (Eq. 31.1) can be used to describe this ef-
fect as follows: As the source current increases with time, the magnetic flux
through the circuit loop due to this current also increases with time. This increas-
ing flux creates an induced emf in the circuit. The direction of the induced emf is
such that it would cause an induced current in the loop (if a current were not al-
ready flowing in the loop), which would establish a magnetic field that would op-
pose the change in the source magnetic field. Thus, the direction of the induced
emf is opposite the direction of the source emf; this results in a gradual rather
than instantaneous increase in the source current to its final equilibrium value.
This effect is called self-induction because the changing flux through the circuit and
the resultant induced emf arise from the circuit itself. The emf set up in this
case is called a self-induced emf. It is also often called a back emf.

As a second example of self-induction, consider Figure 32.2, which shows a
coil wound on a cylindrical iron core. (A practical device would have several hun-

�L

�/R.

32.1

I

Figure 32.1 After the switch is
thrown closed, the current pro-
duces a magnetic flux through the
area enclosed by the loop. As the
current increases toward its equilib-
rium value, this magnetic flux
changes in time and induces an
emf in the loop. The battery sym-
bol drawn with dashed lines repre-
sents the self-induced emf.

Figure 32.2 (a) A current in the coil produces a magnetic field directed to the left. (b) If the
current increases, the increasing magnetic flux creates an induced emf having the polarity shown
by the dashed battery. (c) The polarity of the induced emf reverses if the current decreases.

B

ε
R

S
I

I

Lε

Lenz’s law emf Lenz’s law emf
– + –+

B

(a) (b) (c)I increasing I decreasing

Joseph Henry (1797–1878)
Henry, an American physicist, be-
came the first director of the Smith-
sonian Institution and first president
of the Academy of Natural Science.
He improved the design of the elec-
tromagnet and constructed one of the
first motors. He also discovered the
phenomenon of self-induction but
failed to publish his findings. The unit
of inductance, the henry, is named in
his honor. (North Wind Picture
Archives)
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Self-induced emf

Inductance of an N-turn coil

Inductance

dred turns.) Assume that the source current in the coil either increases or de-
creases with time. When the source current is in the direction shown, a magnetic
field directed from right to left is set up inside the coil, as seen in Figure 32.2a. As
the source current changes with time, the magnetic flux through the coil also
changes and induces an emf in the coil. From Lenz’s law, the polarity of this in-
duced emf must be such that it opposes the change in the magnetic field from the
source current. If the source current is increasing, the polarity of the induced emf
is as pictured in Figure 32.2b, and if the source current is decreasing, the polarity
of the induced emf is as shown in Figure 32.2c.

To obtain a quantitative description of self-induction, we recall from Faraday’s
law that the induced emf is equal to the negative time rate of change of the mag-
netic flux. The magnetic flux is proportional to the magnetic field due to the
source current, which in turn is proportional to the source current in the circuit.
Therefore, a self-induced emf is always proportional to the time rate of
change of the source current. For a closely spaced coil of N turns (a toroid or an
ideal solenoid) carrying a source current I, we find that

(32.1)

where L is a proportionality constant—called the inductance of the coil—that
depends on the geometry of the circuit and other physical characteristics. From
this expression, we see that the inductance of a coil containing N turns is

(32.2)

where it is assumed that the same flux passes through each turn. Later, we shall
use this equation to calculate the inductance of some special circuit geometries.

From Equation 32.1, we can also write the inductance as the ratio

(32.3)

Just as resistance is a measure of the opposition to current induc-
tance is a measure of the opposition to a change in current.

The SI unit of inductance is the henry (H), which, as we can see from Equa-
tion 32.3, is 1 volt-second per ampere:

That the inductance of a device depends on its geometry is analogous to the
capacitance of a capacitor depending on the geometry of its plates, as we found in
Chapter 26. Inductance calculations can be quite difficult to perform for compli-
cated geometries; however, the following examples involve simple situations for
which inductances are easily evaluated.

1 H � 1 
V�s
A

(R � �V/I ),

L � �
�L

dI/dt

L �
N�B

I

�L � �N 
d�B

dt
� �L 

dI
dt

�L

Inductance of a SolenoidEXAMPLE 32.1
Solution We can assume that the interior magnetic field
due to the source current is uniform and given by Equation
30.17:

Find the inductance of a uniformly wound solenoid having N
turns and length �. Assume that � is much longer than the ra-
dius of the windings and that the core of the solenoid is air.
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RL CIRCUITS
If a circuit contains a coil, such as a solenoid, the self-inductance of the coil pre-
vents the current in the circuit from increasing or decreasing instantaneously. A
circuit element that has a large self-inductance is called an inductor and has the
circuit symbol . We always assume that the self-inductance of the re-
mainder of a circuit is negligible compared with that of the inductor. Keep in
mind, however, that even a circuit without a coil has some self-inductance that can
affect the behavior of the circuit.

Because the inductance of the inductor results in a back emf, an inductor in
a circuit opposes changes in the current through that circuit. If the battery
voltage in the circuit is increased so that the current rises, the inductor opposes

32.2

13.6

where n � N/� is the number of turns per unit length. The
magnetic flux through each turn is

where A is the cross-sectional area of the solenoid. Using this
expression and Equation 32.2, we find that

(32.4)

This result shows that L depends on geometry and is propor-
tional to the square of the number of turns. Because 
we can also express the result in the form

(32.5)

where is the volume of the solenoid.V � A�

L � �0 
(n�)2

�
 A � �0n2A� � �0n2V

N � n�,

�0N 2A
�

L �
N�B

I
�

�B � BA � �0 
NA
�

 I

B � �0nI � �0 
N
�

 I Exercise What would happen to the inductance if a ferro-
magnetic material were placed inside the solenoid?

Answer The inductance would increase. For a given cur-
rent, the magnetic flux is now much greater because of the
increase in the field originating from the magnetization of
the ferromagnetic material. For example, if the material has a
magnetic permeability of 500�0 , the inductance would in-
crease by a factor of 500.

The fact that various materials in the vicinity of a coil can
substantially alter the coil’s inductance is used to great advan-
tage by traffic engineers. A flat, horizontal coil made of nu-
merous loops of wire is placed in a shallow groove cut into
the pavement of the lane approaching an intersection. (See
the photograph at the beginning of this chapter.) These
loops are attached to circuitry that measures inductance.
When an automobile passes over the loops, the change in in-
ductance caused by the large amount of iron passing over the
loops is used to control the lights at the intersection.

Calculating Inductance and emfEXAMPLE 32.2
(b) Calculate the self-induced emf in the solenoid if the

current through it is decreasing at the rate of 50.0 A/s.

Solution Using Equation 32.1 and given that 
we obtain

9.05 mV�

�L � �L 
dI
dt

� �(1.81 � 10�4 H)(�50.0 A/s)

�50.0 A/s,
dI/dt �

(a) Calculate the inductance of an air-core solenoid contain-
ing 300 turns if the length of the solenoid is 25.0 cm and its
cross-sectional area is 4.00 cm2.

Solution Using Equation 32.4, we obtain

0.181 mH � 1.81 � 10�4 T �m2/A �

 � (4	 � 10�7 T �m/A) 
(300)2(4.00 � 10�4 m2)

25.0 � 10�2 m

L �
�0N 2A

�
 

13.6



this change, and the rise is not instantaneous. If the battery voltage is decreased,
the presence of the inductor results in a slow drop in the current rather than an
immediate drop. Thus, the inductor causes the circuit to be “sluggish” as it reacts
to changes in the voltage.

A switch controls the current in a circuit that has a large inductance. Is a spark more likely
to be produced at the switch when the switch is being closed or when it is being opened, or
doesn’t it matter?

Consider the circuit shown in Figure 32.3, in which the battery has negligible 
internal resistance. This is an RL circuit because the elements connected to the 
battery are a resistor and an inductor. Suppose that the switch S is thrown closed at

The current in the circuit begins to increase, and a back emf that opposes the
increasing current is induced in the inductor. The back emf is, from Equation 32.1,

Because the current is increasing, dI/dt is positive; thus, is negative. This nega-
tive value reflects the decrease in electric potential that occurs in going from a to b
across the inductor, as indicated by the positive and negative signs in Figure 32.3.

With this in mind, we can apply Kirchhoff’s loop rule to this circuit, traversing
the circuit in the clockwise direction:

(32.6)

where IR is the voltage drop across the resistor. (We developed Kirchhoff’s rules
for circuits with steady currents, but we can apply them to a circuit in which the
current is changing if we imagine them to represent the circuit at one instant of
time.) We must now look for a solution to this differential equation, which is simi-
lar to that for the RC circuit (see Section 28.4).

A mathematical solution of Equation 32.6 represents the current in the circuit
as a function of time. To find this solution, we change variables for convenience, 

letting , so that With these substitutions, we can write Equa-

tion 32.6 as

Integrating this last expression, we have

where we take the integrating constant to be � ln x0 and x0 is the value of x at
time t � 0. Taking the antilogarithm of this result, we obtain

x � x0e�Rt /L

ln 
x
x0

� �
R
L

 t

 
dx
x

� �
R
L

 dt

x 

L
R

 
dx
dt

� 0 

dx � �dI.x �
�
R

� I

� � IR � L 
dI
dt

� 0

�L

�L � �L 
dI
dt

t � 0.

Quick Quiz 32.1
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b

ε

a

I

R

S

L
+

−

+

–

Figure 32.3 A series RL circuit.
As the current increases toward its
maximum value, an emf that op-
poses the increasing current is in-
duced in the inductor.
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Because at we note from the definition of x that Hence,
this last expression is equivalent to

This expression shows the effect of the inductor. The current does not in-
crease instantly to its final equilibrium value when the switch is closed but instead
increases according to an exponential function. If we remove the inductance in
the circuit, which we can do by letting L approach zero, the exponential term be-
comes zero and we see that there is no time dependence of the current in this
case—the current increases instantaneously to its final equilibrium value in the
absence of the inductance.

We can also write this expression as

(32.7)

where the constant � is the time constant of the RL circuit:

(32.8)

Physically, � is the time it takes the current in the circuit to reach 
of its final value The time constant is a useful parameter for comparing the
time responses of various circuits.

Figure 32.4 shows a graph of the current versus time in the RL circuit. Note
that the equilibrium value of the current, which occurs as t approaches infinity, is

We can see this by setting dI/dt equal to zero in Equation 32.6 and solving for
the current I. (At equilibrium, the change in the current is zero.) Thus, we see
that the current initially increases very rapidly and then gradually approaches the
equilibrium value as t approaches infinity.

Let us also investigate the time rate of change of the current in the circuit.
Taking the first time derivative of Equation 32.7, we have

(32.9)

From this result, we see that the time rate of change of the current is a maximum
(equal to at and falls off exponentially to zero as t approaches infinity
(Fig. 32.5).

Now let us consider the RL circuit shown in Figure 32.6. The circuit contains
two switches that operate such that when one is closed, the other is opened. Sup-
pose that S1 has been closed for a length of time sufficient to allow the current to
reach its equilibrium value In this situation, the circuit is described com-
pletely by the outer loop in Figure 32.6. If S2 is closed at the instant at which S1 is
opened, the circuit changes so that it is described completely by just the upper
loop in Figure 32.6. The lower loop no longer influences the behavior of the cir-
cuit. Thus, we have a circuit with no battery If we apply Kirchhoff’s loop
rule to the upper loop at the instant the switches are thrown, we obtain

IR 
 L 
dI
dt

� 0

(� � 0).

�/R .

t � 0�/L)

dI
dt

�
�
L

 e�t /�

�/R

�/R.

�/R .
(1 � e�1) � 0.63

� � L/R

I �
�
R

 (1 � e�t /�)

 I �
�
R

 (1 � e�Rt /L)

�
R

� I �
�
R

 e�Rt /L 

x0 � �/R.t � 0,I � 0
I

tτ

τ   L/R =R0.63

/R

τ

ε

ε

Figure 32.4 Plot of the current
versus time for the RL circuit
shown in Figure 32.3. The switch is
thrown closed at and the
current increases toward its maxi-
mum value The time con-
stant � is the time it takes I to reach
63% of its maximum value.

�/R.

t � 0,

dI
dt

/L

t

ε

Figure 32.5 Plot of dI/dt versus
time for the RL circuit shown in
Figure 32.3. The time rate of
change of current is a maximum at

which is the instant at which
the switch is thrown closed. The
rate decreases exponentially with
time as I increases toward its maxi-
mum value.

t � 0,

Time constant of an RL circuit
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It is left as a problem (Problem 18) to show that the solution of this differential
equation is

(32.10)

where is the emf of the battery and is the current at the instant
at which S2 is closed as S1 is opened. 

If no inductor were present in the circuit, the current would immediately de-
crease to zero if the battery were removed. When the inductor is present, it acts to
oppose the decrease in the current and to maintain the current. A graph of the
current in the circuit versus time (Fig. 32.7) shows that the current is continuously
decreasing with time. Note that the slope dI/dt is always negative and has its maxi-
mum value at The negative slope signifies that is now posi-
tive; that is, point a in Figure 32.6 is at a lower electric potential than point b.

Two circuits like the one shown in Figure 32.6 are identical except for the value of L . In cir-
cuit A the inductance of the inductor is LA , and in circuit B it is LB . Switch S1 is thrown
closed at while switch S2 remains open. At switch S1 is opened and switch S2
is closed. The resulting time rates of change for the two currents are as graphed in Figure
32.8. If we assume that the time constant of each circuit is much less than 10 s, which of the
following is true? (a) LA � LB ; (b) LA  LB ; (c) not enough information to tell.

t � 10 s,t � 0,

Quick Quiz 32.2

�L � �L (dI/dt)t � 0.

t � 0,I0 � �/R�

I �
�
R

 e�t /� � I0e�t /�

R a L b

S2

S1

+−

ε

Figure 32.6 An RL circuit con-
taining two switches. When S1 is
closed and S2 open as shown, the
battery is in the circuit. At the in-
stant S2 is closed, S1 is opened, and
the battery is no longer part of the
circuit.

I

t

/Rε

Figure 32.7 Current versus time
for the upper loop of the circuit
shown in Figure 32.6. For 
t  0, S1 is closed and S2 is open.
At S2 is closed as S1 is
opened, and the current has its
maximum value �/R.

t � 0,

0

I

5 10 15

A

B

t(s)
Figure 32.8
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ENERGY IN A MAGNETIC FIELD
Because the emf induced in an inductor prevents a battery from establishing an in-
stantaneous current, the battery must do work against the inductor to create a cur-
rent. Part of the energy supplied by the battery appears as internal energy in the
resistor, while the remaining energy is stored in the magnetic field of the inductor.
If we multiply each term in Equation 32.6 by I and rearrange the expression, we
have

(32.11)I� � I 2R 
 LI 
dI
dt

32.3

Time Constant of an RL CircuitEXAMPLE 32.3
A plot of Equation 32.7 for this circuit is given in Figure

32.9b.

(c) Compare the potential difference across the resistor
with that across the inductor.

Solution At the instant the switch is closed, there is no
current and thus no potential difference across the resistor.
At this instant, the battery voltage appears entirely across the
inductor in the form of a back emf of 12.0 V as the inductor
tries to maintain the zero-current condition. (The left end of
the inductor is at a higher electric potential than the right
end.) As time passes, the emf across the inductor decreases
and the current through the resistor (and hence the poten-
tial difference across it) increases. The sum of the two poten-
tial differences at all times is 12.0 V, as shown in Figure 32.10.

Exercise Calculate the current in the circuit and the volt-
age across the resistor after a time interval equal to one time
constant has elapsed.

Answer 1.26 A, 7.56 V.

The switch in Figure 32.9a is thrown closed at (a) Find
the time constant of the circuit.

Solution The time constant is given by Equation 32.8:

(b) Calculate the current in the circuit at 

Solution Using Equation 32.7 for the current as a func-
tion of time (with t and � in milliseconds), we find that at

0.659 AI �
�
R

 (1 � e�t /� ) �
12.0 V
6.00 �

 (1 � e�0.400) �

t � 2.00 ms

t � 2.00 ms.

5.00 ms� �
L
R

�
30.0 � 10�3 H

6.00 �
�

t � 0.

t(ms)2 4 6 8 10
0

1

2

I(A)

(b)

(a)

30.0 mH

12.0 V 6.00 Ω

S

2 4 6 8
0

2

4

6

8

10

12

∆VL

∆VR

∆V(V)

t(ms)
10

Figure 32.9 (a) The switch in this RL circuit is thrown closed at
(b) A graph of the current versus time for the circuit in part (a).t � 0.

Figure 32.10 The sum of the potential differences across the re-
sistor and inductor in Figure 32.9a is 12.0 V (the battery emf) at all
times.

13.6
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This expression indicates that the rate at which energy is supplied by the battery
equals the sum of the rate at which energy is delivered to the resistor, ,

and the rate at which energy is stored in the inductor, Thus, Equation
32.11 is simply an expression of energy conservation. If we let U denote the energy
stored in the inductor at any time, then we can write the rate dU/dt at which en-
ergy is stored as

To find the total energy stored in the inductor, we can rewrite this expression as
and integrate:

(32.12)

where L is constant and has been removed from the integral. This expression rep-
resents the energy stored in the magnetic field of the inductor when the current is
I. Note that this equation is similar in form to Equation 26.11 for the energy stored
in the electric field of a capacitor, In either case, we see that energy is
required to establish a field.

We can also determine the energy density of a magnetic field. For simplicity,
consider a solenoid whose inductance is given by Equation 32.5:

The magnetic field of a solenoid is given by Equation 30.17:

Substituting the expression for L and into Equation 32.12 gives

(32.13)

Because A� is the volume of the solenoid, the energy stored per unit volume in the
magnetic field surrounding the inductor is

(32.14)

Although this expression was derived for the special case of a solenoid, it is
valid for any region of space in which a magnetic field exists. Note that Equation
32.14 is similar in form to Equation 26.13 for the energy per unit volume stored in
an electric field, . In both cases, the energy density is proportional to
the square of the magnitude of the field.

uE � 1
2�0E 2

uB �
U

A�
�

B2

2�0

U � 1
2 LI 2 � 1

2�0n2A�� B
�0n �

2
�

B2

2�0
 A�

I � B/�0n

B � �0nI

L � �0n2A�

U � Q2/2C .

U � 1
2LI 2

U � �dU � �I

0
LI dI � L �I

0
I dI

dU � LI dI

dU
dt

� LI 
dI
dt

LI(dI /dt).
I 2R(I�)

What Happens to the Energy in the Inductor?EXAMPLE 32.4
where is the initial current in the circuit and � �
L/R is the time constant. Show that all the energy initially
stored in the magnetic field of the inductor appears as inter-
nal energy in the resistor as the current decays to zero.

I0 � �/RConsider once again the RL circuit shown in Figure 32.6, in
which switch S2 is closed at the instant S1 is opened (at

Recall that the current in the upper loop decays expo-
nentially with time according to the expression I � I0e�t /�,
t � 0).

Energy stored in an inductor

Magnetic energy density
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The Coaxial CableEXAMPLE 32.5
père’s law (see Section 30.3) tells us that the magnetic field in
the region between the shells is where r is mea-
sured from the common center of the shells. The magnetic
field is zero outside the outer shell (r � b) because the net
current through the area enclosed by a circular path sur-
rounding the cable is zero, and hence from Ampère’s law,

. The magnetic field is zero inside the inner shell
because the shell is hollow and no current is present within a
radius r  a.

The magnetic field is perpendicular to the light blue rec-
tangle of length � and width the cross-section of inter-
est. Because the magnetic field varies with radial position
across this rectangle, we must use calculus to find the total
magnetic flux. Dividing this rectangle into strips of width dr,
such as the dark blue strip in Figure 32.11, we see that the
area of each strip is �dr and that the flux through each strip is

Hence, we find the total flux through the en-
tire cross-section by integrating:

Using this result, we find that the self-inductance of the cable
is

(b) Calculate the total energy stored in the magnetic field
of the cable.

Solution Using Equation 32.12 and the results to part (a)
gives

�0�I 2

4	
 ln� b

a �U � 1
2 LI 2 �

�0�

2	
 ln � b

a �L �
�B

I
�

�B � �B dA � �b

a

�0I
2	r

 � dr �
�0I�

2	
 �b

a

dr
r

�
�0I�

2	
 ln� b

a �

B dA � B� dr.

b � a,

�B � ds � 0

B � �0I/2	r,
Coaxial cables are often used to connect electrical devices,
such as your stereo system and a loudspeaker. Model a long
coaxial cable as consisting of two thin concentric cylindrical
conducting shells of radii a and b and length �, as shown in
Figure 32.11. The conducting shells carry the same current I
in opposite directions. Imagine that the inner conductor car-
ries current to a device and that the outer one acts as a return
path carrying the current back to the source. (a) Calculate
the self-inductance L of this cable.

Solution To obtain L , we must know the magnetic flux
through any cross-section in the region between the two
shells, such as the light blue rectangle in Figure 32.11. Am-

I

�

bdr

B

rI

a

Figure 32.11 Section of a long coaxial cable. The inner and outer
conductors carry equal currents in opposite directions.

Solution The rate dU/dt at which energy is delivered to
the resistor (which is the power) is equal to where I is
the instantaneous current:

To find the total energy delivered to the resistor, we solve for
dU and integrate this expression over the limits to 
t : � (the upper limit is infinity because it takes an infinite
amount of time for the current to reach zero):

(1) U � ��

0
I0 

2Re�2Rt /Ldt � I0 

2R ��

0
e�2Rt /Ldt

t � 0

dU
dt

� I 2R � (I0e�Rt /L)2R � I0 

2Re�2Rt /L

I 2R,
The value of the definite integral is L/2R (this is left for the
student to show in the exercise at the end of this example),
and so U becomes

Note that this is equal to the initial energy stored in the mag-
netic field of the inductor, given by Equation 32.13, as we set
out to prove.

Exercise Show that the integral on the right-hand side of
Equation (1) has the value L/2R .

U � I0 

2R � L
2R � �

1
2

 LI0 

2
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Definition of mutual inductance

MUTUAL INDUCTANCE
Very often, the magnetic flux through the area enclosed by a circuit varies with
time because of time-varying currents in nearby circuits. This condition induces an
emf through a process known as mutual induction, so called because it depends on
the interaction of two circuits.

Consider the two closely wound coils of wire shown in cross-sectional view in
Figure 32.12. The current I1 in coil 1, which has N1 turns, creates magnetic field
lines, some of which pass through coil 2, which has N2 turns. The magnetic flux
caused by the current in coil 1 and passing through coil 2 is represented by �1 2 .
In analogy to Equation 32.2, we define the mutual inductance M12 of coil 2 with
respect to coil 1:

(32.15)

Referring to Figure 32.12, tell what happens to M12 (a) if coil 1 is brought closer to coil 2
and (b) if coil 1 is rotated so that it lies in the plane of the page.

Quick Quiz 32.3 demonstrates that mutual inductance depends on the geometry
of both circuits and on their orientation with respect to each other. As the circuit
separation distance increases, the mutual inductance decreases because the flux
linking the circuits decreases.

If the current I1 varies with time, we see from Faraday’s law and Equation
32.15 that the emf induced by coil 1 in coil 2 is

(32.16)

In the preceding discussion, we assumed that the source current is in coil 1.
We can also imagine a source current I2 in coil 2. The preceding discussion can be
repeated to show that there is a mutual inductance M21 . If the current I2 varies
with time, the emf induced by coil 2 in coil 1 is

(32.17)

In mutual induction, the emf induced in one coil is always proportional
to the rate at which the current in the other coil is changing. Although the

�1 � �M21 
dI2

dt

�2 � �N 2 
d�12

dt
� �N 2 

d
dt

 � M12I1

N 2
� � �M12 

dI1

dt

Quick Quiz 32.3

M12 �
N2�12

I1

32.4

Coil 1 Coil 2

N1 I1

N2 I2

Figure 32.12 A cross-sectional view of two adjacent
coils. A current in coil 1 sets up a magnetic flux, part of
which passes through coil 2.
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proportionality constants M12 and M21 appear to have different values, it can be
shown that they are equal. Thus, with Equations 32.16 and 32.17
become

and

These two equations are similar in form to Equation 32.1 for the self-induced
emf The unit of mutual inductance is the henry.

(a) Can you have mutual inductance without self-inductance? (b) How about self-induc-
tance without mutual inductance?

Quick Quiz 32.4

� � �L(dI/dt).

�1 � �M 
dI2

dt
�2 � �M 

dI1

dt

M12 � M21 � M,

“Wireless” Battery ChargerEXAMPLE 32.6
Solution Because the base solenoid carries a source cur-
rent I, the magnetic field in its interior is

Because the magnetic flux �BH through the handle’s coil
caused by the magnetic field of the base coil is BA, the mu-
tual inductance is

Exercise Calculate the mutual inductance of two solenoids
with turns, m2, m, and

turns.

Answer 7.5 mH.

NH � 800
� � 0.02A � 1.0 � 10�4NB � 1 500

�0 
N HN BA

�
M �

NH�BH

I
�

NHBA
I

�

B �
�0NBI

�

An electric toothbrush has a base designed to hold the tooth-
brush handle when not in use. As shown in Figure 32.13a, the
handle has a cylindrical hole that fits loosely over a matching
cylinder on the base. When the handle is placed on the base,
a changing current in a solenoid inside the base cylinder in-
duces a current in a coil inside the handle. This induced cur-
rent charges the battery in the handle.

We can model the base as a solenoid of length � with NB
turns (Fig. 32.13b), carrying a source current I, and having a
cross-sectional area A. The handle coil contains NH turns.
Find the mutual inductance of the system.

QuickLab
Tune in a relatively weak station on a
radio. Now slowly rotate the radio
about a vertical axis through its cen-
ter. What happens to the reception?
Can you explain this in terms of the
mutual induction of the station’s
broadcast antenna and your radio’s
antenna?

(b)

NB

NH

Coil 1(base)

Coil 2(handle)

�

Figure 32.13 (a) This electric toothbrush uses the mutual induction of solenoids as part of its battery-charging
system. (b) A coil of NH turns wrapped around the center of a solenoid of NB turns.

(a)
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OSCILLATIONS IN AN LC CIRCUIT
When a capacitor is connected to an inductor as illustrated in Figure 32.14, the
combination is an LC circuit. If the capacitor is initially charged and the switch is
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the circuit
is zero, no energy is transformed to internal energy. In the following analysis, we
neglect the resistance in the circuit. We also assume an idealized situation in which
energy is not radiated away from the circuit. We shall discuss this radiation in
Chapter 34, but we neglect it for now. With these idealizations—zero resistance
and no radiation—the oscillations in the circuit persist indefinitely.

Assume that the capacitor has an initial charge Q max (the maximum charge)
and that the switch is thrown closed at Let us look at what happens from an
energy viewpoint.

When the capacitor is fully charged, the energy U in the circuit is stored in the
electric field of the capacitor and is equal to (Eq. 26.11). At this time,
the current in the circuit is zero, and thus no energy is stored in the inductor. Af-
ter the switch is thrown closed, the rate at which charges leave or enter the capaci-
tor plates (which is also the rate at which the charge on the capacitor changes) is
equal to the current in the circuit. As the capacitor begins to discharge after the
switch is closed, the energy stored in its electric field decreases. The discharge of
the capacitor represents a current in the circuit, and hence some energy is now
stored in the magnetic field of the inductor. Thus, energy is transferred from the
electric field of the capacitor to the magnetic field of the inductor. When the ca-
pacitor is fully discharged, it stores no energy. At this time, the current reaches its
maximum value, and all of the energy is stored in the inductor. The current con-
tinues in the same direction, decreasing in magnitude, with the capacitor eventu-
ally becoming fully charged again but with the polarity of its plates now opposite
the initial polarity. This is followed by another discharge until the circuit returns to
its original state of maximum charge Q max and the plate polarity shown in Figure
32.14. The energy continues to oscillate between inductor and capacitor.

The oscillations of the LC circuit are an electromagnetic analog to the me-
chanical oscillations of a block–spring system, which we studied in Chapter 13.
Much of what we discussed is applicable to LC oscillations. For example, we investi-
gated the effect of driving a mechanical oscillator with an external force, which
leads to the phenomenon of resonance. We observe the same phenomenon in the
LC circuit. For example, a radio tuner has an LC circuit with a natural frequency,
which we determine as follows: When the circuit is driven by the electromagnetic
oscillations of a radio signal detected by the antenna, the tuner circuit responds
with a large amplitude of electrical oscillation only for the station frequency that
matches the natural frequency. Thus, only the signal from one station is passed on
to the amplifier, even though signals from all stations are driving the circuit at the
same time. When you turn the knob on the radio tuner to change the station, you
are changing the natural frequency of the circuit so that it will exhibit a resonance
response to a different driving frequency.

A graphical description of the energy transfer between the inductor and the
capacitor in an LC circuit is shown in Figure 32.15. The right side of the figure
shows the analogous energy transfer in the oscillating block–spring system studied
in Chapter 13. In each case, the situation is shown at intervals of one-fourth the
period of oscillation T. The potential energy stored in a stretched spring is
analogous to the electric potential energy stored in the capacitor. The
kinetic energy of the moving block is analogous to the magnetic energy 12 LI 21

2 mv2
Q 2

max/2C

1
2 kx2

Q 2
max/2C

t � 0.

32.5

13.7

S

L
C

Q max

+

–

Figure 32.14 A simple LC cir-
cuit. The capacitor has an initial
charge Q max , and the switch is
thrown closed at t � 0.
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m

m

m

m

Q = 0

I = 0

t = 0

t = T
2

+Q max

–Q max

E

C

L

C

LQ = 0

I =Imax

I = 0

–Q max

+Q max

B

C

L

t = T
4

C

L

I =Imax

t = 3
4 T

I = 0

+Q max

–Q max

E

C

t =T
L

(a)

k

x = 0

x = 0

v = 0

A

(b)
x = 0

vmax

(c)
x = 0

v = 0

A

(e)
x = 0

m

v = 0

A

x = 0

(d)
x = 0

vmax

– – – –

+ + + +

– – – –

– – – –

B

+ + + +

+ + + +

S

E

Figure 32.15 Energy transfer in a resistanceless, non-radiating LC circuit. The capacitor has a
charge Q max at the instant at which the switch is thrown closed. The mechanical analog of
this circuit is a block–spring system.

t � 0,
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stored in the inductor, which requires the presence of moving charges. In Figure
32.15a, all of the energy is stored as electric potential energy in the capacitor at

In Figure 32.15b, which is one fourth of a period later, all of the energy is
stored as magnetic energy in the inductor, where Imax is the maximum cur-
rent in the circuit. In Figure 32.15c, the energy in the LC circuit is stored com-
pletely in the capacitor, with the polarity of the plates now opposite what it was in
Figure 32.15a. In parts d and e the system returns to the initial configuration over
the second half of the cycle. At times other than those shown in the figure, part of
the energy is stored in the electric field of the capacitor and part is stored in the
magnetic field of the inductor. In the analogous mechanical oscillation, part of the
energy is potential energy in the spring and part is kinetic energy of the block.

Let us consider some arbitrary time t after the switch is closed, so that the ca-
pacitor has a charge and the current is At this time, both ele-
ments store energy, but the sum of the two energies must equal the total initial en-
ergy U stored in the fully charged capacitor at 

(32.18)

Because we have assumed the circuit resistance to be zero, no energy is trans-
formed to internal energy, and hence the total energy must remain constant in time.
This means that Therefore, by differentiating Equation 32.18 with re-
spect to time while noting that Q and I vary with time, we obtain

(32.19)

We can reduce this to a differential equation in one variable by remembering that
the current in the circuit is equal to the rate at which the charge on the capacitor
changes: From this, it follows that Substitution of
these relationships into Equation 32.19 gives

(32.20)

We can solve for Q by noting that this expression is of the same form as the analo-
gous Equations 13.16 and 13.17 for a block–spring system:

where k is the spring constant, m is the mass of the block, and The solu-
tion of this equation has the general form

where � is the angular frequency of the simple harmonic motion, A is the ampli-
tude of motion (the maximum value of x), and � is the phase constant; the values
of A and � depend on the initial conditions. Because it is of the same form as the
differential equation of the simple harmonic oscillator, we see that Equation 32.20
has the solution

(32.21)Q � Q max cos(�t 
 �)

x � A cos(�t 
 �)

� � !k/m.

d2x
dt2 � �

k
m

 x � ��2x

 
d2Q
dt2 � �

1
LC

 Q

Q
C


 L 
d 2Q
dt2 � 0 

dI/dt � d 2Q /dt2.I � dQ /dt .

dU
dt

�
d
dt

 � Q2

2C



1
2

LI 2� �
Q
C

 
dQ
dt


 LI 
dI
dt

� 0

dU/dt � 0.

U � UC 
 UL �
Q2

2C



1
2

LI 2

t � 0:

I  Imax .Q  Q max

1
2 LI max

2
t � 0.

Total energy stored in an LC
circuit

The total energy in an ideal LC
circuit remains constant;
dU/dt � 0

Charge versus time for an ideal LC
circuit
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where Q max is the maximum charge of the capacitor and the angular frequency �
is

(32.22)

Note that the angular frequency of the oscillations depends solely on the induc-
tance and capacitance of the circuit. This is the natural frequency of oscillation of
the LC circuit.

Because Q varies sinusoidally, the current in the circuit also varies sinusoidally.
We can easily show this by differentiating Equation 32.21 with respect to time:

(32.23)

To determine the value of the phase angle �, we examine the initial condi-
tions, which in our situation require that at and Setting

at in Equation 32.23, we have

which shows that This value for � also is consistent with Equation 32.21 and
with the condition that at Therefore, in our case, the expressions
for Q and I are

(32.24)

(32.25)

Graphs of Q versus t and I versus t are shown in Figure 32.16. Note that the
charge on the capacitor oscillates between the extreme values Q max and �Q max ,
and that the current oscillates between Imax and �Imax . Furthermore, the current
is 90° out of phase with the charge. That is, when the charge is a maximum, the
current is zero, and when the charge is zero, the current has its maximum value.

What is the relationship between the amplitudes of the two curves in Figure 32.16?

Let us return to the energy discussion of the LC circuit. Substituting Equations
32.24 and 32.25 in Equation 32.18, we find that the total energy is

(32.26)

This expression contains all of the features described qualitatively at the beginning
of this section. It shows that the energy of the LC circuit continuously oscillates be-
tween energy stored in the electric field of the capacitor and energy stored in the
magnetic field of the inductor. When the energy stored in the capacitor has its
maximum value the energy stored in the inductor is zero. When the en-
ergy stored in the inductor has its maximum value the energy stored in
the capacitor is zero.

Plots of the time variations of UC and UL are shown in Figure 32.17. The sum
is a constant and equal to the total energy or . Analyti-

cal verification of this is straightforward. The amplitudes of the two graphs in Fig-
ure 32.17 must be equal because the maximum energy stored in the capacitor

LI 2
max/2Q 2

max/2CUC 
 UL

1
2 LI 2

max ,
Q 2

max/2C ,

U � UC 
 UL �
Q 2

max

2C
 cos2 �t 


LI 2
max

2
 sin2 �t

Quick Quiz 32.5

I � ��Q max sin �t � �Imax sin �t

Q � Q max cos �t 

t � 0.Q � Q max

� � 0.

0 � � �Q max sin �

t � 0I � 0
Q � Q max .I � 0t � 0,

(�t 
 �)I �
dQ
dt

� ��Q max sin 

� �
1

!LC

Q

Q max

I max

I

t

t

0 T 2TT
2

3T
2

Figure 32.16 Graphs of charge
versus time and current versus time
for a resistanceless, nonradiating
LC circuit. Note that Q and I are
90° out of phase with each other.

Figure 32.17 Plots of UC versus t
and UL versus t for a resistanceless,
nonradiating LC circuit. The sum
of the two curves is a constant and
equal to the total energy stored in
the circuit.

Angular frequency of oscillation

Current versus time for an ideal
LC current

t

Q 2
max

2C

t
0 T

4
T
2

3T
4
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UL
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LI 2
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2
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(when must equal the maximum energy stored in the inductor (when
This is mathematically expressed as

Using this expression in Equation 32.26 for the total energy gives

(32.27)

because cos2 �t 
 sin2 �t � 1.
In our idealized situation, the oscillations in the circuit persist indefinitely;

however, we remember that the total energy U of the circuit remains constant only
if energy transfers and transformations are neglected. In actual circuits, there is 
always some resistance, and hence energy is transformed to internal energy. 
We mentioned at the beginning of this section that we are also ignoring radiation
from the circuit. In reality, radiation is inevitable in this type of circuit, and the to-
tal energy in the circuit continuously decreases as a result of this process.

U �
Q 2

max

2C
 (cos2 �t 
 sin2 �t) �

Q 2
max

2C

Q 2
max

2C
�

LI 2
max

2

Q � 0).
I � 0)

An Oscillatory LC CircuitEXAMPLE 32.7
(b) What are the maximum values of charge on the capac-

itor and current in the circuit?

Solution The initial charge on the capacitor equals the
maximum charge, and because we have

From Equation 32.25, we can see how the maximum current
is related to the maximum charge:

(c) Determine the charge and current as functions of
time.

Solution Equations 32.24 and 32.25 give the following ex-
pressions for the time variation of Q and I :

Exercise What is the total energy stored in the circuit?

Answer 6.48 � 10�10 J.

(�6.79 � 10�4 A) sin[(2	 � 106 rad/s)t ]�

I � �Imax sin �t

(1.08 � 10�10 C) cos[(2	 � 106 rad/s)t]�

Q � Q max cos �t

6.79 � 10�4 A �

 � (2	 � 106 s�1)(1.08 � 10�10 C)

Imax � �Q max � 2	fQ max 

1.08 � 10�10 CQ max � C� � (9.00 � 10�12 F)(12.0 V) �

C � Q /�,

In Figure 32.18, the capacitor is initially charged when switch
S1 is open and S2 is closed. Switch S1 is then thrown closed at
the same instant that S2 is opened, so that the capacitor is
connected directly across the inductor. (a) Find the fre-
quency of oscillation of the circuit.

Solution Using Equation 32.22 gives for the frequency

1.00 � 106 Hz�

 �
1

2	[(2.81 � 10�3 H)(9.00 � 10�12 F)]1/2

f �
�

2	
�

1

2	!LC

9.00 pF

2.81 mH

S2

S1

   = 12.0 Vε

Figure 32.18 First the capacitor is fully charged with the switch S1
open and S2 closed. Then, S1 is thrown closed at the same time that
S2 is thrown open.
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Optional Section

THE RLC CIRCUIT
We now turn our attention to a more realistic circuit consisting of an inductor, a
capacitor, and a resistor connected in series, as shown in Figure 32.19. We let the
resistance of the resistor represent all of the resistance in the circuit. We assume
that the capacitor has an initial charge Q max before the switch is closed. Once the
switch is thrown closed and a current is established, the total energy stored in the
capacitor and inductor at any time is given, as before, by Equation 32.18. However,
the total energy is no longer constant, as it was in the LC circuit, because the resis-
tor causes transformation to internal energy. Because the rate of energy transfor-
mation to internal energy within a resistor is I 2R, we have

where the negative sign signifies that the energy U of the circuit is decreasing in
time. Substituting this result into Equation 32.19 gives

(32.28)

To convert this equation into a form that allows us to compare the electrical oscil-
lations with their mechanical analog, we first use the fact that and move
all terms to the left-hand side to obtain

Now we divide through by I :

(32.29)

The RLC circuit is analogous to the damped harmonic oscillator discussed in
Section 13.6 and illustrated in Figure 32.20. The equation of motion for this me-
chanical system is, from Equation 13.32,

(32.30)

Comparing Equations 32.29 and 32.30, we see that Q corresponds to the position x
of the block at any instant, L to the mass m of the block, R to the damping coeffi-
cient b, and C to 1/k, where k is the force constant of the spring. These and other
relationships are listed in Table 32.1.

Because the analytical solution of Equation 32.29 is cumbersome, we give only
a qualitative description of the circuit behavior. In the simplest case, when 
Equation 32.29 reduces to that of a simple LC circuit, as expected, and the charge
and the current oscillate sinusoidally in time. This is equivalent to removal of all
damping in the mechanical oscillator.

When R is small, a situation analogous to light damping in the mechanical os-
cillator, the solution of Equation 32.29 is

(32.31)Q � Q maxe�Rt /2L cos �d t

R � 0,

m 
d2x
dt2 
 b 

dx
dt


 kx � 0

L 
d2Q
dt2 
 R 

dQ
dt



Q
C

� 0

L  
d 2Q
dt2 


Q
C

  
 IR � 0

LI  
d 2Q
dt2 


Q
C

  I 
 I 2R � 0

I � dQ /dt

LI 
dI
dt



Q
C

 
dQ
dt

� �I 2R

dU
dt

� �I 2R

32.6

C+

– L

R

S

Q max

Figure 32.19 A series RLC cir-
cuit. The capacitor has a charge
Q max at the instant at which
the switch is thrown closed.

t � 0,

m

13.7

Figure 32.20 A block–spring sys-
tem moving in a viscous medium
with damped harmonic motion is
analogous to an RLC circuit.



1032 C H A P T E R  3 2 Inductance

where

(32.32)

is the angular frequency at which the circuit oscillates. That is, the value of the
charge on the capacitor undergoes a damped harmonic oscillation in analogy with
a mass–spring system moving in a viscous medium. From Equation 32.32, we see
that, when (so that the second term in the brackets is much smaller
than the first), the frequency �d of the damped oscillator is close to that of the un-
damped oscillator, Because it follows that the current also un-
dergoes damped harmonic oscillation. A plot of the charge versus time for the
damped oscillator is shown in Figure 32.21a. Note that the maximum value of Q
decreases after each oscillation, just as the amplitude of a damped block–spring
system decreases in time.

Figure 32.21a has two dashed blue lines that form an “envelope” around the curve. What is
the equation for the upper dashed line?

When we consider larger values of R , we find that the oscillations damp out
more rapidly ; in fact, there exists a critical resistance value above
which no oscillations occur. A system with is said to be critically damped.
When R exceeds Rc , the system is said to be overdamped (Fig. 32.22).

R � R c

R c � !4L/C

Quick Quiz 32.6

I � dQ /dt,1/!LC .

R V !4L/C

�d � � 1
LC

� � R
2L �

2

�
1/2

TABLE 32.1 Analogies Between Electrical and Mechanical Systems

One-Dimensional 
Electric Circuit Mechanical System

Charge Displacement
Current Velocity
Potential difference Force
Resistance Viscous damping

coefficient
Capacitance (k � spring

constant)
Inductance Mass

Energy in inductor

Energy in capacitor

RLC circuit Damped mass on a spring
L 

d 2Q
dt2 
 R 

dQ
dt



Q
C

� 0 4 m 
d 2x
dt2 
 b 

dx
dt


 kx � 0

Rate of energy loss due to friction
I 2R 4 bv2Rate of energy loss due to resistance

Potential energy stored in a spring
UC � 1

2 
Q2

C
4 U � 1

2 kx2

Kinetic energy of moving mass
UL � 1

2 LI 2 4 K � 1
2 mv2

Acceleration � second time derivative of position

dI
dt

�
d 2Q
dt2 4 ax �

dvx

dt
�

d 2x
dt2

Rate of change of current � second time derivative of charge

Velocity � time derivative of position
I �

dQ
dt

4 vx �
dx
dt

Current � time derivative of charge

L 4 m

C 4 1/k

R 4 b
 �V 4 Fx 

I 4 vx

Q 4 x
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SUMMARY

When the current in a coil changes with time, an emf is induced in the coil accord-
ing to Faraday’s law. The self-induced emf is

(32.1)

where L is the inductance of the coil. Inductance is a measure of how much oppo-
sition an electrical device offers to a change in current passing through the device.
Inductance has the SI unit of henry (H), where 1 H � 1 V � s/A.

The inductance of any coil is

(32.2)

where �B is the magnetic flux through the coil and N is the total number of turns.
The inductance of a device depends on its geometry. For example, the inductance
of an air-core solenoid is

(32.4)

where A is the cross-sectional area, and � is the length of the solenoid.
If a resistor and inductor are connected in series to a battery of emf and if a

switch in the circuit is thrown closed at then the current in the circuit varies
in time according to the expression

(32.7)

where is the time constant of the RL circuit. That is, the current in-
creases to an equilibrium value of after a time that is long compared with �. If
the battery in the circuit is replaced by a resistanceless wire, the current decays ex-
ponentially with time according to the expression

(32.10)

where is the initial current in the circuit.�/R

I �
�
R

 e�t /�

�/R
� � L/R

I �
�
R

 (1 � e�t /�)

t � 0,
�,

L �
�0N 2A

�

L �
N �B

I

�L � �L 
dI
dt

Q max

Q

0 t

Figure 32.21 (a) Charge versus time for a damped RLC circuit. The charge 
decays in this way when The Q -versus-t curve represents a plot
of Equation 32.31. (b) Oscilloscope pattern showing the decay in the oscilla-
tions of an RLC circuit. The parameters used were �, mH,
and �F.C � 0.19

L � 10R � 75

R V  !4L/C  .

Q

t

R >   4L/CQ max

(a) (b) Figure 32.22 Plot of Q versus t
for an overdamped RLC circuit,
which occurs for values of
R � !4L/C  .
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The energy stored in the magnetic field of an inductor carrying a current I is

(32.12)

This energy is the magnetic counterpart to the energy stored in the electric field
of a charged capacitor.

The energy density at a point where the magnetic field is B is

(32.14)

The mutual inductance of a system of two coils is given by

(32.15)

This mutual inductance allows us to relate the induced emf in a coil to the chang-
ing source current in a nearby coil using the relationships

and (32.16, 32.17)

In an LC circuit that has zero resistance and does not radiate electromagneti-
cally (an idealization), the values of the charge on the capacitor and the current in
the circuit vary in time according to the expressions

(32.21)

(32.23)

where Q max is the maximum charge on the capacitor, � is a phase constant, and �
is the angular frequency of oscillation:

(32.22)

The energy in an LC circuit continuously transfers between energy stored in the
capacitor and energy stored in the inductor. The total energy of the LC circuit at
any time t is

(32.26)

At all of the energy is stored in the electric field of the capacitor
. Eventually, all of this energy is transferred to the inductor

. However, the total energy remains constant because energy trans-
formations are neglected in the ideal LC circuit.
(U � LI 2

max/2)
(U � Q max

2 /2C )
t � 0,

U � UC 
 UL �
Q 2

max

2C
 cos2 �t 


LI 2
max

2
 sin2 �t

� �
1

!LC

(�t 
 �)I �
dQ
dt

� ��Q max sin

(�t 
 �)Q � Q max cos 

�1 � �M21 
dI2

dt
�2 � �M12 

dI1

dt

M12 �
N 2�12

I1
� M21 �

N1�21

I2
� M

uB �
B2

2�0

U � 1
2 LI 2

QUESTIONS

4. How can a long piece of wire be wound on a spool so that
the wire has a negligible self-inductance?

5. A long, fine wire is wound as a solenoid with a self-
inductance L . If it is connected across the terminals of a
battery, how does the maximum current depend on L ?

6. For the series RL circuit shown in Figure Q32.6, can the
back emf ever be greater than the battery emf? Explain.

1. Why is the induced emf that appears in an inductor
called a “counter” or “back” emf?

2. The current in a circuit containing a coil, resistor, and
battery reaches a constant value. Does the coil have an in-
ductance? Does the coil affect the value of the current?

3. What parameters affect the inductance of a coil? Does the
inductance of a coil depend on the current in the coil?
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PROBLEMS

7. A 10.0-mH inductor carries a current 
with and Hz. What is the
back emf as a function of time?

8. An emf of 24.0 mV is induced in a 500-turn coil at an in-
stant when the current is 4.00 A and is changing at the
rate of 10.0 A/s. What is the magnetic flux through
each turn of the coil?

9. An inductor in the form of a solenoid contains 420
turns, is 16.0 cm in length, and has a cross-sectional
area of 3.00 cm2. What uniform rate of decrease of 
current through the inductor induces an emf of 
175 �V?

10. An inductor in the form of a solenoid contains N turns,
has length �, and has cross-sectional area A. What uni-
form rate of decrease of current through the inductor
induces an emf ?

11. The current in a 90.0-mH inductor changes with time as
(in SI units). Find the magnitude of the

induced emf at (a) and (b) (c) At
what time is the emf zero?

12. A 40.0-mA current is carried by a uniformly wound air-
core solenoid with 450 turns, a 15.0-mm diameter, and
12.0-cm length. Compute (a) the magnetic field inside
the solenoid, (b) the magnetic flux through each turn,

t � 4.00 s.t � 1.00 s
I � t 2 � 6.00t

�

�/2	 � 60.0Imax � 5.00 A
I � Imax sin �t,Section 32.1 Self-Inductance

1. A coil has an inductance of 3.00 mH, and the current
through it changes from 0.200 A to 1.50 A in a time of
0.200 s. Find the magnitude of the average induced emf
in the coil during this time.

2. A coiled telephone cord forms a spiral with 70 turns, a
diameter of 1.30 cm, and an unstretched length of 
60.0 cm. Determine the self-inductance of one conduc-
tor in the unstretched cord.

3. A 2.00-H inductor carries a steady current of 0.500 A.
When the switch in the circuit is thrown open, the cur-
rent is effectively zero in 10.0 ms. What is the average
induced emf in the inductor during this time?

4. A small air-core solenoid has a length of 4.00 cm and
a radius of 0.250 cm. If the inductance is to be 
0.060 0 mH, how many turns per centimeter are
required?

5. Calculate the magnetic flux through the area enclosed
by a 300-turn, 7.20-mH coil when the current in the coil
is 10.0 mA.

6. The current in a solenoid is increasing at a rate of 
10.0 A/s. The cross-sectional area of the solenoid is 
	 cm2, and there are 300 turns on its 15.0-cm length.
What is the induced emf opposing the increasing
current?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

ε

R

L

Switch

7. Consider this thesis: “Joseph Henry, America’s first pro-
fessional physicist, changed the view of the Universe dur-
ing a school vacation at the Albany Academy in 1830. Be-
fore that time, one could think of the Universe as
consisting of just one thing: matter. In Henry’s experi-
ment, after a battery is removed from a coil, the energy
that keeps the current flowing for a while does not be-
long to any piece of matter. This energy belongs to the
magnetic field surrounding the coil. With Henry’s discov-
ery of self-induction, Nature forced us to admit that the
Universe consists of fields as well as matter.” What in your
view constitutes the Universe? Argue for your answer.

8. Discuss the similarities and differences between the en-
ergy stored in the electric field of a charged capacitor and
the energy stored in the magnetic field of a current-
carrying coil.

9. What is the inductance of two inductors connected in se-
ries? Does it matter if they are solenoids or toroids?

10. The centers of two circular loops are separated by a fixed
distance. For what relative orientation of the loops is their
mutual inductance a maximum? a minimum? Explain.

11. Two solenoids are connected in series so that each carries
the same current at any instant. Is mutual induction pres-
ent? Explain.

12. In the LC circuit shown in Figure 32.15, the charge on
the capacitor is sometimes zero, even though current is in
the circuit. How is this possible?

13. If the resistance of the wires in an LC circuit were not
zero, would the oscillations persist? Explain.

14. How can you tell whether an RLC circuit is overdamped
or underdamped?

15. What is the significance of critical damping in an RLC
circuit?

16. Can an object exert a force on itself? When a coil induces
an emf in itself, does it exert a force on itself?

Figure Q32.6
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and (c) the inductance of the solenoid. (d) Which of
these quantities depends on the current?

13. A solenoid has 120 turns uniformly wrapped around a
wooden core, which has a diameter of 10.0 mm and a
length of 9.00 cm. (a) Calculate the inductance of the
solenoid. (b) The wooden core is replaced with a soft
iron rod that has the same dimensions but a magnetic
permeability What is the new inductance?

14. A toroid has a major radius R and a minor radius r, and
it is tightly wound with N turns of wire, as shown in Fig-
ure P32.14. If the magnetic field within the re-
gion of the torus, of cross-sectional area is es-
sentially that of a long solenoid that has been bent into
a large circle of radius R. Using the uniform field of a
long solenoid, show that the self-inductance of such a
toroid is approximately

(An exact expression for the inductance of a toroid with
a rectangular cross-section is derived in Problem 64.)

L � �0N 2A/2	R

A � 	r 2,
R W r,

�m � 800�0 .

the inductive time constant of the circuit? (b) Calculate
the current in the circuit 250 �s after the switch is
closed. (c) What is the value of the final steady-state cur-
rent? (d) How long does it take the current to reach
80.0% of its maximum value?

WEB

26. A series RL circuit with H and a series RC cir-
cuit with �F have equal time constants. If the
two circuits contain the same resistance R, (a) what is
the value of R and (b) what is the time constant?

C � 3.00
L � 3.00

20. In the circuit shown in Figure P32.19, let 
�, and What is the self-induced

emf 0.200 s after the switch is closed?
21. For the RL circuit shown in Figure P32.19, let 

H, �, and (a) Calculate
the ratio of the potential difference across the resistor
to that across the inductor when A. (b) Calcu-
late the voltage across the inductor when A.

22. A 12.0-V battery is connected in series with a resistor
and an inductor. The circuit has a time constant of 
500 �s, and the maximum current is 200 mA. What is
the value of the inductance?

23. An inductor that has an inductance of 15.0 H and a
resistance of 30.0 � is connected across a 100-V 
battery. What is the rate of increase of the current 
(a) at and (b) at 

24. When the switch in Figure P32.19 is thrown closed, the
current takes 3.00 ms to reach 98.0% of its final value. If

�, what is the inductance?
25. The switch in Figure P32.25 is closed at time Find

the current in the inductor and the current through the
switch as functions of time thereafter.

t � 0.
R � 10.0

t � 1.50 s?t � 0

I � 4.50
I � 2.00

� � 36.0 V.R � 8.00L � 3.00

� � 120 V.R � 9.00
L � 7.00 H,

15. An emf self-induced in a solenoid of inductance L
changes in time as Find the total charge
that passes through the solenoid, if the charge is finite.

Section 32.2 RL Circuits

16. Calculate the resistance in an RL circuit in which
H and the current increases to 90.0% of its fi-

nal value in 3.00 s.
17. A 12.0-V battery is connected into a series circuit con-

taining a 10.0-� resistor and a 2.00-H inductor. How
long will it take the current to reach (a) 50.0% and 
(b) 90.0% of its final value?

18. Show that is a solution of the differential
equation

where and I0 is the current at 
19. Consider the circuit in Figure P32.19, taking

and �. (a) What isR � 4.00L � 8.00 mH,� � 6.00 V,

t � 0.� � L/R

IR 
 L 
dI
dt

� 0

I � I0e�t /�

L � 2.50

� � �0e�kt.

R Area
A

r

1.00 H4.00 Ω

4.00 Ω 8.00 Ω

10.0 V

S

L

R

S

ε

Figure P32.14

Figure P32.19 Problems 19, 20, 21, and 24.

Figure P32.25
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27. A current pulse is fed to the partial circuit shown in Fig-
ure P32.27. The current begins at zero, then becomes
10.0 A between and �s, and then is zero
once again. Determine the current in the inductor as a
function of time.

t � 200t � 0

single ideal inductor having 
(c) Now consider two inductors L1 and L2 that have
nonzero internal resistances R1 and R2 , respectively. As-
sume that they are still far apart so that their magnetic
fields do not influence each other. If these inductors
are connected in series, show that they are equivalent to
a single inductor having and 

(d) If these same inductors are now con-
nected in parallel, is it necessarily true that they are
equivalent to a single ideal inductor having 

and Explain 
your answer.

Section 32.3 Energy in a Magnetic Field
31. Calculate the energy associated with the magnetic field

of a 200-turn solenoid in which a current of 1.75 A pro-
duces a flux of 3.70 � 10�4 T� m2 in each turn.

32. The magnetic field inside a superconducting solenoid is
4.50 T. The solenoid has an inner diameter of 6.20 cm
and a length of 26.0 cm. Determine (a) the magnetic
energy density in the field and (b) the energy stored in
the magnetic field within the solenoid.

33. An air-core solenoid with 68 turns is 8.00 cm long and
has a diameter of 1.20 cm. How much energy is stored
in its magnetic field when it carries a current of 0.770 A?

34. At an emf of 500 V is applied to a coil that has an
inductance of 0.800 H and a resistance of 30.0 �. 
(a) Find the energy stored in the magnetic field when
the current reaches half its maximum value. (b) After
the emf is connected, how long does it take the current
to reach this value?

35. On a clear day there is a 100-V/m vertical electric field
near the Earth’s surface. At the same place, the Earth’s
magnetic field has a magnitude of 0.500 � 10�4 T.
Compute the energy densities of the two fields.

36. An RL circuit in which H and � is
connected to a 22.0-V battery at (a) What energy
is stored in the inductor when the current is 0.500 A?
(b) At what rate is energy being stored in the inductor
when A? (c) What power is being delivered to
the circuit by the battery when A?

37. A 10.0-V battery, a 5.00-� resistor, and a 10.0-H inductor
are connected in series. After the current in the circuit

I � 0.500
I � 1.00

t � 0.
R � 5.00L � 4.00

t � 0,

1/R eq � 1/R 1 
 1/R 2 ?1/L1 
 1/L 2

1/L eq �

R 1 
 R 2 .
R eq �Leq � L1 
 L2

1/Leq � 1/L1 
 1/L2 .

WEB 29. A 140-mH inductor and a 4.90-� resistor are connected
with a switch to a 6.00-V battery, as shown in Figure
P32.29. (a) If the switch is thrown to the left (connect-
ing the battery), how much time elapses before the cur-
rent reaches 220 mA? (b) What is the current in the in-
ductor 10.0 s after the switch is closed? (c) Now the
switch is quickly thrown from A to B. How much time
elapses before the current falls to 160 mA?

30. Consider two ideal inductors, L1 and L2 , that have zero
internal resistance and are far apart, so that their mag-
netic fields do not influence each other. (a) If these in-
ductors are connected in series, show that they are
equivalent to a single ideal inductor having

(b) If these same two inductors are
connected in parallel, show that they are equivalent to a
Leq � L1 
 L2 .

28. One application of an RL circuit is the generation of
time-varying high voltage from a low-voltage source, as
shown in Figure P32.28. (a) What is the current in the
circuit a long time after the switch has been in position
A? (b) Now the switch is thrown quickly from A to B.
Compute the initial voltage across each resistor and the
inductor. (c) How much time elapses before the voltage
across the inductor drops to 12.0 V?

10.0 mH100 Ω

10.0 A

I(t )

I(t )

200    sµ

A

ε

B

L

R

S

12.0 V
1 200 Ω

12.0 Ω

2.00 H

B

SA

Figure P32.27

Figure P32.28

Figure P32.29

WEB
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has reached its maximum value, calculate (a) the power
being supplied by the battery, (b) the power being de-
livered to the resistor, (c) the power being delivered to
the inductor, and (d) the energy stored in the magnetic
field of the inductor.

38. A uniform electric field with a magnitude of 680 kV/m
throughout a cylindrical volume results in a total energy
of 3.40 �J. What magnetic field over this same region
stores the same total energy?

39. Assume that the magnitude of the magnetic field out-
side a sphere of radius R is where B0 is a
constant. Determine the total energy stored in the mag-
netic field outside the sphere and evaluate your result
for and values
appropriate for the Earth’s magnetic field.

Section 32.4 Mutual Inductance
40. Two coils are close to each other. The first coil carries a

time-varying current given by
At the

voltage measured across the second coil is � 3.20 V.
What is the mutual inductance of the coils?

41. Two coils, held in fixed positions, have a mutual induc-
tance of 100 �H. What is the peak voltage in one when
a sinusoidal current given by

flows in the other?
42. An emf of 96.0 mV is induced in the windings of a coil

when the current in a nearby coil is increasing at the
rate of 1.20 A/s. What is the mutual inductance of the
two coils?

43. Two solenoids A and B, spaced close to each other and
sharing the same cylindrical axis, have 400 and 
700 turns, respectively. A current of 3.50 A in coil A pro-
duces an average flux of 300 �T � m2 through each turn
of A and a flux of 90.0 �T � m2 through each turn of B.
(a) Calculate the mutual inductance of the two sole-
noids. (b) What is the self-inductance of A? (c) What
emf is induced in B when the current in A increases at
the rate of 0.500 A/s?

44. A 70-turn solenoid is 5.00 cm long and 1.00 cm in diam-
eter and carries a 2.00-A current. A single loop of wire,
3.00 cm in diameter, is held so that the plane of the
loop is perpendicular to the long axis of the solenoid,
as illustrated in Figure P31.18 (page 1004). What is the
mutual inductance of the two if the plane of the loop
passes through the solenoid 2.50 cm from one end?

45. Two single-turn circular loops of wire have radii R and 
r, with The loops lie in the same plane and 
are concentric. (a) Show that the mutual inductance 
of the pair is (Hint: Assume that the
larger loop carries a current I and compute the result-
ing flux through the smaller loop.) (b) Evaluate M for

cm and cm.
46. On a printed circuit board, a relatively long straight

conductor and a conducting rectangular loop lie in the
same plane, as shown in Figure P31.9 (page 1003). If

R � 20.0r � 2.00

M � �0	r 2/2R .

R W r.

I(t) � (10.0 A) sin(1 000t)

t � 0.800 s,I(t) � (5.00 A) e�0.025 0t sin(377t).

R � 6.00 � 106 m,B0 � 5.00 � 10�5 T

B � B0(R/r)2,

mm, mm, and mm, what
is their mutual inductance?

47. Two inductors having self-inductances L1 and L2 are
connected in parallel, as shown in Figure P32.47a. The
mutual inductance between the two inductors is M. De-
termine the equivalent self-inductance Leq for the sys-
tem (Fig. P32.47b).

L � 2.70w � 1.30h � 0.400

51. A fixed inductance �H is used in series with a
variable capacitor in the tuning section of a radio. What
capacitance tunes the circuit to the signal from a station
broadcasting at 6.30 MHz?

52. Calculate the inductance of an LC circuit that oscillates
at 120 Hz when the capacitance is 8.00 �F.

53. An LC circuit like the one shown in Figure 32.14 con-
tains an 82.0-mH inductor and a 17.0-�F capacitor that
initially carries a 180-�C charge. The switch is thrown
closed at (a) Find the frequency (in hertz) of the
resulting oscillations. At ms, find (b) the charge
on the capacitor and (c) the current in the circuit.

t � 1.00
t � 0.

L � 1.05

Section 32.5 Oscillations in an LC Circuit

48. A 1.00-�F capacitor is charged by a 40.0-V power supply.
The fully-charged capacitor is then discharged through
a 10.0-mH inductor. Find the maximum current in the
resulting oscillations.

49. An LC circuit consists of a 20.0-mH inductor and a
0.500-�F capacitor. If the maximum instantaneous cur-
rent is 0.100 A, what is the greatest potential difference
across the capacitor?

50. In the circuit shown in Figure P32.50, 
�, and �F. The switch S is closed for

a long time, and no voltage is measured across the ca-
pacitor. After the switch is opened, the voltage across
the capacitor reaches a maximum value of 150 V. What
is the inductance L?

C � 0.500R � 250
� � 50.0 V,

R

ε L C

S

L1

I(t )

LeqL2M

(a) (b)

I(t )

Figure P32.47

Figure P32.50
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54. The switch in Figure P32.54 is connected to point a for
a long time. After the switch is thrown to point b, what
are (a) the frequency of oscillation of the LC circuit,
(b) the maximum charge that appears on the capacitor,
(c) the maximum current in the inductor, and (d) the
total energy the circuit possesses at s?t � 3.00

The capacitor initially has no charge. Determine (a) the
voltage across the inductor as a function of time, 
(b) the voltage across the capacitor as a function of
time, and (c) the time when the energy stored in the
capacitor first exceeds that in the inductor.

62. An inductor having inductance L and a capacitor hav-
ing capacitance C are connected in series. The current
in the circuit increases linearly in time as described by

The capacitor is initially uncharged. Determine
(a) the voltage across the inductor as a function of time,
(b) the voltage across the capacitor as a function of
time, and (c) the time when the energy stored in the ca-
pacitor first exceeds that in the inductor.

63. A capacitor in a series LC circuit has an initial charge Q
and is being discharged. Find, in terms of L and C , the
flux through each of the N turns in the coil, when the
charge on the capacitor is Q /2.

64. The toroid in Figure P32.64 consists of N turns and has
a rectangular cross-section. Its inner and outer radii are
a and b, respectively. (a) Show that

(b) Using this result, compute the self-inductance of a
500-turn toroid for which cm, cm,
and cm. (c) In Problem 14, an approximate
formula for the inductance of a toroid with was
derived. To get a feel for the accuracy of that result, use
the expression in Problem 14 to compute the approxi-
mate inductance of the toroid described in part (b).
Compare the result with the answer to part (b).

R W r
h � 1.00

b � 12.0a � 10.0

L �
�0N 2h

2	
 ln 

b
a

I � Kt .

65. (a) A flat circular coil does not really produce a uniform
magnetic field in the area it encloses, but estimate the
self-inductance of a flat circular coil, with radius R and N
turns, by supposing that the field at its center is uniform
over its area. (b) A circuit on a laboratory table consists
of a 1.5-V battery, a 270-� resistor, a switch, and three 30-
cm-long cords connecting them. Suppose that the circuit
is arranged to be circular. Think of it as a flat coil with
one turn. Compute the order of magnitude of its self-
inductance and (c) of the time constant describing how
fast the current increases when you close the switch.

66. A soft iron rod is used as the core of a
solenoid. The rod has a diameter of 24.0 mm and is

(�m � 800 �0)

55. An LC circuit like that illustrated in Figure 32.14 con-
sists of a 3.30-H inductor and an 840-pF capacitor, ini-
tially carrying a 105-�C charge. At the switch is
thrown closed. Compute the following quantities at

ms: (a) the energy stored in the capacitor; 
(b) the energy stored in the inductor; (c) the total en-
ergy in the circuit.

(Optional)
Section 32.6 The RLC Circuit

56. In Figure 32.19, let �, mH, and
�F. (a) Calculate the frequency of the damped

oscillation of the circuit. (b) What is the critical resis-
tance?

57. Consider an LC circuit in which mH and
�F. (a) What is the resonant frequency �0 ?

(b) If a resistance of 1.00 k� is introduced into this cir-
cuit, what is the frequency of the (damped) oscillations?
(c) What is the percent difference between the two fre-
quencies?

58. Show that Equation 32.29 in the text is Kirchhoff’s loop
rule as applied to Figure 32.19.

59. Electrical oscillations are initiated in a series circuit con-
taining a capacitance C , inductance L , and resistance R .
(a) If (weak damping), how much time
elapses before the amplitude of the current oscillation
falls off to 50.0% of its initial value? (b) How long does
it take the energy to decrease to 50.0% of its initial
value?

ADDITIONAL PROBLEMS

60. Initially, the capacitor in a series LC circuit is charged. A
switch is closed, allowing the capacitor to discharge, and
after time t the energy stored in the capacitor is one-
fourth its initial value. Determine L if C is known.

61. A 1.00-mH inductor and a 1.00-�F capacitor are con-
nected in series. The current in the circuit is described
by where t is in seconds and I is in amperes.I � 20.0t,

R V !4L/C

C � 0.100
L � 500

C � 1.80
L � 2.20R � 7.60

t � 2.00

t � 0

h

a

b

1.00 µF

10.0 Ω

S

ba

µ

0.100 H

12.0 V

Figure P32.54

Figure P32.64

WEB
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10.0 cm long. A 10.0-m piece of 22-gauge copper wire
(diameter � 0.644 mm) is wrapped around the rod in a
single uniform layer, except for a 10.0-cm length at each
end, which is to be used for connections. (a) How many
turns of this wire can wrap around the rod? (Hint: The
diameter of the wire adds to the diameter of the rod in
determining the circumference of each turn. Also, the
wire spirals diagonally along the surface of the rod.) 
(b) What is the resistance of this inductor? (c) What is
its inductance?

67. A wire of nonmagnetic material with radius R carries
current uniformly distributed over its cross-section. If
the total current carried by the wire is I, show that the
magnetic energy per unit length inside the wire is

.
68. An 820-turn wire coil of resistance 24.0 � is placed

around a 12 500-turn solenoid, 7.00 cm long, as shown
in Figure P32.68. Both coil and solenoid have cross-
sectional areas of 1.00 � 10�4 m2. (a) How long does it
take the solenoid current to reach 63.2 percent of its
maximum value? Determine (b) the average back emf
caused by the self-inductance of the solenoid during
this interval, (c) the average rate of change in magnetic
flux through the coil during this interval, and (d) the
magnitude of the average induced current in the coil.

�0I 2/16	

72. The switch in Figure P32.72 is thrown closed at 
Before the switch is closed, the capacitor is uncharged,
and all currents are zero. Determine the currents in L ,
C , and R and the potential differences across L , C , and
R (a) the instant after the switch is closed and (b) long
after it is closed.

t � 0.

closed for a long time, the current in the inductor
drops to 0.250 A in 0.150 s. What is the inductance of
the inductor?

71. In Figure P32.71, the switch is closed for and
steady-state conditions are established. The switch is
thrown open at (a) Find the initial voltage 
across L just after Which end of the coil is at the
higher potential: a or b? (b) Make freehand graphs of
the currents in R1 and in R2 as a function of time, treat-
ing the steady-state directions as positive. Show values
before and after (c) How long after does
the current in R2 have the value 2.00 mA?

t � 0t � 0.

t � 0.
�0t � 0.

t  0,

69. At the switch in Figure P32.69 is thrown closed.
Using Kirchhoff’s laws for the instantaneous currents
and voltages in this two-loop circuit, show that the cur-
rent in the inductor is

where 
70. In Figure P32.69, take V, �, and

�. The inductor has negligible resistance.
When the switch is thrown open after having been
R 2 � 1.00

R 1 � 5.00� � 6.00
R� � R 1R 2/(R 1 
 R 2).

I(t) �
�
R 1

 [1 � e�(R�/L)t]

t � 0,
L

R

C

S 0ε

S

6.00 kΩ ε 0.400 HL18.0 V

2.00 kΩ

R1

R2

a

b

R1

S

R2 Lε

12500
 turns

14.0 Ω

60.0 V

S

+

–

24.0 Ω
820 turns

Figure P32.68

Figure P32.69 Problems 69 and 70.

Figure P32.71

Figure P32.72
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of this type of lead-in is

where a is the radius of the wires and w is their center-
to-center separation.

Note: Problems 76 through 79 require the application of ideas
from this chapter and earlier chapters to some properties of
superconductors, which were introduced in Section 27.5.

76. Review Problem. The resistance of a superconductor. In an
experiment carried out by S. C. Collins between 1955
and 1958, a current was maintained in a superconduct-
ing lead ring for 2.50 yr with no observed loss. If the in-
ductance of the ring was 3.14 � 10�8 H and the sensitiv-
ity of the experiment was 1 part in 109, what was the
maximum resistance of the ring? (Hint: Treat this as a
decaying current in an RL circuit, and recall that

for small x.)
77. Review Problem. A novel method of storing electrical

energy has been proposed. A huge underground super-
conducting coil, 1.00 km in diameter, would be fabri-
cated. It would carry a maximum current of 50.0 kA
through each winding of a 150-turn Nb3Sn solenoid. 
(a) If the inductance of this huge coil were 50.0 H, what
would be the total energy stored? (b) What would be
the compressive force per meter length acting between
two adjacent windings 0.250 m apart?

78. Review Problem. Superconducting Power Transmission.
The use of superconductors has been proposed for the
manufacture of power transmission lines. A single coax-
ial cable (Fig. P32.78) could carry 1.00 � 103 MW (the
output of a large power plant) at 200 kV, dc, over a dis-
tance of 1 000 km without loss. An inner wire with a ra-
dius of 2.00 cm, made from the superconductor Nb3Sn,
carries the current I in one direction. A surrounding su-
perconducting cylinder, of radius 5.00 cm, would carry
the return current I. In such a system, what is the mag-
netic field (a) at the surface of the inner conductor and
(b) at the inner surface of the outer conductor? (c) How
much energy would be stored in the space between the
conductors in a 1 000-km superconducting line? 
(d) What is the pressure exerted on the outer conductor?

e�x � 1 � x

L �
�0x
	

 ln� w � a
a �

74. An air-core solenoid 0.500 m in length contains 1 000
turns and has a cross-sectional area of 1.00 cm2. (a) If
end effects are neglected, what is the self-inductance?
(b) A secondary winding wrapped around the center of
the solenoid has 100 turns. What is the mutual induc-
tance? (c) The secondary winding carries a constant
current of 1.00 A, and the solenoid is connected to a
load of 1.00 k�. The constant current is suddenly
stopped. How much charge flows through the load re-
sistor?

75. The lead-in wires from a television antenna are often
constructed in the form of two parallel wires (Fig.
P32.75). (a) Why does this configuration of conductors
have an inductance? (b) What constitutes the flux loop
for this configuration? (c) Neglecting any magnetic flux
inside the wires, show that the inductance of a length x

TV set
I

I

TV antenna

7.50 Ω

450 mH

10.0 V
12.0 V

Armature

R

Figure P32.73

Figure P32.75 Figure P32.78

I

a = 2.00 cm

b = 5.00 cm
a

I

b

73. To prevent damage from arcing in an electric motor, a
discharge resistor is sometimes placed in parallel with
the armature. If the motor is suddenly unplugged while
running, this resistor limits the voltage that appears
across the armature coils. Consider a 12.0-V dc motor
with an armature that has a resistance of 7.50 � and an
inductance of 450 mH. Assume that the back emf in the
armature coils is 10.0 V when the motor is running at
normal speed. (The equivalent circuit for the armature
is shown in Fig. P32.73.) Calculate the maximum resis-
tance R that limits the voltage across the armature to
80.0 V when the motor is unplugged.
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ANSWERS TO QUICK QUIZZES

32.3 (a) M12 increases because the magnetic flux through
coil 2 increases. (b) M12 decreases because rotation of
coil 1 decreases its flux through coil 2.

32.4 (a) No. Mutual inductance requires a system of coils,
and each coil has self-inductance. (b) Yes. A single coil
has self-inductance but no mutual inductance because it
does not interact with any other coils.

32.5 From Equation 32.25, Thus, the ampli-
tude of the graph is � times the amplitude of the 

graph.
32.6 Equation 32.31 without the cosine factor. The dashed

lines represent the positive and negative amplitudes
(maximum values) for each oscillation period, and it is
the part of Equation 32.31 that gives
the value of the ever-decreasing amplitude.

Q � Q maxe�Rt /2L

Q - t
I - t

Imax � �Q max .

32.1 When it is being opened. When the switch is initially
open, there is no current in the circuit; when the switch
is then closed, the inductor tends to maintain the no-
current condition, and as a result there is very little
chance of sparking. When the switch is initially closed,
there is current in the circuit; when the switch is then
opened, the current decreases. An induced emf is set up
across the inductor, and this emf tends to maintain the
original current. Sparking can occur as the current
bridges the air gap between the poles of the switch.

32.2 (b). Figure 32.8 shows that circuit B has the greater time
constant because in this circuit it takes longer for the
current to reach its maximum value and then longer 
for this current to decrease to zero after switch S2 is
closed. Equation 32.8 indicates that, for equal resis-
tances RA and RB , the condition means that
LA  LB .

�B � �A 

P32.79c. (d) The field of the solenoid exerts a force on
the current in the superconductor. Identify the direc-
tion of the force on the bar. (e) Calculate the magni-
tude of the force by multiplying the energy density of
the solenoid field by the area of the bottom end of the
superconducting bar.

(a) (b) (c)

B0

Btot

I

Figure P32.79

79. Review Problem. The Meissner Effect. Compare this
problem with Problem 63 in Chapter 26 on the force at-
tracting a perfect dielectric into a strong electric field.
A fundamental property of a Type I superconducting
material is perfect diamagnetism, or demonstration of the
Meissner effect, illustrated in the photograph on page 855
and again in Figure 30.34, and described as follows: The
superconducting material has everywhere inside
it. If a sample of the material is placed into an exter-
nally produced magnetic field, or if it is cooled to be-
come superconducting while it is in a magnetic field,
electric currents appear on the surface of the sample.
The currents have precisely the strength and orienta-
tion required to make the total magnetic field zero
throughout the interior of the sample. The following
problem will help you to understand the magnetic force
that can then act on the superconducting sample.

Consider a vertical solenoid with a length of 120 cm
and a diameter of 2.50 cm consisting of 1 400 turns of
copper wire carrying a counterclockwise current of 
2.00 A, as shown in Figure P32.79a. (a) Find the mag-
netic field in the vacuum inside the solenoid. (b) Find
the energy density of the magnetic field, and note that
the units J/m3 of energy density are the same as the
units of pressure. (c) A superconducting
bar 2.20 cm in diameter is inserted partway into the so-
lenoid. Its upper end is far outside the solenoid, where
the magnetic field is small. The lower end of the bar is
deep inside the solenoid. Identify the direction re-
quired for the current on the curved surface of the bar
so that the total magnetic field is zero within the bar.
The field created by the supercurrents is sketched in
Figure P32.79b, and the total field is sketched in Figure

N/m2(�Pa)

B � 0
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Alternating-Current Circuits

P U Z Z L E R

Small “black boxes” like this one are
commonly used to supply power to elec-
tronic devices such as CD players and
tape players. Whereas these devices
need only about 12 V to operate, wall
outlets provide an output of 120 V. What
do the black boxes do, and how do they
work? (George Semple)

C h a p t e r  O u t l i n e

33.1 ac Sources and Phasors

33.2 Resistors in an ac Circuit

33.3 Inductors in an ac Circuit

33.4 Capacitors in an ac Circuit

33.5 The RLC Series Circuit

33.6 Power in an ac Circuit

33.7 Resonance in a Series RLC
Circuit

33.8 The Transformer and Power
Transmission

33.9 (Optional) Rectifiers and Filters
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n this chapter we describe alternating-current (ac) circuits. Every time we turn
on a television set, a stereo, or any of a multitude of other electrical appliances,
we are calling on alternating currents to provide the power to operate them. We

begin our study by investigating the characteristics of simple series circuits that con-
tain resistors, inductors, and capacitors and that are driven by a sinusoidal voltage.
We shall find that the maximum alternating current in each element is proportional
to the maximum alternating voltage across the element. We shall also find that when
the applied voltage is sinusoidal, the current in each element is sinusoidal, too, but
not necessarily in phase with the applied voltage. We conclude the chapter with two
sections concerning transformers, power transmission, and RC filters.

AC SOURCES AND PHASORS
An ac circuit consists of circuit elements and a generator that provides the alter-
nating current. As you recall from Section 31.5, the basic principle of the ac gener-
ator is a direct consequence of Faraday’s law of induction. When a conducting
loop is rotated in a magnetic field at constant angular frequency �, a sinusoidal
voltage (emf) is induced in the loop. This instantaneous voltage �v is

where �Vmax is the maximum output voltage of the ac generator, or the voltage
amplitude. From Equation 13.6, the angular frequency is

where f is the frequency of the generator (the voltage source) and T is the period.
The generator determines the frequency of the current in any circuit connected to
the generator. Because the output voltage of an ac generator varies sinusoidally
with time, the voltage is positive during one half of the cycle and negative during
the other half. Likewise, the current in any circuit driven by an ac generator is an
alternating current that also varies sinusoidally with time. Commercial electric-
power plants in the United States use a frequency of 60 Hz, which corresponds to
an angular frequency of 377 rad/s.

The primary aim of this chapter can be summarized as follows: If an ac genera-
tor is connected to a series circuit containing resistors, inductors, and capacitors,
we want to know the amplitude and time characteristics of the alternating current.
To simplify our analysis of circuits containing two or more elements, we use graph-
ical constructions called phasor diagrams. In these constructions, alternating (sinus-
oidal) quantities, such as current and voltage, are represented by rotating vectors
called phasors. The length of the phasor represents the amplitude (maximum
value) of the quantity, and the projection of the phasor onto the vertical axis rep-
resents the instantaneous value of the quantity. As we shall see, a phasor diagram
greatly simplifies matters when we must combine several sinusoidally varying cur-
rents or voltages that have different phases.

RESISTORS IN AN AC CIRCUIT

Consider a simple ac circuit consisting of a resistor and an ac generator ,
as shown in Figure 33.1. At any instant, the algebraic sum of the voltages around a

33.2

� � 2�f �
2�

T

�v � �Vmax sin �t

33.1

I
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closed loop in a circuit must be zero (Kirchhoff’s loop rule). Therefore,
or1

(33.1)

where �vR is the instantaneous voltage across the resistor. Therefore, the in-
stantaneous current in the resistor is

(33.2)

where Imax is the maximum current:

From Equations 33.1 and 33.2, we see that the instantaneous voltage across the re-
sistor is

(33.3)

Let us discuss the current-versus-time curve shown in Figure 33.2a. At point a,
the current has a maximum value in one direction, arbitrarily called the positive
direction. Between points a and b, the current is decreasing in magnitude but is
still in the positive direction. At b, the current is momentarily zero; it then begins
to increase in the negative direction between points b and c. At c, the current has
reached its maximum value in the negative direction.

The current and voltage are in step with each other because they vary identi-
cally with time. Because iR and �vR both vary as sin�t and reach their maximum
values at the same time, as shown in Figure 33.2a, they are said to be in phase.
Thus we can say that, for a sinusoidal applied voltage, the current in a resistor is al-
ways in phase with the voltage across the resistor.

A phasor diagram is used to represent current–voltage phase relationships. The
lengths of the arrows correspond to �Vmax and Imax . The projections of the phasor
arrows onto the vertical axis give �vR and iR values. As we showed in Section 13.5,
if the phasor arrow is imagined to rotate steadily with angular speed �, its vertical-
axis component oscillates sinusoidally in time. In the case of the single-loop resis-
tive circuit of Figure 33.1, the current and voltage phasors lie along the same line,
as in Figure 33.2b, because iR and �vR are in phase.

Note that the average value of the current over one cycle is zero. That is,
the current is maintained in the positive direction for the same amount of time
and at the same magnitude as it is maintained in the negative direction. However,
the direction of the current has no effect on the behavior of the resistor. We can
understand this by realizing that collisions between electrons and the fixed atoms
of the resistor result in an increase in the temperature of the resistor. Although
this temperature increase depends on the magnitude of the current, it is indepen-
dent of the direction of the current.

We can make this discussion quantitative by recalling that the rate at which
electrical energy is converted to internal energy in a resistor is the power 
where i is the instantaneous current in the resistor. Because this rate is propor-
tional to the square of the current, it makes no difference whether the current is
direct or alternating—that is, whether the sign associated with the current is posi-
tive or negative. However, the temperature increase produced by an alternating

� � i 2R,

�vR � ImaxR sin �t

Imax �
�Vmax

R

iR �
�vR

R
�

�Vmax

R
 sin �t � Imax sin �t

�v � �vR � �Vmax sin �t

�v � �vR � 0,

1 The lowercase symbols v and i are used to indicate the instantaneous values of the voltage and the
current.

Maximum current in a resistor

The current in a resistor is in
phase with the voltage 

Figure 33.1 A circuit consisting
of a resistor of resistance R con-
nected to an ac generator, 
designated by the symbol

.

R

∆vR

∆v = ∆Vmax sin    tω



1046 C H A P T E R  3 3 Alternating-Current Circuits

current having a maximum value Imax is not the same as that produced by a direct
current equal to Imax . This is because the alternating current is at this maximum
value for only an instant during each cycle (Fig. 33.3a). What is of importance in
an ac circuit is an average value of current, referred to as the rms current. As we
learned in Section 21.1, the notation rms stands for root mean square, which in this
case means the square root of the mean (average) value of the square of the cur-
rent: Because i 2 varies as sin2�t and because the average value of i 2 is

(see Fig. 33.3b), the rms current is2

(33.4)

This equation states that an alternating current whose maximum value is 2.00 A
delivers to a resistor the same power as a direct current that has a value of (0.707)
(2.00 A) � 1.41 A. Thus, we can say that the average power delivered to a resistor
that carries an alternating current is

�av � I 2
rmsR

I rms �
Imax

√2
� 0.707Imax

1
2 I 2

max

I rms � √i 2.

2 That the square root of the average value of i2 is equal to can be shown as follows: The cur-
rent in the circuit varies with time according to the expression sin�t, so 

sin2�t. Therefore, we can find the average value of i2 by calculating the average value of sin2�t. A
graph of cos2�t versus time is identical to a graph of sin2�t versus time, except that the points are
shifted on the time axis. Thus, the time average of sin2�t is equal to the time average of cos2�t when
taken over one or more complete cycles. That is,

(sin2�t)av � (cos2�t)av

Using this fact and the trigonometric identity sin2 � � cos2 � � 1, we obtain

When we substitute this result in the expression we obtain 
or The factor is valid only for sinusoidally varying currents. Other wave-

forms, such as sawtooth variations, have different factors.
1/√2I rms � Imax/√2.I 2

max/2,
(i 2 )av � i 2 � I 2

rms �i 2 � I 2
max sin2 �t,

(sin2 �t)av � 1
2 

(sin2 �t)av � (cos2 �t)av � 2(sin2 �t)av � 1

I 2
max

i 2 �i � Imax

Imax/√2

rms current

Average power delivered to a
resistor

a

b

c

iR , ∆vR

iR

∆vR

t

Imax

∆Vmax

T

(a) (b)

iR

iR
∆vR

Imax

∆Vmax

tω

, ∆vR

Figure 33.2 (a) Plots of the instantaneous current iR and instantaneous voltage �vR across a re-
sistor as functions of time. The current is in phase with the voltage, which means that the current
is zero when the voltage is zero, maximum when the voltage is maximum, and minimum when
the voltage is minimum. At time t � T, one cycle of the time-varying voltage and current has been
completed. (b) Phasor diagram for the resistive circuit showing that the current is in phase with
the voltage.
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Alternating voltage also is best discussed in terms of rms voltage, and the rela-
tionship is identical to that for current:

(33.5)

When we speak of measuring a 120-V alternating voltage from an electrical
outlet, we are referring to an rms voltage of 120 V. A quick calculation using Equa-
tion 33.5 shows that such an alternating voltage has a maximum value of about 
170 V. One reason we use rms values when discussing alternating currents and
voltages in this chapter is that ac ammeters and voltmeters are designed to read
rms values. Furthermore, with rms values, many of the equations we use have the
same form as their direct-current counterparts.

Which of the following statements might be true for a resistor connected to an ac genera-
tor? (a) and (b) and (c) and (d) 
and i av � 0.

�av � 0iav � 0;�av � 0i av � 0;�av � 0iav � 0;�av � 0

Quick Quiz 33.1

�Vrms �
�Vmax

√2
� 0.707 �Vmax

What Is the rms Current?EXAMPLE 33.1
Therefore,

Exercise Find the maximum current in the circuit.

Answer 2.00 A.

1.41 AI rms �
�Vrms

R
�

141 V
100 	

�

The voltage output of a generator is given by 
Find the rms current in the circuit when this

generator is connected to a 100-	 resistor.

Solution Comparing this expression for voltage output
with the general form we see that

Thus, the rms voltage is

�Vrms �
�Vmax

√2
�

200 V

√2
� 141 V

�Vmax � 200 V.
�v � �Vmax sin �t,

(200 V)sin �t.
�v �

rms voltage

Imax

I 2

i2

I 21
2

t

t

(a)

(b)

i

=i2

max

max

Figure 33.3 (a) Graph of the current in a resistor as a function of time. (b) Graph of the cur-
rent squared in a resistor as a function of time. Notice that the gray shaded regions under the
curve and above the dashed line for have the same area as the gray shaded regions above
the curve and below the dashed line for Thus, the average value of i 2 is I 2

max/2.I 2
max/2.

I 2
max/2



1048 C H A P T E R  3 3 Alternating-Current Circuits

INDUCTORS IN AN AC CIRCUIT
Now consider an ac circuit consisting only of an inductor connected to the termi-
nals of an ac generator, as shown in Figure 33.4. If �vL�
L � �L(di/dt) is the
self-induced instantaneous voltage across the inductor (see Eq. 32.1), then Kirch-
hoff’s loop rule applied to this circuit gives or

When we substitute for �v and rearrange, we obtain

(33.6)

Solving this equation for di, we find that

Integrating this expression3 gives the instantaneous current in the inductor as a
function of time:

(33.7)

When we use the trigonometric identity cos we can express
Equation 33.7 as

(33.8)

Comparing this result with Equation 33.6, we see that the instantaneous current iL
in the inductor and the instantaneous voltage �vL across the inductor are out of
phase by (�/2) rad � 90°.

In general, inductors in an ac circuit produce a current that is out of phase
with the ac voltage. A plot of voltage and current versus time is provided in Figure
33.5a. At point a, the current begins to increase in the positive direction. At this in-
stant the rate of change of current is at a maximum, and thus the voltage across
the inductor is also at a maximum. As the current increases between points a and
b, di/dt (the slope of the current curve) gradually decreases until it reaches zero at
point b. As a result, the voltage across the inductor is decreasing during this same
time interval, as the curve segment between c and d indicates. Immediately after
point b, the current begins to decrease, although it still has the same direction it
had during the previous quarter cycle (from a to b). As the current decreases to
zero (from b to e), a voltage is again induced in the inductor (d to f ), but the po-
larity of this voltage is opposite that of the voltage induced between c and d (be-
cause back emfs are always directed to oppose the change in the current). Note
that the voltage reaches its maximum value one quarter of a period before the cur-
rent reaches its maximum value. Thus, we see that

iL �
�Vmax

�L
 sin��t �

�

2 �

�t � �sin(�t � �/2),

iL �
�Vmax

L
 �sin �t dt � �

�Vmax

�L
 cos �t

di �
�Vmax

L
 sin �t dt

L 
di
dt

� �Vmax sin �t

�Vmax sin �t

�v � L 
di
dt

� 0

�v � �vL � 0,

33.3

3 We neglect the constant of integration here because it depends on the initial conditions, which are
not important for this situation.

L

∆vL

∆v = ∆Vmax sin    tω

(a)

b

c

d
t

Imax

∆Vmax

a

f

∆vL

iL

∆vL , iL

e

(b)

iL

∆vL

Imax

∆Vmax
tω

T

Figure 33.4 A circuit consisting
of an inductor of inductance L
connected to an ac generator.

Figure 33.5 (a) Plots of the in-
stantaneous current iL and instanta-
neous voltage �vL across an induc-
tor as functions of time. The cur-
rent lags behind the voltage by 90°.
(b) Phasor diagram for the induc-
tive circuit, showing that the cur-
rent lags behind the voltage by 90°.

for a sinusoidal applied voltage, the current in an inductor always lags behind
the voltage across the inductor by 90° (one-quarter cycle in time).

The current in an inductor lags
the voltage by 90°
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The phasor diagram for the inductive circuit of Figure 33.4 is shown in Figure 33.5b.
From Equation 33.7 we see that the current in an inductive circuit reaches its

maximum value when cos �t � �1:

(33.9)

where the quantity XL , called the inductive reactance, is

(33.10)

Equation 33.9 indicates that, for a given applied voltage, the maximum current de-
creases as the inductive reactance increases. The expression for the rms current in
an inductor is similar to Equation 33.9, with Imax replaced by I rms and �Vmax re-
placed by �Vrms .

Inductive reactance, like resistance, has units of ohms. However, unlike resis-
tance, reactance depends on frequency as well as on the characteristics of the in-
ductor. Note that the reactance of an inductor in an ac circuit increases as the fre-
quency of the current increases. This is because at higher frequencies, the
instantaneous current must change more rapidly than it does at the lower frequen-
cies; this causes an increase in the maximum induced emf associated with a given
maximum current.

Using Equations 33.6 and 33.9, we find that the instantaneous voltage across
the inductor is

(33.11)�vL � �L 
di
dt

� ��Vmax sin �t � �ImaxXL sin �t

XL � �L

Imax �
�Vmax

�L
�

�Vmax

XL

CONCEPTUAL EXAMPLE 33.2
voltage across it, the lightbulb glows more dimly. In theatrical
productions of the early 20th century, this method was used
to dim the lights in the theater gradually.

Figure 33.6 shows a circuit consisting of a series combination
of an alternating voltage source, a switch, an inductor, and a
lightbulb. The switch is thrown closed, and the circuit is al-
lowed to come to equilibrium so that the lightbulb glows
steadily. An iron rod is then inserted into the interior of the
inductor. What happens to the brightness of the lightbulb,
and why?

Solution The bulb gets dimmer. As the rod is inserted, the
inductance increases because the magnetic field inside the
inductor increases. According to Equation 33.10, this in-
crease in L means that the inductive reactance of the induc-
tor also increases. The voltage across the inductor increases
while the voltage across the lightbulb decreases. With less

Switch

Iron

R

L

Figure 33.6

A Purely Inductive ac CircuitEXAMPLE 33.3

From a modified version of Equation 33.9, the rms current is

15.9 AI rms �
�VL,rms

XL
�

150 V
9.42 	

�

9.42 	XL � �L � 2�fL � 2�(60.0 Hz)(25.0 � 10�3 H) �
In a purely inductive ac circuit (see Fig. 33.4), L � 25.0 mH
and the rms voltage is 150 V. Calculate the inductive reac-
tance and rms current in the circuit if the frequency is 
60.0 Hz.

Solution Equation 33.10 gives

Maximum current in an inductor

Inductive reactance
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CAPACITORS IN AN AC CIRCUIT
Figure 33.7 shows an ac circuit consisting of a capacitor connected across the ter-
minals of an ac generator. Kirchhoff’s loop rule applied to this circuit gives

or

(33.12)

where �vC is the instantaneous voltage across the capacitor. We know from the def-
inition of capacitance that hence, Equation 33.12 gives

(33.13)

where q is the instantaneous charge on the capacitor. Because differen-
tiating Equation 33.13 gives the instantaneous current in the circuit:

(33.14)

Using the trigonometric identity

we can express Equation 33.14 in the alternative form

(33.15)

Comparing this expression with Equation 33.12, we see that the current is �/2 
rad � 90° out of phase with the voltage across the capacitor. A plot of current and
voltage versus time (Fig. 33.8a) shows that the current reaches its maximum value
one quarter of a cycle sooner than the voltage reaches its maximum value.

Looking more closely, we see that the segment of the current curve from a to b
indicates that the current starts out at a relatively high value. We can understand
this by recognizing that there is no charge on the capacitor at as a conse-
quence, nothing in the circuit except the resistance of the wires can hinder the
flow of charge at this instant. However, the current decreases as the voltage across
the capacitor increases (from c to d on the voltage curve), and the capacitor is
charging. When the voltage is at point d , the current reverses and begins to in-
crease in the opposite direction (from b to e on the current curve). During this
time, the voltage across the capacitor decreases from d to f because the plates are
now losing the charge they accumulated earlier. During the second half of the cy-
cle, the current is initially at its maximum value in the opposite direction (point e)
and then decreases as the voltage across the capacitor builds up. The phasor dia-
gram in Figure 33.8b also shows that

t � 0;

iC � �C �Vmax sin��t �
�

2 �

cos �t � sin��t �
�

2 �

iC �
dq
dt

� �C �Vmax cos �t

i � dq/dt ,

q � C �Vmax sin �t

C � q/�vC ;

�v � �vC � �Vmax sin �t

�v � �vC � 0,

33.4

Exercise Calculate the inductive reactance and rms current
in the circuit if the frequency is 6.00 kHz.

Answer 942 	, 0.159 A.

Exercise Show that inductive reactance has SI units of
ohms.

for a sinusoidally applied voltage, the current in a capacitor always leads the
voltage across the capacitor by 90°.

C

∆vC

∆v = ∆Vmax sin    tω

Figure 33.7 A circuit consisting
of a capacitor of capacitance C con-
nected to an ac generator.

(a)

a

d

f
bc

e

iC

t

∆vC , iC

Imax

∆Vmax ∆vC

T

(b)

∆vC

∆Vmax

iCImax

ωtω

Figure 33.8 (a) Plots of the in-
stantaneous current iC and instan-
taneous voltage �vC across a capac-
itor as functions of time. The
voltage lags behind the current by
90°. (b) Phasor diagram for the ca-
pacitive circuit, showing that the
current leads the voltage by 90°.
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From Equation 33.14, we see that the current in the circuit reaches its maxi-
mum value when cos 

(33.16)

where XC is called the capacitive reactance:

(33.17)

Note that capacitive reactance also has units of ohms.
The rms current is given by an expression similar to Equation 33.16, with Imax

replaced by I rms and replaced by �Vrms .
Combining Equations 33.12 and 33.16, we can express the instantaneous volt-

age across the capacitor as

(33.18)

Equations 33.16 and 33.17 indicate that as the frequency of the voltage source in-
creases, the capacitive reactance decreases and therefore the maximum current in-
creases. Again, note that the frequency of the current is determined by the fre-
quency of the voltage source driving the circuit. As the frequency approaches zero,
the capacitive reactance approaches infinity, and hence the current approaches
zero. This makes sense because the circuit approaches direct-current conditions as
� approaches 0.

�vC � �Vmax sin �t � ImaxXC sin �t

�Vmax

XC �
1

�C

Imax � �C �Vmax �
�Vmax

XC

�t � 1:

Capacitive reactance

A Purely Capacitive ac CircuitEXAMPLE 33.4
Hence, from a modified Equation 33.16, the rms current is

Exercise If the frequency is doubled, what happens to the
capacitive reactance and the current?

Answer XC is halved, and Imax is doubled.

0.452 AI rms �
�Vrms

XC
�

150 V
332 	

�

An 8.00-�F capacitor is connected to the terminals of a 
60.0-Hz ac generator whose rms voltage is 150 V. Find the ca-
pacitive reactance and the rms current in the circuit.

Solution Using Equation 33.17 and the fact that 
s�1 gives

332 	XC �
1

�C
�

1
(377 s�1)(8.00 � 10�6 F)

�

2�f � 377
� �

THE RLC SERIES CIRCUIT
Figure 33.9a shows a circuit that contains a resistor, an inductor, and a capacitor
connected in series across an alternating-voltage source. As before, we assume that
the applied voltage varies sinusoidally with time. It is convenient to assume that
the instantaneous applied voltage is given by

while the current varies as

where  is the phase angle between the current and the applied voltage. Our aim

i � Imax sin(�t �  )

�v � �Vmax sin �t

33.5

13.7

Phase angle 
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is to determine  and Imax . Figure 33.9b shows the voltage versus time across each
element in the circuit and their phase relationships.

To solve this problem, we must analyze the phasor diagram for this circuit.
First, we note that because the elements are in series, the current everywhere in
the circuit must be the same at any instant. That is, the current at all points in a
series ac circuit has the same amplitude and phase. Therefore, as we found in
the preceding sections, the voltage across each element has a different amplitude
and phase, as summarized in Figure 33.10. In particular, the voltage across the re-
sistor is in phase with the current, the voltage across the inductor leads the current
by 90°, and the voltage across the capacitor lags behind the current by 90°. Using
these phase relationships, we can express the instantaneous voltages across the
three elements as

(33.19)

(33.20)

(33.21)

where �VR , �VL , and �VC are the maximum voltage values across the elements:

At this point, we could proceed by noting that the instantaneous voltage �v
across the three elements equals the sum

For the circuit of Figure 33.9a, is the voltage of the ac source equal to (a) the sum of the
maximum voltages across the elements, (b) the sum of the instantaneous voltages across
the elements, or (c) the sum of the rms voltages across the elements?

Although this analytical approach is correct, it is simpler to obtain the sum by ex-
amining the phasor diagram. Because the current at any instant is the same in all

Quick Quiz 33.2

�v � �vR � �vL � �vC

�VR � ImaxR  �VL � Imax XL  �VC � ImaxXC

�vC � Imax XC  sin��t �
�

2 � � ��VC cos �t 

 �vL � Imax XL sin��t �
�

2 � � �VL cos �t 

�vR � ImaxR sin �t � �VR sin �t 

(b)

∆vR

∆vL

∆vC

t

t

t

∆vR

R L C

∆vL ∆vC

(a)

90°

90°

ωωω

∆VR Imax Imax Imax

∆VL

∆VC

(a) Resistor (b) Inductor (c) Capacitor

Figure 33.9 (a) A series circuit
consisting of a resistor, an inductor,
and a capacitor connected to an ac
generator. (b) Phase relationships
for instantaneous voltages in the se-
ries RLC circuit.

Figure 33.10 Phase relationships between the voltage and current phasors for (a) a resistor,
(b) an inductor, and (c) a capacitor connected in series.
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elements, we can obtain a phasor diagram for the circuit. We combine the three
phasor pairs shown in Figure 33.10 to obtain Figure 33.11a, in which a single pha-
sor Imax is used to represent the current in each element. To obtain the vector sum
of the three voltage phasors in Figure 33.11a, we redraw the phasor diagram as in
Figure 33.11b. From this diagram, we see that the vector sum of the voltage ampli-
tudes �VR , �VL , and �VC equals a phasor whose length is the maximum applied
voltage where the phasor makes an angle  with the current phasor
Imax . Note that the voltage phasors �VL and �VC are in opposite directions along
the same line, and hence we can construct the difference phasor 
which is perpendicular to the phasor �VR . From either one of the right triangles
in Figure 33.11b, we see that

(33.22)

Therefore, we can express the maximum current as

The impedance Z of the circuit is defined as

(33.23)

where impedance also has units of ohms. Therefore, we can write Equation 33.22
in the form

(33.24)

We can regard Equation 33.24 as the ac equivalent of Equation 27.8, which de-
fined resistance in a dc circuit as the ratio of the voltage across a conductor to the
current in that conductor. Note that the impedance and therefore the current in
an ac circuit depend upon the resistance, the inductance, the capacitance, and the
frequency (because the reactances are frequency-dependent).

By removing the common factor Imax from each phasor in Figure 33.11a, we
can construct the impedance triangle shown in Figure 33.12. From this phasor dia-
gram we find that the phase angle  between the current and the voltage is

(33.25)

Also, from Figure 33.12, we see that . When (which occurs
at high frequencies), the phase angle is positive, signifying that the current lags
behind the applied voltage, as in Figure 33.11a. When the phase angle
is negative, signifying that the current leads the applied voltage. When 
the phase angle is zero. In this case, the impedance equals the resistance and 
the current has its maximum value, given by The frequency at which
this occurs is called the resonance frequency; it is described further in 
Section 33.7.

Table 33.1 gives impedance values and phase angles for various series circuits
containing different combinations of elements.

�Vmax /R.

XL � XC ,
XL � XC ,

XL � XCcos  � R /Z

 � tan�1� XL � XC

R �

�Vmax � ImaxZ

Z � √R2 � (XL � XC)2

Imax �
�Vmax

√R2 � (XL � XC)2

�Vmax � Imax √R2 � (XL � XC)2

�Vmax � √�VR 

2 � (�VL � �VC)2 � √(ImaxR)2 � (ImaxXL � ImaxXC)2

�VL � �VC ,

�Vmax�Vmax ,

(a)

ω
∆VRImax

φ

∆VL

∆VC

∆Vmax

(b)

∆Vmax

φ

∆VL – ∆VC

∆VR

Figure 33.11 (a) Phasor diagram
for the series RLC circuit shown in
Figure 33.9a. The phasor �VR is in
phase with the current phasor Imax ,
the phasor �VL leads Imax by 90°,
and the phasor �VC lags Imax by
90°. The total voltage makes
an angle  with Imax . (b) Simpli-
fied version of the phasor diagram
shown in (a).

�Vmax

φ

XL – XC

Z

R

Figure 33.12 An impedance tri-
angle for a series RLC circuit gives
the relationship 

Z � √R 2 � (XL � XC )2.
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Label each part of Figure 33.13 as being or XL � XC .XL � XC ,XL � XC ,

Quick Quiz 33.3

Finding L from a Phasor DiagramEXAMPLE 33.5
circuit contains an inductor whose inductance can be varied,
a 200-	 resistor, and a 4.00-�F capacitor. What value of L

In a series RLC circuit, the applied voltage has a maximum
value of 120 V and oscillates at a frequency of 60.0 Hz. The

TABLE 33.1 Impedance Values and Phase Angles for Various
Circuit-Element Combinationsa

Circuit Elements Impedance Z Phase Angle �

R 0°

XC � 90°

XL � 90°

Negative, between � 90° and 0°

Positive, between 0° and 90°

Negative if 
Positive if 

a In each case, an ac voltage (not shown) is applied across the elements.

XC � XL

XC � XL√R2 � (XL � XC)2

√R2 � XL 

2

√R2 � XC 

2

(a)

∆v, i

t

(b)

∆v, i

t

(c)

∆v, i

t

Imax

∆Vmax

Imax

Imax

∆Vmax

∆Vmax

Figure 33.13

R

C

L

CR

R

R CL

L
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Analyzing a Series RLC CircuitEXAMPLE 33.6
(d) Find both the maximum voltage and the instanta-

neous voltage across each element.

Solution The maximum voltages are

Using Equations 33.19, 33.20, and 33.21, we find that we can
write the instantaneous voltages across the three elements as

Comments The sum of the maximum voltages across the
elements is Note that this sum is
much greater than the maximum voltage of the generator,
150 V. As we saw in Quick Quiz 33.2, the sum of the maxi-
mum voltages is a meaningless quantity because when sinu-
soidally varying quantities are added, both their amplitudes and
their phases must be taken into account. We know that the

�VR � �VL � �VC � 483 V.

(�221 V) cos 377t�vC �

(138 V) cos 377t�vL �

(124 V) sin 377t�vR �

221 V�VC � ImaxXC � (0.292 A)(758 	) �

138 V�VL � ImaxXL � (0.292 A)(471 	) �

124 V�VR � ImaxR � (0.292 A)(425 	) �

A series RLC ac circuit has 	, H, 
�F, s�1, and V. (a) Determine the

inductive reactance, the capacitive reactance, and the imped-
ance of the circuit.

Solution The reactances are and 

The impedance is

(b) Find the maximum current in the circuit.

Solution

(c) Find the phase angle between the current and voltage.

Solution

Because the circuit is more capacitive than inductive,  is
negative and the current leads the applied voltage.

�34.0��

 � tan�1� XL � XC

R � � tan�1� 471 	 � 758 	
425 	 �

0.292 AImax �
Vmax

Z
�

150 V
513 	

�

513 	 � √(425 	)2 � (471 	 � 758 	)2 �

Z � √R2 � (XL � XC)2 

758 	.XC � 1/�C �

471 	XL � �L �

�Vmax �  150� � 3773.50
C �L � 1.25R � 425

should an engineer analyzing the circuit choose such that the
voltage across the capacitor lags the applied voltage by 30.0°?

Solution The phase relationships for the drops in voltage
across the elements are shown in Figure 33.14. From the fig-
ure we see that the phase angle is This is because
the phasors representing Imax and �VR are in the same direc-
tion (they are in phase). From Equation 33.25, we find that

Substituting Equations 33.10 and 33.17 (with � � 2�f ) into
this expression gives

Substituting the given values into the equation gives L �

0.84 H.

 L �
1

2�f �
1

2�fC
� R tan �

2�fL �
1

2�fC
� R tan  

XL � XC � R tan 

 � �60.0�.

30.0°

φ

∆VL

∆VR

∆Vmax

∆VC

Figure 33.14
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POWER IN AN AC CIRCUIT
No power losses are associated with pure capacitors and pure inductors in
an ac circuit. To see why this is true, let us first analyze the power in an ac circuit
containing only a generator and a capacitor.

When the current begins to increase in one direction in an ac circuit, charge
begins to accumulate on the capacitor, and a voltage drop appears across it. When
this voltage drop reaches its maximum value, the energy stored in the capacitor is

However, this energy storage is only momentary. The capacitor is
charged and discharged twice during each cycle: Charge is delivered to the capacitor
during two quarters of the cycle and is returned to the voltage source during the re-
maining two quarters. Therefore, the average power supplied by the source is
zero. In other words, no power losses occur in a capacitor in an ac circuit.

Similarly, the voltage source must do work against the back emf of the induc-
tor. When the current reaches its maximum value, the energy stored in the induc-
tor is a maximum and is given by When the current begins to decrease in
the circuit, this stored energy is returned to the source as the inductor attempts to
maintain the current in the circuit.

In Example 28.1 we found that the power delivered by a battery to a dc circuit
is equal to the product of the current and the emf of the battery. Likewise, the in-
stantaneous power delivered by an ac generator to a circuit is the product of the
generator current and the applied voltage. For the RLC circuit shown in Figure
33.9a, we can express the instantaneous power as

(33.26)

Clearly, this result is a complicated function of time and therefore is not very use-
ful from a practical viewpoint. What is generally of interest is the average power
over one or more cycles. Such an average can be computed by first using the
trigonometric identity sin(�t � ) � sin �t cos  � cos �t sin . Substituting this
into Equation 33.26 gives

(33.27)

We now take the time average of over one or more cycles, noting that Imax ,
�Vmax , , and � are all constants. The time average of the first term on the right
in Equation 33.27 involves the average value of sin2 �t, which is (as shown in
footnote 2). The time average of the second term on the right is identically zero
because sin �t cos �t sin 2�t , and the average value of sin 2�t is zero. There-
fore, we can express the average power as

(33.28)

It is convenient to express the average power in terms of the rms current and
rms voltage defined by Equations 33.4 and 33.5:

(33.29)�av � I rms �Vrms cos 

�av � 1
2 Imax �Vmax cos 

�av

� 1
2

1
2

�

� � Imax �Vmax sin2 �t cos  � Imax �Vmax sin �t cos �t sin 

 � Imax �Vmax sin �t sin(�t � )

� � i �v � Imax sin(�t � )�Vmax sin �t

�

1
2 LI 2

max .

1
2 C(�Vmax)2.

33.6

maximum voltages across the various elements occur at dif-
ferent times. That is, the voltages must be added in a way that
takes account of the different phases. When this is done,
Equation 33.22 is satisfied. You should verify this result.

Exercise Construct a phasor diagram to scale, showing the
voltages across the elements and the applied voltage. From
your diagram, verify that the phase angle is � 34.0°.
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where the quantity cos  is called the power factor. By inspecting Figure 33.11b,
we see that the maximum voltage drop across the resistor is given by 

Using Equation 33.5 and the fact that cos
we find that we can express as

After making the substitution from Equation 33.4, we have

(33.30)

In words, the average power delivered by the generator is converted to inter-
nal energy in the resistor, just as in the case of a dc circuit. No power loss oc-
curs in an ideal inductor or capacitor. When the load is purely resistive, then 
 � 0, cos  � 1, and from Equation 33.29 we see that

Equation 33.29 shows that the power delivered by an ac source to any circuit
depends on the phase, and this result has many interesting applications. For exam-
ple, a factory that uses large motors in machines, generators, or transformers has a
large inductive load (because of all the windings). To deliver greater power to
such devices in the factory without using excessively high voltages, technicians in-
troduce capacitance in the circuits to shift the phase.

�av � I rms �Vrms

�av � I 2
rmsR

Imax � √2I rms

�av � I rms �Vrms cos  � I rms� �Vmax

√2
� 

ImaxR

�Vmax

� I rms 
ImaxR

√2

�av

 � ImaxR /�Vmax ,�Vmax cos  � ImaxR .
�VR �

Average Power in an RLC Series CircuitEXAMPLE 33.7
Because the power factor, cos , is 0.829; hence,
the average power delivered is

We can obtain the same result using Equation 33.30.

18.1 W�

�av � I rms �Vrms cos  � (0.206 A)(106 V)(0.829)

 � �34.0�,Calculate the average power delivered to the series RLC cir-
cuit described in Example 33.6.

Solution First, let us calculate the rms voltage and rms cur-
rent, using the values of �Vmax and Imax from Example 33.6:

 I rms �
Imax

√2
�

0.292 A

√2
� 0.206 A

�Vrms �
�Vmax

√2
�

150 V

√2
� 106 V 

RESONANCE IN A SERIES RLC CIRCUIT
A series RLC circuit is said to be in resonance when the current has its maximum
value. In general, the rms current can be written

(33.31)

where Z is the impedance. Substituting the expression for Z from Equation 33.23
into 33.31 gives

(33.32)I rms �
�Vrms

√R2 � (XL � XC)2

I rms �
�Vrms

Z

33.7

Average power delivered to an
RLC circuit

13.7
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Because the impedance depends on the frequency of the source, the current in
the RLC circuit also depends on the frequency. The frequency �0 at which

is called the resonance frequency of the circuit. To find �0 , we use
the condition from which we obtain , or

(33.33)

Note that this frequency also corresponds to the natural frequency of oscillation of
an LC circuit (see Section 32.5). Therefore, the current in a series RLC circuit
reaches its maximum value when the frequency of the applied voltage matches the
natural oscillator frequency—which depends only on L and C. Furthermore, at
this frequency the current is in phase with the applied voltage.

What is the impedance of a series RLC circuit at resonance? What is the current in the cir-
cuit at resonance?

A plot of rms current versus frequency for a series RLC circuit is shown in Fig-
ure 33.15a. The data assume a constant that �H, and
that The three curves correspond to three values of R . Note that in
each case the current reaches its maximum value at the resonance frequency �0 .
Furthermore, the curves become narrower and taller as the resistance decreases.

By inspecting Equation 33.32, we must conclude that, when the current
becomes infinite at resonance. Although the equation predicts this, real circuits al-
ways have some resistance, which limits the value of the current.

R � 0,

C � 2.0 nF.
L � 5.0�Vrms � 5.0 mV,

Quick Quiz 33.4

�0 �
1

√LC

�0L � 1/�0CXL � XC ,
XL � XC � 0

Resonance frequency

1.4

1.2

1.0

0.8

0.6

0.4

0.2

9 10 11 12

7

6

5

4

3

2

1

9 10 11 128

R = 3.5 Ω

R = 5 Ω

R = 10 Ω

R = 3.5 Ω

R = 10 Ω

L      = 5.0   H
C      = 2.0 nF
∆Vrms = 5.0 mV
  0    =  1.0 × 107 rad/s

L      = 5.0 µH
C      = 2.0 nF
∆Vrms = 5.0 mV
ω 0    =  1.0 × 107 rad/s

 (Mrad/s)

I rms (mA) µ µ

ω

av (µW)µ�

∆ω

0ω

(Mrad/s)ω

ω

ω

ω0

(a) (b)

Figure 33.15 (a) The rms current versus frequency for a series RLC circuit, for three values of
R . The current reaches its maximum value at the resonance frequency �0 . (b) Average power
versus frequency for the series RLC circuit, for two values of R .



33.7 Resonance in a Series RLC Circuit 1059

It is also interesting to calculate the average power as a function of frequency
for a series RLC circuit. Using Equations 33.30, 33.31, and 33.23, we find that

(33.34)

Because and we can express the term
as

Using this result in Equation 33.34 gives

(33.35)

This expression shows that at resonance, when the average power is a
maximum and has the value (�Vrms)2/R . Figure 33.15b is a plot of average power
versus frequency for two values of R in a series RLC circuit. As the resistance is
made smaller, the curve becomes sharper in the vicinity of the resonance fre-
quency. This curve sharpness is usually described by a dimensionless parameter
known as the quality factor, denoted by Q:4

Q

where �� is the width of the curve measured between the two values of � for
which has half its maximum value, called the half-power points (see Fig. 33.15b.)
It is left as a problem (Problem 70) to show that the width at the half-power points
has the value so

Q (33.36)

The curves plotted in Figure 33.16 show that a high-Q circuit responds to only
a very narrow range of frequencies, whereas a low-Q circuit can detect a much
broader range of frequencies. Typical values of Q in electronic circuits range from
10 to 100.

The receiving circuit of a radio is an important application of a resonant cir-
cuit. One tunes the radio to a particular station (which transmits a specific electro-
magnetic wave or signal) by varying a capacitor, which changes the resonant fre-
quency of the receiving circuit. When the resonance frequency of the circuit
matches that of the incoming electromagnetic wave, the current in the receiving
circuit increases. This signal caused by the incoming wave is then amplified and
fed to a speaker. Because many signals are often present over a range of frequen-
cies, it is important to design a high-Q circuit to eliminate unwanted signals. In
this manner, stations whose frequencies are near but not equal to the resonance
frequency give signals at the receiver that are negligibly small relative to the signal
that matches the resonance frequency.

�
�0L
R

�� � R/L ,

�av

�
�0

��

� � �0 ,

�av �
(�Vrms)2 R�2

R2�2 � L2(�2 � �0 

2)2

(XL � XC)2 � ��L �
1

�C �
2

�
L2

�2  (�2 � �0 

2)2

(XL � XC)2
�0 

2 � 1/LC,XC � 1/�C,XL � �L,

�av � I 2
rmsR �

(�Vrms)2

Z 2  R �
(�Vrms)2R

R2 � (XL � XC)2

4 The quality factor is also defined as the ratio where E is the energy stored in the oscillating
system and �E is the energy lost per cycle of oscillation. The quality factor for a mechanical system can
also be defined, as noted in Section 13.7.

2�E/�E,

Average power as a function of
frequency in an RLC circuit

Quality factor

QuickLab
Tune a radio to your favorite station.
Can you determine what the product
of LC must be for the radio’s tuning
circuitry?

Small R,
high Q

Large R,
low Q

∆ωω

ω0ω
ω

�av

∆ωω

Figure 33.16 Average power ver-
sus frequency for a series RLC cir-
cuit. The width �� of each curve is
measured between the two points
where the power is half its maxi-
mum value. The power is a maxi-
mum at the resonance frequency
�0 .
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An airport metal detector (Fig. 33.17) is essentially a resonant circuit. The portal you step
through is an inductor (a large loop of conducting wire) that is part of the circuit. The fre-
quency of the circuit is tuned to the resonant frequency of the circuit when there is no
metal in the inductor. Any metal on your body increases the effective inductance of the
loop and changes the current in it. If you want the detector to be able to detect a small
metallic object, should the circuit have a high quality factor or a low one?

Quick Quiz 33.5

A Resonating Series RLC CircuitEXAMPLE 33.8

Exercise Calculate the maximum value of the rms current
in the circuit as the frequency is varied.

Answer 0.133 A.

2.00 �F�

 C �
1

�0 

2L
�

1
(25.0 � 106 s�2)(20.0 � 10�3 H)

Consider a series RLC circuit for which 	, 
mH, , and s�1. Determine the

value of the capacitance for which the current is a maximum.

Solution The current has its maximum value at the reso-
nance frequency �0 , which should be made to match the
“driving” frequency of 5 000 s�1:

�0 � 5.00 � 103 s�1 �
1

√LC
 

� � 5 000�Vrms � 20.0 V20.0
L �R � 150

Signal

C

Circuit
A

Circuit
B

Figure 33.17 When you pass through a
metal detector, you become part of a reso-
nant circuit. As you step through the detec-
tor, the inductance of the circuit changes,
and thus the current in the circuit changes.
(Terry Qing/FPG International)

THE TRANSFORMER AND POWER TRANSMISSION
When electric power is transmitted over great distances, it is economical to use a
high voltage and a low current to minimize the I 2R loss in the transmission lines.

33.8
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Consequently, 350-kV lines are common, and in many areas even higher-voltage
(765-kV) lines are under construction. At the receiving end of such lines, the con-
sumer requires power at a low voltage (for safety and for efficiency in design).
Therefore, a device is required that can change the alternating voltage and cur-
rent without causing appreciable changes in the power delivered. The ac trans-
former is that device.

In its simplest form, the ac transformer consists of two coils of wire wound
around a core of iron, as illustrated in Figure 33.18. The coil on the left, which is
connected to the input alternating voltage source and has N1 turns, is called the
primary winding (or the primary). The coil on the right, consisting of N 2 turns and
connected to a load resistor R , is called the secondary winding (or the secondary).
The purpose of the iron core is to increase the magnetic flux through the coil
and to provide a medium in which nearly all the flux through one coil passes
through the other coil. Eddy current losses are reduced by using a laminated
core. Iron is used as the core material because it is a soft ferromagnetic substance
and hence reduces hysteresis losses. Transformation of energy to internal energy
in the finite resistance of the coil wires is usually quite small. Typical transformers
have power efficiencies from 90% to 99%. In the discussion that follows, we as-
sume an ideal transformer, one in which the energy losses in the windings and core
are zero.

First, let us consider what happens in the primary circuit when the switch in
the secondary circuit is open. If we assume that the resistance of the primary is
negligible relative to its inductive reactance, then the primary circuit is equivalent
to a simple circuit consisting of an inductor connected to an ac generator. Because
the current is 90° out of phase with the voltage, the power factor cos  is zero, and
hence the average power delivered from the generator to the primary circuit is
zero. Faraday’s law states that the voltage �V1 across the primary is

(33.37)

where �B is the magnetic flux through each turn. If we assume that all magnetic
field lines remain within the iron core, the flux through each turn of the primary
equals the flux through each turn of the secondary. Hence, the voltage across the
secondary is

(33.38)

Solving Equation 33.37 for d�B /dt and substituting the result into Equation 33.38,
we find that

(33.39)

When the output voltage �V2 exceeds the input voltage �V1 . This setup
is referred to as a step-up transformer. When the output voltage is less than
the input voltage, and we have a step-down transformer.

When the switch in the secondary circuit is thrown closed, a current I2 is in-
duced in the secondary. If the load in the secondary circuit is a pure resistance,
the induced current is in phase with the induced voltage. The power supplied to
the secondary circuit must be provided by the ac generator connected to the pri-
mary circuit, as shown in Figure 33.19. In an ideal transformer, where there are no
losses, the power I1 �V1 supplied by the generator is equal to the power I2 �V2 in

N 2 � N 1 ,
N 2 � N 1 ,

�V2 �
N 2

N 1
 �V1

�V2 � �N 2 
d�B

dt

�V1 � �N 1 
d�B

dt

Soft iron
S

R

Z2
Secondary
(output)

Primary
(input)

∆V1

Z1

N1 N2

Figure 33.18 An ideal trans-
former consists of two coils wound
on the same iron core. An alternat-
ing voltage �V1 is applied to the
primary coil, and the output volt-
age �V2 is across the resistor of re-
sistance R .

N1 N2

∆V1

I1 I2

RL ∆V2

Figure 33.19 Circuit diagram for
a transformer.



1062 C H A P T E R  3 3 Alternating-Current Circuits

the secondary circuit. That is,

(33.40)

The value of the load resistance RL determines the value of the secondary current
because Furthermore, the current in the primary is 
where

(33.41)

is the equivalent resistance of the load resistance when viewed from the primary
side. From this analysis we see that a transformer may be used to match resistances
between the primary circuit and the load. In this manner, maximum power trans-
fer can be achieved between a given power source and the load resistance. For ex-
ample, a transformer connected between the 1-k	 output of an audio amplifier
and an 8-	 speaker ensures that as much of the audio signal as possible is trans-
ferred into the speaker. In stereo terminology, this is called impedance matching.

We can now also understand why transformers are useful for transmitting
power over long distances. Because the generator voltage is stepped up, the cur-
rent in the transmission line is reduced, and hence I 2R losses are reduced. In
practice, the voltage is stepped up to around 230 000 V at the generating station,
stepped down to around 20 000 V at a distributing station, then to 4 000 V for de-
livery to residential areas, and finally to 120–240 V at the customer’s site. The
power is supplied by a three-wire cable. In the United States, two of these wires are
“hot,” with voltages of 120 V with respect to a common ground wire. Home appli-
ances operating on 120 V are connected in parallel between one of the hot wires
and ground. Larger appliances, such as electric stoves and clothes dryers, require
240 V. This is obtained across the two hot wires, which are 180° out of phase so
that the voltage difference between them is 240 V.

There is a practical upper limit to the voltages that can be used in transmis-
sion lines. Excessive voltages could ionize the air surrounding the transmission
lines, which could result in a conducting path to ground or to other objects in the
vicinity. This, of course, would present a serious hazard to any living creatures. For
this reason, a long string of insulators is used to keep high-voltage wires away from
their supporting metal towers. Other insulators are used to maintain separation
between wires.

R eq � � N 1

N 2
�

2
R L

I1 � �V1/R eq ,I2 � �V2/R L .

I1 �V1 � I2 �V2

This cylindrical step-down trans-
former drops the voltage from 
4 000 V to 220 V for delivery to a
group of residences. (George Semple)

Figure 33.20 The primary winding in
this transformer is directly attached to the
prongs of the plug. The secondary winding
is connected to the wire on the right, which
runs to an electronic device. Many of these
power-supply transformers also convert al-
ternating current to direct current. (George
Semple)

Nikola Tesla (1856 – 1943) Tesla
was born in Croatia but spent most of
his professional life as an inventor in
the United States. He was a key figure
in the development of alternating-
current electricity, high-voltage trans-
formers, and the transport of electric
power via ac transmission lines.
Tesla’s viewpoint was at odds with
the ideas of Thomas Edison, who
committed himself to the use of direct
current in power transmission. Tesla’s
ac approach won out. (UPI/Bettmann)
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Many common household electronic devices require low voltages to operate
properly. A small transformer that plugs directly into the wall, like the one illus-
trated in the photograph at the beginning of this chapter, can provide the proper
voltage. Figure 33.20 shows the two windings wrapped around a common iron
core that is found inside all these little “black boxes.” This particular transformer
converts the 120-V ac in the wall socket to 12.5-V ac. (Can you determine the ratio
of the numbers of turns in the two coils?) Some black boxes also make use of
diodes to convert the alternating current to direct current (see Section 33.9).

web
For information on how small transformers
and hundreds of other everyday devices
operate, visit
http://www.howstuffworks.com

The Economics of ac PowerEXAMPLE 33.9
(b) Repeat the calculation for the situation in which the

power plant delivers the electricity at its original voltage of 
22 kV.

Solution

The tremendous savings that are possible through the use of
transformers and high-voltage transmission lines, along with
the efficiency of using alternating current to operate motors,
led to the universal adoption of alternating current instead of
direct current for commercial power grids.

$4 100�

Cost per day � (1.7 � 103 kW)(24 h)($0.10/kWh)

� � I 2R � (910 A)2(2.0 	) � 1.7 � 103 kW

 I �
�

�V
�

20 � 106 W
22 � 103 V

� 910 A 

An electricity-generating station needs to deliver 20 MW of
power to a city 1.0 km away. (a) If the resistance of the wires
is 2.0 	 and the electricity costs about 10¢/kWh, estimate
what it costs the utility company to send the power to the city
for one day. A common voltage for commercial power gener-
ators is 22 kV, but a step-up transformer is used to boost the
voltage to 230 kV before transmission.

Solution The power losses in the transmission line are the
result of the resistance of the line. We can determine the loss
from Equation 27.23, Because this is an estimate,
we can use dc equations and calculate I from Equation 27.22:

Therefore,

Over the course of a day, the energy loss due to the resistance 

of the wires is (15 kW)(24 h) � 360 kWh, at a cost of $36.

� � I 2R � (87 A)2(2.0 	) � 15 kW

I �
�

�V
�

20 � 106 W
230 � 103 V

� 87 A

� � I 2R .

Optional Section

RECTIFIERS AND FILTERS
Portable electronic devices such as radios and compact disc (CD) players are often
powered by direct current supplied by batteries. Many devices come with ac–dc
converters that provide a readily available direct-current source if the batteries 
are low. Such a converter contains a transformer that steps the voltage down from
120 V to typically 9 V and a circuit that converts alternating current to direct cur-
rent. The process of converting alternating current to direct current is called rec-
tification, and the converting device is called a rectifier.

The most important element in a rectifier circuit is a diode, a circuit element
that conducts current in one direction but not the other. Most diodes used in
modern electronics are semiconductor devices. The circuit symbol for a diode is

, where the arrow indicates the direction of the current through the
diode. A diode has low resistance to current in one direction (the direction of the
arrow) and high resistance to current in the opposite direction. We can under-
stand how a diode rectifies a current by considering Figure 33.21a, which shows a

33.9
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diode and a resistor connected to the secondary of a transformer. The transformer
reduces the voltage from 120-V ac to the lower voltage that is needed for the de-
vice having a resistance R (the load resistance). Because current can pass through
the diode in only one direction, the alternating current in the load resistor is re-
duced to the form shown by the solid curve in Figure 33.21b. The diode conducts
current only when the side of the symbol containing the arrowhead has a positive
potential relative to the other side. In this situation, the diode acts as a half-wave
rectifier because current is present in the circuit during only half of each cycle.

When a capacitor is added to the circuit, as shown by the dashed lines and the
capacitor symbol in Figure 33.21a, the circuit is a simple dc power supply. The
time variation in the current in the load resistor (the dashed curve in Fig. 33.21b)
is close to being zero, as determined by the RC time constant of the circuit.

The RC circuit in Figure 33.21a is one example of a filter circuit, which is
used to smooth out or eliminate a time-varying signal. For example, radios are usu-
ally powered by a 60-Hz alternating voltage. After rectification, the voltage still
contains a small ac component at 60 Hz (sometimes called ripple), which must be
filtered. By “filtered,” we mean that the 60-Hz ripple must be reduced to a value
much less than that of the audio signal to be amplified, because without filtering,
the resulting audio signal includes an annoying hum at 60 Hz.

To understand how a filter works, let us consider the simple series RC circuit
shown in Figure 33.22a. The input voltage is across the two elements and is repre-
sented by Because we are interested only in maximum values, we can
use Equation 33.24, taking and substituting This shows that
the maximum input voltage is related to the maximum current by

�Vin � ImaxZ � Imax √R2 � � 1
�C �

2

XC � 1/�C.XL � 0
�Vmax sin �t.

(b)

i

t

(a)

Primary
(input)

Diode

C R

Figure 33.21 (a) A half-wave rectifier with an optional filter capacitor. (b) Current versus time
in the resistor. The solid curve represents the current with no filter capacitor, and the dashed
curve is the current when the circuit includes the capacitor.
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If the voltage across the resistor is considered to be the output voltage, then the
maximum output voltage is

Therefore, the ratio of the output voltage to the input voltage is

(33.42)

A plot of this ratio as a function of angular frequency (see Fig. 33.22b) shows
that at low frequencies �Vout is much smaller than �Vin , whereas at high frequen-
cies the two voltages are equal. Because the circuit preferentially passes signals of
higher frequency while blocking low-frequency signals, the circuit is called an RC
high-pass filter. Physically, a high-pass filter works because a capacitor “blocks out”
direct current and ac current at low frequencies.

Now let us consider the circuit shown in Figure 33.23a, where the output volt-
age is taken across the capacitor. In this case, the maximum voltage equals the volt-
age across the capacitor. Because the impedance across the capacitor is

we have

�Vout � ImaxXC �
Imax

�C

XC � 1/�C,

�Vout

�Vin
�

R

√R2 � � 1
�C �

2

�Vout � ImaxR

High-pass filter

(a) (b)

∆Vout/∆Vin

ω

1

C

R ∆Vout∆Vin

Figure 33.22 (a) A simple RC high-pass filter. (b) Ratio of output voltage to input voltage for
an RC high-pass filter as a function of the angular frequency of the circuit.

(a) (b)

∆Vout/∆Vin

ω

1
R

C ∆Vout∆Vin

Figure 33.23 (a) A simple RC low-pass filter. (b) Ratio of output voltage to input voltage for an
RC low-pass filter as a function of the angular frequency of the circuit.
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Therefore, the ratio of the output voltage to the input voltage is

(33.43)

This ratio, plotted as a function of � in Figure 33.23b, shows that in this case the
circuit preferentially passes signals of low frequency. Hence, the circuit is called an
RC low-pass filter.

You may be familiar with crossover networks, which are an important part of
the speaker systems for high-fidelity audio systems. These networks utilize low-pass
filters to direct low frequencies to a special type of speaker, the “woofer,” which is
designed to reproduce the low notes accurately. The high frequencies are sent to
the “tweeter” speaker.

Suppose you are designing a high-fidelity system containing both large loudspeakers
(woofers) and small loudspeakers (tweeters). (a) What circuit element would you place in
series with a woofer, which passes low-frequency signals? (b) What circuit element would
you place in series with a tweeter, which passes high-frequency signals?

SUMMARY

If an ac circuit consists of a generator and a resistor, the current is in phase with
the voltage. That is, the current and voltage reach their maximum values at the
same time.

The rms current and rms voltage in an ac circuit in which the voltages and
current vary sinusoidally are given by the expressions

(33.4)

(33.5)

where Imax and �Vmax are the maximum values.
If an ac circuit consists of a generator and an inductor, the current lags behind

the voltage by 90°. That is, the voltage reaches its maximum value one quarter of a
period before the current reaches its maximum value.

If an ac circuit consists of a generator and a capacitor, the current leads the
voltage by 90°. That is, the current reaches its maximum value one quarter of a pe-
riod before the voltage reaches its maximum value.

In ac circuits that contain inductors and capacitors, it is useful to define the
inductive reactance XL and the capacitive reactance XC as

(33.10)

(33.17)

where � is the angular frequency of the ac generator. The SI unit of reactance is
the ohm.

XC �
1

�C

XL � �L

�Vrms �
�Vmax

√2
� 0.707�Vmax

I rms �
Imax

√2
� 0.707Imax 

Quick Quiz 33.6

�Vout

�Vin
�

1/�C

√R2 � � 1
�C �

2Low-pass filter
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The impedance Z of an RLC series ac circuit, which also has the ohm as its
unit, is

(33.23)

This expression illustrates that we cannot simply add the resistance and reactances
in a circuit. We must account for the fact that the applied voltage and current are
out of phase, with the phase angle  between the current and voltage being

(33.25)

The sign of  can be positive or negative, depending on whether XL is greater or
less than XC . The phase angle is zero when 

The average power delivered by the generator in an RLC ac circuit is

(33.29)

An equivalent expression for the average power is

(33.30)

The average power delivered by the generator results in increasing internal energy
in the resistor. No power loss occurs in an ideal inductor or capacitor.

The rms current in a series RLC circuit is

(33.32)

A series RLC circuit is in resonance when the inductive reactance equals the
capacitive reactance. When this condition is met, the current given by Equation
33.32 reaches its maximum value. When in a circuit, the resonance fre-
quency �0 of the circuit is

(33.33)

The current in a series RLC circuit reaches its maximum value when the frequency
of the generator equals �0 —that is, when the “driving” frequency matches the res-
onance frequency.

Transformers allow for easy changes in alternating voltage. Because energy
(and therefore power) are conserved, we can write

(33.40)

to relate the currents and voltages in the primary and secondary windings of a
transformer.

I1 �V1 � I2 �V2

�0 �
1

√LC

XL � XC

I rms �
�Vrms

√R2 � (XL � XC)2

�av � I 2
rmsR

�av � I rms �Vrms cos 

XL � XC .

 � tan�1� XL � XC

R �

Z � √R2 � (XL � XC)2

QUESTIONS

4. Why is the sum of the maximum voltages across the ele-
ments in a series RLC circuit usually greater than the
maximum applied voltage? Doesn’t this violate Kirch-
hoff’s second rule?

5. Does the phase angle depend on frequency? What is the
phase angle when the inductive reactance equals the ca-
pacitive reactance?

6. Energy is delivered to a series RLC circuit by a generator.
This energy appears as internal energy in the resistor.
What is the source of this energy?

1. Fluorescent lights flicker on and off 120 times every sec-
ond. Explain what causes this. Why can’t you see it hap-
pening?

2. Why does a capacitor act as a short circuit at high fre-
quencies? Why does it act as an open circuit at low fre-
quencies?

3. Explain how the acronyms in the mnemonic “ELI the ICE
man” can be used to recall whether current leads voltage
or voltage leads current in RLC circuits. (Note that “E”
represents voltage.)
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7. Explain why the average power delivered to an RLC cir-
cuit by the generator depends on the phase between the
current and the applied voltage.

8. A particular experiment requires a beam of light of very
stable intensity. Why would an ac voltage be unsuitable
for powering the light source?

9. Consider a series RLC circuit in which R is an incandes-
cent lamp, C is some fixed capacitor, and L is a variable
inductance. The source is 120-V ac. Explain why the lamp
glows brightly for some values of L and does not glow at
all for other values.

10. What determines the maximum voltage that can be used
on a transmission line?

11. Will a transformer operate if a battery is used for the in-
put voltage across the primary? Explain.

12. How can the average value of a current be zero and yet the
square root of the average squared current not be zero?

13. What is the time average of the “square-wave” voltage
shown in Figure Q33.13? What is its rms voltage?

14. Explain how the quality factor is related to the response
characteristics of a radio receiver. Which variable most
strongly determines the quality factor?

PROBLEMS

Note that an ideal ammeter has zero resistance and that
an ideal voltmeter has infinite resistance.

Note: Assume that all ac voltages and currents are sinusoidal
unless stated otherwise.

Section 33.1 ac Sources and Phasors

Section 33.2 Resistors in an ac Circuit
1. The rms output voltage of an ac generator is 200 V, and

the operating frequency is 100 Hz. Write the equation
giving the output voltage as a function of time.

2. (a) What is the resistance of a lightbulb that uses an av-
erage power of 75.0 W when connected to a 60.0-Hz
power source having a maximum voltage of 170 V? 
(b) What is the resistance of a 100-W bulb?

3. An ac power supply produces a maximum voltage
This power supply is connected to a

24.0-	 resistor, and the current and resistor voltage are
measured with an ideal ac ammeter and voltmeter, as
shown in Figure P33.3. What does each meter read?

�Vmax � 100 V.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

0

Vmax

t

∆V

∆

Signal

C
Circuit

A
Circuit

B

Signal

C

Circuit
A

Circuit
B

Figure Q33.13

Figure Q33.16

Figure Q33.17

15. Why are the primary and secondary windings of a trans-
former wrapped on an iron core that passes through both
coils?

16. With reference to Figure Q33.16, explain why the capaci-
tor prevents a dc signal from passing between circuits A
and B, yet allows an ac signal to pass from circuit A to cir-
cuit B. (The circuits are said to be capacitively coupled.)

17. With reference to Figure Q33.17, if C is made sufficiently
large, an ac signal passes from circuit A to ground rather
than from circuit A to circuit B. Hence, the capacitor acts
as a filter. Explain.

A

V

R = 24.0 Ω

∆Vmax = 100 V

Figure P33.3
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4. In the simple ac circuit shown in Figure 33.1, 	
and (a) If for the
first time at what is the angular frequency
of the generator? (b) What is the next value of t for
which 

5. The current in the circuit shown in Figure 33.1 equals
60.0% of the peak current at ms. What is the
smallest frequency of the generator that gives this cur-
rent?

6. Figure P33.6 shows three lamps connected to a 120-V ac
(rms) household supply voltage. Lamps 1 and 2 have
150-W bulbs; lamp 3 has a 100-W bulb. Find the rms
current and the resistance of each bulb.

t � 7.00

�vR � 0.250�Vmax?

t � 0.010 0 s,
�vR � 0.250 �Vmax�v � �Vmax sin �t.

R � 70.0 11. For the circuit shown in Figure 33.4, 
� � 65.0� rad/s, and mH. Calculate the cur-
rent in the inductor at ms.

12. A 20.0-mH inductor is connected to a standard outlet
Determine the energy

stored in the inductor at s, assuming that
this energy is zero at 

13. Review Problem. Determine the maximum magnetic
flux through an inductor connected to a standard out-
let Hz).

Section 33.4 Capacitors in an ac Circuit
14. (a) For what frequencies does a 22.0-�F capacitor have

a reactance below 175 	? (b) Over this same frequency
range, what is the reactance of a 44.0-�F capacitor?

15. What maximum current is delivered by a 2.20-�F capac-
itor when it is connected across (a) a North American
outlet having and Hz? (b) a Eu-
ropean outlet having and Hz?

16. A capacitor C is connected to a power supply that oper-
ates at a frequency f and produces an rms voltage �V.
What is the maximum charge that appears on either of
the capacitor plates?

17. What maximum current is delivered by an ac generator
with and Hz when it is con-
nected across a 3.70-�F capacitor?

18. A 1.00-mF capacitor is connected to a standard outlet
Hz). Determine the current

in the capacitor at s, assuming that at 
the energy stored in the capacitor is zero.

Section 33.5 The RLC Series Circuit

19. An inductor mH), a capacitor �F),
and a resistor 	) are connected in series. 
A 50.0-Hz ac generator produces a peak current of 
250 mA in the circuit. (a) Calculate the required peak
voltage (b) Determine the phase angle by which
the current leads or lags the applied voltage.

20. At what frequency does the inductive reactance of a
57.0-�H inductor equal the capacitive reactance of a
57.0-�F capacitor?

21. A series ac circuit contains the following components:
	, mH, �F, and a generator

with operating at 50.0 Hz. Calculate the
(a) inductive reactance, (b) capacitive reactance, 
(c) impedance, (d) maximum current, and (e) phase
angle between current and generator voltage.

22. A sinusoidal voltage sin(100t) is
applied to a series RLC circuit with mH,

�F, and 	. (a) What is the imped-
ance of the circuit? (b) What is the maximum current?
(c) Determine the numerical values for Imax , �, and 
in the equation sin(�t � ).

23. An RLC circuit consists of a 150-	 resistor, a 21.0-�F ca-
pacitor, and a 460-mH inductor, connected in series
with a 120-V, 60.0-Hz power supply. (a) What is the

i(t) � Imax

R � 68.0C � 99.0
L � 160

�v(t) � (40.0 V)

�Vmax � 210 V
C � 2.00L � 250R � 150

�Vmax .

(R � 500
(C � 4.43(L � 400

t � 0t � (1/180)
f � 60.0(�Vrms � 120 V,

f � 90.0�Vmax � 48.0 V

f � 50.0�Vrms � 240 V
f � 60.0�Vrms � 120 V

f � 60.0(�Vrms � 120 V,

t � 0.
t � (1/180)

f � 60.0 Hz).(�Vrms � 120 V,

t � 15.5
L � 70.0

�Vmax �  80.0 V,

WEB

WEB

120 V

Lamp
1

Lamp
2

Lamp
3

Speaker

R

Figure P33.6

Figure P33.7

7. An audio amplifier, represented by the ac source and
resistor in Figure P33.7, delivers to the speaker alternat-
ing voltage at audio frequencies. If the source voltage
has an amplitude of 15.0 V, 	, and the
speaker is equivalent to a resistance of 10.4 	, what
time-averaged power is transferred to it?

R � 8.20

Section 33.3 Inductors in an ac Circuit
8. An inductor is connected to a 20.0-Hz power supply

that produces a 50.0-V rms voltage. What inductance is
needed to keep the instantaneous current in the circuit
below 80.0 mA?

9. In a purely inductive ac circuit, such as that shown in
Figure 33.4, (a) If the maximum cur-
rent is 7.50 A at 50.0 Hz, what is the inductance L? 
(b) At what angular frequency � is the maximum cur-
rent 2.50 A?

10. An inductor has a 54.0-	 reactance at 60.0 Hz. What is
the maximum current when this inductor is connected
to a 50.0-Hz source that produces a 100-V rms voltage?

�Vmax � 100 V.
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phase angle between the current and the applied volt-
age? (b) Which reaches its maximum earlier, the cur-
rent or the voltage?

24. A person is working near the secondary of a trans-
former, as shown in Figure P33.24. The primary voltage
is 120 V at 60.0 Hz. The capacitance Cs , which is the
stray capacitance between the person’s hand and the
secondary winding, is 20.0 pF. Assuming that the person
has a body resistance to ground k	, deter-
mine the rms voltage across the body. (Hint: Redraw the
circuit with the secondary of the transformer as a simple
ac source.)

R b � 50.0

29. An ac voltage of the form sin(1 000t) 
is applied to a series RLC circuit. If 	, 

�F, and H, what is the average
power delivered to the circuit?

30. A series RLC circuit has a resistance of 45.0 	 and an
impedance of 75.0 	. What average power is delivered
to this circuit when 

31. In a certain series RLC circuit, 
and the current leads the voltage by

37.0°. (a) What is the total resistance of the circuit? 
(b) What is the reactance of the circuit 

32. Suppose you manage a factory that uses many electric
motors. The motors create a large inductive load to the
electric power line, as well as a resistive load. The elec-
tric company builds an extra-heavy distribution line to
supply you with a component of current that is 90° out
of phase with the voltage, as well as with current in
phase with the voltage. The electric company charges
you an extra fee for “reactive volt-amps” in addition to
the amount you pay for the energy you use. You can
avoid the extra fee by installing a capacitor between the
power line and your factory. The following problem
models this solution.

In an LR circuit, a 120-V (rms), 60.0-Hz source is in
series with a 25.0-mH inductor and a 20.0-	 resistor.
What are (a) the rms current and (b) the power factor?
(c) What capacitor must be added in series to make the
power factor 1? (d) To what value can the supply volt-
age be reduced if the power supplied is to be the same
as that provided before installation of the capacitor?

33. Review Problem. Over a distance of 100 km, power of
100 MW is to be transmitted at 50.0 kV with only 
1.00% loss. Copper wire of what diameter should be
used for each of the two conductors of the transmission
line? Assume that the current density in the conductors
is uniform.

34. Review Problem. Suppose power is to be transmitted
over a distance d at a voltage �V, with only 1.00% loss.
Copper wire of what diameter should be used for each of
the two conductors of the transmission line? Assume that
the current density in the conductors is uniform.

35. A diode is a device that allows current to pass in only
one direction (the direction indicated by the arrowhead
in its circuit-diagram symbol). Find, in terms of �V and

�

(XL � XC)?

�Vrms � 180 V,
I rms � 9.00 A,

�Vrms � 210 V?

L � 0.500C � 5.00
R � 400

�v � (100 V)WEB

Figure P33.24

Figure P33.25 Problems 25 and 64.

26. Draw to scale a phasor diagram showing Z , XL , XC , and
 for an ac series circuit for which 	, 
11.0 �F, H, and Hz.

27. A coil of resistance 35.0 	 and inductance 20.5 H is 
in series with a capacitor and a 200-V (rms), 100-Hz
source. The rms current in the circuit is 4.00 A. 
(a) Calculate the capacitance in the circuit. (b) What is

across the coil?

Section 33.6 Power in an ac Circuit
28. The voltage source in Figure P33.28 has an output

at � � 1 000 rad/s. Determine (a) the
current in the circuit and (b) the power supplied by the
source. (c) Show that the power delivered to the resis-
tor is equal to the power supplied by the source.

�Vrms � 100 V

�Vrms

f � (500/�)L � 0.200
C �R � 300

25. An ac source with and is
connected between points a and d in Figure P33.25.
Calculate the maximum voltages between points 
(a) a and b, (b) b and c, (c) c and d , and (d) b and d.

f � 50.0 Hz�Vmax � 150 V

Rb

Cs

5 000 V

50.0 mH

∆V 40.0 Ω

50.0 µFµ

 µ

a dcb

40.0 Ω 185 mH 65.0    F

Figure P33.28
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Section 33.7 Resonance in a Series RLC Circuit

36. The tuning circuit of an AM radio contains an LC com-
bination. The inductance is 0.200 mH, and the capaci-
tor is variable, so the circuit can resonate at any fre-
quency between 550 kHz and 1 650 kHz. Find the range
of values required for C .

37. An RLC circuit is used in a radio to tune in to an FM
station broadcasting at 99.7 MHz. The resistance in the
circuit is 12.0 	, and the inductance is 1.40 �H. What
capacitance should be used?

38. A series RLC circuit has the following values: 
20.0 mH, nF, 	, and 
with Find (a) the resonant frequency,
(b) the amplitude of the current at the resonant fre-
quency, (c) the Q of the circuit, and (d) the amplitude of
the voltage across the inductor at resonance.

39. A 10.0-	 resistor, a 10.0-mH inductor, and a 100-�F ca-
pacitor are connected in series to a 50.0-V (rms) source
having variable frequency. What is the energy delivered
to the circuit during one period if the operating fre-
quency is twice the resonance frequency?

40. A resistor R , an inductor L , and a capacitor C are con-
nected in series to an ac source of rms voltage �V and
variable frequency. What is the energy delivered to the
circuit during one period if the operating frequency is
twice the resonance frequency?

41. Compute the quality factor for the circuits described in
Problems 22 and 23. Which circuit has the sharper reso-
nance?

Section 33.8 The Transformer and Power Transmission
42. A step-down transformer is used for recharging the bat-

teries of portable devices such as tape players. The turns
ratio inside the transformer is 13 :1, and it is used with
120-V (rms) household service. If a particular ideal
transformer draws 0.350 A from the house outlet, what
(a) voltage and (b) current are supplied to a tape
player from the transformer? (c) How much power is
delivered?

�v � �Vmax sin �t.
�Vmax � 100 V,R � 20.0C � 100

L �

43. A transformer has turns and 
turns. If the input voltage is cos �t,
what rms voltage is developed across the secondary coil?

44. A step-up transformer is designed to have an output
voltage of 2 200 V (rms) when the primary is connected
across a 110-V (rms) source. (a) If there are 80 turns on
the primary winding, how many turns are required on
the secondary? (b) If a load resistor across the sec-
ondary draws a current of 1.50 A, what is the current in
the primary under ideal conditions? (c) If the trans-
former actually has an efficiency of 95.0%, what is the
current in the primary when the secondary current is
1.20 A?

45. In the transformer shown in Figure P33.45, the load re-
sistor is 50.0 	. The turns ratio is 5 :2, and the
source voltage is 80.0 V (rms). If a voltmeter across the
load measures 25.0 V (rms), what is the source resis-
tance Rs ?

N 1 :N 2

�v(t) � (170 V)
N 2 � 2 000N 1 � 350

WEB

46. The secondary voltage of an ignition transformer in a
furnace is 10.0 kV. When the primary operates at an rms
voltage of 120 V, the primary impedance is 24.0 	 and
the transformer is 90.0% efficient. (a) What turns ratio
is required? What are (b) the current in the secondary
and (c) the impedance in the secondary?

47. A transmission line that has a resistance per unit length
of 4.50 � 10�4 	/m is to be used to transmit 5.00 MW
over 400 mi (6.44 � 105 m). The output voltage of the
generator is 4.50 kV. (a) What is the power loss if a
transformer is used to step up the voltage to 500 kV?
(b) What fraction of the input power is lost to the line
under these circumstances? (c) What difficulties would
be encountered on attempting to transmit the 5.00 MW
at the generator voltage of 4.50 kV?

(Optional)
Section 33.9 Rectifiers and Filters

48. The RC low-pass filter shown in Figure 33.23 has a resis-
tance 	 and a capacitance nF. Calcu-
late the gain ( for input frequencies of 
(a) 600 Hz and (b) 600 kHz.

49. The RC high-pass filter shown in Figure 33.22 has a re-
sistance 	. (a) What capacitance gives an
output signal that has one-half the amplitude of a 300-
Hz input signal? (b) What is the gain for
a 600-Hz signal?

(�Vout /�Vin)

R � 0.500

�Vout /�Vin)
C � 8.00R � 90.0

R , the average power delivered to the diode circuit
shown in Figure P33.35.

N2N1 RL∆Vs

Rs

R

R R

2R

∆V

Diode

Diode

Figure P33.35

Figure P33.45
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50. The circuit in Figure P33.50 represents a high-pass filter
in which the inductor has internal resistance. What is
the source frequency if the output voltage is one-
half the input voltage?

�V2

58. In the circuit shown in Figure P33.58, assume that all
parameters except C are given. (a) Find the current as a
function of time. (b) Find the power delivered to the
circuit. (c) Find the current as a function of time after
only switch 1 is opened. (d) After switch 2 is also
opened, the current and voltage are in phase. Find the
capacitance C . (e) Find the impedance of the circuit
when both switches are open. (f) Find the maximum

55. A series RLC circuit consists of an 8.00-	 resistor, a 
5.00-�F capacitor, and a 50.0-mH inductor. A variable
frequency source applies an emf of 400 V (rms) across
the combination. Determine the power delivered to the
circuit when the frequency is equal to one-half the reso-
nance frequency.

56. To determine the inductance of a coil used in a re-
search project, a student first connects the coil to a 
12.0-V battery and measures a current of 0.630 A. 
The student then connects the coil to a 24.0-V (rms),
60.0-Hz generator and measures an rms current of
0.570 A. What is the inductance?

57. In Figure P33.57, find the current delivered by the 
45.0-V (rms) power supply (a) when the frequency is
very large and (b) when the frequency is very small.

52. Show that two successive high-pass filters having the
same values of R and C give a combined gain

53. Consider a low-pass filter followed by a high-pass filter,
as shown in Figure P33.53. If 	 and

�F, determine for a 2.00-kHz
input frequency.

ADDITIONAL PROBLEMS

54. Show that the rms value for the sawtooth voltage shown
in Figure P33.54 is �Vmax/√3.

�Vout /�VinC � 0.050 0
R � 1 000

�Vout

�Vin
�

1
1 � (1/�RC)2

51. The resistor in Figure P33.51 represents the midrange
speaker in a three-speaker system. Assume that its resis-
tance is constant at 8.00 	. The source represents an
audio amplifier producing signals of uniform amplitude

at all audio frequencies. The inductor
and capacitor are to function as a bandpass filter with

at 200 Hz and at 4 000 Hz. (a) Deter-
mine the required values of L and C . (b) Find the maxi-
mum value of the gain ratio (c) Find the
frequency f0 at which the gain ratio has its maximum
value. (d) Find the phase shift between and 
at 200 Hz, at f0 , and at 4 000 Hz. (e) Find the average
power transferred to the speaker at 200 Hz, at f0 , and at
4 000 Hz. (f) Treating the filter as a resonant circuit,
find its quality factor.

�Vout�Vin

�Vout /�Vin .

�Vout /�Vin � 1
2

�Vin � 10.0 V

3.00 mH100 Ω

200 Ω

45.0 V(rms)

200   Fµ

Vmax

–

t

∆V

∆+

Vmax∆

RC∆Vin ∆Vout

R C

R∆Vin

L C

∆Vout

5.00 Ω

20.0 Ω

250 mH

∆V2∆V1

Figure P33.50

Figure P33.51

Figure P33.53

Figure P33.54

Figure P33.57

WEB
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energy stored in the capacitor during oscillations. 
(g) Find the maximum energy stored in the inductor
during oscillations. (h) Now the frequency of the volt-
age source is doubled. Find the phase difference be-
tween the current and the voltage. (i) Find the fre-
quency that makes the inductive reactance one-half the
capacitive reactance.

circuit, following the procedure used for the RC filters
in Section 33.9.

60. An 80.0-	 resistor and a 200-mH inductor are connected
in parallel across a 100-V (rms), 60.0-Hz source. (a) What
is the rms current in the resistor? (b) By what angle does
the total current lead or lag behind the voltage?

61. Make an order-of-magnitude estimate of the electric
current that the electric company delivers to a town
from a remote generating station. State the data that
you measure or estimate. If you wish, you may consider
a suburban bedroom community of 20 000 people.

62. A voltage sin �t (in SI units) is applied
across a series combination of a 2.00-H inductor, a 
10.0-�F capacitor, and a 10.0-	 resistor. (a) Determine
the angular frequency �0 at which the power delivered
to the resistor is a maximum. (b) Calculate the power at
that frequency. (c) Determine the two angular frequen-
cies �1 and �2 at which the power delivered is one-half
the maximum value. [The Q of the circuit is approxi-
mately �0/(�2 � �1).]

63. Consider a series RLC circuit having the following cir-
cuit parameters: 	, mH, and 

�F. The applied voltage has an amplitude of 50.0 V
and a frequency of 60.0 Hz. Find the following: (a) the
current Imax, including its phase constant  relative to
the applied voltage �v ; (b) the voltage �VR across the
resistor and its phase relative to the current; (c) the
voltage �VC across the capacitor and its phase relative
to the current; and (d) the voltage �VL across the in-
ductor and its phase relative to the current.

64. A power supply with �Vrms � 120 V is connected be-
tween points a and d in Figure P33.25. At what fre-
quency will it deliver a power of 250 W?

65. Example 28.2 showed that maximum power is trans-
ferred when the internal resistance of a dc source is
equal to the resistance of the load. A transformer may be
used to provide maximum power transfer between two ac
circuits that have different impedances. (a) Show that
the ratio of turns N1/N2 needed to meet this condition is

(b) Suppose you want to use a transformer as an imped-
ance-matching device between an audio amplifier that
has an output impedance of 8.00 k	 and a speaker that
has an input impedance of 8.00 	. What should your
N1/N2 ratio be?

66. Figure P33.66a shows a parallel RLC circuit, and the
corresponding phasor diagram is provided in Figure
P33.66b. The instantaneous voltages and rms voltages
across the three circuit elements are the same, and each
is in phase with the current through the resistor. The
currents in C and L lead or lag behind the current in
the resistor, as shown in Figure P33.66b. (a) Show that
the rms current delivered by the source is

I rms � �Vrms� 1
R2 � ��C �

1
�L �

2

�
1/2

N 1

N 2
� √ Z 1

Z 2

26.5
C �L � 663R � 200

�v � (100 V)

59. As an alternative to the RC filters described in Section
33.9, LC filters are used as both high- and low-pass fil-
ters. However, all real inductors have resistance, as indi-
cated in Figure P33.59, and this resistance must be
taken into account. (a) Determine which circuit in Fig-
ure P33.59 is the high-pass filter and which is the low-
pass filter. (b) Derive the output/input ratio for each

(a)

∆Vin ∆Vout

RL

C

(b)

∆Vin ∆Vout

RLL

C

L

R

L

S1

C S2

∆V(t ) = ∆Vmax cos    tω

Figure P33.58

Figure P33.59
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ANSWERS TO QUICK QUIZZES

33.5 High. The higher the quality factor, the more sensitive 
the detector. As you can see from Figure 33.15a, when 
Q � �0/�� is high, as it is in the R � 3.5 	 case, a slight
change in the resonance frequency (as might happen
when a small piece of metal passes through the portal)
causes a large change in current that can be detected
easily.

33.6 (a) An inductor. The current in an inductive circuit de-
creases with increasing frequency (see Eq. 33.9). Thus,
an inductor connected in series with a woofer blocks
high-frequency signals and passes low-frequency signals.
(b) A capacitor. The current in a capacitive circuit de-
creases with decreasing frequency (see Eq. 33.16). When
a capacitor is connected in series with a tweeter, the ca-
pacitor blocks low-frequency signals and passes high-
frequency signals.

33.1 (c) and The average power is propor-
tional to the rms current—which, as Figure 33.3 shows,
is nonzero even though the average current is zero. 
Condition (a) is valid only for an open circuit, and con-
ditions (b) and (d) can never be true because 
for ac circuits even though .

33.2 (b) Sum of instantaneous voltages across elements.
Choices (a) and (c) are incorrect because the unaligned
sine curves in Figure 33.9b mean that the voltages are
out of phase, so we cannot simply add the maximum (or
rms) voltages across the elements. (In other words,

even though it is true that

33.3 (a) (b) (c) 
33.4 Equation 33.23 indicates that at resonance (when

the impedance is due strictly to the resistor,
At resonance, the current is given by the expres-

sion I rms � �V rms/R .
Z � R .
XL � XC)

XL � XC .XL � XC .XL � XC .
�v � �vR � �vL � �vC .)
�V � �VR � �VL � �VC

i rms � 0
iav � 0

iav � 0.�av � 0

69. A series RLC circuit is operating at 2 000 Hz. At this fre-
quency, 	. The resistance of the cir-
cuit is 40.0 	. (a) Prepare a table showing the values of
XL , XC , and Z for 600, 800, 1 000, 1 500, 2 000,
3 000, 4 000, 6 000, and 10 000 Hz. (b) Plot on the
same set of axes XL , XC , and Z as functions of ln f .

70. A series RLC circuit in which 	, mH,
and nF is connected to an ac generator deliv-
ering 1.00 V (rms). Make a precise graph of the power
delivered to the circuit as a function of the frequency,
and verify that the full width of the resonance peak at
half-maximum is R/2�L.

71. Suppose the high-pass filter shown in Figure 33.22 has
	 and �F. (a) At what frequency

does (b) Plot log10 ver-
sus log10( f ) over the frequency range from 1 Hz to 
1 MHz. (This log– log plot of gain versus frequency is
known as a Bode plot.)

(�Vout /�Vin)�Vout /�Vin � 1
2 ?

C � 0.050 0R � 1 000

C � 1.00
L � 1.00R � 1.00

f � 300,

XL � XC � 1 884 

rms current is delivered by the source? (d) Is the cur-
rent leading or lagging behind the voltage? By what
angle?

68. Consider the phase-shifter circuit shown in Figure
P33.68. The input voltage is described by the expression

200t (in SI units). Assuming that
mH, find (a) the value of R such that the out-

put voltage lags behind the input voltage by 30.0° and
(b) the amplitude of the output voltage.

L � 500
�v � (10.0 V) sin

(b) Show that the phase angle  between and
is

tan  � R � 1
XC

�
1

XL
�

I rms

�Vrms

∆Vin ∆VoutR

L

R L C

(a)

(b)

IC

IR

IL

∆V

∆V

Figure P33.66

Figure P33.68

67. An 80.0-	 resistor, a 200-mH inductor, and a 0.150-�F
capacitor are connected in parallel across a 120-V (rms)
source operating at 374 rad/s. (a) What is the resonant
frequency of the circuit? (b) Calculate the rms current
in the resistor, the inductor, and the capacitor. (c) What
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c h a p t e r

Electromagnetic Waves

P U Z Z L E R

This person is exposed to very bright
sunlight at the beach. If he is wearing the
wrong kind of sunglasses, he may be
causing more permanent harm to his vi-
sion than he would be if he took the
glasses off and squinted. What deter-
mines whether certain types of sun-
glasses are good for your eyes?
(Ron Chapple/FPG International)
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34.1 Maxwell’s Equations and Hertz’s
Discoveries

34.2 Plane Electromagnetic Waves

34.3 Energy Carried by
Electromagnetic Waves

34.4 Momentum and Radiation
Pressure

34.5 (Optional) Radiation from an
Infinite Current Sheet

34.6 (Optional) Production of
Electromagnetic Waves by an
Antenna

34.7 The Spectrum of Electromagnetic
Waves

P U Z Z L E R

1075



1076 C H A P T E R  3 4 Electromagnetic Waves

he waves described in Chapters 16, 17, and 18 are mechanical waves. By defi-
nition, the propagation of mechanical disturbances—such as sound waves, wa-
ter waves, and waves on a string—requires the presence of a medium. This

chapter is concerned with the properties of electromagnetic waves, which (unlike
mechanical waves) can propagate through empty space.

In Section 31.7 we gave a brief description of Maxwell’s equations, which form
the theoretical basis of all electromagnetic phenomena. The consequences of
Maxwell’s equations are far-reaching and dramatic. The Ampère–Maxwell law pre-
dicts that a time-varying electric field produces a magnetic field, just as Faraday’s
law tells us that a time-varying magnetic field produces an electric field. Maxwell’s
introduction of the concept of displacement current as a new source of a magnetic
field provided the final important link between electric and magnetic fields in clas-
sical physics.

Astonishingly, Maxwell’s equations also predict the existence of electromag-
netic waves that propagate through space at the speed of light c . This chapter be-
gins with a discussion of how Heinrich Hertz confirmed Maxwell’s prediction
when he generated and detected electromagnetic waves in 1887. That discovery
has led to many practical communication systems, including radio, television, and
radar. On a conceptual level, Maxwell unified the subjects of light and electromag-
netism by developing the idea that light is a form of electromagnetic radiation.

Next, we learn how electromagnetic waves are generated by oscillating electric
charges. The waves consist of oscillating electric and magnetic fields that are at right
angles to each other and to the direction of wave propagation. Thus, electromag-
netic waves are transverse waves. Maxwell’s prediction of electromagnetic radiation
shows that the amplitudes of the electric and magnetic fields in an electromagnetic
wave are related by the expression The waves radiated from the oscillating
charges can be detected at great distances. Furthermore, electromagnetic waves
carry energy and momentum and hence can exert pressure on a surface.

The chapter concludes with a look at the wide range of frequencies covered by
electromagnetic waves. For example, radio waves (frequencies of about 107 Hz)
are electromagnetic waves produced by oscillating currents in a radio tower’s
transmitting antenna. Light waves are a high-frequency form of electromagnetic
radiation (about 1014 Hz) produced by oscillating electrons in atoms.

MAXWELL’S EQUATIONS AND
HERTZ’S DISCOVERIES

In his unified theory of electromagnetism, Maxwell showed that electromagnetic
waves are a natural consequence of the fundamental laws expressed in the follow-
ing four equations (see Section 31.7):

(34.1)

(34.2)

(34.3)

(34.4)�B � ds � � 0I � �0�0 
d�E

dt

�E � ds � �
d�B

dt
 

�
S

B � dA � 0 

�
S

E � dA �
Q
�0 

34.1

E � cB .

T

James Clerk Maxwell Scottish
theoretical physicist (1831 – 1879)
Maxwell developed the electromag-
netic theory of light and the kinetic
theory of gases, and he explained the
nature of color vision and of Saturn’s
rings. His successful interpretation of
the electromagnetic field produced
the field equations that bear his
name. Formidable mathematical abil-
ity combined with great insight en-
abled Maxwell to lead the way in the
study of electromagnetism and kinetic
theory. He died of cancer before he
was 50. (North Wind Picture Archives)
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As we shall see in the next section, Equations 34.3 and 34.4 can be combined to
obtain a wave equation for both the electric field and the magnetic field. In empty
space the solution to these two equations shows that the speed at
which electromagnetic waves travel equals the measured speed of light. This result
led Maxwell to predict that light waves are a form of electromagnetic radiation.

The experimental apparatus that Hertz used to generate and detect electro-
magnetic waves is shown schematically in Figure 34.1. An induction coil is con-
nected to a transmitter made up of two spherical electrodes separated by a narrow
gap. The coil provides short voltage surges to the electrodes, making one positive
and the other negative. A spark is generated between the spheres when the elec-
tric field near either electrode surpasses the dielectric strength for air (3 �
106 V/m; see Table 26.1). In a strong electric field, the acceleration of free elec-
trons provides them with enough energy to ionize any molecules they strike. This
ionization provides more electrons, which can accelerate and cause further ioniza-
tions. As the air in the gap is ionized, it becomes a much better conductor, and the
discharge between the electrodes exhibits an oscillatory behavior at a very high
frequency. From an electric-circuit viewpoint, this is equivalent to an LC circuit in
which the inductance is that of the coil and the capacitance is due to the spherical
electrodes.

Because L and C are quite small in Hertz’s apparatus, the frequency of oscilla-
tion is very high, � 100 MHz. (Recall from Eq. 32.22 that for an LC
circuit.) Electromagnetic waves are radiated at this frequency as a result of the os-
cillation (and hence acceleration) of free charges in the transmitter circuit. Hertz
was able to detect these waves by using a single loop of wire with its own spark gap
(the receiver). Such a receiver loop, placed several meters from the transmitter,
has its own effective inductance, capacitance, and natural frequency of oscillation.
In Hertz’s experiment, sparks were induced across the gap of the receiving elec-
trodes when the frequency of the receiver was adjusted to match that of the trans-
mitter. Thus, Hertz demonstrated that the oscillating current induced in the re-
ceiver was produced by electromagnetic waves radiated by the transmitter. His
experiment is analogous to the mechanical phenomenon in which a tuning fork
responds to acoustic vibrations from an identical tuning fork that is oscillating.

� � 1/√LC

(Q � 0, I � 0),

Heinrich Rudolf Hertz Ger-
man physicist (1857 – 1894) Hertz
made his most important discovery —
radio waves — in 1887. After finding
that the speed of a radio wave was
the same as that of light, he showed
that radio waves, like light waves,
could be reflected, refracted, and dif-
fracted. Hertz died of blood poisoning
at age 36. He made many contribu-
tions to science during his short life.
The hertz, equal to one complete vi-
bration or cycle per second, is named
after him. (The Bettmann Archive)

Input

Transmitter

Receiver

Induction
coil

q –q

+ –

Figure 34.1 Schematic diagram of Hertz’s apparatus
for generating and detecting electromagnetic waves. The
transmitter consists of two spherical electrodes connected
to an induction coil, which provides short voltage surges
to the spheres, setting up oscillations in the discharge be-
tween the electrodes (suggested by the red dots). The re-
ceiver is a nearby loop of wire containing a second spark
gap.



1078 C H A P T E R  3 4 Electromagnetic Waves

Additionally, Hertz showed in a series of experiments that the radiation gener-
ated by his spark-gap device exhibited the wave properties of interference, diffrac-
tion, reflection, refraction, and polarization, all of which are properties exhibited
by light. Thus, it became evident that the radio-frequency waves Hertz was generat-
ing had properties similar to those of light waves and differed only in frequency
and wavelength. Perhaps his most convincing experiment was the measurement of
the speed of this radiation. Radio-frequency waves of known frequency were re-
flected from a metal sheet and created a standing-wave interference pattern whose
nodal points could be detected. The measured distance between the nodal points
enabled determination of the wavelength 	. Using the relationship (Eq.
16.14), Hertz found that v was close to 3 � 108 m/s, the known speed c of visible
light.

PLANE ELECTROMAGNETIC WAVES
The properties of electromagnetic waves can be deduced from Maxwell’s equa-
tions. One approach to deriving these properties is to solve the second-order dif-
ferential equation obtained from Maxwell’s third and fourth equations. A rigorous
mathematical treatment of that sort is beyond the scope of this text. To circumvent
this problem, we assume that the vectors for the electric field and magnetic field
in an electromagnetic wave have a specific space–time behavior that is simple but
consistent with Maxwell’s equations.

To understand the prediction of electromagnetic waves more fully, let us focus
our attention on an electromagnetic wave that travels in the x direction (the direc-
tion of propagation). In this wave, the electric field E is in the y direction, and the
magnetic field B is in the z direction, as shown in Figure 34.2. Waves such as this
one, in which the electric and magnetic fields are restricted to being parallel to a
pair of perpendicular axes, are said to be linearly polarized waves.1 Further-
more, we assume that at any point P, the magnitudes E and B of the fields depend

34.2

v � 	f

1 Waves having other particular patterns of vibration of the electric and magnetic fields include circu-
larly polarized waves. The most general polarization pattern is elliptical.

QuickLab
Some electric motors use commuta-
tors that make and break electrical
contact, creating sparks reminiscent
of Hertz’s method for generating
electromagnetic waves. Try running
an electric shaver or kitchen mixer
near an AM radio. What happens to
the reception?

A large oscillator (bottom) and circular, octagonal, and square receivers used by Heinrich Hertz.

y

E
E

c

Bz
c

x
B

Figure 34.2 An electromagnetic
wave traveling at velocity c in the
positive x direction. The electric
field is along the y direction, and
the magnetic field is along the z di-
rection. These fields depend only
on x and t .
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upon x and t only, and not upon the y or z coordinate. A collection of such waves
from individual sources is called a plane wave. A surface connecting points of
equal phase on all waves, which we call a wave front, would be a geometric plane.
In comparison, a point source of radiation sends waves out in all directions. A sur-
face connecting points of equal phase is a sphere for this situation, so we call this a
spherical wave.

We can relate E and B to each other with Equations 34.3 and 34.4. In empty
space, where and Equation 34.3 remains unchanged and Equation
34.4 becomes

(34.5)

Using Equations 34.3 and 34.5 and the plane-wave assumption, we obtain the fol-
lowing differential equations relating E and B. (We shall derive these equations
formally later in this section.) For simplicity, we drop the subscripts on the compo-
nents Ey and Bz :

(34.6)

(34.7)

Note that the derivatives here are partial derivatives. For example, when we evalu-
ate we assume that t is constant. Likewise, when we evaluate x is
held constant. Taking the derivative of Equation 34.6 with respect to x and com-
bining the result with Equation 34.7, we obtain

(34.8)

In the same manner, taking the derivative of Equation 34.7 with respect to x and
combining it with Equation 34.6, we obtain

(34.9)

Equations 34.8 and 34.9 both have the form of the general wave equation2 with
the wave speed v replaced by c , where

(34.10)

Taking and in Equation
34.10, we find that Because this speed is precisely the
same as the speed of light in empty space, we are led to believe (correctly) that
light is an electromagnetic wave.

c � 2.997 92 � 108 m/s.
�0 � 8.854 19 � 10�12 C2/N
m2�0 � 4� � 10�7 T 
m/A

c �
1

√�0�0

�2B
�x2 � �0�0 

�2B
�t2

�2E
�x2 � �0�0 

�2E
�t2

�2E
�x2 � �

�

�x
 � �B

�t � � �
�

�t
 � �B

�x � � �
�

�t
 ���0�0 

�E
�t �

�B/�t,�E/�x ,

�B
�x

� ��0�0 
�E
�t

�E
�x

� �
�B
�t

 

�B � ds � �0�0 
d�E

dt

I � 0,Q � 0

2 The general wave equation is of the form where v is the speed of the
wave and y is the wave function. The general wave equation was introduced as Equation 16.26, and it
would be useful for you to review Section 16.9.

(�2y/�x2 ) � (1/v2 )(�2y/�t2 ),

Speed of electromagnetic waves
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The simplest solution to Equations 34.8 and 34.9 is a sinusoidal wave, for
which the field magnitudes E and B vary with x and t according to the expressions

(34.11)

(34.12)

where Emax and Bmax are the maximum values of the fields. The angular wave num-
ber is the constant where 	 is the wavelength. The angular frequency is

where f is the wave frequency. The ratio
�/k equals the speed c :

We have used Equation 16.14, which relates the speed, frequency, and
wavelength of any continuous wave. Figure 34.3a is a pictorial representation, at
one instant, of a sinusoidal, linearly polarized plane wave moving in the positive x
direction. Figure 34.3b shows how the electric and magnetic field vectors at a fixed
location vary with time.

What is the phase difference between B and E in Figure 34.3?

Taking partial derivatives of Equations 34.11 (with respect to x) and 34.12

Quick Quiz 34.1

v � c � 	f,

�

k
�

2�f
2�/	

� 	f � c

� � 2�f,
k � 2�/	,

B � Bmax cos(kx � �t)

E � E max cos(kx � �t)

(b)

y

z

y

z

y

z
B

E

y

z

y

z

y

z

y

z

y

z

y

z

y

z

y

z

y

z

E

B

c

y

x

z

(a)

Figure 34.3 Representation of a sinusoidal, linearly polarized plane electromagnetic wave mov-
ing in the positive x direction with velocity c. (a) The wave at some instant. Note the sinusoidal
variations of E and B with x . (b) A time sequence illustrating the electric and magnetic field vec-
tors present in the yz plane, as seen by an observer looking in the negative x direction. Note the
sinusoidal variations of E and B with t .

Sinusoidal electric and magnetic
fields
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(with respect to t), we find that

Substituting these results into Equation 34.6, we find that at any instant

Using these results together with Equations 34.11 and 34.12, we see that

(34.13)

That is, at every instant the ratio of the magnitude of the electric field to the
magnitude of the magnetic field in an electromagnetic wave equals the
speed of light.

Finally, note that electromagnetic waves obey the superposition principle
(which we discussed in Section 16.4 with respect to mechanical waves) because the
differential equations involving E and B are linear equations. For example, we can
add two waves with the same frequency simply by adding the magnitudes of the
two electric fields algebraically.

E max

Bmax
�

E
B

� c

Emax

Bmax
�

�

k
� c

kEmax � �Bmax

�B
�t

� �Bmaxsin(kx � �t)

�E
�x

� �kE maxsin(kx � �t)

• The solutions of Maxwell’s third and fourth equations are wave-like, with
both E and B satisfying a wave equation.

• Electromagnetic waves travel through empty space at the speed of light 

• The components of the electric and magnetic fields of plane electromagnetic
waves are perpendicular to each other and perpendicular to the direction of
wave propagation. We can summarize the latter property by saying that elec-
tromagnetic waves are transverse waves.

• The magnitudes of E and B in empty space are related by the expression

• Electromagnetic waves obey the principle of superposition.
E/B � c .

c � 1/√� 0�0 .

An Electromagnetic WaveEXAMPLE 34.1
(b) At some point and at some instant, the electric field

has its maximum value of 750 N/C and is along the y axis.
Calculate the magnitude and direction of the magnetic field
at this position and time.

Solution From Equation 34.13 we see that

Because E and B must be perpendicular to each other and
perpendicular to the direction of wave propagation (x in this
case), we conclude that B is in the z direction.

2.50 � 10�6 TBmax �
E max

c
�

750 N/C
3.00 � 108 m/s

�

A sinusoidal electromagnetic wave of frequency 40.0 MHz
travels in free space in the x direction, as shown in Figure
34.4. (a) Determine the wavelength and period of the wave.

Solution Using Equation 16.14 for light waves, ,
and given that MHz � 4.00 � 107 s�1, we have

The period T of the wave is the inverse of the frequency:

2.50 � 10�8 sT �
1
f

�
1

4.00 � 107 s�1 �

7.50 m	 �
c
f

�
3.00 � 108 m/s
4.00 � 107 s�1 �

f � 40.0
c � 	f

Properties of electromagnetic
waves
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Let us summarize the properties of electromagnetic waves as we have de-
scribed them:

Optional Section

Derivation of Equations 34.6 and 34.7

To derive Equation 34.6, we start with Faraday’s law, Equation 34.3:

Let us again assume that the electromagnetic wave is traveling in the x direction,
with the electric field E in the positive y direction and the magnetic field B in the
positive z direction.

Consider a rectangle of width dx and height � lying in the xy plane, as shown
in Figure 34.5. To apply Equation 34.3, we must first evaluate the line integral of

around this rectangle. The contributions from the top and bottom of the
rectangle are zero because E is perpendicular to ds for these paths. We can ex-
press the electric field on the right side of the rectangle as

while the field on the left side is simply .3 Therefore, the line integral over
this rectangle is approximately

(34.14)

Because the magnetic field is in the z direction, the magnetic flux through the rec-
tangle of area � dx is approximately (This assumes that dx is very
small compared with the wavelength of the wave.) Taking the time derivative of

�B � B� dx .

�E � ds � E(x � dx , t) 
 � � E(x , t) 
 � � (�E/�x) dx 
 �

E(x , t)

E(x � dx , t) � E(x , t) �
dE
dx �t constant

 dx � E(x , t) �
�E
�x

 dx

E � ds

�E � ds � �
d�B

dt

3 Because dE/dx in this equation is expressed as the change in E with x at a given instant t , dE/dx is
equivalent to the partial derivative Likewise, dB/dt means the change in B with time at a particu-
lar position x , so in Equation 34.15 we can replace dB/dt with �B/�t .

�E/�x .

B c
x

y

E = 750j  N/C

z

Figure 34.4 At some instant, a plane electromagnetic wave mov-
ing in the x direction has a maximum electric field of 750 N/C in the
positive y direction. The corresponding magnetic field at that point
has a magnitude E /c and is in the z direction.

(c) Write expressions for the space-time variation of the
components of the electric and magnetic fields for this wave.

Solution We can apply Equations 34.11 and 34.12 directly:

where

k �
2�

	
�

2�

7.50 m
� 0.838 rad/m 

� � 2�f � 2�(4.00 � 107 s�1) � 2.51 � 108 rad/s

B � Bmax cos(kx � �t) � (2.50 � 10�6 T ) cos(kx � �t)

E � E max cos(kx � �t) � (750 N/C) cos(kx � �t) 

E + dE

E

dx

�

y

xz
B

Figure 34.5 As a plane wave
passes through a rectangular path
of width dx lying in the xy plane,
the electric field in the y direction
varies from E to E � d E. This spa-
tial variation in E gives rise to a
time-varying magnetic field along
the z direction, according to Equa-
tion 34.6.



34.3 Energy Carried by Electromagnetic Waves 1083

the magnetic flux gives

(34.15)

Substituting Equations 34.14 and 34.15 into Equation 34.3, we obtain

This expression is Equation 34.6.
In a similar manner, we can verify Equation 34.7 by starting with Maxwell’s

fourth equation in empty space (Eq. 34.5). In this case, we evaluate the line inte-
gral of around a rectangle lying in the xz plane and having width dx and
length �, as shown in Figure 34.6. Noting that the magnitude of the magnetic field
changes from to over the width dx , we find the line integral
over this rectangle to be approximately

(34.16)

The electric flux through the rectangle is which, when differentiated
with respect to time, gives

(34.17)

Substituting Equations 34.16 and 34.17 into Equation 34.5 gives

which is Equation 34.7.

ENERGY CARRIED BY ELECTROMAGNETIC WAVES
Electromagnetic waves carry energy, and as they propagate through space they can
transfer energy to objects placed in their path. The rate of flow of energy in an
electromagnetic wave is described by a vector S, called the Poynting vector,
which is defined by the expression

(34.18)

The magnitude of the Poynting vector represents the rate at which energy flows
through a unit surface area perpendicular to the direction of wave propagation.
Thus, the magnitude of the Poynting vector represents power per unit area. The di-
rection of the vector is along the direction of wave propagation (Fig. 34.7). The SI
units of the Poynting vector are J/s 
m2 � W/m2.

S �
1

�0
 E � B

34.3

 
�B
�x

� ��0�0 
�E
�t

 

�(�B/�x) dx 
 � � �0�0� dx(�E/�t)

��E

�t
� � dx 

�E
�t

�E � E� dx ,

�B � ds � B(x , t)
 � � B(x � dx , t) 
 � � �(�B/�x) dx 
 �

B(x � dx , t)B(x , t)

B � ds

 
�E
�x

� �
�B
�t

 

� �E
�x � dx 
 � � � � dx 

�B
�t

d�B

dt
� � dx 

dB
dt �x constant

� � dx 
�B
�t

B

E

B + dB

dx

z

y

x

�

Figure 34.6 As a plane wave
passes through a rectangular path
of width dx lying in the xz plane,
the magnetic field in the z direc-
tion varies from B to B � d B. This
spatial variation in B gives rise to a
time-varying electric field along the
y direction, according to Equation
34.7.

Poynting vector

Magnitude of the Poynting vector
for a plane wave
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As an example, let us evaluate the magnitude of S for a plane electromagnetic
wave where In this case,

(34.19)

Because we can also express this as

These equations for S apply at any instant of time and represent the instantaneous
rate at which energy is passing through a unit area.

What is of greater interest for a sinusoidal plane electromagnetic wave is the
time average of S over one or more cycles, which is called the wave intensity I. (We
discussed the intensity of sound waves in Chapter 17.) When this average is taken,
we obtain an expression involving the time average of cos2 which equals

Hence, the average value of S (in other words, the intensity of the wave) is

(34.20)

Recall that the energy per unit volume, which is the instantaneous energy den-
sity uE associated with an electric field, is given by Equation 26.13,

and that the instantaneous energy density uB associated with a magnetic field is
given by Equation 32.14:

Because E and B vary with time for an electromagnetic wave, the energy densities
also vary with time. When we use the relationships and 
Equation 32.14 becomes

Comparing this result with the expression for uE , we see that

That is, for an electromagnetic wave, the instantaneous energy density asso-
ciated with the magnetic field equals the instantaneous energy density asso-
ciated with the electric field. Hence, in a given volume the energy is equally
shared by the two fields.

The total instantaneous energy density u is equal to the sum of the energy
densities associated with the electric and magnetic fields:

When this total instantaneous energy density is averaged over one or more cycles
of an electromagnetic wave, we again obtain a factor of Hence, for any electro-
magnetic wave, the total average energy per unit volume is

1
2 .

u � uE � uB � �0E 2 �
B2

�0

uB � uE � 1
2 �0E 2 �

B2

2�0

uB �
(E /c)2

2�0
�

�0�0

2�0
 E 2 � 1

2 �0E 2

c � 1/√�0�0 ,B � E /c

uB �
B2

2�0

uE � 1
2 �0E 2

I � Sav �
E maxBmax

2�0
�

E 2
max

2�0c
�

c
2�0

 B2
max

1
2 .

(kx � �t),

S �
E 2

�0c
�

c
�0

 B2

B � E /c,

S �
EB
�0

� E � B � � EB.

Wave intensity

Total instantaneous energy density

Average energy density of an
electromagnetic wave

y

E

c
Bz x

S

Figure 34.7 The Poynting vector
S for a plane electromagnetic wave
is along the direction of wave prop-
agation.
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(34.21)uav � �0(E 2)av � 1
2 �0E 2

max �
B2

max

2�0

Fields on the PageEXAMPLE 34.2

From Equation 34.13,

This value is two orders of magnitude smaller than the
Earth’s magnetic field, which, unlike the magnetic field in
the light wave from your desk lamp, is not oscillating.

Exercise Estimate the energy density of the light wave just
before it strikes this page.

Answer 9.0 � 10�9 J/m3.

1.5 � 10�7 TBmax �
E max

c
�

45 V/m
3.00 � 108 m/s

�

45 V/m �

 � √ (4� � 10�7 T 
m/A)(3.00 � 108 m/s)(3.0 W)
2�(0.30 m)2

E max � √ � 0c �av

2�r 2 

Estimate the maximum magnitudes of the electric and mag-
netic fields of the light that is incident on this page because of
the visible light coming from your desk lamp. Treat the bulb
as a point source of electromagnetic radiation that is about
5% efficient at converting electrical energy to visible light.

Solution Recall from Equation 17.8 that the wave intensity
I a distance r from a point source is where 
is the average power output of the source and 4�r 2 is the
area of a sphere of radius r centered on the source. Because
the intensity of an electromagnetic wave is also given by Equa-
tion 34.20, we have

We must now make some assumptions about numbers to en-
ter in this equation. If we have a 60-W lightbulb, its output at
5% efficiency is approximately 3.0 W in the form of visible
light. (The remaining energy transfers out of the bulb by
conduction and invisible radiation.) A reasonable distance
from the bulb to the page might be 0.30 m. Thus, we have

I �
�av

4�r 2 �
E 2

max

2�0c

�avI � �av/4�r 2,

Comparing this result with Equation 34.20 for the average value of S , we see that

(34.22)

In other words, the intensity of an electromagnetic wave equals the average
energy density multiplied by the speed of light.

MOMENTUM AND RADIATION PRESSURE
Electromagnetic waves transport linear momentum as well as energy. It follows
that, as this momentum is absorbed by some surface, pressure is exerted on the
surface. We shall assume in this discussion that the electromagnetic wave strikes
the surface at normal incidence and transports a total energy U to the surface in a
time t . Maxwell showed that, if the surface absorbs all the incident energy U in this
time (as does a black body, introduced in Chapter 20), the total momentum p
transported to the surface has a magnitude

(complete absorption) (34.23)

The pressure exerted on the surface is defined as force per unit area F/A. Let us
combine this with Newton’s second law:

p �
U
c

34.4

I � Sav � cuav

Momentum transported to a
perfectly absorbing surface
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If we now replace p, the momentum transported to the surface by light, from
Equation 34.23, we have

We recognize (dU/dt)/A as the rate at which energy is arriving at the surface per
unit area, which is the magnitude of the Poynting vector. Thus, the radiation pres-
sure P exerted on the perfectly absorbing surface is

(34.24)

Note that Equation 34.24 is an expression for uppercase P, the pressure, while
Equation 34.23 is an expression for lowercase p, linear momentum.

If the surface is a perfect reflector (such as a mirror) and incidence is normal,
then the momentum transported to the surface in a time t is twice that given by
Equation 34.23. That is, the momentum transferred to the surface by the incom-
ing light is p � U/c, and that transferred by the reflected light also is p � U/c.
Therefore,

(complete reflection) (34.25)

The momentum delivered to a surface having a reflectivity somewhere between
these two extremes has a value between U/c and 2U/c, depending on the proper-
ties of the surface. Finally, the radiation pressure exerted on a perfectly reflecting
surface for normal incidence of the wave is4

(34.26)

Although radiation pressures are very small (about 5 � 10�6 N/m2 for direct
sunlight), they have been measured with torsion balances such as the one shown
in Figure 34.8. A mirror (a perfect reflector) and a black disk (a perfect absorber)
are connected by a horizontal rod suspended from a fine fiber. Normal-incidence
light striking the black disk is completely absorbed, so all of the momentum of the

P �
2S
c

p �
2U
c

P �
S
c

P �
1
A

 
dp
dt

�
1
A

 
d
dt �

U
c � �

1
c

 
(dU/dt)

A

P �
F
A

�
1
A

 
dp
dt

4 For oblique incidence on a perfectly reflecting surface, the momentum transferred is (2U cos )/c
and the pressure is where  is the angle between the normal to the surface and the
direction of wave propagation.

P � (2S cos2 )/c,

Radiation pressure exerted on a
perfectly absorbing surface

web
Visit http://pds.jpl.nasa.gov for more
information about missions to the planets.
You may also want to read Arthur C.
Clarke’s 1963 science fiction story The
Wind from the Sun about a solar yacht
race.

Radiation pressure exerted on a
perfectly reflecting surface

QuickLab
Using Example 34.2 as a starting
point, estimate the total force exerted
on this page by the light from your
desk lamp. Does it make a difference
if the page contains large, dark pho-
tographs instead of mostly white
space?

Light

Black
disk

Mirror

Figure 34.8 An apparatus for
measuring the pressure exerted by
light. In practice, the system is con-
tained in a high vacuum.

Figure 34.9 Mariner 10 used its solar
panels to “sail on sunlight.”
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light is transferred to the disk. Normal-incidence light striking the mirror is totally
reflected, and hence the momentum transferred to the mirror is twice as great as
that transferred to the disk. The radiation pressure is determined by measuring
the angle through which the horizontal connecting rod rotates. The apparatus

Sweeping the Solar SystemCONCEPTUAL EXAMPLE 34.3
cube of the radius of a spherical dust particle because it is
proportional to the mass and therefore to the volume 4�r3/3
of the particle. The radiation pressure is proportional to the
square of the radius because it depends on the planar cross-
section of the particle. For large particles, the gravitational
force is greater than the force from radiation pressure. For
particles having radii less than about 0.2 �m, the radiation-
pressure force is greater than the gravitational force, and as a
result these particles are swept out of the Solar System.

A great amount of dust exists in interplanetary space. Al-
though in theory these dust particles can vary in size from
molecular size to much larger, very little of the dust in our so-
lar system is smaller than about 0.2 �m. Why?

Solution The dust particles are subject to two significant
forces—the gravitational force that draws them toward the
Sun and the radiation-pressure force that pushes them away
from the Sun. The gravitational force is proportional to the

Pressure from a Laser PointerEXAMPLE 34.4
flected beam would apply a pressure of We can
model the actual reflection as follows: Imagine that the sur-
face absorbs the beam, resulting in pressure Then
the surface emits the beam, resulting in additional pressure

If the surface emits only a fraction f of the beam (so
that f is the amount of the incident beam reflected), then the
pressure due to the emitted beam is Thus, the total
pressure on the surface due to absorption and re-emission
(reflection) is

Notice that if which represents complete reflection,
this equation reduces to Equation 34.26. For a beam that is
70% reflected, the pressure is

This is an extremely small value, as expected. (Recall from
Section 15.2 that atmospheric pressure is approximately 
105 N/m2.)

5.4 � 10�6 N/m2P � (1 � 0.70) 
955 W/m2

3.0 � 108 m/s
�

f � 1,

P �
S
c

� f  
S
c

� (1 � f ) 
S
c

P � f S/c.

P � S /c.

P � S/c.

P � 2S/c.Many people giving presentations use a laser pointer to direct
the attention of the audience. If a 3.0-mW pointer creates a
spot that is 2.0 mm in diameter, determine the radiation pres-
sure on a screen that reflects 70% of the light that strikes it.
The power 3.0 mW is a time-averaged value.

Solution We certainly do not expect the pressure to be
very large. Before we can calculate it, we must determine the
Poynting vector of the beam by dividing the time-averaged
power delivered via the electromagnetic wave by the cross-
sectional area of the beam:

This is about the same as the intensity of sunlight at the
Earth’s surface. (Thus, it is not safe to shine the beam of a
laser pointer into a person’s eyes; that may be more danger-
ous than looking directly at the Sun.)

Now we can determine the radiation pressure from the
laser beam. Equation 34.26 indicates that a completely re-

S �
�

A
�

�

� r 2
�

3.0 � 10�3 W

�� 2.0 � 10�3 m
2 �

2
� 955 W/m2

Solar EnergyEXAMPLE 34.5
represents the power per unit area, or the light intensity. As-
suming that the radiation is incident normal to the roof, we
obtain

1.60 � 105 W�

� � SA � (1 000 W/m2)(8.00 � 20.0 m2)

As noted in the preceding example, the Sun delivers about 
1 000 W/m2 of energy to the Earth’s surface via electromag-
netic radiation. (a) Calculate the total power that is incident
on a roof of dimensions 8.00 m � 20.0 m.

Solution The magnitude of the Poynting vector for solar
radiation at the surface of the Earth is S � 1 000 W/m2; this
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5 Note that the solution could also be written in the form cos which is equivalent to
cos That is, cos  is an even function, which means that cos(� ) � cos .(kx � �t).

(�t � kx),

Radiated magnetic field

If all of this power could be converted to electrical energy, it
would provide more than enough power for the average
home. However, solar energy is not easily harnessed, and the
prospects for large-scale conversion are not as bright as may
appear from this calculation. For example, the efficiency of
conversion from solar to electrical energy is typically 10% for
photovoltaic cells. Roof systems for converting solar energy to
internal energy are approximately 50% efficient; however, so-
lar energy is associated with other practical problems, such as
overcast days, geographic location, and methods of energy
storage.

(b) Determine the radiation pressure and the radiation
force exerted on the roof, assuming that the roof covering is
a perfect absorber.

Solution Using Equation 34.24 with we
find that the radiation pressure is

Because pressure equals force per unit area, this corresponds
to a radiation force of

Exercise How much solar energy is incident on the roof in
1 h?

Answer 5.76 � 108 J.

5.33 � 10�4 NF � PA � (3.33 � 10�6 N/m2)(160 m2) �

3.33 � 10�6 N/m2P �
S
c

�
1 000 W/m2

3.00 � 108 m/s
�

S � 1 000 W/m2,

must be placed in a high vacuum to eliminate the effects of air currents.
NASA is exploring the possibility of solar sailing as a low-cost means of sending

spacecraft to the planets. Large reflective sheets would be used in much the way
canvas sheets are used on earthbound sailboats. In 1973 NASA engineers took ad-
vantage of the momentum of the sunlight striking the solar panels of Mariner 10
(Fig. 34.9) to make small course corrections when the spacecraft’s fuel supply was
running low. (This procedure was carried out when the spacecraft was in the vicin-
ity of the planet Mercury. Would it have worked as well near Pluto?)

Optional Section

RADIATION FROM AN INFINITE CURRENT SHEET
In this section, we describe the electric and magnetic fields radiated by a flat con-
ductor carrying a time-varying current. In the symmetric plane geometry em-
ployed here, the mathematics is less complex than that required in lower-symme-
try situations.

Consider an infinite conducting sheet lying in the yz plane and carrying a sur-
face current in the y direction, as shown in Figure 34.10. The current is distributed
across the z direction such that the current per unit length is Js . Let us assume 
that Js varies sinusoidally with time as

where Jmax is the amplitude of the current variation and � is the angular frequency
of the variation. A similar problem concerning the case of a steady current was
treated in Example 30.6, in which we found that the magnetic field outside the
sheet is everywhere parallel to the sheet and lies along the z axis. The magnetic
field was found to have a magnitude

Bz � �0 
J s

2

J s � Jmax cos �t

34.5

z x

y

Js

Figure 34.10 A portion of an in-
finite current sheet lying in the yz
plane. The current density is sinu-
soidal and is given by the expres-
sion Js � Jmax cos �t. The magnetic
field is everywhere parallel to the
sheet and lies along z .
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In the present situation, where Js varies with time, this equation for Bz is valid only
for distances close to the sheet. Substituting the expression for Js , we have

(for small values of x)

To obtain the expression valid for Bz for arbitrary values of x, we can investigate
the solution:5

(34.27)

You should note two things about this solution, which is unique to the geometry
under consideration. First, when x is very small, it agrees with our original solu-
tion. Second, it satisfies the wave equation as expressed in Equation 34.9. We con-
clude that the magnetic field lies along the z axis, varies with time, and is charac-
terized by a transverse traveling wave having an angular frequency � and an
angular wave number 

We can obtain the electric field radiating from our infinite current sheet by us-
ing Equation 34.13:

(34.28)

That is, the electric field is in the y direction, perpendicular to B, and has the same
space and time dependencies. These expressions for Bz and Ey show that the radia-
tion field of an infinite current sheet carrying a sinusoidal current is a plane electro-
magnetic wave propagating with a speed c along the x axis, as shown in Figure 34.11.

We can calculate the Poynting vector for this wave from Equations 34.19,

E y � cBz �
�0 Jmaxc

2
 cos(kx � �t)

k � 2�/	.

Bz �
�0 Jmax

2
 cos(kx � �t)

Bz �
�0

2
 Jmax cos �t

Radiated electric field

z

y

Js

E

B

x

c

Figure 34.11 Representation of the plane electromagnetic wave radiated by an infinite current
sheet lying in the yz plane. The vector B is in the z direction, the vector E is in the y direction,
and the direction of wave motion is along x . Both vector B and vector E behave according to the
expression cos Compare this drawing with Figure 34.3a.(kx � �t ).

An Infinite Sheet Carrying a Sinusoidal CurrentEXAMPLE 34.6
Solution From Equations 34.27 and 34.28, we see that the
maximum values of Bz and Ey are

and E max �
�0 Jmaxc

2
Bmax �

�0 Jmax

2

An infinite current sheet lying in the yz plane carries a sinus-
oidal current that has a maximum density of 5.00 A/m. 
(a) Find the maximum values of the radiated magnetic and
electric fields.
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34.27, and 34.28:

(34.29)

The intensity of the wave, which equals the average value of S, is

(34.30)

This intensity represents the power per unit area of the outgoing wave on each
side of the sheet. The total rate of energy emitted per unit area of the conductor is

Optional Section

PRODUCTION OF ELECTROMAGNETIC
WAVES BY AN ANTENNA

Neither stationary charges nor steady currents can produce electromagnetic waves.
Whenever the current through a wire changes with time, however, the wire emits

34.6

2Sav � �0 J 2
maxc /4.

I � Sav �
�0 J 2

maxc
8

S �
EB
�0

�
�0 J 2

maxc
4

 cos2(kx � �t)

Accelerating charges produce
electromagnetic radiation

Using the values 
and we get

(b) What is the average power incident on a flat surface
that is parallel to the sheet and has an area of 3.00 m2? (The
length and width of this surface are both much greater than
the wavelength of the radiation.)

942 V/m�

E max �
(4� � 10�7 T 
m/A)(5.00 A/m)(3.00 � 108 m/s)

2

3.14 � 10�6 T�

Bmax �
(4� � 10�7 T 
m/A)(5.00 A/m)

2

c � 3.00 � 108 m/s,
�0 � 4� � 10�7 T 
m/A, Jmax � 5.00 A/m, Solution The intensity, or power per unit area, radiated in

each direction by the current sheet is given by Equation 34.30:

Multiplying this by the area of the surface, we obtain the inci-
dent power:

The result is independent of the distance from the current
sheet because we are dealing with a plane wave.

3.54 � 103 W�

� � IA � (1.18 � 103 W/m2)(3.00 m2)

 � 1.18 � 103 W/m2

 �  
(4� � 10�7 T
m/A)(5.00 A/m)2(3.00 � 108 m/s)

8

I �
�0 J 2

maxc
8
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Figure 34.12 The electric field set up by charges oscillating in an antenna. The field moves
away from the antenna with the speed of light.
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electromagnetic radiation. The fundamental mechanism responsible for this
radiation is the acceleration of a charged particle. Whenever a charged par-
ticle accelerates, it must radiate energy.

An alternating voltage applied to the wires of an antenna forces an electric
charge in the antenna to oscillate. This is a common technique for accelerating
charges and is the source of the radio waves emitted by the transmitting antenna
of a radio station. Figure 34.12 shows how this is done. Two metal rods are con-
nected to a generator that provides a sinusoidally oscillating voltage. This causes
charges to oscillate in the two rods. At the upper rod is given a maximum
positive charge and the bottom rod an equal negative charge, as shown in Figure
34.12a. The electric field near the antenna at this instant is also shown in Figure
34.12a. As the positive and negative charges decrease from their maximum values,
the rods become less charged, the field near the rods decreases in strength, and
the downward-directed maximum electric field produced at moves away
from the rod. (A magnetic field oscillating in a direction perpendicular to the
plane of the diagram in Fig. 34.12 accompanies the oscillating electric field, but it
is not shown for the sake of clarity.) When the charges on the rods are momentar-
ily zero (Fig. 34.12b), the electric field at the rod has dropped to zero. This occurs
at a time equal to one quarter of the period of oscillation.

As the generator charges the rods in the opposite sense from that at the begin-
ning, the upper rod soon obtains a maximum negative charge and the lower rod a
maximum positive charge (Fig. 34.12c); this results in an electric field near the
rod that is directed upward after a time equal to one-half the period of oscillation.
The oscillations continue as indicated in Figure 34.12d. The electric field near the
antenna oscillates in phase with the charge distribution. That is, the field points
down when the upper rod is positive and up when the upper rod is negative. Fur-
thermore, the magnitude of the field at any instant depends on the amount of
charge on the rods at that instant.

As the charges continue to oscillate (and accelerate) between the rods, the

t � 0

t � 0,

6 We have neglected the fields caused by the wires leading to the rods. This is a good approximation if
the circuit dimensions are much less than the length of the rods.

+ –

(c)

+ –

(a)

+ –

(b)

I = 0 E = 0

B = 0

I(t )

E

B

I = 0

E

B = 0

+

+

+

–

–

–

S

–

–

–

+

+

+

Figure 34.13 A pair of metal rods connected to a battery. (a) When the switch is open and no
current exists, the electric and magnetic fields are both zero. (b) Immediately after the switch is
closed, the rods are being charged (so a current exists). Because the current is changing, the
rods generate changing electric and magnetic fields. (c) When the rods are fully charged, the
current is zero, the electric field is a maximum, and the magnetic field is zero.
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electric field they set up moves away from the antenna at the speed of light. As you
can see from Figure 34.12, one cycle of charge oscillation produces one wave-
length in the electric-field pattern.

Next, consider what happens when two conducting rods are connected to the
terminals of a battery (Fig. 34.13). Before the switch is closed, the current is zero,
so no fields are present (Fig. 34.13a). Just after the switch is closed, positive charge
begins to build up on one rod and negative charge on the other (Fig. 34.13b), a
situation that corresponds to a time-varying current. The changing charge distrib-
ution causes the electric field to change; this in turn produces a magnetic field
around the rods.6 Finally, when the rods are fully charged, the current is zero;
hence, no magnetic field exists at that instant (Fig. 34.13c).

Now let us consider the production of electromagnetic waves by a half-wave an-
tenna. In this arrangement, two conducting rods are connected to a source of alter-
nating voltage (such as an LC oscillator), as shown in Figure 34.14. The length of
each rod is equal to one quarter of the wavelength of the radiation that will be
emitted when the oscillator operates at frequency f. The oscillator forces charges
to accelerate back and forth between the two rods. Figure 34.14 shows the configu-
ration of the electric and magnetic fields at some instant when the current is up-
ward. The electric field lines resemble those of an electric dipole. (As a result, this
type of antenna is sometimes called a dipole antenna.) Because these charges are
continuously oscillating between the two rods, the antenna can be approximated
by an oscillating electric dipole. The magnetic field lines form concentric circles
around the antenna and are perpendicular to the electric field lines at all points.
The magnetic field is zero at all points along the axis of the antenna. Furthermore,
E and B are 90° out of phase in time because the current is zero when the charges
at the outer ends of the rods are at a maximum.

At the two points where the magnetic field is shown in Figure 34.14, the Poynt-
ing vector S is directed radially outward. This indicates that energy is flowing away
from the antenna at this instant. At later times, the fields and the Poynting vector
change direction as the current alternates. Because E and B are 90° out of phase
at points near the dipole, the net energy flow is zero. From this, we might con-
clude (incorrectly) that no energy is radiated by the dipole.

EE
S S

Bout Bin

I

I

+

+
+

+
+

–

–
–

–
–

×

Figure 34.14 A half-wave an-
tenna consists of two metal rods
connected to an alternating voltage
source. This diagram shows E and
B at an instant when the current is
upward. Note that the electric field
lines resemble those of a dipole
(shown in Fig. 23.21).

Figure 34.15 Electric field lines surrounding a dipole antenna at a given instant. The radiation
fields propagate outward from the antenna with a speed c .

Antenna
axis

λAntenna 2λλ 3λλ 4λλ 5λλ
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However, we find that energy is indeed radiated. Because the dipole fields fall
off as 1/r 3 (as shown in Example 23.6 for the electric field of a static dipole), they
are not important at great distances from the antenna. However, at these great dis-
tances, something else causes a type of radiation different from that close to the
antenna. The source of this radiation is the continuous induction of an electric
field by the time-varying magnetic field and the induction of a magnetic field by
the time-varying electric field, predicted by Equations 34.3 and 34.4. The electric
and magnetic fields produced in this manner are in phase with each other and
vary as 1/r. The result is an outward flow of energy at all times.

The electric field lines produced by a dipole antenna at some instant are
shown in Figure 34.15 as they propagate away from the antenna. Note that the in-
tensity and the power radiated are a maximum in a plane that is perpendicular to
the antenna and passing through its midpoint. Furthermore, the power radiated is
zero along the antenna’s axis. A mathematical solution to Maxwell’s equations for
the dipole antenna shows that the intensity of the radiation varies as (sin2)/r 2,
where  is measured from the axis of the antenna. The angular dependence of the
radiation intensity is sketched in Figure 34.16.

Electromagnetic waves can also induce currents in a receiving antenna. The
response of a dipole receiving antenna at a given position is a maximum when the
antenna axis is parallel to the electric field at that point and zero when the axis is
perpendicular to the electric field.

If the plane electromagnetic wave in Figure 34.11 represents the signal from a distant radio
station, what would be the best orientation for your portable radio antenna—(a) along the
x axis, (b) along the y axis, or (c) along the z axis?

THE SPECTRUM OF ELECTROMAGNETIC WAVES
The various types of electromagnetic waves are listed in Figure 34.17, which shows
the electromagnetic spectrum. Note the wide ranges of frequencies and wave-
lengths. No sharp dividing point exists between one type of wave and the next. Re-
member that all forms of the various types of radiation are produced by the
same phenomenon—accelerating charges. The names given to the types of
waves are simply for convenience in describing the region of the spectrum in
which they lie.

Radio waves are the result of charges accelerating through conducting wires.
Ranging from more than 104 m to about 0.1 m in wavelength, they are generated
by such electronic devices as LC oscillators and are used in radio and television
communication systems.

Microwaves have wavelengths ranging from approximately 0.3 m to 10�4 m
and are also generated by electronic devices. Because of their short wavelengths,
they are well suited for radar systems and for studying the atomic and molecular
properties of matter. Microwave ovens (in which the wavelength of the radiation is
	 � 0.122 m) are an interesting domestic application of these waves. It has been
suggested that solar energy could be harnessed by beaming microwaves to the
Earth from a solar collector in space.7

34.7

Quick Quiz 34.2

7 P. Glaser, “Solar Power from Satellites,” Phys. Today, February 1977, p. 30.

Radio waves

Microwaves

Infrared waves

Visible light waves

QuickLab
Rotate a portable radio (with a tele-
scoping antenna) about a horizontal
axis while it is tuned to a weak sta-
tion. Can you use what you learn
from this movement to verify the an-
swer to Quick Quiz 34.2?

y

x

Sθ

Figure 34.16 Angular depen-
dence of the intensity of radiation
produced by an oscillating electric
dipole.
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Infrared waves have wavelengths ranging from 10�3 m to the longest wave-
length of visible light, 7 � 10�7 m. These waves, produced by molecules and
room-temperature objects, are readily absorbed by most materials. The infrared
(IR) energy absorbed by a substance appears as internal energy because the en-
ergy agitates the atoms of the object, increasing their vibrational or translational
motion, which results in a temperature increase. Infrared radiation has practical
and scientific applications in many areas, including physical therapy, IR photogra-
phy, and vibrational spectroscopy.

Visible light, the most familiar form of electromagnetic waves, is the part of
the electromagnetic spectrum that the human eye can detect. Light is produced by
the rearrangement of electrons in atoms and molecules. The various wavelengths of
visible light, which correspond to different colors, range from red (	 �
7 � 10�7 m) to violet (	 � 4 � 10�7 m). The sensitivity of the human eye is a func-
tion of wavelength, being a maximum at a wavelength of about 5.5 � 10�7 m. With
this in mind, why do you suppose tennis balls often have a yellow-green color?

Ultraviolet waves cover wavelengths ranging from approximately 4 � 10�7 m
to 6 � 10�10 m. The Sun is an important source of ultraviolet (UV) light, which is
the main cause of sunburn. Sunscreen lotions are transparent to visible light but
absorb most UV light. The higher a sunscreen’s solar protection factor (SPF), the
greater the percentage of UV light absorbed. Ultraviolet rays have also been impli-

Wavelength

1 Å = 10–10m

1 nm

1 µm
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1 km
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TV, FM
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Visible light

Ultraviolet
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Gamma rays
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104
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µ

Radio waves

Ultraviolet waves

Figure 34.17 The electromagnetic spectrum. Note the overlap between adjacent wave types.

Satellite-dish television antennas re-
ceive television-station signals from
satellites in orbit around the Earth.
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cated in the formation of cataracts, a clouding of the lens inside the eye. Wearing
sunglasses that do not block UV light is worse for your eyes than wearing no sun-
glasses. The lenses of any sunglasses absorb some visible light, thus causing the
wearer’s pupils to dilate. If the glasses do not also block UV light, then more dam-
age may be done to the lens of the eye because of the dilated pupils. If you wear no
sunglasses at all, your pupils are contracted, you squint, and a lot less UV light en-
ters your eyes. High-quality sunglasses block nearly all the eye-damaging UV light.

Most of the UV light from the Sun is absorbed by ozone (O3) molecules in the
Earth’s upper atmosphere, in a layer called the stratosphere. This ozone shield
converts lethal high-energy UV radiation to infrared radiation, which in turn
warms the stratosphere. Recently, a great deal of controversy has arisen concern-
ing the possible depletion of the protective ozone layer as a result of the chemicals
emitted from aerosol spray cans and used as refrigerants.

X-rays have wavelengths in the range from approximately 10�8 m to 10�12 m.
The most common source of x-rays is the deceleration of high-energy electrons
bombarding a metal target. X-rays are used as a diagnostic tool in medicine and as
a treatment for certain forms of cancer. Because x-rays damage or destroy living tis-
sues and organisms, care must be taken to avoid unnecessary exposure or overex-
posure. X-rays are also used in the study of crystal structure because x-ray wave-
lengths are comparable to the atomic separation distances in solids (about 
0.1 nm).

X-rays

Gamma rays

A Half-Wave AntennaEXAMPLE 34.7
the signal is

Thus, to operate most efficiently, the antenna should have a
length of (3.19 m)/2 � 1.60 m. For practical reasons, car an-
tennas are usually one-quarter wavelength in size.

	 �
c
f

�
3.00 � 108 m/s
9.40 � 107 Hz

� 3.19 m

A half-wave antenna works on the principle that the opti-
mum length of the antenna is one-half the wavelength of
the radiation being received. What is the optimum length 
of a car antenna when it receives a signal of frequency 
94.0 MHz?

Solution Equation 16.14 tells us that the wavelength of

Gamma rays are electromagnetic waves emitted by radioactive nuclei (such as
60Co and 137Cs) and during certain nuclear reactions. High-energy gamma rays are
a component of cosmic rays that enter the Earth’s atmosphere from space. They
have wavelengths ranging from approximately 10�10 m to less than 10�14 m. They
are highly penetrating and produce serious damage when absorbed by living tis-
sues. Consequently, those working near such dangerous radiation must be pro-
tected with heavily absorbing materials, such as thick layers of lead.

The AM in AM radio stands for amplitude modulation, and FM stands for frequency modulation.
(The word modulate means “to change.”) If our eyes could see the electromagnetic waves
from a radio antenna, how could you tell an AM wave from an FM wave?

SUMMARY

Electromagnetic waves, which are predicted by Maxwell’s equations, have the

Quick Quiz 34.3
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following properties:

• The electric field and the magnetic field each satisfy a wave equation. These two
wave equations, which can be obtained from Maxwell’s third and fourth equa-
tions, are

(34.8)

(34.9)

• The waves travel through a vacuum with the speed of light c , where

(34.10)

• The electric and magnetic fields are perpendicular to each other and perpen-
dicular to the direction of wave propagation. (Hence, electromagnetic waves are
transverse waves.)

• The instantaneous magnitudes of E and B in an electromagnetic wave are re-
lated by the expression

(34.13)

• The waves carry energy. The rate of flow of energy crossing a unit area is de-
scribed by the Poynting vector S, where

(34.18)

• They carry momentum and hence exert pressure on surfaces. If an electromag-
netic wave whose Poynting vector is S is completely absorbed by a surface upon
which it is normally incident, the radiation pressure on that surface is

(complete absorption) (34.24)

If the surface totally reflects a normally incident wave, the pressure is doubled.
The electric and magnetic fields of a sinusoidal plane electromagnetic wave

propagating in the positive x direction can be written

(34.11)

(34.12)

where � is the angular frequency of the wave and k is the angular wave number.
These equations represent special solutions to the wave equations for E and B . Be-

B � Bmax cos(kx � �t)

E � E max cos(kx � �t)

P �
S
c

S �
1

�0
 E � B

E
B

� c

c �
1

√�0�0

� 3.00 � 108 m/s

�2B
�x2 � �0�0

�2B
�t2

�2E
�x2 � �0�0 

�2E
�t2

QUESTIONS

4. What is the fundamental cause of electromagnetic radia-
tion?

5. Electrical engineers often speak of the radiation resis-
tance of an antenna. What do you suppose they mean by
this phrase?

6. If a high-frequency current is passed through a solenoid
containing a metallic core, the core warms up by induc-

1. For a given incident energy of an electromagnetic wave,
why is the radiation pressure on a perfectly reflecting sur-
face twice as great as that on a perfectly absorbing sur-
face?

2. Describe the physical significance of the Poynting vector.
3. Do all current-carrying conductors emit electromagnetic

waves? Explain.



Problems 1097

tion. This process also cooks foods in microwave ovens.
Explain why the materials warm up in these situations.

7. Before the advent of cable television and satellite dishes,
homeowners either mounted a television antenna on the
roof or used “rabbit ears” atop their sets (Fig. Q34.7).
Certain orientations of the receiving antenna on a televi-
sion set gave better reception than others. Furthermore,
the best orientation varied from station to station. Explain.

9. If you charge a comb by running it through your hair and
then hold the comb next to a bar magnet, do the electric
and magnetic fields that are produced constitute an elec-
tromagnetic wave?

10. An empty plastic or glass dish is cool to the touch right af-
ter it is removed from a microwave oven. How can this be
possible? (Assume that your electric bill has been paid.)

11. Often when you touch the indoor antenna on a radio or
television receiver, the reception instantly improves. Why?

12. Explain how the (dipole) VHF antenna of a television set
works. (See Fig. Q34.7.)

13. Explain how the UHF (loop) antenna of a television set
works. (See Fig. Q34.7.)

14. Explain why the voltage induced in a UHF (loop) an-
tenna depends on the frequency of the signal, whereas
the voltage in a VHF (dipole) antenna does not. (See Fig.
Q34.7.)

15. List as many similarities and differences between sound
waves and light waves as you can.

16. What does a radio wave do to the charges in the receiving
antenna to provide a signal for your car radio?

17. What determines the height of an AM radio station’s
broadcast antenna?

18. Some radio transmitters use a “phased array” of antennas.
What is their purpose?

19. What happens to the radio reception in an airplane as it
flies over the (vertical) dipole antenna of the control
tower?

20. When light (or other electromagnetic radiation) travels
across a given region, what oscillates?

21. Why should an infrared photograph of a person look dif-
ferent from a photograph of that person taken with visi-
ble light?

22. Suppose a creature from another planet had eyes that
were sensitive to infrared radiation. Describe what the
creature would see if it looked around the room you are
now in. That is, what would be bright and what would be
dim?

8. Does a wire connected to the terminals of a battery emit
an electromagnetic wave? Explain.

Figure Q34.7 Questions 7, 12, 13, and 14. The 
V-shaped antenna is the VHF antenna. (George Semple)

PROBLEMS

transparent nonmagnetic substance is 
where � is the dielectric constant of the substance. 
Determine the speed of light in water, which has a 
dielectric constant at optical frequencies of 1.78.

3. An electromagnetic wave in vacuum has an electric field
amplitude of 220 V/m. Calculate the amplitude of the
corresponding magnetic field.

4. Calculate the maximum value of the magnetic field of
an electromagnetic wave in a medium where the speed
of light is two thirds of the speed of light in vacuum and
where the electric field amplitude is 7.60 mV/m.

v � 1/√��0�0 ,Section 34.1 Maxwell’s Equations and 
Hertz’s Discoveries

Section 34.2 Plane Electromagnetic Waves
Note: Assume that the medium is vacuum unless specified 
otherwise.

1. If the North Star, Polaris, were to burn out today, in
what year would it disappear from our vision? Take 
the distance from the Earth to Polaris as 
6.44 � 1018 m.

2. The speed of an electromagnetic wave traveling in a 

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

WEB

WEB

5. Figure 34.3a shows a plane electromagnetic sinusoidal
wave propagating in what we choose as the x direction.
Suppose that the wavelength is 50.0 m, and the electric
field vibrates in the xy plane with an amplitude of 
22.0 V/m. Calculate (a) the frequency of the wave and
(b) the magnitude and direction of B when the electric
field has its maximum value in the negative y direction.
(c) Write an expression for B in the form

with numerical values for Bmax , k , and �.
6. Write down expressions for the electric and magnetic

fields of a sinusoidal plane electromagnetic wave having
a frequency of 3.00 GHz and traveling in the positive 
x direction. The amplitude of the electric field is 
300 V/m.

7. In SI units, the electric field in an electromagnetic wave
is described by

Find (a) the amplitude of the corresponding magnetic
field, (b) the wavelength 	, and (c) the frequency f.

8. Verify by substitution that the following equations are
solutions to Equations 34.8 and 34.9, respectively:

9. Review Problem. A standing-wave interference pat-
tern is set up by radio waves between two metal sheets
2.00 m apart. This is the shortest distance between the
plates that will produce a standing-wave pattern. What is
the fundamental frequency?

10. A microwave oven is powered by an electron tube called
a magnetron, which generates electromagnetic waves of
frequency 2.45 GHz. The microwaves enter the oven
and are reflected by the walls. The standing-wave pat-
tern produced in the oven can cook food unevenly, with
hot spots in the food at antinodes and cool spots at
nodes, so a turntable is often used to rotate the food
and distribute the energy. If a microwave oven intended
for use with a turntable is instead used with a cooking
dish in a fixed position, the antinodes can appear as
burn marks on foods such as carrot strips or cheese.
The separation distance between the burns is measured
to be 6 cm � 5%. From these data, calculate the speed
of the microwaves.

Section 34.3 Energy Carried by Electromagnetic Waves
11. How much electromagnetic energy per cubic meter is

contained in sunlight, if the intensity of sunlight at the
Earth’s surface under a fairly clear sky is 1 000 W/m2?

12. An AM radio station broadcasts isotropically (equally in
all directions) with an average power of 4.00 kW. A di-
pole receiving antenna 65.0 cm long is at a location
4.00 miles from the transmitter. Compute the emf that

B � Bmax cos(kx � �t)

E � E max cos(kx � �t)

E y � 100 sin(1.00 � 107x � �t)

B � B max cos(kx � �t)

is induced by this signal between the ends of the receiv-
ing antenna.

13. What is the average magnitude of the Poynting vector
5.00 miles from a radio transmitter broadcasting
isotropically with an average power of 250 kW?

14. A monochromatic light source emits 100 W of electro-
magnetic power uniformly in all directions. (a) Calcu-
late the average electric-field energy density 1.00 m
from the source. (b) Calculate the average magnetic-
field energy density at the same distance from the
source. (c) Find the wave intensity at this location.

15. A community plans to build a facility to convert solar ra-
diation to electric power. They require 1.00 MW of
power, and the system to be installed has an efficiency
of 30.0% (that is, 30.0% of the solar energy incident on
the surface is converted to electrical energy). What
must be the effective area of a perfectly absorbing sur-
face used in such an installation, assuming a constant
intensity of 1 000 W/m2?

16. Assuming that the antenna of a 10.0-kW radio station
radiates spherical electromagnetic waves, compute the
maximum value of the magnetic field 5.00 km from the
antenna, and compare this value with the surface mag-
netic field of the Earth.

17. The filament of an incandescent lamp has a 150-� resis-
tance and carries a direct current of 1.00 A. The fila-
ment is 8.00 cm long and 0.900 mm in radius. (a) Cal-
culate the Poynting vector at the surface of the
filament. (b) Find the magnitude of the electric and
magnetic fields at the surface of the filament.

18. In a region of free space the electric field at an instant of
time is N/C and the mag-
netic field is 
(a) Show that the two fields are perpendicular to each
other. (b) Determine the Poynting vector for these fields.

19. A lightbulb filament has a resistance of 110 �. The bulb
is plugged into a standard 120-V (rms) outlet and emits
1.00% of the electric power delivered to it as electro-
magnetic radiation of frequency f. Assuming that the
bulb is covered with a filter that absorbs all other fre-
quencies, find the amplitude of the magnetic field 
1.00 m from the bulb.

20. A certain microwave oven contains a magnetron that
has an output of 700 W of microwave power for an elec-
trical input power of 1.40 kW. The microwaves are en-
tirely transferred from the magnetron into the oven
chamber through a waveguide, which is a metal tube of
rectangular cross-section with a width of 6.83 cm and a
height of 3.81 cm. (a) What is the efficiency of the mag-
netron? (b) Assuming that the food is absorbing all the
microwaves produced by the magnetron and that no en-
ergy is reflected back into the waveguide, find the direc-
tion and magnitude of the Poynting vector, averaged
over time, in the waveguide near the entrance to the
oven chamber. (c) What is the maximum electric field
magnitude at this point?

0.290k) �T.B � (0.200 i � 0.080 0 j �
E � (80.0 i � 32.0 j � 64.0k)
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21. High-power lasers in factories are used to cut through
cloth and metal (Fig. P34.21). One such laser has a
beam diameter of 1.00 mm and generates an electric
field with an amplitude of 0.700 MV/m at the target.
Find (a) the amplitude of the magnetic field produced,
(b) the intensity of the laser, and (c) the power deliv-
ered by the laser.

tum does the wave transfer to the mirror each second?
(b) Find the force that the wave exerts on the mirror.

27. A possible means of space flight is to place a perfectly
reflecting aluminized sheet into orbit around the Earth
and then use the light from the Sun to push this “solar
sail.” Suppose a sail of area 6.00 � 105 m2 and mass 
6 000 kg is placed in orbit facing the Sun. (a) What
force is exerted on the sail? (b) What is the sail’s accel-
eration? (c) How long does it take the sail to reach the
Moon, 3.84 � 108 m away? Ignore all gravitational ef-
fects, assume that the acceleration calculated in part
(b) remains constant, and assume a solar intensity of 
1 340 W/m2.

28. A 100-mW laser beam is reflected back upon itself by a
mirror. Calculate the force on the mirror.

29. A 15.0-mW helium–neon laser (	 � 632.8 nm) emits 
a beam of circular cross-section with a diameter of 
2.00 mm. (a) Find the maximum electric field in the
beam. (b) What total energy is contained in a 1.00-m
length of the beam? (c) Find the momentum carried by
a 1.00-m length of the beam.

30. Given that the intensity of solar radiation incident on
the upper atmosphere of the Earth is 1 340 W/m2, de-
termine (a) the solar radiation incident on Mars, 
(b) the total power incident on Mars, and (c) the total
force acting on the planet. (d) Compare this force to
the gravitational attraction between Mars and the Sun
(see Table 14.2).

31. A plane electromagnetic wave has an intensity of 
750 W/m2. A flat rectangular surface of dimensions 
50.0 cm � 100 cm is placed perpendicular to the direc-
tion of the wave. If the surface absorbs half of the en-
ergy and reflects half, calculate (a) the total energy ab-
sorbed by the surface in 1.00 min and (b) the
momentum absorbed in this time.

(Optional)
Section 34.5 Radiation from an Infinite Current Sheet

32. A large current-carrying sheet emits radiation in each
direction (normal to the plane of the sheet) with an in-
tensity of 570 W/m2. What maximum value of sinus-
oidal current density is required?

33. A rectangular surface of dimensions 120 cm � 40.0 cm
is parallel to and 4.40 m away from a much larger con-
ducting sheet in which a sinusoidally varying surface
current exists that has a maximum value of 10.0 A/m.
(a) Calculate the average power that is incident on the
smaller sheet. (b) What power per unit area is radiated
by the larger sheet?

(Optional)
Section 34.6 Production of Electromagnetic 
Waves by an Antenna

34. Two hand-held radio transceivers with dipole antennas
are separated by a great fixed distance. Assuming that
the transmitting antenna is vertical, what fraction of the

WEB

22. At what distance from a 100-W electromagnetic-wave
point source does 

23. A 10.0-mW laser has a beam diameter of 1.60 mm. 
(a) What is the intensity of the light, assuming it is uni-
form across the circular beam? (b) What is the average
energy density of the beam?

24. At one location on the Earth, the rms value of the mag-
netic field caused by solar radiation is 1.80 �T. From
this value, calculate (a) the average electric field due to
solar radiation, (b) the average energy density of the so-
lar component of electromagnetic radiation at this loca-
tion, and (c) the magnitude of the Poynting vector for
the Sun’s radiation. (d) Compare the value found in
part (c) with the value of the solar intensity given in Ex-
ample 34.5.

Section 34.4 Momentum and Radiation Pressure
25. A radio wave transmits 25.0 W/m2 of power per unit

area. A flat surface of area A is perpendicular to the di-
rection of propagation of the wave. Calculate the radia-
tion pressure on it if the surface is a perfect absorber.

26. A plane electromagnetic wave of intensity 6.00 W/m2

strikes a small pocket mirror, of area 40.0 cm2, held per-
pendicular to the approaching wave. (a) What momen-

E max � 15.0 V/m?

Figure P34.21 A laser cutting device mounted on a robot
arm is being used to cut through a metallic plate. (Philippe
Plailly/SPL/Photo Researchers)
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maximum received power will occur in the receiving an-
tenna when it is inclined from the vertical by (a) 15.0°?
(b) 45.0°? (c) 90.0°?

35. Two radio-transmitting antennas are separated by half
the broadcast wavelength and are driven in phase with
each other. In which directions are (a) the strongest
and (b) the weakest signals radiated?

36. Figure 34.14 shows a Hertz antenna (also known as a
half-wave antenna, since its length is 	/2). The antenna
is far enough from the ground that reflections do not
significantly affect its radiation pattern. Most AM radio
stations, however, use a Marconi antenna, which con-
sists of the top half of a Hertz antenna. The lower end
of this (quarter-wave) antenna is connected to earth
ground, and the ground itself serves as the missing
lower half. What are the heights of the Marconi anten-
nas for radio stations broadcasting at (a) 560 kHz and
(b) 1 600 kHz?

37. Review Problem. Accelerating charges radiate 
electromagnetic waves. Calculate the wavelength of 
radiation produced by a proton in a cyclotron with a 
radius of 0.500 m and a magnetic field with a magni-
tude of 0.350 T.

38. Review Problem. Accelerating charges radiate 
electromagnetic waves. Calculate the wavelength of ra-
diation produced by a proton in a cyclotron of radius R
and magnetic field B.

Section 34.7 The Spectrum of Electromagnetic Waves
39. (a) Classify waves with frequencies of 2 Hz, 2 kHz, 

2 MHz, 2 GHz, 2 THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz
on the electromagnetic spectrum. (b) Classify waves
with wavelengths of 2 km, 2 m, 2 mm, 2 �m, 2 nm, 
2 pm, 2 fm, and 2 am.

40. Compute an order-of-magnitude estimate for the fre-
quency of an electromagnetic wave with a wavelength
equal to (a) your height; (b) the thickness of this sheet
of paper. How is each wave classified on the electromag-
netic spectrum?

41. The human eye is most sensitive to light having a wave-
length of 5.50 � 10�7 m, which is in the green–yellow
region of the visible electromagnetic spectrum. What is
the frequency of this light?

42. Suppose you are located 180 m from a radio transmit-
ter. (a) How many wavelengths are you from the trans-
mitter if the station calls itself 1150 AM? (The AM band
frequencies are in kilohertz.) (b) What if this station
were 98.1 FM? (The FM band frequencies are in mega-
hertz.)

43. What are the wavelengths of electromagnetic waves in
free space that have frequencies of (a) 5.00 � 1019 Hz
and (b) 4.00 � 109 Hz?

44. A radar pulse returns to the receiver after a total travel
time of 4.00 � 10�4 s. How far away is the object that re-
flected the wave?

45. This just in! An important news announcement is trans-
mitted by radio waves to people sitting next to their ra-
dios, 100 km from the station, and by sound waves to
people sitting across the newsroom, 3.00 m from the
newscaster. Who receives the news first? Explain. Take
the speed of sound in air to be 343 m/s.

46. The U.S. Navy has long proposed the construction of
extremely low-frequency (ELF) communication sys-
tems. Such waves could penetrate the oceans to reach
distant submarines. Calculate the length of a quarter-
wavelength antenna for a transmitter generating ELF
waves with a frequency of 75.0 Hz. How practical is this?

47. What are the wavelength ranges in (a) the AM radio
band (540–1 600 kHz), and (b) the FM radio band
(88.0–108 MHz)?

48. There are 12 VHF television channels (Channels 2–13)
that lie in the range of frequencies between 54.0 MHz
and 216 MHz. Each channel is assigned a width of 
6.0 MHz, with the two ranges 72.0–76.0 MHz and
88.0–174 MHz reserved for non-TV purposes. (Chan-
nel 2, for example, lies between 54.0 and 60.0 MHz.)
Calculate the wavelength ranges for (a) Channel 4, 
(b) Channel 6, and (c) Channel 8.

ADDITIONAL PROBLEMS

49. Assume that the intensity of solar radiation incident on
the cloud tops of Earth is 1 340 W/m2. (a) Calculate the
total power radiated by the Sun, taking the average
Earth–Sun separation to be 1.496 � 1011 m. (b) Deter-
mine the maximum values of the electric and magnetic
fields at the Earth’s location due to solar radiation.

50. The intensity of solar radiation at the top of the Earth’s
atmosphere is 1 340 W/m2. Assuming that 60% of the
incoming solar energy reaches the Earth’s surface and
assuming that you absorb 50% of the incident energy,
make an order-of-magnitude estimate of the amount of
solar energy you absorb in a 60-min sunbath.

51. Review Problem. In the absence of cable input or a
satellite dish, a television set can use a dipole-receiving
antenna for VHF channels and a loop antenna for UHF
channels (see Fig. Q34.7). The UHF antenna produces
an emf from the changing magnetic flux through the
loop. The TV station broadcasts a signal with a fre-
quency f, and the signal has an electric-field amplitude
Emax and a magnetic-field amplitude Bmax at the loca-
tion of the receiving antenna. (a) Using Faraday’s law,
derive an expression for the amplitude of the emf 
that appears in a single-turn circular loop antenna with
a radius r, which is small compared to the wavelength of
the wave. (b) If the electric field in the signal points ver-
tically, what should be the orientation of the loop for
best reception?

52. Consider a small, spherical particle of radius r located
in space a distance R from the Sun. (a) Show that the
ratio Frad/Fgrav is proportional to 1/r, where Frad is the

WEB



Problems 1101

force exerted by solar radiation and Fgrav is the force of
gravitational attraction. (b) The result of part (a)
means that, for a sufficiently small value of r, the force
exerted on the particle by solar radiation exceeds the
force of gravitational attraction. Calculate the value of r
for which the particle is in equilibrium under the two
forces. (Assume that the particle has a perfectly absorb-
ing surface and a mass density of 1.50 g/cm3. Let the
particle be located 3.75 � 1011 m from the Sun, and use
214 W/m2 as the value of the solar intensity at that
point.)

53. A dish antenna with a diameter of 20.0 m receives 
(at normal incidence) a radio signal from a distant
source, as shown in Figure P34.53. The radio signal 
is a continuous sinusoidal wave with amplitude 

Assume that the antenna absorbs all the
radiation that falls on the dish. (a) What is the ampli-
tude of the magnetic field in this wave? (b) What is 
the intensity of the radiation received by this antenna? 
(c) What power is received by the antenna? (d) What
force is exerted on the antenna by the radio waves?

0.200 �V/m.
E max �

n turns of wire per unit length. At a particular instant,
the solenoid current is i and is increasing at the rate
di/dt. Ignore the resistance of the wire. (a) Find the
magnitude and direction of the Poynting vector over
the interior surface of this section of solenoid. (b) Find
the rate at which the energy stored in the magnetic
field of the inductor is increasing. (c) Express the
power in terms of the voltage �V across the inductor.

56. A goal of the Russian space program is to illuminate
dark northern cities with sunlight reflected to Earth
from a 200-m-diameter mirrored surface in orbit. Sev-
eral smaller prototypes have already been constructed
and put into orbit. (a) Assume that sunlight with an in-
tensity of 1 340 W/m2 falls on the mirror nearly perpen-
dicularly, and that the atmosphere of the Earth allows
74.6% of the energy of sunlight to pass through it in
clear weather. What power is received by a city when the
space mirror is reflecting light to it? (b) The plan is for
the reflected sunlight to cover a circle with a diameter
of 8.00 km. What is the intensity of the light (the aver-
age magnitude of the Poynting vector) received by the
city? (c) This intensity is what percentage of the vertical
component of sunlight at Saint Petersburg in January,
when the sun reaches an angle of 7.00° above the hori-
zon at noon?

57. In 1965 Arno Penzias and Robert Wilson discovered the
cosmic microwave radiation that was left over from the
Big Bang expansion of the Universe. Suppose the en-
ergy density of this background radiation is equal to
4.00 � 10�14 J/m3. Determine the corresponding 
electric-field amplitude.

58. A hand-held cellular telephone operates in the 860- to
900-MHz band and has a power output of 0.600 W from
an antenna 10.0 cm long (Fig. P34.58). (a) Find the av-
erage magnitude of the Poynting vector 4.00 cm from
the antenna, at the location of a typical person’s head.
Assume that the antenna emits energy with cylindrical
wave fronts. (The actual radiation from antennas fol-
lows a more complicated pattern, as suggested by Fig.
34.15.) (b) The ANSI/IEEE C95.1-1991 maximum ex-
posure standard is 0.57 mW/cm2 for persons living near

54. A parallel-plate capacitor has circular plates of radius r
separated by distance �. It has been charged to voltage
�V and is being discharged as current i is drawn from
it. Assume that the plate separation � is very small com-
pared to r, so the electric field is essentially constant in
the volume between the plates and is zero outside this
volume. Note that the displacement current between
the capacitor plates creates a magnetic field. (a) Deter-
mine the magnitude and direction of the Poynting vec-
tor at the cylindrical surface surrounding the electric
field volume. (b) Use the value of the Poynting vector
and the lateral surface area of the cylinder to find the
total power transfer for the capacitor. (c) What are the
changes to these results if the direction of the current is
reversed, so the capacitor is charging?

55. A section of a very long air-core solenoid, far from ei-
ther end, forms an inductor with radius r, length �, and

Figure P34.53

Figure P34.58. (©1998 Adam Smith/FPG International)
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cellular telephone base stations, who would be continu-
ously exposed to the radiation. Compare the answer to
part (a) with this standard.

59. A linearly polarized microwave with a wavelength of
1.50 cm is directed along the positive x axis. The elec-
tric field vector has a maximum value of 175 V/m and
vibrates in the xy plane. (a) Assume that the magnetic-
field component of the wave can be written in the form

and give values for Bmax , k , and
�. Also, determine in which plane the magnetic-field
vector vibrates. (b) Calculate the magnitude of the
Poynting vector for this wave. (c) What maximum radia-
tion pressure would this wave exert if it were directed at
normal incidence onto a perfectly reflecting sheet? 
(d) What maximum acceleration would be imparted to
a 500-g sheet (perfectly reflecting and at normal inci-
dence) with dimensions of 1.00 m � 0.750 m?

60. Review Section 20.7 on thermal radiation. (a) An elderly
couple have installed a solar water heater on the roof of
their house (Fig. P34.60). The solar-energy collector
consists of a flat closed box with extraordinarily good
thermal insulation. Its interior is painted black, and its
front face is made of insulating glass. Assume that its
emissivity for visible light is 0.900 and its emissivity for
infrared light is 0.700. Assume that the noon Sun 
shines in perpendicular to the glass, with intensity 
1 000 W/m2, and that no water is then entering or leav-
ing the box. Find the steady-state temperature of the in-
terior of the box. (b) The couple have built an identical
box with no water tubes. It lies flat on the ground in
front of the house. They use it as a cold frame, where
they plant seeds in early spring. If the same noon Sun is
at an elevation angle of 50.0°, find the steady-state tem-
perature of the interior of this box, assuming that the
ventilation slots are tightly closed.

B � Bmax sin(kx � �t),

ously toward the spacecraft. (a) Calculate how long it
takes him to reach the spacecraft by this method. 
(b) Suppose, instead, that he decides to throw the light
source away in a direction opposite the spacecraft. If the
light source has a mass of 3.00 kg and, after being
thrown, moves at 12.0 m/s relative to the recoiling
astronaut, how long does it take for the astronaut to
reach the spacecraft?

62. The Earth reflects approximately 38.0% of the incident
sunlight from its clouds and surface. (a) Given that the
intensity of solar radiation is 1 340 W/m2, what is the ra-
diation pressure on the Earth, in pascals, when the Sun
is straight overhead? (b) Compare this to normal atmos-
pheric pressure at the Earth’s surface, which is 101 kPa.

63. Lasers have been used to suspend spherical glass beads
in the Earth’s gravitational field. (a) If a bead has a
mass of 1.00 �g and a density of 0.200 g/cm3, deter-
mine the radiation intensity needed to support the
bead. (b) If the beam has a radius of 0.200 cm, what
power is required for this laser?

64. Lasers have been used to suspend spherical glass beads
in the Earth’s gravitational field. (a) If a bead has a
mass m and a density �, determine the radiation inten-
sity needed to support the bead. (b) If the beam has a
radius r, what power is required for this laser?

65. Review Problem. A 1.00-m-diameter mirror focuses
the Sun’s rays onto an absorbing plate 2.00 cm in ra-
dius, which holds a can containing 1.00 L of water at
20.0°C. (a) If the solar intensity is 1.00 kW/m2, what is
the intensity on the absorbing plate? (b) What are the
maximum magnitudes of the fields E and B? (c) If
40.0% of the energy is absorbed, how long would it 
take to bring the water to its boiling point?

66. A microwave source produces pulses of 20.0-GHz radia-
tion, with each pulse lasting 1.00 ns. A parabolic reflec-
tor is used to focus these pulses into a
parallel beam of radiation, as shown in Figure P34.66.
The average power during each pulse is 25.0 kW. 
(a) What is the wavelength of these microwaves? 
(b) What is the total energy contained in each pulse?
(c) Compute the average energy density inside each
pulse. (d) Determine the amplitude of the electric and
magnetic fields in these microwaves. (e) Compute the
force exerted on the surface during the 1.00-ns dura-
tion of each pulse if the pulsed beam strikes an absorb-
ing surface.

(R � 6.00 cm)

61. An astronaut, stranded in space 10.0 m from his space-
craft and at rest relative to it, has a mass (including
equipment) of 110 kg. Since he has a 100-W light
source that forms a directed beam, he decides to use
the beam as a photon rocket to propel himself continu-

Figure P34.60 (©Bill Banaszewski/Visuals Unlimited)

Figure P34.66

12.0 cm
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67. The electromagnetic power radiated by a nonrelativistic
moving point charge q having an acceleration a is

where �0 is the permittivity of vacuum (free space) and c
is the speed of light in vacuum. (a) Show that the right
side of this equation is in watts. (b) If an electron is
placed in a constant electric field of 100 N/C, deter-
mine the acceleration of the electron and the electro-
magnetic power radiated by this electron. (c) If a pro-
ton is placed in a cyclotron with a radius of 0.500 m and
a magnetic field of magnitude 0.350 T, what electro-
magnetic power is radiated by this proton?

68. A thin tungsten filament with a length of 1.00 m radi-
ates 60.0 W of power in the form of electromagnetic
waves. A perfectly absorbing surface, in the form of a
hollow cylinder with a radius of 5.00 cm and a length of
1.00 m, is placed concentrically with the filament. Cal-
culate the radiation pressure acting on the cylinder. (As-
sume that the radiation is emitted in the radial direc-
tion, and neglect end effects.)

69. The torsion balance shown in Figure 34.8 is used in an
experiment to measure radiation pressure. The suspen-
sion fiber exerts an elastic restoring torque. Its torque
constant is 1.00 � 10�11 N 
 m/degree, and the length
of the horizontal rod is 6.00 cm. The beam from a 
3.00-mW helium–neon laser is incident on the black
disk, and the mirror disk is completely shielded. Calcu-
late the angle between the equilibrium positions of the
horizontal bar when the beam is switched from “off” to
“on.”

70. Review Problem. The study of Creation suggests a
Creator with a remarkable liking for beetles and for

� �
q2a2

6��0c 3

small red stars. A red star, typical of the most common
kind, radiates electromagnetic waves with a power of
6.00 � 1023 W, which is only 0.159% of the luminosity
of the Sun. Consider a spherical planet in a circular or-
bit around this star. Assume that the emissivity of the
planet, as defined in Section 20.7, is equal for infrared
and visible light. Assume that the planet has a uniform
surface temperature. Identify the projected area over
which the planet absorbs starlight, and the radiating
area of the planet. If beetles thrive at a temperature of
310 K, what should the radius of the planet’s orbit be?

71. A “laser cannon” of a spacecraft has a beam of cross-
sectional area A . The maximum electric field in the
beam is E . At what rate a will an asteroid accelerate
away from the spacecraft if the laser beam strikes the
asteroid perpendicularly to its surface, and the surface
is nonreflecting? The mass of the asteroid is m . Neglect
the acceleration of the spacecraft.

72. A plane electromagnetic wave varies sinusoidally at 
90.0 MHz as it travels along the �x direction. The peak
value of the electric field is 2.00 mV/m, and it is di-
rected along the � y direction. (a) Find the wavelength,
the period, and the maximum value of the magnetic
field. (b) Write expressions in SI units for the space and
time variations of the electric field and of the magnetic
field. Include numerical values, and include subscripts
to indicate coordinate directions. (c) Find the average
power per unit area that this wave propagates through
space. (d) Find the average energy density in the radia-
tion (in joules per cubic meter). (e) What radiation
pressure would this wave exert upon a perfectly reflect-
ing surface at normal incidence?

ANSWERS TO QUICK QUIZZES

34.3 The AM wave, because its amplitude is changing, would
appear to vary in brightness. The FM wave would have
changing colors because the color we perceive is related
to the frequency of the light.

34.1 Zero. Figure 34.3b shows that the B and E vectors reach
their maximum and minimum values at the same time.

34.2 (b) Along the y axis because that is the orientation of
the electric field. The electric field moves electrons in
the antenna, thus inducing a current that is detected
and amplified.
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areas of the Earth see a total eclipse, other areas see a
partial eclipse, and most areas see no eclipse.

17. The display windows of some department stores are
slanted slightly inward at the bottom. This is to decrease
the glare from streetlights or the Sun, which would make
it difficult for shoppers to see the display inside. Sketch a
light ray reflecting off such a window to show how this
technique works.

18. When two colors of light X and Y are sent through a glass
prism, X is bent more than Y. Which color travels more
slowly in the prism?

19. Why does the arc of a rainbow appear with red on top
and violet on the bottom?

20. Under what conditions is a mirage formed? On a hot day,
what are we seeing when we observe “water on the road”?

Figure Q35.10

PROBLEMS

3. In an experiment to measure the speed of light using
the apparatus of Fizeau (see Fig. 35.2), the distance be-
tween light source and mirror was 11.45 km and the
wheel had 720 notches. The experimentally determined
value of c was 2.998 � 108 m/s. Calculate the minimum
angular speed of the wheel for this experiment.

4. Figure P35.4 shows an apparatus used to measure the
speed distribution of gas molecules. It consists of two
slotted rotating disks separated by a distance d, with the
slots displaced by the angle �. Suppose that the speed of
light is measured by sending a light beam from the left
through this apparatus. (a) Show that a light beam will
be seen in the detector (that is, will make it through
both slots) only if its speed is given by where
� is the angular speed of the disks and � is measured 
in radians. (b) What is the measured speed of light if
the distance between the two slotted rotating disks is
2.50 m, the slot in the second disk is displaced 1/60 of
1° from the slot in the first disk, and the disks are rotat-
ing at 5 555 rev/s?

c � �d/�,

Section 35.1 The Nature of Light

Section 35.2 Measurements of the Speed of Light
1. The Apollo 11 astronauts set up a highly reflecting

panel on the Moon’s surface. The speed of light can be
found by measuring the time it takes a laser beam to
travel from Earth, reflect from the retroreflector, and
return to Earth. If this interval is measured to be 2.51 s,
what is the measured speed of light? Take the center-
to-center distance from the Earth to the Moon to be
3.84 � 108 m, and do not neglect the sizes of the Earth
and the Moon.

2. As a result of his observations, Roemer concluded that
eclipses of Io by Jupiter were delayed by 22 min during
a six-month period as the Earth moved from the point
in its orbit where it is closest to Jupiter to the diametri-
cally opposite point where it is farthest from Jupiter. Us-
ing 1.50 � 108 km as the average radius of the Earth’s
orbit around the Sun, calculate the speed of light from
these data.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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Section 35.3 The Ray Approximation in Geometric Optics
Section 35.4 Reflection
Section 35.5 Refraction
Section 35.6 Huygens’s Principle
Note: In this section, if an index of refraction value is not
given, refer to Table 35.1.

5. A narrow beam of sodium yellow light, with wavelength
589 nm in vacuum, is incident from air onto a smooth
water surface at an angle �1 � 35.0°. Determine the an-
gle of refraction �2 and the wavelength of the light in
water.

6. The wavelength of red helium–neon laser light in air is
632.8 nm. (a) What is its frequency? (b) What is its
wavelength in glass that has an index of refraction of
1.50? (c) What is its speed in the glass?

7. An underwater scuba diver sees the Sun at an apparent
angle of 45.0° from the vertical. What is the actual di-
rection of the Sun?

8. A laser beam is incident at an angle of 30.0° from the
vertical onto a solution of corn syrup in water. If the
beam is refracted to 19.24° from the vertical, (a) what 
is the index of refraction of the syrup solution? Suppose
that the light is red, with a vacuum wavelength of 
632.8 nm. Find its (b) wavelength, (c) frequency, and
(d) speed in the solution.

9. Find the speed of light in (a) flint glass, (b) water, and
(c) cubic zirconia.

10. A light ray initially in water enters a transparent sub-
stance at an angle of incidence of 37.0°, and the trans-
mitted ray is refracted at an angle of 25.0°. Calculate
the speed of light in the transparent substance.

11. A ray of light strikes a flat block of glass of
thickness 2.00 cm at an angle of 30.0° with the normal.
Trace the light beam through the glass, and find the an-
gles of incidence and refraction at each surface.

12. Light of wavelength 436 nm in air enters a fishbowl
filled with water and then exits through the crown glass
wall of the container. What is the wavelength of the
light (a) in the water and (b) in the glass?

(n � 1.50)

Mirror Mirror

1.00 m

1.00 m

Incident beam
5.00°

Mirror
2

Mirror
1

Light
beam

P

40.0°

1.25 m

Motor

Detector

Beam

d

θ

ω
θ

15. How many times will the incident beam shown in Figure
P35.15 be reflected by each of the parallel mirrors?

13. An opaque cylindrical tank with an open top has a di-
ameter of 3.00 m and is completely filled with water.
When the setting Sun reaches an angle of 28.0° above
the horizon, sunlight ceases to illuminate any part of
the bottom of the tank. How deep is the tank?

14. The angle between the two mirrors illustrated in Figure
P35.14 is a right angle. The beam of light in the vertical
plane P strikes mirror 1 as shown. (a) Determine the
distance that the reflected light beam travels before
striking mirror 2. (b) In what direction does the light
beam travel after being reflected from mirror 2?

Figure P35.4

Figure P35.14

Figure P35.15

16. When the light illustrated in Figure P35.16 passes
through the glass block, it is shifted laterally by the dis-
tance d. If what is the value of d ?

17. Find the time required for the light to pass through the
glass block described in Problem 16.

18. The light beam shown in Figure P35.18 makes an angle
of 20.0° with the normal line NN � in the linseed oil. De-
termine the angles � and ��. (The index of refraction
for linseed oil is 1.48.)

n � 1.50,
WEB
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19. Two light pulses are emitted simultaneously from a
source. Both pulses travel to a detector, but one first
passes through 6.20 m of ice. Determine the difference
in the pulses’ times of arrival at the detector.

20. When you look through a window, by how much time is
the light you see delayed by having to go through glass
instead of air? Make an order-of-magnitude estimate on
the basis of data you specify. By how many wavelengths
is it delayed?

21. Light passes from air into flint glass. (a) What angle of
incidence must the light have if the component of its
velocity perpendicular to the interface is to remain con-
stant? (b) Can the component of velocity parallel to the
interface remain constant during refraction?

22. The reflecting surfaces of two intersecting flat mirrors
are at an angle of � (0° � � � 90°), as shown in Figure

θ

β

Linseed oil

Water

20.0°

N ′

N

θ

 ′θ

Air

2.00 cm

d

30.0°

Figure P35.16 Problems 16 and 17.

Figure P35.18

Figure P35.22

P35.22. If a light ray strikes the horizontal mirror, show
that the emerging ray will intersect the incident ray at
an angle of 

23. A light ray enters the atmosphere of a planet and de-
scends vertically 20.0 km to the surface. The index of
refraction where the light enters the atmosphere is
1.000, and it increases linearly to the surface where it
has a value of 1.005. (a) How long does it take the ray to
traverse this path? (b) Compare this to the time it takes
in the absence of an atmosphere.

24. A light ray enters the atmosphere of a planet and de-
scends vertically to the surface a distance h . The index
of refraction where the light enters the atmosphere is
1.000, and it increases linearly to the surface where it
has a value of n . (a) How long does it take the ray to tra-
verse this path? (b) Compare this to the time it takes in
the absence of an atmosphere.

Section 35.7 Dispersion and Prisms
25. A narrow white light beam is incident on a block of

fused quartz at an angle of 30.0°. Find the angular
width of the light beam inside the quartz.

26. A ray of light strikes the midpoint of one face of an
equiangular glass prism at an angle of inci-
dence of 30.0°. Trace the path of the light ray through
the glass, and find the angles of incidence and refrac-
tion at each surface.

27. A prism that has an apex angle of 50.0° is made of cubic
zirconia, with What is its angle of minimum
deviation?

28. Light with a wavelength of 700 nm is incident on the
face of a fused quartz prism at an angle of 75.0° (with
respect to the normal to the surface). The apex angle of
the prism is 60.0°. Using the value of n from Figure
35.20, calculate the angle (a) of refraction at this first
surface, (b) of incidence at the second surface, (c) of
refraction at the second surface, and (d) between the
incident and emerging rays.

29. The index of refraction for violet light in silica flint
glass is 1.66, and that for red light is 1.62. What is the
angular dispersion of visible light passing through a
prism of apex angle 60.0° if the angle of incidence is
50.0°? (See Fig. P35.29.)

30. Show that if the apex angle � of a prism is small, an ap-
proximate value for the angle of minimum deviation is
�min � (n 	 1)�.

31. A triangular glass prism with an apex angle of � � 60.0°
has an index of refraction (Fig. P35.31). What
is the smallest angle of incidence �1 for which a light
ray can emerge from the other side?

32. A triangular glass prism with an apex angle of � has an
index of refraction n (Fig. P35.31). What is the smallest
angle of incidence �1 for which a light ray can emerge
from the other side?

n � 1.50

n � 2.20.

(n � 1.50)


 � 180� 	 2�.

WEB
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33. An experimental apparatus includes a prism made of
sodium chloride. The angle of minimum deviation for
light of wavelength 589 nm is to be 10.0°. What is the
required apex angle of the prism?

34. A triangular glass prism with an apex angle of 60.0° has
an index of refraction of 1.50. (a) Show that if its angle
of incidence on the first surface is �1 � 48.6°, light will
pass symmetrically through the prism, as shown in Fig-
ure 35.26. (b) Find the angle of deviation �min for �1 �
48.6°. (c) Find the angle of deviation if the angle of in-
cidence on the first surface is 45.6°. (d) Find the angle
of deviation if �1 � 51.6°.

Section 35.8 Total Internal Reflection
35. For 589-nm light, calculate the critical angle for the 

following materials surrounded by air: (a) diamond, 
(b) flint glass, and (c) ice.

36. Repeat Problem 35 for the situation in which the mate-
rials are surrounded by water.

37. Consider a common mirage formed by super-heated 
air just above a roadway. A truck driver whose eyes are
2.00 m above the road, where looks for-
ward. She perceives the illusion of a patch of water
ahead on the road, where her line of sight makes an an-
gle of 1.20° below the horizontal. Find the index of re-
fraction of the air just above the road surface. (Hint:
Treat this as a problem in total internal reflection.)

38. Determine the maximum angle � for which the light

n � 1.000 3,

rays incident on the end of the pipe shown in Figure
P35.38 are subject to total internal reflection along the
walls of the pipe. Assume that the pipe has an index of
refraction of 1.36 and the outside medium is air.

39. A glass fiber is submerged in water
What is the critical angle for light to stay in-

side the optical fiber?
40. A glass cube is placed on a newspaper, which rests on a

table. A person reads all of the words the cube covers,
through all of one vertical side. Determine the maxi-
mum possible index of refraction of the glass.

41. A large Lucite cube has a small air bubble (a
defect in the casting process) below one surface. When
a penny (diameter, 1.90 cm) is placed directly over the
bubble on the outside of the cube, one cannot see the
bubble by looking down into the cube at any angle.
However, when a dime (diameter, 1.75 cm) is placed di-
rectly over it, one can see the bubble by looking down
into the cube. What is the range of the possible depths
of the air bubble beneath the surface?

42. A room contains air in which the speed of sound is 
343 m/s. The walls of the room are made of concrete,
in which the speed of sound is 1 850 m/s. (a) Find the
critical angle for total internal reflection of sound at the
concrete–air boundary. (b) In which medium must the
sound be traveling to undergo total internal reflection?
(c) “A bare concrete wall is a highly efficient mirror for
sound.” Give evidence for or against this statement.

43. In about 1965, engineers at the Toro Company invented
a gasoline gauge for small engines, diagrammed in Fig-
ure P35.43. The gauge has no moving parts. It consists
of a flat slab of transparent plastic fitting vertically into
a slot in the cap on the gas tank. None of the plastic has
a reflective coating. The plastic projects from the hori-
zontal top down nearly to the bottom of the opaque
tank. Its lower edge is cut with facets making angles of
45° with the horizontal. A lawnmower operator looks
down from above and sees a boundary between bright
and dark on the gauge. The location of the boundary,
across the width of the plastic, indicates the quantity of
gasoline in the tank. Explain how the gauge works. Ex-
plain the design requirements, if any, for the index of
refraction of the plastic.

(n � 1.59)

(n � 1.33).
(n � 1.50)
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Figure P35.29
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(Optional)
Section 35.9 Fermat’s Principle

44. The shoreline of a lake runs from east to west. A swim-
mer gets into trouble 20.0 m out from shore and 26.0 m
to the east of a lifeguard, whose station is 16.0 m in
from the shoreline. The lifeguard takes a negligible
amount of time to accelerate. He can run at 7.00 m/s
and swim at 1.40 m/s. To reach the swimmer as quickly
as possible, in what direction should the lifeguard start
running? You will need to solve a transcendental equa-
tion numerically.

ADDITIONAL PROBLEMS

45. A narrow beam of light is incident from air onto a glass
surface with an index of refraction of 1.56. Find the an-
gle of incidence for which the corresponding angle of
refraction is one half the angle of incidence. (Hint: You
might want to use the trigonometric identity sin 2� �
2 sin � cos �.)

46. (a) Consider a horizontal interface between air above
and glass with an index of 1.55 below. Draw a light ray
incident from the air at an angle of incidence of 30.0°.
Determine the angles of the reflected and refracted rays
and show them on the diagram. (b) Suppose instead
that the light ray is incident from the glass at an angle
of incidence of 30.0°. Determine the angles of the re-
flected and refracted rays and show all three rays on a
new diagram. (c) For rays incident from the air onto
the air–glass surface, determine and tabulate the angles
of reflection and refraction for all the angles of inci-
dence at 10.0° intervals from 0 to 90.0°. (d) Do the
same for light rays traveling up to the interface through
the glass.

47. A small underwater pool light is 1.00 m below the sur-
face. The light emerging from the water forms a circle

on the water’s surface. What is the diameter of this
circle?

48. One technique for measuring the angle of a prism is
shown in Figure P35.48. A parallel beam of light is di-
rected on the angle so that the beam reflects from op-
posite sides. Show that the angular separation of the
two beams is given by B � 2A.

WEB

Figure P35.43

A

B

θ

θi

r

Figure P35.48

49. The walls of a prison cell are perpendicular to the four
cardinal compass directions. On the first day of spring,
light from the rising Sun enters a rectangular window in
the eastern wall. The light traverses 2.37 m horizontally
to shine perpendicularly on the wall opposite the win-
dow. A young prisoner observes the patch of light mov-
ing across this western wall and for the first time forms
his own understanding of the rotation of the Earth. 
(a) With what speed does the illuminated rectangle
move? (b) The prisoner holds a small square mirror flat
against the wall at one corner of the rectangle of light.
The mirror reflects light back to a spot on the eastern
wall close beside the window. How fast does the smaller
square of light move across that wall? (c) Seen from a
latitude of 40.0° north, the rising Sun moves through
the sky along a line making a 50.0° angle with the south-
eastern horizon. In what direction does the rectangular
patch of light on the western wall of the prisoner’s cell
move? (d) In what direction does the smaller square of
light on the eastern wall move?

50. The laws of refraction and reflection are the same for
sound as for light. The speed of sound in air is 340 m/s,
and that of sound in water is 1 510 m/s. If a sound wave
approaches a plane water surface at an angle of inci-
dence of 12.0°, what is the angle of refraction?

51. Cold sodium atoms (near absolute zero) in a state
called a Bose–Einstein condensate can slow the speed of
light from its normally high value to a speed approach-
ing that of an automobile in a city. The speed of light 
in one such medium was recorded as 61.15 km/h. 
(a) Find the index of refraction of this medium. 
(b) What is the critical angle for total internal reflec-
tion if the condensate is surrounded by vacuum?

52. A narrow beam of white light is incident at 25.0° onto 
a slab of heavy flint glass 5.00 cm thick. The indices of
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refraction of the glass at wavelengths of 400 nm and 
700 nm are 1.689 and 1.642, respectively. Find the width
of the visible beam as it emerges from the slab.

53. A hiker stands on a mountain peak near sunset and 
observes a rainbow caused by water droplets in the air
8.00 km away. The valley is 2.00 km below the mountain
peak and entirely flat. What fraction of the complete
circular arc of the rainbow is visible to the hiker? (See
Fig. 35.25.)

54. A fish is at a depth d under water. Take the index of re-
fraction of water as 4/3. Show that when the fish is
viewed at an angle of refraction �1 , the apparent depth
z of the fish is

55. A laser beam strikes one end of a slab of material, as
shown in Figure P35.55. The index of refraction of the
slab is 1.48. Determine the number of internal reflec-
tions of the beam before it emerges from the opposite
end of the slab.

z �
3d cos �1

!7 � 9 cos2 �1

56. When light is normally incident on the interface be-
tween two transparent optical media, the intensity of
the reflected light is given by the expression

In this equation, S1 represents the average magnitude
of the Poynting vector in the incident light (the inci-
dent intensity), is the reflected intensity, and n1 and
n2 are the refractive indices of the two media. (a) What
fraction of the incident intensity is reflected for 589-nm
light normally incident on an interface between air and
crown glass? (b) In part (a), does it matter whether the
light is in the air or in the glass as it strikes the inter-
face? (c) A Bose–Einstein condensate (see Problem 51)
has an index of refraction of 1.76 � 107. Find the per-
cent reflection for light falling perpendicularly on its
surface. What would the condensate look like?

57. Refer to Problem 56 for a description of the reflected
intensity of light normally incident on an interface be-
tween two transparent media. (a) When light is nor-
mally incident on an interface between vacuum and a
transparent medium of index n, show that the intensity
S2 of the transmitted light is given by the expression

S �1

S �1 � � n2 	 n1

n2 � n1
�

2
S1

WEB

WEB

(b) Light travels perpendicularly
through a diamond slab, surrounded by air, with paral-
lel surfaces of entry and exit. Apply the transmission
fraction in part (a) to find the approximate overall
transmission through the slab of diamond as a percent-
age. Ignore light reflected back and forth within the
slab.

58. This problem builds upon the results of Problems 56
and 57. Light travels perpendicularly through a dia-
mond slab, surrounded by air, with parallel surfaces of
entry and exit. What fraction of the incident intensity is
the intensity of the transmitted light? Include the ef-
fects of light reflected back and forth inside the slab.

59. The light beam shown in Figure P35.59 strikes surface 
2 at the critical angle. Determine the angle of inci-
dence, �1 .

S2/S1 � 4n/(n � 1)2.

60. A 4.00-m-long pole stands vertically in a lake having a
depth of 2.00 m. When the Sun is 40.0° above the hori-
zontal, determine the length of the pole’s shadow on
the bottom of the lake. Take the index of refraction for
water to be 1.33.

61. A light ray of wavelength 589 nm is incident at an angle
� on the top surface of a block of polystyrene, as shown
in Figure P35.61. (a) Find the maximum value of � for
which the refracted ray undergoes total internal reflec-

Figure P35.55

Surface 1

Su
rf

ac
e 

2

42.0°

60.0°

1θ

42.0°

42.0 cm

50.0°
3.10 mmn  = 1.48

Figure P35.59

Figure P35.61

θ
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66. A transparent cylinder of radius m has a mir-
rored surface on its right half, as shown in Figure
P35.66. A light ray traveling in air is incident on the left
side of the cylinder. The incident light ray and exiting
light ray are parallel and m. Determine the in-
dex of refraction of the material.

d � 2.00

R � 2.00

64. A material having an index of refraction n is sur-
rounded by a vacuum and is in the shape of a quarter
circle of radius R (Fig. P35.64). A light ray parallel to
the base of the material is incident from the left at a dis-
tance of L above the base and emerges out of the mater-
ial at the angle �. Determine an expression for �.

tion at the left vertical face of the block. Repeat the cal-
culation for the case in which the polystyrene block is
immersed in (b) water and (c) carbon disulfide.

62. A ray of light passes from air into water. For its deviation
angle to be 10.0°, what must be its angle
of incidence?

63. A shallow glass dish is 4.00 cm wide at the bottom, as
shown in Figure P35.63. When an observer’s eye is posi-
tioned as shown, the observer sees the edge of the bot-
tom of the empty dish. When this dish is filled with wa-
ter, the observer sees the center of the bottom of the
dish. Find the height of the dish.

� � � �1 	 �2 �

65. Derive the law of reflection (Eq. 35.2) from Fermat’s
principle of least time. (See the procedure outlined in
Section 35.9 for the derivation of the law of refraction
from Fermat’s principle.)

Figure P35.63

Figure P35.64

Outgoing ray

θ

n

R

Incoming ray

L

4.00 cm

h

Figure P35.66

Mirrored
surface

Incident ray

Exiting ray

R

d
C

n

67. A. H. Pfund’s method for measuring the index of re-
fraction of glass is illustrated in Figure P35.67. One face
of a slab of thickness t is painted white, and a small hole
scraped clear at point P serves as a source of diverging
rays when the slab is illuminated from below. Ray PBB�
strikes the clear surface at the critical angle and is to-
tally reflected, as are rays such as PCC �. Rays such as
PAA� emerge from the clear surface. On the painted
surface there appears a dark circle of diameter d , sur-
rounded by an illuminated region, or halo. (a) Derive a
formula for n in terms of the measured quantities d and
t . (b) What is the diameter of the dark circle if 
for a slab 0.600 cm thick? (c) If white light is used, the
critical angle depends on color caused by dispersion. Is
the inner edge of the white halo tinged with red light or
violet light? Explain.

n � 1.52

Figure P35.67

A′

B ′C ′

t

C B A

P
d

Clear
surface

Painted
surface

68. A light ray traveling in air is incident on one face of a
right-angle prism with an index of refraction of

as shown in Figure P35.68, and the ray follows
the path shown in the figure. If � � 60.0° and the base
of the prism is mirrored, what is the angle  made by

n � 1.50,
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ANSWERS TO QUICK QUIZZES

35.3 The two rays on the right result from total internal re-
flection at the right face of the prism. Because all of the
light in these rays is reflected (rather than partly re-
fracted), these two rays are brightest. The light from the
other three rays is divided into reflected and refracted
parts.

35.1 Beams � and � are reflected; beams � and � are re-
fracted.

35.2 Fused quartz. An ideal lens would have an index of re-
fraction that does not vary with wavelength so that all
colors would be bent through the same angle by the
lens. Of the three choices, fused quartz has the least
variation in n across the visible spectrum. Thus, it is the
best choice for a single-element lens.

Angle of Incidence Angle of Refraction
(degrees) (degrees)

10.0 7.5
20.0 15.1
30.0 22.3
40.0 28.7
50.0 35.2
60.0 40.3
70.0 45.3
80.0 47.7

tion. Use the resulting plot to deduce the index of re-
fraction of water.

the outgoing ray with the normal to the right face of the
prism?

69. A light ray enters a rectangular block of plastic at an an-
gle of �1 � 45.0° and emerges at an angle of �2 � 76.0°,
as shown in Figure P35.69. (a) Determine the index of
refraction for the plastic. (b) If the light ray enters the
plastic at a point cm from the bottom edge,
how long does it take the light ray to travel through the
plastic?

70. Students allow a narrow beam of laser light to strike a
water surface. They arrange to measure the angle of re-
fraction for selected angles of incidence and record the
data shown in the accompanying table. Use the data to
verify Snell’s law of refraction by plotting the sine of the
angle of incidence versus the sine of the angle of refrac-

L � 50.0

Figure P35.68
Figure P35.69

n

2

L

1θ

θ

Incoming ray

θ

Outgoing ray

Mirror base

n

φ

90° – θ
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c h a p t e r

Geometric Optics

P U Z Z L E R

Most car headlights have lines across
their faces, like those shown here. With-
out these lines, the headlights either
would not function properly or would be
much more likely to break from the jar-
ring of the car on a bumpy road. What 
is the purpose of the lines? (George

Semple)

C h a p t e r  O u t l i n e

36.1 Images Formed by Flat Mirrors

36.2 Images Formed by Spherical
Mirrors

36.3 Images Formed by Refraction

36.4 Thin Lenses

36.5 (Optional) Lens Aberrations

36.6 (Optional) The Camera

36.7 (Optional) The Eye

36.8 (Optional) The Simple Magnifier

36.9 (Optional) The Compound
Microscope

36.10 (Optional) The Telescope

P U Z Z L E R

1139
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his chapter is concerned with the images that result when spherical waves fall
on flat and spherical surfaces. We find that images can be formed either by re-
flection or by refraction and that mirrors and lenses work because of reflection

and refraction. We continue to use the ray approximation and to assume that
light travels in straight lines. Both of these steps lead to valid predictions in the
field called geometric optics. In subsequent chapters, we shall concern ourselves
with interference and diffraction effects—the objects of study in the field of wave
optics.

IMAGES FORMED BY FLAT MIRRORS
We begin by considering the simplest possible mirror, the flat mirror. Consider a
point source of light placed at O in Figure 36.1, a distance p in front of a flat mir-
ror. The distance p is called the object distance. Light rays leave the source and
are reflected from the mirror. Upon reflection, the rays continue to diverge
(spread apart), but they appear to the viewer to come from a point I behind the
mirror. Point I is called the image of the object at O. Regardless of the system un-
der study, we always locate images by extending diverging rays back to a point from
which they appear to diverge. Images are located either at the point from
which rays of light actually diverge or at the point from which they appear
to diverge. Because the rays in Figure 36.1 appear to originate at I, which is a dis-
tance q behind the mirror, this is the location of the image. The distance q is
called the image distance.

Images are classified as real or virtual. A real image is formed when light
rays pass through and diverge from the image point; a virtual image is
formed when the light rays do not pass through the image point but appear
to diverge from that point. The image formed by the mirror in Figure 36.1 is vir-
tual. The image of an object seen in a flat mirror is always virtual. Real images can
be displayed on a screen (as at a movie), but virtual images cannot be displayed on
a screen.

We can use the simple geometric techniques shown in Figure 36.2 to examine
the properties of the images formed by flat mirrors. Even though an infinite num-
ber of light rays leave each point on the object, we need to follow only two of them
to determine where an image is formed. One of those rays starts at P, follows a hor-
izontal path to the mirror, and reflects back on itself. The second ray follows the
oblique path PR and reflects as shown, according to the law of reflection. An ob-
server in front of the mirror would trace the two reflected rays back to the point at
which they appear to have originated, which is point P� behind the mirror. A con-
tinuation of this process for points other than P on the object would result in a vir-
tual image (represented by a yellow arrow) behind the mirror. Because triangles
PQR and P �QR are congruent, PQ � P�Q. We conclude that the image formed by
an object placed in front of a flat mirror is as far behind the mirror as the
object is in front of the mirror.

Geometry also reveals that the object height h equals the image height h�. Let
us define lateral magnification M as follows:

(36.1)M �
Image height
Object height

�
h�

h

36.1

T

Lateral magnification

14.6

Mirror

O I

qp

Figure 36.2 A geometric con-
struction that is used to locate the
image of an object placed in front
of a flat mirror. Because the trian-
gles PQR and P �QR are congruent,

and h � h�.� p � � � q �

Figure 36.1 An image formed by
reflection from a flat mirror. The
image point I is located behind the
mirror a perpendicular distance q
from the mirror (the image dis-
tance). Study of Figure 36.2 shows
that this image distance has the
same magnitude as the object dis-
tance p.

Object θ
θh R

QP P ′

Image

p q

h′
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This is a general definition of the lateral magnification for any type of mirror. For
a flat mirror, because 

Finally, note that a flat mirror produces an image that has an apparent
left–right reversal. You can see this reversal by standing in front of a mirror and
raising your right hand, as shown in Figure 36.3. The image you see raises its left
hand. Likewise, your hair appears to be parted on the side opposite your real part,
and a mole on your right cheek appears to be on your left cheek.

This reversal is not actually a left–right reversal. Imagine, for example, lying
on your left side on the floor, with your body parallel to the mirror surface. Now
your head is on the left and your feet are on the right. If you shake your feet, the
image does not shake its head! If you raise your right hand, however, the image
again raises its left hand. Thus, the mirror again appears to produce a left–right
reversal but in the up–down direction!

The reversal is actually a front–back reversal, caused by the light rays going for-
ward toward the mirror and then reflecting back from it. An interesting exercise is
to stand in front of a mirror while holding an overhead transparency in front of
you so that you can read the writing on the transparency. You will be able to read
the writing on the image of the transparency, also. You may have had a similar ex-
perience if you have attached a transparent decal with words on it to the rear win-
dow of your car. If the decal can be read from outside the car, you can also read it
when looking into your rearview mirror from inside the car.

We conclude that the image that is formed by a flat mirror has the following
properties.

h� � h.M � 1

• The image is as far behind the mirror as the object is in front of the mirror.

• The image is unmagnified, virtual, and upright. (By upright we mean that, if
the object arrow points upward as in Figure 36.2, so does the image arrow.)

• The image has front–back reversal.

QuickLab
View yourself in a full-length mirror.
Standing close to the mirror, place
one piece of tape at the top of the im-
age of your head and another piece
at the very bottom of the image of
your feet. Now step back a few meters
and observe your image. How big is it
relative to its original size? How does
the distance between the pieces of
tape compare with your actual
height? You may want to refer to
Problem 3.

Figure 36.3 The image in the
mirror of a person’s right hand 
is reversed front to back. This
makes the right hand appear to be
a left hand. Notice that the thumb
is on the left side of both real
hands and on the left side of the
image. That the thumb is not on
the right side of the image indi-
cates that there is no left-to-right
reversal.

Mt. Hood reflected in Trillium
Lake. Why is the image inverted
and the same size as the moun-
tain?
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2 1

A B C D E

Figure 36.4

Multiple Images Formed by Two MirrorsCONCEPTUAL EXAMPLE 36.1
Two flat mirrors are at right angles to each other, as illus-
trated in Figure 36.5, and an object is placed at point O. In
this situation, multiple images are formed. Locate the posi-
tions of these images.

Solution The image of the object is at I1 in mirror 1 and
at I2 in mirror 2. In addition, a third image is formed at I3 .
This third image is the image of I1 in mirror 2 or, equiva-
lently, the image of I2 in mirror 1. That is, the image at I1 (or
I2) serves as the object for I3 . Note that to form this image at
I3 , the rays reflect twice after leaving the object at O .

Figure 36.5 When an object is placed in front of two mutually
perpendicular mirrors as shown, three images are formed.

Figure 36.6 An optical illusion.

Mirror 2

Mirror 1

I1 I3

I2O

The Levitated ProfessorCONCEPTUAL EXAMPLE 36.2
The professor in the box shown in Figure 36.6 appears to be
balancing himself on a few fingers, with his feet off the floor.
He can maintain this position for a long time, and he appears
to defy gravity. How was this illusion created?

Solution This is one of many magicians’ optical illusions
that make use of a mirror. The box in which the professor
stands is a cubical frame that contains a flat vertical mirror po-
sitioned in a diagonal plane of the frame. The professor strad-
dles the mirror so that one foot, which you see, is in front of
the mirror, and one foot, which you cannot see, is behind the
mirror. When he raises the foot in front of the mirror, the re-
flection of that foot also rises, so he appears to float in air.

In the overhead view of Figure 36.4, the image of the stone seen by observer 1 is at C .
Where does observer 2 see the image—at A , at B , at C , at D , at E , or not at all?

Quick Quiz 36.1
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IMAGES FORMED BY SPHERICAL MIRRORS

Concave Mirrors

A spherical mirror, as its name implies, has the shape of a section of a sphere.
This type of mirror focuses incoming parallel rays to a point, as demonstrated by
the colored light rays in Figure 36.8. Figure 36.9a shows a cross-section of a spheri-
cal mirror, with its surface represented by the solid, curved black line. (The blue
band represents the structural support for the mirrored surface, such as a curved
piece of glass on which the silvered surface is deposited.) Such a mirror, in which
light is reflected from the inner, concave surface, is called a concave mirror. The
mirror has a radius of curvature R , and its center of curvature is point C . Point V
is the center of the spherical section, and a line through C and V is called the
principal axis of the mirror.

Now consider a point source of light placed at point O in Figure 36.9b, where
O is any point on the principal axis to the left of C . Two diverging rays that origi-
nate at O are shown. After reflecting from the mirror, these rays converge (come
together) at the image point I. They then continue to diverge from I as if an object
were there. As a result, we have at point I a real image of the light source at O.

We shall consider in this section only rays that diverge from the object and
make a small angle with the principal axis. Such rays are called paraxial rays. All

36.2

The Tilting Rearview MirrorCONCEPTUAL EXAMPLE 36.3
Most rearview mirrors in cars have a day setting and a night
setting. The night setting greatly diminishes the intensity of
the image in order that lights from trailing vehicles do not
blind the driver. How does such a mirror work?

Solution Figure 36.7 shows a cross-sectional view of a
rearview mirror for each setting. The unit consists of a re-
flective coating on the back of a wedge of glass. In the day
setting (Fig. 36.7a), the light from an object behind the car
strikes the glass wedge at point 1. Most of the light enters the
wedge, refracting as it crosses the front surface, and reflects

from the back surface to return to the front surface, where it
is refracted again as it re-enters the air as ray B (for bright).
In addition, a small portion of the light is reflected at the
front surface of the glass, as indicated by ray D (for dim).

This dim reflected light is responsible for the image that is
observed when the mirror is in the night setting (Fig. 36.7b).
In this case, the wedge is rotated so that the path followed by
the bright light (ray B) does not lead to the eye. Instead, the
dim light reflected from the front surface of the wedge trav-
els to the eye, and the brightness of trailing headlights does
not become a hazard.

14.7

B

D
1

Daytime setting

Incident
light

Reflecting
side of mirror

(a)

B

D

Incident
light

Nighttime setting

(b)

Figure 36.7 Cross-sectional views of a rearview mirror. (a) With the day setting, the silvered back surface of the mirror reflects a bright ray B
into the driver’s eyes. (b) With the night setting, the glass of the unsilvered front surface of the mirror reflects a dim ray D into the driver’s eyes.
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such rays reflect through the image point, as shown in Figure 36.9b. Rays that are
far from the principal axis, such as those shown in Figure 36.10, converge to other
points on the principal axis, producing a blurred image. This effect, which is
called spherical aberration, is present to some extent for any spherical mirror
and is discussed in Section 36.5.

We can use Figure 36.11 to calculate the image distance q from a knowledge
of the object distance p and radius of curvature R . By convention, these distances
are measured from point V. Figure 36.11 shows two rays leaving the tip of the ob-
ject. One of these rays passes through the center of curvature C of the mirror, hit-
ting the mirror perpendicular to the mirror surface and reflecting back on itself.
The second ray strikes the mirror at its center (point V ) and reflects as shown,
obeying the law of reflection. The image of the tip of the arrow is located at the
point where these two rays intersect. From the gold right triangle in Figure 36.11,
we see that tan and from the blue right triangle we see that tan u

The negative sign is introduced because the image is inverted, so h� is
taken to be negative. Thus, from Equation 36.1 and these results, we find that the
magnification of the mirror is

(36.2)M �
h�

h
� �

q
p

� �h�/q.
� � h/p,

Figure 36.8 Red, blue, and
green light rays are reflected by 
a curved mirror. Note that the 
point where the three colors meet
is white.

Mirror

C V

(a)

Center of
curvature R

Principal
axis

Mirror

O VI

(b)

C

Figure 36.9 (a) A concave mirror of radius R. The center of curvature C is located on the
principal axis. (b) A point object placed at O in front of a concave spherical mirror of radius R ,
where O is any point on the principal axis farther than R from the mirror surface, forms a real
image at I. If the rays diverge from O at small angles, they all reflect through the same image
point.

Figure 36.10 Rays diverging
from the object at large angles
from the principal axis reflect from
a spherical concave mirror to inter-
sect the principal axis at different
points, resulting in a blurred im-
age. This condition is called 
spherical aberration.

Figure 36.11 The image formed by a spherical concave mirror when the object O lies outside
the center of curvature C .
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Focal length

Mirror equation in terms of R

Figure 36.12 (a) Light rays from a distant object (p � �) reflect from a concave mirror
through the focal point F. In this case, the image distance q � R/2 � f, where f is the focal
length of the mirror. (b) Reflection of parallel rays from a concave mirror.

We also note from the two triangles in Figure 36.11 that have � as one angle
that

from which we find that

(36.3)

If we compare Equations 36.2 and 36.3, we see that

Simple algebra reduces this to

(36.4)

This expression is called the mirror equation. It is applicable only to paraxial
rays.

If the object is very far from the mirror—that is, if p is so much greater than R
that p can be said to approach infinity—then 1/ and we see from Equation
36.4 that That is, when the object is very far from the mirror, the image
point is halfway between the center of curvature and the center point on the mir-
ror, as shown in Figure 36.12a. The incoming rays from the object are essentially
parallel in this figure because the source is assumed to be very far from the mirror.
We call the image point in this special case the focal point F and the image dis-
tance the focal length f, where

(36.5)f �
R
2

q � R/2.
p � 0,

1
p

�
1
q

�
2
R

R � q
p � R

�
q
p

h�

h
� �

R � q
p � R

tan � �
h

p � R
  and  tan � � �

h�

R � q

C F

R

f

(a) (b)



1146 C H A P T E R  3 6 Geometric Optics

Focal length is a parameter particular to a given mirror and therefore can be
used to compare one mirror with another. The mirror equation can be expressed
in terms of the focal length:

(36.6)

Notice that the focal length of a mirror depends only on the curvature of the mir-
ror and not on the material from which the mirror is made. This is because the
formation of the image results from rays reflected from the surface of the mater-
ial. We shall find in Section 36.4 that the situation is different for lenses; in that
case the light actually passes through the material.

Convex Mirrors

Figure 36.13 shows the formation of an image by a convex mirror— that is, one
silvered so that light is reflected from the outer, convex surface. This is some-
times called a diverging mirror because the rays from any point on an object
diverge after reflection as though they were coming from some point behind
the mirror. The image in Figure 36.13 is virtual because the reflected rays only
appear to originate at the image point, as indicated by the dashed lines. Fur-
thermore, the image is always upright and smaller than the object. This type of
mirror is often used in stores to foil shoplifters. A single mirror can be used to
survey a large field of view because it forms a smaller image of the interior of
the store.

We do not derive any equations for convex spherical mirrors because we can
use Equations 36.2, 36.4, and 36.6 for either concave or convex mirrors if we ad-
here to the following procedure. Let us refer to the region in which light rays
move toward the mirror as the front side of the mirror, and the other side as the
back side. For example, in Figures 36.10 and 36.12, the side to the left of the mir-
rors is the front side, and the side to the right of the mirrors is the back side. Fig-
ure 36.14 states the sign conventions for object and image distances, and Table
36.1 summarizes the sign conventions for all quantities.

1
p

�
1
q

�
1
f

Mirror equation in terms of f

Front
Back

O I F C

p q

Front, or
real, side

Reflected light

Back, or
virtual, side

p and q negative

No light

p and q positive

Incident light

Convex or
concave mirror

Figure 36.13 Formation of an image by a spherical convex mirror. The image formed by the
real object is virtual and upright.

Figure 36.14 Signs of p and q for
convex and concave mirrors.
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Ray Diagrams for Mirrors

The positions and sizes of images formed by mirrors can be conveniently deter-
mined with ray diagrams. These graphical constructions reveal the nature of the
image and can be used to check results calculated from the mirror and magnifi-
cation equations. To draw a ray diagram, we need to know the position of the ob-
ject and the locations of the mirror’s focal point and center of curvature. We
then draw three rays to locate the image, as shown by the examples in Figure
36.15. These rays all start from the same object point and are drawn as follows.
We may choose any point on the object; here, we choose the top of the object for
simplicity:

TABLE 36.1 Sign Conventions for Mirrors

p is positive if object is in front of mirror (real object).
p is negative if object is in back of mirror (virtual object).

q is positive if image is in front of mirror (real image).
q is negative if image is in back of mirror (virtual image).

Both f and R are positive if center of curvature is in front of mirror (concave mirror).
Both f and R are negative if center of curvature is in back of mirror (convex mirror).

If M is positive, image is upright.
If M is negative, image is inverted.

Reflection of parallel lines from a
convex cylindrical mirror. The im-
age is virtual, upright, and reduced
in size.

• Ray 1 is drawn from the top of the object parallel to the principal axis and is
reflected through the focal point F.

• Ray 2 is drawn from the top of the object through the focal point and is re-
flected parallel to the principal axis.

• Ray 3 is drawn from the top of the object through the center of curvature C
and is reflected back on itself.

The intersection of any two of these rays locates the image. The third ray serves as
a check of the construction. The image point obtained in this fashion must always
agree with the value of q calculated from the mirror equation.

With concave mirrors, note what happens as the object is moved closer to the
mirror. The real, inverted image in Figure 36.15a moves to the left as the object
approaches the focal point. When the object is at the focal point, the image is infi-
nitely far to the left. However, when the object lies between the focal point and the
mirror surface, as shown in Figure 36.15b, the image is virtual, upright, and en-
larged. This latter situation applies in the use of a shaving mirror or a makeup mir-
ror. Your face is closer to the mirror than the focal point, and you see an upright,
enlarged image of your face.

In a convex mirror (see Fig. 36.15c), the image of an object is always virtual,
upright, and reduced in size. In this case, as the object distance increases, the vir-
tual image decreases in size and approaches the focal point as p approaches infin-
ity. You should construct other diagrams to verify how image position varies with
object position.

QuickLab
Compare the images formed of your
face when you look first at the front
side and then at the back side of a
shiny soup spoon. Why do the two im-
ages look so different from each
other?
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(a)

1

2

3

C FO

Front Back

I

Principal axis

(b)

1

2

3
C F O I

Front Back

(c)

CFO I

1

2

3

Front Back

Figure 36.15 Ray diagrams for spherical mirrors, along with corresponding photographs of
the images of candles. (a) When the object is located so that the center of curvature lies between
the object and a concave mirror surface, the image is real, inverted, and reduced in size. 
(b) When the object is located between the focal point and a concave mirror surface, the image
is virtual, upright, and enlarged. (c) When the object is in front of a convex mirror, the image is
virtual, upright, and reduced in size.
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The Image from a MirrorEXAMPLE 36.4

which means that rays originating from an object positioned
at the focal point of a mirror are reflected so that the image
is formed at an infinite distance from the mirror; that is, the
rays travel parallel to one another after reflection. This is the
situation in a flashlight, where the bulb filament is placed at
the focal point of a reflector, producing a parallel beam of
light.

(c) When the object is at p � 5.00 cm, it lies between the
focal point and the mirror surface, as shown in Figure
36.15b. Thus, we expect a magnified, virtual, upright image.
In this case, the mirror equation gives

The image is virtual because it is located behind the mirror,
as expected. The magnification is

The image is twice as large as the object, and the positive sign
for M indicates that the image is upright (see Fig. 36.15b).

Exercise At what object distance is the magnification
� 1.00?

Answer 20.0 cm.

M � �
q
p

� �� �10.0 cm
5.00 cm � � 2.00

�10.0 cm q �

1
5.00 cm

�
1
q

�
1

10.0 cm

� q �Assume that a certain spherical mirror has a focal length of
� 10.0 cm. Locate and describe the image for object dis-
tances of (a) 25.0 cm, (b) 10.0 cm, and (c) 5.00 cm.

Solution Because the focal length is positive, we know that
this is a concave mirror (see Table 36.1). (a) This situation is
analogous to that in Figure 36.15a; hence, we expect the im-
age to be real and closer to the mirror than the object. Ac-
cording to the figure, it should also be inverted and reduced
in size. We find the image distance by using the Equation
36.6 form of the mirror equation:

The magnification is given by Equation 36.2:

The fact that the absolute value of M is less than unity tells us
that the image is smaller than the object, and the negative
sign for M tells us that the image is inverted. Because q is pos-
itive, the image is located on the front side of the mirror and
is real. Thus, we see that our predictions were correct.

(b) When the object distance is 10.0 cm, the object is lo-
cated at the focal point. Now we find that

1
10.0 cm

�
1
q

�
1

10.0 cm

M � �
q
p

� �
16.7 cm
25.0 cm

� �0.668

16.7 cm q �

1
25.0 cm

�
1
q

�
1

10.0 cm

 
1
p

�
1
q

�
1
f

 

The Image from a Convex MirrorEXAMPLE 36.5
A woman who is 1.5 m tall is located 3.0 m from an anti-
shoplifting mirror, as shown in Figure 36.16. The focal length
of the mirror is � 0.25 m. Find (a) the position of her image
and (b) the magnification.

Solution (a) This situation is depicted in Figure 36.15c.
We should expect to find an upright, reduced, virtual image.
To find the image position, we use Equation 36.6:

�0.23 m q �

 
1
q

�
1

�0.25 m
�

1
3.0 m

1
p

�
1
q

�
1
f

�
1

�0.25 m
 

Figure 36.16 Convex mirrors, often used for security in depart-
ment stores, provide wide-angle viewing.
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IMAGES FORMED BY REFRACTION
In this section we describe how images are formed when light rays are refracted at
the boundary between two transparent materials. Consider two transparent media
having indices of refraction n1 and n2 , where the boundary between the two me-
dia is a spherical surface of radius R (Fig. 36.17). We assume that the object at O is
in the medium for which the index of refraction is n1 , where Let us con-
sider the paraxial rays leaving O. As we shall see, all such rays are refracted at the
spherical surface and focus at a single point I, the image point.

Figure 36.18 shows a single ray leaving point O and focusing at point I. Snell’s
law of refraction applied to this refracted ray gives

Because �1 and �2 are assumed to be small, we can use the small-angle approxima-
tion sin � � � (angles in radians) and say that

Now we use the fact that an exterior angle of any triangle equals the sum of the
two opposite interior angles. Applying this rule to triangles OPC and PIC in Figure
36.18 gives

If we combine all three expressions and eliminate �1 and �2 , we find that

(36.7)

Looking at Figure 36.18, we see three right triangles that have a common vertical
leg of length d. For paraxial rays (unlike the relatively large-angle ray shown in Fig.

n1� � n2� � (n2 � n1)	

 	 � �2 � �

�1 � � � 	 

n1�1 � n2�2

n1 sin �1 � n2 sin �2

n1 
 n2 .

36.3

The negative value of q indicates that her image is virtual, or
behind the mirror, as shown in Figure 36.15c.

(b) The magnification is

0.077M � �
q
p

� �� �0.23 m
3.0 m � �

The image is much smaller than the woman, and it is upright
because M is positive.

Exercise Find the height of the image.

Answer 0.12 m.

n1 < n2

O I

p q

n2n1
R

Figure 36.17 An image formed by re-
fraction at a spherical surface. Rays mak-
ing small angles with the principal axis di-
verge from a point object at O and are
refracted through the image point I.
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36.18), the horizontal legs of these triangles are approximately p for the triangle
containing angle �, R for the triangle containing angle 	, and q for the triangle
containing angle �. In the small-angle approximation, tan � �, so we can write
the approximate relationships from these triangles as follows:

We substitute these expressions into Equation 36.7 and divide through by d to get

(36.8)

For a fixed object distance p, the image distance q is independent of the angle that
the ray makes with the axis. This result tells us that all paraxial rays focus at the
same point I.

As with mirrors, we must use a sign convention if we are to apply this equation
to a variety of cases. We define the side of the surface in which light rays originate
as the front side. The other side is called the back side. Real images are formed by
refraction in back of the surface, in contrast with mirrors, where real images are
formed in front of the reflecting surface. Because of the difference in location of
real images, the refraction sign conventions for q and R are opposite the reflection
sign conventions. For example, q and R are both positive in Figure 36.18. The sign
conventions for spherical refracting surfaces are summarized in Table 36.2.

We derived Equation 36.8 from an assumption that This assumption
is not necessary, however. Equation 36.8 is valid regardless of which index of re-
fraction is greater.

n1 
 n2.

n1

p
�

n2

q
�

n2 � n1

R

tan � � � �
d
p
  tan 	 � 	 �

d
R
  tan � � � �

d
q

�

O

P

R

C

n1 n2

d

p q

I

1 2

α

θ θ

β γ

Figure 36.18 Geometry used to derive Equation 36.8.

TABLE 36.2 Sign Conventions for Refracting Surfaces

p is positive if object is in front of surface (real object).
p is negative if object is in back of surface (virtual object).

q is positive if image is in back of surface (real image).
q is negative if image is in front of surface (virtual image).

R is positive if center of curvature is in back of convex surface.
R is negative if center of curvature is in front of concave surface.



Flat Refracting Surfaces

If a refracting surface is flat, then R is infinite and Equation 36.8 reduces to

(36.9)

From this expression we see that the sign of q is opposite that of p. Thus, according
to Table 36.2, the image formed by a flat refracting surface is on the same
side of the surface as the object. This is illustrated in Figure 36.19 for the situa-
tion in which the object is in the medium of index n1 and n1 is greater than n2 . In
this case, a virtual image is formed between the object and the surface. If n1 is less
than n2 , the rays in the back side diverge from each other at lesser angles than
those in Figure 36.19. As a result, the virtual image is formed to the left of the
object.

 q � �
n2

n1
 p

n1

p
� �

n2

q
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O

I

q

p

n1 > n2

n1  n2

Figure 36.19 The image formed
by a flat refracting surface is virtual
and on the same side of the surface
as the object. All rays are assumed
to be paraxial.

Let’s Go Scuba Diving!CONCEPTUAL EXAMPLE 36.6
amount of refraction at the eye–air interface, and the light
from the object is focused on the retina.

(b) If a lens prescription is ground into the glass of a
mask, should the curved surface be on the inside of the
mask, the outside, or both?

Solution If a lens prescription is ground into the glass of
the mask so that the wearer can see without eyeglasses, only
the inside surface is curved. In this way the prescription is ac-
curate whether the mask is used under water or in air. If the
curvature were on the outer surface, the refraction at the
outer surface of the glass would change depending on
whether air or water were present on the outside of the mask.

It is well known that objects viewed under water with the
naked eye appear blurred and out of focus. However, a scuba
diver using a mask has a clear view of underwater objects. 
(a) Explain how this works, using the facts that the indices of
refraction of the cornea, water, and air are 1.376, 1.333, and
1.000 29, respectively.

Solution Because the cornea and water have almost iden-
tical indices of refraction, very little refraction occurs when a
person under water views objects with the naked eye. In this
case, light rays from an object focus behind the retina, result-
ing in a blurred image. When a mask is used, the air space be-
tween the eye and the mask surface provides the normal

Gaze into the Crystal BallEXAMPLE 36.7

The negative sign for q indicates that the image is in front of
the surface—in other words, in the same medium as the ob-
ject, as shown in Figure 36.20b. Being in the same medium as
the object, the image must be virtual (see Table 36.2). The
surface of the seed ball appears to be closer to the paper-
weight surface than it actually is.

�0.75 cm q �

1.50
1.0 cm

�
1
q

�
1.00 � 1.50

�3.0 cm

 
n1

p
�

n2

q
�

n2 � n1

R
 A dandelion seed ball 4.0 cm in diameter is embedded in the

center of a spherical plastic paperweight having a diameter of
6.0 cm (Fig. 36.20a). The index of refraction of the plastic is

Find the position of the image of the near edge of
the seed ball.

Solution Because where is the index
of refraction for air, the rays originating from the seed ball
are refracted away from the normal at the surface and di-
verge outward, as shown in Figure 36.20b. Hence, the image
is formed inside the paperweight and is virtual. From the
given dimensions, we know that the near edge of the seed
ball is 1.0 cm beneath the surface of the paperweight. Apply-
ing Equation 36.8 and noting from Table 36.2 that R is nega-
tive, we obtain

n2 � 1.00n1 � n2 ,

n1 � 1.50.
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(b)

n1

1.0 cm
n2

q

3.0 cm

2.0 cm

n1>n2

Figure 36.20 (a) An object embedded in a plastic sphere forms a virtual image between the surface of the object and the sphere surface.
All rays are assumed paraxial. Because the object is inside the sphere, the front of the refracting surface is the interior of the sphere. (b) Rays
from the surface of the object form an image that is still inside the plastic sphere but closer to the plastic surface.

The One That Got AwayEXAMPLE 36.8
Because q is negative, the image is virtual, as indicated by the
dashed lines in Figure 36.21. The apparent depth is three-
fourths the actual depth.

A small fish is swimming at a depth d below the surface of a
pond (Fig. 36.21). What is the apparent depth of the fish, as
viewed from directly overhead?

Solution Because the refracting surface is flat, R is infi-
nite. Hence, we can use Equation 36.9 to determine the loca-
tion of the image with Using the indices of refraction
given in Figure 36.21, we obtain

�0.752dq � �
n2

n1
 p � �

1.00
1.33

 d �

p � d.

d

q

n2 = 1.00

n1 = 1.33

Figure 36.21 The apparent depth q of the fish is less than the
true depth d . All rays are assumed to be paraxial.

(a)



THIN LENSES
Lenses are commonly used to form images by refraction in optical instruments,
such as cameras, telescopes, and microscopes. We can use what we just learned
about images formed by refracting surfaces to help us locate the image formed by
a lens. We recognize that light passing through a lens experiences refraction at two
surfaces. The development we shall follow is based on the notion that the image
formed by one refracting surface serves as the object for the second surface.
We shall analyze a thick lens first and then let the thickness of the lens be approxi-
mately zero.

Consider a lens having an index of refraction n and two spherical surfaces
with radii of curvature R1 and R 2 , as in Figure 36.22. (Note that R1 is the radius of
curvature of the lens surface that the light leaving the object reaches first and that
R2 is the radius of curvature of the other surface of the lens.) An object is placed
at point O at a distance p1 in front of surface 1. If the object were far from surface
1, the light rays from the object that struck the surface would be almost parallel to
each other. The refraction at the surface would focus these rays, forming a real im-
age to the right of surface 1 in Figure 36.22 (as in Fig. 36.17). If the object is
placed close to surface 1, as shown in Figure 36.22, the rays diverging from the ob-
ject and striking the surface cover a wide range of angles and are not parallel to
each other. In this case, the refraction at the surface is not sufficient to cause the
rays to converge on the right side of the surface. They still diverge, although they
are closer to parallel than they were before they struck the surface. This results in
a virtual image of the object at I1 to the left of the surface, as shown in Figure
36.22. This image is then used as the object for surface 2, which results in a real
image I2 to the right of the lens.

Let us begin with the virtual image formed by surface 1. Using Equation 36.8
and assuming that because the lens is surrounded by air, we find that the
image I1 formed by surface 1 satisfies the equation

(1)

where q1 is a negative number because it represents a virtual image formed on the
front side of surface 1.

Now we apply Equation 36.8 to surface 2, taking and (We
make this switch in index because the light rays from I1 approaching surface 2 are
in the material of the lens, and this material has index n. We could also imagine re-
moving the object at O, filling all of the space to the left of surface 1 with the mate-

n2 � 1.n1 � n

1
p1

�
n
q1

�
n � 1

R 1

n1 � 1

36.4
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p1

p2

q1

q2

R1 R2

n1 = 1

I1

I2

O

Surface 1
Surface 2n

tFigure 36.22 To locate the image formed
by a lens, we use the virtual image at I1
formed by surface 1 as the object for the im-
age formed by surface 2. The final image is
real and is located at I2 .

14.8
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rial of the lens, and placing the object at I1 ; the light rays approaching surface 2
would be the same as in the actual situation in Fig. 36.22.) Taking p2 as the object
distance for surface 2 and q2 as the image distance gives

(2)

We now introduce mathematically the fact that the image formed by the first sur-
face acts as the object for the second surface. We do this by noting from Figure
36.22 that p2 is the sum of q1 and t and by setting where t is the
thickness of the lens. (Remember that q1 is a negative number and that p2 must be
positive by our sign convention—thus, we must introduce a negative sign for q1 .)
For a thin lens (for which the thickness is small compared to the radii of curva-
ture), we can neglect t. In this approximation, we see that Hence,
Equation (2) becomes

(3)

Adding Equations (1) and (3), we find that

(4)

For a thin lens, we can omit the subscripts on p1 and q2 in Equation (4) and call
the object distance p and the image distance q, as in Figure 36.23. Hence, we can
write Equation (4) in the form

(36.10)

This expression relates the image distance q of the image formed by a thin lens to
the object distance p and to the thin-lens properties (index of refraction and radii
of curvature). It is valid only for paraxial rays and only when the lens thickness is
much less than R1 and R2 .

The focal length f of a thin lens is the image distance that corresponds to an
infinite object distance, just as with mirrors. Letting p approach � and q approach
f in Equation 36.10, we see that the inverse of the focal length for a thin lens is

(36.11)

This relationship is called the lens makers’ equation because it can be used to
determine the values of R 1 and R 2 that are needed for a given index of refraction
and a desired focal length f. Conversely, if the index of refraction and the radii of
curvature of a lens are given, this equation enables a calculation of the focal
length. If the lens is immersed in something other than air, this same equation can
be used, with n interpreted as the ratio of the index of refraction of the lens mater-
ial to that of the surrounding fluid.

What is the focal length of a pane of window glass?

Quick Quiz 36.2

1
f

� (n � 1)� 1
R 1

�
1

R 2
�

1
p

�
1
q

� (n � 1)� 1
R 1

�
1

R 2
�

1
p1

�
1
q2

� (n � 1)� 1
R 1

�
1

R 2
�

�
n
q1

�
1
q2

�
1 � n

R 2

p2 � �q1 .

p2 � �q1 � t,

n
p2

�
1
q2

�
1 � n

R 2

R1R2

C1C2

O

p q

I

Lens makers’ equation

Figure 36.23 Simplified geome-
try for a thin lens.
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Using Equation 36.11, we can write Equation 36.10 in a form identical to
Equation 36.6 for mirrors:

(36.12)

This equation, called the thin-lens equation, can be used to relate the image dis-
tance and object distance for a thin lens.

Because light can travel in either direction through a lens, each lens has two
focal points, one for light rays passing through in one direction and one for rays
passing through in the other direction. This is illustrated in Figure 36.24 for a bi-
convex lens (two convex surfaces, resulting in a converging lens) and a biconcave
lens (two concave surfaces, resulting in a diverging lens). Focal point F1 is some-
times called the object focal point, and F2 is called the image focal point.

Figure 36.25 is useful for obtaining the signs of p and q, and Table 36.3 gives
the sign conventions for thin lenses. Note that these sign conventions are the same
as those for refracting surfaces (see Table 36.2). Applying these rules to a biconvex
lens, we see that when p � f , the quantities p, q, and R 1 are positive, and R 2 is neg-
ative. Therefore, p, q, and f are all positive when a converging lens forms a real im-
age of an object. For a biconcave lens, p and R 2 are positive and q and R 1 are neg-
ative, with the result that f is negative.

Various lens shapes are shown in Figure 36.26. Note that a converging lens is
thicker at the center than at the edge, whereas a diverging lens is thinner at the
center than at the edge.

1
p

�
1
q

�
1
f

f f

f f

(a)

(b)

F2 F1F1 F2

F2
F1F1 F2

Figure 36.24 (Left) Effects of a converging lens (top) and a diverging lens (bottom) on paral-
lel rays. (Right) The object and image focal points of (a) a converg-
ing lens and (b) a diverging lens.

Front

p positive
q negative

Incident light

Back

p negative
q positive

Refracted light

Figure 36.25 A diagram for ob-
taining the signs of p and q for a
thin lens. (This diagram also ap-
plies to a refracting surface.)

Thin-lens equation
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Magnification of Images

Consider a thin lens through which light rays from an object pass. As with mirrors
(Eq. 36.2), the lateral magnification of the lens is defined as the ratio of the image
height h� to the object height h:

From this expression, it follows that when M is positive, the image is upright and
on the same side of the lens as the object. When M is negative, the image is in-
verted and on the side of the lens opposite the object.

Ray Diagrams for Thin Lenses

Ray diagrams are convenient for locating the images formed by thin lenses or sys-
tems of lenses. They also help clarify our sign conventions. Figure 36.27 shows
such diagrams for three single-lens situations. To locate the image of a converg-

M �
h�

h
� �

q
p

TABLE 36.3 Sign Conventions for Thin Lenses

p is positive if object is in front of lens (real object).
p is negative if object is in back of lens (virtual object).

q is positive if image is in back of lens (real image).
q is negative if image is in front of lens (virtual image).

R1 and R2 are positive if center of curvature is in back of lens.
R1 and R2 are negative if center of curvature is in front of lens.

f is positive if the lens is converging.
f is negative if the lens is diverging.

(a)

(b)

Figure 36.26 Various lens
shapes. (a) Biconvex, convex–
concave, and plano–convex. These
are all converging lenses; they have
a positive focal length and are
thickest at the middle. (b) Bicon-
cave, convex–concave, and
plano–concave. These are all di-
verging lenses; they have a negative
focal length and are thickest at the
edges.

O

(a)

F1

Front

F2

Back

I

1

2

3
I

(b)

F1

Front

F2

Back

O

1

2

3

O

(c)

F1

Front

F2

Back

I

1

2

3Figure 36.27 Ray diagrams for locating the image formed by a
thin lens. (a) When the object is in front of and outside the object
focal point F1 of a converging lens, the image is real, inverted, and
on the back side of the lens. (b) When the object is between F1
and a converging lens, the image is virtual, upright, larger than
the object, and on the front side of the lens. (c) When an object is
anywhere in front of a diverging lens, the image is virtual, upright,
smaller than the object, and on the front side of the lens.
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ing lens (Fig. 36.27a and b), the following three rays are drawn from the top of
the object:

• Ray 1 is drawn parallel to the principal axis. After being refracted by the lens,
this ray passes through the focal point on the back side of the lens.

• Ray 2 is drawn through the center of the lens and continues in a straight line.
• Ray 3 is drawn through that focal point on the front side of the lens (or as if

coming from the focal point if p 
 f ) and emerges from the lens parallel to
the principal axis.

• Ray 1 is drawn parallel to the principal axis. After being refracted by the lens,
this ray emerges such that it appears to have passed through the focal point
on the front side of the lens. (This apparent direction is indicated by the
dashed line in Fig. 36.27c.)

• Ray 2 is drawn through the center of the lens and continues in a straight line.
• Ray 3 is drawn toward the focal point on the back side of the lens and

emerges from the lens parallel to the optic axis.

To locate the image of a diverging lens (Fig. 36.27c), the following three rays are
drawn from the top of the object:

In Figure 36.27a, the blue object arrow is replaced by one that is much taller than the lens.
How many rays from the object will strike the lens?

For the converging lens in Figure 36.27a, where the object is to the left of the
object focal point (p � f 1), the image is real and inverted. When the object is be-
tween the object focal point and the lens (p 
 f 1), as shown in Figure 36.27b, the
image is virtual and upright. For a diverging lens (see Fig. 36.27c), the image is al-
ways virtual and upright, regardless of where the object is placed. These geometric
constructions are reasonably accurate only if the distance between the rays and the
principal axis is much less than the radii of the lens surfaces.

It is important to realize that refraction occurs only at the surfaces of the lens.
A certain lens design takes advantage of this fact to produce the Fresnel lens, a pow-
erful lens without great thickness. Because only the surface curvature is important
in the refracting qualities of the lens, material in the middle of a Fresnel lens is re-
moved, as shown in Figure 36.28. Because the edges of the curved segments cause
some distortion, Fresnel lenses are usually used only in situations in which image
quality is less important than reduction of weight.

The lines that are visible across the faces of most automobile headlights are
the edges of these curved segments. A headlight requires a short-focal-length lens
to collimate light from the nearby filament into a parallel beam. If it were not for
the Fresnel design, the glass would be very thick in the center and quite heavy. The
weight of the glass would probably cause the thin edge where the lens is supported
to break when subjected to the shocks and vibrations that are typical of travel on
rough roads.

Quick Quiz 36.3

Figure 36.28 The Fresnel lens
on the left has the same focal
length as the thick lens on the right
but is made of much less glass.
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If you cover the top half of a lens, which of the following happens to the appearance of the
image of an object? (a) The bottom half disappears; (b) the top half disappears; (c) the en-
tire image is visible but has half the intensity; (d) no change occurs; (e) the entire image
disappears.

Quick Quiz 36.4

An Image Formed by a Diverging LensEXAMPLE 36.9
The negative sign tells us that the image is in front of the lens
and virtual, as indicated in Figure 36.27c.

Exercise Determine both the magnification and the height
of the image.

Answer M � 0.400; h� � 0.800 cm.

A diverging lens has a focal length of � 20.0 cm. An object
2.00 cm tall is placed 30.0 cm in front of the lens. Locate the
image.

Solution Using the thin-lens equation (Eq. 36.12) with 
p � 30.0 cm and we obtain

�12.0 cm q �

1
30.0 cm

�
1
q

�
1

�20.0 cm

f � �20.0 cm,

An Image Formed by a Converging LensEXAMPLE 36.10
sign for M means that the image is inverted. The situation is
like that pictured in Figure 36.27a.

(b) No calculation is necessary for this case because we
know that, when the object is placed at the focal point, the
image is formed at infinity. We can readily verify this by sub-
stituting p � 10.0 cm into the thin-lens equation.

(c) We now move inside the focal point, to an object dis-
tance of 5.00 cm:

The negative image distance indicates that the image is in
front of the lens and virtual. The image is enlarged, and the
positive sign for M tells us that the image is upright, as shown
in Figure 36.27b.

2.00 M � �
q
p

� �� �10.0 cm
5.00 cm � �

�10.0 cm q �

1
5.00 cm

�
1
q

�
1

10.0 cm
 

A converging lens of focal length 10.0 cm forms an image of
each of three objects placed (a) 30.0 cm, (b) 10.0 cm, and
(c) 5.00 cm in front of the lens. In each case, find the image
distance and describe the image.

Solution (a) The thin-lens equation can be used again:

The positive sign indicates that the image is in back of the
lens and real. The magnification is

The image is reduced in size by one half, and the negative

�0.500M � �
q
p

� �
15.0 cm
30.0 cm

�

15.0 cm q �

1
30.0 cm

�
1
q

�
1

10.0 cm

 
1
p

�
1
q

�
1
f

 

A Lens Under WaterEXAMPLE 36.11
Solution We can use the lens makers’ equation (Eq.
36.11) in both cases, noting that R1 and R2 remain the same
in air and water:

A converging glass lens has a focal length of 
40.0 cm in air. Find its focal length when it is immersed in wa-
ter, which has an index of refraction of 1.33.

(n � 1.52)
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Combination of Thin Lenses

If two thin lenses are used to form an image, the system can be treated in the fol-
lowing manner. First, the image formed by the first lens is located as if the second
lens were not present. Then a ray diagram is drawn for the second lens, with the
image formed by the first lens now serving as the object for the second lens. The
second image formed is the final image of the system. One configuration is partic-
ularly straightforward; that is, if the image formed by the first lens lies on the back
side of the second lens, then that image is treated as a virtual object for the sec-
ond lens (that is, p is negative). The same procedure can be extended to a system
of three or more lenses. The overall magnification of a system of thin lenses equals
the product of the magnifications of the separate lenses.

Let us consider the special case of a system of two lenses in contact. Suppose
two thin lenses of focal lengths f1 and f2 are placed in contact with each other. If p
is the object distance for the combination, application of the thin-lens equation
(Eq. 36.12) to the first lens gives

where q1 is the image distance for the first lens. Treating this image as the object
for the second lens, we see that the object distance for the second lens must be
�q1 (negative because the object is virtual). Therefore, for the second lens,

where q is the final image distance from the second lens. Adding these equations
eliminates q1 and gives

(36.13)

Because the two thin lenses are touching, q is also the distance of the final image
from the first lens. Therefore, two thin lenses in contact with each other are
equivalent to a single thin lens having a focal length given by Equation
36.13.

 
1
f

�
1
f 1

�
1
f 2

1
p

�
1
q

�
1
f 1

�
1
f 2

1
�q1

�
1
q

�
1
f2

1
p

�
1
q1

�
1
f 1

where n� is the ratio of the index of refraction of glass to that
of water: Dividing the first equation
by the second gives

n� � 1.52/1.33 � 1.14.

1
f water

� (n� � 1)� 1
R 1

�
1

R 2
�

 
1

f air
� (n � 1)� 1

R 1
�

1
R 2

� 

Because we find that

The focal length of any glass lens is increased by a factor
when the lens is immersed in water.(n � 1)/(n� � 1)

148 cmf water � 3.71f air � 3.71(40.0 cm) �

f air � 40.0 cm,

f water

f air
�

n � 1
n� � 1

�
1.52 � 1
1.14 � 1

� 3.71

Light from a distant object brought
into focus by two converging
lenses.

Focal length of two thin lenses in
contact
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Where Is the Final Image?EXAMPLE 36.12

The final image lies 6.67 cm to the right of lens 2.
The individual magnifications of the images are

The total magnification M is equal to the product 

The final image is real because

q2 is positive. The image is also inverted and enlarged.

�1.33.(�2.00)(0.667) �

M1M2 �

M2 � �
q2

p2
� �

6.67 cm
�10.0 cm

� 0.667

M1 � �
q1

p1
� �

30.0 cm
15.0 cm

� �2.00 

6.67 cm q2 �

1
�10.0 cm

�
1
q2

�
1

20.0 cm
Even when the conditions just described do not apply, the
lens equations yield image position and magnification. For
example, two thin converging lenses of focal lengths

and are separated by 20.0 cm, as
illustrated in Figure 36.29. An object is placed 15.0 cm to the
left of lens 1. Find the position of the final image and the
magnification of the system.

Solution First we locate the image formed by lens 1 while
ignoring lens 2:

where q1 is measured from lens 1. A positive value for q1
means that this first image is in back of lens 1. 

Because q1 is greater than the separation between the two
lenses, this image formed by lens 1 lies 10.0 cm to the right of
lens 2. We take this as the object distance for the second lens,
so p2 � � 10.0 cm, where distances are now measured from
lens 2:

 
1
p2

�
1
q2

�
1
f 2

 

 q1 � 30.0 cm 

1
15.0 cm

�
1
q1

�
1

10.0 cm

1
p1

�
1
q1

�
1
f 1

f 2 � 20.0 cmf 1 � 10.0 cm

15.0 cm 20.0 cm

f2 = 20.0 cmf1 = 10.0 cm

O

Figure 36.29 A combination of two converging lenses.

Watch Your p’s and q’s!CONCEPTUAL EXAMPLE 36.13
near side of the lens. At this point, the rays leaving the lens are
parallel, making the image infinitely far away. This is described
in the graph by the asymptotic approach of the curve to the
line p � f � 10 cm.

As the object moves inside the focal point, the image be-
comes virtual and located near q � � �. We are now follow-
ing the curve in the lower left portion of Figure 36.30a. As
the object moves closer to the lens, the virtual image also
moves closer to the lens. As p : 0, the image distance q also
approaches 0. Now imagine that we bring the object to the
back side of the lens, where p 
 0. The object is now a virtual
object, so it must have been formed by some other lens. For
all locations of the virtual object, the image distance is posi-
tive and less than the focal length. The final image is real,
and its position approaches the focal point as p gets more
and more negative.

The f � � 10 cm graph shows that a distant real object
forms an image at the focal point on the front side of the
lens. As the object approaches the lens, the image remains

Use a spreadsheet or a similar tool to create two graphs of im-
age distance as a function of object distance—one for a lens
for which the focal length is 10 cm and one for a lens for
which the focal length is � 10 cm.

Solution The graphs are shown in Figure 36.30. In each
graph a gap occurs where p � f, which we shall discuss. Note
the similarity in the shapes—a result of the fact that image
and object distances for both lenses are related according to
the same equation—the thin-lens equation.

The curve in the upper right portion of the 
graph corresponds to an object on the front side of a lens,
which we have drawn as the left side of the lens in our previous
diagrams. When the object is at positive infinity, a real image
forms at the focal point on the back side (the positive side) of
the lens, q � f. (The incoming rays are parallel in this case.) As
the object gets closer to the lens, the image moves farther from
the lens, corresponding to the upward path of the curve. This
continues until the object is located at the focal point on the

f � �10 cm



Optional Section

LENS ABERRATIONS
One problem with lenses is imperfect images. The theory of mirrors and lenses that
we have been using assumes that rays make small angles with the principal axis and
that the lenses are thin. In this simple model, all rays leaving a point source focus at
a single point, producing a sharp image. Clearly, this is not always true. When the
approximations used in this theory do not hold, imperfect images are formed.

A precise analysis of image formation requires tracing each ray, using Snell’s
law at each refracting surface and the law of reflection at each reflecting surface.
This procedure shows that the rays from a point object do not focus at a single
point, with the result that the image is blurred. The departures of actual (imper-
fect) images from the ideal predicted by theory are called aberrations.

Spherical Aberrations

Spherical aberrations occur because the focal points of rays far from the principal
axis of a spherical lens (or mirror) are different from the focal points of rays of the
same wavelength passing near the axis. Figure 36.31 illustrates spherical aberration
for parallel rays passing through a converging lens. Rays passing through points
near the center of the lens are imaged farther from the lens than rays passing
through points near the edges.

Many cameras have an adjustable aperture to control light intensity and re-
duce spherical aberration. (An aperture is an opening that controls the amount of
light passing through the lens.) Sharper images are produced as the aperture size
is reduced because with a small aperture only the central portion of the lens is ex-
posed to the light; as a result, a greater percentage of the rays are paraxial. At the

36.5
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virtual and moves closer to the lens. But as we continue to-
ward the left end of the p axis, the object becomes virtual. As
the position of this virtual object approaches the focal point,
the image recedes toward infinity. As we pass the focal point,

the image shifts from a location at positive infinity to one at
negative infinity. Finally, as the virtual object continues mov-
ing away from the lens, the image is virtual, starts moving in
from negative infinity, and approaches the focal point.
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Figure 36.30 (a) Image position as a function of object position for a lens having a focal length of �10 cm. (b) Image posi-
tion as a function of object position for a lens having a focal length of �10 cm.

Figure 36.31 Spherical aberra-
tion caused by a converging lens.
Does a diverging lens cause spheri-
cal aberration?
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Lens aberrations. (a) Spherical aberration occurs when light passing through the lens at different
distances from the principal axis is focused at different points. (b) Astigmatism occurs for objects
not located on the principal axis of the lens. (c) Coma occurs as light passing through the lens
far from the principal axis and light passing near the center of the lens focus at different parts of
the focal plane.

Figure 36.32 Chromatic aberra-
tion caused by a converging lens.
Rays of different wavelengths focus
at different points.

same time, however, less light passes through the lens. To compensate for this
lower light intensity, a longer exposure time is used.

In the case of mirrors used for very distant objects, spherical aberration can be
minimized through the use of a parabolic reflecting surface rather than a spheri-
cal surface. Parabolic surfaces are not used often, however, because those with
high-quality optics are very expensive to make. Parallel light rays incident on a par-
abolic surface focus at a common point, regardless of their distance from the prin-
cipal axis. Parabolic reflecting surfaces are used in many astronomical telescopes
to enhance image quality.

Chromatic Aberrations

The fact that different wavelengths of light refracted by a lens focus at different
points gives rise to chromatic aberrations. In Chapter 35 we described how the in-
dex of refraction of a material varies with wavelength. For instance, when white
light passes through a lens, violet rays are refracted more than red rays (Fig.
36.32). From this we see that the focal length is greater for red light than for violet
light. Other wavelengths (not shown in Fig. 36.32) have focal points intermediate
between those of red and violet.

Chromatic aberration for a diverging lens also results in a shorter focal length
for violet light than for red light, but on the front side of the lens. Chromatic aber-
ration can be greatly reduced by combining a converging lens made of one type of
glass and a diverging lens made of another type of glass.

Optional Section

THE CAMERA
The photographic camera is a simple optical instrument whose essential features
are shown in Figure 36.33. It consists of a light-tight box, a converging lens that
produces a real image, and a film behind the lens to receive the image. One fo-
cuses the camera by varying the distance between lens and film. This is accom-

36.6
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plished with an adjustable bellows in older-style cameras and with some other me-
chanical arrangement in modern cameras. For proper focusing—which is neces-
sary for the formation of sharp images—the lens-to-film distance depends on the
object distance as well as on the focal length of the lens.

The shutter, positioned behind the lens, is a mechanical device that is opened
for selected time intervals, called exposure times. One can photograph moving ob-
jects by using short exposure times, or photograph dark scenes (with low light lev-
els) by using long exposure times. If this adjustment were not available, it would
be impossible to take stop-action photographs. For example, a rapidly moving ve-
hicle could move enough in the time that the shutter was open to produce a
blurred image. Another major cause of blurred images is the movement of the
camera while the shutter is open. To prevent such movement, either short expo-
sure times or a tripod should be used, even for stationary objects. Typical shutter
speeds (that is, exposure times) are 1/30, 1/60, 1/125, and 1/250 s. For handheld
cameras, the use of slower speeds can result in blurred images (due to movement),
but the use of faster speeds reduces the gathered light intensity. In practice, sta-
tionary objects are normally shot with an intermediate shutter speed of 1/60 s.

More expensive cameras have an aperture of adjustable diameter to further
control the intensity of the light reaching the film. As noted earlier, when an aper-
ture of small diameter is used, only light from the central portion of the lens
reaches the film; in this way spherical aberration is reduced.

The intensity I of the light reaching the film is proportional to the area of the
lens. Because this area is proportional to the square of the diameter D, we con-
clude that I is also proportional to D2. Light intensity is a measure of the rate at
which energy is received by the film per unit area of the image. Because the area
of the image is proportional to q2, and q � f (when so p can be approxi-
mated as infinite), we conclude that the intensity is also proportional to 1/f 2, and
thus The brightness of the image formed on the film depends on the
light intensity, so we see that the image brightness depends on both the focal
length and the diameter of the lens.

The ratio f/D is called the f-number of a lens:

(36.14)

Hence, the intensity of light incident on the film can be expressed as

(36.15)

The f -number is often given as a description of the lens “speed.” The lower the
f -number,  the wider the aperture and the higher the rate at which energy from
the light exposes the film—thus, a lens with a low f -number is a “fast” lens. The
conventional notation for an f -number is “f/” followed by the actual number. For
example, “f/4” means an f -number of 4—it does not mean to divide f by 4! Ex-
tremely fast lenses, which have f -numbers as low as approximately f/1.2, are ex-
pensive because it is very difficult to keep aberrations acceptably small with light
rays passing through a large area of the lens. Camera lens systems (that is, combi-
nations of lenses with adjustable apertures) are often marked with multiple f -num-
bers, usually f/2.8, f/4, f/5.6, f/8, f/11, and f/16. Any one of these settings can
be selected by adjusting the aperture, which changes the value of D. Increasing the
setting from one f -number to the next higher value (for example, from f/2.8 to
f/4) decreases the area of the aperture by a factor of two. The lowest f -number set-

I 
1

( f/D)2 
1

( f -number)2

f -number �
f
D

I  D2/f 2.

p W f,

Shutter

Lens

Aperture

Film

Image

qp

Figure 36.33 Cross-sectional
view of a simple camera. Note that
in reality, p W q.
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ting on a camera lens corresponds to a wide-open aperture and the use of the
maximum possible lens area.

Simple cameras usually have a fixed focal length and a fixed aperture size,
with an f -number of about f/11. This high value for the f -number allows for a
large depth of field, meaning that objects at a wide range of distances from the
lens form reasonably sharp images on the film. In other words, the camera does
not have to be focused.

Finding the Correct Exposure TimeEXAMPLE 36.14
the energy per unit area received by the film is proportional
to It. Comparing the two situations, we require that

where t1 is the correct exposure time for f/1.8
and t2 is the correct exposure time for f/4. Using this result
together with Equation 36.15, we find that

As the aperture size is reduced, exposure time must increase.

1
100

 s� � 4
1.8 �

2

� 1
500

 s� �

 t 2 � � f 2-number
f 1-number �

2
t 1

t 1

( f 1-number)2 �
t 2

( f 2-number)2  

I1t 1 � I2t 2 ,

The lens of a certain 35-mm camera (where 35 mm is the
width of the film strip) has a focal length of 55 mm and a
speed (an f -number) of f/1.8. The correct exposure time for
this speed under certain conditions is known to be (1/500) s.
(a) Determine the diameter of the lens.

Solution From Equation 36.14, we find that

(b) Calculate the correct exposure time if the f -number is
changed to f/4 under the same lighting conditions.

Solution The total light energy hitting the film is propor-
tional to the product of the intensity and the exposure time.
If I is the light intensity reaching the film, then in a time t

31 mmD �
f

f -number
�

55 mm
1.8

�

Optional Section

THE EYE
Like a camera, a normal eye focuses light and produces a sharp image. However,
the mechanisms by which the eye controls the amount of light admitted and ad-
justs to produce correctly focused images are far more complex, intricate, and ef-
fective than those in even the most sophisticated camera. In all respects, the eye is
a physiological wonder.

Figure 36.34 shows the essential parts of the human eye. Light entering the
eye passes through a transparent structure called the cornea, behind which are a
clear liquid (the aqueous humor), a variable aperture (the pupil , which is an open-
ing in the iris), and the crystalline lens. Most of the refraction occurs at the outer
surface of the eye, where the cornea is covered with a film of tears. Relatively little
refraction occurs in the crystalline lens because the aqueous humor in contact
with the lens has an average index of refraction close to that of the lens. The iris,
which is the colored portion of the eye, is a muscular diaphragm that controls
pupil size. The iris regulates the amount of light entering the eye by dilating the
pupil in low-light conditions and contracting the pupil in high-light conditions.
The f -number range of the eye is from about f/2.8 to f/16.

The cornea– lens system focuses light onto the back surface of the eye, the
retina, which consists of millions of sensitive receptors called rods and cones. When
stimulated by light, these receptors send impulses via the optic nerve to the brain,

36.7

Close-up photograph of the cornea
of the human eye.
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where an image is perceived. By this process, a distinct image of an object is ob-
served when the image falls on the retina.

The eye focuses on an object by varying the shape of the pliable crystalline
lens through an amazing process called accommodation. An important compo-
nent of accommodation is the ciliary muscle, which is situated in a circle around the
rim of the lens. Thin filaments, called zonules, run from this muscle to the edge of
the lens. When the eye is focused on a distant object, the ciliary muscle is relaxed,
tightening the zonules that attach the muscle to the edge of the lens. The force of
the zonules causes the lens to flatten, increasing its focal length. For an object dis-
tance of infinity, the focal length of the eye is equal to the fixed distance between
lens and retina, about 1.7 cm. The eye focuses on nearby objects by tensing the cil-
iary muscle, which relaxes the zonules. This action allows the lens to bulge a bit,
and its focal length decreases, resulting in the image being focused on the retina.
All these lens adjustments take place so swiftly that we are not even aware of the
change. In this respect, even the finest electronic camera is a toy compared with
the eye.

Accommodation is limited in that objects that are very close to the eye pro-
duce blurred images. The near point is the closest distance for which the lens can
accommodate to focus light on the retina. This distance usually increases with age
and has an average value of 25 cm. Typically, at age 10 the near point of the eye is
about 18 cm. It increases to about 25 cm at age 20, to 50 cm at age 40, and to 500
cm or greater at age 60. The far point of the eye represents the greatest distance
for which the lens of the relaxed eye can focus light on the retina. A person with
normal vision can see very distant objects, such as the Moon, and thus has a far
point near infinity.

Recall that the light leaving the mirror in Figure 36.8 becomes white where it
comes together but then diverges into separate colors again. Because nothing but
air exists at the point where the rays cross (and hence nothing exists to cause the
colors to separate again), seeing white light as a result of a combination of colors
must be a visual illusion. In fact, this is the case. Only three types of color-sensitive

Pupil

Cornea

Crystalline
lens

Ciliary
muscle

Retinal
arteries

and veins

Retina

Vitreous
humor

Iris
Optic
nerve

Aqueous
humor

Figure 36.34 Essential parts of the eye. 

QuickLab
Move this book toward your face until
the letters just begin to blur. The dis-
tance from the book to your eyes is
your near point.
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Figure 36.35 Approximate color sensitivity of the three types of cones in the retina.

QuickLab
Pour a pile of salt or sugar into your
palm. Compare its white appearance
with the transparency of a single
grain.

cells are present in the retina; they are called red, green, and blue cones because
of the peaks of the color ranges to which they respond (Fig. 36.35). If the red and
green cones are stimulated simultaneously (as would be the case if yellow light
were shining on them), the brain interprets what we see as yellow. If all three types
of cones are stimulated by the separate colors red, blue, and green, as in Figure
36.8, we see white. If all three types of cones are stimulated by light that contains
all colors, such as sunlight, we again see white light.

Color televisions take advantage of this visual illusion by having only red,
green, and blue dots on the screen. With specific combinations of brightness in
these three primary colors, our eyes can be made to see any color in the rainbow.
Thus, the yellow lemon you see in a television commercial is not really yellow, it is
red and green! The paper on which this page is printed is made of tiny, matted,
translucent fibers that scatter light in all directions; the resultant mixture of colors
appears white to the eye. Snow, clouds, and white hair are not really white. In fact,
there is no such thing as a white pigment. The appearance of these things is a con-
sequence of the scattering of light containing all colors, which we interpret as
white.

Conditions of the Eye

When the eye suffers a mismatch between the focusing range of the lens–cornea
system and the length of the eye, with the result that light rays reach the retina be-
fore they converge to form an image, as shown in Figure 36.36a, the condition is
known as farsightedness (or hyperopia). A farsighted person can usually see far-
away objects clearly but not nearby objects. Although the near point of a normal
eye is approximately 25 cm, the near point of a farsighted person is much farther
away. The eye of a farsighted person tries to focus by accommodation—that is, by
shortening its focal length. This works for distant objects, but because the focal
length of the farsighted eye is greater than normal, the light from nearby objects
cannot be brought to a sharp focus before it reaches the retina, and it thus causes
a blurred image. The refracting power in the cornea and lens is insufficient to fo-
cus the light from all but distant objects satisfactorily. The condition can be cor-
rected by placing a converging lens in front of the eye, as shown in Figure 36.36b.
The lens refracts the incoming rays more toward the principal axis before entering
the eye, allowing them to converge and focus on the retina.

A person with nearsightedness (or myopia), another mismatch condition, can
focus on nearby objects but not on faraway objects. In the case of axial myopia, the
nearsightedness is caused by the lens being too far from the retina. In refractive my-
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Figure 36.36 (a) When a farsighted eye looks at an object located between the near point and
the eye, the image point is behind the retina, resulting in blurred vision. The eye muscle con-
tracts to try to bring the object into focus. (b) Farsightedness is corrected with a converging lens.
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Figure 36.37 (a) When a nearsighted eye looks at an object that lies beyond the eye’s far
point, the image is formed in front of the retina, resulting in blurred vision. (b) Nearsightedness
is corrected with a diverging lens.
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opia, the lens–cornea system is too powerful for the length of the eye. The far
point of the nearsighted eye is not infinity and may be less than 1 m. The maxi-
mum focal length of the nearsighted eye is insufficient to produce a sharp image
on the retina, and rays from a distant object converge to a focus in front of the
retina. They then continue past that point, diverging before they finally reach the
retina and causing blurred vision (Fig. 36.37a). Nearsightedness can be corrected
with a diverging lens, as shown in Figure 36.37b. The lens refracts the rays away
from the principal axis before they enter the eye, allowing them to focus on the
retina.

Which glasses in Figure 36.38 correct nearsightedness and which correct farsightedness?

Quick Quiz 36.5

Figure 36.38

Beginning in middle age, most people lose some of their accommodation abil-
ity as the ciliary muscle weakens and the lens hardens. Unlike farsightedness,
which is a mismatch between focusing power and eye length, presbyopia (liter-
ally, “old-age vision”) is due to a reduction in accommodation ability. The cornea
and lens do not have sufficient focusing power to bring nearby objects into focus
on the retina. The symptoms are the same as those of farsightedness, and the con-
dition can be corrected with converging lenses.

In the eye defect known as astigmatism, light from a point source produces a
line image on the retina. This condition arises when either the cornea or the lens
or both are not perfectly symmetric. Astigmatism can be corrected with lenses that
have different curvatures in two mutually perpendicular directions.

(a) (b)
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Optometrists and ophthalmologists usually prescribe lenses1 measured in
diopters:

The power P of a lens in diopters equals the inverse of the focal length in me-
ters: P � 1/f.

1 The word lens comes from lentil, the name of an Italian legume. (You may have eaten lentil soup.)
Early eyeglasses were called “glass lentils” because the biconvex shape of their lenses resembled the
shape of a lentil. The first lenses for farsightedness and presbyopia appeared around 1280; concave eye-
glasses for correcting nearsightedness did not appear for more than 100 years after that.

For example, a converging lens of focal length � 20 cm has a power of � 5.0
diopters, and a diverging lens of focal length � 40 cm has a power of � 2.5
diopters.

A Case of NearsightednessEXAMPLE 36.15

Why did we use a negative sign for the image distance? As you
should have suspected, the lens must be a diverging lens (one
with a negative focal length) to correct nearsightedness.

Exercise What is the power of this lens?

Answer � 0.40 diopter.

�2.5 m f �
A particular nearsighted person is unable to see objects
clearly when they are beyond 2.5 m away (the far point of this
particular eye). What should the focal length be in a lens pre-
scribed to correct this problem?

Solution The purpose of the lens in this instance is to
“move” an object from infinity to a distance where it can be
seen clearly. This is accomplished by having the lens produce
an image at the far point. From the thin-lens equation, we
have

1
p

�
1
q

�
1
�

�
1

�2.5 m
�

1
f

Optional Section

THE SIMPLE MAGNIFIER
The simple magnifier consists of a single converging lens. As the name implies,
this device increases the apparent size of an object.

Suppose an object is viewed at some distance p from the eye, as illustrated in
Figure 36.39. The size of the image formed at the retina depends on the angle �
subtended by the object at the eye. As the object moves closer to the eye, � in-
creases and a larger image is observed. However, an average normal eye cannot fo-
cus on an object closer than about 25 cm, the near point (Fig. 36.40a). Therefore,
� is maximum at the near point.

To further increase the apparent angular size of an object, a converging lens
can be placed in front of the eye as in Figure 36.40b, with the object located at
point O, just inside the focal point of the lens. At this location, the lens forms a vir-
tual, upright, enlarged image. We define angular magnification m as the ratio of
the angle subtended by an object with a lens in use (angle � in Fig. 36.40b) to the
angle subtended by the object placed at the near point with no lens in use (angle

36.8

θ

p

Figure 36.39 The size of the im-
age formed on the retina depends
on the angle � subtended at the
eye.
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�0 in Fig. 36.40a):

(36.16)

The angular magnification is a maximum when the image is at the near point of
the eye—that is, when q � � 25 cm. The object distance corresponding to this im-
age distance can be calculated from the thin-lens equation:

where f is the focal length of the magnifier in centimeters. If we make the small-
angle approximations

(36.17)

Equation 36.16 becomes

(36.18)

Although the eye can focus on an image formed anywhere between the near
point and infinity, it is most relaxed when the image is at infinity. For the image
formed by the magnifying lens to appear at infinity, the object has to be at the fo-
cal point of the lens. In this case, Equations 36.17 become

�0 �
h

25
  and  � �

h
f

mmax � 1 �
25 cm

f
 

mmax �
�

�0
�

h/p
h/25

�
25
p

�
25

25f /(25 � f )

tan �0 � �0 �
h

25
  and  tan � � � �

h
p

 p �
25f

25 � f

1
p

�
1

�25 cm
�

1
f

 

m �
�

�0

θ
θ

25 cm

(a)

h

25 cm

h'

θ0

I

h

p
F O θ

(b)

θ

Figure 36.40 (a) An object
placed at the near point of the
eye (p � 25 cm) subtends an
angle �0 � h/25 at the eye.
(b) An object placed near the
focal point of a converging lens
produces a magnified image
that subtends an angle � �
h�/25 at the eye.

Angular magnification with the
object at the near point
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and the magnification is

(36.19)

With a single lens, it is possible to obtain angular magnifications up to about 4
without serious aberrations. Magnifications up to about 20 can be achieved by us-
ing one or two additional lenses to correct for aberrations.

mmin �
�

�0
�

25 cm
f

Objective Eyepiece

L

(a)

I2

O

Fo

fo

p1 q1

Fe I l

fe

Figure 36.41 (a) Diagram of a compound microscope, which consists of an objective lens and
an eyepiece lens. (b) A compound microscope. The three-objective turret allows the user to
choose from several powers of magnification. Combinations of eyepieces with different focal
lengths and different objectives can produce a wide range of magnifications.

(b)

Maximum Magnification of a LensEXAMPLE 36.16
When the eye is relaxed, the image is at infinity. In this case,
we use Equation 36.19:

2.5mmin �
25 cm 

f
�

25 cm
10 cm

�

What is the maximum magnification that is possible with a
lens having a focal length of 10 cm, and what is the magnifi-
cation of this lens when the eye is relaxed?

Solution The maximum magnification occurs when the
image is located at the near point of the eye. Under these cir-
cumstances, Equation 36.18 gives

3.5mmax � 1 �
25 cm

f
� 1 �

25 cm
10 cm

�

Optional Section

THE COMPOUND MICROSCOPE
A simple magnifier provides only limited assistance in inspecting minute details of
an object. Greater magnification can be achieved by combining two lenses in a de-
vice called a compound microscope, a schematic diagram of which is shown in
Figure 36.41a. It consists of one lens, the objective, that has a very short focal length

36.9
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cm and a second lens, the eyepiece, that has a focal length f e of a few cen-
timeters. The two lenses are separated by a distance L that is much greater than ei-
ther f o or f e . The object, which is placed just outside the focal point of the objec-
tive, forms a real, inverted image at I1 , and this image is located at or close to the
focal point of the eyepiece. The eyepiece, which serves as a simple magnifier, pro-
duces at I2 a virtual, inverted image of I1 . The lateral magnification M1 of the first
image is �q1/p1 . Note from Figure 36.41a that q1 is approximately equal to L and
that the object is very close to the focal point of the objective: Thus, the
lateral magnification by the objective is

The angular magnification by the eyepiece for an object (corresponding to the im-
age at I1) placed at the focal point of the eyepiece is, from Equation 36.19,

The overall magnification of the compound microscope is defined as the product
of the lateral and angular magnifications:

(36.20)

The negative sign indicates that the image is inverted.
The microscope has extended human vision to the point where we can view

previously unknown details of incredibly small objects. The capabilities of this in-
strument have steadily increased with improved techniques for precision grinding
of lenses. An often-asked question about microscopes is: “If one were extremely
patient and careful, would it be possible to construct a microscope that would en-
able the human eye to see an atom?” The answer is no, as long as light is used to il-
luminate the object. The reason is that, for an object under an optical microscope
(one that uses visible light) to be seen, the object must be at least as large as a
wavelength of light. Because the diameter of any atom is many times smaller than
the wavelengths of visible light, the mysteries of the atom must be probed using
other types of “microscopes.”

The ability to use other types of waves to “see” objects also depends on wave-
length. We can illustrate this with water waves in a bathtub. Suppose you vibrate
your hand in the water until waves having a wavelength of about 15 cm are moving
along the surface. If you hold a small object, such as a toothpick, so that it lies in
the path of the waves, it does not appreciably disturb the waves; they continue
along their path “oblivious” to it. Now suppose you hold a larger object, such as a
toy sailboat, in the path of the 15-cm waves. In this case, the waves are considerably
disturbed by the object. Because the toothpick was smaller than the wavelength of
the waves, the waves did not “see” it (the intensity of the scattered waves was low).
Because it is about the same size as the wavelength of the waves, however, the boat
creates a disturbance. In other words, the object acts as the source of scattered
waves that appear to come from it.

Light waves behave in this same general way. The ability of an optical micro-
scope to view an object depends on the size of the object relative to the wavelength
of the light used to observe it. Hence, we can never observe atoms with an optical

M � M1me � �
L
f o

 � 25 cm
f e

�

me �
25 cm

f e

M1 � �
L
f o

p1 � f o .

f o 
 1



1174 C H A P T E R  3 6 Geometric Optics

microscope2 because their dimensions are small (� 0.1 nm) relative to the wave-
length of the light (� 500 nm). 

Optional Section

THE TELESCOPE
Two fundamentally different types of telescopes exist; both are designed to aid in
viewing distant objects, such as the planets in our Solar System. The refracting
telescope uses a combination of lenses to form an image, and the reflecting tele-
scope uses a curved mirror and a lens.

The lens combination shown in Figure 36.42a is that of a refracting telescope.
Like the compound microscope, this telescope has an objective and an eyepiece.
The two lenses are arranged so that the objective forms a real, inverted image of
the distant object very near the focal point of the eyepiece. Because the object is
essentially at infinity, this point at which I1 forms is the focal point of the objective.
Hence, the two lenses are separated by a distance which corresponds to
the length of the telescope tube. The eyepiece then forms, at I2 , an enlarged, in-
verted image of the image at I1 .

The angular magnification of the telescope is given by �/�o , where �o is the
angle subtended by the object at the objective and � is the angle subtended by the
final image at the viewer’s eye. Consider Figure 36.42a, in which the object is a
very great distance to the left of the figure. The angle �o (to the left of the objec-
tive) subtended by the object at the objective is the same as the angle (to the right
of the objective) subtended by the first image at the objective. Thus,

where the negative sign indicates that the image is inverted.
The angle � subtended by the final image at the eye is the same as the angle

that a ray coming from the tip of I1 and traveling parallel to the principal axis
makes with the principal axis after it passes through the lens. Thus,

We have not used a negative sign in this equation because the final image is not in-
verted; the object creating this final image I2 is I1 , and both it and I2 point in the
same direction. To see why the adjacent side of the triangle containing angle � is f e
and not 2f e, note that we must use only the bent length of the refracted ray.
Hence, the angular magnification of the telescope can be expressed as

(36.21)

and we see that the angular magnification of a telescope equals the ratio of the ob-
jective focal length to the eyepiece focal length. The negative sign indicates that
the image is inverted.

Why isn’t the lateral magnification given by Equation 36.1 a useful concept for telescopes?

Quick Quiz 36.6

m �
�

�o
�

h�/f e

�h�/f o
� �

f o

f e

tan � � � �
h�

f e

tan �o � �o � �
h�

f o

f o � f e ,

36.10

2 Single-molecule near-field optic studies are routinely performed with visible light having wavelengths
of about 500 nm. The technique uses very small apertures to produce images having resolution as small
as 10 nm.

14.1
&

14.9
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Figure 36.43 A Newtonian-focus
reflecting telescope.

Objective lens

Eyepiece lens

fo

fe fe

Fe Fo

I1

Fe'

θh'

(a)

I2

oθ

oθ

Figure 36.42 (a) Lens arrangement in a refracting telescope, with the object at infinity. (b) A
refracting telescope.

(b)

When we look through a telescope at such relatively nearby objects as the
Moon and the planets, magnification is important. However, stars are so far away
that they always appear as small points of light no matter how great the magnifica-
tion. A large research telescope that is used to study very distant objects must have
a great diameter to gather as much light as possible. It is difficult and expensive to
manufacture large lenses for refracting telescopes. Another difficulty with large
lenses is that their weight leads to sagging, which is an additional source of aberra-
tion. These problems can be partially overcome by replacing the objective with a
concave mirror, which results in a reflecting telescope. Because light is reflected
from the mirror and does not pass through a lens, the mirror can have rigid sup-
ports on the back side. Such supports eliminate the problem of sagging.

Figure 36.43 shows the design for a typical reflecting telescope. Incoming light
rays pass down the barrel of the telescope and are reflected by a parabolic mirror
at the base. These rays converge toward point A in the figure, where an image
would be formed. However, before this image is formed, a small, flat mirror M re-
flects the light toward an opening in the side of the tube that passes into an eye-
piece. This particular design is said to have a Newtonian focus because Newton de-
veloped it. Note that in the reflecting telescope the light never passes through
glass (except through the small eyepiece). As a result, problems associated with
chromatic aberration are virtually eliminated.

The largest reflecting telescopes in the world are at the Keck Observatory on
Mauna Kea, Hawaii. The site includes two telescopes with diameters of 10 m, each
containing 36 hexagonally shaped, computer-controlled mirrors that work to-
gether to form a large reflecting surface. In contrast, the largest refracting tele-
scope in the world, at the Yerkes Observatory in Williams Bay, Wisconsin, has a di-
ameter of only 1 m.

Eyepiece

M

A

Parabolic
mirror

web
For more information on the Keck
telescopes, visit
http://www2.keck.hawaii.edu:3636/
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SUMMARY

The lateral magnification M of a mirror or lens is defined as the ratio of the im-
age height h� to the object height h:

(36.1)

In the paraxial ray approximation, the object distance p and image distance q
for a spherical mirror of radius R are related by the mirror equation:

(36.4, 36.6)

where is the focal length of the mirror.
An image can be formed by refraction from a spherical surface of radius R.

The object and image distances for refraction from such a surface are related by

(36.8)

where the light is incident in the medium for which the index of refraction is n1
and is refracted in the medium for which the index of refraction is n2 .

The inverse of the focal length f of a thin lens surrounded by air is given by
the lens makers’ equation:

(36.11)

Converging lenses have positive focal lengths, and diverging lenses have nega-
tive focal lengths.

For a thin lens, and in the paraxial ray approximation, the object and image
distances are related by the thin-lens equation:

(36.12)
1
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Figure Q36.1

QUESTIONS

1. What is wrong with the caption of the cartoon shown in
Figure Q36.1?

2. Using a simple ray diagram, such as the one shown in Fig-
ure 36.2, show that a flat mirror whose top is at eye level
need not be as long as you are for you to see your entire
body in it.

3. Consider a concave spherical mirror with a real object. Is
the image always inverted? Is the image always real? Give
conditions for your answers.

4. Repeat the preceding question for a convex spherical
mirror.

5. Why does a clear stream of water, such as a creek, always
appear to be shallower than it actually is? By how much is
its depth apparently reduced?

6. Consider the image formed by a thin converging lens.
Under what conditions is the image (a) inverted, (b) up-
right, (c) real, (d) virtual, (e) larger than the object, and
(f) smaller than the object?

7. Repeat Question 6 for a thin diverging lens.
8. Use the lens makers’ equation to verify the sign of the fo-

cal length of each of the lenses in Figure 36.26.

“Most mirrors reverse left and right. This one reverses top and
bottom.”
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Figure Q36.9

9. If a cylinder of solid glass or clear plastic is placed above
the words LEAD OXIDE and viewed from the side as shown
in Figure Q36.9, the LEAD appears inverted but the OXIDE

does not. Explain.

10. If the camera “sees” a movie actor’s reflection in a mirror,
what does the actor see in the mirror?

11. Explain why a mirror cannot give rise to chromatic aber-
ration.

12. Why do some automobile mirrors have printed on them
the statement “Objects in mirror are closer than they ap-
pear” ? (See Fig. Q36.12.)

Figure Q36.12

13. Why do some emergency vehicles have the symbol
written on the front?AMBULANCE

14. Explain why a fish in a spherical goldfish bowl appears
larger than it really is.

15. Lenses used in eyeglasses, whether converging or diverg-
ing, are always designed such that the middle of the lens
curves away from the eye, like the center lenses of Figure
36.26a and b. Why?

16. A mirage is formed when the air gets gradually cooler
with increasing altitude. What might happen if the air
grew gradually warmer with altitude? This often happens
over bodies of water or snow-covered ground; the effect is
called looming.

17. Consider a spherical concave mirror, with an object posi-
tioned to the left of the mirror beyond the focal point.
Using ray diagrams, show that the image moves to the left
as the object approaches the focal point.

18. In a Jules Verne novel, a piece of ice is shaped into a mag-
nifying lens to focus sunlight to start a fire. Is this possi-
ble?

19. The f -number of a camera is the focal length of the lens
divided by its aperture (or diameter). How can the f -num-
ber of the lens be changed? How does changing this
number affect the required exposure time?

20. A solar furnace can be constructed through the use of a
concave mirror to reflect and focus sunlight into a fur-
nace enclosure. What factors in the design of the reflect-
ing mirror would guarantee very high temperatures?

21. One method for determining the position of an image,
either real or virtual, is by means of parallax. If a finger or
another object is placed at the position of the image, as
shown in Figure Q36.21, and the finger and the image
are viewed simultaneously (the image is viewed through
the lens if it is virtual), the finger and image have the
same parallax; that is, if the image is viewed from differ-
ent positions, it will appear to move along with the finger.
Use this method to locate the image formed by a lens. Ex-
plain why the method works.

Finger

Image

Figure Q36.21

22. Figure Q36.22 shows a lithograph by M. C. Escher titled
Hand with Reflection Sphere (Self-Portrait in Spherical Mirror).
Escher had this to say about the work: “The picture shows
a spherical mirror, resting on a left hand. But as a print is
the reverse of the original drawing on stone, it was my
right hand that you see depicted. (Being left-handed, I
needed my left hand to make the drawing.) Such a globe
reflection collects almost one’s whole surroundings in
one disk-shaped image. The whole room, four walls, the
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floor, and the ceiling, everything, albeit distorted, is com-
pressed into that one small circle. Your own head, or
more exactly the point between your eyes, is the absolute
center. No matter how you turn or twist yourself, you
can’t get out of that central point. You are immovably the
focus, the unshakable core, of your world.” Comment on
the accuracy of Escher’s description.

23. You can make a corner reflector by placing three flat mir-
rors in the corner of a room where the ceiling meets the
walls. Show that no matter where you are in the room,
you can see yourself reflected in the mirrors—upside
down.

Figure Q36.22

PROBLEMS

5. A person walks into a room with two flat mirrors on op-
posite walls, which produce multiple images. When the
person is 5.00 ft from the mirror on the left wall and
10.0 ft from the mirror on the right wall, find the dis-
tances from that person to the first three images seen in
the mirror on the left.

Section 36.2 Images Formed by Spherical Mirrors
6. A concave spherical mirror has a radius of curvature of

20.0 cm. Find the location of the image for object dis-
tances of (a) 40.0 cm, (b) 20.0 cm, and (c) 10.0 cm. For
each case, state whether the image is real or virtual and
upright or inverted, and find the magnification.

7. At an intersection of hospital hallways, a convex mirror
is mounted high on a wall to help people avoid colli-
sions. The mirror has a radius of curvature of 0.550 m.
Locate and describe the image of a patient 10.0 m from
the mirror. Determine the magnification.

8. A large church has a niche in one wall. On the floor
plan it appears as a semicircular indentation of radius
2.50 m. A worshiper stands on the center line of the
niche, 2.00 m out from its deepest point, and whispers a
prayer. Where is the sound concentrated after reflec-
tion from the back wall of the niche?

Section 36.1 Images Formed by Flat Mirrors
1. Does your bathroom mirror show you older or younger

than you actually are? Compute an order-of-magnitude
estimate for the age difference, based on data that you
specify.

2. In a church choir loft, two parallel walls are 5.30 m
apart. The singers stand against the north wall. The or-
ganist faces the south wall, sitting 0.800 m away from it.
To enable her to see the choir, a flat mirror 0.600 m
wide is mounted on the south wall, straight in front of
her. What width of the north wall can she see? Hint:
Draw a top-view diagram to justify your answer.

3. Determine the minimum height of a vertical flat mirror
in which a person 5�10� in height can see his or her full
image. (A ray diagram would be helpful.)

4. Two flat mirrors have their reflecting surfaces facing
each other, with an edge of one mirror in contact with
an edge of the other, so that the angle between the mir-
rors is �. When an object is placed between the mirrors,
a number of images are formed. In general, if the angle
� is such that where n is an integer, the
number of images formed is Graphically, find all
the image positions for the case when a point ob-
ject is between the mirrors (but not on the angle bisec-
tor).

n � 6
n � 1.

n� � 360�,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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9. A spherical convex mirror has a radius of curvature of
40.0 cm. Determine the position of the virtual image
and the magnification (a) for an object distance of 
30.0 cm and (b) for an object distance of 60.0 cm. 
(c) Are the images upright or inverted?

10. The height of the real image formed by a concave mir-
ror is four times the object height when the object is
30.0 cm in front of the mirror. (a) What is the radius of
curvature of the mirror? (b) Use a ray diagram to locate
this image.

11. A concave mirror has a radius of curvature of 60.0 cm.
Calculate the image position and magnification of an
object placed in front of the mirror (a) at a distance of
90.0 cm and (b) at a distance of 20.0 cm. (c) In each
case, draw ray diagrams to obtain the image characteris-
tics.

12. A concave mirror has a focal length of 40.0 cm. Deter-
mine the object position for which the resulting image
is upright and four times the size of the object.

13. A spherical mirror is to be used to form, on a screen
5.00 m from the object, an image five times the size of
the object. (a) Describe the type of mirror required. 
(b) Where should the mirror be positioned relative to
the object?

14. A rectangle 10.0 cm � 20.0 cm is placed so that its right
edge is 40.0 cm to the left of a concave spherical mirror,
as in Figure P36.14. The radius of curvature of the mir-
ror is 20.0 cm. (a) Draw the image formed by this mir-
ror. (b) What is the area of the image?

Section 36.3 Images Formed by Refraction
18. A flint-glass plate rests on the bottom of an

aquarium tank. The plate is 8.00 cm thick (vertical di-
mension) and covered with water to a depth
of 12.0 cm. Calculate the apparent thickness of the
plate as viewed from above the water. (Assume nearly
normal incidence.)

19. A cubical block of ice 50.0 cm on a side is placed on a
level floor over a speck of dust. Find the location of the
image of the speck if the index of refraction of ice is
1.309.

20. A simple model of the human eye ignores its lens en-
tirely. Most of what the eye does to light happens at the
transparent cornea. Assume that this outer surface has a
6.00-mm radius of curvature, and assume that the eye-
ball contains just one fluid with an index of refraction
of 1.40. Prove that a very distant object will be imaged
on the retina, 21.0 mm behind the cornea. Describe the
image.

21. A glass sphere with a radius of 15.0 cm has a
tiny air bubble 5.00 cm above its center. The sphere is
viewed looking down along the extended radius con-
taining the bubble. What is the apparent depth of the
bubble below the surface of the sphere?

22. A transparent sphere of unknown composition is ob-
served to form an image of the Sun on the surface of
the sphere opposite the Sun. What is the refractive in-
dex of the sphere material?

23. One end of a long glass rod is formed into a
convex surface of radius 6.00 cm. An object is posi-
tioned in air along the axis of the rod. Find the image
positions corresponding to object distances of 
(a) 20.0 cm, (b) 10.0 cm, and (c) 3.00 cm from the 
end of the rod.

24. A goldfish is swimming at 2.00 cm/s toward the front
wall of a rectangular aquarium. What is the apparent
speed of the fish as measured by an observer looking in
from outside the front wall of the tank? The index of re-
fraction of water is 1.33.

25. A goldfish is swimming inside a spherical plastic bowl of
water, with an index of refraction of 1.33. If the goldfish
is 10.0 cm from the wall of the 15.0-cm-radius bowl,
where does it appear to an observer outside the bowl?

Section 36.4 Thin Lenses
26. A contact lens is made of plastic with an index of refrac-

tion of 1.50. The lens has an outer radius of curvature
of � 2.00 cm and an inner radius of curvature of 
� 2.50 cm. What is the focal length of the lens?

27. The left face of a biconvex lens has a radius of curvature
of magnitude 12.0 cm, and the right face has a radius of
curvature of magnitude 18.0 cm. The index of refrac-
tion of the glass is 1.44. (a) Calculate the focal length of
the lens. (b) Calculate the focal length if the radii of
curvature of the two faces are interchanged.

(n � 1.50)

(n � 1.50)

(n � 1.33)

(n � 1.66)

WEB

C

40.0 cm

10.0 cm

20.0 cm

Figure P36.14

15. A dedicated sports-car enthusiast polishes the inside
and outside surfaces of a hubcap that is a section of a
sphere. When she looks into one side of the hubcap,
she sees an image of her face 30.0 cm in back of the
hubcap. She then flips the hubcap over and sees an-
other image of her face 10.0 cm in back of the hubcap.
(a) How far is her face from the hubcap? (b) What is
the radius of curvature of the hubcap?

16. An object is 15.0 cm from the surface of a reflective
spherical Christmas-tree ornament 6.00 cm in diameter.
What are the magnification and position of the image?

17. A ball is dropped from rest 3.00 m directly above the
vertex of a concave mirror that has a radius of 1.00 m
and lies in a horizontal plane. (a) Describe the motion
of the ball’s image in the mirror. (b) At what time do
the ball and its image coincide?

WEB
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28. A converging lens has a focal length of 20.0 cm. 
Locate the image for object distances of (a) 40.0 cm,
(b) 20.0 cm, and (c) 10.0 cm. For each case, state
whether the image is real or virtual and upright or in-
verted. Find the magnification in each case.

29. A thin lens has a focal length of 25.0 cm. Locate and de-
scribe the image when the object is placed (a) 26.0 cm
and (b) 24.0 cm in front of the lens.

30. An object positioned 32.0 cm in front of a lens forms an
image on a screen 8.00 cm behind the lens. (a) Find the
focal length of the lens. (b) Determine the magnifica-
tion. (c) Is the lens converging or diverging?

31. The nickel’s image in Figure P36.31 has twice the diam-
eter of the nickel and is 2.84 cm from the lens. Deter-
mine the focal length of the lens.

location and (b) the magnification of the image. 
(c) Construct a ray diagram for this arrangement.

38. Figure P36.38 shows a thin glass converging
lens for which the radii of curvature are cm
and cm. To the left of the lens is a cube
with a face area of 100 cm2. The base of the cube is on
the axis of the lens, and the right face is 20.0 cm to the
left of the lens. (a) Determine the focal length of the
lens. (b) Draw the image of the square face formed by
the lens. What type of geometric figure is this? 
(c) Determine the area of the image.

R 2 � �12.0
R 1 � 15.0

(n � 1.50)

39. An object is 5.00 m to the left of a flat screen. A con-
verging lens for which the focal length is m is
placed between object and screen. (a) Show that two
lens positions exist that form images on the screen, and
determine how far these positions are from the object.
(b) How do the two images differ from each other?

40. An object is at a distance d to the left of a flat screen. A
converging lens with focal length is placed be-
tween object and screen. (a) Show that two lens posi-
tions exist that form an image on the screen, and 
determine how far these positions are from the object.
(b) How do the two images differ from each other?

41. Figure 36.33 diagrams a cross-section of a camera. It has
a single lens with a focal length of 65.0 mm, which is to
form an image on the film at the back of the camera.
Suppose the position of the lens has been adjusted to
focus the image of a distant object. How far and in what
direction must the lens be moved to form a sharp image
of an object that is 2.00 m away?

(Optional)
Section 36.5 Lens Aberrations

42. The magnitudes of the radii of curvature are 32.5 cm
and 42.5 cm for the two faces of a biconcave lens. The
glass has index 1.53 for violet light and 1.51 for red
light. For a very distant object, locate and describe 
(a) the image formed by violet light and (b) the image
formed by red light.

f 
 d/4

f � 0.800

Figure P36.31

20.0 cm

F F

Figure P36.38

32. A magnifying glass is a converging lens of focal length
15.0 cm. At what distance from a postage stamp should
you hold this lens to get a magnification of � 2.00?

33. A transparent photographic slide is placed in front of a
converging lens with a focal length of 2.44 cm. The lens
forms an image of the slide 12.9 cm from the slide. How
far is the lens from the slide if the image is (a) real? 
(b) virtual?

34. A person looks at a gem with a jeweler’s loupe—a con-
verging lens that has a focal length of 12.5 cm. The
loupe forms a virtual image 30.0 cm from the lens. 
(a) Determine the magnification. Is the image upright
or inverted? (b) Construct a ray diagram for this
arrangement.

35. Suppose an object has thickness dp so that it extends
from object distance p to p � dp. Prove that the thick-
ness dq of its image is given by (�q2/p2)dp, so the longi-
tudinal magnification dq/dp � �M 2, where M is the
lateral magnification.

36. The projection lens in a certain slide projector is a sin-
gle thin lens. A slide 24.0 mm high is to be projected so
that its image fills a screen 1.80 m high. The slide-to-
screen distance is 3.00 m. (a) Determine the focal
length of the projection lens. (b) How far from the
slide should the lens of the projector be placed to form
the image on the screen?

37. An object is positioned 20.0 cm to the left of a diverging
lens with focal length cm. Determine (a) thef � �32.0

WEB
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43. Two rays traveling parallel to the principal axis strike a
large plano–convex lens having a refractive index of
1.60 (Fig. P36.43). If the convex face is spherical, a ray
near the edge does not pass through the focal point
(spherical aberration occurs). If this face has a radius of
curvature of magnitude 20.0 cm and the two rays are

cm and cm from the principal
axis, find the difference in the positions where they
cross the principal axis.

h2 � 12.0h1 � 0.500

focal length of the eyepiece is 2.50 cm, and that of the
objective is 0.400 cm. What is the overall magnification
of the microscope?

50. The desired overall magnification of a compound mi-
croscope is 140�. The objective alone produces a lat-
eral magnification of 12.0�. Determine the required fo-
cal length of the eyepiece.

51. The Yerkes refracting telescope has a 1.00-m-diameter
objective lens with a focal length of 20.0 m. Assume 
that it is used with an eyepiece that has a focal length of 
2.50 cm. (a) Determine the magnification of the planet
Mars as seen through this telescope. (b) Are the Mar-
tian polar caps seen right side up or upside down?

52. Astronomers often take photographs with the objective
lens or the mirror of a telescope alone, without an eye-
piece. (a) Show that the image size h� for this telescope
is given by where h is the object size, 
f is the objective focal length, and p is the object dis-
tance. (b) Simplify the expression in part (a) for the
case in which the object distance is much greater than
objective focal length. (c) The “wingspan” of the Inter-
national Space Station is 108.6 m, the overall width of
its solar-panel configuration. Find the width of the im-
age formed by a telescope objective of focal length 4.00 m
when the station is orbiting at an altitude of 407 km.

53. Galileo devised a simple terrestrial telescope that pro-
duces an upright image. It consists of a converging ob-
jective lens and a diverging eyepiece at opposite ends of
the telescope tube. For distant objects, the tube length
is the objective focal length less the absolute value of
the eyepiece focal length. (a) Does the user of the tele-
scope see a real or virtual image? (b) Where is the final
image? (c) If a telescope is to be constructed with a
tube 10.0 cm long and a magnification of 3.00, what are
the focal lengths of the objective and eyepiece?

54. A certain telescope has an objective mirror with an
aperture diameter of 200 mm and a focal length of 
2 000 mm. It captures the image of a nebula on photo-
graphic film at its prime focus with an exposure time of
1.50 min. To produce the same light energy per unit
area on the film, what is the required exposure time to
photograph the same nebula with a smaller telescope,
which has an objective lens with an aperture diameter
of 60.0 mm and a focal length of 900 mm?

ADDITIONAL PROBLEMS

55. The distance between an object and its upright image is
20.0 cm. If the magnification is 0.500, what is the focal
length of the lens that is being used to form the image?

56. The distance between an object and its upright image is
d . If the magnification is M, what is the focal length of
the lens that is being used to form the image?

57. The lens and mirror in Figure P36.57 have focal lengths
of � 80.0 cm and � 50.0 cm, respectively. An object is

h� � f h/( f � p),C

R ∆x

Figure P36.43

(Optional)
Section 36.7 The Eye

44. The accommodation limits for Nearsighted Nick’s eyes
are 18.0 cm and 80.0 cm. When he wears his glasses, he
can see faraway objects clearly. At what minimum dis-
tance can he see objects clearly?

45. A nearsighted person cannot see objects clearly beyond
25.0 cm (her far point). If she has no astigmatism and
contact lenses are prescribed for her, what power and
type of lens are required to correct her vision?

46. A person sees clearly when he wears eyeglasses that have
a power of � 4.00 diopters and sit 2.00 cm in front of
his eyes. If he wants to switch to contact lenses, which
are placed directly on the eyes, what lens power should
be prescribed?

(Optional)
Section 36.8 The Simple Magnifier
Section 36.9 The Compound Microscope
Section 36.10 The Telescope

47. A philatelist examines the printing detail on a stamp,
using a biconvex lens with a focal length of 10.0 cm as a
simple magnifier. The lens is held close to the eye, and
the lens-to-object distance is adjusted so that the virtual
image is formed at the normal near point (25.0 cm).
Calculate the magnification.

48. A lens that has a focal length of 5.00 cm is used as a
magnifying glass. (a) Where should the object be
placed to obtain maximum magnification? (b) What is
the magnification?

49. The distance between the eyepiece and the objective
lens in a certain compound microscope is 23.0 cm. The



1182 C H A P T E R  3 6 Geometric Optics

placed 1.00 m to the left of the lens, as shown. Locate
the final image, which is formed by light that has gone
through the lens twice. State whether the image is up-
right or inverted, and determine the overall magnifica-
tion.

58. Your friend needs glasses with diverging lenses of focal
length � 65.0 cm for both eyes. You tell him he looks
good when he does not squint, but he is worried about
how thick the lenses will be. If the radius of curvature of
the first surface is cm and the high-index
plastic has a refractive index of 1.66, (a) find the re-
quired radius of curvature of the second surface. 
(b) Assume that the lens is ground from a disk 4.00 cm
in diameter and 0.100 cm thick at the center. Find the
thickness of the plastic at the edge of the lens, mea-
sured parallel to the axis. Hint: Draw a large cross-
sectional diagram.

59. The object in Figure P36.59 is midway between the 
lens and the mirror. The mirror’s radius of curvature is
20.0 cm, and the lens has a focal length of �16.7 cm.
Considering only the light that leaves the object and
travels first toward the mirror, locate the final image
formed by this system. Is this image real or virtual? Is it
upright or inverted? What is the overall magnification?

R 1 � 50.0

MirrorLens

1.00 m1.00 m

Object

Figure P36.57

Lens Object
Mirror

25.0 cm

Figure P36.59

n

R

Air

I

q

Figure P36.61

60. An object placed 10.0 cm from a concave spherical mir-
ror produces a real image 8.00 cm from the mirror. If
the object is moved to a new position 20.0 cm from the

mirror, what is the position of the image? Is the latter
image real or virtual?

61. A parallel beam of light enters a glass hemisphere per-
pendicular to the flat face, as shown in Figure P36.61.
The radius is �R � cm, and the index of refrac-
tion is Determine the point at which the
beam is focused. (Assume paraxial rays.)

n � 1.560.
� 6.00

62. Review Problem. A spherical lightbulb with a diame-
ter of 3.20 cm radiates light equally in all directions,
with a power of 4.50 W. (a) Find the light intensity at
the surface of the bulb. (b) Find the light intensity 
7.20 m from the center of the bulb. (c) At this 
7.20-m distance, a lens is set up with its axis pointing to-
ward the bulb. The lens has a circular face with a diame-
ter of 15.0 cm and a focal length of 35.0 cm. Find the
diameter of the image of the bulb. (d) Find the light in-
tensity at the image.

63. An object is placed 12.0 cm to the left of a diverging
lens with a focal length of � 6.00 cm. A converging lens
with a focal length of 12.0 cm is placed a distance d to
the right of the diverging lens. Find the distance d that
corresponds to a final image at infinity. Draw a ray dia-
gram for this case.

64. Assume that the intensity of sunlight is 1.00 kW/m2 at a
particular location. A highly reflecting concave mirror
is to be pointed toward the Sun to produce a power of
at least 350 W at the image. (a) Find the required ra-
dius Ra of the circular face area of the mirror. (b) Now
suppose the light intensity is to be at least 120 kW/m2 at
the image. Find the required relationship between Ra
and the radius of curvature R of the mirror. The disk of
the Sun subtends an angle of 0.533° at the Earth.

65. The disk of the Sun subtends an angle of 0.533° at the
Earth. What are the position and diameter of the solar
image formed by a concave spherical mirror with a ra-
dius of curvature of 3.00 m?

66. Figure P36.66 shows a thin converging lens for which
the radii are cm and cm. The
lens is in front of a concave spherical mirror of radius

cm. (a) If its focal points F1 and F2 are 
5.00 cm from the vertex of the lens, determine its index
of refraction. (b) If the lens and mirror are 20.0 cm
apart and an object is placed 8.00 cm to the left of the

R � 8.00

R 2 � �11.0R 1 � 9.00

WEB

WEB
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lens, determine the position of the final image and its
magnification as seen by the eye in the figure. (c) Is the
final image inverted or upright? Explain.

67. In a darkened room, a burning candle is placed 1.50 m
from a white wall. A lens is placed between candle and
wall at a location that causes a larger, inverted image to
form on the wall. When the lens is moved 90.0 cm to-
ward the wall, another image of the candle is formed.
Find (a) the two object distances that produce the spec-
ified images and (b) the focal length of the lens. 
(c) Characterize the second image.

68. A thin lens of focal length f lies on a horizontal front-
surfaced flat mirror. How far above the lens should an
object be held if its image is to coincide with the object?

69. A compound microscope has an objective of focal
length 0.300 cm and an eyepiece of focal length 
2.50 cm. If an object is 3.40 mm from the objective,
what is the magnification? (Hint: Use the lens equation
for the objective.)

70. Two converging lenses with focal lengths of 10.0 cm and
20.0 cm are positioned 50.0 cm apart, as shown in Fig-
ure P36.70. The final image is to be located between the
lenses, at the position indicated. (a) How far to the left

Strawberry

Small hole

Figure P36.72

f2 (20.0 cm)f1 (10.0 cm)

Final image
Object

p 31.0 cm

50.0 cm

Figure P36.70

F2

C

F1

Figure P36.66

of the first lens should the object be? (b) What is the
overall magnification? (c) Is the final image upright or
inverted?

71. A cataract-impaired lens in an eye may be surgically re-
moved and replaced by a manufactured lens. The focal
length required for the new lens is determined by the
lens-to-retina distance, which is measured by a sonar-

like device, and by the requirement that the implant
provide for correct distant vision. (a) If the distance
from lens to retina is 22.4 mm, calculate the power of
the implanted lens in diopters. (b) Since no accommo-
dation occurs and the implant allows for correct distant
vision, a corrective lens for close work or reading must
be used. Assume a reading distance of 33.0 cm, and cal-
culate the power of the lens in the reading glasses.

72. A floating strawberry illusion consists of two parabolic
mirrors, each with a focal length of 7.50 cm, facing each
other so that their centers are 7.50 cm apart (Fig.
P36.72). If a strawberry is placed on the lower mirror,
an image of the strawberry is formed at the small open-
ing at the center of the top mirror. Show that the final
image is formed at that location, and describe its char-
acteristics. (Note: A very startling effect is to shine a
flashlight beam on these images. Even at a glancing an-
gle, the incoming light beam is seemingly reflected off
the images! Do you understand why?)

73. An object 2.00 cm high is placed 40.0 cm to the left of 
a converging lens with a focal length of 30.0 cm. A di-
verging lens with a focal length of � 20.0 cm is placed
110 cm to the right of the converging lens. (a) Deter-
mine the final position and magnification of the final
image. (b) Is the image upright or inverted? (c) Repeat
parts (a) and (b) for the case in which the second lens
is a converging lens with a focal length of � 20.0 cm.
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ANSWERS TO QUICK QUIZZES

rays, but the remaining ones still come from all parts of
the object.

36.5 The eyeglasses on the left are diverging lenses, which
correct for nearsightedness. If you look carefully at the
edge of the person’s face through the lens, you will see
that everything viewed through these glasses is reduced
in size. The eyeglasses on the right are converging
lenses, which correct for farsightedness. These lenses
make everything that is viewed through them look
larger.

36.6 The lateral magnification of a telescope is not well de-
fined. For viewing with the eye relaxed, the user may
slightly adjust the position of the eyepiece to place the
final image I2 in Figure 36.42a at infinity. Then, its
height and its lateral magnification also are infinite. The
angular magnification of a telescope as we define it is
the factor by which the telescope increases in the diame-
ter—on the retina of the viewer’s eye—of the real im-
age of an extended object.

36.1 At C . A ray traced from the stone to the mirror and then
to observer 2 looks like this:

2 1

Figure QQA36.1

F

Front

F

Back

1

2

3

Extension of lens

Figure QQA36.2

36.2 The focal length is infinite. Because the flat surfaces of
the pane have infinite radii of curvature, Equation 36.11
indicates that the focal length is also infinite. Parallel
rays striking the pane focus at infinity, which means that
they remain parallel after passing through the glass.

36.3 An infinite number. In general, an infinite number of
rays leave each point of any object and travel outward in
all directions. (The three principal rays that we use to
locate an image make up a selected subset of the infinite
number of rays.) When an object is taller than a lens, we
merely extend the plane containing the lens, as shown
in Figure QQA36.2.

36.4 (c) The entire image is visible but has half the intensity.
Each point on the object is a source of rays that travel in
all directions. Thus, light from all parts of the object
goes through all parts of the lens and forms an image. If
you block part of the lens, you are blocking some of the
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c h a p t e r

Interference of Light Waves

P U Z Z L E R

The brilliant colors seen in peacock
feathers are not caused by pigments in
the feathers. If they are not produced by
pigments, how are these beautiful colors
created? (Terry Qing/FPG International)

C h a p t e r  O u t l i n e

37.1 Conditions for Interference

37.2 Young’s Double-Slit Experiment

37.3 Intensity Distribution of the
Double-Slit Interference Pattern

37.4 Phasor Addition of Waves

37.5 Change of Phase Due to
Reflection

37.6 Interference in Thin Films

37.7 (Optional) The Michelson
Interferometer

P U Z Z L E R
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n the preceding chapter on geometric optics, we used light rays to examine
what happens when light passes through a lens or reflects from a mirror. Here
in Chapter 37 and in the next chapter, we are concerned with wave optics, the

study of interference, diffraction, and polarization of light. These phenomena can-
not be adequately explained with the ray optics used in Chapter 36. We now learn
how treating light as waves rather than as rays leads to a satisfying description of
such phenomena.

CONDITIONS FOR INTERFERENCE
In Chapter 18, we found that the adding together of two mechanical waves can be
constructive or destructive. In constructive interference, the amplitude of the re-
sultant wave is greater than that of either individual wave, whereas in destructive
interference, the resultant amplitude is less than that of either individual wave.
Light waves also interfere with each other. Fundamentally, all interference associ-
ated with light waves arises when the electromagnetic fields that constitute the in-
dividual waves combine.

If two lightbulbs are placed side by side, no interference effects are observed
because the light waves from one bulb are emitted independently of those from
the other bulb. The emissions from the two lightbulbs do not maintain a constant
phase relationship with each other over time. Light waves from an ordinary source
such as a lightbulb undergo random changes about once every 10�8 s. Therefore,
the conditions for constructive interference, destructive interference, or some in-
termediate state last for lengths of time of the order of 10�8 s. Because the eye
cannot follow such short-term changes, no interference effects are observed. (In
1993 interference from two separate light sources was photographed in an ex-
tremely fast exposure. Nonetheless, we do not ordinarily see interference effects
because of the rapidly changing phase relationship between the light waves.) Such
light sources are said to be incoherent.

Interference effects in light waves are not easy to observe because of the short
wavelengths involved (from 4 � 10�7 m to 7 � 10�7 m). For sustained interfer-
ence in light waves to be observed, the following conditions must be met:

• The sources must be coherent—that is, they must maintain a constant phase
with respect to each other.

• The sources should be monochromatic—that is, of a single wavelength.

We now describe the characteristics of coherent sources. As we saw when we
studied mechanical waves, two sources (producing two traveling waves) are
needed to create interference. In order to produce a stable interference pattern,
the individual waves must maintain a constant phase relationship with one
another. As an example, the sound waves emitted by two side-by-side loudspeakers
driven by a single amplifier can interfere with each other because the two speakers
are coherent—that is, they respond to the amplifier in the same way at the same
time.

A common method for producing two coherent light sources is to use one
monochromatic source to illuminate a barrier containing two small openings (usu-
ally in the shape of slits). The light emerging from the two slits is coherent because
a single source produces the original light beam and the two slits serve only to sep-
arate the original beam into two parts (which, after all, is what was done to the
sound signal from the side-by-side loudspeakers). Any random change in the light

37.1

I

Conditions for interference
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emitted by the source occurs in both beams at the same time, and as a result inter-
ference effects can be observed when the light from the two slits arrives at a view-
ing screen.

YOUNG’S DOUBLE-SLIT EXPERIMENT
Interference in light waves from two sources was first demonstrated by Thomas
Young in 1801. A schematic diagram of the apparatus that Young used is shown
in Figure 37.1a. Light is incident on a first barrier in which there is a slit S0 .
The waves emerging from this slit arrive at a second barrier that contains two
parallel slits S1 and S2 . These two slits serve as a pair of coherent light sources
because waves emerging from them originate from the same wave front and
therefore maintain a constant phase relationship. The light from S1 and S2 pro-
duces on a viewing screen a visible pattern of bright and dark parallel bands
called fringes (Fig. 37.1b). When the light from S1 and that from S2 both arrive
at a point on the screen such that constructive interference occurs at that loca-
tion, a bright fringe appears. When the light from the two slits combines de-
structively at any location on the screen, a dark fringe results. Figure 37.2 is a
photograph of an interference pattern produced by two coherent vibrating
sources in a water tank.

37.2

S0

S1

S2

First barrier

Second barrier

Viewing
screen

max

min

max

min

max

min

max

min

max

(a) (b)

Figure 37.1 (a) Schematic diagram of Young’s double-slit experiment. Slits S1 and S2 behave as
coherent sources of light waves that produce an interference pattern on the viewing screen
(drawing not to scale). (b) An enlargement of the center of a fringe pattern formed on the view-
ing screen with many slits could look like this.

Figure 37.2 An interference pat-
tern involving water waves is pro-
duced by two vibrating sources at
the water’s surface. The pattern is
analogous to that observed in
Young’s double-slit experiment.
Note the regions of constructive
(A) and destructive (B) interfer-
ence.

A

B
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If you were to blow smoke into the space between the second barrier and the viewing screen
of Figure 37.1a, what would you see?

Figure 37.2 is an overhead view of a shallow water tank. If you wanted to use a small ruler to
measure the water’s depth, would this be easier to do at location A or at location B?

Figure 37.3 shows some of the ways in which two waves can combine at the
screen. In Figure 37.3a, the two waves, which leave the two slits in phase, strike the
screen at the central point P. Because both waves travel the same distance, they ar-
rive at P in phase. As a result, constructive interference occurs at this location, and
a bright fringe is observed. In Figure 37.3b, the two waves also start in phase, but
in this case the upper wave has to travel one wavelength farther than the lower
wave to reach point Q . Because the upper wave falls behind the lower one by ex-
actly one wavelength, they still arrive in phase at Q , and so a second bright fringe
appears at this location. At point R in Figure 37.3c, however, midway between
points P and Q , the upper wave has fallen half a wavelength behind the lower
wave. This means that a trough of the lower wave overlaps a crest of the upper
wave; this gives rise to destructive interference at point R. For this reason, a dark
fringe is observed at this location.

We can describe Young’s experiment quantitatively with the help of Figure
37.4. The viewing screen is located a perpendicular distance L from the double-
slitted barrier. S1 and S2 are separated by a distance d, and the source is mono-
chromatic. To reach any arbitrary point P, a wave from the lower slit travels farther
than a wave from the upper slit by a distance d sin �. This distance is called the
path difference � (lowercase Greek delta). If we assume that r 1 and r 2 are paral-
lel, which is approximately true because L is much greater than d , then � is given
by

(37.1)� � r2 � r1 � d sin �

Quick Quiz 37.2

Quick Quiz 37.1

Path difference

QuickLab
Look through the fabric of an um-
brella at a distant streetlight. Can you
explain what you see? (The fringe
pattern in Figure 37.1b is from rec-
tangular slits. The fabric of the um-
brella creates a two-dimensional set of
square holes.)

(a)

Bright
fringe

Dark
fringe

(b) (c)

Bright
fringe

S1

S2

S1

S2

Slits P

P P

R

Q

 Viewing screen

Q

S2

S1

Figure 37.3 (a) Constructive interference occurs at point P when the waves combine. (b) Con-
structive interference also occurs at point Q. (c) Destructive interference occurs at R when the
two waves combine because the upper wave falls half a wavelength behind the lower wave (all fig-
ures not to scale).



The value of � determines whether the two waves are in phase when they arrive at
point P. If � is either zero or some integer multiple of the wavelength, then the
two waves are in phase at point P and constructive interference results. Therefore,
the condition for bright fringes, or constructive interference, at point P is

m � 0, � 1, � 2, . . . (37.2)

The number m is called the order number. The central bright fringe at � � 0
is called the zeroth-order maximum. The first maximum on either side,

where m � � 1, is called the first-order maximum, and so forth.
When � is an odd multiple of �/2, the two waves arriving at point P are 180°

out of phase and give rise to destructive interference. Therefore, the condition for
dark fringes, or destructive interference, at point P is

m � 0, � 1, � 2, . . . (37.3)

It is useful to obtain expressions for the positions of the bright and dark
fringes measured vertically from O to P. In addition to our assumption that

we assume that These can be valid assumptions because in practice
L is often of the order of 1 m, d a fraction of a millimeter, and � a fraction of a mi-
crometer for visible light. Under these conditions, � is small; thus, we can use the
approximation sin � � tan �. Then, from triangle OPQ in Figure 37.4, we see that

(37.4)

Solving Equation 37.2 for sin � and substituting the result into Equation 37.4, we
see that the positions of the bright fringes measured from O are given by the ex-
pression

(37.5)ybright �
�L
d

 m

y � L tan � � L sin �

d W �.L W d ,

d sin � � (m � 1
2 )�

(m � 0)

� � d sin � � m�

37.2 Young’s Double-Slit Experiment 1189

Conditions for constructive
interference

Conditions for destructive
interference

(b)

r2 – r1 = d sin θ

S1

S2

θ
d

r2

r1

(a)

d

S1

S2

Q

L
Viewing screen

θ

θ

P

O

δ
Source

y

r1

r2

θ

Figure 37.4 (a) Geometric construction for describing Young’s double-slit experiment (not to
scale). (b) When we assume that r 1 is parallel to r2 , the path difference between the two rays is

sin �. For this approximation to be valid, it is essential that L W d .r2 � r1 � d
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Using Equations 37.3 and 37.4, we find that the dark fringes are located at

(37.6)

As we demonstrate in Example 37.1, Young’s double-slit experiment provides a
method for measuring the wavelength of light. In fact, Young used this technique
to do just that. Additionally, the experiment gave the wave model of light a great
deal of credibility. It was inconceivable that particles of light coming through the
slits could cancel each other in a way that would explain the dark fringes.

ydark �
�L
d

 (m � 1
2)

Separating Double-Slit Fringes of Two WavelengthsEXAMPLE 37.2

Hence, the separation distance between the two fringes is

1.4 cm � 1.4 � 10�2 m �

	y � y 
3 � y3 � 9.18 � 10�2
 
 m � 7.74 � 10�2

 
 m 

y 
3 �  
�
L
d

 m � 3 
�
L
d

� 9.18 � 10�2 m
A light source emits visible light of two wavelengths: � �
430 nm and �
 � 510 nm. The source is used in a double-slit
interference experiment in which m and 

mm. Find the separation distance between the third-
order bright fringes.

Solution Using Equation 37.5, with we find that
the fringe positions corresponding to these two wavelengths
are

y3 �
�L
d

 m � 3 
�L
d

� 7.74 � 10�2 m 

m � 3,

0.025
d �L � 1.5

Measuring the Wavelength of a Light SourceEXAMPLE 37.1
(b) Calculate the distance between adjacent bright

fringes.

Solution From Equation 37.5 and the results of part (a),
we obtain

Note that the spacing between all fringes is equal.

2.2 cm � 2.2 � 10�2 m �

 �
�L
d

�
(5.6 � 10�7 m)(1.2 m)

3.0 � 10�5 m

ym�1 � ym �
�L(m � 1)

d
�

�Lm
d

 

A viewing screen is separated from a double-slit source by 
1.2 m. The distance between the two slits is 0.030 mm. The
second-order bright fringe is 4.5 cm from the center
line. (a) Determine the wavelength of the light.

Solution We can use Equation 37.5, with 
and 

560 nm� 5.6 � 10�7 m �

� �
dy2

mL
�

(3.0 � 10�5 m)(4.5 � 10�2 m)
2(1.2 m)

d � 3.0 � 10�5 m:L � 1.2 m,4.5 � 10�2 m,
y2 �m � 2,

(m � 2)

INTENSITY DISTRIBUTION OF THE DOUBLE-SLIT
INTERFERENCE PATTERN

Note that the edges of the bright fringes in Figure 37.1b are fuzzy. So far we have
discussed the locations of only the centers of the bright and dark fringes on a dis-
tant screen. We now direct our attention to the intensity of the light at other
points between the positions of maximum constructive and destructive interfer-
ence. In other words, we now calculate the distribution of light intensity associated
with the double-slit interference pattern.

37.3
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Again, suppose that the two slits represent coherent sources of sinusoidal
waves such that the two waves from the slits have the same angular frequency �
and a constant phase difference �. The total magnitude of the electric field at
point P on the screen in Figure 37.5 is the vector superposition of the two waves.
Assuming that the two waves have the same amplitude E0 , we can write the magni-
tude of the electric field at point P due to each wave separately as

(37.7)

Although the waves are in phase at the slits, their phase difference � at point P depends
on the path difference � � r2 � r 1 � d sin �. Because a path difference of � (con-
structive interference) corresponds to a phase difference of 2 rad, we obtain the
ratio

(37.8)

This equation tells us precisely how the phase difference � depends on the angle �
in Figure 37.4.

Using the superposition principle and Equation 37.7, we can obtain the mag-
nitude of the resultant electric field at point P :

(37.9)

To simplify this expression, we use the trigonometric identity

Taking and we can write Equation 37.9 in the form

(37.10)

This result indicates that the electric field at point P has the same frequency � as the
light at the slits, but that the amplitude of the field is multiplied by the factor 
2 cos(�/2). To check the consistency of this result, note that if � � 0, 2, 4, . . . ,
then the electric field at point P is 2E 0 , corresponding to the condition for con-
structive interference. These values of � are consistent with Equation 37.2 for con-
structive interference. Likewise, if � � , 3, 5, . . . , then the magnitude of
the electric field at point P is zero; this is consistent with Equation 37.3 for destruc-
tive interference.

Finally, to obtain an expression for the light intensity at point P, recall from
Section 34.3 that the intensity of a wave is proportional to the square of the resultant elec-
tric field magnitude at that point (Eq. 34.20). Using Equation 37.10, we can therefore
express the light intensity at point P as

Most light-detecting instruments measure time-averaged light intensity, and the
time-averaged value of sin2(�t � �/2) over one cycle is Therefore, we can write
the average light intensity at point P as

(37.11)I � Imax cos2 � �

2 �

1
2 .

I � E P 

2 � 4E 0 

2 cos2� �

2 � sin2��t �
�

2 �

E P � 2E 0 cos� �

2 � sin��t �
�

2 �
B � �t,A � �t � �

sin A � sin B � 2 sin� A � B
2 � cos� A � B

2 �

E P � E 1 � E 2 � E 0[sin �t � sin(�t � �)]

� �
2

�
 � �

2

�
 d sin �

�

�
�

�

2
 

E 1 � E 0 sin �t  and  E 2 � E 0 sin(�t � �)

Phase difference

O

y

d
r2

r1

L

S2

S1

P

Figure 37.5 Construction for an-
alyzing the double-slit interference
pattern. A bright fringe, or inten-
sity maximum, is observed at O.
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where Imax is the maximum intensity on the screen and the expression represents
the time average. Substituting the value for � given by Equation 37.8 into this ex-
pression, we find that

(37.12)

Alternatively, because sin � � y/L for small values of � in Figure 37.4, we can write
Equation 37.12 in the form

(37.13)

Constructive interference, which produces light intensity maxima, occurs
when the quantity dy/�L is an integral multiple of , corresponding to y �
(�L/d )m . This is consistent with Equation 37.5.

A plot of light intensity versus d sin � is given in Figure 37.6. Note that the in-
terference pattern consists of equally spaced fringes of equal intensity. Remember,
however, that this result is valid only if the slit-to-screen distance L is much greater
than the slit separation, and only for small values of �.

We have seen that the interference phenomena arising from two sources de-
pend on the relative phase of the waves at a given point. Furthermore, the phase
difference at a given point depends on the path difference between the two waves.
The resultant light intensity at a point is proportional to the square of the
resultant electric field at that point. That is, the light intensity is proportional
to It would be incorrect to calculate the light intensity by adding the
intensities of the individual waves. This procedure would give which of
course is not the same as Note, however, that has the same
average value as when the time average is taken over all values of theE 1 

2 � E 2 

2
(E 1 � E 2)2(E 1 � E 2)2.

E 1 

2 � E 2 

2,
(E 1 � E 2)2.

I � Imax cos2� d
�L

 y�

I � Imax cos2� d sin �
� �

I

–2 –λ λ 2

Imax

d sin θ

λλ

Figure 37.6 Light intensity versus d sin � for a double-slit interference pattern when the screen
is far from the slits (L W d).
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phase difference between E1 and E2 . Hence, the law of conservation of energy is
not violated.

PHASOR ADDITION OF WAVES
In the preceding section, we combined two waves algebraically to obtain the resul-
tant wave amplitude at some point on a screen. Unfortunately, this analytical pro-
cedure becomes cumbersome when we must add several wave amplitudes. Because
we shall eventually be interested in combining a large number of waves, we now
describe a graphical procedure for this purpose.

Let us again consider a sinusoidal wave whose electric field component is
given by

where E0 is the wave amplitude and � is the angular frequency. This wave can be
represented graphically by a phasor of magnitude E0 rotating about the origin
counterclockwise with an angular frequency �, as shown in Figure 37.7a. Note that
the phasor makes an angle �t with the horizontal axis. The projection of the pha-
sor on the vertical axis represents E1 , the magnitude of the wave disturbance at
some time t . Hence, as the phasor rotates in a circle, the projection E1 oscillates
along the vertical axis about the origin.

Now consider a second sinusoidal wave whose electric field component is
given by

This wave has the same amplitude and frequency as E1 , but its phase is � with re-
spect to E1 . The phasor representing E2 is shown in Figure 37.7b. We can obtain
the resultant wave, which is the sum of E1 and E2 , graphically by redrawing the
phasors as shown in Figure 37.7c, in which the tail of the second phasor is placed
at the tip of the first. As with vector addition, the resultant phasor ER runs from
the tail of the first phasor to the tip of the second. Furthermore, ER rotates along
with the two individual phasors at the same angular frequency �. The projection
of ER along the vertical axis equals the sum of the projections of the two other
phasors: 

It is convenient to construct the phasors at as in Figure 37.8. From the
geometry of one of the right triangles, we see that

which gives

Because the sum of the two opposite interior angles equals the exterior angle �,
we see that thus,

Hence, the projection of the phasor ER along the vertical axis at any time t is

E P � E R sin��t �
�

2 � � 2E 0 cos(�/2) sin��t �
�

2 �

E R � 2E 0 cos � �

2 �
� � �/2;

E R � 2E 0 cos �

cos � �
E R /2

E 0

t � 0
E P � E 1 � E 2 .

E 2 � E 0 sin(�t � �)

E 1 � E 0 sin �t

37.4

tω

E1

(a)

E2 E0

(b)

E1 E0

 φ

(c)

EP

E0

ERE2

E0
tω

ωt + φω φ

Figure 37.7 (a) Phasor diagram
for the wave disturbance 

sin �t. The phasor 
is a vector of length E 0 rotating
counterclockwise. (b) Phasor
diagram for the wave 

sin(�t � �). (c) The distur-
bance ER is the resultant phasor
formed from the phasors of 
parts (a) and (b).

E 0

E 2 �

E 0

E 1 �

Figure 37.8 A reconstruction of
the resultant phasor ER . From the
geometry, note that � � �/2.

α =

E0

φ

E0

ER
α α

 φ
 2
φ

α
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This is consistent with the result obtained algebraically, Equation 37.10. The resul-
tant phasor has an amplitude 2E0 cos(�/2) and makes an angle �/2 with the first
phasor. Furthermore, the average light intensity at point P, which varies as is
proportional to cos2(�/2), as described in Equation 37.11.

We can now describe how to obtain the resultant of several waves that have the
same frequency:

• Represent the waves by phasors, as shown in Figure 37.9, remembering to main-
tain the proper phase relationship between one phasor and the next.

• The resultant phasor ER is the vector sum of the individual phasors. At each
instant, the projection of ER along the vertical axis represents the time varia-
tion of the resultant wave. The phase angle � of the resultant wave is the
angle between ER and the first phasor. From Figure 37.9, drawn for four pha-
sors, we see that the phasor of the resultant wave is given by the expression

Phasor Diagrams for Two Coherent Sources

As an example of the phasor method, consider the interference pattern produced
by two coherent sources. Figure 37.10 represents the phasor diagrams for various
values of the phase difference � and the corresponding values of the path differ-
ence �, which are obtained from Equation 37.8. The light intensity at a point is a
maximum when ER is a maximum; this occurs at � � 0, 2, 4, . . . . The light
intensity at some point is zero when ER is zero; this occurs at � � , 3, 5, . . . .
These results are in complete agreement with the analytical procedure described
in the preceding section.

E P � E R sin(�t � �).

E P 

2,

Figure 37.9 The phasor ER is the
resultant of four phasors of equal
amplitude E0 . The phase of ER
with respect to the first phasor is �.

Figure 37.10 Phasor diagrams for a double-slit interference pattern. The resultant phasor ER
is a maximum when � � 0, 2, 4, . . . and is zero when � � , 3, 5, . . . .
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Three-Slit Interference Pattern

Using phasor diagrams, let us analyze the interference pattern caused by three
equally spaced slits. We can express the electric field components at a point P on
the screen caused by waves from the individual slits as

where � is the phase difference between waves from adjacent slits. We can obtain
the resultant magnitude of the electric field at point P from the phasor diagram in
Figure 37.11.

The phasor diagrams for various values of � are shown in Figure 37.12. Note
that the resultant magnitude of the electric field at P has a maximum value of 3E0 ,
a condition that occurs when � � 0, � 2, � 4, . . . . These points are called
primary maxima. Such primary maxima occur whenever the three phasors are
aligned as shown in Figure 37.12a. We also find secondary maxima of amplitude
E0 occurring between the primary maxima at points where � � � , � 3, . . . .
For these points, the wave from one slit exactly cancels that from another slit (Fig.
37.12d). This means that only light from the third slit contributes to the resultant,
which consequently has a total amplitude of E0 . Total destructive interference oc-
curs whenever the three phasors form a closed triangle, as shown in Figure 37.12c.
These points where correspond to � � � 2/3, � 4/3, . . . . You
should be able to construct other phasor diagrams for values of � greater than .

Figure 37.13 shows multiple-slit interference patterns for a number of configu-
rations. For three slits, note that the primary maxima are nine times more intense
than the secondary maxima as measured by the height of the curve. This is be-
cause the intensity varies as ER

2. For N slits, the intensity of the primary maxima is
N 2 times greater than that due to a single slit. As the number of slits increases, the
primary maxima increase in intensity and become narrower, while the secondary
maxima decrease in intensity relative to the primary maxima. Figure 37.13 also
shows that as the number of slits increases, the number of secondary maxima also
increases. In fact, the number of secondary maxima is always where N is
the number of slits.

N � 2,

E R � 0

E 3 � E 0 sin(�t � 2�)

E 2 � E 0 sin(�t � �) 

E 1 � E 0 sin �t 

Figure 37.11 Phasor diagram for
three equally spaced slits.

Figure 37.12 Phasor diagrams for three equally spaced slits at various values of �. Note from
(a) that there are primary maxima of amplitude 3E0 and from (d) that there are secondary max-
ima of amplitude E0 .
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Using Figure 37.13 as a model, sketch the interference pattern from six slits.

CHANGE OF PHASE DUE TO REFLECTION
Young’s method for producing two coherent light sources involves illuminating
a pair of slits with a single source. Another simple, yet ingenious, arrangement
for producing an interference pattern with a single light source is known as
Lloyd’s mirror (Fig. 37.14). A light source is placed at point S close to a mirror,
and a viewing screen is positioned some distance away at right angles to the
mirror. Light waves can reach point P on the screen either by the direct path
SP or by the path involving reflection from the mirror. The reflected ray can be
treated as a ray originating from a virtual source at point S
. As a result, we can
think of this arrangement as a double-slit source with the distance between

37.5

Quick Quiz 37.3

Single
slit

N = 2

N = 3

N = 4

N = 5

N = 10

0–2λ– 2λλ λ λ λ

Primary maximum
Secondary maximum

 I
Imax

d sin θθ

Figure 37.13 Multiple-slit interference patterns. As N, the number of slits, is increased, the pri-
mary maxima (the tallest peaks in each graph) become narrower but remain fixed in position,
and the number of secondary maxima increases. For any value of N, the decrease in intensity in
maxima to the left and right of the central maximum, indicated by the blue dashed arcs, is due to
diffraction, which is discussed in Chapter 38.

Figure 37.14 Lloyd’s mirror. An
interference pattern is produced at
point P on the screen as a result of
the combination of the direct ray
(blue) and the reflected ray (red).
The reflected ray undergoes a
phase change of 180°.

S ′

S

Real
source

Viewing
screen

Mirror

P

P ′
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points S and S
 comparable to length d in Figure 37.4. Hence, at observation
points far from the source we expect waves from points S and S
 to
form an interference pattern just like the one we see from two real coherent
sources. An interference pattern is indeed observed. However, the positions of
the dark and bright fringes are reversed relative to the pattern created by two
real coherent sources (Young’s experiment). This is because the coherent
sources at points S and S
 differ in phase by 180°, a phase change produced by
reflection.

To illustrate this further, consider point P
, the point where the mirror inter-
sects the screen. This point is equidistant from points S and S
. If path difference
alone were responsible for the phase difference, we would see a bright fringe at
point P
 (because the path difference is zero for this point), corresponding to the
central bright fringe of the two-slit interference pattern. Instead, we observe a
dark fringe at point P
 because of the 180° phase change produced by reflection.
In general,

(L W d ),

Figure 37.15 (a) For a light ray traveling in medium 1 when reflected from the sur-
face of medium 2 undergoes a 180° phase change. The same thing happens with a reflected
pulse traveling along a string fixed at one end. (b) For a light ray traveling in medium
1 undergoes no phase change when reflected from the surface of medium 2. The same is true of
a reflected wave pulse on a string whose supported end is free to move.

n 1 � n 2 ,

n 1 � n 2 ,

an electromagnetic wave undergoes a phase change of 180° upon reflection
from a medium that has a higher index of refraction than the one in which the
wave is traveling.

It is useful to draw an analogy between reflected light waves and the reflec-
tions of a transverse wave pulse on a stretched string (see Section 16.6). The re-
flected pulse on a string undergoes a phase change of 180° when reflected from
the boundary of a denser medium, but no phase change occurs when the pulse is
reflected from the boundary of a less dense medium. Similarly, an electromagnetic
wave undergoes a 180° phase change when reflected from a boundary leading to
an optically denser medium, but no phase change occurs when the wave is re-
flected from a boundary leading to a less dense medium. These rules, summarized
in Figure 37.15, can be deduced from Maxwell’s equations, but the treatment is
beyond the scope of this text.

Rigid support
String analogy

180° phase change

n1

n1

n2

n2<

(a)

Free support

No phase change

n1

n1

n2

n2>

(b)
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INTERFERENCE IN THIN FILMS
Interference effects are commonly observed in thin films, such as thin layers of oil
on water or the thin surface of a soap bubble. The varied colors observed when
white light is incident on such films result from the interference of waves reflected
from the two surfaces of the film.

Consider a film of uniform thickness t and index of refraction n, as shown in
Figure 37.16. Let us assume that the light rays traveling in air are nearly normal to
the two surfaces of the film. To determine whether the reflected rays interfere
constructively or destructively, we first note the following facts:

• A wave traveling from a medium of index of refraction n1 toward a medium of
index of refraction n2 undergoes a 180° phase change upon reflection when

and undergoes no phase change if 
• The wavelength of light �n in a medium whose refraction index is n (see Section

35.5) is

(37.14)

where � is the wavelength of the light in free space.

Let us apply these rules to the film of Figure 37.16, where Re-
flected ray 1, which is reflected from the upper surface (A), undergoes a phase
change of 180° with respect to the incident wave. Reflected ray 2, which is re-
flected from the lower film surface (B), undergoes no phase change because it is
reflected from a medium (air) that has a lower index of refraction. Therefore, ray
1 is 180° out of phase with ray 2, which is equivalent to a path difference of �n/2.

n film � nair .

�n �
�

n

n2 � n1 .n2 � n1

37.6

Interference in soap bubbles. The colors are
due to interference between light rays reflected
from the front and back surfaces of the thin 
film of soap making up the bubble. The color
depends on the thickness of the film, ranging
from black where the film is thinnest to 
red where it is thickest.

The brilliant colors in a peacock’s feathers are
due to interference. The multilayer structure of
the feathers causes constructive interference for
certain colors, such as blue and green. The col-
ors change as you view a peacock’s feathers from
different angles. Iridescent colors of butterflies
and hummingbirds are the result of similar in-
terference effects.

No phase
change

Air

180° phase
change

1
2

A

t
Film

Air

B

nair < nfilm

Figure 37.16 Interference in
light reflected from a thin film is
due to a combination of rays re-
flected from the upper and lower
surfaces of the film.
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However, we must also consider that ray 2 travels an extra distance 2t before the
waves recombine in the air above surface A. If then rays 1 and 2 recom-
bine in phase, and the result is constructive interference. In general, the condition
for constructive interference in such situations is

m � 0, 1, 2, . . . (37.15)

This condition takes into account two factors: (1) the difference in path length for
the two rays (the term m�n) and (2) the 180° phase change upon reflection (the
term �n/2). Because �n � �/n, we can write Equation 37.15 as

m � 0, 1, 2, . . . (37.16)

If the extra distance 2t traveled by ray 2 corresponds to a multiple of �n , then
the two waves combine out of phase, and the result is destructive interference. The
general equation for destructive interference is

m � 0, 1, 2, . . . (37.17)

The foregoing conditions for constructive and destructive interference are
valid when the medium above the top surface of the film is the same as the
medium below the bottom surface. The medium surrounding the film may have
a refractive index less than or greater than that of the film. In either case, the
rays reflected from the two surfaces are out of phase by 180°. If the film 
is placed between two different media, one with n � n film and the other with 
n � n film , then the conditions for constructive and destructive interference are
reversed. In this case, either there is a phase change of 180° for both ray 1 re-
flecting from surface A and ray 2 reflecting from surface B, or there is no phase
change for either ray; hence, the net change in relative phase due to the reflec-
tions is zero.

In Figure 37.17, where does the oil film thickness vary the least?

Newton’s Rings

Another method for observing interference in light waves is to place a plano-
convex lens on top of a flat glass surface, as shown in Figure 37.18a. With this
arrangement, the air film between the glass surfaces varies in thickness from zero
at the point of contact to some value t at point P. If the radius of curvature R of
the lens is much greater than the distance r, and if the system is viewed from above
using light of a single wavelength �, a pattern of light and dark rings is observed,
as shown in Figure 37.18b. These circular fringes, discovered by Newton, are called
Newton’s rings.

The interference effect is due to the combination of ray 1, reflected from the
flat plate, with ray 2, reflected from the curved surface of the lens. Ray 1 under-
goes a phase change of 180° upon reflection (because it is reflected from a
medium of higher refractive index), whereas ray 2 undergoes no phase change
(because it is reflected from a medium of lower refractive index). Hence, the con-
ditions for constructive and destructive interference are given by Equations 37.16
and 37.17, respectively, with because the film is air.

The contact point at O is dark, as seen in Figure 37.18b, because ray 1 under-
goes a 180° phase change upon external reflection (from the flat surface); in con-

n � 1

Quick Quiz 37.4

2nt � m�

2nt � (m � 1
2 )�

2t � (m � 1
2 )�n

2t � �n/2,

Figure 37.17 A thin film of oil
floating on water displays interfer-
ence, as shown by the pattern of
colors produced when white light is
incident on the film. Variations in
film thickness produce the interest-
ing color pattern. The razor blade
gives one an idea of the size of the
colored bands.

Conditions for constructive
interference in thin films

Conditions for destructive
interference in thin films
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r

2 1

(a)

P O

R

Figure 37.18 (a) The combination of rays reflected from the flat plate and the curved lens sur-
face gives rise to an interference pattern known as Newton’s rings. (b) Photograph of Newton’s
rings.

(b)

trast, ray 2 undergoes no phase change upon internal reflection (from the curved
surface).

Using the geometry shown in Figure 37.18a, we can obtain expressions for the
radii of the bright and dark bands in terms of the radius of curvature R and wave-
length �. For example, the dark rings have radii given by the expression 

The details are left as a problem for you to solve (see Problem 67).
We can obtain the wavelength of the light causing the interference pattern by
measuring the radii of the rings, provided R is known. Conversely, we can use a
known wavelength to obtain R .

One important use of Newton’s rings is in the testing of optical lenses. A
circular pattern like that pictured in Figure 37.18b is obtained only when the
lens is ground to a perfectly symmetric curvature. Variations from such sym-
metry might produce a pattern like that shown in Figure 37.19. These varia-
tions indicate how the lens must be reground and repolished to remove the
imperfections.

r � !m�R/n .

QuickLab
Observe the colors appearing to swirl
on the surface of a soap bubble. What
do you see just before a bubble
bursts? Why?

Problem-Solving Hints
Thin-Film Interference
You should keep the following ideas in mind when you work thin-film interfer-
ence problems:

• Identify the thin film causing the interference.
• The type of interference that occurs is determined by the phase relationship

between the portion of the wave reflected at the upper surface of the film
and the portion reflected at the lower surface.

• Phase differences between the two portions of the wave have two causes: (1)
differences in the distances traveled by the two portions and (2) phase
changes that may occur upon reflection.

• When the distance traveled and phase changes upon reflection are both
taken into account, the interference is constructive if the equivalent path
difference between the two waves is an integral multiple of �, and it is de-
structive if the path difference is �/2, 3�/2, 5�/2, and so forth.

Figure 37.19 This asymmetrical
interference pattern indicates im-
perfections in the lens of a New-
ton’s-rings apparatus.
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Interference in a Soap FilmEXAMPLE 37.3

Exercise What other film thicknesses produce constructive
interference?

Answer 338 nm, 564 nm, 789 nm, and so on.

113 nmt �
�

4n
�

600 nm
4(1.33)

�
Calculate the minimum thickness of a soap-bubble film

that results in constructive interference in the re-
flected light if the film is illuminated with light whose wave-
length in free space is 

Solution The minimum film thickness for constructive in-
terference in the reflected light corresponds to in
Equation 37.16. This gives or2nt � �/2,

m � 0

� � 600 nm.

(n � 1.33)

Nonreflective Coatings for Solar CellsEXAMPLE 37.4
and the required thickness is

A typical uncoated solar cell has reflective losses as high as
30%; a SiO coating can reduce this value to about 10%. This
significant decrease in reflective losses increases the cell’s effi-
ciency because less reflection means that more sunlight en-
ters the silicon to create charge carriers in the cell. No coat-
ing can ever be made perfectly nonreflecting because the
required thickness is wavelength-dependent and the incident
light covers a wide range of wavelengths.

Glass lenses used in cameras and other optical instru-
ments are usually coated with a transparent thin film to re-
duce or eliminate unwanted reflection and enhance the
transmission of light through the lenses.

94.8 nmt �
�

4n
�

550 nm
4(1.45)

�

2t � �/2n,Solar cells—devices that generate electricity when exposed
to sunlight—are often coated with a transparent, thin film of
silicon monoxide (SiO, to minimize reflective
losses from the surface. Suppose that a silicon solar cell

is coated with a thin film of silicon monoxide for
this purpose (Fig. 37.20). Determine the minimum film
thickness that produces the least reflection at a wavelength of
550 nm, near the center of the visible spectrum.

Solution The reflected light is a minimum when rays 1
and 2 in Figure 37.20 meet the condition of destructive inter-
ference. Note that both rays undergo a 180° phase change
upon reflection—ray 1 from the upper SiO surface and ray 2
from the lower SiO surface. The net change in phase due to
reflection is therefore zero, and the condition for a reflection
minimum requires a path difference of �n/2. Hence,

(n � 3.5)

n � 1.45)

Si

180° phase
change

1 2

SiO

Air

n = 3.5

n = 1.45

n = 1

180° phase
change

This camera lens has several coatings (of different thicknesses)
that minimize reflection of light waves having wavelengths near
the center of the visible spectrum. As a result, the little light that
is reflected by the lens has a greater proportion of the far ends of
the spectrum and appears reddish-violet. 

Figure 37.20 Reflective losses from a silicon solar cell are mini-
mized by coating the surface of the cell with a thin film of silicon
monoxide.
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Interference in a Wedge-Shaped FilmEXAMPLE 37.5
the thickness satisfies Equation 37.16, corre-
sponding to thicknesses of �/4n, 3�/4n, 5�/4n, and so on.

If white light is used, bands of different colors are ob-
served at different points, corresponding to the different
wavelengths of light (see Fig. 37.21b). This is why we see dif-
ferent colors in soap bubbles.

2nt � (m � 1
2 )�,A thin, wedge-shaped film of refractive index n is illuminated

with monochromatic light of wavelength �, as illustrated in
Figure 37.21a. Describe the interference pattern observed for
this case.

Solution The interference pattern, because it is created
by a thin film of variable thickness surrounded by air, is a se-
ries of alternating bright and dark parallel fringes. A dark
fringe corresponding to destructive interference appears at
point O, the apex, because here the upper reflected ray un-
dergoes a 180° phase change while the lower one undergoes
no phase change.

According to Equation 37.17, other dark minima appear
when thus, and
so on. Similarly, the bright maxima appear at locations where

t3 � 3�/2n,t2 � �/n,t1 � �/2n,2nt � m�;

t1

O

t2

t3

Incident
light

(a)

n

(b)

Figure 37.21 (a) Interference bands in re-
flected light can be observed by illuminating a
wedge-shaped film with monochromatic light.
The darker areas correspond to regions where
rays tend to cancel each other because of inter-
ference effects. (b) Interference in a vertical
film of variable thickness. The top of the film
appears darkest where the film is thinnest.

Optional Section

THE MICHELSON INTERFEROMETER
The interferometer, invented by the American physicist A. A. Michelson
(1852–1931), splits a light beam into two parts and then recombines the parts to
form an interference pattern. The device can be used to measure wavelengths or
other lengths with great precision.

A schematic diagram of the interferometer is shown in Figure 37.22. A ray of
light from a monochromatic source is split into two rays by mirror M, which is in-
clined at 45° to the incident light beam. Mirror M, called a beam splitter, transmits
half the light incident on it and reflects the rest. One ray is reflected from M verti-
cally upward toward mirror M1 , and the second ray is transmitted horizontally
through M toward mirror M2 . Hence, the two rays travel separate paths L1 and L2 .
After reflecting from M1 and M2 , the two rays eventually recombine at M to pro-
duce an interference pattern, which can be viewed through a telescope. The glass
plate P, equal in thickness to mirror M, is placed in the path of the horizontal ray
to ensure that the two returning rays travel the same thickness of glass.

37.7
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L1

M
Light source

L2

P
M2

Telescope

Beam
splitter

Adjustable mirror

Image of M2

M1

M2′

Figure 37.22 Diagram of the Michelson interferometer. A single ray of light is split into two
rays by mirror M, which is called a beam splitter. The path difference between the two rays is var-
ied with the adjustable mirror M1 . As M1 is moved toward M, an interference pattern moves
across the field of view.

The interference condition for the two rays is determined by their path length
differences. When the two rays are viewed as shown, the image of M2 produced by
the mirror M is at which is nearly parallel to M1 . (Because M1 and M2 are not
exactly perpendicular to each other, the image is at a slight angle to M1 .)
Hence, the space between and M1 is the equivalent of a wedge-shaped air film.
The effective thickness of the air film is varied by moving mirror M1 parallel to it-
self with a finely threaded screw adjustment. Under these conditions, the interfer-
ence pattern is a series of bright and dark parallel fringes as described in Example
37.5. As M1 is moved, the fringe pattern shifts. For example, if a dark fringe ap-
pears in the field of view (corresponding to destructive interference) and M1 is
then moved a distance �/4 toward M, the path difference changes by �/2 (twice
the separation between M1 and What was a dark fringe now becomes a bright
fringe. As M1 is moved an additional distance �/4 toward M, the bright fringe be-
comes a dark fringe. Thus, the fringe pattern shifts by one-half fringe each time
M1 is moved a distance �/4. The wavelength of light is then measured by counting
the number of fringe shifts for a given displacement of M1 . If the wavelength is ac-
curately known (as with a laser beam), mirror displacements can be measured to
within a fraction of the wavelength.

M
2 ).

M
2

M
2

M
2 ,
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SUMMARY

Interference in light waves occurs whenever two or more waves overlap at a given
point. A sustained interference pattern is observed if (1) the sources are coherent
and (2) the sources have identical wavelengths.

In Young’s double-slit experiment, two slits S1 and S2 separated by a distance d
are illuminated by a single-wavelength light source. An interference pattern con-
sisting of bright and dark fringes is observed on a viewing screen. The condition
for bright fringes (constructive interference) is

m � 0, � 1, � 2, . . . (37.2)

The condition for dark fringes (destructive interference) is

m � 0, � 1, � 2, . . . (37.3)

The number m is called the order number of the fringe.
The intensity at a point in the double-slit interference pattern is

(37.12)

where Imax is the maximum intensity on the screen and the expression represents
the time average.

A wave traveling from a medium of index of refraction n1 toward a medium of
index of refraction n2 undergoes a 180° phase change upon reflection when

and undergoes no phase change when 
The condition for constructive interference in a film of thickness t and refrac-

tive index n surrounded by air is

m � 0, 1, 2, . . . (37.16)

where � is the wavelength of the light in free space.
Similarly, the condition for destructive interference in a thin film is

m � 0, 1, 2, . . . (37.17)2nt � m�

2nt � (m � 1
2 )l

n2 � n1 .n2 � n1

I � Imax cos2� d sin �
� �

d sin � � (m � 1
2 )�

d sin � � m�

QUESTIONS

7. In our discussion of thin-film interference, we looked at
light reflecting from a thin film. Consider one light ray, the
direct ray, that transmits through the film without reflect-
ing. Consider a second ray, the reflected ray, that trans-
mits through the first surface, reflects from the second,
reflects again from the first, and then transmits out into
the air, parallel to the direct ray. For normal incidence,
how thick must the film be, in terms of the wavelength of
light, for the outgoing rays to interfere destructively? Is it
the same thickness as for reflected destructive interfer-
ence?

8. Suppose that you are watching television connected to an
antenna rather than a cable system. If an airplane flies
near your location, you may notice wavering ghost images
in the television picture. What might cause this?

9. If we are to observe interference in a thin film, why must
the film not be very thick (on the order of a few wave-
lengths)?

10. A lens with outer radius of curvature R and index of re-

1. What is the necessary condition on the path length differ-
ence between two waves that interfere (a) constructively
and (b) destructively?

2. Explain why two flashlights held close together do not
produce an interference pattern on a distant screen.

3. If Young’s double-slit experiment were performed under
water, how would the observed interference pattern be af-
fected?

4. In Young’s double-slit experiment, why do we use mono-
chromatic light? If white light is used, how would the pat-
tern change?

5. Consider a dark fringe in an interference pattern, at
which almost no light is arriving. Light from both slits is
arriving at this point, but the waves are canceling. Where
does the energy go?

6. An oil film on water appears brightest at the outer re-
gions, where it is thinnest. From this information, what
can you say about the index of refraction of oil relative to
that of water?
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fraction n rests on a flat glass plate, and the combination
is illuminated with white light from above. Is there a dark
spot or a light spot at the center of the lens? What does it
mean if the observed rings are noncircular?

11. Why is the lens on a high-quality camera coated with a
thin film?

12. Why is it so much easier to perform interference experi-
ments with a laser than with an ordinary light source?

PROBLEMS

5. Young’s double-slit experiment is performed with 
589-nm light and a slit-to-screen distance of 2.00 m. The
tenth interference minimum is observed 7.26 mm from
the central maximum. Determine the spacing of the slits.

6. The two speakers of a boom box are 35.0 cm apart. 
A single oscillator makes the speakers vibrate in phase
at a frequency of 2.00 kHz. At what angles, measured
from the perpendicular bisector of the line joining the
speakers, would a distant observer hear maximum
sound intensity? minimum sound intensity? (Take the
speed of sound as 340 m/s.)

7. A pair of narrow, parallel slits separated by 0.250 mm
are illuminated by green light (� � 546.1 nm). The in-
terference pattern is observed on a screen 1.20 m away
from the plane of the slits. Calculate the distance 
(a) from the central maximum to the first bright region
on either side of the central maximum and (b) between
the first and second dark bands.

8. Light with a wavelength of 442 nm passes through 
a double-slit system that has a slit separation 

mm. Determine how far away a screen must be
placed so that a dark fringe appears directly opposite
both slits, with just one bright fringe between them.

9. A riverside warehouse has two open doors, as illustrated
in Figure P37.9. Its walls are lined with sound-absorbing
material. A boat on the river sounds its horn. To person
A, the sound is loud and clear. To person B, the sound
is barely audible. The principal wavelength of the sound
waves is 3.00 m. Assuming that person B is at the posi-
tion of the first minimum, determine the distance be-
tween the doors, center to center.

0.400
d �

Section 37.1 Conditions for Interference
Section 37.2 Young’s Double-Slit Experiment

1. A laser beam (� � 632.8 nm) is incident on two slits
0.200 mm apart. How far apart are the bright interfer-
ence fringes on a screen 5.00 m away from the slits?

2. A Young’s interference experiment is performed with
monochromatic light. The separation between the slits
is 0.500 mm, and the interference pattern on a screen
3.30 m away shows the first maximum 3.40 mm from
the center of the pattern. What is the wavelength?

3. Two radio antennas separated by 300 m as shown in 
Figure P37.3 simultaneously broadcast identical signals
at the same wavelength. A radio in a car traveling due
north receives the signals. (a) If the car is at the posi-
tion of the second maximum, what is the wavelength of
the signals? (b) How much farther must the car travel
to encounter the next minimum in reception? (Note: Do
not use the small-angle approximation in this problem.)

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

400 m

1000 m
300 m

Figure P37.3
20.0 m

150 m

A

B

Figure P37.9

4. In a location where the speed of sound is 354 m/s, a 
2 000-Hz sound wave impinges on two slits 30.0 cm
apart. (a) At what angle is the first maximum located?
(b) If the sound wave is replaced by 3.00-cm microwaves,
what slit separation gives the same angle for the first
maximum? (c) If the slit separation is 1.00 �m, what fre-
quency of light gives the same first maximum angle?

WEB
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10. Two slits are separated by 0.320 mm. A beam of 500-nm
light strikes the slits, producing an interference pattern.
Determine the number of maxima observed in the an-
gular range � 30.0° � � � 30.0°.

11. In Figure 37.4 let m and mm, and
assume that the slit system is illuminated with mono-
chromatic 500-nm light. Calculate the phase difference
between the two wavefronts arriving at point P when 
(a) � � 0.500° and (b) mm. (c) What is the
value of � for which the phase difference is 0.333 rad?
(d) What is the value of � for which the path difference
is �/4?

12. Coherent light rays of wavelength � strike a pair of slits
separated by distance d at an angle of �1 , as shown in
Figure P37.12. If an interference maximum is formed at
an angle of �2 a great distance from the slits, show that

where m is an integer.d(sin �2 � sin �1) � m�,

y � 5.00

d � 0.120L � 1.20

17. Two narrow parallel slits separated by 0.850 mm are illu-
minated by 600-nm light, and the viewing screen is 
2.80 m away from the slits. (a) What is the phase differ-
ence between the two interfering waves on a screen at a
point 2.50 mm from the central bright fringe? (b) What
is the ratio of the intensity at this point to the intensity
at the center of a bright fringe?

18. Monochromatic coherent light of amplitude E0 and an-
gular frequency � passes through three parallel slits
each separated by a distance d from its neighbor. 
(a) Show that the time-averaged intensity as a function
of the angle � is

(b) Determine the ratio of the intensities of the primary
and secondary maxima.

Section 37.4 Phasor Addition of Waves
19. Marie Cornu invented phasors in about 1880. This

problem helps you to see their utility. Find the ampli-
tude and phase constant of the sum of two waves repre-
sented by the expressions

and

(a) by using a trigonometric identity (see Appendix B)
and (b) by representing the waves by phasors. (c) Find
the amplitude and phase constant of the sum of the
three waves represented by

and

20. The electric fields from three coherent sources are de-
scribed by sin �t, sin(�t � �), and

sin(�t � 2�). Let the resultant field be repre-
sented by sin(�t � �). Use phasors to find ER
and � when (a) � � 20.0°, (b) � � 60.0°, and (c) � �
120°. (d) Repeat when � � (3/2) rad.

21. Determine the resultant of the two waves 
6.0 sin(100 t) and sin(100 t � /2).

22. Suppose that the slit openings in a Young’s double-slit
experiment have different sizes so that the electric
fields and the intensities from each slit are different. If

sin(�t) and sin(�t � �), show that
the resultant electric field is sin(�t � �), where

and

E 0 � !E 01 

2 � E 02 

2 � 2E 01 E 02 cos �

E � E 0

E 2 � E 02E 01E 1 �

E 2 � 8.0
E 1 �

E P � E R

E 3 � E 0

E 2 � E 0E 1 � E 0

E 3 � (17.0 kN/C) sin(15x � 4.5t � 160�)

E 2 � (15.5 kN/C) sin(15x � 4.5t � 80�)

E 1 � (12.0 kN/C) sin(15x � 4.5t � 70�)

E 2 � (12.0 kN/C) sin(15x � 4.5t � 70�)

E 1 � (12.0 kN/C) sin(15x � 4.5t)

I(�) � Imax�1 � 2 cos� 2d sin �
� ��

2

1

d

2

θ

θ

Figure P37.12

13. In the double-slit arrangement of Figure 37.4, 
0.150 mm, cm, nm, and cm.
(a) What is the path difference � for the rays from the
two slits arriving at point P ? (b) Express this path differ-
ence in terms of �. (c) Does point P correspond to a
maximum, a minimum, or an intermediate condition?

Section 37.3 Intensity Distribution of the Double-Slit 
Interference Pattern

14. The intensity on the screen at a certain point in a dou-
ble-slit interference pattern is 64.0% of the maximum
value. (a) What minimum phase difference (in radians)
between sources produces this result? (b) Express this
phase difference as a path difference for 486.1-nm light.

15. In Figure 37.4, let cm and cm. The
slits are illuminated with coherent 600-nm light. Calcu-
late the distance y above the central maximum for
which the average intensity on the screen is 75.0% of
the maximum.

16. Two slits are separated by 0.180 mm. An interference
pattern is formed on a screen 80.0 cm away by 656.3-nm
light. Calculate the fraction of the maximum intensity
0.600 cm above the central maximum.

d � 0.250L � 120

y � 1.80� � 643L � 140
d �

WEB

WEB
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d

Figure P37.35

Figure P37.37 Problems 37 and 38.

23. Use phasors to find the resultant (magnitude and phase
angle) of two fields represented by sin �t and

sin(�t � 60°). (Note that in this case the am-
plitudes of the two fields are unequal.)

24. Two coherent waves are described by the expressions

Determine the relationship between x1 and x2 that pro-
duces constructive interference when the two waves are
superposed.

25. When illuminated, four equally spaced parallel slits act
as multiple coherent sources, each differing in phase
from the adjacent one by an angle �. Use a phasor dia-
gram to determine the smallest value of � for which the
resultant of the four waves (assumed to be of equal am-
plitude) is zero.

26. Sketch a phasor diagram to illustrate the resultant of
sin �t and sin(�t � �), where

and /6 � � � /3. Use the sketch and
the law of cosines to show that, for two coherent waves,
the resultant intensity can be written in the form 

27. Consider N coherent sources described by 
sin(�t � �), sin(�t � 2�), 
sin(�t � 3�), . . . , sin(�t � N�). Find

the minimum value of � for which 
is zero.

Section 37.5 Change of Phase Due to Reflection
Section 37.6 Interference in Thin Films

28. A soap bubble is floating in air. If the thick-
ness of the bubble wall is 115 nm, what is the wave-
length of the light that is most strongly reflected?

29. An oil film floating on water is illuminated
by white light at normal incidence. The film is 280 nm
thick. Find (a) the dominant observed color in the re-
flected light and (b) the dominant color in the trans-
mitted light. Explain your reasoning.

30. A thin film of oil is located on a smooth, wet
pavement. When viewed perpendicular to the pave-
ment, the film appears to be predominantly red 
(640 nm) and has no blue color (512 nm). How thick is
the oil film?

31. A possible means for making an airplane invisible to
radar is to coat the plane with an antireflective polymer.
If radar waves have a wavelength of 3.00 cm and the in-
dex of refraction of the polymer is how thick
would you make the coating?

32. A material having an index of refraction of 1.30 is used

n � 1.50,

(n � 1.25)

(n � 1.45)

(n � 1.33)

E 3 � . . . �  E N

E R � E 1 � E 2 �
E N � E 0E 0

E 3 �E 2 � E 0E 0

E 1 �
IR � I1 � I2 � 2!I1I2 cos �.

E 02 � 1.50E 01

E 2 � E 02E 1 � E 01

E 2 � E 0 sin� 2x2

�
� 2ft �



8 �

E 1 � E 0 sin� 2x1

�
� 2ft �



6 �

E 2 � 18
E 1 � 12

sin � �
E 02 sin �

E 0

to coat a piece of glass What should be the
minimum thickness of this film if it is to minimize re-
flection of 500-nm light?

33. A film of MgF2 having a thickness of
is used to coat a camera lens. Are any

wavelengths in the visible spectrum intensified in the re-
flected light?

34. Astronomers observe the chromosphere of the Sun with
a filter that passes the red hydrogen spectral line of
wavelength 656.3 nm, called the H� line. The filter con-
sists of a transparent dielectric of thickness d held be-
tween two partially aluminized glass plates. The filter is
held at a constant temperature. (a) Find the minimum
value of d that produces maximum transmission of per-
pendicular H� light, if the dielectric has an index of re-
fraction of 1.378. (b) Assume that the temperature of
the filter increases above its normal value and that its in-
dex of refraction does not change significantly. What
happens to the transmitted wavelength? (c) The dielec-
tric will also pass what near-visible wavelength? One of
the glass plates is colored red to absorb this light.

35. A beam of 580-nm light passes through two closely
spaced glass plates, as shown in Figure P37.35. For what
minimum nonzero value of the plate separation d is the
transmitted light bright?

1.00 � 10�5 cm
(n � 1.38)

(n � 1.50).

36. When a liquid is introduced into the air space between
the lens and the plate in a Newton’s-rings apparatus, 
the diameter of the tenth ring changes from 1.50 to
1.31 cm. Find the index of refraction of the liquid.

37. An air wedge is formed between two glass plates sepa-
rated at one edge by a very fine wire, as shown in Figure
P37.37. When the wedge is illuminated from above by
600-nm light, 30 dark fringes are observed. Calculate
the radius of the wire.

WEB
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38. Two rectangular flat glass plates are in con-
tact along one end and separated along the other end
by a sheet of paper 4.00 � 10�3 cm thick (see Fig.
P37.37). The top plate is illuminated by monochro-
matic light Calculate the number of
dark parallel bands crossing the top plate (include the
dark band at zero thickness along the edge of contact
between the two plates).

39. Two glass plates 10.0 cm long are in contact at one end
and separated at the other end by a thread 0.050 0 mm
in diameter. Light containing the two wavelengths 
400 nm and 600 nm is incident perpendicularly. At what
distance from the contact point is the next dark fringe?

(Optional)
Section 37.7 The Michelson Interferometer

40. Light of wavelength 550.5 nm is used to calibrate a
Michelson interferometer, and mirror M1 is moved
0.180 mm. How many dark fringes are counted?

41. Mirror M1 in Figure 37.22 is displaced a distance 	L .
During this displacement, 250 fringe reversals (forma-
tion of successive dark or bright bands) are counted.
The light being used has a wavelength of 632.8 nm. Cal-
culate the displacement 	L .

42. Monochromatic light is beamed into a Michelson inter-
ferometer. The movable mirror is displaced 0.382 mm;
this causes the interferometer pattern to reproduce it-
self 1 700 times. Determine the wavelength and the
color of the light.

43. One leg of a Michelson interferometer contains an
evacuated cylinder 3.00 cm long having glass plates on
each end. A gas is slowly leaked into the cylinder until a
pressure of 1 atm is reached. If 35 bright fringes pass on
the screen when light of wavelength 633 nm is used,
what is the index of refraction of the gas?

44. One leg of a Michelson interferometer contains an
evacuated cylinder of length L having glass plates on
each end. A gas is slowly leaked into the cylinder until a
pressure of 1 atm is reached. If N bright fringes pass on
the screen when light of wavelength � is used, what is
the index of refraction of the gas?

ADDITIONAL PROBLEMS

45. One radio transmitter A operating at 60.0 MHz is 
10.0 m from another similar transmitter B that is 180°
out of phase with transmitter A. How far must an ob-
server move from transmitter A toward transmitter B
along the line connecting A and B to reach the nearest
point where the two beams are in phase?

46. Raise your hand and hold it flat. Think of the space be-
tween your index finger and your middle finger as one
slit, and think of the space between middle finger and
ring finger as a second slit. (a) Consider the interfer-
ence resulting from sending coherent visible light per-
pendicularly through this pair of openings. Compute an
order-of-magnitude estimate for the angle between adja-

(� � 546.1 nm).

(n � 1.52) cent zones of constructive interference. (b) To make the
angles in the interference pattern easy to measure with a
plastic protractor, you should use an electromagnetic
wave with frequency of what order of magnitude? How is
this wave classified on the electromagnetic spectrum?

47. In a Young’s double-slit experiment using light of wave-
length �, a thin piece of Plexiglas having index of re-
fraction n covers one of the slits. If the center point on
the screen is a dark spot instead of a bright spot, what is
the minimum thickness of the Plexiglas?

48. Review Problem. A flat piece of glass is held stationary
and horizontal above the flat top end of a 10.0-cm-long
vertical metal rod that has its lower end rigidly fixed.
The thin film of air between the rod and glass is ob-
served to be bright by reflected light when it is illumi-
nated by light of wavelength 500 nm. As the tempera-
ture is slowly increased by 25.0°C, the film changes from
bright to dark and back to bright 200 times. What is the
coefficient of linear expansion of the metal?

49. A certain crude oil has an index of refraction of 1.25. 
A ship dumps 1.00 m3 of this oil into the ocean, and the
oil spreads into a thin uniform slick. If the film pro-
duces a first-order maximum of light of wavelength 
500 nm normally incident on it, how much surface area
of the ocean does the oil slick cover? Assume that the
index of refraction of the ocean water is 1.34.

50. Interference effects are produced at point P on a screen
as a result of direct rays from a 500-nm source and re-
flected rays off the mirror, as shown in Figure P37.50. If
the source is 100 m to the left of the screen and 1.00 cm
above the mirror, find the distance y (in millimeters) to
the first dark band above the mirror.

O

Source
P

Viewing screen

Mirror

�

y

Figure P37.50

51. Astronomers observed a 60.0-MHz radio source both di-
rectly and by reflection from the sea. If the receiving
dish is 20.0 m above sea level, what is the angle of the
radio source above the horizon at first maximum?

52. The waves from a radio station can reach a home re-
ceiver by two paths. One is a straight-line path from
transmitter to home, a distance of 30.0 km. The second
path is by reflection from the ionosphere (a layer of ion-
ized air molecules high in the atmosphere). Assume that
this reflection takes place at a point midway between the
receiver and the transmitter. The wavelength broadcast
by the radio station is 350 m. Find the minimum height
of the ionospheric layer that produces destructive inter-
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ference between the direct and reflected beams. (As-
sume that no phase changes occur on reflection.)

53. Measurements are made of the intensity distribution in
a Young’s interference pattern (see Fig. 37.6). At a par-
ticular value of y, it is found that when
600-nm light is used. What wavelength of light should
be used if the relative intensity at the same location is to
be reduced to 64.0%?

54. In a Young’s interference experiment, the two slits are
separated by 0.150 mm, and the incident light includes
light of wavelengths �1 � 540 nm and �2 � 450 nm.
The overlapping interference patterns are formed on a
screen 1.40 m from the slits. Calculate the minimum
distance from the center of the screen to the point
where a bright line of the �1 light coincides with a
bright line of the �2 light.

55. An air wedge is formed between two glass plates in con-
tact along one edge and slightly separated at the oppo-
site edge. When the plates are illuminated with mono-
chromatic light from above, the reflected light has 85
dark fringes. Calculate the number of dark fringes that
would appear if water were to replace the air
between the plates.

56. Our discussion of the techniques for determining con-
structive and destructive interference by reflection from
a thin film in air has been confined to rays striking the
film at nearly normal incidence. Assume that a ray is in-
cident at an angle of 30.0° (relative to the normal) on a
film with an index of refraction of 1.38. Calculate the
minimum thickness for constructive interference if the
light is sodium light with a wavelength of 590 nm.

57. The condition for constructive interference by reflec-
tion from a thin film in air as developed in Section 37.6
assumes nearly normal incidence. Show that if the light
is incident on the film at a nonzero angle �1 (relative to
the normal), then the condition for constructive inter-
ference is 2nt cos where �2 is the angle
of refraction.

58. (a) Both sides of a uniform film that has index of refrac-
tion n and thickness d are in contact with air. For nor-
mal incidence of light, an intensity minimum is ob-
served in the reflected light at �2 , and an intensity
maximum is observed at �1 , where If no inten-
sity minima are observed between �1 and �2 , show that
the integer m in Equations 37.16 and 37.17 is given by

(b) Determine the thickness of the
film if nm, and nm.

59. Figure P37.59 shows a radio wave transmitter and a re-
ceiver separated by a distance d and located a distance h
above the ground. The receiver can receive signals both
directly from the transmitter and indirectly from signals
that reflect off the ground. Assume that the ground is
level between the transmitter and receiver and that a
180° phase shift occurs upon reflection. Determine the
longest wavelengths that interfere (a) constructively
and (b) destructively.

�2 � 370�1 � 500n � 1.40,
m � �1/2(�1 � �2).

�1 � �2 .

�2 � (m � 1
2 )�,

(n � 1.33)

I/Imax � 0.810

60. Consider the double-slit arrangement shown in Figure
P37.60, where the separation d is 0.300 mm and the dis-
tance L is 1.00 m. A sheet of transparent plastic

0.050 0 mm thick (about the thickness of
this page) is placed over the upper slit. As a result, the
central maximum of the interference pattern moves up-
ward a distance y
. Find y
.

(n � 1.50)

Transmitter Receiver

d

h

Figure P37.59

61. Consider the double-slit arrangement shown in Figure
P37.60, where the slit separation is d and the slit to
screen distance is L. A sheet of transparent plastic having
an index of refraction n and thickness t is placed over the
upper slit. As a result, the central maximum of the inter-
ference pattern moves upward a distance y
. Find y
.

62. Waves broadcast by a 1 500-kHz radio station arrive at a
home receiver by two paths. One is a direct path, and
the other is from reflection off an airplane directly
above the receiver. The airplane is approximately 100 m
above the receiver, and the direct distance from station
to home is 20.0 km. What is the precise height of the
airplane if destructive interference is occurring? (As-
sume that no phase change occurs on reflection.)

63. In a Newton’s-rings experiment, a plano-convex glass
lens having a diameter of 10.0 cm is placed

on a flat plate, as shown in Figure 37.18a. When 650-nm
light is incident normally, 55 bright rings are observed,
with the last ring right on the edge of the lens. (a) What
is the radius of curvature of the convex surface of the
lens? (b) What is the focal length of the lens?

64. A piece of transparent material having an index of re-

(n � 1.52)

θ

m =0 Zero order

Viewing screen

Plastic
sheet

L

d

∆r

y′

Figure P37.60 Problems 60 and 61.
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fraction n is cut into the shape of a wedge, as shown in
Figure P37.64. The angle of the wedge is small, and
monochromatic light of wavelength � is normally inci-
dent from above. If the height of the wedge is h and the
width is �, show that bright fringes occur at the posi-
tions and that dark fringes occur at
the positions where m � 0, 1, 2, . . .
and x is measured as shown.

x � ��m/2hn,
x � ��(m � 1

2 )/2hn

where m is an integer and r is much less than R .
68. A soap film is contained within a rectangular

wire frame. The frame is held vertically so that the film
drains downward and becomes thicker at the bottom
than at the top, where the thickness is essentially zero.
The film is viewed in white light with near-normal inci-
dence, and the first violet interference
band is observed 3.00 cm from the top edge of the film.
(a) Locate the first red interference
band. (b) Determine the film thickness at the positions
of the violet and red bands. (c) What is the wedge angle
of the film?

69. Interference fringes are produced using Lloyd’s mirror
and a 606-nm source, as shown in Figure 37.14. Fringes
1.20 mm apart are formed on a screen 2.00 m from the
real source S. Find the vertical distance h of the source
above the reflecting surface.

70. Slit 1 of a double slit is wider than slit 2, so that the light
from slit 1 has an amplitude 3.00 times that of the light
from slit 2. Show that Equation 37.11 is replaced by the
equation for this situa-
tion.

(4Imax/9)(1 � 3 cos2 �/2)I �

(� � 680 nm)

(� � 420 nm)

(n � 1.33)

r � !m�R/n film

R

r

Figure P37.66

 I
Imax

0–2λ– 2λλ λ λ λ
d sin θθ

�

x

h

Figure P37.64

65. Use phasor addition to find the resultant amplitude and
phase constant when the following three harmonic
functions are combined: 

66. A plano-convex lens having a radius of curvature of
m is placed on a concave reflecting surface

whose radius of curvature is m, as shown in
Figure P37.66. Determine the radius of the 100th bright
ring if 500-nm light is incident normal to the flat sur-
face of the lens.

67. A plano-convex lens has index of refraction n . The
curved side of the lens has radius of curvature R and
rests on a flat glass surface of the same index of refrac-
tion, with a film of index nfilm between them. The lens
is illuminated from above by light of wavelength �.
Show that the dark Newton’s rings have radii given ap-
proximately by

R � 12.0
r � 4.00

E 3 � 6.0 sin(�t � 4/3).E 2 � 3.0 sin(�t � 7/2),
E 1 � sin(�t � /6),

ANSWERS TO QUICK QUIZZES

of the photograph and at the bottom right corner of the
razor blade. Thus, the thickness of the oil film changes
most slowly with position in these areas.

37.1 Bands of light along the orange lines interspersed with
dark bands running along the dashed black lines.

37.2 At location B. At A, which is on a line of constructive in-
terference, the water surface undulates so much that you
probably could not determine the depth. Because B is on
a line of destructive interference, the water level does not
change, and you should be able to read the ruler easily.

37.3 The graph is shown in Figure QQA37.1. The width of
the primary maxima is slightly narrower than the 
primary width but wider than the primary width.
Because the secondary maxima are as intense
as the primary maxima.

37.4 The greater the variation in thickness, the narrower the
bands of color (like the lines on a topographic map).
The widest bands are the gold ones along the left edge

1
36N � 6,

N � 10
N � 5

Figure QQA37.1
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c h a p t e r

Diffraction and Polarization

P U Z Z L E R

At sunset, the sky is ablaze with brilliant
reds, pinks, and oranges. Yet, we 
wouldn’t be able to see this sunset were
it not for the fact that someone else is 
simultaneously seeing a blue sky. What
causes the beautiful colors of a sunset,
and why must the sky be blue some-
where else for us to enjoy one? (© W. A.

Banaszewski/Visuals Unlimited)
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38.1 Introduction to Diffraction

38.2 Diffraction from Narrow Slits

38.3 Resolution of Single-Slit and
Circular Apertures

38.4 The Diffraction Grating

38.5 (Optional) Diffraction of X-Rays
by Crystals

38.6 Polarization of Light Waves

P U Z Z L E R
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hen light waves pass through a small aperture, an interference pattern is
observed rather than a sharp spot of light. This behavior indicates that light,

once it has passed through the aperture, spreads beyond the narrow path de-
fined by the aperture into regions that would be in shadow if light traveled in
straight lines. Other waves, such as sound waves and water waves, also have this
property of spreading when passing through apertures or by sharp edges. This
phenomenon, known as diffraction, can be described only with a wave model for
light.

In Chapter 34, we learned that electromagnetic waves are transverse. That is,
the electric and magnetic field vectors are perpendicular to the direction of wave
propagation. In this chapter, we see that under certain conditions these transverse
waves can be polarized in various ways.

INTRODUCTION TO DIFFRACTION
In Section 37.2 we learned that an interference pattern is observed on a viewing
screen when two slits are illuminated by a single-wavelength light source. If the
light traveled only in its original direction after passing through the slits, as
shown in Figure 38.1a, the waves would not overlap and no interference pattern
would be seen. Instead, Huygens’s principle requires that the waves spread out
from the slits as shown in Figure 38.1b. In other words, the light deviates from a
straight-line path and enters the region that would otherwise be shadowed. As
noted in Section 35.1, this divergence of light from its initial line of travel is
called diffraction.

In general, diffraction occurs when waves pass through small openings,
around obstacles, or past sharp edges, as shown in Figure 38.2. When an opaque
object is placed between a point source of light and a screen, no sharp boundary
exists on the screen between a shadowed region and an illuminated region. The il-
luminated region above the shadow of the object contains alternating light and
dark fringes. Such a display is called a diffraction pattern.

Figure 38.3 shows a diffraction pattern associated with the shadow of a penny.
A bright spot occurs at the center, and circular fringes extend outward from the
shadow’s edge. We can explain the central bright spot only by using the wave the-

38.1

W

(a)

(b)

Figure 38.2 Light from a small source passes by the edge of an opaque object. We might ex-
pect no light to appear on the screen below the position of the edge of the object. In reality, light
bends around the top edge of the object and enters this region. Because of these effects, a dif-
fraction pattern consisting of bright and dark fringes appears in the region above the edge of the
object.

Figure 38.1 (a) If light waves did
not spread out after passing
through the slits, no interference
would occur. (b) The light waves
from the two slits overlap as they
spread out, filling what we expect
to be shadowed regions with light
and producing interference
fringes.

Source

Opaque object

Viewing
screen
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ory of light, which predicts constructive interference at this point. From the view-
point of geometric optics (in which light is viewed as rays traveling in straight
lines), we expect the center of the shadow to be dark because that part of the view-
ing screen is completely shielded by the penny.

It is interesting to point out an historical incident that occurred shortly before
the central bright spot was first observed. One of the supporters of geometric op-
tics, Simeon Poisson, argued that if Augustin Fresnel’s wave theory of light were
valid, then a central bright spot should be observed in the shadow of a circular ob-
ject illuminated by a point source of light. To Poisson’s astonishment, the spot was
observed by Dominique Arago shortly thereafter. Thus, Poisson’s prediction rein-
forced the wave theory rather than disproving it.

In this chapter we restrict our attention to Fraunhofer diffraction, which oc-
curs, for example, when all the rays passing through a narrow slit are approxi-
mately parallel to one another. This can be achieved experimentally either by plac-
ing the screen far from the opening used to create the diffraction or by using a
converging lens to focus the rays once they pass through the opening, as shown in
Figure 38.4a. A bright fringe is observed along the axis at � � 0, with alternating
dark and bright fringes occurring on either side of the central bright one. Figure
38.4b is a photograph of a single-slit Fraunhofer diffraction pattern.

Figure 38.3 Diffraction pattern created by the illumina-
tion of a penny, with the penny positioned midway between
screen and light source.

Figure 38.4 (a) Fraunhofer diffraction pattern of a single slit. The pattern consists of a central
bright fringe flanked by much weaker maxima alternating with dark fringes (drawing not to
scale). (b) Photograph of a single-slit Fraunhofer diffraction pattern.

Lens

Slit

Incoming
wave

(a)

Viewing screen

(b)

θ
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DIFFRACTION FROM NARROW SLITS
Until now, we have assumed that slits are point sources of light. In this section, we
abandon that assumption and see how the finite width of slits is the basis for un-
derstanding Fraunhofer diffraction.

We can deduce some important features of this phenomenon by examining
waves coming from various portions of the slit, as shown in Figure 38.5. According
to Huygens’s principle, each portion of the slit acts as a source of light waves.
Hence, light from one portion of the slit can interfere with light from another
portion, and the resultant light intensity on a viewing screen depends on the direc-
tion �.

To analyze the diffraction pattern, it is convenient to divide the slit into two
halves, as shown in Figure 38.5. Keeping in mind that all the waves are in phase
as they leave the slit, consider rays 1 and 3. As these two rays travel toward a view-
ing screen far to the right of the figure, ray 1 travels farther than ray 3 by an
amount equal to the path difference (a/2) sin �, where a is the width of the slit.
Similarly, the path difference between rays 2 and 4 is also (a/2) sin �. If this path
difference is exactly half a wavelength (corresponding to a phase difference of
180°), then the two waves cancel each other and destructive interference results.
This is true for any two rays that originate at points separated by half the slit
width because the phase difference between two such points is 180°. Therefore,
waves from the upper half of the slit interfere destructively with waves from the
lower half when

or when

If we divide the slit into four equal parts and use similar reasoning, we find
that the viewing screen is also dark when

Likewise, we can divide the slit into six equal parts and show that darkness oc-
curs on the screen when

Therefore, the general condition for destructive interference is

m � � 1, � 2, � 3, . . . (38.1)

This equation gives the values of � for which the diffraction pattern has zero light
intensity—that is, when a dark fringe is formed. However, it tells us nothing about
the variation in light intensity along the screen. The general features of the inten-
sity distribution are shown in Figure 38.6. A broad central bright fringe is ob-

sin � � m 
�

a

 sin � �
3�

a

sin � �
2�

a

sin � �
�

a

a
2

 sin � �
�

2

38.2

a/2

a

a/2

a
2

sin

3

2

5

4

1

θ

θ

Figure 38.5 Diffraction of light
by a narrow slit of width a. Each
portion of the slit acts as a point
source of light waves. The path dif-
ference between rays 1 and 3 or be-
tween rays 2 and 4 is (a/2)sin �
(drawing not to scale).

Condition for destructive
interference
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served; this fringe is flanked by much weaker bright fringes alternating with dark
fringes. The various dark fringes occur at the values of � that satisfy Equation 38.1.
Each bright-fringe peak lies approximately halfway between its bordering dark-
fringe minima. Note that the central bright maximum is twice as wide as the sec-
ondary maxima.

If the door to an adjoining room is slightly ajar, why is it that you can hear sounds from the
room but cannot see much of what is happening in the room?

Quick Quiz 38.1

Where Are the Dark Fringes?EXAMPLE 38.1
The positive and negative signs correspond to the dark
fringes on either side of the central bright fringe. Hence, 
the width of the central bright fringe is equal to

Note that this value is
much greater than the width of the slit. However, as the slit
width is increased, the diffraction pattern narrows, corre-
sponding to smaller values of �. In fact, for large values of a ,
the various maxima and minima are so closely spaced that
only a large central bright area resembling the geometric im-
age of the slit is observed. This is of great importance in the
design of lenses used in telescopes, microscopes, and other
optical instruments.

Exercise Determine the width of the first-order 
bright fringe.

Answer 3.87 mm.

(m � 1)

2� y1 � � 7.74 � 10�3 m � 7.74 mm.

Light of wavelength 580 nm is incident on a slit having a
width of 0.300 mm. The viewing screen is 2.00 m from the
slit. Find the positions of the first dark fringes and the width
of the central bright fringe.

Solution The two dark fringes that flank the central
bright fringe correspond to m � � 1 in Equation 38.1.
Hence, we find that

From the triangle in Figure 38.6, note that tan Be-
cause � is very small, we can use the approximation sin � �
tan �; thus, sin � � y1/L . Therefore, the positions of the first
minima measured from the central axis are given by

�3.87 � 10�3 my1 � L sin � � �L 
�

a
�

� � y1/L .

sin � � �
�

a
� �

5.80 � 10�7 m
0.300 � 10�3 m

� �1.93 � 10�3

The diffraction pattern that ap-
pears on a screen when light passes
through a narrow vertical slit. The
pattern consists of a broad central
bright fringe and a series of less in-
tense and narrower side bright
fringes.

sin   = 2  /aθ

sin   =   /aθ

sin   = 0θ

sin   = –  /aθ

sin    = –2  /aθL

θ

a 0

y2

y1

–y1

–y2

Viewing screen

λ

λ

λ

λ

Figure 38.6 Intensity distribution for a
Fraunhofer diffraction pattern from a single
slit of width a. The positions of two minima
on each side of the central maximum are la-
beled (drawing not to scale).

Intensity of Single-Slit Diffraction Patterns

We can use phasors to determine the light intensity distribution for a single-slit dif-
fraction pattern. Imagine a slit divided into a large number of small zones, each of
width �y as shown in Figure 38.7. Each zone acts as a source of coherent radiation,
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and each contributes an incremental electric field of magnitude �E at some point
P on the screen. We obtain the total electric field magnitude E at point P by sum-
ming the contributions from all the zones. The light intensity at point P is propor-
tional to the square of the magnitude of the electric field (see Section 37.3).

The incremental electric field magnitudes between adjacent zones are out of
phase with one another by an amount ��, where the phase difference �� is re-
lated to the path difference �y sin � between adjacent zones by the expression

(38.2)

To find the magnitude of the total electric field on the screen at any angle �,
we sum the incremental magnitudes �E due to each zone. For small values of �, we
can assume that all the �E values are the same. It is convenient to use phasor dia-
grams for various angles, as shown in Figure 38.8. When � � 0, all phasors are
aligned as shown in Figure 38.8a because all the waves from the various zones are
in phase. In this case, the total electric field at the center of the screen is 
N �E, where N is the number of zones. The resultant magnitude E R at some small
angle � is shown in Figure 38.8b, where each phasor differs in phase from an adja-
cent one by an amount ��. In this case, ER is the vector sum of the incremental

E 0 �

 �� �
2	

�
 �y sin � 

P

a

∆y

∆y sin

Viewing
screen

θ

θ

Figure 38.7 Fraunhofer diffrac-
tion by a single slit. The light inten-
sity at point P is the resultant of all
the incremental electric field magni-
tudes from zones of width �y.

QuickLab
Make a V with your index and middle
fingers. Hold your hand up very close
to your eye so that you are looking
between your two fingers toward a
bright area. Now bring the fingers to-
gether until there is only a very tiny
slit between them. You should be able
to see a series of parallel lines. Al-
though the lines appear to be located
in the narrow space between your fin-
gers, what you are actually seeing is a
diffraction pattern cast upon your
retina.

= 2

(a)

(b)

(c)

(d)

= 0β
β π

= 3β π

EθR

EθR
EθR

Figure 38.8 Phasor diagrams for obtaining the various maxima and minima of a single-slit dif-
fraction pattern.
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magnitudes and hence is given by the length of the chord. Therefore, 
The total phase difference � between waves from the top and bottom portions of
the slit is

(38.3)

where is the width of the slit.
As � increases, the chain of phasors eventually forms the closed path shown in

Figure 38.8c. At this point, the vector sum is zero, and so corresponding
to the first minimum on the screen. Noting that in this situation,
we see from Equation 38.3 that

That is, the first minimum in the diffraction pattern occurs where sin � � �/a; this
is in agreement with Equation 38.1.

At greater values of �, the spiral chain of phasors tightens. For example, Fig-
ure 38.8d represents the situation corresponding to the second maximum, which
occurs when � � 360° 
 180° � 540° (3	 rad). The second minimum (two com-
plete circles, not shown) corresponds to � � 720° (4	 rad), which satisfies the
condition sin � � 2�/a.

We can obtain the total electric field magnitude ER and light intensity I at any
point P on the screen in Figure 38.7 by considering the limiting case in which �y
becomes infinitesimal (dy) and N approaches �. In this limit, the phasor chains in
Figure 38.8 become the red curve of Figure 38.9. The arc length of the curve is E0
because it is the sum of the magnitudes of the phasors (which is the total electric
field magnitude at the center of the screen). From this figure, we see that at some
angle �, the resultant electric field magnitude ER on the screen is equal to the
chord length. From the triangle containing the angle �/2, we see that

where R is the radius of curvature. But the arc length E0 is equal to the product
R�, where � is measured in radians. Combining this information with the previous
expression gives

Because the resultant light intensity I at point P on the screen is proportional to
the square of the magnitude ER , we find that

(38.4)

where Imax is the intensity at � � 0 (the central maximum). Substituting the ex-
pression for � (Eq. 38.3) into Equation 38.4, we have

(38.5)I � Imax� sin (	a sin �/�)
	a sin �/� �

2

I � Imax� sin (�/2)
�/2 �

2

E R � 2R sin 
�

2
� 2� E 0

� � sin 
�

2
� E 0� sin (�/2)

�/2 �

sin 
�

2
�

E R/2
R

sin � �
�

a
 

 2	 �
2	

�
 a sin �

� � N �� � 2	
E R � 0,

a � N �y

� � N �� �
2	

�
 N �y sin � �

2	

�
 a sin �

E R � E 0 .

Intensity of a single-slit Fraunhofer
diffraction pattern

R

R

O

β

/2β

Eθ/2R EθR

Figure 38.9 Phasor diagram for
a large number of coherent
sources. All the ends of the phasors
lie on the circular red arc of radius
R . The resultant electric field mag-
nitude ER equals the length of the
chord.
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From this result, we see that minima occur when

or

m � � 1, � 2, � 3, . . .

in agreement with Equation 38.1.
Figure 38.10a represents a plot of Equation 38.5, and Figure 38.10b is a photo-

graph of a single-slit Fraunhofer diffraction pattern. Note that most of the light in-
tensity is concentrated in the central bright fringe.

sin � � m 
�

a

	a sin �
�

� m	

Relative Intensities of the MaximaEXAMPLE 38.2

That is, the first secondary maxima (the ones adjacent to the
central maximum) have an intensity of 4.5% that of the cen-
tral maximum, and the next secondary maxima have an in-
tensity of 1.6% that of the central maximum.

Exercise Determine the intensity, relative to the central
maximum, of the secondary maxima corresponding to

Answer 0.008 3.

m � �3.

0.016
I2

Imax
� � sin (5	/2)

5	/2 �
2

�
1

25	2/4
�

Find the ratio of the intensities of the secondary maxima to
the intensity of the central maximum for the single-slit Fraun-
hofer diffraction pattern.

Solution To a good approximation, the secondary max-
ima lie midway between the zero points. From Figure 38.10a,
we see that this corresponds to �/2 values of 3	/2, 5	/2,
7	/2, . . . . Substituting these values into Equation 38.4
gives for the first two ratios

0.045
I1

Imax
� � sin (3	/2)

(3	/2) �
2

�
1

9	2/4
�

(a)

Imax

I2 I1 I1 I2

_3 _2 2 3π_π
/2

I

β
π πππ

(b)

Figure 38.10 (a) A plot of
light intensity I versus �/2 for
the single-slit Fraunhofer dif-
fraction pattern. (b) Photo-
graph of a single-slit Fraunhofer
diffraction pattern.

Intensity of Two-Slit Diffraction Patterns

When more than one slit is present, we must consider not only diffraction due to
the individual slits but also the interference of the waves coming from different
slits. You may have noticed the curved dashed line in Figure 37.13, which indicates
a decrease in intensity of the interference maxima as � increases. This decrease is

Condition for intensity minima
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I

Diffraction
envelope

Interference
fringes

–3 –2 –π π 2 3
/2β

π π π π

Figure 38.11 The combined effects of diffraction and interference. This is the pattern pro-
duced when 650-nm light waves pass through two 3.0-m slits that are 18 m apart. Notice how
the diffraction pattern acts as an “envelope” and controls the intensity of the regularly spaced in-
terference maxima.

due to diffraction. To determine the effects of both interference and diffraction,
we simply combine Equation 37.12 and Equation 38.5:

(38.6)

Although this formula looks complicated, it merely represents the diffraction pat-
tern (the factor in brackets) acting as an “envelope” for a two-slit interference pat-
tern (the cosine-squared factor), as shown in Figure 38.11.

Equation 37.2 indicates the conditions for interference maxima as d sin � � m�,
where d is the distance between the two slits. Equation 38.1 specifies that the first
diffraction minimum occurs when a sin � � �, where a is the slit width. Dividing
Equation 37.2 by Equation 38.1 (with allows us to determine which inter-
ference maximum coincides with the first diffraction minimum:

(38.7)

In Figure 38.11, m/3.0 m � 6. Thus, the sixth interference maxi-
mum (if we count the central maximum as is aligned with the first diffrac-
tion minimum and cannot be seen.

m � 0)
d /a � 18

 
d
a

� m 

d sin �
a sin �

�
m�

�

m � 1)

I � Imax cos2� 	d sin �
� � � sin(	a sin �/�)

	a sin �/� �
2
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Using Figure 38.11 as a starting point, make a sketch of the combined diffraction and inter-
ference pattern for 650-nm light waves striking two 3.0-m slits located 9.0 m apart.

RESOLUTION OF SINGLE-SLIT AND
CIRCULAR APERTURES

The ability of optical systems to distinguish between closely spaced objects is lim-
ited because of the wave nature of light. To understand this difficulty, let us con-
sider Figure 38.12, which shows two light sources far from a narrow slit of width a.
The sources can be considered as two noncoherent point sources S1 and S2 —for
example, they could be two distant stars. If no diffraction occurred, two distinct
bright spots (or images) would be observed on the viewing screen. However, be-
cause of diffraction, each source is imaged as a bright central region flanked by
weaker bright and dark fringes. What is observed on the screen is the sum of two
diffraction patterns: one from S1 , and the other from S2 .

If the two sources are far enough apart to keep their central maxima from
overlapping, as shown in Figure 38.12a, their images can be distinguished and are
said to be resolved. If the sources are close together, however, as shown in Figure
38.12b, the two central maxima overlap, and the images are not resolved. In deter-
mining whether two images are resolved, the following condition is often used:

38.3

Quick Quiz 38.2

S1

S2

S1

S2

Slit Viewing screen

(a) (b)

Slit Viewing screen

θ θ

Figure 38.12 Two point sources far from a narrow slit each produce a diffraction pattern. 
(a) The angle subtended by the sources at the slit is large enough for the diffraction patterns to be
distinguishable. (b) The angle subtended by the sources is so small that their diffraction patterns
overlap, and the images are not well resolved. (Note that the angles are greatly exaggerated. The
drawing is not to scale.)

When the central maximum of one image falls on the first minimum of the
other image, the images are said to be just resolved. This limiting condition of
resolution is known as Rayleigh’s criterion.

Figure 38.13 shows diffraction patterns for three situations. When the objects
are far apart, their images are well resolved (Fig. 38.13a). When the angular sepa-
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ration of the objects satisfies Rayleigh’s criterion (Fig. 38.13b), the images are just
resolved. Finally, when the objects are close together, the images are not resolved
(Fig. 38.13c).

From Rayleigh’s criterion, we can determine the minimum angular separation
�min subtended by the sources at the slit for which the images are just resolved.
Equation 38.1 indicates that the first minimum in a single-slit diffraction pattern
occurs at the angle for which

where a is the width of the slit. According to Rayleigh’s criterion, this expression
gives the smallest angular separation for which the two images are resolved. Be-
cause in most situations, sin � is small, and we can use the approximation
sin � � �. Therefore, the limiting angle of resolution for a slit of width a is

(38.8)

where �min is expressed in radians. Hence, the angle subtended by the two sources
at the slit must be greater than �/a if the images are to be resolved.

Many optical systems use circular apertures rather than slits. The diffraction
pattern of a circular aperture, shown in Figure 38.14, consists of a central circular

�min �
�

a

� V a

sin � �
�

a

(b)(a) (c)

Figure 38.13 Individual diffraction patterns of two point sources (solid curves) and the resul-
tant patterns (dashed curves) for various angular separations of the sources. In each case, the
dashed curve is the sum of the two solid curves. (a) The sources are far apart, and the patterns
are well resolved. (b) The sources are closer together such that the angular separation just satis-
fies Rayleigh’s criterion, and the patterns are just resolved. (c) The sources are so close together
that the patterns are not resolved.

Figure 38.14 The diffraction
pattern of a circular aperture con-
sists of a central bright disk sur-
rounded by concentric bright and
dark rings.
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bright disk surrounded by progressively fainter bright and dark rings. Analysis
shows that the limiting angle of resolution of the circular aperture is

(38.9)

where D is the diameter of the aperture. Note that this expression is similar to
Equation 38.8 except for the factor 1.22, which arises from a complex mathemati-
cal analysis of diffraction from the circular aperture.

�min � 1.22 
�

D
Limiting angle of resolution for a
circular aperture

Limiting Resolution of a MicroscopeEXAMPLE 38.3
Violet light (400 nm) gives a limiting angle of resolution of

(c) Suppose that water fills the space between
the object and the objective. What effect does this have on re-
solving power when 589-nm light is used?

Solution We find the wavelength of the 589-nm light in
the water using Equation 35.7:

The limiting angle of resolution at this wavelength is now
smaller than that calculated in part (a):

6.00 � 10�5 rad�min � 1.22� 443 � 10�9 m
0.900 � 10�2 m � �

�water �
�air

n water
�

589 nm
1.33

� 443 nm

(n � 1.33)

5.42 � 10�5 rad�min � 1.22� 400 � 10�9 m
0.900 � 10�2 m � �

Light of wavelength 589 nm is used to view an object under a
microscope. If the aperture of the objective has a diameter of
0.900 cm, (a) what is the limiting angle of resolution?

Solution (a) Using Equation 38.9, we find that the limit-
ing angle of resolution is

This means that any two points on the object subtending an
angle smaller than this at the objective cannot be distin-
guished in the image.

(b) If it were possible to use visible light of any wave-
length, what would be the maximum limit of resolution for
this microscope?

Solution To obtain the smallest limiting angle, we have to
use the shortest wavelength available in the visible spectrum.

7.98 � 10�5 rad�min � 1.22� 589 � 10�9 m
0.900 � 10�2 m � �

Resolution of a TelescopeEXAMPLE 38.4
mospheric blurring. This seeing limit is usually about 1 s of
arc and is never smaller than about 0.1 s of arc. (This is one
of the reasons for the superiority of photographs from the
Hubble Space Telescope, which views celestial objects from
an orbital position above the atmosphere.)

Exercise The large radio telescope at Arecibo, Puerto Rico,
has a diameter of 305 m and is designed to detect 0.75-m ra-
dio waves. Calculate the minimum angle of resolution for this
telescope and compare your answer with that for the Hale
telescope.

Answer 3.0 � 10�3 rad (10 min of arc), more than 10 000
times larger (that is, worse) than the Hale minimum.

The Hale telescope at Mount Palomar has a diameter of 200 in.
What is its limiting angle of resolution for 600-nm light?

Solution Because in. � 5.08 m and � � 6.00 �
10�7 m, Equation 38.9 gives

Any two stars that subtend an angle greater than or equal to
this value are resolved (if atmospheric conditions are ideal).

The Hale telescope can never reach its diffraction limit
because the limiting angle of resolution is always set by at-

1.44 � 10�7 rad � 0.03 s of arc �

�min � 1.22 
�

D
� 1.22� 6.00 � 10�7 m

5.08 m �

D � 200

Resolution of the EyeEXAMPLE 38.5
Solution Let us choose a wavelength of 500 nm, near the
center of the visible spectrum. Although pupil diameter

Estimate the limiting angle of resolution for the human eye,
assuming its resolution is limited only by diffraction.
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S1

S2

L

d minθ

Figure 38.15 Two point sources separated by a distance d as ob-
served by the eye.

Figure 38.16 An audio speaker system for high-fidelity sound repro-
duction. The tweeter is at the top, the midrange speaker is in the mid-
dle, and the woofer is at the bottom. (International Stock Photography)

varies from person to person, we estimate a diameter of 2 mm.
We use Equation 38.9, taking � � 500 nm and D � 2 mm:

We can use this result to determine the minimum separa-
tion distance d between two point sources that the eye can
distinguish if they are a distance L from the observer (Fig.
38.15). Because �min is small, we see that

For example, if the point sources are 25 cm from the eye (the
near point), then

This is approximately equal to the thickness of a human hair.

d � (25 cm)(3 � 10�4 rad) � 8 � 10�3 cm

 d � L�min 

sin �min � �min �
d
L

3 � 10�4 rad � 1 min of arc �

�min � 1.22 
�

D
� 1.22� 5.00 � 10�7 m

2 � 10�3 m �

Exercise Suppose that the pupil is dilated to a diameter of
5.0 mm and that two point sources 3.0 m away are being
viewed. How far apart must the sources be if the eye is to re-
solve them?

Answer 0.037 cm.

Loudspeaker DesignAPPLICATION
The three-way speaker system shown in Figure 38.16 contains
a woofer, a midrange speaker, and a tweeter. The small-
diameter tweeter is for high frequencies, and the large-
diameter woofer is for low frequencies. The midrange
speaker, of intermediate diameter, is used for the frequency
band above the high-frequency cutoff of the woofer and be-
low the low-frequency cutoff of the tweeter. Circuits known as
crossover networks include low-pass, midrange, and high-pass
filters that direct the electrical signal to the appropriate
speaker. The effective aperture size of a speaker is approxi-
mately its diameter. Because the wavelengths of sound waves
are comparable to the typical sizes of the speakers, diffraction
effects determine the angular radiation pattern. To be most
useful, a speaker should radiate sound over a broad range of
angles so that the listener does not have to stand at a particu-
lar spot in the room to hear maximum sound intensity. On
the basis of the angular radiation pattern, let us investigate
the frequency range for which a 6-in. (0.15-m) midrange
speaker is most useful.

The speed of sound in air is 344 m/s, and for a circu-
lar aperture, diffraction effects become important when � �
1.22D, where D is the speaker diameter. Therefore, we would
expect this speaker to radiate non-uniformly for all frequen-
cies above 

Suppose our design specifies that the midrange speaker
operates between 500 Hz (the high-frequency woofer cutoff)
and 2 000 Hz. Measurements of the dispersion of radiated

344 m/s
1.22(0.15 m)

� 1 900 Hz



THE DIFFRACTION GRATING
The diffraction grating, a useful device for analyzing light sources, consists of a
large number of equally spaced parallel slits. A transmission grating can be made by
cutting parallel lines on a glass plate with a precision ruling machine. The spaces
between the lines are transparent to the light and hence act as separate slits. A re-
flection grating can be made by cutting parallel lines on the surface of a reflective
material. The reflection of light from the spaces between the lines is specular, and
the reflection from the lines cut into the material is diffuse. Thus, the spaces be-
tween the lines act as parallel sources of reflected light, like the slits in a transmis-
sion grating. Gratings that have many lines very close to each other can have very
small slit spacings. For example, a grating ruled with 5 000 lines/cm has a slit spac-
ing d � (1/5 000) cm � 2.00 � 10�4 cm.

38.4
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Figure 38.17 Angular dispersion of sound intensity I for a midrange speaker at 
(a) 500 Hz and (b) 2 000 Hz.

–50 0 50

0.5

1

θ (degrees)

 I
Imax

(a)   500 Hz

–50 0 50

0.5

1

θ (degrees)

 I
Imax

(b)   2 000 Hz

sound at a suitably great distance from the speaker yield the
angular profiles of sound intensity shown in Figure 38.17. In
examining these plots, we see that the dispersion pattern for
a 500-Hz sound is fairly uniform. This angular range is suffi-

ciently great for us to say that this midrange speaker satisfies
the design criterion. The intensity of a 2 000-Hz sound de-
creases to about half its maximum value about 30° from the
centerline.



38.4 The Diffraction Grating 1225

Condition for interference
maxima for a grating

P

d

d

θ

θ

   = d sin θ

Viewing
screen

δ

Figure 38.18 Side view of a diffraction grating. The slit separation is d, and the path difference
between adjacent slits is d sin �.

A section of a diffraction grating is illustrated in Figure 38.18. A plane wave is
incident from the left, normal to the plane of the grating. A converging lens
brings the rays together at point P. The pattern observed on the screen is the re-
sult of the combined effects of interference and diffraction. Each slit produces dif-
fraction, and the diffracted beams interfere with one another to produce the final
pattern.

The waves from all slits are in phase as they leave the slits. However, for some
arbitrary direction � measured from the horizontal, the waves must travel different
path lengths before reaching point P. From Figure 38.18, note that the path differ-
ence � between rays from any two adjacent slits is equal to d sin �. If this path dif-
ference equals one wavelength or some integral multiple of a wavelength, then
waves from all slits are in phase at point P and a bright fringe is observed. There-
fore, the condition for maxima in the interference pattern at the angle � is

m � 0, 1, 2, 3, . . . (38.10)

We can use this expression to calculate the wavelength if we know the grating
spacing and the angle �. If the incident radiation contains several wavelengths, the
mth-order maximum for each wavelength occurs at a specific angle. All wave-
lengths are seen at � � 0, corresponding to the zeroth-order maximum.
The first-order maximum is observed at an angle that satisfies the rela-
tionship sin � � �/d; the second-order maximum is observed at a larger
angle �, and so on.

The intensity distribution for a diffraction grating obtained with the use of a
monochromatic source is shown in Figure 38.19. Note the sharpness of the princi-
pal maxima and the broadness of the dark areas. This is in contrast to the broad
bright fringes characteristic of the two-slit interference pattern (see Fig. 37.6). Be-
cause the principal maxima are so sharp, they are very much brighter than two-slit

(m � 2)
(m � 1)

m � 0,

d sin � � m�

_2 _1  0  1  2

 0

m

2λ
d

_  λ
d

_  λ
d

2λ
d

sin θ

 λ  λ  λ  λ

Figure 38.19 Intensity versus 
sin � for a diffraction grating. The
zeroth-, first-, and second-order
maxima are shown.
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interference maxima. The reason for this is illustrated in Figure 38.20, in which
the combination of multiple wave fronts for a ten-slit grating is compared with the
wave fronts for a two-slit system. Actual gratings have thousands of times more slits,
and therefore the maxima are even stronger.

A schematic drawing of a simple apparatus used to measure angles in a diffrac-
tion pattern is shown in Figure 38.21. This apparatus is a diffraction grating spec-
trometer. The light to be analyzed passes through a slit, and a collimated beam of
light is incident on the grating. The diffracted light leaves the grating at angles
that satisfy Equation 38.10, and a telescope is used to view the image of the slit.
The wavelength can be determined by measuring the precise angles at which the
images of the slit appear for the various orders.

(a)

(b)

Telescope

Slit

Source

Grating

θ

Collimator

Figure 38.20 (a) Addition of two wave fronts
from two slits. (b) Addition of ten wave fronts
from ten slits. The resultant wave is much stronger
in part (b) than in part (a).

Figure 38.21 Diagram of a diffraction grating spectrometer. The collimated beam incident on
the grating is diffracted into the various orders at the angles � that satisfy the equation d sin � �
m�, where m � 0, 1, 2, . . . .

QuickLab
Stand a couple of meters from a light-
bulb. Facing away from the light,
hold a compact disc about 10 cm
from your eye and tilt it until the re-
flection of the bulb is located in the
hole at the disc’s center. You should
see spectra radiating out from the
center, with violet on the inside and
red on the outside. Now move the
disc away from your eye until the vio-
let band is at the outer edge. Care-
fully measure the distance from your
eye to the center of the disc and also
determine the radius of the disc. Use
this information to find the angle � to
the first-order maximum for violet
light. Now use Equation 38.10 to de-
termine the spacing between the
grooves on the disc. The industry
standard is 1.6 m. How close did
you come?
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Resolving Power of the Diffraction Grating

The diffraction grating is most useful for measuring wavelengths accurately. Like
the prism, the diffraction grating can be used to disperse a spectrum into its wave-
length components. Of the two devices, the grating is the more precise if one
wants to distinguish two closely spaced wavelengths.

For two nearly equal wavelengths �1 and �2 between which a diffraction grat-
ing can just barely distinguish, the resolving power R of the grating is defined as

(38.11)

where and Thus, a grating that has a high resolv-
ing power can distinguish small differences in wavelength. If N lines of the grating

�� � �2 � �1 .� � (�1 
 �2)/2

R �
�

�2 � �1
�

�

��

A Compact Disc Is a Diffraction GratingCONCEPTUAL EXAMPLE 38.6
Light reflected from the surface of a compact disc is multi-
colored, as shown in Figure 38.22. The colors and their in-
tensities depend on the orientation of the disc relative to 
the eye and relative to the light source. Explain how this
works.

Solution The surface of a compact disc has a spiral
grooved track (with adjacent grooves having a separation on
the order of 1 m). Thus, the surface acts as a reflection grat-
ing. The light reflecting from the regions between these
closely spaced grooves interferes constructively only in cer-
tain directions that depend on the wavelength and on the di-
rection of the incident light. Any one section of the disc
serves as a diffraction grating for white light, sending dif-
ferent colors in different directions. The different colors you
see when viewing one section change as the light source, the
disc, or you move to change the angles of incidence or dif-
fraction.

The Orders of a Diffraction GratingEXAMPLE 38.7

For the second-order maximum we find

For we find that sin Because sin � can-
not exceed unity, this does not represent a realistic solution.
Hence, only zeroth-, first-, and second-order maxima are ob-
served for this situation.

�3 � 1.139.m � 3,

49.39� �2 �

sin �2 �
2�

d
�

2(632.8 nm)
1 667 nm

� 0.759 2

(m � 2),

22.31� �1 �
Monochromatic light from a helium-neon laser (� � 632.8
nm) is incident normally on a diffraction grating containing
6 000 lines per centimeter. Find the angles at which the first-
order, second-order, and third-order maxima are observed.

Solution First, we must calculate the slit separation, which
is equal to the inverse of the number of lines per centimeter:

For the first-order maximum we obtain

sin �1 �
�

d
�

632.8 nm
1 667 nm

� 0.379 6

(m � 1),

d �
1

6 000
 cm � 1.667 � 10�4 cm � 1 667 nm

Figure 38.22 A compact disc observed under white light. The col-
ors observed in the reflected light and their intensities depend on
the orientation of the disc relative to the eye and relative to the light
source.

Resolving power
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are illuminated, it can be shown that the resolving power in the mth-order diffrac-
tion is

(38.12)

Thus, resolving power increases with increasing order number and with increasing
number of illuminated slits.

Note that for this signifies that all wavelengths are indistin-
guishable for the zeroth-order maximum. However, consider the second-order
diffraction pattern of a grating that has 5 000 rulings illuminated by
the light source. The resolving power of such a grating in second order is

Therefore, for a mean wavelength of, for example, 
600 nm, the minimum wavelength separation between two spectral lines that
can be just resolved is For the third-order princi-
pal maximum, and and so on.

One of the most interesting applications of diffraction is holography, which is
used to create three-dimensional images found practically everywhere, from credit
cards to postage stamps. The production of these special diffracting films is dis-
cussed in Chapter 42 of the extended version of this text.

�� � 4.00 � 10�2 nm,R � 15 000
�� � �/R � 6.00 � 10�2 nm.

R � 5 000 � 2 � 10 000.

(m � 2)

m � 0;R � 0

R � NmResolving power of a grating

Resolving Sodium Spectral LinesEXAMPLE 38.8
(b) To resolve these lines in the second-order spectrum,

how many lines of the grating must be illuminated?

Solution From Equation 38.12 and the results to part (a),
we find that

500 linesN �
R
m

�
999
2

�

When an element is raised to a very high temperature, the
atoms emit radiation having discrete wavelengths. The set of
wavelengths for a given element is called its atomic spectrum.
Two strong components in the atomic spectrum of sodium
have wavelengths of 589.00 nm and 589.59 nm. (a) What
must be the resolving power of a grating if these wavelengths
are to be distinguished?

Solution

999R �
�

��
�

589.30 nm
589.59 nm � 589.00 nm

�
589.30
0.59

�

Optional Section

DIFFRACTION OF X-RAYS BY CRYSTALS
In principle, the wavelength of any electromagnetic wave can be determined if a
grating of the proper spacing (of the order of �) is available. X-rays, discovered by
Wilhelm Roentgen (1845–1923) in 1895, are electromagnetic waves of very short
wavelength (of the order of 0.1 nm). It would be impossible to construct a grating
having such a small spacing by the cutting process described at the beginning of
Section 38.4. However, the atomic spacing in a solid is known to be about 0.1 nm.
In 1913, Max von Laue (1879–1960) suggested that the regular array of atoms in a
crystal could act as a three-dimensional diffraction grating for x-rays. Subsequent
experiments confirmed this prediction. The diffraction patterns are complex be-
cause of the three-dimensional nature of the crystal. Nevertheless, x-ray diffraction

38.5
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has proved to be an invaluable technique for elucidating crystalline structures and
for understanding the structure of matter.1

Figure 38.23 is one experimental arrangement for observing x-ray diffraction
from a crystal. A collimated beam of x-rays is incident on a crystal. The diffracted
beams are very intense in certain directions, corresponding to constructive inter-
ference from waves reflected from layers of atoms in the crystal. The diffracted
beams can be detected by a photographic film, and they form an array of spots
known as a Laue pattern. One can deduce the crystalline structure by analyzing the
positions and intensities of the various spots in the pattern.

The arrangement of atoms in a crystal of sodium chloride (NaCl) is shown in
Figure 38.24. Each unit cell (the geometric solid that repeats throughout the crys-
tal) is a cube having an edge length a. A careful examination of the NaCl structure
shows that the ions lie in discrete planes (the shaded areas in Fig. 38.24). Now sup-
pose that an incident x-ray beam makes an angle � with one of the planes, as
shown in Figure 38.25. The beam can be reflected from both the upper plane and
the lower one. However, the beam reflected from the lower plane travels farther
than the beam reflected from the upper plane. The effective path difference is 
2d sin �. The two beams reinforce each other (constructive interference) when
this path difference equals some integer multiple of �. The same is true for reflec-
tion from the entire family of parallel planes. Hence, the condition for construc-
tive interference (maxima in the reflected beam) is

m � 1, 2, 3, . . . (38.13)

This condition is known as Bragg’s law, after W. L. Bragg (1890–1971), who first
derived the relationship. If the wavelength and diffraction angle are measured,
Equation 38.13 can be used to calculate the spacing between atomic planes.

When you receive a chest x-ray at a hospital, the rays pass through a series of parallel ribs in
your chest. Do the ribs act as a diffraction grating for x-rays?

Quick Quiz 38.3

2d sin � � m�

1 For more details on this subject, see Sir Lawrence Bragg, “X-Ray Crystallography,” Sci. Am. 219:58–70,
1968.

Bragg’s law

Photographic
film

Collimator

X-ray
tube

Crystal

X-rays

Figure 38.23 Schematic diagram
of the technique used to observe
the diffraction of x-rays by a crystal.
The array of spots formed on the
film is called a Laue pattern.
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Incident
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θ
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Figure 38.24 Crystalline struc-
ture of sodium chloride (NaCl).
The blue spheres represent Cl�

ions, and the red spheres represent
Na+ ions. The length of the cube
edge is a � 0.562 737 nm.

Figure 38.25 A two-dimensional description of the reflection of an x-ray beam from two paral-
lel crystalline planes separated by a distance d. The beam reflected from the lower plane travels
farther than the one reflected from the upper plane by a distance 2d sin �.
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POLARIZATION OF LIGHT WAVES
In Chapter 34 we described the transverse nature of light and all other electro-
magnetic waves. Polarization is firm evidence of this transverse nature.

An ordinary beam of light consists of a large number of waves emitted by the
atoms of the light source. Each atom produces a wave having some particular ori-
entation of the electric field vector E, corresponding to the direction of atomic vi-
bration. The direction of polarization of each individual wave is defined to be the di-
rection in which the electric field is vibrating. In Figure 38.26, this direction
happens to lie along the y axis. However, an individual electromagnetic wave could
have its E vector in the yz plane, making any possible angle with the y axis. Because
all directions of vibration from a wave source are possible, the resultant electro-
magnetic wave is a superposition of waves vibrating in many different directions.
The result is an unpolarized light beam, represented in Figure 38.27a. The direc-
tion of wave propagation in this figure is perpendicular to the page. The arrows
show a few possible directions of the electric field vectors for the individual waves
making up the resultant beam. At any given point and at some instant of time, all
these individual electric field vectors add to give one resultant electric field vector.

As noted in Section 34.2, a wave is said to be linearly polarized if the resul-
tant electric field E vibrates in the same direction at all times at a particular point,
as shown in Figure 38.27b. (Sometimes, such a wave is described as plane-polarized,
or simply polarized.) The plane formed by E and the direction of propagation is
called the plane of polarization of the wave. If the wave in Figure 38.26 represented
the resultant of all individual waves, the plane of polarization is the xy plane.

It is possible to obtain a linearly polarized beam from an unpolarized beam by
removing all waves from the beam except those whose electric field vectors oscil-
late in a single plane. We now discuss four processes for producing polarized light
from unpolarized light.

Polarization by Selective Absorption

The most common technique for producing polarized light is to use a material
that transmits waves whose electric fields vibrate in a plane parallel to a certain di-
rection and that absorbs waves whose electric fields vibrate in all other directions.

In 1938, E. H. Land (1909–1991) discovered a material, which he called po-
laroid, that polarizes light through selective absorption by oriented molecules. This
material is fabricated in thin sheets of long-chain hydrocarbons. The sheets are
stretched during manufacture so that the long-chain molecules align. After a sheet
is dipped into a solution containing iodine, the molecules become good electrical
conductors. However, conduction takes place primarily along the hydrocarbon
chains because electrons can move easily only along the chains. As a result, the

38.6

B

E
c

x
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z

Figure 38.26 Schematic diagram of an electro-
magnetic wave propagating at velocity c in the x
direction. The electric field vibrates in the xy
plane, and the magnetic field vibrates in the xz
plane.
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molecules readily absorb light whose electric field vector is parallel to their length
and allow light through whose electric field vector is perpendicular to their length.

It is common to refer to the direction perpendicular to the molecular chains
as the transmission axis. In an ideal polarizer, all light with E parallel to the trans-
mission axis is transmitted, and all light with E perpendicular to the transmission
axis is absorbed.

Figure 38.28 represents an unpolarized light beam incident on a first polariz-
ing sheet, called the polarizer. Because the transmission axis is oriented vertically in
the figure, the light transmitted through this sheet is polarized vertically. A second
polarizing sheet, called the analyzer, intercepts the beam. In Figure 38.28, the ana-
lyzer transmission axis is set at an angle � to the polarizer axis. We call the electric
field vector of the transmitted beam E0 . The component of E0 perpendicular to
the analyzer axis is completely absorbed. The component of E0 parallel to the ana-
lyzer axis, which is allowed through by the analyzer, is Because the inten-
sity of the transmitted beam varies as the square of its magnitude, we conclude that
the intensity of the (polarized) beam transmitted through the analyzer varies as

(38.14)

where Imax is the intensity of the polarized beam incident on the analyzer. This ex-
pression, known as Malus’s law,2 applies to any two polarizing materials whose
transmission axes are at an angle � to each other. From this expression, note that
the intensity of the transmitted beam is maximum when the transmission axes are
parallel (� � 0 or 180°) and that it is zero (complete absorption by the analyzer)
when the transmission axes are perpendicular to each other. This variation in
transmitted intensity through a pair of polarizing sheets is illustrated in Figure
38.29. Because the average value of cos2 � is the intensity of the light passed
through an ideal polarizer is one-half the intensity of unpolarized light.

Polarization by Reflection

When an unpolarized light beam is reflected from a surface, the reflected light
may be completely polarized, partially polarized, or unpolarized, depending on
the angle of incidence. If the angle of incidence is 0°, the reflected beam is unpo-
larized. For other angles of incidence, the reflected light is polarized to some ex-

1
2 ,

I � Imax cos2 �

E 0 cos �.

2 Named after its discoverer, E. L. Malus (1775–1812). Malus discovered that reflected light was polar-
ized by viewing it through a calcite (CaCO3) crystal.

E

(a)

E

(b)

Figure 38.27 (a) An unpolarized
light beam viewed along the direc-
tion of propagation (perpendicular
to the page). The transverse elec-
tric field can vibrate in any direc-
tion in the plane of the page with
equal probability. (b) A linearly po-
larized light beam with the electric
field vibrating in the vertical direc-
tion.

Analyzer

Unpolarized
light

Transmission
axis

Polarized
light

E0 cos

E0

Polarizer

θ

θ

Figure 38.28 Two polarizing sheets whose transmission axes make an angle � with each other.
Only a fraction of the polarized light incident on the analyzer is transmitted through it.
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tent, and for one particular angle of incidence, the reflected light is completely
polarized. Let us now investigate reflection at that special angle.

Suppose that an unpolarized light beam is incident on a surface, as shown in
Figure 38.30a. Each individual electric field vector can be resolved into two com-
ponents: one parallel to the surface (and perpendicular to the page in Fig. 38.30,
represented by the dots), and the other (represented by the red arrows) perpen-
dicular both to the first component and to the direction of propagation. Thus, the
polarization of the entire beam can be described by two electric field components
in these directions. It is found that the parallel component reflects more strongly
than the perpendicular component, and this results in a partially polarized re-
flected beam. Furthermore, the refracted beam is also partially polarized.

Figure 38.29 The intensity of light transmitted through two polarizers depends on the relative
orientation of their transmission axes. (a) The transmitted light has maximum intensity when the
transmission axes are aligned with each other. (b) The transmitted light has lesser intensity when
the transmission axes are at an angle of 45° with each other. (c) The transmitted light intensity is
a minimum when the transmission axes are at right angles to each other.

Refracted
beam

Refracted
beam

(a) (b)

n1

θp
θp

Incident
beam

90°

Incident
beam

θ1 θ1
θ θ

θ

θ θ

θ
2

2

n2

n1

n2

Reflected
beam

Reflected
beam

Figure 38.30 (a) When unpolarized light is incident on a reflecting surface, the reflected and
refracted beams are partially polarized. (b) The reflected beam is completely polarized when the
angle of incidence equals the polarizing angle �p , which satisfies the equation n � tan � p .

(a) (b) (c)



38.6 Polarization of Light Waves 1233

Now suppose that the angle of incidence �1 is varied until the angle between
the reflected and refracted beams is 90°, as shown in Figure 38.30b. At this particu-
lar angle of incidence, the reflected beam is completely polarized (with its electric
field vector parallel to the surface), and the refracted beam is still only partially
polarized. The angle of incidence at which this polarization occurs is called the
polarizing angle �p .

We can obtain an expression relating the polarizing angle to the index of re-
fraction of the reflecting substance by using Figure 38.30b. From this figure, we
see that thus, Using Snell’s law of refraction
(Eq. 35.8) and taking for air and we have

Because sin �2 � sin(90° � �p) � cos �p , we can write this expression for n as
�p /cos �p , which means that

(38.15)

This expression is called Brewster’s law, and the polarizing angle �p is sometimes
called Brewster’s angle, after its discoverer, David Brewster (1781–1868). Be-
cause n varies with wavelength for a given substance, Brewster’s angle is also a
function of wavelength.

Polarization by reflection is a common phenomenon. Sunlight reflected from
water, glass, and snow is partially polarized. If the surface is horizontal, the electric
field vector of the reflected light has a strong horizontal component. Sunglasses
made of polarizing material reduce the glare of reflected light. The transmission
axes of the lenses are oriented vertically so that they absorb the strong horizontal
component of the reflected light. If you rotate sunglasses 90°, they will not be as
effective at blocking the glare from shiny horizontal surfaces.

Polarization by Double Refraction

Solids can be classified on the basis of internal structure. Those in which the atoms
are arranged in a specific order are called crystalline; the NaCl structure of Figure
38.24 is just one example of a crystalline solid. Those solids in which the atoms are
distributed randomly are called amorphous. When light travels through an amor-
phous material, such as glass, it travels with a speed that is the same in all direc-
tions. That is, glass has a single index of refraction. In certain crystalline materials,
however, such as calcite and quartz, the speed of light is not the same in all direc-
tions. Such materials are characterized by two indices of refraction. Hence, they
are often referred to as double-refracting or birefringent materials.

Upon entering a calcite crystal, unpolarized light splits into two plane-
polarized rays that travel with different velocities, corresponding to two angles of
refraction, as shown in Figure 38.31. The two rays are polarized in two mutually
perpendicular directions, as indicated by the dots and arrows. One ray, called the
ordinary (O) ray, is characterized by an index of refraction nO that is the same in
all directions. This means that if one could place a point source of light inside the
crystal, as shown in Figure 38.32, the ordinary waves would spread out from the
source as spheres.

The second plane-polarized ray, called the extraordinary (E) ray, travels with
different speeds in different directions and hence is characterized by an index of
refraction nE that varies with the direction of propagation. The point source in Fig-

n � tan �p

n � sin

n �
sin �1

sin �2
�

sin �p

sin �2

n2 � n,n1 � 1.00
�2 � 90� � �p .�p 
 90� 
 �2 � 180�;

Brewster’s law

QuickLab
Devise a way to use a protractor,
desklamp, and polarizing sunglasses
to measure Brewster’s angle for the
glass in a window. From this, deter-
mine the index of refraction of the
glass. Compare your results with the
values given in Table 35.1.

Polarizing angle
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ure 38.32 sends out an extraordinary wave having wave fronts that are elliptical in
cross-section. Note from Figure 38.32 that there is one direction, called the optic
axis, along which the ordinary and extraordinary rays have the same speed, corre-
sponding to the direction for which The difference in speed for the two
rays is a maximum in the direction perpendicular to the optic axis. For example,
in calcite, at a wavelength of 589.3 nm, and nE varies from 1.658 along
the optic axis to 1.486 perpendicular to the optic axis. Values for nO and nE for var-
ious double-refracting crystals are given in Table 38.1.

If we place a piece of calcite on a sheet of paper and then look through the
crystal at any writing on the paper, we see two images, as shown in Figure 38.33. As
can be seen from Figure 38.31, these two images correspond to one formed by the
ordinary ray and one formed by the extraordinary ray. If the two images are viewed
through a sheet of rotating polarizing glass, they alternately appear and disappear
because the ordinary and extraordinary rays are plane-polarized along mutually
perpendicular directions.

Polarization by Scattering

When light is incident on any material, the electrons in the material can absorb
and reradiate part of the light. Such absorption and reradiation of light by elec-
trons in the gas molecules that make up air is what causes sunlight reaching an ob-
server on the Earth to be partially polarized. You can observe this effect—called
scattering—by looking directly up at the sky through a pair of sunglasses whose
lenses are made of polarizing material. Less light passes through at certain orienta-
tions of the lenses than at others.

Figure 38.34 illustrates how sunlight becomes polarized when it is scattered.
An unpolarized beam of sunlight traveling in the horizontal direction (parallel to

nO � 1.658

nO � nE .

Unpolarized
light

E ray

O ray

Calcite

Figure 38.31 Unpolarized
light incident on a calcite crystal
splits into an ordinary (O) ray
and an extraordinary (E) ray.
These two rays are polarized in
mutually perpendicular direc-
tions (drawing not to scale).

Figure 38.32 A point source S
inside a double-refracting crystal
produces a spherical wave front
corresponding to the ordinary ray
and an elliptical wave front corre-
sponding to the extraordinary ray.
The two waves propagate with the
same velocity along the optic axis.

E

O

S

Optic axis

TABLE 38.1 Indices of Refraction for Some Double-Refracting
Crystals at a Wavelength of 589.3 nm

Crystal nO nE nO /nE

Calcite (CaCO3) 1.658 1.486 1.116
Quartz (SiO2) 1.544 1.553 0.994
Sodium nitrate (NaNO3) 1.587 1.336 1.188
Sodium sulfite (NaSO3) 1.565 1.515 1.033
Zinc chloride (ZnCl2) 1.687 1.713 0.985
Zinc sulfide (ZnS) 2.356 2.378 0.991

Figure 38.33 A calcite crystal
produces a double image because
it is a birefringent (double-
refracting) material.
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the ground) strikes a molecule of one of the gases that make up air, setting the
electrons of the molecule into vibration. These vibrating charges act like the vi-
brating charges in an antenna. The horizontal component of the electric field vec-
tor in the incident wave results in a horizontal component of the vibration of the
charges, and the vertical component of the vector results in a vertical component
of vibration. If the observer in Figure 38.34 is looking straight up (perpendicular
to the original direction of propagation of the light), the vertical oscillations of the
charges send no radiation toward the observer. Thus, the observer sees light that is
completely polarized in the horizontal direction, as indicated by the red arrows. If
the observer looks in other directions, the light is partially polarized in the hori-
zontal direction.

Some phenomena involving the scattering of light in the atmosphere can be
understood as follows. When light of various wavelengths � is incident on gas mol-
ecules of diameter d, where the relative intensity of the scattered light
varies as 1/�4. The condition is satisfied for scattering from oxygen (O2)
and nitrogen (N2) molecules in the atmosphere, whose diameters are about 
0.2 nm. Hence, short wavelengths (blue light) are scattered more efficiently than
long wavelengths (red light). Therefore, when sunlight is scattered by gas mole-
cules in the air, the short-wavelength radiation (blue) is scattered more intensely
than the long-wavelength radiation (red).

When you look up into the sky in a direction that is not toward the Sun, you
see the scattered light, which is predominantly blue; hence, you see a blue sky. If
you look toward the west at sunset (or toward the east at sunrise), you are looking
in a direction toward the Sun and are seeing light that has passed through a large
distance of air. Most of the blue light has been scattered by the air between you
and the Sun. The light that survives this trip through the air to you has had much
of its blue component scattered and is thus heavily weighted toward the red end of
the spectrum; as a result, you see the red and orange colors of sunset. However, a
blue sky is seen by someone to your west for whom it is still a quarter hour before
sunset.

Optical Activity

Many important applications of polarized light involve materials that display opti-
cal activity. A material is said to be optically active if it rotates the plane of polar-
ization of any light transmitted through the material. The angle through which
the light is rotated by a specific material depends on the length of the path
through the material and on concentration if the material is in solution. One opti-
cally active material is a solution of the common sugar dextrose. A standard
method for determining the concentration of sugar solutions is to measure the ro-
tation produced by a fixed length of the solution.

Molecular asymmetry determines whether a material is optically active. For ex-
ample, some proteins are optically active because of their spiral shape. Other ma-
terials, such as glass and plastic, become optically active when stressed. Suppose
that an unstressed piece of plastic is placed between a polarizer and an analyzer so
that light passes from polarizer to plastic to analyzer. When the plastic is un-
stressed and the analyzer axis is perpendicular to the polarizer axis, none of the
polarized light passes through the analyzer. In other words, the unstressed plastic
has no effect on the light passing through it. If the plastic is stressed, however, the
regions of greatest stress rotate the polarized light through the largest angles.
Hence, a series of bright and dark bands is observed in the transmitted light, with
the bright bands corresponding to regions of greatest stress.

d V �
d V �,

Unpolarized
light

Air
molecule

Figure 38.34 The scattering of
unpolarized sunlight by air mole-
cules. The scattered light traveling
perpendicular to the incident light
is plane-polarized because the verti-
cal vibrations of the charges in the
air molecule send no light in this
direction.
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Engineers often use this technique, called optical stress analysis, in designing
structures ranging from bridges to small tools. They build a plastic model and ana-
lyze it under different load conditions to determine regions of potential weakness
and failure under stress. Some examples of a plastic model under stress are shown
in Figure 38.35.

The liquid crystal displays found in most calculators have their optical activity
changed by the application of electric potential across different parts of the dis-
play. Try using a pair of polarizing sunglasses to investigate the polarization used in
the display of your calculator.

SUMMARY

Diffraction is the deviation of light from a straight-line path when the light passes
through an aperture or around an obstacle.

The Fraunhofer diffraction pattern produced by a single slit of width a on a
distant screen consists of a central bright fringe and alternating bright and dark
fringes of much lower intensities. The angles � at which the diffraction pattern has
zero intensity, corresponding to destructive interference, are given by

m � � 1, � 2, � 3, . . . (38.1)

How the intensity I of a single-slit diffraction pattern varies with angle � is
given by the expression

(38.4)

where � � (2	a sin �)/� and Imax is the intensity at � � 0.
Rayleigh’s criterion, which is a limiting condition of resolution, states that

two images formed by an aperture are just distinguishable if the central maximum
of the diffraction pattern for one image falls on the first minimum of the diffrac-

I � Imax� sin (�/2)
�/2 �

2

sin � � m 
�

a

Figure 38.35 (a) Strain distribution in a plastic model of a hip replacement used in a medical
research laboratory. The pattern is produced when the plastic model is viewed between a polar-
izer and analyzer oriented perpendicular to each other. (b) A plastic model of
an arch structure under load conditions observed between perpendicular polarizers. Such pat-
terns are useful in the optimum design of architectural components.

(a) (b)
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tion pattern for the other image. The limiting angle of resolution for a slit of
width a is �min � �/a, and the limiting angle of resolution for a circular aperture
of diameter D is �min � 1.22�/D.

A diffraction grating consists of a large number of equally spaced, identical
slits. The condition for intensity maxima in the interference pattern of a diffrac-
tion grating for normal incidence is

m � 0, 1, 2, 3, . . . (38.10)

where d is the spacing between adjacent slits and m is the order number of the dif-
fraction pattern. The resolving power of a diffraction grating in the mth order of
the diffraction pattern is

(38.12)

where N is the number of lines in the grating that are illuminated.
When polarized light of intensity I0 is emitted by a polarizer and then incident

on an analyzer, the light transmitted through the analyzer has an intensity equal to
Imax cos2 �, where � is the angle between the polarizer and analyzer transmission
axes.

In general, reflected light is partially polarized. However, reflected light is
completely polarized when the angle of incidence is such that the angle between
the reflected and refracted beams is 90°. This angle of incidence, called the polar-
izing angle �p , satisfies Brewster’s law:

(38.15)

where n is the index of refraction of the reflecting medium.

n � tan �p

R � Nm

d sin � � m�

QUESTIONS

7. Certain sunglasses use a polarizing material to reduce the
intensity of light reflected from shiny surfaces. What ori-
entation of polarization should the material have to be
most effective?

8. During the “day” on the Moon (that is, when the Sun is
visible), you see a black sky and the stars are clearly visi-
ble. During the day on the Earth, you see a blue sky and
no stars. Account for this difference.

9. You can make the path of a light beam visible by placing
dust in the air (perhaps by shaking a blackboard eraser in
the path of the light beam). Explain why you can see the
beam under these circumstances.

10. Is light from the sky polarized? Why is it that clouds seen
through Polaroid glasses stand out in bold contrast to the
sky?

11. If a coin is glued to a glass sheet and the arrangement is
held in front of a laser beam, the projected shadow has
diffraction rings around its edge and a bright spot in the
center. How is this possible?

12. If a fine wire is stretched across the path of a laser beam,
is it possible to produce a diffraction pattern?

13. How could the index of refraction of a flat piece of dark
obsidian glass be determined?

1. Why can you hear around corners but not see around
them?

2. Observe the shadow of your book when it is held a few
inches above a table while illuminated by a lamp several
feet above it. Why is the shadow somewhat fuzzy at the
edges?

3. Knowing that radio waves travel at the speed of light and
that a typical AM radio frequency is 1 000 kHz while an
FM radio frequency might be 100 MHz, estimate the
wavelengths of typical AM and FM radio signals. Use this
information to explain why FM radio stations often fade
out when you drive through a short tunnel or underpass
but AM radio stations do not.

4. Describe the change in width of the central maximum of
the single-slit diffraction pattern as the width of the slit is
made narrower.

5. Assuming that the headlights of a car are point sources,
estimate the maximum observer-to-car distance at which
the headlights are distinguishable from each other.

6. A laser beam is incident at a shallow angle on a machin-
ist’s ruler that has a finely calibrated scale. The engraved
rulings on the scale give rise to a diffraction pattern on a
screen. Discuss how you can use this arrangement to ob-
tain a measure of the wavelength of the laser light.
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PROBLEMS

10. Coherent light with a wavelength of 501.5 nm is sent
through two parallel slits in a large flat wall. Each slit is
0.700 m wide, and the slits’ centers are 2.80 m apart.
The light falls on a semicylindrical screen, with its axis
at the midline between the slits. (a) Predict the direc-
tion of each interference maximum on the screen, as
an angle away from the bisector of the line joining the
slits. (b) Describe the pattern of light on the screen,
specifying the number of bright fringes and the loca-
tion of each. (c) Find the intensity of light on the
screen at the center of each bright fringe, expressed as
a fraction of the light intensity I0 at the center of the
pattern.

Section 38.3 Resolution of Single-Slit and 
Circular Apertures

11. The pupil of a cat’s eye narrows to a vertical slit of width
0.500 mm in daylight. What is the angular resolution for
horizontally separated mice? Assume that the average
wavelength of the light is 500 nm.

12. Find the radius of a star image formed on the retina of
the eye if the aperture diameter (the pupil) at night is
0.700 cm and the length of the eye is 3.00 cm. Assume
that the representative wavelength of starlight in the eye
is 500 nm.

13. A helium-neon laser emits light that has a wavelength of
632.8 nm. The circular aperture through which the
beam emerges has a diameter of 0.500 cm. Estimate the
diameter of the beam 10.0 km from the laser.

14. On the night of April 18, 1775, a signal was to be sent
from the steeple of Old North Church in Boston to Paul
Revere, who was 1.80 mi away: “One if by land, two if by
sea.” At what minimum separation did the sexton have
to set the lanterns for Revere to receive the correct mes-
sage? Assume that Revere’s pupils had a diameter of
4.00 mm at night and that the lantern light had a pre-
dominant wavelength of 580 nm.

15. The Impressionist painter Georges Seurat created paint-
ings with an enormous number of dots of pure pig-
ment, each of which was approximately 2.00 mm in di-
ameter. The idea was to locate colors such as red and
green next to each other to form a scintillating canvas
(Fig. P38.15). Outside what distance would one be un-
able to discern individual dots on the canvas? (Assume
that � � 500 nm and that the pupil diameter is 
4.00 mm.)

16. A binary star system in the constellation Orion has an
angular interstellar separation of 1.00 � 10�5 rad. If 
� � 500 nm, what is the smallest diameter a telescope
must have to just resolve the two stars?

Section 38.1 Introduction to Diffraction

Section 38.2 Diffraction from Narrow Slits
1. Helium-neon laser light (� � 632.8 nm) is sent through

a 0.300-mm-wide single slit. What is the width of the
central maximum on a screen 1.00 m from the slit?

2. A beam of green light is diffracted by a slit with a width
of 0.550 mm. The diffraction pattern forms on a wall
2.06 m beyond the slit. The distance between the posi-
tions of zero intensity on both sides of the central
bright fringe is 4.10 mm. Calculate the wavelength of
the laser light.

3. A screen is placed 50.0 cm from a single slit, which is
illuminated with 690-nm light. If the distance between
the first and third minima in the diffraction pattern is
3.00 mm, what is the width of the slit?

4. Coherent microwaves of wavelength 5.00 cm enter a
long, narrow window in a building otherwise essentially
opaque to the microwaves. If the window is 36.0 cm
wide, what is the distance from the central maximum to
the first-order minimum along a wall 6.50 m from the
window?

5. Sound with a frequency of 650 Hz from a distant source
passes through a doorway 1.10 m wide in a sound-
absorbing wall. Find the number and approximate di-
rections of the diffraction-maximum beams radiated
into the space beyond.

6. Light with a wavelength of 587.5 nm illuminates a single
slit 0.750 mm in width. (a) At what distance from the
slit should a screen be located if the first minimum in
the diffraction pattern is to be 0.850 mm from the cen-
ter of the screen? (b) What is the width of the central
maximum?

7. A diffraction pattern is formed on a screen 120 cm away
from a 0.400-mm-wide slit. Monochromatic 546.1-nm
light is used. Calculate the fractional intensity I/I0 at a
point on the screen 4.10 mm from the center of the
principal maximum.

8. The second-order bright fringe in a single-slit diffrac-
tion pattern is 1.40 mm from the center of the central
maximum. The screen is 80.0 cm from a slit of width
0.800 mm. Assuming that the incident light is mono-
chromatic, calculate the light’s approximate wave-
length.

9. If the light in Figure 38.5 strikes the single slit at an an-
gle � from the perpendicular direction, show that Equa-
tion 38.1, the condition for destructive interference,
must be modified to read

sin � � m� �

a � � sin �

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB
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17. A child is standing at the edge of a straight highway
watching her grandparents’ car driving away at 
20.0 m/s. The air is perfectly clear and steady, and after 
10.0 min the car’s two taillights appear to merge into
one. Assuming the diameter of the child’s pupils is 
5.00 mm, estimate the width of the car.

18. Suppose that you are standing on a straight highway
and watching a car moving away from you at a speed v.
The air is perfectly clear and steady, and after a time t
the taillights appear to merge into one. Assuming the
diameter of your pupil is d, estimate the width of the
car.

19. A circular radar antenna on a Coast Guard ship has a
diameter of 2.10 m and radiates at a frequency of 
15.0 GHz. Two small boats are located 9.00 km away
from the ship. How close together could the boats be
and still be detected as two objects?

20. If we were to send a ruby laser beam (� � 694.3 nm)
outward from the barrel of a 2.70-m-diameter telescope,
what would be the diameter of the big red spot when
the beam hit the Moon 384 000 km away? (Neglect at-
mospheric dispersion.)

21. The angular resolution of a radio telescope is to be
0.100° when the incident waves have a wavelength of
3.00 mm. What minimum diameter is required for the
telescope’s receiving dish?

22. When Mars is nearest the Earth, the distance separating
the two planets is 88.6 � 106 km. Mars is viewed
through a telescope whose mirror has a diameter of
30.0 cm. (a) If the wavelength of the light is 590 nm,
what is the angular resolution of the telescope? 
(b) What is the smallest distance that can be resolved
between two points on Mars?

Section 38.4 The Diffraction Grating
Note: In the following problems, assume that the light is inci-
dent normally on the gratings.

23. White light is spread out into its spectral components by
a diffraction grating. If the grating has 2 000 lines per
centimeter, at what angle does red light of wavelength
640 nm appear in first order?

24. Light from an argon laser strikes a diffraction grating
that has 5 310 lines per centimeter. The central and
first-order principal maxima are separated by 0.488 m
on a wall 1.72 m from the grating. Determine the wave-
length of the laser light.

25. The hydrogen spectrum has a red line at 656 nm and a
violet line at 434 nm. What is the angular separation be-
tween two spectral lines obtained with a diffraction grat-
ing that has 4 500 lines per centimeter?

26. A helium-neon laser (� � 632.8 nm) is used to calibrate
a diffraction grating. If the first-order maximum occurs
at 20.5°, what is the spacing between adjacent grooves
in the grating?

27. Three discrete spectral lines occur at angles of 10.09°,
13.71°, and 14.77° in the first-order spectrum of a grat-
ing spectroscope. (a) If the grating has 3 660 slits per
centimeter, what are the wavelengths of the light? 
(b) At what angles are these lines found in the second-
order spectrum?

28. A diffraction grating has 800 rulings per millimeter. 
A beam of light containing wavelengths from 500 to 
700 nm hits the grating. Do the spectra of different or-
ders overlap? Explain.

29. A diffraction grating with a width of 4.00 cm has been
ruled with 3 000 grooves per centimeter. (a) What is the
resolving power of this grating in the first three orders?
(b) If two monochromatic waves incident on this grat-
ing have a mean wavelength of 400 nm, what is their
wavelength separation if they are just resolved in the
third order?

30. Show that, whenever white light is passed through a dif-
fraction grating of any spacing size, the violet end of the
continuous visible spectrum in third order always over-
laps the red light at the other end of the second-order
spectrum.

31. A source emits 531.62-nm and 531.81-nm light. 
(a) What minimum number of lines is required for a
grating that resolves the two wavelengths in the first-
order spectrum? (b) Determine the slit spacing for a
grating 1.32 cm wide that has the required minimum
number of lines.

32. Two wavelengths � and are inci-
dent on a diffraction grating. Show that the angular sep-
aration between the spectral lines in the mth order
spectrum is

where d is the slit spacing and m is the order number.
33. A grating with 250 lines per millimeter is used with an

incandescent light source. Assume that the visible spec-
trum ranges in wavelength from 400 to 700 nm. In how

�� �
��

!(d/m)2 � �2

� 
 ��(with �� V �)

WEB

WEB

Figure P38.15 Sunday Afternoon on the Isle of La Grande Jatte, by
Georges Seurat. (SuperStock)
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many orders can one see (a) the entire visible spectrum
and (b) the short-wavelength region?

34. A diffraction grating has 4 200 rulings per centimeter.
On a screen 2.00 m from the grating, it is found that for
a particular order m, the maxima corresponding to two
closely spaced wavelengths of sodium (589.0 nm and
589.6 nm) are separated by 1.59 mm. Determine the
value of m.

(Optional)
Section 38.5 Diffraction of X-Rays by Crystals

35. Potassium iodide (KI) has the same crystalline structure
as NaCl, with nm. A monochromatic x-ray
beam shows a diffraction maximum when the grazing
angle is 7.60°. Calculate the x-ray wavelength. (Assume
first order.)

36. A wavelength of 0.129 nm characterizes K� x-rays from
zinc. When a beam of these x-rays is incident on the sur-
face of a crystal whose structure is similar to that of
NaCl, a first-order maximum is observed at 8.15°. Calcu-
late the interplanar spacing on the basis of this informa-
tion.

37. If the interplanar spacing of NaCl is 0.281 nm, what is
the predicted angle at which 0.140-nm x-rays are dif-
fracted in a first-order maximum?

38. The first-order diffraction maximum is observed at
12.6° for a crystal in which the interplanar spacing is
0.240 nm. How many other orders can be observed?

39. Monochromatic x-rays of the K� line from a nickel tar-
get (� � 0.166 nm) are incident on a potassium chlo-
ride (KCl) crystal surface. The interplanar distance in
KCl is 0.314 nm. At what angle (relative to the surface)
should the beam be directed for a second-order maxi-
mum to be observed?

40. In water of uniform depth, a wide pier is supported on
pilings in several parallel rows 2.80 m apart. Ocean
waves of uniform wavelength roll in, moving in a direc-
tion that makes an angle of 80.0° with the rows of posts.
Find the three longest wavelengths of waves that will be
strongly reflected by the pilings.

Section 38.6 Polarization of Light Waves
41. Unpolarized light passes through two polaroid sheets.

The axis of the first is vertical, and that of the second is
at 30.0° to the vertical. What fraction of the initial light
is transmitted?

42. Three polarizing disks whose planes are parallel are
centered on a common axis. The direction of the trans-
mission axis in each case is shown in Figure P38.42 rela-
tive to the common vertical direction. A plane-polarized
beam of light with E0 parallel to the vertical reference
direction is incident from the left on the first disk with
an intensity of units (arbitrary). Calculate 
the transmitted intensity If when (a) �1 � 20.0°, �2 �
40.0°, and �3 � 60.0°; (b) �1 � 0°, �2 � 30.0°, and 
�3 � 60.0°.

I i � 10.0

d � 0.353

43. Plane-polarized light is incident on a single polarizing
disk with the direction of E0 parallel to the direction 
of the transmission axis. Through what angle should
the disk be rotated so that the intensity in the transmit-
ted beam is reduced by a factor of (a) 3.00, (b) 5.00, 
(c) 10.0?

44. The angle of incidence of a light beam onto a reflecting
surface is continuously variable. The reflected ray is
found to be completely polarized when the angle of in-
cidence is 48.0°. What is the index of refraction of the
reflecting material?

45. The critical angle for total internal reflection for sap-
phire surrounded by air is 34.4°. Calculate the polariz-
ing angle for sapphire.

46. For a particular transparent medium surrounded by air,
show that the critical angle for total internal reflection
and the polarizing angle are related by the expression
cot 

47. How far above the horizon is the Moon when its image
reflected in calm water is completely polarized?

ADDITIONAL PROBLEMS

48. In Figure P38.42, suppose that the transmission axes of
the left and right polarizing disks are perpendicular to
each other. Also, let the center disk be rotated on the
common axis with an angular speed �. Show that if un-
polarized light is incident on the left disk with an inten-
sity Imax, the intensity of the beam emerging from the
right disk is

This means that the intensity of the emerging beam is
modulated at a rate that is four times the rate of rota-
tion of the center disk. [Hint: Use the trigonometric
identities cos2� � (1 
 cos 2�)/2 and sin2� �
(1 � cos 2�)/2, and recall that � � �t.]

49. You want to rotate the plane of polarization of a polar-
ized light beam by 45.0° with a maximum intensity re-
duction of 10.0%. (a) How many sheets of perfect po-
larizers do you need to achieve your goal? (b) What is
the angle between adjacent polarizers?

I �
1
16

 Imax(1 � cos 4�t )

(nwater � 1.33.)

�p � sin � c .

WEB

Ii

If

3θ

2θ

1θ

Figure P38.42 Problems 42 and 48.
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50. Figure P38.50 shows a megaphone in use. Construct a
theoretical description of how a megaphone works. You
may assume that the sound of your voice radiates just
through the opening of your mouth. Most of the infor-
mation in speech is carried not in a signal at the funda-
mental frequency, but rather in noises and in harmon-
ics, with frequencies of a few thousand hertz. Does your
theory allow any prediction that is simple to test?

55. Grote Reber was a pioneer in radio astronomy. He con-
structed a radio telescope with a 10.0-m diameter receiv-
ing dish. What was the telescope’s angular resolution
for 2.00-m radio waves?

56. A 750-nm light beam hits the flat surface of a certain
liquid, and the beam is split into a reflected ray and a
refracted ray. If the reflected ray is completely polarized
at 36.0°, what is the wavelength of the refracted ray?

57. Light of wavelength 500 nm is incident normally on a
diffraction grating. If the third-order maximum of 
the diffraction pattern is observed at 32.0°, (a) what is
the number of rulings per centimeter for the grating? 
(b) Determine the total number of primary maxima
that can be observed in this situation.

58. Light strikes a water surface at the polarizing angle. The
part of the beam refracted into the water strikes a sub-
merged glass slab (index of refraction, 1.50), as shown
in Figure P38.58. If the light reflected from the upper
surface of the slab is completely polarized, what is the
angle between the water surface and the glass slab?

51. Light from a helium-neon laser (� � 632.8 nm) is inci-
dent on a single slit. What is the maximum width for
which no diffraction minima are observed?

52. What are the approximate dimensions of the smallest
object on Earth that astronauts can resolve by eye 
when they are orbiting 250 km above the Earth? As-
sume that � � 500 nm and that a pupil’s diameter is
5.00 mm.

53. Review Problem. A beam of 541-nm light is incident
on a diffraction grating that has 400 lines per millime-
ter. (a) Determine the angle of the second-order ray.
(b) If the entire apparatus is immersed in water, what is
the new second-order angle of diffraction? (c) Show
that the two diffracted rays of parts (a) and (b) are re-
lated through the law of refraction.

54. The Very Large Array is a set of 27 radio telescope
dishes in Caton and Socorro Counties, New Mexico
(Fig. P38.54). The antennas can be moved apart on
railroad tracks, and their combined signals give the re-
solving power of a synthetic aperture 36.0 km in diame-
ter. (a) If the detectors are tuned to a frequency of 
1.40 GHz, what is the angular resolution of the VLA?
(b) Clouds of hydrogen radiate at this frequency. What
must be the separation distance for two clouds at the
center of the galaxy, 26 000 lightyears away, if they are
to be resolved? (c) As the telescope looks up, a circling
hawk looks down. For comparison, find the angular res-
olution of the hawk’s eye. Assume that it is most sensi-
tive to green light having a wavelength of 500 nm and
that it has a pupil with a diameter of 12.0 mm. (d) A
mouse is on the ground 30.0 m below. By what distance
must the mouse’s whiskers be separated for the hawk to
resolve them?

Figure P38.50 (Susan Allen Sigmon/Allsport USA)

Figure P38.54 A rancher in New Mexico rides past
one of the 27 radio telescopes that make up the Very
Large Array (VLA). © Danny Lehman)

θp

θ
Air

Water

θ

Figure P38.58

59. An American standard television picture is composed of
about 485 horizontal lines of varying light intensity. As-
sume that your ability to resolve the lines is limited only
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by the Rayleigh criterion and that the pupils of your
eyes are 5.00 mm in diameter. Calculate the ratio of
minimum viewing distance to the vertical dimension of
the picture such that you will not be able to resolve the
lines. Assume that the average wavelength of the light
coming from the screen is 550 nm.

60. (a) If light traveling in a medium for which the index of
refraction is n1 is incident at an angle � on the surface
of a medium of index n2 so that the angle between the
reflected and refracted rays is �, show that

[Hint: Use the identity 
cos (b) Show that this expression for tan � re-
duces to Brewster’s law when � � 90°, and

61. Suppose that the single slit in Figure 38.6 is 6.00 cm
wide and in front of a microwave source operating at
7.50 GHz. (a) Calculate the angle subtended by the first
minimum in the diffraction pattern. (b) What is the rel-
ative intensity at � � 15.0°? (c) Consider the case
when there are two such sources, separated laterally by
20.0 cm, behind the slit. What must the maximum dis-
tance between the plane of the sources and the slit be if
the diffraction patterns are to be resolved? (In this case,
the approximation sin � � tan � is not valid because of
the relatively small value of a/�.)

62. Two polarizing sheets are placed together with their
transmission axes crossed so that no light is transmitted.
A third sheet is inserted between them with its transmis-
sion axis at an angle of 45.0° with respect to each of the
other axes. Find the fraction of incident unpolarized
light intensity transmitted by the three-sheet combina-
tion. (Assume that each polarizing sheet is ideal.)

63. Figure P38.63a is a three-dimensional sketch of a bire-
fringent crystal. The dotted lines illustrate how a thin
parallel-faced slab of material could be cut from the
larger specimen with the optic axis of the crystal paral-
lel to the faces of the plate. A section cut from the crys-
tal in this manner is known as a retardation plate. When a
beam of light is incident on the plate perpendicular to
the direction of the optic axis, as shown in Figure
P38.63b, the O ray and the E ray travel along a single
straight line but with different speeds. (a) Letting the
thickness of the plate be d ,  show that the phase differ-
ence between the O ray and the E ray is

where � is the wavelength in air. (b) If in a particular
case the incident light has a wavelength of 550 nm, what
is the minimum value of d for a quartz plate for which 
� � 	/2? Such a plate is called a quarter-wave plate. (Use
values of nO and nE from Table 38.1.)

� �
2	d

�
 (nO � nE)

I/Imax

n 2 � n.
n1 � 1,

A sin B.]
sin(A 
 B) � sin A cos B 


tan � �
n2 sin �

n1 � n2 cos �

64. Derive Equation 38.12 for the resolving power of a grat-
ing, where N is the number of lines illumi-
nated and m is the order in the diffraction pattern. Re-
member that Rayleigh’s criterion (see Section 38.3)
states that two wavelengths will be resolved when the
principal maximum for one falls on the first minimum
for the other.

65. Light of wavelength 632.8 nm illuminates a single slit,
and a diffraction pattern is formed on a screen 1.00 m
from the slit. Using the data in the table on the follow-
ing page, plot relative intensity versus distance. Choose
an appropriate value for the slit width a, and on the
same graph used for the experimental data, plot the
theoretical expression for the relative intensity

What value of a gives the best fit of theory and experi-
ment?

66. How much diffraction spreading does a light beam un-
dergo? One quantitative answer is the full width at half
maximum of the central maximum of the Fraunhofer
diffraction pattern of a single slit. You can evaluate this
angle of spreading in this problem and in the next. 
(a) In Equation 38.4, define �/2 � � and show that, 
at the point where Imax , we must have sin 

(b) Let � and Plot y1
and 
y2 on the same set of axes over a range from � � 1 rad
to � � 	/2 rad. Determine � from the point of inter-

y2 � �/!2.y1 � sin�/!2.
� �I � 0.5

I
Imax

�
sin2(�/2)

(�/2)2

R � Nm ,

(b)

(a)

Optic
axis

Optic
axis

Wavefront
E ray

O ray

d

IO

Figure P38.63
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Distance from Center of
Relative Intensity Central Maximum (mm)

1.00 0
0.95 0.8
0.80 1.6
0.60 2.4
0.39 3.2
0.21 4.0
0.079 4.8
0.014 5.6
0.003 6.5
0.015 7.3
0.036 8.1
0.047 8.9
0.043 9.7
0.029 10.5
0.013 11.3
0.002 12.1
0.000 3 12.9
0.005 13.7
0.012 14.5
0.016 15.3
0.015 16.1
0.010 16.9
0.004 4 17.7
0.000 6 18.5
0.000 3 19.3
0.003 20.2

section of the two curves. (c) Then show that, if the
fraction �/a is not large, the angular full width at half
maximum of the central diffraction maximum is �� �

0.886�/a.
67. Another method to solve the equation sin � in

Problem 66 is to use a calculator, guess a first value of �,
see if it fits, and continue to update your estimate until
the equation balances. How many steps (iterations)
does this take?

68. In the diffraction pattern of a single slit, described by
the equation

with � � (2	a sin �)/�, the central maximum is at � �
0 and the side maxima are approximately at �/2 �
(m 
 )	 for 2, 3, . . . . Determine more pre-
cisely (a) the location of the first side maximum, where

and (b) the location of the second side maximum.
Observe in Figure 38.10a that the graph of intensity ver-
sus �/2 has a horizontal tangent at maxima and also at
minima. You will need to solve a transcendental equation.

69. A pinhole camera has a small circular aperture of diame-
ter D. Light from distant objects passes through the
aperture into an otherwise dark box, falling upon a
screen located a distance L away. If D is too large, the
display on the screen will be fuzzy because a bright
point in the field of view will send light onto a circle of
diameter slightly larger than D. On the other hand, if D
is too small, diffraction will blur the display on the
screen. The screen shows a reasonably sharp image if
the diameter of the central disk of the diffraction pat-
tern, specified by Equation 38.9, is equal to D at the
screen. (a) Show that for monochromatic light with
plane wave fronts and the condition for a sharp
view is fulfilled if �L . (b) Find the optimum
pinhole diameter if 500-nm light is projected onto a
screen 15.0 cm away.

D2 � 2.44
L W D,

m � 1,

m � 1,1
2

I� � Imax� sin(�/2)
�/2 �

2

� � !2

ANSWERS TO QUICK QUIZZES

38.1 The space between the slightly open door and the door-
frame acts as a single slit. Sound waves have wavelengths
that are approximately the same size as the opening and
so are diffracted and spread throughout the room you
are in. Because light wavelengths are much smaller than
the slit width, they are virtually undiffracted. As a result,
you must have a direct line of sight to detect the light
waves.

38.2 The situation is like that depicted in Figure 38.11 except
that now the slits are only half as far apart. The diffrac-
tion pattern is the same, but the interference pattern is
stretched out because d is smaller. Because the
third interference maximum coincides with the first dif-
fraction minimum. Your sketch should look like the fig-
ure to the right.

38.3 Yes, but no diffraction effects are observed because the
separation distance between adjacent ribs is so much
greater than the wavelength of the x-rays.

d/a � 3,

π

I

/2β

π–
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The wristwatches worn by the people in
this commercial jetliner properly record
the passage of time as experienced by
the travelers. Amazingly, however, the
duration of the trip as measured by an
Earth-bound observer is very slightly
longer. How can high-speed travel affect
something as regular as the ticking of a
clock? (© Larry Mulvehill/Photo 

Researchers, Inc.)
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ost of our everyday experiences and observations have to do with objects
that move at speeds much less than the speed of light. Newtonian mechan-
ics was formulated to describe the motion of such objects, and this formal-

ism is still very successful in describing a wide range of phenomena that occur at
low speeds. It fails, however, when applied to particles whose speeds approach that
of light.

Experimentally, the predictions of Newtonian theory can be tested at high
speeds by accelerating electrons or other charged particles through a large electric
potential difference. For example, it is possible to accelerate an electron to a
speed of 0.99c (where c is the speed of light) by using a potential difference of sev-
eral million volts. According to Newtonian mechanics, if the potential difference is
increased by a factor of 4, the electron’s kinetic energy is four times greater and its
speed should double to 1.98c. However, experiments show that the speed of the
electron—as well as the speed of any other particle in the Universe—always re-
mains less than the speed of light, regardless of the size of the accelerating voltage.
Because it places no upper limit on speed, Newtonian mechanics is contrary to
modern experimental results and is clearly a limited theory.

In 1905, at the age of only 26, Einstein published his special theory of relativ-
ity. Regarding the theory, Einstein wrote:

The relativity theory arose from necessity, from serious and deep contradic-
tions in the old theory from which there seemed no escape. The strength of
the new theory lies in the consistency and simplicity with which it solves all
these difficulties . . . . 1

Although Einstein made many other important contributions to science, the
special theory of relativity alone represents one of the greatest intellectual achieve-
ments of all time. With this theory, experimental observations can be correctly pre-
dicted over the range of speeds from to speeds approaching the speed of
light. At low speeds, Einstein’s theory reduces to Newtonian mechanics as a limit-
ing situation. It is important to recognize that Einstein was working on electromag-
netism when he developed the special theory of relativity. He was convinced that
Maxwell’s equations were correct, and in order to reconcile them with one of his
postulates, he was forced into the bizarre notion of assuming that space and time
are not absolute.

This chapter gives an introduction to the special theory of relativity, with em-
phasis on some of its consequences. The special theory covers phenomena such as
the slowing down of clocks and the contraction of lengths in moving reference
frames as measured by a stationary observer. We also discuss the relativistic forms
of momentum and energy, as well as some consequences of the famous mass–
energy formula, 

In addition to its well-known and essential role in theoretical physics, the spe-
cial theory of relativity has practical applications, including the design of nuclear
power plants and modern global positioning system (GPS) units. These devices do
not work if designed in accordance with nonrelativistic principles.

We shall have occasion to use relativity in some subsequent chapters of the ex-
tended version of this text, most often presenting only the outcome of relativistic
effects.

E � mc 2.

v � 0

M

1 A. Einstein and L. Infeld, The Evolution of Physics, New York, Simon and Schuster, 1961.
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THE PRINCIPLE OF GALILEAN RELATIVITY
To describe a physical event, it is necessary to establish a frame of reference. You
should recall from Chapter 5 that Newton’s laws are valid in all inertial frames of
reference. Because an inertial frame is defined as one in which Newton’s first law
is valid, we can say that an inertial frame of reference is one in which an object
is observed to have no acceleration when no forces act on it. Furthermore,
any system moving with constant velocity with respect to an inertial system must
also be an inertial system.

There is no preferred inertial reference frame. This means that the results of
an experiment performed in a vehicle moving with uniform velocity will be identi-
cal to the results of the same experiment performed in a stationary vehicle. The
formal statement of this result is called the principle of Galilean relativity:

39.1

The laws of mechanics must be the same in all inertial frames of reference.

Let us consider an observation that illustrates the equivalence of the laws of
mechanics in different inertial frames. A pickup truck moves with a constant veloc-
ity, as shown in Figure 39.1a. If a passenger in the truck throws a ball straight up,
and if air effects are neglected, the passenger observes that the ball moves in a ver-
tical path. The motion of the ball appears to be precisely the same as if the ball
were thrown by a person at rest on the Earth. The law of gravity and the equations
of motion under constant acceleration are obeyed whether the truck is at rest or in
uniform motion.

Now consider the same situation viewed by an observer at rest on the Earth.
This stationary observer sees the path of the ball as a parabola, as illustrated in Fig-
ure 39.1b. Furthermore, according to this observer, the ball has a horizontal com-
ponent of velocity equal to the velocity of the truck. Although the two observers
disagree on certain aspects of the situation, they agree on the validity of Newton’s
laws and on such classical principles as conservation of energy and conservation of
linear momentum. This agreement implies that no mechanical experiment can
detect any difference between the two inertial frames. The only thing that can be
detected is the relative motion of one frame with respect to the other. That is, the
notion of absolute motion through space is meaningless, as is the notion of a pre-
ferred reference frame.

Inertial frame of reference

(b)(a)

Figure 39.1 (a) The observer in the truck sees the ball move in a vertical path when thrown
upward. (b) The Earth observer sees the path of the ball as a parabola.
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Which observer in Figure 39.1 is right about the ball’s path?

Suppose that some physical phenomenon, which we call an event, occurs in an
inertial system. The event’s location and time of occurrence can be specified by the
four coordinates (x, y, z, t). We would like to be able to transform these coordinates
from one inertial system to another one moving with uniform relative velocity.

Consider two inertial systems S and S� (Fig. 39.2). The system S� moves with a
constant velocity v along the xx� axes, where v is measured relative to S. We assume
that an event occurs at the point P and that the origins of S and S� coincide at

. An observer in S describes the event with space–time coordinates (x, y, z, t),
whereas an observer in S� uses the coordinates (x �, y�, z�, t�) to describe the same
event. As we see from Figure 39.2, the relationships between these various coordi-
nates can be written

(39.1)

These equations are the Galilean space–time transformation equations. Note
that time is assumed to be the same in both inertial systems. That is, within the
framework of classical mechanics, all clocks run at the same rate, regardless of
their velocity, so that the time at which an event occurs for an observer in S is the
same as the time for the same event in S�. Consequently, the time interval between
two successive events should be the same for both observers. Although this as-
sumption may seem obvious, it turns out to be incorrect in situations where v is
comparable to the speed of light.

Now suppose that a particle moves a distance dx in a time interval dt as mea-
sured by an observer in S. It follows from Equations 39.1 that the corresponding
distance dx � measured by an observer in S� is where frame S� is
moving with speed v relative to frame S. Because we find that

or
(39.2)

where ux and are the x components of the velocity relative to S and S�, respec-
tively. (We use the symbol u for particle velocity rather than v, which is used for
the relative velocity of two reference frames.) This is the Galilean velocity trans-
formation equation. It is used in everyday observations and is consistent with our
intuitive notion of time and space. As we shall soon see, however, it leads to serious
contradictions when applied to electromagnetic waves.

Applying the Galilean velocity transformation equation, determine how fast (relative to the
Earth) a baseball pitcher with a 90-mi/h fastball can throw a ball while standing in a boxcar
moving at 110 mi/h.

Quick Quiz 39.2
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t � 0

Quick Quiz 39.1

Galilean space–time
transformation equations

Galilean velocity transformation
equation

y

0 x

y′

0′ x ′

x
vt x ′

P (event)

v

S ′S

Figure 39.2 An event occurs at a
point P. The event is seen by two
observers in inertial frames S and
S�, where S� moves with a velocity v
relative to S.
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The Speed of Light

It is quite natural to ask whether the principle of Galilean relativity also applies to
electricity, magnetism, and optics. Experiments indicate that the answer is no. Re-
call from Chapter 34 that Maxwell showed that the speed of light in free space is

Physicists of the late 1800s thought that light waves moved
through a medium called the ether and that the speed of light was c only in a spe-
cial, absolute frame at rest with respect to the ether. The Galilean velocity transfor-
mation equation was expected to hold in any frame moving at speed v relative to
the absolute ether frame.

Because the existence of a preferred, absolute ether frame would show that
light was similar to other classical waves and that Newtonian ideas of an absolute
frame were true, considerable importance was attached to establishing the exis-
tence of the ether frame. Prior to the late 1800s, experiments involving light trav-
eling in media moving at the highest laboratory speeds attainable at that time were
not capable of detecting changes as small as c � v. Starting in about 1880, scien-
tists decided to use the Earth as the moving frame in an attempt to improve their
chances of detecting these small changes in the speed of light.

As observers fixed on the Earth, we can say that we are stationary and that the
absolute ether frame containing the medium for light propagation moves past us
with speed v. Determining the speed of light under these circumstances is just like
determining the speed of an aircraft traveling in a moving air current, or wind;
consequently, we speak of an “ether wind” blowing through our apparatus fixed to
the Earth.

A direct method for detecting an ether wind would use an apparatus fixed to
the Earth to measure the wind’s influence on the speed of light. If v is the speed of
the ether relative to the Earth, then the speed of light should have its maximum
value, when propagating downwind, as shown in Figure 39.3a. Likewise, the
speed of light should have its minimum value, c � v, when propagating upwind, as
shown in Figure 39.3b, and an intermediate value, in the direction
perpendicular to the ether wind, as shown in Figure 39.3c. If the Sun is assumed to
be at rest in the ether, then the velocity of the ether wind would be equal to the or-
bital velocity of the Earth around the Sun, which has a magnitude of approxi-
mately 3 � 104 m/s. Because m/s, it should be possible to detect a
change in speed of about 1 part in 104 for measurements in the upwind or down-
wind directions. However, as we shall see in the next section, all attempts to detect
such changes and establish the existence of the ether wind (and hence the absolute
frame) proved futile! (You may want to return to Problem 40 in Chapter 4 to see a
situation in which the Galilean velocity transformation equation does hold.)

If it is assumed that the laws of electricity and magnetism are the same in all
inertial frames, a paradox concerning the speed of light immediately arises. We
can understand this by recognizing that Maxwell’s equations seem to imply that
the speed of light always has the fixed value 3.00 � 108 m/s in all inertial frames, a
result in direct contradiction to what is expected based on the Galilean velocity
transformation equation. According to Galilean relativity, the speed of light should
not be the same in all inertial frames.

For example, suppose a light pulse is sent out by an observer S� standing in a
boxcar moving with a velocity v relative to a stationary observer standing alongside
the track (Fig. 39.4). The light pulse has a speed c relative to S�. According to
Galilean relativity, the pulse speed relative to S should be This is in contra-
diction to Einstein’s special theory of relativity, which, as we shall see, postulates
that the speed of the pulse is the same for all observers.

c � v.

c � 3 � 108

(c 2 � v2)1/2,

c � v,

c � 3.00 � 108 m/s.

c + v

(a) Downwind

(b) Upwind

(c) Across wind

vc

v

c  – v

c

v

cc 2 – v 2√

Figure 39.3 If the velocity of the
ether wind relative to the Earth is v
and the velocity of light relative to
the ether is c, then the speed of
light relative to the Earth is 
(a) in the downwind direc-
tion, (b) in the upwind direc-
tion, and (c) in the
direction perpendicular to the
wind.

(c 2 � v 2 )1/2
c � v

c � v
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To resolve this contradiction in theories, we must conclude that either (1)
the laws of electricity and magnetism are not the same in all inertial frames or
(2) the Galilean velocity transformation equation is incorrect. If we assume the
first alternative, then a preferred reference frame in which the speed of light has
the value c must exist and the measured speed must be greater or less than this
value in any other reference frame, in accordance with the Galilean velocity
transformation equation. If we assume the second alternative, then we are forced
to abandon the notions of absolute time and absolute length that form the basis
of the Galilean space – time transformation equations.

THE MICHELSON – MORLEY EXPERIMENT
The most famous experiment designed to detect small changes in the speed of
light was first performed in 1881 by Albert A. Michelson (see Section 37.7) and
later repeated under various conditions by Michelson and Edward W. Morley
(1838–1923). We state at the outset that the outcome of the experiment contra-
dicted the ether hypothesis.

The experiment was designed to determine the velocity of the Earth relative to
that of the hypothetical ether. The experimental tool used was the Michelson in-
terferometer, which was discussed in Section 37.7 and is shown again in Figure
39.5. Arm 2 is aligned along the direction of the Earth’s motion through space.
The Earth moving through the ether at speed v is equivalent to the ether flowing
past the Earth in the opposite direction with speed v. This ether wind blowing in
the direction opposite the direction of Earth’s motion should cause the speed of
light measured in the Earth frame to be c � v as the light approaches mirror M2
and after reflection, where c is the speed of light in the ether frame.

The two beams reflected from M1 and M2 recombine, and an interference
pattern consisting of alternating dark and bright fringes is formed. The interfer-
ence pattern was observed while the interferometer was rotated through an angle
of 90°. This rotation supposedly would change the speed of the ether wind along
the arms of the interferometer. The rotation should have caused the fringe pat-
tern to shift slightly but measurably, but measurements failed to show any change
in the interference pattern! The Michelson–Morley experiment was repeated at
different times of the year when the ether wind was expected to change direction

c � v

39.2

S

S'
vc

Figure 39.4 A pulse of light is sent out by a person in a moving boxcar. According to Galilean
relativity, the speed of the pulse should be relative to a stationary observer.c � v

Telescope

Ether wind

M1

M2

M0

v

Arm 2

Arm 1

Figure 39.5 According to the
ether wind theory, the speed of
light should be as the beam
approaches mirror M2 and 
after reflection.

c � v
c � v
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and magnitude, but the results were always the same: no fringe shift of the mag-
nitude required was ever observed.2

The negative results of the Michelson–Morley experiment not only contra-
dicted the ether hypothesis but also showed that it was impossible to measure the
absolute velocity of the Earth with respect to the ether frame. However, as we shall
see in the next section, Einstein offered a postulate for his special theory of relativ-
ity that places quite a different interpretation on these null results. In later years,
when more was known about the nature of light, the idea of an ether that perme-
ates all of space was relegated to the ash heap of worn-out concepts. Light is now
understood to be an electromagnetic wave, which requires no medium for
its propagation. As a result, the idea of an ether in which these waves could travel
became unnecessary.

Optional Section

Details of the Michelson–Morley Experiment

To understand the outcome of the Michelson–Morley experiment, let us assume
that the two arms of the interferometer in Figure 39.5 are of equal length L . We
shall analyze the situation as if there were an ether wind, because that is what
Michelson and Morley expected to find. As noted above, the speed of the light beam
along arm 2 should be c � v as the beam approaches M2 and after the beam is
reflected. Thus, the time of travel to the right is L /(c � v), and the time of travel to
the left is L/ The total time needed for the round trip along arm 2 is

Now consider the light beam traveling along arm 1, perpendicular to the
ether wind. Because the speed of the beam relative to the Earth is in
this case (see Fig. 39.3), the time of travel for each half of the trip is

and the total time of travel for the round trip is

Thus, the time difference between the horizontal round trip (arm 2) and the verti-
cal round trip (arm 1) is

Because we can simplify this expression by using the following bino-
mial expansion after dropping all terms higher than second order:

for 

In our case, and we find that

(39.3)

This time difference between the two instants at which the reflected beams ar-
rive at the viewing telescope gives rise to a phase difference between the beams,

�t � t 1 � t 2 �
Lv2

c 3

x � v2/c 2,

x V 1(1 � x)n � 1 � nx

v2/c 2
V 1,

�t � t 1 � t 2 �
2L
c

 ��1 �
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c 2 �
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�

t 2 �
2L
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2L
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 �1 �
v2
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L /(c 2 � v2)1/2,

(c 2 � v2)1/2

t 1 �
L
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�

L
c � v

�
2Lc
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Albert Einstein (1879 – 1955)
Einstein, one of the greatest physi-
cists of all times, was born in Ulm,
Germany. In 1905, at the age of 26, he
published four scientific papers that
revolutionized physics. Two of these
papers were concerned with what is
now considered his most important
contribution: the special theory of rel-
ativity.

In 1916, Einstein published his
work on the general theory of relativ-
ity. The most dramatic prediction of
this theory is the degree to which
light is deflected by a gravitational
field. Measurements made by as-
tronomers on bright stars in the vicin-
ity of the eclipsed Sun in 1919 con-
firmed Einstein’s prediction, and as a
result Einstein became a world
celebrity.

Einstein was deeply disturbed by
the development of quantum mechan-
ics in the 1920s despite his own role
as a scientific revolutionary. In partic-
ular, he could never accept the prob-
abilistic view of events in nature that
is a central feature of quantum theory.
The last few decades of his life were
devoted to an unsuccessful search
for a unified theory that would com-
bine gravitation and electromagnet-
ism. (AIP Niels Bohr Library)

2 From an Earth observer’s point of view, changes in the Earth’s speed and direction of motion in the
course of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the ether
were zero at some time, six months later the speed of the Earth would be 60 km/s with respect to the
ether, and as a result a fringe shift should be noticed. No shift has ever been observed, however.
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producing an interference pattern when they combine at the position of the tele-
scope. A shift in the interference pattern should be detected when the interferom-
eter is rotated through 90° in a horizontal plane, so that the two beams exchange
roles. This results in a time difference twice that given by Equation 39.3. Thus, the
path difference that corresponds to this time difference is

Because a change in path length of one wavelength corresponds to a shift of one
fringe, the corresponding fringe shift is equal to this path difference divided by
the wavelength of the light:

(39.4)

In the experiments by Michelson and Morley, each light beam was reflected by
mirrors many times to give an effective path length L of approximately 11 m. Us-
ing this value and taking v to be equal to 3.0 � 104 m/s, the speed of the Earth
around the Sun, we obtain a path difference of

This extra travel distance should produce a noticeable shift in the fringe pattern.
Specifically, using 500-nm light, we expect a fringe shift for rotation through 90° of

The instrument used by Michelson and Morley could detect shifts as small as 0.01
fringe. However, it detected no shift whatsoever in the fringe pattern. Since
then, the experiment has been repeated many times by different scientists under a
wide variety of conditions, and no fringe shift has ever been detected. Thus, it was
concluded that the motion of the Earth with respect to the postulated ether can-
not be detected.

Many efforts were made to explain the null results of the Michelson–Morley
experiment and to save the ether frame concept and the Galilean velocity transfor-
mation equation for light. All proposals resulting from these efforts have been
shown to be wrong. No experiment in the history of physics received such valiant
efforts to explain the absence of an expected result as did the Michelson–Morley
experiment. The stage was set for Einstein, who solved the problem in 1905 with
his special theory of relativity.

EINSTEIN’S PRINCIPLE OF RELATIVITY
In the previous section we noted the impossibility of measuring the speed of the
ether with respect to the Earth and the failure of the Galilean velocity transforma-
tion equation in the case of light. Einstein proposed a theory that boldly removed
these difficulties and at the same time completely altered our notion of space and
time.3 He based his special theory of relativity on two postulates:

39.3

Shift �
�d
�

�
2.2 � 10�7 m
5.0 � 10�7 m

� 0.44

�d �
2(11 m)(3.0 � 104 m/s)2
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3 A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English
translation of this article and other publications by Einstein, see the book by H. Lorentz, A. Einstein, 
H. Minkowski, and H. Weyl, The Principle of Relativity, Dover, 1958.



1254 C H A P T E R  3 9 Relativity

The first postulate asserts that all the laws of physics—those dealing with me-
chanics, electricity and magnetism, optics, thermodynamics, and so on—are the
same in all reference frames moving with constant velocity relative to one another.
This postulate is a sweeping generalization of the principle of Galilean relativity,
which refers only to the laws of mechanics. From an experimental point of view,
Einstein’s principle of relativity means that any kind of experiment (measuring the
speed of light, for example) performed in a laboratory at rest must give the same
result when performed in a laboratory moving at a constant velocity past the first
one. Hence, no preferred inertial reference frame exists, and it is impossible to de-
tect absolute motion.

Note that postulate 2 is required by postulate 1: If the speed of light were not
the same in all inertial frames, measurements of different speeds would make it
possible to distinguish between inertial frames; as a result, a preferred, absolute
frame could be identified, in contradiction to postulate 1.

Although the Michelson–Morley experiment was performed before Einstein
published his work on relativity, it is not clear whether or not Einstein was aware of
the details of the experiment. Nonetheless, the null result of the experiment can
be readily understood within the framework of Einstein’s theory. According to his
principle of relativity, the premises of the Michelson–Morley experiment were in-
correct. In the process of trying to explain the expected results, we stated that
when light traveled against the ether wind its speed was c �v, in accordance with
the Galilean velocity transformation equation. However, if the state of motion of
the observer or of the source has no influence on the value found for the speed 
of light, one always measures the value to be c. Likewise, the light makes the 
return trip after reflection from the mirror at speed c, not at speed Thus,
the motion of the Earth does not influence the fringe pattern observed in the
Michelson–Morley experiment, and a null result should be expected.

If we accept Einstein’s theory of relativity, we must conclude that relative mo-
tion is unimportant when measuring the speed of light. At the same time, we shall
see that we must alter our common-sense notion of space and time and be pre-
pared for some bizarre consequences. It may help as you read the pages ahead to
keep in mind that our common-sense ideas are based on a lifetime of everyday ex-
periences and not on observations of objects moving at hundreds of thousands of
kilometers per second.

CONSEQUENCES OF THE SPECIAL THEORY
OF RELATIVITY

Before we discuss the consequences of Einstein’s special theory of relativity, we
must first understand how an observer located in an inertial reference frame de-
scribes an event. As mentioned earlier, an event is an occurrence describable by
three space coordinates and one time coordinate. Different observers in different
inertial frames usually describe the same event with different coordinates.

39.4

c � v.

1. The principle of relativity: The laws of physics must be the same in all iner-
tial reference frames.

2. The constancy of the speed of light: The speed of light in vacuum has the
same value, in all inertial frames, regardless of the ve-
locity of the observer or the velocity of the source emitting the light.

c � 3.00 � 108 m/s,

The postulates of the special
theory of relativity
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The reference frame used to describe an event consists of a coordinate grid
and a set of synchronized clocks located at the grid intersections, as shown in Fig-
ure 39.6 in two dimensions. The clocks can be synchronized in many ways with the
help of light signals. For example, suppose an observer is located at the origin with
a master clock and sends out a pulse of light at . The pulse takes a time r/c to
reach a clock located a distance r from the origin. Hence, this clock is synchro-
nized with the master clock if this clock reads r/c at the instant the pulse reaches
it. This procedure of synchronization assumes that the speed of light has the same
value in all directions and in all inertial frames. Furthermore, the procedure con-
cerns an event recorded by an observer in a specific inertial reference frame. An
observer in some other inertial frame would assign different space–time coordi-
nates to events being observed by using another coordinate grid and another array
of clocks.

As we examine some of the consequences of relativity in the remainder of this
section, we restrict our discussion to the concepts of simultaneity, time, and
length, all three of which are quite different in relativistic mechanics from what
they are in Newtonian mechanics. For example, in relativistic mechanics the dis-
tance between two points and the time interval between two events depend on the
frame of reference in which they are measured. That is, in relativistic mechanics
there is no such thing as absolute length or absolute time. Furthermore,
events at different locations that are observed to occur simultaneously in
one frame are not observed to be simultaneous in another frame moving
uniformly past the first.

Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists that is
the same for all observers. In fact, Newton wrote that “Absolute, true, and mathe-
matical time, of itself, and from its own nature, flows equably without relation to
anything external.” Thus, Newton and his followers simply took simultaneity for
granted. In his special theory of relativity, Einstein abandoned this assumption.

Einstein devised the following thought experiment to illustrate this point. A
boxcar moves with uniform velocity, and two lightning bolts strike its ends, as illus-
trated in Figure 39.7a, leaving marks on the boxcar and on the ground. The marks
on the boxcar are labeled A� and B�, and those on the ground are labeled A and
B. An observer O� moving with the boxcar is midway between A� and B�, and a
ground observer O is midway between A and B. The events recorded by the ob-
servers are the striking of the boxcar by the two lightning bolts.

t � 0

Figure 39.6 In studying relativity,
we use a reference frame consisting
of a coordinate grid and a set of syn-
chronized clocks.



1256 C H A P T E R  3 9 Relativity

Which observer in Figure 39.7 is correct?

The central point of relativity is this: Any inertial frame of reference can be
used to describe events and do physics. There is no preferred inertial frame of
reference. However, observers in different inertial frames always measure differ-
ent time intervals with their clocks and different distances with their meter sticks.
Nevertheless, all observers agree on the forms of the laws of physics in their re-
spective frames because these laws must be the same for all observers in uniform
motion. For example, the relationship in a frame S has the same form

in a frame S� that is moving at constant velocity relative to frame S. It isF � � ma �
F � ma

Quick Quiz 39.3

two events that are simultaneous in one reference frame are in general not si-
multaneous in a second frame moving relative to the first. That is, simultaneity
is not an absolute concept but rather one that depends on the state of motion
of the observer.

The light signals recording the instant at which the two bolts strike reach ob-
server O at the same time, as indicated in Figure 39.7b. This observer realizes that
the signals have traveled at the same speed over equal distances, and so rightly
concludes that the events at A and B occurred simultaneously. Now consider the
same events as viewed by observer O�. By the time the signals have reached ob-
server O, observer O � has moved as indicated in Figure 39.7b. Thus, the signal
from B� has already swept past O�, but the signal from A� has not yet reached O �.
In other words, O � sees the signal from B� before seeing the signal from A�. Ac-
cording to Einstein, the two observers must find that light travels at the same speed.
Therefore, observer O� concludes that the lightning strikes the front of the boxcar
before it strikes the back.

This thought experiment clearly demonstrates that the two events that appear
to be simultaneous to observer O do not appear to be simultaneous to observer O�.
In other words,

v

A' B'
O'

OA B

(a)

v

A' B'
O'

OA B

(b)

Figure 39.7 (a) Two lightning bolts strike the ends of a moving boxcar. (b) The events appear
to be simultaneous to the stationary observer O, standing midway between A and B. The events
do not appear to be simultaneous to observer O �, who claims that the front of the car is struck be-
fore the rear. Note that in (b) the leftward-traveling light signal has already passed O � but the
rightward-traveling signal has not yet reached O �.



Figure 39.8 (a) A mirror is fixed to a moving vehicle, and a light pulse is sent out by observer
O � at rest in the vehicle. (b) Relative to a stationary observer O standing alongside the vehicle,
the mirror and O � move with a speed v. Note that what observer O measures for the distance the
pulse travels is greater than 2d. (c) The right triangle for calculating the relationship between �t
and �tp .
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the alteration of time and space that allows the laws of physics (including
Maxwell’s equations) to be the same for all observers in uniform motion.

Time Dilation

We can illustrate the fact that observers in different inertial frames always measure
different time intervals between a pair of events by considering a vehicle moving to
the right with a speed v, as shown in Figure 39.8a. A mirror is fixed to the ceiling
of the vehicle, and observer O� at rest in this system holds a laser a distance d be-
low the mirror. At some instant, the laser emits a pulse of light directed toward the
mirror (event 1), and at some later time after reflecting from the mirror, the pulse
arrives back at the laser (event 2). Observer O � carries a clock C � and uses it to
measure the time interval �t p between these two events. (The subscript p stands
for proper, as we shall see in a moment.) Because the light pulse has a speed c, the
time it takes the pulse to travel from O � to the mirror and back to O � is

(39.5)

This time interval �t p measured by O� requires only a single clock C � located at
the same place as the laser in this frame.

Now consider the same pair of events as viewed by observer O in a second
frame, as shown in Figure 39.8b. According to this observer, the mirror and laser
are moving to the right with a speed v, and as a result the sequence of events ap-
pears entirely different. By the time the light from the laser reaches the mirror, the
mirror has moved to the right a distance v �t/2, where �t is the time it takes the
light to travel from O� to the mirror and back to O � as measured by O. In other
words, O concludes that, because of the motion of the vehicle, if the light is to hit
the mirror, it must leave the laser at an angle with respect to the vertical direction.
Comparing Figure 39.8a and b, we see that the light must travel farther in (b)
than in (a). (Note that neither observer “knows” that he or she is moving. Each is
at rest in his or her own inertial frame.)

�t p �
Distance traveled

Speed
�

2d
c



According to the second postulate of the special theory of relativity, both ob-
servers must measure c for the speed of light. Because the light travels farther in
the frame of O, it follows that the time interval �t measured by O is longer than
the time interval �t p measured by O�. To obtain a relationship between these two
time intervals, it is convenient to use the right triangle shown in Figure 39.8c. The
Pythagorean theorem gives

Solving for �t gives

(39.6)

Because �t p � 2d/c, we can express this result as

(39.7)

where
(39.8)

Because 	 is always greater than unity, this result says that the time interval �t
measured by an observer moving with respect to a clock is longer than the
time interval �tp measured by an observer at rest with respect to the clock.
(That is, This effect is known as time dilation. Figure 39.9 shows that

as the velocity approaches the speed of light, 	 increases dra-
matically. Note that for speeds less than one tenth the speed of light, 	 is very
nearly equal to unity.

The time interval �t p in Equations 39.5 and 39.7 is called the proper time.
(In German, Einstein used the term Eigenzeit, which means “own-time.”) In gen-
eral, proper time is the time interval between two events measured by an ob-
server who sees the events occur at the same point in space. Proper time is al-
ways the time measured with a single clock (clock C � in our case) at rest in the
frame in which the events take place.

If a clock is moving with respect to you, it appears to fall behind (tick more slowly
than) the clocks it is passing in the grid of synchronized clocks in your reference
frame. Because the time interval 	(2d/c), the interval between ticks of a moving
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Time dilation
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Figure 39.9 Graph of 	 versus v. As the velocity approaches the speed of light, 	 increases rapidly.



clock, is observed to be longer than 2d/c, the time interval between ticks of an identi-
cal clock in your reference frame, it is often said that a moving clock runs more slowly
than a clock in your reference frame by a factor 	. This is true for mechanical clocks
as well as for the light clock just described. We can generalize this result by stating
that all physical processes, including chemical and biological ones, slow down relative
to a stationary clock when those processes occur in a moving frame. For example, the
heartbeat of an astronaut moving through space would keep time with a clock inside
the spaceship. Both the astronaut’s clock and heartbeat would be slowed down rela-
tive to a stationary clock back on the Earth (although the astronaut would have no
sensation of life slowing down in the spaceship).

A rocket has a clock built into its control panel. Use Figure 39.9 to determine approxi-
mately how fast the rocket must be moving before its clock appears to an Earth-bound ob-
server to be ticking at one fifth the rate of a clock on the wall at Mission Control. What does
an astronaut in the rocket observe?

Bizarre as it may seem, time dilation is a verifiable phenomenon. An experi-
ment reported by Hafele and Keating provided direct evidence of time dilation.4

Time intervals measured with four cesium atomic clocks in jet flight were com-
pared with time intervals measured by Earth-based reference atomic clocks. In or-
der to compare these results with theory, many factors had to be considered, in-
cluding periods of acceleration and deceleration relative to the Earth, variations in
direction of travel, and the fact that the gravitational field experienced by the fly-
ing clocks was weaker than that experienced by the Earth-based clock. The results
were in good agreement with the predictions of the special theory of relativity and
can be explained in terms of the relative motion between the Earth and the jet air-
craft. In their paper, Hafele and Keating stated that “Relative to the atomic time
scale of the U.S. Naval Observatory, the flying clocks lost 59 � 10 ns during the
eastward trip and gained 273 � 7 ns during the westward trip . . . . These re-
sults provide an unambiguous empirical resolution of the famous clock paradox
with macroscopic clocks.”

Another interesting example of time dilation involves the observation of muons,
unstable elementary particles that have a charge equal to that of the electron and a
mass 207 times that of the electron. Muons can be produced by the collision of cos-
mic radiation with atoms high in the atmosphere. These particles have a lifetime of
2.2 �s when measured in a reference frame in which they are at rest or moving
slowly. If we take 2.2 �s as the average lifetime of a muon and assume that its speed
is close to the speed of light, we find that these particles travel only approximately
600 m before they decay (Fig. 39.10a). Hence, they cannot reach the Earth from
the upper atmosphere where they are produced. However, experiments show that a
large number of muons do reach the Earth. The phenomenon of time dilation ex-
plains this effect. Relative to an observer on the Earth, the muons have a lifetime
equal to 	�p , where �p � 2.2 �s is the lifetime in the frame traveling with the
muons or the proper lifetime. For example, for a muon speed of 	 � 7.1
and 	�p � 16 �s. Hence, the average distance traveled as measured by an observer
on the Earth is 	v�p � 4 800 m, as indicated in Figure 39.10b.

In 1976, at the laboratory of the European Council for Nuclear Research

v � 0.99c,

Quick Quiz 39.4

39.4 Consequences of the Special Theory of Relativity 1259

4 J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains Observed,”
Science, 177:168, 1972.

(a)

600 m

4 800 m

(b)

Earth’s
frame

   =     p ≈ 16   sµτ

Muon’s
frame

  p = 2.2   sµτ

τ γ

Figure 39.10 (a) Muons moving
with a speed of 0.99c travel approxi-
mately 600 m as measured in the
reference frame of the muons,
where their lifetime is about 2.2 �s.
(b) The muons travel approxi-
mately 4 800 m as measured by an
observer on the Earth.
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(CERN) in Geneva, muons injected into a large storage ring reached speeds of ap-
proximately 0.9994c. Electrons produced by the decaying muons were detected by
counters around the ring, enabling scientists to measure the decay rate and hence
the muon lifetime. The lifetime of the moving muons was measured to be approxi-
mately 30 times as long as that of the stationary muon (Fig. 39.11), in agreement

What Is the Period of the Pendulum?EXAMPLE 39.1
runs more slowly than a stationary clock by a factor 	, Equa-
tion 39.7 gives

That is, a moving pendulum takes longer to complete a pe-
riod than a pendulum at rest does.

9.6 s� (3.2)(3.0 s) �

�t � 	�t p �
1

!1 �
(0.95c)2

c 2

 �t p �
1

!1 � 0.902
 �t p

The period of a pendulum is measured to be 3.0 s in the ref-
erence frame of the pendulum. What is the period when
measured by an observer moving at a speed of 0.95c relative
to the pendulum?

Solution Instead of the observer moving at 0.95c, we can
take the equivalent point of view that the observer is at rest
and the pendulum is moving at 0.95c past the stationary ob-
server. Hence, the pendulum is an example of a moving
clock.

The proper time is s. Because a moving clock�t p � 3.0

How Long Was Your Trip?EXAMPLE 39.2
If you try to determine this value on your calculator, you will
probably get 	 � 1. However, if we perform a binomial ex-
pansion, we can more precisely determine the value as

This result indicates that at typical automobile speeds, 	 is
not much different from 1.

Applying Equation 39.7, we find �t, the time interval mea-
sured by your boss, to be

Your boss’s clock would be only 0.09 ns ahead of your car
clock. You might want to try another excuse!

5.0 h � 0.09 ns� 5.0 h � 2.5 � 10�14 h �

�t � 	�t p � (1 � 5.0 � 10�15)(5.0 h)

	 � (1 � 10�14)�1/2 � 1 � 1
2(10�14) � 1 � 5.0 � 10�15

Suppose you are driving your car on a business trip and are
traveling at 30 m/s. Your boss, who is waiting at your destina-
tion, expects the trip to take 5.0 h. When you arrive late, your
excuse is that your car clock registered the passage of 5.0 h
but that you were driving fast and so your clock ran more
slowly than your boss’s clock. If your car clock actually did in-
dicate a 5.0-h trip, how much time passed on your boss’s
clock, which was at rest on the Earth?

Solution We begin by calculating 	 from Equation 39.8:

	 �
1

!1 �
v2

c 2

�
1

!1 �
(3 � 101 m/s)2

(3 � 108 m/s)2

�
1

!1 � 10�14
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Figure 39.11 Decay curves for
muons at rest and for muons
traveling at a speed of 0.9994c.
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with the prediction of relativity to within two parts in a thousand.

The Twins Paradox

An intriguing consequence of time dilation is the so-called twins paradox (Fig.
39.12). Consider an experiment involving a set of twins named Speedo and Goslo.
When they are 20 yr old, Speedo, the more adventuresome of the two, sets out on
an epic journey to Planet X, located 20 ly from the Earth. Furthermore, his space-
ship is capable of reaching a speed of 0.95c relative to the inertial frame of his twin
brother back home. After reaching Planet X, Speedo becomes homesick and im-
mediately returns to the Earth at the same speed 0.95c. Upon his return, Speedo is
shocked to discover that Goslo has aged 42 yr and is now 62 yr old. Speedo, on the
other hand, has aged only 13 yr.

At this point, it is fair to raise the following question—which twin is the trav-
eler and which is really younger as a result of this experiment? From Goslo’s frame
of reference, he was at rest while his brother traveled at a high speed. But from
Speedo’s perspective, it is he who was at rest while Goslo was on the high-speed
space journey. According to Speedo, he himself remained stationary while Goslo
and the Earth raced away from him on a 6.5-yr journey and then headed back for
another 6.5 yr. This leads to an apparent contradiction. Which twin has developed
signs of excess aging?

To resolve this apparent paradox, recall that the special theory of relativity
deals with inertial frames of reference moving relative to each other at uniform
speed. However, the trip in our current problem is not symmetrical. Speedo, the
space traveler, must experience a series of accelerations during his journey. As a re-
sult, his speed is not always uniform, and consequently he is not in an inertial
frame. He cannot be regarded as always being at rest while Goslo is in uniform mo-
tion because to do so would be an incorrect application of the special theory of
relativity. Therefore, there is no paradox. During each passing year noted by
Goslo, slightly less than 4 months elapsed for Speedo.

The conclusion that Speedo is in a noninertial frame is inescapable. Each twin
observes the other as accelerating, but it is Speedo that actually undergoes dynami-
cal acceleration due to the real forces acting on him. The time required to acceler-
ate and decelerate Speedo’s spaceship may be made very small by using large rock-
ets, so that Speedo can claim that he spends most of his time traveling to Planet X

(a) (b)

Figure 39.12 (a) As one twin leaves his brother on the Earth, both are the same age. 
(b) When Speedo returns from his journey to Planet X, he is younger than his twin Goslo.
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at 0.95c in an inertial frame. However, Speedo must slow down, reverse his motion,
and return to the Earth in an altogether different inertial frame. At the very best,
Speedo is in two different inertial frames during his journey. Only Goslo, who is 
in a single inertial frame, can apply the simple time-dilation formula to Speedo’s
trip. Thus, Goslo finds that instead of aging 42 yr, Speedo ages only

Conversely, Speedo spends 6.5 yr traveling to
Planet X and 6.5 yr returning, for a total travel time of 13 yr, in agreement with
our earlier statement.

Suppose astronauts are paid according to the amount of time they spend traveling in space.
After a long voyage traveling at a speed approaching c, would a crew rather be paid accord-
ing to an Earth-based clock or their spaceship’s clock?

Length Contraction

The measured distance between two points also depends on the frame of refer-
ence. The proper length Lp of an object is the length measured by someone
at rest relative to the object. The length of an object measured by someone in a
reference frame that is moving with respect to the object is always less than the
proper length. This effect is known as length contraction.

Consider a spaceship traveling with a speed v from one star to another. There
are two observers: one on the Earth and the other in the spaceship. The observer
at rest on the Earth (and also assumed to be at rest with respect to the two stars)
measures the distance between the stars to be the proper length Lp . According to
this observer, the time it takes the spaceship to complete the voyage is 
Because of time dilation, the space traveler measures a smaller time of travel by
the spaceship clock: The space traveler claims to be at rest and sees
the destination star moving toward the spaceship with speed v. Because the space
traveler reaches the star in the time �t p , he or she concludes that the distance L be-
tween the stars is shorter than Lp . This distance measured by the space traveler is

Because we see that

(39.9)L �
Lp

	
� Lp�1 �

v2

c 2 �
1/2

Lp � v �t,

L � v �t p � v 
�t
	

�t p � �t/	.

�t � Lp /v.

Quick Quiz 39.5

(1 � v2/c 2)1/2(42 yr) � 13 yr.

If an object has a proper length Lp when it is at rest, then when it moves 
with speed v in a direction parallel to its length, it contracts to the length
L � Lp(1 � v2/c 2)1/2 � Lp/	.

where is a factor less than unity. This result may be interpreted as
follows:

For example, suppose that a stick moves past a stationary Earth observer with
speed v, as shown in Figure 39.13. The length of the stick as measured by an ob-
server in a frame attached to the stick is the proper length Lp shown in Figure
39.13a. The length of the stick L measured by the Earth observer is shorter than
Lp by the factor Furthermore, length contraction is a symmetrical
effect: If the stick is at rest on the Earth, an observer in a moving frame would

(1 � v2/c 2)1/2.

(1 � v2/c 2)1/2

Length contraction

Lp

y′

O ′
(a)

x ′

L
y

O
(b)

x

v

Figure 39.13 (a) A stick mea-
sured by an observer in a frame at-
tached to the stick (that is, both
have the same velocity) has its
proper length Lp . (b) The stick
measured by an observer in a frame
in which the stick has a velocity v
relative to the frame is shorter 
than its proper length Lp by a 
factor (1 � v 2/c 2 )1/2.
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The Contraction of a SpaceshipEXAMPLE 39.3
The diameter measured by the observer is still 20.0 m be-
cause the diameter is a dimension perpendicular to the mo-
tion and length contraction occurs only along the direction
of motion.

Exercise If the ship moves past the observer with a speed of
0.100 0c, what length does the observer measure?

Answer 119.4 m.

A spaceship is measured to be 120.0 m long and 20.0 m in di-
ameter while at rest relative to an observer. If this spaceship
now flies by the observer with a speed of 0.99c, what length
and diameter does the observer measure?

Solution From Equation 39.9, the length measured by the
observer is

17 mL � Lp!1 �
v2

c 2 � (120.0 m)!1 �
(0.99c)2

c 2 �

How Long Was Your Car?EXAMPLE 39.4
where we have again used the binomial expansion for the fac-

tor The roadside observer sees the car’s length as 

having changed by an amount Lp � L :

This is much smaller than the diameter of an atom!

2.2 � 10�14 m�

L p � L �
Lp

2 � v 2

c 2 � � � 4.3 m
2 � � 3.0 � 101 m/s

3.0 � 108 m/s �
2

!1 �
v2

c 2  .

In Example 39.2, you were driving at 30 m/s and claimed
that your clock was running more slowly than your boss’s sta-
tionary clock. Although your statement was true, the time di-
lation was negligible. If your car is 4.3 m long when it is
parked, how much shorter does it appear to a stationary road-
side observer as you drive by at 30 m/s?

Solution The observer sees the horizontal length of the
car to be contracted to a length

L � Lp!1 �
v2

c 2 � Lp �1 � 1
2 

v2

c 2 �

A Voyage to SiriusEXAMPLE 39.5
nearly at rest. The astronaut sees Sirius approaching her at
0.8c but also sees the distance contracted to

Thus, the travel time measured on her clock is

t �
d
v

�
5 ly
0.8c

� 6 yr

8 ly
	

� (8 ly)!1 �
v2

c 2 � (8 ly)!1 �
(0.8c)2

c 2 � 5 ly

An astronaut takes a trip to Sirius, which is located a distance
of 8 lightyears from the Earth. (Note that 1 lightyear (ly) is
the distance light travels through free space in 1 yr.) The as-
tronaut measures the time of the one-way journey to be 6 yr.
If the spaceship moves at a constant speed of 0.8c, how can
the 8-ly distance be reconciled with the 6-yr trip time mea-
sured by the astronaut?

Solution The 8 ly represents the proper length from the
Earth to Sirius measured by an observer seeing both bodies

measure its length to be shorter by the same factor Note that
length contraction takes place only along the direction of motion.

It is important to emphasize that proper length and proper time are measured
in different reference frames. As an example of this point, let us return to the de-
caying muons moving at speeds close to the speed of light. An observer in the
muon reference frame measures the proper lifetime (that is, the time interval �p),
whereas an Earth-based observer measures a dilated lifetime. However, the Earth-
based observer measures the proper height (the length Lp) of the mountain in
Figure 39.10b. In the muon reference frame, this height is less than Lp , as the fig-
ure shows. Thus, in the muon frame, length contraction occurs but time dilation
does not. In the Earth-based reference frame, time dilation occurs but length con-
traction does not. Thus, when calculations on the muon are performed in both

(1 � v2/c 2)1/2.
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frames, the effect of “offsetting penalties” is seen, and the outcome of the experi-
ment in one frame is the same as the outcome in the other frame!

Space–Time Graphs

It is sometimes helpful to make a space– time graph, in which time is the ordinate
and displacement is the abscissa. The twins paradox is displayed in such a graph in
Figure 39.14. A path through space–time is called a world-line. At the origin, the
world-lines of Speedo and Goslo coincide because the twins are in the same loca-
tion at the same time. After Speedo leaves on his trip, his world-line diverges from
that of his brother. At their reunion, the two world-lines again come together.
Note that Goslo’s world-line is vertical, indicating no displacement from his origi-
nal location. Also note that it would be impossible for Speedo to have a world-line
that crossed the path of a light beam that left the Earth when he did. To do so
would require him to have a speed greater than c.

World-lines for light beams are diagonal lines on space–time graphs, typically
drawn at 45° to the right or left of vertical, depending on whether the light beam
is traveling in the direction of increasing or decreasing x. These two world-lines
means that all possible future events for Goslo and Speedo lie within two 45° lines
extending from the origin. Either twin’s presence at an event outside this “light
cone” would require that twin to move at a speed greater than c, which, as we shall
see in Section 39.5, is not possible. Also, the only past events that Goslo and
Speedo could have experienced occurred within two similar 45° world-lines that
approach the origin from below the x axis.

How is acceleration indicated on a space–time graph?

The Relativistic Doppler Effect

Another important consequence of time dilation is the shift in frequency found
for light emitted by atoms in motion as opposed to light emitted by atoms at
rest. This phenomenon, known as the Doppler effect, was introduced in Chap-
ter 17 as it pertains to sound waves. In the case of sound, the motion of the
source with respect to the medium of propagation can be distinguished from

Quick Quiz 39.6

World-line of Speedo

World-line of light beam
World-line
of Goslo

ct

x

Figure 39.14 The twins paradox on a
space–time graph. The twin who stays
on the Earth has a world-line along the t
axis. The path of the traveling twin
through space–time is represented by 
a world-line that changes direction.
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y

O x

y′

O ′ x′

P

v

S ′ frameS frame

Event

Figure 39.15 An event that occurs
at some point P is observed by two per-
sons, one at rest in the S frame and
the other in the S� frame, which is
moving to the right with a speed v.

Lorentz transformation equations
for S : S�

the motion of the observer with respect to the medium. Light waves must be an-
alyzed differently, however, because they require no medium of propagation,
and no method exists for distinguishing the motion of a light source from the
motion of the observer.

If a light source and an observer approach each other with a relative speed v,
the frequency fobs measured by the observer is

(39.10)

where f source is the frequency of the source measured in its rest frame. Note that
this relativistic Doppler shift formula, unlike the Doppler shift formula for sound,
depends only on the relative speed v of the source and observer and holds for rela-
tive speeds as great as c. As you might expect, the formula predicts that

when the source and observer approach each other. We obtain the
expression for the case in which the source and observer recede from each other
by replacing v with �v in Equation 39.10.

The most spectacular and dramatic use of the relativistic Doppler effect is the
measurement of shifts in the frequency of light emitted by a moving astronomical
object such as a galaxy. Spectral lines normally found in the extreme violet region
for galaxies at rest with respect to the Earth are shifted by about 100 nm toward
the red end of the spectrum for distant galaxies—indicating that these galaxies
are receding from us. The American astronomer Edwin Hubble (1889–1953) per-
formed extensive measurements of this red shift to confirm that most galaxies are
moving away from us, indicating that the Universe is expanding.

THE LORENTZ TRANSFORMATION EQUATIONS
We have seen that the Galilean transformation equations are not valid when v ap-
proaches the speed of light. In this section, we state the correct transformation
equations that apply for all speeds in the range 

Suppose that an event that occurs at some point P is reported by two ob-
servers, one at rest in a frame S and the other in a frame S� that is moving to the
right with speed v, as in Figure 39.15. The observer in S reports the event with
space–time coordinates (x, y, z, t), and the observer in S� reports the same event
using the coordinates (x �, y�, z�, t�). We would like to find a relationship between
these coordinates that is valid for all speeds.

The equations that are valid from to and enable us to transform
coordinates from S to S� are the Lorentz transformation equations:

y� � y 

x � � 	(x � vt)

v � cv � 0

0  v � c .

39.5

f obs 
 f source

fobs �
!1 � v/c

!1 � v/c
 f source
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(39.11)

These transformation equations were developed by Hendrik A. Lorentz
(1853–1928) in 1890 in connection with electromagnetism. However, it was Ein-
stein who recognized their physical significance and took the bold step of inter-
preting them within the framework of the special theory of relativity.

Note the difference between the Galilean and Lorentz time equations. In the
Galilean case, but in the Lorentz case the value for t� assigned to an event
by an observer O � standing at the origin of the S� frame in Figure 39.15 depends
both on the time t and on the coordinate x as measured by an observer O standing
in the S frame. This is consistent with the notion that an event is characterized by
four space–time coordinates (x, y, z, t). In other words, in relativity, space and
time are not separate concepts but rather are closely interwoven with each other.

If we wish to transform coordinates in the S� frame to coordinates in the S
frame, we simply replace v by �v and interchange the primed and unprimed coor-
dinates in Equations 39.11:

(39.12)

When the Lorentz transformation equations should reduce to the
Galilean equations. To verify this, note that as v approaches zero, and

thus, 	 � 1, and Equations 39.11 reduce to the Galilean space–time
transformation equations:

In many situations, we would like to know the difference in coordinates be-
tween two events or the time interval between two events as seen by observers O
and O�. We can accomplish this by writing the Lorentz equations in a form suitable
for describing pairs of events. From Equations 39.11 and 39.12, we can express the
differences between the four variables x, x �, t, and t� in the form

(39.13)

(39.14)

�x � 	(�x � � v �t �)

�t � 	��t � �
v
c 2  �x��� S� : S

�x� � 	(�x � v �t)

�t � � 	��t �
v
c 2  �x�� 

S : S�

t � � tz� � zy� � yx� � x � vt

v2/c 2
V 1;

v/c V 1
v V c,

t � 	�t � �
v
c 2  x ��

z � z� 

y � y� 

x � 	(x � � vt �) 

t � t�,

t� � 	�t �
v
c 2  x�

z� � z 

Inverse Lorentz transformation
equations for S� : S

5 Although relative motion of the two frames along the x axis does not change the y and z coordinates
of an object, it does change the y and z velocity components of an object moving in either frame, as we
shall soon see.
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where and are the differences measured by observer
O � and and are the differences measured by observer
O. (We have not included the expressions for relating the y and z coordinates be-
cause they are unaffected by motion along the x direction.5)

Derivation of the Lorentz Velocity Transformation Equation

Once again S is our stationary frame of reference, and S� is our frame moving at a
speed v relative to S. Suppose that an object has a speed measured in the S�
frame, where

(39.15)

Using Equation 39.11, we have

Substituting these values into Equation 39.15 gives

But dx/dt is just the velocity component ux of the object measured by an observer
in S, and so this expression becomes

(39.16)

If the object has velocity components along the y and z axes, the components
as measured by an observer in S� are

u�x �
ux � v

1 �
uxv
c 2

u�x �
dx�

dt �
�

dx � v dt

dt �
v
c 2  dx

�

dx
dt

� v

1 �
v
c 2  

dx
dt

dt � � 	�dt �
v
c 2  dx�

dx � � 	(dx � v dt) 

u�x �
dx �

dt �

u�x

�t � t 2 � t 1�x � x2 � x1

�t� � t�2 � t�1�x � � x �2 � x�1

Simultaneity and Time Dilation RevisitedEXAMPLE 39.6
(b) Suppose that observer O� finds that two events occur

at the same place but at different times 
In this situation, the expression for �t given in Equation
39.14 becomes This is the equation for time dila-
tion found earlier (Eq. 39.7), where �t � � �t p is the proper
time measured by a clock located in the moving frame of ob-
server O�.

Exercise Use the Lorentz transformation equations in dif-
ference form to confirm that (Eq. 39.9).L � Lp/	

�t � 	 �t �.

(�t � � 0).(�x � � 0)
Use the Lorentz transformation equations in difference form
to show that (a) simultaneity is not an absolute concept and
that (b) moving clocks run more slowly than stationary
clocks.

Solution (a) Suppose that two events are simultaneous ac-
cording to a moving observer O�, such that From
the expression for �t given in Equation 39.14, we see that in
this case the time interval �t measured by a stationary ob-
server O is That is, the time interval for the
same two events as measured by O is nonzero, and so the
events do not appear to be simultaneous to O.

�t � 	v �x �/c 2.

�t � � 0.

Lorentz velocity transformation
equation for S : S�
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and (39.17)

Note that and do not contain the parameter v in the numerator because the
relative velocity is along the x axis.

When ux and v are both much smaller than c (the nonrelativistic case), the de-
nominator of Equation 39.16 approaches unity, and so which is the
Galilean velocity transformation equation. In the other extreme, when 
Equation 39.16 becomes

From this result, we see that an object moving with a speed c relative to an ob-
server in S also has a speed c relative to an observer in S�—independent of the rel-
ative motion of S and S�. Note that this conclusion is consistent with Einstein’s sec-
ond postulate—that the speed of light must be c relative to all inertial reference
frames. Furthermore, the speed of an object can never exceed c. That is, the speed
of light is the ultimate speed. We return to this point later when we consider the
energy of a particle.

u�x �
c � v

1 �
cv
c 2

�

c �1 �
v
c �

1 �
v
c

� c

ux � c,
u�x � ux � v,

u�zu�y

u�z �
uz

	�1 �
uxv
c 2 �

u�y �
uy

	�1 �
uxv
c 2 �SPEED

LIMIT
3�108

m/s

The speed of light is the speed
limit of the Universe. It is the maxi-
mum possible speed for energy
transfer and for information trans-
fer. Any object with mass must
move at a lower speed.

Relative Velocity of SpaceshipsEXAMPLE 39.7
Solution We can solve this problem by taking the S� frame
as being attached to ship A, so that relative to the
Earth (the S frame). We can consider ship B as moving with a
velocity relative to the Earth. Hence, we can
obtain the velocity of ship B relative to ship A by using Equa-
tion 39.16:

The negative sign indicates that ship B is moving in the nega-
tive x direction as observed by the crew on ship A. Note that
the speed is less than c. That is, a body whose speed is less
than c in one frame of reference must have a speed less than
c in any other frame. (If the Galilean velocity transformation
equation were used in this example, we would find that

which is impossi-
ble. The Galilean transformation equation does not work in
relativistic situations.)

u�x � ux � v � �0.850c � 0.750c � �1.60c,

�0.977cu�x �
ux � v

1 �
uxv
c 2

�
�0.850c � 0.750c

1 �
(�0.850c)(0.750c)

c 2

�

ux � �0.850c

v � 0.750c
Two spaceships A and B are moving in opposite directions, as
shown in Figure 39.16. An observer on the Earth measures
the speed of ship A to be 0.750c and the speed of ship B to be
0.850c. Find the velocity of ship B as observed by the crew on
ship A.

The Speeding MotorcycleEXAMPLE 39.8

S ′ (attached to A)
y ′

0.750c –0.850c

BA

x ′O ′

S
y

xO

Figure 39.16 Two spaceships A and B move in opposite direc-
tions. The speed of B relative to A is less than c and is obtained from
the relativistic velocity transformation equation.

Lorentz velocity transformation
equations for S� : S

Imagine a motorcycle moving with a speed 0.80c past a sta-
tionary observer, as shown in Figure 39.17. If the rider tosses
a ball in the forward direction with a speed of 0.70c relative

to himself, what is the speed of the ball relative to the station-
ary observer?
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Solution The speed of the motorcycle relative to the station-
ary observer is The speed of the ball in the frame of
reference of the motorcyclist is Therefore, the
speed ux of the ball relative to the stationary observer is

Exercise Suppose that the motorcyclist turns on the head-
light so that a beam of light moves away from him with a
speed c in the forward direction. What does the stationary ob-
server measure for the speed of the light?

Answer c.

0.96cux �
u�x � v

1 �
u�xv
c 2

�
0.70c � 0.80c

1 �
(0.70c)(0.80c)

c 2

�

u�x � 0.70c.
v � 0.80c.

Relativistic Leaders of the PackEXAMPLE 39.9

Thus, the speed of Emily as observed by David is

Note that this speed is less than c, as required by the special
theory of relativity.

Exercise Use the Galilean velocity transformation equation
to calculate the classical speed of recession for Emily as ob-
served by David.

Answer 1.2c.

0.96cu� � !(u�x )2 � (u�y )2 � !(�0.75c)2 � (�0.60c)2 �

u�y �
uy

	�1 �
uxv
c 2 �

�
!1 �

(0.75c)2

c 2  (�0.90c)

�1 �
(0)(0.75c)

c 2 �
� �0.60c

Two motorcycle pack leaders named David and Emily are rac-
ing at relativistic speeds along perpendicular paths, as shown
in Figure 39.18. How fast does Emily recede as seen by David
over his right shoulder?

Solution Figure 39.18 represents the situation as seen by a
police officer at rest in frame S, who observes the following:

David:

Emily:

To calculate Emily’s speed of recession as seen by David, we
take S� to move along with David and then calculate and

for Emily using Equations 39.16 and 39.17:

u�x �
ux � v

1 �
uxv
c 2

�
0 � 0.75c

1 �
(0)(0.75c)

c 2

� �0.75c 

u�y

u �x

uy � �0.90cux � 0

uy � 0ux � 0.75c

Figure 39.17 A motorcyclist moves past a stationary observer with
a speed of 0.80c and throws a ball in the direction of motion with a
speed of 0.70c relative to himself.

0.70c

0.80c

z
y
x

0.90c

Emily

David

0.75c
Police officer at
rest in S

Figure 39.18 David moves to the east with
a speed 0.75c relative to the police officer, and
Emily travels south at a speed 0.90c relative to
the officer.
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To obtain ux in terms of we replace v by �v in Equation 39.16 and inter-
change the roles of ux and :

(39.18)

RELATIVISTIC LINEAR MOMENTUM AND THE
RELATIVISTIC FORM OF NEWTON’S LAWS

We have seen that in order to describe properly the motion of particles within the
framework of the special theory of relativity, we must replace the Galilean transforma-
tion equations by the Lorentz transformation equations. Because the laws of physics
must remain unchanged under the Lorentz transformation, we must generalize New-
ton’s laws and the definitions of linear momentum and energy to conform to the
Lorentz transformation equations and the principle of relativity. These generalized
definitions should reduce to the classical (nonrelativistic) definitions for 

First, recall that the law of conservation of linear momentum states that when
two isolated objects collide, their combined total momentum remains constant.
Suppose that the collision is described in a reference frame S in which linear mo-
mentum is conserved. If we calculate the velocities in a second reference frame S�
using the Lorentz velocity transformation equation and the classical definition of
linear momentum, (where u is the velocity of either object), we find that
linear momentum is not conserved in S�. However, because the laws of physics are
the same in all inertial frames, linear momentum must be conserved in all frames.
In view of this condition and assuming that the Lorentz velocity transformation
equation is correct, we must modify the definition of linear momentum to satisfy
the following conditions:

• Linear momentum p must be conserved in all collisions.
• The relativistic value calculated for p must approach the classical value mu as u

approaches zero.

For any particle, the correct relativistic equation for linear momentum that
satisfies these conditions is

(39.19)

where u is the velocity of the particle and m is the mass of the particle. When u is
much less than c, approaches unity and p approaches mu.
Therefore, the relativistic equation for p does indeed reduce to the classical ex-
pression when u is much smaller than c.

The relativistic force F acting on a particle whose linear momentum is p is de-
fined as

(39.20)

where p is given by Equation 39.19. This expression, which is the relativistic form
of Newton’s second law, is reasonable because it preserves classical mechanics in

F �
dp
dt

	 � (1 � u2/c 2)�1/2

p �
mu

!1 �
u2

c 2

� 	mu

p � mu

v V c.

39.6

ux �
u�x � v

1 �
u�xv
c 2

u�x 

u�x ,

Definition of relativistic linear
momentum
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the limit of low velocities and requires conservation of linear momentum for an
isolated system both relativistically and classically.

It is left as an end-of-chapter problem (Problem 63) to show that under rela-
tivistic conditions, the acceleration a of a particle decreases under the action of a
constant force, in which case From this formula, note that as
the particle’s speed approaches c, the acceleration caused by any finite force ap-
proaches zero. Hence, it is impossible to accelerate a particle from rest to a speed

RELATIVISTIC ENERGY
We have seen that the definition of linear momentum and the laws of motion re-
quire generalization to make them compatible with the principle of relativity. This
implies that the definition of kinetic energy must also be modified.

To derive the relativistic form of the work–kinetic energy theorem, let us first
use the definition of relativistic force, Equation 39.20, to determine the work done
on a particle by a force F :

(39.21)

for force and motion both directed along the x axis. In order to perform this inte-
gration and find the work done on the particle and the relativistic kinetic energy
as a function of u, we first evaluate dp/dt:

Substituting this expression for dp/dt and into Equation 39.21 gives

where we use the limits 0 and u in the rightmost integral because we have assumed

W � �t

0

m(du/dt)u dt

�1 �
u2

c2 �
3/2

� m �u

0

u

�1 �
u2

c2  �
3/2

 du

dx � u dt

dp

dt
�

d
dt

 
mu

!1 �
u2

c2

�
m(du/dt)

�1 �
u2

c2 �
3/2

W � �x2

x1

F dx � �x2

x1

dp
dt

 dx

39.7

u � c.

a � (1 � u2/c 2)3/2.

(F � 0)

Linear Momentum of an ElectronEXAMPLE 39.10

The (incorrect) classical expression gives

Hence, the correct relativistic result is 50% greater than the
classical result!

pclassical � meu � 2.05 � 10�22 kg�m/s

3.10 � 10�22 kg�m/s �
An electron, which has a mass of 9.11 � 10�31 kg, moves with
a speed of 0.750c. Find its relativistic momentum and com-
pare this value with the momentum calculated from the clas-
sical expression.

Solution Using Equation 39.19 with we have

�
(9.11 � 10�31 kg)(0.750 � 3.00 � 108 m/s)

!1 �
(0.750c)2

c2

p �
meu

!1 �
u2

c2

 

u � 0.750c,
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Relativistic kinetic energy

K/mc2

0.5c 1.0c 1.5c 2.0c

Relativistic
case

0.5

1.0

1.5

2.0

u

Nonrelativistic
case

Figure 39.19 A graph comparing rela-
tivistic and nonrelativistic kinetic energy.
The energies are plotted as a function of
speed. In the relativistic case, u is always
less than c.

that the particle is accelerated from rest to some final speed u. Evaluating the inte-
gral, we find that

(39.22)

Recall from Chapter 7 that the work done by a force acting on a particle equals the
change in kinetic energy of the particle. Because of our assumption that the initial
speed of the particle is zero, we know that the initial kinetic energy is zero. We
therefore conclude that the work W is equivalent to the relativistic kinetic energy K :

(39.23)

This equation is routinely confirmed by experiments using high-energy particle ac-
celerators.

At low speeds, where Equation 39.23 should reduce to the classical
expression We can check this by using the binomial expansion 

for where the higher-order powers of x are
neglected in the expansion. In our case, so that

Substituting this into Equation 39.23 gives

which is the classical expression for kinetic energy. A graph comparing the rela-
tivistic and nonrelativistic expressions is given in Figure 39.19. In the relativistic
case, the particle speed never exceeds c, regardless of the kinetic energy. The two
curves are in good agreement when 

The constant term mc2 in Equation 39.23, which is independent of the speed
of the particle, is called the rest energy ER of the particle (see Section 8.9). The
term 	mc2, which does depend on the particle speed, is therefore the sum of the
kinetic and rest energies. We define 	mc2 to be the total energy E:

u V c.

K � mc 2�1 �
1
2

 
u2

c 2 � � mc 2 �
1
2

 mu2

1

!1 �
u2

c 2

� �1 �
u2

c 2 �
�1/2

� 1 �
1
2

 
u2

c 2

x � u /c,
x V 1,(1 � x2)�1/2 � 1 � 1

2x2 � . . .
K � 1

2mu2.
u /c V 1,

K �
mc 2

!1 �
u2

c 2

� mc 2 � 	mc 2 � mc 2

W �
mc2

!1 �
u2

c2

� mc2

Definition of total energy
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(39.24)

or

(39.25)

This is Einstein’s famous equation about mass–energy equivalence.
The relationship shows that mass is a form of energy, where c2

in the rest energy term is just a constant conversion factor. This expression also
shows that a small mass corresponds to an enormous amount of energy, a concept
fundamental to nuclear and elementary-particle physics.

In many situations, the linear momentum or energy of a particle is measured
rather than its speed. It is therefore useful to have an expression relating the total
energy E to the relativistic linear momentum p. This is accomplished by using the
expressions and By squaring these equations and subtracting,
we can eliminate u (Problem 39). The result, after some algebra, is6

(39.26)

When the particle is at rest, and so For particles that have
zero mass, such as photons, we set in Equation 39.26 and see that

(39.27)

This equation is an exact expression relating total energy and linear momentum
for photons, which always travel at the speed of light.

Finally, note that because the mass m of a particle is independent of its mo-
tion, m must have the same value in all reference frames. For this reason, m is of-
ten called the invariant mass. On the other hand, because the total energy and
linear momentum of a particle both depend on velocity, these quantities depend
on the reference frame in which they are measured.

Because m is a constant, we conclude from Equation 39.26 that the quantity
must have the same value in all reference frames. That is, is

invariant under a Lorentz transformation. (Equations 39.26 and 39.27 do not
make provision for potential energy.)

When we are dealing with subatomic particles, it is convenient to express their

E 2 � p2c 2E 2 � p2c 2

E � pc

m � 0
E � E R � mc 2.p � 0

E 2 � p2c 2 � (mc 2)2

p � 	mu.E � 	mc 2

E � K � mc 2

E �
mc 2

!1 �
u2

c 2

 E � 	mc 2 � K � mc 2 

Total energy � kinetic energy � rest energy

Energy–momentum relationship

6 One way to remember this relationship is to draw a right triangle having a hypotenuse of length E
and legs of lengths pc and mc2.

The Energy of a Speedy ElectronEXAMPLE 39.11

This is 3% greater than the rest energy.
We obtain the kinetic energy by subtracting the rest en-

ergy from the total energy:

0.017 MeVK � E � mec 2 � 0.528 MeV � 0.511 MeV �

0.528 MeV � 1.03(0.511 MeV) �
An electron in a television picture tube typically moves with a
speed Find its total energy and kinetic energy in
electron volts.

Solution Using the fact that the rest energy of the elec-
tron is 0.511 MeV together with Equation 39.25, we have

E �
mec 2

!1 �
u2

c 2

�
0.511 MeV

!1 �
(0.250c)2

c 2

 

u � 0.250c.
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energy in electron volts because the particles are usually given this energy by accel-
eration through a potential difference. The conversion factor, as you recall from
Equation 25.5, is

For example, the mass of an electron is 9.109 � 10�31 kg. Hence, the rest energy
of the electron is

EQUIVALENCE OF MASS AND ENERGY
To understand the equivalence of mass and energy, consider the following thought
experiment proposed by Einstein in developing his famous equation 
Imagine an isolated box of mass M box and length L initially at rest, as shown in Fig-
ure 39.20a. Suppose that a pulse of light is emitted from the left side of the box, as
depicted in Figure 39.20b. From Equation 39.27, we know that light of energy E
carries linear momentum Hence, if momentum is to be conserved, the
box must recoil to the left with a speed v. If it is assumed that the box is very mas-

p � E /c.

E � mc2.

39.8

 � (8.187 � 10�14 J)(1 eV/1.602 � 10�19 J) � 0.5110 MeV

mec 2 � (9.109 � 10�31 kg)(2.9979 � 108 m/s)2 � 8.187 � 10�14 J

1 eV � 1.602 � 10�19 J

The Energy of a Speedy ProtonEXAMPLE 39.12

(c) Determine the kinetic energy of the proton in elec-
tron volts.

Solution From Equation 39.24,

Because 

(d) What is the proton’s momentum?

Solution We can use Equation 39.26 to calculate the mo-
mentum with 

The unit of momentum is written MeV/c for convenience.

2 650 MeV/c p � !8
mpc 2

c
� !8 

(938 MeV)
c

�

p2c 2 � 9(mpc 2)2 � (mpc 2)2 � 8(mpc 2)2 

 E 2 � p2c 2 � (mpc 2)2 � (3mpc 2)2

E � 3mpc 2:

1 880 MeVK �mpc 2 � 938 MeV,

K � E � mpc 2 � 3mpc 2 � mpc 2 � 2mpc 2

2.83 � 108 m/s u �
!8
3

 c �
(a) Find the rest energy of a proton in electron volts.

Solution

(b) If the total energy of a proton is three times its rest en-
ergy, with what speed is the proton moving?

Solution Equation 39.25 gives

Solving for u gives

 
u2

c2 �
8
9

 

1 �
u2

c2 �
1
9

 

 3 �
1

!1 �
u2

c 2

E � 3mpc 2 �
mpc 2

!1 �
u2

c 2

938 MeV�

 � (1.50 � 10�10 J)(1.00 eV/1.60 � 10�19 J) 

E R � mpc 2 � (1.67 � 10�27 kg)(3.00 � 108 m/s)2

(a)

L

(b)

L

cv

Figure 39.20 (a) A box of length
L at rest. (b) When a light pulse di-
rected to the right is emitted at the
left end of the box, the box recoils
to the left until the pulse strikes the
right end.
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sive, the recoil speed is much less than the speed of light, and conservation of mo-
mentum gives or

The time it takes the light pulse to move the length of the box is approximately 
�t � L /c. In this time interval, the box moves a small distance �x to the left,
where

The light then strikes the right end of the box and transfers its momentum to the
box, causing the box to stop. With the box in its new position, its center of mass
appears to have moved to the left. However, its center of mass cannot have moved
because the box is an isolated system. Einstein resolved this perplexing situation
by assuming that in addition to energy and momentum, light also carries mass. If
Mpulse is the effective mass carried by the pulse of light and if the center of mass of
the system (box plus pulse of light) is to remain fixed, then

Solving for Mpulse , and using the previous expression for �x, we obtain

or

E � Mpulsec 2 

Mpulse �
Mbox�x

L
�

Mbox

L
 

EL
Mboxc 2 �

E
c 2

MpulseL � Mbox�x

�x � v �t �
EL

Mboxc 2

v �
E

Mboxc

Mboxv � E /c,

Conversion of mass–energy

Thus, Einstein reached the profound conclusion that “if a body gives off the en-
ergy E in the form of radiation, its mass diminishes by E /c 2, . . .”

Although we derived the relationship for light energy, the equiva-
lence of mass and energy is universal. Equation 39.24, which represents
the total energy of any particle, suggests that even when a particle is at rest (	 � 1)
it still possesses enormous energy because it has mass. Probably the clearest experi-
mental proof of the equivalence of mass and energy occurs in nuclear and elemen-
tary particle interactions, where large amounts of energy are released and the en-
ergy release is accompanied by a decrease in mass. Because energy and mass are
related, we see that the laws of conservation of energy and conservation of mass
are one and the same. Simply put, this law states that

The release of enormous quantities of energy from subatomic particles, ac-
companied by changes in their masses, is the basis of all nuclear reactions. In a
conventional nuclear reactor, a uranium nucleus undergoes fission, a reaction that
creates several lighter fragments having considerable kinetic energy. The com-

E � 	mc 2,
E � mc 2

the energy of a system of particles before interaction must equal the energy of
the system after interaction, where energy of the ith particle is given by the ex-
pression

E i �
mic 2

!1 �
ui 

2

c 2

� 	mic 2
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bined mass of all the fragments is less than the mass of the parent uranium nu-
cleus by an amount �m. The corresponding energy �mc 2 associated with this mass
difference is exactly equal to the total kinetic energy of the fragments. This kinetic
energy raises the temperature of water in the reactor, converting it to steam for the

CONCEPTUAL EXAMPLE 39.13
cording to the special theory of relativity, any change in the
total energy of a system is equivalent to a change in the mass
of the system. Therefore, the mass of a compressed (or
stretched) spring is greater than the mass of the spring in its
equilibrium position by an amount U/c 2.

Because mass is a measure of energy, can we conclude that
the mass of a compressed spring is greater than the mass of
the same spring when it is not compressed?

Solution Recall that when a spring of force constant k is
compressed (or stretched) from its equilibrium position a
distance x , it stores elastic potential energy Ac-U � kx2/2.

Binding Energy of the DeuteronEXAMPLE 39.14
tion, and therefore

Using we find that the binding energy is

Therefore, the minimum energy required to separate the
proton from the neutron of the deuterium nucleus (the
binding energy) is 2.23 MeV.

2.23 MeV � 3.56 � 10�13 J �

E � �mc 2 � (3.96 � 10�30 kg)(3.00 � 108 m/s)2

E � �mc 2,

3.96 � 10�30 kg�m � 0.002 388 u �

1.66 � 10�27 kg,1 u �A deuteron, which is the nucleus of a deuterium atom, 
contains one proton and one neutron and has a mass of 
2.013 553 u. This total deuteron mass is not equal to the sum
of the masses of the proton and neutron. Calculate the mass
difference and determine its energy equivalence, which is
called the binding energy of the nucleus.

Solution Using atomic mass units (u), we have

The mass difference �m is therefore 0.002 388 u. By defini-

 mp � mn � 2.015 941 u

mn � mass of neutron � 1.008 665 u

mp � mass of proton � 1.007 276 u

generation of electric power.
In the nuclear reaction called fusion, two atomic nuclei combine to form a sin-

gle nucleus. The fusion reaction in which two deuterium nuclei fuse to form a he-
lium nucleus is of major importance in current research and the development of
controlled-fusion reactors. The decrease in mass that results from the creation of
one helium nucleus from two deuterium nuclei is �m � 4.25 � 10�29 kg. Hence,
the corresponding excess energy that results from one fusion reaction is �mc2 �
3.83 � 10�12 J � 23.9 MeV. To appreciate the magnitude of this result, note that if
1 g of deuterium is converted to helium, the energy released is about 1012 J! At 
the current cost of electrical energy, this quantity of energy would be worth about 
$70 000.

RELATIVITY AND ELECTROMAGNETISM
Consider two frames of reference S and S� that are in relative motion, and assume
that a single charge q is at rest in the S� frame of reference. According to an ob-

39.9
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server in this frame, an electric field surrounds the charge. However, an observer
in frame S says that the charge is in motion and therefore measures both an elec-
tric field and a magnetic field. The magnetic field measured by the observer in
frame S is created by the moving charge, which constitutes an electric current. In
other words, electric and magnetic fields are viewed differently in frames of refer-
ence that are moving relative to each other. We now describe one situation that
shows how an electric field in one frame of reference is viewed as a magnetic field
in another frame of reference.

A positive test charge q is moving parallel to a current-carrying wire with veloc-
ity v relative to the wire in frame S, as shown in Figure 39.21a. We assume that the
net charge on the wire is zero and that the electrons in the wire also move with ve-
locity v in a straight line. The leftward current in the wire produces a magnetic
field that forms circles around the wire and is directed into the page at the loca-
tion of the moving test charge. Therefore, a magnetic force directed
away from the wire is exerted on the test charge. However, no electric force acts on
the test charge because the net charge on the wire is zero when viewed in this
frame.

Now consider the same situation as viewed from frame S�, where the test
charge is at rest (Figure 39.21b). In this frame, the positive charges in the wire
move to the left, the electrons in the wire are at rest, and the wire still carries a cur-

FB � q v � B

Figure 39.21 (a) In frame S, the positive charge q moves to the right with a velocity v, and the
current-carrying wire is stationary. A magnetic field B surrounds the wire, and charge experi-
ences a magnetic force directed away from the wire. (b) In frame S�, the wire moves to the left
with a velocity �v, and the charge q is stationary. The wire creates an electric field E, and the
charge experiences an electric force directed away from the wire.

––––

(b)

E

E

frame S′

Current ++++++ +

FE

q +

––––
+ + + + +

(a)

B

frame S

Current

–

v

FB

+q

�v
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rent. Because the test charge is not moving in this frame, there
is no magnetic force exerted on the test charge when viewed in this frame. How-
ever, if a force is exerted on the test charge in frame S�, the frame of the wire, as
described earlier, a force must be exerted on it in any other frame. What is the ori-
gin of this force in frame S, the frame of the test charge?

The answer to this question is provided by the special theory of relativity.
When the situation is viewed in frame S, as in Figure 39.21a, the positive charges
are at rest and the electrons in the wire move to the right with a velocity v. Because
of length contraction, the electrons appear to be closer together than their proper
separation. Because there is no net charge on the wire this contracted separation
must equal the separation between the stationary positive charges. The situation is
quite different when viewed in frame S�, shown in Figure 39.21b. In this frame, the
positive charges appear closer together because of length contraction, and the
electrons in the wire are at rest with a separation that is greater than that viewed in
frame S. Therefore, there is a net positive charge on the wire when viewed in
frame S�. This net positive charge produces an electric field pointing away from
the wire toward the test charge, and so the test charge experiences an electric
force directed away from the wire. Thus, what was viewed as a magnetic field (and
a corresponding magnetic force) in the frame of the wire transforms into an elec-
tric field (and a corresponding electric force) in the frame of the test charge.

Optional Section

THE GENERAL THEORY OF RELATIVITY
Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly dif-
ferent properties: a gravitational attraction for other masses and an inertial property
that resists acceleration. To designate these two attributes, we use the subscripts g
and i and write

Gravitational property

Inertial property

The value for the gravitational constant G was chosen to make the magnitudes
of mg and mi numerically equal. Regardless of how G is chosen, however, the strict
proportionality of mg and mi has been established experimentally to an extremely
high degree: a few parts in 1012. Thus, it appears that gravitational mass and iner-
tial mass may indeed be exactly proportional.

But why? They seem to involve two entirely different concepts: a force of mu-
tual gravitational attraction between two masses, and the resistance of a single
mass to being accelerated. This question, which puzzled Newton and many other
physicists over the years, was answered when Einstein published his theory of gravi-
tation, known as his general theory of relativity, in 1916. Because it is a mathematically
complex theory, we offer merely a hint of its elegance and insight.

In Einstein’s view, the remarkable coincidence that mg and mi seemed to be
proportional to each other was evidence of an intimate and basic connection be-
tween the two concepts. He pointed out that no mechanical experiment (such as
dropping a mass) could distinguish between the two situations illustrated in Figure
39.22a and b. In each case, the dropped briefcase undergoes a downward accelera-
tion g relative to the floor.

Einstein carried this idea further and proposed that no experiment, mechan-
ical or otherwise, could distinguish between the two cases. This extension to in-

�F � mia

Fg � mg g

39.10

FB � q v � B � 0;
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clude all phenomena (not just mechanical ones) has interesting consequences.
For example, suppose that a light pulse is sent horizontally across the elevator.
During the time it takes the light to make the trip, the right wall of the elevator
has accelerated upward. This causes the light to arrive at a location lower on the
wall than the spot it would have hit if the elevator were not accelerating. Thus,
in the frame of the elevator, the trajectory of the light pulse bends downward as
the elevator accelerates upward to meet it. Because the accelerating elevator
cannot be distinguished from a nonaccelerating one located in a gravitational
field, Einstein proposed that a beam of light should also be bent downward by a
gravitational field, as shown in Figure 39.22c. Experiments have verified the ef-
fect, although the bending is small. A laser aimed at the horizon falls less than 
1 cm after traveling 6 000 km. (No such bending is predicted in Newton’s theory
of gravitation.)

The two postulates of Einstein’s general theory of relativity are

• All the laws of nature have the same form for observers in any frame of refer-
ence, whether accelerated or not.

(c)(b)

F

(a)

Figure 39.22 (a) The observer is at rest in a uniform gravitational field g. (b) The observer is
in a region where gravity is negligible, but the frame of reference is accelerated by an external
force F that produces an acceleration g. According to Einstein, the frames of reference in parts
(a) and (b) are equivalent in every way. No local experiment can distinguish any difference be-
tween the two frames. (c) If parts (a) and (b) are truly equivalent, as Einstein proposed, then a
ray of light should bend in a gravitational field.

This Global Positioning System (GPS) unit
incorporates relativistically corrected time
calculations in its analysis of signals it re-
ceives from orbiting satellites. These correc-
tions allow the unit to determine its posi-
tion on the Earth’s surface to within a few
meters. If the corrections were not made,
the location error would be about 1 km.
(Courtesy of Trimble Navigation Limited)
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• In the vicinity of any point, a gravitational field is equivalent to an accelerated
frame of reference in the absence of gravitational effects. (This is the principle of
equivalence.)

The second postulate implies that gravitational mass and inertial mass are com-
pletely equivalent, not just proportional. What were thought to be two different
types of mass are actually identical.

One interesting effect predicted by the general theory is that time scales are
altered by gravity. A clock in the presence of gravity runs more slowly than one lo-
cated where gravity is negligible. Consequently, the frequencies of radiation emit-
ted by atoms in the presence of a strong gravitational field are red-shifted to lower
frequencies when compared with the same emissions in the presence of a weak
field. This gravitational red shift has been detected in spectral lines emitted by
atoms in massive stars. It has also been verified on the Earth by comparison of the
frequencies of gamma rays (a high-energy form of electromagnetic radiation)
emitted from nuclei separated vertically by about 20 m.

Two identical clocks are in the same house, one upstairs in a bedroom and the other down-
stairs in the kitchen. Which clock runs more slowly?

The second postulate suggests that a gravitational field may be “transformed
away” at any point if we choose an appropriate accelerated frame of reference—a
freely falling one. Einstein developed an ingenious method of describing the ac-
celeration necessary to make the gravitational field “disappear.” He specified a
concept, the curvature of space– time, that describes the gravitational effect at every
point. In fact, the curvature of space–time completely replaces Newton’s gravita-
tional theory. According to Einstein, there is no such thing as a gravitational force.
Rather, the presence of a mass causes a curvature of space–time in the vicinity of
the mass, and this curvature dictates the space–time path that all freely moving
objects must follow. In 1979, John Wheeler summarized Einstein’s general theory
of relativity in a single sentence: “Space tells matter how to move and matter tells
space how to curve.”

Consider two travelers on the surface of the Earth walking directly toward the

Quick Quiz 39.7

1.75"

Sun
To star

(actual direction)

Apparent
direction to star

Deflected path of light
from star

Earth

Figure 39.23 Deflection of starlight passing near the Sun. Because of this effect, the Sun or
some other remote object can act as a gravitational lens. In his general theory of relativity, Einstein
calculated that starlight just grazing the Sun’s surface should be deflected by an angle of 1.75�.
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North Pole but from different starting locations. Even though both say they are
walking due north, and thus should be on parallel paths, they see themselves get-
ting closer and closer together, as if they were somehow attracted to each other.
The curvature of the Earth causes this effect. In a similar way, what we are used to
thinking of as the gravitational attraction between two masses is, in Einstein’s view,
two masses curving space–time and as a result moving toward each other, much
like two bowling balls on a mattress rolling together.

One prediction of the general theory of relativity is that a light ray passing
near the Sun should be deflected into the curved space–time created by the Sun’s
mass. This prediction was confirmed when astronomers detected the bending of
starlight near the Sun during a total solar eclipse that occurred shortly after World
War I (Fig. 39.23). When this discovery was announced, Einstein became an inter-
national celebrity.

If the concentration of mass becomes very great, as is believed to occur when a
large star exhausts its nuclear fuel and collapses to a very small volume, a black
hole may form. Here, the curvature of space–time is so extreme that, within a cer-
tain distance from the center of the black hole, all matter and light become
trapped.

SUMMARY

The two basic postulates of the special theory of relativity are

• The laws of physics must be the same in all inertial reference frames.
• The speed of light in vacuum has the same value, in all in-

ertial frames, regardless of the velocity of the observer or the velocity of the
source emitting the light.

Three consequences of the special theory of relativity are

• Events that are simultaneous for one observer are not simultaneous for another
observer who is in motion relative to the first.

• Clocks in motion relative to an observer appear to be slowed down by a factor
This phenomenon is known as time dilation.

• The length of objects in motion appears to be contracted in the direction of 
	 � (1 � v2/c2)�1/2.

c � 3.00 � 108 m/s,

Einstein’s cross. The four bright spots are
images of the same galaxy that have been
bent around a massive object located be-
tween the galaxy and the Earth. The mas-
sive object acts like a lens, causing the rays
of light that were diverging from the distant
galaxy to converge on the Earth. (If the in-
tervening massive object had a uniform
mass distribution, we would see a bright
ring instead of four spots.)
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motion by a factor This phenomenon is known as length
contraction.

To satisfy the postulates of special relativity, the Galilean transformation equa-
tions must be replaced by the Lorentz transformation equations:

(39.11)

where 
The relativistic form of the velocity transformation equation is

(39.16)

where ux is the speed of an object as measured in the S frame and is its speed
measured in the S� frame.

The relativistic expression for the linear momentum of a particle moving
with a velocity u is

(39.19)

The relativistic expression for the kinetic energy of a particle is

p �
mu

!1 �
u2

c 2

� 	mu

u�x

u�x �
ux � v

1 �
uxv
c 2

	 � (1 � v2/c 2)�1/2.

t � � 	�t �
v
c 2  x�

z� � z 

y� � y 

x � � 	(x � vt) 

1/	 � (1 � v2/c2)1/2.

QUESTIONS

7. List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

8. Give a physical argument that shows that it is impossible
to accelerate an object of mass m to the speed of light,
even if it has a continuous force acting on it.

9. It is said that Einstein, in his teenage years, asked the
question, “What would I see in a mirror if I carried it in
my hands and ran at the speed of light?” How would you
answer this question?

10. Some distant star-like objects, called quasars, are receding
from us at half the speed of light (or greater). What is the
speed of the light we receive from these quasars?

11. How is it possible that photons of light, which have zero
mass, have momentum?

12. With regard to reference frames, how does general rela-
tivity differ from special relativity?

13. Describe how the results of Example 39.7 would change
if, instead of fast spaceships, two ordinary cars were ap-
proaching each other at highway speeds.

14. Two objects are identical except that one is hotter than
the other. Compare how they respond to identical forces.

1. What two speed measurements do two observers in rela-
tive motion always agree on?

2. A spaceship in the shape of a sphere moves past an ob-
server on the Earth with a speed 0.5c. What shape does
the observer see as the spaceship moves past?

3. An astronaut moves away from the Earth at a speed close
to the speed of light. If an observer on Earth measures
the astronaut’s dimensions and pulse rate, what changes
(if any) would the observer measure? Would the astro-
naut measure any changes about himself?

4. Two identical clocks are synchronized. One is then put in
orbit directed eastward around the Earth while the other
remains on Earth. Which clock runs slower? When the
moving clock returns to Earth, are the two still synchro-
nized?

5. Two lasers situated on a moving spacecraft are triggered
simultaneously. An observer on the spacecraft claims to
see the pulses of light simultaneously. What condition is
necessary so that a second observer agrees?

6. When we say that a moving clock runs more slowly than a
stationary one, does this imply that there is something
physically unusual about the moving clock?
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PROBLEMS

Centauri, 4.20 ly away. The astronauts disagree. (a) How
much time passes on the astronauts’ clocks? (b) What
distance to Alpha Centauri do the astronauts measure?

11. A spaceship with a proper length of 300 m takes 
0.750 �s to pass an Earth observer. Determine the speed
of this spaceship as measured by the Earth observer.

12. A spaceship of proper length Lp takes time t to pass an
Earth observer. Determine the speed of this spaceship
as measured by the Earth observer.

13. A muon formed high in the Earth’s atmosphere travels
at speed for a distance of 4.60 km before it
decays into an electron, a neutrino, and an antineutrino

(a) How long does the muon live,
as measured in its reference frame? (b) How far does
the muon travel, as measured in its frame?

14. Review Problem. In 1962, when Mercury astronaut
Scott Carpenter orbited the Earth 22 times, the press
stated that for each orbit he aged 2 millionths of a sec-
ond less than he would have had he remained on Earth.
(a) Assuming that he was 160 km above the Earth in a
circular orbit, determine the time difference between
someone on Earth and the orbiting astronaut for the 
22 orbits. You will need to use the approximation 

for small x. (b) Did the press report
accurate information? Explain.

15. The pion has an average lifetime of 26.0 ns when at
rest. In order for it to travel 10.0 m, how fast must it
move?

16. For what value of v does 	 � 1.01? Observe that for
speeds less than this value, time dilation and length
contraction are less-than-one-percent effects.

17. A friend passes by you in a spaceship traveling at a high
speed. He tells you that his ship is 20.0 m long and that
the identically constructed ship you are sitting in is 
19.0 m long. According to your observations, (a) how
long is your ship, (b) how long is your friend’s ship, and
(c) what is the speed of your friend’s ship?

18. An interstellar space probe is launched from Earth. Af-
ter a brief period of acceleration it moves with a con-
stant velocity, 70.0% of the speed of light. Its nuclear-
powered batteries supply the energy to keep its data
transmitter active continuously. The batteries have a
lifetime of 15.0 yr as measured in a rest frame. (a) How
long do the batteries on the space probe last as mea-
sured by Mission Control on Earth? (b) How far is the
probe from Earth when its batteries fail, as measured by
Mission Control? (c) How far is the probe from Earth
when its batteries fail, as measured by its built-in trip
odometer? (d) For what total time after launch are data

!1 � x � 1 � x/2

(�� : e� � � � � ).

v � 0.990c

Section 39.1 The Principle of Galilean Relativity
1. A 2 000-kg car moving at 20.0 m/s collides and locks to-

gether with a 1 500-kg car at rest at a stop sign. Show
that momentum is conserved in a reference frame mov-
ing at 10.0 m/s in the direction of the moving car.

2. A ball is thrown at 20.0 m/s inside a boxcar moving
along the tracks at 40.0 m/s. What is the speed of the
ball relative to the ground if the ball is thrown (a) for-
ward? (b) backward? (c) out the side door?

3. In a laboratory frame of reference, an observer notes
that Newton’s second law is valid. Show that it is also
valid for an observer moving at a constant speed, small
compared with the speed of light, relative to the labora-
tory frame.

4. Show that Newton’s second law is not valid in a refer-
ence frame moving past the laboratory frame of Prob-
lem 3 with a constant acceleration.

Section 39.2 The Michelson – Morley Experiment
Section 39.3 Einstein’s Principle of Relativity
Section 39.4 Consequences of the Special 
Theory of Relativity

5. How fast must a meter stick be moving if its length is ob-
served to shrink to 0.500 m?

6. At what speed does a clock have to move if it is to be
seen to run at a rate that is one-half the rate of a clock
at rest?

7. An astronaut is traveling in a space vehicle that has a
speed of 0.500c relative to the Earth. The astronaut
measures his pulse rate at 75.0 beats per minute. Signals
generated by the astronaut’s pulse are radioed to Earth
when the vehicle is moving in a direction perpendicular
to a line that connects the vehicle with an observer on
the Earth. What pulse rate does the Earth observer mea-
sure? What would be the pulse rate if the speed of the
space vehicle were increased to 0.990c ?

8. The proper length of one spaceship is three times that
of another. The two spaceships are traveling in the same
direction and, while both are passing overhead, an
Earth observer measures the two spaceships to have the
same length. If the slower spaceship is moving with a
speed of 0.350c, determine the speed of the faster
spaceship.

9. An atomic clock moves at 1 000 km/h for 1 h as mea-
sured by an identical clock on Earth. How many
nanoseconds slow will the moving clock be at the end of
the 1-h interval?

10. If astronauts could travel at we on Earth
would say it takes yr to reach Alpha(4.20/0.950) � 4.42

v � 0.950c,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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received from the probe by Mission Control? Note that
radio waves travel at the speed of light and fill the space
between the probe and Earth at the time of battery fail-
ure.

19. Review Problem. An alien civilization occupies a
brown dwarf, nearly stationary relative to the Sun, sev-
eral lightyears away. The extraterrestrials have come to
love original broadcasts of The Ed Sullivan Show, on our
television channel 2, at carrier frequency 57.0 MHz.
Their line of sight to us is in the plane of the Earth’s or-
bit. Find the difference between the highest and lowest
frequencies they receive due to the Earth’s orbital mo-
tion around the Sun.

20. Police radar detects the speed of a car (Fig. P39.20) as
follows: Microwaves of a precisely known frequency are
broadcast toward the car. The moving car reflects the
microwaves with a Doppler shift. The reflected waves
are received and combined with an attenuated version
of the transmitted wave. Beats occur between the two
microwave signals. The beat frequency is measured. 
(a) For an electromagnetic wave reflected back to its
source from a mirror approaching at speed v, show that
the reflected wave has frequency

where f source is the source frequency. (b) When v is
much less than c, the beat frequency is much less than
the transmitted frequency. In this case, use the approxi-
mation and show that the beat fre-
quency can be written as (c) What beat fre-f b � 2v/�.

f � f source 	 2f source

f � f source 
c � v
c � v

quency is measured for a car speed of 30.0 m/s if the
microwaves have frequency 10.0 GHz? (d) If the beat
frequency measurement is accurate to � 5 Hz, how ac-
curate is the velocity measurement?

21. The red shift. A light source recedes from an observer
with a speed v source , which is small compared with c. 
(a) Show that the fractional shift in the measured wave-
length is given by the approximate expression

This phenomenon is known as the red shift because the
visible light is shifted toward the red. (b) Spectroscopic
measurements of light at coming from a
galaxy in Ursa Major reveal a red shift of 20.0 nm. What
is the recessional speed of the galaxy?

Section 39.5 The Lorentz Transformation Equations
22. A spaceship travels at 0.750c relative to Earth. If the

spaceship fires a small rocket in the forward direction,
how fast (relative to the ship) must it be fired for it to
travel at 0.950c relative to Earth?

23. Two jets of material from the center of a radio galaxy fly
away in opposite directions. Both jets move at 0.750c rel-
ative to the galaxy. Determine the speed of one jet rela-
tive to that of the other.

24. A moving rod is observed to have a length of 2.00 m, and
to be oriented at an angle of 30.0° with respect to the di-
rection of motion (Fig. P39.24). The rod has a speed of
0.995c. (a) What is the proper length of the rod? (b)
What is the orientation angle in the proper frame?

� � 397 nm

��

�
�

vsource

c

Figure P39.20 (Trent Steffler/David R. Frazier Photolibrary)

WEB

Direction of motion

30.0°

2.00 m

Figure P39.24

u = 0.900c

S

x

S ′

x ′

v = 0.800c

Figure P39.25

25. A Klingon space ship moves away from the Earth at a
speed of 0.800c (Fig. P39.25). The starship Enterprise
pursues at a speed of 0.900c relative to the Earth. Ob-
servers on Earth see the Enterprise overtaking the Klin-
gon ship at a relative speed of 0.100c. With what speed
is the Enterprise overtaking the Klingon ship as seen by
the crew of the Enterprise ?
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26. A red light flashes at position and time
and a blue light flashes at

and (all values are mea-
sured in the S reference frame). Reference frame S� has
its origin at the same point as S at frame S�
moves constantly to the right. Both flashes are observed
to occur at the same place in S�. (a) Find the relative ve-
locity between S and S�. (b) Find the location of the two
flashes in frame S�. (c) At what time does the red flash
occur in the S� frame?

Section 39.6 Relativistic Linear Momentum and the 
Relativistic Form of Newton’s Laws

27. Calculate the momentum of an electron moving with a
speed of (a) 0.010 0c, (b) 0.500c, (c) 0.900c.

28. The nonrelativistic expression for the momentum of a
particle, can be used if For what speed
does the use of this formula yield an error in the mo-
mentum of (a) 1.00 percent and (b) 10.0 percent?

29. A golf ball travels with a speed of 90.0 m/s. By what frac-
tion does its relativistic momentum p differ from its clas-
sical value mu? That is, find the ratio 

30. Show that the speed of an object having momentum p
and mass m is

31. An unstable particle at rest breaks into two fragments of
unequal mass. The mass of the lighter fragment is 
2.50 � 10�28 kg, and that of the heavier fragment is
1.67 � 10�27 kg. If the lighter fragment has a speed of
0.893c after the breakup, what is the speed of the heav-
ier fragment?

Section 39.7 Relativistic Energy
32. Determine the energy required to accelerate an elec-

tron (a) from 0.500c to 0.900c and (b) from 0.900c to
0.990c.

33. Find the momentum of a proton in MeV/c units if its
total energy is twice its rest energy.

34. Show that, for any object moving at less than one-tenth
the speed of light, the relativistic kinetic energy agrees
with the result of the classical equation to
within less than 1%. Thus, for most purposes, the classi-
cal equation is good enough to describe these objects,
whose motion we call nonrelativistic.

35. A proton moves at 0.950c. Calculate its (a) rest energy,
(b) total energy, and (c) kinetic energy.

36. An electron has a kinetic energy five times greater than
its rest energy. Find (a) its total energy and (b) its
speed.

37. A cube of steel has a volume of 1.00 cm3 and a mass of
8.00 g when at rest on the Earth. If this cube is now
given a speed what is its density as mea-
sured by a stationary observer? Note that relativistic
density is E R /c 2V.

u � 0.900c,

K � mu2/2

u �
c

!1 � (mc/p)2

(p � mu)/mu.

u V c.p � mu,

t � t � � 0;

t B � 9.00 � 10�9 sxB � 5.00 m
t R � 1.00 � 10�9 s,

xR � 3.00 m 38. An unstable particle with a mass of 3.34 � 10�27 kg is
initially at rest. The particle decays into two fragments
that fly off with velocities of 0.987c and � 0.868c. Find
the masses of the fragments. (Hint: Conserve both
mass–energy and momentum.)

39. Show that the energy–momentum relationship
follows from the expressions

and 
40. A proton in a high-energy accelerator is given a kinetic

energy of 50.0 GeV. Determine (a) its momentum and
(b) its speed.

41. In a typical color television picture tube, the electrons
are accelerated through a potential difference of 
25 000 V. (a) What speed do the electrons have when
they strike the screen? (b) What is their kinetic energy
in joules?

42. Electrons are accelerated to an energy of 20.0 GeV in
the 3.00-km-long Stanford Linear Accelerator. (a) What
is the 	 factor for the electrons? (b) What is their
speed? (c) How long does the accelerator appear to
them?

43. A pion at rest decays to a muon
and an antineutrino The reac-

tion is written Find the kinetic energy of
the muon and the antineutrino in electron volts. (Hint:
Relativistic momentum is conserved.)

Section 39.8 Equivalence of Mass and Energy
44. Make an order-of-magnitude estimate of the ratio of

mass increase to the original mass of a flag as you run it
up a flagpole. In your solution explain what quantities
you take as data and the values you estimate or measure
for them.

45. When 1.00 g of hydrogen combines with 8.00 g of oxy-
gen, 9.00 g of water is formed. During this chemical re-
action, 2.86 � 105 J of energy is released. How much
mass do the constituents of this reaction lose? Is the loss
of mass likely to be detectable?

46. A spaceship of mass 1.00 � 106 kg is to be accelerated
to 0.600c. (a) How much energy does this require? 
(b) How many kilograms of matter would it take to pro-
vide this much energy?

47. In a nuclear power plant the fuel rods last 3 yr before
they are replaced. If a plant with rated thermal power
1.00 GW operates at 80.0% capacity for the 3 yr, what is
the loss of mass of the fuel?

48. A 57Fe nucleus at rest emits a 14.0-keV photon. Use the
conservation of energy and momentum to deduce the
kinetic energy of the recoiling nucleus in electron volts.
(Use for the final state of the 57Fe
nucleus.)

49. The power output of the Sun is 3.77 � 1026 W. How
much mass is converted to energy in the Sun each sec-
ond?

50. A gamma ray (a high-energy photon of light) can 
produce an electron (e�) and a positron (e�) when 

Mc 2 � 8.60 � 10�9 J

�� : �� � �.
(m� � 0).(m� � 206me)

(m� � 270me)

p � 	mu.E � 	mc 2
E 2 � p2c 2 � (mc 2)2

WEB

WEB



it enters the electric field of a heavy nucleus:
What minimum 	 -ray energy is 

required to accomplish this task? (Hint: The masses of
the electron and the positron are equal.)

Section 39.9 Relativity and Electromagnetism
51. As measured by observers in a reference frame S, a par-

ticle having charge q moves with velocity v in a magnetic
field B and an electric field E. The resulting force on
the particle is then measured to be 
Another observer moves along with the charged particle
and also measures its charge to be q but measures the
electric field to be E�. If both observers are to measure
the same force F, show that 

ADDITIONAL PROBLEMS

52. An electron has a speed of 0.750c. Find the speed of a
proton that has (a) the same kinetic energy as the elec-
tron; (b) the same momentum as the electron.

53. The cosmic rays of highest energy are protons, which
have kinetic energy on the order of 1013 MeV. (a) How
long would it take a proton of this energy to travel
across the Milky Way galaxy, having a diameter of 

 105 ly, as measured in the proton’s frame? (b) From
the point of view of the proton, how many kilometers
across is the galaxy?

54. A spaceship moves away from the Earth at 0.500c and
fires a shuttle craft in the forward direction at 0.500c
relative to the ship. The pilot of the shuttle craft
launches a probe at forward speed 0.500c relative to the
shuttle craft. Determine (a) the speed of the shuttle
craft relative to the Earth and (b) the speed of the
probe relative to the Earth.

55. The net nuclear fusion reaction inside the Sun can be
written as If the rest energy of each
hydrogen atom is 938.78 MeV and the rest energy of the
helium-4 atom is 3 728.4 MeV, what is the percentage of
the starting mass that is released as energy?

56. An astronaut wishes to visit the Andromeda galaxy 
(2.00 million lightyears away), making a one-way trip
that will take 30.0 yr in the spaceship’s frame of refer-
ence. If his speed is constant, how fast must he travel
relative to the Earth?

57. An alien spaceship traveling at 0.600c toward the Earth
launches a landing craft with an advance guard of pur-
chasing agents. The lander travels in the same direction
with a velocity 0.800c relative to the spaceship. As ob-
served on the Earth, the spaceship is 0.200 ly from the
Earth when the lander is launched. (a) With what veloc-
ity is the lander observed to be approaching by ob-
servers on the Earth? (b) What is the distance to the
Earth at the time of lander launch, as observed by the
aliens? (c) How long does it take the lander to reach
the Earth as observed by the aliens on the mother ship?
(d) If the lander has a mass of 4.00 � 105 kg, what is its

41H : 4He � �E .

E� � E � v � B.

F � q(E � v � B).

	 : e� � e�.
kinetic energy as observed in the Earth reference
frame?

58. A physics professor on the Earth gives an exam to her
students, who are on a rocket ship traveling at speed v
relative to the Earth. The moment the ship passes the
professor, she signals the start of the exam. She wishes
her students to have time T0 (rocket time) to complete
the exam. Show that she should wait a time (Earth
time) of

before sending a light signal telling them to stop. (Hint:
Remember that it takes some time for the second light
signal to travel from the professor to the students.)

59. Spaceship I, which contains students taking a physics
exam, approaches the Earth with a speed of 0.600c (rel-
ative to the Earth), while spaceship II, which contains
professors proctoring the exam, moves at 0.280c (rela-
tive to the Earth) directly toward the students. If the
professors stop the exam after 50.0 min have passed on
their clock, how long does the exam last as measured by
(a) the students? (b) an observer on the Earth?

60. Energy reaches the upper atmosphere of the Earth
from the Sun at the rate of 1.79 � 1017 W. If all of this
energy were absorbed by the Earth and not re-emitted,
how much would the mass of the Earth increase in 1 yr?

61. A supertrain (proper length, 100 m) travels at a speed
of 0.950c as it passes through a tunnel (proper length, 
50.0 m). As seen by a trackside observer, is the train
ever completely within the tunnel? If so, with how much
space to spare?

62. Imagine that the entire Sun collapses to a sphere of ra-
dius Rg such that the work required to remove a small
mass m from the surface would be equal to its rest en-
ergy mc 2. This radius is called the gravitational radius for
the Sun. Find Rg . (It is believed that the ultimate fate of
very massive stars is to collapse beyond their gravita-
tional radii into black holes.)

63. A charged particle moves along a straight line in a uni-
form electric field E with a speed of u. If the motion
and the electric field are both in the x direction, 
(a) show that the acceleration of the charge q in the x
direction is given by

(b) Discuss the significance of the dependence of the
acceleration on the speed. (c) If the particle starts from
rest at at , how would you proceed to find
the speed of the particle and its position after a time t
has elapsed?

64. (a) Show that the Doppler shift �� in the wavelength of
light is described by the expression

��

�
� 1 �! c � v

c � v

t � 0x � 0

a �
du
dt

�
qE
m

 �1 �
u2

c2 �
3/2

T � T0! 1 � v/c
1 � v/c

WEB
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where � is the source wavelength and v is the speed 
of relative approach between source and observer. 
(b) How fast would a motorist have to be going for a
red light to appear green? Take 650 nm as a typical
wavelength for red light, and one of 550 nm as typical
for green.

65. A rocket moves toward a mirror at 0.800c relative to the
reference frame S in Figure P39.65. The mirror is sta-
tionary relative to S. A light pulse emitted by the rocket
travels toward the mirror and is reflected back to the
rocket. The front of the rocket is 1.80 � 1012 m from
the mirror (as measured by observers in S) at the mo-
ment the light pulse leaves the rocket. What is the total
travel time of the pulse as measured by observers in 
(a) the S frame and (b) the front of the rocket?

how fast is the ball moving? (b) According to Mary, how
long does it take the ball to reach her? (c) According to
Jim, how far apart are Ted and Mary, and how fast is the
ball moving? (d) According to Jim, how long does it
take the ball to reach Mary?

68. A rod of length L 0 moving with a speed v along the hori-
zontal direction makes an angle �0 with respect to the x�
axis. (a) Show that the length of the rod as measured by
a stationary observer is 
(b) Show that the angle that the rod makes with the x
axis is given by tan � � 	 tan �0 . These results show that
the rod is both contracted and rotated. (Take the lower
end of the rod to be at the origin of the primed coordi-
nate system.)

69. Consider two inertial reference frames S and S�, where
S� is moving to the right with a constant speed of 0.600c
as measured by an observer in S. A stick of proper
length 1.00 m moves to the left toward the origins of
both S and S�, and the length of the stick is 50.0 cm as
measured by an observer in S�. (a) Determine the speed
of the stick as measured by observers in S and S�. 
(b) What is the length of the stick as measured by an
observer in S?

70. Suppose our Sun is about to explode. In an effort to es-
cape, we depart in a spaceship at and head
toward the star Tau Ceti, 12.0 ly away. When we reach
the midpoint of our journey from the Earth, we see our
Sun explode and, unfortunately, at the same instant we
see Tau Ceti explode as well. (a) In the spaceship’s
frame of reference, should we conclude that the two ex-
plosions occurred simultaneously? If not, which oc-
curred first? (b) In a frame of reference in which the
Sun and Tau Ceti are at rest, did they explode simulta-
neously? If not, which exploded first?

71. The light emitted by a galaxy shows a continuous distrib-
ution of wavelengths because the galaxy is composed of
billions of different stars and other thermal emitters.
Nevertheless, some narrow gaps occur in the continuous
spectrum where light has been absorbed by cooler gases
in the outer photospheres of normal stars. In particular,
ionized calcium atoms at rest produce strong absorption
at a wavelength of 394 nm. For a galaxy in the constella-
tion Hydra, 2 billion lightyears away, this absorption line
is shifted to 475 nm. How fast is the galaxy moving away
from the Earth? (Note: The assumption that the reces-
sion speed is small compared with c, as made in Problem
21, is not a good approximation here.)

72. Prepare a graph of the relativistic kinetic energy and the
classical kinetic energy, both as a function of speed, for
an object with a mass of your choice. At what speed does
the classical kinetic energy underestimate the relativistic
value by 1 percent? By 5 percent? By 50 percent?

73. The total volume of water in the oceans is approximately
1.40 � 109 km3. The density of sea water is 
1 030 kg/m3, and the specific heat of the water is 
4 186 J/(kg � °C). Find the increase in mass of the oceans
produced by an increase in temperature of 10.0°C.

v � 0.800c

L � L0[1 � (v2/c 2) cos2 �0]1/2.

MirrorS

0

v = 0.800c

Figure P39.65 Problems 65 and 66.

Figure P39.67

x ′

v = 0.600c
S ′

Ted

1.80 × 1012 m

Mary

Jim
x

S 0.800c

66. An observer in a rocket moves toward a mirror at speed
v relative to the reference frame labeled by S in Figure
P39.65. The mirror is stationary with respect to S. A
light pulse emitted by the rocket travels toward the mir-
ror and is reflected back to the rocket. The front of the
rocket is a distance d from the mirror (as measured by
observers in S) at the moment the light pulse leaves the
rocket. What is the total travel time of the pulse as mea-
sured by observers in (a) the S frame and (b) the front
of the rocket?

67. Ted and Mary are playing a game of catch in frame S�,
which is moving at 0.600c, while Jim in frame S watches
the action (Fig. P39.67). Ted throws the ball to Mary at
0.800c (according to Ted) and their separation (mea-
sured in S�) is 1.80 � 1012 m. (a) According to Mary,
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ANSWERS TO QUICK QUIZZES

39.6 By a curved line. This can be seen in the middle of
Speedo’s world-line in Figure 39.14, where he turns
around and begins his trip home.

39.7 The downstairs clock runs more slowly because it is
closer to the Earth and hence experiences a stronger
gravitational field than the upstairs clock does.

39.1 They both are because they can report only what they
see. They agree that the person in the truck throws the
ball up and then catches it a bit later.

39.2 It depends on the direction of the throw. Taking the di-
rection in which the train is traveling as the positive x
direction, use the values mi/h and v �
� 110 mi/h, with ux in Equation 39.2 being the value
you are looking for. If the pitcher throws the ball in the
same direction as the train, a person at rest on the Earth
sees the ball moving at 110 mi/h � 90 mi/h �
200 mi/h. If the pitcher throws in the opposite direc-
tion, the person on the Earth sees the ball moving 
in the same direction as the train but at only 
110 mi/h � 90 mi/h � 20 mi/h.

39.3 Both are correct. Although the two observers reach dif-
ferent conclusions, each is correct in her or his own ref-
erence frame because the concept of simultaneity is not
absolute.

39.4 About 2.9 � 108 m/s, because this is the speed at which
	 � 5. For every 5 s ticking by on the Mission Control
clock, the Earth-bound observer (with a powerful tele-
scope!) sees the rocket clock ticking off 1 s. The astro-
naut sees her own clock operating at a normal rate. To
her, Mission Control is moving away from her at a speed
of 2.9 � 108 m/s, and she sees the Mission Control clock
as running slow. Strange stuff, this relativity!

39.5 If their on-duty time is based on clocks that remain on
the Earth, they will have larger paychecks. Less time will
have passed for the astronauts in their frame of refer-
ence than for their employer back on the Earth.

u�x � �90





Chapter 1

1. 2.15 � 104 kg/m3

3. 184 g
5. (a) 7.10 cm3 (b) 1.18 � 10�29 m3 (c) 0.228 nm

(d) 12.7 cm3, 2.11 � 10�29 m3, 0.277 nm
7. (a) 4.00 u � 6.64 � 10�24 g (b) 55.9 u �

9.29 � 10�23 g (c) 207 u � 3.44 � 10�22 g
9. (a) 9.83 � 10�16 g (b) 1.06 � 107 atoms

11. (a) 4.01 � 1025 molecules (b) 3.65 � 104 molecules
13. no
15. (b) only
17.
19. 1.39 � 103 m2

21. (a) 0.071 4 gal/s (b) 2.70 � 10�4 m3/s (c) 1.03 h
23. 4.05 � 103 m2

25. 11.4 � 103 kg/m3

27. 1.19 � 1057 atoms
29. (a) 190 y (b) 2.32 � 104 times
31. 151 �m
33. 1.00 � 1010 lb
35. 3.08 � 104 m3

37. 5.0 m
39. 2.86 cm
41. � 106 balls
43. � 107 or 108 rev
45. � 107 or 108 blades
47. � 102 kg; � 103 kg
49. � 102 tuners
51. (a) (346 � 13) m2 (b) (66.0 � 1.3) m
53. (1.61 � 0.17) � 103 kg/m3

55. 115.9 m
57. 316 m
59. 4.50 m2

61. 3.41 m
63. 0.449%
65. (a) 0.529 cm/s (b) 11.5 cm/s
67. 1 � 1010 gal/yr
69. � 1011 stars

Chapter 2

1. (a) 2.30 m/s (b) 16.1 m/s (c) 11.5 m/s
3. (a) 5 m/s (b) 1.2 m/s (c) � 2.5 m/s (d) � 3.3 m/s

(e) 0
5. (a) 3.75 m/s (b) 0

0.579t  ft3/s � 1.19 � 10�9t 2 ft3/s2

7. (a)

(b) 1.60 m/s
9. (a) � 2.4 m/s (b) � 3.8 m/s (c) 4.0 s

11. (a) 5.0 m/s (b) � 2.5 m/s (c) 0 (d) 5.0 m/s
13. 1.34 � 104 m/s2

15. (a)

(b) 1.6 m/s2 and 0.80 m/s2

17. (a) 2.00 m (b) � 3.00 m/s (c) � 2.00 m/s2

19. (a) 1.3 m/s2 (b) 2.0 m/s2 at 3 s (c) at t � 6 s and for
(d) � 1.5 m/s2 at 8 s

21. 2.74 � 105 m/s2, which is 2.79 � 104 g
23. (a) 6.61 m/s (b) � 0.448 m/s2

25. � 16.0 cm/s2

27. (a) 2.56 m (b) � 3.00 m/s
29. (a) 8.94 s (b) 89.4 m/s
31. (a) 20.0 s (b) no
33. vx f � 3.10 m/sx f � x i � vx f t � ax t2/2;

t � 10 s

A.41
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35. (a) 35.0 s (b) 15.7 m/s
37. (a) � 202 m/s2 (b) 198 m
39. (a) 3.00 m/s (b) 6.00 s (c) � 0.300 m/s2

(d) 2.05 m/s
41. (a) � 4.90 m, � 19.6 m, � 44.1 m (b) � 9.80 m/s,

� 19.6 m/s, � 29.4 m/s
43. (a) 10.0 m/s up (b) 4.68 m/s down
45. No. In 0.2 s the bill falls out from between David’s fin-

gers.
47. (a) 29.4 m/s (b) 44.1 m
49. (a) 7.82 m (b) 0.782 s
51. (a) 1.53 s (b) 11.5 m (c) � 4.60 m/s, � 9.80 m/s2

53. (a) 

55. 0.222 s
57. 0.509 s
59. (a) 41.0 s (b) 1.73 km (c) � 184 m/s
61. in agreement with Equation 2.11
63. (a) 5.43 m/s2 and 3.83 m/s2 (b) 10.9 m/s and 11.5 m/s

(c) Maggie by 2.62 m
65. (a) 45.7 s (b) 574 m (c) 12.6 m/s (d) 765 s
67. (a) 2.99 s (b) � 15.4 m/s (c) 31.3 m/s down and 

34.9 m/s down
69. (a) 5.46 s (b) 73.0 m (c) vStan � 22.6 m/s, vKathy �

26.7 m/s
71. (a) See top of next column.

(b) See top of next column.
73. 0.577v

Chapter 3

1. (� 2.75, � 4.76) m
3. 1.15; 2.31
5. (a) 2.24 m (b) 2.24 m at 26.6° from the positive x axis.
7. (a) 484 m (b) 18.1° north of west
9. 70.0 m

11. (a) approximately 6.1 units at 112° (b) approximately
14.8 units at 22°

13. (a) 10.0 m (b) 15.7 m (c) 0
15. (a) 5.2 m at 60° (b) 3.0 m at 330° (c) 3.0 m at 150°

(d) 5.2 m at 300°
17. approximately 420 ft at � 3°
19. 5.83 m at 59.0° to the right of his initial direction
21. 1.31 km north and 2.81 km east
23. (a) 10.4 cm (b) 35.5°
25. 47.2 units at 122° from the positive x axis.
27. (� 25.0i)m � (43.3j)m
29. 7.21 m at 56.3° from the positive x axis.
31. (a) 2.00i � 6.00j (b) 4.00i � 2.00j (c) 6.32 (d) 4.47

(e) 288°; 26.6° from the positive x axis.
33. (a) (� 11.1i � 6.40j) m (b) (1.65i � 2.86j) cm

(c) (� 18.0i � 12.6j) in.
35. 9.48 m at 166°
37. (a) 185 N at 77.8° from the positive x axis

(b) (� 39.3i � 181j) N
39. A � B � (2.60i � 4.50j) m

vxi t � at2/2,

1
2axit2 � 1

6 Jt3x � x i � vxit �
ax � axi � Jt, vx � vxi � axit � 1

2 Jt2,

41. 196 cm at � 14.7° from the positive x axis.
43. (a) 8.00i � 12.0j � 4.00k (b) 2.00i � 3.00j � 1.00k

(c) � 24.0i � 36.0j � 12.0k
45. (a) 5.92 m is the magnitude of (5.00i � 1.00j � 3.00k) m

(b) 19.0 m is the magnitude of (4.00i � 11.0j � 15.0k) m
47. 157 km
49. (a) � 3.00i � 2.00j (b) 3.61 at 146° from the positive 

x axis. (c) 3.00i � 6.00j
51. (a) 49.5i � 27.1j (b) 56.4 units at 28.7° from the posi-

tive x axis.
53. 1.15°
55. (a) 2.00, 1.00, 3.00 (b) 3.74 (c) �x � 57.7°, �y � 74.5°,

�z � 36.7°
57. 240 m at 237°
59. 390 mi/h at 7.37° north of east
61. R1 � ai � b j; (b) R2 � a i � b j � ckR1 � !a2 � b2

t(s)0

1

1 2 3 4 5

2

v(m/s)

1 2 3 4 5

0.2

0.4

0.6

t(s)

a(m/s2)

0

Chapter 2, Problem 71(b)

Chapter 2, Problem 71(a)
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Chapter 4

1. (a) 4.87 km at 209° from east (b) 23.3 m/s
(c) 13.5 m/s at 209°

3. (a) (18.0t)i � (4.00t � 4.90t2)j
(b) 18.0i � (4.00 � 9.80t)j (c) � 9.80j
(d) (54.0i � 32.1 j) m
(e) (18.0i � 25.4 j) m/s (f) (� 9.80j) m/s2

5. (a) (2.00i � 3.00 j) m/s2

(b) (3.00t � t2)i m, (1.50 t2 � 2.00t)j m
7. (a) (0.800i � 0.300j) m/s2 (b) 339°

(c) (360i � 72.7 j) m, � 15.2°
9. (a) (3.34i) m/s (b) � 50.9°

11. (a) 20.0° (b) 3.05 s
13. x � 7.23 km y � 1.68 km
15. 53.1°
17. 22.4° or 89.4°
19. (a) The ball clears by 0.889 m (b) while descending
21. d tan �i � gd2/(2vi

2 cos2�i)
23. (a) 0.852 s (b) 3.29 m/s (c) 4.03 m/s (d) 50.8°

(e) 1.12 s
25. 377 m/s2

27. 10.5 m/s, 219 m/s2

29. (a) 6.00 rev/s (b) 1.52 km/s2 (c) 1.28 km/s2

31. 1.48 m/s2 inward at 29.9° behind the radius
33. (a) 13.0 m/s2 (b) 5.70 m/s (c) 7.50 m/s2

35. (a)

(b) 29.7 m/s2 (c) 6.67 m/s at 36.9° above the 
horizontal

37. 2.02 � 103 s; 21.0% longer
39. 153 km/h at 11.3° north of west
41. (a) 36.9° (b) 41.6° (c) 3.00 min
43. 15.3 m
45. 2 vit cos �i
47. (b) 45° � 	/2; vi

2(1 � sin 	)/g cos2	
49. (a) 41.7 m/s (b) 3.81 s (c) (34.1i � 13.4j) m/s; 36.6 m/s
51. (a) 25.0 m/s2 (radial); 9.80 m/s2 (tangential)

(b)

(c) 26.8 m/s2 inward at 21.4° below the horizontal
53. 8.94 m/s at � 63.4° relative to the positive x axis.
55. 20.0 m
57. (a) 0.600 m (b) 0.402 m (c) 1.87 m/s2 toward center

(d) 9.80 m/s2 down
59. (a) 6.80 km (b) 3.00 km vertically above the impact

point (c) 66.2°
61. (a) 46.5 m/s (b) � 77.6° (c) 6.34 s
63. (a) 1.53 km (b) 36.2 s (c) 4.04 km
65. (a) 20.0 m/s, 5.00 s (b) (16.0i � 27.1j) m/s (c) 6.54 s

(d) (24.6i) m
67. (a) 43.2 m (b) (9.66i � 25.5j) m/s
69. Imagine you are shaking down the mercury in a fever

thermometer. Starting with your hand at the level of your
shoulder, move your hand down as fast as you can and
snap it around an arc at the bottom. � 100 m/s2 � 10 g

Chapter 5

1. (a) 1/3 (b) 0.750 m/s2

3. (6.00i � 15.0 j) N; 16.2 N
5. 312 N
7. (a) (b) Fgv i/gt � Fg j
9. (a) (2.50i � 5.00j) N (b) 5.59 N

11. (a) 3.64 � 10�18 N (b) 8.93 � 10�30 N is 408 billion
times smaller.

13. 2.38 kN
15. (a) 5.00 m/s2 at 36.9° (b) 6.08 m/s2 at 25.3°
17. (a) (b)
19. (a) 0.200 m/s2 forward (b) 10.0 m (c) 2.00 m/s
21. (a) 15.0 lb up (b) 5.00 lb up (c) 0
23. 613 N

27. (a) 49.0 N (b) 98.0 N (c) 24.5 N
29. 8.66 N east
31. 100 N and 204 N
33. 3.73 m
35.
37. (a) Fx � 19.6 N (b) Fx 
 � 78.4 N

(c) See top of next page.
39. (a) 706 N (b) 814 N (c) 706 N (d) 648 N
41. �s � 0.306; �k � 0.245
43. (a) 256 m (b) 42.7 m 
45. (a) 1.78 m/s2 (b) 0.368 (c) 9.37 N (d) 2.67 m/s
47. (a) 0.161 (b) 1.01 m/s2

49. 37.8 N

a � F/(m1 � m2); T � F m1/(m1 � m2)

� 10�23 m� 10�22 m/s2

x � vt/2

T2
T1

9.80 N

9.80 m/s2

25.0 m/s2

a

36.9°

22.5 m/s2

20.2 m/s2
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51. (a)

(b) 27.2 N, 1.29 m/s2

53. Any value between 31.7 N and 48.6 N
55. (a) See top of next column.

(b) 0.408 m/s2 (c) 83.3 N
57. 1.18 kN
59. (a) Mg/2, Mg/2, Mg/2, 3Mg/2, Mg (b) Mg/2

61. (b)

63. (a) 19.3° (b) 4.21 N
65. (a) 2.13 s (b) 1.67 m
67. (a) See next column.

Static friction between the two blocks accelerates the up-
per block. (b) 34.7 N (c) 0.306

69. (M � m1 � m2)(m2g/m1)

� 0 15.0° 30.0° 45.0° 60.0°

P(N) 40.0 46.4 60.1 94.3 260

71. (a)

(b) 113 N (c) 0.980 m/s2 and 1.96 m/s2

73. (a) 0.087 1 (b) 27.4 N
75. (a) 30.7° (b) 0.843 N
77. (a) 3.34 (b) Either the car would flip over backwards, or

the wheels would skid, spinning in place, and the time
would increase.

Chapter 6

1. (a) 8.00 m/s (b) 3.02 N
3. Any speed up to 8.08 m/s

49.0 N14.7 N

147 N196 N

P

n = 49.0 N

49.0 N

fs 1 = 14.7 N

fs 2 = 98.0 N

5.00 kg 15.0 kg

2.00 kg

19.6 N

fs

n1 = 19.6 N

n2

49.0 N

5.00 kg

fk

fs

F

19.6 N

250 N

n

250 N 250 N

480 N

250 N

320 N
n 160 N

n2

68 N

176 N

f k2

T
m2

n1

f k1

T

118 N

m1

+100–100

+10

–10

ax, m/s2

Fx ,N

Chapter 5, Problem 37(c) Chapter 5, Problem 55(a)

Chapter 5, Problem 67(a)
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5. 6.22 � 10�12 N
7. (a) 1.52 m/s2 (b) 1.66 km/s (c) 6 820 s
9. (a) static friction (b) 0.085 0

11. v 
 14.3 m/s
13. (a) 68.6 N toward the center of the circle and 784 N up

(b) 0.857 m/s2

15. No. The jungle lord needs a vine of tensile strength 
1.38 kN.

17. (a) 4.81 m/s (b) 700 N up
19. 3.13 m/s
21. (a) 2.49 � 104 N up (b) 12.1 m/s
23. (a) 0.822 m/s2 (b) 37.0 N (c) 0.0839
25. (a) 17.0° (b) 5.12 N
27. (a) 491 N (b) 50.1 kg (c) 2.00 m/s2

29. 0.0927°
31. (a) 32.7 s�1 (b) 9.80 m/s2 (c) 4.90 m/s2

33. 3.01 N 
35. (a) 1.47 N�s/m (b) 2.04 � 10�3 s (c) 2.94 � 10�2 N
37. (a) 0.0347 s�1 (b) 2.50 m/s (c) a � � cv
39. � 101 N
41. (a) 13.7 m/s down 

(b) 

43. (a) 49.5 m/s and 4.95 m/s 
(b)

45. (a) 2.33 � 10�4 kg/m (b) 53 m/s (c) 42 m/s. The 
second trajectory is higher and shorter. In both, the ball 
attains maximum height when it has covered about 57% of
its horizontal range, and it attains minimum speed some-
what later. The impact speeds also are both about 30 m/s.

47. (a) mg � mv2/R (b) 
49. (a) 2.63 m/s2 (b) 201 m (c) 17.7 m/s
51. (a) 9.80 N (b) 9.80 N (c) 6.26 m/s
53. (b) 732 N down at the equator and 735 N down at the

poles
59. (a) 1.58 m/s2 (b) 455 N (c) 329 N (d) 397 N up-

ward and 9.15° inward 

!gR

t (s) y (m) v (m/s)

0 1 000 0
. . . 1 995 � 9.7
. . . 2 980 � 18.6
. . . 10 674 � 47.7
. . . 10.1 671 � 16.7
. . . 12 659 � 4.95
. . . 145 0 � 4.95

t (s) x (m) v (m/s)

0 0 0
0.2 0 � 1.96
0.4 � 0.392 � 3.88
. . . . . . . . .

1.0 � 3.77 � 8.71
. . . 2.0 � 14.4 � 12.56
. . . 4.0 � 41.0 � 13.67

61. (a) 5.19 m/s (b) Child � seat: 

T � 555 N
63. (b) 2.54 s; 23.6 rev/min
65. 215 N horizontally inward
67. (a) either 70.4° or 0° (b) 0°
69. 12.8 N
71. (a)

(b)

(c) The graph is straight for 11 s � t � 20 s, with slope
53.0 m/s.

Chapter 7

1. 15.0 MJ
3. (a) 32.8 mJ (b) � 32.8 mJ
5. (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J
7. 4.70 kJ
9. 14.0

11. (a) 16.0 J (b) 36.9°
13. (a) 11.3° (b) 156° (c) 82.3°

t (s) d (m)

0 0
1 4.9
2 18.9

. . . 5 112.6

. . . 10 347.0
11 399.1

. . . 15 611.3

. . . 20 876.5

0

D
is

ta
n

ce
 (

m
)

5 10 15 20

200

400

600

800

1000

Time elapsed (s)

T cos 28.0°

T sin 28.0°

490 N



A.46 Answers to Odd-Numbered Problems

15. (a) 24.0 J (b) � 3.00 J (c) 21.0 J
17. (a) 7.50 J (b) 15.0 J (c) 7.50 J (d) 30.0 J
19. (a) 0.938 cm (b) 1.25 J
21. 0.299 m/s
23. 12.0 J
25. (b) mgR
27. (a) 1.20 J (b) 5.00 m/s (c) 6.30 J
29. (a) 60.0 J (b) 60.0 J
31. (a) (b) W/d
33. (a) 650 J (b) � 588 J (c) 0 (d) 0 (e) 62.0 J

(f) 1.76 m/s
35. (a) � 168 J (b) � 184 J (c) 500 J (d) 148 J

(e) 5.64 m/s
37. 2.04 m
39. (a) 22 500 N (b) 1.33 � 10�4 s
41. (a) 0.791 m/s (b) 0.531 m/s
43. 875 W
45. 830 N
47. (a) 5 910 W (b) It is 53.0% of 11 100 W
49. (a) 0.013 5 gal (b) 73.8 (c) 8.08 kW
51. 5.90 km/L
53. (a) 5.37 � 10�11 J (b) 1.33 � 10�9 J
55. 90.0 J
59. (a) (2 � 24t2 � 72t4) J (b) 12t m/s2; 48t N

(c) (48t � 288t3) W (d) 1 250 J
61. � 0.047 5 J
63. 878 kN
65. (b) 240 W
67. (a)F1 � (20.5i � 14.3j) N; F2 � (� 36.4i � 21.0j) N

(b) (� 15.9i � 35.3j) N (c) (� 3.18i � 7.07j) m/s2

(d) (� 5.54i � 23.7j) m/s (e) (� 2.30i � 39.3j) m
(f) 1 480 J (g) 1 480 J

69. (a) 4.12 m (b) 3.35 m
71. 1.68 m/s
73. (a) 14.5 m/s (b) 1.75 kg (c) 0.350 kg
75. 0.799 J

Chapter 8

1. (a) 259 kJ, 0, � 259 kJ (b) 0, � 259 kJ, � 259 kJ
3. (a) � 196 J (b) � 196 J (c) � 196 J. The force is con-

servative.
5. (a) 125 J (b) 50.0 J (c) 66.7 J (d) Nonconservative.

The results differ.
7. (a) 40.0 J (b) � 40.0 J (c) 62.5 J
9. (a) (b) 

11. 0.344 m
13. (a) vB � 5.94 m/s; vC � 7.67 m/s (b) 147 J
15. v � (3gR)1/2, 0.098 0 N down
17. 10.2 m
19. (a) 19.8 m/s (b) 78.4 J (c) 1.00
21. (a) 4.43 m/s (b) 5.00 m
23. (a) 18.5 km, 51.0 km (b) 10.0 MJ
25. (b) 60.0°
27. 5.49 m/s

K � �5A/2 � 19B/3
U � 5A/2 � 19B/3;Ax2/2 � Bx3/3

!2W/m

29. 2.00 m/s, 2.79 m/s, 3.19 m/s
31. 3.74 m/s
33. (a) � 160 J (b) 73.5 J (c) 28.8 N (d) 0.679
35. 489 kJ
37. (a) 1.40 m/s (b) 4.60 cm after release (c) 1.79 m/s
39. 1.96 m
41. (A/r 2) away from the other particle
43. (a) r � 1.5 mm, stable; 2.3 mm, unstable; 3.2 mm, stable;

r : � neutral (b) � 5.6 J � E � 1 J
(c) 0.6 mm � r � 3.6 mm (d) 2.6 J (e) 1.5 mm
(f) 4 J

45. (a) � at �, � at �, 0 at �, �, and � (b) � stable; 
� and � unstable
(c)

47. (b)

Equilibrium at x � 0 (c) 
49. (a) 1.50 � 10�10 J (b) 1.07 � 10�9 J (c) 9.15 � 10�10 J
51. 48.2° Note that the answer is independent of the pump-

kin’s mass and of the radius of the dome.
53. (a) 0.225 J (b) J (c) No; the normal

force changes in a complicated way.
55. � 102 W sustainable power
57. 0.327
59. (a) 23.6 cm (b) 5.90 m/s2 up the incline; no.

(c) Gravitational potential energy turns into kinetic en-
ergy plus elastic potential energy and then entirely into
elastic potential energy.

61. 1.25 m/s

Ef � �0.363

v � !0.800J/m

–2 20 x(m)
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100
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63. (a) 0.400 m (b) 4.10 m/s (c) The block stays on the
track.

65. (b) 2.06 m/s
67. (b) 1.44 m (c) 0.400 m (d) No. A very strong wind

pulls the string out horizontally (parallel to the ground).
The largest possible equilibrium height is equal to L.

71. (a) 6.15 m/s (b) 9.87 m/s
73. 0.923 m/s

Chapter 9

1. (a) (9.00i � 12.0j) kg� m/s (b) 15.0 kg� m/s at 307°
3. 6.25 cm/s west
5. � 10�23 m/s
7. (b) 
9. (a) 13.5 N� s (b) 9.00 kN (c) 18.0 kN

11. 260 N normal to the wall
13. 15.0 N in the direction of the initial velocity of the exiting

water stream
15. 65.2 m/s
17. 301 m/s
19. (a) vgx � 1.15 m/s (b) vpx � � 0.346 m/s
21. (a) 20.9 m/s east (b) 8.68 kJ into internal energy
23. (a) 2.50 m/s (b) 37.5 kJ (c) Each process is the time-

reversal of the other. The same momentum conservation
equation describes both.

25. (a) 0.284 (b) 115 fJ and 45.4 fJ
27. 91.2 m/s
29. (a) 2.88 m/s at 32.3° north of east (b) 783 J into inter-

nal energy
31. No; his speed was 41.5 mi/h.
33. 2.50 m/s at � 60.0°
35. (3.00i � 1.20j) m/s
37. Orange: vi cos �; yellow: vi sin �
39. (a) (� 9.33i � 8.33j) Mm/s (b) 439 fJ
41. rCM � (11.7i � 13.3j) cm
43. 0.006 73 nm from the oxygen nucleus along the bisector

of the angle
45. (a) 15.9 g (b) 0.153 m
47. 0.700 m
49. (a) (1.40i � 2.40j) m/s (b) (7.00i � 12.0j) kg� m/s
51. (a) 39.0 MN up (b) 3.20 m/s2 up
53. (a) 442 metric tons (b) 19.2 metric tons
55. (a) (1.33i) m/s (b) (� 235i) N (c) 0.680 s

(d) (� 160i) N� s and (� 160i) N� s (e) 1.81 m
(f) 0.454 m (g) � 427 J (h) � 107 J
(i) Equal friction forces act through different distances
on person and cart to do different amounts of work on
them. The total work on both together, � 320 J, becomes
� 320 J of internal energy in this perfectly inelastic 
collision.

57. 1.39 km/s
59. 240 s
61. 0.980 m
63. (a) 6.81 m/s (b) 1.00 m
65. (3Mgx/L)j

p � !2mK

67. (a) 3.75 kg� m/s2 (b) 3.75 N (c) 3.75 N (d) 2.81 J
(e) 1.41 J (f) Friction between sand and belt converts
half of the input work into internal energy.

69. (a) As the child walks to the right, the boat moves to the
left and the center of mass remains fixed. (b) 5.55 m
from the pier (c) No, since 6.55 m is less than 7.00 m.

71. (a) 100 m/s (b) 374 J
73. (a) for m and for 3m (b) 35.3°
75. (a) 3.73 km/s (b) 153 km

Chapter 10

1. (a) 4.00 rad/s2 (b) 18.0 rad
3. (a) 1 200 rad/s (b) 25.0 s
5. (a) 5.24 s (b) 27.4 rad
7. (a) 5.00 rad, 10.0 rad/s, 4.00 rad/s2 (b) 53.0 rad, 

22.0 rad/s, 4.00 rad/s2

9. 13.7 rad/s2

11. � 107 rev/y
13. (a) 0.180 rad/s (b) 8.10 m/s2 toward the center of the

track
15. (a) 8.00 rad/s (b) 8.00 m/s, ar � � 64.0 m/s2, 

at � 4.00 m/s2 (c) 9.00 rad
17. (a) 54.3 rev (b) 12.1 rev/s
19. (a) 126 rad/s (b) 3.78 m/s (c) 1.27 km/s2

(d) 20.2 m
21. (a)� 2.73i m � 1.24j m (b) second quadrant, 156°

(c) � 1.85i m/s � 4.10j m/s
(d) into the third quadrant at 246°

(e) 6.15i m/s2 � 2.78j m/s2

(f) 24.6i N � 11.1j N
23. (a) 92.0 kg� m2, 184 J (b) 6.00 m/s, 4.00 m/s, 8.00 m/s,

184 J
25. (a) 143 kg� m2 (b) 2.57 kJ
29. 1.28 kg� m2

31. � 100 � 1 kg� m2

33. � 3.55 N� m
35. 882 N� m
37. (a) 24.0 N� m (b) 0.035 6 rad/s2 (c) 1.07 m/s2

39. (a) 0.309 m/s2 (b) 7.67 N and 9.22 N
41. (a) 872 N (b) 1.40 kN

!2/3 vi!2 vi

y

x
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43. 2.36 m/s
45. (a) 11.4 N, 7.57 m/s2, 9.53 m/s down (b) 9.53 m/s
49. (a) 2(Rg/3)1/2 (b) 4(Rg/3)1/2 (c) (Rg)1/2

51. �
53. (a) 1.03 s (b) 10.3 rev
55. (a) 4.00 J (b) 1.60 s (c) yes
57. (a) 12.5 rad/s (b) 128 rad
59. (a) (3g/L)1/2 (b) 3g/2L (c) � g i � g j

(d) � Mg i � Mg j
61. � � g(h2 � h1)/2�R 2

63. (b) 2gM(sin � � � cos �)(m � 2M)�1

65. 139 m/s
67. 5.80 kg� m2; the height makes no difference.
69. (a) 2 160 N� m (b) 439 W
71. (a) 118 N and 156 N (b) 1.19 kg� m2

73. (a) � � � 0.176 rad/s2 (b) 1.29 rev (c) 9.26 rev

Chapter 11

1. (a) 500 J (b) 250 J (c) 750 J
3. Mv2

5. (a) sin � for the disk, larger than sin � for the hoop
(b) tan �

7. 1.21 � 10�4 kg� m2. The height is unnecessary.
9. � 7.00i � 16.0j � 10.0k

11. (a) � 17.0k (b) 70.5°
13. (a) 2.00 N � m (b) k
15. (a) negative z direction (b) positive z direction
17. 45.0°
19. (17.5k) kg � m2/s
21. (60.0k) kg � m2/s
23. mvR[cos(vt/R) � 1]k
25. (a) zero (b) sin2 � cos �/2g)k

(c) sin2 � cos �/g)k (d) The downward force
of gravity exerts a torque in the � z direction.

27. � m� gt cos � k
29. 4.50 kg� m2/s up
31. (a) 0.433 kg� m2/s (b) 1.73 kg� m2/s
33. (a) �f � �iI1/(I1 � I2) (b) I1/(I1 � I2)
35. (a) 1.91 rad/s (b) 2.53 J, 6.44 J
37. (a) 0.360 rad/s counterclockwise (b) 99.9 J
39. (a) mv� down (b) M/(M � m)
41. (a) � � 2mvid/(M � 2m)R2 (b) No; some mechanical

energy changes into internal energy.
43. (a) 2.19 � 106 m/s (b) 2.18 � 10�18 J

(c) 4.13 � 1016 rad/s
45. [10Rg(1 � cos �)/7r2]1/2

51. (a) 2.70R (b) Fx � � mg, Fy � � mg
53. 0.632
55. (a) viri/r (b) T � (c) 

(d) 4.50 m/s, 10.1 N, 0.450 J
57. 54.0°
59. (a) 3 750 kg� m2/s (b) 1.88 kJ (c) 3 750 kg� m2/s

(d) 10.0 m/s (e) 7.50 kJ (f) 5.62 kJ
61. (M/m)[3ga
63. (c) (8Fd/3M)1/2

(!2 � 1)]1/2

1
2mvi 

2(ri 

2/r 2 � 1)(mvi 

2ri 

2)r �3

20
7

(�2mvi 

3
(�mvi 

3

1
3

1
2g2

3g

7
10

1
4

3
2

3
4

3
2

1
3

67. (a) 0.800 m/s2, 0.400 m/s2 (b) 0.600 N backward on
the plank and forward on the roller, at the top of each
roller; 0.200 N forward on each roller and backward on
the floor, at the bottom of each roller.

Chapter 12

1. 10.0 N up; 6.00 N� m counterclockwise
3. [(m1 � mb)d � m1�/2]/m2
5. � 0.429 m
7. (3.85 cm, 6.85 cm)
9. (� 1.50 m, � 1.50 m)

11. (a) 859 N (b) 1 040 N left and upward at 36.9°
13. (a) fs � 268 N, n � 1 300 N (b) 0.324
15. (a) 1.04 kN at 60.0° (b) (370i � 900j) N
17. 2.94 kN on each rear wheel and 4.41 kN on each front

wheel
19. (a) 29.9 N (b) 22.2 N
21. (a) 35.5 kN (b) 11.5 kN (c) � 4.19 kN
23. 88.2 N and 58.8 N
25. 4.90 mm
27. 0.023 8 mm
29. 0.912 mm

31.

33. (a) 3.14 � 104 N (b) 6.28 � 104 N
35. 1.80 � 108 N/m2

37. nA � 5.98 � 105 N, nB � 4.80 � 105 N
39. (a) 0.400 mm (b) 40.0 kN (c) 2.00 mm (d) 2.40 mm

(e) 48.0 kN
41. (a)

(b) 69.8 N (c) 0.877L
43. (a) 160 N right (b) 13.2 N right (c) 292 N up

(d) 192 N
45. (a) T � Fg(L � d)/sin �(2L � d)

(b) Rx � Fg(L � d)cot �/(2L � d); Ry � FgL/(2L � d)
47. 0.789 L
49. 5.08 kN, Rx � 4.77 kN, Ry � 8.26 kN
51. T � 2.71 kN, Rx � 2.65 kN
53. (a) �k � 0.571; the normal force acts 20.1 cm to the left

of the front edge of the sliding cabinet. (b) 0.501 m

8m1m2gLi

�d2Y(m1 � m2)

120 N

98 N

T

nfloor

nwall
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55. (b) 60.0°
57. (a) M � (m/2)(2�s sin � � cos �)(cos � � �s sin �)�1

(b) R � (m � M)g(1 � �s
2)1/2, 

F � g[M 2 � �s
2(m � M)2]1/2

59. (a) 133 N (b) nA � 429 N and nB � 257 N
(c) Rx � 133 N and Ry � � 257 N

61. 66.7 N
65. 1.09 m
67. (a) 4 500 N (b) 4.50 � 106 N/m2 (c) yes.
69. (a) Py � (Fg/L)(d � ah/g) (b) 0.306 m

(c) P � (� 306i � 553j) N
71. nA � nE � 6.66 kN; FAB � 10.4 kN � FBC � FDC � FDE ; 

FAC � 7.94 kN � FCE ; FBD � 15.9 kN 

Chapter 13

1. (a) 1.50 Hz, 0.667 s (b) 4.00 m (c) � rad (d) 2.83 m
3. (a) 20.0 cm (b) 94.2 cm/s as the particle passes through

equilibrium (c) 17.8 m/s2 at the maximum displace-
ment from equilibrium

5. (b) 18.8 cm/s, 0.333 s (c) 178 cm/s2, 0.500 s
(d) 12.0 cm

7. 0.627 s
9. (a) 40.0 cm/s, 160 cm/s2 (b) 32.0 cm/s, � 96.0 cm/s2

(c) 0.232 s
11. 40.9 N/m
13. (a) 0.750 m (b) x � � (0.750 m) sin(2.00t/s)
15. 0.628 m/s
17. 2.23 m/s
19. (a) 28.0 mJ (b) 1.02 m/s (c) 12.2 mJ (d) 15.8 mJ
21. (a) 2.61 m/s (b) 2.38 m/s
23. 2.60 cm and � 2.60 cm
25. (a) 35.7 m (b) 29.1 s

27. � 100 s
29. (a) 0.817 m/s (b) 2.54 rad/s2 (c) 0.634 N
33. 0.944 kg� m2

37. (a) 5.00 � 10�7 kg� m2 (b) 3.16 � 10�4 N� m/rad
39. The x coordinate of the crank pin is A cos �t .
41. 1.00 � 10�3 s�1

43. (a) 2.95 Hz (b) 2.85 cm
47. Either 1.31 Hz or 0.641 Hz
49. 6.58 kN/m
51. (a) 2Mg ; Mg(1 � y/L) (b) T � (4�/3)(2L/g)1/2; 2.68 s
53. 6.62 cm
55. 9.19 � 1013 Hz
57. (a) See bottom of preceding column.

(b) 

(c) 
59.
61. (a) 3.56 Hz (b) 2.79 Hz (c) 2.10 Hz
63. (a) 3.00 s (b) 14.3 J (c) 25.5°
65. 0.224 rad/s

Chapter 14

1. � 10�7 N toward you
3. toward the opposite corner
5.
7. (a) 4.39 � 1020 N (b) 1.99 � 1020 N (c) 3.55 � 1022 N
9. 0.613 m/s2 toward the Earth

11.

Either (1.000 m � 61.3 nm) or, if the objects have very
high density, 247 mm.

15. 12.6 � 1031 kg
17. 1.27
19. 1.90 � 1027 kg
21. 8.92 � 107 m
25. toward the center of mass
27. (a) � 4.77 � 109 J (b) 569 N (c) 569 N up
29. (a) 1.84 � 109 kg/m3 (b) 3.27 � 106 m/s2

(c) � 2.08 � 1013 J
31. (a) � 1.67 � 10�14 J (b) At the center
33. 1.58 � 1010 J
35. (a) 1.48 h (b) 7.79 km/s (c) 6.43 � 109 J

g � 2MGr(r 2 � a2)�3/2

(�100i � 59.3j) pN
g � (Gm/�2)(1

2 � !2)

f � (2�L)�1 (gL � kh2/M)1/2
T � 2�g�1/2 [Li � (dM/dt)t/2�a2]1/2

dT
dt

�
�(dM/dt)

2�a2g1/2[Li � (dM/dt)t/2�a2]1/2

h

Li L

a

Chapter 13, Problem 57(a)

Fg

mg

T
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37. 1.66 � 104 m/s
41. 15.6 km/s
43. GME m/12RE
45. 2GmM/�R 2 straight up in the picture
47. (a) 7.41 � 10�10 N (b) 1.04 � 10�8 N

(c) 5.21 � 10�9 N
49. 2.26 � 10�7

51. (b) 1.10 � 1032 kg
53. (b) GMm/2R
55. 7.79 � 1014 kg
57. 7.41 � 10�10 N
59.
61. (a) 

(b) 
63. (a) (b) toward the center

(c) toward the center
65. 119 km
67. (a) � 36.7 MJ (b) 9.24 � 1010 kg� m2/s

(c) 5.58 km/s, 10.4 Mm (d) 8.69 Mm (e) 134 min
71.

The object does not hit the Earth; its minimum radius is
1.33RE . Its period is 1.09 � 104 s. A circular orbit would
require speed 5.60 km/s.

F � GmMr 2/R4
F � GmM/r 2A � M/�R4

K 1 � 1.07 � 1032 J, K 2 � 2.67 � 1031 J
v rel � (2G/d)1/2(m1 � m2)1/2
v2 � m1(2G/d)1/2(m1 � m2)�1/2

v1 � m2(2G/d)1/2(m1 � m2)�1/2
� (8�G�/3)1/2 Rvesc

5. 5.27 � 1018 kg
7. 1.62 m
9. 7.74 � 10�3 m2

11. 271 kN horizontally backward
13.
15. 0.722 mm
17. 10.5 m; no, some alcohol and water evaporate.
19. 12.6 cm
21. 1.07 m2

23. (a) 9.80 N (b) 6.17 N
25. (a) 7.00 cm (b) 2.80 kg
27.
29. 1 430 m3

31. 2.67 � 103 kg
33. (a) 1.06 m/s (b) 4.24 m/s
35. (a) 17.7 m/s (b) 1.73 mm
37. 31.6 m/s
39. 68.0 kPa
41. 103 m/s
43. (a) 4.43 m/s (b) The siphon can be no higher than

10.3 m.
45.
47. 0.258 N
49. 1.91 m
53. 709 kg/m3

55. top scale 17.3 N; bottom scale 31.7 N
59. 90.04%
61. 4.43 m/s
63. (a) 10.3 m (b) 0
65. (a) 18.3 mm (b) 14.3 mm (c) 8.56 mm
67. (a) 2.65 m/s (b) 2.31 � 104 Pa
69. (a) 1.25 cm (b) 13.8 m/s

Chapter 16

1.
3. (a) left (b) 5.00 m/s
5. (a) longitudinal (b) 665 s
7. (a) 156° (b) 0.058 4 cm
9. (a) direction, direction (b) 0.750 s

(c) 1.00 m
11. 30.0 N
13. 1.64 m/s2

15. 13.5 N
17. 586 m/s
19. 32.9 ms
21. 0.329 s
23. (a) See top of next page (b) 0.125 s
25. 0.319 m
27. 2.40 m/s
29. (a) 0.250 m (b) 40.0 rad/s (c) 0.300 rad/m

(d) 20.9 m (e) 133 m/s (f) � x
31. (a) 

(b) 
33. (a) 0.500 Hz, 3.14 rad/s (b) 3.14 rad/m

(c) (0.100 m) sin(3.14x/m � 3.14t/s)

y � (8.00 cm) sin(7.85x � 6�t � 0.785)
y � (8.00 cm) sin(7.85x � 6�t)

y2 in �xy1 in �x

y � 6 [(x � 4.5t)2 � 3]�1

2 !h(h0 � h)

�oil � 1 250 kg/m3; �sphere � 500 kg/m3

P0 � (�d/2)(g2 � a2)1/2

t (s) x (m) y (m) vx (m/s) vy (m/s)

0 0 12 740 000 5 000 0
10 50 000 12 740 000 4 999.9 � 24.6
20 99 999 12 739 754 4 999.7 � 49.1
30 149 996 12 739 263 4 999.4 � 73.7 . . .

x

y

Chapter 15

1. 0.111 kg
3. 6.24 MPa
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(d) (0.100 m) sin(� 3.14t/s)
(e) (0.100 m) sin(4.71 rad � 3.14t/s) (f) 0.314 m/s

35. 2.00 cm, 2.98 m, 0.576 Hz, 1.72 m/s
37. (b) 3.18 Hz
41. 55.1 Hz
43. (a) 62.5 m/s (b) 7.85 m (c) 7.96 Hz (d) 21.1 W
45. (a) (b) One can

take the dot product of the given equation with each one
of i, j, and k. (c) By inspection, mm,

Consider the average
value of both sides of the given equation to find A. Then
consider the maximum value of both sides to find B. You
can evaluate the partial derivative of both sides of the
given equation with respect to x and separately with re-
spect to t to obtain equations yielding C and D upon cho-
sen substitutions for x and t. Then substitute 
and to obtain E.

47. It is if 
49. � 1 min
51. (a) 3.33i m/s (b) � 5.48 cm (c) 0.667 m, 5.00 Hz

(d) 11.0 m/s
53. (Lm/Mg sin �)1/2

55. (a) 39.2 N (b) 0.892 m (c) 83.6 m/s
57. 14.7 kg
61. (a) (0.707)2(L/g)1/2 (b) L/4
63. 3.86 � 10�4

65. (a) 

(b) 0.966t0
67. 130 m/s, 1.73 km

Chapter 17
1. 5.56 km
3. 7.82 m
5. (a) 27.2 s (b) 25.7 s; the interval in (a) is longer
7. (a) 153 m/s (b) 614 m
9. (a) amplitude 2.00 �m, wavelength 40.0 cm, 

speed 54.6 m/s (b) � 0.433 �m (c) 1.72 mm/s

v� � (2T0/3�0)1/2 � v0 (2/3)1/2
v � (2T0/�0)1/2 � v021/2

v � (T/�)1/2
t � 0

x � 0

E � 2.00.D � 4.00/s,C � 3.00/m,
B � 7.00A � 0,

C � 3.00.A � 7.00, B � 0,A � 40.0

11. P � (0.2 Pa) sin(62.8x/m � 2.16 � 104 t/s)
13. (a) 6.52 mm (b) 20.5 m/s
15. 5.81 m
17. 66.0 dB
19. (a) 3.75 W/m2 (b) 0.600 W/m2

21. (a) 1.32 � 10�4 W/m2 (b) 81.2 dB
23. 65.6 dB
25. (a) 65.0 dB (b) 67.8 dB (c) 69.6 dB
27. 1.13 �W
29. (a) 30.0 m (b) 9.49 � 105 m
31. (a) 332 J (b) 46.4 dB
33. (a) 75.7-Hz drop (b) 0.948 m
35. 26.4 m/s
37. 19.3 m
39. (a) 338 Hz (b) 483 Hz
41. 56.4°
43. (a) 56.3 s (b) 56.6 km farther along
45. 400 m; 27.5%
47. (a) 23.2 cm (b) 8.41 � 10�8 m (c) 1.38 cm
49. (a) 0.515/min (b) 0.614/min
51. 7.94 km
53. (a) 55.8 m/s (b) 2 500 Hz
55. Bat is gaining on the insect at the rate of 1.69 m/s.
57. (a) 

(b) 0.343 m (c) 0.303 m (d) 0.383 m
(e) 1.03 kHz

59. (a) 0.691 m (b) 691 km
61. 1204.2 Hz
63. (a) 0.948° (b) 4.40°
65. 1.34 � 104 N
67. 95.5 s
69. (b) 531 Hz
71. (a) 6.45 (b) 0
73. � 1011 Hz

Chapter 18

1. (a) 9.24 m (b) 600 Hz
3. 5.66 cm
5. 91.3°
7. (a) 2 (b) 9.28 m and 1.99 m
9. 15.7 m, 31.8 Hz, 500 m/s

11. At 0.089 1 m, 0.303 m, 0.518 m, 0.732 m, 0.947 m, and
1.16 m from one speaker

13. (a) 4.24 cm (b) 6.00 cm (c) 6.00 cm (d) 0.500 cm,
1.50 cm, and 2.50 cm

17. 0.786 Hz, 1.57 Hz, 2.36 Hz, and 3.14 Hz
19. (a) 163 N (b) 660 Hz
21. 19.976 kHz

10

0

–10

0 0.1 0.2

y (cm)

t (s)

Chapter 16, Problem 23(a)
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23. 31.2 cm from the bridge; 3.84%
25. (a) 350 Hz (b) 400 kg
27. 0.352 Hz
29. (a) 3.66 m/s (b) 0.200 Hz
31. (a) 0.357 m (b) 0.715 m
33. (a) 531 Hz (b) 42.5 mm
35. around 3 kHz
37. n(206 Hz) for to 9, and n(84.5 Hz) for to 23
39. 239 s
41. 0.502 m and 0.837 m
43. (a) 350 m/s (b) 1.14 m
45. (a) 19.5 cm (b) 841 Hz
47. (a) 1.59 kHz (b) odd-numbered harmonics

(c) 1.11 kHz
49. 5.64 beats/s
51. (a) 1.99 beats/s (b) 3.38 m/s
53. The second harmonic of E is close to the third harmonic

of A, and the fourth harmonic of C� is close to the fifth
harmonic of A.

55. (a) 3.33 rad (b) 283 Hz
57. 3.85 m/s away from the station or 3.77 m/s toward the

station
59. 85.7 Hz
61. 31.1 N
63. (a) 59.9 Hz (b) 20.0 cm
65. (a) 1/2 (b) (c) 9/16
67. 50.0 Hz, 1.70 m
69. (a) 2A sin(2�x/�) cos(2�vt/�)

(b) 2A sin(�x/L) cos(�vt/L)
(c) 2A sin(2�x/L) cos(2�vt/L)
(d) 2A sin(n�x/L) cos(n�vt/L)

Chapter 19

1. (a) 37.0°C � 310 K (b) � 20.6°C � 253 K
3. (a) � 274°C (b) 1.27 atm (c) 1.74 atm
5. (a) � 320°F (b) 77.3 K
7. (a) 810°F (b) 450 K
9. 3.27 cm

11. (a) 3.005 8 m (b) 2.998 6 m
13. 55.0°C
15. (a) 0.109 cm2 (b) increase
17. (a) 0.176 mm (b) 8.78 �m (c) 0.093 0 cm3

19. (a) 2.52 MN/m2 (b) It will not break.
21. 1.14°C
23. (a) 99.4 cm3 (b) 0.943 cm
25. (a) 3.00 mol (b) 1.80 � 1024 molecules
27. 1.50 � 1029 molecules
29. 472 K
31. (a) 41.6 mol (b) 1.20 kg, in agreement with the 

tabulated density
33. (a) 400 kPa (b) 449 kPa
35. 2.27 kg
37. 3.67 cm3

39. 4.39 kg
43. (a) 94.97 cm (b) 95.03 cm

[n/(n � 1)]2 T

n � 2n � 1

45. 208°C
47. 3.55 cm
49. (a) Expansion makes density drop. (b) 5 � 10�5 (°C)�1

51. (a) (b) 0.661 m
53. � T is much less than 1.
55. (a) 9.49 � 10�5 s (b) 57.4 s lost
57. (a) (b) decrease (c) 10.3 m
61. (a) 5.00 MPa (b) 9.58 � 10�3

63. 2.74 m
65.
67. (a) (b) 2.00 � 10�4%; 59.4%
69. (a) 6.17 � 10�3 kg/m (b) 632 N (c) 580 N; 192 Hz

Chapter 20

1. (10.0 � 0.117)°C
3. 0.234 kJ/kg � °C
5. 29.6°C
7. (a) 0.435 cal/g � °C (b) beryllium
9. (a) 25.8°C (b) No

11. 50.7 ks
13. 0.294 g
15. 0.414 kg
17. (a) 0°C (b) 114 g
19. 59.4°C
21. 1.18 MJ
23. (a) 4 (b) 
25. 466 J
27. 810 J, 506 J, 203 J
29. Q � � 720 J
31.

33. (a) 7.50 kJ (b) 900 K
35. 3.10 kJ; 37.6 kJ
37. (a) 0.041 0 m3 (b) � 5.48 kJ (c) � 5.48 kJ
41. 2.40 � 106 cal/s
43. 10.0 kW
45. 51.2°C
47. (a) 0.89 ft2 � °F � h/Btu (b) 1.85 ft2 � °F � h/Btu (c) 2.08
49. (a) � 103 W (b) decreasing at � 10�1 K/s
51. 364 K
53. 47.7 g
55. (a) 16.8 L (b) 0.351 L/s
57. 2.00 kJ/kg � °C
59. 1.87 kJ
61. (a) 4 (b) 4 (c) 9.08 kJ
63. 5.31 h
65. 872 g
67. (a) 15.0 mg. Block: 

Ice: 
K � 0.

E int � 5.00 J,W � �5.00 J,Q � 0,K � �5.00 J;
E int � 0,W � �5.00 J,Q � 0,

PiViPiVi

T � (Pi /nRVi)V 2PiVi

Lf � Lie�T
Ls � 14.2 cmLc � 9.17 cm,

�gP0Vi(P0 � �gd)�1

h � nRT/(mg � P0A)

Q W �E int

BC � 0 �

CA � � �

AB � � �
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(b) 15.0 mg. Block: 
Metal: 

(c) 0.004 04°C. Moving slab: 
Stationary slab: 

69. 10.2 h
71. 9.32 kW

Chapter 21

1. 6.64 � 10�27 kg
3. 0.943 N; 1.57 Pa
5. 17.6 kPa
7. 3.32 mol
9. (a) 3.53 � 1023 atoms (b) 6.07 � 10�21 J

(c) 1.35 km/s
11. (a) 8.76 � 10�21 J for both (b) 1.62 km/s for helium;

514 m/s for argon
13. 75.0 J
15. (a) 3.46 kJ (b) 2.45 kJ (c) 1.01 kJ
17. (a) 118 kJ (b) 6.03 � 103 kg
19. Between 10�2°C and 10�3°C
21. (a) 316 K (b) 200 J
23. 9 PiVi
25. (a) 1.39 atm (b) 366 K, 253 K (c) 0, 4.66 kJ, � 4.66 kJ
27. 227 K
29. (a)

(b) 8.79 L (c) 900 K (d) 300 K (e) 336 J
31. 25.0 kW
33. (a) 9.95 cal/K, 13.9 cal/K (b) 13.9 cal/K, 17.9 cal/K
35. 2.33 � 10�21 J
37. The ratio of oxygen to nitrogen molecules decreases to

85.5% of its sea-level value.
39. (a) 6.80 m/s (b) 7.41 m/s (c) 7.00 m/s
43. 819°C
45. (a) 3.21 � 1012 molecules (b) 778 km

(c) 6.42 � 10�4 s�1

49. (a) 9.36 � 10�8 m (b) 9.36 � 10�8 atm (c) 302 atm
51. (a) 100 kPa, 66.5 L, 400 K, 5.82 kJ, 7.48 kJ, 1.66 kJ

K � 0E int � 2.50 J,W � �2.50 J,
Q � 0,K � �5.00 J;E int � 2.50 J,

W � �2.50 J,Q � 0,
K � 0.E int � 0,W � 0,Q � 0,K � �5.00 J;

E int � 5.00 J,W � 0,Q � 0, (b) 133 kPa, 49.9 L, 400 K, 5.82 kJ, 5.82 kJ, 0
(c) 120 kPa, 41.6 L, 300 K, 0, � 910 J, � 910 J
(d) 120 kPa, 43.3 L, 312 K, 722 J, 0, � 722 J

55. 0.625
57. (a) Pressure increases as volume decreases.

(d) 0.500 atm�1, 0.300 atm�1

59. 1.09 � 10�3; 2.69 � 10�2; 0.529; 1.00; 0.199; 
1.01 � 10�41; 1.25 � 10�1082

61. (a) Larger-mass molecules settle to the outside.
63. (a) 0.203 mol (b) K; L

(e) For A : B, lock the piston in place and put the cylin-
der into an oven at 900 K. For B : C, keep the gas in the
oven while gradually letting the gas expand to lift a load
on the piston as far as it can. For C : A, move the cylin-
der from the oven back to the 300-K room and let the gas
cool and contract.

65. (a) 3.34 � 1026 molecules (b) during the 27th day
(c) 2.53 � 106

67. (a) 0.510 m/s (b) 20 ms

Chapter 22

1. (a) 6.94% (b) 335 J
3. (a) 10.7 kJ (b) 0.533 s
5. (a) 1.00 kJ (b) 0
7. (a) 67.2% (b) 58.8 kW
9. (a) 869 MJ (b) 330 MJ

11. (a) 741 J (b) 459 J
13. 0.330 or 33.0%
15. (a) 5.12% (b) 5.27 TJ/h (c) As conventional energy

sources become more expensive, or as their true costs are
recognized, alternative sources become economically vi-
able.

17. (a) 214 J, 64.3 J
(b) � 35.7 J, � 35.7 J. The net effect is the transport of
energy from the cold to the hot reservoir without expen-
diture of external work.
(c) 333 J, 233 J 
(d) 83.3 J, 83.3 J, 0. The net effect is the expulsion of the
energy entering the system by heat, entirely by work, in a
cyclic process. 
(e) � 0.111 J/K. The entropy of the Universe has
decreased.

(f, g) Q (kJ) W (kJ) �E int (kJ)

A : B 1.52 0 1.52
B : C 1.67 1.67 0
C : A � 2.53 � 1.01 � 1.52
ABCA 0.656 0.656 0

(c, d) P (atm) V (L) T (K) Eint (kJ)

A 1 5 300 0.760
B 3 5 900 2.28
C 1 15 900 2.28

VC � 15.0TB � TC � 900

P

3Pi

2Pi

Pi

0 4 8 V(L)

B

A C
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19. (a) 244 kPa (b) 192 J
21. 146 kW, 70.8 kW
23. 9.00
27. 72.2 J
29. (a) 24.0 J (b) 144 J
31. � 610 J/K
33. 195 J/K
35. 3.27 J/K
37. 1.02 kJ/K
39. 5.76 J/K. Temperature is constant if the gas is ideal.
41. 0.507 J/K
43. 18.4 J/K
45. (a) 1 (b) 6
47. (a)

(b)
Total Number

Macrostate Possible Microstates of Microstates

All R RRRRR 1

4R, 1G RRRRG, RRRGR, RRGRR,
RGRRR, GRRRR 5

3R, 2G RRRGG, RRGRG, RGRRG,
GRRRG, RRGGR, RGRGR,
GRRGR, RGGRR, GRGRR,
GGRRR 10

2R, 3G GGGRR, GGRGR, GRGGR,
RGGGR, GGRRG, GRGRG,
RGGRG, GRRGG, RGRGG,
RRGGG 10

1R, 4G GGGGR, GGGRG, GGRGG,
GRGGG, RGGGG 5

All G GGGGG 1

Total Number
Macrostate Possible Microstates of Microstates

All R RRR 1
2R, 1G RRG, RGR, GRR 3
1R, 2G GRR, GRG, RGG 3
All G GGG 1

49. 1.86
51. (a) 5.00 kW (b) 763 W
53. (a) 2nRTi ln 2 (b) 0.273
55. 23.1 mW
57. 5.97 � 104 kg/s
59. (a) 3.19 cal/K (b) 98.19°F, 2.59 cal/K
61. 1.18 J/K
63. (a) 10.5nRTi (b) 8.50nRTi (c) 0.190 (d) 0.833
65. nCP ln 3
69. (a) 96.9 W � 8.33 � 104 cal/hr

(b) 1.19°C/h � 2.14°F/h
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TABLE A.1 Conversion Factors

Length

m cm km in. ft mi

1 meter 1 102 10�3 39.37 3.281 6.214 � 10�4

1 centimeter 10�2 1 10�5 0.393 7 3.281 � 10�2 6.214 � 10�6

1 kilometer 103 105 1 3.937 � 104 3.281 � 103 0.621 4
1 inch 2.540 � 10�2 2.540 2.540 � 10�5 1 8.333 � 10�2 1.578 � 10�5

1 foot 0.304 8 30.48 3.048 � 10�4 12 1 1.894 � 10�4

1 mile 1 609 1.609 � 105 1.609 6.336 � 104 5 280 1

Mass

kg g slug u

1 kilogram 1 103 6.852 � 10�2 6.024 � 1026

1 gram 10�3 1 6.852 � 10�5 6.024 � 1023

1 slug 14.59 1.459 � 104 1 8.789 � 1027

1 atomic mass unit 1.660 � 10�27 1.660 � 10�24 1.137 � 10�28 1

Note: 1 metric ton � 1 000 kg.

Time

s min h day yr

1 second 1 1.667 � 10�2 2.778 � 10�4 1.157 � 10�5 3.169 � 10�8

1 minute 60 1 1.667 � 10�2 6.994 � 10�4 1.901 � 10�6

1 hour 3 600 60 1 4.167 � 10�2 1.141 � 10�4

1 day 8.640 � 104 1 440 24 1 2.738 � 10�5

1 year 3.156 � 107 5.259 � 105 8.766 � 103 365.2 1

Speed

m/s cm/s ft/s mi/h

1 meter per second 1 102 3.281 2.237
1 centimeter per second 10�2 1 3.281 � 10�2 2.237 � 10�2

1 foot per second 0.304 8 30.48 1 0.681 8
1 mile per hour 0.447 0 44.70 1.467 1

Note: 1 mi/min � 60 mi/h � 88 ft/s.
continued

A.1
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TABLE A.1 Continued

Force

N lb

1 newton 1 0.224 8
1 pound 4.448 1

Work, Energy, Heat

J ft lb eV

1 joule 1 0.737 6 6.242 � 1018

1 ft lb 1.356 1 8.464 � 1018

1 eV 1.602 � 10�19 1.182 � 10�19 1
1 cal 4.186 3.087 2.613 � 1019

1 Btu 1.055 � 103 7.779 � 102 6.585 � 1021

1 kWh 3.600 � 106 2.655 � 106 2.247 � 1025

cal Btu kWh

1 joule 0.238 9 9.481 � 10�4 2.778 � 10�7

1 ft lb 0.323 9 1.285 � 10�3 3.766 � 10�7

1 eV 3.827 � 10�20 1.519 � 10�22 4.450 � 10�26

1 cal 1 3.968 � 10�3 1.163 � 10�6

1 Btu 2.520 � 102 1 2.930 � 10�4

1 kWh 8.601 � 105 3.413 � 102 1

Pressure

Pa atm

1 pascal 1 9.869 � 10�6

1 atmosphere 1.013 � 105 1
1 centimeter mercurya 1.333 � 103 1.316 � 10�2

1 pound per inch2 6.895 � 103 6.805 � 10�2

1 pound per foot2 47.88 4.725 � 10�4

cm Hg lb/in.2 lb/ft2

1 newton per meter2 7.501 � 10�4 1.450 � 10�4 2.089 � 10�2

1 atmosphere 76 14.70 2.116 � 103

1 centimeter mercurya 1 0.194 3 27.85
1 pound per inch2 5.171 1 144
1 pound per foot2 3.591 � 10�2 6.944 � 10�3 1

a At 0°C and at a location where the acceleration due to gravity has its “standard” value, 
9.806 65 m/s2.

�
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TABLE A.2 Symbols, Dimensions, and Units of Physical Quantities

Common Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Acceleration a m/s2 L/T 2 m/s2

Amount of substance n mole mol
Angle �, � radian (rad) 1
Angular acceleration � rad/s2 T�2 s�2

Angular frequency � rad/s T�1 s�1

Angular momentum L kg m2/s ML2/T kg m2/s
Angular velocity � rad/s T�1 s�1

Area A m2 L2 m2

Atomic number Z
Capacitance C farad (F) Q2T2/ML2 A2 s4/kg m2

Charge q, Q , e coulomb (C) Q A s
Charge density

Line � C/m Q /L A s/m
Surface 	 C/m2 Q /L2 A s/m2

Volume 
 C/m3 Q /L3 A s/m3

Conductivity 	 1/� m Q2T/ML3 A2 s3/kg m3

Current I AMPERE Q /T A
Current density J A/m2 Q /T 2 A/m2

Density 
 kg/m3 M/L3 kg/m3

Dielectric constant �
Displacement r, s METER L m

Distance d, h
Length , L

Electric dipole moment p C m QL A s m
Electric field E V/m ML/QT 2 kg m/A s3

Electric flux E V m ML3/QT 2 kg m3/A s3

Electromotive force � volt (V) ML2/QT 2 kg m2/A s3

Energy E, U, K joule (J) ML2/T 2 kg m2/s2

Entropy S J/K ML2/T 2 K kg m2/s2 K
Force F newton (N) ML/T2 kg m/s2

Frequency f hertz (Hz) T�1 s�1

Heat Q joule ( J) ML2/T2 kg m2/s2

Inductance L henry (H) ML2/Q2 kg m2/A2 s2

Magnetic dipole moment � N m/T QL2/T A m2

Magnetic field B tesla (T)( Wb/m2) M/QT kg/A s2

Magnetic flux B weber (Wb) ML2/QT kg m2/A s2

Mass m, M KILOGRAM M kg
Molar specific heat C J/mol K kg m2/s2 mol K
Moment of inertia I kg m2 ML2 kg m2

Momentum p kg m/s ML/T kg m/s
Period T s T s
Permeability of space �0 N/A2( H/m) ML/Q2T kg m/A2 s2

Permittivity of space �0 C2/N m2( F/m) Q2T2/ML3 A2 s4/kg m3

Potential V volt (V)( J/C) ML2/QT2 kg m2/A s3

Power watt (W)( J/s) ML2/T3 kg m2/s3

continued
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TABLE A.2 Continued

Common Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Pressure P pascal (Pa) � (N/m2) M/LT 2 kg/m s2

Resistance R ohm (�)( V/A) ML2/Q2T kg m2/A2 s3

Specific heat c J/kg K L2/T2 K m2/s2 K
Speed v m/s L/T m/s
Temperature T KELVIN K K
Time t SECOND T s
Torque � N m ML2/T 2 kg m2/s2

Volume V m3 L3 m3

Wavelength � m L m
Work W joule ( J)( N m) ML2/T2 kg m2/s2

a The base SI units are given in uppercase letters.
b The symbols M, L, T, and Q denote mass, length, time, and charge, respectively.

���

��

���
���

�

TABLE A.3 Table of Atomic Massesa

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

0 (Neutron) n 1* 1.008 665 10.4 min
1 Hydrogen H 1.007 9 1 1.007 825 99.985

Deuterium D 2 2.014 102 0.015
Tritium T 3* 3.016 049 12.33 yr

2 Helium He 4.002 60 3 3.016 029 0.000 14
4 4.002 602 99.999 86
6* 6.018 886 0.81 s

3 Lithium Li 6.941 6 6.015 121 7.5
7 7.016 003 92.5
8* 8.022 486 0.84 s

4 Beryllium Be 9.012 2 7* 7.016 928 53.3 days
9 9.012 174 100

10* 10.013 534 1.5 � 106 yr
5 Boron B 10.81 10 10.012 936 19.9

11 11.009 305 80.1
12* 12.014 352 0.020 2 s

6 Carbon C 12.011 10* 10.016 854 19.3 s
11* 11.011 433 20.4 min
12 12.000 000 98.90
13 13.003 355 1.10
14* 14.003 242 5 730 yr
15* 15.010 599 2.45 s

7 Nitrogen N 14.006 7 12* 12.018 613 0.011 0 s
13* 13.005 738 9.96 min
14 14.003 074 99.63
15 15.000 108 0.37
16* 16.006 100 7.13 s
17* 17.008 450 4.17 s
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

8 Oxygen O 15.999 4 14* 14.008 595 70.6 s
15* 15.003 065 122 s
16 15.994 915 99.761
17 16.999 132 0.039
18 17.999 160 0.20
19* 19.003 577 26.9 s

9 Fluorine F 18.998 40 17* 17.002 094 64.5 s
18* 18.000 937 109.8 min
19 18.998 404 100
20* 19.999 982 11.0 s
21* 20.999.950 4.2 s

10 Neon Ne 20.180 18* 18.005 710 1.67 s
19* 19.001 880 17.2 s
20 19.992 435 90.48
21 20.993 841 0.27
22 21.991 383 9.25
23* 22.994 465 37.2 s

11 Sodium Na 22.989 87 21* 20.997 650 22.5 s
22* 21.994 434 2.61 yr
23 22.989 770 100
24* 23.990 961 14.96 h

12 Magnesium Mg 24.305 23* 22.994 124 11.3 s
24 23.985 042 78.99
25 24.985 838 10.00
26 25.982 594 11.01
27* 26.984 341 9.46 min

13 Aluminum Al 26.981 54 26* 25.986 892 7.4 � 105 yr
27 26.981 538 100
28* 27.981 910 2.24 min

14 Silicon Si 28.086 28 27.976 927 92.23
29 28.976 495 4.67
30 29.973 770 3.10
31* 30.975 362 2.62 h
32* 31.974 148 172 yr

15 Phosphorus P 30.973 76 30* 29.978 307 2.50 min
31 30.973 762 100
32* 31.973 908 14.26 days
33* 32.971 725 25.3 days

16 Sulfur S 32.066 32 31.972 071 95.02
33 32.971 459 0.75
34 33.967 867 4.21
35* 34.969 033 87.5 days
36 35.967 081 0.02

17 Chlorine Cl 35.453 35 34.968 853 75.77
36* 35.968 307 3.0 � 105 yr
37 36.965 903 24.23

continued
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

18 Argon Ar 39.948 36 35.967 547 0.337
37* 36.966 776 35.04 days
38 37.962 732 0.063
39* 38.964 314 269 yr
40 39.962 384 99.600
42* 41.963 049 33 yr

19 Potassium K 39.098 3 39 38.963 708 93.258 1
40* 39.964 000 0.011 7 1.28 � 109 yr
41 40.961 827 6.730 2

20 Calcium Ca 40.08 40 39.962 591 96.941
41* 40.962 279 1.0 � 105 yr
42 41.958 618 0.647
43 42.958 767 0.135
44 43.955 481 2.086
46 45.953 687 0.004
48 47.952 534 0.187

21 Scandium Sc 44.955 9 41* 40.969 250 0.596 s
45 44.955 911 100

22 Titanium Ti 47.88 44* 43.959 691 49 yr
46 45.952 630 8.0
47 46.951 765 7.3
48 47.947 947 73.8
49 48.947 871 5.5
50 49.944 792 5.4

23 Vanadium V 50.941 5 48* 47.952 255 15.97 days
50* 49.947 161 0.25 1.5 � 1017 yr
51 50.943 962 99.75

24 Chromium Cr 51.996 48* 47.954 033 21.6 h
50 49.946 047 4.345
52 51.940 511 83.79
53 52.940 652 9.50
54 53.938 883 2.365

25 Manganese Mn 54.938 05 54* 53.940 361 312.1 days
55 54.938 048 100

26 Iron Fe 55.847 54 53.939 613 5.9
55* 54.938 297 2.7 yr
56 55.934 940 91.72
57 56.935 396 2.1
58 57.933 278 0.28
60* 59.934 078 1.5 � 106 yr

27 Cobalt Co 58.933 20 59 58.933 198 100
60* 59.933 820 5.27 yr

28 Nickel Ni 58.693 58 57.935 346 68.077
59* 58.934 350 7.5 � 104 yr
60 59.930 789 26.223
61 60.931 058 1.140
62 61.928 346 3.634
63* 62.929 670 100 yr
64 63.927 967 0.926
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

29 Copper Cu 63.54 63 62.929 599 69.17
65 64.927 791 30.83

30 Zinc Zn 65.39 64 63.929 144 48.6
66 65.926 035 27.9
67 66.927 129 4.1
68 67.924 845 18.8
70 69.925 323 0.6

31 Gallium Ga 69.723 69 68.925 580 60.108
71 70.924 703 39.892

32 Germanium Ge 72.61 70 69.924 250 21.23
72 71.922 079 27.66
73 72.923 462 7.73
74 73.921 177 35.94
76 75.921 402 7.44

33 Arsenic As 74.921 6 75 74.921 594 100
34 Selenium Se 78.96 74 73.922 474 0.89

76 75.919 212 9.36
77 76.919 913 7.63
78 77.917 307 23.78
79* 78.918 497 � 6.5 � 104 yr
80 79.916 519 49.61
82* 81.916 697 8.73 1.4 � 1020 yr

35 Bromine Br 79.904 79 78.918 336 50.69
81 80.916 287 49.31

36 Krypton Kr 83.80 78 77.920 400 0.35
80 79.916 377 2.25
81* 80.916 589 2.1 � 105 yr
82 81.913 481 11.6
83 82.914 136 11.5
84 83.911 508 57.0
85* 84.912 531 10.76 yr
86 85.910 615 17.3

37 Rubidium Rb 85.468 85 84.911 793 72.17
87* 86.909 186 27.83 4.75 � 1010 yr

38 Strontium Sr 87.62 84 83.913 428 0.56
86 85.909 266 9.86
87 86.908 883 7.00
88 87.905 618 82.58
90* 89.907 737 29.1 yr

39 Yttrium Y 88.905 8 89 88.905 847 100
40 Zirconium Zr 91.224 90 89.904 702 51.45

91 90.905 643 11.22
92 91.905 038 17.15
93* 92.906 473 1.5 � 106 yr
94 93.906 314 17.38
96 95.908 274 2.80

continued
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

41 Niobium Nb 92.906 4 91* 90.906 988 6.8 � 102 yr
92* 91.907 191 3.5 � 107 yr
93 92.906 376 100
94* 93.907 280 2 � 104 yr

42 Molybdenum Mo 95.94 92 91.906 807 14.84
93* 92.906 811 3.5 � 103 yr
94 93.905 085 9.25
95 94.905 841 15.92
96 95.904 678 16.68
97 96.906 020 9.55
98 97.905 407 24.13

100 99.907 476 9.63
43 Technetium Tc 97* 96.906 363 2.6 � 106 yr

98* 97.907 215 4.2 � 106 yr
99* 98.906 254 2.1 � 105 yr

44 Ruthenium Ru 101.07 96 95.907 597 5.54
98 97.905 287 1.86
99 98.905 939 12.7

100 99.904 219 12.6
101 100.905 558 17.1
102 101.904 348 31.6
104 103.905 428 18.6

45 Rhodium Rh 102.905 5 103 102.905 502 100
46 Palladium Pd 106.42 102 101.905 616 1.02

104 103.904 033 11.14
105 104.905 082 22.33
106 105.903 481 27.33
107* 106.905 126 6.5 � 106 yr
108 107.903 893 26.46
110 109.905 158 11.72

47 Silver Ag 107.868 107 106.905 091 51.84
109 108.904 754 48.16

48 Cadmium Cd 112.41 106 105.906 457 1.25
108 107.904 183 0.89
109* 108.904 984 462 days
110 109.903 004 12.49
111 110.904 182 12.80
112 111.902 760 24.13
113* 112.904 401 12.22 9.3 � 1015 yr
114 113.903 359 28.73
116 115.904 755 7.49

49 Indium In 114.82 113 112.904 060 4.3
115* 114.903 876 95.7 4.4 � 1014 yr

50 Tin Sn 118.71 112 111.904 822 0.97
114 113.902 780 0.65
115 114.903 345 0.36
116 115.901 743 14.53
117 116.902 953 7.68
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(50) (Tin) 118 117.901 605 24.22
119 118.903 308 8.58
120 119.902 197 32.59
121* 120.904 237 55 yr
122 121.903 439 4.63
124 123.905 274 5.79

51 Antimony Sb 121.76 121 120.903 820 57.36
123 122.904 215 42.64
125* 124.905 251 2.7 yr

52 Tellurium Te 127.60 120 119.904 040 0.095
122 121.903 052 2.59
123* 122.904 271 0.905 1.3 � 1013 yr
124 123.902 817 4.79
125 124.904 429 7.12
126 125.903 309 18.93
128* 127.904 463 31.70 � 8 � 1024 yr
130* 129.906 228 33.87 � 1.25 � 1021 yr

53 Iodine I 126.904 5 127 126.904 474 100
129* 128.904 984 1.6 � 107 yr

54 Xenon Xe 131.29 124 123.905 894 0.10
126 125.904 268 0.09
128 127.903 531 1.91
129 128.904 779 26.4
130 129.903 509 4.1
131 130.905 069 21.2
132 131.904 141 26.9
134 133.905 394 10.4
136* 135.907 215 8.9 � 2.36 � 1021 yr

55 Cesium Cs 132.905 4 133 132.905 436 100
134* 133.906 703 2.1 yr
135* 134.905 891 2 � 106 yr
137* 136.907 078 30 yr

56 Barium Ba 137.33 130 129.906 289 0.106
132 131.905 048 0.101
133* 132.905 990 10.5 yr
134 133.904 492 2.42
135 134.905 671 6.593
136 135.904 559 7.85
137 136.905 816 11.23
138 137.905 236 71.70

57 Lanthanum La 138.905 137* 136.906 462 6 � 104 yr
138* 137.907 105 0.090 2 1.05 � 1011 yr
139 138.906 346 99.909 8

58 Cerium Ce 140.12 136 135.907 139 0.19
138 137.905 986 0.25
140 139.905 434 88.43
142* 141.909 241 11.13 � 5 � 1016 yr

59 Praseodymium Pr 140.907 6 141 140.907 647 100
continued
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

60 Neodymium Nd 144.24 142 141.907 718 27.13
143 142.909 809 12.18
144* 143.910 082 23.80 2.3 � 1015 yr
145 144.912 568 8.30
146 145.913 113 17.19
148 147.916 888 5.76
150* 149.920 887 5.64 � 1 � 1018 yr

61 Promethium Pm 143* 142.910 928 265 days
145* 144.912 745 17.7 yr
146* 145.914 698 5.5 yr
147* 146.915 134 2.623 yr

62 Samarium Sm 150.36 144 143.911 996 3.1
146* 145.913 043 1.0 � 108 yr
147* 146.914 894 15.0 1.06 � 1011 yr
148* 147.914 819 11.3 7 � 1015 yr
149* 148.917 180 13.8 � 2 � 1015 yr
150 149.917 273 7.4
151* 150.919 928 90 yr
152 151.919 728 26.7
154 153.922 206 22.7

63 Europium Eu 151.96 151 150.919 846 47.8
152* 151.921 740 13.5 yr
153 152.921 226 52.2
154* 153.922 975 8.59 yr
155* 154.922 888 4.7 yr

64 Gadolinium Gd 157.25 148* 147.918 112 75 yr
150* 149.918 657 1.8 � 106 yr
152* 151.919 787 0.20 1.1 � 1014 yr
154 153.920 862 2.18
155 154.922 618 14.80
156 155.922 119 20.47
157 156.923 957 15.65
158 157.924 099 24.84
160 159.927 050 21.86

65 Terbium Tb 158.925 3 159 158.925 345 100
66 Dysprosium Dy 162.50 156 155.924 277 0.06

158 157.924 403 0.10
160 159.925 193 2.34
161 160.926 930 18.9
162 161.926 796 25.5
163 162.928 729 24.9
164 163.929 172 28.2

67 Holmium Ho 164.930 3 165 164.930 316 100
166* 165.932 282 1.2 � 103 yr

68 Erbium Er 167.26 162 161.928 775 0.14
164 163.929 198 1.61
166 165.930 292 33.6
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(68) (Erbium) 167 166.932 047 22.95
168 167.932 369 27.8
170 169.935 462 14.9

69 Thulium Tm 168.934 2 169 168.934 213 100
171* 170.936 428 1.92 yr

70 Ytterbium Yb 173.04 168 167.933 897 0.13
170 169.934 761 3.05
171 170.936 324 14.3
172 171.936 380 21.9
173 172.938 209 16.12
174 173.938 861 31.8
176 175.942 564 12.7

71 Lutecium Lu 174.967 173* 172.938 930 1.37 yr
175 174.940 772 97.41
176* 175.942 679 2.59 3.78 � 1010 yr

72 Hafnium Hf 178.49 174* 173.940 042 0.162 2.0 � 1015 yr
176 175.941 404 5.206
177 176.943 218 18.606
178 177.943 697 27.297
179 178.945 813 13.629
180 179.946 547 35.100

73 Tantalum Ta 180.947 9 180 179.947 542 0.012
181 180.947 993 99.988

74 Tungsten W 183.85 180 179.946 702 0.12
(Wolfram) 182 181.948 202 26.3

183 182.950 221 14.28
184 183.950 929 30.7
186 185.954 358 28.6

75 Rhenium Re 186.207 185 184.952 951 37.40
187* 186.955 746 62.60 4.4 � 1010 yr

76 Osmium Os 190.2 184 183.952 486 0.02
186* 185.953 834 1.58 2.0 � 1015 yr
187 186.955 744 1.6
188 187.955 832 13.3
189 188.958 139 16.1
190 189.958 439 26.4
192 191.961 468 41.0
194* 193.965 172 6.0 yr

77 Iridium Ir 192.2 191 190.960 585 37.3
193 192.962 916 62.7

78 Platinum Pt 195.08 190* 189.959 926 0.01 6.5 � 1011 yr
192 191.961 027 0.79
194 193.962 655 32.9
195 194.964 765 33.8
196 195.964 926 25.3
198 197.967 867 7.2

79 Gold Au 196.966 5 197 196.966 543 100
continued
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

80 Mercury Hg 200.59 196 195.965 806 0.15
198 197.966 743 9.97
199 198.968 253 16.87
200 199.968 299 23.10
201 200.970 276 13.10
202 201.970 617 29.86
204 203.973 466 6.87

81 Thallium Tl 204.383 203 202.972 320 29.524
204* 203.973 839 3.78 yr
205 204.974 400 70.476

(Ra E�) 206* 205.976 084 4.2 min
(Ac C �) 207* 206.977 403 4.77 min
(Th C �) 208* 207.981 992 3.053 min
(Ra C�) 210* 209.990 057 1.30 min

82 Lead Pb 207.2 202* 201.972 134 5 � 104 yr
204* 203.973 020 1.4 � 1.4 � 1017 yr
205* 204.974 457 1.5 � 107 yr
206 205.974 440 24.1
207 206.975 871 22.1
208 207.976 627 52.4

(Ra D) 210* 209.984 163 22.3 yr
(Ac B) 211* 210.988 734 36.1 min
(Th B) 212* 211.991 872 10.64 h
(Ra B) 214* 213.999 798 26.8 min

83 Bismuth Bi 208.980 3 207* 206.978 444 32.2 yr
208* 207.979 717 3.7 � 105 yr
209 208.980 374 100

(Ra E) 210* 209.984 096 5.01 days
(Th C) 211* 210.987 254 2.14 min

212* 211.991 259 60.6 min
(Ra C) 214* 213.998 692 19.9 min

215* 215.001 836 7.4 min
84 Polonium Po 209* 208.982 405 102 yr

(Ra F) 210* 209.982 848 138.38 days
(Ac C �) 211* 210.986 627 0.52 s
(Th C �) 212* 211.988 842 0.30 �s
(Ra C�) 214* 213.995 177 164 �s
(Ac A) 215* 214.999 418 0.001 8 s
(Th A) 216* 216.001 889 0.145 s
(Ra A) 218* 218.008 965 3.10 min

85 Astatine At 215* 214.998 638 � 100 �s
218* 218.008 685 1.6 s
219* 219.011 294 0.9 min

86 Radon Rn
(An) 219* 219.009 477 3.96 s
(Tn) 220* 220.011 369 55.6 s
(Rn) 222* 222.017 571 3.823 days

87 Francium Fr
(Ac K) 223* 223.019 733 22 min
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

88 Radium Ra
(Ac X) 223* 223.018 499 11.43 days
(Th X) 224* 224.020 187 3.66 days
(Ra) 226* 226.025 402 1 600 yr
(Ms Th1) 228* 228.031 064 5.75 yr

89 Actinium Ac 227* 227.027 749 21.77 yr
(Ms Th2) 228* 228.031 015 6.15 h

90 Thorium Th 232.038 1
(Rd Ac) 227* 227.027 701 18.72 days
(Rd Th) 228* 228.028 716 1.913 yr

229* 229.031 757 7 300 yr
(Io) 230* 230.033 127 75.000 yr
(UY) 231* 231.036 299 25.52 h
(Th) 232* 232.038 051 100 1.40 � 1010 yr
(UX1) 234* 234.043 593 24.1 days

91 Protactinium Pa 231* 231.035 880 32.760 yr
(Uz) 234* 234.043 300 6.7 h

92 Uranium U 238.028 9 232* 232.037 131 69 yr
233* 233.039 630 1.59 � 105 yr
234* 234.040 946 0.005 5 2.45 � 105 yr

(Ac U) 235* 235.043 924 0.720 7.04 � 108 yr
236* 236.045 562 2.34 � 107 yr

(UI) 238* 238.050 784 99.274 5 4.47 � 109 yr
93 Neptunium Np 235* 235.044 057 396 days

236* 236.046 560 1.15 � 105 yr
237* 237.048 168 2.14 � 106 yr

94 Plutonium Pu 236* 236.046 033 2.87 yr
238* 238.049 555 87.7 yr
239* 239.052 157 2.412 � 104 yr
240* 240.053 808 6 560 yr
241* 241.056 846 14.4 yr
242* 242.058 737 3.73 � 106 yr
244* 244.064 200 8.1 � 107 yr

a The masses in the sixth column are atomic masses, which include the mass of Z electrons. Data are from the National Nuclear Data Center,
Brookhaven National Laboratory, prepared by Jagdish K. Tuli, July 1990. The data are based on experimental results reported in Nuclear Data
Sheets and Nuclear Physics and also from Chart of the Nuclides, 14th ed. Atomic masses are based on those by A. H. Wapstra, G. Audi, and R. Hoek-
stra. Isotopic abundances are based on those by N. E. Holden.





A.15

APPENDIX B • Mathematics Review

These appendices in mathematics are intended as a brief review of operations and
methods. Early in this course, you should be totally familiar with basic algebraic
techniques, analytic geometry, and trigonometry. The appendices on differential
and integral calculus are more detailed and are intended for those students who
have difficulty applying calculus concepts to physical situations.

SCIENTIFIC NOTATION
Many quantities that scientists deal with often have very large or very small 
values. For example, the speed of light is about 300 000 000 m/s, and the 
ink required to make the dot over an i in this textbook has a mass of about 
0.000 000 001 kg. Obviously, it is very cumbersome to read, write, and keep track
of numbers such as these. We avoid this problem by using a method dealing with
powers of the number 10:

and so on. The number of zeros corresponds to the power to which 10 is raised,
called the exponent of 10. For example, the speed of light, 300 000 000 m/s, can
be expressed as 3 � 108 m/s.

In this method, some representative numbers smaller than unity are

10�5 �
1

10 � 10 � 10 � 10 � 10
� 0.000 01

10�4 �
1

10 � 10 � 10 � 10
� 0.000 1

10�3 �
1

10 � 10 � 10
� 0.001 

10�2 �
1

10 � 10
� 0.01 

10�1 �
1
10

� 0.1 

105 � 10 � 10 � 10 � 10 � 10 � 100 000

104 � 10 � 10 � 10 � 10 � 10 000 

103 � 10 � 10 � 10 � 1000 

102 � 10 � 10 � 100 

101 � 10 

100 � 1 

B.1
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In these cases, the number of places the decimal point is to the left of the digit 1
equals the value of the (negative) exponent. Numbers expressed as some power of
10 multiplied by another number between 1 and 10 are said to be in scientific no-
tation. For example, the scientific notation for 5 943 000 000 is 5.943 � 109 and
that for 0.000 083 2 is 8.32 � 10�5.

When numbers expressed in scientific notation are being multiplied, the fol-
lowing general rule is very useful:

(B.1)

where n and m can be any numbers (not necessarily integers). For example,
The rule also applies if one of the exponents is negative:

When dividing numbers expressed in scientific notation, note that

(B.2)

EXERCISES

With help from the above rules, verify the answers to the following:

1. 86 400 � 8.64 � 104

2. 9 816 762.5 � 9.816 762 5 � 106

3. 0.000 000 039 8 � 3.98 � 10�8

4. (4 � 108)(9 � 109) � 3.6 � 1018

5. (3 � 107)(6 � 10�12) � 1.8 � 10�4

6.

7.

ALGEBRA

Some Basic Rules

When algebraic operations are performed, the laws of arithmetic apply. Symbols
such as x, y, and z are usually used to represent quantities that are not specified,
what are called the unknowns.

First, consider the equation

If we wish to solve for x, we can divide (or multiply) each side of the equation by
the same factor without destroying the equality. In this case, if we divide both sides
by 8, we have

 x � 4 

8x
8

�
32
8

8x � 32

B.2

(3 � 106)(8 � 10�2)
(2 � 1017)(6 � 105)

� 2 � 10�18

75 � 10�11

5 � 10�3 � 1.5 � 10�7

10n

10m � 10n � 10�m � 10n�m

103 � 10�8 � 10�5.
102 � 105 � 107.

10n � 10m � 10n�m
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Next consider the equation

In this type of expression, we can add or subtract the same quantity from each
side. If we subtract 2 from each side, we get

In general, if then 
Now consider the equation

If we multiply each side by 5, we are left with x on the left by itself and 45 on the
right:

In all cases, whatever operation is performed on the left side of the equality must also be per-
formed on the right side.

The following rules for multiplying, dividing, adding, and subtracting frac-
tions should be recalled, where a, b, and c are three numbers:

 x � 45 

� x
5 � (5) � 9 � 5

x
5

� 9

x � b � a.x � a � b,

 x � 6 

x � 2 � 2 � 8 � 2

x � 2 � 8

Rule Example

Multiplying

Dividing

Adding
2
3

�
4
5

�
(2)(5) � (4)(3)

(3)(5)
� �

2
15

a
b

�
c
d

�
ad � bc

bd

2/3
4/5

�
(2)(5)
(4)(3)

�
10
12

(a/b)
(c/d)

�
ad
bc

� 2
3 � � 4

5 � �
8
15� a

b � � c
d � �

ac
bd

EXERCISES

In the following exercises, solve for x :

Answers

1.

2.

3.

4.

Powers

When powers of a given quantity x are multiplied, the following rule applies:

(B.3)xnxm � xn�m

x � �
11
7

5
2x � 6

�
3

4x � 8

x �
7

a � b
ax � 5 � bx � 2

x � 63x � 5 � 13

x �
1 � a

a
a �

1
1 � x
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For example, 
When dividing the powers of a given quantity, the rule is

(B.4)

For example, 
A power that is a fraction, such as corresponds to a root as follows:

(B.5)

For example, (A scientific calculator is useful for such calcula-
tions.)

Finally, any quantity xn raised to the mth power is

(B.6)

Table B.1 summarizes the rules of exponents.

EXERCISES

Verify the following:

1.
2.
3.
4. (Use your calculator.)
5. (Use your calculator.)
6.

Factoring

Some useful formulas for factoring an equation are

Quadratic Equations

The general form of a quadratic equation is

(B.7)

where x is the unknown quantity and a, b, and c are numerical factors referred to
as coefficients of the equation. This equation has two roots, given by

(B.8)

If the roots are real.b2 � 4ac,

x �
�b � !b2 � 4ac

2a

ax2 � bx � c � 0

a2 � b2 � (a � b)(a � b)  differences of squares

a2 � 2ab � b2 � (a � b)2  perfect square 

ax � ay � az � a(x � y � x)  common factor 

(x4)3 � x12
601/4 � 2.783 158
51/3 � 1.709 975
x10/x�5 � x15
x5x�8 � x�3
32 � 33 � 243

(xn)m � xnm

41/3 � !3 4 � 1.5874.

x1/n � !
n

x

1
3 ,

x8/x2 � x8�2 � x6.

xn

xm � xn�m

x2x4 � x2�4 � x6.

TABLE B.1
Rules of Exponents

(xn)m � xnm
x1/n � !

n
x

xn/xm � xn�m
xnxm � xn�m

x1 � x
x0 � 1
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EXERCISES

Solve the following quadratic equations:

Answers

1.
2.
3.

Linear Equations

A linear equation has the general form

(B.9)

where m and b are constants. This equation is referred to as being linear because
the graph of y versus x is a straight line, as shown in Figure B.1. The constant b,
called the y-intercept, represents the value of y at which the straight line intersects
the y axis. The constant m is equal to the slope of the straight line and is also
equal to the tangent of the angle that the line makes with the x axis. If any two
points on the straight line are specified by the coordinates (x1 , y1) and (x2 , y2), as
in Figure B.1, then the slope of the straight line can be expressed as

(B.10)

Note that m and b can have either positive or negative values. If the
straight line has a positive slope, as in Figure B1. If the straight line has a
negative slope. In Figure B.1, both m and b are positive. Three other possible situa-
tions are shown in Figure B.2.

EXERCISES

1. Draw graphs of the following straight lines:
(a) (b) (c)

2. Find the slopes of the straight lines described in Exercise 1.

Answers (a) 5 (b) � 2 (c) � 3

y � �3x � 6y � �2x � 4y � 5x � 3

m � 0,
m � 0,

Slope �
y2 � y1

x2 � x1
�

	y
	x

� tan 


y � mx � b

x� � 1 � !22/2x� � 1 � !22/22x2 � 4x � 9 � 0
x� � 1

2x� � 22x2 � 5x � 2 � 0
x� � �3x� � 1x2 � 2x � 3 � 0

EXAMPLE 1
The equation has the following roots corresponding to the two signs of
the square-root term:

where x� refers to the root corresponding to the positive sign and x� refers to the root
corresponding to the negative sign.

�4x� �
�5 � 3

2
��1x� �

�5 � 3
2

�

 x �
�5 � !52 � (4)(1)(4)

2(1)
�

�5 � !9
2

�
�5 � 3

2

x2 � 5x � 4 � 0

y

(x1, y1)
θ

(x2, y2)

∆y

∆x(0, b)

θ
(0, 0) x

y
(1)

(2)

(3)

m > 0
b < 0

m < 0
b > 0

m < 0
b < 0

x

Figure B.1

Figure B.2
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3. Find the slopes of the straight lines that pass through the following sets of
points:
(a) (0, � 4) and (4, 2), (b) (0, 0) and (2, � 5), and (c) (� 5, 2) and (4, � 2)

Answers (a) 3/2 (b) � 5/2 (c) � 4/9

Solving Simultaneous Linear Equations

Consider the equation which has two unknowns, x and y. Such an
equation does not have a unique solution. For example, note that (

and are all solutions to this equation.
If a problem has two unknowns, a unique solution is possible only if we have

two equations. In general, if a problem has n unknowns, its solution requires n
equations. In order to solve two simultaneous equations involving two unknowns,
x and y, we solve one of the equations for x in terms of y and substitute this expres-
sion into the other equation.

(x � 2, y � 9/5)(x � 5, y � 0),
x � 0, y � 3),

3x � 5y � 15,

EXAMPLE 2
Alternate Solution Multiply each term in (1) by the
factor 2 and add the result to (2):

�3 y � x � 2 �

 x � �1 

 12x � �12 

 2x � 2y � 4 

10x � 2y � �16 

Solve the following two simultaneous equations:

(1)

(2)

Solution From (2), Substitution of this into (1)
gives

�1x � y � 2 �

 y � �3 

 6y � �18 

5(y � 2) � y � �8 

x � y � 2.

2x � 2y � 4

5x � y � �8

Two linear equations containing two unknowns can also be solved by a graphi-
cal method. If the straight lines corresponding to the two equations are plotted in
a conventional coordinate system, the intersection of the two lines represents the
solution. For example, consider the two equations

These are plotted in Figure B.3. The intersection of the two lines has the coordi-
nates This represents the solution to the equations. You should check
this solution by the analytical technique discussed above.

EXERCISES

Solve the following pairs of simultaneous equations involving two unknowns:

Answers

1.
x � y � 2

x � 5, y � 3x � y � 8

x � 5, y � 3.

x � 2y � �1

 x � y � 2 

5
4
3
2
1

x – 2y = –1

1 2 3 4 5 6

(5, 3)

x

x – y = 2

y

Figure B.3
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2.

3.

Logarithms

Suppose that a quantity x is expressed as a power of some quantity a:

(B.11)

The number a is called the base number. The logarithm of x with respect to the
base a is equal to the exponent to which the base must be raised in order to satisfy
the expression 

(B.12)

Conversely, the antilogarithm of y is the number x :

(B.13)

In practice, the two bases most often used are base 10, called the common loga-
rithm base, and base . . . , called Euler’s constant or the natural loga-
rithm base. When common logarithms are used,

(B.14)

When natural logarithms are used,

(B.15)

For example, log10 52 � 1.716, so that antilog10 1.716 � 101.716 � 52. Likewise, 
lne 52 � 3.951, so antilne 3.951 � e 3.951 � 52.

In general, note that you can convert between base 10 and base e with the
equality

(B.16)

Finally, some useful properties of logarithms are

GEOMETRY
The distance d between two points having coordinates (x1 , y1) and (x2 , y2) is

(B.17)d � !(x2 � x1)2 � (y2 � y1)2

B.3

log(ab) � log a � log b
log(a/b) � log a � log b
log(an) � n log a
ln e � 1
ln ea � a

ln� 1
a � � � ln a

lne x � (2.302 585) log10 x

y � lne x  (or x � e y)

y � log10 x  (or x � 10y)

e � 2.718

x � antiloga y

y � loga x

x � a y :

x � a y

8x � 4y � 28
x � 2, y � �36x � 2y � 6

T � 49 � 5a
T � 65, a � 3.2798 � T � 10a
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Radian measure: The arc length s of a circular arc (Fig. B.4) is proportional
to the radius r for a fixed value of 
 (in radians):

(B.18)

Table B.2 gives the areas and volumes for several geometric shapes used through-
out this text:

s � r



 �
s
r

TABLE B.2 Useful Information for Geometry

Shape Area or Volume Shape Area or Volume

Rectangle

w

r

Circle

Triangle

h

Sphere

r

Cylinder

Rectangular box

r

�

Volume = πr 2�

Surface area = 4πr 2

     Area =
2(�h + �w + hw)
Volume = �whw

h

Area = πr 2

(Circumference = 2πr)

Area = �w

b �

�

Area =   bh1
2

Volume = 4πr3

3

π
π

π

π
π

Lateral surface
area = 2πr �π

The equation of a straight line (Fig. B.5) is

(B.19)

where b is the y-intercept and m is the slope of the line.
The equation of a circle of radius R centered at the origin is

(B.20)

The equation of an ellipse having the origin at its center (Fig. B.6) is

(B.21)

where a is the length of the semi-major axis (the longer one) and b is the length of
the semi-minor axis (the shorter one).

x2

a2 �
y2

b2 � 1

x2 � y2 � R2

y � mx � b

r
θ

s

Figure B.4

b

0

y

m = slope = tan

θ

x

θ

Figure B.5

y

0

b

a
x

Figure B.6
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The equation of a parabola the vertex of which is at (Fig. B.7) is

(B.22)

The equation of a rectangular hyperbola (Fig. B.8) is

(B.23)

TRIGONOMETRY
That portion of mathematics based on the special properties of the right triangle is
called trigonometry. By definition, a right triangle is one containing a 90° angle. Con-
sider the right triangle shown in Figure B.9, where side a is opposite the angle 
, side b
is adjacent to the angle 
, and side c is the hypotenuse of the triangle. The three basic
trigonometric functions defined by such a triangle are the sine (sin), cosine (cos), and
tangent (tan) functions. In terms of the angle 
, these functions are defined by

The Pythagorean theorem provides the following relationship between the
sides of a right triangle:

(B.27)

From the above definitions and the Pythagorean theorem, it follows that

The cosecant, secant, and cotangent functions are defined by

The relationships below follow directly from the right triangle shown in Figure B.9:

Some properties of trigonometric functions are

The following relationships apply to any triangle, as shown in Figure B.10:

� � � �  � 180�

tan (�
) � � tan 


cos (�
) � cos 


sin (�
) � �sin 


cot 
 � tan(90� � 
)

cos 
 � sin(90� � 
)

sin 
 � cos(90� � 
)

csc 
 �
1

sin 

  sec 
 �

1
cos 


  cot 
 �
1

tan 


 tan 
 �
sin 

cos 


 

sin2 
 � cos2 
 � 1

c 2 � a2 � b 2

(B.24)

(B.25)

(B.26)

sin 
 �
side opposite 


hypotenuse
�

a
c

cos 
 �
side adjacent to 


hypotenuse
�

b
c

tan 
 �
side opposite 


side adjacent to 

�

a
b

B.4

xy � constant

y � ax2 � b

y � b y

b

0
x

Figure B.7

0

y

x

Figure B.8

a = opposite side
b = adjacent side
c = hypotenuse

90°–θc
a

b

90°
θ

θ

Figure B.9
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Law of cosines

Law of sines

Table B.3 lists a number of useful trigonometric identities.

a
sin �

�
b

sin �
�

c
sin 

a2 � b 2 � c 2 � 2bc cos �
b 2 � a2 � c 2 � 2ac cos �
c 2 � a2 � b 2 � 2ab cos 

a = 2
c

θ
b = 5

Figure B.11

TABLE B.3 Some Trigonometric Identities

cos(A � B) � cos A cos B � sin A sin B
sin(A � B) � sin A cos B � cos A sin B

tan 



2
�! 1 � cos 


1 � cos 

tan 2
 �

2 tan 

1 � tan2 


1 � cos 
 � 2 sin2 



2
cos 2
 � cos2 
 � sin2 


cos2 



2
� 1

2(1 � cos 
)sin 2
 � 2 sin 
 cos 


sin2 



2
� 1

2(1 � cos 
)sec2 
 � 1 � tan2 


csc2 
 � 1 � cot2 
sin2 
 � cos2 
 � 1

EXAMPLE 3
where tan�1 (0.400) is the notation for “angle whose tangent
is 0.400,” sometimes written as arctan (0.400).

Consider the right triangle in Figure B.11, in which 
and c is unknown. From the Pythagorean theorem, we

have

To find the angle 
, note that

From a table of functions or from a calculator, we have

21.8�
 � tan�1 (0.400) �

tan 
 �
a
b

�
2
5

� 0.400

5.39 c � !29 �

c 2 � a2 � b 2 � 22 � 52 � 4 � 25 � 29

b � 5,
a � 2,

EXERCISES

1. In Figure B.12, identify (a) the side opposite 
 and (b) the side adjacent to �
and then find (c) cos 
, (d) sin �, and (e) tan �.

Answers (a) 3, (b) 3, (c) (d) and (e)

2. In a certain right triangle, the two sides that are perpendicular to each other
are 5 m and 7 m long. What is the length of the third side?

Answer 8.60 m

4
3

4
5 ,4

5 ,

a b

c

β α

γ

Figure B.10

5

4

3

θ

φ

Figure B.12
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3. A right triangle has a hypotenuse of length 3 m, and one of its angles is 30°.
What is the length of (a) the side opposite the 30° angle and (b) the side adja-
cent to the 30° angle?

Answers (a) 1.5 m, (b) 2.60 m

SERIES EXPANSIONS

x in radians

For the following approximations can be used1:

DIFFERENTIAL CALCULUS
In various branches of science, it is sometimes necessary to use the basic tools of
calculus, invented by Newton, to describe physical phenomena. The use of calcu-
lus is fundamental in the treatment of various problems in Newtonian mechanics,
electricity, and magnetism. In this section, we simply state some basic properties
and “rules of thumb” that should be a useful review to the student.

First, a function must be specified that relates one variable to another (such
as a coordinate as a function of time). Suppose one of the variables is called y (the
dependent variable), the other x (the independent variable). We might have a
function relationship such as

If a, b, c, and d are specified constants, then y can be calculated for any value of x.
We usually deal with continuous functions, that is, those for which y varies
“smoothly” with x.

y(x) � ax3 � bx2 � cx � d

B.6

ln(1 � x) � �x  tan x � x

ex � 1 � x  cos x � 1

(1 � x)n � 1 � nx  sin x � x

x V 1,

tan x � x �
x3

3
�

2x5

15
� ���  � x � � �/2 

cos x � 1 �
x2

2!
�

x4

4!
� ��� 

sin x � x �
x3

3!
�

x5

5!
� ��� 

ln(1 � x) � �x � 1
2x2 � 1

3x3 � ��� 

ex � 1 � x �
x2

2!
�

x3

3!
� ��� 

(1 � x)n � 1 � nx �
n(n � 1)

2!
 x2 � ��� 

(a � b)n � an �
n
1!

 an�1b �
n(n � 1)

2!
 an�2b2 � ��� 

B.5

1 The approximations for the functions sin x, cos x, and tan x are for x � 0.1 rad.
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The derivative of y with respect to x is defined as the limit, as 	x approaches
zero, of the slopes of chords drawn between two points on the y versus x curve.
Mathematically, we write this definition as

(B.28)

where 	y and 	x are defined as and (Fig. B.13). It is
important to note that dy/dx does not mean dy divided by dx, but is simply a nota-
tion of the limiting process of the derivative as defined by Equation B.28.

A useful expression to remember when where a is a constant and n
is any positive or negative number (integer or fraction), is

(B.29)

If y(x) is a polynomial or algebraic function of x, we apply Equation B.29 to
each term in the polynomial and take d[constant]/dx � 0. In Examples 4 through
7, we evaluate the derivatives of several functions.

dy
dx

� naxn�1

y(x) � axn,

	y � y2 � y1	x � x2 � x1

dy
dx

� lim
	x:0

 
	y
	x

� lim
	x:0

 
y(x � 	x) � y(x)

	x

EXAMPLE 4
so

Substituting this into Equation B.28 gives

3ax2 � b 
dy
dx

�

dy
dx

� lim
	x:0

 
	y
	x

� lim
	x:0

 [3ax2 � 3x	x � 	x2] � b

 � b	x 

	y � y(x � 	x) � y(x) � a(3x2	x � 3x	x2 � 	x3)

Suppose y(x) (that is, y as a function of x) is given by

where a and b are constants. Then it follows that

 � b(x � 	x) � c 

y(x � 	x) � a(x3 � 3x2	x � 3x	x2 � 	x3)

 � b(x � 	x) � c 

y(x � 	x) � a(x � 	x)3 

y(x) � ax3 � bx � c

EXAMPLE 5

40x4 � 12x2 � 2
dy
dx

�

Solution Applying Equation B.29 to each term indepen-
dently, and remembering that d/dx (constant) � 0, we have

dy
dx

� 8(5)x4 � 4(3)x2 � 2(1)x0 � 0

y(x) � 8x5 � 4x3 � 2x � 7

Special Properties of the Derivative

A. Derivative of the product of two functions If a function f (x) is given by the
product of two functions, say, g(x) and h(x), then the derivative of f(x) is defined
as

(B.30)
d
dx

 f(x) �
d
dx

[g(x)h(x)] � g 
dh
dx

� h 
dg
dx

y

y2

y1

x1 x2
x

∆x

∆y

Figure B.13
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B. Derivative of the sum of two functions If a function f (x) is equal to the sum
of two functions, then the derivative of the sum is equal to the sum of the deriv-
atives:

(B.31)

C. Chain rule of differential calculus If y � f (x) and x � g(z), then dy/dz can
be written as the product of two derivatives:

(B.32)

D. The second derivative The second derivative of y with respect to x is defined
as the derivative of the function dy/dx (the derivative of the derivative). It is
usually written

(B.33)
d2y
dx2 �

d
dx

 � dy
dx �

dy
dz

�
dy
dx

 
dx
dz

d
dx

 f(x) �
d
dx

[g(x) � h(x)] �
dg
dx

�
dh
dx

EXAMPLE 6

dy
dx

�
3x2

(x � 1)2 �
2x3

(x � 1)3  

 � (x � 1)�23x2 � x3(�2)(x � 1)�3 Find the derivative of y(x) � x3/(x � 1)2 with respect to x.

Solution We can rewrite this function as y(x) �
x3(x � 1)�2 and apply Equation B.30:

dy
dx

� (x � 1)�2 
d
dx

 (x3) � x3
 

d
dx

 (x � 1)�2

EXAMPLE 7

 �
h 

dg
dx

� g 
dh
dx

h2 

 � �gh�2 
dh
dx

� h�1 
dg
dx

 

d
dx

 � g
h � �

d
dx

 (gh�1) � g 
d
dx

 (h�1) � h�1 
d
dx

 (g)
A useful formula that follows from Equation B.30 is the deriv-
ative of the quotient of two functions. Show that

Solution We can write the quotient as gh�1 and then apply
Equations B.29 and B.30:

d
dx

 � g(x)
h(x) � �

h 
dg
dx

� g 
dh
dx

h2

Some of the more commonly used derivatives of functions are listed in Table
B.4.

INTEGRAL CALCULUS
We think of integration as the inverse of differentiation. As an example, consider
the expression

(B.34)

which was the result of differentiating the function

y(x) � ax 3 � bx � c

f(x) �
dy
dx

� 3ax2 � b

B.7
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in Example 4. We can write Equation B.34 as and ob-
tain y(x) by “summing” over all values of x. Mathematically, we write this inverse
operation

For the function f(x) given by Equation B.34, we have

where c is a constant of the integration. This type of integral is called an indefinite
integral because its value depends on the choice of c.

A general indefinite integral I(x) is defined as

(B.35)

where f(x) is called the integrand and 

For a general continuous function f(x), the integral can be described as the area
under the curve bounded by f(x) and the x axis, between two specified values of x,
say, x1 and x2 , as in Figure B.14.

The area of the blue element is approximately If we sum all these
area elements from x1 and x2 and take the limit of this sum as we obtain
the true area under the curve bounded by f(x) and x, between the limits x1 and x2 :

(B.36)

Integrals of the type defined by Equation B.36 are called definite integrals.

Area � lim
	xi:0

 �
i

 f(x i) 	x i � 	x 2

x 1

 f(x) dx

	x i : 0,
f(x i)	x i .

f(x) �
dI(x)

dx
 .

I(x) � 	 f(x) dx

y(x) � 	 (3ax2 � b) dx � ax 3 � bx � c

y(x) � 	 f(x) dx

dy � f(x) dx � (3ax2 � b) dx

∆xi

x2

f(xi)

f(x)

x1

Figure B.14

One common integral that arises in practical situations has the form

(B.37)

This result is obvious, being that differentiation of the right-hand side with respect
to x gives directly. If the limits of the integration are known, this integral
becomes a definite integral and is written

(B.38)	x 2

x 1

 xn dx �
x2 

n�1 � x1 

n�1

n � 1
  (n � �1)

f(x) � xn

	 xn dx �
xn�1

n � 1
� c  (n � �1)

TABLE B.4
Derivatives for Several
Functions

Note: The letters a and n are con-
stants.

d
dx

 (ln ax) �
1
x

d
dx

 (csc x) � �cot x csc x

d
dx

 (sec x) � tan x sec x

d
dx

 (cot ax) � �a csc2 ax

d
dx

 (tan ax) � a sec2 ax

d
dx

 (cos ax) � �a sin ax

d
dx

 (sin ax) � a cos ax

d
dx

 (e ax) � ae ax

d
dx

 (axn) � naxn�1

d
dx

 (a) � 0
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EXAMPLES

1.

2.

3.

Partial Integration

Sometimes it is useful to apply the method of partial integration (also called “inte-
grating by parts”) to evaluate certain integrals. The method uses the property that

(B.39)

where u and v are carefully chosen so as to reduce a complex integral to a simpler
one. In many cases, several reductions have to be made. Consider the function

This can be evaluated by integrating by parts twice. First, if we choose 
we get

Now, in the second term, choose which gives

or

The Perfect Differential

Another useful method to remember is the use of the perfect differential, in which
we look for a change of variable such that the differential of the function is the dif-
ferential of the independent variable appearing in the integrand. For example,
consider the integral

This becomes easy to evaluate if we rewrite the differential as 
The integral then becomes

If we now change variables, letting we obtain
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Table B.5 lists some useful indefinite integrals. Table B.6 gives Gauss’s proba-
bility integral and other definite integrals. A more complete list can be found in
various handbooks, such as The Handbook of Chemistry and Physics, CRC Press.

TABLE B.5 Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.)
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TABLE B.6 Gauss’s Probability Integral and Other
Definite Integrals

(Gauss’s probability integral)
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APPENDIX C • Periodic Table of the Elements

*Lanthanide series

**Actinide series

Atomic numberSymbol

Electron configuration

20Ca
Atomic mass †

58

90

57

89

3

11

19

37

55

87

20

38

56

88

21

39

57-71*

89-103**

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76

108

27

45

77

109

4

12

59 60 61 62

94939291

1

Li

Na

K

Rb

Cs

Fr

Ca

Sr

Ba

Ra

Sc

Y

Ti

Zr

Hf

Rf

V

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

Fe

Ru

Os

Hs

Co

Rh

Ir

Mt

Be

Mg

Ce Pr Nd Pm Sm

PuNpUPaTh

H

La

Ac

4s2

5f 66d 07s25f 46d 17s25f 36d17s25f 26d17s26d 27s26d17s2

4f 66s24f 56s24f 46s24f 36s25d14f 16s25d16s2

6d 37s26d 27s27s27s1

5d 76s25d 66s25d 56s25d 46s25d 36s25d 26s26s26s1

4d 85s14d 75s14d 55s24d 55s14d 45s14d 25s24d15s25s25s1

3d 74s23d 64s23d 54s23d 54s13d 34s23d 24s23d14s24s24s1

3s23s1

2s22s1

1s1

(261) (262) (263) (262) (265) (266)

6.94 9.012

1.008 0

22.99

39.102

85.47

132.91

(223)

40.08

87.62

137.34

(226)

44.96

88.906

47.90

91.22

178.49

50.94

92.91

180.95

51.996

95.94

183.85

54.94

(99)

186.2

55.85

101.1

190.2

58.93

102.91

192.2

24.31

140.12 140.91 144.24 (147) 150.4

(239)(239)(238)(231)(232)

40.08

138.91

(227)

Group
I

Group
II Transition elements

     Atomic mass values given are averaged over isotopes in the percentages in which they exist in nature.
    † For an unstable element, mass number of the most stable known isotope is given in parentheses.
  †† Elements 110, 111, 112, and 114  have not yet been named.
††† For a description of the atomic data, visit physics.nist.gov/atomic
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1.008 0

26.98 28.09 30.97 32.06 35.453 39.948

58.71

106.4

195.09

63.54

107.87

196.97

65.37

112.40

200.59

114.82

204.37

118.69

207.2

121.75

208.98

127.60

(210)

126.90

(218)

131.30

(222)

162.50 164.93 167.26 168.93 173.04

(255)(255)(253)(254)(249)

158.92

(247)

157.25

(245)

152.0

(243)

69.72 72.59 74.92 78.96 79.91 83.80

10.81 12.011 14.007 15.999 18.998 20.18

4.002 6

174.97

(257)
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52
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53
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66  67 68 69 70

1021011009998

65

97

64

96

63

95

31 33 34 35 36

5 6 7 8 9 10

2

50 51

32

71

103

In

Ga

H

Al Si P S Cl Ar

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg Tl Pb Bi

Te

Po

I

At

Xe

Rn

Dy Ho Er Tm Yb

NoMdFmEsCf

Tb

Bk

Gd

Cm

Eu

Am

As Se Br Kr

B C N O F Ne

He

Sn Sb

Ge

Lu

Lr

Group
III

Group
IV

Group
V

Group
VI

Group
VII

Group
0

6d17s26d 07s25f 136d 07s25f 126d 07s25f 106d 07s25f 86d17s25f 76d17s25f 76d 07s2

5d14f 146s24f 146s24f 136s24f 126s24f 116s24f 106s25d14f 86s25d 14f 76s24f 76s2

6p66p56p46p36p26p15d106s25d106s15d 96s1

5p65p55p45p35p25p14d105s24d105s14d10

4p64p54p44p34p24p13d104s23d104s13d 84s2

3p63p53p43p33p23p1

2p62p52p42p32p22p1

1s21s1

5f 116d 07s2

(269) (272) (277)

110†† 111†† 112††

(289)

114††
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APPENDIX D • SI Units

TABLE D.1 SI Units

SI Base Unit

Base Quantity Name Symbol

Length Meter m
Mass Kilogram kg
Time Second s
Electric current Ampere A
Temperature Kelvin K
Amount of substance Mole mol
Luminous intensity Candela cd

TABLE D.2 Some Derived SI Units

Expression in Expression in
Terms of Base Terms of Other

Quantity Name Symbol Units SI Units

Plane angle radian rad m/m
Frequency hertz Hz s�1

Force newton N kg m/s2 J/m
Pressure pascal Pa kg/m s2 N/m2

Energy; work joule J kg m2/s2 N m
Power watt W kg m2/s3 J/s
Electric charge coulomb C A s
Electric potential volt V kg m2/A s3 W/A
Capacitance farad F A2 s4/kg m2 C/V
Electric resistance ohm � kg m2/A2 s3 V/A
Magnetic flux weber Wb kg m2/A s2 V s
Magnetic field intensity tesla T kg/A s2

Inductance henry H kg m2/A2 s2 T m2/A���
�

���
��

��
��

�
�

��
�

�





APPENDIX E • Nobel Prizes

All Nobel Prizes in physics are listed (and marked with a P), as well as relevant
Nobel Prizes in Chemistry (C). The key dates for some of the scientific work are
supplied; they often antedate the prize considerably.

1901 (P) Wilhelm Roentgen for discovering x-rays (1895).
1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman

for discovering the Zeeman effect, the splitting of spectral lines in mag-
netic fields.

1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre
and Marie Curie for studying radioactivity.

1904 (P) Lord Rayleigh for studying the density of gases and discovering argon.
(C) William Ramsay for discovering the inert gas elements helium, neon,
xenon, and krypton, and placing them in the periodic table.

1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899).
1906 (P) J. J. Thomson for studying electrical discharge through gases and dis-

covering the electron (1897).
1907 (P) Albert A. Michelson for inventing optical instruments and measuring

the speed of light (1880s).
1908 (P) Gabriel Lippmann for making the first color photographic plate, using

interference methods (1891).
(C) Ernest Rutherford for discovering that atoms can be broken apart by al-
pha rays and for studying radioactivity.

1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless
telegraphy.

1910 (P) Johannes D. van der Waals for studying the equation of state for gases
and liquids (1881).

1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a black-
body spectrum (1893).
(C) Marie Curie for discovering radium and polonium (1898) and isolat-
ing radium.

1912 (P) Nils Dalén for inventing automatic gas regulators for lighthouses.
1913 (P) Heike Kamerlingh Onnes for the discovery of superconductivity and liq-

uefying helium (1908).
1914 (P) Max T. F. von Laue for studying x-rays from their diffraction by crys-

tals, showing that x-rays are electromagnetic waves (1912).
(C) Theodore W. Richards for determining the atomic weights of sixty ele-
ments, indicating the existence of isotopes.

1915 (P) William Henry Bragg and William Lawrence Bragg, his son, for studying
the diffraction of x-rays in crystals.

1917 (P) Charles Barkla for studying atoms by x-ray scattering (1906).
1918 (P) Max Planck for discovering energy quanta (1900).
1919 (P) Johannes Stark, for discovering the Stark effect, the splitting of spectral

lines in electric fields (1913).
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1920 (P) Charles-Édouard Guillaume for discovering invar, a nickel-steel alloy with
low coefficient of expansion.
(C) Walther Nernst for studying heat changes in chemical reactions and for-
mulating the third law of thermodynamics (1918).

1921 (P) Albert Einstein for explaining the photoelectric effect and for his ser-
vices to theoretical physics (1905).
(C) Frederick Soddy for studying the chemistry of radioactive substances and
discovering isotopes (1912).

1922 (P) Niels Bohr for his model of the atom and its radiation (1913).
(C) Francis W. Aston for using the mass spectrograph to study atomic
weights, thus discovering 212 of the 287 naturally occurring isotopes.

1923 (P) Robert A. Millikan for measuring the charge on an electron (1911) and
for studying the photoelectric effect experimentally (1914).

1924 (P) Karl M. G. Siegbahn for his work in x-ray spectroscopy.
1925 (P) James Franck and Gustav Hertz for discovering the Franck-Hertz effect in

electron-atom collisions.
1926 (P) Jean-Baptiste Perrin for studying Brownian motion to validate the discon-

tinuous structure of matter and measure the size of atoms.
1927 (P) Arthur Holly Compton for discovering the Compton effect on x-rays,

their change in wavelength when they collide with matter (1922), and
Charles T. R. Wilson for inventing the cloud chamber, used to study charged
particles (1906).

1928 (P) Owen W. Richardson for studying the thermionic effect and electrons
emitted by hot metals (1911).

1929 (P) Louis Victor de Broglie for discovering the wave nature of electrons
(1923).

1930 (P) Chandrasekhara Venkata Raman for studying Raman scattering, the scat-
tering of light by atoms and molecules with a change in wavelength (1928).

1932 (P) Werner Heisenberg for creating quantum mechanics (1925).
1933 (P) Erwin Schrödinger and Paul A. M. Dirac for developing wave mechanics

(1925) and relativistic quantum mechanics (1927).
(C) Harold Urey for discovering heavy hydrogen, deuterium (1931).

1935 (P) James Chadwick for discovering the neutron (1932).
(C) Irène and Frédéric Joliot-Curie for synthesizing new radioactive ele-
ments.

1936 (P) Carl D. Anderson for discovering the positron in particular and antimat-
ter in general (1932) and Victor F. Hess for discovering cosmic rays.
(C) Peter J. W. Debye for studying dipole moments and diffraction of x-rays
and electrons in gases.

1937 (P) Clinton Davisson and George Thomson for discovering the diffraction of
electrons by crystals, confirming de Broglie’s hypothesis (1927).

1938 (P) Enrico Fermi for producing the transuranic radioactive elements by neu-
tron irradiation (1934–1937).

1939 (P) Ernest O. Lawrence for inventing the cyclotron.
1943 (P) Otto Stern for developing molecular-beam studies (1923), and using

them to discover the magnetic moment of the proton (1933).
1944 (P) Isidor I. Rabi for discovering nuclear magnetic resonance in atomic and

molecular beams.
(C) Otto Hahn for discovering nuclear fission (1938).

1945 (P) Wolfgang Pauli for discovering the exclusion principle (1924).
1946 (P) Percy W. Bridgman for studying physics at high pressures.
1947 (P) Edward V. Appleton for studying the ionosphere.
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1948 (P) Patrick M. S. Blackett for studying nuclear physics with cloud-chamber
photographs of cosmic-ray interactions.

1949 (P) Hideki Yukawa for predicting the existence of mesons (1935).
1950 (P) Cecil F. Powell for developing the method of studying cosmic rays with

photographic emulsions and discovering new mesons.
1951 (P) John D. Cockcroft and Ernest T. S. Walton for transmuting nuclei in an ac-

celerator (1932).
(C) Edwin M. McMillan for producing neptunium (1940) and Glenn T.
Seaborg for producing plutonium (1941) and further transuranic elements.

1952 (P) Felix Bloch and Edward Mills Purcell for discovering nuclear magnetic res-
onance in liquids and gases (1946).

1953 (P) Frits Zernike for inventing the phase-contrast microscope, which uses in-
terference to provide high contrast.

1954 (P) Max Born for interpreting the wave function as a probability (1926)
and other quantum-mechanical discoveries and Walther Bothe for develop-
ing the coincidence method to study subatomic particles (1930–1931),
producing, in particular, the particle interpreted by Chadwick as the neu-
tron.

1955 (P) Willis E. Lamb, Jr., for discovering the Lamb shift in the hydrogen spec-
trum (1947) and Polykarp Kusch for determining the magnetic moment of
the electron (1947).

1956 (P) John Bardeen, Walter H. Brattain, and William Shockley for inventing the
transistor (1956).

1957 (P) T.-D. Lee and C.-N. Yang for predicting that parity is not conserved in
beta decay (1956).

1958 (P) Pavel A. Čerenkov for discovering Čerenkov radiation (1935) and Ilya
M. Frank and Igor Tamm for interpreting it (1937).

1959 (P) Emilio G. Segrè and Owen Chamberlain for discovering the antiproton
(1955).

1960 (P) Donald A. Glaser for inventing the bubble chamber to study elementary
particles (1952).
(C) Willard Libby for developing radiocarbon dating (1947).

1961 (P) Robert Hofstadter for discovering internal structure in protons and neu-
trons and Rudolf L. Mössbauer for discovering the Mössbauer effect of recoil-
less gamma-ray emission (1957).

1962 (P) Lev Davidovich Landau for studying liquid helium and other condensed
matter theoretically.

1963 (P) Eugene P. Wigner for applying symmetry principles to elementary-parti-
cle theory and Maria Goeppert Mayer and J. Hans D. Jensen for studying the
shell model of nuclei (1947).

1964 (P) Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for devel-
oping masers (1951–1952) and lasers.

1965 (P) Sin-itiro Tomonaga, Julian S. Schwinger, and Richard P. Feynman for devel-
oping quantum electrodynamics (1948).

1966 (P) Alfred Kastler for his optical methods of studying atomic energy levels.
1967 (P) Hans Albrecht Bethe for discovering the routes of energy production in

stars (1939).
1968 (P) Luis W. Alvarez for discovering resonance states of elementary particles.
1969 (P) Murray Gell-Mann for classifying elementary particles (1963).
1970 (P) Hannes Alfvén for developing magnetohydrodynamic theory and Louis

Eugène Félix Néel for discovering antiferromagnetism and ferrimagnetism
(1930s).
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1971 (P) Dennis Gabor for developing holography (1947).
(C) Gerhard Herzberg for studying the structure of molecules spectroscopi-
cally.

1972 (P) John Bardeen, Leon N. Cooper, and John Robert Schrieffer for explaining su-
perconductivity (1957).

1973 (P) Leo Esaki for discovering tunneling in semiconductors, Ivar Giaever for
discovering tunneling in superconductors, and Brian D. Josephson for pre-
dicting the Josephson effect, which involves tunneling of paired electrons
(1958–1962).

1974 (P) Anthony Hewish for discovering pulsars and Martin Ryle for developing
radio interferometry.

1975 (P) Aage N. Bohr, Ben R. Mottelson, and James Rainwater for discovering why
some nuclei take asymmetric shapes.

1976 (P) Burton Richter and Samuel C. C. Ting for discovering the J/psi particle,
the first charmed particle (1974).

1977 (P) John H. Van Vleck, Nevill F. Mott, and Philip W. Anderson for studying
solids quantum-mechanically.
(C) Ilya Prigogine for extending thermodynamics to show how life could
arise in the face of the second law.

1978 (P) Arno A. Penzias and Robert W. Wilson for discovering the cosmic back-
ground radiation (1965) and Pyotr Kapitsa for his studies of liquid helium.

1979 (P) Sheldon L. Glashow, Abdus Salam, and Steven Weinberg for developing the
theory that unified the weak and electromagnetic forces (1958–1971).

1980 (P) Val Fitch and James W. Cronin for discovering CP (charge-parity) viola-
tion (1964), which possibly explains the cosmological dominance of matter
over antimatter.

1981 (P) Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spec-
troscopy and Kai M. Siegbahn for developing high-resolution electron spec-
troscopy (1958).

1982 (P) Kenneth G. Wilson for developing a method of constructing theories of
phase transitions to analyze critical phenomena.

1983 (P) William A. Fowler for theoretical studies of astrophysical nucleosynthesis
and Subramanyan Chandrasekhar for studying physical processes of impor-
tance to stellar structure and evolution, including the prediction of white
dwarf stars (1930).

1984 (P) Carlo Rubbia for discovering the W and Z particles, verifying the elec-
troweak unification, and Simon van der Meer, for developing the method of
stochastic cooling of the CERN beam that allowed the discovery
(1982–1983).

1985 (P) Klaus von Klitzing for the quantized Hall effect, relating to conductivity
in the presence of a magnetic field (1980).

1986 (P) Ernst Ruska for inventing the electron microscope (1931), and Gerd
Binnig and Heinrich Rohrer for inventing the scanning-tunneling electron
microscope (1981).

1987 (P) J. Georg Bednorz and Karl Alex Müller for the discovery of high tempera-
ture superconductivity (1986).

1988 (P) Leon M. Lederman, Melvin Schwartz, and Jack Steinberger for a collabora-
tive experiment that led to the development of a new tool for studying the
weak nuclear force, which affects the radioactive decay of atoms.

1989 (P) Norman Ramsay (U.S.) for various techniques in atomic physics; and
Hans Dehmelt (U.S.) and Wolfgang Paul (Germany) for the development of
techniques for trapping single charge particles.
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1990 (P) Jerome Friedman, Henry Kendall (both U.S.), and Richard Taylor (Canada)
for experiments important to the development of the quark model.

1991 (P) Pierre-Gilles de Gennes for discovering that methods developed for study-
ing order phenomena in simple systems can be generalized to more com-
plex forms of matter, in particular to liquid crystals and polymers.

1992 (P) George Charpak for developing detectors that trace the paths of evanes-
cent subatomic particles produced in particle accelerators.

1993 (P) Russell Hulse and Joseph Taylor for discovering evidence of gravitational
waves.

1994 (P) Bertram N. Brockhouse and Clifford G. Shull for pioneering work in neu-
tron scattering.

1995 (P) Martin L. Perl and Frederick Reines for discovering the tau particle and
the neutrino, respectively.

1996 (P) David M. Lee, Douglas C. Osheroff, and Robert C. Richardson for develop-
ing a superfluid using helium-3.

1997 (P) Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips for develop-
ing methods to cool and trap atoms with laser light.

1998 (P) Robert B. Laughlin, Horst L. Störmer, and Daniel C. Tsui for discovering a
new form of quantum fluid with fractionally charged excitations.




